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Many recent studies on medical image processing have involved the use of machine
learning (ML) and deep learning (DL) [1,2]. In ML, features are frequently extracted
from medical images to aid in the interpretation of useful information. However, this
process might hinder the images from being fully utilized. In contrast to ML, DL does not
require such feature extractions. In fact, DL outperforms a combination of ML and feature
extraction in computer vision [3]. Therefore, DL has been used more frequently in recent
medical image studies.

This special issue, “Machine Learning/Deep Learning in Medical Image Processing”,
has been launched to provide an opportunity for researchers in the area of medical image
processing to highlight recent developments made in their fields with ML/DL. Seven
excellent papers that cover a wide variety of medical/clinical aspects are selected in this
special issue [4–10]. Of these, four papers were related to radiology (computed tomography
(CT) and nuclear medicine) and two were related to pathology (prostate carcinoma and
oral squamous cell carcinoma). These seven papers have been summarized as follows:

• Nishio et al. proposed and evaluated a method for automatic pancreas segmentation
from CT images [4]. Their method consists of a deep U-net and combinations of
data augmentation, and is demonstrated to be superior to the baseline U-net and
conventional data augmentation.

• Urase et al. proposed combining sparse-sampling CT with DL-based reconstruction
to detect the metastases of malignant ovarian tumors [5]. Results demonstrate their
method to be more useful in detecting metastases than the conventional residual
encoder-decoder convolutional neural network (RED-CNN) method.

• Bhattacharjee et al. introduced two lightweight CNN architectures and an ensem-
ble ML method for binary classification between the two grade groups of prostate
tissue (benign vs. malignant) [6]. The classifications achieved by their models were
promisingly accurate.

• Martino et al. investigated the tumor segmentation of pathology images [7]. Their
important contribution was the construction of the Oral Cancer Annotated (ORCA)
dataset [11], which contains ground-true data derived from the well-known Cancer
Genome Atlas (TCGA) dataset [12].

• Saratxaga et al. proposed a DL model for the automatic classification (benign vs.
malignant) of optical coherence tomography images obtained from colonic samples [8].

• Park et al. proposed a regression neural network-based DL model [9] to measure
airway volume and investigated the accuracy of those measurements. Results showed
a good correlation between the manual and model-based measurements.

• Papandrianos et al. proposed a DL model for the binary classification (normal vs.
coronary artery disease) [10]. Single-photon-emission CT images of myocardial perfu-
sions were the required inputs for this model and results demonstrate the efficacy of
their DL model over existing models in nuclear medicine.

Appl. Sci. 2021, 11, 11483. https://doi.org/10.3390/app112311483 https://www.mdpi.com/journal/applsci
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These seven papers are expected to tremendously benefit readers in various aspects
of medical image processing. I believe that this special issue contains a series of excellent
research works on medical image processing with ML and DL.
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Abstract: Focusing on coronary artery disease (CAD) patients, this research paper addresses the
problem of automatic diagnosis of ischemia or infarction using single-photon emission computed
tomography (SPECT) (Siemens Symbia S Series) myocardial perfusion imaging (MPI) scans and
investigates the capabilities of deep learning and convolutional neural networks. Considering the
wide applicability of deep learning in medical image classification, a robust CNN model whose archi-
tecture was previously determined in nuclear image analysis is introduced to recognize myocardial
perfusion images by extracting the insightful features of an image and use them to classify it correctly.
In addition, a deep learning classification approach using transfer learning is implemented to classify
cardiovascular images as normal or abnormal (ischemia or infarction) from SPECT MPI scans. The
present work is differentiated from other studies in nuclear cardiology as it utilizes SPECT MPI im-
ages. To address the two-class classification problem of CAD diagnosis, achieving adequate accuracy,
simple, fast and efficient CNN architectures were built based on a CNN exploration process. They
were then employed to identify the category of CAD diagnosis, presenting its generalization capabili-
ties. The results revealed that the applied methods are sufficiently accurate and able to differentiate
the infarction or ischemia from healthy patients (overall classification accuracy = 93.47% ± 2.81%,
AUC score = 0.936). To strengthen the findings of this study, the proposed deep learning approaches
were compared with other popular state-of-the-art CNN architectures for the specific dataset. The
prediction results show the efficacy of new deep learning architecture applied for CAD diagnosis
using SPECT MPI scans over the existing ones in nuclear medicine.

Keywords: coronary artery disease; SPECT MPI scans; deep learning; convolutional neural networks;
transfer learning; classification models

1. Introduction

Coronary artery disease (CAD) is one of the most frequent pathological conditions
and the primary cause of death worldwide [1]. Described by its inflammatory nature [2],
CAD is an atherosclerotic disease usually developed by the interaction of genetic and
environmental factors [3] and leads to cardiovascular events including stable angina,
unstable angina, myocardial infarction (MI), or sudden cardiac death [4]. Coronary heart
disease (CHD) has a significant impact on mortality and morbidity in Europe, whereas
its management requires a large proportion of national healthcare budgets. Thus, an
accurate CAD (ischemia, infarction, etc.) diagnosis is crucial on a socioeconomic level.
CAD diagnosis usually requires the implementation of suitable diagnostic imaging [5,6].
In this direction, non-invasive imaging techniques are the most preferred methods for
diagnosing CAD, prognostication, selection for revascularization and assessing acute
coronary syndromes [7]. Even though they have raised the direct expenditure regarding
investigation, they are likely to reduce overall costs, leading to greater cost-effectiveness [7].

To achieve a reliable and cost-effective CAD diagnosis, a variety of modern imaging
techniques such as single-photon emission computed tomography (SPECT) myocardial

Appl. Sci. 2021, 11, 6362. https://doi.org/10.3390/app11146362 https://www.mdpi.com/journal/applsci
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perfusion imaging (MPI), positron emission tomography (PET), and cardiovascular com-
puted tomography (CT) have been utilized in clinical practice [8–12]. According to the
EANM guidelines [13], radionuclide MPI with the contribution of SPECT imaging is a
remarkably efficient technique regarding the CAD diagnosis [14,15].

Myocardial perfusion scintigraphy (MPS) is a well-established, non-invasive imaging
technique proven effective in diagnosing angina and myocardial infarction. Specifically,
SPECT MPI depicts the information regarding the spreading of a radioactive compound
within the heart in three dimensions and is considered the most frequently performed
procedure in nuclear cardiology [16]. Among others, it is used for predicting future
CAD events and identifying coronary artery disease severity. Regarding the detection of
myocardial ischemia, MPS outperforms ECG in terms of accuracy [7,17]. Furthermore,
applying the MPS imaging method reduces the number of angiographies, offering proper
treatment planning [18].

In the discipline of cardiovascular imaging using nuclear cardiology techniques,
Slart et al. explored the notion regarding the deployment of artificial intelligence (AI)
based on modern machine learning, focusing on methods and computational models
currently used [19]. The goal is to enhance diagnostic performance through complex
image analysis and interpretation [20]. However, image interpretation is a demanding yet
time-consuming task which relies mainly on physicians’ experience [21]. On this basis,
interpretation can be standardized with the contribution of CAD tools providing enhanced
overall objectivity. The diagnostic accuracy is also improved, whereas the diagnostic
time and healthcare costs are significantly reduced. Since there is an extensive existing
and standardized imaging database in the realm of nuclear cardiac imaging, AI becomes
the right candidate to be utilized in this domain [22]. More specifically, AI is currently
spreading throughout three main areas related to cardiac SPECT/CT and PET/CT imaging.
These involve the processes of automation of image detection and segmentation, spotting
patients suffering from obstructive coronary artery disease (CAD), and risk assessment of
coronary syndromes [23]. Overall, computer-aided diagnosis can serve as a supportive
tool that can assist not only in the realization of unusual and difficult medical cases but to
train inexperienced clinical staff too [23].

Computer-aided diagnosis is well attained through the deployment of machine learn-
ing, including deep learning algorithms, which are characterized by an extraordinary
capability for medical image interpretation in the realm of medical image analysis [24–27].
Acknowledging that deep learning has shown remarkable efficacy in visual object detection
and classification, researchers are highly intrigued by the capabilities that deep learning
tools possess for improving the accuracy of CAD classification, helping nuclear physicians
in this direction [28–30].

1.1. Deep Learning in Image Analysis

In the domain of medical imaging, deep learning is mainly implemented by convolu-
tional neural networks (CNNs) [25,31–33], which are considered an efficient and dynamic
approach for extracting features concerning image classification and segmentation tasks.
Before CNN development, this process had to be accomplished using insufficient machine
learning models or by hand. However, after their entrance into medical imaging, CNNs
could use these features that had been learned directly from the data. Among the marked
characteristics of CNNs is their capability of analyzing and classifying images, making
them powerful deep learning models for image analysis [24,25,32,34]. CNN resembles a
standard artificial neural network (ANN) in its characteristics, utilizing backpropagation
and gradient descent for training. However, more pooling layers and layers of convolutions
are present concerning its structure.

Among the most common CNNs methods in medical image analysis, there are:
AlexNet (2012): Developed by Yann LeCun et al. [35], this network has a similar archi-

tecture to LeNet [36] but consists of more filters per layer, including stacked convolutional
layers. Its specifications include 11 × 11, 5 × 5, 3 × 3 convolutions, max pooling, dropout,
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data augmentation, rectified linear unit (ReLU) activations and stochastic gradient descent
(SGD) with momentum [37]. It attaches ReLU activations after each layer, either convolu-
tional or fully connected. The deep learning boom was attributed to AlexNet, when this
architecture won the 2012 ILSVRC competition by a considerable margin. Some features
worth mentioning are the computational split among many GPUs, dropout regularization,
data augmentation, and the ReLU activation function.

ZFNet (2013): This network constitutes a minor adaptation of AlexNet and won the
2013 ILSVRC competition [38].

VGGNet16 (2014): This network incorporates 16 convolutional layers and is popular
due to its consistent structure [39]. Being similar to AlexNet, this model presents only
3 × 3 convolutions but comprises many filters. Currently, VGGNet16 is the most preferred
choice in the community for feature extraction from images. At the same time, it gave great
popularity to the notion of creating deeper networks by using smaller filter kernels [40].

GoogleNet: It involves a standard piled convolutional layer and one or more fully
connected layers [41]. Inception modules were also introduced, applying different-sized
filters to the input and concatenated in the end. This way, the module can extract different
levels of features simultaneously. Another notion introduced by GoogleNet, which won
the 2014 ILSVRC competition, was that there is a global average pooling instead of fully
connected layers in the network’s ending, reducing the model parameters.

ResNet (2015): This type of CNN architecture introduced the “identity shortcut con-
nection” to handle the well-known “vanishing gradients” issue that characterizes deep
networks. This technique revealed that extremely deep networks could use standard SGD
along with residual modules for their training [42].

DenseNet (2017): Being another important CNN architecture, DenseNet outweighs
other networks as it sorted out the gradient vanishment problem by directly connecting all
its layers. Meanwhile, feature delivery is optimized; therefore, it can make more efficient
use of it. It is a widespread technique for disease diagnosis, and more recently, it efficiently
addressed the task of cardiac disease classification, as reported in [43].

1.2. Machine Learning and Deep Learning in SPECT Nuclear Cardiology Imaging

Currently, regarding SPECT MPI, which is one of the established methods for imaging
in nuclear cardiology, researchers face the challenge of developing an algorithm that can
automatically characterize the status of the patients with known or suspected coronary
artery disease. The accuracy of this algorithm needs to be extreme due to the importance of
people’s lives. Since deep learning algorithms have the capacity to improve the accuracy of
CAD screening, they have been broadly explored in the domain of nuclear cardiovascular
imaging analysis.

ML and DL methods have both been explored to assess the likelihood of obstructive
CAD. In the context of ML algorithms for CAD diagnosis, ANN, SVM and boosted ensem-
ble methods have been investigated. In a single-center study for the detection of obstructive
CAD, ML was utilized with SPECT myocardial perfusion imaging (MPI) combining clinical
data of 1181 patients and provided AUC values (0.94 ± 0.01), which were significantly
better than total perfusion deficit (0.88 ± 0.01) or visual readout [44].

ML was also explored in the multi-center REFINE SPECT (REgistry of Fast Myocardial
Perfusion Imaging with NExt generation SPECT) registry [45]. In this study, 1980 patients of
possible CAD went through a stress/rest 99mTc-sestamibi/tetrofosmin MPI. The ML algorithm
embedding 18 clinical, 9 stress test, and 28 imaging variables from 1980 patients produced an
AUC of 0.79 [0.77, 0.80], which is higher than that regarding (TPD) 0.71 [0.70, 0.73] or ischemic
TPD 0.72 [0.71, 0.74] in the prediction of early coronary revascularization.

In [46], ANN was applied for interpreting MPS with suspected myocardial ischemia
and infarction on 418 patients who underwent ECG-gated MPS at a single hospital. The
ANN-based method was compared against a conventional automated quantification soft-
ware package. The results showed that the model based on neural networks presents
interpretations more similar to experienced clinicians than the other method examined.
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Using clinical and other quantification data, the authors of [47] deployed the boosted
ensemble machine learning algorithm and the ANN, achieving classification accuracy of
up to 90%. SVMs have been exploited in [48] and have been trained considering a group of
957 patients with either correlating invasive coronary angiography or a low possibility of
CAD. The AUC value produced for SVM classifier combining quantitative perfusion (TPD
and ISCH) and functional data was as high as 86%.

Moreover, several recent research studies explore ML and DL methods for diagnosing
CAD in nuclear cardiology using polar maps instead of SPECT MPI scans. The studies
devoted to polar maps are set out as follows: in [49], Perfex and an ANN are used with
polar maps, while in [50–52], polar maps were utilized along with DL methods. In [49],
polar maps of stress and rest examinations of 243 patients who underwent SPECT and
coronary angiography within three months were used as input images to train ANN
models. The produced AUC results of receiver operating characteristics (ROC) analysis for
neural networks was 0.74, surpassing the corresponding AUC for other physicians.

Regarding the application of DL for CAD prediction, the authors in [50] employed
deep learning, which was trained using polar maps, for predicting obstructive disease from
myocardial perfusion imaging (MPI). The outcome is an improved automatic interpretation
of MPI comparing to the total perfusion deficit (TPD). As a result, a pseudo-probability of
CAD was deployed per vessel region and per individual patient. An AUC value of 0.80
was calculated concerning the detection of 70% stenosis or higher, still outperforming TPD.
The DL procedure automatically predicted CAD from 2-view (upright and supine) polar
maps data obtained from dedicated cardiac scanners in 1160 patients, improving current
perfusion analysis in the prediction of obstructive CAD [50].

The same team of authors presented another interesting application of DL in the
prediction of CAD. A three-fold feature extraction convolutional layer joined with three
fully connected layers was deployed to analyze SPECT myocardial perfusion clinical data
and polar maps from 1638 patients [51]. These scientific works have investigated the
integration of clinical and imaging data and show how to formulate new autonomous
systems for the automatic interpretation of SPECT and PET images. The authors in [52]
proposed a graph-based convolutional neural network (GCNN) which used Chebyshev
polynomials, achieving the highest accuracy (91%) compared with other neural-network-
based methods.

Recently, authors in [53] were the first to study CAD diagnosis using solely SPECT
MPI scans in deep learning. They developed two different classification models. The first
one is based on deep learning (DL), while the second is based on knowledge to classify MPI
scans into two types automatically, ischemia or healthy, exclusively employing the SPECT
MPI scans at the input level. Performing exploitation of the well-known DL methods in
medical image analysis (such as AlexNet, GoogleNet, ResNet, DenseNet, VGG16, VGG19),
the best DL model was determined to be VGG16 with support vector machine (SVM)
deep features shallow, concerning classification accuracy. The first model to be developed
exploits different pre-trained deep neural networks (DNNs) along with the traditional
classifier SVM with the deep and shallow features extracted from various pre-trained
DNNs for the classification task. The knowledge-based model, in its turn, is focused
on converting the knowledge extracted from experts in the domain into proper image
processing methods such as color thresholding, segmentation, feature extraction and some
heuristics to classify SPECT images. First, the images were divided into six segments (A, B,
C, D, E, F), and the features were extracted from each segment to measure the shapes. Next,
a classification rule set assigned by experts was applied. The parameters were empirically
identified and fine-tuned on the training and validation images. The produced overall
2-class classification accuracy was 93% for both methods.

As has emerged from the related literature regarding SPECT MPI, PET and PET-
CT [54], a system based on deep learning provides similar performance to a nuclear
physician in standalone mode. However, the overall performance is notably improved
when it is used as a supportive tool for the physician [33,55–58]. Although SPECT MPI
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scans are of high importance for diagnosing CAD in nuclear cardiology, only one study
was reported in the literature to apply CNNs in these types of MPI images. Thus, there
is plenty of space for further research over the investigation on the advantageous and
outstanding capabilities of CNNs in the field of nuclear cardiology.

1.3. Contribution of This Research Work

According to the previous work of the authors, new, fast and powerful CNN architec-
tures were proposed to classify bone scintigraphy images for prostate and breast cancer
patients in nuclear medicine [33,56,57,59]. More specifically, an RGB-based CNN model
has been proposed to automatically identify whether a patient has bone metastasis or
not by viewing whole-body scans. The results showed the superior performance of the
RGB-CNN model against other state-of-the-art CNN models in this field [56,57]. Based on
the advantageous features of the model, such as robustness, efficacy, low time cost, simple
architecture, and training with a relatively small dataset [57], along with the promising
results, authors were driven to study further and test the generalization capabilities of this
methodology. This research work investigates the performance of the new models, apply-
ing them in nuclear cardiology, making the necessary parameterization and regularization
to address the recognition of myocardial perfusion imaging from SPECT scans of patients
with ischemia or infarction. Hence, the objectives are: (i) to diagnose cardiovascular disease
by exploring efficient and robust CNN-based methods and (ii) to evaluate their perfor-
mance, in line with SPECT MPI scans. A straightforward comparative analysis between the
proposed RGB-based CNN methods with state-of-the-art deep learning methods, such as
VGG16, Densenet, Mobilenet, etc., found in the literature was also conducted to show their
classification performance. The produced results reveal that the proposed deep learning
models achieve high classification accuracy with small datasets in SPECT MPI analysis and
could show the path to future research directions with a view to a further investigation of
the classification method application to other malignant medical states.

Overall, the innovation of this paper which highlights its contribution is two-fold:
(a) the application of a predefined CNN-based structure, namely RGB-CNN [56,57], which
was recently proposed in bone scintigraphy after a meticulous exploration analysis on its
architecture and (b) the implementation of a deep learning classification model utilizing
transfer learning for improving CAD diagnosis. The produced fast, robust and highly
efficient model, in terms of accuracy and AUC score, can be applied to automatically
identify patients with known or suspected coronary artery disease by looking at SPECT
MPI scans.

This work is structured as follows: Section 2 includes the methods and materials used
in this study. Section 3 provides the proposed deep learning architectures for SPECT MPI
classification. In Section 4, a rigorous analysis is conducted, including the exploration
of different configurations to determine the most accurate of the proposed classification
models. Finally, the discussion of results and the conclusions follow in Section 5.

2. Materials and Methods

2.1. Patients and Imaging Protocol

The dataset used in this study corresponds to a retrospective review that includes
224 patients (age 32–85, average age 64.5, 65% men and 55% CAD), whose SPECT MPI
scans were issued by the Nuclear Medicine Department of the Diagnostic Medical Center
“Diagnostiko-Iatriki A.E.”, Larisa, Greece. The dataset consists of images from patients
who had undergone stress and rest SPECT MPI on suspicion of ischemia or infarction
concerning the prediction of CAD between June 2013 and June 2017. The participant
patients went through invasive coronary angiography (ICA) 40 days after MPI.

The set of stress and rest images collected from the records of 224 patients constitute
the dataset used in this retrospective study. The dataset includes eight patients with
infarction, 142 patients with ischemia, and eight patients with both infarction and ischemia,
while the remaining (61 patients) were normal. Indicative image samples are illustrated in
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Figure 1. This dataset is available only under request to the nuclear medicine physician
and only for research purposes.

 

(a) 

 
(b) 

 
(c) 

Figure 1. Image samples of SPECT MPI (from our dataset) (Labels: (a) ischemia, (b) infarction,
(c) healthy).

A 1-day stress–rest injection protocol was used for Tc-99m tetrofosmin SPECT imag-
ing. Patients underwent either symptom-limited Bruce protocol treadmill exercise testing
(n = 154 [69%]) or pharmacologic stress (n = 69 [31%]) with radiotracer injection at peak
exercise or during maximal hyperemia, respectively.
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Within 20 min after an injection of 7 to 9 mCi 99mTc-tetrofosmin, stress SPECT images
were collected due to either an effort test or pharmacological stress with dipyridamole.
In the case of the effort test, a treadmill test was performed. The Bruce protocol was
employed, and when at least 85% of the age-predicted maximum heart rate was achieved,
a 99mTc-tetrofosmin injection was provided to the patient, whereas the exercise stopped
1 min later. Rest imaging followed 40 min after a dose of 21–27 mCi 99mTc-tetrofosmin had
been injected. The data collected from SPECT system came from 32 projections regarding a
period of 30 s for the stress and 30 s for the rest SPECT MPI. The rest of the configurations
regarded a 140 keV photopeak, a 180-degree arc and a 64 × 64 matrix.

2.2. Visual Assessment

The assignment of patients’ scanning was delivered by a Siemens gamma camera
Symbia S series SPECT System (by dedicated workstation and software Syngo VE32B,
Siemens Healthcare GmbH, Enlargen, Germany) comprising two heads that include low
energy high-resolution (LEHR) collimators. The Syngo software was utilized for the
Standard SPECT MPI processing allowing the nuclear medicine specialist to automatically
produce SA (short axis), HLA (long horizontal axis), and VLA (long vertical axis) slices from
raw data [55]. Afterwards, two expert readers with considerable clinical expertise in nuclear
cardiology (N. Papandrianos, who is the first author of this work and N. Papathanasiou,
who is Ass. Professor in Nuclear Medicine, University Hospital of Patras), provided visual
assessments solely for the series of stress and rest perfusion images in color scale, though
not including functional and clinical data [18]. The case is labeled as normal when there is
a homogeneous involvement of 99mTc-tetrofosmin in the left ventricular walls.

On the contrary, a defect is defined when radiopharmaceuticals are less involved
in any part of the myocardium. A comparative visual analysis is conducted, including
the images collected after the stress SPECT MPI and those after the rest SPECT MPI,
respectively. Potential defects are identified as a result of the injected radiopharmaceutical
agent or even exercise. In this context, the condition is described as ischemia when a
perfusion defect was detected in the SPECT images obtained after exercise but not in the
rest images. Instead, infarction is the condition in which both stress and rest images include
evidence of the defect. The classification process of all SPECT MPI images carried out by
expert readers utilizes a two-class label (1 denotes normal and 2 abnormal) to administer
additional tasks [53].

2.3. Overview of Convolutional Neural Networks

Convolutional neural networks are among the most dominant deep learning method-
ologies since they are designated as techniques with a remarkable capacity for image
analysis and classification. Their architecture is originated from the perceptron model in
which a series of fully connected layers is established, and all neurons from consecutive
layers are individually interconnected. A detailed description of all different types of
layers follows.

Concerning the first layer in the architecture, the “convolutional” layer is named after
the type of neural network. Its role is substantial for CNNs since this layer is responsible for
the formation of activation maps. In particular, specific patterns of an image are extracted,
helping the algorithm detect various characteristics essential for image classification [34,60].
Then, a pooling layer follows, whose duty is image downsampling, whereas any unwanted
noise that might fuzzy the algorithm is appropriately discarded. This layer retains the
set of pixel values that exceed a threshold optimally defined, rejecting all the remaining.
For this process, the elements within a matrix that are in line with specific requirements
concerning the maximum or average value are correctly selected.

The last part of a CNN architecture comprises one or more fully connected layers
assigned for the “flattening” of the previous layer’s output every time. This is considered
as the final output layer, which takes the form of a vector. According to the values of the
outcome vector, a specific label is assigned by the algorithm to every image. On the whole,
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the set of the fully connected layers are classified into distinct subcategories emanated from
their role. For instance, the vectorization is attained by the first layer, whereas the category
of each class given is defined by the final layer [61,62].

Concerning the activation function in the CNN models, the rectified linear unit (ReLU)
is deployed in all convolutional and fully connected layers, while the sigmoid function
serves as the final most common activation function in the output nodes [62]. It is worth
mentioning that selecting the most suitable activation function is crucial and dependent on
the desired outcome. The Softmax function can be efficiently utilized for the multiclass clas-
sification task. It has the ability to target class probabilities through a normalization process
conducted on the actual output values derived from the last fully connected layer [62].

2.4. Methodology

This work discusses the recently proposed RGB-CNN model as a new efficient method
in scintigraphy/ nuclear medical image analysis, regarding its application on the classifica-
tion of SPECT MPI scans in coronary artery disease patients. This two-class classification
task involves the cases of ischemia or infarction presence as well as those being labeled
as normal in a sample of 224 patients. It particularly involves three distinctive processes,
which are pre-processing, network design and testing/evaluation. These stages have
been previously presented in common publications (see [30,50,53]). The pre-processing
step consists of data normalization, data shuffle, data augmentation and data split into
training, validation and testing. Data augmentation involves specific image processes such
as range, enlargement, rotation and flip. The augmentation process is conducted before
its entrance into the exploration and training of CNN. Concerning data split, the training
dataset regards 85% of the provided dataset of 275 MPI images, whereas the remaining 15%
is used for testing purposes. Next, the network design stage deals with the construction
of a proper architecture through an exploration process. Then, the testing phase follows,
utilizing the best CNN model derived. In the final stage, the produced CNN model is
tested using unknown to the model data.

Likewise, the respective classification approach is deployed for the tasks of image
pre-processing, network training and testing, and is applied to the new dataset. The process
for the examined dataset of SPECT MPI scans is visually represented in Figure 2.

Figure 2. The proposed methodology for SPECT MPI classification including RGB-CNN architectures.
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3. Methodology

3.1. RGB-Based CNN Architecture for Classification in Nuclear Medical Imaging

In this research study, we apply an efficient and robust CNN model, the RGB-CNN
(proposed in a recent study in the domain of bone scintigraphy), to precisely categorize MPI
images as normal or abnormal suffering from CAD. The developed CNN will demonstrate
its capacity for high accuracy utilizing a fast yet straightforward architecture regarding
MPI classification. A number of experiments were performed for different values of
parameters, like pixels, epochs, drop rate, batch size, number of nodes and layers as
described in [56–58]. Then, appropriate features are extracted and selected manually,
following the most common classic feature extraction techniques. On the other hand,
CNNs that resemble ANNs, achieve automatic feature extraction by applying multiple
filters on the input images. Next, they proceed in selecting the most suitable for image
classification through an advanced learning process.

A deep-layer network is constructed within this framework, embodying five convolutional-
pooling layers, two dense layers, a dropout layer, followed by a final two-node output layer
(see Figure 3).

Figure 3. RGB-CNN architecture for CAD classification using SPECT MPI scans.

The dimensions of the input images vary from 250 × 250 pixels to 400 × 400 pixels.
According to the structure of the proposed CNN, the initial convolutional layer includes
3 × 3 filters (kernels) followed by a 2 × 2-sized max-pooling layer and a dropout layer
entailing a dropout rate of 0.2. The first convolutional layer is formed by 16 filters, whereas
each layer that follows includes a double number of filters compared with the previous
one. The same form is followed by the max-pooling layers that come next. A flattening
operation is then utilized to transform the 2-dimension matrices to 1-dimension arrays
so that they are inserted into the hidden dense layer of 64 nodes. The role of the dropout
layer that follows is to randomly drop the learned weights by 20% to avoid overfitting. The
output two-node layer comes as last in the proposed CNN model architecture.

The most common function utilized by CNNs is ReLU, which is applied to all convolu-
tional and fully connected (dense) layers. In the output nodes, the categorical cross-entropy
function is applied. The algorithm is tested through multiple runs by trying a different
number of epochs varying from 200 to 700 to fully exploit the most valid number of epochs
for CNN training. In this context, the ImageDataGenerator class from Keras is used, pro-
viding specific augmentation tasks over images, such as rotation, shifting, flipping and
zoom. Finally, the categorical cross-entropy function is considered as a performance metric
applied for the calculation of loss. It employs the ADAM optimizer, an adaptive learning
rate optimization algorithm [36].
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3.2. Deep Learning Models, Including Transfer Learning for CAD Classification in
Medical Imaging

In this subsection, we introduce the process followed in this study on applying
deep learning architectures, including transfer learning for benchmark CNN models in
CAD diagnosis.

In deep learning model development, the traditional pipeline is the neural network
training from scratch, which depends highly on the size of the data provided. Transfer
learning is an alternative, most preferred and used process in developing deep learning
architectures [63]. This process offers the capability to sufficiently employ the existing
knowledge of a pre-trained CNN through the use of ImageNet dataset so as to result in
competent predictions.

For an accurate classification process, an improved model training process is required,
which derives from the incorporation of transfer learning during the training phase of
the proposed CNN architectures. More specifically, the ImageNet [63,64] dataset needs
to be utilized for network pre-training, thus resulting in accurate classification of medical
SPECT myocardial perfusion imaging scans into two categories, namely normal and
abnormal (patient with ischemia or infarction). According to the relevant literature, the
ImageNet dataset is employed by the popular CNN methods for model pre-training and
includes 1.4 million images with 1000 classes. Based on this pre-training process, VGG16
and DenseNet models are trained to extract particular features from images through the
assignment of constant weights on them. The number of the weight layers affects the depth
of the model, along with the steps needed for feature extraction.

The training dataset, representing 85% of the provided dataset of 224 SPECT MPI
images, is loaded into the pre-trained models after undergoing a proper augmentation
process. Hence, an improved CNN model is produced, which is inserted into the next
testing phase. The remaining 15% of the provided dataset is accordingly incorporated into
the evaluation process. The proposed transfer learning methodology of the state-of-the-
art CNN models is graphically presented in Figure 4, regarding the examined dataset of
224 patients.

Figure 4. The proposed methodology for SPECT MPI classification including RGB-CNN architectures.
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Following the process in which the benchmark CNN model is selected for the classifi-
cation task, the exploration and identification of suitable, robust and efficient architectures
of these CNN models come next for the specific problem solving, which concerns the
identification of the correct category of CAD diagnosis. On this basis, the fine-tuning of the
model parameters and the configuration of several other hyperparameters were success-
fully attained through a thorough investigation regarding the appropriate deep learning
architecture. For comparison purposes, various common deep learning architectures such
as Densenet, VGG16, Mobilienet and InceptionV3 were investigated.

4. Results

This study attempts to address this image classification problem considering the
classification of images into 2 categories: normal and abnormal (ischemic or infarction
patient cases). The classification processes were individually repeated 10 times to produce
the overall classification accuracy.

All the simulations were performed in Google Colab [65], a cloud-based environment
that supports free GPU acceleration. The Keras 2.0.2 and TensorFlow 2.0.0 frameworks
were utilized to develop the employed deep learning architectures. Image augmentations
(like rotations, shifting, zoom, flips and more) took place only during the training process of
the deep networks and were accomplished using the ImageDataGenerator class from Keras.
The investigated deep learning architectures were coded in the Python programming
language. Sci-Kit Learn was used for data normalization, data splitting, calculation of
confusion matrices and classification reports. It should be noted that all images produced
by the scanning device and used as the dataset in this research were in RGB format,
providing 3-channel color information.

4.1. Results from RGB-CNN

In this study, a meticulous CNN exploration process regarding the deep learning
architectures of RGB-CNN was accomplished. In particular, an experimental analysis was
conducted, where various drop rates (between 0.1–0.9), epochs (200 to 700), number of
dense nodes (like 16–16, 32–32, 64–64, 128–128, 256–256, 512–512 and 1024–1024), pixel sizes
(from 200 × 200 × 3 up to 450 × 450 × 3) and batch sizes (8, 16, 32 and 64) were tested. To
prevent overfitting [62] in the proposed deep learning architectures, the authors conducted
an exploratory analysis for different dropouts and numbers of epochs. According to the
conducted analysis results, a dropout value of 0.2 and the set of 500 epochs were adequate
to produce satisfactory results for the investigated RGB-CNN architecture.

Moreover, an exploration analysis involving the testing of various pixel sizes was
conducted. The best pixel size of the input images was determined as regards the clas-
sification accuracy and loss. Figures 5 and 6 illustrate the produced results in terms of
accuracy for the examined pixel sizes, for both CNN-based architectures. These figures
foster the successful selection of the appropriate pixel size for each architecture which is
250 × 250 × 3 for RGB-CNN.

Following this exploration process, several configurations, including dropout = 0.2
and three batch sizes (8, 16 and 32), various pixel sizes and dense nodes in RGB-CNN
model consisting of 5 layers (16–32–64–128–256) were investigated. Tables 1–3 illustrate
the results produced for the relevant pixel sizes for the well-performed batch sizes of 8, 16
and 32. These results helped in the selection of the most appropriate pixel size, which is
250 × 250 × 3.

As regards the two dense blocks that are the last ones in both architectures, a rigorous
exploration process was performed to determine the best configuration in terms of accuracy
(validation and testing) and loss. The results are depicted in Figures 3 and 4 regarding
4 and 5 convolutional layers, respectively. Looking at the specific figures, it emerges that
64–64 is the optimum combination for the CNN model.
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Figure 5. RGB-CNN architecture with 4 layers, various dense nodes and batch sizes for CAD
classification problem.

 

Figure 6. RGB-CNN architecture with 5 layers, various dense nodes and batch sizes for CAD
classification problem.

Table 1. Results for various pixel sizes and dense nodes in RGB-CNN with 5 layers (16–32–64–128–256), dropout = 0.2 and
batch size = 8.

Pixels Dense Nodes Val. Acc. Val. Loss Test Acc. Test Loss AUC Time (s)

200 × 200 × 3 32–32 90.12 0.25 89.7 0.31 0.916 890
64–64 93.41 0.2 92.64 0.21 0.935 831

128–128 89.05 0.36 89.21 0.33 0.871 860

250 × 250 × 3 32–32 94.72 0.16 93.62 0.12 0.926 1125
64–64 92.53 0.25 93.47 0.13 0.921 1116

128–128 82.89 0.44 80.87 0.18 0.845 1043

300 × 300 × 3 32–32 90.78 0.17 88.23 0.28 0.9025 1736
64–64 85.3 0.36 86.47 0.29 0.893 1641

128–128 86.84 0.45 73.52 0.69 0.716 1469

350 × 350 × 3 32–32 78.94 0.51 70.58 0.61 0.78 2200
64–64 80.52 0.47 68.35 0.62 0.765 2221

128–128 74.21 0.57 65.43 0.71 0.711 2185
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Table 2. Results for various pixel sizes and dense nodes in RGB-CNN with 5 layers (16–32–64–128–256). dropout = 0.2 and
batch size = 16.

Pixels
Dense
Nodes

Val. Acc. Val. Loss Test Acc. Test Loss AUC Time (s)

200 × 200 × 3 32–32 92.73 0.183 92.15 0.24 0.885 748
64–64 92.53 0.24 93.13 0.265 0.948 679

128–128 91.72 0.23 89.91 0.22 0.885 674

250 × 250 × 3 32–32 94.73 0.12 91.17 0.22 0.769 990
64–64 91.21 0.235 90.36 0.26 0.873 971

128–128 92.1 0.195 90.3 0.21 0.898 1089

300 × 300 × 3 32–32 94.73 0.158 91.66 0.21 0.920 1547
64–64 91.42 0.24 91.905 0.183 0.93 1387

128–128 92.03 0.19 92.01 0.218 0.915 1409

350 × 350 × 3 32–32 88.46 0.31 87.74 0.29 0.871 1854
64–64 89.47 0.325 91.17 0.198 0.887 1856

128–128 92.1 0.185 92.01 0.205 0.914 1910

Table 3. Results for various pixel sizes and dense nodes in RGB-CNN with 5 layers (16–32–64–128–256). dropout = 0.2 and
batch size = 32.

Pixels
Dense
Nodes

Val. Acc. Val. Loss Test Acc. Test Loss AUC Time (s)

200 × 200 × 3 32–32 87.71 0.323 92.15 0.31 0.935 630
64–64 90.34 0.33 91.9 0.3 0.931 790

128–128 93.82 0.18 92.04 0.245 0.923 707

250 × 250 × 3 32–32 90.78 0.2 91.17 0.21 0.855 1110
64–64 89.91 0.253 93.12 0.187 0.921 1065

128–128 89.47 0.263 89.69 0.305 0.909 1039

300 × 300 × 3 32–32 88.59 0.29 90.19 0.276 0.917 1440
64–64 89.46 0.224 91.15 0.24 0.907 1569

128–128 92.1 0.21 91.37 0.2 0.914 1573

350 × 350 × 3 32–32 87.28 0.26 88.57 0.23 0.898 1650
64–64 90.78 0.38 86.77 0.42 0.854 2077

128–128 89.47 0.295 91.17 0.245 0.898 1980

Next, for the selected pixel size (250 × 250 × 3), different batch sizes (8, 16 and
32) with various configurations in dense nodes were investigated, also utilizing the
two previously best-performed architectures concerning the number of convolutional
layers (which are 16–32–64–128 and 16–32–64–128–256), as presented in recent research
studies [56–58]. The outcomes of this exploration are presented in Figures 5 and 6. These
figures show that the best CNN configuration corresponds to batch size 8, five convolu-
tional layers (16–32–64–128–256) and dense nodes 32–32. It emerges that dense 32–32 is
the most suitable configuration concerning the dense nodes.

Figure 7 shows the accuracy, loss and AUC values for various dense nodes regarding
the best batch size (8) and the number of convolutional layers (16–32–64–128–256).

Additionally, further exploration analysis was performed for various numbers of con-
volutional layers. Some indicative results are presented in Figure 8. It is observed that the
model was able to increase its classification accuracy for 5 convolutional layers significantly.
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Figure 7. Results for the best RGB-CNN configuration concerning (a) accuracy and AUC score and (b) loss.

 

 

(a) (b) 

Figure 8. CNN results for different numbers of convolutional layers concerning (a) validation and testing accuracies and
(b) AUC values.

To sum-up, the best RGB-CNN architecture with this problem is: pixel size (250× 250× 3),
batch size = 8, dropout = 0.2, conv 16–32–64–128–256, dense nodes 32.32, epochs = 500 (average
run time = 1125 s).

In addition, Table 4 depicts the confusion matrix of the best VGG16 architecture.
Figure 9 illustrates the classification accuracies (validation and testing) with their respective
loss curves for the proposed RGB-CNN architecture. Figure 10 depicts the diagnostic
performance of RGB-CNN model in SPECT MPI interpretation assessed by ROC analysis
for CAD patients.

In the proposed method, the early stopping condition for RGB-CNN was investigated
considering 100 epochs, thus providing adequate accuracy, higher than that of the other
CNNs. In particular, the produced accuracy for early stopping was approximately 89% in
most of the examined runs. However, using the minimum error stopping condition, the
capacity of the algorithm was explored, increasing the accuracy of the RGB-CNN model
up to 94% approximately. Figure 9a illustrates the precision curves presenting a smooth
change in accuracy for the proposed model.

Table 4. Best confusion matrix for the proposed RGB-CNN.

2-Classes Abnormal Normal

Abnormal 26 0
Normal 1 7
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(a) (b) 

Figure 9. Precision curves for best RGB-CNN model showing (a) accuracy and (b) loss.

 
Figure 10. Diagnostic performance of RGB-CNN model in SPECT MPI interpretation assessed by
ROC analysis for CAD patients. ROC = receiver operating characteristic, AUC = area under the
curve, PPV = positive predictive value, NPV = negative predictive value.

4.2. Results from Deep Learning Architectures Applying Transfer Learning and
Comparative Analysis

In this subsection, the second deep learning classification approach of CAD patients
using transfer learning was implemented, followed by a comparative analysis. Following
the process discussed in Section 2.4, transfer learning was utilized employing several pre-
trained CNN models, avoiding training a new network with randomly initialized weights.
In this way, the classification process of SPECT MPI scans is faster and more efficient due
to the limited number of training images.

This approach includes efficient state-of-the-art CNNs in the medical image analysis
domain, which were mainly reported in previous studies in similar classification tasks.
In particular, for the purpose of this research work, certain SoA CNN architectures such
as: (i) VGG16 [39], (ii) DenseNet in [43], (iii) MobileNet [59], and (iv) Inception V3 [60]
were used.

Concerning the training characteristics of this approach, the stochastic gradient de-
scent with momentum algorithm was used, and the initial learning rate was set to 0.0001.
It is worth mentioning that an exploratory analysis for the SoA CNNs [25,33] was pre-
viously conducted in the reported literature, paying particular attention to overfitting
avoidance [62]. Overfitting is a common issue in most state-of-the-art CNNs that work
with small datasets; thus, a meticulous exploration with various dropout, dense layers
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and batch sizes was applied to avoid it. Overall, the CNN selection and optimization
of the hyperparameters was performed following an exploration process considering a
combination of values for batch-size (8, 16, 32, 64, and 128), dropout (0.2, 0.5, 0.7 and
0.9), flatten layer, number of trainable layers and various pixel sizes (200 × 200 × 3 up to
350 × 350 × 3). Moreover, a divergent number of dense nodes, like 16, 32, 64, 128, 256 and
512 was explored. The number of epochs ranged from 200 up to 500. The best-performing
CNN models in terms of accuracy and loss function in the validation phase were selected
as the optimum for classifying the test dataset [24,56].

After the extensive exploration of all the provided architectures of popular CNNs, the
authors defined the optimum values for the respective models’ parameters, as follows:

• VGG16: pixel size (300 × 300 × 3), batch size = 32, dropout = 0.2, Global Average
Poolong2D, dense nodes 64 × 64, epochs = 400, (average run time = 1853 s),

• DenseNet: pixel size (250 × 250 × 3), batch size = 8, dropout = 0.2, Global Average
Poolong2D, dense nodes 16 × 16, epochs = 400, (average run time = 2074 s),

• MobileNet: pixel size (250 × 250 × 3), batch size = 8, dropout = 0.2, Global Average
Poolong2D, dense nodes 32 × 32, epochs = 400, (average run time = 3070 s),

• InceptionV3: pixel size (300 × 300 × 3), batch size = 8, dropout = 0.2, Global Average
Poolong2D, dense nodes 256 × 256, epochs = 400, (average run time = 1538 s).

Concerning the dropout value, 0.2 was selected as the best-performed for the in-
vestigated CNN configurations, according to the exploration process. The testing image
dataset was used to evaluate the network’s performance; however it is not involved in the
training phase.

The results of the explored SoA CNN architectures proposed in the second approach
are compared to the best-performed RGB-CNN model. They are gathered in the following
three figures. More specifically, Figure 11 depicts the classification accuracy in validation
and testing phases for the best-performed deep learning architectures. Figure 12 illustrates
the respective loss for all SoA CNNs. Finally, Figure 13 presents the AUC score values for
all performed CNNs.

 

Figure 11. Comparison of the classification accuracies for all performed CNNs.
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Figure 12. Comparison of loss (validation and testing) for all performed CNNs.

 

Figure 13. AUC score values for all performed CNNs.

5. Discussion of Results and Conclusions

Due to their ability to track complex visual patterns, powerful and widely used CNN
algorithms are employed in the medical image analysis domain to address the problem of
CAD diagnosis in nuclear cardiology. In this research study, two different deep learning
classification approaches, namely, the RGB-based CNN model and the transfer learning-
based CNN models (the benchmark CNN models pre-trained by ImageNet dataset), were
adopted to identify perfusion defects through the use of SPECT MPI scans. The first
classification approach is based on RGB-CNN algorithms, previously proposed for image
classification in nuclear medicine regarding bone scintigraphy. The second approach
utilizes transfer learning incorporated in well-known deep learning architectures. The
provided dataset, comprising stress and rest images from 224 subjects, is employed to assess
the proposed models with respect to their performance. The problem was formulated as a
two-class classification problem.

For an in-depth assessment of the results, a comparative analysis regarding the classi-
fication performance of the proposed model against that of other CNNs reported in the
literature is performed (even indirectly) in the examined field of CAD diagnosis in nuclear
medicine, using solely SPECT-MPI images. A decent amount of relevant research studies
in this scientific field was gathered in Introduction and presented in Table 5, followed by
the classification accuracies and evaluation metrics of the respective models. As regards
the previous works of [50–52], where polar map images were used for CAD classification,
deep CNNs and graph-based CNNs were employed for normal/abnormal classification.
These are not related to this research study and provide classification accuracies up to 91%.
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It is worth mentioning that only one previous work is highly related to the current
research study and regards the presence of coronary artery stenosis (normal or abnormal)
as a two-class classification problem. This work employed well-known CNNs to classify
normal/abnormal patient cases [53], utilizing transfer learning. The authors employ
deep neural networks that underwent a pre-training phase as well as an SVM classifier
characterized by deep and shallow features derived from the respective networks. Most of
the applied DL-based methods (AlexNet, GoogleNet, DenseNet, Resnet, VGG-16) in this
dataset provided accuracies less than 87%, and only the VGG-19 utilizing SVM with shallow
features increased the accuracy slightly. The knowledge-based classification model, which
uses extracted features based on shapes and empirically verified parameters, fine-tuned
on the training and validation images, provided the highest classification accuracy of up
to 93%. Through the conducted comparative analysis of the proposed RGB-CNN method
with the related ML and deep learning techniques as listed in Table 5, it is concluded that
the proposed RGB-CNN model outperforms all the previous techniques in MPI imaging. It
provides slightly better performance in classification accuracy (94%) and AUC score (93%),
making it a competitive solution to this diagnosis task.

Following the process of rigorously exploring possible hyperparameters and regu-
larization methods of the proposed RGB-CNN architecture, the best overall classification
accuracy for the deep network model (best RGB-CNN) was established (see Figures 11–13).
Authors selected the RGB-CNN model with 5 convolutional layers, batch size = 16, dropout
= 0.2 and 64–64 dense nodes as the simplest and most optimum performed CNN, concern-
ing testing accuracy and loss. Moreover, from the results above, it appears that the best
RGB-CNN model is characterized by an overall classification accuracy of 93.47% ± 2.81%
when the produced overall test loss is approximately 0.18 (see Figure 12). To lay emphasis
on the classification performance of the CNN approaches presented in this study, the
authors followed a comparative analysis between the proposed RGB-CNN model and
other SoA CNNs, commonly used for image classification problems, with reference to
accuracy and other metrics such as the AUC score. Regarding the produced AUC value
for the RGB-CNN models and the other SoA CNNs, as depicted in Figure 13, RGB-CNN
seems to have the highest AUC score, making it possibly the best classifier in terms of
performance for the given problem. The average run time of the best architecture for the
proposed model is 1125 s which is considered fast for such types of networks. Similar to the
other CNN-based methods, this method presents faster run time as shown in the previous
works of the same team of authors [33,56] in the case of bone scintigraphy.

The results indicate that the proposed RGB-CNN is an efficient, robust and straight-
forward deep neural network able to detect perfusion abnormalities related to myocardial
ischemia and infarction on SPECT images in nuclear medicine image analysis. It was also
demonstrated that this is a model of low complexity and generalization capabilities com-
pared to the state-of-the-art deep neural networks. Moreover, it exhibits better performance
than the SoA CNN architectures applied in the specific problem regarding accuracy and
AUC values. The proposed CNN-based classification approach can be employed in the
case of SPECT-MPI scans in nuclear cardiology and can support CAD diagnosis. It can as
well contribute as a clinical decision support system in nuclear medicine imaging.

To sum up, among the major differences of RGB-CNN compared to other conventional
CNNs are (i) their ability to efficiently train a model considering a small dataset without
the need to undergo network pre-training with ImageNet dataset, (ii) their ability to be
optimized through an exploratory analysis which helps to avoid overfitting and generalize
well to unknown input images, and (iii) their less complex architecture which enhances
their performance in an efficient run time [33,57].

Regarding the limitations presented in previous studies, the models proposed in this
work do not depend on specific characteristics like gender and camera specifications that
can elevate the number of inputs [34]. In addition, they can perform sufficiently, even
when not many training images are available. Among the privileges the proposed models
enjoy is their ability to use SPECT images as input without the need for any additional
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data. This feature is rather distinguishing between this work and other studies. Finally,
less experienced physicians can improve their diagnostic accuracy by supporting their
opinion with the results of such systems. However, there are some limitations that need
to be considered in future work. These are (i) the limited number of normal cases in the
dataset, making it unbalanced, and (ii) the disregard of clinical and other functional data in
the classification process, which would improve the diagnosis.

According to the overall results of this study, the proposed deep learning structures of
RGB-CNN are accredited for being extremely efficient in classifying SPECT MPI scans in nu-
clear medicine. Even though these effective CNN-based approaches use a relatively limited
number of patients, this study further considers a deep learning classification methodology,
incorporating transfer learning, and in collaboration with the well-known CNN models, as
a technique that can have a considerable impact on myocardial perfusion detection.

As a typical black box AI-based method, deep learning lacks clarity and reasoning
for the decision, which is highly important in medical diagnosis. Since DL models are
often criticized because of their internal unclear decision-making process, explainable
AI systems should come with causal models of the world supporting explanation and
understanding. Recent research efforts are directed towards developing more interpretable
models, focusing on the understandability of the DL-based methods.

Future work is also oriented toward the acquisition of more scan images of patients
suffering from CAD, with a view to expand the current research and validate the efficacy
of the proposed architecture. But, overall, the findings of this work seem highly reassuring,
particularly when the computer-aided diagnosis is involved, establishing the proposed
CNN-based models as a suitable tool in everyday clinical work.
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Abstract: The purpose of this study was to investigate the accuracy of the airway volume measure-
ment by a Regression Neural Network-based deep-learning model. A set of manually outlined airway
data was set to build the algorithm for fully automatic segmentation of a deep learning process.
Manual landmarks of the airway were determined by one examiner using a mid-sagittal plane of
cone-beam computed tomography (CBCT) images of 315 patients. Clinical dataset-based training
with data augmentation was conducted. Based on the annotated landmarks, the airway passage was
measured and segmented. The accuracy of our model was confirmed by measuring the following
between the examiner and the program: (1) a difference in volume of nasopharynx, oropharynx, and
hypopharynx, and (2) the Euclidean distance. For the agreement analysis, 61 samples were extracted
and compared. The correlation test showed a range of good to excellent reliability. A difference
between volumes were analyzed using regression analysis. The slope of the two measurements was
close to 1 and showed a linear regression correlation (r2 = 0.975, slope = 1.02, p < 0.001). These results
indicate that fully automatic segmentation of the airway is possible by training via deep learning of
artificial intelligence. Additionally, a high correlation between manual data and deep learning data
was estimated.

Keywords: airway volume analysis; deep learning; artificial intelligence

1. Introduction

Recently, artificial intelligence has been used in the medical field to predict risk factors
through correlation analysis and genomic analyses, phenotype-genotype association stud-
ies, and automated medical image analysis [1]. Recent advances in machine learning are
contributing to research on identifying, classifying, and quantifying medical image patterns
in deep learning. Since the convolutional neural network (CNN) based on artificial neural
networks has begun to be used in medical image analysis, research on various diseases is
rapidly increasing [2,3]. The use of deep learning in the medical field helps diagnose and
treat diseases by extracting and analyzing medical images, and its effectiveness has been
proven [4].

However, studies related to deep learning in the areas of oral and maxillofacial surgery
are limited [5]. For oral and maxillofacial surgery, radiology is used as an important
evaluation criterion in the diagnosis of diseases, treatment plans, and follow-up after
treatment. However, the evaluation process is performed manually and the assessment
can be different among examiners, or even with the same examiner. This may result in an
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inefficient and time-consuming procedure [6]. In particular, the evaluation of the airway
is difficult to analyze due to its anatomical complexity and the limited difference in gray
scale between soft tissue and air [7–9]. Airway analysis is essential for diagnosis and
assessment of the treatment progress of obstructive sleep apnea patients and for predicting
the tendency of airway changes after orthognathic surgery [10–21].

In most previous studies, the airway was segmented semi-automatically using soft-
ware systems for volumetric measurements using cone-beam computed tomography
(CBCT) images [21–23]. These studies evaluated the reliability and reproducibility of
the software systems on the measurement of the airway [7,24–27] and compared the accu-
racy between the various software systems [9,24,25,27]. However, in all cases, the software
systems require manual processing by experts.

In this study, a regression neural network-based deep-learning model is proposed,
which will enable fully automatic segmentation of airways using CBCT. The differences
between the manually measured data and data measured by deep learning will be analyzed.
Using a manually positioned data set, training and deep learning will be performed to
determine the possibility of a fully automatic segmentation of the airway and to introduce
a method and its proposed future use.

2. Materials and Methods

2.1. Sample Collection and Information

Images from 315 patients who underwent CBCT for orthognathic surgery were col-
lected retrospectively from 2017 to 2019. The CBCT data were acquired using PaX-i3D
(Vatech Co., Hwaseong-si, Korea) at 105–114 KVP, 5.6–6.5 mA with 160 mm × 160 mm
field of view, and 0.3 mm in voxel size. The scanning conditions were automatically de-
termined by the machine according to the patients’ age and gender. The CBCT images
were converted to DICOM 3.0 and stored on a Windows-10-based graphic workstation
(Intel Core i7-4770, 32 GB). The patients were all placed in a natural head position. All
image processing was performed using MATLAB 2020a (MathWorks, Natick, MA, USA)
programming language.

2.2. Coordinate Determination in the Mid-Sagittal Plane

Five coordinates for each original image were obtained manually in the midsagittal
plane of the CBCT images (Figure 1). The definitions of the points and planes for the airway
division are presented in Table 1, referring to Lee et al. [28]. These five coordinates were
predicted by a 2D convolutional neural network for airway segmentation in the sagittal
direction.

Figure 1. Coordinate and plane determination in the midsagittal plane of the cone-beam computed
tomography (CBCT) image.

28



Appl. Sci. 2021, 11, 3501

Table 1. Definition of reference points and planes for airway division. (Abbreviations: PNS, posterior nasal spine; VP,
posterior point of vomer; CV1, 1st cervical vertebra; CV2, 2nd cervical vertebra; CV4, 4th cervical vertebra).

Definition Explanation

Reference Points
PNS Most posterior point of palate
VP Most posterior point of vomer

CV1 Most anterior inferior point of anterior arch of atlas
CV2 Most anterior inferior point of anterior arch of second vertebra
CV4 Most anterior inferior point of anterior arch of fourth vertebra

Reference planes
PNS-Vp plane The plane was perpendicular to the midsagittal plane passing through the PNS and the Vp.

CV1 plane The plane was parallel to the natural head position plane passing through CV1.
CV2 plane The plane was parallel to the natural head position plane passing through CV2.
CV3 plane The plane was parallel to the natural head position plane passing through CV3.
CV4 plane The plane was parallel to the natural head position plane passing through CV4.

Volume
Nasopharynx From PNS-VP plane to CV1 plane
Oropharynx From CV1 plane to CV2 plane

Hypopharynx From CV2 plane to CV4 plane

2.3. Airway Segmentation

First, the image was binarized, then it was filled through a 3D close operation, and
hole filling, and then, the binarized image was subtracted from the filled image to obtain
an airway image. After erasing the image outside, the area that references five points, and
the 1/4 and 3/4 of the inferior border are connected. Only the largest object is left to obtain
the airway image (Figure 2).

Figure 2. Airway segmentation process. (A) Binarization image. (B) Hole filled image after close
operation. (C) Difference image between (A,B). (D) An image that erases the area outside the area
where 5 reference points, and 1/4 and 3/4 of the inferior border are connected. (E) Segmented airway.

2.4. Training via Regression Neural Network and Metrics for Accuracy Comparison

The 315 midsagittal images obtained from the patient’s cone-beam computed tomog-
raphy (CBCT) data were split into training and test sets at a ratio of 4:1. During clinical
data set-based training, validation was not performed because the sample size was too
small for validation. Instead, a five-fold cross-validation was applied. First, the image size
was set to 200 × 200 pixels, and 16 convolution layers were packed for feature extraction.
To generate the regression model, the regression layer was connected to a fully connected
layer. Mean-squared-error was used as a loss function. Data augmentation was then
conducted, including rotation from −6◦ to +6◦, uniform (isotropic) scaling from 0.5◦ to 1◦,
Poisson noise addition, and contrast and brightness adjustment. An NVIDIA Titan RTX
GPU with CUDA (version 10.1) acceleration was used for network training. The models
were trained for 243 epochs using an Adam optimizer with an initial learning rate of 1e-4
and a mini-batch size of 8.
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The prediction accuracy of the model was calculated using (a) the volume difference
between the predicted and manually determined nasopharynx, oropharynx, and hypophar-
ynx, and (b) the Euclidean distance between where the predicted and manually determined
points are real data.

3. Results

3.1. Measurements of the Differences between Manual Analysis and Deep Learning Analysis

The five coordinates manually pointed and predicted by the deep learning model are
shown in Figure 3. The Euclidean distance between the predicted and manually determined
points was largest at CV4 (4.156 ± 2.379 mm) and smallest at CV1 (2.571 ± 2.028 mm).
Other Euclidean distances were estimated as 2.817 ± 1.806 mm at PNS, 2.837 ± 1.924 mm
at Vp, and 2.896 ± 2.205 mm at CV2. When the volume was compared for each part,
the hypopharynx showed the largest difference difference (50 ± 57.891 mm3), and the
oropharynx was assessed as having the smallest difference (37.987 ± 43.289 mm3). The
difference in the nasopharyngeal area was 48.620 ± 49.468 mm3. The difference in total
volume was measured as 137.256 ± 146.517 mm3. All measurements of the differences are
shown in Table 2. Volume differences among parts of the airway are shown in Figure 4.

Figure 3. (A) Example of manually pointed data and its volume segmentation. (B) Example of deep learning pointed data
and its volume segmentation.
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Table 2. Measurements of the differences between manual analysis and deep learning analysis
(N = 61).

Average SD

Volume (mm3)
Nasopharynx 48.620 49.468
Oropharynx 37.987 43.289

Hypopharynx 50.010 57.891
Total volume 85.256 86.504

Distances between M and DL (mm)
PNS 2.817 1.806
VP 2.837 1.924

CV1 2.571 2.028
CV2 2.896 2.205
CV4 4.156 2.379

Figure 4. Boxplots of the differences between manual analysis and deep learning analysis (N = 61).
In the boxplots, ‘x’ within the box marks the mean of volume differences.

3.2. Agreement Analysis

Using agreement analysis, 61 samples were extracted and the manually measured
value and deep learning network predicted value were compared for both volumes and
coordinates. The total volume was the most correlated intra-class correlation coefficient
(ICC) value in the oropharynx (0.986), followed by the hypopharynx (0.964), and the
nasopharynx (0.912). The intra-class correlation coefficient (ICC) value for the coordinate
CV2(x) was the most correlated (0.963) and the least correlated at CV4(y) (0.868). All ICC
values are presented in Table 3.
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Table 3. Agreement analysis of the volume and point via intra-class correlation coefficient (ICC)
(Two-way random effects, absolute agreement, single rater/measurement) (N = 61).

Variables ICC
95% CI

Lower Limit Upper Limit

Volume
Nasopharynx 0.912 0.858 0.946
Oropharynx 0.984 0.973 0.99

Hypopharynx 0.964 0.941 0.978
Total volume 0.986 0.977 0.992
Coordinate

PNS(x) 0.908 0.852 0.944
PNS(y) 0.952 0.921 0.971
Vp(x) 0.908 0.842 0.946
Vp(y) 0.939 0.89 0.965

CV1(x) 0.929 0.885 0.957
CV1(y) 0.956 0.928 0.974
CV2(x) 0.963 0.939 0.978
CV2(y) 0.924 0.877 0.954
CV4(x) 0.953 0.924 0.972
CV4(y) 0.868 0.79 0.919

3.3. Linear Regression Scatter Plots and Bland-Altman Plot for the Total Volume Data Set

The total volume measured by deep learning was compared with the volume manually
measured using regression analysis (Figure 5). The slopes of the two measurements were
close to 1 and showed a linear regression correlation as r2 = 0.975, slope = 1.02, and
p < 0.001. Bland-Altman plots and analyses were used to compare the total volume of the
two methods, and the results are presented in Figure 6. The Bland-Altman plot comparing
the level of agreement between manual and deep learning indicates an upper limit of
agreement (0.261 cm3) and a lower limit of agreement (−0.207 cm3). The range of the 95%
confidence interval was 0.468 cm3.

Figure 5. Scatter plot of total volume measured between the manual of deep learning (r2 = 0.975,
slope = 1.02, p < 0.001). The line indicates a linear regression graph. There is a strong correlation
between the two methods (N = 61).
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Figure 6. Bland-Altman plot of the total volume data set. The green line indicates the upper limit of agreement, while the
red line indicates the lower limit of agreement (N = 61).

4. Discussion

In the medical field, many studies have used artificial intelligence via deep learning
in radiology [29,30]. There are studies on fully automated airway segmentation of lungs
with volumetric computed tomographic images using a convolutional neural network
(CNN) [31] and on automatic segmentation and 3D reconstruction of inferior turbinate and
maxillary sinus from otorhinolaryngology [32]. Due to the complex anatomical structure of
the airway, there are difficulties in researching the airway using manual measurements,
which is a time-consuming process, and entails inter-examiner error, intra-examiner error,
and a lack of certainty because of the small differences on a gray scale [23]. For these reasons,
automated measurement and analysis are necessary, but the fully auto-segmentation of the
airway is challenging and a study of airway segmentation using deep learning in the area
of oral and maxillofacial surgery has not previously been reported.

Therefore, in this study, we performed a fully automated segmentation of the airway
using artificial intelligence for enabling faster and more practical measurement and anal-
ysis in clinical practice. The correlation between the coordinates and volumes measured
manually and by the deep learning network were evaluated and compared. The distance
between the coordinates of each of the five airway reference points was measured between
2.5 mm and 4.1 mm, and the difference between the measured volumes was 48.620 mm3 in
the nasopharynx, 37.987 mm3 in the oropharynx, and 50.010 mm3 in the hypopharynx. The
difference in total volume was observed to be 85.256 mm3. Therefore, it is considered that
the correlation between each coordinate and volume showed good to excellent reliability.

In this study, the threshold is defined by the Otsu method [33], the binarized image is
extracted, and deep learning performs fully automatic division of the airway and divides it
into the nasopharynx, oropharynx, and hypopharynx parts through the reference plane.

The difference between the total volumes in this study was evaluated as an acceptable
value at 0.46 cm3 when compared to the Torres et al. [25] study, which gave the difference
between the water volume of an actual prototype and the volume on the CT software as
0.2 cm3 to 1.0 cm3. The difference in the volume of the oropharynx was measured as the
smallest, which showed the same results as El et al. [34]. According to Alsufyani et al. [23],
since the oropharynx airway is a completely empty space like a tube, it is straightforward
to measure the volume. The more complex and narrow shape of the airway’s soft tissue is
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due to anatomical complexity, such as epiglottis. This has the highest error in volumetric
measurements [35]. Therefore, it can be considered that a simpler anatomical structure will
result in a smaller difference between the measurement methods.

When comparing the distance of each point, the result of this study is not clinically
applicable. A clinically acceptable difference between the landmarks is approximately
2 mm, according to Lee et al. [36]. There are several reasons for a possible error, which
include the limitation in the number of training data sets and the necessity for more precise
data preparation, such as setting more reference points on each slice segmentation. In
setting the reference points for precise training, the reference points were selected on
the bony parts to reduce the error due to the variety of soft tissue shapes. This allows
clear determination of the anatomical point aided by the large difference on a gray scale,
and a simpler comparison of the relationship before and after surgery. Hence, this study
applied the reference points of the Lee et al. study [28]. Nevertheless, in the present study,
the distance of CV4 had a larger error, which may be due to the shape of the spine CV4
appearing in various ways in the sagittal plane compared to CV1 or CV2. It is necessary to
set an additional reference point to define the hypopharynx that appears to be constant in
the midsagittal plane.

The limitation of most airway segmentation research is possibly due to an inconsistent
patient head position [23,27,37]. Since patients underwent CBCT in the natural head
position in this study, errors may occur. It has been reported that the shape of the airway
can vary greatly depending on the angle of the head [38]. However, as concluded in most
research, it is not a significant error when comparing the volume of the airway rather than
evaluating the volume itself [25]. When performing CBCT, the patient’s head position is
consistently adjusted to a natural head position by the examiner through the head strap,
chin support, and guide light. In addition, the natural head position has been proven to
be reproducible [39], and, hence, there should be no major error when comparing. Due
to breathing and tongue position, errors may occur in volumetric measurements [35,37].
Therefore, for each variable, controlled and consistent scanning is required. This study
divided the airway volume using 5 points in the 2D mid-sagittal image. The accuracy of
these points affects the accuracy of airway segmentation. Therefore, bigger data is needed
for clinical application of our algorithm to raise accuracy of coordinate determination.

In the agreement analysis, according to Koo et al. [40], “Based on the 95% confident
interval of the ICC estimate, values less than 0.5, between 0.5 and 0.75, between 0.75
and 0.90, and greater than 0.90 are indicative of poor, moderate, good, and excellent
reliability, respectively.” In the present study, oropharynx, hypopharynx, total volume,
PNS(y), CV1(y), CV2(x), and CV4(x) indicated excellent reliability, and all other variables
indicated good reliability based on the Koo et al. report [40].

These results indicate that fully automatic segmentation of the airway is possible
through training via deep learning of artificial intelligence. In addition, high correlation
between manual data and deep learning data was estimated. To improve the accuracy,
validity, and reliability of auto-segmentation, further data collection and optimum training
with big data will be required for future clinical application. Furthermore, to raise the
robustness of our algorithm, bigger data is needed for accurate coordinate determination.
Transfer learning with other datasets, such as facial coordinates, can also be useful. We
plan to develop more robust algorithms with bigger data.

5. Conclusions

In this study, using a manually positioned data set, fully automatic segmentation of
the airway was possible with artificial intelligence by training a deep learning algorithm
and a high correlation between manual data and deep learning data was estimated.

As the first study to utilize artificial intelligence to reach full auto-segmentation of the
airway, this paper is meaningful in showing the possibility of a more accurate and quicker
way of producing airway segmentation. For a future clinical application, the more robust
algorithms with bigger and multiplex datasets are required.
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Featured Application: Automatic diagnosis of colon polyps on optical coherence tomography

(OCT) images for the development of computer-aided diagnosis (CADx) applications.

Abstract: (1) Background: Clinicians demand new tools for early diagnosis and improved detection
of colon lesions that are vital for patient prognosis. Optical coherence tomography (OCT) allows mi-
croscopical inspection of tissue and might serve as an optical biopsy method that could lead to in-situ
diagnosis and treatment decisions; (2) Methods: A database of murine (rat) healthy, hyperplastic and
neoplastic colonic samples with more than 94,000 images was acquired. A methodology that includes
a data augmentation processing strategy and a deep learning model for automatic classification
(benign vs. malignant) of OCT images is presented and validated over this dataset. Comparative
evaluation is performed both over individual B-scan images and C-scan volumes; (3) Results: A
model was trained and evaluated with the proposed methodology using six different data splits
to present statistically significant results. Considering this, 0.9695 (±0.0141) sensitivity and 0.8094
(±0.1524) specificity were obtained when diagnosis was performed over B-scan images. On the other
hand, 0.9821 (±0.0197) sensitivity and 0.7865 (±0.205) specificity were achieved when diagnosis
was made considering all the images in the whole C-scan volume; (4) Conclusions: The proposed
methodology based on deep learning showed great potential for the automatic characterization of
colon polyps and future development of the optical biopsy paradigm.

Keywords: colon cancer; colon polyps; OCT; deep learning; optical biopsy; animal rat models; CADx

1. Introduction

Colon cancer is the second most common cause of cancer death in Europe both for
women and men, and the third most common cancer worldwide [1]. About 1.8 million new
cases of colorectal cancer were recorded globally in 2018 [2], being the third most common
cancer in men and second in women. The five-year survival rate is 90 percent for colorectal
cancers diagnosed at an early stage, but unfortunately only 4 out of 10 cases are found this
early [3].
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Clinicians demand new non-invasive technologies for early diagnosis of colon polyps,
especially to distinguish between benign and malignant or potentially malignant lesions
that must be resected immediately. New methods should also proportionate information
for safety margin resection and remaining tissue inspection after resection to decrease the
possibility of tumor recurrence and improve patient prognosis. The current gold-standard
imaging technique during patient examination is colonoscopy with narrow band red-flag
technology for improved lesion visualization. During the procedure, lesions can be classi-
fied with Paris (morphology) [4] and Nice (vessel and surface) [5] classification patterns
based on the physician experience. As this superficial information is not enough, the final
diagnosis of the lesion is determined by the histopathological analysis after biopsy, mean-
ing that all the suspicious polyps are resected. Bleeding related problems usually occur
after biopsies are performed, with the risks that this entails for the patient. In fact, most
problems occur when the biopsy is performed on a blood vessel and the incidence is higher
when it is performed on patients with an abnormal blood coagulation function [6]. In
relation to the latter, the rate of perforation associated to colonoscopies with polypectomy is
0.8/1000 (95% confidence interval (CI) 0.6–1.0) and the rate of bleeding related to polypec-
tomies is 9.8/1000 (95% confidence interval (CI) 7.7–12.1) [7]. However, it is demonstrated
that hyperplastic polyps are of a benign nature and can be left untouched, avoiding the
underlying bleeding risk of resection, saving diagnosis time, costs, and patient trauma
during that period [8]. On the other side, pre-malignant lesions and adenomatous polyps
cannot be distinguished from neoplastic lesions as adenocarcinoma with the current diag-
nosis methods. In this sense, new imaging techniques and interpretation methods could
allow real-time diagnosis and would facilitate better in-situ treatment of lesions, improving
patient prognosis, especially if the diagnosis is made at early stages of the disease.

In recent years, different advanced imaging technologies that allow sub-surface mi-
croscopical inspection of tissue in an “optical-biopsy” manner have been under study for
colonic polyps [9], such as: reflectance confocal microscopy (RCM) [10], multi-photon mi-
croscopy (MPM) [11], and optical coherence tomography (OCT) [12], among others. Of the
mentioned techniques, a device called Cellvizio based on confocal laser endomicroscopy
(CLE) is the only one commercially available. Using confocal mini-probes inserted in
the working channel of flexible endoscopes, the system is used for studying the cellular
and vascular microarchitecture of tissue. Colorectal lesions diagnosis [13–15] is one of
the targeted applications and the corresponding probe reports a field-of-view (FOV) of
240 μm, 1 μm resolution and 55 to 65 μm confocal depth, with 20 maximum uses. The
inconvenience of this system is that the successful usage by clinicians depends on specific
training on image interpretation. Moreover, the main limitation is that this technology
requires the use of an exogenous fluorophore which results in a more invasive procedure
for the patient. In the case of MPM [16,17], which relies on the absorption of an external or
endogen (as collagen) tissue fluorophore, high resolution images at sub-cellular level can
also be obtained to study structural information, including also functional information. The
mentioned ex vivo studies using this technology have revealed significant morphological
differences between healthy and cancerous tissue. However, the interpretation of MPM
images by clinicians also remains a challenge and relies on their expertise in histopathology.

In contrast, OCT provides sub-surface structural information of the lesion under a
label-free approach, with reported resolutions less than 10 μm and penetration capacities
up to 2 mm. OCT can be used in combination with MPM, as both technologies provide
complementary information useful for diagnosis assessment. While RCM and MPM 2D
images are obtained horizontally in the transversal plane (also called “en-face”), OCT 2D
images (B-scan) are obtained axially in depth in the coronal or sagittal plane. Furthermore,
since OCT also allows obtaining 3D images (C-scan), lesions can be studied volumetrically
from different points or axes of visualization. Although OCT images have less resolution
than RCM and MPM images, the penetration capacity is higher, and the acquisition time is
generally lower. This OCT aspect is of great importance to evaluate lesion margins and
tumor infiltration into the mucosa under real-time situations in clinical environments.
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OCT technology capabilities in the diagnosis of colon polyps have been investigated
in the latest years with promising results on the future adoption in clinical practice. Several
studies [18–21], both in murine and human models, have reported the identification of
tissue layers and the discrimination capacities of the technology on the differentiation
of different types of benign (including healthy) and malignant tissue. When analyzing
44 polyps from 24 patients [18], endoscopists detected fewer subsurface structures and a
lower degree of light scattering in adenomas, and that, in comparison, hyperplastic polyps
were closer in structure and light scattering to healthy mucosa. The scattering property
was calculated by a computer program applying statistical analysis (Fisher–Freeman–
Halton test and Spearman rank correlation test), confirming the previous appreciation.
A comparison of OCT images with respect to histopathological images was performed
in [19] using previously defined criteria for OCT image interpretation on the identification
of tissue layers. Upon the observations, hyperplastic polyps are characterized by a three-
layer structure (with mucosa thickening) whereas adenomas are characterized by the
lack of layers. Then, under these assumptions, measured over a group of 116 polyps
from patients, lesions could be visually differentiated in OCT images with 0.92 sensitivity
and 0.84 specificity. Later, a fluorescence-guided study performed on 21 mice [20] after
administrating a contrast agent showed the OCT ability to differentiate healthy mucosa,
early dysplasia, and adenocarcinoma. Visual analysis of normal tissue revealed that the
submucosa layer is very thin in some specimens and not always well appreciated in the
OCT images, although the tissue boundaries remain distinguishable. In adenoma polyps, a
thickening of the mucosa (in first stages) or disappearance of the boundary between layers
is detected, whereas in the case of adenocarcinoma, the OCT images showed a loss of tissue
texture, absence of layers, and the presence of dark spots caused by the high absorption in
necrotic areas. In the latest study [21], they go beyond and propose a diagnosis criterion
over micro OCT images with some similarities to the Kudo pit pattern [22] and demonstrate
the diagnosis capacity of the OCT technology as clinicians can reach 0.9688 sensitivity and
0.9231 specificity on the identification of adenomas over 58 polyps from patients.

Both the cross sectional and the en-face images have been shown to provide clinically
relevant information in the mentioned studies, and the combination of both views for the
detailed study of tissue features suggests an important advance [23–25]. In addition to
previous studies, the calculation of the angular spectrum of the scattering coefficient map
has also revealed quantifiable variances on the different tissue types [26].

The clinical characteristics of the lesions that can be observed on the OCT images can be
further exploited by image-based analysis. Image and signal processing methods can allow
dealing with the noisy nature of the signal, whereas machine learning algorithms are able
to exploit the spatial correlation of the biological structures to make the most of them. These
types of algorithms can detect, and quantify, subtle variations on images that the naked
human eye cannot and can be applied with the goal of performing automatic interpretation
of the images for image enhancement, lesion delimitation, or classification tasks. However,
as seen in previously reviewed studies, few attempts of applying these methods for colon
polyps on OCT images have been found, showing that there are opportunities of research
in the area.

The main limitation of traditional machine learning methods is the need to process the
original data from their natural form to another form of representation appropriate for the
targeted problem. Image processing methods must be carefully applied to extract the most
representative features of the data, aiming to resemble how the experts analyze the images.
Then, the extracted features are passed as input to the selected classifier method. Unlike
deep learning approaches, traditional machine learning methods require tailored feature
extraction which is followed by a shallow machine learning method. This makes them less
prone to generalization and leads to lower discriminative power [27]. Under the deep learn-
ing paradigm, image feature extraction and classification are simultaneously performed
through a network architecture representing all possible solution domains and which is
optimized by means of a loss function minimization that seamlessly drives the network
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parameters towards a suitable solution. Convolutional neural networks (CNN) [28,29]
have surpassed classical machine learning methods [30,31], and even medical expert capa-
bilities [32–34]. They have been also successfully applied in colon cancer histopathological
classification [35,36], MPM classification [37], polyp detection on colonoscopy [38–40], or
histological colon tissue staining [41].

The application of deep learning methods to OCT medical images is a recent trend and
only few examples of application are available. Ophthalmology being the oldest context of
application of OCT, most examples are found in this area, and some others in cardiology
and breast cancer [42–45]. In gastroenterology of the lower track (colon), only one recent
work has been identified [46]. A pattern recognition network called RetinaNet [47] has been
trained to distinguish normal from neoplastic tissue with a 1.0 sensitivity and 0.997 speci-
ficity. The success of the model is based on a dentate structural pattern, identified in
normal tissue in previous studies, being utilized as a structural marker on the images used
as input during training and evaluation. In this sense, the B-scan images on the dataset
(26,000 images acquired from 20 tumor areas) are manually inspected to identify “teeth”
samples representing normal colonic mucosa and “noisy” samples representing malignant
tissue. On evaluation, the network provides a list of boxes where these patterns are found
along with the probability, and average scores are calculated over a sequence of N adjacent
B-scan images. The drawback of this approach resides in the identification of the “teeth”
pattern in normal tissue, but no other patterns have been identified for malignant tissue,
just assuming that the “teeth” pattern does not appear in that case.

The work presented in this paper further investigates the application of deep learning
methods over a collected database with more than 94,000 OCT images of murine (rat) colon
polyps to study the discrimination capacity of this imaging technique for its future adoption as
a real-time optical biopsy method. The aim of this proposal is to contribute to setting the bases
for the automatic analysis of images with latest state-of-the-art techniques that could lead to
the development of new computer-aided diagnosis (CADx) applications. Once image analysis
methods demonstrate this capacity, colon polyp diagnosis with OCT can be progressively
mastered by clinicians and the adoption of the technology naturally accomplished. With
this aim, this work implements a classification (benign vs. malignant) approach based on
an Xception deep learning model that is trained and tested over a large dataset of OCT
images from murine (rat) samples that have been collected for this purpose. We propose
a pre-processing method for data augmentation and to validate the application of deep
learning methods for colon polyp classification as benign or malignant. In addition, to further
investigate the diagnosis capacity of the proposed approach, evaluation is performed twice,
once over individual B-scan images and then also over C-scan volumes for comparison.
Finally, a strategy to maximize results when evaluating individual B-scans is applied.

In comparison with previous studies [46], this work proposes a general diagnosis strat-
egy based on classification instead of pattern recognition, which avoids time consuming
manual annotation of the database providing automatic identification of the characteristics
representing polyps tissue type. The classification strategy model can generalize better
upon new polyp categories than the segmentation strategy, the performance of which is
biased by the available annotations of the database. A classification strategy can help in
the identification of subtle characteristics present on noisy OCT images that are not easily
distinguished by the naked eye, and with proper visualization of them, can help clinicians
to better understand the OCT imaging technique. In the future, the combination of both
approaches could be considered for maximizing automatic diagnosis results.

2. Materials and Methods

2.1. Animal Models

Sixty animals with colorectal cancer (CRC) from the strain PIRC (polyposis in the
rat colon) rat F344/NTac-Apcam1137 model (sex ratio: 50/50) from the Rat Resource and
Research Centre (RRRC) were used for the extraction of neoplastic colonic samples. This
animal model was used in the study for the following main reasons: (a) it is an excellent
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model for studying human familial colon cancer; (b) ENU (N-ethyl-N-nitrosourea)-induced
point mutation results in a truncating mutation in the APC (adenomatous polyposis
coli) gene at a site corresponding to the human mutation hotspot region of the gene;
(c) heterozygotes develop multiple tumors in the small intestine and colon by 2–4 months
of age; (d) PIRC tumors closely resemble those in humans in terms of histopathology and
morphology as well as distribution between intestine and colon; (e) provides longer lifespan
compared to related mouse models (10–15 months); and (f) tumors may be visualized by CT
(computerized tomography), endoscopy, or dissection. Moreover, the absolute incidence
and multiplicity of colonic tumors are higher in F344-PIRC rats than in carcinogen-treated
wild-type F344 rats, or in mice [48,49].

Additionally, thirty rats from the strain Fischer344—F344 wildtype model (sex ratio:
50/50) were used for the development and extraction of hyperplastic colonic samples. A rat
surgical model of hyperplasia in the colon was developed in novo for endoscopic applica-
tions. It recreates important features of human hyperplasia, such as the generation of new
cells in the colonic mucosa and tissue growth, as well as the corresponding angiogenesis. It
consists of an extracolonic suture on which lesions are inflicted with a biopsy extraction
forceps during a period established in different weekly follow-ups for the correct induction
of the model [50,51].

Finally, as a control group, ten healthy tissue samples from three specimens were
extracted from the colon of rats from the strain Fischer344—F344 wildtype model (sex ratio:
50/50). Uninvolved areas of the hyperplasia animals (ascending colon, transverse colon,
and regions of the descending colon without lesion) were used as healthy tissue samples.
This ensured meeting one of the three r’s of animal research that aims to maximize the
information obtained per animal, making it possible to limit or avoid further use of other
animals, without compromising animal welfare.

2.2. Equipment

The equipment used for imaging the murine (rat) samples was a CALLISTO from
Thorlabs (CAL110C1) [52] spectral domain system with central wavelength 930 nm, field
of view of 6 × 6 mm2, 7 μm axial resolution, 4 μm lateral resolution, 1.7 mm measurement
in depth, 107 dB sensitivity at 1.2 kHz measurement speed, and 7.5 mm working distance.
Samples were scanned using the high-resolution scan lens (18 mm focal length) and a
standard probe head with a rigid scanner for stable and easy-to-operate setup.

2.3. Acquisition Procedure
2.3.1. Sample Acquisition Procedure

Rats were acclimatized before surgery in individually housed cages at 22–25 ◦C
with food and water ad libitum. All surgical procedures were performed under general
inhalation anesthesia [53–55] by placing them in an induction chamber to administrate
sevoflurane 6–8% in oxygen with a high flow of fresh gas (1 L/min). Then, they were
connected to a face mask to continue the administration of sevoflurane (3–3.5%) in oxygen
(300 mL/min) and placed in dorsal decubitus to carry out the endoscopic procedure.
Atropine (0.05 mg/kg), meloxicam (1 mg/kg/24 h), and pethidine (10–20 mg/kg) were
injected subcutaneously before beginning the surgical procedure. A thermal blanket was
used throughout the procedure. Once the animals had acquired the appropriate surgical
plane, a colonoscopy was performed to rule out the presence of abnormalities that could
interfere with the study. The aim was locating all those lesions that could be found through
observation by using white light and a rigid cystourethroscope of 2.9 mm in diameter,
which reached a diameter of up to 5 mm when working with an intermediate sheath and an
external sheath (size appropriate for this animal model), with the objective of not damaging
said structures at the start of the procedure. After shaving the abdomen and preparing the
area with povidone-iodine and 70% ethanol, animals were covered with an open sterile
cloth. Then, an average laparotomy of 4–5 cm in length was performed. A retraction
device with hooks (Lonestar®) was used as support tool to make this section circular and
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externalize all the necessary intestinal content outside the abdomen. Animals were kept at
constant temperature thanks to successive peritoneal washes made with tempered serum.
Then, the block of the colon was fixated with a suture to prevent the reversion of the content
throughout the colon and cecum. Three areas (ascending colon, transverse colon, and
descending colon) were studied consecutively taking advantage of the anatomical division
of the colon. They were divided with the help of ligatures (silk 4/0) through the mesentery
of each portion and scanned in the proximal to distal direction making use of the rigid
cystoscope to check the number of polyps.

At each point with lesions, a disposable bulldog clamp was used to mark the distribu-
tion of the lesions, thus avoiding cutting the lesions in the next procedure of colostomy
of ascending and transverse portions. After that, the colon was extracted in block and
then, the animals were euthanized under general inhalation anesthesia by rapid intracar-
diac injection of potassium chloride (KCl) (2 mEq/kg, KCl 2M), according to the ethical
committee recommendations. The colon was opened by a longitudinal colotomy with the
help of scissors to eliminate the tube shape of the colon, exposing thus the mucosa with
the localized polyps to improve their visualization, handling, and analysis. At this time,
magnification was provided by a STORZ VITOM® HD for a better location of the lesions
with the extended organ.

For each localized lesion, a sample was extracted for later ex vivo analysis with the
OCT equipment. Instead of acquiring the images directly on the fresh sample after resection,
samples were fixed and then preserved for several further analyses while maintaining the
properties of the tissue. Based on [56], the fixation procedure for each sample consisted
in the immersion of the sample in 4% formaldehyde for at least 14 h at about 4 ◦C. Then,
after two washes with phosphate buffered saline 0.01 M (PBS) each 30 min, the sample
was submerged in PBS and 0.1% of sodium azide and stored in refrigeration at 4 ◦C. This
method was established to provide safer handling of samples, avoiding the adverse effects
of manipulating formaldehyde-embedded samples in a surgical environment. Additionally,
it was checked with histopathological analysis that this fixation procedure did not alter the
properties of the tissue, showing no noticeable differences from fresh tissue.

2.3.2. Image Acquisition Protocol

First, each sample was placed on a plate, secured, and fixed for the correct exposure of
the tissue. Once placed on the platform under the OCT probe, a B-scan of the sample was
acquired for further calibration of the equipment. While scanning, the sample was focused
by approaching the OCT probe. The super-fine focus allows to acquire a high-quality OCT
signal with the better penetration depth. Due to the anatomical differences of the samples,
it was always necessary to repeat this step for each new sample. Once the sample was
properly focused and the 2D signal quality optimized, the next step was the acquisition of
a C-scan of the sample. In this case, the software allowed drawing a rectangle (Figure 1)
indicating where to perform the 3D acquisition on the sample. When considered, various
3D scans covering different parts of the lesion were recorded for the same lesion.

Figure 1. Pre-view of tissue/lesions with C-scan scanning area selected in red. (A): healthy sample; (B): neoplastic polyp 1;
(C): neoplastic polyp 2.
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2.3.3. Dataset Summary

The database consists of healthy, hyperplastic, and neoplastic (adenomatous and
adenocarcinoma) samples. Following the previously described acquisition procedure, the
subsequent number of cases were included in the database for each tissue type: 10 healthy
samples with 48 C-scans, 13 hyperplastic samples with 53 C-scans, and 75 neoplastic
samples with 245 C-scans. As a result, the database contains a total of 94,687 B-scan images.

The database was visually inspected before training the model ignoring all C-scans or
B-scan images acquired with errors, large aberrations, or artifacts to ensure the quality of
the data. Note that this database is a preliminary version of an ongoing larger dataset that
will be made openly available. Access to the database used in this article is possible upon
request to the corresponding author.

2.4. Ethical Considerations

Ethical approvals for murine (rat) samples acquisition were obtained from the relevant
Ethics Committees. In case of research with animals, it was approved by the Ethical
Committee of animal experimentation of the Jesús Usón Minimally Invasive Surgery
Centre (Number: ES 100370001499) and was in accordance with the welfare standards of
the regional government which are based on European regulations.

2.5. Deep Learning Architecture

The proposed architecture was based on the Xception classification model [57] previ-
ously trained over the ImageNet dataset [58]. Then, a global average pooling layer and a
final layer with 2 neurons and softmax activation were added, representing the classifica-
tion classes: benign vs. malignant. A schematic view of the architecture, generated with a
visual grammar tool [59], is provided in Figure 2.

 

Figure 2. Schematic diagram of deep learning architecture based on the Xception model.

This pre-trained network accepts images of the size of 299 × 299 pixels which are ran-
domly sampled from the original OCT images as detailed in next section “data preparation
and augmentation”. OCT images on the database (B-scan images) have variable lateral
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sizes in the range 512–2000 pixels due to differences in the sizes of the polyps and scanning
area selected. For this reason, B-scan images were pre-processed to extract regions of
interest of smaller size (299 × 299 pixels) to make the most of the images and avoid losing
lesion structural features on the bigger images that would happen with image rescaling.
Directly rescaling the whole image could be comparable to reducing the lateral and axial
resolution of the images, and hence losing information about the smaller structures. The
proposed data preparation approach also serves as a data augmentation strategy. Moreover,
a strategy for dealing with data imbalance in the dataset was also adopted.

2.5.1. Data Preparation and Augmentation

As a data augmentation strategy, during the training process, the algorithm processes
the dataset images in the following manner: image pre-processing; air-tissue delimitation;
random selection of region of interest (ROI); ROI extraction; and ROI preparation. These
steps are illustrated in Figure 3.

Figure 3. Proposed image data preparation methodology. 1. Image pre-processing, 2. air-tissue delimitation, 3. random
selection of region of interest (ROI), 4. ROI extraction, and 5. ROI preparation.

1. Image pre-processing

The OCT gray scale original image contains one single channel that is duplicated to
generate the 3-channel image expected by the network to use the ImageNet pre-trained weights.
As an additional data augmentation strategy, the image is randomly flipped horizontally to
produce alternative input images. No additional geometric transformations are applied to the
image, as this would alter the structural features of the lesion and lead to misclassification.

2. Air-tissue delimitation

The aim of this step is to automatically detect on the image the delimitation between
the air and the tissue. The final goal of this operation is to obtain ROI images adjusted to
the tissue, so the noise present in the air part and the differences on the distance from the
scanning tip to the tissue in the database images do not provide ambiguous information to
the network. Conversely, the shape of the lesion is preserved, and flattering is discarded, as
this could be a clinically interesting feature for differentiating the lesion’s diagnostic nature.

This step was implemented following the next sub-steps: automatic calculation of
Otsu threshold [60] to differentiate between the air and the tissue regions; binary mask
generation applying the calculated Otsu threshold to the image; morphological operation
to remove small objects from the binary mask; then, for each column in the mask image,
extraction of the location (row) of the first positive (true) value if available, to obtain a 1D
array containing the delimitation path; and application of a median filter (kernel size = 69)
to the delimitation array to eliminate or smooth possible noise in the signal.
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3. Random selection of region of interest

Considering that the total width of the input image (number of A-scans) is highly
variable for the different images of the dataset due to the sample size and scanning conditions,
a random number indicating where to start the region of interest is calculated. A preliminary
sub-image (column) is obtained considering a width of 512 px for the region of interest.

4. ROI extraction

The values of the delimitation array are applied to the previously extracted sub-image
to adjust the tissue at the top, generating a ROI of 512 px width and 224 px depth, which is
equivalent to approximately 0.71 mm in width and 0.75 mm in depth considering the optics
of the device. Preliminary experiments with fewer widths or longer depths reported worse
results. Smaller ROIs reduce the maintained information worsening the feature extraction and
classification performance, so it is important to reach an agreement between both aspects.

5. ROI preparation (post-processing)

The extracted ROIs are resized to 229 px width and 299 px depth to match the default
input size of the network (pre-trained with ImageNet).

2.5.2. Data Imbalance Management

This work aims at differentiating benign samples, including healthy tissue and hyper-
plastic polyps, from malignant/neoplastic samples, including adenomatous and adenocar-
cinomatous samples. Unfortunately, in our dataset, healthy and hyperplastic samples are
underrepresented with respect to neoplastic samples. Data imbalance is a usual problem
and for the moment there is not a best strategy for dealing with it, as it mostly depends on
the problem to solve and on data characteristics. In this work, a resampling strategy was
implemented. This strategy was preferred to weight balance compensation, where weights
of each class are calculated and specified on network fitting, as in the authors’ experience,
it provides better results.

Resampling is a classical strategy for dealing with data imbalance. Over-sampling
means adding more samples to the minority class, whereas under-sampling means remov-
ing samples for the majority class. Over-sampling and under-sampling can be achieved
following different strategies, with the weakness that these may imply. The simplest way
is to randomly duplicate or remove samples.

In this work, we implemented an over-sampling strategy by adding new samples for
the minority class. However, these new samples were not exact copies of original data,
as small variations were introduced to create a diverse set of samples. As described in
the previous section, dataset images were manipulated for randomly obtaining ROIs (see
Figure 3), that in addition were randomly horizontally flipped, which allowed introducing
this variability in the training and validation set.

2.5.3. Training Process

The implemented network was based on a Xception model [57], where a global
average pooling layer followed by a dense layer (with two outputs and softmax activation)
to deal with a 2-class problem (benign vs. malignant) was added at the end. Pre-trained
weights of ImageNet were used [58].

Categorical cross entropy loss was minimized by an Adam optimizer with a learning
rate of 0.0001 during the training process. The selected batch size is 24, for a number
of 100 epochs and validation loss minimization was monitored for early stopping (with
patience 20). The training process was repeated 6 times over different data splits to make
sure that the provided results were not biased.

2.5.4. Data Evaluation and Test-Time Augmentation

As described before, OCT C-scans were acquired from murine (rat) polyp samples
and adjacent healthy tissue. The C-scans are 3D volumes that consist of consecutive and
adjacent B-scan images. For some of the polyps, several C-scans covering different parts of

45



Appl. Sci. 2021, 11, 3119

the lesion (upper, center, and bottom) were obtained and included in the same data split.
As one of the aims of this work was to study the diagnosis capacity and limitations of OCT
in more detail, the evaluation of the model was designed with the intention of comparing
the discrimination capacity of the individual B-scans classification with respect to C-scans.

A test time augmentation (TTA) strategy was applied to B-scan and C-scan evalua-
tion. This was implemented by performing 10 augmentations over the data following the
random ROI extraction strategy previously described (see Figure 3) and then calculating
the mean prediction. By applying this strategy, we estimated a richer posterior probability
distribution function of the prediction for the bigger (wider) B-scans. We present a compar-
ison of the results without TTA (called standard) and with TTA to facilitate studying how
this technique contributed to the proposed approach.

3. Results

3.1. OCT and H&E Histology Comparative Analysis

Before performing the analysis, it was important to consider that some anatomical
differences exist between human colon and murine colon structure. According to [61], in
human and rats species, the colon maintains the same mural structure as the rest of the
gastrointestinal tract: mucosa, submucosa, and inner circular and outer longitudinal tunica
muscularis and serosa. The mucosa and submucosa layers in mice are relative thin in
comparison with the human ones. Furthermore, human mucosa has transverse folds through
the entire colon, whereas in mice it varies for each part of the colon. At the cecum and
proximal colon, mouse mucosa has transverse folds, in the mid colon is flat, and in the distal
colon has longitudinal folds. However, in both species the mucosa is composed of tubular
glands. Taking this into account and considering that the database used in this work consists
of murine (rat) samples, it was expected that the model also learn these anatomical differences
present in the mucosa, especially for the healthy samples. A detailed comparison of the
anatomical differences (extracted from reference [61]) is provided in Table A1.

According to previous studies analyzing features on OCT images [18–21], in normal
tissue, well-defined layers can be visualized with uniform intensity. In the presence
of hyperplasia, thickening of the mucosa layer occurs, but the intensity is similar to
healthy tissue and tissue layers are still visible. However, in the case of adenomatous
polyps, both thickening of the mucosa and reduced intensity must be observed. Finally,
adenocarcinomatous lesions should show blurred boundaries and non-uniform intensity.
In the presence of large polyps, the disappearance of the boundaries should be clearly
observed, independently from the lesion nature.

Visual inspection of dataset images was performed to look for the features previously
mentioned. Figures 4 and 5 provide a detailed analysis of the visible features on the OCT
images (of Figure 1 samples) with respect to the histopathological hematoxylin-eosin (H&E)
images annotated by a pathologist (scanned at 5x). Regions of interest (with the same FOV
of OCT images in mm) were extracted from H&E slides images and later rescaled to fit
axial and lateral resolution of the OCT images for better comparison. In these figures, it
can be observed that the main features present in H&E images can also be observed in
the OCT images. On the one hand, Figure 4, representing healthy tissue, illustrates (as
indicated by arrows and manual segmentation lines on the B-scans on the left, Figure 4A,B)
that the mucosa layers can be very clearly observed, confirming what has been reported
before in previous studies. Muscularis mucosae and sub-mucosa layers are also observed,
although clear differentiation in all parts of the image is tougher. On the other side,
when analyzing Figure 5 containing neoplastic lesions, it is also possible to confirm that
the boundaries of the layers have totally disappeared, making it impossible to find any
difference among them. Differences in the noise pattern are also observed. In addition, as
indicated using circles and arrows on the B-scans (Figure 5A,B), new underlying structures
appeared in the mucosa and can be identified as bright spots or dark areas in the images.
These new structures (in comparison with healthy tissue) are also clearly observed in the
corresponding annotated histopathology images (Figure 5C,D), where cystic crypts (CC)
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have been identified by the pathologist and appear as dark spots in the B-scan and tumoral
glands (TG) clusters as bright spots.

Figure 4. Comparison of features identified in optical coherence tomography (OCT) images (A,B) with respect to pathol-
ogists’ annotations on H&E images (C,D) on healthy sample (Figure 1A). MU: mucosa, MM: muscularis mucosae, SM:
submucosa, ME: muscularis externa.

Figure 5. Comparison of features identified in OCT images (A,B) with respect to pathologists’ annotations on H&E images
(C,D) on neoplastic samples (Figure 1B,C). CC: cystic crypt, TG: tumoral glands.

3.2. Dataset Partitioning and Testing

The dataset was split such that 80% was dedicated to training, 10% to validation, and
10% to testing. It was assured that images coming from the same lesion (both B-scans and
C-scans) were included in only one of the sets. The animal models employed on the creation
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of the database were genetically modified replicas of one specimen, hence no separation
per specimen was necessary in splitting and lesions could be considered independently.

The model was tested on 6 different folds to ensure that the evaluation metrics propor-
tionated were not biased by one random dataset split. A random state seed parameter was
established for each fold to obtain different training, validation, and testing sets each time.

3.3. Performance Metrics and Evaluation

Given that both B-scan and C-scan data were available for the murine (rat) samples
acquired in the database, the clinical discrimination capability of the model on the dif-
ferentiation of benign versus malignant polyps was calculated for both types of data. To
evaluate each C-scan, the mean of the individual predictions for the B-scan images that
form the volume was calculated. The performance of the model was measured using the
conditions provided by the confusion matrix (see Table 1).

Table 1. Confusion matrix conditions for metrics calculation.

Actual Condition

Malignant Benign

Predicted
Condition

Malignant TP FP
Benign FN TN

In the clinical context being analyzed in this work, these conditions can be seen as:

• True positive (TP): Malignant lesion correctly identified as malignant.
• False positive (FP): Benign lesion incorrectly identified as malignant.
• True negative (TN): Benign lesion correctly identified as benign.
• False negative (FN): Malignant lesion incorrectly identified as benign.

The metrics that were employed to measure the model performance based on the
previous conditions are described below.

• Sensitivity. Also known as the true positive rate (TPR). Number of true/all positive
assessments. TPR = TP/(TP + FN) = number of malign lesions with positive test/total
number of malign lesions.

• Specificity. Also known as the true negative rate (TNR). Number of true/all negative
assessments. TNR = TN/(FP + TN) = number of benign lesions with negative test/total
number of benign lesions.

• Positive predictive value (PPV). In case of a malignant prediction, probability that the
lesion is actually malignant. PPV = TP/(TP + FP) = Number of true positives/number
of positive calls.

• Negative predictive value (NPV). In case of a benign prediction, probability that the
lesion is actually benign. NPV = TN/(TN + FN) = Number of true negatives/number
of negative calls.

The desired value for these metrics was as close as possible to 1, 1 meaning a perfect test.
Additionally, as the accuracy (measure of the number of samples that were correctly

classified in the expected class) is a misleading metric in imbalanced datasets, the balanced
accuracy was calculated. This metric normalizes true positive and true negative predic-
tions by the number of positive and negative samples, and then divides the sum by two,
providing an accuracy value where the class frequencies are the same.

• Balanced accuracy (BAC). Measures the number of samples that were correctly classified
in the expected class considering class frequencies. Number of correct/all assessments
considering class frequencies. BAC = (TPR + TNR)/2 = (Sensitivity + Specificity)/2.

3.4. Thresholds

Considering the prediction values provided by the model, the threshold that maxi-
mizes the BAC (in the range 0–1) was calculated over the validation subset of each fold
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split both for the B-scan and C-scan data. Then, this threshold was applied over the test
subset of each fold split to calculate the metrics of the model (BAC, sensitivity, specificity,
PPV, and NPV).

3.5. Classification Results

The evaluation of the model was performed on 6 folds, over different training, valida-
tion, and testing splits of the dataset each time, with the aim of obtaining a model ensemble.
As a result, the mean and standard deviation (std) were calculated for each of the selected
metrics. Table 2 provides a summary of the results, where the first number reports the mean
and the second the std (mean ± std). In this summary, the results obtained with B-scan
and C-scan images, standard, and TTA test split evaluation are included for comparison.
The complete list of results of each fold is included in Table A2. at the end of the document.
Additionally, a graph illustrating a fair comparison of the folds results following the sum
of ranking differences (SRDs) method [62] is provided in Figure A1. After calculating
the SRD coefficients for each of the options on the different folds, a graph comparing the
performance of the different options can be generated. The smaller the SRD value, the
closer to the reference value, meaning better performance.

Table 2. Summary of results by the network for the different imaging modalities (B-scan vs. C-scan), applying different
evaluation techniques (standard vs. test time augmentation (TTA)) and resampling imbalance strategy. Note that the
numbers report “mean ± std” values.

Data Type Evaluation BAC Sensitivity Specificity PPV NPV

B-scan Standard 0.8806 ± 0.0748 0.9635 ± 0.0148 0.7978 ± 0.1431 0.9268 ± 0.0498 0.8914 ± 0.0415
TTA 0.8895 ± 0.0792 0.8094 ± 0.1524 0.8094 ± 0.1524 0.9305 ± 0.0526 0.9093 ± 0.0400

C-scan Standard 0.8857 ± 0.1143 0.7893 ± 0.2180 0.7893 ± 0.2180 0.9221 ± 0.0735 0.9432 ± 0.0687
TTA 0.8843 ± 0.1068 0.7865 ± 0.2050 0.7865 ± 0.2050 0.9212 ± 0.0693 0.9472 ± 0.0614

4. Discussion and Conclusions

On analyzing the results, in general terms and considering the mean results reported in
Table 2, when using the standard evaluation technique, the prediction over C-scan volumes
was slightly better than the prediction over individual B-scan images. This impression is
confirmed by the SRD analysis (Figure A1), where smaller values were obtained for C-scan
images analysis. This result makes sense, since when evaluating the lesion volumetrically
(C-scan) considering the mean prediction of all the B-scan images contained in the C-scan,
there was less probability of a bad prediction. If the volume contains some individual
B-scans with poor information representing the class sample, the (expected) bad predictions
do not have great influence on the final diagnosis. In any case, the small differences on the
prediction metrics suggest the high quality of the database used in this study, as shown in
the detailed results for each fold provided in Table A2.

It can also be observed that the TTA evaluation technique slightly benefitted the prediction
over individual B-scan images in terms of sensitivity and specificity, but not the C-scan volume
prediction. However, these results make sense for two reasons: the data preparation strategy
and the volumetric evaluation of the lesion. On the one hand, due to the nature of the images,
no geometrical transformations were applied for data augmentation, as described in the data
preparation section, but ROIs at different location of the image were extracted. Depending
on the location of the extracted ROIs, the clinical features can be more or less representative
of the lesion, affecting the corresponding prediction. When TTA was applied, different ROIs
from the B-scan were extracted, allowing analysis of the overall sample in width, and hence a
better prediction was obtained. This is particularly beneficial in the case of large wide B-scan
images, as it allows analyzing the different parts of the tissue/lesion in detail. Considering
this, and although no improvement was observed on the C-scan evaluation, the TTA strategy
was preferred during the evaluation, since in this way, the intrinsic clinical variability of the
lesions was captured and hence the model prediction was more robust.
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Interpretation of new imaging techniques, such as OCT, can be complicated at the begin-
ning and prevent their adoption in clinical practice. However, advanced image processing
techniques, such as deep learning, can be used to facilitate automatic image analysis or
diagnosis and the development of optical biopsy. A previous work [46] proposed using a
pattern recognition network that requires prior manual annotation of the dataset and diagno-
sis depends on whether the expected pattern is found on the image. Alternatively, this work
proposes using a classification strategy, which can help in the identification of subtle clinical
characteristics on the images and is not biased by dataset annotations. This work investigates
the application of an Xception deep learning model for the automatic classification of colon
polyps from murine (rat) samples acquired with OCT imaging. The developed database is
accessible upon request and is part of a bigger database in the process of being published. A
strategy for processing B-scan images and extracting regions of interest was proposed as a
data augmentation strategy. Test time augmentation strategy implemented with the aim of
improving model prediction was evaluated. In addition, this work also aims to compare the
differences in the diagnosis capacity of the proposed method when evaluated using B-scan
images and C-scan volumes, and for this purpose different clinical metrics were compared.
The trained model was evaluated 6 times using different training, validation, and testing sets
to provide an unbiased diagnosis of the results. In this sense, we got a model with mean 0.9695
(±0.0141) sensitivity and mean 0.8094 (±0.1524) specificity when diagnosis was performed
over individual B-scans, and mean 0.9821 (±0.0197) sensitivity and mean 0.7865 (±0.205)
specificity when diagnosis was performed in the whole C-scan volume.

Considering the future application of a deep learning method to assist clinical di-
agnosis with OCT, and in view of the results of this work, successful diagnosis can be
achieved both on B-scan images and C-scan volumes. The evaluation of the lesion over a
C-scan volume was preferred over the evaluation of an individual B-scan image, so the
prediction could be more robust. However, this will not be possible most of the time in
the daily clinical routine, for example during patient colonoscopy examination, where
in vivo real-time information is necessary for diagnosis and in-situ treatment decision. In
this sense, clinical procedures based on the accumulative predictions of various B-scan
images could be defined to facilitate clinicians’ decision-making during examination. The
promising results with the proposed approach suggest that the implemented deep learning
based method can identify the clinical features reported in previous clinical studies on the
OCT images, and more importantly, that the amount of data and features present on the
images database are enough to allow automatic classification. These results are part of
ongoing work that will be further extended; however, it has been demonstrated that deep
learning-based strategies seem to be the path to achieve the “optical biopsy” paradigm.
Raw interpretation of new imaging modalities is difficult for clinicians but assisted by an
image analysis method, the interpretation can be eased and the reliable diagnosis sugges-
tion can facilitate the adoption of the technology. Consequently, the CADx market can
benefit from this progress in the short term as the latest market forecast studies suggest.

This work will be further extended and tested with a larger and more balanced version
of the murine dataset collected. More sophisticated models accepting larger image size will
be tested to check whether classification is improved. Optical properties of the different
lesions will be studied in detail with the aim of finding scattering patterns for each type of
lesion. OCT volumetric (C-scan) information will be also studied in further detail to make
the most of it analyzing both the cross sectional and en-face views.
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Appendix A

Table A1. Comparison of anatomical differences of human and murine colon (adapted from reference [61]).

Feature Human Rats

Anatomy of the large intestine compared macroscopically

Cecum to rectum ~100–150 cm ~25 cm
Taenia coli and haustra Present None; smooth serosa; may have fecal pellets

Appendix Present, vermiform, ~9 cm Absent
Functional cecum Absent Present; fermentation, vitamins K and B

Proximal/ascending/right Colon from ileocecal valve to the hepatic flexure Transverse folds in the mucosa, from cecum to mid colon;
Rat: folds are visible through serosa

Mid/transverse Connects the hepatic to the splenic flexure Very short; lumen narrows; no mucosal folds

Distal/descending/left
Splenic flexure to left lower quadrant; S-shaped sigmoid

colon extends from descending colon to rectosigmoid
junction; sigmoid colon may be redundant

Fecal pellets may be seen

Rectum

12–15 cm curved; proximal two-thirds of rectum has a
mesothelial covering within the peritoneal cavity,

whereas the distal third of rectum is extraperitoneal,
lying within the deep pelvis, surrounded by adventitia,

fascia, and fat

Indistinct from distal colon; Rat: ~50–80 mm, prolapse
is rare

Large intestine anatomy compared at histological level

Mucosa Transverse folds at all regions
Mucosal folds vary by region. Cecum and proximal

colon: transverse; mid colon: flat with no folds; distal
colon and rectum: longitudinal

Absorptive colonocytes Similar to rodent Present
Mucous/goblet cells Similar to rodent Present
Enteroendocrine cells Similar to rodent Present

Paneth cells Cecum and appendix Absent
Microfold (M) cells Similar to rodent Present

Lamina propria Similar to rodent Lymphocytes, plasma cells, macrophages, eosinophils,
mast cells

Muscularis mucosae Variable thickness; traversed by lymphoid follicles;
poorly developed in appendix Thin

Submucosa Contains adipose tissue, arterioles, venules,
lymphatics, and Meissner’s plexus Rodents thinner than humans

Muscular tunics Auerbach’s plexus between the two muscle bands Muscular tunics thicken distally
Proximal colon Transverse folds Transverse mucosal folds

Transverse colon Transverse folds Flat mucosa
Distal colon Transverse folds Longitudinal mucosal folds

Rectum Transverse folds Indistinguishable from distal colon
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Appendix B

Table A2. Detail of the results of each fold for the different imaging modalities (B-scan vs. C-scans).

Fold Data Type Evaluation BAC Sensitivity Specificity PPV NPV

1

B-scan Standard 0.8967 0.9472 0.8462 0.9207 0.8948
TTA 0.9024 0.9553 0.8494 0.9229 0.9098

C-scan Standard 0.8736 0.9615 0.7857 0.8929 0.9167
TTA 0.8736 0.9615 0.7857 0.8929 0.9167

2

B-scan Standard 0.9000 0.9583 0.8417 0.9362 0.8928
TTA 0.9060 0.9616 0.8505 0.9398 0.9012

C-scan Standard 0.8988 0.9643 0.8333 0.9310 0.9091
TTA 0.8988 0.9643 0.8333 0.9310 0.9091

3

B-scan Standard 0.7568 0.9549 0.5588 0.8455 0.8305
TTA 0.7590 0.9585 0.5594 0.8461 0.8421

C-scan Standard 0.6917 0.9667 0.4167 0.8056 0.8333
TTA 0.7333 0.9667 0.5000 0.8286 0.8571

4

B-scan Standard 0.8311 0.9657 0.6966 0.9037 0.8732
TTA 0.8398 0.9790 0.7007 0.9048 0.9189

C-scan Standard 0.8500 1.0000 0.7000 0.9032 1.0000
TTA 0.8000 1.0000 0.6000 0.8750 1.0000

5

B-scan Standard 0.9437 0.9642 0.9233 0.9733 0.8988
TTA 0.9587 0.9705 0.9468 0.9815 0.9172

C-scan Standard 1.0000 1.0000 1.0000 1.0000 1.0000
TTA 1.0000 1.0000 1.0000 1.0000 1.0000

6

B-scan Standard 0.9553 0.9905 0.9201 0.9812 0.9584
TTA 0.9709 0.9922 0.9495 0.9881 0.9666

C-scan Standard 1.0000 1.0000 1.0000 1.0000 1.0000
TTA 1.0000 1.0000 1.0000 1.0000 1.0000

Figure A1. Fair comparison of folds results with sum of ranking differences (SRDs) method.
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Abstract: Oral squamous cell carcinoma is the most common oral cancer. In this paper, we present
a performance analysis of four different deep learning-based pixel-wise methods for lesion segmentation
on oral carcinoma images. Two diverse image datasets, one for training and another one for testing,
are used to generate and evaluate the models used for segmenting the images, thus allowing to assess
the generalization capability of the considered deep network architectures. An important contribution
of this work is the creation of the Oral Cancer Annotated (ORCA) dataset, containing ground-truth data
derived from the well-known Cancer Genome Atlas (TCGA) dataset.

Keywords: oral carcinoma; medical image segmentation; deep learning

1. Introduction

Malignant tumors of the head and neck region include a large variety of lesions, the great majority
of which are squamous cell carcinomas of the oral cavity [1]. According to GLOBOCAN 2018 data on
cancer [2], oral cavity malignant neoplasms, together with lip and pharynx malignancies, account for
more than half-million new occurrences per year worldwide, with an estimated incidence of 5.06 cases
per 100,000 inhabitants. Moreover, Oral Squamous Cell Carcinoma (OSCC) is characterized by high
morbidity and mortality, and, in most countries, the survival rate after five years from the diagnosis is
less than 50% of the patients [3].

The histology examination is the gold standard for the definition of these tumors.
Surgical pathologists use both clinical and radiological evidence to complement their diagnoses,
differentiating between benign and malignant lesions. In the last years, surgical pathology is
witnessing a digital transformation thanks to (1) the increase of the processing speed of Whole
Slide Images (WSI) scanners [4] and (2) the lower storage costs and better compression algorithm [5].
Consequently, WSI digital analysis is one of the most prominent and innovative topics in anatomical
pathology, catching academic and industries attentions. An example of an image obtained using a WSI
scanner is shown in Figure 1.
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Figure 1. An example of image generated by a Whole Slide Images (WSI) scanner. The image has
a dimension of 35,862 × 32,195 pixels and the file size is 213.3 MB.

However, WSI (and associated datasets) are characterized by three important limitations:

1. WSI are extremely large images, having a memory size of two gigabytes on average [6].
2. There are a few surgical pathology units that are fully digitalized and that can store a large amount

of digitalized slides, although their number is increasing exponentially [7].
3. There is a small number of available image datasets and most of them are not annotated [8].

Due to the above-discussed limitations, the research activity based on Artificial Intelligence (AI)
algorithms applied to WSI is still limited compared to other diagnostic imaging branches, such as
radiology, but the scientific literature on the topic is growing fast and we are observing the appearance
of public datasets of unannotated and annotated histopathology WSI.

In this paper, we present a performance evaluation of four different image segmentation
architectures based on deep learning to obtain a pixel-wise separation between benign and malignant
areas on WSI samples. In particular, we test four widely used Semantic Segmentation deep neural
Networks (SSNs) on publicly available data for the detection of carcinomas. As a difference with
respect to classification neural network, SSNs take as input images of arbitrary sizes and produce
a correspondingly sized segmented output, without relying on local patches.

The contributions of this work are three-fold:

1. We compare four different supervised pixel-wise segmentation methods for detecting carcinoma
areas in WSI using quantitative metrics. Different input formats, including separating the color
channels in the RGB and Hue, Saturation, and Value (HSV) models, are taken into account in
the experiments.

2. We use two different image datasets, one for training and another one for testing. This allows us
to understand the real generalization capabilities of the considered SSNs.

3. We created a publicly available dataset, called Oral Cancer Annotated (ORCA) dataset,
containing annotated data from the Cancer Genome Atlas (TCGA) dataset, which can be used by
other researchers for testing their approaches.

The paper is organized as follows. Section 2 contains a discussion of similar approaches present
in the literature. Section 3 describes the details of the proposed method, while Section 4 shows both
qualitative and quantitative results obtained on publicly available data. Finally, conclusions are drawn
in Section 5.
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2. Related Work

Artificial intelligence (AI) algorithms have been proposed to address a wide variety of questions
in medicine; e.g., for prostate Gleason score classification [9], renal cancer grading [10], breast cancer
molecular subtyping [11] and their outcome prediction. Moreover, AI-based methods have been
applied to the segmentation of various pathological lesions in the fields of neuropathology [12],
breast cancer [13], hematopathology [14], and nephrology [15].

The above-cited studies have been conducted mainly on the most common tumors (i.e., breast or
prostate), while AI-based methods have been scarcely adopted to deal with other types of cancer,
despite their high incidence and mortality rates, as the Oral Squamous Cell Carcinoma (OSCC).
The analysis of a recent systematic review by Mahmood et al. [16] shows that still few applications of
automatic WSI analysis algorithms are available for OSCC. In particular, the survey reports 11 records
about the employment of AI-based methods for the analysis of specific histological features of oral
lesions: out of 11, only four papers refer to OSCCs, namely [17–20], one paper is about oral epithelial
dysplasia [21], five about oral submucous fibrosis, i.e., [22–26], and one paper is about oropharyngeal
squamous cell carcinoma [19]. Another recent application of machine learning algorithms on oral
lesions histopathological is based on immunohistochemistry (IHC) positivity prediction [27].

Segmentation methods on WSI images have been developed mainly for nuclei segmentation [28–30],
epithelium segmentation [19,24], microvessels and nerves [31], and colour-based tumour segmentation [17].
Recently, Shaban et al. [32] proposed an indirect segmentation method, through small tiles classification,
with an accuracy of 95.12% (sensitivity 88.69%, specificity 97.37%).

To the best of our knowledge, there are no published results on direct OSCC segmentation using
deep learning and none employing the TCGA as a source of histopathological images. This work
represents a first attempt of applying well-known deep learning-based segmentation methods on
the publicly available TCGA images, providing also annotations to quantitatively validate the
proposed approach.

Datasets

Concerning WSI datasets, most of them have been made available for challenges, such as
Camelyon [33] and HEROHE, on Kaggle or as part of larger databases. The Cancer Genome Atlas
(TCGA) [34] contains publicly available data provided by the National Cancer Institute (NCI),
which is the U.S. federal government’s principal agency for cancer research and training, since 2006.
In particular, it contains clinicopathological information and unannotated WSI of over 20,000 primary
cancer covering 33 different cancer types [35].

3. Methods

Our aim is to use a supervised method to automatically segment an input WSI sample into
three classes:

1. Carcinoma pixels;
2. Tissue pixels not belonging to a carcinoma;
3. Non-tissue pixels.

Figure 2 shows the functional architecture of our approach. We worked on input images having
a large dimension of 4500 × 4500 pixels, which is an input dimension about ten times greater than the
input dimension supported by existing segmentation SSNs. Thus, a preprocessing step is needed in order
to fit the input format of the deep neural network. We tested two different pre-processing functions:

• Simple resizing, where the original input WSI sample is resized from 4500 × 4500 to
512 × 512 pixels without any other change in the color model.

• Color model change, where the WSI sample is resized to 512 × 512 pixels and the original color
model is modified. For example, we tested as input for the deep neural network the use of the
Red channel of the RGB model in combination with the Hue channel of the HSV model.
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Figure 2. Functional architecture of the proposed approach.

Segmentation results obtained using the different pre-processing functions are discussed in
Section 4.

3.1. Network Architectures

The core of the proposed approach consists in the use of a semantic segmentation network.
We have selected four different network architectures among the most used ones:

1. SegNet [36].
2. U-Net [37].
3. U-Net with VGG16 encoder.
4. U-Net with ResNet50 encoder.

3.1.1. Segnet

SegNet is made of an encoder network and a corresponding decoder network, followed by a final
pixel-wise classification layer (Figure 3). The encoder network consists of the first 13 convolutional
layers of the VGG16 [38] network designed for object classification, without considering the fully
connected layer in order to retain higher resolution feature maps at the deepest encoder output.
In such a way, the number of parameters to train is significantly reduced. Each encoder layer has
a corresponding decoder made of 13 layers. The final decoder output is fed to a multi-class soft-max
classifier to produce class probabilities for each pixel independently.

Figure 3. SegNet architecture.

3.1.2. U-Net

The architecture of the net is shown in Figure 4. The input image is downsampled to obtain
a 512 × 512 resized image.

The encoding stage is needed to create a 512 feature vector and it is made of ten 3 × 3 convolutional
layers, and by four 2 × 2 max pooling operations with stride 2. In particular, there is a repeated
application of two unpadded convolutions, each followed by a rectified linear unit (ReLU) and a max
pooling operation. The decoding stage (see the right side of Figure 4) is needed to obtain the predicted
mask at 512 × 512 pixels. It is made of eight 3 × 3 convolutional layers and by four 2 × 2 transpose layers.
There is a repeated application of two unpadded convolutions, each followed by a ReLU and a transpose
operation. Figure 4 shows also the concatenation arcs from the encoding side to the decoding side of the
network. Cropping is necessary due to the loss of border pixels in every convolution layer.
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Figure 4. U-Net architecture.

3.1.3. U-Net with Different Encoders

The original U-Net consists of two paths, the first one (left side) composed of four blocks.
Each block consists of a typical architecture of a convolution network, composed of repeated two
3 × 3 Convolutional layers followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling layer
with stride 2 as down-sampling steps. The second path (right side) represents the up-sampling path
also composed of four blocks. Each block consists of an up-sampling feature map followed by
concatenation with the corresponding cropped feature map from the first path followed by a double
3 × 3 Convolutional layer. Each convolution layer is composed of batch normalization. Between the
first and the second path, there is a bottleneck block. This bottleneck is built from two convolution
layers with batch normalization and dropout. In the models we applied, we replaced the first
path, which is the encoder path of the network, with two different models, namely VGG16 [38]
and ResNet50 [39], in order to obtain higher accuracy.

3.2. Training and Test

Two diverse datasets are used to train, validate, and test the networks. The training dataset consists
of 188 annotated images of advanced OSCC derived from the digital data acquired in the Surgical
Pathology Unit of the Federico II Hospital in Naples (Italy). The study was performed in agreement
with Italian law. Moreover, according to the Declaration of Helsinki for studies based only on
retrospective analyses on routine archival FFPE-tissue, written informed consent was acquired from the
living patient at the time of surgery. The validation dataset consists of 100 annotated images from the
newly created ORCA dataset (described below), while the test dataset consists of a further 100 images
from the ORCA dataset also. All the images in the two datasets have been manually annotated by two
of the authors of this paper that are expert pathologists (D. Russo and F. Merolla, both MD PhD and
Board in Pathology) using three color labels:

1. Carcinoma pixels, colored in white.
2. Tissue pixels not belonging to a carcinoma, colored in grey.
3. Non-tissue pixels, colored in black.

The above-listed labels represent the classes learned by the deep network during the training
stage. Figure 5 shows an example of annotation mask.

Figure 5. Example of annotation mask. Carcinoma pixels are colored in white, tissue pixels not belonging
to a carcinoma are colored in grey, and non-tissue pixels are colored in black.
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3.2.1. Training Data

The dataset used for training consists of a set of images collected by the Surgical Pathology Unit
of the Federico II Hospital, in Naples (Italy). In particular, cases were assembled as four Tissue Micro
Array and, after H&E staining, the slides were scanned with a Leica Aperio AT2 at 40× (20× optical
magnification plus a 2× optical multiplier).

Slides were annotated using the Leica Aperio ImageScope software. In the first instance, to define
each core, we used the ImageScope rectangle tool with a fixed size of 4500 × 4500 pixels, corresponding
to nearly 1.125 mm, i.e., the size of each TMA core. Then, an expert pathologist used the pen tool to
contour the tumor areas within each core. ImageScope provides an XML file as output for each WSI.
RGB core images were extracted using OpenCV and OpenSlide libraries.

Concerning the annotation masks, we started by automatically detecting the tissue portion
of each core using the OpenCV functions contouring and convex hull, to isolate the tissue pixels
(colored in grey, as mentioned beforehand) from the background (non-tissue pixels colored in black).
Then, the tumor masks (colored in white) were superimposed over the tissue pixels to draw carcinoma
pixels. Finally, the masks were manually refined at pixel-size resolution.

An example of a couple <original image, annotated mask> used for the training stage is shown
on the top of Figure 6.

Figure 6. Top: Example of annotated data from the training dataset. (a) Original image. (b) Manually
generated annotation mask. Bottom: Example of annotated data from the Oral Cancer Annotated
(ORCA) dataset. (c) Original image. (d) Manually generated annotation mask.
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3.2.2. ORCA Dataset

An important contribution of this work is the creation of a fully annotated dataset, called ORCA,
consisting of couples of WSI samples plus corresponding annotation masks. An example of a couple
<original image, annotated mask> from the ORCA dataset is shown on the bottom of Figure 6.

The original WSI samples belong to the Cancer Genome Atlas (TCGA), a landmark cancer
genomics program, molecularly characterized over 20,000 primary cancer and matched normal
samples spanning 33 cancer types [40]. TCGA data are publicly available for anyone in the research
community to use. For each WSI included in the TCGA dataset, we defined one or two cores containing
a representative tumor area. The dataset contains WSI scanned both at 20× and at 40×.

TCGA whole slide images were annotated using the Leica Aperio ImageScope software. For each
image, a circular core region has been selected using the ImageScope ellipse tool, with a fixed size
of 4500 × 4500 pixels in the case of the WSI scanned at 40× or 2250 × 2250 pixels in the case of
WSI acquired at 20×. This allowed us to keep the same spatial dimension for all the selected cores.
Then, the tumor contours have been drawn using a pen tool. The RGB images and the corresponding
annotation masks were extracted using OpenCV and OpenSlide libraries.

All the couples of WSI samples plus corresponding annotation masks used in this work are available
for downloading from the ORCA dataset web page at: https://sites.google.com/unibas.it/orca.

4. Experimental Results

In order to train and evaluate the networks, we split the image data into training, validation,
and test sets. The training set consists of the 188 images from the Federico II Hospital plus a set
of images obtained by applying a simple augmentation technique. This allows for augmenting the
number of the available training samples. In particular, the data augmentation has been achieved by
flipping the images vertically, horizontally, and in both ways. The final cardinality of the augmented
training set is 756 images.

Each validation and test set includes 100 images from the ORCA data set. It is worth noticing
that validation and test set are completely disjoint sets. In such a way, we tested the capability of the
networks in generalizing the segmentation problem.

As stated above, we trained four different models:

• SegNet.
• U-Net.
• U-Net with VGG16 encoder.
• U-Net with ResNet50 encoder.

The source code of the used SegNet network is available at https://github.com/apennisi/segnet,
while the source code for U-Net and its modifications is available at https://github.com/Mulham91/
Deep-Learning-based-Pixel-wise-Lesion-Segmentationon-Oral-Squamous-Cell-Carcinoma-Images.

The four networks have been trained by using the Adam optimizer, with a learning rate of 1e − 4,
without adopting any decay technique. The input image size has been set to 512 × 512 pixels.

For computing the loss, we used the Cross-Entropy function [41], which is a loss function widely
used in deep learning. Cross entropy helps in speeding up the training for neural networks in comparison
to the other losses [42]. The cross entropy for multi-class error computation is defined as follows:

s = −
M

∑
c=1

yo,c log(po,c ), (1)

where c is the class id, o is the observation id, and p is the probability. Such a definition may also be
called categorical cross entropy.

The training has been manually stopped after 60 epochs for all the considered network architectures
because we noticed a trend of all the network in overfitting the training set.
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We performed three kinds of experiments:

1. Using RGB images as input;
2. Taking into account the HSV color representation and concatenating the Hue channel with the

Red channel from the RGB space;
3. Using the Red and Value channels.

An example of the different color models mentioned above is shown in Figure 7. The original RGB
image is decomposed into single channels using the RGB and HSV color models. Then, some channels
have been selected as input for the deep network. In particular, we used H + R and R + V.

Figure 7. An example of the input images used for training the networks. First row: Original input
and corresponding annotated mask. Second row: Red, Green, and Blue channels from the original RGB
image. Third row: Hue, Saturation, and Value channels from the transformation of the original RGB
image into Hue, Saturation, and Value (HSV).

The idea of using a multi-spectral input derives from the application of deep learning techniques
in the area of precision farming, where multi-spectral inputs have denoted good performance on SSNs
for the segmentation of crop and weed plants in images acquired from farming robots [43].

64



Appl. Sci. 2020, 10, 8285

The prediction masks produced by the deep networks have been compared with the ground-truth
annotation masks in order to measure the capability of our pipeline in generating accurate results.
In particular, we have used the number of false-positive (FP), false-negative (FN), and true-positive (TP)
carcinoma pixel detections as an indicator for the evaluation of the results. Figure 8 shows an example
of how we computed FP, FN, and TP pixels to evaluate the predicted mask.

Figure 8. An example of error analysis for a test image. (a) The original image included in the test set.
(b) The corresponding annotation mask, where carcinoma pixels are coloured in white. (c) The predicted
mask generated from U-Net with ResNet50 encoder. (d) The coloured error mask, where green pixels
are true-positive (TP) carcinoma pixels, blue are false-positives (FPs), and red are false-negatives (FNs).

4.1. Qualitative Evaluation

We evaluated the output of the trained network, in the first instance, by visual inspection.
This allowed us to interpret the results and judge them in the light of the pathologist’s experience and
diagnostic reasoning in histopathology.

In most cases, we observed that the areas reported as false positives (blue pixels in Figure 8d)
actually corresponded to small nests of stromal infiltration, located in correspondence with the tumor
invasion front.

Vice versa, we observed that a portion of the pixels reported as false negatives actually referred to
small areas of stroma within the tumor area.For example, by observing the colored mask in Figure 8d,
it is visible that the stromal area within the tumor is considered as a set of false-negative pixels
(coloured in red) even if they should be considered as true positives.

Given the discussion above, from a qualitative point of view, the algorithm has often reported
pixels relating to areas of intense inflammatory infiltrate as false positives. However, single interspersed
lymphocytes in the peritumor stroma were not per se a problem in the interpretation of the image.
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Tumor grading was another determining factor in the efficiency of the algorithm. In fact,
the trained network recognized with difficulty the highly differentiated tumor areas, with a prevalence
of keratin pearls. This last factor could be attributable to the fact that the dataset used for the training
was mainly composed of a series of high grade advanced squamous carcinomas.

4.2. Quantitative Results

To obtain a quantitative measure of the segmentation performance achieved by the four deep
networks, we used the Mean Intersection-Over-Union (mIOU) metric. MIOU is one of the most
common metrics for evaluating semantic image segmentation tasks. In particular, we first computed
the IOU for each semantic class, namely carcinoma, tissue non-carcinoma, and non-tissue, and then
computed the average over all classes. The mIOU is defined as follows:

mIOU =
1
C

C

∑
i=1

TPj

TPj + FPj + FNj
, (2)

where TP is true-positive, FP is false-positive, FN is false-negative, and C is the total number of classes.
Table 1 shows the quantitative results of the semantic segmentation on three different inputs:

RGB, (Red + Hue), and (Red + Value). The results show that the use of the combination (Red + Value)
generates better results than (Red + Hue) input. Moreover, a deeper network, such as U-Net modified
with ResNet50 as encoder, performs better than the original U-Net (having a more shallow encoder).

Table 1. Pixel-wise segmentation results.

Training SSN
MIoU

IOU

Input Type Non-Tissue Tissue Non-Carcinoma Carcinoma

RGB

SegNet 0.51 0.74 0.49 0.30
U-Net 0.58 0.79 0.52 0.45

U-Net + VGG16 0.64 0.84 0.56 0.45
U-Net + ResNet50 0.67 0.85 0.59 0.56

Red + Hue

SegNet 0.49 0.70 0.48 0.30
U-Net 0.55 0.78 0.50 0.38

U-Net + VGG16 0.33 0.22 0.28 0.53
U-Net + ResNet50 0.57 0.80 0.48 0.43

Red + Value

SegNet 0.54 0.72 0.49 0.40
U-Net 0.57 0.78 0.49 0.46

U-Net + VGG16 0.62 0.79 0.50 0.55
U-Net + ResNet50 0.63 0.80 0.52 0.56

4.3. Discussion

The histological evaluation of Hematoxylin Eosin stained slides from tumor samples, carried out
by an experienced pathologist on an optical microscope, is a mandatory step in the diagnostic,
prognostic and therapeutic pathway of patients suffering from squamous cell carcinoma of the oral
cavity. To date, for the histological diagnosis of OSCCs, the gold standard is the visual analysis of
histological preparations, stained with hematoxylin and eosin; tumor recognition basically takes
place on the basis of the qualitative assessment of architectural characteristics of the neoplastic tissue,
based on the wealth of knowledge pathologist’s own. The qualitative assessment is subjective and can
suffer from inter-individual variability, especially in borderline situations that are difficult to interpret.
The use of a segmentation algorithm could minimize the interpretative variability and speed up the
pathologists’ work, providing they with a screening tool, particularly useful in those cases in which
the histopathological diagnosis must be carried out on the extensive sampling of complex surgical
samples that involve the generation of multiple blocks of formalin-fixed and paraffin-embedded tissue
samples, from which numerous slides stained with hematoxylin and eosin are obtained.
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Based on the presented results, our contribution is composed of: (i) a novel dataset, the ORCA set,
which will allow us to conduct new studies on Oral Squamous Cell Carcinoma. Particularly, the dataset
is composed of annotation from the TCGA dataset, a full comprehensive dataset enriched, as well
as with diagnostic slide, with clinicopathological information and molecular biology data. This could
facilitate the development of molecular characterization deep learning algorithms; (ii) our method relies
on 2250 × 2250 and 4500 × 4500 images, without a tiling processing. Even though an improvement
in its accuracy is mandatory for clinical practice, the utilization of so large images can hugely reduce
time-demand for a WSI, making our approach easily scalable to clinical routine, when hundreds of
slides need to be processed each day; (iii) after demanded improvements and a clinical trial, this kind of
algorithm may be part of clinical practice via L.I.S. integration, fastening OSCC diagnosis and helping
pathologists to identify OSCC areas on WSI. Indeed, we foresee to extend our method on lymphonodal
metastasis, giving the pathologist an easy way to detect small tumor islands, and on distant metastasis,
supporting the pathologist with cases of suspect metastasis of OSCC primary tumor.

We intend to propose this artificial intelligence algorithm as a Computer-Aided Diagnostic,
aware that it cannot replace the pathologist in his routine activity, but that it will be able to provide
they with valid help, especially for those who find themselves working in generalist diagnostic centres
on the territory, not specialized in the diagnosis of an infrequent but extremely lethal disease.

5. Conclusions

In this work, we created a dataset called ORCA, containing annotated data from the TCGA
dataset, to compare four different deep learning-based architectures for oral cancer segmentation,
namely: SegNet, U-Net, U-Net with VGG16 encoder, and U-Net with ResNet50 encoder. The peculiarity
of this work consists of the use of a training set completely different from the test data. In such a way,
we tested the capability of the networks in generalizing the problem, providing promising segmentation
results.

Despite the non-optimal results, to the best of our knowledge, this is the first attempt to use
an automatic segmentation algorithm for oral squamous cell carcinoma and it represents an important
novelty to this pathology. Furthermore, the publically-available ORCA dataset will facilitate the
development of new algorithms and will boost the research on computational approaches to OSCC.

As future directions, we will aim at enlarging the training set and at making it publicly available.
In this work, we considered color transformation by using a combination of HSV and RGB color models
as a method for creating a multi-channel input. This was done because the group of pathologists that
are authors of this work noticed that HSV color space contains a lot of visually distinguishing features
about tumor cells. We did not use color modifications for augmenting the data. However, this is
an interesting aspect that will be investigated in future work. Moreover, we foresee to improve our
model to achieve a result that may be transferred to clinical practice.
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Abstract: Prostate carcinoma is caused when cells and glands in the prostate change their shape and
size from normal to abnormal. Typically, the pathologist’s goal is to classify the staining slides and
differentiate normal from abnormal tissue. In the present study, we used a computational approach
to classify images and features of benign and malignant tissues using artificial intelligence (AI)
techniques. Here, we introduce two lightweight convolutional neural network (CNN) architectures
and an ensemble machine learning (EML) method for image and feature classification, respectively.
Moreover, the classification using pre-trained models and handcrafted features was carried out
for comparative analysis. The binary classification was performed to classify between the two
grade groups (benign vs. malignant) and quantile-quantile plots were used to show their predicted
outcomes. Our proposed models for deep learning (DL) and machine learning (ML) classification
achieved promising accuracies of 94.0% and 92.0%, respectively, based on non-handcrafted features
extracted from CNN layers. Therefore, these models were able to predict nearly perfectly accurately
using few trainable parameters or CNN layers, highlighting the importance of DL and ML techniques
and suggesting that the computational analysis of microscopic anatomy will be essential to the future
practice of pathology.

Keywords: prostate carcinoma; microscopic; convolutional neural network; machine learning;
deep learning; handcrafted

1. Introduction

Image classification and analysis has become popular in recent years, especially for medical
images. Cancer diagnosis and grading are often performed and evaluated using AI as these processes
have become increasingly complex, because of growth in cancer incidence and the numbers of specific
treatments. The analysis and classification of prostate cancer (PCa) are among the most challenging
and difficult. PCa is the second most commonly diagnosed cancer among men in the USA and Europe,
affecting approximately 25% of patients with cancer in the Western world [1]. PCa is a type of cancer
that has always been an important challenge for pathologists and medical practitioners, with respect to
detection, analysis, diagnosis, and treatment. Recently, researchers have analyzed PCa in young Korean
men (<50 years of age), considering the pathological features of radical prostatectomy specimens and
biochemical recurrence of PCa [2].

In the United States, thousands of people exhibit PCa. In 2017, there were approximately
161,360 new cases and 26,730 deaths, constituting 19% of all new cancer cases and 8% of all cancer
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deaths [3]. Therefore, it is important to detect PCa at an early stage to increase the survival rate. Currently,
for the clinical diagnosis of PCa, methods that are performed in hospitals include a prostate-specific
antigen test, digital rectal exam, trans-rectal ultrasound, and magnetic resonance imaging. Core needle
biopsy examination is a common and useful technique, performed by insertion of a thin, hollow needle
into the prostate gland to remove a tissue sample [4–6]. However, PCa diagnosis via microscopic
biopsy images is challenging. Therefore, diagnostic accuracy may vary among pathologists.

Generally, in histopathology sections, pathologists categorize stained microscopy biopsy images
into benign and malignant. To carry out PCa grading, pathologists use the Gleason grading system,
which was originally based on the sum of the two Gleason scores for the most common so-called
Gleason patterns (GPs). Many studies conclude that this is the recommended methodology for grading
PCa [7]. The Gleason grading system defines five histological patterns from GP 1 (well differentiated) to
GP 5 (poorly differentiated), with a focus on the shapes of atypical glands [8–11]. During the grossing
study, the tumor affected in the prostate gland is extracted by the pathologist for examination under
a microscope for cancerous cells [12,13]. In this cell culturing process, the tissues are stained with
hematoxylin and eosin (H&E) compounds, yielding a combination of dark blue and bright pink colors,
respectively [14–18]. In digital pathology, there are some protocols that every pathologist follows for
preparing and staining the tissue slides. However, the acquisition systems and staining process vary
from one pathologist to another. The generated tissue images with the variations in colour intensity
and artifacts could impact the classification accuracy of the analysis [19,20].

DL and ML in AI have recently shown excellent performance in the classification of medical
images. These techniques are used for computer vision tasks (e.g., segmentation, object detection,
and image classification) and pattern recognition exploiting handcrafted features from a large-scale
database, thus allowing new predictions from existing data [21–24]. DL is a class of ML algorithms,
where multiple layers are used to extract higher-level features gradually from the raw input. ML is a
branch of AI concentrated on application building that learns from data. ML algorithms are trained to
learn features and patterns in huge amounts of data to make predictions based on new data. Both DL
and ML have shown promising results in the field of medical imaging and have the potential to assist
pathologists and radiologists with an accurate diagnosis; this may save time and minimize the costs of
diagnosis [25–28]. For image classification, DL models are built to train, validate, and test thousands
of images of different types for accurate prediction. These models consist of many layers through
which a CNN transforms the images using functions such as convolution, kernel initialization, pooling,
activation, padding, batch normalization, and stride.

The combination of image-feature engineering and ML classification has shown remarkable
performance in terms of medical image analysis and classification. In contrast, CNN adaptively
learns various image features to perform image transformation, focusing on features that are highly
predictive for a specific learning objective. For instance, images of benign and malignant tissues could
be presented to a network composed of convolutional layers with different numbers of filters that
detect computational features and highlight the pixel pattern in each image. Based on these patterns,
the network could use sigmoid and softmax classifiers to learn the extracted and important features,
respectively. In DL, the “pipeline” of CNN’s processing (i.e., from inputs to any output prediction)
is opaque, performed automatically like a passage through a “black box” tunnel, where the user
remains fully unaware of the process details. It is difficult to examine a CNN layer-by-layer. Therefore,
each layer’s visualization results and prediction mechanism are challenging to interpret.

The present paper proposes a pipeline for tissue image classification using DL and ML techniques.
We developed two lightweight CNN (LWCNN) models for automatic detection of the GP in histological
sections of PCa and extracted the non-handcrafted texture features from the CNN layers to classify
these using an ensemble ML (EML) method. Color pre-processing was performed for enhancing
images. To carry out a comparative analysis, the two types of hand-designed [29] features, such as the
opposite color local binary patterns (OCLBP) [30] and improved OCLBP (IOCLBP) [30] were extracted
and pre-trained models (VGG-16, ResNet-50, Inception-V3, and DenseNet-121) [31] were used for EML
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and DL classification, respectively. To avoid the complexity and build lightweight DL models, we used
a few hidden layers and trainable parameters, and therefore, the models were named LWCNN.

The DL models were trained several times on the same histopathology dataset using different
parameters and filters. For each round of training, we fine-tuned the hyperparameters, optimization
function, and activation function to improve the model performance, including its accuracy.
Binary classification is critical for PCa diagnosis because the goal of the pathologist is to identify
whether each tumor is benign or malignant [32]. We generated a class activation map (CAM) using
predicted images and created a heat map to visualize the method by which the LWCNN learned to
recognize the pixel pattern (image texture) based on activation functions, thus interpreting the decision
of the neural network. The CAM visualization results of the training and testing were difficult to
interpret because CNNs are black-box models [33,34].

2. Related Work

A CNN was first used on medical images by Lo et al. [35,36]. Their model (LeNet) succeeded
in a real-world application and could recognize hand-written digits [37]. Subsequent CNN-based
methods showed the potential for automated image classification and prediction, especially after the
introduction of AlexNet, a system that won the ImageNet challenge. In this era, the categorizing and
auto-detection of cancer in the histological sections using machine assistance have shown excellent
performance in the field of early detection of cancer.

Zheng et al. [38] developed a new CNN-based architecture for histopathological images, using the
3D multiparametric MRI data provided by PROSTATEx challenge. Data augmentation was performed
through 3D rotation and slicing, to incorporate the 3D information of the lesion. They achieved the
second-highest AUC (0.84) in the PROSTATEx challenge, which shows the great potential of deep
learning for cancer imaging.

Han et al. [39] used breast cancer samples from the BreaKHis dataset to perform multi-classification
using subordinate classes of breast cancer (ductal carcinoma, fibroadenoma, lobular carcinoma, adenosis,
Phyllodes tumor, tubular adenoma, mucinous carcinoma, and papillary carcinoma). The author
developed a new deep learning model and has achieved remarkable performance with an average
accuracy of 93.2% on a large-scale dataset.

Kumar et al. [12] performed k-means segmentation to separate the background cells from the
microscopy biopsy images. They extracted morphological and textural features from for automated
detection and classification of cancer. They used different types of machine learning classifiers
(random forest, Support vector machine, fuzzy k-nearest neighbor, and k-nearest neighbor) to classify
connectivity, epithelial, muscular, and nervous tissues. Finally, the author obtained an average accuracy
of 92.19% based on their proposed approach using a k-nearest neighbor classifier.

Abraham et al. [40] used multiparametric magnetic resonance images and presented a novel
method for the grading of prostate cancer. They used VGG-16 CNN and an ordinal class classifier with
J48 as the base classifier. The author used the PROSTATAx-2 2017 grand challenge dataset for their
research work. Their method achieved a positive predictive value of 90.8%.

Yoo et al. [3] proposed an automated CNN-based pipeline for prostate cancer detection using
diffusion-weighted magnetic resonance imaging (DWI) for each patient. They used a total of 427 patients
as the dataset, out of these, 175 with PCa and 252 patients without PCa. The author used five CNNs
based on the ResNet architecture and extracted first order statical features for classification. The analysis
was carried out based on a slice- and patient-level. Finally, their proposed pipeline achieved the best
result (AUC of 87%) using CNN1.

Turki [41] performed machine learning classification for cancer detection and used a data sample
of colon, liver, thyroid cancer. They applied different ML algorithms, such as deep boost, AdaBoost,
XgBoost, and support vector machines. The performance of the algorithms was evaluated using the
area under the curve (AUC) and accuracy on real clinical data used classification.
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Veta et al. [42] proposed different methods for the analysis of breast cancer histopathology images.
They discussed different techniques for tissue image analysis and processing like tissue components
segmentation, nuclei detection, tubules segmentation, mitotic detection, and computer-aided diagnosis.
Before discussing the different image analysis algorithms, the author gave an overview of the tissue
preparation, slide staining processes, and digitization of histological slides. In this paper, their approach
is to perform clustering or supervised classification to acquire binary or probability maps for the
different stains.

Moradi et al. [43] performed prostate cancer detection based on different image analysis techniques.
The author used ultrasound, MRI, and histopathology images, and among these, ultrasound images
were selected for cancer detection. For the classification of prostate cancer, feature extraction was
carried out using the ultrasound echo radio-frequency (RF) signals, B-scan images, and Doppler images.

Alom et al. [44] proposed a deep CNN (DCNN) model for breast cancer classification. The model
was developed based on the three powerful CNN architecture by combining the strength of the
inception network (Inception-v4), the residual network (ResNet), and the recurrent convolutional
neural network (RCNN). Thus, their proposed model was named as inception recurrent residual
convolution neural network (IRRCNN). They used two publicly available datasets including BreakHis
and Breast Cancer (BC) classification challenge 2015. The test results were compared against the
existing state-of-art models for image-based, patch-based, image-level, and patient-level classification.

Wang et al. [45] proposed a novel method for the classification of colorectal cancer histopathological
images. The author developed a novel bilinear convolutional neural network (BCNN) model that
consists of two CNNs, and the outputs of the CNN layers are multiplied with the outer product
at each spatial domain. Color deconvolution was performed to separate the tissue components
(hematoxylin and eosin) for BCNN classification. Their proposed model performed better than the
traditional CNN by classifying colorectal cancer images into eight different classes.

Bianconi et al. [20] compared the combination effect of six different colour pre-processing methods
and 12 colour texture features on the patch-based classification of H&E stained images. They found that
classification performance was poor using the generated colour descriptors. However, they achieved
promising results using some pre-processing methods such as co-occurrence matrices, Gabor filters,
and Local Binary Patterns.

Kather et al. [31] investigated the usefulness of image texture features, pre-trained convolutional
networks against variants of local binary patterns for classifying different types of tissue sub-regions,
namely stroma, epithelium, necrosis, and lymphocytes. They used seven different datasets of histological
images for classifying the handcrafted and non-handcrafted features using standard classifiers
(e.g., support vector machines) to obtain overall accuracy between 95% and 99%.

3. Tissue Staining and Data Collection

3.1. Tissue Staining

For the identification of cancerous cells, the prostate tissue was sectioned with a thickness of
4μm. The process of deparaffinization (i.e., removal of paraffin wax from slides prior to staining) is
especially important after tissue sectioning because, otherwise, only poor staining may be achieved.
However, in practice, each tissue section was deparaffinized and rehydrated in an appropriate manner
and H&E staining was carried out successfully using an automated stainer (Autostainer XL, Leica).
Hematoxylin and Eosin are positively and negatively charged, respectively. The nucleic acids in
the nucleus are negatively charged components of basophilic cells; hematoxylin reacts with these
components. Amino groups in proteins in the cytoplasm are positively charged components of
acidophilic cells; eosin reacts with these components [46–48]. Figure 1 shows the visualization of the
H&E stained biopsy image, which was analyzed using QuPath open-source software. The results of
H&E staining are shown separately, with their respective chemical formulas.
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Figure 1. The visualization result of hematoxylin and eosin (H&E) staining slide. (a) Hematoxylin
staining slide. (b) Eosin staining slide. (c) H&E staining slide obtained by combining (a,b). Note that
the two slides (a,b) are highly dissimilar in texture, which is useful for analysis and classification.

3.2. Data Collection

The whole-slide H&E stained images of size 33,584 × 70,352 pixels were acquired from the
pathology department of the Severance Hospital of Yonsei University. The slide images were further
processed to generate multiple sizes (256 × 256, 512 × 512, and 1024 × 1024) of 2D patches by scanning
at 40× optical magnification with 0.3NA objective using a digital camera (Olympus C-3000) which
is attached to a microscope (Olympus BX-51). The extracted regions of interest (ROIs) were sent to
the pathologist for prostate cancer (PCa) grading. Figure 2 shows an example of the cropped patches
extracted from a whole-slide image. Regions containing background and adipose tissue were excluded.
After the labeled patches were received, 6000 samples were selected, all with size 256 × 256 pixels
(24 bit/pixel); the samples were divided equally into two classes: cancerous and non-cancerous.
The tissue samples used in our research were extracted from 10 patients. These samples had an RGB
color coding scheme (8 bits each for red, green, and blue).

Figure 2. Data preparation of a sample histopathology slide from a prostatectomy. (a) An example
of a whole-slide image where a sliding window method was applied to generate patch images.
(b) The cropped patches obtained from (a) corresponded to the lowest and highest Gleason pattern,
from well-differentiated to poorly differentiated, respectively. Among all patches in (b), the simple
stroma, benign and malignant patches were selected for PCa analysis and classification.
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4. Materials and Methods

4.1. Proposed Pipeline

Image and feature classification based on DL and ML methods showed some promising results in
categorizing microscopic images of benign or malignant tissues. Our proposed pipeline for this paper is
shown in Figure 3. Our analysis of a tissue image dataset was carried out in five phases, which include
image pre-processing, analyze CNN models, feature analysis, model classification, and performance
evaluation. In this study, we developed two LWCNN models (model 1 and model 2) and used
state-of-art pre-trained models to carry out 2D image classification and perform a comparative analysis
among the models. Also, EML classification was performed to classify the handcrafted (OCLBP and
IOCLBP) and non-handcrafted (CNN-based) colour texture features extracted from tissue images.

Figure 3. Proposed pipeline for image and feature classification based on a lightweight convolutional
neural network (LWCNN) and ensemble machine learning (EML). LR: logistic regression, RF:
random forest.

4.2. Image Preprocessing

In this phase, the preprocessing was carried out, whereby we resized the patches to 224× 224 pixels
for CNN training, and to adjust the contrast level of the image, power law (gamma) transformation [49,50]
was applied to the resized images. The concept of gamma was used to encode and decode luminance
values in image systems. Figure 4 illustrates the clarity of images before and after the application of
this operation.

The dataset splitting was performed for training, validating, and testing the CNN models. The data
samples were labeled with 0 (non-cancerous) and 1 (cancerous) for accurate classification and randomly
assigned to one of three groups for training, validation, and testing, as shown in Table 1. The dataset
used for DL and ML classification holds a total of 6000 samples. Out of these, 3600 were used for training,
1200 for validation, and 1200 for testing. Before the samples were fed to the network for classification,
data augmentation was performed on the training set, which enabled analysis of model performance,
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reduction of overfitting problems, and improvement of generalization [51]. Therefore, to create some
changes in the images, some transformations were applied using augmentation techniques, and these
included rotation by 90◦, transposition, random_brightening, and random_contrast, random_hue,
and random_saturation, shown in Figure 5c,d. Keras and Tensorflow functions were used to execute
data augmentation.

Figure 4. Image preprocessing using smoothing and gamma correction. (a,c) Original images of benign
and malignant tissues, respectively. Here, the images are blurry and exhibit low contrast. (b,d) Images
after removal of random noise, smoothing, and gamma correction. (e) Transformation curve for images
with low and high contrast. Because the images in (a,c) have low contrast, γ = 2 was applied to
adjust their intensities, obtaining images in (b,d) that appear clear and “fresh.” Therefore, the tissue
components were more visible after transformation, which was important for CNN classification.

Table 1. Assignment of benign and malignant samples into datasets for training, validation, and testing.

Dataset Benign (0) Malignant (1) Total

Training 1800 1800 3600
Validation 600 600 1200

Testing 600 600 1200
Total 3000 3000 6000

Figure 5. Randomly selected samples from the training dataset demonstrating data augmentation.
(a,b) Images of benign and malignant tissues, respectively, before the transformation. (c,d) Transformed
images from (a,b), respectively, after data augmentation.
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4.3. Convolution Neural Network

To classify images of PCa, this paper introduces two LWCNN models to perform the classification
of the GP and distinguish between two classes. Both model 1 and model 2 included CNN layers,
such as those for input, convolution, rectified linear unit (ReLU), max pooling, dropout, flattening,
GAP, and classification. Model 1 contained four convolutional blocks, with a depth of 10 layers,
which interleaved two-dimensional (2D) convolutional layers (3 × 3 kernel, strides, and padding) with
ReLU and batch normalization (BN) layers, followed by three max-pooling (2 × 2) and three dropout
layers. To connect the neural network [52,53], a flattening layer and a sequence of three dense layers
containing 1024, 1024, and 2 neurons were connected for feature classification and two probabilistic
outputs. The sigmoid activation function [54,55] was used as a binary classifier. The numbers of filters
in each block were 32, 64, 128, and 256. These filters acted as a sliding window over the entire image.

Model 2 contained three convolutional blocks, with a depth of seven layers, where the 2D
convolutional, ReLU, and BN layers were identical to model 1 but were interleaved with two
max-pooling (2 × 2) layers and one dropout layer. The numbers of convolutional filters in this model
were 92, 192, and 384. A GAP layer was used instead of flattening, the classification section in this
model also had three dense layers containing 64, 32, and 2 neurons. Here, a softmax [56,57] classifier
was used to reduce binary loss. The input shape was set to 224 × 224 × 3 while building the model.
The detailed design and specification of our lightweight CNN (LWCNN) models are shown in Figure 6
and Table 2, respectively. Model 2 was modified from model 1 based on multilevel feature analysis to
improve classification accuracy and reduce validation loss, as shown in Figure 7.

Figure 6. Structure of our lightweight convolutional neural networks for cancer image classification
between two Gleason grade groups of prostate carcinoma. Spatial features are extracted from an image
by convolving through one of the networks. Classification layers (flatten, global average pooling [GAP],
dense-1, dense-2, and output) were used to find the required response based on features that were
extracted by the convolutional neural network.

Table 2. Detailed information and specifications of lightweight convolutional neural network models.
BN: batch normalization, GAP: global average pooling, ReLU: rectified linear unit.

Layer Type Filters Output Shape Kernel Size/Strides

Model-1 Specification

Input Image 1 224 × 224 × 3 -
Block-1 2× convolutional + ReLU + BN 32 56 × 56 × 32 3 × 3/2
Block-2 2× convolutional + ReLU + BN 64 56 × 56 × 64 3 × 3/1
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Table 2. Cont.

Layer Type Filters Output Shape Kernel Size/Strides

Model-1 Specification

- Max pooling + dropout (0.25) 64 28 × 28 × 64 2 × 2/2
Block-3 3× convolutional + ReLU + BN 128 28 × 28 × 128 3 × 3/1

- Max pooling + dropout (0.25) 128 14 × 14 × 128 2 × 2/2
Block-4 3× convolutional + ReLU + BN 256 14 × 14 × 256 3 × 3/1

- Max pooling + dropout (0.25) 256 7 × 7 × 256 2 × 2/2
- Flatten - 12,544 -
- Dense-1 + ReLU + BN 1024 1024 -
- Dense-2 + ReLU + BN 1024 1024 -
- Dropout (0.5) 1024 1024 -

Output Sigmoid 2 2 -

Model-2 specification

Input Image 1 224 × 224 × 3 -
Block-1 2× convolutional + ReLU + BN 92 56 × 56 × 92 5 × 5/2
Block-2 2× convolutional + ReLU + BN 192 56 × 56 × 192 3 × 3/1

- Max pooling 192 28 × 28 × 192 2 × 2/2
Block-3 3× convolutional + ReLU + BN 384 28 × 28 × 384 3 × 3/1

- Max pooling + dropout (0.25) 384 14 × 14 × 384 2 × 2/2
- GAP - 384 2 × 2/2
- Dense-1 + ReLU + BN 64 64 -
- Dense-2 + ReLU + BN 32 32 -
- Dropout (0.5) 32 32 -

Output Softmax 2 2 -

The multilevel feature maps were extracted after each convolutional block for pattern analysis
and to understand the pixel distribution that the CNN detected, based on the number of convolution
filters applied for edge detection and feature extraction. The convolution operation was performed by
sliding the filter or kernel over the input image. Element-wise matrix multiplication was performed
at each location in the image matrix and the output results were summed to generate the feature
map. Max pooling was applied to reduce the input shape, prevent system memorization, and extract
maximum information from each feature map. The feature maps from the first block held most of
the information present in the image; that block acted as an edge detector. However, the feature
map appeared more similar to an abstract representation and less similar to the original image,
with advancement deeper into the network (see Figure 7). In block-3, the image pattern was somewhat
visible, and by block-4, it became unrecognizable. This transformation occurred because deeper features
encode high-level concepts, such as 2D information regarding the tissue (e.g., only spatial values of
0 or 1), while the CNN detects edges and shapes from low-level feature maps. Therefore, to improve
the performance of the LWCNN, based on the observation that block-4 yielded unrecognizable
images, model 2 was developed using three convolutional blocks, and selected as the model that this
paper proposes.

To validate the performance of model 2 (LWCNN), we also included pre-trained CNN
models (VGG-16, ResNet-50, Inceptio-V3, and DenseNet-121) for histopathology image classification.
These models are very powerful and effective for extracting and classifying the deep CNN features.
For each pre-trained network, the dense or classification block was configured according to the
model specification. Sigmoid activation function was used for all the pre-trained models to perform
binary classification.
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Figure 7. Multilevel feature map analysis for tissue image classification using a lightweight
convolutional neural network. Visual analysis was performed by observing the pixel pattern in
feature maps extracted from each block. Each block holds different information that is useful for
convolutional neural network classification. Output shapes of feature maps from blocks 1−4 were:
56 × 56 × 92, 28 × 28 × 192, 14 × 14 × 384, and 7 × 7 × 512, respectively. Shown are four feature maps per
block for the purpose of analysis, with 92, 192, 384, and 512 in each block, respectively. Analysis reveals
that block-4 contains the maximum information regarding the image, but the resulting maps are less
visually interpretable by people. With advancement deeper into the network, the feature maps become
sparser, indicating that convolution filters detect fewer features. Therefore, block-4 was removed from
model 2.

4.4. Feature Engineering

The extraction of texture features based on handcrafted and non-handcrafted was performed for
ensemble machine learning (EML) classification. First, non-handcrafted or CNN-based features were
extracted from the GAP layer of the proposed LWCNN (model 2). A different number of feature maps
were generated from each CNN layer and the GAP mechanism was used to calculate the average value
for each feature map. Second, a total of 20 handcrafted colour texture features were extracted using
OCLBP and IOCLBP techniques. Out of these, 10 features were extracted using OCLBP, and 10 features
using IOCLBP. The hand-designed feature analysis was performed for EML classification and compare
with the non-handcrafted features classification results.

After we generate colour texture map, the LBP technique was applied to each colour channel
(Red/Green/Blue) of OCLBP and IOCLBP separately. These state-of-art methods are the extensions of
local binary patterns (LBP) and effective for colour image analysis. OCLBP and IOCLBP are the intra-
and inter-channel descriptors with dissimilar local thresholding scheme (i.e., the peripheral pixels of
OCLBP are thresholded at the central pixel value, and IOCLBP thresholding is based on the mean
value) [30]. For each aforesaid state-of-art methods, the feature vector was obtained using general
rotation-invariant operators (i.e., neighbor set of pixels p was placed on a circle of radius R) that can
distinguish the spatial pattern and the contrast of local image texture. Therefore, the operators p = 8
and R = 2 were used to extract the colour features from the H&E stained tissue images.
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4.5. DL and ML Classification

Prior to training and testing the LWCNN, pre-trained, and EML [58] models, we fine-tuned
different types of parameters for better prediction and to minimize model loss. To compute the feature
maps in each convolutional layer, a non-linear activation function (ReLU) was used, and the equation
can be defined as:

Ai, j,k = max
(
wT

n Ii, j + bn, 0
)

(1)

where Ai, j,k is the activation value of the nth feature map at the location (i, j), Ii, j is the input patch,
and wn and bn are the weight vector and bias term, respectively, of the nth filter.

BN was also used after each convolution layer to regularize the model, reducing the need for
dropout. BN was used in our model because it is more effective than global data normalization.
The latter normalization transforms the entire dataset so that it has a mean of zero and unit variance,
while BN computes approximations of the mean and variance after each mini-batch. Therefore,
BN enables the use of the ReLU activation function without saturating the model. Typically, BN is
performed using the following equation:

BN (Xnormalize) = (xn − μmb)/
√
σ2

mb + c (2)

where xn is the d-dimensional input, μmb and σ2
mb are the mean and variance, respectively, of the

mini-batch, and c is a constant.
To optimize the weights of the network and analyze the performance of the LWCNN models,

we performed a comparative analysis based on four different types of optimizers, namely stochastic
gradient descent (SGD), Adadelta, Adam, and RMSprop. The results of comparative analysis are
shown in the next section. The classification performance is measured using the cross-entropy loss,
or log loss, whose output is a probability value between 0 and 1. To train our network, we used binary
cross-entropy. The standard loss function for binary classification is given by:

Binaryloss = − 1
N

N∑
i=1

[Yi × log(Mw(Xi)) + (1−Yi) × log(1−Mw(Xi))] (3)

where N is the number of output class, Xi and Yi are the input samples and target labels, respectively,
and Mw is the model with network weight, w.

The hyperparameters were tuned while setting a minimum learning rate of 0.001 using the function
known as ReduceLROnPlateau, a factor of 0.8 and patience of 10 were set; thus, if no improvement
was observed in validation loss for 10 consecutive epochs, the learning rate was reduced by a factor
of 0.8. The batch size was set to eight for training the model and regularization was applied by
dropping out 25% and 50% of the weights in the convolution and dense blocks of LWCNN, respectively.
The probabilistic output in the dense layer was computed using sigmoid and softmax classifiers.

In addition to CNN methods, traditional ML algorithms including logistic regression (LR) [59]
and random forest (RF) [60] were used for features classification. In this paper, an ensemble voting
method was proposed in which LR and RF classifiers were combined to create an EML model.
This ensemble technique was used to classify the handcrafted and non-handcrafted features and
compare the classification performance. The LWCNN, pre-trained, and EML models were tested using
the unknown or unseen data samples. Typically, for ML classification, cross-validation was used by
splitting the training data into k-fold (i.e., k = 5) to determine the model generalizability, and the result
was computed by averaging the accuracies from each of the k trials. Prior to ML classification [61–63],
the feature values for training and testing were normalized using the standard normal distribution
function, which can be expressed as:

Pi_Normalised =
Pi − μ
σ

(4)
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where Pi is the ith pixel in an individual tissue image, and μ and σ are the mean and standard deviation
of the dataset.

The DL and ML models were built with the Python 3 programming language using the Keras
and Tensorflow libraries. Approximately 36 h were invested in fine-tuning the hyperparameters to
achieve better accuracy. Figure 8 shows the entire process flow diagram for DL and ML classification.
The hyperparameters that were used for DL and ML models are shown in Table 3.

The models were trained, validated, and tested on a PC with the following specifications: an Intel
corei7 CPU (2.93 GHz), one NVIDIA GeForce RTX 2080 GPU, and 24 GB of RAM.

Figure 8. Flow diagram for DL and ML classification. Handcrafted and non-handcrafted colour texture
descriptors were extracted for EML classification.

Table 3. Hyperparameters Tuning for DL and ML classifiers.

Models Specification

Model-1, VGG-16, ResNet-50,
Inception-V3, DenseNet-121

loss = binary_crossentropy; learning rate = start:1.0—auto reduce on
plateau fraction: 0.8 after 10 consecutive non-declines of validation loss;

classifier = sigmoid; epochs = 300

Model-2
loss = binary_crossentropy; learning rate = start:1.0—auto reduce on

plateau fraction: 0.8 after 10 consecutive non-declines of validation loss;
classifier = softmax; epochs = 300, kernel initializer = glorot_uniform

LR C = 100, max_iter = 500, tol = 0.001, method = isotonic, penalty = l2

RF n_estimators = 500, criterion = gini, max_depth = 9, min_samples_split = 5,
min_samples_leaf = 4, method = isotonic

5. Experimental Results

This study mainly focuses on image classification based on AI. The proposed LWCNN (model 2)
for tissue image classification and EML for feature classification produced reliable results, which met
our requirements, at an acceptable speed. To develop DL models, a CNN approach was used as it
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is proven excellent performance in detecting specific regions for multiclass and binary classification.
When splitting the dataset, a ratio of 8:2 was set for training and testing. Moreover, to validate the
model after each epoch, the training set was further divided, such that 75% of the data was allocated
for training and 25% was allocated for validation. Five-fold cross-validation was used during EML
training. Algorithms used for preprocessing, data analysis, and classification were implemented in the
MATLAB R2019a and PyCharm environments.

5.1. Performance Analysis

In this study, a binary classification approach was used to classify benign and malignant samples
of prostate tissue. Two levels of classification were performed: DL (based on images) and ML (based on
features). Table 4 shows the comparative analysis between the optimizers for model 1 and model
2, respectively. The developed LWCNN models were trained a couple of times by changing the
optimizers during training.

Table 4. Comparison of the optimizers for tissue image classification.

Model-1 Model-2

Optimizers
Test Loss

(%)
Test Accuracy

(%)
Test Loss

(%)
Test Accuracy

(%)

SGD 0.51 85.7 0.25 93.3
RMSProp 1.00 85.5 0.62 89.3

Adam 0.45 84.4 0.28 91.1
Adadelta 0.54 89.1 0.25 94.0

From the above comparison table, we can analyze that the Adadelta performed the best and
gave the best accuracies on test data for both the architectures. SGD and Adam performed close
to Adadelta for model 2. On the other hand, RMSProp performed close to Adadelta for model 1.
However, Adadelta (update version of Adam and Adagrad) is a more robust optimizer that restricts
the window of accumulated past gradients to some fixed size w instead of accumulating all past square
gradients. The comparison of these optimizers revealed that Aadelta is more stable and more rapid,
hence, an overall improvement on SGD, RMSProp, and Adam. The behavior and performance of the
optimizers were analyzed using the receiver operating characteristic (ROC) curve. It is a probabilistic
curve that represents the diagnostic ability of a binary classifier system, including an indication of its
effective threshold value. The area under the ROC curve (AUC) summarizes the extent to which a
model can separate the two classes. Figure 9a,b show the ROC curve and corresponding AUC that
depicts the effectiveness of different optimizers used for model 1 and model 2, respectively. For model
1, the AUCs were 0.95, 0.94, 0.96, and 0.93, and for model 2, 0.98, 0.97, 0.98, and 0.97 were obtained
using Adadelta, RMSProp, SGD, and Adam, respectively.

Further, based on the optimum accuracy in Table 4, we carried out EML classification using the
CNN extracted features from model 2, to analyze the efficiency of ML algorithms. Also, handcrafted
features classification was performed to compare the performance with the non-handcrafted features
classification results. Moreover, the EML model achieved promising results using the CNN-based
features. Model 2 outperformed model 1 in overall accuracy, precision, recall, F1-score, and MCC,
with values of 94.0%, 94.2%, 92.9%, 93.5%, and 87.0%, respectively. A confusion matrix (Figure 10)
was generated based on the LWCNN model that yielded the optimum results, and thus most reliably
distinguished malignant from benign tissue. Benign tissue was labeled as “0” and malignant was
labeled as “1” to plot the confusion matrix for this binary classification. The four squares in the
confusion matrix represent true positive, true negative, false positive, and false negative; their values
were calculated using the test dataset based on the expected outcome and number of predictions of
each class. Tables 5 and 6 show the overall comparative analysis for the DL and ML classification.
The performance metrics used to evaluate the analysis results are accuracy, precision, recall, F1-score,
and Matthews correlation coefficient (MCC).
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Figure 9. ROC curves for analyzing the behavior of different optimizers, generated by plotting predicted
probability values (i.e., model’s confidence scores). (a) Performance of model 1 based on sigmoid
activation. (b) Performance of model 2 based on softmax activation function.

Figure 10. Confusion matrix of model 2, generated using the test dataset, showing results of binary
classifications between benign (0) and malignant (1) tumors. Blue boxes at top-left and bottom-right
represent true positive and true negative, respectively; white boxes at top-right and bottom-left
represent false negative and false positive, respectively.

Table 5. Comparative analysis of lightweight and pre-trained CNN models based on non-handcrafted
features. Metrics are for the test dataset.

Deep Learning

Model-1 Model-2 VGG-16 ResNet-50 Inception-V3 DenseNet-121

Accuracy 89.1% 94.0% 92.0% 93.0% 94.6% 95.0%
Precision 89.2% 94.2% 92.2% 95.0% 96.5% 96.2%

Recall 89.1% 92.9% 91.9% 90.6% 93.2% 94.6%
F1-Score 89.0% 93.5% 92.0% 92.8% 94.8% 95.4%

MCC 78.3% 87.0% 84.0% 85.3% 89.5% 90.7%
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Table 6. Comparative analysis of non-handcrafted and handcrafted features classification. Metrics are
for the test dataset.

Ensemble Machine Learning

CNN-Based OCLBP IOCLBP OCLBP + IOCLBP

Accuracy 92.0% 69.3% 83.6% 85.0%
Precision 92.7% 66.0% 83.2% 85.5%

Recall 91.0% 70.6% 83.9% 84.5%
F1-Score 91.8% 68.2% 83.5% 85.0%

MCC 83.5% 38.6% 67.2% 69.8%

5.2. Visualization Results

The CAM technique was used to visualize the results from an activation layer (softmax) of the
classification block. CAM is used to deduce which regions of an image are used by a CNN to recognize
the precise class or group it contains [22,64]. Typically, it is difficult to visualize the results from hidden
layers of a black box CNN model. More complexity is observed in feature maps with increasing
depth in the network; thus, each image becomes increasingly abstract, encoding less information
than the initial layers and appearing more blurred. Figure 11 shows the CAM results, indicating the
method by which our DL network detected important regions; moreover, the network had learned a
built-in mechanism to determine which regions merited attention. Therefore, this decision process was
extremely useful in the classification network.

Figure 11. Class activation maps are extracted from one of the classification layers of our convolutional
neural network. These show how images are classified and predicted by the neural network, although
it is a black-box model. Top and bottom pairs of rows depict benign and malignant tissue images,
respectively. (a) Input images with an RGB color scheme visualized as grayscale. (b) Activation map of
classification block, showing detection of different regions in each tissue image. (c) Images overlaying
(a,b), with spots indicating significant regions that the convolutional neural network used to identify a
specific in that image.
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Our CNN detected specific regions using the softmax classifier by incorporating spatially averaged
information extracted by the GAP layer from the last convolution layer, which had an output shape of
14 × 14 × 384. The detected regions depicted in Figure 11c were generated by the application of a heat
map to the CAM image in Figure 11b and overlaying that on the original image from Figure 11a. A heat
map is highly effective for tissue image analysis; in this instance, it showed how the CNN detected
each region of the image that is important for cancer classification. Doctors can use this information to
better understand the classification (i.e., how the neural network predicted the presence of cancer in an
image, based on the relevant regions). The visualization process was carried out using the test dataset,
which was fed into the trained network of model 2.

In this study, supervised classification was performed for cancer grading, whereby our dataset
was labeled with “0” and “1” to categorize benign and malignant tissue separately and independently.
The probability distributions of data were similar in training and test sets, but the test dataset was
independent of the training dataset. Therefore, after the model had been trained with several binary
labeled cancer images, the unanalyzed dataset was fed to the network for accurate prediction between
binary classes. Figure 12 shows examples of the binary classification results from our proposed model
2, with examples of images that were and were not predicted correctly. Notably, some images of benign
were similar to malignant tissues and vice versa in terms of their nuclei distribution, intensity variation,
and tissue texture. It was challenging for the model to correctly classify these images into the two groups.

Figure 12. Cancer prediction using a binary labeled test dataset. Examples of images that were
(a) correctly and (b) incorrectly classified, showing their actual and predicted labels.

6. Discussion

The main aim of this study was to develop LWCNN for benign and malignant tissue image
classification based on multilevel feature map analysis and show the effectiveness of the model.
Moreover, we developed an EML voting method for the classification of non-handcrafted (extracted from
the GAP layer of model 2) and handcrafted (extracted using OCLBP and IOCLBP). Generally, in DL,
the features are extracted automatically from raw data and further processed for classification using a
neural network approach. However, for ML algorithms, features are extracted manually using different
mathematical formulae; these are also regarded as handcrafted features. A CNN is suitable for complex
detection tasks, such as analyses of scattered and finely drawn patterns in data. Of particular interest,
in the malignant and benign classification task, model 2 was more effective than model 1.Indeed,
model 1 performed below expectation, such that we modified it to improve performance, resulting
in model 2. The modification comprised removal of the fourth convolutional block, flattening layer,
and sigmoid activation function, as well as alterations of filter number and kernel size. Moreover,
GAP replaced flattening after the third convolutional block, minimizing overfitting by reducing the
total number of parameters in the model. The softmax activation function replaced the sigmoid
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activation function in the third dense layer. These modifications, based on the multilevel feature map
analysis, improved the overall accuracy and localization ability of tissue image classification.

Furthermore, in this study, we have also compared our proposed CNN model with the well-known
pre-trained models such as VGG-16, ResNet-50, Inception-V3, and DenseNet-121. Among these,
DenseNet proved to give the highest accuracy of 95% followed by the Inception V3 with 94.6%.
The pre-trained VGG-16 and ResNet-50 achieved 92% and 93%, respectively. Although DenseNet
gained the highest accuracy among all the pre-trained models as well as our proposed model 2, it is
not quite comparable with the motto of this paper. The ultimate goal of this paper was to develop a
light-weighted CNN without a much-complicated structure with minimum possible convolutional
layers and achieve better classification performance. Model 2 proved this hypothesis by achieving
an overall accuracy of 94%. On the other hand, all the pre-trained models are well trained on a huge
dataset (ImageNet) which includes 1000 classes. Therefore, it is evident that the classification of such
models will be done accurately without much hassle. Nevertheless, the comparison of computational
cost between the proposed LWCNN and other pre-trained models was performed to analyze the
memory usage, trainable parameters, and learning (training and testing) time, shown in Table 7. First,
according to the comparison Table 7, the number of trainable parameters used in the LWCNN model
was reduced by more than 75% as compared to VGG-16, ResNet-50, and Inception-V3, and 2% as
compared to DenseNet-121. Second, the memory usage of the proposed model was significantly less
when compared to other models. Third, the time taken to train the proposed model was also drastically
less. Among the pre-trained models, VGG-16 and ResNet-50 agree with the objective of this work.
From Tables 5 and 7, it is evident that our LWCNN (model 2) is competitive and inexpensive, whereas,
the state-of-art models were computationally expensive and achieved comparable results. Therefore,
from this perspective, model 2 of our proposed work performed better than VGG-16 and ResNet-50 in
terms of accuracy, besides employing a simple architecture.

Table 7. Comparing performance and computation cost of model-2 with other pre-trained models.

Models
Parameter
(Trainable)

Model
Memory Usage

Time to Solution (Minutes)

Train Test

VGG-16 27,823,938 60.9 MB 570 <1
ResNet-50 23,538,690 148.4 MB 660 <1

Inception-V3 22,852,898 66.9 MB 600 <1
DenseNet-121 7,479,682 199.7 MB 700 <1

Model-2 (LWCNN) 5,386,638 44.7 MB 190 <1

Through fine-tuning of the hyperparameters, the CNN layers were determined to be optimal
using the validation and test datasets. The modified, model 2 was adequate for the classification of
benign and malignant tissue images. Our study examined the capability of the proposed LWCNN
model to detect and forecast the histopathology images; a single activation map was extracted from
each block (see Figure 13) to visualize the detection results using a heat map. Notably, we used an
EML method for non-handcrafted and handcrafted features classification. However, the EML model
was sufficiently powerful to classify the computational features extracted using the optimal LWCNN
model, which predicted the samples of benign and malignant tissues almost perfectly accurately.
Also, tissue samples that were classified and predicted using the softmax classifier are shown in
quantile-quantile (Q−Q) plots of the prediction probability confidence for benign and malignant states
in Figure 14a,b, respectively. These Q−Q plots allowed for the analysis of predictions. True and
predicted probabilistic values were plotted according to true positive and true negative classifications
of samples (see Figure 9), respectively.
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Figure 13. Visualizations of class activation maps generated from model 2, created using different
numbers of filters. Outputs of (a) first convolutional, (b) second convolutional, (c) third convolutional,
and (d) classification blocks. Colors indicate the most relevant regions for predicting the class of these
histopathology images, as detected by the convolutional neural network.

Figure 14. Quantile-quantile plot for true and predicted probabilistic values. (a) Samples that
were benign and had true positive predictions. (b) Samples that were malignant and had true
negative predictions.

In Q−Q plots, note that the black bar at the top parallel to the x-axis shows true probabilistic
values; red (true positive) and blue (true negative) markers show the prediction confidence of each
sample of a specific class. We used a softmax classifier, which normalizes the output of each unit to
be between 0 and 1, ensuring that the probabilities always sum to 1. The number of samples used
for each class was 600; the numbers correctly classified were 565 and 557 for true positive and true
negative, respectively. A predicted probability value > 0.5 and <0.5 signifies an accurate classification
and misclassification, respectively.
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The combination of image-feature engineering and ML classification has shown remarkable
performance in terms of medical image analysis and classification. In contrast, CNN adaptively learns
various image features to perform image transformation, focusing on features that are highly predictive
for a specific learning objective [65]. For instance, images of benign and malignant tissues could
be presented to a network composed of convolutional layers with different numbers of filters that
detect computational features and highlight the pixel pattern in each image. Based on these patterns,
the network could use sigmoid and softmax classifiers to learn the extracted and important features,
respectively. In DL, the “pipeline” of CNN’s processing (i.e., from inputs to any output prediction) is
opaque [66], performed automatically like a passage through a “black box” tunnel, where the user
remains fully unaware of the process details. It is difficult to examine a CNN layer-by-layer. Therefore,
each layer’s visualization results and prediction mechanism are challenging to interpret.

Overall, all models performed well in tissue image classification, achieving comparable results.
The EML method also worked well with CNN-extracted features, yielding comparable results.
We conclude that, for image classification, models with very deep layers performed well by more
accurately classifying the data samples. We aimed to build an LWCNN model with few feature-map
layers and hyperparameters for prediction of cancer grading based on binary classification (i.e., benign
vs. malignant). Our proposed methods have proven that lightweight models can achieve good results
if the parameters are tuned appropriately. Furthermore, model 2 effectively recognized the histologic
differences in tissue images and predicted their statuses with nearly perfect accuracy. The application
of DL to histopathology is relatively new. However, it performs well and delivers accurate results.
DL methods provide outstanding performance through black box layers; the outputs of each of
these layers can be visualized using a heat map. In this study, our model provided insights into the
histologic patterns present in each tissue image and can thus assist pathologists as a practical tool
for analyzing tissue regions relevant to the worst prognosis. Heat map analyses suggested that the
LWCNN can learn visual patterns of histopathological images containing different features relating
to nuclear morphology, cell density, gland formation, and variations in the intensity of stroma and
cytoplasm. Performance significantly improved when the first model was modified based on the
feature map analysis.

7. Conclusions

In this study, 2D image classification was performed using PCa samples by leveraging
non-handcrafted and handcrafted texture features to distinguish a malignant state of tissue from a
benign state. We have presented LWCNN- and EML-based image and feature classification using
feature map analysis. The DL models were designed with only a few CNN layers and trained with
a small number of parameters. The computed feature maps of each layer were fed into these fully
CNNs through the flattening and GAP layers, enabling binary classification using sigmoid and softmax
classifiers. GAP and softmax were used for model 2, the optimal network in this paper. The GAP layer
was used, instead of flattening, to minimize overfitting by reducing the total number of parameters in
the model. This layer computes the mean value for each feature map, whereas flattening combined
all feature maps extracted from the final convolution or pooling layers by changing the shape of the
data from a 2D matrix of features into a one-dimensional array for passage to the fully CNN classifier.
A comparative analysis was performed between the DL and EML classification results. Moreover,
the computational cost was also compared among the models. The optimum LWCNN (i.e., model 2)
and EML models (a combination of LR and RF classifiers) achieved nearly perfectly accurate results
with significantly fewer trainable parameters. The proposed LWCNN model developed in the study
achieved an overall accuracy of 94%, average precision of 94.2%, an average recall of 92.9%, an average
f1-score of 93.5%, and MCC of 87%. On the other hand, using CNN-based features, the EML model
achieved an overall accuracy of 92%, an average precision of 92.7%, an average recall of 91%, an average
f1-score of 91.8%, and MCC of 83.5%.
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To conclude, the analysis presented in this study is very encouraging. However, a model built
for medical images may not work well for other types of images. There is a need to fine-tune the
hyperparameters to control model overfitting and loss, thereby improving accuracy. The 2D LWCNN
(model 2) developed in this study performed well, and therefore, the predicted true positive and true
negative samples for benign and malignant, respectively, were plotted using Q-Q plots. The CAM
technique was used to visualize the results of the block box CNN model. In the future, we will
consider other methods and develop a more complex DL model and compare it with our optimal
LWCNN model and other transfer learning models. Further, we will extend the research to multi-class
classification (beyond binary) to simultaneously classify benign tissues, as well as grades 3–5.
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Abstract: The usefulness of sparse-sampling CT with deep learning-based reconstruction for detection
of metastasis of malignant ovarian tumors was evaluated. We obtained contrast-enhanced CT images
(n = 141) of ovarian cancers from a public database, whose images were randomly divided into
71 training, 20 validation, and 50 test cases. Sparse-sampling CT images were calculated slice-by-slice
by software simulation. Two deep-learning models for deep learning-based reconstruction were
evaluated: Residual Encoder-Decoder Convolutional Neural Network (RED-CNN) and deeper
U-net. For 50 test cases, we evaluated the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) as quantitative measures. Two radiologists independently performed a qualitative evaluation
for the following points: entire CT image quality; visibility of the iliac artery; and visibility of
peritoneal dissemination, liver metastasis, and lymph node metastasis. Wilcoxon signed-rank test
and McNemar test were used to compare image quality and metastasis detectability between the
two models, respectively. The mean PSNR and SSIM performed better with deeper U-net over
RED-CNN. For all items of the visual evaluation, deeper U-net scored significantly better than
RED-CNN. The metastasis detectability with deeper U-net was more than 95%. Sparse-sampling CT
with deep learning-based reconstruction proved useful in detecting metastasis of malignant ovarian
tumors and might contribute to reducing overall CT-radiation exposure.

Keywords: deep learning; neoplasm metastasis; ovarian neoplasms; radiation exposure; tomography;
x-ray computed

1. Introduction

Ovarian cancer is the eighth leading cause of female cancer death worldwide [1]. The incidence of
ovarian cancer increases with age and peaks in the 50s [2]. In addition, malignant germ cell tumors are
common in young patients with ovarian cancer [3].

CT is the major modality for diagnosing ovarian tumors, detecting metastases, staging ovarian
cancer, following up after surgery, and assessing the efficacy of chemotherapy. On the other hand,
CT radiation exposure may be associated with elevated risks of thyroid cancer and leukemia in all
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adult ages and non-Hodgkin lymphoma in younger patients [4]. Patients with ovarian cancer tend to
be relatively young, therefore the reduction of CT radiation exposure is essential. Radiation exposure
of CT is mainly controlled by adjusting the tube current and voltage [5]. Lowering the radiation
dose increases image noise, so techniques that reduce image noise and artifacts and maintain image
quality are needed. Low-dose CT images were reconstructed by filtered back projection (FBP) until the
2000s. However, iterative reconstruction (IR) has been the mainstream since the first IR technique was
clinically introduced in 2009 [5]. IR reconstruction technology has evolved into hybrid IR, followed
by model-based IR (MBIR). IR has been reported to reduce the radiation dose by 23–76% without
compromising image quality compared to FBP [5].

In recent years, a technique called sparse-sampling CT that resembles compressed sensing in MRI
has attracted attention as a possible new technique to reduce exposure. This technique reconstructs CT
images using a combination of sparse-sampling CT and Artificial intelligence (AI), especially deep
learning, which may reduce CT radiation exposure more than two-fold over the current technology [5].
A few studies show that with the application of sparse-sampling CT and deep-learning, lower-dose CT
could be used [6,7].

Research for the noise reduction of CT images using deep learning started around 2017 [6–15].
In 2017, image-patch-based noise reduction was performed using deep learning model on low-dose
CT images [7,11]. On the other hand, Jin et al. show that entire CT images could be directly denoised
using U-net [9]. To improve perceptual image quality, generative adversarial network (GAN) was
introduced for CT noise reduction [12,13]. Following the advancement in noise reduction using deep
learning, Nakamura et al. evaluated noise reduction using deep learning on a real CT scanner [16].
However, most of them focused on quantitative measures such as peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM). To the best of our knowledge, there are few studies that radiologists
visually evaluate abnormal lesions such as metastasis on CT images processed with deep learning [16].
Furthermore, the quantitative measure, such as PSNR and SSIM, and human perceived quality were
not always consistent in agreement [17]. Therefore, we suggest that PSNR and SSIM alone cannot
assure clinical usefulness and accuracy of lesion detection.

The present study aimed to evaluate the usefulness of sparse-sampling CT with deep learning-based
reconstruction for radiologists to detect the metastasis of malignant ovarian tumors. This study used both
quantitative and qualitative assessment of denoised sparse-sampling CT with deep learning, including
PSNR and SSIM, along with radiologists’ visual score, and the detectability of metastasis.

2. Materials and Methods

This study used anonymized data from a public database. The regulations of our country did not
require approval from an institutional review board for the use of a public database.

2.1. Dataset

Our study tested abdominal CT images obtained from The Cancer Imaging Archive (TCIA) [18–20].
We used one public database of the abdominal CT images available from TCIA: The Cancer Genome
Atlas Ovarian Cancer (TCGA-OV) dataset. The dataset is constructed by a research community of
The Cancer Genome Atlas, which focuses on the connection between cancer phenotypes and genotypes
by providing clinical images. In TCGA-OV, clinical, genetic, and pathological data reside in Genomic
Data Commons Data Portal while radiological data are stored on TCIA.

TCGA-OV provides 143 cases of abdominal contrast-enhanced CT images. Two cases were
excluded from the current study because the pelvis was outside the CT scan range. The other 141 cases
were included in the current study. The 141 cases were randomly divided into 71 training cases,
20 validation cases, and 50 test cases. For training, validation, and test cases, the number of CT images
was 6916, 1909, and 4667, respectively.
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2.2. Simulation of Sparse-Sampling CT

As in a previous study [9], sparse-sampling CT images were simulated for the 141 sets of abdominal
CT images of TCGA-OV. The original CT images of the TCGA-OV were converted into sinograms
with 729 pixels by 1000 views using ASTRA-Toolbox (version 1.8.3, https://www.astra-toolbox.com/),
an open-source MATLAB and Python toolbox of high-performance graphics processing unit (GPU)
primitives for two- and three-dimensional tomography [21,22]. To simulate sparse-sampling CT images,
we uniformly (at regular view intervals) subsampled the sinograms by a factor of 10, which corresponded
to 100 views. While a 20-fold subsampling rate was used in the previous study [9], our preliminary
analysis revealed that the abdominal CT images simulated with a 20-fold subsampling rate were too
noisy. As a result, we utilized a 10-fold subsampling rate in the current study. The 10-fold subsampled
sinograms were converted into the sparse-sampling CT images using FBP of the ASTRA-Toolbox.

2.3. Deep Learning Model

To denoise the sparse-sampling CT images, a deep learning model was employed in the current
study. The outline of the training phase and deployment (denoising) phase using a deep learning
model is represented in Figure 1. In the training phase, pairs of original and noisy CT images were
used for constructing a deep learning model. In the deployment phase, we used the deep learning
model for denoising noisy CT images. We used a workstation with GPU (GeForce RTX 2080 Ti with
11 GB memory, NVIDIA Corporation, Santa Clara, California, USA) for training and denoising.

Figure 1. Outline of the training phase and deployment phase of the deep learning model.

Two types of deep learning models were evaluated: Residual Encoder-Decoder Convolutional
Neural Network (RED-CNN) [7] and deeper U-net with skip connection [6]. RED-CNN combines
autoencoder, deconvolution network, and shortcut connections into its network structure, and it
performed well in denoising low-dose CT images. RED-CNN used image patches extracted from the
CT image (size 55 × 55 pixels) for training [7]. Nakai et al. developed deeper U-net for denoising
sparse-sampling chest CT images and showed that deeper U-net was superior to conventional U-net
with skip connection [6]. Contrary to RED-CNN, deeper U-net made it possible to use entire CT
images (size 512 × 512 pixels) as training data. In the current study, the usefulness of deeper U-net was
evaluated and compared to RED-CNN.
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We implemented deeper U-net using Keras (version 2.2.2, https://keras.io/) with TensorFlow
(version 1.10.1, https://www.tensorflow.org/) backend. The major differences of network structure
between our deeper U-net and Nakai’s deeper U-net were as follows: (i) the number of maxpooling
and upsampling was 9; (ii) the numbers of feature maps in the first convolution layer of our U-net was
104. After the maxpooling layer, the number of feature maps in the convolution layer was doubled.
However, if the numbers of feature maps were 832, the number of feature maps was not increased
even after the maxpooling layer. The changes in the network structure of our deeper U-net including
(i) and (ii) are shown in Appendix A in more detail. To train deeper U-net, pairs of original CT images
and sparse-sampling CT images were prepared. Mean squared error (MSE) between the original and
denoised CT images represented the loss function of deeper U-net. Adam was used as an optimizer,
and its learning rate was 0.0001. The number of training epochs was 100. 4000 seconds were required
for training deeper U-net per one epoch.

RED-CNN was trained using its PyTorch implementation (https://github.com/SSinyu/RED_CNN).
RED-CNN was trained on an image patch size of 55 × 55 pixels. Network-related parameters of
RED-CNN were retained as described previously [7].

2.4. Quantitative Image Analysis

To evaluate the denoising performance of deep learning models, we used two quantitative
measures, PSNR and SSIM, on the 4667 CT images from 50 test cases [23]. These parameters are
frequently used as standard objective distortion measures and for quantitative assessment of the
reconstructed images [10]. PSNR is defined as

PSNR = 20log10(
MAXI√

MSE
), (1)

where MSE is calculated between the denoised and original CT images, and MAXI is the maximum
value of the original CT image. SSIM is a metric that supposedly reflects the human visual perception
rather than PSNR. It is defined as

SSIM(x, y) =
(2uxuy + c1)(2sxy + c2)

(u2
x + u2

y + c1)(sx2 + sy2 + c2)
, (2)

where x and y are the denoised and original CT images, respectively; ux and uy are the means of x and
y, respectively; sx2 and sy2 are the variances of x and y, respectively; sxy is the covariance of x and y;
and c1 and c2 are determined by the dynamic range of the pixel values to stabilize the division with the
weak denominator. Scikit-image (version 0.13.0, https://scikit-image.org/) was used to calculate these
two quantitative measures.

2.5. Qualitative Image Analysis

On the denoised sparse-sampling CT of 50 test cases, the normal and abnormal lesions were
visually evaluated. For the qualitative evaluation, four radiologists were participated, two performing
visual assessments as readers and the other two defining and extracting lesions to be assessed. The two
groups were independent of each other.

As readers, two board-certified radiologists (with 17 and 10 years of experience, respectively)
independently evaluated the denoised CT images and referred to the original images on 3D Slicer
(version 4.10.2, https://www.slicer.org/) [24]. For all visual evaluations described in the following
section, we used a five-point scale as follows: (1) Unacceptable, (2) Poor, (3) Moderate, (4) Good,
and (5) Excellent. The definition of each score and detail procedure of qualitative evaluation is shown
in Tables 1–3 and Appendix B, respectively.
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Table 1. Score criteria for entire CT image quality.

(A) Overall Image Quality

Score

1 Unacceptable non-diagnostic
2 Poor poor visualization, heavily blurred appearance of structures
3 Moderate moderate visualization, moderate blurring
4 Good good delineation, slight blurring

5 Excellent excellent visualization, sharp delineation (equivalent to or better compared
with the original image)

(B) Noise and Artifacts

Score

1 Unacceptable heavily noise and artifacts, structures are not visible on entire CT image
2 Poor heavily noise and artifacts, structures are not visible on most parts of CT image
3 Moderate moderate noise and artifacts, but acceptable for clinical evaluation
4 Good minor, but slight noticeable noise and artifacts are found compared with the original image
5 Excellent noise and artifacts levels are equivalent to or better compared with the original image

Table 2. Score criteria for the evaluation of normal local lesions (common iliac artery, internal iliac
artery, and external iliac artery).

Score

1 Unacceptable Unrecognizable
2 Poor recognizable, but not measurable
3 Moderate recognizable and measurable despite a blurred margin
4 Good slightly blurry margin compared with the original image, but measurable
5 Excellent measurable, sharp margin equivalent to the original image

Table 3. Score criteria for the evaluation of abnormal lesions.

Score

1 Unacceptable unrecognizable
2 Poor recognizable but unqualified for diagnosis and measurement
3 Moderate moderately noisy and blurry, but recognizable and qualified for diagnosis and measurement
4 Good qualified for diagnosis and measurement, but slightly inferior to the original image
5 Excellent qualified for diagnosis and measurement equivalent to the original image

The image quality evaluation of the entire CT and the normal local lesions were evaluated. For the
entire CT image quality, (A) Overall image quality and (B) Noise and artifacts were evaluated. The overall
image quality represented a comprehensive evaluation, including noise, artifacts, and visibility of
anatomical structures.

As an evaluation of the normal local lesions, the visibility of the iliac artery (the common iliac
artery, internal iliac artery, and external iliac artery) was evaluated. A score was given on whether
or not the diameter could be reliably measured at each of the three points of the common iliac artery,
internal iliac artery, and external iliac artery.

Peritoneal dissemination, liver metastasis, and lymph node metastasis were visually evaluated as
abnormal lesions by the two radiologists. The abnormal lesions were determined by the consensus of
two other independent board-certified radiologists (6 and 14 years of experience, respectively) on the
original CT image based on the following criteria. Peritoneal dissemination was defined as previously
established as either 1) an isolated mass or 2) subtle soft tissue infiltration and reticulonodular
lesions [25]. Lymph node metastasis was defined as short axis ≥10 mm. With reference to RESIST
v1.1, we defined peritoneal dissemination and liver metastasis as follows: peritoneal dissemination
for non-measurable or measurable (long axis ≥ 10 mm); liver metastasis (long axis ≥ 10 mm) [26].
The measurable lesions of peritoneal dissemination were further subdivided into long axis ≤ 20 and
> 20 mm because the staging of FIGO 2014 differs depending on the size [27].
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2.6. Statistical Analysis

For the quantitative assessment of the denoised images, the mean scores of PSNR and SSIM of
deeper U-net and RED-CNN were calculated. All the qualitative image quality scores were compared
between deeper U-net and RED-CNN using the Wilcoxon signed-rank test. For each abnormal lesion,
a 5-point score ≥ 3 was regarded as true positive (TP), and a 5-point score < 3 as false negative
(FN). He detectability of abnormal lesions was calculated based on the following equation: TP

TP+FN
(sensitivity). The detectability of abnormal lesions was compared between deeper U-net and RED-CNN
using the McNemar test. Statistical analyses were performed using JMP® (version 14.2, SAS Institute
Inc., Cary, NC, USA). All tests were two sided with a significance level of 0.05.

3. Results

A summary of patient demographics of the 141 cases is provided in Table 4. The location of
ovarian cancer and clinical stage were available from TCIA in 140 cases. Age was obtained from
DICOM data of CT images. For the 50 test cases, 124 abnormal lesions were determined, including
6 liver metastases, 25 lymph node metastases, and 93 peritoneal disseminations. For the peritoneal
disseminations, the numbers of non-measurable lesions, measurable lesions with long axis ≤ 20 mm,
and measurable lesions with long axis > 20 mm were 53, 28, and 12, respectively.

For normal local lesions and abnormal lesions, representative images of the original CT and
denoised CT obtained using deeper U-net and RED-CNN are shown in Figure 2. Additionally,
representative images of the original CT, the sparse-sampled CT images before denoised processing and
denoised CT obtained using deeper U-net and RED-CNN are shown in Figure 3.

Table 4. Patient demographics of TCGA-OV.

Category Value

Age * 60.7 ± 11.2 (39–82)
Location of tumor

Bilateral 107
Left 13

Right 12
Not available 8

Clinical Stage **
IB 1
IC 7
IIA 3
IIB 1
IIC 4
IIIA 1
IIIB 3
IIIC 93
IV 26

Not available 1

Note: * and ** indicate that data were obtained from 139 and 140 cases, respectively. Clinical stage of patients were
extracted from the TCGA-OV dataset; it is unknown whether the clinical stage is based on FIGO classification or
TNM classification.
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Figure 2. Representative images of the original CT and denoised CT obtained using deeper U-net
and RED-CNN. Note: (A) Visual scores of common iliac artery (red arrow): 5 points for deeper U-net,
2 points for RED-CNN for reader 1; 4 points for deeper U-net, 2 points for RED-CNN for reader 2.
(B) Visual scores of liver metastasis (yellow arrow): 3 points for deeper U-net, 2 points for RED-CNN
for reader 1; 4 points for deeper U-net, 2 points for RED-CNN for reader 2. Abbreviation: RED-CNN,
Residual Encoder-Decoder Convolutional Neural Network.

Figure 3. Cont.
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Figure 3. Representative images of the original CT, sparse-sampling CT before denoising, and denoised
CT obtained using deeper U-net and RED-CNN. Note: (A) Case 1: Visual scores of peritoneal
dissemination (white circle): 4 points for deeper U-net, 1 points for RED-CNN for reader 1; 4 points for
deeper U-net, 1 points for RED-CNN for reader 2. (B) Case 2: Visual scores of lymph node metastasis
(yellow arrow): 5 points for deeper U-net, 2 points for RED-CNN for reader 1; 4 points for deeper
U-net, 2 points for RED-CNN for reader 2. (C) Case 3: Visual scores of liver metastasis (red arrow):
4 points for deeper U-net, 2 points for RED-CNN for reader 1; 4 points for deeper U-net, 2 points for
RED-CNN for reader 2. (D) Case 4: Visual scores of peritoneal dissemination (red arrow): 4 points for
deeper U-net, 2 points for RED-CNN for reader 1; 4 points for deeper U-net, 1 points for RED-CNN
for reader 2.

3.1. Quantitative Image Analysis

We evaluate the PSNR and SSIM on the 4667 CT images from 50 test cases. The number of samples
for calculating PSNR and SSIM was 4667. The PSNR and SSIM were 29.2 ± 1.49 and 0.75 ± 0.04 for the
sparse-sampling images before denoising, 48.5 ± 2.69 and 0.99 ± 0.01 for deeper U-net, and 37.3 ± 1.97
and 0.93 ± 0.02 for RED-CNN.

3.2. Qualitative Image Analysis

The results of the visual evaluation are shown in Figures 4 and 5 and Tables 5 and 6. For all items
of the visual evaluation, deeper U-net scored better than that of RED-CNN for both readers as shown
in Table 7.

Streak artifacts tended to be stronger on images at the upper abdomen level, especially where the
lung and abdominal organs were visualized on the same image.
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Figure 4. Visual evaluation of entire CT image quality by the two readers using different deep
learning algorithms.

Table 5. Visual evaluation of entire CT image quality by the two readers using different deep
learning algorithms.

(A) Overall Image Quality

Reader 1 Reader 2

score Deeper U-net RED-CNN score Deeper U-net RED-CNN

1 1 41 1 2 42

2 5 7 2 0 8

3 24 2 3 22 0

4 20 0 4 26 0

5 0 0 5 0 0

(B) Noise and Artifacts

Reader 1 Reader 2

score Deeper U-net RED-CNN score Deeper U-net RED-CNN

1 1 41 1 1 43

2 7 8 2 3 7

3 20 1 3 5 0

4 21 0 4 39 0

5 1 0 5 2 0
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Figure 5. Visual evaluation of normal local lesions and abnormal lesions by the two readers using
different deep learning algorithms.

Table 6. Visual evaluation of normal local lesions and abnormal lesions by the two readers using
different deep learning algorithms.

(A) Normal Local Lesions

Reader 1 Reader 2

score Deeper U-net RED-CNN score Deeper U-net RED-CNN

1 0 2 1 0 0

2 1 21 2 3 42

3 7 21 3 6 8

4 12 6 4 31 0

5 30 0 5 10 0

(B) Abnormal Lesions

Reader 1 Reader 2

score Deeper U-net RED-CNN score Deeper U-net RED-CNN

1 2 16 1 13 0

2 6 30 2 66 5

3 26 69 3 44 35

4 56 9 4 0 68

5 34 0 5 0 15
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Table 7. Results of visual evaluations by the two readers using different deep learning algorithms.

Deeper U-net RED-CNN p

Entire CT image quality

(A) Overall image quality Reader 1 median, 3; IQR, 3 to 4 median, 1; IQR, 1 to 1 <0.0001
Reader 2 median, 4; IQR, 3 to 4 median, 1; IQR, 1 to 1 <0.0001

(B) Noise and artifacts Reader 1 median, 3; IQR, 3 to 4 median, 1; IQR, 1 to 1 <0.0001
Reader 2 median, 4; IQR, 4 to 4 median, 1; IQR, 1 to 1 <0.0001

Normal local lesions
Reader 1 median, 5; IQR, 4 to 5 median, 3; IQR, 2 to 3 <0.0001
Reader 2 median, 4; IQR, 4 to 4 median, 2; IQR, 2 to 2 <0.0001

Abnormal lesions
Reader 1 median, 4; IQR, 3 to 5 median, 3; IQR, 2 to 3 <0.0001
Reader 2 median, 4; IQR, 3 to 4 median, 2; IQR, 2 to 3 <0.0001

Abbreviation: IQR, interquartile range; RED-CNN, Residual Encoder-Decoder Convolutional Neural Network.

The detectability of abnormal lesions with deeper U-net was significantly better than that with
RED-CNN: 95.2% (118/124) vs. 62.9% (78/124) (p < 0.0001) for reader 1 and 97.6% (121/124) vs. 36.3%
(45/124) (p < 0.0001) for reader 2. The number of FN with deeper U-net were six and three for readers 1
and 2, respectively. All these abnormal lesions were non-measurable peritoneal dissemination, which
were identified as slight subtle soft-tissue infiltration and reticulonodular lesions on the original CT
image. The representative images of the FN case are shown in Figure 6.

 

Figure 6. A representative undiagnosable lesion on denoised CT image with deeper U-net. Note:
The circle shows non-measurable peritoneal dissemination. With deeper U-net, the score was 1 point
for reader 1 and 2 points for reader 2.

4. Discussion

In the current study, we compared the quantitative and qualitative image quality of sparse-sampling
CT denoised with deeper U-net and RED-CNN. RED-CNN was compared with our deeper U-net
because of its similar network structure [7]. For quantitative analysis, mean scores of PSNR and SSIM
of CT image quality with deeper U-net were better than those with RED-CNN. For all of the visual
evaluation items, the scores of CT image quality with deeper U-net were significantly better than
those of RED-CNN. In addition, the detectability of ovarian cancer metastasis was more than 95% in
deeper U-net.

A few studies on deep learning-based reconstruction have shown that it improved image quality
and reduced noise and artifacts better than hybrid IR and MBIR [8,16,28]. Nakamura et al. reported
that deep learning reconstruction could reduce noise and artifacts more than hybrid IR could and
that it may improve the detection of low-contrast lesions when evaluating hypovascular hepatic
metastases [16]. While their study did not evaluate low-dose CT, the deep learning model is also
considered an effective method with the potential to use lower-dose CT techniques such as sparse
sampling with clinically acceptable results [5]. Our results showed that denoising with deeper U-net
could be used to detect ovarian cancer metastasis.
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To the best of our knowledge, this was the first study that evaluated the detectability of cancer
metastasis, including peritoneal dissemination, liver metastasis, and lymph node metastasis on deep
learning-based reconstructed CT images. The usefulness of sparse-sampling CT with deep learning
has been previously reported [6,7,9,10], but image evaluation was limited to quantitative measures in
most of these studies. While Nakai et al. reported on quantitative and qualitative assessments of the
efficacy of deep learning on chest CT images [6], our study evaluated the usefulness of sparse-sampling
CT denoised with deep learning techniques from the clinical viewpoint. We have proven that deeper
U-net has an excellent ability to improve image quality and detectability of metastasis, and it could
prove effective in clinical practice.

The performance difference between deeper U-net and RED-CNN was significant when assessing
sparse-sampling CT images. A strong streak artifact around bony structures affected the image quality
of sparse-sampling CT [29]. Therefore, to improve the image quality of sparse-sampling CT, an ideal
deep learning model should reduce streak artifact associated with anatomical structures. RED-CNN
used an image patch (size 55 × 55 pixels) for its training, therefore the algorithm had difficulty
discerning between a streak artifact and anatomical structures. As a result, reducing the streak artifact
related to anatomical structure may be limited in RED-CNN. In contrast, since deeper U-net used the
entire CT image (size 512 × 512 pixels) for training, deeper U-net could be optimized to reduce streak
artifact related to anatomical structures. This difference between the two deep learning models may
lead to performance differences shown in the current study.

Since score 5 was defined as image quality and visualization equivalent to original CT (Tables 1–3),
the denoised CT images of deeper U-net was not the same image quality as original CT images from the
viewpoint of score. However, the visual scores and detectability of deeper U-net were sufficiently high.

Although patients with peritoneal dissemination are diagnosed as advanced stage, complete
debulking surgery can be expected to improve the prognosis in epithelial malignant ovarian tumor [30].
In addition, there are some histological types with a favorable prognosis due to successful chemotherapy,
such as yolk sac tumor [31]. Thus, the reduction of CT-radiation exposure is essential for patients with
ovarian cancer. With our proposed method, theoretically, the CT radiation exposure can be reduced to
one-tenth of that of the original CT. The reduction of radiation exposure may reduce the incidence of
radiation-induced cancer. Furthermore, while we evaluated about only the detection of metastasis of
malignant ovarian tumors in the current study, we speculate that the proposed method may be applied
to other diseases.

While our results show that deeper U-net proved useful in detecting cancer metastasis, there
were several drawbacks in the model. First, fine anatomical structures were obscured due to excessive
denoising. This effect might be minimized by blending images of FBP and deep learning-based
reconstruction, such as hybrid IR and MBIR, by adjusting radiation exposure (rate of sparse sampling)
and blending rate. Secondly, the strong streak artifacts around the prosthesis and the upper abdomen
compromised diagnostic ability near these anatomical lesions. Furthermore, streak artifacts tended to
be stronger on images at the upper abdomen level, especially where the lung and abdominal organs
were visualized on the same image. This effect may have resulted from the relatively small number of
training data images that included both lung and abdominal organs compared to images that included
only abdominal organs. Since ovarian cancer primarily metastasizes to the peritoneal liver surface and
the liver, improving the image quality in these areas is considered a future research area. Increasing
the number of training data images with cross-sections displaying both the lung and abdominal
organs may help improve image quality and reduce streak artifacts in deep learning models, including
deeper U-net.

Our study had several limitations. First, we used images from only one public database.
The application of our deep learning model should be further evaluated in other databases. Second,
sparse-sampling images cannot be obtained from real CT scanners at the current time. Our simulated
subsampled images may differ from the images on real scanners. In future, we need to evaluate the
performance of our deeper U-net using real CT acquisitions. Third, images obtained with the deep
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learning model of GAN tended to be more “natural” than those obtained with conventional deep
learning model. However, the noise reduction of GAN is weaker than that of a conventional deep
learning model [17]. There was a concern that the radiologist’s ability to detect metastasis might
decline if the noise reduction was insufficient. Therefore, GAN was not used in the current study.
Finally, because of our study design, we did not evaluate false positives, true negatives, and specificity
in the current study. Therefore, it is necessary to conduct radiologists’ observer studies in which false
positives and true negatives are evaluated.

5. Conclusions

Sparse-sampling CT with deep learning reconstruction could prove useful in detecting metastasis
of malignant ovarian tumors and might contribute to reducing CT radiation exposure. With our
proposed method, theoretically, the CT radiation exposure can be reduced to one-tenth of that of the
original CT, while keeping the detectability of ovarian cancer metastasis more than 95%. It may reduce
the incidence of radiation-induced cancer.
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Appendix A. Network Structure of Deeper U-Net

The network structure of our deeper U-net is slightly modified from original deeper U-net [6].
The differences between the two networks were as follows:

1. The numbers of maxpooling and upsampling were 9 in our deeper U-net.
2. The numbers of feature maps in the first convolution layer of our U-net was 104. After the

maxpooling layer, the number of feature maps in the convolution layer was doubled. However,
if the numbers of feature maps were 832, the number of feature maps was not increased even
after the maxpooling layer.

3. Rectified Linear Unit (ReLU) was used, instead of Leaky ReLU.
4. Probability of Dropout was changed. 0.2% was used in our deeper U-net.

Appendix B. Detail Procedure of Qualitative Evaluation by Radiologists

The detail procedure of qualitative evaluation was as follows. Two board-certified radiologists
(17 and 10 years of experience, respectively) independently performed the visual evaluation as readers.
The patient IDs of TCGA-OV in 50 test cases were sorted in alphabetical and numerical order, and the
two radiologists interpreted the CT images in this order. All the 50 sets of denoised CT images with
deeper U-net were evaluated first, then followed by those with RED-CNN. Image quality evaluation of
the entire CT and the local normal lesions were performed by comparing the original image and the
denoised image on 3D Slicer (version 4.10.2, https://www.slicer.org/) [24], and then the abnormal lesions
were evaluated. Two other board-certified radiologists (6 and 14 years of experience, respectively)
determined the abnormal lesions on the original image by consensus, and recorded the locations of
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the abnormal lesions on a file. In evaluating the abnormal lesions, the two readers referred to the file
for the locations of abnormal lesions. At the time of interpretation, the two readers were informed of
patient’s age, and blind to all other clinical data. The image quality differed greatly between the two
models, therefore the readers could easily determine the deep learning model with which the given CT
images were denoised. Therefore, the interpretation order of the denoised images with deeper U-net
and RED-CNN was not randomized. It was presumed that bias in evaluation of denoised CT images
was inevitable even if interpretation order of deeper U-net and RED-CNN was randomized or the
evaluations of CT images denoised with the two models were performed separately at long interval.
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Abstract: Combinations of data augmentation methods and deep learning architectures for automatic
pancreas segmentation on CT images are proposed and evaluated. Images from a public CT dataset of
pancreas segmentation were used to evaluate the models. Baseline U-net and deep U-net were chosen
for the deep learning models of pancreas segmentation. Methods of data augmentation included
conventional methods, mixup, and random image cropping and patching (RICAP). Ten combinations
of the deep learning models and the data augmentation methods were evaluated. Four-fold cross
validation was performed to train and evaluate these models with data augmentation methods.
The dice similarity coefficient (DSC) was calculated between automatic segmentation results and
manually annotated labels and these were visually assessed by two radiologists. The performance
of the deep U-net was better than that of the baseline U-net with mean DSC of 0.703–0.789 and
0.686–0.748, respectively. In both baseline U-net and deep U-net, the methods with data augmentation
performed better than methods with no data augmentation, and mixup and RICAP were more useful
than the conventional method. The best mean DSC was obtained using a combination of deep U-net,
mixup, and RICAP, and the two radiologists scored the results from this model as good or perfect in
76 and 74 of the 82 cases.

Keywords: pancreas; segmentation; computed tomography; deep learning; data augmentation

1. Introduction

Identification of anatomical structures is a fundamental step for radiologists in the interpretation
of medical images. Similarly, automatic and accurate organ identification or segmentation is important
for medical image analysis, computer-aided detection, and computer-aided diagnosis. To date, many
studies have worked on automatic and accurate segmentation of organs, including lung, liver, pancreas,
uterus, and muscle [1–5].

An estimated 606,880 Americans were predicted to die from cancer in 2019, in which 45,750
deaths would be due to pancreatic cancer [6]. Among all major types of cancers, the five-year relative
survival rate of pancreatic cancer was the lowest (9%). One of the reasons for this low survival rate is
the difficulty in the detection of pancreatic cancer in its early stages, because the organ is located in
the retroperitoneal space and is in close proximity to other organs. A lack of symptoms is another
reason for the difficulty of its early detection. Therefore, computer-aided detection and/or diagnosis
using computed tomography (CT) may contribute to a reduction in the number of deaths caused by
pancreatic cancer, similar to the effect of CT screenings on lung cancer [7,8]. Accurate segmentation of
pancreas is the first step in the computer-aided detection/diagnosis system of pancreatic cancer.
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Compared with conventional techniques of organ segmentation, which use hand-tuned filters and
classifiers, deep learning, such as convolutional neural networks (CNN), is a framework, which lets
computers learn and build these filters and classifiers from a huge amount of data. Recently,
deep learning has been attracting much attention in medical image analysis, as it has been demonstrated
as a powerful tool for organ segmentation [9]. Pancreas segmentation using CT images is challenging
because the pancreas does not have a distinct border with its surrounding structures. In addition,
pancreas has a large shape and size variability among people. Therefore, several different approaches
to pancreas segmentation using deep learning have been proposed [10–15].

Previous studies designed to improve the deep learning model of automatic pancreas
segmentation [10–15] can be classified using three major aspects: (i) dimension of the convolutional
network, two-dimensional model (2D) versus three-dimensional model (3D); (ii) use of coarse-scaled
model versus fine-scaled model; (iii) improvement of network architecture. In (i), the accuracy of
pancreas segmentation was improved in a 3D model and compared with a 2D model; the 3D model
makes it possible to fully utilize the 3D spatial information of pancreas, which is useful for grasping the
large variability in pancreas shape and size. In (ii), an initial coarse-scaled model was used to obtain a
rough region of interest (ROI) of the pancreas, and then the ROI was used for segmentation refinement
using a fine-scaled model of pancreas segmentation. The difference in mean dice similarity coefficient
(DSC) between the coarse-scaled and find-scaled models ranged from 2% to 7%. In (iii), the network
architecture of a deep learning model was modified for efficient segmentation. For example, when an
attention unit was introduced in a U-net, the segmentation accuracy was better than in a conventional
U-net [12].

In previous studies, the usefulness of data augmentation in pancreas segmentation was not fully
evaluated; only conventional methods of data augmentation were utilized. Recently proposed methods
of data augmentation, such as mixup [16] and random image cropping and patching (RICAP) [17],
were not evaluated.

In conventional data augmentation, horizontal flipping, vertical flipping, scaling, rotation, etc.,
are commonly used. It is necessary to find an effective combination of these, since among the possible
combinations, some degrade the performance. Due to the number of the combinations, it is relatively
cumbersome to eliminate the counterproductive combinations in conventional data augmentation.
For this purpose, AutoAugment finds the best combination of data augmentation [18]. However, it is
computationally expensive due to its use of reinforcement learning. In this regard, mixup and RICAP
are easier to adjust than conventional data augmentation because they both have only one parameter.

The purpose of the current study is to evaluate and validate the combinations of different types
of data augmentation and network architecture modification of U-net [19]. A deep U-net was used,
to evaluate the usefulness of network architecture modification of U-net.

2. Materials and Methods

The current study used anonymized data extracted from a public database. Therefore, institutional
review board approval was waived.

2.1. Dataset

The public dataset (Pancreas-CT) used in the current study includes 82 sets of contrast-enhanced
abdominal CT images, where pancreas was manually annotated slice-by-slice [20,21]. This dataset is
publicly available from The Cancer Imaging Archive [22]. The Pancreas-CT dataset is commonly used
to benchmark the segmentation accuracy of pancreas on CT images. The CT scans in the dataset were
obtained from 53 male and 27 female subjects. The age of the subjects ranged from 18 to 76 years with
a mean age of 46.8 ± 16.7. The CT images were acquired with Philips and Siemens multi-detector CT
scanners (120 kVp tube voltage). Spatial resolution of the CT images is 512 × 512 pixels with varying
pixel sizes, and slice thickness is between 1.5−2.5 mm. As a part of image preprocessing, the pixel
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values for all sets of CT images were clipped to [−100, 240] Hounsfield units, then rescaled to the range
[0, 1]. This preprocessing was commonly used for the Pancreas-CT dataset [15].

2.2. Deep Learning Model

U-net was used as a baseline model of deep learning in the current study [19]. U-net consists of
encoding–decoding architecture. Downsampling and upsampling are performed in the encoding and
decoding parts of U-net, respectively. The most important characteristic of U-net is the presence of
shortcut connections between the encoding part and the decoding part at equal resolution. While
the baseline U-net performs downsampling and upsampling 4 times [19], deep U-net performs
downsampling and upsampling 6 times. In addition to the number of downsampling and upsampling,
the number of feature maps in the convolution layer and the use of dropout were changed in the deep
U-net; the number of feature maps in the first convolution layer equaled to 40 and dropout probability
to 2%. In the baseline U-net, 64 feature maps and no dropout were used. In both, the baseline
U-net and the deep U-net, the number of feature maps in the convolution layer was doubled after
each downsampling. Figure 1 presents the deep U-net model of the proposed method. Both the
baseline U-net and deep U-net utilized batch normalization. Keras (https://keras.io/) with Tensorflow
(https://www.tensorflow.org/) backends was used for the implementation of the U-net models. Image
dimension of the input and output in the two U-net models was 512 × 512 pixels.

Figure 1. Illustration of the deep U-net model. The number of downsampling and upsampling is 6
in the deep U-net. Except for the last convolution layer, dropout and convolution layer are coupled.
Abbreviations: convolution layer (conv), maxpooling layer (maxpool), upsampling and convolution
layer (up conv), rectified linear unit (ReLU).

2.3. Data Augmentation

To prevent overfitting in the training of the deep learning model, we utilized the following
three types of data augmentation methods: conventional method, mixup [16], and RICAP [17].
Although mixup and RICAP were initially proposed for image classification tasks, we utilized them
for segmentation by merging or cropping/patching labels in the same way as is done for images.

Conventional augmentation methods included ±5◦ rotation, ±5% x-axis shift, ±5% y-axis shift,
and 95%–105% scaling. Both image and label were changed by the same transformation when using a
conventional augmentation method.
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Mixup generates a new training sample from linear combination of existing images and their
labels [16]. Here, two sets of training samples are denoted by (x, y) and (x’, y‘), where x and x’ are
images, and y and y’ are their labels. A generated sample (x#, y#) is given by:

x# = λx + (1− λ)x′ (1)

y# = λy + (1− λ)y′ (2)

where λ ranges from 0 to 1 and is distributed according to beta distribution: λ~Beta(β, β) for β ∈ (0,∞).
The two samples to be combined are selected randomly from the training data. The hyperparameter β
of mixup was set to 0.2 empirically.

RICAP generates a new training sample from four randomly selected images [17]. The four images
are randomly cropped and patched according to a boundary position (w, h), which is determined
according to beta distribution: w~Beta(β, β) and h~Beta(β, β). We set the hyperparameter β of RICAP
to 0.4 empirically. For four images to be combined, the coordinates (xk, yk) (k = 1, 2, 3, and 4) of
the upper left corners of the cropped areas are randomly selected. The sizes of the four cropped
images are determined based on the value (w, h), such that they do not increase the original image size.
A generated sample is obtained by combining the four cropped images. In the current study, the image
and its label were cropped at the same coordinate and size.

2.4. Training

Dice loss function was used as the optimization target of the deep learning models. RMSprop was
used as the optimizer, and its learning rate was set to 0.00004. The number of training epochs was set to
45. Following previous works on pancreas segmentation, we used 4-fold cross-validation to assess the
robustness of the model (20 or 21 subjects were chosen for validation in folds). The hyperparameters
related with U-net and its training were selected using random search [23]. After the random search,
the hyperparameters were fixed. The following 10 combinations of deep learning models and data
augmentation methods were used:

1. Baseline U-net + no data augmentation,
2. Baseline U-net + conventional method,
3. Baseline U-net +mixup,
4. Baseline U-net + RICAP,
5. Baseline U-net + RICAP +mixup,
6. Deep U-net + no data augmentation,
7. Deep U-net + conventional method,
8. Deep U-net +mixup,
9. Deep U-net + RICAP,
10. Deep U-net + RICAP +mixup.

2.5. Evaluation of Pancreas Segmentation

For each validation case of the Pancreas-CT dataset, three-dimensional CT images were processed
slice-by-slice using the trained deep learning models, and the segmentation results were stacked. Except
for the stacking, no complex postprocessing was utilized. Quantitative and qualitative evaluations
were performed for the automatic segmentation results.

The metrics of quantitative evaluation were calculated using the three-dimensional segmentation
results and annotated labels. Four types of metrics were used for the quantitative evaluation of the
segmentation results: dice similarity coefficient (DSC), Jaccard index (JI), sensitivity (SE), and specificity
(SP). These metrics are defined by the following equations:
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DSC =
2|P∩ L|
|P|+ |L| (3)

JI =
|P∩ L|

|P|+ |L| − |P∩ L| (4)

SE =
|P∩ L|
|L| (5)

SP = 1− |P| − |P∩ L|
|I| − |L| (6)

where |P|, |L|, and |I| denote the number of voxels for pancreas segmentation results, annotated label of
pancreas segmentation, and three-dimensional CT images, respectively. |P∩ L| represents the number
of voxels where the deep learning models can accurately segment pancreas (true positive). Before
calculating the four metrics, a threshold of 0.5 was used for obtaining pancreas segmentation mask
from the output of the U-net [24]. The threshold of 0.5 was fixed for all the 82 cases. A Wilcoxon
signed rank test was used to test statistical significance among the DSC results of 10 combinations of
deep learning models and data augmentation methods. Bonferroni correction was used for controlling
family wise error rate. p-values less than 0.05/45 = 0.00111 was considered as statistical significance.

For the qualitative evaluation, two radiologists with 14 and 6 years of experience visually
evaluated both the manually annotated labels and automatic segmentation results using a 5-point scale:
1, unacceptable; 2, slightly unacceptable; 3, acceptable; 4, good; 5, perfect. Inter-observer variability
between the two radiologists were evaluated using weighted kappa with squared weight.

3. Results

Table 1 shows results of the qualitative evaluation of the pancreas segmentation of Deep U-net +
RICAP +mixup and the manually annotated labels. The mean visual scores of manually annotated
labels were 4.951 and 4.902 for the two radiologists, and those of automatic segmentation results were
4.439 and 4.268. The mean score of automatic segmentation results demonstrates that the accuracy of
the automatic segmentation was good; more than 92.6% (76/82) and 87.8% (74/82) of the cases were
scored as 4 or above. Notably, Table 1 shows that the manually annotated labels were scored as 4
(good, but not perfect) in four and eight cases by the two radiologists. Weighted kappa values between
the two radiologists were 0.465 (moderate agreement) for the manually annotated labels and 0.723
(substantial agreement) for the automatic segmentation results.

Table 1. Results of qualitative evaluation of automatic pancreas segmentation and manually
annotated labels.

Radiologist Target
Number of

Score 1
Number of

Score 2
Number of

Score 3
Number of

Score 4
Number of

Score 5

Radiologist 1 manually annotated label 0 0 0 4 78
Radiologist 1 automatic segmentation 0 3 3 31 45
Radiologist 2 manually annotated label 0 0 0 8 74
Radiologist 2 automatic segmentation 0 2 6 42 32

Table 2 shows the results of the quantitative evaluation of pancreas segmentation. Mean and
standard deviation of DSC, JI, SE, and SP are calculated from the validation cases of 4-fold cross
validation for the Pancreas-CT dataset. Mean DSC of the deep U-net (0.703–0.789) was better than the
mean DSC of the baseline U-net (0.686–0.748) across all data augmentation methods. Because mean SP
was 1.00 in all the combinations, non-pancreas lesions were not segmented by the models. Therefore,
mean DSC was mainly affected by mean SE (segmentation accuracy only for pancreas lesion) as shown
in Table 2. Table 2 also shows the usefulness of data augmentation. In both, the baseline U-net and
deep U-net, the model combined with any of the three types of data augmentation performed better
than the model with no data augmentation. In addition, mixup and RICAP were more useful than the
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conventional method; the best mean DSC was obtained using the combination of mixup and RICAP.
The best mean DSC was obtained using the deep U-net with RICAP and mixup.

Table 2. Results of quantitative evaluation of automatic pancreas segmentation from the 82 cases using
4-fold cross validation.

Type of Model and Data Augmentation DSC JI SE SP

Baseline U-net + no data augmentation 0.686 ± 0.186 0.548 ± 0.186 0.618 ± 0.221 1.000 ± 0.000
Baseline U-net + conventional method 0.694 ± 0.182 0.556 ± 0.183 0.631±0.220 1.000 ± 0.000
Baseline U-net +mixup 0.733 ± 0.106 0.588 ± 0.122 0.698 ± 0.155 1.000 ± 0.000
Baseline U-net + RICAP 0.699 ± 0.155 0.557 ± 0.169 0.624 ± 0.200 1.000 ± 0.000
Baseline U-net + RICAP +mixup 0.748 ± 0.127 0.611 ± 0.141 0.700 ± 0.176 1.000 ± 0.000
Deep U-net + no data augmentation 0.703 ± 0.166 0.563 ± 0.169 0.645 ± 0.201 1.000 ± 0.000
Deep U-net + conventional method 0.720 ± 0.171 0.586 ± 0.176 0.685 ± 0.210 1.000 ± 0.000
Deep U-net +mixup 0.725 ± 0.125 0.582 ± 0.137 0.694 ± 0.158 1.000 ± 0.000
Deep U-net + RICAP 0.740 ± 0.160 0.609 ± 0.169 0.691 ± 0.200 1.000 ± 0.000
Deep U-net + RICAP +mixup 0.789 ± 0.083 0.658 ± 0.103 0.762 ± 0.120 1.000 ± 0.000

Note: data are shown as mean ± standard deviation. Abbreviations: Random image cropping and patching (RICAP),
dice similarity coefficient (DSC), Jaccard index (JI), sensitivity (SE), and specificity (SP).

Table A2 of Appendix B shows the results of the Wilcoxon signed rank test. After the Bonferroni
correction, the DSC differences between Deep U-net + RICAP +mixup and the other six models were
statistically significant.

Representative images of pancreas segmentation are shown in Figures 2 and 3. In the case of
Figure 2, the manually annotated label was scored as 4 by the two radiologists because the main
pancreas duct and its surrounding tissue were excluded from the label.

Figure 2. Representative image of automatic pancreas segmentation. (a) Original computed tomography
(CT) image; (b) CT image with manually annotated label in red, scored as not perfect by two radiologists;
(c) CT image with automatic segmentation in blue.

Figure 3. Representative image of a low-quality automatic pancreas segmentation. (a) Original
computed tomography (CT) image; (b) CT image with manually annotated label in red; (c) CT image
with automatic segmentation in blue, with part of the pancreas excluded from the segmentation.
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4. Discussion

The results of the present study show that the three types of data augmentation were useful for the
pancreas segmentation in both the baseline U-net and deep U-net. In addition, the deep U-net, which
is characterized by additional layers, was overall more effective for automatic pancreas segmentation
than the baseline U-net. In data augmentation, not only the conventional method, but also mixup
and RICAP were useful for pancreas segmentation; the combination of mixup and RICAP was the
most useful.

Table 3 summarizes results of previous studies using the Pancreas-CT dataset. While Table 3
includes the studies with coarse-scaled models, Table A1 includes the studies with fine-scaled models.
As shown in Table 3, the coarse-scaled 2D model of the current study achieved sufficiently high
accuracy, comparable to those of previous studies. While the present study focused on the 2D
coarse-scaled models, the data augmentation methods used in the present study can be easily applied
to 3D fine-scaled models. Therefore, it can be expected that the combination of the proposed data
augmentation methods and 3D fine-scaled models might lead to further improvement of automatic
pancreas segmentation.

Table 3. Summary of coarse-scaled models using the Pancreas-CT dataset.

Name of Model 2D/3D Coarse/Fine Mean DSC Data Splitting

Holistically Nested 2D FCN Stage-1 [11] 2D coarse 0.768 ± 0.111 4-fold CV

2D FCN [13] 2D coarse 0.803 ± 0.09 4-fold CV

Coarse-scaled Model 2D FCN [14] 2D coarse 0.757 ± 0.105 4-fold CV

Single Model 3D U-net [12] (trained from scratch) 3D coarse 0.815 ± 0.057 61 training and 21 test sets
randomly selected

Single Model 3D Attention U-net [12] (trained from scratch) 3D coarse 0.821 ± 0.068 61 training and 21 test sets
randomly selected

Coarse-scaled Model 3D U-net [15] 3D coarse 0.819 ± 0.068 4-fold CV

Proposed model 2D coarse 0.789 ± 0.083 4-fold CV

Data augmentation was originally proposed for the classification model, and the effectiveness
of mixup was validated for segmentation on brain MRI images [25]. The results of the current study
demonstrate the effectiveness of multiple types of data augmentation methods for the two models of
U-net for automatic pancreatic segmentation. To the best of our knowledge, the current study is the first
to validate the usefulness of multiple types of data augmentation methods in pancreas segmentation.

Table 2 shows that deep U-net was better than baseline U-net. Deep U-net included additional
layers in its network architecture, compared with baseline U-net. It is speculated that these additional
layers could lead to performance improvement for pancreas segmentation. Nakai et al. [26] showed
that deeper U-net could efficiently denoised low-dose CT images. They also showed that deeper U-net
was better than baseline U-net. Kurata et al. [4] showed that their U-net with additional layers was
effective for uterine segmentation. The results of the current study are consistent with the results of
these studies. The effectiveness of deep/deeper U-net has not been sufficiently investigated so far.
Because U-net can be used for segmentation, image denoising, detection, and modality conversion,
it is necessary to evaluate what tasks the deep/deeper U-net is effective for.

Combined use of mixup and RICAP was the best for data augmentation in the current study.
The combination of mixup and RICAP was also used in the study of bone segmentation [24]. The results
of bone segmentation show that effectiveness of data augmentation was observed in the dataset with
limited cases, and the optimal combination was conventional method and RICAP. Based on the
studies of bone and pancreas segmentation, usefulness of combination of conventional method, mixup,
and RICAP should be further investigated.

Sandfort et al. used CycleGAN as data augmentation to improve generalizability in organ
segmentation on CT images [27]. CycleGAN was also used for data augmentation in the classification
task [28]. Because the computational cost of training CycleGAN is relatively high, the use of CycleGAN
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as a data augmentation method needs some consideration. In this regard, computational cost of mixup
and RICAP is relatively low, and mixup and RICAP are easy to implement.

Accuracy of pancreas segmentation was visually evaluated by the two radiologists in the current
study. To our knowledge, there was no study of deep learning to evaluate the segmentation accuracy
of pancreas structure visually. The results of visual scores mean that automatic segmentation model of
the current study was good. It is expected that the proposed model may be useful for clinical cases if
the clinical CT images have similar condition and quality to those of the Pancreas-CT dataset.

In the current study, we evaluated automatic pancreas segmentation using the public dataset
called Pancreas-CT. Although this dataset was used in several studies as shown in Table 3, the manually
annotated labels of four or eight cases were scored as not perfect based on the visual assessment of the
current study. In most of the cases, the labels for the pancreas head were assessed as low-quality. It is
presumed that the low-quality labeling is caused by the fact that annotators did not fully understand
the boundary between the pancreas and other organs (e.g., duodenum). To evaluate the segmentation
accuracy, reliable labeling is mandatory. For this purpose, a new database for pancreas segmentation
is desirable.

There were several limitations to the present study. First, we investigated the usefulness of data
augmentation only in segmentation models. The usefulness of data augmentation should be evaluated
for other models such as classification, detection, and image generation. Second, the 3D fine-tuned
model of pancreas segmentation was not evaluated. Because U-net, mixup, and RICAP were originally
suggested for 2D models, we constructed and evaluated the 2D model of pancreas segmentation.
We will apply the proposed methods to the 3D fine-tuned model in future research.

5. Conclusions

The combination of deep U-net with mixup and RICAP achieved automatic pancreas segmentation,
which the radiologists scored as good or perfect. We will further investigate the usefulness of the
proposed method for the 3D coarse-scaled/fine-scaled models to improve segmentation accuracy.
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Appendix A

Table A1. Summary of fine-scaled models using Pancreas-CT dataset.

Name of Model 2D/3D Coarse/Fine Mean DSC Data Splitting

Holistically Nested 2D FCN Stage-2 [11] 2D fine 0.811 ± 0.073 4-fold CV
2D FCN + Recurrent Network [13] 2D fine 0.824 ± 0.067 4-fold CV

Fine-scaled Model 2D FCN [14] 2D fine 0.824 ± 0.057 4-fold CV
Fine-scaled Model 3D U-net [15] 3D fine 0.860 ± 0.045 4-fold CV
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Appendix B

Table A2. Results of Statistical significance for DSC difference.

Target 1 Target 2 p-Value Statistical Significance for DSC Difference

1 2 0.727381623 No
1 3 0.560489877 No
1 4 0.921405534 No
1 5 0.037061458 No
1 6 0.727381623 No
1 7 0.148802462 No
1 8 0.553863735 No
1 9 0.012907274 No
1 10 5.45 × 10−5 Yes
2 3 0.85904175 No
2 4 0.87456599 No
2 5 0.080182031 No
2 6 0.958034301 No
2 7 0.211395881 No
2 8 0.856459499 No
2 9 0.029961825 No
2 10 0.000143632 Yes
3 4 0.422285602 No
3 5 0.057745373 No
3 6 0.668985055 No
3 7 0.331951771 No
3 8 0.85904175 No
3 9 0.033624033 No
3 10 3.72 × 10−5 Yes
4 5 0.047352438 No
4 6 0.764727204 No
4 7 0.157310432 No
4 8 0.529901132 No
4 9 0.024270868 No
4 10 0.000120757 Yes
5 6 0.067465313 No
5 7 0.649935631 No
5 8 0.067465313 No
5 9 0.580595554 No
5 10 0.031228349 No
6 7 0.227439002 No
6 8 0.784877257 No
6 9 0.028739708 No
6 10 9.60 × 10−5 Yes
7 8 0.292611693 No
7 9 0.355409719 No
7 10 0.017108607 No
8 9 0.040470933 No
8 10 5.23 × 10−5 Yes
9 10 0.185045722 No

Note: In Target 1 and Target 2, values of cells mean the followings: (1) Baseline U-net + no data augmentation, (2)
Baseline U-net + conventional method, (3) Baseline U-net +mixup, (4) Baseline U-net + RICAP, (5) Baseline U-net +
RICAP +mixup, (6) Deep U-net + no data augmentation, (7) Deep U-net + conventional method, (8) Deep U-net
+ mixup, (9) Deep U-net + RICAP, (10) Deep U-net + RICAP + mixup. p-values less than 0.05/45 = 0.00111 was
considered as statistical significance.

119



Appl. Sci. 2020, 10, 3360

References

1. Nakagomi, K.; Shimizu, A.; Kobatake, H.; Yakami, M.; Fujimoto, K.; Togashi, K. Multi-shape graph cuts with
neighbor prior constraints and its application to lung segmentation from a chest CT volume. Med. Image Anal.
2013, 17, 62–77. [CrossRef] [PubMed]

2. Seo, H.; Huang, C.; Bassenne, M.; Xiao, R.; Xing, L. Modified U-Net (mU-Net) with Incorporation of
Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images.
IEEE Trans. Med. Imaging 2020, 39, 1316–1325. [CrossRef] [PubMed]

3. Asaturyan, H.; Gligorievski, A.; Villarini, B. Morphological and multi-level geometrical descriptor analysis
in CT and MRI volumes for automatic pancreas segmentation. Comput. Med. Imaging Graph. 2019, 75, 1–13.
[CrossRef] [PubMed]

4. Kurata, Y.; Nishio, M.; Kido, A.; Fujimoto, K.; Yakami, M.; Isoda, H.; Togashi, K. Automatic segmentation of
the uterus on MRI using a convolutional neural network. Comput. Biol. Med. 2019, 114, 103438. [CrossRef]
[PubMed]

5. Hiasa, Y.; Otake, Y.; Takao, M.; Ogawa, T.; Sugano, N.; Sato, Y. Automated Muscle Segmentation from Clinical
CT using Bayesian U-Net for Personalized Musculoskeletal Modeling. IEEE Trans. Med. Imaging 2020, 39,
1030–1040. [CrossRef]

6. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [CrossRef]
[PubMed]

7. Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.;
et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed
tomography. Nat. Med. 2019, 25, 954–961. [CrossRef] [PubMed]

8. National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.;
Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced lung-cancer mortality with low-dose
computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409.

9. Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep Learning Techniques for Medical Image Segmentation:
Achievements and Challenges. J. Digit. Imaging 2019, 32, 582–596. [CrossRef]

10. Kumar, H.; DeSouza, S.V.; Petrov, M.S. Automated pancreas segmentation from computed tomography and
magnetic resonance images: A systematic review. Comput. Methods Programs Biomed. 2019, 178, 319–328.
[CrossRef]

11. Roth, H.R.; Lu, L.; Lay, N.; Harrison, A.P.; Farag, A.; Sohn, A.; Summers, R.M. Spatial aggregation of
holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
Med. Image Anal. 2018, 45, 94–107. [CrossRef] [PubMed]

12. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.;
Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. In Proceedings
of the 1st Conference on Medical Imaging with Deep Learning (MIDL2018), Amsterdam, The Netherlands,
4–6 July 2018.

13. Cai, J.; Lu, L.; Xie, Y.; Xing, F.; Yang, L. Improving deep pancreas segmentation in CT and MRI images
via recurrent neural contextual learning and direct loss function. In Proceedings of the MICCAI 2017,
Quebec City, QC, Canada, 11–13 September 2017.

14. Zhou, Y.; Xie, L.; Shen, W.; Wang, Y.; Fishman, E.K.; Yuille, A.L. A fixed-point model for pancreas segmentation
in abdominal CT scans. In Proceedings of the MICCAI 2017, Quebec City, QC, Canada, 11–13 September 2017.

15. Zhao, N.; Tong, N.; Ruan, D.; Sheng, K. Fully Automated Pancreas Segmentation with Two-stage 3D
Convolutional Neural Networks. arXiv 2019, arXiv:1906.01795.

16. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond Empirical Risk Minimization. arXiv
2017, arXiv:1710.09412.

17. Takahashi, R.; Matsubara, T.; Uehara, K. Data Augmentation using Random Image Cropping and Patching
for Deep CNNs. arXiv 2018, arXiv:1811.09030. [CrossRef]

18. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Policies
from Data. In Proceedings of the Computer Vision and Pattern Recognition (CVPR2019), Long Beach, CA,
USA, 16–20 June 2019.

120



Appl. Sci. 2020, 10, 3360

19. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241.

20. Roth, H.R.; Farag, A.; Turkbey, E.B.; Lu, L.; Liu, J.; Summers, R.M. Data from Pancreas-CT. The Cancer
Imaging Archive. 2016. Available online: http://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU (accessed on
13 February 2020).

21. Roth, H.R.; Lu, L.; Farag, A.; Shin, H.-C.; Liu, J.; Turkbey, E.B.; Summers, R.M. DeepOrgan: Multi-level
Deep Convolutional Networks for Automated Pancreas Segmentation. In Proceedings of the MICCA 2015,
Munich, Germany, 5–9 October 2015; Volume 9349, pp. 556–564.

22. Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.;
et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository.
J. Digit. Imaging 2013, 26, 1045–1057. [CrossRef] [PubMed]

23. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings
of the 25th Annual Conference on Neural Information Processing Systems 2011, Granada, Spain,
12–15 December 2011; Available online: http://dl.acm.org/citation.cfm?id=2986743 (accessed on 5 May 2020).

24. Noguchi, S.; Nishio, M.; Yakami, M.; Nakagomi, L.; Togashi, K. Bone segmentation on whole-body CT using
convolutional neural network with novel data augmentation techniques. Comput. Biol. Med. 2020, 121,
103767. [CrossRef] [PubMed]

25. Eaton-Rosen, Z.; Bragman, F.; Ourselin, S.; Cardoso, M.J. Improving Data Augmentation for Medical Image
Segmentation. In Proceedings of the 1st Conference on Medical Imaging with Deep Learning (MIDL 2018),
Amsterdam, The Netherlands, 4–6 July 2018.

26. Nakai, H.; Nishio, M.; Yamashita, R.; Ono, A.; Nakao, K.K.; Fujimoto, K.; Togashi, K. Quantitative and
Qualitative Evaluation of Convolutional Neural Networks with a Deeper U-Net for Sparse-View Computed
Tomography Reconstruction. Acad. Radiol. 2020, 27, 563–574. [CrossRef] [PubMed]

27. Sandfort, V.; Yan, K.; Pickhardt, P.J.; Summers, R.M. Data augmentation using generative adversarial
networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 2019, 9, 16884.
[CrossRef] [PubMed]

28. Muramatsu, C.; Nishio, M.; Goto, T.; Oiwa, M.; Morita, T.; Yakami, M.; Kubo, T.; Togashi, K.; Fujita, H.
Improving breast mass classification by shared data with domain transformation using a generative
adversarial network. Comput. Biol. Med. 2020, 119, 103698. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

121





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Applied Sciences Editorial Office
E-mail: applsci@mdpi.com

www.mdpi.com/journal/applsci





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34 

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-2665-2 


	Machine  cover.pdf
	Applied Sciences - Machine LearningDeep Learning in Medical Image Processing.pdf
	Machine  cover
	空白页面



