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Preface to ”Convergence of Intelligent Data
Acquisition and Advanced Computing Systems”

This preface briefly outlines the objectives of the Special Issue on “Convergence of Intelligent

Data Acquisition and Advanced Computing Systems” published between September 2019 and

September 2020 in the journal Sensors. This Special Issue welcomed submissions as extended versions

of conference articles published in the proceedings of the “10th IEEE International Conference

on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications

(IDAACS’2019)”, allowing the authors to expand on their theoretical and experimental contributions.

These were complemented with external submissions from interested researchers working in this

timely area. We highlight the main contributions of the published articles, grouped by key topics:

intelligent data acquisition, learning methods and optimization for data processing, and advanced

computing systems to support data processing.

As modern data-acquisition solutions increasingly integrate on-board computing in the case of

intelligent sensors, in-network computing, or in the case of distributed systems and sensor networks,

a need to provide a joint view of these previously divergent topics has been observed. We define

the convergence of intelligent data acquisition and advanced computing systems at the interface of

theory and applications for industrial manufacturing, scientific computing, precision agriculture, and

energy systems such as smart building and smart city systems. This book bridges specific topics for

instrumentation such as accuracy, sampling, time synchronization, sensor selection and calibration

with algorithm design, statistical and machine learning, computational efficiency, and reconfigurable

computing that supports conventional engineering tasks. Computing-as-a-service is another relevant

approach that can be leveraged to improve measurements and instrumentation in the future.

The potential topics of this Special Issue that were initially defined were mapped onto

the core areas and special streams of the IDAACS’2019 conference and included but were not

limited to advanced instrumentation and data-acquisition systems; advanced mathematical methods

for data acquisition and computing systems; computational intelligence for instrumentation and

data-acquisition systems; data analysis and modeling; intelligent distributed systems and remote

control; intelligent information systems, data mining, and ontology; Internet of Things; pattern

recognition, digital image, and signal processing; intelligent instrumentation and data acquisition

systems in advanced manufacturing for Industry 4; intelligent robotics and sensors; machine learning;

and application for smart buildings and smart cities.

This Special Issue received 25 submissions, and after a thorough and competitive review process,

only nine articles were published. The accepted articles were co-authored by 41 authors in total from

14 countries, with good geographical diversity. Performing an overview of the accepted articles,

we grouped them into three main categories focused on data acquisition, modern data-processing

algorithms, and computing architectures that support data processing.

Intelligent data acquisiton and data collection platforms: this section highlights three articles

that focus on data acqusition from sensors and sensor platforms in electrical vehicles, precision

agriculture, and educational robotics applications.

In [1], the authors provided an experimental evaluation of time delay estimation methods for

current measurements in electrical vehicle powertrains. These include linear regression (LR), variance

minimization (VM), and adaptive filters (AF). The methods were benchmarked in terms of Root Mean

Squared Error (RMSE) and average run-time on data collected from realistic driving profiles. Given
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its efficiency, the VM method was recommended for this application considering noise resistance

and computational efficiency. This study is highly relevant as it also considers the computational

constraints of distributed electronic control units (ECU) in modern automobiles.

Ref. [2] presented a system that combines scalar, ground-level measurements from sensor

networks with aerial robotic platforms (UAVs) as a data-collection and communication-relay

infrastructure. The main innovation lies in the network data aggregation by consensus in order to

reduce the need for data transmissions. The flight path of the UAV was optimized using spline

functions in order to maximize the flight time and data gathering in a given area from the cluster

heads. A symbolic aggregation approximation (SAX) method encoded the raw sensor measurements

into text strings for each of the monitored parameters in the precision agriculture application. The

results quantify both the data reduction as well as the UAV performance improvement using the

trajectory control scheme.

A sensor-intensive robotic platform for education was introduced by [3]. A thorough review

of existing educational robotic platforms was carried out alongside the argument for the Robotic

Operating System (ROS) as a framework of choice for the underlying implementation and new

developments. The system was built around a Raspberry Pi-embedded development board with

dedicated function specific sensors such as ultrasonic sensors, wheel encoders, LIDAR, and a camera.

It can be controlled over a WiFi communication interface using a PC or a mobile phone. Its

performance was experimentally validated through a series of tests as well as in qualitative studies

using various groups of students.

Learning from data and optimization: this section focuses on four articles that cover statistical

and machine learning and optimization techniques that make use of collected sensor data together

with advanced computing algorithms for implementation.

In [4], a detailed study was provided for smart building system identification combining both

classical, such as nonlinear autoregressive (NARX) models, and data-driven machine learning-based

approaches, such as multi-layer perceptrons (MLP). The goal was to achieve an accurate model of

building thermal dynamics for control using collected data under various conditions. The data

were collected through an existing building automation system (BAS) infrastructure with wireless

components for sensing, room temperature sensors, and controlled motor valves for the heating

elements. The study was carried out on a real building at the University Paris-Est Creteil (UPEC). The

main results showed good performance in terms of Mean Squared Error (MSE) and Mean Absolute

Error (MAE), less than 0.2C compared to the ground truth.

Reference [5] introduced an improved deep learning method for the evaluation and classification

of road quality based on the U-Net deep autoencoder. The main innovation stemmed from

the addition of residual connections, atrous spatial pyramid pooling, and attention gates to

increase performance. An evaluation was performed on multiple reference benchmarking datasets:

CrackForest, Crack500, and GAPs384. The Dice score was used to compare various architectures

and parametrization options of the deep learning architectures with a robust improvement in the

proposed ResU-NET + ASPP + AG network over the baseline specfication. Testing was performed

on dedicated graphical processing units on each dataset, while mixed dataset training did not yield

consistent results.

A mixed integer linear programming optimization problem for smart parking EV charging was

formulated by [6]. The goals were two-fold: to maximize the parking lot revenue by accommodating

charging EVs as efficiently as possible and by minimizing the cost of power consumption through
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participation in the utility-level demand response (DR) program. The study was validated in a

simulation using predefined schedules and model EV charging characteristics. A simplified convex

relaxation technique was introduced to ensure the feasibility of the optimization problem. The

solution was compared against a standard variable charging power approach and showed consistent

improvements in terms of power consumption cost and percentage savings.

The authors of [7] proposed a new scheme for data classification by combining sparse

auto-encoders (SAE) with data postprocessing using a nature-inspired particle swarm optimization

(PSO) algorithm. The postprocessing layer improved the classification performance of the deep

neural network through a parameter optimized linear model. The labeled datasets used for practical

evaluation stemmed from the medical field and included epileptic seizures, SPECTF, and cardiac

arrhythmias while experimenting with multiple parameters of both the neural network and the PSO

algorithm. The adjustment layer improved the performance of the models, as illustrated through

other documented studies from the literature, achieving for example a 99.27% accuracy on the cardiac

arrhythmia dataset.

Advanced computing systems for data processing: this section includes two articles that present

improvements to data processing through optimized architectures for solving differential equations

and reconfigurable computing with FPGAs.

Reference [8] approached the problem of increasing the performance when solving ordinary

differential equations (ODE) on multi-core embedded systems, which can describe the system model

of certain physical phenomena. The authors introduced an adaptive algorithm, PAMCL, based on

the Adams–Moulton and Parareal methods and provided a comparison with existing approaches.

The implementation-wise OpenCL platform was used with optimized solvers for both CPU and GPU

systems. Quantitative results were reported, which include the CPU run time, GPU speed-up, and the

memory footprints of the reference algorithms. This method showed good results and achieved full

convergence to the exact solutions. A potential extension of the PAMCL method for partial derivative

equations was described.

Power-oriented monitoring of clock signals in FPGA systems was described by [9]. The

argumentation of the work lays out the need to reduce the power consumption and checkability

of reconfigurable computing platforms. The study included two types of power-monitoring:

the detection of synchronization failures, and the dissipation of power using temperature and

current sensors. The experiments were carried out on typical computing tasks, e.g., digital

filter implementations, using standardized tools for monitoring and data collection. The thermal

and power dissipation data were associated with fault conditions in the synchronization. Such

improvements to the evaluation of FPGA systems are highly relevant for critical and highly reliable

applications.
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Abstract: Deviations between High Voltage (HV) current measurements and the corresponding real
values provoke serious problems in the power trains of Electric Vehicles (EVs). Examples for these
problems have inaccurate performance coordinations and unnecessary power limitations during
driving or charging. The main reason for the deviations are time delays. By correcting these delays
with accurate Time Delay Estimation (TDE), our data shows that we can reduce the measurement
deviations from 25% of the maximum current to below 5%. In this paper, we present three different
approaches for TDE. We evaluate all approaches with real data from power trains of EVs. To enable
an execution on automotive Electronic Control Units (ECUs), the focus of our evaluation lies not
only on the accuracy of the TDE, but also on the computational efficiency. The proposed Linear
Regression (LR) approach suffers even from small noise and offsets in the measurement data and
is unsuited for our purpose. A better alternative is the Variance Minimization (VM) approach. It is
not only more noise-resistant but also very efficient after the first execution. Another interesting
approach are Adaptive Filters (AFs), introduced by Emadzadeh et al. Unfortunately, AFs do not
reach the accuracy and efficiency of VM in our experiments. Thus, we recommend VM for TDE of
HV current signals in the power train of EVs and present an additional optimization to enable its
execution on ECUs.

Keywords: automotive; current; electric power train; electric vehicle; embedded systems; delay;
detection; distributed systems; measurements; power train; sensor; signals; time delay estimation

1. Introduction

Political guidelines in various countries to decarbonize individual mobility led to an exponential
growth of Electric Vehicles (EVs) in offers and sales. However, one obstacle for the success of EVs is the
so-called range anxiety [1]. Customers are afraid that an EV is not able to provide the range they need
for all of their journeys. To combat range anxiety and increase the range of EVs, there are two different
ways. The first one is to simply increase the size of the High Voltage Battery (HVB). Unfortunately,
this means to increase the size of the most expensive component of an EV, and after all, it is not a very
sustainable way. The second way, which is our solution of choice, is to make EVs more efficient.

Kirchhoff’s current law states that the sum of all currents at a node of an electric system is equal to
0 A. However, considering measurement signals of nodes in the power trains of EVs with distributed
sensor systems, the sum of all currents can differ up to 20 % of the maximum current (see Figure 1).
If we look closer at the Root Mean Square Error (RMSE) of the sum of currents RMSE(isum) = 0.67%,
we realize that it has the same value as the mean current of the DCDC converter µiDCDC = 0.67%.
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Figure 1. Currents of all HV components in an EV on a test drive. The sum of all currents isum is
plotted in black. According to Kirchhoff’s current law, it should be constantly 0 %. However, looking
at the measurements shows that the deviation isum is higher than the current of the DCDC converter
iDCDC. Even its noise spectrum is approximately half as high as the consumption of the heating iheat,
which is the second largest consumer in this drive.

A different value than 0 A for the sum of all currents indicates that there is a divergence between
measurements and real values. The divergence becomes problematic when the power train is operating
close to the system boundaries. For example, there are boundaries for the protection of the HVB.
The HVB is only capable of discharging or charging a restricted amount of power. Higher amounts
would threaten the HVB’s lifetime and safety [2]. To ensure a safe operation mode even for high
divergences between measurements and real values, additional protection offsets (see Figure 2) might
be added to the boundaries, although they have some drawbacks.

t

i Maximum 
Battery Current

Measurement

Additional Battery
Protection Offset

Measurement 
Tolerance

Figure 2. A simplified example of offsets for protection of the HVB. The measured value (black)
differs from the real value in the range of some tolerance (grey). To prevent exceeding the battery
limit (red, solid) even under the worst measurement conditions, an additional battery protection offset
(red, dashed) is introduced. The same principle is used analogously with negative currents. It can be
extended to other High Voltage (HV) components.
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For example, in the charging case, most notably during recuperation, the HVB might not allow the
full power level, even though it would be capable of handling it. Thus, the amount of power charged
to the battery is restricted and the EV loses cruising range while its power consumption increases.
In the opposite case, the system might not release requested power, although the HVB could provide it
in reality. This additional restriction of power decreases the EV’s performance. As can be seen from
the two examples above, minimizing the magnitude of the protection offsets also allows increasing the
performance as the efficiency and the cruising range of EVs.
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Figure 3. The same test drive as in Figure 1 but with the battery current iHVB (green) shifted by six
time steps. The sum of all currents isum (black) is significantly closer to 0 %.

Besides measurement faults and sensor uncertainties [3], the divergence between measurements
and real values is caused by time delays. Figure 3 shows an example of the sum of all currents isum

being reduced by shifting a signal by 6 time steps. The delays result from distributed sensor systems in
the power train as plotted in Figure 4. The High Voltage (HV) components have their own Electronic
Control Unit (ECU) which is connected with the current sensors and processes the sensor information.
The ECUs exchange this information via bus systems. The buses require individual amounts of time
to send the measurement signals. Thus, from an ECU’s point of view, the sensor information from
other ECUs arrives with individual delays (see the Ego ECU in Figure 4). These individual delays
could be compensated easily with a synchronized clock and time stamps as part of each bus message.
However, this solution would have two drawbacks. First, it would increase the bus traffic as not only
the measurement information must be carried by the messages but also the time stamp. As a result,
the EV would either require a faster bus which is able to transport more information, or it would have
to reduce the information exchanged between the ECUs. Second, there exists no clock in the power
trains of modern series EVs which is synchronized with all ECUs at the same frequency as the message
exchange. Usually, the ECUs are synchronized in a longer time frame than they communicate. Thus,
the time stamp solution would require additional or higher performing hardware and increase the
costs for the production of the EV.
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Figure 4. A schematic example of an automotive bus system with higlighted sources of time delays.
Please note that the time delays are highly individual and not necessarily equal, but constant or only
slowly changing. The ECUs can be connected directly or indirectly via other ECUs. The Ego ECU
is not able to reconstruct the time delays, because it only knows the received measurement values
and their last sender. It has no further information about the time passed since the measurement’s
original creation.

The aim of this work is to automatically detect the time delay between measurement signals
from different sensors without additional hardware. For this purpose, we develop two different
approaches. One of them is based on Linear Regression (LR), whereas the other one optimizes the
estimated variance of the difference between several signals. We compare our approaches to other
state-of-the-art Time Delay Estimation (TDE) algorithms and evaluate them with a focus on precision
and run-time efficiency. Apart from allowing a more accurate power distribution, the automated
TDE helps to reduce the battery protection offset and thus to increase the performance, efficiency and
cruising range of EVs.

The rest of this paper is structured as follows. Section 2 states related work and the similarities
and differences to our work. Furthermore, Section 2 highlights the contributions of our work to the
state of the art. In Section 3, we explain the theory behind our work before we describe the practical
experiments in Section 4. The experiments’ results, stated in Section 5, show us the performance of
the algorithms for our use case. Based on this evaluation, we take the best performing algorithm
and optimize it further. The optimization steps can be taken from Section 3.4 and their impacts to
the results from Section 5.4. In Section 6, we discuss the advantages and drawbacks of all proposed
concepts. Finally, we draw our conclusions and give a short outlook in Section 7.

2. State of the Art

There exists plenty of literature about TDE, although—to the best of our knowledge—none
of them is tailored to the specific problem of TDE of current signals in EVs. In the following, we
present several publications about TDE from different fields of application, such as embedded systems,
acoustics, medicine, positioning, aeronautics, process technology, and robotics.

An approach which also deals with EVs and time delays is the one by Guo et al. [4]. However,
their approach is similar to ours only at the first look. Their goal is to stabilize a grid of electric sources
and sinks with EVs. For the stabilization of the grid, they propose time delay resistent control strategies
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of smart grids with EVs. The EVs are able to charge bidirectionally. The bidirectional charging is used
to smooth disturbances and respond rapidly to fast occurring changes in the power distribution of
the grid. An example for such a rapidly occurring change in the times of renewable energies is the
power output of wind turbines when a strong wind occurs. Compared to our approach, Guo’s focus
is rather on the control strategy than on the TDE. Another difference with our work is that Guo’s
system is rather macroscopic with lots of different elements and many EVs in the grid. Our system
is instead quite microscopic. We consider a single EV with a power train of around five sources and
sinks. Our communication network might be smaller than the number of HV components as some
consumers might share the same ECU. For example, the heating and the cooling component of an EV
use both the climate control ECU for bus communication.

Kali et al. [5] propose a controller with TDE for Electric Machines (EMs). The TDE is executed
state-based with the help of a model of the EM. The model design demands expert knowledge about
the physical principles of an EM. This is justified for Kali et al. as they require the same knowledge
for their controller. However, for our case, we want to be able to estimate the time delays without
further knowledge about the HV components. Our TDE shall be executable with nothing else than the
available measurement data.

Zeng et al. [6] introduce a statistical approach to predict the delay of a bus message. The content
of the messages does not need to be known to achieve high accuracy. This is different from our scenario
where we want to make use of the information carried by the message. In contrast to Zeng et al., we do
not require predicting the time delay accurately to milliseconds. For our purposes, an estimation of
the number of delayed discrete time steps is sufficient.

Not from the field of electric power trains or bus communication, but from acoustics is the
approach shown by Lourtie and Moura [7]. They use a stochastic approach to model time delays in
an acoustic path environment. Like ours, their environment consists of several sources. However,
in contrast to our scenario, the delay they want to estimate varies with time. In our case, we assume
the time delay to be constant in a short time frame. For longer periods, it might change slowly.
The reason for the slowly changing time delay is that it is caused during the wake up procedure of
the EV. The ECUs wake up in an unsynchronized way. Afterwards, the ECUs are synchronized on a
relatively large time frame (e.g., 1 s), but work based on short time steps (e.g., 10 ms).

Another acoustics application for TDE is shown by He et alii [8]. They use the so-called
Multichannel Cross-Correlation Coefficient algorithm to estimate time delays of speech sources in
noisy and reverberant environments.

Svilainis et al. [9] present another interesting approach. Their goal is to estimate the time passed
between emitting an ultrasonic signal and absorbing its reflection. Like Zeng et al., they require high
precision. Another difference to our approach is that their algorithms make use of the pulse form of
ultrasonic signals. Our signal as plotted in Figure 1 can vary in a large range and does not necessarily
contain pulses (e.g., after time step 5,000).

Mirzaei et al. expand TDE for ultrasonic signals to the field of medicine [10]. The authors introduce
a window-based TDE approach to estimate the time passed between two frames of radio-frequency
data. They compare the results of the new window-based approach to their previously developed,
optimization-based method [11] and to Normalized Cross-Correlation.

Recently, Garcez et al. published their work on a similar problem to ours, but in a completely
different field of application [12]. Like bus systems of EVs, Global Navigation Satellite Systemss
(GNSSs) systems have real-time requirements. Their goal is to minimize deviations between
measurements and real position data. The time delays are caused during the transmission of GNSS
messages, when the signals do not take straight lines of sight, but are reflected on their way or suffer
from noise. The authors propose a tensor-based subspace tracking algorithm to efficiently estimate
time delays of received GNSS signals.

A similar approach is presented by Xie et al. for an indoor positioning sensing system [13].
They sense positions of mobile devices based on the signal strength and the signal’s time delay since
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its transmission from a base station. For the TDE, Xie et al. combine Cross-Correlation with Quadratic
Fitting. This is similar to our LR approach (see Section 3.2), where we try to fit the signals with
quadratic functions to retrieve the delay between them. Like Garcez et al., they have to deal with
the problem that the signals are often reflected and do not take direct lines of sight. Different to
Garcez et al., Xie’s approach takes the strength of the signal into account for retrieving a more exact
position estimation. For our work, we cannot take advantage of this information, because in wire-based
bus systems all signals are equally strong.

Schmidhammer et al. estimate positions of moving, non-cooperative objects in vehicular
environments [14]. Their idea is to estimate the position of an object based on time delays in a
network of distributed receiving and transmitting nodes. In contrast to our work, the networking
nodes of Schmidhammer et al. are not necessarily on-board the vehicle, but can also be mounted on
the road infrastructure.

Emadzadeh et al. [15] show an inspiring approach for detecting the relative position of spacecrafts.
For retrieving the position, they examine an X-ray signal received by two spacecrafts and determine
the time delay between them. For the TDE, they use Adaptive Filters (AFs). This approach seems
very promising to us. We implement the algorithms of Emadzadeh et al. and compare them to ours in
order to find out if their approach can be transferred from X-ray signals to current measurements in
the power train of EVs.

Like Emadzadeh et al., Liu et al. focus on AFs [16]. Compared to our problem of fixed or only
slowly changing time delays, the difference in Liu et al. is that they deal with time-varying time delays.
That makes further processing steps necessary. For example, they require a transition probability matrix
and an initial probability distribution vector to model the time delay changes with a Markov chain.

Park et al. analyze time series data with Autoencoders and Long Short-Term Memory Neural
Networks (LSTMs) to detect faults in industrial processes [17]. The authors emphasize the importance
of TDE for correct fault detection. However, they focus only on time delays caused by their own
fault detection system. Our focus lies on earlier steps in the processing chain. We want to detect time
delays between the input signals before they are passed to other computation processes. Furthermore,
we want to implement algorithms which are able to learn on-board the automotive ECUs and adapt
themselves to new data. As the training of Neural Networks is quite memory intensive and demands
high computational power, they do not belong to our methods of choice.

Close to the application field of industrial processes is the approach of Srinivasa Rao et al. [18].
In their recent article, the authors propose fuzzy parametric uncertainty to mathematically model
systems with time delays. Their goal is to enable a robust controller design. For this purpose, they first
approximate the time delay system as an interval system. After retrieving the intervals, they design an
optimal controller for these. Like Guo et al., Srinivasa Rao et al. focus on how to retrieve an optimal
controller, which is not part of our work. Although they focus on the control of industrial processes,
their article is very general. Besides industrial plants, they also mention potential fields of application,
such as EMs or robot manipulators.

Time delay compensation for robots is the focus of Shen et al [19]. Their focus is on teleoperating
robots which require knowledge about the time delay between the master and the slave robot for
stable operation. The robots and their communication channels are modeled as extended dynamical
system. For this system, Shen et al. develop a cascade observer which is able to control it in a stable
way. The authors assume that a sufficiently accurate value for the TDE is given and concentrate on its
compensation. This is different to our work here. We explicitly want to estimate the time delay.

You et al. develop a proportional multiple integral observer for fuzzy systems [20]. The goal
of their work is the same as ours. They want to minimize deviations between measurements and
real values caused by time delays and measurement inaccuracies. Their time delays are also varying.
Unlike the varying time delays presented before, the ones of You et al. do not vary with time but rather
with states. Their focus is also on industrial processes and not on electric power trains. However, the
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main difference between our works is that You et al. want to minimize time delays and measurement
inaccuracies with the same system.

Our approach follows the divide and conquer strategy and faces the two problems separately.
We focus on the problem of measurement deviations caused by measurement inaccuracies in our
previous work [3]. However, measurement inaccuracies are not part of this work. Here, we assume that
the measurements are appropriately accurate and that the main deviations are caused by time delays
as shown in Figure 1 and Figure 3. Thus, TDE is our solution of choice to minimize the deviations.

Our contribution in this article is the development of a regression-based approach and an
algorithm based on Variance Minimization (VM) for TDE as first presented in [21]. We transfer the
ideas introduced by Emadzadeh et al. to the domain of currents in the HV system of EVs and compare
the results to our approaches in matters of accuracy and computational performance. Our TDE works
only with the data available in modern series EVs and does not require an additional clock. In addition
to [21], we introduce an optimization of the most accurate and efficient of our evaluated approaches.
We further evaluate the optimization both on artificially created data with known ground truth as well
as real drive data with unknown ground truth.

3. Concepts

In this section, we introduce the algorithms and shortly explain the concepts from other authors
which we implement and compare for TDE. From now on, for the sake of easier understanding,
we focus on the current of the EM iEM and the HVB iHVB (without other consumers than the EM)
as examples. Nevertheless, the proposed methods can be extended to every current signal in the
HV system of an EV. Furthermore, we inverse the sign of iHVB from now on to make its shape similar
to the one of the EM. Thus, we can treat the HVB current signal as a delayed or preceded version of
the EM, respectively.

Our goal is to find the time delay td in a bus system which can be described as

x1(t) = i1(t) + n1(t)

x2(t) = i2(t− td) + n2(t− td),
(1)

where t stands for the time step, x1(t) is the measurement signal of the faster component, x2(t) describes
the slower component’s signal, i1(t) and i2(t) describe the corresponding currents and n1(t) and n2(t)
are noise terms [15]. As we cannot retrieve the currents i1(t) and i2(t) directly, we cannot minimize
the difference between i1(t) and i2(t). Instead, we directly minimize the difference between the two
measurement signals x1(t) and x2(t).

3.1. Adaptive Filter

The idea of Emadzadeh et al. is to model the time delay as Finite Impulse Response (FIR) filter.
They define x1(t) to be the faster signal. For each measurement x2(ti) at time step ti, they collect a
row of the last M measurements of the other signal

x1(ti −M + 1 : ti) = [x1(ti −M + 1), x1(ti −M + 2), . . . x1(ti − 1), x1(ti)] . (2)

Then, the authors search for an optimal channel impulse response vector ω∗ such that the deviation
between x2(ti) and x1(ti −M + 1 : ti)ω

∗ becomes minimal. Mathematically, this can be expressed by
the minimization of the expectation value of the Mean Squared Error (MSE) between the measurement
value of the slower signal and the filtered measurement row of the faster signal. It results in the formula

ω∗ = argmin
ω

E
[
(x2(ti)− x1(ti −M + 1 : ti)ω)2

]
. (3)
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This is similar to our VM approach (see Section 3.3) with the difference that we minimize the variance
instead of the MSE. In Emadzadeh’s work, the optimal factor ω∗ is estimated recursively. For the
recursion, the authors implement and compare the four algorithms Least Mean-Squares (LMS),
Normalized Least Mean-Squares (NLMS), Least Mean-Fourth (LMF) and Recursive Least-Squares
(RLS). The optimal time delay estimate t∗d is then the one where the impulse response ω∗ reaches its
maximum, or mathematically

t∗d = argmax
i∈[1,M]

ω∗(i)− 1. (4)

For further details on this approach, we kindly refer the interested reader to [15].

3.2. Linear Regression

Our first approach is to use LR to identify the basis functions of two received signals and compare
the horizontal offset between these functions. As degree of the basis function, we choose a parabola
for two reasons. First, the sampling frequency of our measurements is high enough to fit the signals
with a parabola for a short time duration. Second, the comparison of the horizontal offset is easiest
with a parabola because it only has one extremum.

We collect the last M measurements xk of the HV components k ∈ {EM, HVB} in a
measurement vector yk =

(
xk(t) xk(t−1) · · · xk(t−M + 1)

)
. Then, we retrieve the weight

vector wk =
(

wk,0 wk,1 wk,2

)T
with LR [22] according to

wk =

(
N

∑
n=1

φn(φn)T

)−1 N

∑
n=1

yn
k φn. (5)

Here, the notation yn
k and φn represents the n-th column of yk and φ, respectively. The so-called

design matrix

φ =




1 t t2

1 t−1 (t−1)2

...
...

...
1 t−M + 1 (t−M + 1)2




T

consists of N = 3 columns in our case.
With the weight vector from (5), we are able to fit a parabola

fk(t) = wk,0 + wk,1t + wk,2t2 (6)

as basis function to the measurement vector yk.
After retrieving the basis functions in (6), we transfer them into vertex form

fk(t) = wk,2(t− xk,vertex)
2 + yk,vertex (7)

to identify the coordinates (xk,vertex, yk,vertex) of each basis function’s vertex. The estimated time delay
between the EM and the HVB current signals is then given by the difference on the time axis between
their vertices according to

t∗d = xEM, vertex − xHVB,vertex. (8)

3.3. Variance Minimization

Our second approach is to minimize the variance of the difference between two signals x1(t) and
x2(t) by shifting the signal x2(t) forward.
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Like in Section 3.2, we collect the two signals x1(t) and x2(t) for M time steps. A straightforward
idea for the minimization of the difference between x1(t) and x2(t) is to minimize their estimated MSE

MSE(x1(t), x2(t)) =
1

M− Tmax

M−Tmax

∑
t=1

(x1(t)− x2(t + td,i))
2 (9)

with different time shifts td,i in a pre-defined range td,i ∈ [Tmin, Tmax] with Tmax < M. However, our
experiments show that we need a relatively high M to achieve stable results. We can significantly
minimize M, if we take the estimated expected value

E =
1

M− Tmax

M−Tmax

∑
t=1

(x1(t)− x2(t + td,i)) . (10)

into account. Thus, instead of minimizing the MSE from (9), we minimize the estimated variance of
the difference between the two signals

σ2 =
1

M− Tmax

M−Tmax

∑
t=1

((x1(t)− x2(t + td,i))− E)2. (11)

The time delay between the EM and the HVB current signals is the td,i that minimizes the variance

t∗d = argmin
td,i

σ2. (12)

As we do not know in the beginning whether xEM(t) or xHVB(t) is the faster signal, we have to
choose one of them as x1(t) and the other one as x2(t) for the first execution and try Tmin = −Tmax.
From the second execution on, the value of Tmin and Tmax can be reduced and chosen recursively,
because the EV’s bus system usually changes its time delay only once in the beginning, but not during
advanced execution. Therefore, we choose Tmin(t) = td(t−1)− 1 and Tmax(t) = td(t−1) + 1 from the
algorithm’s second execution on.

3.4. Optimized Variance Minimization

As the results of our experiments (see Section 5) show, the VM concept provides the best results
in terms of RMSE, run-time and required frame size. However, when running this concept in real
time (both on simulated and real data, see Section 5.4), we find that the TDE is unstable and that
the estimated time delay frequently alternates between different values. These many changes of
the estimated time delay contradict the fact that the time delay is rather stable in reality, and that,
if any, changes occur after relatively long periods. Thus, in order to stabilize the TDE, we suggest the
following improvement of the plain VM approach from Section 3.3.

The main idea of the stabilization is to use a statistical test. The test’s purpose is to quantify
the reliability of the input data segment on which the TDE is performed. In fact, we know from
Section 3.3 that the estimated time delay td at time step t minimizes the variance given by Equation (11).
This equation in turn is based on the M last values of both signals. Due to the noise in the data,
the estimation for the next step can jump to a different value, even if the vast majority of data points
(M− 1) are shared between the two steps. The idea is thus to compare at each step the minimal variance
with the second smallest one. If the difference between both in relative terms is not sufficiently large,
we presume that the TDE is not reliable, and consequentially do not estimate a time delay. In this case,
we simply keep the prediction from the last step. Otherwise, we update the estimation to the newly
calculated td.
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Formally, at each time step, we calculate the variance criterion from Equation (11) for each
potential time delay td,i. Let us denote this by σ2(td,i). Then, we know that the least achievable
variance is given by

σ2(t∗d) = min
td,i

σ2(td,i). (13)

The second smallest achievable variance in turn is given by

σ2(t∗∗d ) = min
td,i 6=t∗d

σ2(td,i). (14)

In other words, we minimize the variance over all potential time delays except that which minimizes it
(t∗d). By definition, we have σ2(t∗∗d ) ≥ σ2(t∗d). The intuition is that if the difference between those two
values is not large enough, the noise makes it impossible to tell with high confidence which one is the
real minimizer. The minimum in Equation (13) might result in t∗d by random noise instead of being the
true minimum. Thus, we suggest deciding whether to perform an update based on the criterion

σ2(t∗∗d )− σ2(t∗d)
σ2(t∗d)

> K, (15)

where K is a hyper-parameter defining the minimal percentage error required to perform an update.
Clearly, the larger K, the more severe is the criterion, and the fewer updates are done. Therefore,
we choose K to strike a balance between reliability on the one hand, and being up-to-date on the other
hand. In fact, if we choose K too high, updates are performed only rarely, so that we can miss changes
in the underlying real time delay. If K is chosen too small, then the predictions are more unstable.
We empirically found K = 0.2 to strike a balance between both criteria for our power train data.

4. Experimental Setup

In this section, we explain the data and the setup for the experiments to evaluate the performance
of the three concepts for TDE and the optimization presented above.

4.1. Data

For the evaluation of the three concepts and the optimization shown in Section 3, we use 74 data
sets. The data sets contain all currents of the HV system and are recorded during representative drives
on public roads with close to production EVs. We use bus loggers to record the data. The loggers store
the received measurement signals from all ECUs and write them to a log file during each time step.
After driving, we use the log files to execute our experiments and evaluate our approaches. Thus, the
algorithms get at each time step the same input data which they would receive during execution on an
ECU in the real EV. The recordings correspond to 10 h 33 min of driving. For the experiments, the 74
data sets are divided into 409 sub-data sets with a maximum length of 10,000 time steps. The minimum
length among the 409 sub-data sets is 1,807 time steps.

For the Optimized VM approach, we create an additional data set artificially. The artificial data
set bases upon the real data sets described above. However, instead of computing the time delay
between two real signals, we introduce an artificial signal. This artificial signal is a real signal shifted
by some time steps. We can then compute the time delay between the original signal and its artificially
delayed correspondence. This has the advantage that we exactly know the time delay and thus know
the ground truth.

4.2. Experiments

According to Kirchhoff’s current law, we assume that the sum of the measurements of iHVB, iEM,
iheat, icool and iDCDC is zero. Thus, we estimate the ground truth of the time delay for each real data set
by minimizing the MSE of the complete data set (see Equation (9)). In this case, M is the length of the
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data set, Tmax is 10 time steps and Tmin is -10 time steps, since the time delay in the EV is normally
smaller than ten time steps.

In the experiment of the AF concept, we choose the frame size of 210 as proposed by [15].
Additionally, we execute our experiments with a more efficient frame size of 28. We assume the
length of the AF to be 10. All the other parameters for the used algorithms are chosen equally to [15].
Furthermore, we evaluate five different learning rates for LMS.

For the evaluation of the VM concept we test different frame sizes M ∈ {30, 50, 100, 200, 300}.
In the first calculation, we also choose Tmax = 10 and Tmin = −10. From the second execution on we
select Tmin(t) = td(t−1)− 1 and Tmax(t) = td(t−1) + 1.

For the Optimized VM, we choose a fixed frame size of 50 time steps. This frame size proved
to be the best compromise between run-time and accuracy in previous experiments as described in
subsection 5.3.

For each of the three concepts, we calculate the time delay every 20th time step. In total, this results
in around 90,000 time delay estimations for each concept.

4.3. Environment

All concepts are implemented in Matlab R2015b with Microsoft Windows 10 on an HP®

EliteBook™840 G3 with an Intel® Core™i5-6300U 2.40GHz CPU and 8 GB RAM.

5. Results

In this section, we present the results of our experiments and evaluate the performance of the
three concepts and the optimization individually. The results of all three algorithms compared next to
each other can be found in the next section.

5.1. Adaptive Filter

Based on the learning rate and parameters in [15], the RLS algorithm performs better than the
LMS, NLMS and LMF algorithms (see Table 1).

Table 1. RMSE and run-time analysis of the AF concept for different algorithms with a frame size of 210.

RMSE Average Run-Time (s)

LMS 2.8972 1.13 · 10−2

NLMS 2.5163 1.31 · 10−2

LMF 2.6138 1.14 · 10−2

RLS 2.276 1.07 · 10−2

Furthermore, we analyze the learning rate for the LMS algorithm. As mentioned in [15], the
learning rate µ is typically chosen in the range 0 < µ < 2/(Mσ2

u), where σ2
u is the input signal

variance and M is the length of the filter. Thus, we compare the performance of LMS with different
µ = a/(Mσ2

u) and a ∈ {0.01, 0.05, 0.1, 0.5, 1}. In Table 2, the RMSE has the minimal value of 2.1479
with a = 0.1. It is much smaller than the RMSE of 2.8972 with the fixed learning rate in [15]. For a too
large or a too small a, the performance of the LMS decreases significantly. This result is expected, since
a too small learning rate leads to slow convergence while a large one most often misses the optimum.
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Table 2. RMSE and run-time analysis of LMS with different learning rates and a frame size of 210.

RMSE Average Run-Time (s)

a = 0.01 3.0451 1.14 · 10−2

a = 0.05 2.3608 1.14 · 10−2

a = 0.1 2.1479 1.14 · 10−2

a = 0.5 2.6484 1.14 · 10−2

a = 1 3.2474 1.14 · 10−2

In addition, we evaluate the LMS algorithm with a more efficient frame size of 28. As printed
in Table 3, the smaller frame size improves the run-time. Although some non-optimal learning
rates improve their estimation accuracy, which we explain with the drop of local minima due to the
shortened frame, the two best learning rates in the experiment with the frame size of 210 increase their
estimation errors with the smaller frame size.

Table 3. RMSE and run-time analysis of the LMS algorithm with a shorter frame size of 28.

RMSE Average Run-Time (s)

a = 0.01 2.8603 2.80 · 10−3

a = 0.05 2.5598 2.80 · 10−3

a = 0.1 2.3994 2.80 · 10−3

a = 0.5 2.4983 2.80 · 10−3

a = 1 3.0781 2.80 · 10−3

5.2. Linear Regression

Our first approach LR is, to a large extent, affected by noise and the offset between the two
signals caused by measurement inaccuracies. Especially this offset leads to an imprecise estimation
of the vertices and thus a wrong estimated time delay. Figure 5 shows an example for such a wrong
estimation. In this data set, the time delay between iHVB and iEM is equal to 6 time steps. We train
both curves on 200 measurement samples of their corresponding signal. However, due to noise and
some vertical offset between the signals the vertex of the slower signal is not only shifted to the right
but also to the top. The shift in vertical direction also affects the horizontal position of the vertex and
results in a wrong TDE of 43 time steps.
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Figure 5. Basis functions of iHVB (black) and iEM (red) simulated by LR (blue and green, respectively).
The magenta marked points are the vertexes. Their horizontal difference is 43 time steps in contrast to
the real time delay which is 6 time steps. The wrong TDE is caused by the noise and the vertical offset
of the measurement signals.
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Table 4 shows the results and the average run-time of this approach with three different frame sizes.
The run-time grows with increasing frame sizes, whereas the RMSE becomes smaller. Nevertheless,
the RMSEs are in general very high even for large frames.

Table 4. RMSE and run-time analysis of the LR concept.

RMSE Average Run-Time (s)

Frame Size 30 5.83 · 1010 1.74 · 10−4

Frame Size 200 4.92 · 104 9.80 · 10−4

Frame Size 300 4.47 · 104 1.40 · 10−3

5.3. Variance Minimization

Table 5 shows the RMSE between the ground truth of the time delay and the calculated time
delay. Furthermore, the table shows the average of the run-time for each time delay calculation,
corresponding to different frame sizes M (in Equation (11)). We see that the concept requires a
relatively short run-time as it benefits from the recursive calculation only in the area td,i ∈ [Tmin, Tmax]

with Tmin(t) = td(t−1)− 1 and Tmax(t) = td(t−1) + 1. In addition, the RMSE decreases while the size
of the frame increases. The accuracy has a large improvement when the frame is enlarged from 30 time
steps to 50 time steps.

Table 5. RMSE and run-time analysis of the VM concept.

RMSE Average Run-Time (s)

Frame Size 30 2.0696 4.54 · 10−5

Frame Size 50 1.3034 4.70 · 10−5

Frame Size 100 1.2364 4.77 · 10−5

Frame Size 200 1.2215 5.16 · 10−5

Frame Size 300 1.1825 5.79 · 10−5

5.4. Optimized Variance Minimization

We evaluate the proposed stabilization approach twofold. First, we evaluate it based on simulated
data with known ground truth time delay. Second, we evaluate the approach on real signals. While the
first experiment shows the accuracy of the proposed approach, the second one shows its effectiveness
in providing more stability.

5.4.1. Evaluation with Simulated Signals

In this experiment, we first take a current signal x1(t) from a real-world data set recorded
on-board of an EV. Based on x1, we then create a second signal x2(t) = x1(t− td(t)) + n2(t). Therefore,
the ground-truth time delay td(t) ≥ 0 is a realization of a random jump process that in known
in advance. Furthermore, n2(t) is a white noise process whose variance is chosen such that the
resulting Signal-to-Noise Ratio (SNR) is equal to -10. We then run our VM algorithm with and without
stabilization to detect the delay td(t). Figure 6 shows the results of this experiment.
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(b) Ground truth time delay td(t).
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(c) Estimated time delay without stabilization.
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(d) Estimated time delay with stabilization.

Figure 6. Illustration of the TDE estimation procedure using the VM approach with and without
stabilization for the case of simulated signals. Clearly, the estimation is more stable when using the
criterion in equation (15). Waiting for the right moment to perform an update comes however with the
expense of a slightly delayed, yet more reliable, prediction. For example, the jump of td(t) from 1 to 2
was detected with a delay of around 320 steps, which corresponds to around 3.2 seconds.

5.4.2. Evaluation with Real Signals

In this experiment, we take both signals x1(t) and x2(t) from a real-world data set. We then run
the VM approach with and without stabilization, and plot the results in Figure 7.
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(b) Estimated time delay without stabilization.
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(c) Estimated time delay with stabilization.

Figure 7. Illustration of the TDE estimation procedure using the VM approach with and without
stabilization for the case of real signals. Although we do not know the underlying true time delay, it is
again clear that the TDE is more stable using the suggested approach.

6. Discussion

We discuss the advantages and drawbacks of the previously described and evaluated concepts in
this section.

Although it is not as efficient and accurate as VM, the AF approach still retrieves better results
than LR. The best results for AFs, in our case, are reached with the LMS algorithm and a learning rate
of µ = 0.1/(Mσ2

u) (see Table 2). The learning rate, which must be chosen manually, is one drawback of
this algorithm. It can lead to sub-optimal learning if the user chooses a wrong value. In contrast with
LMS, the RLS algorithm does not require a learning rate. However, we see that the RLS algorithm has
lower accuracy, requires longer run-time and more memory for a larger frame than the VM concept
(see Table 6).
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Table 6. RMSE, run-time analysis and frame size of all three concepts compared to each other.

RMSE Average Run-Time (s) Frame Size

Adaptive Filter 2.3994 2.80× 10−3 28

Linear Regression 4.92× 104 9.80× 10−4 200
Variance Minimization 1.3034 4.70× 10−5 50

LR has the advantage that it can directly find out the faster component. Thus, one single execution
during the same time step for the same signal is sufficient even in the beginning, which makes it
interesting, if a computational effective approach is needed. However, its efficiency suffers from the
matrix inversion in Equation (5). Even worse, it is the least accurate of the three proposed concepts
due to noise and vertical offsets between the signals. The high estimation errors make this approach
unfeasible for our purpose. Another drawback is that a parabola is not always the optimal basis
function for the regression of measurement signals.

The VM approach does not require such a basis function. Unfortunately, it is not able to detect the
faster signal without trying each possible time delay for both signals. This results in a computationally
expensive brute force calculation in the first time step. Afterwards, it is very efficient because it must
only execute basic math operations and searches only for a restricted number of possible delays.
Compared to the other approaches, VM requires the smallest frame size to retrieve feasible results.
In total, Table 6 shows clearly that VM is the most accurate and fastest of the three proposed approaches
with the lowest memory consumption.

For the high precision and low run-time, we decide to continue our work with the VM concept.
Before we are able to apply our approach to series production EVs, we require further optimization
as shown in Section 3.4 to stabilize the estimated time delay. This stabilization comes with another
drawback. The algorithm requires more time steps to pass before it adapts to a new delay. Nevertheless,
regarding that succeeding power train control functions require stable inputs, this drawback seems
acceptable for us. Another drawback of the optimization is the threshold value K in Equation (15)
which must be chosen manually. Although it does not require expert knowledge but can be set by trial
and error, we would prefer an automated way for finding the optimal value for K.

7. Conclusions and Outlook

This article presents three different approaches for TDE of measurement signals in the power
train of EVs. As automotive ECUs are designed very efficiently, our evaluation’s focus lies also on
computation and memory complexity and not solely on accuracy. Unfortunately, LR is not suited for
our purposes because it suffers too much from vertical offsets in the measurement data. However, with
VM, we present a feasible approach for TDE of distributed sensor systems of EVs. AFs are also not
suited because they require too large frame sizes and have lower accuracy than VM. We recommend
using VM due to its high estimation accuracy and computational efficiency. As the output of VM is not
stable enough to directly process it to power train control functions of series EVs, we optimize it first.
For the optimization, we introduce a threshold value as additional requirement for changing the value
of the estimated time delay. The new requirement decelerates the detection of changed time delays.
Nevertheless it improves the TDE’s stability and accuracy.

After the introduction of an automated TDE system, we now know each signal’s delay. However,
if we correct the delay, we move some signals to the past and lose the measurements corresponding to
the latest time steps. This is correct because in fact we do not receive up-to-date measurements, only
delayed ones from the past. We really do miss the last measurements and there is a gap between the
last received measurement and the present time step. Thus, our next work focuses on possible ways to
close this gap by replacing the hidden information about the missing measurements from the latest
time steps.

16



Sensors 2020, 20, 351

8. Patents

The TDE for the power trains of EVs is registered at the German Patent and Trade Mark Office
(DPMA) as patent application. Both the VM approach as well as its RMSE-based version for TDE in
the power trains of EVs are registered there as a common patent application. The optimization is
registered as a third patent application resulting from this work.
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GNSS Global Navigation Satellite Systems
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IDAACS IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications
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MA Moving Average
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Abstract: The growing need for food worldwide requires the development of a high-performance,
high-productivity, and sustainable agriculture, which implies the introduction of new technologies
into monitoring activities related to control and decision-making. In this regard, this paper presents
a hierarchical structure based on the collaboration between unmanned aerial vehicles (UAVs)
and federated wireless sensor networks (WSNs) for crop monitoring in precision agriculture.
The integration of UAVs with intelligent, ground WSNs, and IoT proved to be a robust and
efficient solution for data collection, control, analysis, and decisions in such specialized applications.
Key advantages lay in online data collection and relaying to a central monitoring point, while
effectively managing network load and latency through optimized UAV trajectories and in situ
data processing. Two important aspects of the collaboration were considered: designing the UAV
trajectories for efficient data collection and implementing effective data processing algorithms
(consensus and symbolic aggregate approximation) at the network level for the transmission of the
relevant data. The experiments were carried out at a Romanian research institute where different
crops and methods are developed. The results demonstrate that the collaborative UAV–WSN–IoT
approach increases the performances in both precision agriculture and ecological agriculture.

Keywords: unmanned aerial vehicles; wireless sensor networks; intelligent data processing; trajectory
planning; relevant data extraction; data consensus; Internet of Things; precision agriculture

1. Introduction

The need for high-performance, high-productivity, and sustainable agriculture results from the
rapid growth of the human population. This requires permanent monitoring and intelligent processing
of the measured data collected from the field, correlated with the weather forecasts, to produce
agronomic recommendations. In the last few years, new technologies in agriculture, and especially in
precision agriculture (PA), have been leveraged for increased productivity and efficient input dosage [1].
Most importantly, in PA, farmers need to know exact and timely details about crop status. These details
about certain parameters, obtained by measurements both from the ground and in the air, constitute
input data to specialized systems of process management in the PA. Some relevant examples might
include for example, irrigation control, pesticide dosage, pest control, etc. For acquisition and complex
processing of the collected data, integration of unmanned aerial vehicles (UAV) with wireless sensor
networks (WSN) under novel frameworks, such as the Internet of Things (IoT), has been shown to
contribute to increases in agricultural yields [2]. Such advanced systems are modeled as well-specified
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agent-based solutions with sensors and UAVs. Although the contributions of UAVs and WSNs, taken
separately, are well documented and important in the sustainable growth of agricultural production,
the integration of these components together within an IoT framework is expected to significantly
improve the solutions for monitoring, production modeling, prediction, and decision-making.

Relevant applications of UAV–WSN systems are presented in Reference [3–6]. In viticulture,
as a special type of PA, the soil and air parameters modify grape yield and quality. For this purpose,
a solution based on the collaborative system mini UAV (quadrotor type)–WSNs to monitor parameters,
like temperature and humidity, to prevent the frost in fragmented vineyards is proposed in Reference [3].
The UAV is considered as communication relay between sensors and a base station. A real application
for monitoring sensitive parameters in vineyards with both agro-meteorological stations and UAV
platforms is presented in Reference [4]. In order to obtain a precise monitoring of the specific indicators,
the data from the ground are correlated with the data collected by a UAV platform with 8 rotors
provided with a professional thermal camera. The study was conducted over a period of two years.
For data acquisition on large areas, a fixed wing type UAV, used as data mule from the ground WSN,
is proposed in Reference [5]. In addition, the UAV has attached an high definition (HD) camera for the
detection of certain plant diseases. Experimentally, a small tank has been added to spray different
insecticides, fertilizers, herbicides, etc. Both UAV and WSN are low cost and not robust for only
demonstration purposes. In addition, in Reference [6], a low cost agro-meteorological monitoring
system in a vineyard was designed and developed. The optimal positioning of the sensors was made
with the help of the multispectral image analysis, acquired by UAV.

Given recent evolutions in UAV technologies, cost reduction, and new regulations of aviation
authorities regarding the usage and deployment of such systems (e.g., European Aviation Safety
Agency (EASA) [7] and Federal Aviation Administration (FAA) [8]), such aerial robotic platforms
are increasingly used in agriculture for different tasks, the most important being crop monitoring [9].
According to EASA, the UAVs should be safely integrated into the existing aviation context in a
proportionate way [7]. For large scale applications, in which UAVs are flying beyond line-of-sight,
compliance with strict regulatory frameworks is essential.

Adoption of a UAV-based solution for image acquisition in agriculture applications is more
cost effective and flexible in comparison with satellite or manned aircraft alternatives [10]. Both
fixed- wing [11,12] and rotary-wing type [3,13] UAVs are frequently used in various applications in
agriculture, while accounting for the risk of crashes [9] and potential damages. Equipped with specific
sensors in modular payloads [14], such as high resolution RGB [15], infrared, multispectral [16,17],
thermal cameras [18,19], and also LIDAR [10], UAVs are able to create precise maps of crop state or
evolution [17], health plant assessment [20], diseases [21], soil characteristics, evaluate losses caused
by floods [11], etc. In the crop monitoring, the following characteristics are analyzed from UAV
images [9]: the crop water stress, defined as the difference between the canopy and the air temperature,
the photochemical reflectance index, and the vegetation indices.

Although UAVs with different propulsion systems are now available, most applications in PA
use UAVs driven by electric motors due to their compact size, reduced maintenance and operational
costs and, not the least, their alignment with the current regulatory context and tendencies towards the
reduction of global carbon emissions [22].

The small-scale data acquisition by the WSN helps farmers to take actions like crop irrigation,
fertilizer usages, deciding on the optimum stages of sowing, and harvesting [23]. Moreover, WSNs
employed in PA lead to large amounts of data. Thus, data collection by WSNs is an important
contribution to the development of farm management information systems (FMIS) [24,25].

The WSN has multiple functions at the field level: data acquisition of various parameters
(e.g., temperature in soil and air, humidity in soil and air, solar radiance, soil nutrients, the presence of
pests and weeds, chlorophyll content in plants, etc.), distributed processing of data by establishing
consensus—if it is the case, establishing the relevant data and its storage, low level data fusion, and
data transmission. New sensor node designs offer reduced costs [26]; see, for example, the detailed list
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of sensors used in PA given in Reference [10]. As in many other large-area monitoring applications,
for communication or local processing reasons, the sensors are grouped into sensor networks, the
communication being made by radio. A WSN network will include measurement nodes (sensory
nodes) and data collection, processing, and transmission nodes (sink or cluster head).

Regarding PA, there is no rigorous theory of sensor placement because it depends on the
particularities of the soil and the weather. Sensor groups need to comply broadly with the need for
sensory and communication coverage. In Reference [27], two examples of sensor location topologies
are given: grid and random. From the point of view of communication with the sink node, the most
used are the star and mesh topologies. The wireless communication protocols used in WSN for PA are
the following [10]: 6LoWPAN, ZigBee (both being the most suitable for the mesh topology), LoRaWAN,
GSM, BLE, and Wi-Fi.

In PA, WSNs are used, most often, for parameter monitoring, but they can also be integrated into
control systems as sensors. Direct specific applications of WSN in control systems for PA are the energy
efficient automated control of irrigation [28] and smart automated fertilization [29].

The performance of the crop monitoring can be improved by UAV–WSN collaboration [30].
The collaborative aspects in an integrated UAV (aerial agents)–WSN (ground agents) architecture for
different applications was recently presented in a review paper [22], where the different functional
components of the system and how they collaborate with each other was highlighted. In Reference [31],
the authors presented an integrated UAV–WSN–IoT system, named FarmBeats, which is an end-to-end
platform for data collection from various sensors, cameras, and drones in agricultural applications.
An unlicensed TV White Spaces is used to setup a high bandwidth link from the farmer’s home to an
IoT ground station at a distance for collecting data from UAVs and WSNs.

In order to interconnect the UAVs and terrestrial WSNs into hybrid networks and, at the same
time, to ensure a safe airspace sharing with aircrafts, multiple organizations are contributing [22]:
International Civil Aviation Organization, EASA, Joint Authorities for Rulemaking on Unmanned
Systems, International Telecommunications Union, etc. Satellite connection is required for two reasons.
One-way communication, such as obtaining the GPS location of the UAVs or the sensory nodes (if any)
is one reason. The second reason is a possible data transmission or remote control (via two-way
satellite-intermediated internet).

In Reference [32], the authors discuss the information system design supporting agriculture
data management. Enabling advanced data processing in the form of sensor fusion and clustering
mechanisms for improved network topologies in generic applications has been discussed [30]. Effective
data gathering mechanisms [33] and higher level IoT architectures [34] are key and current topics
of interest.

We believe that the challenges of UAV–WSN–IoT integrated systems can come from several
directions: (a) precise localization of the ground sensors with the aid of a preliminary flight; (b) sensor
states periodically inspected by UAV; (c) establishing of the WSNs as sensor clusters able to cover, both
from the sensorial and from the communication point of view the monitored area; (d) establishing
the cluster heads (CH), named base stations, of the WSNs able to communicate data to UAVs;
(e) transmitting commands to change the strategy and parameters of the sensor networks, (f) data
acquisition from WSNs through UAVs, (g) special trajectory planning and tracking, (h) the aggregation
of information collected by the UAV with the information collected by WSN for the purpose of
measuring and interpreting the parameters with increased accuracy, (i) remote control via Internet,
and (j) edge and cloud computing.

In a hierarchical structure, the data processing architecture of the integrated system is based on
three levels: consensus, edge computing [35], and cloud computing.

For the main activity, the data collection from CH, UAV must have a predefined trajectory, properly
designed, and accounting for the following limitations:

• Waypoint passing: a UAV has to pass above the CH to extract the relevant data from that area
(covered by the corresponding WSN sub-network);
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• Obstacle avoidance: UAVs avoid obstructions or prohibited areas along the flight plan;
• Guaranteed communication: to ensure that the data has been fully collected, enough time has to

be spent in the CH neighborhood;
• Efficiency: reduce at a minimum the energy consumption for that trajectory (consider the length

of the trajectory and its complexity).

The integration of UAV–WSN based systems for PA in IoT is a mandatory step to create an
advanced FMIS [25].

Due to the integration, the system can become “smart” by using elements of artificial intelligence
like self-adaptation and decision, optimal trajectory, data transmission of relevant parameter values,
energy efficiency, and neural networks for data and image processing. Not in the least, the sensors must
be placed optimally, considering the terrain characteristics. Battery life is an important design point
of the ground sensor algorithms by reducing to a minimum the number of wireless communications
needed to transfer the information. The radio interface is the critical factor in increasing battery life.
Based on the frequency of the data collection and radio transmissions the nodes can have a battery
lifetime ranging from several months up to one year. Therefore, the intelligent collaboration between
UAV and WSN can lead to optimization of parameters, such as energy consumption, sensing coverage,
risk, data acquisition, and processing time [36]. To this end, bio-inspired optimization heuristics and
genetic algorithms were applied to the aforementioned agents.

The optimal WSN coverage by the aid of UAV platforms is implemented in Reference [37] as an
optimization problem, formulated by means of the travelling salesman problem, in order to find the
best path of the UAV for data collection with minimum energy consumption.

Using UAV as data mule for multi WSNs is an energy-efficient method to increase the networks’
life. To this end, the authors in Reference [38] apply the successive convex optimization technique.

The proposed system presents the following integration aspects:

- Group the sensors in clusters and determine the cluster heads, the methodology proposed by the
authors in Reference [30];

- Path planning based on specific conditions for efficient data collection; and
- Intelligent data collection and processing.

The main contributions consist in the following: (i) implementation of a multilevel, collaborative
UAV–WSN system structure for agriculture applications, (ii) a specific path planning for fixed
wing–type UAV with the purpose of robust and efficient data collection, (iii) obtaining relevant data
from sensors for the purpose of saving energy, and (iv) edge–fog–cloud computing algorithms for
subsequent data processing. Thus, the main challenge is related to improving data extraction and
communication in large scale heterogeneous monitoring system. The key problem is focused on
improving the performance of such systems through better algorithms and synchronization among the
two subsystems: the ground sensor network and the robotic aerial platforms, implemented as UAVs,
for data collection and relaying.

The rest of the paper is structured as follows. Section 2 describes the concept, the methodology,
and key aspects that have been addressed for the proper design and implementation of the system.
Section 3 presents the experimental results and performances after implementing the system on an
experimental farm. Section 4 highlights the conclusions, as well as future work.

2. Materials and Methods

2.1. Requirements for Integrated UAV-WSN-IoT Systems

For the design of reliable and robust large-scale monitoring system the requirements have to
first be validated. The main challenges for such collaborative systems were considered to be: sensing
coverage in accordance to mission objectives, communication coverage by the hybrid UAV–WSN
system using various types of radio links, from low-power, low-data rate to high throughput long
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distance for streaming, energy efficiency, and, not in the least, computing efficiency. The decentralized
architecture for crop field monitoring described in this paper is designed to overcome the challenges
mentioned above and to account for the data generation patterns at the field level. While the proposed
data fusion mechanisms and processing of centralized in-field data at CH level manage to reduce data
volume and ensure the flow of information up to the level of events, an additional intermediate level is
appended to the data stream, in order to reach the server. To this end, we consider both mobile agents
(UAV) and multiple fixed agents (ground sensors (SNs)). The system diagram is presented in Figure 1.
The mobile agent can perform the following functions: data mulling, image acquisition, relay, and
state inspection of WSNs. The fixed agents acquire data from the field (agricultural field—soil and air),
process data locally (relevant data extraction, data consensus), and finally transmit data to the UAV by
means of CHs. The system is composed of four main processing levels (Table 1): Sensor level, Fog
Computing level, Internet/Cloud Computing level, and Data Management and Interpretation level.
This is a multi-WSN–UAV structure with higher level integration in internet-based systems for decision
support. The data from WSNs are collected by a UAV, transmitted at a ground control station (GCS),
and, from here via the internet, to the Data Interpretation module. Analytics functionality ranges from
basic statistical indicators to trend and event detectors and up to basic statistical learning models that
have the ability to anticipate evolutions in the monitored ground phenomena.

Another important requirement of the integrated system is the correlated or complementary
interpretation of the data from the sensory agents, either mobile or fixed. For example, when the soil
moisture is too high, the soil sensors show the maximum value and cannot discern whether a flood has
occurred. This can be accurately determined from aerial images taken by the UAV. In addition, the
degree of humidity in plants and the degree of foliage development can be observed either from the
ground or from the air (images), and a more precise determination results from the fusion of the two
data sets.

Other types of similar systems were surveyed and can include the use of swarms of multi-copter
type UAVs, which offer better positioning accuracy for data collection while trading off energy efficiency
and autonomy. Ground sensor network implementation can also be a differentiating factor with two
main approaches: random deployment of sensor nodes in the area of interest, according to a minimum
expected sensing coverage density, or deterministic, grid-like placement. Intermediate data processing
steps from the field level to the decision level are commonly accepted as an important mechanism to
balance network loads and improve communication latency.
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Table 1. Processing levels.

Level Content

Field Sensors (SNs)
Edge computing Cluster heads (CHs), UAV

Cloud computing Cloud
Data interpretation User server

2.2. UAV Trajectory Design

For UAV trajectory planning, two cases must be considered. The first is the trajectory planning
for collecting data from sensors (CHs), and it must take into account certain requirements, such as
the complete and safe acquisition of data, on one hand, and minimize energy and time consumption,
on the other hand [39].

Under certain reasonable assumptions (known environment, known limitations), the UAV tasks
reduce to computing a trajectory which respects constraints and minimizes a cost (length, total energy
consumption, etc.), while simultaneously respecting various constraints (internal dynamics, stall
velocity constraints or exogenous ones, those imposed by the environment, such as obstacle avoidance
and waypoint passing through).

The particularity lies in the fact that many of the UAV-specific constraints are non-convex [40],
e.g., the variable of interest z (depending of time t) has to stay outside some bound (e.g., outside of
an interdicted region and/or maintain a minimal velocity). If z(t) is the UAV position, the velocity
restrictions are usually written as follows:

v ≤
∣∣∣
∣∣∣ .
z(t)

∣∣∣
∣∣∣ ≤ v. (1)

Both bounds (lower—v and upper—v) may depend on a variety of factors. Hard constraints are
imposed by the UAV physics: upper bound given by the engine characteristics and lower bound by
the requirement to avoid stall. Note that this work neglects the influence of wind: velocity is usually
measured against the ground (e.g., through a GPS), but, in fact, the UAV “feels” the addition of its own
and of the wind velocities. This may lead to an unexpected stall or, at least, improper behavior. Usual
techniques are to provide more conservative bounds in Equation (1) and to restrict the flight to normal
weather conditions.

Waypoints are introduced, in a practical mission, because data has to be gathered from a cluster
node. Thus, the question of minimum communication time arises [41]: It is necessary to remain in a
specific neighborhood for a defined time interval ∆ti. To correctly describe such a constraint, we require
a tuple (ωi, ∆ti, ri , Ri), where ωi is the corresponding cluster node position (the center of the circle in
Figure 2), and ri and Ri are, respectively, the minimum and the maximum radius of the permitted
communication area. Because there are perturbations due to trajectory control errors or other causes,
the real trajectory is included in a flight lane (Figure 2a). The flight lane was experimentally established
at 30 m, under reasonable assumptions about wind speed. The trajectory z(t) has to stay near the
waypoint for a least amount of time ∆ti determined by the quantity of data which has to be transferred:

ri ≤
∣∣∣
∣∣∣ωi − z(t)

∣∣∣
∣∣∣ ≤ Ri, t ∈ [ti, ti + ∆ti]. (2)

Condition (2) is often impractical to check due to the continuous nature of z(t) and because of the
varying time interval [ti, ti + ∆ti]. The usual approach is to sample the constraint and to estimate the
path length by assuming the bounds (1) on the velocity. To this end, we consider:

∣∣∣∣
∣∣∣∣z
(
ti
)
−ωi

∣∣∣∣
∣∣∣∣ = ri, (3)

with ti given such that ti ∈ [ti, ti + ∆ti]) holds; it is important that a waypoint is reached, not when.
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Note that the shortest distance for a trajectory checking (4) is the straight line shown in Figure 2a,

whose length is 2
√

R2
i − r2

i . In other words, a sufficient condition for guaranteeing that the minimal
time ∆ti has passed is to ensure that

∆ti ≥
2
√

R2
i − r2

i

v
. (4)

Condition (4) provides a lower bound for the time the UAV stays between the inner and outer
circles (i.e., how much time it spends inside waypoint’sωi communication range). Then, inserting (3) in
a trajectory design procedure implicitly guarantees enough communication time. This approach may
be insufficient for a couple of reasons. First, the desired communication time may not be known at the
trajectory generation time and thus could not be compared with ∆ti. Second, the communication time
is known to be larger than ∆ti and a “tangential” pass (like the one enforced by (3)) does not suffice.
The method (detailed below) is to enter a loitering mode to increase arbitrarily the data-gathering
time [42]. Making the reasonable assumption that the loitering rl

i radius respects the condition
ri < rl

i < Ri, means that the UAV can orbit the waypoint ωi for an indefinite period of time [43]. From
the viewpoint of trajectory generation, the only relevant question remains the places at which the
UAV inserts/dislodges onto/from the loitering circle. Both of these points are decided by the relative
position of the current waypoint with respect to the previous and next waypoints in the sequence
(such as to reduce unnecessary inflexions in the trajectory). The switch between normal and loitering
modes will be done at pre-determined points: the trajectory enters loitering mode at a point ω−i and
dislodges from it at a point ω+

i (which lie on the loitering circle and are from/towards the direction
of the previous/next waypoint). Thus, when the UAV decides to finish the communication, it will
continue to orbit the loitering circle until it reaches the dislodging point ω+

i . Here, it will switch back
to the normal trajectory mode.

The inner (dotted line), outer (solid line) communication circles, and loitering circle (dashed line)
are illustrated in Figure 2b. We show a trajectory inserting to the loitering circle, tracking an arc of
it, and, lastly, dislodging from the circle to re-enter its normal mode (line tracking). The UAV could
have orbited the loitering circle repeatedly and dislodged from it at ω+

i when desired. As is mentioned
above, the trajectory describes a corridor (we account for the inherent tracking error appearing under
realistic conditions).
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Figure 2. Illustration of different aspects of the trajectory design: (a) inner and outer communication
constraints with a sufficient condition and a corridor for the UAV trajectory envelope and
(b) trajectory validating.

While the previous velocity and time constraints are easy to formulate, they lead to complex
(nonlinear in position and time variables) constraints. Thus, in practical implementations, it is often
much easier to provide a simplified control scheme based on the heading angle (a “line of sight”
procedure).

That is, the UAV control is partitioned into the lower level where the velocity is controlled
(to negate the wind disturbances, for example) and the higher level where, at each time instant, a new
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heading angle is computed. Thus, we may interpret the path as a collection of segments (linking
consecutive waypoints) and circle arcs around waypoints where loitering is needed.

The idea of the segment tracking procedure is straightforward and is sketched in the following
flowchart (Figure 3). In the flowchart, we make use of several notations:

• RTB = return to base, a flag denoting whether the UAV has to return to its path’s starting point;
• LM = loiter mode, denotes that the UAV has entered the loiter mode; at the start of this mode, the

LMT = loiter mode remaining time is initialized to a predefined value which is decreased (at each
step with a constant value T) as long as the UAV remains in the loiter mode;

• PP = projection point, obtained by projecting the current position onto the support line of the
current segment from which W = weight of the PP (denoting whether the PP is inside the segment,
to the left or to the right) and D = distance between the UAV position and the PP, are computed;

• PCP = proximity circle point represents the intersection between the proximity circle and the
current segment (in case of intersection between the circle and the segment there are two solutions;
the one closest to the end-point of the segment is taken);

• LP = loiter point is computed such that the UAV tracks the loiter circle (with the sense of movement
decided a priori by the supervisor); and

• CP = current waypoint, throughout the algorithm, is updated as needed.
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The main points of the algorithm are:

I The UAV has two modes of functioning, loiter mode and segment tracking mode, which are
decided by the supervisor (in the sense that within the collection of waypoints a priori computed,
some of them are labeled as loiter points).

I In both cases, the algorithm provides a heading which is the reference to be tracked by the
UAV. This is in line with standard practices, where the heading is decided through some design
procedure and the velocity and pitch and roll angles are decided at the auto-pilot level (usually
the velocity is maintained constant and the roll and pitch are taken as needed between admissible
bounds).

I The decisions taken by the algorithm and supervisor are, ultimately, related to the distance
between the current position and some point of interest. To do so, we consider some circles of
interest, defined as follows:

# Communication circle: the UAV communicates with the ground-based cluster head only
when it is within the communication radius.

# Waypoint update circle: it is impractical to assume that the UAV passes through the exact
coordinates of the current waypoint. Thus, we update the active segment (by advancing
through the list of waypoints) whenever we are close enough to the end-point of the
current segment.

# Loitering circle: whenever the UAV is required to spend a significant time in communication
with the current cluster head, the decision to start loitering is taken. The loitering radius is
restricted to be less than the communication radius and larger than the physical limitations
imposed by the roll angle bounds (a tighter circle means a larger roll angle).

# Proximity circle: the procedure employed in the algorithm takes (whenever there is
intersection between the circle and the current segment) the heading angle in the direction
of the intersection point (the one closest to the end-point of the segment).

I When the last waypoint is covered, the UAV returns to base (by default, we consider this to be
the initial point on the trajectory).

Without being exhaustive, some of the most relevant updates in the algorithm are:
In segment tracking mode:

1. At the current time, we consider the UAV position (x,y), the segment determined by the current

(CP) and next waypoint (CP + 1):
(
wi

x, wi
y

)
,
(
wi+1

x , wi+1
y

)
.

2. We compute the projection of the current point onto the current segment (PP). We identify three
possible cases by checking the relative position of the projection wrt the segment’s end points
(described by W): inside the segment (0 ≤W ≤ 1)), outside and located before the initial segment
end (W < 0); outside and located after the initial segment end (W > 1);

3. We compute the distance (D) from the current point to the segment and the circle of radius L
(proportional with the UAV velocity) and further used to compute the heading vector.

4. We consider the following cases:

i. The UAV is too far away, and the projection point lies before the segment start point. Then,
the heading angle points towards the projection point.

ii. The UAV is sufficiently close, and the projection point lies before the segment start point.
Then, the heading angle points towards the start point.

iii. The UAV is sufficiently close to the segment end point, or its projection onto the segment
lies after the end point. Then, the current segment is updated, and the procedure jumps to
step 4.i.
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iv. The UAV is too far away, and its projection lies onto the interior of the segment. Then,
the heading vector points towards the projection.

v. The UAV is sufficiently close, and its projection lies onto the interior of the segment.
The heading angle is taken as the vector of length L in which the tip lies on the segment
(there are two possible tips; the one closer to the segment end point is considered).

5. Go to step 1.

In the loitering mode:

1. Select the loitering center as the current waypoint.
2. Construct the circle of radius L and centered in the current position of the UAV.
3. If the circle does not intersect the loitering circle, move towards the projection point situated on

the loitering circle.
4. If the proximity circle intersects the loitering circle, take the heading vector along the tangent at

the intersection point between loitering circle and proximity circle (there are two solutions, we
selected depending on the desired loitering rotation—clockwise or counterclockwise).

Note that all steps where a decision regarding the trajectory update is taken consist in fact in a
decision about the UAV’s heading. Thus, for trajectory tracking, only the heading angle is used as
control input. This suffices for relatively simple trajectories and is robust against wind disturbances
(as later shown in the simulations).

2.3. Relevant Data Extraction

The collected data is hierarchically processed from the ground level, cluster head level, UAV level
up to the cloud. Alongside these steps, information is gradually extracted through various methods
that enable local decisions based on the configuration of the system (thresholding, consensus, symbolic
aggregate approximation, etc.).

In-field data processing is ensured both at local level (independent data filtering) and decentralized
at network level (through data exchange between neighbor sensory nodes). The proposed data
processing mechanisms, tailored for in-field level, are designed in order to ensure a substantial
weighted average. This step is found as ‘Enable consensus dialog’. Once the convergence is reached,
each node performs a routine for results analysis basically seeking to discover and mark nodes with
divergent values. This information remains available alongside the consensus value so that it can be
interrogated by the higher level of data processing if needed. This is found in Figure 4 as ‘Analyze
results step’.

Aggregated data sets are achieved through different methods. All seek for relevant data points,
aiming to a reduced size set and providing at the same time a satisfying reconstruction of the initial
data. The proposed method for data aggregation is based on the minimum and maximum values
extraction, computed as global extremes for a predefined period of time (e.g., a day). It is obvious that
this method is suitable only for measurements that have a periodic behavior, with smooth variations
during the day. A measurement for which this method is suitable is the soil temperature. Conversely,
change detection is commonly used for irregularly-shaped data sets. This method follows extraction of
local extreme points where trend changes occur.

Given a set of data points (xi, yi), i = 1, . . . , n, trend ti is computed for each sequence
measurements such that for a measure m, (5),(6),(7) has to be true. If ti , ti+1, then it means that a trend
change has occurred, and the data point (xi, yi) is added to the relevant data set.

xm
i+1 − xm

i > δm ⇒ tm
i = 1, (5)

xm
i+1 − xm

i < −δm ⇒ tm
i = −1, (6)

xm
i+1 − xm

i ∈ [−δm, δm]⇒ tm
i = 0. (7)
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Data collection is done periodically, following a succession of specific routines. As mentioned
before, the first step for in-field data processing is performed at the local level, independently, by each
sensor node.

While the proposed data fusion mechanisms and processing of centralized in-field data at
gateway level manage to reduce data volume and ensure the flow of information up to the level of
events, an additional intermediate level is appended on the data stream, in order to reach the server.
Consequently, the system is composed from three processing levels (Figure 5): In-field data processing,
Edge computing, and Cloud computing. This corresponds to a UAV–WSN system with internet
integration. The data from WSNs are collected by a UAV (or team of UAVs) and then transmitted
at a ground control station (GCS). From here, the data is transmitted, via the internet, to the Cloud
computing level and, finally, to the ‘Data interpretation and decision’ module.
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In a consensus mechanism, multiple autonomous agents seek to reach the convergence value
under the influence of the information flow exchanged inside the network. Each node updates its
estimated value using an updating rule. An update law for node ni based on local weighted consensus
is described by the following equation:

xi(k + 1) = ωiixi(k) +
∑

j∈Ni
ωi jx j(k), (8)

∑
i∈M

∑
j∈Ni

ωi j = 1, (9)

where

xi ∈ R is the computed estimate of node i;
ωii is the weight applied to its own previous computed estimate;
ωi j is the weight associated with the node j for the value of node i;
k is a convergence step; and
Ni is the neighborhood of node i, i ∈ {1, 2, 3, . . . , m} = M.

The proposed consensus algorithm is built using a hybrid weighted average consensus which
ensures that the updating rule computes the current convergence value, keeping a high priority for the
closest neighbors, but at the same time, it aims at suppressing outlier values.

Each node computes the weights ωi j based on the distance di j computed using the available
location information.

ωi j =


dmin
di j

i f (i, j) ∈ ε, i , j

0 i f (i, j) < ε, i , j
, (10)

where

dmin is the distance to the closest neighbor; and
di j denotes the distance between node i and j.

Using the selected weights, the algorithm performs a weighted average of neighbors values
defined as:

Nimean(k + 1) =

∑
j∈Ni

ωi jx j(k)

dim(Ni)
. (11)

In order to suppress outlier values, additional weights are applied for previously computed
estimate xi(k) and current neighborhood estimate average Nimean(k + 1). Thus, this is an
auto-supressing mechanism computed as the ratio between the standard deviation at convergence step
k + 1 and the deviation of the previous estimate xi(k). This is written as:

xi(k + 1) = ∆(k+1)·xi(k)+δ·Nimean(k+1)
∆(k+1)+δ

∆(k + 1) =

√
∑

j∈Ni [ xj(k)−Nimean(k+1)]
2

Ni−1
√
[ xi(k)−Nimean(k+1)]2

,

δ = 1− ∆(k + 1)

(12)

where

- ∆(k + 1) is the weight applied to the state value, computed for each step of the average consensus;
- δ is the weight applied to the neighborhood estimate.

Once the consensus is reached, each node performs a routine for results analysis basically seeking
to discover and mark nodes with divergent values. This information remains available alongside
the consensus value so that it can be interrogated by the higher level of data processing if needed.
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This global mechanism indicates problematic sensor nodes or even very isolated events, but it cannot
discern between them.Sensors 2020, 20, x FOR PEER REVIEW 13 of 25 
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Figure 5. Flow diagram of the data processing at the system level.

The flow diagram presented in Figure 5 shows the data processing pipeline for the integrated
UAV–WSN–IoT system. Based on preliminary parameterization, e.g., sample rate, coverage area,
and energy aware communication, sensor measurements are collected at the ground level by the
local nodes. On-board basic data filtering is carried out to check the consistency and validity of the
measurements for early detection of sensor faults, misreading or outliers. At the local network level,
based on the validated and filtered data, consensus-based agreement is performed by in-network data
processing, which leads to a common value for each of the acquired parameters among all nodes in a
cluster. The cluster head further operates on the data by extracting relevant information through edge
computing mechanisms, and a model-based compressed representation is achieved, e.g., polynomial
interpolation models or more advanced methods, such as SAX (Symbolic Aggregate Approximation).
At the conclusion of the edge computing phase, the UAV is activated for collecting the compressed
representations of the ground phenomena from the cluster head nodes. The trajectory of the UAV is
optimized as previously discussed to ensure timely collection from all the cluster heads in a target area
and transfer the data to a central unit for back-end cloud computing processing and decision. The
cloud computing layer integrates the data reconstruction based on the model parameters as inputs to a
decision-making process, which yields the final outcome and allows for closing the loop by acting on the
ground environment, e.g., irrigation and input dosage signals for the precision agriculture application.

When it comes to processing a large volume of data, many high-level representations of time
series have been proposed for data mining, including Fourier transforms, wavelets, and piecewise
polynomial models [44]. A different approach that we consider is the SAX algorithm, proposed in
Reference [45]. This is a flexible method that allows adjusting the ratio between data volume and data
relevance to ensure a fair reconstruction of original trends, while ensuring high data reduction by
transforming of a time series into text strings. In essence, the algorithm operates by assigning label
symbols to segments of the time series, thus porting it in a unified lower dimension representation.
The importance of SAX’ parameterization must be considered by defining the number of segments and
the alphabet size.

Starting with a time series X of length n, this is approximated into a vector X = (x1, . . . , xM) of
any length M ≤ n, with n divisible by M. Each element of the vector xi is calculated by:

xi =
M
n

∑(n/M)i

j= n
M(i−1)+1

x j. (13)

3. Experimental Results

The high-level configuration of the integrated system is illustrated in Figure 6. The UAV is of the
fixed wing-type, which enables coverage of large geographic areas with low energy consumption. The
base station (CH) collects the primary data processed from the field sensors and periodically transmits
it to a UAV according to its synchronization with the planned trajectory. Further, the data are processed
in the cloud after the UAV uploads the collected data over the internet.
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The algorithm provides, at each step, a heading vector which (with the use of the current 
position) leads to a heading angle. Together with a constant velocity value, these values are applied 
to a simplified 2 degrees of freedom UAV model, which is numerically integrated to provide the 
resultant path (solid red line). The sampling time is taken T = 1 s, and the numerical integration is 
done through ode45 in MATLAB 2018b. 

The same scenario is carried out for the nominal case and for the case with wind disturbances 
(modeled by random uniform noise bounded by the interval [−15, 15]). The results are depicted in 
Figure 7, where we indeed observe a reasonable behavior of the resultant path (it passes through the 
waypoints neighborhoods, changes to a new segment as expected, and is smooth, at least in the 
nominal case). 
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Figure 7. Illustration of segment tracking: (a) nominal case and (b) with wind disturbances. 

To better illustrate the scheme’s performance, we show multiple runs (3 samples), each of them 
for various noise values. We bound the resultant paths inside a corridor of diameter d = 30 m (Figure 
8). 

Figure 6. General configuration of UAV–WSN system implementation.

3.1. Path Tracking

We start by illustrating a nominal trajectory obtained by applying the segment tracking part of the
path planning algorithm (Figure 7). The waypoints are the cluster heads (blue markers), and to each of
them corresponds an update radius (solid blue line) and a communication radius (dashed black line).
The first radius denotes the region in which an update of the current segment is carried out, and the
second denotes the region inside which communication is possible. The starting point is chosen far
away from the initial waypoint.

The algorithm provides, at each step, a heading vector which (with the use of the current position)
leads to a heading angle. Together with a constant velocity value, these values are applied to a
simplified 2 degrees of freedom UAV model, which is numerically integrated to provide the resultant
path (solid red line). The sampling time is taken T = 1 s, and the numerical integration is done through
ode45 in MATLAB 2018b.

The same scenario is carried out for the nominal case and for the case with wind disturbances
(modeled by random uniform noise bounded by the interval [−15, 15]). The results are depicted in
Figure 7, where we indeed observe a reasonable behavior of the resultant path (it passes through
the waypoints neighborhoods, changes to a new segment as expected, and is smooth, at least in the
nominal case).
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To better illustrate the scheme’s performance, we show multiple runs (3 samples), each of them for
various noise values. We bound the resultant paths inside a corridor of diameter d = 30 m (Figure 8).
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We observe that the resulted path does not guarantee enough time inside all communication 
ranges of the cluster head nodes. Specifically, we note that the 2nd and 6th waypoints (the one in the 
upper-most and the one in the lower-most corners) are only tangentially visited. Thus, the need for a 
loitering mode is clear. To better emphasize the behavior of the UAV when in loiter mode, we first 
show, in Figure 9, the path resulting in such a case (for both nominal and under disturbance 
functioning). 
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Figure 9. Illustration of loiter circle tracking: (a) nominal case and (b) with wind disturbances. 

We can now integrate the full algorithm where we switch between segment and loiter modes, 
as needed. Specifically, in Figure 10, we consider that only waypoints 4 and 6 require the activation 
of the loitering mode and that the UAV stays in this mode for a fixed duration of t = 100 s. This can 
be obviously improved by deciding to exit the loitering mode at a later date (e.g., such that the UAV 
is already well-oriented towards the next waypoint). 

Figure 8. Illustration of trajectory tracking for multiple runs and with bounding corridor.

We observe that the resulted path does not guarantee enough time inside all communication
ranges of the cluster head nodes. Specifically, we note that the 2nd and 6th waypoints (the one in the
upper-most and the one in the lower-most corners) are only tangentially visited. Thus, the need for a
loitering mode is clear. To better emphasize the behavior of the UAV when in loiter mode, we first show,
in Figure 9, the path resulting in such a case (for both nominal and under disturbance functioning).
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We can now integrate the full algorithm where we switch between segment and loiter modes, as
needed. Specifically, in Figure 10, we consider that only waypoints 4 and 6 require the activation of
the loitering mode and that the UAV stays in this mode for a fixed duration of t = 100 s. This can be
obviously improved by deciding to exit the loitering mode at a later date (e.g., such that the UAV is
already well-oriented towards the next waypoint).
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Figure 10. Illustration of combined (segment and loitering circle) tracking. In all cases, the loitering 
circle radius was taken to be 150 m: (a) nominal case and (b) with wind disturbances. 

To simulate path tracking, the NMEA (National Marine Electronics Association) Generator was 
used [46] (Figure 11). The path tracking, both in pattern mode (piecewise linear trajectory) and in 
loiter mode (circles around base stations), was simulated (Figures 12 and 13). 

 
Figure 11. NMEA—based Simulator. 

Figure 10. Illustration of combined (segment and loitering circle) tracking. In all cases, the loitering
circle radius was taken to be 150 m: (a) nominal case and (b) with wind disturbances.

To simulate path tracking, the NMEA (National Marine Electronics Association) Generator was
used [46] (Figure 11). The path tracking, both in pattern mode (piecewise linear trajectory) and in loiter
mode (circles around base stations), was simulated (Figures 12 and 13).
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3.2. Sensor Placement and Parameter Maps 

UAV path planning revolves around optimizing the data collection from the cluster head with 
the constraint of limited mobility and hovering ability of fixed-wing type airborne platforms. To this 
extent, before the UAV is scheduled to visit the area, all local measurement have to be collected from 
the WSN at the cluster head, filtered, and aggregated, while only uploading, for example, the 
consensus values, confidence intervals, and outcomes of event detection and embedded alerting 
mechanisms. 

The practical experiments at the ground sensor network level have used a sensor node 
deployment similar to the layout in Figure 14. In total, there are 45 nodes deployed in the field on 
various experimental parcels from our agronomical research institute partner. Among these nodes, 
six of them have the cluster head role for local collection of the sensor measurement from the 
neighboring nodes, as well as increased capabilities in terms of data processing, storage, and energy 
resources, e.g., solar panel, larger batteries, and high gain antennas for more robust operation. These 
are listed as blue disks in the figure, and their selection is based on the geographical coverage 
conditions and installation constraints. 
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3.2. Sensor Placement and Parameter Maps

UAV path planning revolves around optimizing the data collection from the cluster head with the
constraint of limited mobility and hovering ability of fixed-wing type airborne platforms. To this extent,
before the UAV is scheduled to visit the area, all local measurement have to be collected from the WSN
at the cluster head, filtered, and aggregated, while only uploading, for example, the consensus values,
confidence intervals, and outcomes of event detection and embedded alerting mechanisms.

The practical experiments at the ground sensor network level have used a sensor node deployment
similar to the layout in Figure 14. In total, there are 45 nodes deployed in the field on various
experimental parcels from our agronomical research institute partner. Among these nodes, six of
them have the cluster head role for local collection of the sensor measurement from the neighboring
nodes, as well as increased capabilities in terms of data processing, storage, and energy resources,
e.g., solar panel, larger batteries, and high gain antennas for more robust operation. These are listed
as blue disks in the figure, and their selection is based on the geographical coverage conditions and
installation constraints.
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In Figure 15, a further split of the wireless sensor network is performed according to four interest 
zones (Zone 1–Zone 4) in the agricultural experimental area. Zone 1 contains one cluster head and 12 
sensor nodes. Zone 4 contains one cluster head and six sensor nodes. For increased reliability of the 
data collection, in Zone 2 and Zone 3, two cluster heads are installed, with two patches of six and five 
sensor nodes, respectively, in the first case and two patches of six and four sensor nodes in the latter. 

Based on the discussed deployment layout in the field, we present the coverage maps from the 
initial values for two parameters and their progression based on the implementation of the 
distributed agreement algorithm. In Figure 16a, the initial soil moisture values are presented. As the 
consensus algorithm advances in 10, 20, and 30 iterations, the coverage map is formed with increasing 
confidence on the joint agreement value after subsequent message exchanges. The final agreement 
value is stored at the cluster head to ultimately inform the decision process of the local conditions for 
irrigation actuation—the sensing density, in our case, is larger than the granularity of the irrigation 
system, which requires an average model based on the local geographical conditions. 
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Figure 14. Study area with the corresponding sensor nodes (red disks) and cluster heads (blue disks).

In Figure 15, a further split of the wireless sensor network is performed according to four interest
zones (Zone 1–Zone 4) in the agricultural experimental area. Zone 1 contains one cluster head and
12 sensor nodes. Zone 4 contains one cluster head and six sensor nodes. For increased reliability of the
data collection, in Zone 2 and Zone 3, two cluster heads are installed, with two patches of six and five
sensor nodes, respectively, in the first case and two patches of six and four sensor nodes in the latter.

Based on the discussed deployment layout in the field, we present the coverage maps from the
initial values for two parameters and their progression based on the implementation of the distributed
agreement algorithm. In Figure 16a, the initial soil moisture values are presented. As the consensus
algorithm advances in 10, 20, and 30 iterations, the coverage map is formed with increasing confidence
on the joint agreement value after subsequent message exchanges. The final agreement value is stored
at the cluster head to ultimately inform the decision process of the local conditions for irrigation
actuation—the sensing density, in our case, is larger than the granularity of the irrigation system, which
requires an average model based on the local geographical conditions.
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Figure 16. Soil moisture map in Zone 2, before and after consensus: (a) location of soil moisture 
sensors; (b) soil moisture map after 10 iterations; (c) soil moisture map after 20 iterations; and (d) soil 
moisture map after 30 iterations. 

In a similar manner as for the soil moisture parameter, Figure 17 reports the initial values and 
the consensus progression for the air temperature parameter for Zone 2. The approach is repeated 
for all the parameters that can be sensed in the field. The sampling time is adapted to the process 
dynamics, as well as to previously reported events or external influences, e.g., weather changes, 
season, and expert input regarding field conditions. 
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Figure 16. Soil moisture map in Zone 2, before and after consensus: (a) location of soil moisture sensors;
(b) soil moisture map after 10 iterations; (c) soil moisture map after 20 iterations; and (d) soil moisture
map after 30 iterations.

In a similar manner as for the soil moisture parameter, Figure 17 reports the initial values and the
consensus progression for the air temperature parameter for Zone 2. The approach is repeated for all
the parameters that can be sensed in the field. The sampling time is adapted to the process dynamics,
as well as to previously reported events or external influences, e.g., weather changes, season, and
expert input regarding field conditions.
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Figure 17. Cont.
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the clustered sensing nodes. This allows the nodes to have a unitary representation of the 
measurements, under the assumption of limited variance in the geographical sensing area for one 
cluster. The parameters that are sampled by the nodes include: air temperature, relative humidity, 
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Figure 18 illustrates the consensus results for two parameters: soil moisture and air temperature 
in a cluster of five TelosB sensor nodes. These are obtained through simulation in a Contiki/COOJA 
network environment starting from ground-collected values. The main insight provided by this result 
is in the analysis of the convergence time and convergence values in conjunction with fixed or 
dynamic tuning parameters. More specifically, by adjusting the communication frequency and 
weighting the consensus algorithm based on the sensor location and confidence levels, we can guide 
the algorithm with expert knowledge. This can result in acceleration of the process or in more reliable 
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Figure 18. Consensus results for: (a) soil moisture and (b) air temperature. 

Once local agreement has been established, relevant data extraction is performed at the cluster 
head by means of the SAX method. In this case, we present the outcome for running the algorithm 
on a data sample of around 10 days, with the consensus values stored at 30-min intervals at one 
cluster head (Table 2). The variations in the SAX string length correspond to the parameterization of 

Figure 17. Temperature map in Zone 2, before and after consensus: (a) location of temperature sensors;
(b) temperature map after 10 iterations; (c) temperature map after 20 iterations; and (d) temperature
map after 30 iterations.

3.3. Data Processing Results

As previously discussed, the primary local distributed agreement is based on consensus
among the clustered sensing nodes. This allows the nodes to have a unitary representation of
the measurements, under the assumption of limited variance in the geographical sensing area for one
cluster. The parameters that are sampled by the nodes include: air temperature, relative humidity, soil
temperature, soil moisture, and solar radiation.

Figure 18 illustrates the consensus results for two parameters: soil moisture and air temperature
in a cluster of five TelosB sensor nodes. These are obtained through simulation in a Contiki/COOJA
network environment starting from ground-collected values. The main insight provided by this
result is in the analysis of the convergence time and convergence values in conjunction with fixed
or dynamic tuning parameters. More specifically, by adjusting the communication frequency and
weighting the consensus algorithm based on the sensor location and confidence levels, we can guide
the algorithm with expert knowledge. This can result in acceleration of the process or in more reliable
consensus values.
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Once local agreement has been established, relevant data extraction is performed at the cluster
head by means of the SAX method. In this case, we present the outcome for running the algorithm on a
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data sample of around 10 days, with the consensus values stored at 30-min intervals at one cluster head
(Table 2). The variations in the SAX string length correspond to the parameterization of the method in
terms of the number of segments to divide the input time series into (nseg) and the alphabet size, i.e.,
the discrete threshold levels numbers for classifying the processed values (alphabet_size). The number
of samples of the input data is 490, for nseg = 20, corresponding to half daily patterns this is truncated
to 480 as the total length of the time series must be divisible with the number of segments. Inputs are
z-normalized for the computation of the assigned label. Data were collected in mid-July 2018.

Table 2. Resulting Symbolic Aggregate Approximation (SAX) strings on consensus data.

SAX Parameters Solar Radiation Air Temperature Soil Temperature Relative Humidity

nseg = 10 alphabet
size = 4 bcccbccccb bbcccbcccb aabdccccdc cccbbbbbbc

nseg = 10 alphabet
size = 6 cdddcddddc bcdddcdddc aaceeddded eddcccccce

nseg = 20 alphabet
size = 4 bbbcbcbcbcbcbdbdbdab abacbdbdadadadadbdac aaaaaccdcccccccccdcb dcdbdacadacadadacadc

nseg = 20 alphabet
size = 6 bccdcecdbecebebebebc bcbebfcfbebeafbfbead aaabbdeeeededdddeeec edebebebeaeaeaeaebed

The proposed relevant data extraction methods were evaluated from a comparative standpoint
regarding the ratio between the volume of data and the data relevance. For a set of measurements, for
air temperature monitoring, acquired for 10 days, 502 data points were validated and stored, totaling
2.008 kBytes. This raw data set was used for three relevant data extraction methods; the results are
presented below.

Figure 19 illustrates a total of 98 relevant points extracted through the Fog computing algorithm
based on change detection approach. Considering the common size of 4 bytes for floating point values,
a total of approximately 400 bytes needs to be uploaded (excluding the proposed protocol frame).

For the symbolic aggregation method, two tests were performed, for two parameterizations of the
SAX algorithm at opposite poles. First, Figure 19 illustrates the results for SAX algorithm adjusted for
a rough representation of the time series; thus, a number of 10 characters is extracted. Considering the
common size of one byte for ASCII character representation, a total of 40 bytes needs to be uploaded.
Secondly, for granular SAX, Figure 19 illustrates a total of 48 points, thus totaling of 48 bytes.
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4. Discussion

The paper represents a significant extension of Reference [47] with further details regarding
the UAV trajectory tracking and implementation of the support path planning software interfaces
and illustrative path planning examples. On the data processing and deployment of the ground
sensor network, the results are further elaborated upon with coverage maps, improved consensus,
and relevant data extraction results. The two-stage data processing methodology presented in this
paper includes a consensus algorithm for distributed agreement for sensor node patches deployed in
the field alongside a relevant data extraction step based on the consensus results. The first stage is
intended to ensure agreement of all the data collection entities upon the measured parameters, as well
as to increase data quality by limiting the effect of sending upstream erroneous sensor readings. The
second stage aims to optimize the data collection time at the interface between the cluster head and the
UAV acting as a data mule. Based on the compressed representation of SAX segments, the results can
be expanded and further processed at the decision level, in the cloud. At the higher abstract layer in
the cloud, the results presented in Table 2 can be interpreted using state-of-the-art text analytics tools.
This is useful for quantitative assessment of univariate sequences, as well as correlations between
multivariate string series. The character frequencies and recurring subsequences for certain parameters
might be indicators for evolving phenomena at the ground level.

Potential drawbacks of the integrated system are related to the increased complexity for multi-level
data processing, communication, and interoperability constraints between the aerial platform and the
ground sensors. Increased administrative requirements have to be complied with, e.g., approving
flight plans for each UAV mission, along with maintenance requirements that can stem from outdoor
deployment of the nodes. We consider, however, that the benefits outweigh the discussed drawbacks
of such a system.

5. Conclusions

The paper illustrated a case study for collaborative UAV–WSN operation in large scale monitoring
for precision agriculture. The algorithms, techniques, and tools to enable seamless interoperability
between the two domains are illustrated. Key contributions are argued in the design of optimized
trajectories for UAV-enabled field data collection and for in-network data processing that allows
efficient use of limited ground sensor network resources. Particularly, we propose combined segment
and loiter tracking modes which balance between path length and time spent in the neighborhood of a
cluster head. By passing the raw sensor readings through multiple hierarchical data processing steps,
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the quality of the extracted information is increased, as well as its timeliness, given the fact that reduced
communication burden allows lower network-wide latency for decision-making. The role of the UAV
platform is critical to support large scale monitoring and data collection applications in precision
agriculture as it reduces the reliance of third-party communication and computing infrastructure that
might not be readily available in the field or pose increased costs.

Extensive field evaluation is planned for validation of the impact of such a system for crop
management. The main challenges for such a collaborative system are the following: sensing
covering, communication covering by the hybrid UAV–ground WSN system, energy efficiency, and
computing efficiency.
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Abstract: Robots have become a popular educational tool in secondary education, introducing
scientific, technological, engineering and mathematical concepts to students all around the globe.
In this paper EUROPA, an extensible, open software and open hardware robotic platform is presented
focusing on teaching physics, sensors, data acquisition and robotics. EUROPA’s software infrastructure
is based on Robot Operating System (ROS). It includes easy to use interfaces for robot control and
interaction with users and thus can easily be incorporated in Science, Technology, Engineering and
Mathematics (STEM) and robotics classes. EUROPA was designed taking into account current trends
in educational robotics. An overview of widespread robotic platforms is presented, documenting
several critical parameters of interest such as their architecture, sensors, actuators and controllers,
their approximate cost, etc. Finally, an introductory STEM curriculum developed for EUROPA and
applied in a class of high school students is presented.

Keywords: educational robotics; data acquisition; sensors; ROS; STEM

1. Introduction

Robotics represents an innovative field that encompasses various scientific domains, from physics
and electronics to mechanical engineering, mathematics and computer programming. The vast field of
artificial intelligence is also relevant to autonomous robots. Educational robotics is a rapidly evolving
multidisciplinary domain that brings together educators, companies and researchers in an effort to
create a new learning environment in schools and universities. Rooted in Papert’s seminal ideas
on computational thinking using LOGO programming and Mindstorms [1], educational robotics is
increasingly becoming popular in the classroom. It is supportive in teaching Science, Technology,
Engineering and Mathematics (STEM) [2,3] and in some cases it transcends the traditional science
border and becomes supportive of artistic activities (STEAM) [4,5].

Introducing robots in the classroom can become a suitable tool to instill new skills in young
learners and students; besides teamwork and creativity, students can develop interest in practical
concepts in physics and mathematics and get acquainted with topics in engineering [6]. Robotics can
help teachers present the concept of system engineering and control. In addition, it can motivate young
students towards STEM-oriented career paths, which has become important following the expansion
of technology markets and their demand for engineering graduates. Interacting with robots can even
be beneficial for children in a kindergarten [7,8] and it can play an important therapeutic role in special
education [9].

Innovative learning based on robotics also brings about the need to develop new curricula for
schools and universities, to cover gaps in documentation for teachers and students and to develop
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new products in the form of simple, low-cost mobile platforms, according to the educational level
of the target group. On the other hand, introducing robotics courses in schools calls for the parallel
development of methods for the assessment of new educational technologies and the dissemination of
their results [10]. As robot-based technologies are becoming mainstream in schools and universities,
educational robotics is gaining its own spin and status among researchers, markets and educators,
with new emerging conferences [11], special issues [12] and products [13,14] and with a boost in the
relevant literature [15].

Within the constructivist approach of Piaget [16] and Papert [17], constructing the robot can be
considered an integral part of the learning procedure. Construction not only stimulates the creativity
and enthusiasm of young learners through an open-ended, problem-solving process in the real world,
but it also instills technological literacy and better understanding of the different parts that make up a
robot as an engineering system. This is especially true for primary and secondary (K-12) education [18];
however, it can also find application in college or university education, where lab exercises on robotics
often include a basic assembly of a simple robot, like a mobile cart driven differentially. Several of the
educational bots currently available as market products allow some level of assembly of the robot from
parts, while others encourage extensions of a ready product.

The main challenges when designing a new robotic platform for education are component
accessibility, flexibility and cost. It is preferable to design platforms based on commodity components
that can be easily accessed in the market and replaced when needed. The platform should be flexible
enough to adjust to different teaching scenarios. In part, this means that an educational robot should
best follow a modular architecture in terms of sensors and accessories and in terms of software,
especially in order to span different curricula. Finally, a low-cost platform makes an investment in
robotic technology more plausible for a large classroom, where each small group of three or four
students should share a robot with its accessories and build several projects around it.

Using open-source software and open hardware in designing an educational system is important,
especially for high school secondary education and for university courses. Open hardware, like
Arduino Uno [19], with its free programming environment and community support [20] can increase
the level of student creativity and engagement in a robotics project. Similarly, the Raspberry Pi [21],
although it does not exactly represent open hardware, is supported by a large community, runs a
version of the Linux Operating System and can be programmed using Python. Python is widely
taught in Informatics lessons in various high school curricula, as is the case in Greece. Hardware
boards like the above provide user-friendly input/output support and can be easily adopted for other
technology-oriented extra-curricular activities, beside educational robotics.

The power of open software in educational robotics is best exemplified by the Robot Operating
System (ROS). ROS [22] is a middleware that runs on Linux and recently on Windows 10 and has
become a standard for robotics, in industry, education and research. It provides easy access to
complex software components and communicates with a great variety of hardware, like sensors and
actuators. It allows the robot integration with tools for simulation and visualization [23–25] and with
libraries for robotic vision, artificial intelligence and Simultaneous Localization and Mapping (SLAM).
These powerful functionalities transform the robot from a simple programmable automatic system to a
true autonomous intelligent device, compliant with the technology of the Internet of Things (IoT).

A number of educational platforms have been presented as market products and have been
introduced in various levels of education. From Beebot [26,27] to Thymio II [28,29] to Scribbler 3 [30]
and LEGO EV3 [31–33], the educational market has provided teachers with ingenious tools to devise
innovative lessons on almost everything. Activities range from exhibiting a practical algorithm in
kindergarten to teaching concepts on motion and automation to understanding basic programming
and the role of sensors and actuators in a control loop. More advanced platforms, like the epuck [33,34],
the Turtlebot [35] and the Duckietown [36], introduce students to the use of single board computers,
path planning and environmental mapping. They use cameras and artificial intelligence for object
recognition and are suitable for research on advanced stochastic algorithms for localization and
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mapping. More industrial-like robotic platforms, like DaNI and VEGA, are often adopted for the needs
of the postgraduate level and for research [37]. In the same category, the Pioneer mobile platforms by
Adept have been very popular for autonomous navigation research but they are gradually replaced by
a line of ROS based autonomous mobile platforms, like the Leo Rover [38]. Finally, pure industrial
grade robot platforms, like the RobotnikTM Summit-XL [39] or the Husky and Jackal unmanned mobile
bases by Clearpath RoboticsTM [40], are fully ROS based customizable platforms, suitable for research
projects and industrial or agricultural applications.

The contribution of this paper is twofold: first, we present a comprehensive review of the state of
the art on educational robotic platforms through K12 to college and university and second, we present
EUROPA, a new educational mobile platform based on ROS, which has been developed following the
main guidelines stipulated above: constructivist approach, accessibility of parts, modular flexibility
and open hardware and software technology. The platform has been introduced in a secondary school
class following the Greek educational system and has been positively assessed by students and tutors.
A short curriculum is also proposed for the blending of robotic technology with STEM teaching, in
secondary school.

The rest of the paper is structured as follows. In Section 2 we present a comprehensive
state-of-the-art review on the technology of educational mobile platforms through various levels of
education. In Section 3 the hardware and software architecture of the proposed EUROPA platform
with its ROS software architecture is presented. In Section 4 EUROPA is studied as a paradigm of
introducing a robot in class and the assessed curriculum is outlined. A configuration of EUROPA for
teaching more advanced robotics is also proposed, aiming to lessons on autonomous driving, typically
applying to university education. Finally, Section 5 concludes the paper.

2. State-of-the-Art Educational Platforms

In this section, several well-known mobile platforms used in education are presented, starting
with bots that have been adopted to teach computational thinking and basic notions of programming
in elementary school, proceeding with platforms that can be used in STEM classes which enhance
engineering literacy in high school and ending with projects designed to teach autonomy or test
computer vision and navigation algorithms in university and research. Of course, this presentation
cannot be exhaustive, since there is a large number of products, some very successful, others very
promising, several of low cost and some based on open hardware/software. However, we took care to
include those platforms that appear often in the literature on educational robotic technology or are
promising in our opinion to lead a trend in a specific educational level. A comparative examination of
the technology and specifications of such successful platforms can indicate how the next generation of
educational robotic technology is going to evolve. A reference to most of the products that are not
directly presented in this section can be found in the proposed literature. Humanoids and torsos, like
NAO [41], Pepper [42] or the Robotis OP3 [43] are becoming part of the educational robotics ecosystem;
however, this review is limited to wheeled mobile platforms with a relatively low degree of complexity
and with affordable cost in the context of school/college education.

Table 1 lists fourteen widely used educational platforms as well as our proposed EUROPA robot.
The table presents the basic technologies supported by each platform and the level of education they
best fit in. The current approximate cost of the platform is also given, as it is suggested by the distributor.
In the last column, a reference to the literature presenting the platform capabilities or its exemplary use
in class is provided. Each one of the listed systems is illustrated in Figure 1. One industrial platform,
the Summit-XL, is also presented as a comparative reference.

The Beebot represents a category of toy robots appropriate for teaching introductory notions
of control. It illustrates directional language and following steps in problem solving, like in a maze.
It is used widely in kindergarten and elementary education with exciting results [26]. Being a toy
rather than a well-defined robot vehicle, it is not well documented with regard to its mechanical and
electronic specifications.
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based on ROS. It is an open source collaboration project by several partners [14] and it is assembled 
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The mBot is an introductory small robot by Makeblock [44]. It is based on a light metal chassis and
can be assembled from parts. It can be programmed either by a block-based graphical programming
interface based on scratch or using the Arduino Integrated Development Environment (IDE). Makeblock
provides STEM teaching case studies in its webpage.

Thymio II is a versatile open platform suitable for all levels of K12 education, best documented
with activities for elementary school. It supports six basic “behaviors”, allowing obstacle avoidance,
line following, hand following, etc [28]. It is based on a PIC24 microcontroller unit with an H-bridge
for motor driver. It features a number of sensors, like accelerometer, thermometer and infrared
proximity sensors for obstacle avoidance. Its basic actuators are two basic motors driven differentially,
a loud-speaker and leds. The platform is expandable using accessories and is poised to evolve into a
STEM teaching tool for higher grades or possibly into a ROS platform [45].
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Edison is primarily a very affordable mobile platform for teaching STEM [46]. It is equipped
with a similar range of sensors and actuators, like Thymio, although it is not as “moody” and easy to
personalize as Thymio and it does not belong to the open hardware and software camp. It can avoid
obstacles and track a line using IR sensors and can respond to sound or play music using the integrated
sound/buzzer module. It can interact with other robots using light signals. It can be programmed
using three different versions of a programming environment: EdBlocks for programming with icons,
EdScratch, using a block based visual programming style and the text based EdPy, which is a version
of the Python language.

Lego Mindstorms EV3 [32] is a kit for educational robotics, consisting of a programmable brick and
a set of motors, sensors and TECHNIC elements that can be used to assemble the robot. EV3 continues
the line of Mindstorms NXT, featuring a more powerful ARM9 processor and 64MB RAM. It supports
Wi-Fi and Bluetooth connectivity and can be programmed using the custom programming environment
Lego Mindstorms EV3 Home Edition, which is based on a block-based graphic language originating
from LabVIEW, by National Instruments. This platform is widely used in competitions.

Alphabot2 is a small mobile platform by Waveshare [47] that comes in various flavors. In its
cost-effective version it hosts an Arduino controller, while it can also come with a Raspberry Pi or with
a BBC micro:bit microcontroller. An ultrasonic distance sensor is used in all variations for obstacle
avoidance. Alphabot2 represents open hardware and can be programmed using the Arduino IDE or
Python scripts, depending on the controller.

Scribbler 3 and Activitybot are robots powered by the well-known Propeller CPU made by
Parallax [30]. Scribbler 3 is a robust plastic platform suitable mostly for elementary education,
which can be programmed using a block-based programming language. Activitybot features a metallic
chassis and a small breadboard for adding sensors and other circuitry. Besides the block-based
graphical environment, Activitybot can also be programmed in C.

The e-puck 2 [33,34] is a small differential wheeled robot designed for research and education.
It is powered by a STM32F4 microcontroller and features many sensors, like IR and Time of Flight
distance sensor, IMU, color sensor, etc. It is also suitable to study swarm and evolutionary robotics.
It supports C programming and ROS libraries.

The Robobo [48,49] is different from the above and represents an interesting experiment by the
University of Coruña. It consists of a mobile base and an attached smartphone. It makes use of the CPU
power of the smartphone and of sensors incorporated in it, mainly cameras, gyroscope, accelerometer
and GPS. The robot can be programmed using a Scratch web-based editor or a text-based language
and aims to introduce lessons on autonomy to secondary school students [50].

The Turtlebot 3 [35] is a relatively low-priced, small size differentially driven mobile platform
based on ROS. It is an open source collaboration project by several partners [14] and it is assembled
from high quality modular parts. It is based on 3D-printed expandable chassis and is controlled by an
effective controller and Single Board Computer. The main sensor of the Turtlebot is a low-cost LIDAR
that is able to perform navigation tasks and SLAM. It can also be expanded by other sensors, like RGB
and RGBD camera, supported by ROS software modules. It can be used as a mobile manipulator,
by attaching a manipulator module. The Turtlebot has been used successfully in graduate education
and research [52].

The Duckietown [36] is an open project proposed by a MIT team, intended for teaching robot
autonomy or individual aspects of autonomous driving, like vision or nonlinear control, at a graduate
or postgraduate level. It consists of the Duckiebots, which are open inexpensive differentially driven
mobile bots and a model environment representing a miniature town with roads, signs and inhabitants,
assembled from modular tiles. The sole sensor of the Duckiebot is a monocular camera. Vision based
algorithms are responsible for lane detection, sign or object recognition and localization of the robot in
the Duckietown [13]. More advanced algorithms allow path planning using metric and topological
maps as well as vision-based Simultaneous Localization and Mapping. The system supports ROS
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for data transfer between software nodes. It can be expanded for the study of multirobot behavior.
The cost given in Table 1 refers to a single bot without the Duckietown.

The Leo Rover [38] is a robust open source platform designed for autonomy research in outdoor
environment. It is customizable by add-ons, like a manipulator, GPS module, camera, IMU, etc.
The robot is driven by four independent DC gear motors with suspension system and it is powered by
Raspberry Pi and a Core 2 ROS driver board. Although it represents an open platform with a GitHub
repository, it requires extensive programming by the developer for the execution of every specific task.
Therefore, its scope is different than that of educational boards.

Finally, the Summit-XL platform by Robotnik [39] is a versatile strong frame, based on a
four-wheel skid-steering configuration, designed for high load capacity. It can be easily switched to an
omni-directional configuration using mecanum wheels. It features an IMU and can receive a camera
and a laser scanner. It also features a default radio system for remote operation and is suitable for
research and surveillance. It is controlled by a PC and it is programmed with open ROS architecture.
Robotnik produces a line of industrial-grade robots, of which the Summit-XL is a midrange example.

Beside the platforms of Table 1, a reference should be given to a slightly different flavor of
educational solutions, namely the kits by Vex Robotics [53] and Pitsco/Tetrix Robotics [54]. These kits
provide robust metal parts, sensors, motors, electronics and other hardware for the assembly of a range
of robots for education, hobby and competitions. They represent an advanced constructivist approach,
with an average cost of a medium range kit of the order of 900 €.

The platforms presented above give a review of current educational robotic technology and trace
its future evolution. Table 1 reveals a gap in low-cost educational platforms based on ROS. However,
a unifying middleware like ROS is imperative for flexibility, adaptability, ease of development and
community support. In addition, the above analysis shows that connectivity within a local computer
network and browser-based programming tools are definite trends. Finally, the success of educational
platforms depends on their low-cost and on the versatility of programming tools, from block-based to
text-based programming, covering different educational levels and needs. These virtues were exploited
in the design and implementation of the EUROPA platform.

3. Materials and Methods: Presentation of the EUROPA Platform

3.1. Overview of EUROPA

EUROPA (EdUcational Ros rObot PlAtform) is a two-wheel, inexpensive differential drive robot
with a manipulator. It is adequately scalable and flexible to fit into different educational levels and
different curricula. It allows programming with introductory or more advanced tools, depending on
educational level. Its main controller is the Raspberry Pi 3 B+. An introductory presentation of the
initial version of EUROPA was given in [51]. Figure 2 shows the basic EUROPA components.

EUROPA follows the open hardware paradigm and uses open source software. The robot can be
built by the students themselves, under the appropriate instructions from their teachers, providing
an opportunity for hands-on experience with principles of electricity, electronics and engineering.
Although the robot can be used for Science, Technology, Mechanics and Mathematics (STEM) [2,3],
it can also be upgraded with sensors like a LIDAR, to allow for more advanced lessons and research on
robotics. EUROPA is based on ROS, which provides interoperability and extensibility. Although ROS
stands for Robot Operating System, it is really a framework that sits on top of an existing operating
system such as GNU/Linux. EUROPA includes a camera that can be used for image processing and
object recognition. In addition, it supports a plethora of sensors that can be added to the Raspberry Pi
board in order to support user-defined tasks.
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EUROPA includes a simulation environment. The robot was described in Unified Robot Description
Format (URDF) and is simulated in the Gazebo environment [23]. Robot simulation allows children to
easily and safely experiment with algorithms and develop skills related to computer programming.
Following simulation, students will be able to choose the best performing algorithms, test them on the
real robot in the physical world and understand the differences between robot behavior in a simulated
as opposed to a real environment. In addition, using the interface of rviz [25], the popular visualization
tool for ROS, they will be able to visualize depictions of the robot movement and easily control the
robotic arm. Finally, they can learn concepts like odometry and sensor visualization.

3.2. EUROPA Hardware

EUROPA is built on a double plexiglas base, which supports all the robot’s mechanical and
electronic components. A rechargeable 10000 mAh battery is included, providing power to the
Raspberry Pi and motors. Two differentially driven DC motors with wheels and encoder disks are
responsible for EUROPA’s locomotion, allowing a speed of up to 2 m/s with 8 N cm of maximum
torque. This is enough for climbing on small ramps. In addition to the wheels, the robot rests on an
omnidirectional caster ball, located on the back.

On the upper side, we find the Raspberry Pi 3 B+ board, a two-motor controller shield dual
H-bridge motor driver DRV8833 [55], the Raspberry Pi Camera Module Night Vision-Adjustable Focus
(5MP, 1080p) [56] and the robotic arm. The arm rests on a base made of 4 spacers 5 cm long screwed
directly onto the robot chassis. The two axes of the arm are 3D printed and the joints are two Mini
Pan-Tilt Kits powered by micro servo motors (Servo Micro plastic gears Feetech FS90, 1.5 kg·cm).
The whole construction is characterized by simplicity and ease of assembly.

The University Edition of EUROPA features a laser scanner for 360 degrees distance measurement
(LIDAR LDS1.5 [57]). It can measure a cloud of data around the robot up to a distance of 3.5 m and can
support experiments on Simultaneous Localization and Mapping (SLAM).

At the bottom of the chassis there are two encoders with led-photodiode pairs (Waveshare,
12225) [58] used for odometry measurements. Finally, there is a distance meter on the front of the robot
that can be used for obstacle avoidance (Ultrasonic Sensor 2–400 cm SR04) [59]. All accessories are
connected directly to the Raspberry board without the need for extra electronic controllers. Table 2
presents the parts list and their approximate costs.
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Table 2. List of EUROPA parts and approximate cost.

Part Number Cost in Euros

Raspberry 3 B+ board 1 41.90
Motor controller shield DRV8833 1 5.20

Raspberry Pi camera 1 21.20
Servo motors Feetech FS90 3 3 × 2.5 = 7.50
Led photodiode encoders 2 2 × 3.90 = 7.80

Ultrasonic sensor 1 2.50
DC motors with encoder disks 2 2 × 1.8 = 3.60

Plexiglas double base 1 1.80
Caster ball 1 1.60

Rechargeable battery 1 9.90
Wheels 2 2 × 1.5 = 3.00
Cables 4.00
Lidar 1 180.9

mini pan tilt kits 2 2 × 2.9
robotic arm axles (3d printed) 2 0.5

Spacers, bolts, nuts 2.0
Total Cost 299.2

3.3. EUROPA Software

EUROPA uses ROS infrastructure for communication and control, as shown in Figure 3. Raspberry
controls the motors and is in charge of data collection from sensors and the camera. All the drivers
responsible for the control of the two DC motors, the servo motors, the ultrasonic sensor and the
LIDAR are installed on Raspberry Pi. The Raspberry Pi hosts several Python scripts that act as ROS
nodes. For example, they collect video from the camera [60], receive input from the LIDAR [61],
measure wheel movement via wheel encoders to calculate odometry and publish the data as ROS topics.
A desktop computer which is running the ROS master is connected to the robot via Wi-Fi. Using the
computer, the student or teacher can run either Python scripts or ROS user interfaces (UIs) [62] to
control the movement of the robot and visualize data. The robotic arm can also be controlled via rviz
or RQT [24,25] from the computer. Additionally, the robot can be controlled by a mobile phone, using
ROS Control API without the need of a computer. Although the proposed way is to work with the robot
from a remote computer, the student or instructor can also connect a screen and a keyboard directly to
the Raspberry Pi and control the robot without the need of any additional device. The rviz-based user
interface can also show live video from the camera and data from the ultrasonic sensor.
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Additionally, the stream from the camera can be used to devise solutions to problems such as
line following, while LIDAR and odometry can be used for Simultaneous Localization and Mapping
(SLAM) [63] and navigation.

ROS and Gazebo provide communication, simulation and visualization tools. These modules are
needed to perform tasks such as image processing and sensor calibration. Robot Operating System
allows the use of modules and applications available in the ROS ecosystem. ROS provides modules for
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navigation, arm manipulation and SLAM. The ROS master is running on the PC, which is responsible
for the communication between the various nodes running on the robot and computer. Any nodes
that run in the ROS cluster can communicate with each other by exchanging information. Information
circulates in the form of messages organized in topics, to which each one node either publishes
or subscribes.

The different nodes that exist in EUROPA robot are described below. All nodes referred to as
custom nodes have been created by the EUROPA team for use with the EUROPA robot.

3.3.1. Nodes that Run Exclusively on the Robot

• A custom Python node for DC motor control.
• A custom Python node for translating position information to appropriate command signals for

the servo motors of the robotic arm.
• A node for streaming video from the camera.
• A node for the LIDAR operation which publishes data using ROS hls_lfcd_lds_driver
• driver [61].
• A custom Python node for publishing distance measurements collected from the distance sensor.
• A custom Python node for publishing odometry data from the wheel encoders.

3.3.2. Nodes that Run either on the Remote Computer or on the Robot itself (If It is Connected to a
Screen and a Keyboard)

• A custom Python node for moving the robot using the keyboard.
• A custom Python node for the movement of the robotic arm.
• A custom node to watch the video captured by the robot camera
• A custom Python node to identify color lines and to send velocity messages that control the

movement of the robot.
• A custom Python node for moving the robot to a specific position on the xy plane.

3.3.3. Nodes and Simulations that Run Exclusively on the Remote Computer

• Simulation of the robot in a virtual environment via the Gazebo application.
• Visualization of the robot movements and odometry via rviz.
• Control of the movements of the robotic arm through Moveit [64].
• A node responsible for SLAM using ROS’s hector_slam [65] metapackage.

4. Results and Discussion: EUROPA in the Real World

4.1. Europa in Secondary Education

Most approaches to school robotics are currently focused on writing a script of code for robot
control, along with a Lego-type construction. Usually, students do not go deeper into hardware and
seldom do they go properly into software design concepts. The complexity of issues like motor control,
wheel encoders and other sensors is usually hidden even from the interested student. One goal of
the EUROPA project is to provide the students with an open platform for mechatronics concepts,
ranging from introductory to advanced. The teacher can choose to present a high-level overview
of the system or to teach in depth concepts. The students can acquire hands on experience with
experiments in physics, electricity and robotics. EUROPA was tested in two Greek schools, during the
first semester of the school year 2019-20. A STEM curriculum with applications in sciences, engineering
and programming was designed and implemented. The target group was second-grade high school
students, in the Greek system, which is equivalent to tenth or eleventh grade in the K12 system
(ages 16–17). The curriculum that was used is briefly described below.
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4.1.1. Robot Construction

The robot was constructed by the students with instructions from the teacher, and at the same time,
an introductory lesson on sensors and motors was given. Initially, there was a reference to voltage,
current and operation of DC motors. Past school lessons on these topics were revisited.

4.1.2. Motors and Sensors

The next step was to provide students with a basic understanding of the role of sensors and
actuators. A presentation was given on servo motors and Pulse Width Modulation (PWM) was
explained. A lesson on sensors was given, and different sensors were presented. The principle of data
acquisition in a digital system was introduced and the use of a library for transferring data from a
sensor to a Python program was explained. Then, the principle of the distance sensor was illustrated
using a simple setup with a speaker and a microphone. Students were asked to calculate distance using
time of flight, revisiting first grade physics. The photo-interrupter included in EUROPA provided
the opportunity to introduce aspects of the interaction of light with matter. Finally, the camera was
introduced and a reference to image processing was made. The role of the camera in the recognition of
the environment was discussed.

4.1.3. Robot Simulation

In the next lesson, the robot’s simulation was presented to students using rviz [37] and Gazebo
environments. The students were also given the Unified Robot Description Format (URDF) file
describing the robot. The XML file was analyzed focusing on specific physical properties of the robot.
The students understood how a robot can be described using geometric figures and physical properties.
Then, the students experimented by changing specific parameters to the existing robot description and
saw how the robot was affected in the virtual environment.

4.1.4. Writing Python Scripts for EUROPA (Part 1)

The next lesson presented a Python script that receives input from the computer keyboard and
translates it into robot motion commands. The students applied knowledge from lessons on circular
motion and revisited notions on angular and linear velocity, applying them in real-world conditions.

4.1.5. Writing Python Scripts for EUROPA (Part 2)

The next lesson was to direct the robot to a specific position by applying the Pythagorean Theorem
and other basic trigonometric equations. A Python script was created and explained before execution.
At this point, it is important to note that students were watching the robot movements both in the
simulation environment and in real life.

4.1.6. Data Acquisition from Wheel Encoders and Odometry Computation

During this lesson, the students first learned to use interrupts in order to get the encoder data and
thus calculate angular velocity of each wheel. Additionally, students calculated odometry by applying
high school grade physics kinematics and published odometry information to ROS.

4.1.7. Controlling the Robot Arm of EUROPA (Part 1)

The next lesson focused on the robotic arm of the robot. Geometry and algebra were linked to
the movement of the arm. In addition, students were introduced to the concept of torque and they
were familiarized with it by using different gears in Lego constructions. Continuing with this lesson,
a simple movement of the arm was performed. A Python script for arm control was provided, and the
students were asked to parameterize it. In addition, they used rviz with RQT to control the robotic
arm. Different angles for the servomotors were given, and the students tried to determine theoretically
the position of the tip of the robotic arm.
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4.1.8. Controlling the Robot Arm of EUROPA (Part 2)

Next, the students were asked to calculate the angles of the servo motors of the robotic arm in
order to place the tip at a specific position in 3D space. In this way, they were introduced to the
importance and difficulty of the inverse kinematic problem. When they understood the difficulty of
the problem, the Moveit! package [64] was presented, which provides the arm with the capability
to perform complex movements using ready-made libraries and kinematic model solutions. Again,
the students had the opportunity to see the simulated and real robot repeating the same movements.

4.2. Advanced Robotics Course with EUROPA

With the addition of the camera and the LIDAR, EUROPA becomes an efficient platform for
teaching more advanced robotics courses. Such courses are often part of the curriculum in college
or university; however, interested high school students can be benefited as well. After a series of
introductory notions, students can continue the learning process, focusing on concepts related to
computer vision, machine learning and robot autonomy. The following experiments were demonstrated
in the same class of high school students who attended the set of lessons outlined in paragraph 4.1.

4.2.1. Tele-Operation of EUROPA Using the Camera

This project includes tele-operation of the robot using the camera and the distance meter. Students
were viewing live video from the robot’s camera displayed on their computer, and through this image
they tele-operated the robot from their computer keyboard. To improve the movements of the robot in
the room, they also used distance measurement and a simple obstacle avoidance Python script.

4.2.2. Line Following Using the Camera

The goal of this project was to use the camera as a color sensor in order to direct EUROPA to
follow a yellow line painted on the floor. At the beginning of the lesson, the principles of digital
vision sensors were explained to students and a reference was made to RGB color space. A simple
experiment with the camera and a simple user interface based on OpenCV demonstrates how object
colors are transformed in RGB values, using the camera. Then, HSV color space was introduced and an
explanation was given as to why it is best to use HSV in conditions of unstable luminosity. A simple
line-following algorithm based on color detection was presented and was applied in a Python script
based on OpenCV. The program measures deviations from the yellow line measured in pixels and
transforms them into appropriate wheel speeds for the differential drive. The algorithm is robust and
results in smooth line following, better than using the infrared sensor commonly applied to this kind
of experiment.

4.2.3. Simultaneous Localization and Mapping

The last experiment introduces the advanced topic of Simultaneous Localization and Mapping
(SLAM). At the beginning of the lesson, a reference was made to how the LIDAR works, and the students
saw a point cloud in rviz, representing the distances from the obstacles in the room. Subsequently,
reference was made to mapping and its importance in robotics. Finally, the concept of Bayesian
update using sensor measurements was introduced in general terms and a connection was made to
similar concepts taught in mathematics lessons on probabilities. The Hector SLAM function [65] was
introduced and students saw the mapping of their classroom in rviz.

4.3. Performance Evaluation Experiments

4.3.1. Odometry Evaluation

During this test, we commanded the robot to traverse a predefined orthogonal path with
dimensions 0.8 m by 2 m and return to its original position. In Figure 4, the performed path is shown
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in red. The robot follows the commands quite accurately, with a most notable deviation from the
commanded path observed during the final stages of the route. Although the robot was commanded
to end up exactly at its starting point, the difference between the end point and the starting position is
3 cm in the horizontal axis and 9 cm in the vertical one. The blue line corresponds to the odometry as
perceived by the robot. Odometry was measured using optical encoders. The axes units in the figure
correspond to cm.
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4.3.2. Mapping

Hector-SLAM is a ROS package that is able to solve the robot localization and mapping problem for
a 6DOF vehicle equipped with a laser scanning system (LIDAR) and inertial sensors [66]. The package
fuses 3D robot attitude and position information obtained from an Inertial Measurement Unit with a
2D SLAM process. The SLAM process in Hector-SLAM is based on occupancy grid mapping combined
with 2D pose estimation. At each step, the system aligns the new laser scan endpoints with the map
learned so far. The optimization of the alignment process results in an estimate of the new position
of the robot in the 2D map. In this way, the environmental map and the robot pose are produced
incrementally, starting from a known pose.

In our EUROPA robot, the movement is on a plane and only the position (x, y) and orientation ψ
on the plane is relevant. Therefore, only the 2D SLAM process is active and IMU information is not
required. We have built a model environment, with approximate dimensions 2 m × 2 m, which can
be traversed by the robot, starting from a known initial position and completing full circles around a
corridor. At each step, the laser scanner acquires a cloud of points from the surrounding walls and
computes the new change in translation and orientation, based on a transformation that gives the best
alignment with the previous map. Knowing the new pose, the occupancy grid is updated.

In Figure 5 the environmental map created by the Hector-SLAM process is presented.
Occupied cells are shown in black, while lighter color represents empty space. The red line illustrates
the ground truth information of the model environment. The green line is the pose as it is computed
during the SLAM process. The mapping was created after two loops around the corridor and the
vehicle ended at its starting position. The Hector-SLAM package does not require odometry from
optical encoders as input in the process.

The origin of the inertial frame is considered to coincide with the starting point of the robot
track. The map was generated by teleoperating the robot with linear velocities less than 0.5 m/sec and
angular velocities less than 0.314 rad/sec. Both the map and the pose estimation are considered to be
satisfactory for the educational purpose served by our experiment.
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4.3.3. Line Following Performance

In order to assess the performance of the line following problem, we have created a yellow curved
path of a total of 4.2 m, as in Figure 6.
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The actual robot path is shown by the red line. In Figure 7, the displacement of the robot from the
center of the yellow line is shown, measured in mm. In this figure, the horizontal axis is the distance
covered by the robot. At the starting point the robot was not in the center of the yellow line and had a
10-degree clockwise rotation. The line-following algorithm extracted color features from the image
frame captured by the camera, using the OpenCV library. A simple P-controller was selected in order to
direct the robot across its path. The P-controller was selected for educational reasons. The oscillations
observed in Figure 7 are mainly due to the simplicity of the controller.Sensors 2020, 20, x FOR PEER REVIEW 9 of 20 
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4.4. Assessment of EUROPA in the Classroom

The target group for the assessment was two second-grade high school classes or 22 and 23 students
in Greece of ages 16 to 17. The lessons were performed as a part of a series of technology projects that
have been added into the Greek curriculum during the past few years and correspond to a weekly
workload of 2 h. The main goal of EUROPA in these technology projects was to provide students with
real world science examples and a better understanding of notions that they have already been taught
in lessons such as physics, mathematics and computer science. The students were acquainted with
more advanced technological subjects and were motivated for independent learning and discovery.
The acceptance of the platform was enthusiastic. All students were able to follow, understand and
work on the EUROPA robots without any serious problems and some of them were even willing to
drill down to the robot’s architecture.

Regarding physics and mathematics, EUROPA’s impact was evident since among others, students
had a chance to relate theoretical kinematics and dynamics with practical robot movement. They saw
that the distribution of mass in an object can affect its movement. They applied theoretical knowledge
on rotational movement to wheel rotation and connected it to odometry calculations. They also had a
chance to apply trigonometry and vector analysis to real world problems. EUROPA also proved to be a
great medium for the introduction of students to new concepts such as sensors, actuators, control, and
physical computing. In programming lessons, the students applied programming skills in solving real
problems, which gave them a totally new incentive for writing code and understanding programming
structures. They faced the notion that hardware abstraction and standards are particularly important
in order to make sensory information usable and that working in simulation is quite different than
working in the real world.

At the end of the semester, the students had clearly a better understanding of real-world problems
solved by science, and their interest in technology was higher than with a similar course designed with
a LEGO-like platform. The openness of the platform and the advanced scenarios that were shown to
the children proved to be quite important to motivate them.

5. Conclusions

This paper reviews existing educational robot platforms for various levels of education, from
kindergarten to university. Our research reveals that there is a gap in the low-cost range of ROS-based
educational robotics. However, ROS-based robotics is versatile and has great potential for integration
with free simulation and visualization software, as well as with advanced sensors. A ROS-based,
low-cost platform can support advanced projects, like machine vision, machine intelligence, localization
and mapping. This gave us the incentive to build EUROPA which is a cheap and versatile open
platform based on ROS. It can cover a range of applications, from basic educational robotics to advanced
applications, such as vision and mapping. Its main controller is the Raspberry Pi, which is supported
by a great community and can readily use a plethora of applications. The platform is currently being
assessed in two secondary schools in Central Macedonia, Greece, under a pilot robotics curriculum.
Future work includes redesigning both the platform and the curriculum, after receiving feedback
from pilot schools. We also aim to build an online community, supporting students and teachers with
educational material and extensive documentation.
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Abstract: Modeling and control of the heating feature of living spaces remain challenging tasks
because of the intrinsic nonlinear nature of the involved processes as well as the strong nonlinearity
of the entailed dynamic parameters in those processes. Although nowadays, adaptive heating
controllers represent a crucial need for smart building energy management systems (SBEMS) as well
as an appealing perspective for their effectiveness in optimizing energy efficiency, unfortunately,
the leakage of models competent in handling the complexity of real living spaces’ heating processes
means the control strategies implemented in most SBEMSs are still conventional. Within this context
and by considering that the living space’s occupation rate (i.e., by users or residents) may affect the
model and the issued heating control strategy of the concerned living space, we have investigated the
design and implementation of a data-driven machine learning-based identification of the building’s
living space dynamic heating conduct, taking into account the occupancy (by the residents) of the
heated space. In fact, the proposed modeling strategy takes advantage, on the one hand, of the
forecasting capacity of the time-series of the nonlinear autoregressive exogenous (NARX) model,
and on the other hand, from the multi-layer perceptron’s (MLP) learning and generalization skills.
The proposed approach has been implemented and applied for modeling the dynamic heating
conduct of a real five-floor building’s living spaces located at Senart Campus of University Paris-Est
Créteil (UPEC), taking into account their occupancy (by users of this public building). The obtained
results assessing the accuracy and addictiveness of the investigated hybrid machine learning-based
approach are reported and discussed.

Keywords: system identification; smart building; artificial neural network; energy efficiency; black
box modeling

1. Introduction and Related Works

In the context of the perspicacious decrease of fossil fuel resources and ongoing increase of
energy consumption innate to the intensification of human urban activities during the last decades,
the management of energy consumption in commercial and residential buildings has become a vital
question. Regarding the works of [1] and [2], in the USA, the contribution of energy consumption
in space heating was responsible for 43 percent in residential buildings in 2015, and in commercial
buildings, this contribution was about 25 percent in 2012. This shows the huge slice of energy
consumption related to space heating in the above-mentioned two sections. The recent enhancement in
smart building energy management systems (SBEMSs) or smart building management systems (SBMS)
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by controlling and reducing the above-mentioned share of energy consumption is becoming the most
efficient trend for facing energy consumption growth in residential and commercial buildings.

Smart building energy management systems (SBEMSs) in smart dwellings provide the inhabitants
with advanced monitoring and control of the building’s functions and a clever way to manage heavy
power-consuming appliances (as heating devices) in order to achieve energy efficiency while optimizing
and preserving the inhabitants’ (or users’) comfortable environment [3].

Although the sensors’ quality and the technological features of the remote devices forming the
physical part of the automated or smart buildings play an undeniable role in the performance of
SBEMSs in optimizing the building’s energy consumption, the primary inefficiency of such systems in
declining energy consumption is related to the quality of the models that bear either the identification
of the relationship between the building’s behavior and the controller that hatches up the actions
of implemented sensors and remote devices or to the excellence of the control strategy in charge of
the building’s behavior control. Thus, the identification and modeling of the building’s operational
dynamics remain key points in BMSs and especially in SBEMSs. On the other hand, the diversity of
the involved factors (parameters) as well as their highly nonlinear variation make the identification
and modeling of the dynamic behavior of a building a challenging task. Within this context and by
considering that besides the living space’s intrinsic structural features, the occupation of the living
space (by users or residents) may affect the model of heating dynamics of the concerned living space, we
have investigated the design, implementation, and validation of a data-driven machine learning-based
identifier supplied by the time-series prediction paradigm’s formalism. In fact, the human body
continuously produces thermal energy, mostly in the form of heat radiation emission. Regarding black
body law, a human in a sitting position and at about 1.80 m in height can emit 100 watts [4–6].

A number of works address model-free approaches coping with buildings’ heating. Related
to conventional controllers, the authors of [7] introduced a control heating system for supporting
the heating comfort of the user based on a very simple thermostatic controller (operating on an
“on/off” strategy) with the help of a microcontroller. When the temperature is higher than the desired
temperature, the fan will turn on, and when the temperature is lower than the desired temperature,
the heater will turn on. The proposed simplistic control of the space heating operates on the
difference between the desired temperature and actual temperature, and could be seen as a model-free
heating approach. While taking advantage of its independency from the effective complexity of the
concerned edifice’s hitting-dynamics, the proposed strategy is applicable to very specific homogenious
living spaces, and cannot be generalized to more sophisticated buildings including heterogeneous
living-spaces. In the work of [8], the investigator presents a gray-box methodology for thermal
modelling of buildings. Gray-box modelling is a hybrid of data-driven and physics-based models,
where coefficients of the equations from physics-based models are ajusted using data. The authors
claim that the proposed methodology allows to capture the dynamics of the buildings while avoiding
the effective complexity of the physics-based modelling, and results in simpler models. In fact, after first
developing the individual components of the building such as temperature evolution, flow controller,
and so on, the authors integrate these individual models into what they call the “complete gray-box
model” of the building. The model has been validated using data collected from one of the buildings
at Luleå, a city on the coast of northern Sweden. While using a simpler and generic model (compared
with the physics-based complex heating models), the proposed approach remains far from convincing
concerning its generalization to the other buildings.

The investigators of [9] propose a model-free and sensor-free heating, ventilation and air-conditioning
(HVAC) control algorithm that uses simple user input (hot/cold) and adapts to changing office
occupancy or ambient temperature in real time. As an alternative, the proposed strategy includes users
in the HVAC control loop through distributed smart-phone based votes about their thermal comfort
for aggregated control of HVAC. The developed iterative data fusion algorithm finds the optimal
temperature in offices with multiple users and addresse techniques that can aggressively save energy
by drifting indoor temperatures towards the outdoor temperature. The evaluation has been based on
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empirical data collected in 12 offices over a three-week period and showed that the proposed control
may save up to 60% of energy at a relatively small increase in average occupant discomfort of 0.3 ◦C.
While the idea is appealing, the concerned technique here also is very specific.

The control systems designed in [7–9] operate without any pre-knowledge of the living spaces
that they are supposed to heat. In other words, the proposed solutions are based exclusively on
data provided by temperature sensors within the frame of specific edifices for which the model of
heating-dynamics is available. This makes the proposed models and issued controllers specific to the
considered case studies, and thus not applicable to other structures (i.e., other buildings).

On the basis of the above-mentioned points, in the present article, we focus on the design and
implementation of a data-driven machine learning-based identification of the building’s living-space
dynamic heating conduct, taking into account the occupancy (by the residents) of the heated space.
This step is necessary for pulling off a comprehensive (i.e., interpretable) model handling the dynamic
heating conduct of a living space with and without human presence. The proposed data-driven
machine learning-based identifier will be applied for modeling the dynamic heating conduct of a real
five-floor building’s living spaces located at Senart Campus of University Paris-Est Créteil, taking into
account their occupancy (by users of this public building).

From a general standpoint, identification approaches are divided into two main categories:
white-box modeling (WBS) and black-box modeling (BBS) [10]. In WBS-based methods, the modeling
of a system is performed on the basis of the formal relationship of the physical properties of the
concerned system. If the main advantage of WBS-based methods remains their comprehensive and
interpretable nature, however, often the effective complexity of real-world conditions causes WBS to
lead to insolvable equations, and hence frequently to a strongly simplified issued model, making it
quite far from the realistic behavior of the target system. In BBS-based methods, the modeling is done
by mapping of an approximate behavior of the target system through the input–output relationship of
that system. In contrast to WBS, if BBS-based methods achieve more accurate approximation of the
effective complexity of the modeled system’s behavior, often they lead to a shortfall of comprehensive
and interpretable foundation related to the issued model.

Numerous research works have been accomplished in the past decades within the areas of
identification and modeling of nonlinear systems related to our purpose. Wiener and Hammerstein-type
models [11], Volterra series [12], and machine-learning based approaches such as fuzzy logic-based
models [13] and artificial neural network-based approaches [14] have been presented. The authors
of [15] identify a solar heating system utilizing BBS based on what they call the “recursive prediction
error method” (RPEM). It is on the basis of a state-space model. The target system (namely a solar
heater) includes two inputs (solar radiation energy and speed of the fan) and one output (air’s
temperature). They claim that the small amount of data necessary for the proposed approach is an
advantage. However, the related simplicity of the target system and complicated expected behavior
identification do not persuade the extendibility of the proposed approach to a realistic system including
a large number of parameters (inputs and outputs).

In the work of [16], the identification of a heating system is done by investigation by means of an
auto-regressive (ARX) model, auto-regressive and moving average (ARMAX) model, and Box–Jenkins
(BJ) model. The target system includes a lamp and a metallic plate. It contains just one input (the
lamp’s voltage) and one output (the metallic plate’s temperature). For the aforesaid case study,
the authors used the system identification toolbox of MATLAB. However, the relative simplicity
of the target system does not allow assessing the effectuality of the considered approach. It just
presents that MATLAB’s system identification toolbox is able to imitate this uncomplicated case study
example. Similarly, the authors of [17] used MATLAB’s identification toolbox for identification of
the behavior of a boiler and heat exchanger transfer function. Nevertheless, the stated result does
not end up with the accuracy of the target system identification. It results in a tough target device
modeling. The authors of [18] provide the consequences of a dwelling’s thermal model identification.
It includes two bedrooms heated by electrical baseboard heaters. Owing to the modeling of the target
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system, the authors used EnergyPlus (software for simulating the building energy system providing
functional modeling of energy consumption for heating, cooling, ventilation, and lighting in buildings).
The control signal was simulated by MATLAB. The Building Controls Virtual Test Bed open-source
software (of Berkley Lab. [19]) is a free, available co-simulation software linking different simulation
programs as EnergyPlus, Modelica (an object-oriented language for complex systems’ simulation [20]),
and MATLAB/Simulink. In the account of the approximating dynamic of the system in Energy Plus, a
low order state-space model is utilized. Concerning the identification of the system, they used N4SID
subspace identification [21]. The authors in this investigation end up with a satisfactory average
root-mean-square-error (RMSE) throughout ten reported simulated apartments. Nonetheless, they
concluded that the time-consuming implementation makes it difficult to extend the proposed approach
to more complicated systems.

The aforesaid investigations put emphasis on the pertinence of identification approaches for the
modeling of buildings’ heating dynamics. Indeed, all of the referenced investigations underline the
tough limitations of the overviewed solutions in matching the complex behavior of space heating
systems in buildings. The main shortages are either related to the eager simplification of the actual
operative complexity of involved equations, in order to ease their computational solutions, or inherent to
the nonlinearity and outsized number of the involved parameters. If the analysis of the aforementioned
research works highlights the diversity of the covered fields and applications, they confirm what we
mentioned before related to the advantages and shortages of each category (i.e., WBS-like and BBS-like)
of identification-based nonlinear systems’ modeling approaches. Meanwhile, the overviewed research
works reveal the appealing capacity of the nonlinear autoregressive exogenous (NARX) model in
modeling and forecasting complex systems’ behaviors. In fact, the proposed modeling strategy takes
advantage, on the one hand, from the forecasting capacity of the time-series of the NARX model, and on
the other hand, from the multi-layer perceptron’s (MLP) learning and generalization skills. If the NARX
model has already been used for modeling in various paradigms, the originality of its application
in the present article concerns its usage, and especially its closed-loop version, in the uninterrupted
(i.e., continual) identification of the heating dynamics within a fully data-driven context. However,
the additional novelties of the reported investigations, on the one hand, relate to the application of
the aforementioned model for solving real-world problems addressing complex behaviors, and on
the other hand, concern the effective implementation of the developed system by the use of standard
technology (i.e., market available), overcoming complex technological obstacles.

Section 2 of this article presents the method and concepts of the proposed data-driven identification
approach. Section 3 details the implementation of the issued method on SBEMS of the above-mentioned
five-floor experimental building. The experimental setup, the experimental protocol, and the obtained
results are presented and discussed. Finally, Section 4 concludes the article.

2. Machine Learning-Based Identification of the Heating Dynamics of the Living Space

Before bestowing the proposed living space heating dynamics identification approach, we consider
the following work hypothesis relating to the identification strategy:

- The concerned living space is supposed to be part of a typical building including various quarters
(such as flats and rooms for a residential building or working spaces, office rooms, classrooms,
and practice rooms for a public building, and so on).

- The building is supposed to be heated by a central heater supplying radiators located in the
aforementioned living spaces.

- The regulation is supposed to be done by a conventional controller adjusting the radiators’ valves
versus the magnitude of the outdoor temperature and the target (i.e., desired) indoor temperature.

- The target model considers the system to be identified as an overall system including the heat
transmitters (radiators) and the heating space.
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1. The concerned living space is supposed to contain an amount of N (with 0 ≤ N ≤ NMax) occupants
(residents or users). N = 0 corresponds to an empty living space, while N = NMax characterizes a
fully occupied living space. Thus, NMax corresponds to maximum capacity of the living space
and is determined according to the construction norms and occupation regulations.

Thus, within the aforementioned work hypothesis, the considered parameters are as follows:
“Valve-position at time t” (denoted by ϑP(t)), providing the heated water’s flow (expressed as a
normalized ratio of debit versus the maximum debit of the valve); “Outdoor-Temperature measured at
time t” (denoted by TOut(t), expressed in ◦C); “Indoor-Temperature measured at time t” (denoted by
TIn(t), expressed in ◦C); and “Occupancy-Rate at time t” (denoted by OCC(t), expressed in %).

As mentioned in the introductory section, the identification method of the proposed system
is accomplished by an MLP-based NARX ([22–24]) with a feed-forward back-propagation learning
algorithm ([25,26]). Equation (1) and (2) respectively specify the overall open-loop NARX model,
where F(·) is the activation function of the ANN, ŷ(t + 1) is the estimated (i.e., predicted) output, y(t)
is the actual output value of the model (i.e., at time t), y (t− 1), · · · , y (t− n) are n-past values of the
y(t), x(t) is the present input value, and y(t), y (t− 1), · · · , y (t−m) are the actual and tapped delayed
exogenous inputs in m-past input values. Figure 1 illustrates the overall schema of the NARX model
T̂In(t).

ŷ(t + 1) = F(y (t), y (t− 1), · · · , y (t− n), x (t), x (t− 1), · · · , x (t−m)) (1)

ŷ(t + 1) = F(ŷ(t), ŷ(t− 1), · · · , ŷ(t− n), x (t), x (t− 1), · · · , x (t−m)) (2)
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Figure 1. General artificial neural network (ANN)-based nonlinear autoregressive exogenous (NARX)
model: open-loop (left) and closed-loop (right) architectures.

Figure 2 reveals the proposed identification structure of the target heating model, taking into
account the above-stated work hypothesis including the influence of the occupancy. The learning
process is performed by utilizing the open-loop NARX scheme. The learning dataset contains the
operation of the real system’s sequences within different valve positions (i.e., ϑP(t)), providing various
heating powers, the occupancy-rate at time t (i.e., OCC(t)), the actual and m-past measures of outdoor
temperature (i.e., TOut(t), TOut(t− 1), . . . and TOut(t−m)), and the actual and n-past values of indoor
temperature (i.e., TIn(t), TIn(t− 1), . . . and TIn(t− n)).
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The influence of occupancy is modeled through the following hypothesis: occupancy of the living
space by residents increases the effective overall heating power. The right-side picture of Figure 2 gives
the general diagram of the modeled living-space within the aforementioned hypothesis. In other
words, we assume that occupation of the living space by residents (i.e., bodies providing additional
heating sources) is equivalent to an incensement of the heating device’s nominal power. To determine
the above-mentioned equivalent nominal power, we exploit the usual policy of setting the adequate
heater’s nominal power versus the living space’s characteristics. In fact, building designers determine
the adequate heater’s nominal power on the basis of the volume of the concerned living space (i.e.,
the living space that is supposed to be heated by the heating device) by keeping constant a parameter
called “Heating Ratio” (denoted by HR0, expressed in W/m3), defined by Equation (3), where PNo

denotes the heating device’s nominal power (which depends on the technological and structural
features of the heating device) and VLS denotes the volume of the living space (room, and so on).
The appropriate value of HR0 is determined versus construction norms (materials, processes, and so
on used for constructing the concerned building) and urban, social, and environmental regulations
(imposed by legal authorities).

HR0 =
PNo

VLS
(3)

Taking into account the hypothesis related to the occupancy’s influence, Equation (3) may be
extended in terms of Equation (4) taking into account the occupancy’s influence. In this equation,
HR(N) denotes the “Heating Ratio” taking into account the occupancy, POCC(N) states for additional
heating power provided by the living space’s occupancy (with POCC(N = 0) = 0), and VLS denotes the
volume of the living space (room, and so on).

HR(N) = HR0 +
POCC(N)

VLS
(4)

One can notice that HR(N = 0) = HR0 corresponds to the Heating Ratio of the same living space
when it is empty. We determine POCC(N) through a fuzzy-logic-based concept by considering, on
the one hand, three categories (fuzzy intervals) of living spaces (i.e., three fuzzy intervals of living
space’s volume), and on the other hand, by considering five categories of occupancy-rate (denoted by
OCC, expressed in %). Namely, the three categories for living space’s volume are as follows: “Large”,
“Medium”, and “Small”. The five categories of occupancy-rate are as follows: “Empty” (corresponding
to OCC = 0%), “Small occupation” (i.e., OCC = 25%), “Medium occupation” (i.e., OCC = 50%), “High
occupation” (i.e., OCC = 75%), and “Full” (i.e., OCC = 100%). Within this formulation, Equation (4)
may be written in terms of Equation (5), where VF

LS denotes the “fuzzy value” of VLS.

HR(OCC) = HR0 +
POCC(OCC)

VF
LS

(5)

The main advantage of such a formulation is that the above-mentioned intervals may be quantified
by the use of data-driven statistical clustering methods, reflecting the reality of the concerned building’s
usage (occupancy). Thus, the equivalent nominal power of a given living space occupied by N bodies
may be estimated as HR(OCC) ×VLS.

Flooding back to the hypothesis we made related to the effect of the living space’s occupancy,
another way of interpreting the aforementioned hypothesis is to note that the occupancy of the living
space by residents will decrease the required time for reaching the target indoor temperature. In other
words, the higher the living space’s occupancy, the shorter the necessary delay to heat it. In order
to quantify this, we introduce what we call “Heating Slop” (denoted by h(t) and expressed in ◦C/s),
defined as the derivative of TIn(t) versus the time and approximated by Equation (6) within the context
of a discrete sampling (i.e., discrete measurement) of the indoor temperature. In Equation (6), TIn(tk)
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and TIn(tk−1) stand for consecutive values of indoor temperature (supposed to be provided by the
temperature sensor at times tn and tn−1, respectively) and ∆t = tk − tk−1.

h(t) =
TIn(tk) − TIn(tk−1)

∆t
(6)

It is pertinent to notice that an escalation of the living space’s occupancy (introducing additional
bodies and thus additional sources of heating) or decrease of occupancy will result in the so-called
heating slop’s modification: the higher the living space’s occupancy, the stronger the heating slop.
Within the general standpoint, and as formulated by Equation (6), h(t) is time-dependent, and thus
may vary along with time. However, because of the fact that the heating of buildings abides by slow
dynamics, often h(t) remains constant (with regard to the time), albeit its value would vary along with
the valve-position (i.e., with ϑP(t)) that controls the heating device’s actual power. On the basis of the
aforementioned points, actually, the predicted indoor temperature (i.e., T̂In(tk+1)) may be computed
from Equation (7), where ĥ(t) = f (ϑP(t) , OCC) denotes the identified (estimated) value of h(t).

T̂In(tk+1) = ĥ(t) (tk+1 − tk) (7)

3. Implementation of the Proposed Living-Spaces’ Dynamic Heating Model

As has been mentioned, a real five-floor building located at Senart Campus of University Paris-Est
Créteil (UPEC) served as an experimental platform for the evaluation and validation of the proposed
model. The concerned building (namely Building A of the campus) is a fully automated building
hosting the Electrical Engineering and Industrial Informatics Department of Senart-Fontainebleau
Institute of Technology of UPEC. The building (i.e., system to be identified) is heated by a conventional
central heater supplying radiators (i.e., heating devices) located in various living spaces (namely, office
rooms, classrooms, practical rooms, and so on) of the building. The central heater is common to three
buildings of the campus, and thus the control of the local heating devices of the concerned buildings
(including Building A) is performed through the local valves of each radiator. The two other buildings
are conventional buildings (i.e., not automated) and the sole Building A is automated. In fact, Building
A is equipped with numerous sensors and connected devices allowing the recording of data related to
environmental information (such as temperatures in each living space and the outdoor temperature)
and the operational states of whole installed connected devices (such as radiators’ valves). Four
different kinds of sensors outfit each living space (including corridors) the entire five floors of this
building: “temperature sensors” (TSs), “magnetic sensors” (MSs), “presence detectors” (PDs), and
“luminance sensors” (LSs). The main connected devices (actuator) deployed in the aforementioned
experimental building are as follows: “motor valves” (MVs), which control radiators supplied by the
abovementioned central water-flowed heating system, and connected “lighting elements” (LEs).

Sensors and connected devices concerned by the purpose of the present paper are TSs and MVs.
They use “EnOcean” technology; an energy harvesting wireless technology provided by EnOcean [27].
EnOcean-technology-based modules fuse micro-energy converters with ultralow power electronics
and reliable wireless communications, allowing to provide self-powered wireless sensors or actuators
for building energy management systems as well as for industrial applications. Figure 3 presents the
implementation diagram of the concerned building (Building A) heating system.

The connected heating system includes three operational layers:

- Supervision layer (SL): It consists of a PC including TopKapi server supervision software (a
supervisory control and data acquisition software), which acts as a supervision agent. It also
includes a number of adequate interface agents (software units) concerning the control layer and
storage memory [28]. It is relevant to note that, while nowadays micro-controllers are able to handle
diverse computational skills, they may still be limited regarding computational needs relating to
the context of the presented work. In fact, in our work, we deal with machine learning-based
identification, where a number of computational tasks need improved computational ability
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(especially for the training task). Actually, the effective adaptability to the real-usage context
of the system would require updating the models’ parameters versus the evolution of effective
conditions (i.e., bring up to date the system’s “knowledge”). That is why the choice was directed
toward integrating a server. Moreover, the target system addresses smart-buildings’ context, and
thus would deal with a rather large number of living spaces. This reinforces the choice of superior
computational ability.

- Control layer (CL): This layer contains the programmable logic controller (PLC) and EnOcean
modules (pilots and interfaces) necessary to conduct the related sensors and devices composing
the physical layer [29]. The concerned PLC is a “WAGO-I/O-SYSTEM” belonging to the family of
ETHERNET programmable Fieldbus controllers distributed by WAGO company [30]. It supports
both MODBUS/TCP and a wide variety of standards ETHERNET/IP protocols in order to integrate
easily into various IT environments.

- Physical layer (PL): It consists of the aforesaid sensors and actuators devices.
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Figure 3. Implementation diagram of the heating system equipping Building A of Senart Campus
of University Paris-Est Créteil (UPEC). PLC, programmable logic controller; MV, motor valve; TS,
temperature sensor.

Composing the heating control chain of the SBEMS of the aforementioned fully automated
experimental building, the CL and PL are replicated for each floor, making possible the set up
collecting data characterizing the heating state of each living space of the building and controlling
valve position of each heating device (radiator) in the building through the five PLCs (one for each
floor). The proposed identification approach was implemented in the SBEMS of the aforementioned
fully automated experimental building.

For evaluation of the proposed identification strategy and the issued model, two experimental
assessments were considered. The first one appraises the obtained model’s “one-step prediction” (OSP)
accuracy and the second one sizes up the ability of the issued model on “multi-step prediction” (MSP).
The purpose of OSP aims to predict the living space’s immediate upcoming indoor temperature from its
previous history. Therefore, open-loop as well as closed-loop architectures could be used. Meanwhile,
the objective in MSP relates to the prediction of several successive future steps of the concerned living
space’s indoor temperatures, and thus the open-loop architecture remains no more pertinent.

4. Experimentation and Results

4.1. Experimental Protocol’s Description

Both of the two aforementioned evaluations are performed in keeping with the same experimental
protocol. This protocol considers a living space of Building A belonging to the category of “middle-size”
working spaces of this building (i.e., VF

LS = “Medium”) able to soak up 28 residents (individuals).
The considered living space is equipped with a 3 kW heating device (namely a 3160 W radiator
supplied by the central heater), responding to the construction and legal norms applicable to this
category of working spaces. The collected data are remote values (time history) of outdoor temperature
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TOut(t), radiator’s valve position ϑP(t), and indoor temperature TIn(t). Two sets of experimental data
were collected. The data sampling period is one minute, meaning that the value of each considered
parameter is collected periodically every 60 s. Figure 4 depicts the experimental conditions showing
the valve’s position and living space’s temperature evolution, respectively.
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Figure 4. Experimental data collection conditions comply with the empty working space (left-side
diagram) and fully occupied working space (right-side diagram), respectively, showing the valve
position and outdoor temperature–time history.

The first one, which we tag as “Empty-working-space” (EWS), includes the time history of the
aforementioned parameters’ values during 18 h (i.e., 1080 min) when the considered working space
is empty (i.e., OCC(t) = 0%). The left-side diagram of Figure 4 depicts the experimental conditions,
showing the local heating device’s operational conduct and the outdoor temperature’s evolution
during the data collection sequence. As is visible from this diagram, the working space was heated
over six hours by the radiator operating with 50% of its nominal power (i.e.,

ϑP(t) = 50% during the first six hours). Then, the heating was stopped during the six next hours
(i.e., ϑP(t) = 0% from t = 360′ to t = 720′). Finally, during the last period of six hours, the work space
was heated by the radiator developing its maximum nominal power (i.e., ϑP(t) = 100% from t = 720′
to t = 1080′).

The second one, which we tag as “Fully-occupied-working-space” (FWS), includes the time
history of the aforementioned parameters’ values when the same working space is occupied by 28
individuals (i.e., OCC(t) = 100%) during 100 min of a period of four hours. The right-side diagram of
Figure 4 depicts the experimental conditions related to this second set of collected data, showing the
local heating device’s operational conduct and the outdoor temperature’s evolution during the data
collection sequence. As is visible from this diagram, the working space is not heated during the first
140 min, assuming that the working space is empty and thus does not need to be heated. Then, while
being fully occupied (i.e., OCC(t) = 100%) during next period of 100 min, it is heated by the radiator
developing its maximum nominal power (i.e., ϑP(t) = 100% from t = 140′ to t = 240′).

A part of the collected datasets serves for training of the proposed ANN-based NARX identifier
and a ratio of the collected data is used as testing data. The parameters of ANN for all constructed
models are as follows:

- Identification of empty working space was performed using ANN including one hidden layer
with a size of 5 (number of neurons in the hidden layer). The number of neurons in the hidden
layer was set empirically. Related to the training and validation, 85% of data was utilized for
training and 15% for testing.

- Identification of fully occupied working space was performed using ANN including one hidden
layer with a size of 10 (number of neurons in the hidden layer). The number of neurons in the
hidden layer was set empirically. Related to the training and validation, 90% of data was utilized
for training and 10% for testing.
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The training and testing operations were repeated 10 times for each collected dataset.
The evaluation of the obtained model’s accuracy was done based on mean squared error (MSE)
and mean absolute error (MAE) criteria. It is illustrated by Equations (8) and (9), respectively,
where N is number of samples, yi is the effectively recorded data, and ŷi represents the estimated
(predicted) value.

MSE =
1
N

N∑

i=1

(yi − ŷi)
2 (8)

MAE =
1
N

N∑

i=1

∣∣∣yi − ŷi
∣∣∣ (9)

It is relatable to note that the first trial concerned the experimental settlement of the number of
time-delayed data samples to be considered in the prediction task. The concerned data correspond
to the three-hour sequence of the EWS when the considered working space is heated by the radiator
developing its nominal power, leading to a swell of 2.7 ◦C of the indoor temperature (i.e., data recorded
between t = 720′ and t = 900′). A part of extracted sequence was used for identification and the rest
of the sequence’s data served for testing the forecasting ability of the issued model. The amount of
data related to the machine learning task links the representativeness of the collected data regarding
the considered environmental and human (i.e., dwellers) factors involved in the constructed models
(i.e., influencing the system’s conduct). Typical delays of living spaces’ heating (i.e., temperature
variation) reflecting a representative sequence of the buildings operational behavior are between
two hours (for a fully occupied living space) and six hours (for an empty living space). Taking
into account the implementation technologies and the precision of the deployed sensors (i.e., 0.1 ◦C
for temperature sensors and 1% for radiators’ motor valves), the sampling period (data acquisition
every minute), and the involved building’s heating dynamics, this leads to to a sufficient amount of
data representative of the system’s conduct. Besides the above-mentioned, the proposed system’s
implementation architecture allows a versatile collection of complementary data at any time or in a
continuous way.

Twenty models were constructed, differing with regard to the number of the considered
time-delayed data samples involved in the prediction task. Figure 5 depicts the obtained results
representing the minimum and maximum value of MSE versus the number of the considered
time-delayed data samples involved in the prediction task. The above-stated number of models has
been aspired by technical features of the deployed implementation technology’s features. Actually,
the sampled data are transmitted by the deployed module every 18 min with the already mentioned
sampling period of 60 s. By taking this fact into account, we aimed to study the plausible influence
on the forecasting accuracy of considered time-delayed data (from 1 to 20) related to the involved
parameters (i.e., indoor temperature, valve position). On the other hand, each model has been
trained and tested 10 times, allowing a quantitative (i.e., statistics) evaluation of the aforementioned
possible influence.

If MSEmin remains within the interval [0.12 , 0.26], the lowest obtained MSEmax values are obtained
with n = 4 and n = 20. Taking account of the implementation’s computational constraints, n = 4
(corresponding to MSEmin � 0.12 and MSEmax < 1.5) appears to offer a suitable compromise. According
to the obtained results (shown in Figure 5), the experimental evaluation was performed using n = 4,
stressing our choice toward a lower computational complexity.
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number of considered time-delayed data samples involved in the prediction task (n).

4.2. Experimental Results

The two constructed datasets have served for evaluating OSP as well as MSP models of the
considered working space’s heating conduct. Following the experimental protocol described in the
previous section, the data-driven learning-based issued model was pointed out using data partly
from EWS and partly from FWS. Two operational scenarios corroborating experimental recorded data
conditions (i.e., those depicted by Figure 4) were considered:

1. The first case study, focusing OSP accuracy, considers two painless operational situations:

a The first situation assumes that the considered working space is empty (i.e., OCC(t) = 0%),
the outdoor temperature is up to TOut(t) = 10 ◦C, and the indoor temperature at the
beginning of the heating sequence is 20.86 ◦C (i.e., TIn(t = 0) = 20.86 ◦C). Starting under
the above-mentioned conditions, the considered empty working space is supposed to be
heated during two hours (i.e., during 120′) by the radiator developing its nominal heating
power (i.e., ϑP(t) = 100%).

b The second situation assumes that the considered working space is fully occupied by
28 residents (i.e., OCC(t) = 100%), the outdoor temperature is up to TOut(t) = 5 ◦C,
and the indoor temperature at the beginning of the heating sequence is 21.80 ◦C (i.e.,
TIn(t = 0) = 20.80 ◦C). Starting under the above-mentioned conditions, the considered
occupied working space is supposed to be heated during 350′ by the radiator developing
its nominal heating power (i.e., ϑP(t) = 100%).

2. The second case study focuses on MSP accuracy evaluation, considering two more tricky situations:

c Assuming that the considered working space is empty (i.e., OCC(t) = 0%), the first situation
of this second case-study presumes that the working space is heated in accordance with
the left-side diagram of Figure 4. In other words, it supposes that the radiator heating the
considered living space heats it during six hours developing 50% of its nominal power
(i.e., ϑP(t) = 50% for t ∈ [0′, 360′]), and then after a six-hour halt (i.e., ϑP(t) = 0%
for t ∈ [361′, 720′]), it reheats this same working space during an additional six hours
developing its whole nominal power (i.e., ϑP(t) = 100% for t ∈ [721′, 1080′]). The outdoor
temperature (i.e., TOut(t)) is supposed to vary during those 18 h within the interval
[2 ◦C , 14 ◦C], also in line with the left-side diagram of Figure 4. The indoor temperature
at the beginning of the heating sequence is 19.60 ◦C (i.e., TIn(t = 0) = 19.60 ◦C).

d Presuming that the considered working space is empty at the beginning (i.e., OCC(t) = 0%
at t = 0), the second situation of this second case-study assumes that the concerned working
space becomes fully occupied during 100 min and is reheated in accordance with the
right-side diagram of Figure 4. In other words, it supposes that the radiator is off during
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the first 140 min when the living space is empty (i.e., ϑP(t) = 0% and OCC(t) = 0% for
t ∈ [0′, 140′]), and it heats the considered living space during 100 min when the room is
fully occupied, developing its nominal power (i.e., ϑP(t) = 100% and OCC(t) = 100% for
t ∈ [141′, 240′]). The outdoor temperature (i.e., TOut(t)) is also supposed to vary within the
interval [4 ◦C, 8 ◦C] in line with the right-side diagram of Figure 4. The indoor temperature
at the beginning of the heating sequence is 17.25 ◦C (i.e., TIn(t = 0) = 17.25 ◦C).

Figures 6 and 7 show the obtained results related to the two above-mentioned case-studies.
Concerning the first case-study, the left-side diagram of Figure 6 plots the estimated (i.e., model-based
OSP) indoor temperature and measured (i.e., real) indoor temperature of the considered living space
when it is empty. The right-side diagram of this same figure gives model-based predicted and real
indoor temperature’s values when the considered living space is fully occupied. Linking the second
case-study, the left-side diagram of Figure 7 gives the estimated (i.e., model-based MSP) indoor
temperature and measured (i.e., real) indoor temperature of the considered living space when it is
empty. The right-side diagram of this same figure depicts the model-based, multi-step prediction of
indoor temperature values and the measured temperature when the living space is fully occupied
during 100 min.
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Table 1 summarizes the overall accuracy of OSP and MSP models of the considered working
space’s heating conduct. As expected, the OSP model of the aforementioned heated living space
forecasts the upcoming value of the indoor temperature with less than 0.2 ◦C blunder compared
with the measured value. Actually, the achieved high prediction accuracy is because of the fact that,
in the OSP model, the prediction is performed using the four effectively-measured past values of the
indoor temperature, and thus representing the effective time-history of indoor temperature’s evolution.
However, anchored in an open-loop NARX scheme, the main shortage of this model would appear
when a longer-term forecasting of indoor temperature is needed.
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Table 1. Estimation’s maximum and minimum mean squared error (MSE) and mean absolute error
(MAE) with four delayed samples considered for each involved parameter (i.e., n = 4). OSP, one-step
prediction; MSP, multi-step prediction.

Errors
Tests

OSP MSP (Test Data) MSP (Whole the Data)

MSEmin 0.0006 0.021 0.020
MAEmin 0.01 0.12 0.11
MSEmax 0.03 2.45 0.25
MAEmax 0.15 1.23 0.44

The MSP model of the aforementioned heated living space forecasts the upcoming value of the
indoor temperature with lower accuracy compared with the OSP model; an average error up to 0.4 ◦C,
while attaining, for some long-term predicted values of indoor temperature, an error exceeding 1.23 ◦C.
The finer analysis of indoor temperature’s forecasting, supported by the results depicted in Figure 8,
provide the incentive of the observed gap. The left-side diagram of Figure 8 reports the estimation’s
absolute error for 35 consecutive estimated indoor temperatures (i.e., prediction of the 35 upcoming
values of indoor temperature) of the modeled heated working space. The right-side diagram of Figure 8
plots the forecasting error of the so-called “heating slop” (i.e., h(t)), defined and introduced in Section 2.
In fact, as visible from those diagrams, if both estimation errors (i.e., the estimation error relative to
TIn(t) and the forecasting error related to h(t) values’ estimation) remain close to zero for short-term
(5 values) and middle-term (15 values) forecasted indoor temperature values, both of them admit
a continuously increasing evolution for long-term predicted values, especially those surpassing the
next thirty-minute predicted period. Actually, within such a longer-term prediction requirement,
the generalization of MLP neural net seems to reach its limitation regarding the learning dataset.
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Figure 9 depicts the heating slop (i.e., h(t)) when the considered living space is heated by its
radiator in two different situations: the blue curve corresponds to h(t) when the living space is empty
and the other curve relates to the situation when the same heated space is fully-occupied. It is pertinent
to notice that the average estimated heating slop for the empty living space is h(t) = 0.015

◦C
minute ,

while, for the same fully occupied living space, it is more than four times stronger (h(t) = 0.042
◦C

minute ),
showing up the occupancy’s impact on the considered living space’s heating dynamics. In fact,
the indoor temperature of the considered living space heated with a same radiator will increase up
to 0.5 ◦C in 35 min when it is empty, while it will increase up to 1.5 ◦C when the living space is
fully occupied.
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Finally, Figure 10 shows POCC(OCC)
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LS

(introduced in Equation (5) of the second section) versus the

occupancy rate for the three considered categories of living spaces of Building A, where OCC = 100%
corresponds to the occupancy of each considered living space category’s by up to 28 individuals. As an
example, according to this diagram, 28 individuals occupying a medium living space of this building,
equipped with a 3 kW radiator, would correspond to an additional heating power of 1170 W.Sensors 2020, 19, x FOR PEER REVIEW 14 of 16 
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5. Conclusions

Considering that, alongside the living space’s intrinsic structural features, the occupancy of the
living space (by users or residents) may affect the model of heating dynamics of the concerned living
space, we have investigated the design, implementation, and validation of a data-driven machine
learning-based identifier supplied by the time-series prediction paradigm’s formalism. The proposed
data-driven machine learning-based identifier was applied for modeling the dynamic heating conduct
of a real fully automated five-floor building’s living spaces located at Senart Campus of University
Paris-Est Créteil, taking into account their occupancy (by users of this public building). The proposed
modeling strategy takes advantage, on the one hand, of the time-series’ forecasting capacity of the NARX
model, and on the other hand, of the multi-layer perceptron’s (MLP) learning and generalization skills.

If, as expected, the one-step-prediction (OSP) model, operating on the basis of an open-loop scheme,
achieved high prediction accuracy in forecasting of the upcoming value of the indoor temperature (i.e.,
less than 0.2 ◦C blunder comparing to the measured value), anchored in an open-loop NARX scheme,
its main shortage appears when a longer-term forecasting of indoor temperature is required; especially,
when the target model is used for designing an adaptive heating control strategy. Achieving a lower
accuracy compared with the OSP model (i.e., an average error up to 0.4 ◦C and a maximum error of

76



Sensors 2020, 20, 1071

1.23 ◦C for long-term prediction), the multi-step-prediction (MSP) model, operating in closed-loop,
represents an attractive compromise for longer-term forecasting of the dynamic heating behavior, and
thus offers an appealing perspective for designing adaptive heating controllers for SBEMSs.

The achieved results stress several appealing issues related to the denotation of these results
as well as the status of the NARX-based forecaster regarding data-driven identification of heating
dynamics in real smart-buildings. The first points come across the ability of the proposed approach in
the modeling complex thermal conduct of buildings, including the effect of inhabitants’ presence on the
discrepancy of their heating dynamics. In fact, this is visible through the obtained MSE and MAE values,
highlighting a prediction of indoor temperature with a less than 0.2 ◦C blunder compared with the
measured value. This foretells the perspective of effectual usage of the proposed approach for designing
data-driven adaptive controllers of buildings’ heating behavior versus the context of their usage by
potential residents. The second remark relates to the possibility of a standard-technology-based effective
implementation of this investigated machine learning-based identifier in authentic smart-buildings,
taking advantage of the robustness of those standard (and market available) technologies and avoiding
the complexity and cost of designing specific implementation policies. Finally, the last mention goes to
the accuracy of the achieved predictions related to well short-term (i.e., one-step) as well as long-term
(i.e., closed-loop) forecasters. Another attractive feature, arising from the theoretical foundation of the
proposed approach, relates to the comprehensive interpretation of the living space’s occupancy effect,
with a quantitative appreciation of its influence on the smart-building’s heating conduct’s deviation.
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Abstract: Convolutional neural networks perform impressively in complicated computer-vision
image-segmentation tasks. Vision-based systems surpass humans in speed and accuracy in quality
inspection tasks. Moreover, the maintenance of big infrastructures, such as roads, bridges, or buildings,
is tedious and time-demanding work. In this research, we addressed pavement-quality evaluation by
pixelwise defect segmentation using a U-Net deep autoencoder. Additionally, to the original neural
network architecture, we utilized residual connections, atrous spatial pyramid pooling with parallel
and “Waterfall” connections, and attention gates to perform better defect extraction. The proposed
neural network configurations showed a segmentation performance improvement over U-Net with
no significant computational overhead. Statistical and visual performance evaluation was taken into
consideration for the model comparison. Experiments were conducted on CrackForest, Crack500,
GAPs384, and mixed datasets.

Keywords: CNN (Convolutional neural networks); deep learning; pavement defects; residual
connection; attention gate; atrous spatial pyramid pooling

1. Introduction

Continuous pavement monitoring can be an extremely tedious task for humans but easy for
automated computer-vision (CV)-based systems. As stated in [1], transportation infrastructure is the
backbone of a nation’s economy that should be systematically improved. Despite the advantages of
modern CV-based systems, real-life applications still meet plenty of challenges. These are usually cases
when human experts can identify a surface’s three-dimensional defect from first glance, but classical
image analysis techniques still fall behind. Therefore, researchers are constantly seeking new approaches
to address these challenges.

In ImageNet competitions [2], it was proven that deep neural network-based solutions surpass
classical CV methods in object detection by engaging many layers of data abstraction. A data-driven
deep-learning (DL) approach might take into consideration a wider spectrum of cases appearing in
a complicated problem than can be constrained by only fundamental knowledge.

Difficulties of defect identification can be seen in many manufacturing areas; solutions and the
newest method applications were presented in [3] with intelligent imaging and analysis techniques
applied in various research fields. The authors in [1] reviewed DL network application publications
on pavement crack detection since its first appearance in 2016. The importance of the matter can be
seen from a recent review paper on pavement defect detection methods [4]. The number of reviewed
methods/publications exceeds 100, and half of them are not older than five years. The authors of [4]
and [1] showed how important automated visual crack detection for traffic safety is. Unfortunately,
the effectiveness of published approaches is often questioned because of the results being demonstrated
on publicly unavailable data.
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Pavement and concrete have a diversity of surface structures, rubbish, and drawings (lines
or figures painted on roads) that hamper the ability to identify true anomalies, namely, cracks.
Although a severely damaged surface is fairly easy to spot, defects that start to form are hardly
noticeable. There can be found various approaches to pavement defect detection by utilizing different
techniques. Older research papers (written five years ago or more) mostly proposed classical
image-processing methods to extract road cracks. Researchers in their work use techniques, such as
bilevel [5] or histogram-based [6,7] thresholds, to extract decayed pavements’ parts. The authors in [8]
used Otsu’s [9] threshold for pavement extraction and Sobel [10] filters along the X and Y directions
for crack edge signification and segmentation. The researchers in [6] were interested in detecting
extremely noticeable road damage, namely, potholes. Furthermore, a data-driven approach for road
pavement evaluation was described by Cord et al. [11]. In [12], the Adaboost machine learning method
was used to train image classifiers by pavement patches on a 128 × 128 pixel size for quality inspection.
However, they described a drawback of the method when dirt appeared on the image. By looking
at more recent research publications, most investigations rely on deep learning methods rather than
handcrafted image feature classifiers. Even with small neural network architectures, impressive
results compared with other techniques can be achieved [13]. Carr at al. [14] received good results
by using a simple U-Net [15] (encoder–decoder) convolutional neural network for defective area
segmentation from the CrackForest dataset [16,17]. Another interesting approach was introduced
in [18] by utilizing the previously mentioned U-Net and additional outputs to every decoding part
layer, and afterwards joining them to improve segmentation. This proposed architectural design
significantly boosted the prediction accuracy. Moreover, in the combined method in [19], the authors
used preprocessing for a concrete image and engaged in deep neural network-based classification.
According to the classification output, the segmentation technique based on a threshold in a 2-D
histogram was applied later. Additionally, fully integrated solutions were found for pavement distress
segmentation, such as that described in [20]. A vehicle with a camera attached to the top was used
to scan the road. The authors proposed an architecture that was not very deep for pavement patch
classification. Later on, the same researchers proposed a solution [21] with an extended dataset and
improved architectural decisions for road defect detection. They utilized various depth models inspired
by ResNet [22] to find the most suitable decision. Research was extended by a more advanced neural
network model. The authors were only using 2-D image data, but other approaches can be found for
a complete pavement defect detection system (camera on a vehicle) [23] that use 3-D depth data for
road structure decay detection. However, steerable matched filter banks are utilized instead of deep
learning techniques. Furthermore, fully autonomous systems that utilize deep learning techniques
along with computer-vision methods for tunnel concrete quality inspection were described in [24,25].
As can be seen, the interest to cope with infrastructure and pavement defect detection problems is still
relevant, aiming to apply DL techniques for real-time automated analysis.

In this work, we continued our investigation on computer vision-based pavement crack segmentation
by utilizing a convolutional neural network. This is an extension of our previous work [26] presented at the
IDAACS’2019 conference. The mentioned article mainly focused on the classical U-Net encoder–decoder
architecture depth (number of convolutional layers) and convolutional filter size dependency on the model
prediction precision and computational time. All previous experiments were conducted on the CrackForest
dataset. In this paper, we extended our research by utilizing two additional datasets from the similar
crack-type area, GAPs384 [18,20,21] and Crack500 [18]. In this work, we present a performance analysis of
networks trained on mixed data performance on individual datasets. Small additional adjustments were
also made using pretrained weights on the targeted dataset to improve the result. Moreover, we introduced
architectural convolutional neural network solutions as an improvement to our previous work. Statistical
and visual evaluations were taken into consideration. Neural network implementation and all rendered
results can be found in a GitHub repository [27].

The paper is organized as followed. Section 2 explains the neural network and its architectural
solution, and methods utilized for research. In Section 3, we describe the CrackForest, Crack500,
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and GAPs384 datasets, and how we used them for our research. Equipment for the experiments and
measurement parameters used for evaluating the neural network performance are outlined in Section 4.
Results are given in Section 5. Conclusions and discussion are written in Section 6.

2. Deep Neural Network Model

For the baseline in this research, we chose the U-Net [15] deep neural network as an autoencoder
function to detect pixel-level cracks in images. The architecture consisted of two main parts,
contractive (encoder) and expansive (decoder). The model is shown in Figure 1. In addition to
the original structure described in [15], we added padding to the convolutional layers to maintain the
output dimension equal to the given input image.
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Figure 1. U-Net convolutional neural network structure.

From our previous research [26], we took the best-performing solution for crack detection.
It was observed that a deeper convolutional neural network tends to learn features more accurately
than smaller architectures. A four-layer (eight convolutional layers in the encoder) neural network
outperformed two- and three-layer solutions, although close results in smaller models were achieved by
using big feature kernels, such as 7 × 7 or 9 × 9. However, big-sized kernel utilization and a small stride
significantly slow down the data-processing time. In respect of this, a four-layer neural network was
chosen (Figure 1) for this study. All convolutional operations in the encoder part were performed by
3 × 3 kernels with a one-pixel stride. After every two convolutional operations (until the “bottleneck”),
dimensions were reduced twice by a 2 × 2 max-pooling operation, and the number of features was
therefore doubled. The most contracted part is the “bottleneck” that represents a latent space and
has the highest number of convolutional kernels. Further, the decoder or reconstruction part starts
(Figure 1). With every layer, the tensor width and height dimension were upscaled twice. Afterwards,
a 2 × 2 convolutional operation was performed to adjust and interpret the upscaled data details with
the learned parameters. Then, the partly decoded data were concatenated with data from the opposite
side (encoder) that transferred higher-level features from the encoder side (see Figures 1 and 2). In all
convolutional layers, the rectified linear unit (ReLU) [28] was used as an activation function, and the
neural network output (1 × 1 convolution) had sigmoid activation that output the probability of “how
likely it is for a pixel to be a defect” in ranges from 0.0 to 1.0. This corresponds to the range from
0 to 255 in 8-bit grayscale. A higher pixel value meant greater confidence that the pixel belonged to
a pavement crack.
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Figure 2. Encoding- and decoding-part layer representation.

Additional to previous research [26], batch normalization [29] was added between the
convolutional layer and its activation function (except for the last output layer with sigmoid) to increase
the neural network stability. When the mean and variance are calculated using batch normalization for
a small minibatch compared to the whole dataset (in this case, 4), it gives noise related to the individual
iteration. For this mentioned reason, dropout was removed. Weight decay (L2 normalization) was taken
out because batch normalization eliminates its effect [30]. The network-encoding and -decoding-layer
representation is shown in Figure 2.

Additionally to the classical U-Net architecture, we applied a few architectural improvements to
increase the neural performance. The architecture induced with the residual connections, atrous-spatial
pyramid pooling (ASPP), and attention gate (AG) modules is shown in Figure 3. Every modification
idea is described briefly in the following subchapters. We conducted experiments with several models:
U-Net, U-Net with residual connection, U-Net with residual connection and ASPP module (two types),
and U-Net with residual connection, ASPP (2 types), and AG modules. The main aspects of this
research were computation and prediction–performance difference investigations.
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2.1. Residual Blocks

Architecture induced with residual connection has been used by multiple researchers [31–34].
It was proven that residual connection helps to fight the vanishing gradient problem, accuracy
degradation [35], and improves neural network performance [31,32,34]. Skipped operations also
allow undisturbed dataflow through the whole network (Figure 3). In the implementation of the
residual connection, we also added 1 × 1 convolution to adjust the number of features because, in every
encoding (downscale) or decoding (upscale), the number changes twice. A residual connection with
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a double convolutional operation is shown in Figure 4. For the present research, we utilized the original
implementation of the residual block proposed in [35].Sensors 2020, 20, x FOR PEER REVIEW 5 of 20 
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Further studies [37,38] proposed an approach of conducting these operations in parallel. 
Moreover, in [38], global feature tensor pooling in parallel with a convolutional operation was added 
to capture global context information with each tensor feature layer, as proposed in ParseNet [39]. 
The described block (ASPP) is used in state-of-the-art object-detection solutions, such as the 
DeepLabV3 [38] neural network. Models that were induced with this method showed a performance 
improvement in satellite images [40–42], medical [43], and general object segmentation tasks [44]. 
Additionally, to the existing ASSP module structure, the Waterfall connection sequence was 
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outperformed the original (parallel) implementation in object segmentation tasks. Every convolution 
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Figure 4. Residual connection representation: 1 × 1 convolutional operation used to adjust number
of features.

2.2. Atrous (Dilated) Convolution Blocks

Sequences of dilated convolutions were introduced in [36] as a more capable method to extract
semantic information in object segmentation problems. An operation with different dilation rates can
take into consideration the multiscale context by utilizing a sequence of convolutions. An example of
performing convolutions with different dilation factors is shown in Figure 5.
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Figure 5. Convolutional 3 × 3 operation with different dilation rates: (a)—1, (b)—2, (c)—4.
Orange circles, filter kernel points; green area, contextual image information that might be taken
into consideration.

Further studies [37,38] proposed an approach of conducting these operations in parallel. Moreover,
in [38], global feature tensor pooling in parallel with a convolutional operation was added to capture
global context information with each tensor feature layer, as proposed in ParseNet [39]. The described
block (ASPP) is used in state-of-the-art object-detection solutions, such as the DeepLabV3 [38] neural
network. Models that were induced with this method showed a performance improvement in satellite
images [40–42], medical [43], and general object segmentation tasks [44]. Additionally, to the existing ASSP
module structure, the Waterfall connection sequence was introduced in [45], which reused convolutional
operations from different parallel convolution, and it outperformed the original (parallel) implementation in
object segmentation tasks. Every convolution operation in parallel branches takes the previous convolution
result as an input. In this work, the convolution with 1, 2, and 4 dilation rates was used, considering the
small pavement crack scale invariance. The picked values were more likely to be intuitive, and the different
choice of dilation factors might yield worst or better results, as was shown in experiments conducted in
satellite image segmentation [41]. We tested two types of ASPP blocks:

• As proposed in [38], convolutional operations were performed separately in parallel (Figure 6a); and
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• As proposed in [45], input from the previous branch (Figure 6b) was reused for
convolutional operations.
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The CrackForest [2,3] dataset consists of 118 labeled color images taken with an iPhone 5 camera 
containing noise: Oil stains, road marking, shoe contours, and shadows. Images are 480 × 320 8 bit 
RGB. Every image has its ground-truth image with its pixel labeling. 

Label mark 1 corresponds to a good surface; 2, crack; 3, surface enclosed by cracks or area is 
surrounded by cracks; and 4, narrow, hard-to-see cracks. All 118 images had marks 1 and 2, only 22 
images contained pixels with labels 3, and label 4 appeared only in 5 images. The image named 
042.jpg mismatched with its corresponding mask image. Label 3 marks were debatable in this dataset, 
given that they were not equally marked in images, and some elements are differently marked from 
image to image. Therefore, only the two first classes were used in this research. All 117 images were 

Figure 6. Atrous spatial pooling block representation: (a) ASSP block of convolutions with 1, 2,
and 4 dilation rates and global pooling in parallel; (b) ASPP block with convolutions with 1, 2, and 4
dilation rates connected as suggested in [45] and global pooling in parallel.

2.3. Attention Blocks (Attention Gates)

Attention maps were originally proposed in [46] as a technique to improve image classification.
Attention modules highlight relevant and suppress misleading information, such as the background.
The utilization of such a technique showed an improved U-Net model performance in medical image
segmentation tasks [47,48]. In this work, we used attention blocks in the same manner as originally
described in [47]. Blocks were implemented in the decoder part before the skipped connection and
upsampled-data concatenation. Attention blocks usually amplify relevant information from the
previous decoding layer in image reconstruction (decoder part, skipped connection as in Figure 3) and
reduce weights on background features. Implementation is shown in Figure 7. As currently drafted,
the output of the attention gate is concatenated with upsampled data from the previous layer.
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3. Data

3.1. CrackForest

The CrackForest [2,3] dataset consists of 118 labeled color images taken with an iPhone 5 camera
containing noise: Oil stains, road marking, shoe contours, and shadows. Images are 480 × 320 8 bit
RGB. Every image has its ground-truth image with its pixel labeling.

Label mark 1 corresponds to a good surface; 2, crack; 3, surface enclosed by cracks or area
is surrounded by cracks; and 4, narrow, hard-to-see cracks. All 118 images had marks 1 and 2,
only 22 images contained pixels with labels 3, and label 4 appeared only in 5 images. The image
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named 042.jpg mismatched with its corresponding mask image. Label 3 marks were debatable in this
dataset, given that they were not equally marked in images, and some elements are differently marked
from image to image. Therefore, only the two first classes were used in this research. All 117 images
were randomly divided into training and testing sets at 70–30%, respectively—82 images for training,
and 35 for testing and converted to greyscale. An example of the data sample can be seen in Figure 8.
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Figure 8. CrackForest data sample. (a) Image; (b) ground truth.

Multiple researchers from all over the world used this dataset to practice crack detection,
and, according to the researchgate.net portal, the citations of the CrackForest database [16] exceed
108 publications. The variety of applied methods goes from simple rule-based methods [49] to moderate
image processing by edge detection [50] or superpixel [51] techniques and histogram features [52] to
advanced deep learning-based methods for crack detection [53]. Method evaluation differs from author
to author by the used evaluation metrics and strategies, depending on article goals. Some authors
proposed to use the tolerance distance from 2 to 5 pixels to overcome data-labeling inaccuracy [14].
The best published results are summarized in Table 1.

Table 1. Best results on CrackForest dataset.

Authors Tolerance in Pixels Precision Recall Dice

Wu et al. [54] 0 0.4330 0.7623 0.4809

Liu et al. [53] 2 0.9748 0.9639 0.9693

Lau et al. [55] 2 0.9702 0.9432 0.9555

Fan et al. [56] 2 0.9119 0.9481 0.9244

Escalona et al. [57] 5 0.9731 0.9428 0.9575

3.2. Crack500

The Crack500 dataset was introduced in [18], and it contains images taken using cell phones
around the main campus of Temple University. It consists of pixelwise annotated pictures around
2000 × 1500 pixels (varying sizes). It has 250 training, 200 testing, and 50 validation samples. As per
the authors in [18], it is the biggest pixelwise annotated road pavement defect dataset. Data samples
can be seen in Figure 9.
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Figure 9. Crack500 data sample. (a) Image; (b) ground truth.

3.3. GAPs384

GAPs384 [18] is a derivation of the German Asphalt Pavement Distress (GAPs) dataset proposed
in [20,21]. The original dataset is annotated with bounding boxes, while the modified variant
(GAPs384) is labeled pixelwise. GAPs384 is part of the GAPs dataset. It provides HD images
(1920 × 1080) with a per-pixel resolution of 1.2 × 1.2 mm. GAPs consists of 353 training and 27 testing
samples. Pictures were captured in summer 2015 under dry and warm conditions with a specialized
mobile mapping system, S.T.I.E.R of Lehman + Partner GmbH. The imaging system consists of two
photogrammetrically calibrated monochrome cameras (1920 × 1080 resolution each), while both
cameras covered a single driving lane. The GAPs384 dataset consists of cracks, potholes, and filled
cracks. Quite challenging samples can be found that include sewer lids, sidewalk rock fragments,
rubbish, and worn-off road lines. The big challenge in a particular dataset is non-uniform illumination
through the picture. An example of the dataset can be seen in Figure 10.
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Figure 10. German Asphalt Pavement Distress (GAPs) data sample: (a) Image; (b) ground truth.

3.4. Data Preparation

In this investigation, we took into consideration three different datasets as described above.
Every dataset consisted of different-sized pictures. In Crack500, data samples come in different sizes.
Moreover, the image size itself is quite big in the Crack500 and GAPs384 datasets, and it is a problem
related to the neural network scalability through a limited amount of computer resources (8 GB
graphics-card memory in Nvidia 2070 SUPER). Because of these reasons, data samples were cropped
into 320 × 320 px patches with 20 px overlap in all datasets. Prepared data were augmented by rotating
by 90, 180, and 270◦. However, CrackForest in general contained the smallest number of samples
compared with the other two. Additional augmentation with flipping and brightness correction in the
range of (–15, 15) was introduced to extend the training part of the CrackForest dataset. The size of
the Crack500 samples was reduced twice before image cropping to patches due to the extreme size of
images compared with the other datasets.
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4. Experiments and Evaluation

The neural network algorithm was written in Python (v3.7.4) using Keras API [58] with a Tensorflow
2.0 [59] backend. Experiments were made on a computer with Intel i3 9100F CPU and Nvidia RTX
2070 SUPER 8 GB GPU. Model training and testing were done in a Windows 10 environment.

As described in Section 2, we conducted experiments on several architectures:

• U-Net (Baseline);
• U-Net with residual connections (ResU-Net);
• U-Net with residual connections and ASPP module (ResU-Net + ASPP);
• U-Net with residual connections and ASPP module when connected in “Waterfall” order (ResU-Net

+ ASPP_WF);
• U-Net with residual connections ASPP and AG modules (ResU-Net + ASPP + AG); and
• U-Net with residual connections ASPP (connected in “Waterfall” order) and AG modules (ResU-Net

+ ASPP_WF + AG).

In every model training, we picked the combined loss function solution consisting of cross-entropy
(Equation (1)) and Dice loss (Equations (2) and (3)). The first part, cross-entropy, is quite often used as
a loss function that describes the likelihood of two sets. It can be found in popular machine learning
frameworks. Cross-entropy loss is the X value relation to the Ẋ value in the following expression:

LCE = −
∑N

i=1 xi· log
( .
xi
)

N
, (1)

where LCE is the cross-entropy loss; xi is the ith pixel value in the label matrix X;
.
xi is the ith pixel value

in the neural network prediction matrix Ẋ; and N is the total number of pixels.
Another target function is Dice [60] loss. Different than cross-entropy, Dice loss evaluates the

overlap of two datasets that are measured in the range from 0 to 1. In image segmentation, the Dice
score describes the overlap of sets, label, and prediction:

Dscore =
2·|X ∩ X|
|X|+ |X| , (2)

LD = 1−Dscore, (3)

where Dscore denotes the Dice score; X is the label matrix; Ẋ is the predicted matrix; and LD is the
Dice loss.

The final loss function solution used in this work is expressed in the following equation:

L = 0.5LD + 0.5LCE, (4)

where L is the loss function; LD is the Dice loss; and LCE is the cross-entropy loss.
Datasets used in this investigation might not be fully consistent to make for a generalized

pavement crack detector for the majority of the cases. We conducted a few experiments on the smallest
dataset, CrackForest. The U-Net model was trained for 50 epochs on the CrackForest training set,
and tested on GAP384 data (Figure 11c). The model tended to react sensitively to extraneous objects;
in this particular case, sewer lids on the road and non-uniform light (image sides in Figure 11a).
A small amount of data as in CrackForest proposes a limited amount of general information that is
covered in other datasets (GAPs384, Crack500). As a result, the trained model fails to generalize the
global context and is not able to distinguish “unseen” objects from pavement defects, although it
might be enough to fit the model to the same dataset (make it perform well in the same dataset’s test
part). In a few studies [41,55,61], models were pretrained with additional data (or only pretrained the
encoding part from segmentation models). The advantage of such weight reuse might be twofold:
Faster model training (converging) on the new data, and the ability to improve the generalization and

87



Sensors 2020, 20, 2557

overall prediction performance by introducing more various data with correct labels (as is shown in
the comparison table of [45] with models induced with other datasets). We took a similar strategy in
this investigation. First, all datasets were mixed for initial network weight training. To equalize every
datum from every set, the CrackForest set was additionally augmented by brightness correction and
flipping, as was described in Section 3. Models were trained on a mixed dataset for 15 epochs with
a 0.001 learning rate at the start, and scheduled reduction by half every 5 epochs. In every epoch, 5636
steps/iteration with a minibatch of 4 were made. Data was shuffled on every epoch start. The model’s
performance, trained on a mixed dataset, on the testing sample can be seen in Figure 11d. After training
with mixed data, every neural network architecture was trained with every dataset individually for
15 additional epochs with a 0.0005 learning rate at the beginning with a reduction by half every 5
epochs. Only values from the neural network output with a higher or equal to 50% confidence rate
were taken into consideration. The best performing solution (according to Dice score) from every
training were evaluated with accuracy, recall, precision, Dice score (same formula can be expressed as
in Equation (2)), and intersection over union (IoU) measures:

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

Recall =
TP

TP + FN
, (6)

Precision =
TP

TP + FP
, (7)

Dscore =
2 ∗ Precision ∗Recall
Precision + Recall

, (8)

IoU =
GroundTruth ∩ Prediction
GroundTruth ∪ Prediction

, (9)

where TP is the true positive (correct detection of pixels belonging to labeled defect area); TN is
the true negative (nondefective background pixels correctly recognized by detector); FP is the false
positive (wrongly detected defect pixels); FN is the false negative (defect pixels undetected by detector);
GroundTruth is the labeled image pixels. Precision is the proportion of false alarms; Recall is the
proportion of undetected defect pixels; and Dscore denotes the Dice score or harmonic mean of the
precision and recall.
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is the proportion of undetected defect pixels; and D  denotes the Dice score or harmonic mean of 
the precision and recall. 
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Figure 11. Prediction on the test sample from the GAPs384 dataset. (a) Image; (b) ground truth; (c) 
full prediction output of the model trained with the CrackForest dataset; (d) full prediction output of 
the model trained with the mixed dataset. 

5. Results 

As in the previous section, at the beginning, models were trained on the mixed dataset, and 
individually on every separate dataset. The best-performing solutions of models pretrained and 
additionally trained on the specific dataset Dice score are shown in Figure 12. Each pretrained model 
weight was the same for every set. 

Figure 11. Prediction on the test sample from the GAPs384 dataset. (a) Image; (b) ground truth; (c) full
prediction output of the model trained with the CrackForest dataset; (d) full prediction output of the
model trained with the mixed dataset.

5. Results

As in the previous section, at the beginning, models were trained on the mixed dataset,
and individually on every separate dataset. The best-performing solutions of models pretrained and
additionally trained on the specific dataset Dice score are shown in Figure 12. Each pretrained model
weight was the same for every set.

As shown above, the Dice score was improved (in the case of each dataset) with additional training
dedicated to the corresponding dataset. The increase in score might be related to the annotation
quality or to the experts’ knowledge (that labeled datasets) of problem interpretability. In Figure 8b,
Figure 9b, Figure 10b, and Figure 11b show that the details and precision in the sample labels varied.
Even in a few annotations from the same dataset (GAPs384, Figures 10b and 11b), the manner of
pavement labels might be different. The label in Figure 11b was quite thicker than that in Figure 10b.
Training on the mixed dataset in this case possibly ended up fitting the prediction style more or less
in favor of one expert (annotation style, such as precision, label line thickness, and other marking
properties introduced in specific data sample annotations). Overall, training on the mixed dataset does
not highlight a significance in the individual datasets using different architecture neural networks.
The increase in Dice was noticeable in most of the cases after short additional training on the individual
dataset (Figure 12a–c). Taking U-Net as a baseline for comparison with other models, it is prominent
that it has been surpassed by any other architecture. Models induced with a residual connection
(ResU-Net) had a slight increase in the Dice score. A more noticeable change can be seen in the
GAPs384 dataset that might be related to the data complexity because this dataset introduced more
samples with extraneous objects, such as those described in Section 3. Moreover, a big challenge in
this particular case is illumination. GAPs384 data require a more powerful model solution for a score
increase. Even a larger improvement could be seen by adding an atrous spatial pooling module (ASPP)
to the bottleneck of the model. The exact place of addition can be seen in Figure 3. As was described in
Section 2, we used two types of links in the ASPP module (Figure 6a,b). Models induced with residual
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connections and atrous spatial pyramid pooling showed a prediction–performance improvement in the
Dice score in all datasets (ResU-Net + ASPP and ResU-Net + ASPP_WF architectures). Models with
different types of connections (parallel and Waterfall) in the ASPP part differently favored individual
datasets. The biggest increase (from the baseline) could be seen in the GAPs384 set, while the Dice score
changed from 0.5448 (U-Net) to 0.5786 (ResU-Net + ASPP). Additionally, we added attention gates
(AG) to the ResU-Net + ASPP and ResU-Net + ASPP_WF architectures. However, this enhancement
did not always deliver better results. In the CrackForest dataset, the ResU-Net + ASPP + AG and
ResU-Net + ASPP_WF + AG neural networks yielded lower results than those of the models without
AG modules. On the contrary, the Dice score of the ResU-Net + ASPP + AG architectures surpassed
that of the ResU-Net + ASPP in the Crack500 and GAPs384 datasets, and with GAPs384 data, ResU-Net
+ ASPP + AG achieved the top score.Sensors 2020, 20, x FOR PEER REVIEW 11 of 20 
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All measured parameters are given in Table 2, with the highest scores in bold. Accuracy does
not represent the prediction performance well because the pavement defects in the image were small,
and models performed well by correctly recognizing the background (the biggest part of the image).
Intersection over union (IoU) corresponded directly to the Dice score: Models with the highest Dice
score delivered the highest IoU. The importance of the false positive (FP) and false negative (FN) costs
is described by the recall and precision, respectively. None of these parameters had the top value
with U-Net, but in few cases (recall in CrackForest and Crack500 datasets, precision in all datasets),
the baseline produced better results than those of some other architecture. Nonetheless, the most
important parameter in this investigation was the Dice score, which takes into consideration both
recall and precision (as described in Equation (8)).
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Table 2. Each model’s best weight-prediction results on individual datasets.

CrackForest Accuracy Recall Precision IoU Dice

U-Net (Baseline) 0.9898 0.7465 0.6803 0.5489 0.7015
ResU-Net 0.9901 0.7391 0.6928 0.5546 0.7058
ResU-Net+ASPP 0.9902 0.7474 0.692 0.5603 0.7121
ResU-Net + ASPP + AG 0.9899 0.7271 0.6906 0.5442 0.6969
ResU-Net + ASPP_WF 0.9900 0.7494 0.6896 0.5595 0.7114
ResU-Net + ASPP_WF + AG 0.9896 0.7695 0.6715 0.5575 0.7106

Crack500 Accuracy Recall Precision IoU Dice

U-Net (Baseline) 0.9845 0.7033 0.6996 0.5282 0.6803
ResU-Net 0.9846 0.7002 0.7083 0.5306 0.6819
ResU-Net + ASPP 0.9848 0.6944 0.7152 0.5311 0.6820
ResU-Net + ASPP + AG 0.9841 0.7386 0.6808 0.5389 0.6893
ResU-Net + ASPP_WF 0.9843 0.7524 0.6789 0.5430 0.6931
ResU-Net + ASPP_WF + AG 0.9832 0.7829 0.6447 0.5373 0.6882

GAPs384 Accuracy Recall Precision IoU Dice

U-Net (Baseline) 0.9953 0.4798 0.7231 0.3925 0.5448
ResU-Net 0.9954 0.4957 0.7134 0.4038 0.557
ResU-Net + ASPP 0.9948 0.5754 0.6285 0.4224 0.5786
ResU-Net + ASPP + AG 0.9951 0.5526 0.6675 0.4264 0.5822
ResU-Net + ASPP_WF 0.9955 0.5459 0.7232 0.4179 0.5696
ResU-Net + ASPP_WF + AG 0.9955 0.5251 0.7143 0.4162 0.5693

Differences in segmentation performance may vary depending on the neural network architectural
designs and datasets. The complexity of the analyzed datasets is quite severely altered. Improvements
of the Dice scores in different cases are more significant: In GAPs384 between U-Net and ResU-Net
+ ASPP + AG, and in CrackForest between U-Net and ResU-Net + ASPP. While it can be the main
indicator of performance, it is hard to only interpret the segmentation quality from statistical parameters.
Representation of the properties, such as the ability to extract a particular feature, for example, narrow
defects, can be explained through a visual investigation of the prediction results. As Figures 13–15
show, distinctness in pavement defect extraction is noticeable between the baseline (U-Net) and the
best-performing solution. The highlight of the better-performing models is the ability to extract
hard-to-see indistinctive cracks that the baseline solution fails to do. As it can be seen in Figures 13c, 14c
and 15c, U-Net model falls behind in extremely narrow cracks detection compared with models with
residual connection and ASSP module (and AG module in Figure 15d) shown in Figure 13d, Figure 14d,
Figure 15d. Segmentation continuity is a feature of better detail extraction. In the bottom of Figure 13c
and in whole Figure 14c can be noticed that U-Net architecture cannot make continues pavement crack
prediction in more complicated cases, while the best-performing solutions shown in Figures 13d and
14d do segmentation with less flaws. More detailed defect extraction is performed by ResU-Net +

ASPP + AG model (Figure 15d) compared with the baseline architeture solution (Figure 15c).

91



Sensors 2020, 20, 2557

Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 

 

of Figure 13c and in whole Figure 14c can be noticed that U-Net architecture cannot make continues 
pavement crack prediction in more complicated cases, while the best-performing solutions shown in 
Figures 13d and 14d do segmentation with less flaws. More detailed defect extraction is performed 
by ResU-Net + ASPP + AG model (Figure 15d) compared with the baseline architeture solution 
(Figure 15c). 

  
(a) (b) 

  
(c) (d) 

Figure 13. U-Net (baseline) and best-performing solution—ResU-Net + ASPP predictions on 
CrackForest dataset sample. (a) Image, (b) label, (c) U-Net prediction, (d) ResU-Net + ASPP 
prediction. Segmentation differences significant around image bottom and top left. ResU-Net + ASPP 
architecture delivered more consistent segmentation. 
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Figure 13. U-Net (baseline) and best-performing solution—ResU-Net + ASPP predictions on
CrackForest dataset sample. (a) Image, (b) label, (c) U-Net prediction, (d) ResU-Net + ASPP prediction.
Segmentation differences significant around image bottom and top left. ResU-Net + ASPP architecture
delivered more consistent segmentation.
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Figure 15. U-Net (baseline) and best performing solution—ResU-Net + ASPP + AG predictions on 
GAPs384 dataset sample. (a) Image, (b) label, (c) U-Net prediction, (d) ResU-Net + ASPP + AG 
prediction. ResU-Net + ASPP + AG architecture could capture more details compared to U-Net. 

While inducing neural networks with additional modules, such as residual connection, ASPP, 
or AG, we increased the computational complexity (Figure 16a). Extensions enlarged architectures 
by raising the number of their parameters and by affecting the required time to make the prediction 
(Figure 16b), taking a bit longer to train the model (Figure 16c). Additional residual connections in 
U-Net did not make a significant difference, although an increase in the number of parameters was 
made more than twice by introducing the ASPP module. By adding it in the latent space (bottleneck, 
Figure 3), we also increased the number of parameters: 256 of 3 × 3 feature kernels in three parallel 
convolutional operations (Figure 6) for an eightfold downscaled input dimension. However, the 
number of parameters is not proportional to the computational performance (Figure 16b), and bigger 
solutions (induced with residual connection and ASPP) took only from 2.55 to 3.27 milliseconds 
longer to predict in the ResU-Net + ASPP_WF and ResU-Net + ASPP + AG configurations, 
respectively, compared with U-Net on a 320 × 320 px grayscale-image patch. Inducing models with 

Figure 14. U-Net (baseline) and best-performing solution—ResU-Net + ASPP_WF predictions on
Crack500 dataset sample. (a) Image, (b) label, (c) U-Net prediction, (d) ResU-Net + ASPP_WF prediction.
Quality of continuous defect segmentation noticeable in whole image in predictions (c, d). ResU-Net +

ASPP_WF segmented narrow pavement cracks.
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prediction. ResU-Net + ASPP + AG architecture could capture more details compared to U-Net.
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While inducing neural networks with additional modules, such as residual connection, ASPP,
or AG, we increased the computational complexity (Figure 16a). Extensions enlarged architectures
by raising the number of their parameters and by affecting the required time to make the prediction
(Figure 16b), taking a bit longer to train the model (Figure 16c). Additional residual connections in
U-Net did not make a significant difference, although an increase in the number of parameters was
made more than twice by introducing the ASPP module. By adding it in the latent space (bottleneck,
Figure 3), we also increased the number of parameters: 256 of 3 × 3 feature kernels in three parallel
convolutional operations (Figure 6) for an eightfold downscaled input dimension. However, the number
of parameters is not proportional to the computational performance (Figure 16b), and bigger solutions
(induced with residual connection and ASPP) took only from 2.55 to 3.27 milliseconds longer to predict
in the ResU-Net + ASPP_WF and ResU-Net + ASPP + AG configurations, respectively, compared with
U-Net on a 320 × 320 px grayscale-image patch. Inducing models with attention gates did not affect
the number of parameters significantly either. Figure 7 shows that it consisted of lightweight 1 × 1
convolutions that did not produce a large computational overhead for the model.
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architecture in each dataset; the results are given in Table 3. 

A small allowed error of two pixels significantly boosted the segmentation performance, helping 
to ignore the slight imprecision appearing on the edge of the label (Figure 17). Increasing the tolerance 
to up to 5 pixels did not make as big an improvement as that of two pixels, although it might depend 
on the image resolution and detail complexity. In the dataset, when containing higher-resolution 
images (Crack500 or GAPs384), the Dice score rise is higher. Comparing our results on CrackForest 
with scores proposed by another (Table 1), our used solution was in first place with the zero- and 
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since the CrackForest dataset is not divided into training and testing parts, and forming them 
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Figure 16. (a) Number of parameters, (b) prediction computational performance (duration in
milliseconds) on a grayscale 320 × 320 px size image, and (c) training time per iteration (duration in
milliseconds) for the minibatch of four grayscale 320 × 320 px images of each architecture. Performance
evaluation and training made with Nvidia 2070S GPU.

Furthermore, the authors in [14] noted that a certain pixel tolerance can be introduced to cope
with annotation inaccuracy. In pavement defect labeling, it is hard to define crack boundaries in
a complex pattern. As can be seen in Figure 11a,b, Figure 13a,b, Figure 14a,b, and Figure 15a,b,
variations in problem interpretation may seem different in different datasets, and crack label thickness
can be subjective (Figure 17). This can cause severe deterioration in statistical performance evaluation,
especially considering that a crack itself can be narrow, and its area, compared to the background,
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is small. We introduced a two- and five-pixel tolerance to the statistical evaluation of the best-performing
architecture in each dataset; the results are given in Table 3.

A small allowed error of two pixels significantly boosted the segmentation performance, helping to
ignore the slight imprecision appearing on the edge of the label (Figure 17). Increasing the tolerance to
up to 5 pixels did not make as big an improvement as that of two pixels, although it might depend on
the image resolution and detail complexity. In the dataset, when containing higher-resolution images
(Crack500 or GAPs384), the Dice score rise is higher. Comparing our results on CrackForest with
scores proposed by another (Table 1), our used solution was in first place with the zero- and five-pixel
tolerance, and second with the two-pixel tolerance. It is hard to accurately compare results since the
CrackForest dataset is not divided into training and testing parts, and forming them randomly can
lead to a specific sample correlation favoring the proposed solution.
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In this paper, we extended and improved our previous work [26] on pixelwise pavement crack 
detection by using a convolutional neural network. An investigation of road crack segmentation was 
scaled up by introducing additional datasets, Crack500 and GAPs384. We also demonstrated 
architectural improvements to the baseline model, U-Net, which boosted the prediction performance. 
Network structure enhancements with residual connections, atrous spatial pyramid pooling (ASPP), 

Figure 17. (a) Label and (b) prediction of U-Net rendered on images from CrackForest and zoomed
regions. Green, overlap of label and prediction; red, prediction pixels; yellow, prediction pixels.

Table 3. Performance evaluation with the 0, 2-, and 5-pixel tolerance on the baseline (U-Net) and
best-performing architectural solutions in every dataset.

CrackForest Tolerance, px Accuracy Recall Precision IoU Dice

U-Net (Baseline) 0 0.9898 0.7465 0.6803 0.5489 0.7015

U-Net (Baseline) 2 0.9983 0.9797 0.9194 0.9486

U-Net (Baseline) 5 0.9990 0.9994 0.9411 0.9694

ResU-Net + ASPP 0 0.9900 0.7494 0.6896 0.5595 0.7114

ResU-Net + ASPP 2 0.9986 0.9879 0.9280 - 0.9570

ResU-Net + ASPP 5 0.9991 1.0000 0.9472 - 0.9729

Crack500 Tolerance, px Accuracy Recall Precision IoU Dice

U-Net (Baseline) 0 0.9845 0.7033 0.6996 0.5282 0.6803

U-Net (Baseline) 2 0.9957 0.9403 0.8759 - 0.9070

U-Net (Baseline) 5 0.9982 0.9949 0.9323 - 0.9626

ResU-Net + ASPP_WF 0 0.9841 0.7386 0.6808 0.5389 0.6893

ResU-Net + ASPP_WF 2 0.9960 0.9309 0.9017 - 0.9161

ResU-Net + ASPP_WF 5 0.9986 0.9932 0.9481 - 0.9702
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Table 3. Cont.

GAPs384 Tolerance, px Accuracy Recall Precision IoU Dice

U-Net (Baseline) 0 0.9953 0.4798 0.7231 0.3925 0.5448

U-Net (Baseline) 2 0.9979 0.9742 0.6799 - 0.8009

U-Net (Baseline) 5 0.9986 1.0000 0.7772 - 0.8746

ResU-Net + ASPP + AG 0 0.9951 0.5526 0.6675 0.4264 0.5822

ResU-Net + ASPP + AG 2 0.9981 0.9438 0.7280 - 0.8219

ResU-Net + ASPP + AG 5 0.9988 0.9997 0.8127 - 0.8966

6. Discussion

In this paper, we extended and improved our previous work [26] on pixelwise pavement crack
detection by using a convolutional neural network. An investigation of road crack segmentation
was scaled up by introducing additional datasets, Crack500 and GAPs384. We also demonstrated
architectural improvements to the baseline model, U-Net, which boosted the prediction performance.
Network structure enhancements with residual connections, atrous spatial pyramid pooling (ASPP),
and attention gates (AG) were experimentally trialed on three different and one mixed datasets. In every
dataset case model, the configuration with residual connections and ASPP module outperformed
U-Net and ResU-Net. Moreover, the Waterfall connection type in the ASPP module did not favor
every dataset. The top result with a particular Waterfall ASPP decision was received in the Crack500
data. The model with the AG module only delivered the highest Dice score in the GAPs384 dataset.
This architecture (ResU-Net + ASPP + AG) showed the biggest improvement compared to the baseline
(U-Net), with a Dice score improvement from 0.5448 to 0.5822, and with a prediction time on a 320 × 320
greyscale image of 12.94 and 16.21 milliseconds, respectively, using Nvidia 2070S GPU. The introduced
pixel tolerance significantly boosted the statistics, up to 0.8219 with two pixels and 0.8966 Dice score,
with five pixels of allowed error. Visual segmentation inspection revealed that models induced with
residual connections and ASPP modules (and AG modules in few cases) tended to capture more
complicated details in pavement patterns, and make segmented cracks more continuous.

Neural network training on a mixed dataset and testing on separate datasets did not deliver
consistent results with different architectures. Short additional training on the targeted dataset using
pretrained (on mixed data) weights gave a better Dice score. Considering that all three datasets were
annotated by different experts, the model could tend to fit one or another problem interpretation
presented in the labels that might not favor all datasets. From the described data, the annotation style
and details varied. Training only on a limited number of samples (as was described by using the model
trained with CrackForest on GAPs384) might not be good at generalization.

In a future work, we are considering revising annotations and introducing even more different
data for the problem. As collecting and labeling data samples is time demanding and requires
precision, synthetic data might also be introduced in the model learning process. While traditional
image-processing methods, such as rotation, brightness correction, and noise addition, can be limited
in complicated cases, techniques, such as generative adversarial networks (GANs) or variational
autoencoders (VAEs), can be engaged to deal with the particular problem. This showed promising
results in recent studies [62,63], and it might be a possible solution for the analyzed task.
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Abstract: Deployment of efficient and cost-effective parking lots is a known bottleneck for the
electric vehicles (EVs) sector. A comprehensive solution incorporating the requirements of all key
stakeholders is required. Taking up the challenge, we propose a real-time EV smart parking lot model
to attain the following objectives: (a) maximize the smart parking lot revenue by accommodating
maximum number of EVs and (b) minimize the cost of power consumption by participating in a
demand response (DR) program offered by the utility since it is a tool to answer and handle the electric
power usage requirements for charging the EV in the smart parking lot. With a view to achieving
these objectives, a linear programming-based binary/cyclic (0/1) optimization technique is developed
for the EV charge scheduling process. It is difficult to solve the problems of binary optimization
in real-time given that the complexity of the problem increases with the increase in number of EV.
We deploy a simplified convex relaxation technique integrated with the linear programming solution
to overcome this problem. The algorithm achieves: minimum power consumption cost of the EV
smart parking lot; efficient utilization of available power; maximization of the number of the EV to
be charged; and minimum impact on the EV battery lifecycle. DR participation provide benefits by
offering time-based and incentive-based hourly intelligent charging schedules for the EV. A thorough
comparison is drawn with existing variable charging rate-based techniques in order to demonstrate
the comparative validity of our proposed technique. The simulation results show that even under no
DR event, the proposed scheme results in 2.9% decrease in overall power consumption cost for a
500 EV scenario when compared to variable charging rate method. Moreover, in similar conditions,
such as no DR event and for 500 EV arrived per day, there is a 2.8% increase in number of EV charged
per day, 3.2% improvement in the average state-of-charge (SoC) of the EV, 12.47% reduction in the
average time intervals required to achieve final SoC.

Keywords: intelligent charging; demand response; electric vehicle; linear programming; optimization;
smart parking; smart grid
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1. Introduction

The conventional transportation system is producing nearly 14% of total worldwide greenhouse
discharges, which is estimated to increase further 50% by 2030 [1]. Air pollution alone is one of
the major extraneous costs of transportation, especially as it directly influences the health of local
inhabitants. The growing international desire for adopting environment-friendly technologies has
resulted in the acceptance and usage of alternate fuel vehicles that can be hybrid and battery-operated
electric vehicles (EVs). However, EVs have been unable to secure the confidence of customers and
acquire a large market share yet. This is mainly due to their technical and infrastructure limitations,
such as limited driving range and unavailability of charging facilities. Moreover, the resultant cost
considerations also deter potential customers. In order to further the public acceptance of EVs, it is
important to improve the EV infrastructure for all key stakeholders.

A significant aspect of these infrastructure requirements is the abundant availability of charging
points and charging stations. Charging places act as connection sources to the electrical grid for the EV,
and the place of powering up the batteries for EV drivers. However, a major challenge for existing
power systems will be to maintain demand response (DR) with the growing demand for electricity as a
result of an increased number of EV parking lots. Currently, how to manage the adaptability of EV use
and their charging without having a drastic impact on existing power grids is a contentious topic [2,3].
The recent advancements in control strategies and sensing visualize DR as an effective tool to help
address the issue of demand-supply mismatch in electric power grids. The DR program provides
customers with leverage to shift their electricity demand from peak hours to off-peak hours and as a
consequence, derive benefits in terms of lower electricity prices and financial incentives. In Refs. [4–6],
a number of DR programs were explored to lower the overall power usage of a household for load
shifting and curtailing the appliances of residential households during peak hours.

Modern utility grids need suitable candidates that can be involved in the DR programs for demand
curtailment of the grid in peak hours. The large-scale EV parking lots are one of the most suitable
solution due to following reasons: (a) by managing the accumulated electrical load of the parking
lot can act as a large-scale demand curtailment player in the power market and (b) the electrical
load flexibility of EV charging loads with adjustable and interruptible features can ensure that EV
charge scheduling can coordinate with the grid’s DR programs to satisfy all charging demand of
EVs, while fulfilling committed demand curbing for DR. In DR programs, the electricity tariffs are
usually dynamic in nature and may include day-ahead market pricing [7,8], real-time pricing [9,10] or
time-of-use structure of pricing [11]. Due to the adjustable features present in the EV charging load,
it is possible for EV smart parking lots to explore possibilities to execute both incentive-based and
price-based DR programs.

Therefore, in this paper, a real-time charge management system (CMS) is developed to charge EVs
parked in a smart parking lot by taking into consideration the advantages of DR programs. The EV
charging mechanism is optimized using the linear programming (LP) and convex relaxation techniques.
The objective of the CMS is to maximize the number of EVs that can be fully charged over a 24-h period
and minimize the cost of energy consumption by participating in different DR programs. Moreover,
the DR event will also curtail the total charging load of the smart parking lot. In the proposed CMS,
the on-off (binary) charging strategy is employed to solve the EV charging problem while considering
the state-of-health (SoH) of the EV battery and its C-rate. The C-rate is a measure of the rate at which a
battery is charge/discharged relative to its maximum capacity. Under the binary charging technique,
the EV attached to the charging pole will be charged at fixed maximum charging rate as per C-rate
equals to 1 C. Thus, in addition to consuming less time, it will also have minimal impact on the battery
health by fully utilizing the battery’s single charging cycle. However, the optimization of binary
charging decision for every EV is a non-trivial task because the scheduling of EVs is formulated as
a binary optimization task. The intelligent charging schedule can be determined using the generate
and test method, also known as exhaustive search. However, it is not recommended for real-time
implementation due to its computational expensive nature. Therefore, the problem is mitigated by
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developing a convex relaxation approach that is integrated with the LP, where near intelligent charging
scheduling is computed. Finding the intelligent charging schedule for EV is a non-convex problem due
to the high number of EV, and random arrival and departure times. Therefore, the binary constraint
in the problem related to the on-off charging strategy is relaxed to solve the problem as a convex
problem using LP. Thereafter, a modified mapping is used to convert the solution back to binary values.
This whole process is named as the simplified convex relaxation approach integrated with the LP.
More details about this process have been provided in Section 5. The main contributions of the paper
are as follows:

Modelling of a realistic EV smart parking lot by considering: (a) regular and random arrival and
departure times for EV; (b) different types of EV along with different battery capacities and charging
rates; (c) level-2 battery charging standard; and (d) EV battery efficiency and life cycle.

• First, an on-off (0/1) charging technique is used for the EV, i.e., an EV selected for charging
in a time interval will be charged at fixed maximum charging rate according to its level II
charge rate. Charging an EV at constant power may extend the battery’s service time. Secondly,
the communication overheads will be small as only a small subset of the EV will be required to
contact and it would be more feasible to apply on/off charging scheme. However, the target is to
charge maximum EV with the minimum charging price possible. Whereas, the scheduling of the
EV for intelligent charging using the on-off/cyclic technique is a binary optimization issue that is
computationally extensive to be resolved at run-time if the number of EV will increase. In order
to address this issue, an EV charge scheduling technique named simplified convex relaxation
approach integrated with the LP is utilized.

• The DR program can lower the cost of electricity for EV parking lots; therefore, DR events are
introduced in the on-off charging technique. The on-off charging scheme not only respond to the
variable electricity prices but also responds well for demand curtailment events from the grid.

• Second, a variable charging rate technique for the EV charging is tested while having fixed capacity
limit of the EV charging station, i.e., all the charging poles in the EV parking lot are used to
accommodate all arrived EVs. However, the drawbacks of variable charging rates are: (a) charging
EVs at constant power could extend the service time of the battery, which is a disadvantage in
variable charging rate [12] (b) variable charge rate will extend the charging time of the battery.

• A thorough comparison of both binary charging scheme and variable charging scheme is conducted
based on maximum revenue generation, energy consumption cost, number of EVs charging in a
daytime, and the impact on the battery life of the EVs.

The paper is organized as follows: A detailed literature review is presented in Section 2, the system
model and optimization technique are discussed in Section 3, Section 4 comprises of results, discussions,
and comparative analysis. Finally, the paper is concluded in Section 5 along with some proposals for
future research directions.

2. Literature Review

In the past, researchers have developed EV smart parking lot models and applied numerous
optimization techniques in order to schedule EV charging. The objectives of all such EV scheduling
techniques in EV smart parking lots are at least one of the following: (a) maximize the number of EVs
charged in an allocated time [13]; (b) maximize the smart parking lot profit [14]; (c) minimize the EV
owner’s charging cost [15]; and (d) minimize the peak demand by participating in DR [16].

In Refs. [13], the authors address the problem of EV charging schedules from the perspective
of smart parking lot operator and EV owners. Through the utilization of quadratic problems,
the optimization objectives were to maximize the number of EVs charged and the overall revenue of
the smart parking lot while minimizing the EV charging costs for the EV owners. Similarly, in Ref. [17],
game theory is used to schedule the EV charging to maximize the utilization of the smart parking lot
by increasing the number of EVs to be charged. Accordingly, a greater number of EV owners can be
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accommodated. However, the authors have not considered the stochastic features of electricity price
variations and the driving patterns of the EV. In Refs. [18,19], MILP and fuzzy linear programming
(FLM) are used, respectively, to maximize the smart parking lot profit by effectively optimizing the
charging schedule of the EVs. Similarly, in Ref. [20], a linear programming (LP) technique and dynamic
programming (DP) model are used, respectively, to maximize the smart parking lot profit and to
minimize the charging costs of EV owners. The problem with LP is how to simultaneously handle both
real number and integers; therefore, MILP is more suitable then LP. The DP lacks a general formulation
and every problem need to be addressed in its own way. Moreover, the DP consumes more memory
while storing the results of intermediate steps, which is not the case in MILP.

The DR program is an effective tool to minimize the cost of energy consumption while participating
at a different level of programs. Therefore, in Ref. [14], the authors introduced the participation of
EV smart parking lots in incentive-based and price-based DR programs along with the stochastic
programming optimization technique, with a view to maximizing the EV smart parking lot profit.
A similar technique with same the objective is used in Ref. [21] wherein the authors introduce smart
parking lot as an aggregator agent in the real-time DR market. The energy source is parked EVs in the
smart parking lot. Therefore, in Ref. [22], the EV smart parking lot is introduced as a multi-energy
system (MES) to enhance the profit of the smart parking lot and to improve the operational capability
of the MES.

Meanwhile, a graded control algorithm for EV charging across several aggregators is proposed
in [11] to minimize the peak load of the smart parking lot and electricity cost. The heuristics are
developed in such a manner that at first, the distribution system operator (DSO) will solve the charging
curve by participating in the DR program, after which the charging power will be allocated to each EV.
An algorithm based on quadratic programming (QP) is proposed in Ref. [15] to optimize the charging
schedule of EVs in order to minimize the charging cost of EV owners. Similarly, the DP is used in
Ref. [23] for EV charging schedules with an aim to maximize the smart parking lot profit and minimize
the EV owner’s charging cost. In Ref. [23], the DP is solved by assuming the parked EVs in the smart
parking lot as an aggregated battery bank. A simulation platform named Okeanos is proposed in
Ref. [24] based on a multi-agent DR program with an aim to get benefits from the optimal EV charging.
According to the authors, increasing the number of charged EVs and minimizing the electricity tariff
through the DR program can help optimize the EV charging schedule [24]. In Ref. [25] the authors
developed an algorithm to minimize the EV owner’s charging cost by combining a distributed DR
method and parked EVs as a storage capability. Similarly, using the LP algorithm, a distributed DR
method using the random usage pattern of EVs is proposed in Ref. [26]. The objective of the model is
to minimize the peak demand of the utility grid to minimize electricity cost. In Ref. [27], a real-time
EV charging scheme for EV smart parking lot is proposed using MILP that coordinates and priorities
requirements of EV charging and discharging powers with the power generation of the utility grid,
renewable energy sources (RES), energy storage system (ESS), and electricity price preferences.

In Ref. [28], a distributed EV charge management scheme is proposed from the perspective of
EV owners to minimize the wait time of EV charging on parking lots. The authors proposed a P/S
communication framework to utilize charging reservation effectively. In Ref. [29], another similar
work, the authors proposed a preempted charging recommendation system for the income EV using
V2V based reservation system with an aim to minimize on-the-move charge time and travelling time.
In our work, we incorporate the arrival and departure time of the EV to ensure no delay in service for
EV charging, while the advance reservation system for EVs does not lie in the scope of our work.

To the best of our knowledge and analyzing the previous studies described in this Section,
the proposed work is comprehensive in that the proposed scheme aims to use EV smart parking lots as
a service provider and a decision-maker in DR program to optimize the intelligent charging schedule of
parked EV. We developed an objective function that maximizes the number of EVs charged at a given
time. However, the selection process of EV charging involves EV charging priority, state-of-charge
(SoC), and electricity pricing preference; therefore, the advantages of the objective function are manifold,
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such as maximization of the smart parking lot profit, minimization of the EV charging cost for the EV
owners, minimization of the peak demand by participating in different DR programs, and minimized
impact on the state-of-health (SOH) of the EVs’ battery by charging the battery at the maximum and
fixed maximum charge rate as per level-II charging of EV at C-rate equals 1 C.

3. System Model

The system model for charging EVs in the EV smart parking lot is depicted in Figure 1. The model
includes the following: (a) main grid (utility grid); (b) the aggregated electric load of parked EV;
(c) charge management model (CMS); and (d) real-time DR power market. The primary source
of energy for the EV smart parking lot is the main grid. The LP and simplified convex relaxation
techniques are used to optimize the EV’ charge scheduling.
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3.1. Preliminary Discussion

In the future, as the demand for EV charging increases, smart parking lot operators will be
encouraged to install more charging points to incorporate more EVs. However, charging power
capacity is a hard constraint that will limit the number of EVs to be charged at a given point in
time. Moreover, variables, such as arrival time, departure time, EV battery capacity, driving cycle,
and maximum charge rate of any EV depend on the vehicle type and manufacturer. Therefore,
an optimized EV charging strategy is needed to control and manage the charging capacity of the
smart parking lot in order to provide charging services to a large number of customers by taking
into consideration the departure time of the EVs. Moreover, for the purpose of avoiding maximum
capacity overload, a charging priority needs to be determined for the parked EVs to ensure fair
charging preferences and to provide enough charging for an EV before departure time. Charging all the
parked EVs simultaneously can overburden the utility grid due to the maximum power consumption
capacity cap imposed on the smart parking lot. However, by using an intelligent EV charge scheduling
algorithm, the peak load demand can be managed, delayed, or optimized by taking into consideration
the departure time of the EV. This technique can make EV smart parking lots good candidates as
aggregated agents in the DR program. Therefore, the EV smart parking lot will be suitable for the
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day-ahead electricity pricing tariff by managing their electric load throughout 24-h. Considering
all the aforementioned attributes, the proposed CMS is designed in a manner that can optimize the
EV charging schedule by managing the request of the DR program using a day-ahead electricity
pricing tariff.

As illustrated in Figure 1, the CMS establishes two-way uninterruptable communication between
the utility grid and the smart parking lot by sharing the electricity load curve with the grid and
optimizing the scheduling of the parked EVs in accordance with the DR requirement of the grid.
Moreover, the CMS computes the total electricity consumption cost. Therefore, the objective of the
CMS is to manage the DR curve for the smart parking lot. The CMS stores the arrival time of each
EV parked at the charging station to optimize the charging schedule of each parked EV. Moreover,
the driver needs to enter the departure time and charge ranking on the smart parking station pole.
Furthermore, the CMS computes the charge rate for each parked EV as the maximum charging rate
varies for different make and model of the EV. Therefore, the idea behind the optimized CMS is to
charge the parked EVs at fixed charge rates or halt the charging considering the departure time of the
EVs. In this process, there must be an increase in the count of the number of fully charged EV during
the whole day.

The motivation to participate in the DR program initiated by the utility grid is the demand
flexibility of the charging loads (EVs) in the smart parking lot. The DR programs can be either fixed or
time varying. The demand reduction curve programmed by the smart parking lot relies on the DR
proceedings that include the fruitful bids processed in the day-ahead environment for the bidding of
the required demand profile.

3.2. EV Charge Scheduling Technique

Let P denote the number of charging poles to offer charging facility for the EVs that have arrived
in the EV smart parking lot. The CMS will develop a real-time (0/1) cyclic optimized charging schedule
technique for the EVs attached to the P charging poles. The arrival and departure of the EVs in the smart
parking lot is a continuous process; however, a sampling interval St is taken for the decision-related
propose of the real-time algorithm. The CMS will optimize the EV charging schedule after every St

time interval. Therefore, the 24 h in a day are divided into X time intervals such that X = T/St.
If an EV is attached to the pth charging pole at a real-valued time interval tarr

p , an enrolling status will
appear, and the charging pole is considered as being triggered. A binary variable δx

p will determine the
connection state for each pth charging pole at the xth time interval, where p represents the number of
charging pole p = 1, . . . , P and x is the number of time interval x = 1, . . . , X. The variable δx

p = 1 if the
pth charging pole is connected to an EV; otherwise δx

p = 0. Given that the daytime is divided into X time
intervals, the arrival time interval of the EV attached to the pth pole is computed as: tarr

p /St. A rounding
with ceiling operator d.e is applied to select the lowest integer value as dnarr

p = tarr
p /Ste. The driver

is bound to insert the departure real-valued time. Similarly, let the departure time provided by the
driver at the pth charging pole be tdep

p . The departure time interval of the EV attached to the pth pole is

computed as: bndep
p = tdep

n /Stc. The floor rounding operator b.c is used to select the highest previous
integer value. Meanwhile, a binary variable kx

p is used to record the charging status of the attached EV.
If an EV attached to the pth pole in time interval x is charging, the variable kx

p = 1; otherwise kx
p = 0.

However, if δx
p = 1, then the kx

p can have values 0 or 1 depending on whether or not EV is charging, but if
δx

p = 0, then definitely the kx
p = 0. All the notations used in the system model are defined in Table 1.

As stated earlier, the purpose of the EV charging scheme is to maximize the number of EVs that
have been charged during the course of the entire day and to minimize the electricity cost paid to
the utility grid by participating in the DR program. Moreover, a valid charging priority scheme is
integrated with the optimization problem along with an electricity preference price.
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Table 1. Notations used in the System Model.

Notation Definition

Indices

p Index for charging pole changing from 1, . . . , P
x Index for the number of time interval changing from 1, . . . , X
I Index for all charging poles connected with EV at time interval x

Πx charging poles indices with respect to charging priority in descending order

Constants

P Total number of charging poles
St Sampling Interval
X Total Number of Time Intervals

tarr
p Arrival time of an EV attached to pole p

narr
p Real-valued arrival time interval of the EV attached to pole p

tdep
p Departure time of an EV attached to pole p

ndep
p Real-valued departure time interval of the EV attached to pole p
γx

p Current State-of-Charge of the EV attached to the pole p
γmin, γmax Minimum and maximum boundary limit for State-of-Charge

Ccap
p Maximum charging capacity of the EV’s battery

Ux
p Total time intervals required for the charging of EV attached to pole p

ωp Rank function value of every EV attached to the pole p
Zmax

p Maximum charging rate of an EV attached to the pole p
βmin, βmax Lowest and highest electricity rates

Ztotal Total power capacity bound on EV parking lot
Zmax

p Maximum charging power drawn by the EV attached to the pole p
Ccap

p Maximum energy storing capacity of the EV attached to the pole p
η Charging efficiency of the EV

Binary Variables

δx
p 1, if an EV is attached to pole p at time interval x and 0 otherwise

kx
p 1, if an EV is attached to pole p at time interval x is charging and 0 otherwise

Continuous Variables

rx
p Weighted charging priority of EV attached to pole p at time interval x
αx

p Preference level of pth charging pole to charge attached EV
βx Electricity rate at each time interval x

Zx
DR Demand Curbing of demand response event
k̂y

p Real-valued charging decision variable

3.3. Electric Vehicle Charging Priority and Preference

A weighting parameter is formulated in order to compute the charging priority of an EV attached
to the p-th charging pole. The parameter contains the capacity of the p-th pole to refill the EV battery
and the remaining time to charge the battery. The EV battery’s state-of-charge (SoC) attached to the p-th
pole in time interval x is denoted as γx

p and Ccap
p represents its battery capacity. Therefore, the charging

time intervals required to charge the EV is computed as follows at the x-th time interval:

Ux
p= ndep

p − x. (1)

We define a variable rank function ωp ∈ [0, 1] for every EV that comes for charging at the smart
parking lot. Although a higher rank will be given to the executive customers, they will be paying
higher membership fees. Therefore, the weighted charging priority of every EV attached to the pth
charging pole during the xth time interval is computed as follows, irrespective of its been charged
or not:
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rx
p =



ωpCcap
p (γmax−γx

p)
Zmax

p Ux
p

, i f δx
p = 1;

0, i f δx
p = 0.

(2)

In Equation (2), the term ωpCcap
p

(
γmax − γx

p

)
represents the battery capacity that needs to be filled

during the stay of the parked EV up to a maximum limit of the SoC γmax. This term also implies that an
EV with a lower SoC will have greater needs for charging. In the proposed work, if an EV attached to
the p-th charging pole is selected to be charged, then it will be charged at the maximum charging rate
Zmax

p of that EV. Therefore, the denominator term of the Equation (2) denotes the maximum charging
energy that is provided to the EV. If the value of Ux

p is low, the EV must be charged on priority before
the possible departure time. The charging priority in Equation (2) is a normalized factor (rx

p ∈ [0, 1])
because the nominator is divided by a maximum value. If an EV departs from the smart parking lot
after the charging process, then the p-th charging pole is set to be free by setting δx

p = 0 along with
weighted charging priority factor rx

p = 0. The charging pole will be re-activated again by setting δx
p = 1,

if another EV arrives and re-attaches to the p-th charging pole and its corresponding weighted charging
priority factor rx

p will be computed again using Equation (2).
It is necessary to manage the charging demand of the parked EVs within the desired time

period; however, maximizing the smart parking lot profit is another important factor that must not
be disregarded. Therefore, maximizing the electricity bill by utilizing dynamic electricity pricing is
another important factor. Moreover, the maximum number of EVs should be charged at the time
of low electricity pricing to minimize the power consumption cost. In order to model these factors,
we assume that βmax and βmin are the highest and lowest rates of electricity, respectively quoted by the
utility grid for the EV smart parking lot. Therefore, the αx

p is defined as an additional parameter to
represent the preference level of the pth charging pole to charge the associated EV for the electricity
rate βx at the xth time interval. The parameter is defined as:

αx
p=

(βmax − βx)

(βmax − βmin)
, ∀ p = 1 . . .P, x = 1 . . .X. (3)

In Equation (3), the value of the parameter αx
p will be high when the electricity price is low and

vice versa. The denominator term is used to normalize the preference level as αx
p ∈ [0, 1].

4. Optimization Technique for Cyclic (On-Off) Scheduling of Electric Vehicles

The purpose of the EV’ charge scheduling technique is to manage the charging of all attached
EVs while keeping the maximum power consumption of the smart parking lot under maximum
permissible demand limit. The EVs selected for charging at any time interval x is based on the
weighted charging priority parameter rx

p and the preferred electricity rate parameter αx
p. We defined a

set I = {1, . . . , P} to record the indices number of all the charging poles connected to an EV at the time
interval x while compiling a set ∅x =

{
rx

1, rx
2, . . . , rx

P

}
that contains the record of the weighted charging

priority parameters of every EV attached to the charging poles at the x-th time interval. The purpose
of this record is to evaluate each charging pole one by one to observe the preference level of each
attached EV and prioritizing the EV with a high weighted charging priority number, while keeping
the total charging demand below the maximum available capacity limit, including the curtailment of
DR demand.

The purpose of the proposed optimization technique is to find the optimized set of EV to be
charged at xth time interval. Therefore, a descending order operator (Sort(.)) is applied to the set ∅x

along with its indices set I. The sorted charging pole indices with regard to the descending weighted
charging priority parameters are stored in a new set Πx. Therefore, we assign the highest priority to
the charging pole having the highest rx

p value because the charging poles indices set Πx are rearranged

108



Sensors 2020, 20, 4842

in the descending order and the poles will be selected for charging until the limit of power capacity is
reached. The set Πx is defined as:

Πx = Sort(I)
∣∣∣∅x (4)

The optimization of the EV charge scheduling is to enhance the number of EVs charged in a given
time interval. At the present q-th time interval, an objective function needs to be maximized that is
described as the product of weighted charging priority parameters ry

p and electricity price preference
level αy

p . The expression for the objective function is formulated as:

max
ky

p ,x=q,..,X

∑X

y=x

∑
p∈Πx ky

pry
pα

y
p (5)

In Equation (5), the binary variable kx
p represent the binary parameters to be optimized. The ideal

EV charge scheduling is intended to increase the count of the EVs selected for charging at the given time
interval as well as to reduce the electricity cost depending on the variable electricity rates governed by
the utility. While the EV attached to the p-th charging pole of the smart parking lot will occupy the
charging pole as per time intervals x ∈

[
narr

p , ndep
p

]
, the optimization of the EV charging arrangement

can be performed from the present q-th time interval till the day ends, such that x ∈ [q, X] to ease the
calculation. This is because it was evident that rx

p = 0, ∀ x ∈
[
ndep

p , X
]
, as mentioned in Equation (2).

Suppose Ztotal is the total power capacity bound offered to the smart parking lot for the EV
charging process, excluding the DR program, and let Zx

DR be the demand curbing for the DR event at
the given x-th time interval. The overall charging requirement is controlled by the demand boundary
limit

(
Ztotal −Zx

DR

)
at the given x-th time interval, such as:

∑

p∈Πx

kx
pZmax

p ≤ Ztotal −Zx
DR, x = q, . . . , X. (6)

It is ensured that the minimum energy requirement of an EV for the next travelling is fulfilled.
Therefore, the charging state for the EV being charged by the p-th charging section at the given x-th
time interval is controlled by the lower boundary γmin. Moreover, the SoC of the EV is constrained
by the upper boundary γmax to control overcharging. Assume η denotes the EV charging efficiency;
therefore, the constraints applied on the charging is written as follows:

γx
pCcap

p + ηZmax
p kx

pSt ≥ γminCcap
p , x = q . . .X; (7)

γx
pCcap

p + ηZmax
p kx

pSt ≤ γmaxCcap
p , x = q . . .X; (8)

Finally, the SoC of each EV’s battery for the next time interval is calculated as:

γx+1
p = γx

p +
ηZmax

p kx
pSt

Ccap
p

(9)

5. Simplified Convex Relaxation Methodology

The binary optimization function is derived in Equation (5) under the inequality constraints
Equations (6)–(8) and SoC update rule defined in Equation (9). In Equation (5), the binary variables
include kx

p ∈ {0, 1}, p = 1 . . .P, x = 1 . . .X; therefore, solving Equation (5) is a binary optimization
problem. However, the nature of binary search optimization is extensive and influenced by the
imprecation of dimensionality. Moreover, binary search is more complicated than linear search as
it overkills for a very small number of variables/elements or provides an infeasible solution for an
oversized set of variables, such as if the number of time slots X or the number of charging pole P.
Furthermore, the list of the variables needs to be sorted to use the binary search algorithm, which is often
unfeasible, specifically for the case when the number of variables is constantly increasing. In addition,
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the binary search algorithm only works for less-than inequality constraints. Therefore, based on
multiple testing, we concluded that the binary optimization problem defined in Equations (5)–(8) is
not solvable in real-time for the EV charging schedules. To address the aforesaid issue a simplified
convex relaxation technique is applied in this paper. The simplified convex relaxation technique is a
two-step process. First, the decision variable kx

p ∈ {0, 1} of Equation (5), which is binary in nature, is
now relaxed k̂x

p ∈ [0, 1] to allow the decision for the charging is real-valued. Therefore, the LP is used
to optimize the approximated newly defined optimization problem as follows:

max
k̂x

p,x=q,..,X

∑X

y=x

∑
p∈Πx k̂y

pry
pα

y
p (10)

The constraints for the objective function are defined as follows:
∑

p∈Πx k̂x
pZmax

p ≤ Ztotal −Zx
DR, x = q . . .X. (11)

γx
pCcap

p + ηZmax
p k̂x

pSt ≥ γminCcap
p , x = q . . .X; (12)

γx
pCcap

p + ηZmax
p k̂x

pSt ≤ γmaxCcap
p , x = q . . .X; (13)

Computationally, LP is an efficient technique and does not diverge with the increase in system
dimensionality and size. Therefore, we found LP more suitable for the scheduling of EV charging in
real-time in our application as all variables are linear [30]. However, a problem arises as to the relaxed
variable k̂x

p have fractional value output after LP optimization. With regard to the proposed on-off

charging strategy, for EV charging needs to convert back the fractional values of the k̂x
p to binary values

0 and 1. Therefore, in second step. A precise mapping is used to convert k̂x
p ∈ [0, 1] to kx

p ∈ {0, 1}.
Moreover, the constraints defined in Equations (6)–(8) also need to be ensured by the mappings.
In order to map fractional values to binary values, the charging poles indices set Ω =

{
1, . . . , Py

}
is

computed such that all the indices of pole having associated k̂x
p values between 0 and 1 are included

in set Ω, where Py ≤ P. Moreover, a new set is defined Γx =
{
k̂x

1, k̂x
2, . . . , k̂x

P

}
to store the values of the

variable kx
p for all the charging poles at the x-th time interval. The indices set Ω and variable set Γx are

used to apply descending order operation on the set Γx, such as:

Λx = Sort(I)
∣∣∣
Γx (14)

In order to generate kx
p all such poles having k̂x

p = 1 are automatically selected in the matrix kx
p.

The remaining assignment of binary values in the matrix kx
p involves the satisfaction of Equation (15).

∑
p∈Λx k̂x

pZmax
p ≤ Ztotal −Zx

DR, x = q, . . . , X. (15)

At each time interval x, the SoC of each EV is calculated using Equation (9) once the kx
p is computed.

6. Results and Discussions

6.1. Simulation Settings

In our simulations, we used P = 200 charging poles in the EV smart parking lot in order to
estimate the effectiveness of the proposed work. The overall time period T is said to be 24 h for the EV
charging and sampling time to measure the best and ideal EV charging scheduling, wherein St is fixed
to 10 min. Therefore, the overall time intervals are given by X = T/St = 144 min. The SoC for every EV
must have a defined higher (γmax) and lower (γmin) limits, selected as 0.99 and 0.66, respectively [31].
Moreover, the day-ahead electricity pricing tariffs of Houston (TX, USA) for the year 2019 are used in
the simulations [30].

EV arrival at the smart parking lot can be regular or random in nature; therefore, both types of
EVs are taken into consideration in the simulations to present more accurate designing of the EV smart
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parking lot, where the ratio for former to later is 6:4. The EVs having a regular presence in the smart
parking lot can be easily predicted owing to their comparatively fixed entering and leaving times.
A typical Gaussian model layout is used to generate synthetic data for both the entry and exit time of
the regular EV. The arrival time of the regular EV is generated using normal distribution having mean
(µarv ) and standard deviation (σarv ) as 6:00 am and 60 min, respectively, and is given by:

f (x) =
1

σ
√

2τ
e−

1
2 (

x−µ
σ )

2

(16)

The leaving times of the EV are also generated using the normal Gaussian distribution, where µdep,
and σdep are 5:00 pm and 120 min, accordingly. In the wake of unforeseeable visits, the random EV
have greater uncertain habits of utilizing the EV charging station. In order to simulate the irregular
consumption habits, the arrival and departure time of random EV are equally distributed across the
scheduling interval x ∈ [1, X] and the probability density function for gaussian uniform distribution is
given by:

f (x) =


1

2σ
√

3
f or− σ√3 ≤ x− µ ≤ σ√3

0 otherwise
(17)

Suppose E is the number of EVs arriving at the smart parking lot for charging during the whole
day which is, for the intervals x = 1, . . . , X. It is possible that any charging pole can be utilized more
than once to charge EVs throughout the day. Therefore, the charging pole can be reused instantly
after the admitted car finishes charging and departs from the smart parking station. The simulation is
conducted to model and observes different frequencies of EV arrival and for this purpose we used
the following settings for the number of EVs entering the smart parking lot during the whole day
E = [100–500] with a step of 100. However, the smart parking lot has limited charging poles that
are selected as P = 200; for this reason, the variable count of EV are simulated for the time interval
x = 1, . . . , X. The probability density function of a different number of EV (E) over the whole day
is plotted in Figure 2, which illustrates the occupied charging poles in each time interval. Notably,
as soon as the E increases to 300 and above, the charging station seems full for many time intervals
given that all 200 charging poles are occupied.

The electrical characteristics of recently manufactured EV and their usage in percentage in the
simulations are given in Table 2 [32]. Moreover, the level 2 battery charging mechanism is adopted in
the simulations [33]. The initial SoC of an arrived EV is considered as being equally distributed in the
interval [0.1–0.4], whereas charging efficiency η of each EV is set to be 0.9 [34]. The amount of EV with
membership levels of low, average, and high is set to be 20%, 50% and 30% of total numbers of EV (E),
respectively. The overall capacity threshold for the entire smart parking lot is set as Ztotal = 500 kW.
All simulations of our proposed model are carried out on a server SYS-7047GR-TRF system using
MATLAB optimization toolbox.

Table 2. Battery Capacity, Charge Rate and Division of Electric Vehicles.

EV Types Battery Capacity (kWh) Max. Charging Rate at
Level II (kW) Total Percentage of Cars (%)

Mitsubishi i-MiEV 16 3.6 10
Chevy Volt 18 3.6 10

Ford Focus Electric 23 6.6 15
Fiat 500E 24 6.6 15

Kia Soul EV 27 6.6 15
Mercedes B-Class 28 10 5

BMW i-3 33 7.7 5
Volkswagen E-Golf 36 7.2 10

Nissan LEAF 40 6.6 10
Tesla Model-S 100 10 5
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Figure 2. Number of Charging Pole Captured when (a) E = 100, (b) E = 200, (c) E = 300, (d) E = 400,
and (e) E = 500.

6.2. Simulation Results of Proposed On-Off Charging Scheme

The goal of the proposed algorithm is to fully charge any EV that arrives at the smart parking lot.
Since the SoC of each EV is observed before departure; therefore, the SoC of randomly selected five
EVs is plotted in Figure 3. In Figure 3, it can be observed that the EVs leaving the smart parking lot
are fully charged (SoC = 1). In addition, it is evident that the SoC of the EVs is gradually increasing
with charging in each time interval x. Similarly, In Figure 4, the consumed and the remaining power
of the grid is plotted for the scenario when E = 500. The Figure 4 provides evidence that during the
working hours, the overall capacity threshold for the entire smart parking lot reaches its limit and
many newly arrived EV must wait in a queue before getting an opportunity to be charged. Moreover,
the available power is underutilized for many time intervals. Furthermore, the Figure 5 shows that the
overall charging cost of the entire smart parking lot is computed separately in each time interval using
the number of EV that have been charged in that slot multiplied with the given day-ahead electricity
tariff. Moreover, we used flexible charging rates for EVs in this paper given that the day-ahead pricing
tariff is also variable. This mode of flexible charging is known as C-F mode [35].
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6.3. Simulation Results of Proposed Charging Scheme under Demand Response Events

In order to validate the performance of the proposed On-Off EV charge scheduling technique,
three DR events are generated and simulated with the same variable day-ahead electricity tariff
illustrated in Figure 5 [21–23]. The first DR event (DR1) is a long load shedding DR event generated
from 4:00 pm to 10:00 pm, the simulation results of which are presented in Figure 6a. The second
DR event (DR2) comprises of short load shedding events from 6:00 am to 9:00 am and from 5:00 pm
to 9:00 pm. The simulation results of the second DR event are illustrated in Figure 6b. Meanwhile,
the third DR event (DR3) contains two load shedding events that are variable in time, the simulation
results of which are depicted in Figure 6c. The results illustrated in Figure 6a–c shows that for all three
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DR events, the EV charge scheduling arrangement does not exceed the maximum power capacity
threshold limit for the total number of EVs (E) equals 500. Moreover, the inclusion of a parameter αx

p
presented in Equation (3) curtails the optimization process from scheduling the charging of EVs in the
high rate tariff intervals to minimize the overall charging cost. Therefore, the charging cost of all three
DR events was compared with no DR event and depicted in Figure 7, which shows that under the
influence of load shedding events, the overall charging cost for the smart parking lot has not increased
in spikes.
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The proposed charging mechanism is compared against the real-valued variable charging power
approach in order to verify the capability and effectiveness of the proposed technique. In variable
charging rate technique, the objective is to vary the charge rate of an EV attached to the charging
pole instead of charging the EV on fixed charging power, so that the charging efficiency of the EV
battery must not be affected in a given time interval and the maximum number of arrived EV can be
accommodated in the smart parking lot. This condition would be helpful if an empty smart parking
pole was available, but we were waiting for an EV to be moved out due to the maximum capacity
limit. Moreover, we drop the C-rate of the EV battery from 1 C to 0.5 C in a variable charging rate
scheme. For this reason, the EV will take a longer time to charge and stay in the smart parking lot
for longer time intervals. However, our proposed LP-based simplified convex relaxation approach is
found to outperforms the variable charging rate technique. The comparison is established based on the
percentage of electricity cost-saving, the number of fully charged EV over the entire day, and average
computational time. The aforementioned comparisons are tabulated for all DR events.

6.4. Comparative Analysis of Proposed IntelligentCharging Scheme with Variable Charging Rate Scheme

In Table 3, the power consumption cost comparison of the proposed algorithm is conducted with
the variable charging rate scheme for different numbers of EVs and all DR programs.

Table 3. Comparison of Power Consumption Cost ($/day) and saving (in percentage).

DR Event
Number of EV Arrived in a Day (E)

100 200 300 400 500

Variable
Charging

Rate

No DR 2694 5553 7079 7000 7245
DR1 2597 5776 7081 7343 7385
DR2 2661 5575 7495 7016 7153
DR3 2687 6068 6888 6926 6960

Proposed

No DR 2600 (↓3.6%) 5457 (↑1.7%) 6655 (↓5.9%) 6668 (↓4.7%) 7028 (↓2.9%)
DR1 2558 (↓1.5%) 5481 (↓5.1%) 6855 (↓3.1%) 7077 (↓3.6%) 7136 (↓3.3%)
DR2 2564 (↓3.6%) 5476 (↓1.7%) 6903 (↓7.8%) 6928 (↓1.2%) 6800 (↓5.0%)
DR3 2637 (↓1.8%) 5872 (↓3.2%) 6933 (↑0.6%) 6988 (↑0.8%) 6873 (↓1.2%)

The results make it evident that the proposed scheme is more cost-effective than other techniques.
Moreover, In Table 4, we compared the number of EVs fully charged on a given day with a fixed number
of charging pole (X = 200). Table 4 depicts the improved performance of the proposed algorithm
compared to the variable charging rate scheme.
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Table 4. Comparison of Number of Fully Charged EVs.

DR Events
Number of EV Arrived in a Day (E)

100 200 300 400 500

Variable Charging Rate

No DR 100 200 203 203 210
DR1 100 200 206 202 214
DR2 100 200 201 207 205
DR3 100 200 200 203 204

Proposed

No DR 100 200 203 215 216
DR1 100 200 201 214 218
DR2 100 200 201 213 219
DR3 100 200 202 210 217

The performance of the proposed algorithm is also tested against the average SoC of the EVs at
the departure time and tabulated in Table 5. The comparison is conducted for different numbers of
vehicles E = 100 to 500. It is observed that the proposed technique performs better as the average
SoC of an EV leaving the smart parking lot is 97% or above in five different vehicle counts. Moreover,
the average time intervals required to achieve final SoC are also computed and compared in Table 6.
Again, the proposed technique is clearing, which takes fewer time intervals to charge an EV on average.
Therefore, the smart parking lot operator saves time to incorporate a greater number of EVs illustrated
in Table 4, where a greater number of EV are charged during course of the entire day.

Table 5. Average State-of-Charge (SoC) of the EV’s Battery at departure time.

E 100 200 300 400 500

Variable Charging Rate 0.99 0.99 0.94 0.93 0.93
Proposed 0.99 0.99 0.98 0.96 0.96

Table 6. Comparison for Average Time Intervals required to Achieve Final SoC.

E 100 200 300 400 500

Variable Charging Rate 23.02 23.10 20.19 21.12 20.56
Proposed 16.20 17.98 17.06 18.56 18.01

The computation time is also deduced for both algorithms on the same machine and listed in
Table 7. It is found that the proposed algorithm marginally takes more computational time; however,
the time difference is not increased to an alarming situation.

Table 7. Comparison of Average Computation Time (Seconds) for Algorithms under No DR Event.

E 100 200 300 400 500

Variable Charging Rate 5.18 5.21 5.37 5.37 5.40
Proposed 5.63 5.73 5.83 5.86 5.77

7. Conclusions and Future Work

A real-time and robust EV charging scheme is proposed for EV smart parking lots working under
different DR programs. The objective of this proposed scheme is to charge the maximum number of
EVs in a day at the minimum possible cost by taking into consideration DR events. The proposed LP
and simplified convex relaxation-based on-off EV charging technique is also computationally viable
for implementation in real-time scenarios. Moreover, the smart parking lot owner can participate
in DR events and be recompensed by the utility after ensuring the variable or constant demand
reduction. As soon as the demand limitation is committed for DR, the anticipated optimal EV charging
scheduling strategy can start scheduling EVs for intelligent charging such that the overall demand
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for the load will remain within the constrained of prearranged demand limit. The benefits of the
proposed charging scheme are two-fold: (1) the power consumption cost of the smart parking lot
is minimized; and (2) the proposed EV intelligent charging technique has a minimal impact on the
life cycle of the EV battery. The battery of the EV will always be charged at the maximum and fixed
charging rate of its level-II charge standard and on C-rate equals to 1 C. The proposed intelligent
charging technique will be tested in future under the presence of on-site renewable power generation
sources. The variability of the available renewable power will be an interesting variable to deal in
real-time. Finally, state-of-the-art machine learning techniques [36] are increasingly being deployed
across a wide range of real-world optimization problems [37]. An interesting direction of future work
could be to explore the incorporation of prediction models [38] to further enhance the capabilities of
our proposed approach.
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Abstract: This paper proposes a novel data classification framework, combining sparse auto-encoders
(SAEs) and a post-processing system consisting of a linear system model relying on Particle Swarm
Optimization (PSO) algorithm. All the sensitive and high-level features are extracted by using the
first auto-encoder which is wired to the second auto-encoder, followed by a Softmax function layer
to classify the extracted features obtained from the second layer. The two auto-encoders and the
Softmax classifier are stacked in order to be trained in a supervised approach using the well-known
backpropagation algorithm to enhance the performance of the neural network. Afterwards, the linear
model transforms the calculated output of the deep stacked sparse auto-encoder to a value close to the
anticipated output. This simple transformation increases the overall data classification performance
of the stacked sparse auto-encoder architecture. The PSO algorithm allows the estimation of the
parameters of the linear model in a metaheuristic policy. The proposed framework is validated by
using three public datasets, which present promising results when compared with the current literature.
Furthermore, the framework can be applied to any data classification problem by considering minor
updates such as altering some parameters including input features, hidden neurons and output classes.

Keywords: deep sparse auto-encoders; medical diagnosis; linear model; data classification; PSO algorithm

1. Introduction

Deep learning (DL) is a new paradigm of neural networks, which is employed in different fields
such as image classification and recognition, medical imaging and robotics etc. The deep auto-encoder
(DAE) is also a popular deep learning technique and has been recently adapted to various applications
in different fields [1–4]. Bhatkoti and Paul propose a new framework for Alzheimer’s disease diagnosis
based on deep learning and the KSA algorithm. In this application, the results of the modified approach
are compared to the non-modified k-sparse method. The σKSA algorithm optimizes the competence of
diagnosis compared to the previous research [5,6]. Tong et al. present a software defect prediction
application by using the advantages of stacked denoising auto-encoders (SDAEs) and a two-stage
ensemble (TSE). In the first step, SDAEs are used to learn the deep representations from the imitative
software metrics. Moreover, a new ensemble learning method, TSE, is proposed to predict the label
imbalance problem. The proposed method is trained and tested by using 12 NASA benchmark test
data to show the effectiveness of the SDAEsTSE system, which is significantly effective for software
defect prediction [7].
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Kuo et al. (2017) propose a stacked denoising auto-encoder for building a deep network for
student dropout prediction. The system is trained with recent years’ data and is used to estimate the
results of the current year for counseling in order to warn of students who might drop out [8].

Another leading study trains an auto-encoder neural network to encode and decode a geochemical
data with unidentified composite multivariate possibility distributions. During the training, rare event
examples contribute to the deep auto-encoder network. These examples can be classified by the
trained network as abnormal examples due to their reasonably greater reconstructed mistakes.
The Southwestern Fujian district in China is selected as a case research field [8].

Han et al. present some ideas of a deep sparse auto-encoder mixed with compressed sensing
(CS) theory, which can enhance the compacted selection process of CS with compressing of the
sparse auto-encoder in deep learning. The innovative CS theory does not provide any function of
autonomic instruction, so they present the notion of a stacked auto-encoder of a deep neural network
to optimize the theory. At that point, they compute the mistakes between the retrieval of the input and
output features. By adjudicating the achieved error and the suitable error, the stacked auto-encoder
compressed sensing model can select separately the best suitable sparsity and the best suitable length
of dimension vector [9]. Salaken et al. propose a deep auto-encoder classification technique which
primarily learns high-level features and then trains an artificial neural network (ANN) by employing
these learned features. Experimental results prove that the technique offers satisfactory results when
compared with other state-of-the arts classifiers when trained with the same features and the training
set [10]. Khatab et al. present a novel technique which takes advantage of deep learning and deep extracted
features by employing an auto-encoder to enhance the localization achievement in the feature learning and
the classification. Moreover, the fingerprint dataset also needs to be reorganized, so the authors increase
the training data number, so as to enhance the localization achievement, progressively. Experiments show
that the presented technique supplies an important enhancement in localization achievement by using
deep features extracted by an auto-encoder and increasing the training data number [11].

In addition to the deep auto-encoder neural network, a convolutional neural network has effective
applications. Khan et al. offer a new convolutional neural network and random forest estimator
to categorize the complex time series input, identifying whether it agrees with a breathing activity.
Furthermore, the authors collect a comprehensive dataset for training the proposed method and
evolve reference benchmarks for future studies comprising the field. According to the obtained results,
they conclude that convolutional neural networks mixed with passive radars show high potential for a
taxonomy of human actions [12]. Tang et al. propose a novel method, involving a preprocessing step,
supported with two deep auto-encoders. Within the pre-processing stage, the input data are divided
into segments, and then formal information is extracted so as to feed auto-encoders. It is claimed that this
method produces acceptable results when compared with CNN-based feature learning approaches [13].
Yin et al. propose a new approach to explore an intrusion recognition system depending on a deep
neural network. They propose a model for “intrusion recognition” based on recurrent neural networks
(“RNN-IDS”). Furthermore, the system can achieve classification process as both a binary and multiclass
classifier. The proposed model is compared with random forest, J48, SVM, ANN, and other machine
learning techniques presented in earlier studies on the commonly used dataset. The experiments
prove that “RNN-IDS” is actually appropriate for demonstrating a reliable classification model and
outperforms well-known machine learning classification methods in binary and multiclass classification
problems [14]. Yu et al. propose a technique to automatically classify the fetal facial standard plane
(FFSP) by using a deep convolutional neural network (DCNN) method. The technique involves
“16” convolutional layers, having small size “3 × 3” kernels, and also fully-connected layers (FCLs)
layers. To reduce DCNN parameters, a “global average pooling” is adopted into the last pooling layer,
which relieves the overfitting status and mends the achievement under fixed training data. The transfer
learning technique followed by a data increase method, appropriate for FFSP, are executed to increase
the classification accuracy gradually. Comprehensive experiments validate the benefit of the proposed
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approach through classical methods and the performance of DCNN to classify fetal facial standard
plane for clinical detection [15].

Visual surveying of the large size of data has drawbacks and weaknesses. Visual investigation is
time-consuming and may encounter conflicts in recognition, classification and detection processes,
which are fundamental problems of large size of data. Therefore, many computer-aided diagnosis
systems are proposed for data classification and processing by using machine learning techniques etc.
Despite the researchers’ recent interest, it is still an open field and needs further solutions. This essentially
motivates authors to contribute in this field. Accordingly, as aforementioned, this study introduces a
general framework for data classification and processing issues. This framework is verified by employing
a number of benchmark datasets in different fields. Overall, the main advantage of this framework is
its remarkable experimental results when compared with former studies. Furthermore, the proposed
framework can be used in any field with minimum effort by setting the model parameters based on the
characteristics of the problem.

Generally, the two sparse auto-encoders are utilized to diminish the dimension of input features
and learn refined features. Those features are then classified by employing a Softmax layer. The whole
model is stacked to provide a supervised training methodology. Then, the critical contribution is
achieved by integrating a linear model, utilizing a metaheuristic algorithm for optimization, and is
applied to enhance the deep sparse auto-encoder performance.

2. Literature Review

Several studies related to three different datasets (epileptic seizure detection, cardiac arrhythmia
and SPECTF classification) are analyzed and presented in Tables 10–12. Epileptic seizure is one
of the most studied diseases in the field of computer-aided detection systems. Srinivasan et al.
propose a new system based on time–frequency domain for feature extraction, and RNN were used
to classify the features. The proposed method presents 99.60% accuracy as can be seen in [16].
Subasi and Ercelebi propose artificial neural network (ANN)-based wavelet transform (WT) and
produce only 92% performance [17]. Subasi proposes a discrete WT based on a mixture of expert model,
which presents only 94.5% performance [18]. Kannathal et al. propose a dynamic neuro-fuzzy inference
system (ANFIS) based on entropy measures and produce 95% performance as can be seen in [19].
Tzallas et al. propose a new method based on time–frequency analysis and ANN which produces a
high accuracy of 100% [20]. Polat and Güneş propose a fast Fourier transformation and decision tree
(DT) which presents 98.72% performance [21]. Acharya et al. employ wavelet packet decomposition
(WPD) to decompose segments and principal component analysis (PCA) to extract eigenvalues from
the coefficients. Then, a supervised technique, namely, Gaussian mixture model (GMM) classifier,
is employed to categorize the extracted features and obtain 99% accuracy [22]. Acharya et al. propose a
combination of entropies, “HOS”, “Higuchi FD”, “Hurst exponent” and FC, and the proposed method
offers “99.70%” accuracy [23]. Peker et al. propose a complex-value artificial neural network (CVANN)
based on dual tree complex wavelet transformation (DTCWT). The proposed method presents 100%
performance [24]. Karim et al. propose a new framework involving deep sparse auto-encoders (DSAE)
utilizing the Taguchi optimization method, and the proposed method presents 100% accuracy [25].
Recently, Karim et al. modified the same framework by incorporating energy spectral density function,
used to extract features, into a similar DSAE architecture. The results reveal that it outperforms many
existing systems, especially in medical datasets [26].

Additionally, an important study in arrhythmias relying on spontaneous methods was recently
offered, in which a model for estimation of cardiac arrhythmias is proposed [27]. The presented
method applies two conventional supervised techniques (k-NN and SVM), respectively. The proposed
method is validated and tested by employing the “UCI” dataset. While k-NN presents “73.8%”
accuracy rate, SVM surprisingly achieves a 68.8% accuracy rate. Mustaqeem et al. propose a novel
system for the recognition of arrhythmia, according to which, a wrapper algorithm is initially used to
select effective features from the UCI dataset. Then, different classifiers, namely MLP, KNN, SVM,
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RFT and NB are combined with the proposed feature-extracted algorithm, respectively. The validation
accuracies demonstrate that the MLP achieves a suitable result of 78.26%, whereas the results obtained
for SVM and KNN are 74.4% and 76.6%, respectively [28]. Zuo et al. present a technique for
the taxonomy of cardiac arrhythmia using a k-nearest neighbor classifier. The submitted method
outperforms traditional KNN algorithms and produces more than 70% accuracy [29]. Besides that,
an ANN-based architecture is applied to classify the Electrocardiography (ECG) records for cardiac
arrhythmia taxonomy. It is claimed that the experimental results yield more than 87% classification
accuracy [30]. Moreover, Persada et al. propose Best First and CsfSubsetEval for the feature selection
process. The selected features are classified by using several classifiers, and the best precision is
obtained by using the “RBF Classifier” in the combination of BFS and “CsfSubsetEval” techniques,
producing 81% [31]. Jadhav et al. propose a modular neural network model for the binary classification
(normal or abnormal) of arrhythmia dataset. The proposed model is claimed to attain 82.22% accuracy
with the given dataset [32]. Further corresponding studies can be found in [33–35].

Moreover, a number of previous studies in the field of SPECTF classification are accessible.
Srinivas et al. propose an SVM technique relying on sparsity-based dictionary learning. The proposed
method presents 97.8% accuracy [36]. An alternative study offers a Bayesian network to select features.
The method entails a vast number of features and produces 95.76% accuracy [37]. Cha et al. propose
a new data description approach, namely support vector data description, which is assessed by
employing datasets from the UCI repository. The method achieves almost 95% accuracy for the given
dataset [38]. Furthermore, Liu et al. propose a new SVDD-based method. The proposed method offers
90% accuracy [39]. Previously, Cui et al. combined an improved version of k-nearest neighbors and
the method is known as transductive confidence machine (TCM). The authors claim that this approach
(TCM-IKNN) presents 90% accuracy with the UCI dataset [40]. Alternatively, a previous study on
discretization approach, namely, “core-generating approximate minimum entropy discretization”,
was also presented by [41]. This aims to control the lowermost entropy cuts in order to create discrete
data points providing nonempty cores. The presented method is also confirmed by employing the UCI
dataset and achieves 84% accuracy rate [41].

3. Material and Methods

The main contribution of this paper is to integrate a post processing procedure to a data classification
framework. Accordingly, a strong deep learning framework combining sparse auto-encoders (SAEs)
followed by a Softmax Classifier, a generalization of the binary form of the Logistic Regression method,
is initially designed. The auto-encoder levels and the classifier level are stacked so as to be trained
in a supervised approach based on a backpropagation algorithm. In order to increase the overall
classification accuracy, a linear transformation function is integrated into the framework. This layer,
in essence, improves the results obtained from DAEs based on a linear model. The critical issue
here is to estimate the optimum parameter for the linear transformation model. A strong and reliable
metaheuristic algorithm, PSO, is employed to approximate the most optimum model parameters.
All these steps are detailed in the following sub sections.

3.1. Stacked Sparse Auto-Encoder

The stacked sparse auto-encoder (SSAE) is principally a neural network involving of a number of
auto-encoders where each auto-encoder represents a layer and is trained in an unsupervised fashion
using unlabeled data. The input of each auto-encoder is the output of the previous one. The training
of an auto-encoder estimates the optimal parameters by using different algorithms which reduce the
divergence between input x and output

.
x. The coding between input and output is represented by the

equations illustrated below. Here, the input vector x = (1, 2, 3, 4 . . . , N), is transformed into hidden
representation “

.
x”, by employing a nonlinear model.

.
x = f (x)= M f (W1x + b1) (1)
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n(1)
1 = M f (w

(1)
11 x1 + · · ·w(1)

15 x5 + b(1)1 ) (2)

n(1)
i = M f (w

(1)
i1 x1 + · · ·w(1)

i5 x5 + b(1)i ) (3)

Here n(1)
i refers to the ith neuron at the first layer for the architecture, M is an activation function,

wi, and bi refer to weight matrix and the bias parameter, respectively.
The final mathematical model is illustrated in Equation (4):

nw,b(x) = M f (w
(2)
11 n(2)

1 + · · ·w2
15n5 + · · ·+ b(2)1 ) (4)

The input x and output
.
x discrepancy is represented by using a cost function. Several algorithms

are used to find the optimum parameters of the network. The corresponding mathematical model can
be seen in [25,42]. The model of Stacked Sparse Auto-encoder (SSAE), used in the proposed framework,
is illustrated in Figure A1 and can be seen in Appendix A. The model has two hidden layers and a
classifier layer (SoftMax).

3.2. The Particle Swarm Optimization (PSO) Algorithm

PSO algorithms are considered as population-based metaheuristic algorithms proposed by [43–46].
These algorithms impersonate the social behavior of birds for problem solving.The PSO algorithm is
set with a group of arbitrary solutions, representing the particles, and then it explores to approximate
an optimal solution by updating the generations. In each iteration, every particle is modified by
considering the two (best) values, namely local and global best values. The first best solution that is
attained so far by the particle itself is denoted as the best local solution and is stored, known as “pbest”
value. Then, the other, global, refers the best solution achieved thus far by a particle located in the
population, and this best solution is a global best, known as “gbest” value. The particle updates the
positions and velocity by employing Equations (5) and (6) after selecting the best two solutions.

Xi
k+1 = Xi

k + Vi
k+1 (5)

Vi
k+1 = wVi

k + c1r1
(
Pi

k −Xi
k

)
+ c2r2

(
Pg

k −Xi
k

)
(6)

Here, Xi
k represents particle position, Vi

k represents particle velocity, Pi
k represents the best

“remembered” individual particle position (pbest), Pg
k represents the best swarm position (gbest),

c1 and c2. are cognitive and social parameters. Additionally, r1, r2 are random parameters between (0,1)
and w refers inertial coefficient (0,1). This manipulates convergence and “explore-exploit” trade-off

in the PSO algorithm. PSO algorithms offers a number of advantages when compared with other
optimization algorithms. PSO is a fast optimization algorithm and only needs few parameters for tuning.
Especially, when PSO is compared with one of its main counterpart algorithms, Genetics Algorithm
(GA), it should be noted that PSO can converge faster and needs fewer parameters to be configured.

Accordingly, PSO is successfully applied in several fields, such as neural networks,
optimization problems, etc. Algorithm 1 refers to the conventional PSO algorithm [47].
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Algorithm 1. Pseudo Code of PSO Algorithm.

For each particle
Set particles in a random manner

End
Do

Estimate the Local best “pBest” for each particle
If the “pBest” is enhanced

Update “pBest” value
End

Global Best (gBest) is updated as the best of “pBests”
For each particle

Estimate the velocity of particles via Equations (5) and (6)
Update the positions of the particles

End
End

3.3. A New Deep Learning Framework Using Deep Auto-Encoders and a Linear Model Based on PSO

Suppose a trained deep stacked auto-encoder is used to classify an object into one of the “M”
classes. The input layer of the deep stacked auto-encoder involves “N” neurons that are related to
object features X1, X2, . . . , XN, and the output layer involves “M” neurons that stand for the expected
output (class label) Ẑ1, Ẑ2, Ẑ3, ẐM (see Figure 1).
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The deep auto-encoder involves two auto-encoders and Softmax, where the auto-encoders try to
learn the high-level features from the input data X. The aim of using a number of auto-encoders is to
reduce the number of features gradually. This is because dropping the number of features suddenly in
one auto-encoder can lead to missing important features and affect the accuracy. The cost function of
the stacked auto-encoders is represented as Equation (7).

E =
1
N

N∑

n=1

K∑

k=1

(xkn − x̂kn)
2 + λ ∗Ωweights + β ∗Ωsparsity (7)

Here, the error rate is denoted by E, the input features are illustrated by “x”, the reconstructed
features are illustrated with “x̂”, λ is the coefficient for the “L2 Weight Regularization”, β is the coefficient
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for “Sparsity Regularization”, and Ωweights signifies the “L2 Weight Regularization”, which can be
represented as shown in Equation (8).

Ωweights =
1
2

L∑

l

n∑

j

k∑

i

w(l)2

ji (8)

Here, L presents the number of hidden layers, n is for the number of observations, and k indicates
the variable number of the current training data.

Finally, Ωsparsity is the Sparsity Regularization parameter which adjusts the degree of sparsity of
the output from the hidden layers, as illustrated in Equation (9).

Ωsparsity =

D(1)∑

i=1

KL(ρ||ρ̂i) =

D(1)∑

i=1

ρ log(ρ||ρ̂i) + (1− ρ)log
(

1− ρ
1− ρ̂i

)
(9)

Here, the desired value is represented by ρ, ρ̂i symbolizes the average output activation of any
neuron i, and KL represents the function, measuring the variation between two probability distributions
based on the same data. Furthermore, the features that produce minimum cost in Equation (1) are
selected and become input to Softmax, see Equation (10). Softmax is exploited as a classifier of the
extracted features from X to the labels Z (see Figure 1).

QSo f tMax
(
zi
)
=

ez(i)

∑k
j=0 ez(i)k

(10)

Here the net input z is defined as

z =
m∑

l=0

wl xl (11)

Here, while w represents the weight vector, x symbolizes the feature vector of lth training sample.
Essentially, the Softmax function calculates the probability of belonging to a class “j” for a training
sample “x(i)” by taking into account the given weights and net input z(i). Softmax is used without other
classifiers because it is a transfer function and multiclass classifier which acts like an output layer to
the previous auto-encoders. Then, the auto-encoders and Softmax layers are combined and trained by
using a backpropagation algorithm in a supervised fashion to improve the performance of the network.

Moreover, antithetically to previous deep learning applications, the output of the deep
auto-encoder does not generate the final prediction but optimizes it by using a linear model [48].
Essentially, the performance of a deep networks is considered by the network’s structure, transfer function,
and learning algorithm. Yet, a network classifier tends to be weak once it is designed based on an
inappropriate structure. Essentially, there is no certain way to estimate a proper structure. A recent
study proposed a linear model as a post processing layer based on Kalman Filter to improve overall
classification performance [49]. Our study is inspired by this previous work and it employs the linear
model so as to transform the predicted output of the network to a value close to the desired output
via the linear combination of the object features and the expected output. This simple transformation
can be considered as a post processing step, reducing the error of network and enhancing classification
performance. A metaheuristic approach, PSO, is employed to optimize the parameters of the linear model.
Overall, the parameters of the Linear model are calculated during the iteration of PSO algorithm. The linear
model utilizes the predicted output of the deep network and the object features as input to estimate the
class labels. The output of the DSAE Ẑ is processed in a linear model by using X, coefficients A, B and the
error rate e to produce the optimized result Z (see Equation (12)).

Z = AẐ + BX + e (12)
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Here, A represents diagonal matrix M ×M as shown in (13), B denotes M × N matrix as shown in
(14), and e is for the error rate. Moreover, coefficients, namely A and B, are unknown for the linear
model [50]. The values of A and B are estimated by using a PSO algorithm, and the parameters of PSO
are selected depending on the problem type and input features.

A = diag [a11 a22 aMM] (13)

B =




b11 · · · b1N
...

. . .
...

bM1 · · · bMN




(14)

The details of the linear model mathematics are explained in [49], and the whole framework
flowchart is illustrated in Figure 2.
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In each iteration of PSO, the predicted Z is controlled by using MSE with optimal prediction Q,
as illustrated in Equation (15).

MSE =
1
m

m∑

i=1

(Qi −Zi)
2 (15)

Here, m denotes the number of examples, Qi is the optimum class label for input features and
MSE is the discrepancy rate between the zi and Qi.

The MSE is represented as a cost function. PSO minimizes its value by estimating the best values
for parameters A, B and e.

4. Experimental Results

The parameters calculated to improve the performance of the proposed framework are:
“True Positive Rate” (Recall), “True Negative Rate” (TNR), “positive predictive value” (Precision),
“negative predictive value” (NPV), “false positive rate” (FPR), “false discovery rate” (FDR), “miss rate”
(MR), “accuracy” (ACC), “F1 score” (F1-s) and “Matthews correlation coefficient” (MCC). Definitions of
these parameters can be seen authors’ previous work [25].

Each dataset has been divided into test and training sets according to the preliminary experiments
and based on our previous studies. According to these, the Epileptic Seizure dataset is divided as
100 samples for training and the other 100 for testing, indicating 50% for test and 50% for training.
The SPECTF Classification dataset, on the other hand, is arranged as 187 (70%) for training, and 87 (30%)
for the testing process. The final dataset, the cardiac arrhythmias dataset, consists of 450 instances
from 16 classes with 70% of those data employed for training and 30% for the testing procedures,
respectively. Overfitting is a critical problem for classification models. In order to prevent overfitting,
a random subsampling validation technique was applied during the training process. Following this,
each experiment is repeated five times and the average of those experiments is registered.

4.1. Epileptic Seizure

The proposed framework is confirmed by employing a popular public dataset provided by Bonn
University [51]. The dataset consists of 200 samples, with each sample consisting of 4096 features.
The EEG data is split into two groups for training and testing procedures. Each group involves
100 examples, 50 of which are normal and the remaining 50 are abnormal. Those cases are illustrated
in Figure 3. According to the framework, the first and second auto-encoders extract high-level features
obtained from EEG signals and then diminish the number of features to 2007 and 112, respectively.
Details of the parametric configuration of auto-encoders are shown in Table 1. Later, the Softmax layer
classifies the extracted features as being normal and abnormal.

The linear model is then used to enhance the results, and the parameters of the linear model are
estimated by using the PSO algorithm. The linear model parameters are estimated in 30 epochs and a
reasonable MSE value is produced, as shown in Figure 4. Besides, the parameters of PSO are presented
in Table 2.

Table 1. Auto-Encoder Parameters for Epileptic Seizure Detection.

Parameter First Auto-Encoder Second Auto-Encoder

Hidden Layer Size (HLS) 2007 112
Max Epoch Number (MEN) 420 110
L2 Regularization Parameter 0.004 0.002
Sparsity Regularization (SR) 4 2

Sparsity Proportion (SP) 0.14 0.12
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Table 2. PSO Parameters for Epileptic Seizure Detection.

PSO Parameter Value

Number of particles 50
Maximum iteration 30

Cognitive parameter 2
Social parameter 2

Min inertia weight 0.9
Max inertia weight 0.2

The test process is repeated five times with the same parameters and hidden layer values,
but in each implementation the training and test data are arbitrarily designated to avoid overfitting.
The average results of the dataset based on previously defined evaluation parameters is shown in
Table 3. The corresponding table represents the results during the testing process.
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Table 3. Epileptic Seizure Detection Results.

Parameter DSAEs without Post-Processing DSAEs Using PSO

Recall 0.9348 1.0000
TNR 0.7222 1.0000

Precision 0.7414 1.0000
NPV 0.9286 1.0000
ACC 0.8200 1.0000
F1-s 0.8269 1.0000

MCC 0.6634 1.0000

4.2. SPECTF Classification

The proposed framework is assessed by employing another benchmark dataset, namely,
“SPECTF, (Single Proton Emission Computed Tomography) Heart datasets”, which is mainly presented
in [52]. This dataset involves “normal” and “abnormal” classes that comprise more than 267 examples,
with each of these instances consisting of 44 features. There exists 40 occurrences of each class
at the training dataset, whereas the validation dataset contains “172 normal” and “15 abnormal”
examples. As it is noted, auto-encoders can reduce the input dimension, and accordingly, the features
in auto-encoders 1 and 2 are reduced step-by-step to 40 and 35, respectively, which essentially extracts
high-level and sensitive features from input data.

The constraints of the auto-encoders are illustrated in Table 4. The parameters of the PSO algorithm
are presented in Table 5.

Table 4. Auto-Encoder Parameters for Single Proton Emission Computed Tomography (SPECTF) Classification.

Parameter Auto-Encoder 1 Auto-Encoder 2

Hidden Layer Size (HLS) 40 35
Max Epoch Number (MEN) 110 60
L2 Regularization Parameter 0.003 0.001
Sparsity Regularization (SR) 2 1

Sparsity Proportion (SP) 0.1 0.1

Table 5. PSO Parameters for SPECTF Classification.

PSO Parameter Value

Number of particles 40
Maximum iteration 40

Cognitive parameter 2
Social parameter 2

Min inertia weight 0.9
Max inertia weight 0.2

The experimental results are evaluated by calculating the values of parameters, as presented in
Table 6.

Table 6. SPECTF Classification Results.

Parameter. DSAEs without Post-Processing DSAEs Using PSO

Recall 0.9554 1.0000
TNR 0.3333 0.8750

Precision 0.8824 0.9884
NPV 0.5882 1.0000
ACC 0.8556 0.9893
F1-s 0.9174 0.9942

MCC 0.3686 0.9300
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For this dataset, the linear model parameters are converged in almost 20 epochs and produce
“2.03” error value as illustrated in Figure 5.
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4.3. Diagnosis of Cardiac Arrhythmia

The final benchmark dataset involves the data regarding cardiac arrhythmia, presented in [52].
This dataset consists of 450 instances from 16 different classes. Each class has 279 features. The proposed
framework is trained for this dataset, according to which, the first Auto-Encoder is trained by employing
an unsupervised approach and achieves a decrease in the number of features from 279 to 250. The output
of the first one is passed to the second auto-encoder, which is also trained in an unsupervised manner.
Afterwards, the number of features is reduced from 250 to 200. Essentially, those auto-encoders layers
extract appropriate features in an unsupervised manner. The output is fed to Softmax Layer for multi
class classification that helps to generate the classification probabilities. The whole architecture, on the
other hand, propagates the error by using a backpropagation algorithm. This allows the framework
to have supervised characteristics as aforementioned. Auto-encoder parameters for this dataset are
shown in Table 7.

Table 7. Auto-Encoder Parameters for Diagnosis of Cardiac Arrhythmia Using Post-Processing Technique.

Parameter First Auto-Encoder Second Auto-Encoder

Hidden Layer Size (HS) 250 200
Max Epoch Number (MEN) 130 109

L2 Weight Regularization 0.003 0.001
Sparsity Regularization (SR) 3 1

Sparsity Proportion (SP) 0.12 0.1

Table 8 presents the parameters of PSO which are employed to estimate the best parameters of the
linear model. Table 9 demonstrates the proposed framework experimental performance regarding the
performance evaluation parameters.

Table 8. PSO Parameters for Diagnosis of Cardiac Arrhythmia.

PSO Parameter Value

Number of particles 60
Maximum iteration 45

Cognitive parameter 2
Social parameter 2

Min inertia weight 0.9
Max inertia weight 0.2
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Table 9. Diagnosis of Cardiac Arrhythmia Results.

Parameter DSAEs without Post-Processing DSAEs Using PSO

Recall 0.7843 0.9959
TNR 0.8667 0.9904

Precision 0.8000 0.9918
NPV 0.8553 0.9952
ACC 0.8333 0.9934
F1-s 0.7921 0.9939

MCC 0.6531 0.9866

For this dataset, the linear model parameters are estimated in almost 28 epochs and produce 2.11
error rate as illustrated in Figure 6.Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 
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4.4. Statistical Significance Analysis of Algorithms in the Proposed Method

In applied machine learning, comparing the algorithms and proposing a final appropriate model
for the presented problem is a common approach. Models are generally evaluated using resampling
methods (k-fold cross-validation etc.). In these methods, mean performance scores are calculated
and compared directly. This approach can give wrong ideas because it is difficult to understand
whether the difference between mean performance scores is real or the result of a statistical chance.
Statistical significance tests are proposed to overcome this problem and measure the likelihood of
the samples with the assumption that they were selected from the equivalent distribution. If this
assumption, or null hypothesis, is rejected (if a critical value is smaller than the significance level),
it suggests that the difference in skill scores is statistically significant.

Once the data is distributed normally, the two-sample t-test (regarding independent sets) and the
paired t-test (for matched samples) are possibly considered the most extensively preferred methods in
statistics for the assessment of differences between two samples [53]. A t-test is a type of statistical
test that is employed to compare the means of two groups. A 2-tailed paired t-test is preferred in this
study to compare the difference between the results without post-processing using PSO and the results
after post-processing with PSO (Figures 7–9) in order to evaluate if there is a statistically significant
difference when the results are optimized. Two-tailed tests are able to identify differences in either
path, greater or less than [54].
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A 2-tailed paired t-test is applied in Excel on the two matched groups of epileptic seizure detection
and p-value is calculated as 0.002463, that is, less than the standard level of significance (p < 0.05) so a
statistically significant difference is noted on this data without using PSO and using PSO. The null
hypothesis can be rejected since the sample data support the hypothesis that the population means
are dissimilar.

A 2-tailed paired t-test is applied in Excel on the two matched groups of SPECTF classification
and p-value is calculated as 0.020919, that is, less than the standard level of significance (p < 0.05) so a
statistically significant difference is noted on this data without using PSO and using PSO. The null
hypothesis can be rejected since the sample data support the hypothesis that the population means
are dissimilar.
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A 2-tailed paired t-test is applied in Excel on the two matched groups of diagnosis of cardiac
arrhythmia and p-value is calculated as 0.000307, that is, less than the standard level of significance
(p < 0.05) so a statistically significant difference is noted on this data without using PSO and using PSO.
The null hypothesis can be rejected since the sample data support the hypothesis that the population
means are dissimilar.
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4.5. Performance Evaluation of the Framework Using Benchmark Datasets

The results of the proposed method, performed on benchmark datasets, are compared to several
studies presented in this field. Then, the previous studies are analyzed to reveal the performance
of the proposed framework. The comparison results for each dataset are detailed in Tables 10–12.
Table 10 represents the comparison between the proposed framework and the leading state-of-the-art
studies using Epileptic Seizure Dataset [51], whereas Table 11 involves the comparison based on
SPECTF Dataset). Table 12, on the other hand, represents the performance comparison using Cardiac
Arrhythmia Dataset. Details of both SPECTF and Cardiac Arrhythmia Datasets can be seen in [52].

Table 10. Evaluation of the Proposed Framework with Leading State-of-the art Studies for Epileptic
Seizure Detection.

Reference Method Accuracy

[36] Time–frequency domain feature-RNN 99.6%
[17] WT + ANN 92.0%
[18] Discrete WT-mixture of expert model 94.5%
[19] Entropy measures-ANFIS 92.22%
[20] Time–frequency analysis—ANN 100%
[21] Fast Fourier transform-DT 98.72%
[22] WPD-PCA-GMM 99.00%
[23] Entropies + HOS + Higuchi FD + Hurst exponent + FC 99.70%
[24] DTCWT + CVANN-3 100%
[25] Deep auto-encoder using Taguchi method 100%
[26] Deep Auto-Encoder + Energy Spectral Density 100%

Proposed Framework Deep auto-encoder and linear model based PSO 100%
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Table 11. Comparison of SPECTF Classification Results.

Reference Method Accuracy

[38] SVDD 82.7%

[39] SVDD-based outlier detection 90%

[37]
K2 94.03%

SDBNS 95.59%
ECFBN 95.76%

[55] mc-MKC 79.9%
mc-SVM 79.1%

[40] TCM-IKN N 90%

[41] C-GAME + Johnson + c4.5 84.4%
RMEP + Johnson + c4.5 81.7%

[16] Sparsity-based dictionary learning + SVM 97.8%

[26] Deep Auto-Encoder + Energy Spectral Density 96.79%

Proposed Framework Deep auto-encoder and linear model based PSO 98.93%

Table 12. Comparison the performance of the framework on Cardiac Arrhythmia Dataset.

Reference Method Accuracy

Feature Extraction Technique Classifier

[27] Enhanced F-score and sequential
forward search

k-NN
SVM

74%
69%

[28] Wrapper method
MLP
k-NN
SVM

78.26%
76.6%
74.4%

[29] PCA Kernel difference weighted k-NN 70.66%

[30] - MLP+ Static backpropagation
algorithm 86.67%

[31] Best First and CsfSubsetEval RBF 81%

[32] - Modular neural network model 82.22%

[33] -
ANN models + Static

backpropagation algorithm +
momentum learning rule

86.67%

[34] One-against-all SVM 73.40%

[35] - Resampling strategy based random
forest (RF) ensemble classifier 90%

[26] Energy Spectral Density + Deep
Auto-Encoders Softmax 99.1%

Proposed Framework Deep auto-encoder and linear
model based PSO Softmax 99.27%

4.5.1. Epileptic Seizure Dataset

According to the results shown in Table 10, the proposed framework presented better results
than a number of studies [17–19,21–23,36] and presented the same results as other studies with
a difference in the complexity and execution time. Peker et al. [24] propose traditional machine
techniques which require a long processing time when compared with our proposed framework
exactly in high-dimensional features such as epileptic seizure detection. Moreover, in a recent study,
the authors propose to train DAEs using the Taguchi method for complex systems. According to this,
the parameters are fitted manually when compared with our proposed framework that automatically
optimizes the obtained results without needing to repeat experiments manually to obtain the best
accuracy [25].
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4.5.2. SPECTF Dataset

For this sub-section, results obtained from the proposed framework are compared with well-known
studies in the field of SPECTF classification, as shown in Table 11.

The proposed framework achieves better outcomes than all studies can be seen in [16,37–41,55].

4.5.3. Cardiac Arrhythmia Dataset

Finally, the proposed framework shows remarkable results when compared with well-known
studies in the field of cardiac arrhythmia, as illustrated in Table 12.

Those studies can be seen in [28–35]. The results verify the advantage of the proposed system over
previous relevant papers using the Cardiac Arrhythmia dataset. As previously mentioned, there exist
16 different classes for labelling the dataset. Accordingly, the proposed method accomplishes the best
result when it is compared with the state-of-the-art studies.

5. Conclusions

This paper proposes a framework for data classification problems. This novel framework
incorporates an efficient deep learning approach (DAE) and linear model trained by a metaheuristic
algorithm (PSO). Despite their efficiency, DAEs may produce low performance when employed for
complex problems, such as EEG signal classification and motion estimation. Accordingly, the overall
goal of this framework is to increase the performance of the DAEs by integrating a post processing
layer. This layer essentially optimizes the results obtained from DAEs based on a linear model trained
by PSO algorithm. This metaheuristic approach is mainly employed to estimate the parameters of the
linear model. As it has produced satisfactory results in various problems, it should be noted that it is
easy to implement and involves quite a few parameters for tuning.

Experimental results reveal that the proposed framework presents a number of advantages when
compared with previous studies in the literature: learning using less data than other methods. The use
of deep learning techniques leads to speeding up the processing time in high-dimensional features
because it uses greedy layers as compared to convolutional techniques. The framework also proves
that the overall performance of DAEs on complex problems can be enhanced by integrating a post
processing layer. According to the results obtained, it is concluded that the introduced framework
shows favorable results and can be adapted by researchers for any type of data classification problem.
Additionally, as a future work, nonlinear and dynamic linear model systems can be proposed as
a post-processing technique for enhancing the classification accuracy of the proposed framework.
Moreover, additional optimization algorithms can be employed to train the models instead of PSO,
such as the genetic algorithm, the gray-wolf optimization algorithm, the bat algorithm, and other
classification models can be combined with linear and nonlinear models, such as support vector
machines, naive Bayes or decision trees.
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Figure A1. The model of stack a Stacked Sparse Auto-encoder (SSAE) with two hidden layers and a 
classifier (SoftMax). 
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Abstract: Solving ordinary differential equations (ODE) on heterogenous or multi-core/parallel
embedded systems does significantly increase the operational capacity of many sensing systems in
view of processing tasks such as self-calibration, model-based measurement and self-diagnostics.
The main challenge is usually related to the complexity of the processing task at hand which
costs/requires too much processing power, which may not be available, to ensure a real-time
processing. Therefore, a distributed solving involving multiple cores or nodes is a good/precious
option. Also, speeding-up the processing does also result in significant energy consumption or sensor
nodes involved. There exist several methods for solving differential equations on single processors.
But most of them are not suitable for an implementation on parallel (i.e., multi-core) systems due
to the increasing communication related network delays between computing nodes, which become
a main and serious bottleneck to solve such problems in a parallel computing context. Most of the
problems faced relate to the very nature of differential equations. Normally, one should first complete
calculations of a previous step in order to use it in the next/following step. Hereby, it appears also
that increasing performance (e.g., through increasing step sizes) may possibly result in decreasing the
accuracy of calculations on parallel/multi-core systems like GPUs. In this paper, we do create a new
adaptive algorithm based on the Adams–Moulton and Parareal method (we call it PAMCL) and we do
compare this novel method with other most relevant implementations/schemes such as the so-called
DOPRI5, PAM, etc. Our algorithm (PAMCL) is showing very good performance (i.e., speed-up) while
compared to related competing algorithms, while thereby ensuring a reasonable accuracy. For a better
usage of computing units/resources, the OpenCL platform is selected and ODE solver algorithms are
optimized to work on both GPUs and CPUs. This platform does ensure/enable a high flexibility in the
use of heterogeneous computing resources and does result in a very efficient utilization of available
resources when compared to other comparable/competing algorithm/schemes implementations.

Keywords: ODE Solver; OpenCL; Parareal; parallel/multi-core computing; sensing systems;
heterogenous embedded systems

1. Introduction

The history of using differential equations has traces in calculus from the old Newton’s times.
Since then it has evolved so much, and it is extensively used in many different branches of science
and engineering. The numerical solving of differential equations with initial conditions is a classic
problem, which has emerged before the computer invention and has various different usages in
physics [1], engineering [2], chemistry [3], economics [4], biology [5], and several other disciplines.
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Specifically in sensors, ODEs are involved in various processing endeavors such as to detect anomalies
in machines related sensor data [6], or to model nonlinear sensors like time-variant inductors [7] or
piezoelectrically actuated microcantilever sensors [8], and/or to study sensors’ behavior or to optimize
sensors’ performance. ODEs also used to find sensor’s optimal location [9]. Quorum sensing (QS),
which is based on bacterial communication, can also be modeled with differential equations. Furthers,
ODEs can also be used in self-organizing networks, self-diagnostic and environmental monitoring
systems [10]. Hence, finding new ways for solving ODEs in shorter time can help to save, besides
processing related energy consumption, both money and time, while using cheaper devices for better
performing applications.

Differential equations have many different forms. In this paper, we do focus on ordinary differential
equations (ODEs).

Equation (1) is showing an example of this type of differential equations:

.
y(t) = f (t, y(t)); y(t0) = y0, t ∈ [t0, te] (1)

where y is a vector valued function of t (time), y(t) : R→ Rn , n is dimension of problem, the time
derivative of y,

.
y(t), is a function of y and t, and the function f has the values domain f : Rn → Rn.

Further, y(t0) = y0 is called the initial value. Thus, we do have a so-called initial value problem (IVP))
and y0 is the starting point for calculations at t0. The solving of Equation (1) shall calculate the values
of y from t0 until te.

We need to determine the problem’s solutions (i.e., y(t)) for all values of t within the interval
[t0, te], this thus starting from the initial value y(t0) up to the final value of the y(te). The solution of
Equation (1) can be found by applying various appropriate methods, which are either numerical or
analytical. For those cases for which it is hard to find an analytical solution, one does usually then
involve numerical methods.

Regarding numerical methods, the simplest way to solve Equation (1) is to integrate the function f
for over the study area (i.e., [t0, te], provided the function f does satisfy the so-called Lipchitz conditions.
A numerical solving can be implemented through a discretized version of Equation (1), which is given
in Equation (2). In Equation (2), yt+1 is the result of the calculation of one step. The calculation of
one step is obtained by taking the previous value yt plus the integral of f (t, yt) from the previous
time t up to the current time t + 1. For calculating the integral, various traditional methods like Euler,
Runge-Kutta, etc. can be used:

yt+1 = yt +

∫ t+1

t
f (s, ys)·ds (2)

where s is time between t and t + 1, and ys is value of function f in time s.
In the case of a single computing core, there is no problem to achieve an efficient usage of

computing resources. In this one-core context, it is very easy and straight-forward to implement
Equation (2) and, after the calculation of one step is finished, one does move on calculating the next
step. The steps are solved in a serial manner and the result of each step is then be used for next steps’
calculations. However, when one works on a multi-core/parallel platform, that sequential model
cannot be used anymore, as other available resources/cores/nodes would have nothing to do.

There exists five different space-time parallel computing methods/schemes for implementing the
difference equation Equation (2) [10]. Those five schemes are the following ones: domain decomposing,
parallel solver, multiple shooting, direct time parallel, and multi grid.

In the domain decomposing scheme, one does separate, if possible, the problem into n sub-problems
and solve each of them separately. This can be realized by integrating the ‘domain decomposition’
and the so-called waveform relaxation [11,12]. Basically, in this solver type, the problem domain is
decomposed into overlapping sub-domains, and each domain is then solved separately [13]. Choosing
the correct way for decomposing is very important for increasing the overall performance. Also,
the ‘decomposing method’ can be varied due to the nature of Equation (1) [14,15].
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A further approach is to use a parallel integration method. This is however not possible for
single-step integration methods. See for example Equation (3), where the Euler method is presented.
As one can see, for calculating yt, one step is required, and this step cannot be separated (broken
down) into smaller tasks/sub-steps for a separate implementation on different cores of a parallel system.
The ∆t is the calculation step. A lower value of ∆t provides a higher accuracy for solving a given
problem but it does however thereby increase the resulting calculation time.

yt = ∆t · .
y(t) + yt−1 (3)

Therefore, this above-named further approach, i.e., a “parallel integration method”, is only possible
while using multi-steps methods such as Runge-Kutta or Adams-Bashforth integrators, which are
classified as larger group of Generalized Linear Model (GLM) solvers. GLM solvers are explained in
detail in Section 2.1.

Methods like Runge-Kutta are multi-steps iterated methods [16–19]; this means one can distribute
calculations of each step on different computing nodes. But at the end of each step, the different
computing nodes should send their results to one node to sum-up or combine them appropriately
and then calculate a new value. This last part of the lastly described scheme does visibly create a
bottleneck w.r.t. to the potential speeding-up of the solving of differential equations while using a
multi-step method.

In the shooting methods which were introduced by Nievergelt in 1964 [20], Equation (2) is
decomposed in the time direction into semi-linear boundary value problems. Smaller problems are
then solved with higher accuracy in parallel, but the error will then be corrected in a serial operation.
Although, this method is by definition sequential because of the integrated serial error correction.
However, it normally does cost much less than the high-accuracy calculation of results on hole
of integration area. Therefore, this brings real advantages in the perspective of solving any ODE
problem [21].

Multigrid methods like the so-called “domain decomposition” can be used for solving non-linear
ODE’s. The problem is discretized with finite approximations into sparse linear systems of
equations. This linear system is later solved via stationary iterative schemes such as the Gauss-Seidel
method [22,23].

In lastly described approach, one tries to solve the problem directly without any iteration.
All iterations for solving n points will be put in one place in one matrix and the problem is then solved
together at once [24].

Furthers, it can be observed that several scientific works have been undertaken in order
to create new integration methods, which can provide ODE solvers with better possibilities for
an efficient implementation on parallel platforms. These efforts mostly focused on creating the
so-called Adams-Bashforth derivative methods such as parallel Adam-Bashford (PAB) and parallel
Adam-Moulton (PAM) [25,26]. These last methods have shown very good scalability performance
while increasing the number of computing nodes.

Today, most of modern computers have both n core CPUs (n-CPUs) and GPUs. The increasing
power of CPUs and GPUs is mostly reached by increasing the number of computing nodes. Although
the number of computing nodes has significantly increased in GPUs but also in n-CPUs, the need for
algorithms capable to efficiently use the multi-core computing resources is strong. It has been shown
that implementing “problem solvers” on parallel/multi-node platforms can speed-up the solving in
many scientific fields such as fluid dynamics [27], finite elements methods [28], molecular dynamics
research [29], applied physics [30], chemical kinetics [31], etc.

On the other hand, for writing programs which can efficiently run on different computing
architectures is not a trivial problem. For solving this concern, some middleware concepts/platforms
which do support different types of n-CPUs or GPUs architectures have been developed and introduced.
In this paper, we use the so-called OpenCL platform. It is possible, by using OpenCL, to run programs
directly on CPU or GPU. However, this programming framework, like other similar frameworks has also
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its own restrictions. In this paper, we do introduce a new solver type/concept which does well fit and
is integrated in the OpenCL platform. This novel ODE solver concept implemented through OpenCL
has been extensively tested and benchmarked with other related competing famous/well-known
algorithms from the most relevant literature.

This paper does present a very brief critical overview about related works in Section 2. Then,
our novel ODE parallel-solver concept is introduced in Section 3. The implementation system
architecture in OpenCL, which does support the running application of our novel solver concept is
explained in Section 4. Then, extensive experiments and a comprehensive benchmarking are presented
and discussed in Sections 5 and 6. To finish, comprehensive concluding remarks, which summarize
the quintessence of the results obtained, are presented in Section 7.

2. Related Works

As briefly explained above, we should search for multi-stage methods, which do have the
potential for solving each stage of the problem, possibly independently of each other [32]. For this
study, the knowingly best-performing multi-step algorithms have been selected for analysis and
possibly benchmarking too. One of those methods is derived from the Runge-Kutta family and we
call it “Iterated Runge-Kutta”. And two further methods are derived the from the Adams–Bashforth
family, which are respectively called “Parallel Adams–Bashforth (PAB)” and “Parallel Adams-Moulton
(PAM)” [25].

2.1. General Linear Methods

The General Linear Method (GLM) as proposed by Butcher in 1966 was defined to generalize and
integrate both Runge-Kutta (multi-stage) methods and linear multistep (multi-value) methods. During
each step of the calculation, one considers r numbers of previous values and s stages. At the start of
each step, we have input items from the previous steps as follows:

y[n]i , i = 1, 2, . . . , r (4)

And during calculation of stages in one step, we have stage derivatives as follows:

Yi, Fi , i = 1, 2, . . . , s (5)

Thus, this method has the following variables for calculating the next stage n + 1:

y[n] =




y[n]1

y[n]2
...

y[n]r




, y[n+1] =




y[n+1]
1

y[n+1]
2

...

y[n+1]
r




, Y =




Y1

Y2
...

Ys



, F =




F1

F2
...

Fs




(6)

These quantities are related to each other by the following equation, see Equation (7):

Y = h(A⊗ I) F + (U ⊗ I) y[n]
y[n+1] = h(B⊗ I) F + (V ⊗ I)y[n]
F = f (Y)

(7)

where ⊗ is tensor product, h is the step-size in [tn, tn+1], and A, U, B and V are constant matrices
having the following respective dimensions:

A ∈ Rs×s, U ∈ Rs×r, B ∈ Rr×s, V ∈ Rr×r (8)
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In Equation (7), the result of the step (y[n+1]) is calculated based on the previous values ( y[n]) and
the stage values (F, Y). F is calculated directly from Y based on the Equation (1) definition. For those
linear multistep methods for which previous values (y[n]) are required, the starting vector can be
calculated by one of the nth-order Runge-Kutta methods such as the so-called Dormand-Prince method
(DOPRI) which do not need previous values.

As Butcher explained [33], the customization of GLM is creating a different ODE solver, which can
be customized to have properties of either the Runge-Kutta method by setting r = 1 or the linear
multistep method by setting s = 1. For solving non-stiff ODE problems, some methods based on GLM
have been created by customizing the parameters r and s and/or the matrices A, U, B and V.

For example, the classical fourth order of Runge-Kutta can be expressed in GLM with the
following matrices:

A =




0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1 0



, U =




1
1
1
1



, B =

[
1
6

1
3

1
3

1
6

]
, V = [1] (9)

And in the case of the second order Adam-Bashforth method, A, U, B and V can expressed
as follows:

A = [0], U =
[

1 3
2 − 1

2

]
, B =




0
1
0



, V =




1 3
2 − 1

2
0 0 0
0 1 0




(10)

By choosing a strictly diagonal or triangular matrix A, the stage calculation will be decoupled
into s independent sub-systems. Therefore, in this case, the implementation of the solver on a
parallel/multi-core system is much easier as the stage dependency is thereby significantly reduced.

For example, if we have following A matrix:

A =




0
x 0
x 0 0
x 0 0 0
x x x 0 0
x x x 0 0 0
x x x 0 0 0 0




(11)

(2,3,4) Stages and (5,6,7) Stages can be computed concurrently as those stage does not use value
from each other, Therefore they can be solved in parallel way. This pattern can be seen in the parallel
iterated Runge-Kutta (PIRK) or better in the step-independent methods like the PAB or the PAM [25]
methods, where A = [0]. In this paper, we do also use the GLM solver to create our new solver by
customizing the matrices A, U, B and V.

2.1.1. Parallel Iterated Runge-Kutta

This method is defined according to [34–36] and is also based on the GLM method (Equation (7)).
The matrices A and V have the following definition:

A =




1 0 · · · 0
...

... · · · ...
1 0 · · · 0



, V = [1] (12)

The U matrix is calculated based on related Runge-Kutta method as explained in the previous
sections. This method is a very precise method. But it is not using all resources when we have only
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one ODE equation. The number of steps can be changed during each iteration. Therefore, one can
reach a significant speed-up while solving large problems needing too steps to calculate.

An implementation example of this model can be shown in Figure 1:
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For i = 1 to n 

Calculate 푌 in parallel  
Calculate 푦[ ] in sequential  

Figure 1. Implementation of the parallel Runge-Kutta algorithm. Stage values (Y) can be calculated in
parallel but the step result needs to be calculated sequentially.

Figure 1 is showing the calculation flow of the different steps. The stage values (Y) can be done in
a parallel way, but each processing unit needs to exchange information during the processing and at
the end of each stage. Again, each node requires to exchange information with another specific node in
order to sum up all steps and create the step value (y[i+1]).

2.1.2. Parallel Adams-Bashforth

This method was introduced by v.d. Houwen and Messina in 1998 [25]. Since then it has been
further developed and optimized to be used in parallel platforms [37]. The Parallel Adams-Bashforth
(PAB) is based on the Adams–Bashforth corrector by customizing the GLM with A, U, B and V matrices
having the following values:

A = [0], V = a·bT, a =
[

1 1 . . . 1
]
, b =

[
0 . . . 0 1

]
(13)

The U matrix is calculated based on the related Adams-Baschforth method explained above in
the GLM section. It has been proved that by choosing those matrices in Equation (13), the PAB solver
becomes super-convergent to the real solution of an ODE problem. Implementing this method on
parallel system is not straight forward and requires a special scheduling. Figure 2 is showing a basic
scheduling for running this method on 3 processing units. In each iteration, after find the results (y[i]),
the F values which are to use for the next iteration will be calculated. Thus, each iteration calculation
can be done in a parallel way. But after finishing an iteration, each computing unit should exchange its
information with other processors in its respective group of processors. This process will be continued
until end of the calculation time (Figure 2).

The PAB method can result in an improvement of the speed-up when compared to the Runge-Kutta
method because, here, the communication between nodes can be done only at the beginning and at
the end of running a stage. Therefore, it is very efficient to implement the PAB method on a parallel
system. On the other hand, if we want to implement this method on an OpenCL platform, we do need
a very good synchronization. This because the last node having the larger amount of calculations,
the other nodes need to wait until it will finalize its calculations and only then let the other nodes
synchronize themselves with latest values.
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Figure 2. PAB execution and scheduling scheme on 3 processing units. The result value of each iteration
is calculated and then the F value for the next iteration is computed. Those values will be propagated
to the other processing units for the next iteration. In each iteration, 3 points of the problem are solved.

2.2. Multiple Shotting Methods

In this type of methods, as explained previously in the introduction section, the space-time domain
is decomposed into smaller parts (sub-domains) and each subdomain is solved separately. The idea of
creating this method is coming from Nievergelt in 1964 [20]. Since then, the method has been developed
and extended by different researchers and it is mostly well-known as ‘Parareal’ algorithm [38–40].

The general implementation of this so-called “Parareal” algorithm is composed/constituted of
two propagation operators:

1. The “Coarse approximation,” which is G(ti, ti+1, yi) with the initial conditions yi = y(ti) with the
step size hg.

2. The “Fine approximation,” which is F(ti, ti+1, yi) with the initial conditions yi = y(ti) with the
step size h f .

Where hg � h f , therefore the main difference between the above listed two propagation operators
is their respective accuracy and the amount of time they do need to find the result as the coarse
approximator has a larger step size.

The main algorithm consists of the following steps [12]:

1. Find the values of y1, . . . , yn by using yi+1 = G(ti, ti+1, yi) in a sequential way.
2. Copy the y1, . . . , yn values into g1, . . . , gn in parallel.
3. Find the f1, . . . , fn values by using fi+1 = F(ti, ti+1, yi) in parallel.
4. Update y1, . . . , yn in sequential with the following steps:

a. gni+1 = G(ti, ti+1, yi).
b. yi+1 = fi+1 + gni+1 − gi.

5. Copy the gn1, . . . , gnn values into g1, . . . , gn.
6. Go to the step 3 until you reach required precision.

This above-described algorithm is also sequential; for each iteration we do also need the values
from the previous iteration. Thus, there is no real parallel-time integration as the sequential nature of
the process is not removed. But the most expensive part is done in parallel (see Step 3) and solving
that most expensive part in parallel will bring a significant advantage when increasing the number of
computing nodes. One main disadvantage is, however, that this algorithm needs too many computing
nodes to reach a good speed-up. Consequently, it is not efficient to implement it for a small number of
computing nodes in the ranges like less than 8 or 16.
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2.3. Summary of the Main Previous/Traditional Methods

By comparing the properties of the above presented methods, there is one big difference amongst
them. The GLM methods are optimized to be efficiently used in the context of parallel systems’
contexts having specified properties like “running schedule” and “number of processing units”.
We implemented all these three above listed methods on an OpenCL framework in order to carefully
analyze their respective performance along with related respective observed implementation restrictions.
One restriction (weak point) is related to the poor scalability w.r.t. to the increasing number of cores.
One does observe a very poor performance scaling of the algorithms while increasing the number of
involved nodes for solving a problem. On the other hand, the Parareal method is showing a very good
advantage when increasing number of cores; however, it is showing a very poor scaling performance
in presence of a small number of cores (e.g. 8 cores or 16 cores).

This observed gap has motivated us to create a new method based on both the Parallel Adam
Bashforth method and the Parareal algorithm by using the advantages of both methods with a
significantly higher compatibility with the OpenCL framework.

3. Our Novel Concept, the Parallel Adam-Moulton OpenCL

Our novel method, that we call the Parallel Adam-Moulton OpenCL method (we abbreviate it in
PAMCL) is a modified version of the Adams-Bashforth method, which has a scheduling scheme like
the PAB method (see Figure 2). This method is defined through the following equation for each group
of computing units:

A = [0], V = a·bT, a =
[

1 2 . . . g
]
, b =

[
0 . . . 0 1

]
(14)

where g is the group size of processors, and the number of previous values is g. Therefore, based on
the number of processors in a group, the requirements to the previous values are different. The matrix
U is calculated based on the related Adams-Baschforth method as explained in the GLM section.

The starting vector for this algorithm is calculated by a suitable scheme like the DOPRI5 method [41],
and each value of F is approximated by using the previous steps of the solution vectors by using the
Equation (7). For each calculation stage, we have a (h × g ) step size advantage w.r.t. to h. On the
other hand, with a growing size of the “processing units group”, we need a higher order method
for calculating the result values (y[n+1]) by using an Adams-Bashforth algorithm. In this way, we do
increase our accuracy without losing in performance.

After calculating the result, we do need a corrector function based on the Adam-Moulton formula
to correct the calculations of the previous steps.

Based on both the predictor (see Adams-Bashforth) and the corrector (see Adam-Moulton), we can
calculate the values of the local error truncation, which leads to the calculation of the optimal step-size
for each of the g steps for the local group, and the global step-size can change by synchronizing the
groups after m steps calculation, where m is typically larger than g.

A sample implementation of the explained algorithm based on Equations (7) and (14) can be
described as follows:

1. Define the number of CPUs in group (g) based on current hardware restrictions.
2. Define both work group step size and work item step size.
3. Solve the starting points by using for example “DOPRI 5” and save them in X1, X1, . . . , Xg,

and their corresponding derivations as F1, F2, . . . , Fg.
4. Update Xi+1, Xi+2, . . . , Xi+g in parallel through the following steps:

a. Calculate the derivation F by using Equation (7), Equation (14) and save in Fi+1.
b. Wait for all values of Fi+1, . . . , Fi+g.
c. Update the Xi+1, Xi+2, . . . , Xi+g.

150



Sensors 2020, 20, 6130

d. Calculated the error for each computing unit and then update the global step size.
e. Synchronize all computing units and update value in global variable.

5. Go to the step 4 until all values calculated.

In previous, our implementation will be divided into 4 different parts:

(1) Calculating the gradient values for the next estimation points.
(2) Transferring the gradient vectors into the global memory.
(3) Estimating the next solution vector through an adapted Adams-Bashforth algorithm base on

Equation (14) weights.
(4) Calculate local truncation error to adjust the step-size.

After these above listed main 4 steps, all local groups will be in synch (i.e., synchronized) for
starting the next step. As we can see, most of the complexity of this algorithm is related to the
correct usage of local and global variables, and most of the calculations will be solved in steps 3 and 4
depending on the problem size and the number of groups members.

An important effort in each calculation is to make the steps completely independent and create
tasks with the same size in order to decrease the synchronization time between work groups.

Furthermore, by increasing the number of computing units to more than 32, we found out that this
method then becomes inaccurate. For increasing the accuracy, the previous method is combined with
an algorithm which is explained in Section 2.2, where the propagation factors G and F are replaced
by a new suggested propagator factor. Therefore, the explained previous algorithm will run on local
groups of processing units and grouped together does create a Parareal solver.

4. System Architecture

This computing system is designed based on the OpenCL platform. OpenCL is a heterogeneous
computing platform, which is a framework for writing programs that are executed across heterogeneous
platforms consisting of CPUs, GPUs, and other processors.

OpenCL includes a language (based on C99) for writing kernels (functions that execute on OpenCL
devices) and APIs that are used to define and then control the platforms. OpenCL supports parallel
computing by using a data-based and task-based parallelism. OpenCL has been adopted by Intel, AMD,
NVidia, and ARM. Academic researchers have investigated the possibility of automatically compiling
OpenCL programs into application-specific processors running on field programmable gate arrays
(FPGA) [42]. Also, commercial FPGA vendors are developing tools to translate OpenCL to run on
their FPGA devices. This feature of OpenCL motivates us to use this platform for implementing ODE
solvers. But it is not possible to use this platform directly for different programming languages and web
applications. Therefore, for the sake of expandability of the system, one application cloud, as shown
in Figure 4, has been designed. This cloud application is creating a computing platform/network for
solving ODE problems across a network of computing units.

Figure 3 is showing our global system architecture. It is composed of 3 main components.
The ODE Computing platform OpenCL (we call it ODECCL) connectors are responsible for connecting
the manager to the interfaces and getting/collecting tasks originating from different applications and
destined to ODECCL.
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Figure 3. Solver system architecture. The interfaces provide the possibility of define specific tasks for
the ODE solver. The ODE Computing platform OpenCL (we call it ODECCL) is composed of three
parts. The manager will be assigning/allocating resources depending on their availability. Tasks are
defined based on the different interfaces of ODECCL.

After a task has been validated in the system, it will be sending message(s) to the ODECCL
manager. The ODECCL Manager is responsible for managing, scheduling and supervising tasks.
Each task is scheduled based on its respectively needed computing unit’s calculation power (Flops)
and the communication cost. Computing units have the responsibility to execute tasks on the available
OpenCL resources; therefore, it is possible to execute tasks both on CPU, n-CPU, and GPU at the same
time (i.e., within the same parallel computing networked infrastructure).

Figure 4 does show the task scheduling concept in the ODECCL system. The scheduling is
done between m groups and each group has g computing units (group units). After each stage,
the computing units do exchange information in order to update their respective states and calculate
the next gradient value.
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Figure 4. Scheduling scheme within/by the ODECCL system. Inside a group of processors, a stage will
be processed, and between groups, steps will be calculated and synchronized.

From a technical perspective, ODECCL has been implemented using Visual Studio C++ and the
OpenCL library provided by Nvidia has been included to the project. Each solver which is used in the
experiments has been implemented as a kernel.

For example, if the use of the overshooting algorithm is not required, our system does use
kernels without the overshooting parts. The manager part of the application is responsible to load the
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correct kernels for each problem and it is also responsible to create the groups and assign the required
processing units to the created groups. The manager is also providing facility (i.e., infrastructure) to
retrieve data from the different interfaces and load/download them from/to the kernels.

5. Numerical Experiments

For testing our computing system described in Section 4, we select three different types of ODEs.
These three equations are shown in Equations (15)–(17). This does correspond to respectively solving
Rayleigh (see Equation (15)), Rössler (see Equation (16)), and JACB (see Equation (17)) dynamic models.

The Rössler function is sensitive to inputs; see Equation (16). The parameters of the Rössler
function are selected to have a chaotic behavior. This shall test our system in presence of small changes
in initial conditions; thereby we can show significant variation in the observed behavior. This is also
good to show the accuracy of the algorithm(s) while considering different computing units. Furthers,
Equations (16) and (17) are selected as stiff ODE problems to test the system stability and for comparing
our results with those from other related scientific works. They are very sensible to errors and a small
error will/can change their respective final result.

d2x
dt2 − ε1

[
1− ( dx

dt
2
)
]
(

dx
dt

)
+ωx + k sin(2π f1) = 0

ε1 = 2.3 , ω = 1 , k = 2.398 , f1 = 0.004
X0 = [−0.5, 0.1] , t ∈ [0, 20s]

(15)

dx
dt = −y− z
dy
dt = x + ay
dz
dt = b + z ( x− c)

a = 0.2, b = 0.2, c = 5.7

X0 = [1, 1, 0], t ∈ [0, 20s]

(16)

dx
dt = y·z
dx
dt = −x·z
dz
dt = −0.51 x.y

X0 = [0, 1, 1], t ∈ [0, 7.5s]

(17)

All models have been implemented on the following platform: Windows 10 PC with Intel Core i7
7700K as CPU, double Nvidia GeForce GTX 1080 TI with 8GB RAM as GPU and 64GB RAM. The Intel
Core i7 7700K has 4 cores or 8 logical threads. The Nvidia GeForce GTX 1080 TI has 3584 cores which
can be used for parallel computing.

Table 1 does show the respective kernel configuration for each of the solvers considered. As one
can see, our model (PAMCL) does integrate two different solvers. The first solver has no overshooting
algorithm and the second one has this ability of overshooting to fill up the problem of using a large
number of cores. Regarding the first solver, the workgroup size is the same like the one of PIRK and
PAM, and the number of working items is dependent on the number of available cores. But in the
second solver of PAMCL the number of workgroups is variable and we always keep the number of
internal working items of each workgroup to be 8, as this number is the most efficient solver w.r.t to
the number of cores (as this is illustrated in Table 2).
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Table 1. The kernel configuration for each of the solvers. * The PAMCL solver has two different types
of kernels, the first one without overshooting and the second one with overshooting. If the number of
cores is more than 32, the second kernel type is the one to be used.

Solver/Parameter Work- Groups Work Item Kernel Type Number

PIRK 1 Depends on available cores 1
PAM 1 Depends on available cores 1

PAMCL Variable Depends on available cores divided by
the number of Work-Groups 2 *

The computing time results of testing of our novel algorithm can be seen in Table 2, where they
are provided for different differential equations to be solved. One can see by adding more cores results
in increasing the performance of the system. But after 16 cores the performance increase is no more
exponential, on one hand, and the overhead of the algorithm does significantly increase. Indeed,
the decrease in computing time performance consecutive to increasing the number of cores 8 times,
namely changing it from 8 cores and 64 cores, is just of 3 times, although one has added 8 time more
cores. This poor gain in the resulting performance through adding more cores is even worser in when
the number of cores is much higher.

Table 2. The execution time of PAMCL for different selected differential equations. The increase in
number of cores does result in a decrease of the respective processing time. But by increasing the
number of cores, this does result in more communication overhead amongst the cores.

Number of Cores on GPU RAYLEIGH (ms) JACB (ms) RöSSLER (ms)

1 238.0 257.1 338
2 122.0 131.1 174.46
8 35.0 36.7 48.1

64 12.4 13.1 15.2
512 7.4 7.8 8.5

6. Comparison of the Novel Concept (PAMCL) with Previous/Related Methods

As explained in the previous sections, we define the speed-up by considering equal tasks on
different cores. Therefore, our speed-up concept is not directly comparable to that of DOPRI or that of
other algorithms, because most of them are rather running on a single-core computing unit. But for
the sake of a better understanding, we calculate an “equivalent speed-up” performance w.r.t. one
single computing unit. Figure 5 has been generated accordingly. As we can see, the PAMCL algorithm
(i.e., our novel concept) can provide a much better speed-up depending on available free cores, either
GPU or n-CPU. This speed-up, for 500 GPU cores, can reach up to 60x faster than the normal DOPRI5
algorithm, which is used in commercial ODE solvers like Matlab on the same computer/CPU.

In Figure 6, for our novel method PAMCL, the evolution of the processing time w.r.t. the CPU
number is shown. As could be expected, according to the Gustafson’s law [43], the system performance
is not increasing linearly and the speed-up does reach a saturation after 16 computing units.

Further, in case of more complex equations, the advantage of our novel algorithm will increase,
because the ratio between processing time and communication time to other processing units is higher.
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Figure 6. Effect of the number of processing units on the computing performance (for our novel
approach PAMCL) for solving the Rössler attractor in GPU. The maximum error is 0.01.

While comparing CPU and GPU performance for solving differential equations, we do further
observe that an implementation of the DOPRI algorithm on CPU is much faster than on GPU. However,
while using the PAMCL algorithm, it does provide again more advantages w.r.t. a normal execution of
the DOPRI algorithm on CPU (see Table 3).

For each model which has been explained previously, one has created a respective own kernel.
The main problem regarding Runge-Kutta and PAM is that both methods have restrictions related to
the number of cores as the number of cores increases beyond 8, both lastly named methods become
worse w.r.t. reaching the required accuracy. Therefore, in order to reach the required error level,
they will need more (i.e., additional) iterations, which does result logically in more computing time.
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Table 3. Comparison of the “average computation times” on CPU and GPU while using different solver
algorithms for solving the Rössler equation.

Method/
Algorithm

Error 0.01 Error 0.001 Error 0.0001

Time (ms)
on CPU

Speedup (i.e.,
on GPU)

Time (ms)
on CPU

Speedup (i.e.,
on GPU)

Time (ms)
on CPU

Speedup (i.e.,
on GPU)

Dopri5 593.11 1x 4171.01 1x 41860.01 1x
PIRK (2019) 169.23 3.50x 1301.02 3.22x 15013.89 2.79

PAM/PAB (2019) 129.12 4.26x 1210.73 3.41x 11540.44 3.62
PAMCL 6.93 69.43x 51.83 80.47x 439.82 95.17x

As we can see in Table 4, the increasing performance which are demonstrated in previous table is
due to the fact of using more global and local memory. Indeed, our model used respectively more
memories compare to other methods.

Table 4. Comparison of “memory usage” w.r.t the target error while involving different solver
algorithms for solving the Rössler equation.

Method/
Algorithm

Error 0.01 Error 0.001 Error 0.0001

Global
Memory

Local
Memory

Global
Memory

Local
Memory

Global
Memory

Local
Memory

Dopri5 18 KB 500 B 200 KB 500 B 2.1 MB 500 B
PIRK (2019) 19 KB 1.5 KB 210 KB 1.5 KB 2.2 MB 1.5 KB

PAM/PAB (2019) 22 KB 2.5 KB 250 KB 2.5 KB 2.6 MB 2.3 KB
PAMCL 32 KB 4 KB 350 KB 4 KB 4.8 MB 4 KB

As explained previously, for extending the PAMCL to a higher number of cores, we use the Parareal
algorithm. This algorithm has its own drawback, as one needs to define the required iteration numbers
needed to reach a convergence to the correct answer (see Figure 7). Thus, increasing the speed-up of
PAMCL by using/integrating the Parareal algorithm will also have its own similar drawback.
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Figure 7. Showing the effect of iterations on the convergence towards the solution of the Rössler
Equation (17). The green line is showing the expected solution, and the red dots are showing the
PAMCL estimation at different iteration steps. For all 3 sub-figures (i.e., from left to right), the same
parameter settings were used but 25 points are used in Sub-Figure (a), 50 points are used in Sub-Figure
(b), and 100 points are used in Sub-Figure (c). Those points are calculated in a parallel way. It is visible
that the estimation of model is changing from the expected results and an increasing number of does
increase the model accuracy, but does also increase the calculation time.

7. Possible Extension of the PAMCL Model for also Solving PDE’s

The suggested model (PAMCL) can also be used for solving PDE models. The main difference
in solving PDE’s lies essentially in the fact that in a PDE one has more dimensions. Therefore, it is
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possible to use/involve concepts such as Domain Decomposition, Waveform Relaxation [44] or multiple
shooting method [45,46], which are used for solving either ODEs and PDE problems.

Regarding the Domain Decomposition approach, we can separate our domain into sub-domains.
Then, in this case, we can solve each subdomain separately and combine the results of each domain to
get the final solution.

As we have seen in previous sections, our model is not compatible with such a way of solving
the problem and we use the multiple-shooting method for solving the ODE. Therefore, the best way
to solve PDE problems in our model is to keep the domain and create subdomains in time (Multiple
shooting method). This process can be expressed into the following steps:

1. Converting PDE problem into ODE problem. Customize solver to solve PDE in parallel on
n-CPUs/GPUs groups.

2. Define the step-size of both coarse and fine estimators to find the solution of PDE between groups.
3. Solving the PDE sequentially using the coarse estimator in the overall time span.
4. Solving the PDE in parallel using fine estimator in each of the split time spans.
5. Update the values in each of the split time spans by using the coarse estimator sequentially.
6. Go to step 3 until we reach the required precision.

In step 1, we need to approximate/transform the PDE problem into an ODE problem.
The approximated ODE problem now can be solved on our platform. This step normally requires
setup parameters, calculates boundary conditions, and solves matrix solutions. Therefore, we need
custom the solver for PDE solving. Each step of the PDE will be processed on group of CPUs\GPUs.
In step 2, we a have similar implementation of PAMCL, we used both fine and coarse estimators to
reach the final solution. First results are approximated, and later, by using the fine estimator they will
be corrected. This process can be continued until the overall model reaches the required precision.

8. Conclusions

Using our novel PAMCL method for solving ODEs on an OpenCL framework does increase
the performance. Compared to other solvers, our novel algorithm (PAMCL) is displaying very good
behavior and does converge always to the exact solution. By choosing the correct interpolations and
adjusting the weights, the algorithm can perform much faster calculations with the required precision.
But still, the communication between computing units requires more optimization, and more unused
resource do still exist in the system.

Solving these problems can provide much better performance w.r.t to the current status of the
system. Also, as we see in the implementation part, defining equal tasks (by definition within the
PAMCL algorithm) can increase the overall performance by decreasing task scheduling amongst nodes
and does also increase the performance on a GPU like architecture, as an execution of branches on
such structures are costly.

Also, by increasing the number of multi-stages, the calculation becomes more complex and it
requires more resource to calculate values. This phenomenon occurs in all multi-step algorithms and it
is required to provide load balancing between local workgroups and global workgroups.
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Abstract: This paper presents a power-oriented monitoring of clock signals that is designed to avoid
synchronization failure in computer systems such as FPGAs. The proposed design reduces power
consumption and increases the power-oriented checkability in FPGA systems. These advantages
are due to improvements in the evaluation and measurement of corresponding energy parameters.
Energy parameter orientation has proved to be a good solution for detecting a synchronization
failure that blocks logic monitoring circuits. Key advantages lay in the possibility to detect a
synchronization failure hidden in safety-related systems by using traditional online testing that
is based on logical checkability. Two main types of power-oriented monitoring are considered:
detecting a synchronization failure based on the consumption and the dissipation of power, which
uses temperature and current consumption sensors, respectively. The experiments are performed on
real FPGA systems with the controlled synchronization disconnection and the use of the computer-
aided design (CAD) utility to estimate the decreasing values of the energy parameters. The results
demonstrate the limited checkability of FPGA systems when using the thermal monitoring of clock
signals and success in monitoring by the consumption current.

Keywords: safety-related system; component; FPGA-designing; logical and power-oriented check-
ability; hidden faults; clock signal; consumed and dissipated power; temperature and current
consumption sensors

1. Introduction

It can be argued that the presence of analogies from the natural world has led to the
development of the human-created computer world. In this regard, energy is a central
aspect of all living (biological) systems. Energy is received from the sun, from volcanoes at
the bottom of the ocean, where flora and fauna bloom profusely, and many other natural
sources. Computer systems are also powered by energy sources. The thermometer allows
us to detect the deviations from the normal thermo state in living systems but also in
artificial ones. As such, there are well-known studies on the monitoring of digital circuits
using thermal sensors [1–3].

In support of robust biological systems, energy balance must be maintained by impos-
ing a coordinated ordering (synchronization) of vital life processes. The synchronization
functions in computer systems act much the same way in maintaining component integrity;
however, they are much simpler. As such, turning the synchronization circuits off disables
the components of a computer system and disrupts its operation without turning off the
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power. Failures in synchronization of digital circuits lead not only to the creation of a
terminal disabling functionality but also to hidden failures, which can block error-free
control circuits.

The concept of risk is the primary metric used in evaluating safety-related systems.
Risk is determined by the product of two factors: (1) the probability of an accident and (2)
the cost of the losses that it can cause. Trends in high-risk facilities are constantly increasing
the importance of the second factor. However, reducing the probability of accidents [4,5]
will certainly reduce the cost of losses but also result in a more robust safety-related system.

This task falls entirely on information technologies implemented in computer systems,
which in safety-related applications are transformed into Safety-Related Systems, for
example, safety systems of nuclear power plants [6]. According to international standards,
these systems are aimed at solving the complex problem of functional safety: both the
safety of the system and the facility under control in order to prevent accidents and reduce
losses in case of their occurrence [7,8].

Computer systems perform many functions in various fields of production and con-
sumption, but if they have become as significant in these fields as in accident prevention,
for example, in healthcare, communications, or financial domains, it will follow that these
fields have also become safety-related applications.

Safety-related applications have their own special significant impact on the synchro-
nization problem. Safety-related systems are designed to operate in both normal and
emergency modes. However, in emergency mode, the systems face the problem of insuffi-
cient checkability of their components, which causes the problem of hidden faults [9,10].
They can be covertly accumulated in normal mode, including synchronization circuits,
and can create a real danger for emergency mode, collapsing fault tolerance of circuitry
solutions and functionality of safety-related systems and facilities [11,12].

This paper describes the synchronization problems that take into account hidden
faults inherent in safety-related systems and also presents a power-oriented monitoring
of clock signals that is designed to avoid synchronization failure in computer systems
such as a field-programmable gate array (FPGA). The former is based on the feature of
synchronization, manifested in reducing the dynamic component of power consumption
and by demonstrating how the power-oriented checkability increases in FPGA systems
due to improvements in the evaluation and measurement of their energy parameters.

The main contributions consist in the following: (i) implementation of a power-
oriented approach for monitoring the synchronization circuits in safety-related systems
to counteract hidden synchronization outages in FPGA components, (ii) experiments
conducted with the purpose of researching the thermal checkability of synchronization
circuits in FPGA systems, (iii) experimental demonstration of the success in monitoring
synchronization circuits by changing the consumption currents. Thus, the main challenge
is related to improving the monitoring of synchronization circuits in FPGA components
of safety-related systems. The key problem is focused on detecting a hidden shutdown of
synchronization circuits in FPGA systems designed to operate in normal and emergency
modes, based on a change in power parameters. The effectiveness of monitoring the
synchronization circuits of FPGA systems by the energy parameters of the dissipated and
consumed power is evaluated for the first time in this paper.

The rest of the paper has the following structure. Section 2 reviews the related works
addressed to the development of thermal testability and thermal FPGA monitoring. In
addition, the capabilities of modern computer-aided design (CAD) in the evaluation of
energy parameters of FPGA systems are shown. Section 3 deals with the increasing problem
of hidden faults, aggravating the consequences of synchronization failures, and related
aspects of logical and power-oriented circuit checkability. The evolution of the traditionally
used logical checkability is presented according to the resource approach. Due to the last
one, the logical checkability is limited in the domain of safety-related applications, and
there is a need to develop alternative forms, including power-oriented ones. Section 4
shows the results of experiments according to the evaluation of power-oriented checkability
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for FPGA systems and their monitoring to detect hidden faults in the synchronization
circuits. The checkability of the circuits implemented in FPGA systems and the possibilities
of their monitoring by the energy parameters of the dissipated and consumed power using
temperature and current sensors are studied.

2. Related Works

Existing works related to the current problem can be divided into the following four
groups: (i) thermal testability and thermal monitoring; (ii) capabilities of modern CAD
in the evaluation of energy parameters in FPGA systems; (iii) monitoring of clock signals
in FPGA; (iv) a need for developing the power-oriented checkability of circuits in safety-
related applications, including monitoring of synchronization circuits in safety-related
systems.

Within a first group, V. Székely et al. suggested the methodology of design for thermal
testability “ . . . to find those chips that operate at higher temperatures than their normal
operating temperature; to indicate possible mounting defects; to monitor during the whole
lifetime in parallel with normal operation in order to warn of the danger of possible thermal
runaway in advance . . . ” [13]. Yi Ren noted that “an all CMOS (complementary metal-
oxide-semiconductor) temperature sensor test is proposed for submicron circuits to detect
abnormal temperature changes so as to detect defects on a chip, and increase reliability
and service life of devices” [14]. J. Altet and A. Rubio focused on the thermal testing of
manufacturing catastrophic defects “to detect hot spots in the integrated circuits” [15].

An overview of the works on thermal testability and thermal monitoring of FPGA
systems shows their focus on the overall assessment of thermal regimes. These studies
do not analyze the ability to detect a particular type of fault, including synchronization
failures.

Within a second group, modern CAD systems supporting FPGA-designing include
utilities for the preliminary and current evaluation of energy parameters for developed
schemes and offer external and internal sensors for their assessment. The utilities enable
to set and account the activity of input and internal signals affecting the estimation of the
dynamic component for the consumed and dissipated power of FPGA systems [16,17].
Electronics companies offer a wide range of external sensor chips that can monitor both
chip temperature [18] and consumption currents for FPGA supply circuits [19]. In addition,
some FPGA families have built-in crystal temperature monitoring and tools [20].

Monitoring of FPGA circuits on energy parameters is developed through support from
CAD, which already provide utilities and sensors for assessing and measuring not only
temperature but also currents characterizing power consumption. We can also note the
improvement in sensor accuracy, which enables to enhance circuit monitoring in changing
their energy parameters and creates conditions for fault detection with not only catastrophic
changes in thermal modes for operation of integrated circuits.

Within a third group, C. Metra et al. noted in [21] that the checker of the self-checking
register could not reveal a stuck-at fault affecting the clock signal and proposed the method
for concurrently checking clock signal correctness in distribution networks of synchronous
systems. This method and proposed “self-checking VLSI circuitry that concurrently checks
clock signals for permanent and temporary faults which change signal waveforms from
those expected from fault-free signals”. Pei Luo and Yunsi Fei proposed to monitor
the clock signals and detect glitches in FPGA for opposition to fault injection attacks in
cryptographic applications by using a new scheme of comparison of the clock signals with
reference clock [22]. G. L. Le et al. presented “a circuit and method herein for monitoring
the status of a clock signal. The method includes supplying a pair of clock signals to a clock
monitor circuit” for comparison [23].

Overall, we should notice that studies in the area of the clock signal monitoring in
FPGA are dedicated to detecting clock glitches using reference clock signals and not the
cause of these glitches. Indeed, supplying a clock signal to the register input does not
guarantee that the register gets the clock signal because a circuit break can happen after
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the monitoring point. This loss of the clock signal can be detected by changing the power
parameters.

The works of the fourth group are considered in the next separate Section 3. Because
they not only note what has been done in the field under consideration but also determine
the importance of developing energy-oriented approaches. Especially if we take into
account new challenges associated with the development of safety-related systems and the
limited capabilities of traditional logical checkability in relation to FPGA design.

3. Logical and Power-Oriented Checkability

Checkability is widely known in its simplest form—testability, i.e., the suitability of
the digital circuit for the development of tests to identify its malfunctions. Testability is
structural checkability as it is completely determined by the structure of the circuit [24,25].

During online testing, the checkability of digital circuits also depends on input data
and becomes structurally functional. It is advisable to consider the development of circuit
checkability in safety-related systems according to the resource approach [26].

Due to this approach, the integration of models, methods and tools combined by
the concept of “resources” into the natural world are analyzed, and three levels in the
development of resources are determined: replication, diversification and self-sufficiency
as the goal of development. Replication is represented in the natural world by integration,
which occurs due to a higher birth rate compared with mortality, which is typical of rodents,
insects and bacteria. Replication is the simplest form of integration and will always be
chosen in the absence of stamping restrictions, i.e., when there are open resource niches:
market, technological, environmental and others. At this level, successful development is
possible due to increasing productivity.

In today’s computer world, replication is the dominant level of development. Hard-
ware is stamped on the basis of matrix structures, including parallel shifters and adders,
iterative array multipliers and dividers [27,28].

Large-sized software modules are stamped and connected to new software products
to implement only a small amount of their functions. This negative process of slagging
programs is supported by resource niches that are open for the performance and memory
capacity of modern computers.

A niche filling process leads to closing resource niches when stamped clones are
doomed to extinction. They can only survive if they show their own peculiarities and
become individuals, that is, by moving to a higher level of development—diversification.
Such a process is observed in green technologies, for example, in mobile systems where
memory capacity and performance are dependent on the battery charge limit [29,30].

Safety-related applications stimulate closing of resource niches and moving to the level
of diversification, where integration is based on increased trustworthiness, i.e., adequacy
to the natural world, including aspects of functional safety. Under these conditions,
computer systems rise to the level of diversification and become safety-related systems,
diversifying the operating mode by dividing it into normal and emergency ones. The
diversification process inherits the input data of digital circuits and their structural and
functional checkability, which depends on these data that differ in normal and emergency
modes, leading to the problem of hidden faults. It is important to note that this problem is
inherent only in safety-related systems. In conventional computers, hidden faults do not
create problems as they remain hidden during the full operating mode [31].

Hidden faults can occur not only due to the problem with the fault tolerance function
of circuits in a very important emergency mode. This issue is better known for unsuccessful
attempts to detect hidden faults while simulating emergency conditions. Unauthorized
activation of these modes due to human factors or because of a malfunction has repeatedly
led to accidental consequences. The controlled switching on simulation modes is not less
dangerous due to the shutdown of emergency protection, which led to the Chernobyl
disaster [32,33].
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As described above, checkability is logical since it ensures carrying out logical control
based on the detection of errors in the calculation results. Logical control is most widely
employed in digital circuits, testing them during the pauses and in online testing using
actual data [34,35].

The drawback of logical checkability is that it is limited to digital component circuits of
modern safety-related systems. These circuits are traditionally based on matrix structures
for processing data in parallel codes, which is the main reason for the low structural and
functional checkability, especially in conditions of a little change in input data during
normal mode. The current dominance of matrix structures requires the development of the
concept of circuit checkability by diversifying its forms, among which the power-oriented
form seems to be the most promising.

Works on circuit checkability and monitoring in order to detect violation of the thermal
mode in integrated circuits due to power dissipation by measuring temperature, including
thermal testability studies for safety-critical applications [36], developing online thermal
monitoring methods [37], as well as techniques for measuring the temperature of local
sections of FPGA microcircuits [38] are known today.

The interest in monitoring circuits due to power dissipation is clarified by the avail-
ability of temperature sensors. However, their limited accuracy has become a significant
obstacle in the development of this direction. That enables the evaluation of the perfor-
mance of FPGA systems as a whole with a significant change in energy consumption.
Under these conditions, the task of power-oriented fault detection in synchronization
circuits was not set.

Assessment of the current state of this issue and possibilities of the circuit power-
oriented monitoring in synchronization circuits in the context of improving FPGA design-
ing and its distribution in safety-related applications require experimental studies.

4. The Results of Experimental Studies
4.1. Experimental Conditions

The power-oriented checkability of circuits in synchronization chains is based on
a decrease in power consumption of the dynamic component due to a decrease in the
number of clock signal switching. The circuit is suitable for monitoring changes in the
energy parameter beyond its values that are possible with proper functioning. During the
experiments, lower values of energy parameters are estimated and compared at the correct
operation of the investigated circuit and values of energy parameters for this circuit at
disconnection of synchronization in bits of its registers.

The experiments evaluated the checkability of the circuits and their monitoring ca-
pabilities according to the parameters of the dissipated and consumed power. In the case
of dissipated power, a series of experiments proofed the sufficiency of estimates obtained
for FPGA systems using CAD utilities. To analyze power consumption, experiments are
performed on the evaluation board stand, which enables measuring the consumption
current of the built-in target FPGA chip directly. The experiments used the same target
chip and CAD in both cases.

The experiments are carried out on the example of n bit iterative array multipliers,
taking into account the activity of the input signals of the circuit, which was set at the
recommended level of 12.5% of the clock frequency. For internal signals, a vectorless
estimation was carried out.

Iterative array multipliers contain two n bit operand registers and a 2n bit product
register, which receives clock signals with a frequency of CLK = 115 MHz, which is
maximum for n = 64. FPGA systems of the multipliers are based on intellectual property
(IP) Core LPM_MULT from the Library of parameterized modules [39], and they are
implemented on the FPGA Intel Cyclone 10 LP: 10CL025YU256I7G target microcircuit
under control of CAD Intel Quartus Prime 20.1 Lite Edition [40,41].

The selected FPGA contains 132 built-in 9 bit multipliers, on which LPM_MULT is
implemented. The structure of the 9 bit multiplier (Figure 1) contains the input 9 bit busses
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of the operands Data A and Data B, reset aclr and synchronization clock inputs, as well as
the output 18 bit bus of the result Data Out. The FPGA systems under investigation are
based on built-in 9 bit multipliers.

Figure 1. The structure of the built-in 9 bit multiplier.

4.2. Investigating the Thermal Checkability and Monitoring the Circuit of FPGA System

Modern CAD systems offer advanced tools for evaluating the energy parameters of
FPGA systems, including the PowerPlay power analyzer utility, which enables estimating
the dissipated power taking into account the dynamic and static components for the core,
as well as the input/output system [41,42].

While evaluating power dissipation, the core is considered as all the structural ele-
ments of the FPGA chip. The power dissipation estimate is converted by the utility to the
corresponding crystal temperature value.

Before performing calculations of energy parameters, it is necessary to set the predicted
values of the input and internal signals activity of the FPGA system in the Power Play
power analyzer. The activity or frequency of signal transitions in the system circuit has a
decisive influence on the dynamic components of the consumed and dissipated power of
the FPGA system.

For input signals, the activity can be estimated as a percentage of the value for the
system clock signal or set by the number of transitions per second. The activity value
of internal signals can also be set manually, similarly, to input signals, or calculated
automatically by the utility based on the activity of inputs taking into account the structure
of FPGA system circuit (vector less estimation).

In addition, before evaluating the utility, it is necessary to set the temperature and
cooling system values for the system. They include defining the boundaries of the operating
temperature range of the TJ crystal, as well as the ways of its determination.

The first option involves setting the supposed fixed value. The second one includes
automatic calculation of the crystal temperature by the utility depending on the set param-
eters of the operating conditions, namely the ambient temperature and the selected cooling
system. The lack or the availability of different types of chip cooling sets the corresponding
values for thermal resistances between the crystal and the environment.

The results of investigating the FPGA system of the 32 bit iterative array multiplier
are indicated in Table 1, including the power dissipation and the corresponding crystal
temperature values with the activity of 12.5% for the input and internal signals of the circuit
with synchronization disabling in d bits operand registers, where d = 0, 16, 32, 48.

Table 1. Dissipated power and crystal temperature of field-programmable gate array (FPGA) system
when n = 32.

d d,% PD, mW PDCD, mW PDCS, mW PDIO, mW TJ, ◦C

0 0 166.16 18.61 73.25 74.30 30.0
16 12.5 163.96 17.06 73.25 73.65 29.9
32 25.0 157.17 11.33 73.22 72.62 29.7
48 37.5 153.05 7.99 73.21 71.85 29.6
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The total power dissipation PD is represented in milliwatts by its three components:
dynamic PDCD, static PDCS, and dissipated power PDIO of input/output system. These
estimates are obtained employing the PowerPlay power analyzer.

Moreover, Table 1 shows the main change in power dissipation in its dynamic com-
ponent. Synchronization disabling leads to a decrease in this component from 18.61 mW
to 7.99 mW, which affects the total power dissipation in its decrease from 166.16 mW to
153.05 mW.

PowerPlay power analyzer calculates the crystal temperature:

TJ = PD·RJA·10−3 + TA, (1)

where RJA—crystal–environment thermal resistance, TA—ambient temperature TA = 25.0 ◦C.
RJA thermal resistance is a constant for the FPGA system; its value depends on the

presence or absence of a cooling system. In our experiment, RJA = 30 is determined by CAD
Intel Quartus Prime.

The temperature values TJ calculated according to Formula (1) for the corresponding
values of the total power dissipation PD are indicated in the right column of Table 1.

The circuit is suitable for monitoring synchronization failures in the event of a decrease
in the energy parameter below the lower boundary of proper functioning. This boundary
is determined by the utility with the smallest, i.e., zero activity of input and internal signals.
Zero signal activity reduces the total power dissipation to the level of PD.A0 = 148.83 mW.
Then, the lower boundary of the dissipated power can be estimated, taking into account
the utility error of ±2.5% [43] as PD.MIN = PD.A.0 (1 − 0.025) = 145.11 mW. In this case, the
lower temperature boundary is determined by the Formula (1): TJ.MIN = 0.14511 × 30 + 25
= 29.4 ◦C, where PD = PD.MIN.

Then, the checkability of the circuit makes it possible to detect synchronization failures
when the crystal temperature drops below 29.4 ◦C.

While monitoring the circuit of the FPGA system in order to detect synchronization
failures in reducing the crystal temperature, one should also take into account an error of
the temperature sensors, the best of which introduce an error of 0.1 ◦C [44,45].

Therefore, monitoring can only detect failures that decrease the temperature below
29.3 ◦C.

The results of monitoring (Figure 2) show that when synchronization is disabled in
48 bits of registers (37.5% of the total number of circuit sync inputs), the temperature of the
crystal drops from 30.0 ◦C to 29.6 ◦C and remains in the operating mode of the temperature
values that the sensor can identify with the proper functioning of the circuit. Thus, the
activity of the failures in the synchronization circuits is insufficient for its detection by
monitoring the crystal temperature.

Figure 2. Results of thermal monitoring for 32 bit multiplier.

The results of investigating the FPGA system of the 64 bit iterative array multiplier are
illustrated in Table 2, which also contains the values of dissipated power, its components
and the corresponding crystal temperature. The last one is obtained using the PowerPlay
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power analyzer with the same signal activity of 12.5% and synchronization disabling in d
bits of the operand registers when d = 0, 16, 32, . . . , 96.

Table 2. Dissipated power and temperature of FPGA system chip when n = 64.

d d,% PD, mW PDCD, mW PDCS, mW PDIO, mW TJ, ◦C

0 0 189.72 38.25 73.40 78.07 30.7
16 6.3 187.61 37.17 73.39 77.05 30.6
32 12.5 185.15 34.87 73.38 76.90 30.6
48 18.8 180.92 31.22 73.37 76.32 30.4
64 25.0 176.56 28.10 73.36 75.10 30.3
80 31.3 173.87 26.02 73.35 74.51 30.2
96 37.5 171.42 24.99 73.34 73.09 30.1

Table 2 shows the impact of synchronization disabling on the total power dissipation
and its dynamic component by reducing disabling from 189.72 mW to 171.42 mW and from
38.25 mW to 24.99 mW, respectively. The crystal temperature calculated by PowerPlay
power analyzer by Formula (1) when TA = 25.0 ◦C is indicated in the right column of
Table 2.

The lower boundary of the temperature TJ.MIN of proper functioning is determined
by the PowerPlay power analyzer due to the total power dissipation PD.A0 = 160.90 mW,
calculated when there is zero activity of the input and internal signals taking into account
its decrease to the value PD.MIN = PD.A.0 (1 − 0.025) = 156.88 mW and with the utility error
of ± 2.5%.

According to Formula (1), the lower temperature boundary is calculated as TJ.MIN =
0.15688 × 30 + 25 = 29.7 ◦C, and it determines the suitability of the circuit of the FPGA
system to control when the crystal temperature drops below 29.7 ◦C.

Monitoring of the FPGA system is carried out within the framework of the calculated
checkability, which is reduced at the same time due to the error of temperature sensors.

The smallest error of 0.1 ◦C of the most accurate temperature sensors limits the
monitoring capabilities in detecting failures to a temperature which is below 29.6 ◦C.

According to the results of monitoring (Figure 3), synchronization disabling in 96 bits
of registers (37.5% of the total number of circuit sync inputs) reduces the temperature of the
crystal from 30.7 ◦C to 30.1 ◦C, i.e., to a value that relates to the possible sensor readings
with the proper functioning of FPGA system.

Figure 3. Results of thermal monitoring for 64 bit multiplier.

Thus, both considered examples indicate the impossibility of detecting failures in
synchronization disabling even in 37.5% of the sync inputs of the circuit. Thermal mon-
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itoring is ineffective due to insufficient thermal checkability of the circuits in relation to
synchronization failures and the limited accuracy of modern temperature sensors.

4.3. Investigating the Checkability of FPGA System and Its Circuit Monitoring by
Current Consumption

Another possibility of power-oriented monitoring of FPGA systems is provided by
the circuit checkability according to the parameter of power consumption, estimated by
the current consumption [46].

The experiment was conducted using the evaluation board Intel Cyclone 10 LP FPGA
evaluation kit [47], which enables to measure of the consumption current of the integrated
FPGA chip. To display the measurement results, the evaluation board is connected to a
personal computer.

The evaluation board contains the following components:

• Target Intel Cyclone 10 LP FPGA chip: 10CL025YU256I7G [40];
• Programmable generator of clock pulses programmable clock generator;
• Subsystem for measuring the current consumed by the target microcircuit;
• Toggle switches and push buttons to control the experiment progress.

Software. A formal description of the experimental device circuit, synthesis of the
circuit, its placement and tracing in the space of the target FPGA chip was performed in
the Intel Quartus Prime 20.1 Lite Edition CAD environment [41].

The target FPGA chip’s consumption current is obtained and visualized in real time
using the Power Monitor software utility [47], which is supplied by Intel along with the
Intel Cyclone 10 LP FPGA evaluation kit. This utility is installed on a personal computer to
display the ongoing consumption current values getting from the current measurement
subsystem.

Description of the experimental scheme. The experimental scheme is complicated
compared to the scheme for studying the dissipated power due to the need to generate
input signals and implemented for n = 16, 32, 48 and 64.

For n = 16, the circuit (Figure 4) contains the phase-locked loop (PLL) module for
generating the main clock signal, the OpUnit subcircuit for generating the multiplier
operands, the subcircuit for disabling synchronization, consisting of 6 AND gates, and the
investigated multiplier LPM_MULT.

Figure 4. Experimental scheme for n = 16.
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PLL module for generating the main clock signal. A clock signal with a frequency of
100 MHz is fed to the input of the circuit. This signal is formed by the programmable clock
generator, which is part of the evaluation board. The phase-locked loop (PLL) module,
which is part of the target FPGA chip, increases the clock frequency up to 115 MHz. This
frequency is the maximum frequency for the experimental circuit. Four identical clock
signals (115 MHz) are generated at the PLL module, and they are the main clock signals of
the circuit.

OpUnit sub-circuit for forming the multiplier operands. Data for multiplier operands
are generated in their registers composed of 4 bit Johnson counters ensured the uniform
switching of all operand bits. The Johnson counter is implemented on the base of a cyclic
shift register and controlled using a clock input and a shift enable input. The n bit operand
registers contain n/2 Johnson counters, i.e., 8, 16, 24, and 32 for n = 16, 32, 48, and 64,
respectively. Each Johnson counter generates a pair of bits for the multiplicand as well as
a pair for the same multiplier bits. Each Johnson counter bit switches in 4 times less than
the clock signal at the clock input. The clock signals are applied to Johnson counter clock
inputs and the trigger that bisects the frequency and feeds the received signals to shift
enable inputs of the Johnson counter. This reduces the switching frequency of the input
signals (operand bits) by 8 times, i.e., decreases it to the recommended level of 12.5% of the
clock frequency.

The OpUnit subcircuit for n = 16 is shown in Figure 5.

Figure 5. The OpUnit subcircuit for n = 16.

Subcircuit for disabling synchronization. To simulate a fault, the synchronization is
disabled in six Johnson counters, which form the 12 least significant bits of both operands. To
disable the synchronization, the 6 two-input AND gates and the 6 control signals are used,
which are supplied to the circuit manually using both toggle switches and push buttons
of the evaluation board to stand. These signals disable the synchronization of Johnson
counters in bits (0, 1); (2, 3); (4, 5); (6, 7); (8, 9); (10, 11), respectively for both operands of the
multiplier. This solution was sufficient for n = 16, 32, 48. A case n = 64 required more bits
to disable the synchronization. For this, the circuit contains a shift register, which advances
every 80 s the code disabling the synchronization of the next Johnson counter.
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The multiplier is designed on the basis of standard IP Core LPM_MULT, similar to
that used in experiments to estimate the dissipated power. It contains a multiplication
circuit and an output register where the multiplication result is placed, as well as operand
inputs, and the asynchronous reset input, and the clock input of the output register.

The experiment technique includes the step of preparing the evaluation board to stand
and performing the measurements in operation three modes of the experimental scheme:

• Normal operation (mode 1);
• Operation at zero activity of information signals (mode 2);
• Operation under shutdown conditions of the operand register bits (mode 3).

During the preparation phase of the evaluation board stand, the experimental scheme
is implemented into the target FPGA using the Intel Quartus Prime CAD by generating
a configuration file with the following uploading in FPGA. The Power Monitor utility is
activated to obtain and display the ongoing current consumption.

Further, the consumption current per each operating mode of the device was measured
sequentially. Measurements per each mode are performed for one minute. The mode
sequences are as follows:

• Normal operation;
• The zero-activity mode of the input signals, provided by stopping the formation of

operands as well as a result of multiplication (the reset signal was supplied to the
circuit and held for one minute);

• The mode of disconnecting the synchronization of Johnson counters, which form the
bits 0..1, 0..3, 0..5, 0..7, 0..9, 0..11 and 0..11, 0..13, 0..15, 0..17, 0..19, 0..21, 0..22 of both
operands for cases n = 16, 32, 48 and n = 64, respectively.

Results of experiments. The results of the studies are shown in Table 3 for n = 16, 32
and 48.

Table 3. Results of experiments for n = 16, 32 and 48.

d d16,% I16, mA d32,% I32, mA d48,% I48, mA

0 0 15.74 0 20.99 0 29.47
4 6.3 13.72 3.1 18.97 2.1 27.85
8 12.5 12.51 6.3 16.95 4.2 26.24

12 18.8 10.49 9.4 15.34 6.3 24.62
16 25.0 8.88 12.5 13.32 8.3 22.20
20 31.3 6.86 15.6 11.30 10.4 20.18
24 37.5 5.25 18.8 8.88 12.5 18.16

Table 3 shows I16, I32 and I48 values of consumption current in mA for n = 16, 32 and
48 at shutdown of synchronization in d bits. A case d = 0 corresponds to the normal mode.
Experimental circuits contain the 4n synchronization inputs and determine the percentage
of disconnections as dn = 100 d/(4n): d16 = 100 d/64, d32 = 100 d/128, d48 = 100 d/256.
The zero-activity mode proofed the lowest values of 14.93 mA, 17.36 mA and 20.99 mA,
determining the checkability of the circuits below these values for n = 16, 32 and 48,
respectively. The error of 0.4 mA for the current sensor reduces the specified lowest
values to the threshold values: S16 = 14.53 mA, S32 = 16.96 mA and S48 = 20.59 mA, a
synchronization fault is detected below those threshold values. The results of experiments
show the detection of a fault when the synchronization is disconnected in at least 4 (6.3%),
12 (9.4%) and 20 (10.4%) bits of operands for n = 16, 32 and n = 48, respectively.

The power monitor utility shows the current consumption graphs for n = 16 (Figure 6).
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Figure 6. Current consumption charts for n = 16.

The red line marks the maximum consumption current value that corresponds to the
normal operation of the device. The yellow line captures the minimum consumption value
that corresponds to the last experimental mode (disabling the synchronization of bits 0.11
in both operands). The green line shows the current consumption values measured at each
moment of the experiment. The charts show, from left to right, the level of normal mode
(15.74 mA), zero activity of input signals, return to the normal mode, and the sequential
sync shutdown mode. In the case of d16 = 6.3%, the current consumption decreases to the
level of 13.72 mA, which is below the threshold S16. The results of the studies for n = 64 are
shown in Table 4.

Table 4. Results of experiments for n = 64.

d d64,% I64, mA d d64,% I64, mA

0 0 54.49 24 9.4 41.98
4 1.6 53.28 28 10.9 39.36
8 3.1 51.26 32 12.5 37.13

12 4.7 49.84 36 14.1 34.31
16 6.3 47.23 40 15.6 32.29
20 7.8 44.40 44 17.2 30.27

The zero-activity mode determined that the circuit checkability (n = 64) is less than
37.94 mA. The last one is reduced by the sensor error to a threshold of S64 = 37.54 mA, and
the monitoring detects a synchronization fault below that threshold. Fault detection occurs
when synchronization is disabled at least in 32 (12.5%) bits of operands.

Figure 7 shows the percentage of synchronization outages starting from which and
above the monitoring provides the fault detection in circuit synchronization.

Figure 7. Comparison of results obtained in experiments.

For example, for n = 16 the sync fault is detected when 6.3% of the sync inputs are
disconnected and with a higher percentage of disconnections.
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The growing percentage of synchronization outages with a rise of n proofs a corre-
sponding decrease in the detection ability of the monitoring. That can be explained by the
nature of the dependencies on n the number of synchronization inputs and the complexity
of the experimental scheme. The number of synchronization inputs grows linearly and
increases by 4 times. The complexity of the circuit is mainly determined by the complexity
of iterative array multipliers, which grows quadratically and increases by 16 times. Under
these conditions, the switching of information signals increases its influence on power
consumption to a greater extent compared with clock signals through both functional
transitions and glitches [48–50].

The experiment was continued for the FIR7531 non-recursive filter, which is a low-pass
filter with a cutoff frequency of 32.45 MHz and a gain of 16. Its implementation (fir_filter
project) is included in the Intel Quartus Prime 20.1 Lite Edition CAD demo projects [41].
All basic FIR (finite impulse response) filter modules are described in Verilog. The FIR filter
multiplier is implemented on the Intellectual Property Core LPM_MULT from the Library
of parameterized modules (LPM_MULT library module). The FIR filter processes an 8 bit
operand and forms an 8 bit result at the output using the two clock signals: clk and clkx2.
The signal clk clocks the main circuit of the FIR filter, and the signal clkx2 clocks the result
register.

The experimental circuit, implemented in the evaluation board, contains 32 subcircuits
consisting of an FIR filter and an 8 bit Johnson counter to form an 8 bit operand, as well as a
3 bit counter that reduces the activity of input signals to the recommended level of 12.5%,
and gates to disable sync signals. The zero-activity mode, provided by the reset of all
Johnson counters, determined the testability of the circuit below 110.19 mA, reduced by the
sensor error to a threshold value of SF = 109.79 mA. Monitoring detects a synchronization
failure below this threshold.

Table 5 shows the results of monitoring the FIR filters, including the number of d and
percentage of dF subcircuits with the disabled synchronization and the current consumption
IF measured by the sensor in the evaluation board.

Table 5. Results of experiments for FIR (finite impulse response) filters.

d dF,% IF, mA d dF,% IF, mA

0 0 136.03 4 12.5 106.56
1 3.1 127.95 5 15.6 103.74
2 6.3 121.50 6 18.8 96.07
3 9.4 111.81

The current consumption graphs provided by the Power Monitor utility are shown in
Figure 8.

Figure 8. Current consumption charts for FIR filters.
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The fault is detected when the synchronization is disabled in d = 4 (dF = 12.5%) and
more subcircuits. The current consumption is reduced to 109.05 mA < SF.

5. Conclusions

The problem of synchronization failures in digital circuits is brought to the attention
because of their significant impact on functioning and possible blocking of logical control
circuits aimed at detecting failures. This issue is aggravated in safety-related systems, which
cannot only increase the price of failures in the conditions of prevention and elimination of
accidents but also provide additional conditions for the manifestation of these failures in
emergencies.

Experimental studies of power-oriented forms of checkability and monitoring capabil-
ities of circuits for detecting failures in synchronization circuits are carried out using the
iterative array multiplier implemented on an FPGA system under the control of CAD Quar-
tus Prime. The energy parameters of the consumed and dissipated power are estimated
due to the values of the consumed current of the FPGA system core and the temperature of
its crystal, respectively. Failures in the synchronization circuits are introduced by disabling
the sync inputs in the bits of the input registers of the iterative array multiplier.

Experiments conducted for studying the FPGA system due to power dissipation are
carried out using the CAD utility and showed minor changes in temperature when the
synchronization was disabled in 37.5% of the input register bits. This temperature change
is completely blocked by the temperature operating range, taking into account the error
of the temperature sensors and therefore excludes the possibility of monitoring the FPGA
systems in order to detect failures in the register synchronization circuits by measuring the
temperature.

An experimental study of the FPGA system due to the consumed power was carried
out by measuring the consumption currents at the evaluation board stand and showed
the suitability of the iterative array multiplier circuit for monitoring starting with synchro-
nization disabling for 6.3% of the bits of the input registers (n = 16). With an increase in
operands to n = 64, this figure increases to 12.5%, which is associated with the increasing
effect of switching information signals (including glitches) compared to clock signals in
the iterative array multiplier. An experiment with FIR filters showed the possibility of
monitoring, starting with a 12.5% shutdown of sync signals.

Thus, the insufficient thermal checkability of circuits, further reduced by the limited
accuracy of modern temperature sensors, does not allow monitoring the FPGA systems
to detect failures in the synchronization circuits of registers due to power dissipation.
However, this issue can be successfully solved by monitoring circuits due to current
consumption, the measurement of which enables to detect of a synchronization failure,
starting with 6.3% of disabled sync inputs.

Further research is planned in the direction of expanding the range of investigated
schemes and studying the dependence of the results on the features of the initial data
in accordance with the requests of customers related to the development of FPGA-based
digital instrumentation and control safety systems for nuclear power plants.
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