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1. Introduction

Nondestructive testing and evaluation (NDT&E) is one of the most important tech-
niques for determining the quality and safety of materials, components, devices, and
structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing
(MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing
(RT), penetrant testing (PT), and visual testing (VT), and these are widely used through-
out modern industries. However, some NDT processes, such as cleaning specimens and
removing paint, cause environmental pollution and must be inspected in limited envi-
ronments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D
(dirty, dangerous, and difficult) job. In addition, the NDT operator judges the presence of
damage by experience and subjective judgment, so in some cases, a flaw that exists may
not be detected during the test. Therefore, to obtain clearer test results, a means for the
operator to determine the flaw more easily should be provided. In addition, the test results
should be organized systemically, in order to identify the cause of the abnormality in the
test specimen and to identify the progress of the damage quantitatively.

Thus far, from a total of 18 submitted papers to this Special Issue, 13 have been
published. The next sections provide a brief summary of each of the papers published.

2. Ultrahigh Resolution Pulsed Laser-Induced Photoacoustic Detection of Multi-Scale
Damage in CFRP Composites by Wang et al.

This paper [1] presented a photoacoustic nondestructive evaluation (pNDE) sys-
tem with an ultrahigh resolution for the detection of multi-scale damage in carbon-fiber-
reinforced plastic (CFRP) composites. The pNDE system consisted of three main compo-
nents: a picosecond pulsed laser-based ultrasonic actuator, an ultrasound receiver, and a
data acquisition/computing subsystem. During the operation, high-frequency ultrasound
was generated by a pulsed laser and recorded by an ultrasound receiver. By implement-
ing a two-dimensional back-projection algorithm, pNDE images could be reconstructed
from the recorded ultrasound signals, to represent the embedded damage. Both potential
macroscopic and microscopic damages, such as surface notches and delamination in CFRP,
could be identified by examining the reconstructed pNDE images. Three ultrasonic pre-
sentation modes, i.e., A scan, B scan, and C scan, were employed to analyze the recorded
signals for the representation of the detected micro-scale damage in two-dimensional and
three-dimensional images, with a high spatial resolution of up to 60 μm. Macro-scale
delamination and transverse ply cracks were clearly visualized, identifying the edges of
the damaged area. The results of the study demonstrate that the developed pNDE sys-
tem provides a nondestructive and robust approach for multi-scale damage detection in
composite materials.

Appl. Sci. 2022, 12, 565. https://doi.org/10.3390/app12020565 https://www.mdpi.com/journal/applsci
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3. Fast Terahertz Coded-Aperture Imaging Based on Convolutional Neural Network
by Gan et al.

Terahertz coded-aperture imaging (TCAI) has many advantages such as forward-
looking imaging, staring imaging, low cost, etc. However, it is difficult to resolve the target
under a low signal-to-noise ratio (SNR), and the imaging process is time consuming. In this
study [2], the authors provided an efficient solution to tackle this problem. A convolution
neural network (CNN) was leveraged to develop an off-line, end-to-end imaging network
whose structure is highly parallel and free of iterations. Additionally, it can simply have a
general and powerful mapping function. Once the network is well trained and adopted for
TCAI signal processing, the target of interest can be recovered immediately from the echo
signal. Additionally, the method to generate training data was shown, and the authors
found that the imaging network trained with simulation data was of good robustness
against noise and model errors. The feasibility of the proposed approach was verified by
simulation experiments, and the results show that it has a competitive performance with
state-of-the-art algorithms.

4. Indirect Method for Measuring Absolute Acoustic Nonlinearity Parameter Using
Surface Acoustic Waves with a Fully Non-Contact Laser-Ultrasonic Technique by Jun et al.

This paper [3] proposed an indirect method to measure absolute acoustic nonlinearity
parameters using surface acoustic waves by employing a fully non-contact laser-ultrasonic
technique. For this purpose, the relationship between the ratio of relative acoustic nonlin-
earity parameters measured using the proposed method in two different materials (a test
material and a reference material) and the ratio of absolute acoustic nonlinearity parameters
in these two materials was theoretically derived. Using this relationship, when the absolute
nonlinearity parameter of the reference material was known, the absolute nonlinearity
parameter of the test material could be obtained using the ratio of the measured relative
parameters of the two materials. For experimental verification, aluminum and copper
specimens were used as reference and test materials, respectively. The relative acoustic
nonlinearity parameters of the two materials were measured from surface waves generated
and received using lasers. Additionally, the absolute parameters of aluminum and copper
were measured using a conventional direct measurement method, with the former being
used as a reference value and the latter being used for comparison with the estimation
result. The absolute parameter of copper estimated by the proposed method showed good
agreement with the directly measured result.

5. Proposal of UWB-PPM with Additional Time Shift for Positioning Technique in
Nondestructive Environments by Huyen et al.

The ultra-wideband (UWB) technology has many advantages in positioning and mea-
suring systems; however, the powers of UWB signals rapidly reduce while traveling in
propagation environments; hence, detecting UWB signals are difficult. Various modulation
techniques are applied for UWB signals to increase the ability for detecting the reflected
signal from transmission mediums, such as pulse amplitude modulation (PAM), pulse
position modulation (PPM), etc. In this paper [4], the authors proposed an ultra-wideband
pulse position modulation technique with an optimized additional time shift (UWB-PPM-
ATS), to enhance the accuracy in locating buried objects in nondestructive environments.
Moreover, the Levenberg–Marquardt–Fletcher algorithm (LMFA) was applied to determine
the medium parameters and buried object location simultaneously. The influences of the
proposed modulation technique on determining the system’s parameters, such as propa-
gation time, distance, and properties of the medium were analyzed. Calculation results
indicate that the proposed UWB-PPM-ATS provided higher accuracy than conventional
methods such as UWB-OOK and UWB-PPM, in both homogeneous and heterogeneous
environments. Furthermore, the LMFA approach with the proposed UWB-PPM-ATS out-
performed the LMFA with the traditional modulation method, especially for unknown
propagation environments.
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6. An Attention-Based Network for Textured Surface Anomaly Detection by Liu et al.

Textured surface anomaly detection is a significant task in industrial scenarios. In
order to further improve the detection performance, the authors of this study proposed a
novel two-stage approach with an attention mechanism [5]. Firstly, in the segmentation
network, the feature extraction and anomaly attention modules were designed to capture
detailed information as much as possible and focused on the anomalies, respectively. To
strike dynamic balances between these two parts, an adaptive scheme in which learnable
parameters are gradually optimized was introduced. Subsequently, the weights of the
segmentation network were frozen, and the outputs were fed into the classification net-
work, which was trained independently in this stage. Finally, the proposed approach was
evaluated on the DAGM 2007 dataset, which consists of diverse textured surfaces with
weakly labeled anomalies; the experiments revealed that this method can achieve 100%
detection rates in terms of true-positive rate (TPR) and true-negative rate (TNR).

7. A Comparison of Power Quality Disturbance Detection and Classification Methods
Using CNN, LSTM, and CNN-LSTM by Garcia et al.

The use of electronic loads has improved many aspects of everyday life, permitting
more efficient, precise, and automated processes. As a drawback, the nonlinear behavior
of these systems entails the injection of electrical disturbances on the power grid that
can cause distortion of voltage and current. In order to adopt countermeasures, it is
important to detect and classify these disturbances. To this end, several machine learning
algorithms are currently being exploited. Among them, for the present work [6], the
long short-term memory (LSTM), convolutional neural networks (CNNs), convolutional
neural network–long short-term memory (CNN-LSTM), and the CNN-LSTM with adjusted
hyperparameters were compared. As a preliminary stage of the research, the voltage
and current time signals were simulated using MATLAB Simulink. From the simulation
results, it is possible to acquire a current and voltage dataset with which the identification
algorithms are trained, validated, and tested. These datasets include simulations of several
disturbances such as Sag, Swell, Harmonics, Transient, Notch, and Interruption. Data
augmentation techniques were used in order to increase the variability of the training
and validation dataset, to obtain a generalized result. Afterward, the networks were fed
with an experimental dataset of voltage and current field measurements containing the
disturbances mentioned above. The networks were compared, resulting in a 79.14% correct
classification rate with the LSTM network versus 84.58% for the CNN, 84.76% for the
CNN-LSTM. and 83.66% for the CNN-LSTM with adjusted hyperparameters. All of these
networks were tested using real measurements.

8. Leaky Lamb Wave Radiation from a Waveguide Plate with Finite Width by Park et al.

In this paper [7], leaky Lamb wave radiation from a waveguide plate with finite
width was investigated to gain a basic understanding of the radiation characteristics of the
plate-type waveguide sensor. Although the leaky Lamb wave behavior has already been
theoretically revealed, most studies have only dealt with two-dimensional radiations of a
single leaky Lamb wave mode in an infinitely wide plate, and the effect of the width modes
(that are additionally formed by the lateral sides of the plate) on leaky Lamb wave radiation
has not been fully addressed. This work aimed to explain the propagation behavior
and characteristics of the Lamb waves induced by the existence of the width modes and
to reveal their effects on leaky Lamb wave radiation for the performance improvement
of the waveguide sensor. To investigate the effect of the width modes in a waveguide
plate with finite width, propagation characteristics of the Lamb waves were analyzed by
the semi-analytical finite element (SAFE) method. Then, the Lamb wave radiation was
computationally modeled on the basis of the analyzed propagation characteristics and was
also experimentally measured for comparison. From the modeled and measured results of
the leaky radiation beam, it was found that the width modes could affect leaky Lamb wave
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radiation with the mode superposition, and radiation characteristics were significantly
changed depending on the wave phase of the superposed modes on the radiation surface.

9. Evaluation of Cracks on the Welding of Austenitic Stainless Steel Using
Experimental and Numerical Techniques by Berkache et al.

This paper [8] dealt with the investigation and characterization of weld circumferential
thin cracks in austenitic stainless steel (AISI 304) pipe with eddy current nondestructive
testing technique (EC-NDT). During the welding process, the heat source applied to the AISI
304 was not uniform, accompanied by a change in physical property. To take this change
into consideration, the relative magnetic permeability was considered as a gradiently
changed variable in the weld and heat-affected zone (HAZ), which was generated by the
Monte Carlo method based on pseudo-random number generation (PRNG). Numerical
simulations were performed by means of MATLAB software, using the 2D finite element
method to solve the problem. To verify, results from the modeling works were conducted
and contrasted with findings from experimental ones. Indeed, the results of the comparison
agreed well. In addition, they showed that the consideration of this change in magnetic
property allows distinguishing the thin cracks in the weld area.

10. Measurement of Thinned Water-Cooled Wall in a Circulating Fluidized Bed Boiler
Using Ultrasonic and Magnetic Methods by Lee et al.

In this paper [9], a nondestructive inspection system was proposed to detect and
quantitatively evaluate the size of the near- and far-side damages on the tube, membrane,
and weld of the water-cooled wall in a fluidized bed boiler. The shape and size of the
surface damages were evaluated from the magnetic flux density distribution measured by
the magnetic sensor array on one side from the center of the magnetizer. The magnetic
sensors were arrayed on a curved shape probe according to the tube’s cross-sectional shape,
membrane, and weld. On the other hand, the couplant was doped to the water-cooled wall,
and a thin film was formed thereon by polyethylene terephthalate. Then, the measured
signal of the flexible ultrasonic probe was used to detect and evaluate the depth of the
damages. The combination of magnetic and ultrasonic methods helped to detect and
evaluate both near and far-side damages. Near-side damages with a minimum depth of
0.3 mm were detected, and the depth from the surface of the far-side damage was evaluated,
with a standard deviation of 0.089 mm.

11. Micromagnetic Characterization of Operation-Induced Damage in Charpy
Specimens of RPV Steels by Rabung et al.

The embrittlement of two types of nuclear pressure vessel steel, 15Kh2NMFA and
A508 Cl.2, was studied using two different methods of magnetic nondestructive testing:
micromagnetic multiparameter microstructure and stress analysis (3MA-X8) and magnetic
adaptive testing (MAT) [10]. The microstructure and mechanical properties of reactor
pressure vessel (RPV) materials are modified due to neutron irradiation; this material
degradation can be characterized using magnetic methods. For the first time, the pro-
gressive change in material properties due to neutron irradiation was investigated on the
same specimens, before and after neutron irradiation. A correlation was found between
magnetic characteristics and neutron-irradiation-induced damage, regardless of the type of
material or the applied measurement technique. The results of the individual micromag-
netic measurements proved their suitability for characterizing the degradation of RPV steel
caused by simulated operating conditions. A calibration/training procedure was applied
on the merged outcome of both testing methods, producing excellent results in predicting
transition temperature, yield strength, and mechanical hardness for both materials.

12. Three-Dimensional Imaging of Metallic Grain by Stacking the Microscopic Images
by Lee et al.

Three-dimensional observation of metal grains (MGs) has a wide potential application
serving the interdisciplinary community. It can be used for industrial applications and
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basic research to overcome the limitations of nondestructive testing methods, such as
ultrasonic testing, magnetic particle testing, and eddy current testing. This study [11]
proposed a method and its implementation algorithm to observe metal grains (MGs) in
three dimensions, in a general laboratory environment equipped with a polishing machine
and a metal microscope. An image was taken by a metal microscope while polishing the
mounted object to be measured. Then, the metal grains (MGs) were reconstructed into three
dimensions through local positioning, binarization, boundary extraction, MG selection,
and stacking. The goal was to reconstruct the 3D MG in a virtual form that reflects the real
shape of the MG. The usefulness of the proposed method was verified using the carbon
steel (SA106) specimen.

13. THz-TDS Techniques of Thickness Measurements in Thin Shim Stock Films and
Composite Materials by Im et al.

Terahertz wave (T-ray) scanning applications are one of the most promising tools for
nondestructive evaluation. T-ray scanning applications use a T-ray technique to measure the
thickness of both thin Shim stock films and glass-fiber-reinforced plastic (GFRP) composites,
of which the samples were selected because the T-ray method could penetrate the non-
conducting samples. Notably, this method is nondestructive, making it useful for analyzing
the characteristics of the materials. Thus, the T-ray thickness measurement can be found
for both non-conducting Shim stock films and GFRP composites. In this work [12], a
characterization procedure was conducted to analyze electromagnetic properties, such
as the refractive index. The obtained estimates of the properties are in good agreement
with the known data for polymethyl methacrylate (PMMA) for acquiring the refractive
index. The T-ray technique was developed to measure the thickness of the thin Shim stock
films and the GFRP composites. The study tests obtained good results on the thickness of
the standard film samples, with the different thicknesses ranging from around 120 μm to
500 μm. In this study, the T-ray method was based on the reflection mode measurement,
and the time of flight (TOF) and resonance frequencies were utilized to acquire the thickness
measurements of the films and GFRP composites. The results showed that the thickness of
the frequency samples matched those obtained directly by time-of-flight (TOF) methods.

14. Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing
Martensitic Phase Formation in Low-Temperature Transformation (LTT) Steel during
GTAW by Griesche et al.

Griesche et al. [13] used neutron imaging to visualize the sample remelting during the
welding process. Polychromatic and wavelength-selective neutron transmission radiog-
raphy were applied during bead-on-plate welding on 5 mm thick sheets on the face side
of martensitic low-temperature transformation (LTT) steel plates using gas tungsten arc
welding (GTAW). The in situ visualization of austenitization upon welding and subsequent
α’-martensite formation during cooling could be achieved with a temporal resolution of
2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for poly-
chromatic imaging using the full spectrum of the beam (whitebeam). The spatial resolution
achieved in the experiments was approximately 200 μm. The transmitted monochromatic
neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during
cooling below the martensitic start temperature Ms since the emerging martensitic phase
had a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was
significantly influenced by coherent neutron scattering caused by the thermal motion of the
crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission
by approx. 15% for monochromatic and approx. 4% for polychromatic imaging
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Featured Application: The developed photoacoustic nondestructive detection system is a novel

approach for precise identification of embedded structural damage in composite laminates.

Abstract: This paper presents a photoacoustic non-destructive evaluation (pNDE) system with
an ultrahigh resolution for the detection of multi-scale damage in carbon fiber-reinforced plastic
(CFRP) composites. The pNDE system consists of three main components: a picosecond pulsed
laser-based ultrasonic actuator, an ultrasound receiver, and a data acquisition/computing subsystem.
During the operation, high-frequency ultrasound is generated by pulsed laser and recorded by an
ultrasound receiver. By implementing a two-dimensional back projection algorithm, pNDE images
can be reconstructed from the recorded ultrasound signals to represent the embedded damage.
Both potential macroscopic and microscopic damages, such as surface notches and delamination in
CFRP, can be identified by examining the reconstructed pNDE images. Three ultrasonic presentation
modes including A-scan, B-scan, and C-scan are employed to analyze the recorded signals for the
representation of the detected micro-scale damage in two-dimensional and three-dimensional images
with a high spatial resolution of up to 60 μm. Macro-scale delamination and transverse ply cracks are
clearly visualized, identifying the edges of the damaged area. The results of the study demonstrate
that the developed pNDE system provides a non-destructive and robust approach for multi-scale
damage detection in composite materials.

Keywords: composites; multi-scale; embedded damage; non-destructive testing; photoacoustic;
ultrasonic representation

1. Introduction

High-performance carbon fiber-reinforced plastic (CFRP) composite materials are well known
for their high strength to weight ratio, being light in weight, and resistance to corrosion [1,2].
However, aging-related damage and low-velocity impact damage in composites, such as fatigue cracks
and delamination, can significantly reduce their structural integrity and durability. In addition,
manufacturing imperfections can result in embedded defects, including voids, cracks, and
inclusions [3,4]. Since the size, location, and properties of embedded defects in composites are
generally unknown and difficult to detect, there is an urgent need to develop new non-destructive
evaluation (NDE) and structural health monitoring (SHM) technologies to help assess the quality of
composite products and to help provide accurate inspections throughout a composite’s service life.
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Early detection of embedded and barely visible damage in composites is imperative for long-term
operation, risk management, and prognostics of complex composite structures.

Recent advance of NDE technologies has led to efficient damage detection in composites.
Currently well-accepted NDE technologies include acoustic emission, infrared thermography, and
ultrasonic testing. Acoustic emission identifies damage initiation and tracks damage growth by
continuously analyzing elastic waves generated via energy release from localized sources within the
tested structures [5]. This method can be potentially used for in situ damage characterization, since the
failure events are detected as they occur. Infrared thermography has been used to detect subsurface
cracking and embedded delamination in composites [6,7]. The obtained thermal patterns induced,
either by directly heating the sample or applying a mechanical oscillatory load, have been analyzed to
study embedded damage in composites. However, it is difficult to measure through-thickness locations
of the damage using infrared thermography. Ultrasonic techniques are some of the most popular
NDE methods for damage detection in composite structures and have been extensively reported in
the literature [8–10]. For example, Kessler et al. used Lamb wave methods to detect delamination,
transverse ply cracks and through-holes in quasi-isotropic graphite/epoxy composites [11]. Chang et al.
developed a tomographic damage imaging approach by combining inverse acoustic wave propagation
by combining the k-space method with the adjoint method [12]. Although NDE technologies have
been used for a broad range of engineering applications, most of the NDE equipment cannot detect
micro-scale damage initiation in composites in depth. High-frequency ultrasound can detect micro-scale
damage. However, the detectable depth is limited.

Real-time NDE has been under investigation as a method to monitor the integrity of materials
and structures over the past two decades. Progress has been made in developing and improving
real-time NDE, which allows early detection of material defects, providing timely warning to those
at stake [13–17]. Real-time NDE technologies utilizing advanced sensors (i.e., piezoelectric ceramic
sensors [18,19], impedance-based sensors [20,21], piezoresistive sensors [22,23], and fiber Brag grating
sensors [24,25]) have been referred to as structural health monitoring (SMH) and prognostics. In order
to detect structural defects under regular load conditions, innovative signal processing and pattern
recognition algorithms have been developed [26–28]. While progress has been made in the development
of SHM and prognostics, this technology has not been implemented in industries that require large-scale
applications, especially in the aerospace industry, due to limitations pertaining to the sensors, the
power supplies, and real-time data processing.

Laser-induced ultrasound has been recognized as a promising technical solution for NDE and
SHM of CFRP composites. Current laser-induced ultrasonic NDE systems use Q-switched lasers
with nanosecond pulses and pulse energy levels of several millijoules (mJ), generating ultrasonic
signal frequencies ranging from tenths of kilohertz (kHz) up to tens of megahertz (MHz) [29,30].
Both through-transmission and pulse-echo ultrasonic spectroscopy methods are able to detect CFRP
composites up to several centimeters [31–33]. Although remote ultrasonic energy generation and
data collection are the ideal approaches, complex and relatively expensive instruments are required
for ultrasonic interferometric detection [34,35]. To the best of the authors’ knowledge, currently,
sophisticated laser-based ultrasound imaging systems for remote evaluation of CFRP composites are
expensive and technologically immature.

In this paper, we developed a picosecond pulsed laser-induced photoacoustic non-destructive
evaluation (pNDE) system for the detection of multi-scale damage in CFRP composites using a
picosecond pulsed laser and high-frequency ultrasound transducer. At the micro scale, the damage
precursors of surface notches and matrix cracks were successfully detected and represented in 3D
images. The size and position of the micro-scale defects in composites were evaluated with a high
spatial resolution of 60 μm. Scanning electron microscopy (SEM) images were obtained to validate all
micro-scale surface notches on composites. At the macro scale, both delamination and transverse ply
cracks were successfully detected and represented using the developed pNDE system. The size of
delamination at different depths and the locations of transverse ply cracks were accurately measured.
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2. Materials and Methods

2.1. Materials and Experimental Procedure

CFRP composite samples were fabricated using commercial prepreg carbon fiber fabrics (#2511
semi-toughened epoxy resin-coated T700G-12K-31E carbon fiber fabrics) manufactured by Toray
Industries, Inc. Each prepreg lamina had a standard resin content of 35.3 wt.% and fiber areal weight of
150.6 g/m2. Four plies of composite lamina were stacked in a [+45◦/−45◦]s sequence and manufactured
using a hot press, following the vendor’s curing instructions. The scanned composite thickness
is approximately 0.8 mm based on the measurement of a caliper. To generate micro-scale damage
precursors in composites, shallow X-shaped notches were cut on the composite sample’s surface using
a sharp razor blade. The dimensions of the notches were measured using SEM images. Macro-scale
damage in composites was generated under the velocity impact load using an in-house developed
drop-weight impactor. The impact energy absorbed by the composite sample was 4 J. Both embedded
delamination and transverse ply cracks were generated in the composite sample due to the applied
impact load.

Throughout the pNDE damage detection process, the scanned composite target was secured
on a scanning platform (LMS203 Fast XY Scanning stage, Thorlabs, Newton, NJ, USA), which has
a maximum linear translation speed of 100 mm/s and a peak acceleration of 10 m/s2 in both lateral
directions. In addition, a step length of 0.01 mm was used during the pNDE detection. The position of
the scanning stage is synchronized with the laser source excitation sequence.

2.2. Theory of pNDE Method

In this paper, the pNDE mechanism is based on the photoacoustic effect. Acoustic and ultrasonic
waves are generated following the local temporal thermal elastic deformation and pressure caused
by the optical absorption of pulsed laser in materials. The relationship between the generated
photoacoustic pressure p(r, t) (at location r and time t) and the deposited pulsed laser heat H(r, t) is
described using the following equation [36]:

(∇2 − 1
v2

s

∂2
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where vs is the compressional wave speed in CFRP composites, β is the thermal coefficient of volume,
and Cp represents the specific heat capacity at constant pressure. We designated the position of the
transducer as the origin of the coordinate system for convenience. The acoustic pressure p (r, t) at
transducer position r and time t is, therefore, expressed as:
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Since optical absorption is proportional to acoustic signal strength in photoacoustic imaging,
the absorption difference between an undamaged solid material and a damaged area with material
vacancy provides the imaging contrast. In a photoacoustic microscopy image, the optical absorption at
each illuminated point can be derived from the time of flight of the acoustic wave detected at each
ultrasound transducer location. Therefore, the micro-structure within the composite can be mapped
with photoacoustic microscopy in 3D to reveal any underlying defects.

2.3. pNDE Imaging System

The developed pNDE system consisted of three major components: (i) a picosecond pulsed laser
for the generation of ultrasound signals in composite samples, (ii) a PZT ultrasonic receiver and
signal amplifiers, and (iii) a data acquisition, processing, and imaging subsystem. A picosecond laser
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(COMPILER 532/266, Passat, Ltd., Vaughan, ON, Canada) was used to provide ultrafast laser pulses
with a pulse duration of less than 7 ps. The laser pulse repetition rate (PRR) was adjusted between 1
and 400 Hz. The generated photoacoustic signals were captured by two PZT ultrasound transducers
in the experiments. In the multi-scale damage detection test, a transducer (V2062, Olympus NDT,
Waltham, MA, USA) with a center frequency of 125 MHz and a bandwidth greater than 87% −6 dB
was used for high spatial resolution. In the macro-scale damage detection test, a transducer (U8517149,
Olympus NDT) with a center frequency of 20 MHz and a bandwidth greater than 50% −6 dB was used.
A low-noise preamplifier (ZFL-1000LN+, Mini-Circuits, Brooklyn, NY, USA) with a bandwidth of
0.1–1000 MHz at −3 dB and a typical gain of 20 dB was used to prepare weak electrical signals from
the transducer and deliver the noise-tolerant output signals to the second-stage amplifier (ZFL-500+,
Mini-Circuits) with a bandwidth of 0.05–500 MHz at −3 dB, and a gain of 25 dB to further improve the
signal-to-noise ratio (SNR). Finally, the pre-processed ultrasonic signals were recorded by the data
acquisition card (NI PCI-5153EX, National Instruments, Austin, TX, USA). The schematic diagram of
the developed pNDE system is shown in Figure 1a. In addition, Figure 1b illustrates the developed
pNDE hardware system.

Figure 1. Developed photoacoustic non-destructive evaluation (pNDE) system. (a) A schematic of
the pNDE system, showing the following key components: UT, ultrasonic transducer; SS, scanning
stage; OL, objective lens; AMP, amplifiers; DAQ, data acquisition card; Laser, green laser (532 nm).
(b) Experimental setup of the pNDE system, the transducer and the 3D-printed water container are
further magnified to demonstrate the sample set up. (c) A schematic of A-scan, B-scan, and C-scan for
ultrasonic signal presentation.

For micro-scale damage detection, the CFRP composite samples were horizontally placed on the
bottom glass window of the 3D-printed water container (Figure 1b). The ultrasound transducers were
submerged in the water to keep good coupling of the ultrasound propagation between the sample and
the transducer. The PPR of the laser was set at 30 Hz so that an adequate signal-to-noise ratio was
obtained. A sampling rate of 500 MHz was used to record the ultrasonic signals during data collection
at each scanning location. One set of pNDE damage detection data included 500 × 500 positions
with a step length of 10 μm per step and detected micro-scale damage in an area of 5 mm × 5 mm.
All the ultrasonic data was collected when the scanning stage (LMS203 Fast XY Scanning stage,
Thorlabs) traveled in the X-Y plane and was controlled using an in-house LABVIEW software. Back
projection-based photoacoustic reconstruction was performed in MATLAB [37–40]. It is noted that
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both the pulsed laser beam and ultrasound transducer were kept stationary, while the composite
sample was shifted on a 2D translation stage at an average translation speed of 0.05 mm/s. The
position-synchronized output of the translator triggered the pulsed laser and turned the laser on and
off during the scanning. Similar experimental procedures were adopted for the pNDE detection of
macro-scale impact-induced damage in composites. The PRR of the laser was set at 30 Hz, a sampling
rate of 500 MHz was used to record the ultrasonic signals, and the translation speed of the stage was
0.05 mm/s. Laser-induced ultrasonic signals were generated and then recorded using an ultrasonic
probe. The pNDE damage detection area was 15 mm × 15 mm, and the recorded data included 500 ×
500 positions with a step length of 30 μm per step.

Accurate 3D imaging of the measured microstructures and potential damage in composites is
critical in order to demonstrate the developed system for NDE applications. In our study, all the
collected pNDE data was studied in the ultrasonic A-scan, B-scan, and C-scan presentation modes. A
schematic of the three ultrasonic presentation modes is shown in Figure 1c. Each presentation mode
provided a different way to evaluate the inspected region. A-scan displayed the ultrasonic signal
energy as a function of time in the ultrasonic propagation direction. B-scan provided the display
of ultrasonic signal energy regarding the linear position of the transducer, resulting in the plot to
show the transverse cross-section of the detected composite plate. C-scan allowed a plan-type view
of the location and size of damage in the detected sample. The combination of the three ultrasonic
presentation modes allowed a comprehensive demonstration of the detected multi-scale damage in the
composite structures.

3. Multi-Scale Damage Detection Results Using pNDE

3.1. Typical A-Scan and Correction for Micro-Scale Damage Detection

A typical photoacoustic A-scan signal obtained during experiment is shown in Figure 2a. The
beginning and the end of the ‘A’ lines were cut such that images only show the reconstruction of the
CFRP. For acoustic attenuation compensation in the scanned material, a time gain correction (TGC)
function was applied to all recorded photoacoustic signals as shown in Figure 2b. The ultrasound
attenuation compensation was derived the exponential law [41]:

ATGC(zk) = A0(zk) exp(2α(zk − z0)) (3)

where the first corrected sample along the z-direction was denoted as z0, corresponding to the frame of
the CFRP board reconstruction. The last corrected sample was denoted as zk, corresponding to the last
frame of the CFRP board reconstruction. The acoustic attenuation coefficient α was measured to be
5.64 cm-1 for all A-scans [41].

Figure 2. Photoacoustic A-scan signal. (a) Typical full bandwidth signal with an assumed signal
attenuation function (red dashed curve) and (b) corrected A-scan signal by normalizing using the
exponent of Equation (3).
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3.2. Ultrasonic C-Scan for Micro-Scale Damage Detection

Figure 3 shows pNDE C-scan images in the X-Y plane parallel to the top surface of the composite
sample at various depths. As illustrated in Figure 3a, the pNDE C-scan image clearly represented the
X-shaped notches on the tested CFRP sample. The width of the X-shape notch shown on the C-scan
matched well with that measured in the SEM image, indicating the maximum width of the notch
was approximately 270 μm, as shown in Figure 3b. In addition, the tow orientation and the woven
structures of the carbon fiber fabrics were visible in the reconstructed images. The photoacoustic signal
profile across two grid lines on the surface of the material was extracted along the solid blue line shown
in Figure 3a. Based on the extracted grid line profiles, the lateral resolution of the system is estimated
to be approximately 60 μm, corresponding to the smaller full width at half maximum (FWHM) of the
line spread function in Figure 3c.

 

Figure 3. X-Y plane image. (a) pNDE X-Y plane image; the ‘X’ marking is highlighted. (b) SEM image;
the width of the ‘X’ marking is calculated. (c) Full width at half maximum (FWHM) measurements
along the blue line on the pNDE image, which are taken as the lateral resolution of the image.

Figure 4a–e shows the typical pNDE C-scans in the horizontal cross-sections (X-Y plane) that
were parallel to the top surface of the composite structure at different depths. The C-scan presentation
provided the top view of the locations and sizes of the defects featured in the tested CFRP composites.
In the C-scan images of Figure 4a,b, the X-shape notch was clearly visible. Only partial micro-scale
matrix cracks can be visualized in Figure 4a,b because of the scanning plane (X-Y plane) is not strictly
parallelized to the surface of the composite plate. In Figure 4e, the dense and highly distributed
micro-scale matrix cracks, which lead to potential delamination, were detected. Due to the distribution
of microscale matrix cracks throughout the entire layer in the composites, the ultrasonic signals
were dispersed. Therefore, carbon fiber fabric yarns were not observed in this layer. In Figure 4f,
the photoacoustic maximum-amplitude image projected from the top view of the CFRP composite
indicated the complex microstructure inside the sample. Both the surface notches and embedded
matrix cracks were shown in this image. The 3D image of the detected composite structure with
micro-scale notch damage is shown in Figure 4g.
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Figure 4. The 3D C-scan images of micro-scale damage in composites. (a–e) X-Y plane slices at a depth
of 0.001, 0.025, 0.05, 0.065, and 0.15 mm, respectively. (f) The photoacoustic maximum-amplitude image
projection (average) from the top of the carbon fiber-reinforced plastic (CFRP) composites. (g) A 3D
C-scan image of a rotating 3D model. (h) Grid pattern explanation image.

3.3. Ultrasonic B-Scan for Micro-Scale Damage Detection

A typical B-scan image in the vertical cross-section (Y-Z plane, perpendicular to the top surface)
of the tested composite structure is shown in Figure 5. Each B-scan image was generated by analyzing
the ultrasonic A-scan data in the same cross-section in the vertical cross-section. Since high accuracy
A-scan steps were enabled by a LABVIEW programmed stepper motor, the pulsed laser was precisely
triggered on the predefined detection position, and accurate B-scan images were created to represent
the cross-section conditions in composites. Figure 5a,b shows the typical B-scan images from two x
positions in the Y-Z plane. The surface notches were observed from multiple B-scan images. One
or two notches were visualized in the selected B-scan images. The B-scan images matched with the
C-scan results, indicating accurate pNDE detection of micro-scale damage in the composite sample
with notches on the surface.

 

Figure 5. (a,b) Typical B-scan images showing the vertical cross-section of the detected notch in the
composite plate, at positions: x = 1.6 and 4.1 mm, respectively (from left to right). (c) C-scan image
showing the position of B-scan images in the X-Y plane.
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3.4. Macro-Scale Damage Detection in Composites

Low-velocity impact load can cause severe structural damage, such as delamination and transverse
ply crack, in composite laminates. Demonstration of the reliable detection of macro-scale damage in
composites using the developed pNDE method is critical for the engineering application. As shown
in Figure 6, the macro-scale delamination and transverse ply cracks were successfully detected and
represented using C-scan images at 5 different depths in the range 0–1.6 mm. The edge of transverse
ply cracks was clearly drawn using the dashed line. In addition, the area of delamination at different
depths was also highlighted in each subfigure. In Figure 6a–e, the size of the delamination area
gradually reduced, indicating that the size of delamination was relatively large near the composite
surface. This observation was reasonable since the excitation energy was reduced as it penetrated
deep into composites, resulting in reduced delamination area as the depth increased. The detected
macro-scale delamination and transverse ply cracks matched with the optical image of the damaged
composite sample shown in Figure 6f. A typical photoacoustic signal received by the 20 MHz center
frequency transducer is shown in Figure 6g. The corresponding single-sided photoacoustic signal
frequency amplitude spectrum is also shown in Figure 6h. Due to the increased scan steps, the spatial
resolution of macro-scale pNDE scanning was lower than that of the micro-scale pNDE detection. This
is reasonable, since the extremely high spatial resolution was not necessary to identify macro-scale
damage in composites. In addition, the optimization of pNDE parameters for macro-scale damage
detection was able to significantly increase the scanning speed by choosing the relatively large scanning
step length during the detection. Therefore, it is critical to adjust the pNDE parameters following the
potential damage size and required spatial resolution, allowing the developed system to be suitable for
both micro- and macro-scale damage detection in composites.

Figure 6. A pulsed laser-induced pNDE system to detect macro-scale delamination and transverse ply
cracks in composites. (a–e) The 2D C-scan images showing the size of delamination and transverse ply
cracking. (f) Optical images using the detected impact damage of composites. (g) A plot of the raw
photoacoustic signal. (h) Single-sided photoacoustic signal frequency amplitude spectrum plot.
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4. Discussion

Detection sensitivity is a major parameter in pNDE. Our theoretical model and calculations
showed that the pulse width of the excitation laser beam was a crucial factor for the effective generation
of photoacoustic waves. Mathematical analysis revealed that the resultant photoacoustic pressure
was proportional to the time derivative of the excitation pulse [42,43]. Compared to the typical
laser-induced ultrasound system (nanoseconds pump laser) [44,45], the implementation of the 7
picosecond pulsed laser can produce an increase in photoacoustic signal conversion efficiency, which
will lead to improved detection sensitivity. Further, a higher frequency photoacoustic signal will lead
to better depth resolution when paired with a high-frequency ultrasound transducer.

The lateral resolution of pNDE was estimated by the diffraction-limited spot size of the optical
focus [42]. For a wavelength of 532 nm and a numerical aperture (NA) of 0.10, the lateral resolution of
the pNDE micro-scale scan was theoretically determined to be 2.71 μm. This resolution was sufficient
to resolve individual carbon fibers (diameter: 7–10 μm) inside the CFRP composite in a non-invasive
manner (Figure 3a). The axial resolution in the depth direction was jointly determined by the laser
pulse width and detection bandwidth of the ultrasonic transducer. In the macro-scale damage detection
experiment, a 20 MHz ultrasonic transducer was used, which resulted in an axial imaging resolution
of approximately 0.30 mm in the depth direction. In future studies, lateral resolution of the pNDE scan
can be further improved by (i) increasing the NA of the objective lens, and (ii) using a shorter excitation
source wavelength with the maximum imaging depth scaled accordingly. If a higher frequency
transducer is employed, submicrometer spatial resolution can be achievable. This analysis indicates a
new approach for microstructural determination inside CFRP composites with photoacoustic imaging
for future research.

The current pNDE detection speed was limited by the single ultrasonic probe for signal collection
during the scanning. However, implementing a pair of galvanometer mirrors with optical scanning
can dramatically improve the imaging speed (up to 30 kHz, the limitation of a galvanometer) and
should be much faster than any mechanical scanning imaging system. Further increase in laser PRR
has been limited mostly by the time required to store raw data and the ultrasound propagation time
inside the CFRP composites. Additionally, the system can be further optimized for real-time imaging
in field applications by increasing the laser PRR of the developed pNDE system, and the goal is to
reach the multi-kHz laser PRR range.

Conventional ultrasound methods and thermography are only capable of providing a contour of
the damaged area rather than the detailed layer-by-layer distribution information demonstrated in the
resulted images of the pDNE test [46]. Although current ultrasound-based non-destructive evaluation
technologies can detect barely visible and embedded geometries, they do not have the adequate lateral
resolution to identify micro-scale damage initiation in composites, especially for complex layered
materials like CFRP composites. Our proposed technology has the advantage of being able to focus
the excitation source to achieve a much higher lateral resolution than the ultrasound-based imaging
system. Thus, the pNDE scanning method described in this paper shows great potential compared to
current methods for the characterization of impact damage at multiple length scales via in situ imaging
within the upper part of an in-depth damage distribution. With future hardware modifications, pNDE
scans can theoretically be completed within minutes.

5. Conclusions

In this paper, we developed a pNDE system for the detection of multi-scale damage with extremely
high resolution in CFRP composites. Micro-scale damage precursors in composite laminate samples
were identified and represented using 2D and 3D images with a high spatial resolution of 60 μm.
SEM images taken from the same location were used to validate the length and width of the detected
notches on the composite surface. By adjusting the pNDE scanning parameters, the macro-scale impact
damage, including delamination and transverse ply cracks, was quickly detected and represented
using the ultrasonic C-scan mode. Experimental results and high-resolution 3D images generated
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by the described technology can be further used in complex mechanical models for prediction of the
deep-layer damage propagation of composites and to evaluate the remaining useful life of composites
subjected to impact and fatigue loads. Therefore, the developed pNDE system shows great potential
for damage detection and quality assessment in a broad range of engineering applications, including
aerospace, automobile, and civil industries.
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Abstract: Terahertz coded-aperture imaging (TCAI) has many advantages such as forward-looking
imaging, staring imaging and low cost and so forth. However, it is difficult to resolve the target under
low signal-to-noise ratio (SNR) and the imaging process is time-consuming. Here, we provide an
efficient solution to tackle this problem. A convolution neural network (CNN) is leveraged to develop
an off-line end to end imaging network whose structure is highly parallel and free of iterations.
And it can just act as a general and powerful mapping function. Once the network is well trained and
adopted for TCAI signal processing, the target of interest can be recovered immediately from echo
signal. Also, the method to generate training data is shown, and we find that the imaging network
trained with simulation data is of good robustness against noise and model errors. The feasibility
of the proposed approach is verified by simulation experiments and the results show that it has a
competitive performance with the state-of-the-art algorithms.

Keywords: terahertz; coded-aperture imaging; convolution neural network (CNN); fast image
reconstruction

1. Introduction

Since the terahertz wave (0.1–10 THz) lies between the visible and microwave frequencies,
it has stronger penetration capability than light and higher resolution than microwave, allowing for
visualization of hidden objects at the millimeter level. Moreover, it does little harm to the human
body compared to X-rays. Therefore, THz technology has attracted increasing attention, and the
generation and detection of THz have also been extensively researched utilizing various approaches.
Generation by nonlinear optical effects such as optical parametric oscillation [1] and detection by GaSe
electro-optic sensors [2] are one of the typical approaches. Solid-state electronic devices [3] and a low-
temperature-grown GaAs photoconductive antenna gated [4] are also used as emitters and detectors.
In order to overcome the limitations of THz band, some practical methods have been proposed [5,6].
With the development of THz technology and radar imaging technology, great progress has been
made in various industries and research fields. A graphene-based THz ring resonator is considered a
potential application for label-free sensing [7]. The application of THz wave in modulation technology
was also reported [8]. For nondestructive detection, a millimeter wave radar imaging method based
on synthetic aperture radar was presented [9]. In addition, THz radar imaging technology is attractive
for security screening [10,11].

As a promising THz radar imaging technology, Terahertz coded-aperture imaging (TCAI),
is derived from optical coded-aperture imaging [12] and radar coincidence imaging [13], it utilizes an
aperture coded antenna [14] to generate a spatiotemporal independent wave distribution. By modeling
the imaging system, the matrix-imaging equation can be established. And the target of interest
is reconstructed through computational imaging [15] method. TCAI has many advantages such
as high resolution, all-time functionality, low complexity, and low cost and so forth. Besides,
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the forward-looking and staring imaging capability can be obtained without relying on any relative
motion between imaging platform and target, which is different from synthetic aperture radar [16].
As a result, the TCAI technique has a potential application in security screening, battlefield
reconnaissance, nondestructive detection and so on.

In recent years, many methods and systems have been proposed that promote the development
of TCAI. The authors of Reference [17] designed a single-pixel pulsed terahertz camera, which utilizes
random patterns for imaging and the theory of compression sensing (CS) [18] to solve the imaging
equation. In 2013, metamaterial apertures that support custom-designed complex measurement modes
were introduced into microwave imaging, which avoids mechanical scanning [15]. Xu et al. utilized
randomly programmable metasurface to solve the inverse-scattering problem in the single-sensor
imaging [19]. Furthermore, the matrix-imaging equation based on the theory of physical optics
was derived and high-resolution TCAI was achieved [20]. Besides, the Bayesian estimation [21]
and sparsity-driven methods [22] have greatly inspired TCAI research. Although these methods
and systems are effective, there are still some great challenges in TCAI. First, the accuracy of system
modeling cannot easily be guaranteed whether it is based on the time-delay signal model [23] or Fresnel
diffraction theory [20], and some errors are introduced into the reference signal matrix, which leads to
the ability to solve the target scattering coefficient is poor at low SNR. Second, the iterative algorithms
are used to reconstruct the target, which are too time-consuming to high frame rate imaging, and they
are not quite stable and robust to modeling errors and noise. Considering the importance of these
problems in practical applications, a fast TCAI method needs to be devised.

Deep learning (DL) has greatly inspired the research in object detection, image classification,
signal processing, and among many others. For the inverse problem community, learning-based
methods have been successfully employed in multiple scattering media imaging [24], holographic image
reconstruction [25], lensless computational imaging [26], computational ghost imaging [27,28] and so
forth, but they usually take a lot of effort to collect data set, which is not easily affordable. To reduce the
cost of training, some researchers have proposed training imaging network with simulation data set. In
References [29] and [30], the practically usable networks that were trained using simulation data set show
competitive imaging performance in real-world scenarios, and the simulation results of Reference [31]
also demonstrate the effectiveness using simulation data set to train the network. Thus, we investigated
the TCAI based on DL to tackle a series of problems mentioned above. In this paper, we design an end
to end neural network, which is trained with simulation data. Once trained, the target of interest can be
restored instantly by inputting echo signal into the imaging network, and the simulation experiment also
proves that the imaging quality at low SNR superior to state-of-the-art iterative approaches for TCAI.

2. Method

2.1. Signal Model and Learning-Based Approach

For the convenience, we take TCAI model based on single input single output technology
as an example. The schematic diagram is shown in Figure 1 and it mainly contains a controlling
and processing terminal, transmitter module, transmitter, coded aperture, receiver module, receiver.
The transmitting module includes mixer and frequency multiplier, and the receiving module includes
low noise amplifier and mixer. The THz wave transmitted from the transmitter, and then it propagates
to the coded aperture. The coded aperture, controlled by the controlling and processing terminal,
randomly or pseudo-randomly modulates the amplitude or phase of incident THz wave to produce a
spatiotemporal-independent radiation field in the imaging plane, which is divided into M grid-cells.
After being reflected from the imaging area, the pseudo-random signal is collected by receiver and
then sent to the controlling and processing terminal for reconstruction the target.

20



Appl. Sci. 2020, 10, 2661

Figure 1. Schematic of Terahertz coded-aperture imaging (TCAI) system.

Suppose the transmitter emits a THz linear frequency modulation signal, the reference signal of
the m-th grid cell at time tn can be deduced as

S (tn, m) =
Q

∑
q=1

A exp
[

j2π

(
fc

(
tn − r

c

)
+

K
2

(
tn − r

c

)2
)]

exp(jϕtn ,q), (1)

where A is the amplitude, fc is the center frequency, K is the chirp rate, c is the speed of light,
r represents the signal propagation distance, Q stands for the number of transmitting element of the
coded aperture, ϕtn ,q is the random phase modulation factor for the q-th coding aperture element at
time tn . Then, the echo signal at time tn is expressed as

Sb (tn) =
M

∑
m=1

βmS(tn, m), (2)

where βm stands for the scattering coefficient corresponding to the m-th grid cell. Based on the time
discretion of Equation (2), the matrix-imaging formula can be written as⎡
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where ω = {ωn}n=N
n=1 is the additive measurement noise, Sb = {Sb(tn)}n=N

n=1 is echo signal vector.
The reference signal matrix is

S =

⎡
⎢⎢⎢⎢⎣

S(t1, 1) S(t1, 2) · · · S(t1, M)

S(t2, 1) S(t2, 2) · · · S(t2, M)
...

... · · · ...
S(tN , 1) S(tN , 2) · · · S(tN , M)

⎤
⎥⎥⎥⎥⎦ . (4)

The row vector and column vector of S are the time-domain samples at {tn}n=N
n=1 and the spatial-domain

samples at {m}m=M
m=1 , respectively.
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For the previous TCAI [23,32], the compressed sensing [18] recovery algorithms are the standard
method to solve β and the imaging problem is treated as an optimization problem after obtaining the
evaluation of S ∼

β = arg min ψ
β
(β) s.t. ‖Sb − Sβ‖2

2 < σ2, (5)

where ‖Sb − Sβ‖2
2 is the fitting error, σ2 is usually the variance of ω and ψ represents the prior

information on β. Typically, ψ(β) = ‖β‖1, where ‖·‖1 is L1 Norm that is used to constrain the imaging
domain. For the solving (5), a large number of iterations are usually required which essentially limit
the imaging speed. However, the method we presented breaks the bottleneck, it uses neural network to
approximate function g so that target scattering coefficient can be estimated directly from echo signal.

∧
β = gΘ (Sb) , (6)

where Θ is the set of all possible parameters. Here they can be learned from a training set each of
which pairs up a known original target βd and the corresponding echo signal Sd

b , where d = 1, 2, . . . , D,
enumerates the total D different training data pairs. Thus, this parametric reconstruction process can
be expressed as

glearn = arg min
gθ ,θ∈Θ

D

∑
d=1

L
(

βd, gθ

(
Sd

b

))
, (7)

where gθ(·) stands for the target of recovery from the imaging network under parameter θ, L(·) is the
loss function.

As can be seen from Equation (4), the large-scale reference-signal matrix creates a heavy
computational burden. Due to the short wavelength and precise resolving ability of THz waves,
the imaging area is divided into smaller grids, which means that the more the number of elements in
M and the more complicated calculation of reference-signal matrix. As a result, it is time-consuming
to solve the target scattering coefficient through the algorithms consist of iterative-based processes as
shown in Equation (5). Therefore, it is very necessary to use the parameter reconstruction algorithm as
shown in shown Equation (6) to achieve fast TCAI. In contrast, the proposed approach is in significant
ways different. It does not need some time-consuming operations like previous imaging technique.
Instead, it demands plenty of data set which includes the groundtruth image and corresponding echo
signal and spends some time in training network, but these can be done in advance. Once the training
procedure is completed, the designed imaging network can blindly reconstruct target from echo signal.

2.2. Network Structure and Data Generation

Recently, convolution neural networks (CNN) have been extended and applied to solve inverse
problems. The theoretical motivations for using CNNs as the learning architecture and the design
strategies of CNN-based imaging framework have been discussed [33]. Moreover, the relationship
between CNN and iterative optimization algorithms has also been surveyed [34]. Motivated by this
research, we propose a neural network for fast TCAI which includes the nonlinear part of the encoded
information and the linear part of the decoded information. Figure 2 shows the schematic diagram
of the network architecture. We suppose that the input of the network is the echo signal with the
length of (H × W) × 1. It is down-sampled by ×1, ×2, creating two flow structure, with spatial
dimensions of H × W, H/2 × W/2, respectively. And the output is the expected target with different
scales. The number of feature maps in each layer is 16. After the down-sample, the two tensors flow
to the residue blocks, which is constructed by two convolutional layers with batch normalization
and two rectified linear units (ReLU), that is, ReLU(x) = max(0, x). And a shortcut is utilized
between the block’s input and output, as indicated by the red arrows, which mitigates the divergent
gradient problem and accelerates the convergence of the deep neural network. Following residue
block, the spatial dimensions of this feature map from H/2 × W/2 to H × W via up-sampling block,
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each block includes one convolutional layer with batch normalization, a ReLU operation and one
up-sampling layer that facilitates super-resolution. Finally, the fusion tensor can be obtained by a
connection operation in third-dimension of the output tensor of each flow structure. Here, all nonlinear
operations are completed, and the low-level and high-level semantic features are learned from the echo
signal. For the linear part, which is made up of convolutional layers, it can transform these extracted
features into the output in imaging domain. It is important to note that some tricks are adopted to
reduce network parameters and achieve cross-channel information interaction. In testing, to avoid
over-fitting, the neurons are randomly ignored.

×

Figure 2. The developed neural network for TCAI.

In the developed network, the spatial correlations between convolution layers can be modeled as

vx,y
i,j = ∑

r

P−1

∑
p=0

B−1

∑
b=0

wp,b
i,j,rvx+p,y+b

i−1,r , (8)

where r stands for the number of channels in i− 1 layer, P and B are the size of the weight matrix, that is,
convolutional kernels. In i-th convolutional layer, vx,y

i,j is the value of x, y-th pixel in the j-th feature

map and wp,b
i,j,r is the weight of p, b-th position in the j-th convolutional kernels. These parameters are

included in Θ, and they can be optimized by minimizing the loss function of the predicted target and
the original target

L =

D∗
∑

d=1

∥∥∥gθ(Sd
b)− βd

∥∥∥2

2

numel(βd)D∗ , (9)

where ‖·‖2 refers to L2 Norm, numel(·) indicates the quantity of pixels in the original target,
and D∗ = 8 is the mini-batch size in the stochastic gradient descent (SGD) method [35]. And the Adam
optimizer [36] was adopted to optimize imaging parameters.

As mentioned above, the training of an imaging network usually requires a large amount of the
original target and corresponding echo signal. For the generation of the original target data set, we first
randomly generate the number of scattering points and their positions on the 60 × 60 imaging plane,
which is designed to imitate real-target cases and guarantee the diversity and richness of the target.
Then the scattering coefficients are generated randomly. Subsequently, the corresponding echo data set
can be obtained by Equation (3), each of which is N = 3600 in length. In particular, the white Gaussian
noise is added to the echo signal to acquire the data set with noise. Eventually, we generated two
different data sets, one set of which corresponds to data without noise and another with SNR = 5 dB.
Each data set containing D = 50,000 training pairs (Sd

b , βd)D
d=1. One tenth of this is used as a verification

set and the rest as a training set. In the quantitative analysis, the testing data are generated in the same
way as the training data.
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3. Results

In this section, the feasibility of the DL based approach is verified by numerical experiments.
Parameters in the imaging experiment are given in Table 1. The frequency range of the THz signal is
from 330 GHz to 350 GHz. The 1-bit transmission-type coded aperture has 60 × 60 elements that are
employed to modulate the phase of the transmitted signal by 00 or 1800. The imaging area is divided
into M = 60 × 60, and it is easy to calculate that the pixel interval is no larger than 0.005 m. The size
of the target (T) is expressed as the number of non-zero scattering coefficients in imaging area [37],
the ratio between T and M is considered the complexity of the target. Also, it is easy to know from the
table that the spatial dimension of S is 3600 × 3600, which creates high imaging complexity. In practice,
the scale of S may be larger and this calculation is more complicated. Therefore, it is necessary to use a
neural network to model S implicitly.

The network is implemented in Python version 3.6 using DL frameworsorFlow version 1.8 and
trained on a desktop computer with GPU NVIDIA 2080 and the CUDA edition is 9.0. The training took
approximately 10 h, which is time-consuming but this procedure can be done in advance. Once trained,
the target of interest can be restored instantly by inputting echo signal into the imaging network.
The Adam optimization algorithm is employed to optimize weights, and the initial learning is 10−3

which decays with the factor of 0.98 after each epoch. The batch size is 8 and the training lasts for
500 epochs. Two typical reconstruction algorithms for TCAI, the Sparse Bayesian Learning (SBL)
algorithm and TVAL3 algorithm, were chosen to compete with the presented approach. To analyze the
imaging performance of various algorithms, the Mean Square Error (MSE) is used as the quantitative
index. In this paper, these test targets are composed of scattering points, and the corresponding
scattering coefficients are a random value between zero and unity. All reconstruction results and MSE
calculations were done on the computer with Inter Xeon Silver 4116 CPU except as specifically stated,
and each MSE represents the average results 100 Monte Carlo trials and the shape of the target changes
randomly in each trial.

Table 1. Parameters Used in the TCAI Simulation Experiment.

Parameters Values

Center frequency fc 340 GHz
Bandwidth 20 GHz

Imaging distance 2 m
Size of coded aperture Δb 0.3 m × 0.3 m
Size of imaging plane Δs 0.3 m × 0.3 m

Number of time sampling N 3600
Number of coded aperture elements 60 × 60

Number of grid cells in the imaging plane 60 × 60
The distance between coded aperture and receiver 0.15 m

The distance between coded aperture and transmitter 1 m

To investigate the validity of the imaging network, we first carried out simulation experiments
at various targets and the results with SNR = 20 dB are shown Figure 3, and the ratio between
the target size and the number of grid cells is T/M = 11/3600, T/M =17/120, T/M =431/3600,
T/M =731/3600, T/M =71/200, T/M =37/60, respectively. It can be seen that the target can be
successfully reconstructed whether it is made up of unit ideal point scatters or multi-value point
scatters. For further investigating the imaging performance of the proposed method, the SBL
algorithm [38] and TVAL3 algorithm [39] were implemented as comparisons. Figure 4 shows the
reconstruction results of the “smile” whose scattering coefficients of all the point scatters are a random
value between zero and unity. One can clearly see that the object can be recovered from the echo signal
through the deep network-based algorithm as low as SNR = −5 dB, despite the reconstruction results
apparently being distorted and having many spurious scatterers just like other methods. However,
the imaging quality gradually enhanced with the increase of SNR. Compared with SBL algorithm
under all SNR levels, the proposed algorithm provides higher resolution results in which the scattering
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intensity more authentically and the target outline is clearer. For TVAL3 algorithm, the target can
be perfectly reconstructed when the SNR is larger than 15 dB. However, its performance degraded
dramatically as SNR go lower. In general, our performance is competitive with the typical optimization
iterative algorithms when SNR is not larger than 10 dB. It is main reason that CS-based algorithms are
not quite robust since some errors exist in the reference signal matrix S. Nonetheless, the developed
network can automatically fix these errors during the training. With the increase of SNR, we also
note that the imaging performance of the proposed method is ultimately bounded by the imaging
network’s representational error. However, as can be seen in the predicted target, the reconstructions
are semantically correct.

Figure 3. Reconstruction results for different ratio of T/M based on the proposed algorithm.

Figure 4. Comparison of reconstruction results from various methods at different signal to noise
ratio (SNR).

Quantitatively, the MSEs of different methods under different SNRs are calculated and the
results are drawn in Figure 5. For each SNR, the shape of the target changes randomly in each
trial. As expected, the SBL algorithm is worse than the proposed method no matter for which SNR.
Although the TVAL3 algorithm shows good performance in high SNR, but it is sensitive to noise and
takes more time than the presented algorithm. Table 2 shows the time cost of various algorithms, each of
which is the average of 100 trials. Due to the neural network-based approach can be easily parallelized,
we also recorded the reconstruction time of the presented method with GPU implementation. It is easy
to calculate that the imaging frame rate of our method is no less than 280 Hz. From these results, we can
see that the proposed algorithm has great superiority with imaging efficiency. One explanation is that
an end-to-end network can directly transform the echo signal into the target, while classic imaging
techniques require a large amount of iterations to estimate a satisfactory solution. Therefore, it is
unsurprising that the neural network based method is much less time consuming. Thus, experimental
results above fully illustrate that the proposed method is a promising tool for fast TCAI under low
SNR. More evidence is shown in Figure 6. Again, we can see the superiority of deep learning-based
approach clearly.
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Figure 5. Performance with different SNRs.

Table 2. Comparison on elapsed time for different methods.

Parameters Values

TVAL3 [39] 2.2499 s
SBL [38] 4.5522 s

The proposed method 0.1369 s (GPU:0.0285 s)

Figure 6. Performance with different ratio of T/M.

4. Discussion

Compared with the classic imaging techniques, the end-to-end neural network can adjust the
imaging error adaptively, so its stability and robustness are easier to be guaranteed. Even though the
reconstructed image is not as perfect as TVAL3 at high SNR, the time cost is encouraging. The dynamic
response video was obtained with GPU implementation and included in Media. As aforementioned,
the imaging frame rate is quite high. Therefore, we set the pause time of each frame to 0.008 s. It is less
than the recovery time of a batch of images, so the video does not play very smoothly. Nonetheless,
the superiority of the proposed approach on imaging efficiency can be clearly. A frame image from
target video is shown in Figure 7a ( T/M = 367/3600), and the corresponding reconstruction result is
shown in Figure 7b.
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Figure 7. (a) Target. (b) The corresponding reconstruction result.

To investigate the influence of noiseless and noisy training data on network imaging performance,
we trained two networks using different data sets. In test, the target size is the same as the original
target in Figures 4 and 8 shows the evidence that whether the training data is noisy or not has little
impact on the target restoration accuracy.

Figure 8. Compare the imaging performance of different networks.

Also, it is worth noting that the method presented here in this manuscript is especially useful
for TCAI when we get the empirical data set. The large-scale reference signal matrix does not need
to be estimated in advance and the total imaging complexity will be reduced significantly. In the
absence of an empirical data set, the simulation data can be employed to train a practically usable
imaging network as in References [29] and [30]. In conclusion, the neural network based approach is a
promising tool for TCAI.

5. Conclusions

In this paper, a fast TCAI method is presented. We first introduced the TCAI system and
learning-based approach. Subsequently, an end-to-end network was developed and tens of thousands
of training pairs were generated to learn the mapping relationship between the echo signal and original
target. The developed network includes the nonlinear part of the encoded information and the linear
part of the decoded information. The experimental results of the simulation data set demonstrated that
the proposed method can outperform the state-of-the-art iterative algorithms in both accuracy and
efficiency. Also, it can quickly reconstruct targets of different sizes and the pixel interval that can be
resolved is no larger than 0.005 m. With the advantages of the neural network based approach, it has
a potential application in security screening, battlefield reconnaissance, nondestructive detection and
so on. In further work, we intend to improve the network performance and experimentally verify our
method with training data sets and echo signals.
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Abstract: This paper proposes an indirect method to measure absolute acoustic nonlinearity
parameters using surface acoustic waves by employing a fully non-contact laser-ultrasonic technique.
For this purpose, the relationship between the ratio of relative acoustic nonlinearity parameters
measured using the proposed method in two different materials (a test material and a reference
material) and the ratio of absolute acoustic nonlinearity parameters in these two materials was
theoretically derived. Using this relationship, when the absolute nonlinearity parameter of the
reference material is known, the absolute nonlinearity parameter of the test material can be obtained
using the ratio of the measured relative parameters of the two materials. For experimental verification,
aluminum and copper specimens were used as reference and test materials, respectively. The relative
acoustic nonlinearity parameters of the two materials were measured from surface waves generated
and received using lasers. Additionally, the absolute parameters of aluminum and copper were
measured using a conventional direct measurement method, with the former being used as a reference
value and the latter being used for comparison with the estimation result. The absolute parameter of
copper estimated by the proposed method showed good agreement with the directly measured result.

Keywords: nondestructive evaluation; acoustic nonlinearity parameter; indirect method; laser
ultrasound; fully non-contact; surface acoustic wave

1. Introduction

The acoustic nonlinearity parameter (β) is widely used for diagnosing and inferring material
damage and it can be measured using displacement amplitudes of fundamental and second-order
harmonics waves [1–11]. The exact value of an acoustic nonlinearity parameter is called the absolute
acoustic nonlinearity parameter. To measure the absolute acoustic nonlinearity parameter, it is
necessary to measure the extremely small displacement amplitudes of the second harmonic frequency
component [12]. However, such experimental measurement methods are complicated and practically
difficult to apply in the field. Hence, the relative acoustic nonlinearity parameter available for relative
comparison is frequently measured using the voltage amplitude of the device, measuring the detected
ultrasonic wave. Nevertheless, measurement of the absolute acoustic nonlinearity parameter is
indispensable for quantitative characterization of materials.

There are two ways to obtain the absolute acoustic nonlinearity parameter: a direct method
and an indirect method. The direct method is used to measure the displacement amplitude of the
ultrasonic wave directly or to use a calibration to convert the detected voltage signal amplitude into the
displacement amplitude [12]. The indirect method is used to estimate the absolute acoustic nonlinearity
parameter of a test material by measuring the ratio of relative acoustic nonlinearity parameters between
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the test material and the reference material, where the absolute acoustic nonlinearity parameter
of the reference material is known [13]. This indirect method, introduced in the aforementioned
paper, is simpler than the direct method, but requires the assumption that the voltage-displacement
proportionality coefficients (VDCs) of the test and reference materials are the same. The VDC indicates
the proportionality coefficient between the detected voltage signal amplitude of ultrasonic wave and the
displacement amplitude of that wave, which is dependent on the material properties and the sensitivity
of the receiving transducer. If the experimental conditions are kept constant for two similar materials,
an indirect method can be applied to them because the VDCs of the two materials are almost the same.
On the other hand, if the test and reference materials are dissimilar, an indirect method cannot be
applied even if the experimental conditions are kept consistent because the VDCs of the two materials
are different. In particular, the material dependency of the VDC is critical in the case of contact detection.
For example, in the case of contact reception of ultrasonic waves using piezoelectric transducers, energy
loss due to impedance mismatching can occur when ultrasonic energy is converted into electrical
energy, so that the VDC varies if the material’s acoustic impedance is different. Therefore, to overcome
the limitation of the previously proposed indirect method, a non-contact detection method using a
laser interferometer has been proposed for longitudinal waves [14]. Since the interferometer obtains
an output directly proportional to the ultrasonic displacement, its proportionality is independent of
the material.

Meanwhile, many studies have investigated the acoustic nonlinearity parameter of surface acoustic
waves [3,4,15–19]. In this regard, an indirect method to measure the acoustic nonlinearity parameter of
surface acoustic waves has also been studied for the case of similar test and reference materials [3].
Unfortunately, however, when a surface acoustic wave is transmitted and received using wedges as a
contact technique, this method cannot be applied for dissimilar materials because of the constraints
mentioned above.

This paper proposes a fully non-contact surface acoustic wave technique using lasers for the
indirect measurement of the acoustic nonlinearity parameter. This technique allows the application
of the indirect method even when the test and reference materials are dissimilar. Here, a pulsed
Nd:YAG laser was used to generate surface acoustic waves, and a laser beam was irradiated onto
the specimens through a line-arrayed slit mask to generate tone burst waves. In the contact method,
the initial second harmonic frequency coming from the system, i.e., electronic devices and transducers,
can pose a problem. However, in the proposed technique the initial second harmonic frequency can
be easily suppressed by adjusting the duty ratio of the line-arrayed slit mask [17]. This characteristic
is an advantage that may be difficult to obtain in the case of using other non-contact excitations,
for example EMAT (electromagnetic acoustic transducer) or ACT (air-coupled transducer). For surface
acoustic wave reception, a laser interferometer produced an output signal directly proportional to the
out-of-plane displacement of the surface waves and maintained a constant VDC regardless of the used
material. Furthermore, we established a measurement principle that applies the proposed non-contact
technique to the indirect measurement of the absolute acoustic nonlinearity parameter using surface
acoustic waves. This study differs from previous studies on longitudinal waves [14] in that additional
compensation is required for the difference in wavenumbers in the test and reference materials.

For experimental verification, aluminum and copper specimens were used as reference and
test materials, respectively, and the relative acoustic nonlinearity parameters of the two materials
were measured from the surface acoustic waves generated and received using lasers. The absolute
acoustic nonlinearity parameter of copper was estimated from the ratio of relative acoustic nonlinearity
parameters with the compensation of wavenumbers. Additionally, the absolute parameters of
aluminum and copper were measured by longitudinal wave using a conventional direct measurement
method, with the former being used as a reference value and the latter being used for comparison with
the estimation result.
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2. Principles

The acoustic nonlinearity parameter of a surface acoustic wave (β) can be derived in terms of
the out-of-plane displacement amplitude for the fundamental and second-order harmonic frequency
components of the surface acoustic wave as follows [1,6,18,19],

β =
8
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Here, A1 and A2 are the out-of-plane displacement amplitudes of the fundamental and second-order
harmonic components of surface acoustic waves, respectively; x is the wave propagation distance;
and kL, kT, and kS are the wavenumbers of longitudinal, transverse, and surface acoustic waves,
respectively. If the term consisting only of wavenumbers in Equation (1) is defined as a parameter F as
in Equation (2),
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Equation (1) can then be expressed as Equation (3).
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In contrast, the relative acoustic nonlinearity parameter of surface acoustic wave β’SAW is defined
by the voltage amplitudes as follows.

β′SAW =
A′2
A′21

(4)

where A1
′ and A2

′ are the detected signal amplitudes of the fundamental and second-order harmonic
components of the surface acoustic wave, respectively.

In a previous study, it has been proved that when a laser interferometer is used as a receiver,
the detected signal amplitude is proportional to the displacement amplitude regardless of the difference
in materials. Thus, the VDC is not dependent on the material, and the displacement amplitudes of the
fundamental and second-order harmonic components can be expressed as follows [14].

A1,t = α1 ·A′1,t
A1,r = α1 ·A′1,r
A2,t = α2 ·A′2,t
A2,r = α2 ·A′2,r

(5)

Here, the subscripts t and r refer to the test and reference materials, respectively. α1 and α2 are the
VDCs of the fundamental and second-order harmonic frequencies, respectively. They are only related
to the sensitivity of the laser detector, which is dependent on the frequency but not on the material.

Now, in order to apply the indirect method, we consider the relationship between the ratio of the
absolute acoustic nonlinearity parameters of the two materials and the ratio of their relative acoustic
nonlinearity parameters, as shown in the following equation.
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The second term of Equation (6) was obtained by substituting Equation (5) into Equation (3) for
the test and reference materials. This can be simplified to the third term when the propagation distance
x is fixed. The VDCs of the two materials are canceled out. The fourth term is a rearrangement of the
third term using Equation (4), where k′ is a factor representing the ratio of F values in the two materials
and is defined in Equation (7).

k′ =
Ft · k2

r,L

Fr · k2
t,L

(7)

Finally, the absolute acoustic nonlinearity parameter of the test material can be determined from
the relationship in Equation (6).

βt = k′
β′SAW, t

β′SAW, r
βr (8)

Equation (8) indicates that the absolute acoustic nonlinearity parameter of the test material can
be estimated from the ratio of the relative acoustic nonlinearity parameters of the test and reference
materials. The absolute acoustic nonlinearity parameter of the reference material as well as the
wavenumber-dependent factor k′ (referred to as the wavenumber compensation factor in this paper)
should be known in advance. If the test material and the reference material are similar, k′ is almost one
and thus it can be ignored. However, if they are different, the wavenumbers in the two materials are
different and they should be taken into account.

3. Specimens

To verify the proposed method, two kinds of specimens with different materials, pure copper and
aluminum (Al2024), were prepared as shown in Figure 1. The dimensions of both the specimens were
same at 120 mm × 40 mm × 20 mm. Aluminum was used as the reference material and copper was
used as the test material.

 
Figure 1. Specimens.

4. Experiments

4.1. Experimental Setup

The experimental scheme for the relative acoustic nonlinearity measurements using the fully
non-contact surface acoustic wave method is shown in Figure 2. A pulsed Nd:YAG laser beam of
1064 nm (SL280, Spectron Laser Systems, Warwickshire, UK) was used to excite surface acoustic waves.
The pulse duration of the pulsed laser is 10 ns, the repetition rate is 10 Hz, and the maximum energy is
300 mJ. A line-arrayed slit mask was designed to create surface acoustic waves with a wavelength
of 2.92 mm, which corresponds to the fundamental frequency of 1 MHz in aluminum and 0.75 MHz
in copper. The duty ratio of the slit mask was 50%, which theoretically does not generate a second
harmonic component [12].
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Figure 2. Experimental setup to generate and receive surface acoustic waves using the fully non-contact
laser-ultrasonic technique.

The wave propagated on the specimens was received at the other point on the same side of
the specimen by a photorefractive interferometer (TWM, Tecnar, Saint-Bruno-de-Montarville, QC,
Canada). In general, when detecting the displacement of the surface wave, the diameter of the
measuring laser beam should be smaller than the wavelength to avoid a decrease in signal sensitivity.
The beam diameter of the interferometer used in the experiment was 0.8 mm, which is sufficiently
small compared to the wavelength of the excited surface acoustic wave. The propagation distance
was 65 mm. If the propagation distance is too long, the effects of attenuation and diffraction cannot
be ignored. The received surface acoustic wave signal was captured by a digital oscilloscope (Lecroy
HDO4034A, Teledyne LeCroy, Chestnut Ridge, NY, USA).

The Hanning window was applied to minimize the effect of the side lobe, and the fast Fourier
transform was used to obtain the amplitudes of the fundamental frequency component A1

′ and the
second harmonic frequency component A2

′. The Hanning window size is the same as the data length.
Sampling frequency was 10 GHz, and the number of data points was 10,000. As a result, the frequency
resolution in FFT (Fast fourier transform) spectrum is 0.001 MHz. In order to obtain the magnitudes at
the fundamental and second harmonic frequencies, we searched for peaks within the ±0.1 MHz range
at each frequency. The frequency of the peak detected in the experimental results was within the range
of ±0.02 MHz from the predicted frequency. The measurements were repeated by increasing the laser
energy from 95 to 145 mJ in seven steps. The relative nonlinearity parameter β′SAW was determined
from the linearity slope of between A1

′2 and A2
′.

4.2. Measurement of Relative Nonlinearity Parameter

The received surface acoustic wave signals, their frequency spectra, and the linear fitting plots
of A1

′2 and A2
′ are shown in Figure 3 for aluminum and copper specimens. Figure 3a–c shows

the results of the aluminum specimen and Figure 3d–f shows the results of the copper specimen.
The surface acoustic wave signals shown in Figure 3a–d were obtained at the highest laser intensity,
and Figure 3b–e shows their frequency spectra. The magnitudes of the fundamental and second-order
harmonic frequency components are indicated by red dots. The fundamental frequency in aluminum
was detected at 1.0 MHz and the second harmonic frequency was detected at 2.0 MHz, as intended.
In copper, the fundamental frequency and second harmonic frequency components were detected at
0.74 MHz and 1.47 MHz, as expected.
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(a) 

 
(d) 

 
(b) 

 
(e) 

(c) (f) 

Figure 3. Experimental results: (a–c) represent Al2024, and (d–f) represent copper. (a,d): Raw signals,
(b,e): frequency spectra of raw signals, (c,f): linear fitting of A1

′2 and A2
′.

Note that a relatively large third harmonic is generated, because the surface acoustic wave close
to the square wave form is generated by the line-arrayed slit mask. In this case, even-order harmonics
are suppressed; however, the occurrence of odd-order harmonics is unavoidable [20]. When the
third harmonic frequency is put in together with the fundamental frequency, the magnitude of the
second harmonic frequency may change owing to the mixing effect. Nevertheless, as the magnitude
of odd-order harmonics depends on the fundamental frequency, only the constant ‘8’ in Equation (1)
will vary. However, because this constant will be canceled in the calculation of the relative ratio in
Equation (6), Equation (8) is valid as it is and does not affect the proposed measurement technique
based on the relative ratio.

The linear relationship between A2
′ and A1

′2 is shown in Figure 3c,f. In both specimens,
the R-squared values are approximately 0.98, which confirms the linearity between A2

′ and A1
′2.

The measurements were repeated four times at each laser power, the deviation was so small that it
cannot be seen in the figure.

Table 1 shows the relative nonlinearity parameter measurement results of each specimen and
their ratio.

Table 1. Measurement values for the relative nonlinearity parameter of Al2024 and copper.

Material Relative Nonlinearity Parameter, β′SAW β′SAW, Copper/β
′
SAW, Al2024

Al2024 25.71 ± 0.60
1.333 ± 0.119Copper 34.27 ± 2.20
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4.3. Measurement of Wavenumber Compensation Factor k′

The ultrasonic velocity was measured for each specimen to determine the wavenumber of
the longitudinal, transverse, and surface acoustic waves required to calculate the wavenumber
compensation factor. The velocities of the longitudinal and transverse waves were obtained by
measuring the time-of-flight (TOF) between the back-wall echo signals.

Pulser-receiver (Olympus 5077PR, Tokyo, Japan) and PZT transducers with main-resonance
frequencies of 5.0 MHz for longitudinal waves and 2.25 MHz for transverse waves were used in the
experiment. Figure 4 shows the experimental setup for wave velocity measurement. The TOF between
the echo signals was measured using the auto-correlation of the received signal [21]. By using the
measured TOF and thickness of the specimen, the velocities of the longitudinal and transverse waves
were calculated for each specimen.

Figure 4. Experimental setup for measuring the velocities of longitudinal and transverse waves.

The surface wave velocity was measured using the same apparatus shown in Figure 2. Velocity of
the surface acoustic wave is measured by non-contact method using a laser. The velocity was obtained
by multiplying the fundamental frequency of the received signal by the wavelength given in the line
array interval [17].

The measured longitudinal, transverse, and surface acoustic wave velocities are shown in Table 2.
The F values of each material were calculated using Equation (2), and the wavenumber compensation
factor k′ was obtained using Equation (7).

Table 2. Measurement results for wave velocities and wavenumber compensation factor.

Material
Longitudinal
Wave (m/s)

Transverse
Wave (m/s)

Surface Acoustic
Wave (m/s)

F k′

Al2024 6403.2 ± 2.4 3120.9 ± 2.1 2935.0 ± 3.8 3.73 ± 0.080
0.501 ± 0.018Copper 4373.0 ± 1.3 2266.8 ± 1.2 2150.8 ± 4.7 4.00 ± 0.001

4.4. Estimation of Absolute Nonlinearity Parameter

In order to verify the validity of the proposed method, the absolute nonlinearity parameters of
the two materials were measured first using the conventional calibration method [12], which uses a
pre-measured calibration function converting the electrical output of the receiving transducer into the
displacement amplitude. The results are shown in Table 3. The absolute parameter of aluminum was
used as a reference value and the absolute parameter of copper was used for comparison with the
result estimated by the proposed technique.

Table 3. Absolute acoustic nonlinearity parameters of Al2024 and copper measured by the direct method.

Material Absolute Nonlinearity Parameter (β) βCopper/βAl2024

Al2024 6.93 ± 0.30
0.671 ± 0.068Copper 4.65 ± 0.25
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Next, the absolute nonlinearity parameter of copper was estimated by substituting the measured
wavenumber compensation factor k′ and the relative nonlinearity parameters of Al2024 and copper in
Equation (8), in which the absolute nonlinearity parameter of Al2024 shown in Table 3 was used as the
reference. The result is shown in Table 4. The absolute nonlinearity parameter measured using the
direct method is shown for comparison. Considering the deviation, the estimated value agrees well
with the direct measurement result.

Table 4. Absolute nonlinearity parameter of copper measured by the proposed method and the direct
measurement method.

Proposed Method Direct Method (Calibration)

Copper 4.62 ± 0.24 4.65 ± 0.25

The results verify that the proposed indirect method using surface acoustic waves with a fully
non-contact laser-ultrasonic technique is effective for estimating acoustic nonlinearity parameters.

5. Conclusions

This paper proposed a novel indirect method to measure the absolute acoustic nonlinearity
parameter using surface acoustic waves with a fully non-contact laser-ultrasonic technique.
The relationship between the ratio of relative nonlinearity parameters of two different materials
(a test material and a reference material) measured using the proposed method and the ratio of absolute
nonlinearity parameters of these two materials was theoretically derived. Using this relationship,
when the absolute nonlinearity parameter of the reference material is known, the absolute nonlinearity
parameter of the test material can be obtained from the ratio of the measured relative parameters of
the two materials. The effectiveness of the proposed method was verified using the experimental
results; the absolute nonlinearity parameter of copper measured by the proposed method was in good
agreement with that obtained from direct measurement, in which aluminum (Al2024) was used as
the reference material. The proposed technique avoids the inconvenience of direct measurement,
maintains the advantage of surface waves, and can be applied even when the test material and the
reference material are dissimilar, which is difficult to investigate using conventional contact techniques.

Author Contributions: Conceptualization, J.J. and K.-Y.J.; methodology, J.J.; software, J.J.; validation, J.J. and K.-Y.J.;
formal analysis, J.J.; investigation, J.J.; resources, K.-Y.J.; data curation, J.J.; writing—original draft preparation, J.J.;
writing—review and editing, K.-Y.J.; visualization, J.J.; supervision, K.-Y.J.; project administration, K.-Y.J.; funding
acquisition, K.-Y.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Nuclear Power Research and Development Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
(NRF-2013M2A2A9043241).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Thiele, S.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Air-coupled detection of nonlinear Rayleigh surface waves to assess
material nonlinearity. Ultrasonics 2014, 54, 1470–1475. [CrossRef] [PubMed]

2. Deng, M.X.; Pei, J.F. Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave
approach. Appl. Phys. Lett. 2007, 90, 121902. [CrossRef]

3. Herrmann, J.; Kim, J.Y.; Jacobs, L.J.; Qu, J.M.; Littles, J.W.; Savage, M.F. Assessment of material damage in a
nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 2006, 99, 124913. [CrossRef]

4. Seo, H.; Jun, J.; Jhang, K.Y. Assessment of Thermal Aging of Aluminum Alloy by Acoustic Nonlinearity
Measurement of Surface Acoustic Waves. Res. Nondestruct. Eval. 2017, 28, 3–17. [CrossRef]

5. Xiang, Y.; Zhu, W.; Liu, C.-J.; Xuan, F.-Z.; Wang, Y.-N.; Kuang, W.-C. Creep degradation characterization of
titanium alloy using nonlinear ultrasonic technique. NDT E Int. 2015, 72, 41–49. [CrossRef]

38



Appl. Sci. 2020, 10, 5911

6. Kim, J.Y.; Jacobs, L.J.; Qu, J.M.; Littles, J.W. Experimental characterization of fatigue damage in a nickel-base
superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 2006, 120, 1266–1273. [CrossRef]

7. Liu, M.; Kim, J.-Y.; Jacobs, L.; Qu, J. Experimental study of nonlinear Rayleigh wave propagation in
shot-peened aluminum plates—Feasibility of measuring residual stress. NDT E Int. 2011, 44, 67–74.
[CrossRef]

8. Nagy, P.B. Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 1998,
36, 375–381. [CrossRef]

9. Walker, S.V.; Kim, J.Y.; Qu, J.M.; Jacobs, L.J. Fatigue damage evaluation in A36 steel using nonlinear Rayleigh
surface waves. NDT E Int. 2012, 48, 10–15. [CrossRef]

10. Kim, J.-Y.; Jacobs, L.; Qu, J. Nonlinear Ultrasonic Techniques for Material Characterization. In Nonlinear
Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation; Springer: Berlin/Heidelberg, Germany,
2019; pp. 225–261.

11. Xiang, Y.; Deng, M.; Xuan, F.-Z. Thermal degradation evaluation of HP40Nb alloy steel after long term
service using a nonlinear ultrasonic technique. J. Nondestruct. Eval. 2014, 33, 279–287. [CrossRef]

12. Kim, J.; Song, D.G.; Jhang, K.Y. Absolute Measurement and Relative Measurement of Ultrasonic Nonlinear
Parameters. Res. Nondestruct. Eval. 2017, 28, 211–225. [CrossRef]

13. Ren, G.; Kim, J.; Jhang, K.Y. Relationship between second- and third-order acoustic nonlinear parameters in
relative measurement. Ultrasonics 2015, 56, 539–544. [CrossRef] [PubMed]

14. Park, S.H.; Kim, J.; Jhang, K.Y. Relative measurement of the acoustic nonlinearity parameter using laser
detection of an ultrasonic wave. Int. J. Precis. Eng. Manuf. 2017, 18, 1347–1352. [CrossRef]

15. Gross, J.; Kim, J.-Y.; Jacobs, L.; Kurtis, K.; Qu, J. Evaluation of near surface material degradation in concrete
using nonlinear Rayleigh surface waves. In AIP Conference Proceedings; American Institute of Physics:
College Park, MD, USA, 2013; pp. 1309–1316.

16. Guo, S.F.; Zhang, L.; Mirshekarloo, M.S.; Chen, S.T.; Chen, Y.F.; Wong, Z.Z.; Shen, Z.; Liu, H.; Yao, K. Method
and analysis for determining yielding of titanium alloy with nonlinear Rayleigh surface waves. Mater. Sci.
Eng. A 2016, 669, 41–47. [CrossRef]

17. Choi, S.; Seo, H.; Jhang, K.Y. Noncontact Evaluation of Acoustic Nonlinearity of a Laser-Generated Surface
Wave in a Plastically Deformed Aluminum Alloy. Res. Nondestruct. Eval. 2015, 26, 13–22. [CrossRef]

18. Jun, J.; Seo, H.; Jhang, K.-Y. Nondestructive Evaluation of Thermal Aging in Al6061 Alloy by Measuring
Acoustic Nonlinearity of Laser-Generated Surface Acoustic Waves. Metals 2020, 10, 38. [CrossRef]

19. Matlack, K.H.; Kim, J.Y.; Jacobs, L.J.; Qu, J. Review of Second Harmonic Generation Measurement Techniques
for Material State Determination in Metals. J. Nondestruct. Eval. 2015, 34, 273. [CrossRef]

20. Choi, S.; Nam, T.; Jhang, K.-Y.; Kim, C.S. Frequency response of narrowband surface waves generated by
laser beams spatially modulated with a line-arrayed slit mask. J. Korean Phys. Soc. 2012, 60, 26–30. [CrossRef]

21. Cutard, T.; Fargeot, D.; Gault, C.; Huger, M. Time-Delay and Phase-Shift Measurements for Ultrasonic Pulses
Using Autocorrelation Methods. J. Appl. Phys. 1994, 75, 1909–1913. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

39





applied  
sciences

Article

Proposal of UWB-PPM with Additional Time
Shift for Positioning Technique in
Nondestructive Environments

Nguyen Thi Huyen 1, Nguyen Le Cuong 2 and Pham Thanh Hiep 1,*

1 Faculty of Radio-Electronic Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet,
Ha noi 100000, Vietnam; nguyenhuyenhvktqs@gmail.com

2 Faculty of Electronics and Telecommunications, Electric Power University, 235 Hoang Quoc Viet,
Ha noi 100000, Vietnam; cuongnl@epu.edu.vn

* Correspondence: phamthanhhiep@gmail.com; Tel.: +84-982-535-203

Received: 20 July 2020; Accepted: 27 August 2020; Published: 30 August 2020

Abstract: The ultra-wide band (UWB) technology has many advantages in positioning and
measuring systems; however, powers of UWB signals rapidly reduce while traveling in
propagation environments, hence detecting UWB signals are difficult. Various modulation techniques
are applied for UWB signals to increase the ability for detecting the reflected signal from
transmission mediums, such as pulse amplitude modulation (PAM), pulse position modulation (PPM),
and so on. In this paper, we propose an ultra-wide band pulse position modulation technique with
optimized additional time shift (UWB-PPM-ATS) to enhance the accuracy in locating buried object
in nondestructive environments. Moreover, the Levenberg–Marquardt Fletcher algorithm (LMFA) is
applied to determine the medium parameters and buried object location simultaneously. The influences
of proposed modulation technique on determining system’s parameters, such as a propagation
time, distance, and properties of the medium are analyzed. Calculation results indicate that the
proposed UWB-PPM-ATS gives higher accuracy than the conventional one such as UWB-OOK and
UWB-PPM in both homogeneous and heterogeneous environments. Furthermore, the LMFA with the
proposed UWB-PPM-ATS outperforms the LMFA with the traditional modulation method, especially
for unknown propagation environment.

Keywords: UWB-PPM; UWB-OOK; buried objects; nondestructive environment; Levenberg–Marquardt
method

1. Introduction

With ultra-wide bandwidth, the ultra-wide band (UWB) signal is considered as an ideal locating
technique in a short-range with high spatial resolution. As defined by the Federal Communications
Commission (FCC), UWB technology has a center frequency higher than 2.5 GHz, or if less than
2.5 GHz, there must be a minimum bandwidth ratio of 0.2 [1], or the minimum bandwidth must
reach 500 MHz [2]. To avoid affecting other narrow band systems, the rules of FCC allow the effective
isotropic radiated power (EIRP) level of UWB devices to be lower than −41.3 dBm/MHz in the
frequencies range of 3.1 to 10.6 GHz [3], so the UWB devices can work for more extended periods
than narrow band systems with the same battery power, and due to the use of very narrow pulses,
UWB signals are better able to penetrate in the nondestructive environments. General modulation
techniques are used for UWB signals such as pulse amplitude modulations (PAMs), On-Off Keying
(OOK), and pulse position modulation (PPM) [4]. One can use time-hopping (TH) in UWB systems
to create TH-PPM, TH-BPSK signal types [5], or design a generator circuit which generates the 4-th
and 5-th order derivative of Gaussian pulses in TH-QPSK system applied to multipath channels [6].
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Each modulation technique has a different application range. The choice of the right modulation
configuration not only increases the efficiency of system implementation but also maximizes the
benefits of ultra-wide bandwidth and reduces the complexity of device hardware. In [7], a simple peak
detection based on noncoherent UWB receiver is proposed for low data rate wireless sensor networks
(WSN) and Internet of things (IoT) applications. It has improved receiver performance with TH-PPM
UWB signal. In [8], to reduce the complexity of the TH-UWB receiver, a channel shortening equalizer
design method is proposed based on an eigen filter using a new objective function, whereby the
proposed system has dramatically reduced the power of channel impulse response, spectral distortion,
multiaccess interference, and noise power. Therefore, different UWB signal modulation types have
affected the quality and application of the UWB system.

In those modulation techniques, the PPM technique is one of the widely used configurations in
UWB systems. Studies on UWB-PPM in wireless communication networks mainly focus on solutions to
reduce the conflicts in multiuser access systems; for example, [9] proposed an M-ary PPM modulation
configuration for the UWB (M-PPM) system and indicated that the proposed system significantly
improved performance compared to systems using direct spreading sequences in the environments
with a low signal to noise (SNR) ratio. In [10], Vinod Venkatesan et al. proposed the application
of a direct spreading sequence with the optimized UWB-PPM technique for multiaccess systems.
The proposed method reduced the impact of multiaccess interference (MAI) and significantly reduced
the floor error compared to the orthogonal signal configuration at a large SNR ratio. Besides,
there are several studies on improving the quality of the receiver for UWB-PPM signals [11],
determining the optimal integration time for the energy detector of the UWB-PPM system [12],
and developing a measurement matrix combined with randomly Fourier transform converters for
UWB-PPM signals [13]. The combination of PPM symbols and time of arrival (TOA) estimation
algorithm using the Sub-Nyquist IR-UWB signal in the IR-UWB device is discussed in [14]. Turbo codes
for PPM-IR UWB signals to improve the power spectral density (PSD) power signal density [15] and
randomizing the pulses to improve the UWB system [16] were proposed. The noncoherent modulation
techniques based on the use of the receiver adaptive thresholds applied to enhanced PPM in the
IR-UWB and the direct chaotic communication UWB (DCC-UWB) systems were proposed to improve
the bit error rate (BER) performance of the system in a multipath transmission environment [17].

For testing purposes, material penetrating systems using UWB technology to examine
nondestructive environments are discussed in [18]; the result indicated that this system can detect
imperfect structures of metal. Besides that, the estimation of the layer’s thickness based on the
processing of the GPR’s data with the optimized techniques (such as neural networks) is discussed
in [19,20]. When using UWB technology in the testing, positioning, or another application in
communication to improve the resolution of the systems, one of the main problems is choosing
the appropriate modulation technique combined with the receiver’s signal processing methods.
The selection of a modulation scheme based on determination distance was discussed in [21].
From those results, we can recognize that the correct detection of UWB pulse signals is one of the
essential factors which affect the accuracy of the distance estimation technique. In [22], an UWB
indoor positioning system is presented to exploit two-way flight time to calculate range measurements
to determine the transceiver location based on Pozyz inner algorithm with a range accuracy of
320 ± 30 mm. In [23], to locate underground personnel in coal mines, an UWB wireless sensor
network and time difference of arrival (TDOA) algorithm was proposed, and this system can achieve
high-precision positioning in real-time. Furthermore, in the nondestructive environment, direct
sequence ultra-wide band (DS-UWB) transmission system with an adaptive pseudo random sequence
length is proposed in [24] to reduce processing time and increase positioning accuracy. As mentioned
above, the PPM modulation is widely applied to the UWB system, especially for detecting the location
of objects; however, the accuracy of estimated results is still low. In this paper, we focus on proposing a
new modulation scheme based on PPM modulation to improve the resolution of the estimated distance.
The main contributions of this research are listed as follows.
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• Firstly, the UWB-PPM signal which is used in determining the distance under the homogeneous
and heterogeneous propagation conditions is mathematically analyzed.

• Secondly, based on the analysis of received signal, the delay time and then the propagation
distances are estimated.

• Thirdly, to increase the accuracy of the estimated distance, an enhanced UWB-PPM
modulation technique, called ultra-wide band pulse position modulation with additional time
shift (UWB-PPM-ATS) is proposed and compared with other techniques such as conventional
UWB-PPM, UWB- OOK with the properties of transmission environment is known.

• Finally, the Levenberg–Marquardt nonlinear estimation algorithm is applied to estimate the
system parameter and the target when the propagation environment is unknown.

The remainder of this paper is organized as follows. Section 2 describes the system model for
estimating distances in nondestructive environments. The proposed system model and the parameters
are presented in Section 3. The simulation results are provided in Section 4, and finally, conclusions
and further work are discussed in Section 5.

2. System Model

A distance measurement and positioning system using UWB technology is illustrated in Figure 1,
where di and εi are the thickness and the relative permittivity of the ith layer in the nondestructive
environment, respectively. s(t) denotes the transmitted pulse signals, and r(t) is the received signal.

 

 

 

 

 

 

  

Figure 1. The distance measurement and positioning system in the nondestructive environments.

For the environment with three layers and one buried object, the r(t) is represented by

r(t) =∑ ri(t) + rob(t) + n(t), (1)

r1(t) =A1s(t − τ1),

r2(t) =A1 A2s(t − τ1 − τ2),

r3(t) =A1 A2 A3s(t − τ1 − τ2 − τ3),

rob(t) =Aobs(t − τob),

where Ai denotes the amplitude factor which represents the reflection and transmission properties
of the propagation environment, and its value depends on the properties of the ith layers, τi is
the traveling time of UWB pulse in the ith layer. Aob and τob are respectively the amplitude and
traveling time of the signal which is reflected from the buried object. n(t) represents the additive white
Gaussian noise.
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At the receiver side, the procedure for determining the position of buried object is indicated
in Figure 2. Accordingly, the position of buried object is determined by the distance from it to
the transceiver. The LMFA method is applied to calculate the relative permittivity of environment and
these distances.

Figure 2. The procedure for determining the position of buried object.

In the UWB system, s(t) is generated based on Gaussian [25] or Hermite [26] functions and
their derivatives. Compared to Gaussian pulses, the Hermite pulse is useful for parallel data
transmission with high data rates, but it is hard to achieve in the real world [27]. Therefore, the Gaussian
pulses UWB signals are applied in this work. A typical Gaussian pulse usually takes the form [25]:

g(t) = Ape
−2π( t

μp )
2
, (2)

where Ap denotes the amplitude of pulse, μp is a factor which influences the amplitude and the width
of Gaussian pulse, also called time normalization factor, the width of a pulse becomes narrower when
the μp is reduced. The nth derivative of Gaussian pulse, named nth-order monocycle, is

gn(t) = Anp
dn

dtn e
−2π( t

μp )
2
, (3)

where Anp is the amplitude of the nth-order monocycle. The shapes of different types of Gaussian
monocycles are indicated in Figure 3.
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Figure 3. The different types of Gaussian monocycles.

The selected Gaussian pulse shape must meet FCC requirements about power and frequency range
used. According to Figure 4, it is observed that for the power spectral density (PSD), only the first-order
Gaussian monocycle does not comply with the FCC requirements about the effective isotropic radiated
power (EIRP) level. In this paper, we restrict our performance analysis of UWB system to the
fourth-order Gaussian monocycle in (4). However, our method can be applied for any Gaussian
pulse shape.

g4(t) = Ap

[
−12π + 96π2

(
t

μp

)2

− 64π3
(

t
μp

)4]
e
−2π.

(
t

μp

)2

. (4)

Figure 4. The power spectral density (PSD) of the different derivatives of Gaussian pulses.

It is observed that with impulse radio UWB (IR-UWB) signal, the correlation and therefore the
propagation time can be calculated. However, the IR-UWB signal is not strong enough to be processed
at the receiver in the case of multiple layers medium (the value of cross-correlation is lower than the
noise lever). Hence, an orthogonal pseudo sequence a(n) is applied to the UWB signal in pulse position
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modulation (PPM) to ensure the cross-correlation is obtained when receiving many reflected signals
from many surfaces and buried objects. The conventional UWB-PPM signal with the fourth-order
Gaussian monocycle is given as:

s(t) =
N

∑
n=1

g4(t − nTr − anTPPM), (5)

where Tr is pulse repetition period and TPPM is the time shift associated with binary PPM, an ∈ {0, 1},
and N is the length of UWB pulses. In this modulation technique, when an is 0, there is no additional
time shift that modulates the pulse g4(t) and a time shift TPPM is added to g4(t) when an is 1. In our
system model, an does not carry information, it only indicates whether the corresponding pulse is
shifted or not.

The propagation distance d in the UWB-PPM system used for positioning the buried object in
nondestructive medium is computed by:

d =
cτ

2
√

ε
, (6)

where c is the velocity of light, and τ, ε are the traveling time of UWB pulses and the relative permittivity
of the nondestructive medium, respectively.

The traveling time τ is calculated by the correlation between the received signal from
the ith layer, ri(t), and the template waveform ω(t):

Ri(τ) =

∞∫
−∞

ri(t)ω(t)dt. (7)

With the conventional UWB-PPM systems, the template waveform at the receiver is (g4(t) −
g4(t − TPPM)) and the correlation of this system is denoted by R0i and has the form:

R0i(τ) =

∞∫
−∞

ri(t)[g4(t)− g4(t − TPPM)]dt. (8)

Define the autocorrelation function of the fourth-order Gaussian monocycle in (4) as RG4(τ),
we have

RG4(τ) =

∞∫
−∞

g4(t)g4(t − τ)dt, (9)

R0i(τ) =RG4(τ)− RG4(τ − TPPM). (10)

The traveling time of UWB signal is the value that makes the correlation function hit its maximum;
it corresponds to twice the transmission time from the transceiver to the reflective surface of the ith

layer as shown in Figure 5 and given as

τ = argτ(max(Ri)), (11)

where max(Ri) is the local extreme value corresponding to the reflected signals from the surface of the
layers or object.
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Figure 5. The local extreme values of correlation output corresponding to propagation distances in Figure 1.

According to (6), τ is a function of ε and the distance d, due to both d and ε are unknown;
they should be estimated by large enough values of τ using LMFA. To increase the accuracy in the τ

determination procedure, and in estimation of d, ε, the proposed UWB-PPM-ATS technique is applied.

3. Proposal of Positioning Approach in Nondestructive Environments

3.1. Proposal of UWB-PPM-ATS

From (1), (5), and (6), it can be seen that the time shift TPPM directly affects the quality of UWB-PPM
systems in positioning applications. The performance of the system can be improved by selecting the
appropriate value of the time shift. To increase the accuracy in the estimated distance and the position
of buried objects by using the UWB-PPM system, the time shift in this system should be selected so
that the ability to detect the received UWB pulse is the best. To accomplish this task, in UWB-PPM
systems with the time shift TPPM is invariant, we recommend adjusting this time shift with a certain
time constant to achieve its optimal value. The optimal value of TPPM defined in this paper is the value
at which the UWB-PPM system gives the smallest error in distance estimation. So we propose an UWB
pulse position modulation with an additional time shift (UWB-PPM-ATS). In the proposed technique,
the pulse position will be changed with a time constant denoted by ζ. The signal of UWB-PPM-ATS is
given as:

s(t) =
N

∑
n=1

g4(t − nTr − an.(TPPM + ζ)). (12)

The "+" sign in (12) means that algebraic additions, so ζ, can take either positive or negative
values. The effect of ζ on the quality of the system will be evaluated later.

An example of the conventional UWB, UWB-PPM, and UWB-PPM-ATS signal shapes are
illustrated in Figure 6. In Figure 6, there is an example of a seven pulses sequence carrying seven
bits 1010101. The pulse width is 0.28 ns, and it adopts the fourth derivative of the Gaussian function
described by the blue line; the conventional PPM modulated pulses sequence is denoted by the red line.
Whereby, when the bit value is 0, the transmitter will send out a pulse g40(t) as the original pulse
(without any change from the unmodulated pulse) when the value bit is 1, the transmitter will send out
a pulse g41(t) which is the original pulse with a time shift of TPPM. With the proposed UWB-PPM-ATS
(black line), instead of the normal TPPM time shift, the new shift level is set to (TPPM + ζ).
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Figure 6. The ultra-wide band (UWB) pulse shapes with pulse position modulation (PPM) and PPM-ATS.

The procedure for estimating distances in UWB-PPM-ATS system is the same as in the
conventional system (UWB-PPM) and in (7); the template waveform is (g4(t)− g4(t − TPPM − ζ)).
The correlation of the proposed system denoted by R1i and determined as:

R1i(τ) =

∞∫
−∞

ri(t)[g4(t)− g4(t − TPPM − ζ)]dt. (13)

So, we have:

R1i(τ) =RG4(τ)− RG4(τ − TPPM − ζ)]dt. (14)

The shapes of RG4(τ),R0i(τ) and R1i(τ) are shown in Figure 7.
Figure 7 indicates the autocorrelation function of the fourth-order Gaussian monocycle RG4

and correlation functions of UWB-PPM R0i and UWB-PPM-ATS R1i systems (with additional time
ζ = −0.08 ns and ζ = 0.08 ns); those functions are compared at the value of τ = 0. In the figure below
inside Figure 7, the blue line with "+" sign denotes the value of R0i(τ), the red line denotes the value of
R1i(τ) with ζ gets a negative value of −0.08 ns, and the dashed black line denotes the value of R1i(τ)

with ζ gets a positive value of 0.08 ns. We can observe that the choice of a negative value of ζ makes
R1i(τ) get the maximum value at τ = 0 and this value is greater than R1i(0)- with a positive value of ζ

and also R0i(0) (both of these functions are not maximized at τ = 0). Thus ζ will be selected that makes
the value of RG4(τ − TPPM − ζ) reaches to the minimum point of the RG4 function which is denoted
by Rτopt as shown in Figure 7. It is clear that, in the UWB-PPM-ATS scheme, the negative values of
ζ give the better correlation function than positive values. The variation of the correlation function
with the different of ζ values is illustrated in Figure 8. In Figure 8, the different values of ζ lead to
the different shapes of the correlation function; the optimal value of ζ in this case is ζopt = −0.08 ns
which makes R1i(0) have the maximum value. When the magnitude of the ζ increases close to the
pulse width (ζ = −0.16 ns, −0.25 ns in Figure 8), the corresponding correlation functions will not
reach the global maximum near the value of τ = 0 and its local maximum points have the values
close to the global maximum. This leads to the higher error in determining the global maximum point
of these functions. Therefore, depending on the specific parameter configuration of each UWB-PPM
system, the value of ζ will be chosen such that R1i(0) in the (14) has the largest value.
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Figure 7. Correlation functions of the conventional UWB-PPM and the proposed UWB-PPT-ATS
systems with different time shift.

Figure 8. Correlation functions of proposed UWB-PPM-ATS with different additional time shift.

The procedure for estimating distances is based on the traveling time mentioned above and
can be applied to a well-known propagation environment; however, it is unavailable for an
unknown propagation environment. Consequently, we propose to apply LMFA [28] into the
calculation of distances, relative permittivities, and determination of buried object location (depth and
horizontal direction) in the case of the unknown propagation environment. The proposed method
comes from the fact that the traveling time depends on the relative permittivities, buried object
location, and transceiver position. So in order to find the value of these parameters, we change the
position of the receiver horizontally and calculate the traveling time corresponding to each position
of the transceiver. Based on the transceiver location and computed traveling time, the remaining
parameters will be estimated.

3.2. Estimation Algorithm

Let us consider a specific system model of UWB-PPM systems illustrated in Figure 9, in which
the environment is assumed to have a nondestructive structure that has two layers with relative
permittivities of ε1 and ε2.
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Figure 9. Target system model in an environment with nondestructive structure of two layers.

To determine the environmental parameters and also the location of the target “T”, the transceiver
generates UWB pulses with rotation angles of the transceiver antenna are αi and get the reflected pulses.
The traveling time τ1i corresponding to the ith time of emission is calculated according to (11),
the geometric relationship between τ1i, d1, and ε1 is indicated in (15).

τ1i =
2d1

√
ε1

c.cosαi
, (15)

where αi is the rotation angle of antenna and:

αi = i.Δα; (16)

where Δα is the minimum rotation angle of the transceiver antenna. Thus the values of ε1 and d1 in
(15) are estimated based on known pairs (αi, τ1i). Then, to locate buried objects, the device is moved
horizontally, and the transmitter emits pulses in the perpendicular direction after every movement
step of Δx. Denote τ2i is the traveling time of the transmitted signals, reflected from the buried object
and returned to the transceiver at position of xDi, it is computed by:

τ2i = τ10 +

√
ε2(d2

2 + (xT − xDi)2)

c
, (17)

where xT is the horizontal coordinates of the buried object and τ10 is the traveling time of reflected
signal at the interface between two layers of the environment in d direction. τ2i also computed according
to (11), the values of ε2, d2, and xT in (17) are estimated based on known pairs (τ2i, τ10, xDi), and

xDi = i.Δx. (18)

The proposed algorithm to estimate the values of those parameters is indicated in Figure 10 and
described in detail as below
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Figure 10. Flowchart of estimated algorithms.

In Figure 10, the unknown parameter vectors are denoted by:

X1 = (ε̂1, d̂1); X2 = (ε̂2, d̂2, x̂T), (19)

and the index m in Figure 10 is used to replace for 1, 2. With the known pairs (τ1i, αi) and (τ2i, xDi),
the unknown parameter vectors X1 and X2 are determined such that the sum of the squares of the
deviations Si(Xi) are minimized:

X1=arg min
X1

S1(X1)= arg min
X1

M

∑
i=1

[τ1i− f1(αi, X1)]
2, (20)

X2=arg min
X2

S2(X2)= arg min
X2

M

∑
i=1

[τ2i− f2(xDi, X2)]
2, (21)

where f1(αi, X1) and f2(xDi, X2) are:

f1(αi, X1) =
d̂1.

√
ε̂1

c.cosαi
, (22)

f2(xDi, X2) =

√
ε̂2(d̂2

2 + (x̂T − xDi)2)

c
, (23)

where .̂ denotes the estimated values of the parameters; the vectors X1 and X2 were estimated according
to the steps as shown in Figure 10 as follows:

+ Assign to X1, X2 any arbitrary initialization values, denoted by X1−int, X2−int;
+ In each iteration step, the parameter vectors X1, X2 are replaced by new estimates (X1 + δ1), (X2

+ δ1) with δ1, δ2 are updated step vectors and we have:

S1(X1 + δ1) ≈ [τ1 − f1(X1)]
T [τ1 − f1(X1)]

−2[τ1 − f1(X1)]
TJ1δ1 + δT

1 JT
1 J1δ1,

S2(X2 + δ2) ≈ [xD − f2(f2)]
T [xD − f2(X2)]

−2[xD − f2(X2)]
TJ2δ2 + δT

2 JT
2 J2δ2,
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with J1,2 is the Jacobian matrix, whose ith row equals J1i and J2i, respectively:

J1i =
∂ f1(αi, X1)

∂X1
, (24)

J2i =
∂ f2(xDi, X2)

∂X2
. (25)

To get the minimum value of the sums S1, S2, the update step vectors δ1,2 is calculated such that the
derivative of S1,2(X1,2 + δ1,2) with respect to δ1,2 has a result of zero, so, δ1,2 can be determined satisfying:

[JT
1 J1 + λdiag(JT

1 J1)]δ1 = JT
1 [τ1 − f1(X1)], (26)

[JT
2 J2 + λdiag(JT

2 J2)]δ2 = JT
2 [xD − f2(X2)], (27)

where the damping factor λ (non-negative) is adjusted at each iteration. If S1,2 is reduced rapidly, a
smaller value of λ can be used, whereas if in an iteration does not reduce the residual, λ can be increased.
The update step vectors are computed as follows:

δ1 = [JT
1 J1 + λdiag(JT

1 J1)]
−1JT

1 [τ1 − f1(X1)], (28)

δ2 = [JT
2 J2 + λdiag(JT

2 J2)]
−1JT

2 [xD − f2(X2)]. (29)

After a certain number of iterations, the output of LMFA is the final estimated values of system
parameters that meet the constraint condition in (21), as shown in Figure 10.

4. Simulation Results and Discussion

4.1. Simulation Parameters

The accuracy of methods for determining the distance and characteristics of a multilayered
reflective environments using UWB pulses is strongly dependent on UWB signal processing techniques.
UWB-PPM is one of the candidates for positioning technology in a nondestructive environment with
multiple reflective layers; with the proposed UWB-PPM-ATS, our trials indicated that the UWB-PPM
pulses shifted with a certain time constant can be used to improve the precision in estimating
the distance. All the numerical results in this paper were computed using Matlab.

First, we compare the exact estimation errors of the UWB-OOK, UWB-PPM and UWB-PPM-ATS
systems with the results obtained from the simulations and the actual value of the parameters use
(6), (8), (11), (13) and (30). Here OOK is one of the UWB pulse amplitude modulation techniques and
has two level modulation with the bits are 0 and 1. When sending a bit 0, the transmitter will not
send anything. When sending a bit 1, the transmitter will send a pulse [29], and the template waveform
ω(t) at the receiver of UWB-OOK system is g4(t). In addition, the performance of UWB-OOK,
UWB-PPM and UWB-PPM-ATS systems were evaluated for an environment with known characteristics
(for example, here are three layers as indicated in Figure 1). Finally, the location determination
technique in a unknown environment with multiple reflection layers using the LMFA based on the
estimated parameters of those UWB systems is presented with the system model as shown in Figure 9.
The comparisons between the above systems are evaluated in term of errors between the estimated
values from the considered system and the true values. Based on the PSD plot of the Gaussian impulses
shown in Figure 4, most of the numerical results presented in this section are based on analysis using
the fourth-order Gaussian monocycle. The parameters of the example UWB systems are listed in
Table 1 and follow [5].

To assess the performance of those UWB systems, the error of estimated distance is defined
as follows:

δd =
∣∣∣d̂i − dtri

∣∣∣ , (30)
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where d̂i denotes the estimated distance and dtri is the true value.

Table 1. Simulation parameters.

Parameter Notation Value

Time normalization factor μp 0.2877 ns
Transmitted power PTx −35.4 dB

The amplitude factors A1, A2, A3 0.33, 0.13, 0.14
Number of pulses N 100

Noise power N0/2 −102 dB
Time shift of PPM TPPM 0.2 ns

Additional time shift ζ −0.08 ns, −0.16 ns
Relative permittivity

with heterogeneous medium ε1, ε2, ε3 4; 3; 5

In Figure 1, without generality, we assume that the propagation environment is heterogeneous
with three layers: sand (dry), sandy soil (dry) and granite (dry) and the relative permittivities
ε1, ε2, ε3 are 4, 3, 5, respectively. Those layers are assumed to be dry to reduce the attenuation of
environment, so propagation velocity in those layers are 15 cm/ns, 17.32 cm/ns, 13.42 cm/ns and
the attenuation is 0.01 dB/m [30]. With a known transmission environment, those distance can be
estimated using (6), where τi is computed according to (8), (11) and (13). Then the errors of estimated
distances are calculated according to (30) and illustrated in Figure 11 for OOK, PPM, ATS systems
with ζ = −0.08 ns and ζ = −0.16 ns. In Figure 11, the black line denotes the average error of the OOK
system, the blue line denote the error of the PPM system and the red lines denote the error of the
ATS system, all with the same system parameters. Observe that the relative error of the UWB-OOK
system is about 24%, of UWB-PPM is about 11%, of UWB-PPM-ATS with ζ = −0.08 ns is about 7%,
with ζ = −0.16 ns is about 13%; so the UWB-PPM- ATS with ζ = −0.08 ns performs better for all
distance values. This can be explained by comparing the correlation functions which are given in (8),
(13) and Figures 7 and 8; we observe that R1i(0) is significantly greater than R0i(0) for ζ = −0.08 ns
and R0i(0) is not the maximum value of R0i(τ), which leads to a smaller than average error in the
PPM-ATS with ζ = −0.08 ns when compared to PPM scheme; but with ζ = −0.16 ns, R1i(0) is
less than R0i(0) thus the PPM outperforms the PPM-ATS. Besides that, the UWB-OOK is one of the
amplitude modulation techniques, thus it is affected by the transmission environment and more
difficult to separate the received signal from noise interference in comparison with the PPM techniques
which have a constant amplitude. The results in Figure 11 indicate that the time shift ζ directly affects
the performance of PPM systems. The value of ζ is selected so that (TPPM + ζ) achieves the optimal
value at which RG4(τ − TPPM − ζ) gets the minimum value. From (6) and (13), we also know that ζ is
determined by the pulse shape and the pulse width normalization factor μp. Due to the influence of
the UWB-PPM system to the choice of the time shift, a suitable value of ζ should be chosen according
to the specific pulse shape and pulse width employed in a particular UWB application.
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Figure 11. Comparison of distance estimation errors between OOK, PPM and the proposed
UWB-PPM-ATS modulation techniques.

4.2. Determine the Location of Buried Object by LMFA

As mentioned above, the propagation distance can only be determined using the correlation
function if the characteristic of the environment is well-known; however, this is impossible with
unknown environment. Moreover, the position of buried object cannot be determined by only
the propagation distances; it must be determined in both x and d directions (xT , dT in Figure 9).
The parameters of each layer in the system model in Figure 9 are estimated sequentially using LMFA
as presented in Section 3.2. The parameters of system model and the initialization vectors of the LMFA
algorithm are listed in Table 2 in which two layers of environment are assumed to be dry sand and
concrete with the corresponding propagation velocity of 16 cm/ns and 14.14 cm/s.

Table 2. Initialization parameters of the model.

Parameter Notation Value

The thickness of the 1st layer d1 0.63 m
Depth of ’T’ in the 2nd layer d2 0.42 m

X-coordinate of ’T’ xT 1.6 m
Relative permittivity ε1, ε2 3.5, 4.5

Damping factor λ 3
Movement step of the device Δx 20 cm

First the parameters ε1, d1 are estimated based on the propagation time τ1i and rotation angle
αi with both UWB-PPM and UWB-PPM-ATS systems. Then, in a similar way, the parameters d2, ε2,
and xT are estimated based on ø2 and xD; therefore, the depth of buried object dT = d1 + d2 is also
determined. The estimated results after 30 iterations and errors of UWB systems are listed in Table 3
and Figures 12–14. Figures 12 and 13 show the relationship between τ1i and αi in (15). In those figures,
the dashed black line denote the curve of τ1i vs. αi with the true values of d1 and ε1; the blue dots are
τ1i values measured by simulated UWB systems and the red line denote the curve of τ1i vs. αi with the
estimated values d̂1 and ε̂1. Figure 14 shows the curve of (τ2i − τ10) depends on xDi according to (17).
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In those figures, the dashed black line denotes the curve of (τ2i − τ10) vs. xDi with the true values of
d2, ε2 and xT ; the blue dots are (τ2i − τ10) values measured by simulated UWB systems and the red
line denotes the curve of (τ2i − τ10) vs. xDi with the estimated values d̂2, ε̂2 and x̂T .

Figure 12. The results of estimating d1 and ε1 of the conventional UWB-PPM based on
Levenberg–Marquardt Fletcher algorithm (LMFA).

Figure 13. The results of estimating d1 and ε1 of the proposed UWB-PPM-ATS based on LMFA.
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Figure 14. The results of estimating d2, ε2 and xT of the conventional UWB-PPM and the proposed
UWB-PPM-ATS based on LMFA.

Table 3 and Figure 15 show the estimated results by the UWB systems. As seen, the modulation
techniques for UWB pulses combine with nonlinear estimation method LMFA can be used to determine
the thickness of different layers in the nondestructive environments, their relative permittivities and
also the position of buried object. We observe that the UWB-PPM-ATS system outperforms the
UWB-PPM system for all parameters of the model. This behavior results directly from the features of
the correlation functions of different signals shown in Figures 7 and 8. When using UWB-PPM-ATS
technique with the optimal value of ζ, the estimated traveling time values have a smaller error than
using UWB-PPM technique, so the results from the LMFA of the PPM-ATS system give the higher
accuracy than conventional PPM system.

Table 3. The results of the estimated parameters.

Parameter/Notation d1 d2 xT ε1 ε2

True value [m] 0.63 0.42 1.6 3.5 4.5
By UWB-OOK [m] 0.9418 0.6623 2.1362 4.3216 5.7261
By UWB-PPM [m] 0.7923 0.5742 1.9316 2.7109 3.3590

By UWB-
PPM-ATS [m] 0.6523 0.3899 1.7107 3.2829 4.8167

Error of UWB-OOK 0.3118 0.2423 0.5362 0.8216 1.2261
Error of UWB-PPM 0.1623 0.1542 0.3316 0.7891 1.141

Error of
UWB-PPM-ATS 0.0223 0.0301 0.1107 0.2171 0.3167
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Figure 15. The true and estimated locations of buried object using the conventional UWB-PPM and the
proposed UWB-PPM-ATS.

5. Conclusions

In this paper, the authors have proposed an UWB pulse position modulation with an additional
time-shift technique for positioning applications in nondestructive environments of the UWB systems.
The proposed method is utilized to determine the distances and the position of a buried object in
heterogeneous environments. The proposed technique’s quality is assessed based on the calculation
errors compared to the actual values and comparison with the conventional modulation methods.
Combining with the Levenberg–Marquardt Fletcher algorithm to determine the buried object
location when the propagation environment is unknown, the efficiency of the proposed technique
is better than the PPM-UWB system with the same model. Evaluating different UWB systems
based on the calculation of errors provides reliable information for choosing modulation schemes
with suitable parameters in the design of UWB systems for positioning applications, especially in
nondestructive environments.

However, in this work, only one buried object location is determined; multiple buried object
estimation algorithm will be researched in our future works. Additionally, the research on parameters
of the buried object, such as shape, size, permittivity and so on, is left for the future work.
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The following abbreviations are used in this manuscript:

UWB Ultra-wide band
UWB-PPM Ultra-wide band pulse position modulation
UWB-OOOK Ultra-wide band On-Off Keying
UWB-PPM-ATS Ultra-wide band pulse position modulation with optimized additional time shift
LMFA Levenberg–Marquardt Fletcher algorithm
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Abstract: Textured surface anomaly detection is a significant task in industrial scenarios. In order
to further improve the detection performance, we proposed a novel two-stage approach with an
attention mechanism. Firstly, in the segmentation network, the feature extraction and anomaly
attention modules are designed to capture the detail information as much as possible and focus
on the anomalies, respectively. To strike dynamic balances between these two parts, an adaptive
scheme where learnable parameters are gradually optimized is introduced. Subsequently, the
weights of the segmentation network are frozen, and the outputs are fed into the classification
network, which is trained independently in this stage. Finally, we evaluate the proposed approach
on DAGM 2007 dataset which consists of diverse textured surfaces with weakly-labeled anomalies,
and the experiments demonstrate that our method can achieve 100% detection rates in terms of TPR
(True Positive Rate) and TNR (True Negative Rate).

Keywords: textured surface anomaly detection; computer vision; deep learning; attention mechanism;
adaptive fusion

1. Introduction

Automatic surface-anomaly detection is one of the most vital tasks in manufacturing processes to
guarantee that the end product is visually free of anomalies. It is mostly relevant in various domains of
industrial production, such as steels [1,2], fibers [3], and plastics [4]. As a matter of fact, surface anomaly
detection is usually carried out manually due to the constraints of technical conditions, which is
very inefficient and errors are apt to occur due to fatigue. Over the past two decades, automated
surface inspection approaches based on computer vision have been proven to be very effective and
are attracting more research attentions. In particular, deep learning techniques have achieved great
success in the domain of visual inspections.

In the early years, classical image processing approaches were often applied to controlled
environments, such as stable lighting conditions. Sanchez-Brea et al. [5] put forward a thresholding
technique to detect the anomaly according to the intensity variations of rings which is caused when
laser beams illuminate the wire. However, such methods are no longer applicable for complex
backgrounds or the strong interference of noises. More appropriate methods should be designed
for these challenging tasks. Later approaches can be mainly divided into two categories: models
based on selective features, and deep learning-based methods [6,7]. Feature-based approaches such as
visual saliency map [8], gray level co-occurrence matrix [9], and statistical projection [10] are usually
appropriate for specific tasks. These features are not only hard to design, but being hand-crafted
features, they are also not useable for other applications, which causes the extension of development
cycles to adapt different products. The emergence of deep learning-based models has significantly
improved this issue, as such methods are data-driven, and can automatically seek optimal features
which avoids the special feature-design processes for different applications.
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In recent years, there have emerged more and more excellent convolutional neural network
models, such as FPN [11], ResNet [12], and SegNet [13]. Apart from these models mentioned above,
FCN [14] is the first network applied to semantic segmentation tasks in an end-to-end manner. In this
method, an encoder–decoder module and skip connections are used to combine deep with more
shallow features. Attention U-Net [15] highlights the foreground via the supplement of more semantic
information in the encoder parts. Hi-Net [16] utilizes more information from different modalities
via the fusion of each learned feature representations. Liu et al. [17] present a sample balancing
strategy via the assignment different weights to the edge and background pixels to further improve the
extraction accuracy.

Early work on textured surface anomaly detection where deep learning is utilized can be found
in Ref. [18], which investigated the performance differences generated by different hyper-parameter
settings. Racki et al. [19] presented a compact convolutional neural architecture for the detection of
surface anomalies. This network firstly acquires good features via segmentation network, then all
the parameters are frozen, and only the classification network is trained. Mei et al. [20] proposed an
unsupervised algorithm for fabric anomaly detection. It reconstructs image patches via convolutional
denoising autoencoder networks under multi-scale gaussian pyramid levels, and the residual maps of
each image patch are used for pixel-wise prediction.

In order to further improve the surface anomaly detection performance on the DAGM 2007
dataset, this paper presents an attention-based network inspired by the works mentioned above.
On one hand, feature extraction module be used to capture detailed information. On the other hand,
anomaly attention module is designed to strengthen the potential objects and simultaneously weaken
the background noises. The validity of the proposed method is confirmed by a series of experiments.

The remainder of this paper is organized as follows. The proposed model is elaborately described
in Section 2. The experiment and discussion are presented in Section 3. Finally, Section 4 draws the
conclusion of this paper.

2. Materials and Methods

For the dataset with limited samples, overfitting is prone to occur when detection or classification
approaches are employed directly. However, segmentation-based two-stage models can settle this
issue, and the methods of this type generally follow the same paradigm, i.e., segmentation network is
applied to extract good feature representations, then the classification network is trained upon these
features. The validity of this mode can be explained that for segmentation tasks, overfitting problems
can be largely improved as image segmentation belongs to pixel-level classifications, enabling effective
samples to be added in the training process [21].

2.1. Segmentation Model

An encoder–decoder architecture is adopted to capture the detailed information [22] as much
as possible, especially for the small anomaly structure used in this paper. However, unlike U-Net
network [22], we also design an attention-based fusion module to focus on the potential objects.

The overall segmentation part is shown in Figure 1, which consists of the encoder, decoder,
skip connections, and the proposed fusion block. Specifically, pool and corresponding transpose
convolution operations divide the whole process into four stages, and in the second and third stages,
the relevant layers from encoder and decoder are combined via skip connections. As a whole,
we integrate encoder and decoder information of the first stage via the attention-based fusion module
to realize background weakness and anomaly reinforcement.
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Figure 1. Segmentation network (AFM: Attention-based fusion module).

2.2. Attention-Based Fusion Module

The attention-based fusion module is designed to capture the detailed information, meanwhile
strengthen the salient features and weaken irrelevant and noisy responses as well. The detailed
procedure is presented in Figure 2.

Figure 2. Attention-based fusion module.

In the feature extraction module, the information from encoder and decoder are merged by
add operation and ReLU activation function, which ensures that detailed features can be retained,
and visual saliency maps are highlighted to some extent. Moreover, the semantic gap between the
feature extraction module and following anomaly attention module is narrowed when semantic
information is supplemented in this section, which is more conducive to the training process.

Anomaly attention module provides a more comprehensive perspective to focus on the potential
objects and weaken background information. Specifically, on one side, the information of the encoder
from the first stage is input into a convolution layer to increase nonlinearity and feature depth. On the
other side, the corresponding part from the decoder is exerted by the convolution operation and
sigmoid function to obtain an attention coefficient. Then the output of these two sides are integrated via
pixel-wise multiplications, which are followed by convolution operation to further increase nonlinearity
and feature depth.

In order to weigh the detailed information and visual saliency extraction, an adaptive fusion
module is designed to combine the two information from feature extraction and anomaly attention
modules in a learning manner, and the weight parameters can be updated adaptively to maximally meet
the demands of the different applications. As shown in Figure 2, the output of the feature extraction
and anomaly attention modules above are concatenated firstly, then the result is executed by 5 × 5 and
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1 × 1 convolution calculations respectively, which can learn the weight parameters from channel inners
and inters. The output 1 and output 2 are reserved for the following classification module.

In addition, for the imbalance issue of samples, the loss of each pixel is formulated as Equation (1)
to attach more weight for positive samples.

�(Xi) = − 1
N

N∑
i=1

(αlog(1− P(yi = 0|Xi )) + βlogP(yi = 1|Xi )) (1)

Here Xi, yi denote feature vector and label at pixel i respectively. P represents the sigmoid
activation function, and α = 1, β = 3 in this paper.

2.3. Classification Network

The classification part relies on the outputs of segmentation network where all the parameters
are frozen. As shown in Figure 3, we introduce this module according to Ref. [21]. The main
difference is that a mergence operation of multiple dilated convolutions similar to deeplabv3+ [23] is
employed to acquire enough receptive field and mitigate the loss of detailed information as much as
possible. Moreover, the ReLU activation function after add operation [15] is utilized to be conductive
to increasing the network sparsity and alleviating the overfitting issue, in the same manner as in the
segmentation model.

Figure 3. Classification network (diconv: dilated convolution).

Similarly, the loss of each sample in classification network can be calculated by softmax
cross-entropy function as follows,

�(Sj) = − 1
M

M∑
j=1

(Sj + log
C∑

k=1

Sjk) (2)

where Sj indicates the input of softmax function for sample j. C, M refer to the number of categories
and samples.

2.4. DAGM Textured Dataset

The proposed approach is evaluated on the open textured surface dataset DAGM 2007 (https:
//hci.iwr.uni-heidelberg.de/node/3616) for industrial optical inspection. It consists of 10 sub-datasets
with different classes of anomalies, the distribution condition of training and testing samples with the
size of 512 × 512 is listed in Table 1, and the positive means the textured samples with defects, while
the negative represents the defect-free samples. All the defective areas are roughly labeled with an
encircling ellipse.
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Table 1. Sample distribution of the DAGM dataset.

Train Test

Class Positive Negative Positive Negative

1 79 496 71 504
2 66 509 84 491
3 66 509 84 491
4 82 493 68 507
5 70 505 80 495
6 83 492 67 508
7 150 1000 150 1000
8 150 1000 150 1000
9 150 1000 150 1000
10 150 1000 150 1000

Considering the imbalance of positive and negative samples in training set, we generate another
three samples for each positive training example via rotating with 180 degree, mirroring along
horizontal and vertical axis in the same manner as in Ref. [19], and a series of relevant experiments for
the augmented dataset are also carried out for further analysis.

3. Result and Discussion

All experiments are implemented using Tensorflow [24] and the process is divided into two
steps. Firstly, the segmentation network is trained independently, then these optimized parameters
are frozen and only classification network are trained in the second stage. Batch normalization [25] is
implemented in each convolutional layer. The Adam [26] optimizer and a learning rate of 0.1 are used
in this paper.

Firstly, the effectiveness of the anomaly attention module is verified from the views that
the segmentation results should provide good interpretability as human experts and the optimal
performance is liable to achieve. Figure 4a illustrates two examples when the anomaly attention
module is used or not used, and the relevant variations of classification score on the test dataset is
shown in Figure 4b.

(a)

Figure 4. Cont.
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(b)

Figure 4. (a) Test samples of segmentation network (FEM: feature extraction module; AAM: anomaly
attention module). The red squares represent the areas erroneously detected due to background
interference; (b) Relevant test f-score variations in training process of classification network (the initial
value is set as 0.9).

It can be explained that on one side, it can better focus on the object regions for the anomaly
attention module than that when only the feature extraction module is applied, and improve the
condition that background noises are apt to be erroneously identified as anomalies. On the other
hand, due to the interference of the false-alarm blocks, the difficulty in differentiating anomalies
from background noises is increased for classification model, which causes us to conclude that the
classification network is harder to be optimize as Figure 4b.

Then, we report the results of comparative experiments with Compact CNN in Ref. [19] on the
original and augmented datasets as depicted in Table 2.

Table 2. Comparative experiments with Compact CNN on original and augmented datasets (Our results
are marked with square brackets. TPR: True Positive Rate; TNR: True Negative Rate).

Original Augmented

Class TPR TNR TPR TNR

1 100[100] 96.4[100] 100[100] 98.8[100]
2 98.8[100] 99.6[100] 100[100] 99.8[100]
3 100[100] 97.1[100] 100[100] 96.3[100]
4 77.9[100] 95.7[100] 98.5[100] 99.8[100]
5 100[100] 99.6[100] 100[100] 100[100]
6 100[100] 100[100] 100[100] 100[100]
7 100[100] 98.9[100] 100[100] 100[100]
8 100[100] 99.9[100] 100[100] 100[100]
9 100[100] 100[100] 100[100] 99.9[100]
10 100[100] 99.7[100] 100[100] 100[100]

From Table 2 we can see that Compact CNN is apt to be affected by the imbalance of positive
and negative samples, while our model is not very sensitive to this quantity difference and can work
well under the two conditions. Therefore, the proposed approach is quite applicable to practical
industrial scenarios where defective samples are hard to acquire but numerous defect-free samples are
usually available.
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Figure 5. Examples of segmentation and classification.
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Finally, more comparative results are listed in Table 3 for widespread comparison and
comprehensive analysis. It is clear that deep learning-based approaches bring about significant
performance improvements relative to feature selection methods, which can be explained by the
fact that deep learning models can extract more high-level feature representations which are similar
to the intrinsic properties of defects and backgrounds, while hand-crafted features merely describe
the coarse or middle-level information, and the ability of feature expression is largely limited.
Moreover, the proposed model can achieve better results than previous deep learning-based works
on DAGM 2007. We hold that the proposed attention-based fusion module plays a crucial role in it.
Specifically, it is known that the classification network is highly dependent on the frozen segmentation
parameters, and the presented attention-based fusion approach can further optimize them to improve
segmentation outputs in the ways of highlighting the potential anomalies and weakening background
noises. A number of examples are shown in Figure 5. Figure 6 shows some samples compared with
Compact CNN.

Table 3. Classification performance of the proposed model vs. others (TPR: True Positive Rate; TNR:
True Negative Rate).

Proposed Compact CNN [19] FC-CNN [18] SIF [27] Weibull [28]

Class TPR(TNR)

1 100(100) 100(98.8) 100(100) 98.9(100) 87.0(98.0)
2 100(100) 100(99.8) 100(97.3) 95.7(91.3) -
3 100(100) 100(96.3) 95.5(100) 98.5(100) 99.8(100)
4 100(100) 98.5(100) 100(98.7) - -
5 100(100) 100(100) 98.8(100) 98.2(100) 97.2(100)
6 100(100) 100(100) 100(99.5) 99.8(100) 94.9(100)
7 100(100) 100(100) - - -
8 100(100) 100(100) - - -
9 100(100) 100(99.9) - - -
10 100(100) 100(100) - - -

Figure 6. Examples compared with Compact CNN. The red circles and squares denote information
loss owing to the lack of detailed features and the areas erroneously detected due to background
interference, respectively.
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4. Conclusions

We put forward an attention-based approach to improve textured surface anomaly detection.
A number of experiments demonstrate that our approach is quite insensitive to the imbalance of
positive and negative samples; meanwhile, 100% detection results can be achieved without false alarms
and missing detections on the original as well as the augmented DAGM 2007 dataset. Consequently,
it can be expected that the proposed model will be further applied in the practical industrial scenes
where the quantity of anomaly samples is usually limited. Finally, how to implement the quantitative
comparison for the segmentation result under weak supervised labels will be the focus of our next work.
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Abstract: The use of electronic loads has improved many aspects of everyday life, permitting more
efficient, precise and automated process. As a drawback, the nonlinear behavior of these systems
entails the injection of electrical disturbances on the power grid that can cause distortion of voltage
and current. In order to adopt countermeasures, it is important to detect and classify these
disturbances. To do this, several Machine Learning Algorithms are currently exploited. Among them,
for the present work, the Long Short Term Memory (LSTM), the Convolutional Neural Networks
(CNN), the Convolutional Neural Networks Long Short Term Memory (CNN-LSTM) and the
CNN-LSTM with adjusted hyperparameters are compared. As a preliminary stage of the research,
the voltage and current time signals are simulated using MATLAB Simulink. Thanks to the simulation
results, it is possible to acquire a current and voltage dataset with which the identification algorithms
are trained, validated and tested. These datasets include simulations of several disturbances such as
Sag, Swell, Harmonics, Transient, Notch and Interruption. Data Augmentation techniques are used in
order to increase the variability of the training and validation dataset in order to obtain a generalized
result. After that, the networks are fed with an experimental dataset of voltage and current field
measurements containing the disturbances mentioned above. The networks have been compared,
resulting in a 79.14% correct classification rate with the LSTM network versus a 84.58% for the CNN,
84.76% for the CNN-LSTM and a 83.66% for the CNN-LSTM with adjusted hyperparameters. All of
these networks are tested using real measurements.

Keywords: power quality disturbances; long short term memory; convolutional neural network;
short time Fourier transform

1. Introduction

The wide diffusion of electronic loads in the industrial, household, commercial and public sectors
has improved many aspects of everyday life. In other words, power electronics technologies have
made life easier and more comfortable. On the other hand electronic devices have a nonlinear behavior
that disturbs the power grid through voltage and current waveform distortions. The number of
power electronics devices that are connected to the grid is constantly increasing; as a consequence,
the waveform distortion levels have also increased in the last decades causing a degradation
of the Power Quality (PQ) levels on the grid. Ideally, grid voltages and currents should have
a purely sinusoidal behavior. If distorting components are injected, power losses can occur
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as well as malfunctioning of electric devices. This can severely damage industrial equipment,
household appliances and commercial business plants. They also cause disturbance to other consumers
and interference in nearby communication networks [1]. Besides that, the energy providers can sanction
the injection of such disturbances on the grid. These disturbances concern frequency, amplitude,
waveform and—in three-phase systems—symmetry of voltages and currents. Moreover, high energy
demanding companies are becoming more sensitive to loss of profit margins due to power losses and
plant shoutdowns caused by low PQ levels [2]. In order to adopt countermeasures and to define the
origin of the phenomena, it is important to detect and classify these disturbances. This information
indeed can be used to define the PQ level of a grid, to understand their behavior and to assess the
responsibilities. The operation can be carried on by acquiring and processing the voltage and current
signals of a power line. To do this, several techniques are currently exploited using machine learning
algorithms [3]. Among the extensive inventories of deep learning algorithms, for the present work,
the Long Short Term Memory (LSTM) and the Convolutional Neural Networks (CNN) are being
used to detect and classify these disturbances [4–6]. Other algorithms are being used to address these
problems like the Kalman Filter, Wavelet Transform and the Support Vector Machine (SVM).

In [7], a Kalman Filter is used in an UPQC to extract the state components of the distorted supply
voltage and load current. The algorithm can classify PQD internally enabling the conditioning of
the PQ signals for power factor correction. The technique seems to work well with the detection of
sag, swell and harmonic distortion, however it shows a certain lag between the disturbance starting
condition and the detection [8]; furthermore, the algorithm is usually applied to a restricted number of
disturbances. On the other hand, the wavelet transform is used as a tool for analyzing PQD as shown
in [9]. The tool is very useful for the extraction of the signals features for learning algorithms like the
SVM as shown in [10–12]. However, it does not perform disturbances detection by itself. The SVM
showed interesting performances for the detection of a wide range of PQ disturbances and it is often
used as a benchmark to assess the performances of other algorithms. The main disadvantage of the PQD
detection techniques mentioned above is that, once the voltage and current waveforms are acquired,
a preprocessing of the signal must be performed before feeding it to the algorithm. This usually
consists of a signal features extraction. Deep learning algorithms solves this problem by implicitly
applying a feature extraction for the classification of the signal. In other words, these algorithms could
be fed with raw data and still make accurate classifications. This can help to speed up the identification
and classification process especially in real time applications.

For the training and the validation of deep learning algorithms, it is necessary an extensive
dataset in order to avoid overfitting and obtain generalization. Unfortunately, it is not easy to
obtain such datasets with experimental data. One reason is that performing on-field data sampling
through measurement campaigns is time consuming, many of these disturbances indeed are sporadic,
and it is not always possible to record an event with a desired amplitude and duration. For that reason,
simulated voltage disturbances are used in order to create the dataset for training and validation.
For further generalizing the dataset, data augmentation is used, since it has proven to be efficient in
improving accuracy by reducing overfitting [13,14].

This work explores different deep learning architectures which were trained and validated using
simulated data and tested using experimental data. Once the simulated data are generated, it is then
augmented, in order to obtain a generalized result and overcome any sampling discrepancy and phase
difference between simulated data and measured data. The signals are pre-processed in order to
compare the accuracy of each architecture in their proven classification tasks. With respect to other
works in which the training, validation and testing steps are performed using purely simulated data or
purely experimental data [4,15,16], in the present work the training and validation steps are performed
with simulated datasets, while the testing one is performed with experimental datasets that were
acquired on the field.
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2. Power Quality Disturbance Simulations and Dataset Acquisition

The definition of Power Quality by the IEEE is: Power Quality is the concept of powering and
grounding sensitive equipment in a matter that is suitable to the operation of that equipment [17].
The definition given by the International Electrotechnical Commission is: The characteristics of the
electricity at a given point on an electrical system, evaluated against a set of reference technical
parameters. These parameters might, in some cases, relate to the compatibility between electricity
supplied on a network and the loads connected to that network. From these definitions it can be said
that PQ always includes voltage quality and supply reliability. The Power Quality Disturbances (PQD)
are broadly classified into three categories: magnitude variations, sudden transients and steady-state
harmonics, as said in [18].

As a preliminary stage of this work, the voltage and current time signals were simulated using
MATLAB Simulink. By doing this, it has been possible to recreate the disturbances on the line and see
how they interact with the other devices connected to the grid. Thanks to the simulation results, it has
been possible to acquire a current and voltage dataset with which the identification algorithms were
trained and validated. This dataset includes simulations of several disturbances such as Sag, Swell,
Harmonics, Transient, Notch and Interruption. After that, the deep learning algorithms were tested
with an experimental dataset of voltage and current field measurements containing the disturbances
mentioned above and it has been possible to perform a performance comparison.

For the generation of the PQD dataset a MATLAB/Simulink model of a micro grid has been
implemented. The model is shown in Figure A1 and it includes several different industrial loads.
It is possible to identify a three-phase dynamic load which could be associated to an electrical motor
with variable load, a linear load and a nonlinear load which injects disturbances on the net [18].
These disturbances include: Sag, Swell, Harmonics, Transient, Notch and Interruption.

The Simulink schematic for the PQD simulation consist of a three-phase voltage source connected
to a fault block, then to a line impedance, to a transformer and finally ending in a linear load.
The voltages and currents are measured after the transformer which are going to be used for the
classification. Inside the fault block, there are different types of disturbance generation blocks which
were listed above. The sag block reduces the voltage from its nominal value. The swell block rises the
voltage from its nominal value, and it is modeled with a switch that connects the grid to a capacitor
bank. The harmonic distortion is modeled as a resistor in parallel with a capacitor in parallel with a
free willing diode. The transient is modeled with an impulse generator. The notch block is modeled by
a thrysistor in parallel with a resistance and an inductance. Finally the interruption block is simply a
switch. The simulink schematic for the simulation of the PQD along with each disturbance block are
shown in Appendix A.

3. Machine Learning Algorithms

There is a wide literature concerning the feature extraction and classification of PQD exploiting
different types of Machine Learning architectures. In [19], Borges implements a feature extraction using
statistical data of PQD for classification. Shen in [20], uses an Improved Principal Component Analysis
(IPCA) to extract the statistical features of the PQD followed by a 1-dimensional Convolutional Neural
Network (1-D-CNN) to extract other features of the signal and for the classification. The results of the
classification in this work were compared to a Support Vector Machine (SVM) In terms of accuracy,
which is the ratio between correct classification and total classifications, the SVM gave 98.55% accuracy
while the 1-D-CNN scored 99.75%. These results proved that the 1-D-CNN is slightly superior to the
SVM in classifying PQD.

In [4], Mohan explores the potential of deep learning architectures for PQ disturbances
classification. In this work the convolutional neural network (CNN), recurrent neural network (RNN),
identity-recurrent neural network (I-RNN), long short-term memory (LSTM), gated recurrent units
(GRU) and convolutional neural network-long short-term memory (CNNLSTM) are studied and
compared in order to find the best architecture for PQD data. The accuracy of each deep learning
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architectures is: 98% for the CNN, 91.5% for RNN, 93.6% for the I-RNN, 96.7% for the LSTM, 96.4% for
the GRU and 98.4% for the hybrid CNN-LSTM. These results proved that the hybrid CNN-LSTM is
superior at classifying PQD.

The hallmark of deep learning architectures is that they are able to perform a feature extraction
and classification by processing raw data. However, many other works proved that these techniques
are also successful for the signal feature extraction for different applications including PQD [21–23].

3.1. Long Short Term Memory

A recurrent neural network (RNN) is a neural network that simulates a discrete-time dynamical
system that has an input xt, an output yt and a hidden state ht as defined in [24]. A drawback of the
RNNs is that they suffer from vanishing or exploding gradient. By truncating the gradient where it
does not harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by
enforcing constant error flow through constant error carousels within special units [25].

The LSTM has three states that help the network to reduce the long term dependency of the
data. These states are called the Forget State, the Input State and the Output State. The Forget State
eliminates redundant or useless data. The Input State processes the new data and finally the Output
State processes the input data with the cell state. A block diagram of a LSTM cell is shown in Figure 1.
In the following subsections a focus on the three steps is presented.

σ σσ

X

+

X
X

tanh

q(t)

h(t)

s(t−1)

x(t)

s(t)

f (t)
g(t)

Z−1

Z−1

h(t−1)

tanh

Figure 1. Block diagram of one cell of a long short term memory architecture.

3.1.1. Forget State

The forget state controls the state parameter s(t) via a sigmoid function σ. This state controls
what the cell should remember through time and what to forget. The equation of the forget state is
shown in Equation (1), where f (t) is the forget vector, xt and h(t−1) are the input and previous output
respectively. The input and the previous output are multiplied by the trained weights U and W with
bias b. This result is then truncated between 0 and 1 via a sigmoid function. Basically the idea is to
have an input vector added with the previous output vector passed through a neural network which
outputs the values to keep with a 1 and the values to forget with a 0.

f (t)i = σ
(

b f
i + ∑

j
U f

i,jx
t
j + ∑

j
W f

i,jh
(t−1)
j

)
(1)

3.1.2. Input State

The new state of the cell is defined in the input state where the previous state is multiplied by the
forget state dropping off irrelevant information. This is shown in f (t)i s(t−1)

i of Equation (2). Now the

relevant information gets updated in g(t)i σ
(

bi +∑j Ui,jxt
j +∑j Wi,jh

(t−1)
j

)
which is the product between
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the input and the previous neural network output times g(t) which is the candidate for the next time
step of the cell state. The equation that generates the vector that contains the candidates for the next
cell state is shown in Equation (3).

s(t)i = f (t)i s(t−1)
i + g(t)i σ

(
bi + ∑

j
Ui,jxt

j + ∑
j

Wi,jh
(t−1)
j

)
(2)

g(t)i = tanh
(

bg
i + ∑

j
Ug

i,jx
t
j + ∑

j
Wg

i,jh
(t−1)
j

)
(3)

3.1.3. Output State

The output state decides what should be the output of the cell and of the new cell state. The output
of the cell is shown in Equation (4) where the cell state goes through a hyperbolic tangent and it is then
multiplied by the output of another hidden layer as shown in Equation (5).

ht
i = tanh

(
s(t)i

)
q(t)i (4)

q(t)i = σ
(

bo
i + ∑

j
Uo

i,jx
t
j + ∑

j
Wo

i,jh
(t−1)
j

)
(5)

3.2. Convolutional Neural Networks (CNN)

Convolutional neural networks or CNN, are a particular type of neural network for data
processing that has a grid-like topology. Convolutional networks proved to be successful in several
practical applications. They essentially consist of neural networks that use convolution in place of
general matrix multiplication in at least one of their layers [26]. The convolutional layer is accompanied
by a pooling layer which is a type of under sampling that helps with processing speed.

Since the signals of interest are 1-D signals and the CNN processes a 2-D signal, a pre-processing of
each signals is necessary. Hence, the Short Time Fourier Transform is performed on each signal before
feeding it to the CNN; by doing this, an image containing the spectral components and amplitude of
the signal of interest is generated. The characteristics of this processing technique are highlighted in
Section 4.1.

3.2.1. Convolutional Layer

Convolution leverages three important ideas that can help improve a machine learning
system: sparse interactions, parameter sharing and equivariant representations. Moreover,
convolution provides a means for working with inputs of variable size [26]. The convolution layer of a
convolutional neural network operates by applying a convolution to each dataset. Since the hallmark
of the CNN is image classification, the 2 dimensional version of the discrete convolution is used.
To serve as a reminder, the 2 dimensional discrete convolution operation is shown in Equation (6).
The convolutional layer works by adjusting the parameter ω for each backpropagation in order to
maximize the features extracted by minimizing the error in classification. This in turn creates a set of
filters which are the key of the feature extraction of the data.

S[n1, n2] =
M1

∑
m=1

M2

∑
m=1

x[m1, m2]ω[n1 − m1, n2 − m2] (6)

3.2.2. Pooling Layer

A pooling function replaces the output of the layer with a summary statistic of the previous layer
outputs [26]. The most popular pooling functions include the max of a rectangular neighborhood,
the average, the L2 norm, or a weighted average based on the distance from the central datum.

75



Appl. Sci. 2020, 10, 6755

This layer in the architecture speeds up the training and classification since it undersamples the dataset
and helps the network to obtain a more generalized result. An illustration of the pooling function
is shown in Figure 2 where Xn is the vector containing the pooled data of the dataset as shown in
Equation (7). In Equation (8) the pooling function is shown.

Xn = {xj, ..., xN} (7)

x̂n = f (xn, xn+1, xn+2) = f (Xn) (8)

x1 x3x2 x4 x5 x6 x7

x̂1 x̂2 x̂3 x̂4 x̂5

Figure 2. Pooling illustration for the CNN.

The pooling layer can contain either the maximum of the set, the average, the L2 norm or the
weighted average of the pool. In this work the max pooling is used as shown in Equation (9).

f (Xn) = argmax(Xn) (9)

4. Methodology

In this work, the end goal is to compare different Machine learning architectures in order to
determine which is the best suited for the Power Quality disturbances identification task. The LSTM,
the CNN, CNN-LSTM and the CNN-LSTM with adjusted hyperparameters were chosen for the
comparison based on their performances on previous works [4]. The LSTM was designed specifically
for time series data which is well suited for this task. The CNN has proven to be very effective in
image classification tasks, hence it is necessary to treat the signal as an image. Since the success of
CNN is attributed to its superior multi-scale high-level image representations [27], a time frequency
analysis is executed to the time series data as shown in [28] so the signal can be treated as an image.
To obtain this image, the Short-Time Fourier Transform is used. It has been selected because of
its simplicity of implementation but others, like the wavelet transform, can be considered as well.
Data Augmentation is executed in order to obtain a more generalized result for the training and
validation. The different techniques are trained with simulated data and then tested with both
simulated and experimental datasets. The datasets consist of three phase voltage signals which have
one sinusoidal waveform shifted 120◦ with respect to the other; both in the experimental and in the
simulated datasets, PQ disturbances are superposed to the three signals. The identification algorithms
are fed with 1000 samples of the time series per classification. A rectangular sliding window is used
with an overlap of 500 samples.

4.1. Short Time Fourier Transform (STFT)

As said in [29], one of the approaches for using Machine Learning techniques in the frequency
domain is to transform the time series into the frequency domain first, and then apply conventional
neural network components. As specified before, the transformation chosen for this task was the Short
Time Fourier Transform. It is characterized by a Fourier transform executed in a fixed windowed
interval. The window function g(n) is called Blackman’s window function and it is used to multiply
a short segment of the signal by the window function. This avoids sharp sections and redundant
information. A Fourier transform of this small windowed section Xn(jω) is calculated and stacked
up to form a matrix. The STFT equation is shown in Equation (10). An illustration of the Blackman’s
window and of the algorithm can be shown in Figures 3 and 4, respectively. The resulting matrix
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can now be treated as an image to train a Convolutional Neural Network which is capable of feature
extraction of the frequency components of the signal. The Fourier Transform equation is shown in
Equation (10) and the Blackman Window Function is shown in Equation (11).

X(jω) = ∑ x(n)g(n − mR)e−2jπ f n (10)

w[n] = a0 + a1cos
(2πn

N

)
+ a2cos

(4πn
N

)
(11)
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Figure 3. Blackman’s window.

DFT DFT DFT DFT

Figure 4. Short time Fourier transform illustration.

4.2. Data Augmentation

Although training and validation of the network using simulated data can be easily implemented
and it is time efficient, it can often result in overfitting. To solve this issue and in order to obtain a more
generalized result, data augmentation is necessary. Data augmentation consists of manipulating the
training and validation set to obtain more data with small variations. The PQD waveforms obtained
through simulations are limited by sampling time and starting time. In a simulated voltage signal the
disturbance which is superposed to the signal is characterized by a fixed time interval. Through data
augmentation, the PQD can be shifted of 0◦, 60◦, 120◦, 180◦, 240◦, and 300◦. These signals are then
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oversampled by 2 and 4 to deal with possible sampling discrepancies. In other words, for each of the
three voltage waveforms, after data augmentations, six more signals are generated returning a total of
18 new waveforms.

VoltageT
3Φ =

⎡
⎢⎢⎢⎢⎢⎣

VT
Φ1

VT
Φ2

VT
Φ3

⎤
⎥⎥⎥⎥⎥⎦ Voltage0.5T

3Φ =

⎡
⎢⎢⎢⎢⎢⎣

V0.5T
Φ1

V0.5T
Φ2

V0.5T
Φ3

⎤
⎥⎥⎥⎥⎥⎦ Voltage0.25T

3Φ =

⎡
⎢⎢⎢⎢⎢⎣

V0.25T
Φ1

V0.25T
Φ2

V0.25T
Φ3

⎤
⎥⎥⎥⎥⎥⎦ (12)

Classd =

⎡
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−Voltage0.5T
3Φ

−Voltage0.25T
3Φ

⎤
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(13)

4.3. Implementation of the Simulink Schematic for the Generation of the Simulated Dataset

For the generation of the simulated dataset, a Simulink model of the grid has been used [18].
With this model it has been possible to generate several PQ disturbances and organize it in a cell
array. The disturbances that were implemented in the simulink model are the sag, the voltage
rise, the harmonic distortion, the transient, the notch and the interruption [30]. After the Simulink
simulation is completed, a dataset is generated. Hence the data are gathered with a script which
generates a structured cell array. Once the process is completed, each fault is labeled with a target
number as shown in Equation (14). To train the neural network, the data for the Class and Target are
shuffled together in order to obtain a generalized solution for the network.

Class =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Normal

Sag

Swell

Harmonics

Transient

Notch

Interruption

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

2

3

4

5

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

After the time series signals are stored in a structured array they are shuffled. The next step is to
train the network, validate and test it. For this task, the dataset containing the time series signals is
separated in two groups: one containing 75% of the signals, used for the training and the other group
containing the remaining 25%, used for the validation. These networks are trained with a batch size of
20 data points with a maximum of 30 epoch making a total of 15 iterations per epoch. After training
is completed for all architectures, the performance of the networks are evaluated using a confusion
matrix. With this, the precision and recall are calculated for each class.
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4.4. Deep Learning Architectures

Deep learning in neural networks is the approach of composing networks into multiple layers of
processing with the aim of learning multiple levels of abstraction [26]. By doing so, the network can
adaptively learn low-level features from raw data and higher-level features from low-level ones in a
hierarchical manner, nullifying the over-dependence of shallow networks on feature engineering [31].
The two most popular types of networks are the feed forward networks and the recurrent networks.
Both have evolved in what is known today as deep learning architectures. Concerning the recurrent
networks the LSTM is considered, it is mostly used for time series data; with regards to feed forward
networks the CNN is considered, it is used mostly for image classification. Both are found to be
successful in classification problems.

4.4.1. Long-Short Term Memory

Concerning the architecture under evaluation, 100 hidden units were used, that is, 100 LSTM
blocks were used for the classification of time series data. Since in this architecture it is not possible
to use a pooling layer, a drop out layer is used in order to achieve generalization. After that, a fully
connected layer, a soft max layer and a classification layer, which outputs the final result, are added to
the architecture. The architecture is shown in Figure 5.

Input LSTM
Drop
Out

Fully
Con Sft Max Class

Figure 5. LSTM architecture block diagram.

4.4.2. Convolutional Neural Networks

The architecture used in this experiment has 3 stages of convolution, that is, 3 convolutional
layers with 3 batch normalizations, 3 rectifier linear units or ReLU’s and 2 under samplings using the
max pooling layers. After the three stages of convolution, the network has a fully connected layer,
a softmax layer and finally the output with the classification layer. Concerning the input, as specified
before, it is necessary to first preprocess the training data using the STFT. The architecture can be seen
in Figure 6 with all the details of the hyperparameters. Examples of each disturbance STFT are shown
in Figure A2a–l.

Input Conv
Batch
Norm Relu Max

Pool Conv
Batch
Norm Relu Max

Pool

Conv
Batch
Norm Relu

Fully
Con Sft Max Class

Figure 6. CNN architecture block diagram.

4.4.3. Convolutional Neural Networks—Long-Short Term Memory

This architecture mixes the CNN with the LSTM. In order to do this a sequence folding layer right
after the input layer is added. The sequence folding layer converts a batch of data sequences to a batch
of data. After this layer, the CNN comes into play. After the CNN, there is a sequence unfolding layer
used to convert the batch of data in a batch of sequenced data. The sequence data are the input to the
LSTM. Before the LSTM layer, there is a flattening layer that reshapes the input data to the input of
the LSTM layer. Then a fully connected layer, a soft max and finally a classification layer are added
respectively. The block diagram of the architecture is shown in Figure 7. By adjusting the parameters
of the above mentioned architecture the CNN-LSTM with adjusted hyperparameters is obtained.
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Input Fold

CNN
NTK

Unfold Flatten LSTM
Full
Con

Sft
Max

Class

Figure 7. LSTM-CNN architecture block diagram.

5. Experimental Setup

To provide an experimental testbed for the validation of the simulation results, it has been
necessary to test the identification techniques with experimental datasets. It is possible to extract this
data by acquiring voltages and currents directly from the grid; howewer, to operate a comprehensive
testing, it is necessary to reproduce different fault types by varying the amplitude, duration and
intensity of the phenomena. Hence an experimental setup has been designed and implemented with
which it is possible to reproduce and record several real-time PQDs. The system has been designed
by the Smart Energy Lab of the University of Florence [18] and it is shown in Figure 8. To simulate
the grid with PQD, a Chroma 61,500/61,600 series programmable AC source is used. To perform the
measurement, a Fluke 435 Series II Power Quality Energy Analyzer (Leasametric, Villebon-sur-Yvette,
France) and two Yokogawa PX8000-F-HE/G5/M1 (Yokogawa, Musashino, Japan). The first instrument
was used to monitor the loading of the loads and check for any malfunctions, while with the Yokogawa
instruments it was possible to obtain measures of the electrical quantities of the system recording up
to 100,000 samples per second (100 kS/s) and averaging the measurement over a set period (minimum
10 ms). The load connected is given by a 1 kW linear load, a group of switching power supplies for a
total of 2 kW and a three-phase inverter of 2 kW. The signal generated by the Chroma 61,500/61,600 is
acquired by the Yokogawa PX8000 via the PowerViewerPlus software and is sent to the remote PC for
data storage. By doing this, it is possible to test and compare the performances of different algorithms
and identify strengths and weaknesses while assuring repeatability of the experiments.

Figure 8. Experimental setup for power quality disturbances generation.

6. Testing Results

6.1. Testing of the Detection Techniques Using Simulated Signals

Simulations of the six different PQDs were made using the MATLAB Simulink model shown
in Figure A1. In total, 300 simulations of each PQD were generated to create the dataset, each one
containing different start times and duration of the disturbance. This signals were stacked together
in a cell array along with its corresponding labels. Data augmentation was applied as explained in
Section 4.2. The cell array was shuffled and divided into 75% for training and 25% for testing. This
architecture had a training time of 671 min or 11.18 h with an accuracy of 79.14% for the validation.
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The confusion matrix of the LSTM for training and validation is shown in Figure 9a,b along with the
testing in Figure 9c. This architecture had a training time of 443 min or 7.38 h with an accuracy of
84.58% for the validation. The confusion matrix of the CNN for training and validation is shown in
Figure 10a,b along with the testing in Figure 10c. This architecture had a training time of 751 min or
12.52 h with an accuracy of 83.66% for the validation. The confusion matrix of the CNN-LSTM for
training and validation is shown in Figure 11a,b along with the testing in Figure 11c. This architecture
had a training time of 51 min or 0.85 h with an accuracy of 84.78% for the validation. The confusion
matrix of the CNN-LSTM for training and validation is shown in Figure 12a,b along with the testing
shown in Figure 12c.

On each of the confusion matrix of the compared architectures, the precision and the recall was
calculated. The precision of a classifier is defined as the number of retrieved relevant items as a
proportion of the number of retrieved items for any given class [32]. In other words, it is the ratio
between the positive identifications that are actually correct and the entire set of positive identifications
of any given class. Recall, on the other hand, is defined as the number of retrieved relevant items as a
proportion of all the relevant items, for any given retrieved set [32]. In other words, the proportion of
the actual positives that where identified correctly. The comparison of precision and recall of different
architectures are shown in Figure 13. The precision and recall of the LSTM-CNN with adjusted
hyperparameters had superior results with respect to the other architectures due to the fact that it had
better scores for classifying the transient in both training and testing.

The LSTM training gave an accuracy of 79.14% where most of the problems were found in the
Transient disturbance as shown in the precision and recall plots. The architecture was not able to detect
the transient disturbance either in the training or the validation signals, that is, the LSTM classified
the Transient signal as a No Fault in 100% of the cases. Concerning the other classes it resulted in
10.2%–14.6% misclassification.

The CNN needs to be fed with an image which, in this case, represents the spectral components
and amplitude of the signal of interest; hence a STFT was done on the augmented dataset. The training
of the CNN gave an accuracy of 84.58% which is an improvement with respect to the LSTM.
The problem with this architecture is that it classified 89% of the No Fault as a Transient from the
training dataset and an 88.6% from the validation. Again, it showed confusion between the two classes
as shown in the precision and recall plots.

As regards to the the hybrid CNN-LSTM, two similar strategies were tested. The first strategy
consisted in joining the LSTM and CNN that were used in the previous experiment and the second
was using the combined architectures while adjusting the hyperparameters. The first strategy,
exploiting the CNN-LSTM, resulted in an improvement of the classification performances of almost
all of the the disturbances except for the Transient which resulted in 100% misclassification as
with the LSTM. The other disturbances misclassifications ranged between 2%–10%, which was
an improvement. Concerning the second strategy exploiting the hybrid architecture, a significant
improvement on the Transient response recognition was reached resulting in a 51.1% misclassification
with the No Fault condition. In both, precision and recall, it showed more or less a 50% chance of
miss-classification. For the other disturbances the misclassification ranges between 1.3% and 4.8%
which is also an improvement. The hybrid CNN-LSTM with adjusted hyperparameters was able to
detect the Transient disturbance in 48.9% of the signals where the transient was present. The other
architectures failed completely in this task. Furthermore, this architecture obtained better results on
the other disturbance classifications.
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Figure 13. Bar chart of the comparison of the precision and recall of the LSTM (blue), CNN (red),
LSTM-CNN(yellow) and LSTM-CNN with adjusted hyperparameters(purple). (a) Precision Training
Data, (b) Recall Training Data, (c) Precision Testing Data, (d) Recall Testing Data.

6.2. Testing of the Detection Techniques Using Experimental Datasets

Other tests were conducted with experimental datasets using the test bench shown in Figure 8
in order to compare and prove the effectiveness of all the architectures previously mentioned.
It has been possible to generate several experimental datasets of the interruption and of the sag
disturbances. The experimental measurments are shown in Figures 14 and 15 along with the plots
of the classification results below. Each classification point consist of 1000 samples of the measured
signal. Once again, the CNN-LSTM with adjusted hyperparameters was the most consistent in
classifying all the disturbances without misclassification. As mentioned before, the identification
algorithms were tested with exerimental datasets containing interruption and sag disturbances.
Concerning the sag disturbance, all of the four architectures performed correct identification.
Some misclassifications occurred when testing the interruption disturbance with the CNN-LSTM
and with the LSTM. Combining these results with the ones previously mentioned, the CNN-LSTM
with adjusted hyperparameters is the is the one which performed best.

The event signal, shown in Figures 9c, 10c, 11c and 12c, is a voltage signal with a harmonic
distortion, sag and an interruption. Each architecture had good results when tested using this
signal. However, the LSTM classified the harmonics as a no fault and misclassified a section as
a notch. The LSTM-CNN also showed the same problem. On the other hand the CNN misclassified
the harmonic disturbance as a transient disturbance. While all architectures successfully classified
only the Interruption and the Sag in the testing, the LSTM-CNN with adjusted hyperparameters
was the one that had better results because it classified the harmonics, sag, interruption correctly
without misclasification.
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Figure 14. Voltage signal with an interruption measured on the test bench (top plot). From top
to bottom, the classification performances of each architecture: LSTM, CNN, LSTM-CNN and the
LSTM-CNN with adjusted hyperparameters.
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Figure 15. Voltage signal with an sag measured on the test bench (top plot). From top to bottom,
the classification performances of each architecture: LSTM, CNN, LSTM-CNN and the LSTM-CNN
with adjusted hyperparameters.

7. Conclusions

This work investigates the effectiveness of various deep learning architectures for Power Quality
disturbances detection and classification. To do this, it is imperative to study the mechanism of these
algorithms to extract the unique features of each disturbance and obtaining an efficient and accurate
classification. The training and validation of deep learning architectures depend on a large number of
data to better generalize the classification results. A Matlab/Simulink model has been designed and
implemented in order to generate these disturbances. To improve the classification performances of
the strategies under evaluation and converge to a generalized result, the data in the simulated dataset
was augmented. Using the resulting datasets the authors have proposed a comparison among the
LSTM, the CNN and a joint architecture that uses both the LSTM and CNN. All of the architectures
were trained and validated using the augmented datasets and then tested using experimental data.
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Concerning the experimental validation of the algorithms, it has been possible to generate an
experimental dataset of the interruption and of the sag disturbances. The two datasets were processed
by exploiting the four previously mentioned architectures. The first signal contained a train of
interruptions and the second signal a train of sags. All of the four architectures successfully classified
the sag signal. There were some discrepancies between the architectures while classifying the signal
containing interruptions. Again, the LSTM-CNN with adjusted hyperparameters proved to be superior
in classifying the disturbances.

These results show that it is possible to train deep learning architectures with simulated data
and operate disturbance identification on experimental data. The transient disturbance appears to
be hardly detectable for all of the architectures under evaluation, mainly due to the small duration
of the disturbance. The architecture that best performed while classifying the transient disturbance
was the LSTM-CNN with adjusted hyperparameters. Furthermore, concerning the classifications of
other disturbances, the LSTM-CNN with adjusted hyperparameters was the most performing one,
both considering the simulated and the experimental datasets.
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Appendix A

Appendix A.1. Simulink Schematic

Figure A1. Simulink Model.
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Appendix A.2. PQD and STFT
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Figure A2. Disturbance plots (Left) and the STFT (Right). (a,b) Sag, (c,d) Swell, (e,f) Harmonics,
(g,h) Transient, (i,j) Notch, (k,l) Interruption.
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Abstract: In this paper, leaky Lamb wave radiation from a waveguide plate with finite width is
investigated to gain a basic understanding of the radiation characteristics of the plate-type waveguide
sensor. Although the leaky Lamb wave behavior has already been theoretically revealed, most studies
have only dealt with two dimensional radiations of a single leaky Lamb wave mode in an infinitely
wide plate, and the effect of the width modes (that are additionally formed by the lateral sides of the
plate) on leaky Lamb wave radiation has not been fully addressed. This work aimed to explain the
propagation behavior and characteristics of the Lamb waves induced by the existence of the width
modes and to reveal their effects on leaky Lamb wave radiation for the performance improvement
of the waveguide sensor. To investigate the effect of the width modes in a waveguide plate with
finite width, propagation characteristics of the Lamb waves were analyzed by the semi-analytical
finite element (SAFE) method. Then, the Lamb wave radiation was computationally modeled on
the basis of the analyzed propagation characteristics and was also experimentally measured for
comparison. From the modeled and measured results of the leaky radiation beam, it was found that
the width modes could affect leaky Lamb wave radiation with the mode superposition and radiation
characteristics were significantly changed depending on the wave phase of the superposed modes on
the radiation surface.

Keywords: leaky Lamb wave; semi-analytical finite element (SAFE); waveguide sensor; finite-width
plate; waveguide plate; width modes; spatial beating; Rayleigh–Sommerfeld integral (RSI)

1. Introduction

Elastic-guided waves can travel a long distance along the waveguide geometry from a single
excitation location. This ability of guided waves not only makes it possible to inspect huge structures
effectively, but can also allow remote inspection for hard-to-access structures in harsh environments
and underground [1–8]. Therefore, guided waves have been widely used in non-destructive testing
(NDT) and structural health monitoring (SHM) fields.

There are numerous industrial applications of guided waves; one that maximally uses the
advantages of guided waves is waveguide sensor [9–13]. Waveguide sensors are excellent inspection
alternatives for special NDT applications because they can perform remote inspection through a
long waveguide without any damage to the main probe unit or the inspector under hazardous
inspection environments. Hence, waveguide sensors have often been used in the field of power
plants; one application example is under-sodium viewing (USV) in a sodium-cooled fast reactor (SFR),
which uses liquid sodium as a core coolant. In an SFR, because of the optical opacity of the liquid
sodium, USV for the in-vessel structures (including the reactor core) is conducted using the ultrasonic
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imaging technique. For these USV inspections, immersion sensors have been developed since the
early stage of SFR development; however, there are remaining unresolved issues in their development,
including thermal and radiation damage to the main actuating part submerged in the high temperature
and radioactive liquid sodium [14]. On the other hand, waveguide sensors have been regarded as a
promising USV alternative because there is no concern about any damage to the main actuating part.

The waveguide sensors under development can be classified based on the waveguide geometry
of a rod or plate. A rod-type waveguide sensor uses a bundle rod and a rolled plate [14,15],
whereas a plate-type waveguide sensor uses a plate strip with finite width [16–22]. Between these,
the plate-type waveguide sensor has been established based on the long distance propagation ability
and high radiation efficiency in a fluid of the lowest-order flexural mode of a Lamb wave and its
concept for USV was proposed in the early 1980s [16,17]. In recent years, sensor development has
resumed [18], with one advanced design concept newly adopting a beryllium coating layer [19];
most recently, USV performance of a 10 m full scale waveguide sensor has been demonstrated in a
sodium environment (>200 ◦C) [20,21], and the underwater performance of ranging inspection for
obstacle detection in refueling processes has also been validated [22]. Since its early development
stage, however, the plate-type waveguide sensor has had a technical issue caused by the radiation
characteristics of leaky Lamb waves. The immersion- and rod-type waveguide sensors generally use
longitudinal wave radiation from the axisymmetric radiator; therefore, they have a single axisymmetric
main beam and their USV resolutions are not constrained by the scanning direction. On the contrary,
the plate-type waveguide sensor uses leaky Lamb wave radiation along the rectangular radiating face
and it has a non-axisymmetric radiation beam, which has different radiation characteristics on the
vertical and lateral planes (the vertical and lateral planes are on the median and transverse planes
with respect to the waveguide plate). Here, the formation and characteristics of the vertical beam
are understandable based on previous research on leaky Lamb wave radiation in an infinitely wide
plate [23–26]. However, those of the lateral beam have not been completely explained, and moreover,
there is little research that fully addresses the leaky Lamb wave radiation from a plate strip with
finite width.

One effort has been made to understand leaky Lamb wave radiation from a plate strip with finite
width [27]. In this previous research, characteristics of the leaky radiation beam radiated from the plate
strip were acoustically analyzed on two median and lateral planes; however, this research assumed
that the velocity distribution of leaky Lamb waves on the aperture was uniform in the width direction.
In other words, the effect of the plate width on the leaky Lamb wave radiation was partially studied
without full consideration of the propagation characteristics of the leaky Lamb waves in the plate strip.

This paper investigates leaky Lamb wave radiation from a waveguide plate with a finite width
to gain a basic understanding of the radiation characteristics of the plate-type waveguide sensor.
First, the propagation characteristics of the Lamb wave in the plate strip was evaluated using the
semi-analytical finite element (SAFE) method. Then, leaky Lamb wave radiation was computationally
modeled on the basis of the analyzed propagation characteristics, and was also measured experimentally
for comparison. From this analysis and measurement, the formation and characteristics of the leaky
radiation beam radiated from a waveguide plate are three-dimensionally revealed and the design
direction for performance improvement of the waveguide sensor is briefly proposed.

2. Lamb Wave Propagation in a Plate Strip with Finite Width

2.1. Semi-Analytical Finite Element(SAFE) Method

To study the leaky Lamb wave radiation from a plate strip with finite width, it is necessary to
sufficiently understand the propagation characteristics of the Lamb wave in the plate strip. Figure 1
illustrates the coordinate system of a plate strip with thickness h and width W; the plate is infinitely
long to ±x direction and the plate material is assumed to be a homogeneous, isotropic, and lossless
one. Wave propagation in the plate strip has been analytically studied by many researchers [28–36],
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but most of their analytical studies show limitations of effective frequency and thickness–width ratio
by assumptions used in the solution derivation. Fortunately, the semi-analytical finite element (SAFE)
method, a numerical method with no limitations of the analytical solutions, has been developed [35–37].
Since the SAFE method can calculate dispersion curves for arbitrary cross-section waveguide geometries,
such as rails as well as plate strips [35–37], it is now prevalent in NDT and SHM fields.

 
Figure 1. Coordinate system of a plate strip with finite width.

The SAFE method only constructs the two dimensional finite element (FE) model for the
cross-section of the analysis object and the analytical solution of the wave propagation is then applied
to the constructed FE model; the cross-section parallel to the yz plane is only modeled using FE and
the equation of a traveling wave along the +x direction is applied. The governing equation of the
constructed FE system without the external load can be written as follows:

{
γ2K2 + iγK1 + K0 +ω

2M
}
u = 0 (1)

where K2, K1 and K0 are stiffness matrices, M is the mass matrix of the cross section and the
displacement vector u is given by:

u = U(y, z)ei(γx−ωt) (2)

where U denotes displacement functions of the cross section. From this eigenvalue equation,
the wavenumber γ can be solved at each frequency ω and the dispersion curves can be drawn within
the interested frequency range. Recently, SAFE methods using commercial Finite Element Method
(FEM) software have been introduced, and thereby SAFE modeling has become convenient [38,39].
In this study, to analyze the wave propagation in the plate strip, a modal analysis method under
periodic boundary conditions [39] was employed in the commercial FEM software ANSYS (release
2017, ANSYS Inc., Canonsburg, PA, USA).

2.2. Dispersion Curves and Wave Structures

Figure 2 shows calculated dispersion curves of Lamb waves in a stainless steel (SS304) plate with
1.5 mm thickness and 15 mm width in a vacuum. Note that propagation characteristics in the plate
coupled with liquid, such as the wave velocities and structures, are assumed to not be different from
those in a vacuum [40]. Specifically, Figure 2a shows the phase velocity dispersion curves, whereas
Figure 2b shows the group velocity dispersion curves. As shown in these dispersion curves, in contrast
to those in an infinitely wide plate, Lamb waves in a finite width plate have numerous width modes.
Therefore, a certain single mode of Lamb waves in the plate strip is named S(m,n) or A(m,n); the first
index m is the order of the thickness mode; the second index n is that of the width mode. Furthermore,
one can observe that the phase velocity increases and the group velocity decreases as the order of the
width mode increases.
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(a) (b) 

Figure 2. Dispersion curves of Lamb waves in a SS304 plate with 1.5 mm thickness and 15 mm width:
(a) phase velocity, (b) group velocity; SS304 plate properties: density ρ = 7800 kg/m3, longitudinal
wave velocity CL = 5800 m/s and shear wave velocity CS = 3160 m/s; solid line: even order of width
mode (symmetric width mode); dashed line: odd order of width mode (anti-symmetric width mode).

The most important observation in the dispersion curves of Figure 2 is that many Lamb wave
modes are very close to each other at the operation point of the waveguide sensor, which indicates
the difficulty of single mode excitation. In this high modal density area, neighbor width modes from
the A(0,1) mode to the A(0,4) mode can have a high possibility of being excited with the lowest-order
mode, the A(0,0) mode; the S(m,n) modes are not in our interest because the flexural modes, A(0,n)
modes are only used for the high radiation efficiency in the waveguide sensor. In addition, it can be
reasonably inferred that the multiple width modes cannot be separated during the short propagation
distance because they are not significantly different in group velocities at the operation point.

Each higher-order width mode can be identified in the wave structure results, as shown in Figure 3.
The out-of-plane velocity profiles in the width direction change appreciably according to the order
of the width mode; they can be described as a combination of the trigonometric and hyperbolic
functions [31,32]. Here, the non-flat velocity profile in case of n = 0 is estimated to be caused by the
free–free boundary condition and high frequency range. From the dispersion curves and the wave
structures, it can be assumed that leaky Lamb wave propagation in the plate strip coupled with liquid
might be affected by superposition among the higher-order width modes.

 A(0,0) A(0,1) A(0,2) A(0,3) A(0,4) 

(a) 

     

(b) 

  
Figure 3. (a) Wave structures and (b) particle velocity profiles (width direction) of the A(0,n) modes in
a SS304 plate with 1.5 mm thickness and 15 mm width at 1.0 MHz; the velocity profiles are extracted on
the neutral plane (z = 0); solid line: out-of-plane direction (z direction); dashed line: in-plane horizontal
direction (y direction); circle markers: in-plane extensional direction (x direction).
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3. Leaky Lamb Wave Radiation from a Waveguide Plate with Finite Width

3.1. Rayleigh–Sommerfeld Integral Model

Figure 4 presents a radiation aperture area with length L and width W. A leaky Lamb wave
is propagated along the +x axis and is sequentially radiated into the surrounding liquid (z > 0)
from the radiation surface S; the leaky Lamb wave radiation from the radiation surface is limited by
x0 ∈ [−L/2, L/2] in an infinite plate in the ±x direction. In fact, leaky Lamb wave radiation from the
radiation surface at the plate end is used in the practical waveguide sensor. However, the radiation of
the backward leaky Lamb wave reflected from the aperture end is not considered in this study; its effect
on the main beam generated by the forward wave is assumed to be negligible based on its different
radiation angle and diminished energy. An acoustic pressure at a certain point p can be defined by the
Rayleigh–Sommerfeld integral (RSI) [41]:

P(r,θ,ϕ, t) = − iρω
2π

∫
S

v(x0, y0, t)· e
iklr′

r′ dS(x0, y0), (3)

where ρ is the liquid density, kl is the wavenumber in the liquid, and v(x0, y0, t) is the velocity
distribution on the aperture, given by:

v(x0, y0, t) = V(y0)e−αx0 ·ei(kPx0−ωt), x0 ∈ [−L/2, L/2] (4)

whereα and kP are the attenuation coefficient and the wavenumber of the leaky Lamb wave, respectively,
and V(y0) is the velocity profile of a certain width mode in the width direction. Based on this integral
equation, the RSI model was constructed as a computational approach; this model is also called the
Rayleigh–Sommerfeld numerical integration (RSNI) [42]. The RSI model computes the integral equation
(Equation (3)) without any assumptions and approximations such as the far-field approximation;
therefore, this model is known to have computation results of high accuracy [43]. In addition, RSI can
provide the better computational speed compared with SAFE or FEM approaches, especially for the
high-frequency model that requires both small wavelengths and an integration time step [44].

 

Figure 4. Coordinate system of radiation aperture area for leaky Lamb wave radiation.

The underwater beam profile of the leaky wave radiated from the unbaffled aperture shown in
Figure 4 was calculated using the constructed RSI model. The water domain for calculating the beam
profile was predetermined as 90 mm (x) × 50 mm (y) × 90 mm (z) and the total number of grid points
was 300 × 167 × 300, with 0.3 mm grid spacing (about 1/5 times smaller than the wavelength of the
leaky wave), and 0.5 mm source spacing (about 1/5 times smaller than the wavelength of the leaky
Lamb wave). The out-of-plane velocity profiles obtained by the SAFE method were applied to the point
sources with the curve-fitting technique. The 3D acoustic field by a certain point source on the aperture

97



Appl. Sci. 2020, 10, 8104

was calculated; then, the calculation process was repeated for all point sources. The acoustic field of the
leaky wave radiated from the aperture was obtained by integrating the individual calculation results.
From the calculated acoustic field, the beam profile was reconstructed by making an envelope for the
maximum pressure peaks on the grid points; the beam profile was then normalized by the maximum
value in the entire calculation domain. All parameters to calculate the radiation beam profiles of
the leaky Lamb wave, such as the phase velocity, were determined on the basis of the dispersion
curve results shown in Figure 2a. Other model information is presented in Table 1; the attenuation
coefficient of the leaky Lamb wave was adopted from the attenuation dispersion curve in the infinite
plate; the attenuation coefficient is strictly different depending on the width mode, but its value at
1.0 MHz is assumed to be equal to that of the fundamental flexural mode in the infinite plate.

Table 1. Rayleigh–Sommerfeld integral (RSI) model details.

Parameter Value

Surrounding liquid
(wave velocity) Water (CL = 1480 m/s)

Leaky Lamb wave modes A(0,n)

Plate dimension Thickness: 1.5 mm
Width: 15mm

Plate material
(wave velocity) SS304 (CL = 5800 m/s, CS = 3160 m/s)

Aperture size Length L: 18 mm
Width W: 15 mm

Excitation frequency 1.0 MHz
Attenuation coefficient α 0.168 dB/mm at 1.0 MHz [40]

Finally, a 3D beam profile can be analyzed on two independent planes: the vertical and lateral
planes. The vertical plane is the median plane (xz plane, ϕ = 0) with respect to the waveguide plate,
and the lateral plane is a lateral cross-sectional plane across the main lobe at the radiation angle.
The beam profile on the vertical plane is defined as the vertical beam profile; that on the lateral plane is
defined as the lateral beam profile.

3.2. Leaky Radiation Beam Patterns and Beam Profiles

Beam profiles of the A(0,n) mode for n = 0, 1, 2, and 3 are shown in Figures 5–8, respectively.
Figures 5a, 6a, 7a and 8a and Figures 5b, 6b, 7b and 8b represent the vertical and lateral beam profile
results obtained from the RSI model, respectively.

(a)                       (b) 

Figure 5. Radiation patterns and beam profiles of leaky A(0,0) mode Lamb wave, (a) vertical beam
profile, and (b) lateral beam profile.
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(a)                       (b) 

Figure 6. Radiation patterns and beam profiles of leaky A(0,1) mode Lamb wave, (a) vertical beam
profile, and (b) lateral beam profile.

(a)                       (b) 

Figure 7. Radiation patterns and beam profiles of leaky A(0,2) mode Lamb wave, (a) vertical beam
profile, and (b) lateral beam profile.

(a)                       (b) 

Figure 8. Radiation patterns and beam profiles of leaky A(0,3) mode Lamb wave, (a) vertical beam
profile, and (b) lateral beam profile.

The first trend identified in Figures 5a, 6a, 7a and 8a is that the radiation angles of the vertical
beam show no big differences with changes in the width mode because the phase velocities at 1.0 MHz
are close to each other; the radiation angles are calculated as 34.0◦–35.5◦ with respect to the z axis.

The second trend is that the leaky radiation beam pattern of the A(0,0) mode has a single main
lobe in the far-field as shown in Figure 5b, but the others have split ones as shown in Figures 6b, 7b
and 8b, In other words, the A(0,n) mode Lamb waves above n = 1 induce beam splitting on the lateral
plane. It is acoustically clear that the beam splitting is caused by the sinusoidal profiles in the width
direction on the aperture. Also, the splitting angle increases as the order increases.
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The third trend is that the odd order of the width mode has no vertical beam profile at y = 0
(see Figures 6b and 8b) due to the anti-symmetric profile in the width direction, which has a node point
at the center of the plate width. As a result, the lowest-order width mode of a Lamb wave in a plate
strip provides a single main beam similar to that of a conventional immersion probe, and thus it can be
best to solely use the leaky radiation beam of the lowest-order width mode in the waveguide sensor
for immersion inspection.

4. Beam Profile Measurements

4.1. Experimental Setup

Figure 9 shows the experimental setup for the measurement of the leaky radiation beam profile
radiated from a plate strip in water. The underwater beam profile measurement system consists of
an XYZ three-axis scanner, a hydrophone (ONDA HNR-0500, frequency range: 0.25–10 MHz) with
a pre-amplifier (ONDA AH-1100, frequency range: 0.005–25 MHz), a waveform generator (Agilent
33521A), a gated amplifier (RITEC GA-2500A), a broadband receiver (RITEC BR-640), a noise suppressor
with a 1.0 MHz center frequency (ORBISSYS NS-0017) and a computer with master control software
(UTEX WinspectTM). Material and dimensions of the 400 mm long plate strip used in the experiment
are the same as those in the RSI model (1.5 mm thickness and 15 mm width); also, the aperture size is
18 mm × 15 mm, the same as that in the RSI model. The material of an ultrasonic wedge with 19 mm
height and 20 mm width is Lucite (CL = 2370 m/s); the incidence angle of the wedge is 70◦ for the
generation of the A(0,0) mode Lamb wave at 1.0 MHz. The wedge was mounted with a PZT (lead
zirconate titanate) transducer with a 0.5 inch diameter and 1.0 MHz center frequency (GE benchmark
series) at three different excitation source positions (d = 300, 350, 400 mm), and the leaky radiation
beam was measured for each excitation source position. A four-cycled tone burst signal generated from
the waveform generator was input to the transducer with signal amplification by the gated amplifier.
The leaky wave radiated from the plate strip was measured by the hydrophone; then, the measured
wave signal was transferred to the computer after amplifying and band-pass filtering (from 25 kHz to
5 MHz) by the pre-amplifier, the noise suppressor, and the broadband receiver. Scanning volume size
was 90 mm (x) × 50 mm (y) × 90 mm (z), the same as the analysis domain of the RSI model, and scan
step was 1 mm. In the post-processing process, a 3D beam profile was reconstructed by mapping the
measured 3D matrix data comprising the maximum peak (VPeak) to the space coordinate; as shown in
Figure 9c, the maximum peak (VPeak) of the gated signal beyond the threshold value was extracted
and saved. Finally, the reconstructed beam profile was normalized by the maximum value in the
far-field domain.

 

(a) 

 

(b) 

Figure 9. Cont.
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(c) 

Figure 9. Experiment for the measurement of the 3D radiation beam profile of a leaky wave radiated
from a SS304 plate with 1.5 mm thickness and 15 mm width in water, (a) experimental setup and (b) block
diagram, and (c) A-scan signal of the leaky wave measured at the center of the radiation surface.

4.2. Measured Beam Profiles and Effects of the Mode Superposition

The measured vertical and lateral beam profiles radiated from the waveguide plate are shown in
Figure 10. Without any quantitative evaluations on radiation characteristics, all three measured beam
profiles seem to be visually different from those of the A(0,0) mode shown in Figure 5a,b, despite the
attempt to excite only the A(0,0) mode, and they show different radiation characteristics depending
on the excitation source position. In particular, drastic changes of the lateral beam are noticeable
compared with those of the vertical beam; the lateral beams at d = 300 mm and d = 400 mm have a dual
main beam, but one at d = 350 mm has a single main beam within the measurement domain. These
characteristics cannot be explained by only pure width mode and demonstrate that the leaky radiation
beams radiated from the waveguide plate with finite width are affected by the mode superposition of
the width modes, as predicted from the dispersion curves of Figure 2.

(a) 

(b) 

Figure 10. Cont.
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(c) 

Figure 10. Measured leaky radiation beam profiles radiated from a SS304 plate (1.5 mm thickness,
15 mm width) with variation of the excitation source position, (a) d = 300 mm, (b) d = 350 mm,
and (c) d = 400 mm.

Moreover, the different characteristics changed by the excitation source position are strongly
estimated to be affected by the change of the wave phase by phase velocity differences between the
superposed modes. Figure 11 shows the wave phase changes on the waveguide plate calculated from
the following equation at time t = 0, weighting constants a = b = 1, and phase delay constants τ0 =

τ2 = 0:
v(x0, y0, t) = a·V0(y0)ei(kP0x0−ω(t−τ0)) + b·V2(y0)ei(kP2x0−ω(t−τ2)) (5)

where V0(y0) and V2(y0) are the normalized velocity distributions of the A(0,0) and A(0,2) modes
identified in Figure 3, respectively, and kP0 and kP2 are the wavenumbers of the A(0,0) and A(0,2) modes,
respectively. According to the obtained dispersion curves, the A(0,1) and A(0,2) modes are found to
have a high possibility to be excited with the A(0,0) mode. However, only the mode superposition
between the A(0,0) mode and the A(0,2) mode was investigated here; the reason why the A(0,1) mode
is excluded from the mode superposition is that the anti-symmetric width modes (including the A(0,1)
mode) cannot be easily generated by general Lamb wave excitation methods such as the angle–beam
method because they have symmetric distribution of the input wave energy in the width direction. It is
known that the profile of the input energy in the width direction should match that of the target width
mode to be generated [45,46]. The two width modes excited by the high modal density are continually
superposed in-phase or out-of-phase with each other during propagation along the waveguide plate.
Therefore, from Figure 11, it can be recognized that the superposed modes make the spatial beating due
to their differences in phase velocity and the beating on the radiation surface, varied by the excitation
source position, results in the change in radiation characteristics.

Figure 11. Change of wave phase on the waveguide plate by the mode superposition between the
A(0,0) and A(0,2) modes.
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To validate the effect of the spatial beating on the leaky radiation beam, using the constructed
RSI model, the leaky radiation beam profiles were simulated with the phase variations of superposed
modes on the radiation surface. Figures 12a, 13a and 14a and Figures 12b, 13b and 14b show the
wave phase on the radiation surface used in the beam profile calculations of Figures 12c, 13c and
14c and Figures 12d, 13d and 14d; the wave phase on the radiation surface was simulated using
Equation (5), including the leaky attenuation coefficient term with adjustment of the phase delay
between the superposed modes, and they were presented in case of reasonable quantitative matching
with the measurement results as shown in Figure 15 (a representative example of the comparison
result). Although the constructed RSI model is a continuous wave model using a single frequency
(only the center frequency component of the excitation input is considered), its simulation result shows
the good agreement with the experimental one in far-field characteristics and beam pattern.

 
(a) 

(c)                       (d) 
 

(b) 

Figure 12. Simulation #1 of the leaky radiation beam profile based on the wave phase on the radiation
surface. (a) Isotropic view of wave phase on radiation surface, (b) top view of wave phase on radiation
surface, (c) vertical beam profile, and (d) lateral beam profile.

 
(a) 

(c)                       (d) 

 
(b) 

Figure 13. Simulation #2 of the leaky radiation beam profile based on the wave phase on the radiation
surface. (a) Isotropic view of wave phase on radiation surface, (b) top view of wave phase on radiation
surface, (c) vertical beam profile, and (d) lateral beam profile.
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(a) 

(c)                       (d) 

 
(b) 

Figure 14. Simulation #3 of the leaky radiation beam profile based on the wave phase on the radiation
surface. (a) Isotropic view of wave phase on radiation surface, (b) top view of wave phase on radiation
surface, (c) vertical beam profile, and (d) lateral beam profile.

 

(a) (b) 

Figure 15. Comparison results between the measured beam profile of a leaky Lamb wave radiated at
d = 350 mm (Figure 10b) and the simulation result of Figure 13. (a) Response on acoustical axis and
(b) lateral beam width at maximum intensity of the main beam.

Consequentially, simulation results of the beam profiles describe the fact that the A(0,2) mode
affects leaky Lamb wave radiation with the A(0,0) mode in the waveguide plate with finite width,
and the change of the wave behavior on the radiation surface caused by the mode superposition and
the wave velocity difference results in the change of the radiation characteristics of the leaky radiation
beam profile.

5. Discussion and Design Direction for Performance Improvement of the Waveguide Sensor

It seems difficult to completely physically avoid the spatial beating phenomenon and the mode
superposition within a short propagation distance because of the high modal density by numerous
width modes of the Lamb wave in a waveguide plate with finite width. Therefore, if a single narrow
main beam is needed for the application purpose, the position tuning for the excitation source can be
recommended for the wave energy concentration at the center in the width direction. Figure 16 shows
the measured beam profiles of the leaky Lamb wave excited at d = 330 mm and a clear single main
beam can be seen compared with the beam profiles measured for other excitation source positions
shown in Figure 10.
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Figure 16. Measured beam profiles of the leaky Lamb wave excited at d = 330 mm (1.5 mm thickness
and 15 mm width, 1.0 MHz center frequency).

In addition, as the plate width increases, the phase velocity curve of the A(0,2) mode converges to
that of the A(0,0) mode as shown in Figure 17. This is because the plate strip gets close to the infinitely
wide plate with extension of the plate width. Accordingly, unless the plate width is not constrained in
the waveguide sensor design, the plate width increment can extend the beating length by a difference
in reduction between the A(0,0) and A(0,2) modes in wave velocities, and thereby the effect of the
spatial beating on the leaky radiation beam can be reduced.

Figure 17. Phase velocity dispersion curves of the A(0,2) mode in a 1.5 mm thick SS304 plate with
variation of the plate width.

Finally, a change in the frequency–thickness product (fh) can be also considered for performance
improvement. Figure 18 shows the measured beam profile of the leaky Lamb wave excited at
d = 350 mm with fh = 1.5 MHz·mm (1.5 MHz center frequency and 1.0 mm plate thickness), the same
as the operational frequency–thickness product in the waveguide sensor (1.0 MHz center frequency
and 1.5 mm plate thickness). As the excitation frequency increment makes the wavelength of the leaky
Lamb wave short, the width–wavelength ratio is increased. Therefore, the effective plate width can
be enlarged without an increment of the physical plate width, although the ultrasonic attenuation
is increased and the radiation characteristics are also changed by the frequency increment of the
leaky wave.
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Figure 18. Measured beam profiles of the leaky Lamb wave excited at d = 350 mm (1.0 mm thickness
and 15 mm width, 1.5 MHz center frequency).

As a result, leaky Lamb wave radiation from a waveguide plate with a finite width is affected
by the mode superposition of the width modes. For this reason, radiation characteristics of the leaky
radiation beam, in particular the lateral beam, are sensitive to the excitation conditions (excitation
source position, excitation frequency, etc.). This can be an advantage or disadvantage for the plate-type
waveguide sensor. Therefore, according to the application purposes and goals, it will be necessary to
properly design and tune the excitation conditions in the plate-type waveguide sensor.

6. Conclusions

This work investigates leaky Lamb wave radiation from a waveguide plate with a finite width
with consideration for the width modes of the Lamb wave and their superposition. Dispersion curves
obtained using the SAFE method showed that Lamb waves in the plate strip have numerous width
modes, in contrast to the case of an infinitely wide plate. These width modes were very close to each
other in the dispersion curve, and thus it could be inferred from these results that the multiple width
modes were bound to be excited and propagated together by the high modal density. In the beam profile
measurement, one could observe that characteristics of the leaky radiation beam from the waveguide
plate were noticeably changed with variation of the excitation source position. This characteristic
was strongly estimated to be affected by the spatial beating induced by wave velocity differences
of the superposed modes. Changes to the wave phase on the waveguide plate were validated by a
simple computational result and then the leaky radiation beam profiles were simulated with variation
of the wave phase of the superposed modes on the radiation surface. From this simulation, it was
demonstrated that leaky Lamb wave radiation from the waveguide plate was affected by superposition
of the width modes. In particular, the lateral beam was dominantly influenced by the wave phase
on the radiation surface, changed by the excitation source position. Perfect avoidance of the spatial
beating caused by the mode superposition of the width modes in the strip-like plate is expected to be
physically difficult. Therefore, the excitation conditions, including the excitation frequency and the
geometry of the waveguide plate, need to be properly designed for the waveguide sensor using leaky
Lamb wave radiation from a waveguide plate with a finite width. Further study is necessary to analyze
the radiation characteristics of practical plate-type waveguide sensors based on this preliminary work.
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Abstract: This paper deals with investigation and characterization of weld circumferential thin cracks
in austenitic stainless steel (AISI 304) pipe with eddy current nondestructive testing technique (EC-
NDT). During welding process, the heat source applied to the AISI 304 was not uniform, accompanied
by a change of the physical property. To take into consideration this change, the relative magnetic
permeability was considered as a gradiently changed variable in the weld and the heat affected
zone (HAZ), which was generated by the Monte Carlo Method based on pseudo random number
generation (PRNG). Numerical simulations were performed by means of MATLAB software using
2D finite element method to solve the problem. To verify, results from the modeling works were
conducted and contrasted with findings from experimental ones. Indeed, the results of comparison
agreed well. In addition, they show that considering this changing of this magnetic property allows
distinguishing the thin cracks in the weld area.

Keywords: weld cracks; eddy current nondestructive testing; gradiently relative magnetic perme-
ability; heat affected zone; austenitic stainless steel

1. Introduction

The austenitic stainless steel 304 is suitable for large field applications, such as heat
exchangers, power plants, oil and gas industry, chemical engineering and especially in
nuclear power plants, because of its useful characteristics, such as high temperature
service and environment, corrosion resistance, weldability, formability and mechanical
properties [1,2]. Pipes are exposed to a variety of environmental influences, and high
temperature and high pressure that cause severe corrosive and environmental deterioration
as results in fatigue cracks and flaws in pipes that can appear and grow. A pipe failure can
lead to serious ecological disasters, human casualties and financial loss. To predict and
avoid such threats and maintain the safety and integrity of pipes, periodic nondestructive
testing inspections are necessary [3–5].

Eddy-current testing (ECT) is adapted to solve such problems. Applied to inspect
conductive and ferromagnetic devices to examine their structural integrity [6–9], it has
certain advantages in terms of safety as a testing tool—rapid inspection, high sensitivity,
and minimizing contact with the specimen. It is efficiently associated with automatic
detection in various work [10,11]. The ECT technique is frequently used for nondestructive
defect inspection of tubes welders and circumferential welds [5,12,13].

Many welding processes are presented in several papers; they require a lot of effort
and experiments to better understand the parameters [14–16]. The finite element method
associated with experimental investigations is a powerful tool to identify and analyze
welding parameters and to obtain an optimal solution in a short time [17]. Usually, in
simulation work, the mathematical model of the problem to be treated contains all the
necessary information.
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In this work, a study of weld circumferential thin cracks in AISI 304 pipe was carried
out. The used AISI 304 pipe was joined by gas tungsten arc welding (GTAW).

Several previous studies focused on crack detection and characterization of cracks
in austenitic stainless steel, for instance, detection and evaluation of weld defects using
3-dimension tunnel, and show excellent inspection results for a weld in stainless steel [18].
Saito et al. [19] described weld defects and evaluation of weld quality and how to achieve
weld quality improvement. Park et al. [20] investigated cracking behavior of AISI 304
exposed to high temperature and revealed that strain-induced martensitic transformation
in stainless steel has a negative effect on stress corrosion effect. Hu et al. [21] studied
microstructure residual stress and corrosion cracking of repair welding on 304 AISI by
experiment and simulation, and found that repair welding in 304 stainless steel is recom-
mended no more than two times. All these studies are related to the evaluation of defects
in using different methods.

However, there are few considerations of delta-ferrite structures, which show fer-
romagnetic properties, inspite of that the austenitic stainless steel AISI 304 around the
welding for analyzing numerical and experimental studies. AISI 304 is classified as para-
magnetic material with μr = 1 + Xm, where relative magnetic permeability μr and the
magnetic susceptibility Xm, are 1 and 0, respectively. However, after heat treatment (heat
welding), the property of AISI 304 as paramagnetic material will disappear and it will
become a partial ferromagnetic material named delta-ferrite structure, which results in the
change of the relative magnetic permeability at each region μr 
= 1,with high permeability
in the weld area, low permeability in the raw material μr = 1 and decreasing permeability
in the HAZ μr = 3 ∼ 1 [22–24]. Therefore, it can be considered that the assembled pipe
has three regions with three magnetic permeabilities. Modeling this change on this input
parameter and characterizing its consequence on the output response under MATLAB, in
order to be able to both reproduce the distribution of this parameter and to compare this
response with experimental, is an important step of this work. For this purpose, the relative
magnetic permeability is gradiently distributed in the weld and the HAZ regions according
to the experimental measurement. The Monte Carlo method based on pseudo random
number generation (PRNG) is used and then coupled with the finite element method. The
numerical analysis using the Stochastic Finite Element Method (SFEM) that models the
eddy-current testing of the problem is presented. A comparison against constant relative
permeability and experimental ones was done, and the results show that it is important to
consider this change in magnetic property of the material.

2. Materials

Figure 1 shows the experiment system. It consists mainly of two joined AISI 304
pipe test samples, a rotating motorized stage platform, an ECT system, a data acquisition
instrument (DAQ) and a laptop computer for data control and storage. The ECT system is
an Olympus Nortek 500 eddy-current flaw detector, which controls AC power supply and
frequency. The output signal obtained by the ECT equipment is transmitted to a laptop
computer via an analog-to-digital converter. Absolute probes with different frequency
ranges were fixed and the pipe was mounted and precisely positioned on the rotary stage
platform, which is controlled by software based on the LabVIEW program and rotated at
a speed of 21 mm/s and scan interval of 1mm. The experiments were performed by an
ASNT Level II qualified examiner by following ISO 7912 instructions [25].
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Figure 1. Experimental setup.

Artificial cracks of the same length (5 mm) and width (0.2 mm) with different depths
(0.3 mm, 0.5 mm and 1.0 mm) referred as (d0.3, d0.5 and d1.0), respectively, were manu-
factured by a Sinker type ZNC electrical discharge machining in the weld area; they are
spaced 7 mm apart, as given by Figure 2. In order not to influence the measurements, an
appropriately sized ECT probe was used. The cracks position was intended to simulate the
most frequent ones, which can occur during the welding process or during the pipe daily
service. The geometrical and physical parameters are summarized in Table 1. Moreover,
microscopic analyses of the width and length of these cracks are checked, and the depth is
measured using digital calipers and presented in Figures 3 and 4, respectively.

 

Figure 2. The structure of joined pipe and the configuration type eddy current nondestructive testing
technique (EC-NDT).

Table 1. Test setup parameters.

Probe Test Specimen

Inner diameter
Outer diameter

Height
Numbers of

turns
Lift-off

3 mm Thickness 9 mm
4 mm
4 mm

Conductivity
Permeability1

1.38 Ms/m
1

N/A
0.1 mm

Permeability2
Permeability3
Weld width

Random
Random
12 mm
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(a) 

 
(b) 

 
(c) 

Figure 3. Microscopic analysis: measurement of length and width of the cracks with (a) depth =
0.3 mm, (b) depth = 0.5 mm, and (c) depth = 1 mm.

 

Figure 4. Cracks depth measurement.

3. Global Equations and Parameters

3.1. Random Numbers Generation

Random numbers are useful in several different kinds of applications, such as sim-
ulation, statistics, machine learning, sampling and in other areas [26,27]—in this section
according to the experimental measurement of the relative magnetic permeability, which is
gradiently distributed in the heat affected zone (HAZ) and weld area due to the heat weld-
ing. To simulate this stochastic model, a source of randomness is required to reproduce the
real distribution of the magnetic permeability in these concerned zones. A pseudo-random
number is a best way to solve this problem, by generating a sequence of independent
uniform variable real between 0 and 1 or integer. Various pseudo-random number gen-
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erators (PRNGs) exist, and the most popular random number generation technique is
the linear congruential generator (LCG) for several reasons. LCGs are the most popular
generators, implemented in the MATLAB programming software used, and have many
properties; for instance, ease of use, reproducibility, uniformity, independence, large period
and efficiency [28,29]. The main advantages of these properties are that they generate
easily and directly pseudo-random numbers without storing them, memory savings, time
savings and simulation control. A quick overview of the LCGs mainly used in computer
programming is given; for more details, see references [30–32]. The LCGs are based on
linear recursions in modular arithmetic. Their general form, represented by:

xn+1 = (axn + c) mod m, n ≥ 0 (1)

here m > 0 is the modulus, a is the multiplier, c is the increment and x0 is the seed or the
starting value; 0 ≤ a < m, 0 ≤ c < m, 0 ≤ x0 < m. Selection of the numbers m, a, c and x0
is crucial for getting a random sequence of numbers.

After the step of generating pseudo-random numbers, apply to these numbers an
appropriate transformation according to the number of elements contained in the surfaces
of the studied areas obtained by finite element meshing. Then the algorithms are combined
with the finite element code.

3.2. Electromagnetic Equation

The governing equations of the numerical model used in this paper are obtained with
the consideration of assumptions that the conduction current is dominated, to describe elec-
tromagnetic eddy-current problems extracted from Maxwell’s equations, which describe
the basics of electromagnetic theory given as follows [33,34]:

→
∇× →

H =
→
J (2)

→
∇×→

E = −∂
→
B

∂t
(3)

→
J =

→
J s − σ

∂
→
A

∂t
(4)

Using the relation
→
B = μ

→
H and the magnetic flux density potential

→
B =

→
∇∧

→
A. After

replacing we obtain the 2D electromagnetic harmonic equation in terms of the Magnetic

Vector Potential (MVP) with only the z direction component
→
A(0, 0, AZ):

→
∇×

(
1
μ

(→
∇×

→
AZ

))
− jωσ

→
AZ = −→

J SZ (5)

where:
→
J —the total current density,

→
J SZ—the source current density, μ—is magnetic

permeability in the specimen, HAZ and in the weld zone respectively, σ—is the electrical
conductivity, ω—the angular frequency.

In the Heat affected zone and the weld zone, the magnetic permeability is noted with
indices (1), (2) and given as, μ1 = [μ′a . . . . . . . . . . . . μTHAZ] and μ2 = [μa . . . . . . . . . . . . μTw].
THAZ and TW denote the total number of triangular elements obtained from the finite
element meshing in the HAZ zone and weld area, respectively.

[M] + jω[N][A] = [F] (6)

with: [M]—stiffness matrix, [N]—dynamic matrix, [A]—unknowns vector and [F]—source
vector.
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3.3. Impedance Computation

The presence of possible defects in the weld zone lead to a change in the physical
characteristics, which results in the variation of the coil impedance. Several methods exist
for impedance calculation; the difference lies in the choice of the state variable which
has a direct relationship with the solution resulting from the numerical model and the
configuration of the device to be studied. In this application the impedance Z is calculated
from the MVP (the real and imaginary parts) as follows [35,36]:

Re(Z) = − N2

J S2 ω

.�
S

2πr Im(A) ds (7)

Im(Z) = − N2

J S2 ω

.�
S

2πr Re(A) ds (8)

with: N—coils number, S—surface of inductor coil, r—inductor radius.

4. Results and Discussion

In the current application, the numerical and experimental investigation of weld thin
cracks in joined AISI 304 pipe were carried out, using SFEM code analysis implemented
under MATLAB.

The pipe radius is 160 mm, far greater than the probe size, so the pipe wall can
be considered as a conducting plate [37,38]. According to this, the studied problem is
simplified and becomes two-dimensional (2D) in the (x, y) plane as shown in Figure 5.

 

Figure 5. Solving domain and boundary conditions.

The solving domain resolution concerns the studied electromagnetic device and the
air; it is divided into six regions with different physical properties, with physical boundary
conditions of homogeneous Dirichlet type applied at the fields of study. The scheme is
illustrated in Figure 5, which shows that the mesh air domain that we have taken into
consideration is large enough to contain the zone of influence of the probe, so that the
emitted field is negligible at the border of the field of study.

The field of study is covered by finite element mesh as illustrated by Figure 6a. To
reproduce the real geometry of the studied device and to approach the measurement results,
it is discretized by subdividing it into subdomains, with 38,400 triangular elements and
19,269 nodes generated automatically. Eddy current distributes locally near the coil [39], to
consider this fact in the simulation work. A remeshing is done at each probe displacement.
This technique allows obtaining dense and fine mesh around the probe with good quality
elements. The triangular mesh quality as a function of the probe displacement is shown in
Figure 6b. The mesh quality is over than 0.75 and consequently more accurate simulation
results.
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(a) (b) 

Figure 6. (a) Mesh of the solving domain and (b) Mesh quality according to the displacement.

As explained above, after a step of random-numbers generation, a computational
technique was introduced by which was obtained the relative magnetic permeability.
Depending on the experimental measurement for each pitch measurement, this magnetic
property distribution is not the same and it varies from 1 to 20, hence the assimilation to a
delta-ferrite structure.

The simulated relative magnetic permeability distribution (to reproduce the behavior
as the experimental) is illustrated by Figure 7, covering a displacement of 20 mm from the
middle length of the inspected devise, by cause of symmetry distribution.

 

Figure 7. The magnetic relative permeability distribution.

The ECT probe moves along the direction of the cracks, from the position x = 0
to x = 40 mm, in step of 1 mm. The objective here is to conduct a qualitative study
relating to the presence or absence of the most frequent thin cracks in circumferential
girth weld, considering the influence of the heat welding on the HAZ and the weld area.
The HAZ length is to be assumed 12.7 mm ( 1

2 inches), refer to the KEPIC MI Technical
Standard [40]. To achieve both larger skin depth and to control the surface of inspected pipe,
the measurements have been realized using six frequencies, operating frequency 20 kHz,
detection frequency 40 kHz, optimum frequency 50 kHz and resonant frequency 300 kHz.
In addition, 10 kHz and 100 kHz were added for comparison. The experiments were
performed by an ASNT Level II qualified examiner by following ISO 7912 instructions [25].

The measurement of the eddy currents resulting from experimentation and simulation
was exploited by the measurement of the related quantity, which results in the impedance
measurement. The results of the comparisons were normalized and given in Figures 8–13
for different crack depths. The impedance variation was analyzed for weld cracks and
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stored with the corresponding displacement coordinate of the ECT probe. The normalized
impedance was computed by Delta Z(%) = (Z − Z0)/(Z − Z0)max. With Z0 and Z are the
impedances of the raw material without crack and the impedance from the HAZ and the
weld with crack, respectively.

   
(a) (b) (c) 

Figure 8. Impedance variation in (%) at 10 kHz with (a) depth = 0.3 mm, (b) depth = 0.5 mm, and (c) depth = 1 mm.

   
(a) (b) (c) 

Figure 9. Impedance variation in (%) at 20 kHz with (a) depth = 0.3 mm, (b) depth = 0.5 mm, and (c) depth = 1 mm.

   
(a) (b) (c) 

Figure 10. Impedance variation in (%) at 40 kHz with (a) depth = 0.3 mm, (b) depth = 0.5 mm, and (c) depth = 1 mm.

118



Appl. Sci. 2021, 11, 2182

   
(a) (b) (c) 

Figure 11. Impedance variation in (%) at 50 kHz with (a) depth = 0.3 mm, (b) depth = 0.5 mm, and (c) depth = 1 mm.

   
(a) (b) (c) 

Figure 12. Impedance variation in (%) at 100 kHz with (a) depth = 0.3 mm, (b) depth = 0.5 mm, and (c) depth = 1 mm.

   
(a) (b) (c) 

Figure 13. Impedance variation in (%) at 300 kHz with (a) depth = 0.3 mm, (b) depth = 0.5 mm, and (c) depth = 1 mm.

The method applied here to characterize the thin cracks relies on the fact that the
eddy-current response depends on the probe excitation frequency.

By considering the operating frequency, detection and the optimum frequency, the
penetration depth of eddy currents was significant. Therefore, the eddy-current response
would be sensitive to the crack surface in-depth direction. When μr = 1 the impedance
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signal is smooth for each frequency. Fine cracks do not appear, or are almost indistinguish-
able, as shown by the results of Figures 8–11. Therefore, the results obtained for constant
relative magnetic permeability cannot provide right information regarding the presence or
absence of thin cracks in the weld area.

In contrast, with μr 
= 1 this model is able to reproduce the experimental results, while
giving a better prediction of cracks. The shape of the impedance signal is not the same
for each depth and each frequency. The signal presents fluctuations at the peak, which
corresponds to the change of environment (weld and crack). Thus, this is comprehensible
as it corresponds to a presence of the thin cracks in the weld area. Figure 14 shows three
shapes of shallow mountains that correspond to the three cracks referred as d0.3, d0.5 and
d1.0. A small peak at 180 mm on the X axis indicates a small defect as shown in Figure 2.
The output signal of the Nortec 500 equipment is entered into the DAQ and expressed as a
3D surface graph using LabVIEW as given in Figure 14.

 

Figure 14. Cracks imaging obtained with 300 kHz.

Figures 12 and 13 correspond respectively to 100 and 300 kHz. At these frequencies,
the impedance of the probe is maximum, and the current flow is stronger at the surface
and decreases rapidly in-depth direction. Thus, the current response would be particularly
sensitive to surface cracking. The same signal was obtained with the two relative magnetic
permeabilities. An insignificant signal difference was observed with 100 kHz.

The simulation results reproduce the trend and the shape of the experimental signals;
however, a small deviation can be observed that is probably due to several parameters; the
universe of the experimental is in 3D while the simulations are in 2D, the machining of the
cracks, the lift-off and another factor come from the impedance measurement carried out.

The impedance variation as a function of the probe displacement reflects the change
in the distribution of physical properties over the part of the pipe being inspected. The
proposed approach is validated by a comparison and shows a satisfactory concordance
with the experimental ones in all cases for all the frequencies used, which proves:

• Eddy currents are well adapted to the detection of thin surface cracks under the stress
of the heat welding which affects the relative magnetic permeability locally.

• The validity of the modeling and the analysis approach.

5. Conclusions

The stochastic finite element method was applied to study weld cracks in AISI 304 pipe
used in nuclear power plants by nondestructive testing. The relative magnetic permeability
was gradiently generated using the Monte Carlo Method based on pseudo-random number
generation. It is considered as an essential property in this study to characterize weld
cracks areas.
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A qualitative interpretation of the eddy-current probe output and comparison of both
experiment and simulation were carried out. In all cases the comparisons show a good
agreement between the two results. Compared to the constant relative permeability, μr 
= 1
showed a greater sensitivity with respect to the change caused by the presence of thin
cracks in the weld. On the other hand, considering μr 
= 1 is more sensitive than μr = 1 to
distinguish the thin cracks with 10, 20, 40 and 50 kHz. Furthermore, the results confirm
that taking into account the influence of the heat treatment induced by the welding process
is more effective for this purpose. Thus, in the framework of future research, it will be
interesting to use artificial intelligence based on deep learning exploiting big data applied
in the field of nondestructive testing techniques for surface and subsurface scanning.
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22. Oršulová, T.; Palček, P.; Kúdelčík, J. Effect of plastic deformation on the magnetic properties of selected austenitic stainless steels.
Prod. Eng. Arch. 2017, 14, 15–18. [CrossRef]

23. American Society of Mechanical Engineers. ASME Boiler and Pressure Vessel Code, 2010 ed.; ASME: New York, NY, USA, 2010;
p. 108.

24. UGITECH. Magnetism and Stainless Steel. Available online: https://www.swisssteelinternational.us/fileadmin/user_upload/
Ugitec/Documents_publics/AC/MARCHES/Magnetism/7512UGITECHMagnetGB.pdf (accessed on 1 January 2009).

25. ISO 9712. Non-Destructive Testing—Qualification and Certification of NDT Personnel, 4th ed.; ISO: Geneva, Switzerland, 2012.
26. Pasqualini, L.; Parton, M. Pseudo random number generation through reinforcement learning and recurrent neural networks.

Algorithms 2020, 13, 307. [CrossRef]
27. Irfan, M.; Ali, A.; Khan, M.A.; ul-Haq, M.E.; Shah, S.N.M.; Saboor, A.; Ahmad, W. Pseudorandom number generator (PRNG)

design using hyper-chaotic modified robust logistic map (HC-MRLM). Electronics 2020, 9, 104. [CrossRef]
28. L’Ecuyer, P. Pseudorandom number generators. In Encyclopedia of Quantitative Finance; Simulation Methods in Financial Engineer-

ing; Cont, R., Ed.; John Wiley: Chichester, UK, 2010; pp. 1431–1437.
29. Bhattacharjee, K.; Maity, K.; Das, S. Search for good pseudo-random number generators: Survey and empirical studies. arXiv

2018, arXiv:1811.04035.
30. Greenberger, M. Notes on a new pseudo-random number generator. JACM 1961, 8, 163–167. [CrossRef]
31. Salmon, J.K.; Moraes, M.A.; Dror, R.O.; Shaw, D.E. Parallel Random Numbers: As Easy as 1,2,3. In Proceedings of the 2011

International Conference for High Performance Computing, Networking, Storage and Analysis, Seattle, WA, USA, 12–18
November 2011. [CrossRef]

32. Datcu, O.; Macovei, C.; Hobincu, R. Chaos based cryptographic pseudo-random number generator template with dynamic state
change. Appl. Sci. 2020, 10, 451. [CrossRef]

33. Silvester, P.; Chari, M.V.K. Finite element solution of saturable magnetic field problems. IEEE Trans. Power Appar. Syst. 1970,
PAS-89, 1642–1651. [CrossRef]

34. Ida, N.; Betzold, K.; Lord, W. Finite element modeling of absolute eddy current probe signals. J. Nondestruct. Eval. 1982, 3,
147–154. [CrossRef]

35. Thomas, J.L. Simplified Modeling of Eddy Current Control of Steam Generator Tubes Report of Internship ESA IGELEC; University of
Nantes: Nantes, France, 1998.

36. Oudni, Z.; Feliachi, M.; Mohellebi, H. Assessment of the probability of failure for EC nondestructive testing based on intrusive
spectral stochastic finite element method. Eur. Phys. J. Appl. Phys. 2014, 66, 30904. [CrossRef]

37. Chen, D.; Shao, K.R.; Lavers, J.D. Very fast numerical analysis of benchmark models of eddy-current testing for steam generator
tube. IEEE Trans. Magn. 2002, 38, 2355–2357. [CrossRef]

38. Takagi, T.; Hashimoto, M.; Fukutomi, H.; Kurohwa, M.; Miya, K.; Tsuboi, H.; Tanaka, M.; Tani, J.; Serizawa, T.; Harada, Y.; et al.
Benchmark models of eddy current testing for steam generator tube: Experiment and numerical analysis. Int. J. Appl. Electromagn.
Mater. 1994, 5, 149–162. [CrossRef]

39. Takagi, T.; Hashimoto, M.; Sugiura, T.; Norimatsu, S.; Arita, S.; Miya, K. 3D Numerical Simulation of Eddy Current Testing of a
Block with a Crack. Rev. Prog. Nondestr. Eval. 1990, 9, 327–334. [CrossRef]

40. Korea Electric Association. MI in Service Inspection of N.P.P; MIA Special ed.; 2005 ed∼2009 add; Korea Electric Association: Seoul,
Korea, 2009; p. 32.

122



applied  
sciences

Article

Measurement of Thinned Water-Cooled Wall in a Circulating
Fluidized Bed Boiler Using Ultrasonic and Magnetic Methods

Jinyi Lee 1,2,*, Eunho Choe 3, Cong-Thuong Pham 4 and Minhhuy Le 4,5,*

Citation: Lee, J.; Choe, E.; Pham,

C.-T.; Le, M. Measurement of Thinned

Water-Cooled Wall in a Circulating

Fluidized Bed Boiler Using Ultrasonic

and Magnetic Methods. Appl. Sci.

2021, 11, 2498. https://doi.org/

10.3390/app11062498

Academic Editor:

Giuseppe Lacidogna

Received: 26 January 2021

Accepted: 8 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronic Engineering, Chosun University, Gwangju 61452, Korea
2 Interdisciplinary Program in IT-Bio Convergence System, Chosun University, Gwangju 61452, Korea
3 Department of Control and Instrumentation, Graduate School of Chosun University, Gwangju 61452, Korea;

fordo2@nate.com
4 Faculty of Electrical and Electronic Engineering, Phenikaa University, Hanoi 12116, Vietnam;

thuong.phamcong@phenikaa-uni.edu.vn
5 A&A Green Phoenix Group JSC, Phenikaa Research and Technology Institute (PRATI), No.167 Hoang Ngan,

Trung Hoa, Cau Giay, Hanoi 11313, Vietnam
* Correspondence: jinyilee@chosun.ac.kr (J.L.); huy.leminh@phenikaa-uni.edu.vn (M.L.)

Abstract: In this paper, a nondestructive inspection system is proposed to detect and quantitatively
evaluate the size of the near- and far-side damages on the tube, membrane, and weld of the water-
cooled wall in the fluidized bed boiler. The shape and size of the surface damages can be evaluated
from the magnetic flux density distribution measured by the magnetic sensor array on one side from
the center of the magnetizer. The magnetic sensors were arrayed on a curved shape probe according
to the tube’s cross-sectional shape, membrane, and weld. On the other hand, the couplant was doped
to the water-cooled wall, and a thin film was formed thereon by polyethylene terephthalate. Then,
the measured signal of the flexible ultrasonic probe was used to detect and evaluate the depth of the
damages. The combination of the magnetic and ultrasonic methods helps to detect and evaluate both
near and far-side damages. Near-side damages with a minimum depth of 0.3 mm were detected,
and the depth from the surface of the far-side damage was evaluated with a standard deviation of
0.089 mm.

Keywords: circulating fluidized bed combustion boiler; water-cooled wall tube; magnetic sensor
array; magnetic flux density; flexible ultrasonic probe

1. Introduction

Circulating fluidized bed combustion boilers burn various fuels such as wood, coal,
and combustible waste together with solid fluidized media such as sand and ash [1]. In
addition, combustion air is injected at high speed through a distribution plate at the bottom
of the furnace to burn coal in a gas-solid flow condition inside the furnace. The high
temperature of the heated fluid medium particles scatter and circulate in a suspended
state to transfer heat to the heat transfer tube. Since heat is transferred through collisional
contact with the fluid particles, the heat transfer coefficient is very superior compared to
the convection heat exchange method of the existing boiler. However, due to the collision
contact between the surface of the water-cooled wall and the fluid particles, which is
repeated as the operation time elapses, erosion due to direct exposure to combustion flames,
corrosion due to high-temperature combustion and formation of potassium chloride, and
acceleration of corrosion due to adhesion could appear. Thus, the life cycle of the water-
cooled wall is shorter than that of the existing boiler systems. In addition, the lower
part where the concentration of the fluid medium is high is a splash area where the fluid
medium violently behaves, and the water-cooled wall is severely damaged. These damages
intensify in the kick-out area located at the boundary between the lower fireproof part and
the water-cooled wall [2]. On the other hand, when abrasion and corrosion occur on the
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water-cooled wall tube, leakage and secondary damage due to the leakage may occur. It is
also very important to periodically monitor and maintain the thickness of the water-cooled
wall since damage to the tube, membrane, and welding portion of the water-cooled wall
can cause a decrease in power generation efficiency.

Recently, numerous NDT methods have been developed for the inspection of damage
on the water-cooled wall. Ultrasonic testing (UT) applies an acoustic medium to the
inspection area of the water-cooled wall and measures the change in the reflection time
of the ultrasonic wave according to the thickness change when the ultrasonic wave is
incident [3]. Although it is possible to perform a precise inspection of the inner surface
of the tube, it is difficult to measure the surface corrosion, and the incident angle of
ultrasonic waves may vary according to the manual inspection of the operator, resulting
in an error in thickness measurement. Phased array ultrasonic testing (PAUT) has been
developed to reduce mechanical errors while scanning the probe on the specimens and
signal enhancement. It provides excellent results of damage detection and quantitative
evaluation of the damage size, such as depth and length [4,5]. However, the UT and PAUT
methods require continuous supplement of the coupling materials such as water for the
propagation of ultrasonic wave between the probes and the tube, and the surface of the
tube should be cleaned before the inspection. Therefore, it is difficult to operate in the
inspection of the water-cooled wall tubes in the power generation, and it also requires
high technical trained operators to use the UT and PAUT systems. Electromagnetic testing
methods, including eddy current testing (ECT), remote field eddy current testing (RFECT),
and magnetic flux leakage testing (MFLT), are the fast, reliable, and easy operation methods
for the inspection of damages in the tubes. These are non-contact inspection methods that
do not require the coupling material during the inspection. ECT is a widely used method
for the inspection of heat exchanger tubes and boilers of nuclear power plants [6–11]. This
method is highly sensitive to the surface cracks, but it is limited to detecting deep defects
due to the high concentration of eddy current on the specimen surface in the skin depth
effect. Especially, the eddy current has more difficulty penetrating the wall thickness of
the water-cooled tube because it has high magnetic permeability. RFECT [12–16] uses
a probe consisting of an excitation coil and a measuring coil that can be inserted into
a ferromagnetic heat pipe tube such as the water-cooled tubes. The magnetic energy
generated by the interpolation type excitation coil goes from the excitation coil to the
outside of the tube and flows in the axial direction, and then back to the inside from the
remote field area at a certain distance. The measuring coil can sense the energy delivered
without receiving it from the excitation coil. In order to increase the ratio of the signal
to noise, it is necessary to increase the cross-sectional area and the number of turns of
the excitation coil and the measurement coil so that the spatial resolution of the probe
is low. Therefore, there is a limitation in quantitatively evaluating where the damage
is occurring on the water-cooled wall tube, the weld, and the membrane. For further
improvement of the sensitivity, a giant magnetoresistance (GMR) and Hall sensors were
used to measure the low magnetic leakage signal in the MFLT systems [17,18]. This method
makes it possible to detect a defect on the surface and near the surface of the water-cooled
wall tubes. However, it is still difficult to measure the thickness changes of the tube due
to the damages. The combination of the ultrasonic and electromagnetic field has been
developed in the electromagnetic acoustic transducer (EMAT) system for the inspection of
the water-cooled tubes [19,20]. The magneto-elastic phenomenon and Lorentz force help
the EMAT inspect a deeper damage without the need for coupling material. However,
the signal is weak and requires advanced signal processing circuits and algorithms. In
addition, the EMAT probe has a big size, and thus, it is not efficient to build an array EMAT
probe with a high spatial resolution for quantitative evaluation of damage sizes.

This study proposed a combination of the magnetic flux leakage testing and ultrasonic
testing methods for the efficient detection and quantitative evaluation of the depth and
residual thickness distribution of the near-side and far-side corrosion of the water-cooled
wall. A Hall sensor array probe with 48 elements arrayed in an interval of 2.5 mm was
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developed to detect the near-side damages and thus make it possible to evaluate the
damage size. A flexible ultrasonic probe (FUP) was developed to detect the far-side
damages on the tube, membrane, and welding lines of the water-cooled wall. The FUP
was incorporated with a flexible membrane that allows the transmission of the ultrasonic
wave from the probe to the water-cool tube surface efficiently. Thus, it is not required to
largely supply coupling material during the inspection. In addition, the FUPs could be
arrayed according to the water-cool plates for fast inspection. For the verification of the
proposed method, artificial tapper-type wears and slit-type damages with different sizes
were produced on the tube, membrane, and welding lines of the water-cooled wall. Both
the detection and size/depth evaluation of the damages will be discussed.

2. Materials and Methods

2.1. Measurement of Magnetic Flux Density

Figure 1 shows the simplified 2D dipole model of the thickness changing on the boiler
water-cooled wall tube due to corrosion [21,22]. A U-type magnetizer is placed on the
surface of the membrane. The width, distance between poles, and height of the magnetizer
are expressed as W, D, and H, respectively. The corrosion depth and length are d and
D/2 + W, respectively. The distance between the magnetizer and the specimen, i.e., lift-off,
is expressed as h. Then, the lift-off at the corrosion is h + d. In the dipole model, magnetic
charges ±m per unit area are assumed to be distributed along the length of the magnetizer
poles, membrane length, and corrosion length according to the assumption in the dipole
model [21,22]. The magnetic flux density in the y-axis direction at the position of P(xp,yp) is
the summary of the magnetic field produced from the magnetic charges, as expressed in
Equation (1). The vertical magnetic field from the left magnetizer pole, right magnetizer
pole, no-corrosion specimen length, and corrosion specimen length are expressed as HLU,
HRU, HLD, HRD in Equations (2)–(5), respectively.

Hy = HLU + HLD + HRU + HRD (1)
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Figure 1. 2D dipole model of magnetic flux leakage testing system for wall thinning of the boiler
water-cooled tube.

Figures 2 and 3 show the result of calculating Hy for the depth of the defect d in the
range of 0~3 mm and position xp in the range of −15–15 mm using Equations (1)–(5); where
m was assumed as 2π × 10−4 [H/m], relative magnetic permeability of the ferromagnetic
material μ = 500, the lift-off h = 1 mm, and the width (D) and width (W) of the magnetic
poles were assumed to be 10 mm. Large changes of the magnetic flux intensity on the
defect size with different depths are shown in Figure 2. It is noted that the Hy has small
changes at the center position of the magnetizer and increases as closer to the pole of the
magnetizer. Thus, it should not position the magnetic sensor at the center of the magnetizer.
Furthermore, Figure 3 shows the relationship between the Hy with the defect’s depth
at a different position on the x-axis. It shows a less sensitivity of the Hy to the defect’s
depth when placing the sensor at the center of the magnetizer (x = 0), and a similar-high
sensitivity when the sensor is at 2–5 mm from the magnetizer’s center. However, the closer
to the magnetizer’s pole, the higher the intensity of the magnetic flux that could saturate
the magnetic sensor. Therefore, the results suggest positioning the sensor at a distance of
2 mm where the sensitivity to the defect’s depth is high, and the magnetic flux density is
hard to saturate the magnetic sensor.

 

Figure 2. Simulation result with magnetic dipole model for different depth d.
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Figure 3. (a) Relationship between the depth of damage d and the vertical component of magnetic
flux intensity Hy and (b) the normalized Hy at different positions from the yoke’s center in the x-axis.

From the results in Figure 3, it is possible to estimate the relationship between the
Hy and d by a quadratic equation, as shown in Equation (6). Here, α1, α2, and α3 are
constants. On the other hand, when using the Hall sensor, the magnetic flux density in the
vertical direction can be measured by the Hall sensor output voltage VH, as expressed in
Equation (7) (relative permeability of the air is assumed to 1):

Hy = α1(d − α2)
2 + α3 (6)

VH = kIB cos θ = kIHy (7)

where VH, k, B, I, θ denote the Hall voltage, the Hall constant, the magnetic flux density
incident on the Hall sensor, the Hall sensor input current, and the direction angle of the
magnetic flux density perpendicularly incident on the Hall sensor. The Hall voltage VH
by Equation (7) is linearly proportional to Hy, the magnetic flux density in the vertical
direction. On the other hand, if the Hall constant (k) and the Hall sensor input current (I)
are constant, and Equation (6) is substituted into Equation (7), it is expressed as Equations
(8) and (9). That is, by measuring the magnetic flux density in the vertical direction, the
depth of the defect can be quantitatively evaluated, where c1 and c2 are constants:

VH = kI{a1(d + a2)
2 + a3} (8)

d =
√

c1VH + c2 − a2 (9)

Figure 4 shows the block diagram of the signal processing for a single Hall sensor
element. The output voltage of the Hall sensor VH was low-pass filtered (LPF) to remove
the high-frequency noise signal. The first stage amplifier was used to gain the signal before
transferring to the main signal processing circuits. The LPFs and first stage amplifier
were attached near to the Hall sensor in the sensor probe. The second stage amplifier
has a controllable gain, which was adjusted by the software in the PC. The signal was
then converted to digital via A/D converter and real-time display/process in the PC.
The proposed inspection system uses multiple Hall sensors; thus, the number of LPFs,
first amplifiers and second amplifiers are the same as the number of Hall sensors for
simultaneous signal processing.
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Figure 4. Signal processing block diagram of the magnetic flux leakage testing system. The block diagram is for a single
Hall sensor.

Figure 5 shows the proposed magnetic leakage testing system to inspect the corrosion
in the water-cooled tube wall. A magnetic sensor array and magnetizer were manufactured
to fit with the water-cooled tube’s surface, as shown in the left and middle drawing. The
magnetic sensor array was placed at the middle of magnetizer poles for measuring the
distribution of vertical magnetic flux, as discussed in the previous paragraphs. There were
three wheels (a front and two rears wheels) used to maintain the lift-off between the sensor
and the tube and help scan the tube easily.

Figure 5. Configurations of the magnetic flux leakage testing system.

2.2. Flexible Ultrasonic Testing

Ultrasonic probe usually requires a supplement of a coupling material for transmitting
ultrasonic wave from the transducer to the test specimen. It complicates the inspection
system and is waste of coupling material. In addition, the test specimen surface should be
flat enough to maintain a positive lift-off (non-contact) for protecting the collision of the
transducer with the test specimen. It is hard for the inspection of near-surface defects in the
water-cooled tube because the changes of the tube wall could make an unpredictable lift-off
that could lead to the collision and break the transducer. Therefore, we propose using
a flexible transducer that the lift-off could be varied and not require using the coupling
material [23]. At the head of a normal transducer, we attached a flexible membrane that
was water-filled. The membrane has a sphere shape after filing the water and maintains
contact with the tube even though the lift-off can vary. Also, the ultrasound wave can still
propagate from the transducer to the water membrane and come to the test specimen.

A sample flexible transducer is shown in Figure 6a. The transducer has a spring that
keeps the contact between the membrane with the test specimen during the scan. The
received time-domain signal of the transducer, which is A-scan signal (u(t)), is shown in
Figure 6b. For a better signal-to-noise ratio, the spectrogram of the A-scan signal was
processed (S(τ,f )) and extracted only the signal (SA(τ)) at the center frequency of the
transducer (fc), as shown in Figure 6c,d. The spectrogram (S(τ,f )) and extracted signals
(SA(τ)) are calculated as expressed in Equations (10) and (11), respectively; where, h is a

128



Appl. Sci. 2021, 11, 2498

sliding Gaussian window. The extracted signal (SA(τ)) was then stacked to form the B-scan
signal while scanning the transducer along with the test specimen.

S(τ, f ) =

∣∣∣∣∣∣
∞∫

−∞

u(t)h(t − τ)e−j2π f tdt

∣∣∣∣∣∣
2

(10)

SA(τ) = S(τ, f )| f= fc
(11)

 
Figure 6. (a) A single flexible ultrasonic transducer measuring a thickness of a specimen, (b) its
time-domain signal, (c) spectrogram signal, (d) the cross-section view signal of the spectrogram, and
(e) the stacked cross-section view signal (B-scan).

It is observed from the ultrasonic transducer signal that there are multiple peaks.
The first peaks are the reflected wave from the specimen surface. It has a delay time of
about 4 μs (t1, u1), which is the propagation time from within the probe membrane. This
delay time could be varied due to the flexibility of the membrane (lift-off). Thus, it is
necessary to eliminate this delay time by shifting the signal with an amount of time −t1.
In addition, there are four peaks (t2, u2), (t3, u3), (t4, u4), (t5, u5) next to the specimen
surface peak (t1, u1), which correspond to the repetitions from the bottom surface of the
specimen. The time intervals of these four peaks are the same and can be used to calculate
the specimen thickness, as shown in Equation (12); where v is the speed of the ultrasound
in the specimen.

d = (t2 − t1)× v
2
= (t3 − t2)× v

2
= · · · = (t5 − t4)× v

2
(12)

Figure 7 is a schematic of the flexible ultrasonic probe (FUP) for quantitatively measur-
ing the specimen thickness. The FUP is an array of multiple transducers (i.e., 6) arranged
for covering the tube wall, welding lines, and specimen membrane area. The FUP could be
alternated the magnetizer and magnetic sensor array modules in Figure 5.
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Figure 7. Schematic of the flexible ultrasonic probe (FUP) for measuring the water-cooled wall
thicknesses.

3. Experiment and Results

3.1. Specimen

Figure 8 shows the shape and location of damages on a specimen. A total of four water-
cooled tubes (SA210C) with inner and outer diameters of 47.3 to 51.3 mm and 63.5 mm,
respectively, one-sided (t11–t14) and double-sided artificial damages (t41–44) simulated
for wears were produced on Tube-1 and Tube-4, respectively. In Tube-2, slit-type artificial
damages (t21–t28) with the same width of 7.0 mm, depth of 0.9 mm, and lengths from
20 to 100 mm were produced. In Tube-3, slit-type artificial damages (t31–t38) having the
same width of 7 mm and length of 60 mm and different depths from 0.3 to 3.1 mm were
produced. The detailed location and size are as shown in Tables 1 and 2.

 
Figure 8. Specimen with different shape and size of artificial damages.
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Table 1. Specification of artificial taper-type wear on the Tube-1 and Tube-4.

#
Width
[mm]

Length
[mm]

Depth
(mm)

Position
(mm)

#
Width
[mm]

Length
[mm]

Depth
(mm)

Position
(mm)

Tube-1 (One-Side Taper-Type Wear) Tube-4 (Two-Side Taper-Type Wear)

t11 16 20 0.9 200 t41 16 20 0.9 200

t12 20 40 1.5 400 t42 20 40 1.5 400

t13 25 60 2.5 600 t43 25 60 2.5 600

t14 28 80 3.1 800 t44 28 80 3.1 800

Table 2. Specification of artificial slit-type damages on the Tube-2 and Tube-3.

#
Width
[mm]

Length
[mm]

Depth
(mm)

Position
(mm)

#
Width
[mm]

Length
[mm]

Depth
(mm)

Position
(mm)

Tube-2 (Same Width) Tube-3 (Same Length)

t21 7 20 0.9 130 t31 7 60 0.23 130

t22 7 30 0.9 230 t32 7 60 0.50 245

t23 7 40 0.9 330 t33 7 60 0.96 345

t24 7 50 0.9 430 t34 7 60 1.08 445

t25 7 60 0.9 530 t35 7 60 1.5 545

t26 7 70 0.9 630 t36 7 60 1.86 645

t27 7 80 0.9 730 t37 7 60 2.34 745

t28 7 100 0.9 830 t38 7 60 2.64 845

The tubes were welded with a 6.0 mm thick membrane. There six slit-type artificial
damages (w11, w12, w13, w31, w31, w33) on the two Membrane −1 and −2. The damages
have the same width of 7.0 mm, different lengths from 20 to 80 mm, and different depths
from 0.3 to 2.4 mm, as shown in Table 3. On the four welding lines (Welds 1, 2, 3, and 4),
there are ten slit-type artificial damages (w11–w42) with the same width of 7.0 mm, different
lengths from 30 to 100 mm, and different depths from 0.6 to 3.0 mm, as shown in Table 4.
Totally, there are 40 artificial damages produced on the tubes, membranes, and welding
lines. The picture of the specimen with damages is shown in Figure 9.

Table 3. Specification of artificial slit-type damages on the Membrane-1 and Membrane-3.

#
Width
[mm]

Length
[mm]

Depth
(mm)

Position
(mm)

#
Width
[mm]

Length
[mm]

Depth
(mm)

Position
(mm)

Membrane-1 Membrane-3

m11 7 20 0.9 130 m31 7 60 0.3 130

m12 7 50 0.9 430 m32 7 60 1.2 445

m13 7 80 0.9 730 m33 7 60 2.4 745
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Table 4. Specification of slit-type damages on the Weld-1~4.

#
Width
[mm]

Length
[mm]

Depth
(mm)

Position
(mm)

#
Width
[mm]

Length
[mm]

Depth
(mm)

Position
(mm)

Weld-1 Weld-3

w11 7 30 0.9 230 w31 7 60 0.6 245

w12 7 60 0.9 530 w32 7 60 1.5 545

w13 7 100 0.9 830 w33 7 60 3.0 845

Weld-2 Weld-4

w21 7 40 0.9 330 w41 7 60 0.9 345

w22 7 70 0.9 630 w42 7 60 1.8 645

Figure 9. Sample specimens with four water-cooled tubes and artificial damages.

3.2. Inspection System

Figure 10 shows the prototype of the inspection system. In the magnetic leakage testing
(MFLT) module, the magnetizer has a pole distance of 15 mm and has manufactured the
profile following the tube and membrane surfaces. It maintains about 1.0 mm of distance
above the specimen surface by the support of the three wheels. The magnetizer has
100 turns of copper wire and supplied by a current of about 200 mA to produce a magnetic
field into the specimen. There are 48 Hall sensors arrayed at an interval of 2.5 mm on a
curve following the tube and membrane surfaces. The MFLT probe scanned the specimen
with steps of 4.0 mm. In the FUP, there are 6 flexible ultrasound transducers having a center
frequency of 5 MHz. The MFLT module, including the magnetizer and magnetic sensor
array, can be exchanged with the FUP module. The measured signal can be processed and
displayed in real-time in a LabVIEW software on a notebook.
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Figure 10. The prototype of the inspection system for water-cooled tubes.

3.3. Experiment Results

Figure 11 shows the scan results of the MFLT module on the Tube-1. Magnetic field
distribution around the damages could help to recognize the presence of the damages.
All the taper-type wears (t11, t12, t13, and t14) could be detected, and the magnetic field
intensity increases as the size of the wear increases. In addition, the slit-type damages
on the membrane (m11, m12, and m13) could also be detected, but the damages on the
welding line (w11, w12, and w13) were out of the sensing area. The smallest slit-type
damage (m11) has a length of 20 mm, depth of 0.9 mm, and 7 mm width that could be
detected. Similarly, the taper-type wears on Tube-4 (t41, t42, t43, and t44) could be detected,
as shown in Figure 12. However, the smallest size of slit-type damage on Membrane-3
(m31) having a length of 60 mm, depth of 0.3 mm, and width of 7 mm could not be detected;
this is because the damage has a smallest depth of 0.3 mm. The damages (m32 and m33)
which have depths of 1.2 mm and 2.4 mm, could be detected. The slit-type damages on the
Weld-4 (w41 and w42) were out of the sensing area, but a part of the w42 signal could be
measured because the damage has the deepest depth of 1.8 mm.

 
Figure 11. Distribution of magnetic field on the Tube-1, Membrane-1, and Weld-1 having artificial
taper-type wear (single side) and slit-type damages.
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Figure 12. Distribution of magnetic field on the Tube-4, Membrane-3, and Weld-4 having artificial
taper-type wear (double side) and slit-type damages.

Figures 13 and 14 show the detection result of the slit-type damages. All defects
(t21~t28, t31~t38) with a depth of 0.3 mm or more located in Tube-2 and Tube-3 could be
detected. In addition, damages of 0.9 mm in depth and 30 mm in length (w11) or more
were detected in Weld-1 could also be detected. However, damages (w21, w22, w31, w32,
w33) located in Weld-2 and Weld-3 were difficult to detect. Nevertheless, damages with a
depth of 0.9 mm or more in Weld-4 (w41, w42) and damages with a depth of 1.2 mm or
more in Membrane-3 (m32, m33) could be detected. This is because that when the sensor
for magnetic flux density measurement scans Tube-4, it is skewed toward Membrane-3,
and the lift-offs of Membrane-2 and Membrane-3 are not the same.

From the above results, the depths of damages detectable in the tube and membrane
are 0.3 mm and 0.9 mm, respectively. In addition, some damages having a depth of 0.9 mm
or more could be detected in the welded part due to the influence of the welding beads.

 
Figure 13. Distribution of magnetic field on the Tube-2, Membrane-1 (Weld-1, 2) having slit-type
damages.
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Figure 14. Distribution of magnetic field on the Tube-3, Membrane-3, and Weld-4 having slit-type
damages.

Figure 15 shows the graph showing the relationship measured data with the depth of
the defect on Tube-3. The damages have the same width of 7 mm and length of 60 mm.
The measured data is the minimum data points selected from the numbers of Hall sensor
array that are on the damages during the scan. There are 30 sensors, and 15 sensors data
plotted on Figure 15a,b. The data in Figure 15a has more noise than in Figure 15b because
some sensors are located far from the damages. Then, data of 15 sensors is used for further
evaluation of the damages’ depth. The average data of the sensors are used to reduce noise
that may occur rather than a single sensor. Also, the relationship between the measured
data with the damages’ depth is expressed in Equation (13). This form of the experimental
equation is same as the theoretical analysis by the dipole model of the previous section
(Equation (9)). The factors c1, c2, and a2 are 121.08, 6.65, and 2.52, respectively.

d =
√

121.08 VH + 6.65 + 2.52 (13)

Figure 15. Relationship between the depth of flaw and the measured data with magnetic flux density method: (a) data of
30 sensors and (b) data of 15 sensors.
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From Equation (13), the depth of damages on the tube (�), membrane (�), and
weld (Δ) were estimated, as shown in Figure 16. The standard deviations of the depth
estimation are 0.329, 0.269, and 0.523 mm for the damages on the tube, membrane and
weld, respectively. The best estimation result is for damages on the membrane because the
surface specimen is flat. The worst case for the damages on weld were due to the roughness
of the weld surface, the sensor lift-off variation due to welding bead, and the edge effect at
the terminal of the magnetizer.

 
Figure 16. Estimation of depth of damages on the tube, membrane, and weld.

Figure 17 shows the B-scan result measured by the FUP after filling the acoustic
medium and wrapping it with PET to the damage of Tube-1 (t11~t14). The horizontal axis
represents time (Ti), and the vertical axis represents the moving distance of the FUP. The
position of T1 for each movement distance was about 20 μs before the start of the scan,
but after 550 mm, it appeared at 17–18 μs. This is because of the variation of the inclined
angle of the FUP and deformation of the membrane due to variation of the FUP lift-off.
Therefore, it is necessary to shift the flying time on specimen surface (T1) for each scan
position, as expressed in Equation (14). Furthermore, it can be seen that in the vicinity of
100, 300, 525, and 725 mm, the delay of the FUP signal is longer than that of other locations,
and near-side damage occurs in the corresponding region. It can also be determined from
the delay of the signal that the shape of the damage is inclined to one side, and the depth
can be estimated.

[
→
T1] = [

→
0 ] (14)

Figure 18 shows the B-scan results of the FUP measured from the back surface of the
damages (m31–33) of Membrane-3 and (w21, w22) of Weld-2 using FUP. Similar to the
previous experimental results. The position of T1 for each movement distance was about
22 μs before the start of the scan, but after 450 mm past m32, it is back to 21 μs. Unlike
the case of the near-side damage in Figure 17, it is possible to recognize that there is no
near-side damage because the FUP signal appears continuously. On the other hand, it is
observed that m31, m32, and m33 damages occur around 130 mm, 460 mm, and 750 mm,
respectively. In addition, signal attenuation appears in the range of 625–700 mm. This
is because the ultrasonic wave attenuates at the edge of the weld defect w42 located in
Membrane-3. A similar phenomenon occurred near the weld defect (w41) at 325–380 mm.
The depth of the damages was estimated, as shown in Figure 19. The standard deviation
of the depth estimation is about 0.089 mm, which is much more accurate than using the
magnetic flux leakage testing method.
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Figure 17. B-Scan results with FUP on the near-side damages of Tube-1 (a) before and (b) after
T1 adjustment.

Figure 18. B-Scan results with FUP on the far-side damages of Membrane-3 and Weld-2 (a) before
and (b) after T1 adjustment.
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Figure 19. Estimation of damages’ depth using the FUP.

4. Conclusions

In this paper, a nondestructive inspection system was proposed to detect defects
on the near-side and far-side of the boiler water-cooled wall tube, membrane, and weld
and to quantitatively evaluate the size of the defects. A magnetizer manufactured in a
curved shape according to the cross-sectional shape of the tube, membrane, and welding
part magnetizes a portion of the water-cooled wall in the axial direction. In addition,
the shape of the surface defect can be qualitatively determined from the magnetic flux
density distribution measured by the magnetic sensor array deflected from the center of
the magnetizer to one side. The minimum depths of surface defects that can be measured
are 0.3 mm, 0.9 mm, and 1.2 mm in each case of the tube, membrane, and weld. The depth
of defects located in the tube, membrane, and weld can be quantitatively evaluated with a
standard deviation of 0.329, 0.269, and 0.523 mm. A method of scanning with a flexible
ultrasonic probe (FUP) after applying an acoustic medium to the defect surface of the
water-cooled wall, covering a thin film of PET (polyethylene terephthalate), and applying
a separate acoustic medium was proposed. According to the FUP arranged in a direction
perpendicular to each cross-section of the tube, membrane, and weld, the location and
shape of the surface defect and the back defect can be distinguished. Furthermore, the
depth of the defect can be quantitatively evaluated with a standard deviation of 0.089 mm.

By combination of the magnetic flux leakage testing and ultrasonic testing, both the
near-side and far-side defects could be detected and a quantitative evaluation of the depth
could be made. Furthermore, the system is also expected to detect and evaluate the internal
surface defects. For instance, if the defect is shallow in the near-surface, then the magnetic
flux leakage testing is efficient for detection; otherwise, if the defect is deep to near the
far-side, then the ultrasonic is more efficient. The further development of the proposed
system should quantitatively evaluate different sizes of the defect such as length and width,
or recognize the shape of the defects.
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Featured Application: In this study, the influence of neutron irradiation on the mechanical prop-

erties of nuclear pressure vessel materials is investigated using two independent methods of

nondestructive magnetic testing. A correlation was found between magnetic characteristics and

neutron irradiation-induced damage, regardless of the applied measurement technique. Addi-

tionally, by merging the outcome of both testing methods and applying a calibration/training

procedure, the damage to reactor steel was successfully predicted. The results are helpful for

the potential future practical application of these techniques to the regular inspection of nuclear

reactors.

Abstract: The embrittlement of two types of nuclear pressure vessel steel, 15Kh2NMFA and A508
Cl.2, was studied using two different methods of magnetic nondestructive testing: micromagnetic
multiparameter microstructure and stress analysis (3MA-X8) and magnetic adaptive testing (MAT).
The microstructure and mechanical properties of reactor pressure vessel (RPV) materials are modified
due to neutron irradiation; this material degradation can be characterized using magnetic methods.
For the first time, the progressive change in material properties due to neutron irradiation was
investigated on the same specimens, before and after neutron irradiation. A correlation was found
between magnetic characteristics and neutron-irradiation-induced damage, regardless of the type
of material or the applied measurement technique. The results of the individual micromagnetic
measurements proved their suitability for characterizing the degradation of RPV steel caused by
simulated operating conditions. A calibration/training procedure was applied on the merged
outcome of both testing methods, producing excellent results in predicting transition temperature,
yield strength, and mechanical hardness for both materials.

Keywords: neutron irradiation embrittlement; reactor pressure vessel; magnetic nondestructive
evaluation; micromagnetic multiparameter microstructure and stress analysis 3MA; magnetic adap-
tive testing

1. Introduction

The safe operational lifetime of reactor pressure vessels depends on a number of
factors, including design, chemical composition, microstructure, and mechanical charac-
teristics of the reactor pressure vessel (RPV) steels and their in-service-induced change in
properties, defect occurrence, and tolerance, as well as operating conditions. Regarding
defects, their nature, location, size, density, and growth rate also need to be considered.
Operation conditions that affect operational lifetime are neutron exposure (fluence), op-
eration temperature, and the number and magnitude of temperature/pressure cycles in
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normal conditions and hypothetical accidental conditions. During their operation, RPVs
are prone to neutron-irradiation-induced embrittlement.

Currently, progressive material degradation is assessed using destructive tests per-
formed on surveillance specimens in the frame of periodic safety reviews (PSRs). These
are standard tensile specimens and ISO-V Charpy specimens of exactly the same RPV
steels and their welds. Charpy impact tests are systematically used to assess structural
materials over a long period [1]. The impact energy is recorded as a function of the tem-
perature, where the temperature corresponding to an impact energy index value of 41 J,
representing the ductile to brittle transition temperature (DBTT), and upper shelf energy
(USE), representing fully ductile behavior, are determined. To obtain a single DBTT value,
several specimens must be tested. In parallel, tensile specimens tested under a quasistatic
loading rate are used to determine yield strength, tensile strength, uniform elongation,
total elongation, and reduction in diameter. The disadvantage of destructive methods is
that they do not allow for the characterization of the progress of material properties of
the same specimen when successively damaged, and they are not applicable to the actual
component.

In this context, the development of nondestructive evaluation (NDE) technologies
can significantly contribute to the characterization of embrittlement in reactor pressure
vessel (RPV) materials by providing complementary information about the progress of
material properties. Tests performed nondestructively, in general, do not directly deter-
mine the material properties, which are determined by destructive tests. To quantify the
material properties nondestructively, nondestructive methods must be correlated with the
standardized data measured destructively.

Numerous nondestructive methods are suitable for the characterization of operation-
induced damage to RPVs: measurement of the Seebeck coefficient [2,3], ultrasonic tech-
niques [4–6], magnetic testing methods [7–12], and magnetoacoustic emission [13].

In ferromagnetic materials, the correlation between mechanical and magnetic hardness
is well-known and understood [14,15]. Magnetic methods are advantageous because they
are technically simple, inexpensive, and can be applied easily, even on active materials in
hot cells.

A micromagnetic nondestructive method that is basically suitable for the character-
ization of damage to ferromagnetic materials such as RPV steel and for monitoring the
progress of material properties is the micromagnetic multiparameter microstructure and
stress analysis (3MA) approach, which uses several methods [16–18]. In this study, we
applied a new version of the 3MA technique, 3MA-X8 [19]. This technique is presented in
more detail in Section 2.2. This novel method offers improved sensitivity and reliability
compared with the previous implementation of the 3MA method.

Another promising candidate for magnetic nondestructive testing methods is based
on the detection of minor magnetic hysteresis loops. The philosophy behind this technique
is that by measuring minor loops instead of major hysteresis loops, the sensitivity and
reliability of the measurement can be significantly improved [20,21]. Similar to 3MA-
X8, magnetic adaptive testing (MAT) is also a multiparametric, powerful, and sensitive
procedure for magnetic inspection [22,23].

The purpose of this work is to analyze parameters derived from the 3MA-X8 and MAT
methods separately, as well as in combination, to predict material properties. The reason
for combining several measured parameters for material characterization is the increased
robustness against disturbing influences such as material variations and surface treatment.

In previous work, a similar attempt was made: power scale laws (PSLs), magnetic
Barkhausen noise (MBN), and MAT results were compared with each other on the same
series of neutron-irradiated nuclear reactor pressure vessel steel material [24]. However,
DBTT values were taken from the literature; they were not directly measured in the
investigated specimens.

In the present work, specimens of two different steels of eastern and western RPV
design were investigated. The results obtained from measurements carried out using 3MA-
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X8 and MAT techniques on Charpy specimens were compared, before and after neutron
irradiation at different neutron fluences, and were correlated with different measured
mechanical properties. 3MA-X8 and MAT data, measured on the same specimen series,
were collected into a common database and normalized so that they could be quantitatively
compared with each other to study their reliability and sensitivity. Finally, a regression
analysis was performed to predict neutron-irradiation-induced damage, and conclusions
were drawn about the potential applicability of the method for nondestructive evaluation of
RPV steel degradation. These results provide information complementary to that obtained
from destructive tests of surveillance specimens, which are currently assumed to represent
the whole component and cannot account for possible local material variations.

2. Materials and Methods

2.1. Materials and Mechanical Tests

To characterize the damage caused by neutron irradiation, two types of RPV materials
were considered: western RPV material A508 Cl.2 and eastern RPV material 15Kh2NMFA.
A large part of the Lemoniz reactor vessel, a Spanish reactor of the western type that was
never in operation, was chosen to manufacture Charpy specimens at the Belgian Nuclear
Research Centre (SCK CEN) [25,26]. ISO-V Charpy specimens were cut out from 3/4 depth.
Figure 1 shows the geometry of the Charpy specimen and the dimensions as well as the
definition of the T-L orientation. The T-L specimen orientation was selected according
to ASTM E23-16b (Standard Test Methods for Notched Bar Impact Testing of Metallic
Materials) except if otherwise stated.

Figure 1. Schematic representation of ISO-V Charpy specimens.

The chemical composition was measured with a spark atomic emission spectrometer
(Spectromaxx LMX06) (Table 1). The working method and manipulations were conducted
according to the ASTM E415 standard. The typical heat treatment of RPV forgings con-
sists of quenching, tempering, and postweld heat treatment; methods and conditions are
described in ASME and ASTM specifications.

Table 1. Chemical composition (wt %) of A508 Cl.2 base metal, as measured by optical emission
spectroscopy at the Belgian Nuclear Research Centre (SCK CEN) on a Charpy specimen.

C Mn Si S P Cr Ni Mo Cu

0.201 0.578 0.27 0.0085 0.0091 0.372 0.668 0.599 0.0472

A part from original eastern 1000 MW RPV steel was provided. ISO-V Charpy spec-
imens were cut out from the 1

4 depth. The 15Kh2NMFA (CrNiMoV) forging steel was
manufactured by the IZHORA company (Russia) for a 1000 MW WWER (Water Water
Energy Reactor). The original heat number was 181,358, and the forging steel was pro-
duced according to Russian specification TU 108.765-78. The chemical composition of
15Kh2NMFA steel is provided in Table 2.

Table 2. Chemical composition (wt %) of the 15Kh2NMFA material.

C Mn Si S P Cr Ni Mo V Cu

0.16 0.42 0.29 0.008 0.012 1.97 1.29 0.52 0.12 0.12
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The microstructure of the as-received specimens was a mixed-tempered ferrite–bainite
structure. After manufacturing Charpy specimens from western RPV material A508 Cl.2
and from eastern RPV material 15Kh2NMFA, one part of them was mechanically tested and
the other parts were nondestructively investigated. After the nondestructive examination
(Sections 2.2 and 3.2), this set of specimens was divided into three sets of specimens for
neutron irradiation. They were neutron-irradiated in the BR2 reactor at three different
irradiation fluences (E > 1 MeV) in the primary water pool at an irradiation temperature
of ~100–120 ◦C (Tables 3 and 4). The neutron irradiation was performed in a specially
designed rig called NOMAD_3 [27], where 24 Charpy specimens were directly irradiated.
This ensured that the damage created was large enough to be detected by nondestructive
analysis. The fluence achieved was between 1.55 and 7.90 × 1019 n/cm2 (E > 1 MeV). Four
Charpy specimens for each irradiation level (low, middle, and high fluence) were available.
Subsequently, the irradiated specimens were nondestructively investigated. To correlate
the results of the micromagnetic testing measurements with the mechanical properties
of the same specimens, several mechanical tests were conducted on Charpy specimens
after they were nondestructively characterized. They were tested using an instrumented
pendulum according to ISO 148-1 and ASTM E23 for the as-received nonirradiated and
neutron-irradiated materials. Uniaxial tensile tests were performed with a crosshead rate of
0.2 mm/min, according to ASTM standards E8M and E21 on a conventional static universal
tensile test machine. Vickers hardness HV10 tests were performed according to ASTM
92-17 on each Charpy specimen after neutron irradiation.

2.2. Micromagnetic Methods

Nondestructive methods for materials characterization are based on physical princi-
ples that are correlated to macroscopic physical properties and microscopic effects.

Micromagnetic techniques are widely used for the nondestructive characterization of
the material properties of ferromagnetic steels and are based on the correlation between
the magnetic properties of ferromagnetic materials and their mechanical–technological
characteristics, which are dependent on the microstructure. This correlation is related to
microstructure interaction with both the magnetic structure (Bloch walls) as well as the
dislocations [7,14,15].

The requirements for the procedure for measurement of magnetic hysteresis behavior
are strict: the test specimen to be measured must be long and rod-shaped and must be
magnetized as homogeneously as possible at low frequency (mHz range). The magnetic
flux induced in the test specimen must be measured by a coil surrounding the test specimen.
For these reasons, direct measurement of the hysteresis curve is unsuitable for practical
application to components. Several magnetic methods are suitable for the characterization
of ferromagnetic materials (such as RPV base and weld materials). The following effects
are often used in micromagnetic nondestructive testing: minor hysteresis loops, magnetic
Barkhausen noise, harmonics analysis in the time domain signal of the magnetic tangential
field strength, eddy currents, and incremental permeability.

Generally, micromagnetic measuring devices contain a magnetization unit, a probe,
and a unit for measurement control and data processing (usually a PC). Depending on the
design of the magnetization unit as well as the measurement parameters, different material
depths and areas can be investigated. Micromagnetic methods can, therefore, be used
to analyze a controllable fraction of the specimen volume. Commercial micromagnetic
devices use different effects to describe the material’s condition.

Fraunhofer IZFP developed the 3MA technique, which indirectly and nondestruc-
tively determines mechanical material properties using a one-sided access micromagnetic
sensor. 3MA is based on a combination of several magnetic methods and has been de-
scribed in previous studies in detail [16–18]. The latest implementation of 3MA is 3MA-X8,
which was applied in this work [19]. 3MA-X8 is a variant of 3MA, defined around a
minimalistic, rugged sensor design, using the magnetization coil on a U-shaped core as
the only sensing element. 3MA-X8 uses low-frequency excitation (f < 20 kHz) and offers
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high-speed multichannel measurement (>>100 measurements/s on 3, 8, or more chan-
nels synchronously, depending on the exact device variant). Compared with previous
implementations of 3MA, 3MA-X8 does not contain Barkhausen noise analysis. Harmonics
analysis, eddy current incremental permeability analysis, and eddy current impedance
analysis are accomplished by supplying a voltage signal of two superimposed frequencies
to the electromagnet. The drive current depends on the material contacted by the probe and
is analyzed along with the voltage to extract characteristic parameters (Figures 2–4) that
describe the magnetization behavior, which is then correlated to the mechanical material
properties. Due to the lower frequency range compared with previous 3MA implemen-
tations, a higher penetration depth of the magnetic field is reached. Within the present
application, this is an important advantage, given the correlation of the magnetic properties
to the material properties, such as DBTT and yield strength, as these are also integral values
of the examined specimens.

The following section describes the 3MA-X8 analysis in more detail:

I. Eddy currents (ECs) arise in a material if it is exposed to an alternating magnetic
field and depend on the electrical conductivity σ and the magnetic permeability μ of
the material [16,17]. The higher-frequency EC-affected impedance (Z) is not constant
throughout the rather low-frequency hysteresis loop. Therefore, Z describes a loop
in the impedance plane throughout one hysteresis cycle [19]. Figure 2 illustrates the
parameters derived from this loop.

Figure 2. Schematic illustration of the impedance loop and derived parameters.

II. Incremental permeability (IP) analysis is a method of separating magnetic perme-
ability information from electrical conductivity information in EC analysis [16,17].
Plotting the change in EC coil impedance (DZ) against drive voltage U lecads to an
incremental permeability plot (Figure 3, left) [19]. Several parameters are derived
from the incremental permeability curve (Figure 3).

Figure 3. Schematic illustration of the incremental permeability curve and the parameters derived.
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III. The measured magnetizing current exhibits a low-frequency distortion due to hys-
teresis in the magnetic circuit. The fundamental and harmonic components can be
determined numerically using a fast Fourier transform; thus, the distortions of the
magnetizing current are quantified. The harmonic components determined through
this procedure allow for the determination of material properties (Figure 4) [19].

Figure 4. Schematic illustration of the harmonic analysis in the time domain signal of the magnetiza-
tion current.

Figure 5 shows the 3MA-X8 device, including a probe and a PC. The 3MA-X8 mea-
surements were performed at a magnetization frequency of 50 Hz, a magnetization current
voltage of 2 V, and a superimposed EC frequency of 2000 Hz. The 3MA-X8 device is con-
trolled by modular measuring system (MMS) software. The output of the data acquisition
and evaluation module was a set of 21 magnetic parameters derived from the 3MA-X8
measurements, as listed on the right-hand side of Figures 2–4. A specimen holder and a
probe holder improved reproducibility by minimizing positioning variations.

Figure 5. The micromagnetic multiparameter microstructure and stress analysis (3MA)-X8 system,
including 3MA-X8 device, probe, and PC (left); (right) specimen holder and probe holder.

The Centre for Energy Research developed and applied the MAT method. The MAT
method uses the systematic measurement of large families of minor hysteresis loops from
minimum amplitudes up to, possibly, the maximum (major) on degraded ferromagnetic
samples/objects. From the large volume of recorded data, the data that reflect material
degradation in the most sensitive, or otherwise most convenient, manner are applied
for evaluation of the degradation. These data, best-adapted for the investigated case,
were used as the MAT parameter(s), and their dependence on an independent variable
accompanying the inspected degradation is referred to as the MAT degradation function(s).
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The magnetic induction method appears to be the easiest method of systematic mea-
surement for MAT. A specially designed permeameter [28], with a magnetizing yoke, was
applied for the measurement of families of minor loops of a magnetic circuit’s differential
permeability. Measurement of the hysteresis loops was performed by a magnetizing yoke,
which is placed on the flat surface of the Charpy specimens. A C-shaped laminated Fe–Si
transformer core was used. The yoke had a cross-section of 10 × 5 mm and a total external
length of 18 mm. This size was chosen to fit the size of the investigated specimens. The
specimen holder, designed for hot-cell measurements, is shown in Figure 6 [29]. The
driving coil wound on the yoke produces triangular variations in the applied magnetic
field, with stepwise increasing amplitudes and a fixed slope magnitude in all the triangles
(Figure 7a).

Figure 6. Photo of the specimen holder. A Charpy specimen is placed on the top (V-notch is opposite
the magnetizing yoke) [29].

Figure 7. The time variation of the magnetizing current (a) and the measured permeability loops
(b) [30].

The signal coil picks up the induced voltage, proportional to the differential perme-
ability of the sample. This triangular variation of the magnetizing field, with time t and a
voltage signal U, is induced in the pick-up coil for each kth sample:

U(dF/dt, F, Aj, εk) = K×∂B(dF/dt, F, Aj, εk)/∂t = K×μ(dF/dt, F, Aj, εk)×dF/dt, (1)

where K is a constant determined by the geometry of the sample and by the experimental
arrangement; ε is the independent degradation variable, in our case, Vickers hardness,
yield strength, or transition temperature. As long as F = F(t) sweeps linearly with time,
i.e., |dF/dt| is (the same) constant for measurement at each of the samples, Equation (1)
states that the measured signal is simply proportional to the differential permeability μ of
the measured magnetic circuit as it varies with the applied field F within each minor loop
amplitude Aj for each kth measured sample. If we wish to obtain correct results that are not
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influenced by any previous remanence, each sample has to be thoroughly demagnetized
before it is measured.

The permeameter works under the control of a notebook, which sends the steering
information to the function generator and collects the measured data. An input/output
data acquisition card accomplishes the measurement. The computer registers two data files
for each measured family of minor loops. The first one contains detailed information about
all the preselected parameters of the demagnetization and the measurement. The other file
holds the course of the voltage signal U induced in the pick-up coil as a function of time t
and of the magnetizing current IF and/or field F. As an illustration, Figure 7b presents the
families of permeability loops. Large amounts of data were generated, and our task was
to compare them and find the most suitable data for characterizing the changes between
samples.

Instead of keeping the signal and the magnetizing field in shapes of continuous time-
dependent functions, it is practical to interpolate the family of data for each εk sample
into a discrete square (i, j) matrix, U(Fi,Aj,εk), with a suitably chosen step, ΔA = ΔF.
Because dF/dt is a constant, identical for all measurements within one experiment, it is not
necessary to write it explicitly as a variable of U. MAT is a relative method (practically all
the nondestructive methods are relative), and the most suitable information regarding the
degradation of the investigated material can be contained in the variation of any element
of such matrices as a function of ε, relative to the corresponding element of the reference
matrix U(Fi,Aj,ε0). So, we divided all U(Fi, Aj, εk) elements by the corresponding elements
U(Fi,Aj,ε0) of the reference sample matrix and obtained the normalized elements of the
matrices of relative differential permeability μ(Fi,Aj,εk) = U(Fi, Aj, εk)/U(Fi, Aj, ε0), and their
proper sequences

μ(Fi,Aj,ε) = U(Fi, Aj, ε)/U(Fi, Aj, ε0) (2)

as normalized μ-degradation functions of the inspected material. These μ elements are
referred to as MAT descriptors, and they characterize the degradation of the material.

Numerous MAT descriptors are calculated during evaluation; their number depends
on the density and how μ(Fi,Aj,εk) points are calculated. Normally, about 1000 MAT
descriptors are calculated. The majority of them do not reflect the correlation between
magnetic parameters and actual material degradation. The purpose of our evaluation is to
choose the elements that provide the best correlation between MAT parameters and the
independent parameter from this big data pool. These parameters are called optimally
chosen MAT descriptors, and they are provided below in the Results section. The choice
is correct if these parameters have the best sensitivity and yield good reproducibility
simultaneously. The MAT evaluation process is described in detail in [23].

3MA-X8 and MAT measurements were carried out similarly: to adequately perform
measurements in the hot cell, the specimens were placed on the top of the 3MA-X8 and
MAT probes, respectively, to allow the easy replacement of specimens by a manipulator.
The 3MA-X8 and MAT devices were placed outside the hot cell for remote control of the
measurement.

Both 3MA-X8 and MAT are comparative-type measurement methods. This means that
the measured magnetic parameters describe the material behavior from the magnetic point
of view. For the quantitative characterization of specimens with unknown mechanical
properties, an initial calibration/training process is needed on a well-defined calibration
set of specimens (with known target properties, e.g., DBTT or hardness). A polynomial
function describing the relation between all collected micromagnetic parameters, the mag-
netic fingerprint (MFP), and the target quantity (e.g., hardness, DBTT) of each material
can be determined via regression analysis based on a database of calibration specimen
measurements. Assuming a regression analysis is used, a simple calibration using a poly-
nomial function can be written as Y = a0 + a1×1 + a2X2 + . . . + aNXN, where Y is the target
quantity (e.g., DBTT or hardness), ai are the coefficients, Xi are the measured parameters
(components of the MFP), and N is the number of selected measured parameters [18]. The
parameters are selected based on the least-squares algorithm. This polynomial function is
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generated empirically since there is no physical equation that describes the dependency
between individual magnetic parameters and mechanical properties. The detailed calibra-
tion procedure is described in [18]. The trained system can be used to determine target
quantities of specimens of the same material after a prior recording of the micromagnetic
parameters.

3. Results

3.1. Mechanical Properties

The BR2 material test reactor at SCK CEN, with a nominal power of 125 MW and
unique, adaptable core configuration, is the most powerful material test reactor currently
operating in Europe. The neutron spectrum is typical of a research reactor, with thermal
fluxes between 7 × 1013 and to 1015 n/(cm2s) and fast fluxes (E > 0.1 MeV) between 1 × 1013

and 6 × 1014 n/(cm2s). Like all nuclear reactors, there is no single neutron energy. The
actual fast fluence values for all Charpy specimens were measured (Tables 3 and 4) by Fe
dosimeters. The 235U equivalent fission neutron flux was calculated from the 54Mn activity
formed by the 54Fe(n,p)54Mn reaction. The flux (fluence) was calculated using the 235U
fission spectrum averaged cross-section <σ> = 81.7 mb, adopted from [31]. The equivalent
fission fluence was converted to a fast fluence (E > 1 MeV) in Fe to provide the material
damage of the reactor pressure vessel specimens.

First, the actual fluence values for all Charpy specimens were measured (Tables 3
and 4). The results of the Charpy impact tests are shown in Figure 8 for A508 Cl.2 and
15Kh2NMFA. An irradiation-induced embrittlement shift, ranging between 100 and 200 ◦C,
was achieved.

A correlation usually exists between the yield strength increase, hardening, and
embrittlement. To obtain some estimations on the correlation between yield strength
increase and the embrittlement (ΔT41J), some additional tests were performed. The first
was Vickers hardness at HV5 (Figure 9). Correlations between hardness increase and
neutron fluence were found for both steels. In Figure 10, the increase in yield strength
ΔσY is plotted for the two grades at the three neutron fluence levels. The increase in yield
strength was similar for both grades at the tested fluence levels, even though the initial
yield strength was different between the two grades. All test results are summarized in
Tables 3 and 4 for A508 Cl.2 and 15kHNMFA steel, respectively.

Table 3. Fast fluence (E > 1 MeV), Vickers hardness (HV5), yield strength (hardening Δσy), and ductile to brittle transition
temperature (DBTT; embrittlement ΔT41J) for A508 Cl.2. RT, room temperature.

A508 Cl.2.
Fast Fluence (E > 1 MeV)

(×1019 n/cm2)
Vickers Hardness

HV5 (ΔHV)
Yield Strength

@RT (MPa) (Δσy)
DBTT

T41J (◦C) (ΔT41J)

Baseline 0 181.2 ± 2.8 448 −33 ± 9

Low fluence 1.55 237.9 ± 2.8 (56.7) 710 (262) 76 ± 15 (109)

Medium fluence 4.38 254.4 ± 1.5 (73.2) 793 (345) 125 ± 15 (158)

High fluence 7.04 258.5 ± 3.1 (77.3) 823 (375) 126 ± 15 (159)

Table 4. Fast fluence (E > 1 MeV), Vickers hardness (HV5), yield strength (hardening Δσy), and DBTT (embrittlement ΔT41J)
for 15Kh2NMFA.

15Kh2NMFA
Fast Fluence (E > 1 MeV)

(×1019 n/cm2)
Vickers Hardness

HV5 (ΔHV)
Yield Strength

@RT (MPa) (Δσy)
DBTT

T41J (◦C) (ΔT41J)

Baseline 0 226.1 ± 5.5 600 −51 ± 12

Low fluence 2.78 278.5 ± 3.4 (52.4) 875 (275) 88 ± 15 (139)

Medium fluence 6.83 292.8 ± 3.1 (66.7) 973 (373) 136 ± 15 (187)

High fluence 7.9 294.1 ± 4.5 (68.0) 987 (387) 124 ± 15 (175)
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Figure 8. Embrittlement of 15Kh2NMFA and A508 Cl.2 after NOMAD_3 irradiation as a function of
neutron fluence. The dashed lines are added to guide the eye (power law fit).

Figure 9. Vickers hardness (5kgf) for A508 Cl.2 and 15Kh2NMFA. The dashed lines are added to
guide the eye.

Figure 10. Tensile strength increase (hardening), tested at room temperature for A508 Cl.2 and
15Kh2NMFA steels, as a function of the fast neutron fluence. The dashed lines are added to guide the
eye (power law fit).
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All mechanical properties, such as hardness, yield strength, and DBTT, increased
with increasing irradiation fluence. The increase in yield strength and DBTT caused by
neutron irradiation for both materials was almost the same; the increase in the hardness
of the eastern RPV material was slightly higher than that of the western RPV material.
Additionally, we observed that hardness, yield strength, and DBTT slowly increased at
middle and high fluence for the western RPV material. The same behavior was observed
in terms of hardness and yield strength for the eastern RPV material. For this material, the
DBTT at high fluence was slightly lower than at medium fluence. However, no conclusions
can be drawn here due to the uncertainties in these values.

3.2. Micromagnetics Results

Both nondestructive techniques, 3MA-X8 and MAT, were applied to the specimens
described in Section 2.1 using predefined measuring parameters (magnetic field amplitude
and magnetization frequency) on the opposite side of the Charpy notch to avoid possible
side effects that can alter the outcome of the measurements. All measurements were carried
out at the Laboratory of Medium and High Activity (LMHA) at SCK CEN due to the
high activation of the specimens. The exact same specimens were tested before and after
neutron irradiation under the same environmental conditions: in a hot cell. Therefore, the
disturbing influences of material inhomogeneity and scatter between different specimens
of the same material were eliminated.

Both micromagnetic measurements recorded from Charpy specimens of RPV materials
A508 Cl.2 (Figure 11) and 15Kh2NMFA (Figure 12) before and after neutron irradiation
showed clear differences between the four irradiation conditions (nonirradiated; low,
medium, and high fluence). We observed that the magnetic material properties of different
specimens measured before irradiation were not exactly identical. After neutron irradia-
tion, these differences were observed in the magnetic properties of specimens irradiated
at the same fluence as well. Nevertheless, a trend was clearly identified: neutron irradi-
ation caused easily measurable differences in magnetic parameters, although different
procedures, 3MA-X8 or MAT, were used for measurements.

In the case of MAT measurements, the parameters are normalized by the correspond-
ing parameter of the reference (nonirradiated) specimens. As shown in Figures 11 and 12,
a clear increase in magnetic parameters was found due to neutron irradiation. This pa-
rameter depends on the material’s condition. For A508 Cl.2 material, this descriptor was
characterized by Fi = 780 mA and Aj = 1200 mA values, while 15Kh2NMFA material was
characterized by Fi = 30 mA and Aj = 1080 mA.

Figure 11. Dependency of the amplitude of third harmonics P3 (left) and of the magnetic adaptive
testing (MAT) descriptor (right) on the fluence level for western reactor pressure vessel (RPV) material
A508 Cl.2.
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Figure 12. Dependency of the amplitude of third harmonics P3 (left) and of the MAT descriptor
(right) on the fluence level for eastern RPV material 15Kh2NMFA.

In the case of 3MA-X8 measurements, several magnetic parameters (e.g., P3, A3, K,
Ucdz) showed a clear trend with increasing neutron fluence. Figures 11 and 12 show the
amplitude of the third harmonics P3-derived from upper harmonics analysis in the time
domain signal of the magnetization current as a function of neutron fluence.

The results of the micromagnetic measurements were evaluated in terms of DBTT
determined by Charpy tests, hardness, and yield strength. Trends in several quantities
extracted from upper harmonics analysis and magnetic adaptive testing were observed in
relation to different mechanical properties (DBTT, mechanical hardness, and yield strength).

Differences between the irradiation conditions can hardly be identified, especially
between specimens irradiated at medium and high fluence. In this context, it has to be
emphasized that for both materials, the mechanical properties of the specimens under the
middle- and high-irradiation conditions were almost the same as well. In Figures 13–16, the
same parameters as in Figures 11 and 12 are presented in terms of embrittlement (DBTT)
and hardening (hardness and yield strength) for both materials and both testing methods.

We observed that the 3MA-X8 method is more sensitive to changes in the material
properties of western RPV steel A508 Cl.2, whereas the MAT method is more sensitive to
the changes in the material properties of eastern RPV steel 15Kh2NMFA.

Figure 13. Dependency of the amplitude of third harmonics P3 on the ductile to brittle transition temperature (DBTT)(a),
hardness (b), and yield strength (c) of western RPV material A508 Cl.2.
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Figure 14. Dependency of the MAT descriptor on the DBTT (a), hardness (b), and yield strength (c) of western RPV material
A508 Cl.2.

Figure 15. Dependency of the amplitude of third harmonics P3 on DBTT (a), hardness (b), and yield strength (c) of eastern
RPV material 15Kh2NMFA.

Figure 16. Dependency of the MAT descriptor on the DBTT (a), hardness (b), and yield strength (c) of eastern RPV material
15Kh2NMFA.

3.3. Nondestructive Prediction of Embrittlement and Hardening

All measured micromagnetic parameters were collected and classified in terms of
irradiation condition, embrittlement, and hardening. The reason for using more than one
measuring parameter for material characterization is the increased robustness against
disturbing influences such as material variations and surface conditions (similar to the
benefits of having and combining different human senses). Having collected all measured
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parameters obtained from 3MA-X8 and MAT measurements, parameters were separated
into two data sets: one set for the calibration/training procedure and another set for testing.
In the data set for calibration/training, all parameters obtained by means of MAT and
3MA-X8 methods on the predefined calibration set of specimens were merged with the cor-
responding mechanical properties. In the next step, the calibration/training procedure was
conducted: polynomial functions empirically describing the relation between measured
micromagnetic parameters and the target quantities (DBTT, mechanical hardness, and
yield strength) were determined via regression analysis [18]. These polynomial functions
quantitatively and empirically describe the correlation between mechanical properties and
measured micromagnetic parameters. Finally, these polynomial functions, determined
on the training set of specimens, were tested using the micromagnetic data obtained on
the testing set of specimens; thus, the target quantities were estimated. Figures 17 and 18
show the results of the training (dark dots) and testing (light crosses) procedures for A508
Cl.2 and 15Kh2NMFA, respectively. The combination of both 3MA-X8 and MAT methods
allows for the prediction of mechanical properties, independent of the difference between
individual specimens under the same irradiation condition.

Figure 17. Prediction of DBTT (a), mechanical hardness (b), and yield strength (c) for A508 Cl.2 material using combined
data from 3MA-X8 and MAT methods.

Figure 18. Results of the calibration procedure to predict DBTT (a), mechanical hardness (b), and yield strength (c) for
15Kh2NMFA.

Tables 5 and 6 show the correlation coefficients (R2) and root mean square errors
(RMSEs) for the estimation of all targeted quantities: DBTT, hardness, and yield strength.
All targeted quantities were estimated with an accuracy higher than 91%, demonstrating
the suitability of this procedure to estimate target quantities in a nondestructive manner.
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Table 5. Correlation coefficients (R2) and root mean square errors (RMSEs) for the estimation of
DBTT, mechanical hardness, and yield strength of A508 Cl.2 material.

Parameter R2 RMSE

Training Test Training Test

DBTT 99.8% 97.5% 2.9 ◦C 12.5 ◦C

Yield strength 99.9% 94.5% 6.2 MPa 38.0 MPa

Hardness 99.9% 96.4% 1.1 HV 6.6 HV

Table 6. Correlation coefficients and root mean square errors for the estimation of DBTT, mechanical
hardness, and yield strength of 15Kh2NMFA material.

Parameter R2 RMSE

Training Test Training Test

DBTT 99.6% 92.5% 5.2 ◦C 21.4 ◦C

Yield strength 99.4% 91.5% 13.2 MPa 51.6 MPa

Hardness 99.5% 92.8% 2.1 HV 7.9 HV

4. Discussion

In this study, several material properties were determined through mechanical tests
and micromagnetic examinations. Changes in mechanical properties are caused by neutron-
irradiation-induced microstructure defects, which, in turn, influence the magnetic proper-
ties measured using micromagnetic measurements.

It is well-known that an increase in neutron fluence yields an increase in the density
and diameter of microstructure defects. The nature of the microstructure defects and of
the degradation mechanism caused by neutron irradiation in RPV steels is dependent
on, among other parameters (irradiation fluence, irradiation temperature), the chemical
composition of the RPV steel, especially the Cu, Ni, and P contents. There are three
important neutron-irradiation-induced damage mechanisms caused by matrix features,
Cu-rich precipitates and Mn–Ni–Si-precipitates. The first one is responsible for hardening
in both RPV steels, having Cu content below and above 0.04 wt %, generally at low
fluences. The second one occurs at high fluences in RPV steels with Cu content higher
than 0.04 wt %. The third one is typical for low-Cu RPV steels at high fluences [31]. In
this study, the Cu contents of both RPV steels were higher than 0.04 wt % (Tables 1 and 2).
Thus, for both RPV steels, the neutron-irradiation-induced embrittlement could be caused
by matrix features at low fluence and Cu-rich precipitates at high fluences. However,
microstructural examinations (e.g., small neutron angle scattering and high-resolution
transmission electron microscopy) were not performed in this study.

For both materials, we observed that neutron irradiation at low fluences caused a
significant modification in material properties: hardness, embrittlement (DBTT), and yield
strength. A further increase in neutron fluence caused a much smaller further degradation
of the mechanical properties, whereas a further increase in the neutron fluence did not
cause any further change in the mechanical properties, indicating saturation that was
observed (Tables 3 and 4). For 15Kh2NMFA steel, a small decrease in DBTT was observed
at high neutron fluence, but it remained within the uncertainties of such measurements. All
these material properties and their progress, induced by neutron irradiation, are strongly
influenced by neutron-irradiation-induced microstructure changes.

Microstructure defects impede dislocation movement and Bloch-wall movement
and cause changes in mechanical and magnetic properties, respectively. Micromagnetic
parameters depend on Bloch-wall movement during magnetization and characterize their
interaction with microstructure defects such as precipitates, voids, dislocations, or grain
boundaries. Coercivity proportionally depends on the interaction intensity between Bloch
walls and microstructure defects. Kersten’s and Dijkstra and Wert’s theories describe the
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correlation between coercivity, volume, and diameter of small microstructure defects [32].
All these theories describe an increase in magnetic hardness with the rising volume and
diameter of microstructure defects. Since all other micromagnetic parameters strongly
correlate with coercivity, they similarly depend on the microstructure defects’ diameter
and volume.

The clear difference in the results of magnetic measurements between the nonirra-
diated and irradiated conditions correlates well with the results of the mechanical tests
and can be explained by the occurrence of microstructure defects due to neutron irra-
diation (matrix features at low fluence and Cu-rich precipitates at high fluence). Small
microstructure defects impede Bloch-wall movement due to the foreign body effect and,
therefore, cause an increase in magnetic hardness, as illustrated by the magnetic parameters
in Figures 13–16. The foreign body effects describe the interaction between Bloch walls and
small microstructure defects [31]. The higher the volume of small microstructure defects
(matrix features), the higher the mechanical properties and the stronger the foreign body
effect. The smaller change in mechanical properties at increased neutron fluence can be
explained by an increase in the microstructure defects’ (Cu-rich precipitates) diameter
and a smaller increase of the volume of defects, which, in turn, similarly influence the
magnetic properties. The foreign body effect and the interaction between Bloch walls and
microstructure defects both weaken; thus, magnetic properties increase more slowly.

For the irradiated eastern RPV steel 15Kh2NMFA, we observed that parameters
derived from both magnetic methods reached saturation. For western RPV material A508
Cl.2, the MAT descriptor continuously increased, but most 3MA-X8 parameters reached
saturation.

Another conclusion is that by applying different nondestructive magnetic techniques,
a similar correlation was found between mechanical properties and the modification of
magnetic parameters. This finding is encouraging for future practical applications of
magnetic NDE.

The innovative part of this study is the combination of the results obtained using both
magnetic methods, followed by a training procedure to determine targeted material proper-
ties (hardness, DBTT, and yield strength). Excellent correlation coefficients and impressively
low RMSEs were achieved for the prediction and quantification of hardness, ductile to brit-
tle transition temperature, and yield strength of the tested specimens (Figures 17 and 18).
Correlation coefficients larger than 91% were obtained between nondestructively predicted
and destructively determined mechanical properties (Tables 5 and 6). Therefore, the two
magnetic methods resulted in a strong correlation between their outcomes, and their
combination can be used to precisely predict different mechanical properties.

5. Conclusions

Changes in mechanical properties due to irradiation of standard surveillance Charpy
specimens have often been published according to standard surveillance programs [1].

As experimentally observed, the relationship between neutron fluence and the mi-
cromagnetic parameters is nonlinear since the dependence of the mechanical properties
on neutron fluence is nonlinear as well. The results of the individual micromagnetic mea-
surements, performed following MAT and 3MA-X8 methods, prove their suitability for
characterizing the progressive degradation of RPV steels caused by simulated operation
conditions in terms of low-temperature neutron irradiation. Differences between individual
specimens at the same irradiation condition or the same damage stage (same DBTT, yield
strength, or hardness) affect the outcome of both kinds of measurements.

The combination of both magnetic methods allows for the prediction of mechanical
properties with high accuracy, independent of the microstructural differences between
individual specimens at the same irradiation condition.
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Abstract: Three-dimensional observation of metal grains (MG) has a wide potential application
serving the interdisciplinary community. It can be used for industrial applications and basic research
to overcome the limitations of non-destructive testing methods, such as ultrasonic testing, magnetic
particle testing, and eddy current testing. This study proposes a method and its implementation
algorithm to observe (MG) metal grains in three dimensions in a general laboratory environment
equipped with a polishing machine and a metal microscope. An image was taken by a metal
microscope while polishing the mounted object to be measured. Then, the metal grains (MGs) were
reconstructed into three dimensions through local positioning, binarization, boundary extraction,
(MG) selection, and stacking. The goal is to reconstruct the 3D MG in a virtual form that reflects the
real shape of the MG. The usefulness of the proposed method was verified using the carbon steel
(SA106) specimen.

Keywords: 3D imaging of metal grains; non-destructive testing methods; stacking images; SA106
carbon steel

1. Introduction

Predicting, comprehending, and monitoring the microstructure and mechanical prop-
erties, such as heterogeneous microstructure, ductility decreases, the concentration of
residual stress, brittleness, and deterioration of toughness, of critical structures, such as
heat exchangers, power plants, the oil and gas industry, chemical engineering, and espe-
cially nuclear power plants, is important to ensure safety and avoid failures that can lead to
environmental disasters, causalities, and financial losses. To prevent and avert such risks,
and to ensure the continued safety and integrity of these structures, periodic inspections
are required [1–4].

Numerous non-destructive methods can be used for microstructure characteriza-
tion. In most cases, non-destructive testing cannot directly determine material charac-
teristics, which are established by destructive testing. To quantify material properties
non-destructively, non-destructive methods must be correlated with destructively mea-
sured standard data. The limitation and disadvantage of destructive methods are that
they do not allow the characterization of the evolution of material properties of the same
specimen when successively damaged [3], and they are not easily applicable to characterize
the mechanical behavior of materials, if possible, with restricted, difficult and expensive
access, even using a numerical simulation, such as the finite element method.

The finite element method is used to analyze the relationship between the load, stress-
strain, and resistance to failure of a structure [5–8]. Meanwhile, according to conventional
studies, the size and shape of the microstructure affect the strength, toughness, and creep
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resistance of the structure [9–11]. However, it is not easy to reflect and demonstrate this
with the finite element method [12–15]. This is because the factor used in the finite element
method is the shape of the structure and does not include the microstructure of the structure
itself. Therefore, we have not yet seen an example in which the size of the microstructure
is inserted as an analysis condition in the finite element method (or two-dimensional
analysis). Therefore, in order to analyze the shape and size of the microstructure, it is
necessary to express the shape of the grain in three dimensions. On the other hand, the
size and shape of the grains affect the analysis results of non-destructive tests [16–19], such
as ultrasonic testing, magnetic particle testing, and eddy current testing. For instance, in
the case of ultrasonic examination, research results have been reported that the size and
shape of the microstructure influence the scattering of the sound [20]. However, analysis
or qualitative matters considering only the average size of the microstructure are reported
in [21], and it is difficult to find previous studies on ultrasound wave scattering targeting
the size and shape of the actual microstructure. In the magnetic particle inspection method,
the sample is magnetized, and the adsorption of magnetic particles by the magnetic flux
leakage generated around the defect is observed. At this point, if a strong external magnetic
field is applied and then removed, residual magnetization occurs. A similar fault signal is
generated, in which magnetic particles are adsorbed even in non-defective areas due to
residual magnetization [22–24]. Even though the deformation caused by an external force
causes the magnetic moment inside the magnetic domain to be anisotropic in a specific
direction and, therefore, residual magnetization occurs even if an external magnetic field is
not applied [25–27]. In addition, residual magnetization is frequently generated in welds
where heat and residual stress are generated by an external force. In the eddy current
method of inspection, an induced current is applied to an object to be measured, and the
distortion of the induced current occurring around a fault, that is, a change in impedance
and a different phase due to eddy currents is measured [28,29]. However, it is difficult
to determine the presence or size of a defect due to the edge effect that occurs at the end
of the object to be measured [30]. This means that even when the grain is needle-shaped
or the shape changes rapidly, the eddy current signal can be affected. It is important
to provide a means of quantitatively measuring and expressing the three-dimensional
shape of a grain in order to grasp the effects of such effects, i.e., the formation of magnetic
domains, residual magnetization, and the effects of edge according to the shape and size
of the grain. According to nano-radiography and tomography, the metal grain can be
imaged in three dimensions [31,32]. Nevertheless, this requires very high accuracy and
expensive equipment, including X-ray shielding. Furthermore, it is difficult to measure
the distribution of magnetic domains within the grain in three dimensions. In addition,
under the heat treatment influence, the application of external field and mechanical stress
can rearrange the martensite variant and can change the magnetic domains. It is important
to understand their effect not only at the macroscopic level but also at the microscopic
level [33–36]. In this context, the use of an alternative method to overcome the limitations
of non-destructive testing (NDT) techniques can make a valuable contribution to the
characterization of materials and the evaluation of microstructure performance through
rapid and efficient experiments and simulations. In this paper, we present a method to
reproduce the real shape and size of the grains of the tested sample SA106 by pilling
up two-dimensional images obtained by a metal microscope. To achieve this target, we
introduce fixtures, procedures, and software algorithms based on mathematical formulas.

Several studies have previously developed 2D and 3D techniques to construct a way
to study microstructure using different experimental and simulation techniques. The
results of these studies lead to a good outcome that provides access to crucial structural
information of the investigated materials, which facilitates and enhances the understanding
of physical and chemical concepts at the microscopic level [37–43].

However, we have not seen any work similar to our work, which allows the recon-
struction, extraction, and selection of one or more grains with the exact shape and size of
the inspected material, without using extensive software and hardware, but just simple
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equipment and some algorithms. It should be emphasized that the method presented
here permits: (1) 3D grain shape obtaining; (2) using conventional research laboratory
environment; (3) easy preparing specimens; (4) multi-parallel data acquisition; (5) easy 3D
image processing. This is particularly important for the industry and research laboratories.

The finding is encouraging for the near future application of the method for the
analysis of 3D stress, strain deformation at grain level, and the analytical study of non-
destructive evaluations using electromagnetic and ultrasound testing.

2. Specimen and Layer Capture

In this study, carbon steel SA106 was targeted. The sample was cut and cropped to a
small volume of 25 × 9 × 25 mm (width × length × height), respectively, and mounted on
a cylindrical resin with a diameter of 35 mm and a height of 27 mm. Then, the observation
side and the backside of the mounted specimen were polished to be exposed outside the
resin. This allows the “polished” height to be measured more accurately when viewed
under a microscope. In other words, when measuring the height of the sample with a
micrometer after polishing, errors likely to be caused by compression of the resin can
be avoided when the resin is used as a measurement reference and not the surface of
the sample. As shown in Figure 1a, the side surface was polished to deflect by 1.84 mm.
This deflected side surface (hereafter “key-hole”) was used as a reference surface for
microscopic observation. Figure 1b is a jig for uniform grinding of the key-hole, and
Figure 1c is a template (state) in which the key-hole is polished in the sample mounted in
the jig. Figure 1d illustrates these mounted samples; they are inserted into the X-Y stage
holder under the microscope and are fixed by a key (expressed in black in the figure). Due
to this structure, the area observed by the microscope can fix the measurement surface with
a repeatability of the order of 10 to 20 μm.

(a) (b) (c)

(d)

Figure 1. Specimen adjustment to reduce positioning error. (a) Mounted specimen; (b) Jig for key-
hole; (c) After grinding Mounted specimen; and (d) Set specimen on the XY-stage using the key and
key-hole.
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The observation surface was polished using SiC polishing pads FEPA P200, P400, P800,
P1200, and P2000. The last stage, P2000, has a grid size of 10.3 μm. Finally, fine polishing
was carried out for 20 s using polishing cloths and polycrystalline diamond paste having a
grid size of 1 μm. Once the micro-polishing was completed, an etchant solution obtained
by diluting with nitric acid 3 g in 65 g ethanol was exposed onto the observation surface
for 5 s, followed by ultrasonic cleaning with distilled water for 15 s and then cleaning
with ethanol for 10 s. This chemical etching was performed a total of three times. The
height of the four sides of the test sample was measured with a micrometer having an
accuracy of ±0.01 μm, visualized through the microscope (500×), and recorded on the
laptop. The observation by the microscope was repeated while repeating fine polishing,
chemical etching, as well as the height measurement and can be directly linked to the 3D
image processing. A total of 60 fine polishes were performed; Table 1 shows the heights
measured in each layer.

Table 1. Height of the polished sample at each layer.

Layer
Height of Layer (mm)

1st Point 2nd Point 3rd Point 4th Point Average

1 22.49370 22.47870 22.50430 22.51340 22.49753
2 22.49280 22.47680 22.50210 22.51190 22.49590
3 22.49160 22.47510 22.50000 22.50910 22.49395
4 22.48980 22.47290 22.49850 22.50800 22.49230
5 22.48820 22.47130 22.49740 22.50620 22.49078
6 22.48680 22.47090 22.49660 22.50440 22.48968
7 22.48510 22.46850 22.49450 22.50240 22.48763
8 22.48300 22.46730 22.49240 22.50030 22.48575
9 22.48160 22.46550 22.49120 22.49910 22.48435

10 22.48020 22.46410 22.48900 22.49700 22.48258
11 22.47910 22.46330 22.48750 22.49540 22.48133
12 22.47680 22.46140 22.48580 22.49320 22.47933
13 22.47570 22.46040 22.48330 22.49090 22.47758
14 22.47400 22.45810 22.48170 22.48880 22.47565
15 22.47220 22.45700 22.47990 22.48750 22.47415
16 22.47120 22.45550 22.47790 22.48630 22.47273
17 22.46920 22.45340 22.47640 22.48510 22.47103
18 22.46730 22.45250 22.47560 22.48420 22.46990
19 22.46586 22.45088 22.43980 22.48258 22.46828
20 22.46448 22.44918 22.47228 22.44048 22.46660
21 22.46338 22.44788 22.47038 22.47948 22.46528
22 22.46188 22.44578 22.46938 22.47798 22.46375
23 22.46088 22.44368 22.46688 22.47718 22.46215
24 22.45918 22.44238 22.46528 22.47568 22.46063
25 22.45788 22.44028 22.46358 22.47368 22.45885
26 22.45588 22.43848 22.46218 22.47188 22.45710
27 22.45398 22.43748 22.46038 22.47048 22.45558
28 22.45198 22.43548 22.45778 22.46968 22.45373
29 22.45038 22.43368 22.45578 22.46858 22.45210
30 22.44878 22.43258 22.45408 22.46608 22.45038
31 22.44728 22.43068 22.45258 22.46518 22.44893
32 22.44608 22.42948 22.45168 22.46338 22.44765
33 22.44498 22.42728 22.45008 22.46098 22.44583
34 22.44388 22.42518 22.44868 22.45968 22.44435
35 22.44278 22.42288 22.44748 22.45868 22.44295
36 22.44158 22.42188 22.44638 22.45618 22.44150
37 22.44008 22.42038 22.44368 22.45528 22.43985
38 22.44385 22.41880 22.44210 22.45370 22.43827
39 22.44364 22.41560 22.44090 22.45230 22.43630
40 22.43470 22.41440 22.43880 22.45090 22.43470
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Table 1. Cont.

Layer
Height of Layer (mm)

1st Point 2nd Point 3rd Point 4th Point Average

41 22.43230 22.41230 22.4376 22.44950 22.43292
42 22.43120 22.41070 22.43620 22.44720 22.43132
43 22.43000 22.40960 22.43550 22.44580 22.43022
44 22.42920 22.40870 22.43350 22.44460 22.42900
45 22.42830 22.40780 22.43150 22.44270 22.42757
46 22.42650 22.40620 22.42990 22.44030 22.42572
47 22.42570 22.40530 22.42900 22.43870 22.42467
48 22.42390 22.40380 22.42770 22.43740 22.42320
49 22.42210 22.40170 22.42670 22.43560 22.42152
50 22.42070 22.40070 22.42500 22.43430 22.42017
51 22.41910 22.39980 22.42350 22.43340 22.41895
52 22.41860 22.39840 22.42180 22.43210 22.41772
53 22.41700 22.39700 22.42000 22.43030 22.41607
54 22.41580 22.39510 22.41860 22.42880 22.41457
55 22.41420 22.39300 22.41670 22.42680 22.41267
56 22.41300 22.39160 22.41520 22.42550 22.41132
57 22.41230 22.39080 22.41340 22.42340 22.40997
58 22.41070 22.38880 22.41170 22.42150 22.40817
59 22.40860 22.38680 22.41050 22.42000 22.40650
60 22.40660 22.38590 22.40890 22.41850 22.40497

3. Algorithms for 3D Imaging of Grains and Results

3.1. Local Positioning

As mentioned above, the main goal of this study is to image MG in 3D. To reach
our purpose, micrographs are taken while repeatedly polishing. At this time, the height
information measured by the micrometer is taken as the z-axis. Then the location of the
boundary of a specific MG selected in the photo is stored as the x-y coordinates. Therefore, it
is possible to obtain three-dimensional coordinates for the node representing the boundary
of the MG.

However, as the experimental methodology seems very simple, a challenge associated
with this technique is a positional error within ±7 μm that occurred when the specimen was
polished, and the same area was observed, even though we used very accurate equipment
to avoid this (backlash play), because of the high special-resolution used (2 μm). As an
example, Figure 2 is a photograph (hereinafter, nth layer photo) taken after polishing an
area of 130 × 98 μm three times, four times, and fifth times, respectively, using a microscope
at a magnification of 500. For mutual comparison, a white line with a + mark is indicated
in the center. Based on the 3rd layer, the position of the 4th layer is shifted to the upper left.
Further, based on the 4th layer, the 5th layer has moved to the right. Meaning the photos of
each layer are not in the same position.

(a) (b) (c)

Figure 2. Microscopic photograph of the polished layers. (a) 3rd layer; (b) 4th layer; and (c) 5th layer.

To correctly stake the images, improve the accuracy, and achieve high precision of the
final desired result, we have developed and used a set of algorithms that automatically
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corrects these positional errors. Figure 3a is an nth layer and is used as a reference. Figure 3b
is a target as the (n + 1)th layer. Each microscope image is composed of 1536 and 2048 pixels
in the row and column directions, respectively. The horizontal column is the x-direction,
and the vertical row is the y-direction. The origin of the coordinates is (1,1), which is left-top
based on the pixel, and the last coordinate is (2048,1536), which is the right-bottom.

(a) (b)

Figure 3. Area selection for local positioning. (a) Reference picture nth layer; (b) Target picture (n + 1)th layer.

The (x1, y1) and (x2, y2) shown in Equation (1) are the vertices in the diagonal direction
of the area selected to apply the local positioning algorithm. Δx and Δy are the lengths of
the horizontal and vertical sides of the analysis area. In the case of Figure 3a, (251,201) and
(1900,1300) are the vertices, and the region of Δx = 1650 and Δy = 1100 is selected.

Δx = x2 − x1
Δy = y2 − y1

}
(1)

In Equation (2), the region of Figure 3a was selected from the first layer photo, which
means that it was used as a reference photo. In other words, when stacking the pho-
tos, they should be positioned with the first one defined as the reference. In addition,
Equations (3) and (4) involve selecting a region to be analyzed with respect to the reference
photo in the second layer photo, which is a target for local positioning. Select a total of cases
from the domain of (x1 − h, y1 − h) and (x2 − h, y2 − h) to the domain of (x1 + h, y1 + h) and
(x2 + h, y2 + h). Where h represents the maximum position error of each layer. Figure 3b is
the case of h = 100, which is a schematic diagram of the selection of a total of 40.000 cases
from the domains of (151,101) and (1800,1200) to the domains of (351,301) and (2000,1400).[

P1
ΔxΔy

]
=

[
P1

re f (x1 : x2, y1 : y2)
]

(2)

[
P2

ΔxΔy(i, j)
]
=

[
P1

target(x1 + i : x2 + i, y1 + j : y2 + j)
]

(3)

− h ≤ (i, j) ≤ +h (4)

Equation (5) denotes S1(i,j), the sum of the absolute values of the differences between
each element of the matrix of the selected region in the reference photo and the target photo,
respectively. Equation (6) denotes the row ΔX2 and column ΔY2 having the minimum value
in S1(i,j). In this instance, (ΔX1, ΔY1) = (0, 0). Furthermore, the minimum value of S1(i,j)
is generated at the position where the reference photo and the target photo almost coincide.

S1(i, j) =
(Δx,Δy)

∑
(x,y)=(1,1)

[
abs

([
P1

ΔxΔy

]
−

[
P2

ΔxΔy(i, j)
])]

(5)
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[ΔX2, ΔY2] = min(S1(i, j), {(i, j) ∈ ±h}) (6)

Thereafter, as shown in Equations (7)–(9), the reflecting region in the nth layer photo
becomes the reference, and the local positioning is repeated by comparing it with the target
(n + 1)th layer photo. Using this process along with ΔXn and ΔYn for each layer obtained
using Equation (10), the region of interest of the first layer photo, to be the same region as
the other target photos, each local positioning of the region having X1, Y1 and X2, Y2 as the
diagonal vertices layer, can be observed, as shown in Equation (11).[

Pn
ΔxΔy

]
=

[
Pn

target(x1 + ΔXn : x2 + ΔXn, y1 + ΔYn : y2 + ΔYn)
]

(7)

[
Pn+1

ΔxΔy(i, j)
]
=

[
Pn+1

target(x1 + i : x2 + i, y1 + j : y2 + j)
]

(8)

Sn(i, j) =
(Δx,Δy)

∑
(x,y)=(1,1)

[
abs

([
Pn

ΔxΔy

]
−

[
Pn+1

ΔxΔy(i, j)
])]

(9)

[ΔXn+1, ΔYn+1] = min(Sn(i, j), {(i, j) ∈ ±h}) (10)[
Pn

align

]
=

[
Pn

target(X1 + ΔXn : X2 + ΔXn, Y1 + ΔYn : Y2 + ΔYn)
]

(11)

On the other hand, X1, X2, Y1, Y2 of Equation (11) to be selected for observing the
change of a specific cross section of the MG are independent of x1, x2, y1, y2 of
Equations (1), (2), (7) and (8), which were selected for local positioning. As an example, lo-
cal positioning was performed at (x1, y1) = (250, 200), (x2, y2) = (2000, 1000), ΔX17 = 55
and ΔY17 = 167 in the 3rd layer photo in Figure 4a,c. Further, values of ΔX18 = 35
and ΔY18 = 170 were obtained in the 4th layer photo of Figure 4b,d. Then, by adjusting
(X1, X2, Y1, Y2), an area of 1700 × 1200 pixels in Figure 4a,b, and also 420 × 420 pixels in
Figure 4c,d were selected, respectively.

(a) (b)

(c) (d)

Figure 4. Microscopic photographs with local positioning in a certain area. (a) 17th layer,
(55,167) (1754,1368); (b) 18th layer, (35,170) (1734,1369); (c) 17th layer, (701,161) (1120,560); and
(d) 18th layer, (681,164) (1100,583).
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3.2. Selection and Binarization

In order to select a specific MG and image it in 3D, it is necessary to select the boundary
surface of the corresponding MG. First, a point inside a specific MGF is read, it is called
point-1, and the brightness of the corresponding coordinate is read. Next, a point is read in
the boundary area, it is called point-2, and the brightness of the corresponding coordinate
is read. Half of the difference between the two coordinates is used as the threshold, and the
resulting ones are separated into a double collection of pixels (two levels of color), namely
bright and dark. If it is bright, it is replaced by “1”, and if it is dark, it is replaced by “0”.

After fixing the column at point-1, the row with the first 0 is read while shrinking the
row. In Figure 5a, the horizontal direction is the column, and the vertical direction is the
row. The column number increases as the column moves to the right. On the other hand,
the row number increases as the row goes down. Hence, the upward arrow in Figure 5b
means that the row becomes smaller. Therefore, the starting point of the boundary can
be found by adding 1 to the row where the first 0 occurs. Furthermore, according to the
micrograph, voids may occur in the layer or be expressed as black dots (points) due to
decidualization. The presence of these dots may confuse the position of the first zero in
the row. As a matter of fact, in this study, as can be seen in Figure 5c, all the small “0”
surrounded by the wide distribution of “1” were changed to “1”. By these measures, the
black dots inside each layer in Figure 5b become collectively “1”, as depicted in Figure 5c,
such that the position of the boundary can be clearly found.

(a) (b)

(c) (d)

Figure 5. Algorithms for selection, binarization, and boundary extraction. (a) Select a structure and background;
(b) Boundary extraction with voids; (c) Boundary extraction without voids; and (d) Boundary extraction algorithm.

Figure 5d is a diagram explaining the algorithm for finding the coordinates of the
boundary after finding the starting point of the boundary by the algorithm of Figure 5c.
We know the positions of the ‘first 0′ and ‘last 1′. The presence or absence of “1” and “0” is
checked in four adjacent pixels. There are four cases. Point-1 moves to the upper side and
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stops at the boundary of “1” and “0”, so it is the fixed condition. We can assume four cases,
including this fixed condition, right upper, and right side will be 1-1, 0-1, 0-0, 1-0. In the
case of 0-1, the boundary is to the right, as shown in the following case of the breakpoint in
Figure 5d. In the case of 1-1, the boundary will be right-side up, as shown in the following
case of 0-1 in Figure 5d. In the case of 0-0, as shown in Figure 5d, the peak at the following
arrows. The MATLAB command boundary is used.

3.3. Nodes and Stacking

When the metallographic microscope used in this paper is set to 500× magnification,
the resolution per pixel is approximately 0.063 μm; the micrometer accuracy for measuring
the height is 0.01 μm. Consequently, the boundary expressed by the (x,y) coordinates
obtained from the MG picture is drawn with a relatively large number of nodes compared
to the height z, and higher spatial resolution than necessary. This reduces the computational
speed during three-dimensional imaging, as well as forming needle-like surfaces up and
down. To overcome this problem, if the number of nodes forming the boundary is reduced,
the shape of the layer may be distorted. Accordingly, in this section, we examined how
effective it is to reduce the number of nodes forming the boundary of the organization.

Let the pixels of the camera (microscope) be as defined by Equation (12). Generally
the ratio of vertical and horizontal pixels is such that m/n = 4/3. The spatial resolution of
the image, which can be obtained using the microscope, depends on the optical lens system
and can be expressed by Equation (13).

Rc = m × n (pixels) (12)

Rp = w × h (μm) (13)

where w and h are the width and height of each image. The quantitative distance between
each pixel can be derived from Equation (14)

P = w/n (μm/pixels) (14)

Here we were using m = 2048 and obtaining w = 130 (μm). Therefore, P would
be 130/2048 (μm/pixels), corresponding to 0.063 (μm/pixels). However, as indicated in
Table 1, the height of each layer after polishing was 1–2 μm. If we use P = 0.063 (μm/pixels),
the lateral surface of the crystal will be expressed as shallow needle-like squares, and the
surface lacks uniformity, due to the small value of P. In order to reproduce the result well,
we defined P′ as expressed in Equation (15), with P′ = P × r and r = 30 ∼ 60.

P′ = w′/n′ (μm/pixels) (15)

Figure 6a is a polygonal figure drawn by the boundary coordinates obtained by the
above-mentioned algorithm using the picture shown in Figure 4c. There are 3084 polygonal
vertices, represented by solid blue lines. Then, the polygons expressed by 1028 vertices
skipping three each were expressed by green dot-lines, and the polygons expressed by
skipping nine by 343 dots were expressed by circular lines marked in red. A black dot-line
is a polygon expressed by 114 dots that are skipped by 27. In the case of a bay with a
complex shape located above the structure, it cannot be expressed by the number of vertices
being skipped by 27, but the shape of the bay can be expressed by the marked red circular
solid line that is expressed by skipping every nine. This means that detailed regions of the
structure can be expressed with a spatial resolution of about 0.57 μm. Meanwhile, Figure 6b
shows the area of the polygon as a function of the number of vertices of the polygon. The
area of the polygon drawn with 114 vertices by skipping 27 is reduced by about 50%;
however, when less than 13 are skipped, the area ratio hardly changes. Therefore, in this
study, a boundary with a spatial resolution of 0.57 μm was applied by skipping nine each.
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(a) (b)

Figure 6. Changes of shape and area due to reducing the number of nodes which consists of the boundary. (a) Shape
changes; (b) Area changes.

Figure 7a–d shows the boundary with a spatial resolution of 0.57 μm of the micro-
scope’s xy section image for the shape of three layers (#1, #2, #3) along the z-axis height,
respectively, which is the result of extraction. In the case of #1 and #2, we see an example
of a layer that gradually narrows in width as it is polished. If the layer of #1 in Figure 7d
becomes smaller, this means that it can be eventually be divided into several layers as
in #2. Figure 8a–c is the results of stacking by extracting the coordinates of the layer’s
boundaries #1, #3, #5, and #6 by height. #1 indicates a shape in which the cross-sectional
area increases gradually and then decreases again. #3 decreases gradually, and at the same
time, #5 increases gradually, and #6 appears. Figure 8d is a top view, and #2 and #3 partially
overlap to show that a part of the organization has been merged. On the plus side, the
upper part of #1 represents a phenomenon in which the layer is separate as the polishing
proceeds into a state in which the upper left layer is integrated.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Boundaries at several layers. (a) 3rd layer; (b) 7th layer; (c) 10th layer; and (d) 26th layer.

(a) (b)

(c) (d)

Figure 8. Cont.
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(e)

Figure 8. Stacking boundaries at each height. (a) Stacking of #1; (b) Stacking of #3; (c) Stacking of #5; (d) Stacking of #6; and
(e) Top-view of stacking boundaries with four grains.

3.4. Post-Processing

The above result is the stacking of the boundary in each layer, and to understand
it as a volume, it is necessary to form a surface connecting the coordinate point of the
boundary and the position of the adjacent height. In this study, the results shown in
Figures 9 and 10 was obtained using “alpha Shape”, a function that creates a boundary
area or volume surrounding a set 2D or 3D point in MATLAB. This 3D graphical function
may help to understand the layer or MG by imaging the shape of the layer in 3D.

(a) (b)

Figure 9. Three-dimensional imaging of microstructure. (a) 3D image of #1 including layer-8; (b) 3D image of #1
except layer-8.

Due to the large grain selected in layer 8, as shown in Figure 9, it is difficult to
understand the original shape of the 3D image. Furthermore, we do not know which data
is correct in layer 8, that is to say, whether it is connected to the neighboring grain or not.
Therefore, we have to compare four figures, namely the original microscopic image, the
extracted boundary image, and two types of stacked volumetric images. The reconstructed
3D grains volume is illustrated in Figure 10.
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(a) (b)

(c) (d)

Figure 10. Three-dimensional volumetric imaging of grains with except discontinuous layers. (a) 3D image of #1; (b) 3D
image of #3; (c) 3D image of #6; and (d) 3D image of three grains.

4. Discussion

In this study, a method and its implementation algorithm for the three-dimensional
observation of the microstructure of carbon steel (SA106) was proposed while explaining
and illustrating its principle.

The visualization of the shape of the 3D grains with simple equipment, namely a
polishing machine, a metallurgical microscope, and some algorithms, is a great advantage.
Moreover, it is inexpensive and easy to implement due to its simple technique and does
not involve extensive hardware and software.

While the mounted object was being polished, a photograph of the layer was taken
using a metallurgical microscope. Subsequently, the metallic MG was reconstructed in
three dimensions by assembling and processing the collected 2D images through local
positioning, MG selection, binarization, resizing, stacking (superimposing), and surfacing,
which provides very accurate data. The assembly and processing techniques are based
on mathematical formulae as described above; the program derived from these formulae
is straightforward. It is easily accessible and provides a quick result, making it a simple
resource to operate and can be implemented in general-purpose software, e.g., MATLAB,
C, C++, Python.
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As shown in the example in Figure 6, the MG image is designed by a large number
of nodes and will require a lot of computational power. To overcome this, skipping is
necessary. However, there is a limit, which should not be exceeded, to not compromise
the accuracy of the final results. Skipping by nine, in this case, leads to both minimal
resources simulation time and accurately obtained results. Organizational photos may
contain personal opinions. In other words, the shredded pieces may, in fact, be the tip of
a large layer. If this personal subjectivity is expressed in three dimensions, a somewhat
objective judgment is possible.

Notwithstanding non-destructive testing techniques, three-dimensional imaging
grains will be one of the most widely used techniques in the near future. Firstly, for
its numerous advantages listed in the introduction. Another interest is to be able to recon-
struct the shape of the microstructure, which may allow the evaluation and prediction of
the material’s behavior under stress, damage, heat treatment effects, etc., and a variety of
research has been carried out in this area [19,44,45].

The reconstructed 3D grains volume, as illustrated in Figure 10, from the processed
2D images is of significant interest and may be useful for our future research in the field of
non-destructive evaluation using mainly electromagnetic and ultrasonic testing to better
understand structural properties at the microstructural level. In addition, the generation
of a three-dimensional grains structure may also broaden the scope of applications, espe-
cially in the field of materials science, designing structural materials, and investigation of
engineering materials.

In the last few years, thanks to numerical models and the increase in computing and
processing capacity, it has become possible to obtain precise models and simulations of
complex material properties, especially microstructures, using advanced software and
modeling techniques [46–48]. The software algorithms developed under MATLAB em-
ployed are complementary to the experimental work, and the combination of the two leads
to more accurate and realistic grain representations with a very acceptable simulation time.
In addition, the method allows the creation of microstructures with the exact shape and
size of the grains and offers the possibility of selecting one or more grains, as illustrated in
Figures 7, 8 and 10.

5. Conclusions

Three-dimensional imaging of metallic grain by stacking the microscopic images was
successfully applied to obtain 3D grain volume from processed 2D images. This method
can be applied as a useful tool for the characterization of metal grains. It is ready to be used
in industrial steel applications. It has been pointed out that the method presented here
allows quick and easy use. Furthermore, it does not require many experimental resources.

An efficient technique to avoid positional errors in image piling has been established.
Owing to the size of a wide number of nodes, an alternate method was adopted and
presented without jeopardizing the precision of the results.

The research finding confirmed that the 3D imaging technique would be suitable
for the mechanical properties and also very interesting and promising for studying the
visualization of 3D magnetic domains, which is the next step of this research.

Algorithms and experimental techniques are constantly being refined to further im-
prove and enhance the reliability and efficiency of the desired 3D microstructures.
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Abstract: Terahertz wave (T-ray) scanning applications are one of the most promising tools for
nondestructive evaluation. T-ray scanning applications use a T-ray technique to measure the thickness
of both thin Shim stock films and GFRP (glass fiber-reinforced plastics) composites, of which the
samples were selected because the T-ray method could penetrate the non-conducting samples.
Notably, this method is nondestructive, making it useful for analyzing the characteristics of the
materials. Thus, the T-ray thickness measurement can be found for both non-conducting Shim stock
films and GFRP composites. In this work, a characterization procedure was conducted to analyze
electromagnetic properties, such as the refractive index. The obtained estimates of the properties are
in good agreement with the known data for poly methyl methacrylate (PMMA) for acquiring the
refractive index. The T-ray technique was developed to measure the thickness of the thin Shim stock
films and the GFRP composites. Our tests obtained good results on the thickness of the standard
film samples, with the different thicknesses ranging from around 120 μm to 500 μm. In this study,
the T-ray method was based on the reflection mode measurement, and the time-of-flight (TOF)
and resonance frequencies were utilized to acquire the thickness measurements of the films and
GFRP composites. The results showed that the thickness of the samples of frequency matched those
obtained directly by time-of-flight (TOF) methods.

Keywords: terahertz waves; refractive index; thickness measurement; Shim stock films; composite
materials; reflection mode

1. Introduction

Terahertz waves (T-ray) have recently been utilized for technical applications [1].
Along with the recent progress of T-ray technology and monitoring instruments, defect
inspection methods have emerged based on the electronic spectrum. Moreover, the T-ray
has a relatively higher resolution. In addition, the T-ray has led to advanced progress for
spectroscopic monitoring in security areas, food inspection, water, the mechanical field,
and materials. Terahertz time domain spectroscopy (THz-TDS) has been utilized to inspect
various delamination or foreign materials in advanced non-contact composites. THz-TDS is
based on photoconductivity, and this depends on low-cycle formations with the utilization
of a photoconductive antenna (Femtosecond (10–15 s) laser) [2].

It is possible to create THz waves in less than a pico-second. Therefore, detection
techniques using a high signal-to-noise (S/N) ratio are available, which affects the broad
bandwidth. A temporary change in the T-ray emitter occurs due to the resistance of
the photoconductive switch on the T-ray timescale [3,4]. In addition, another method,
known as optical anisotropic conversion or optical mixing, can be utilized along with
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two continuous wave (CW) lasers [5]. When these two lasers are mixed, a beating is
generated, and this beating can modulate the conductance of the photoconductive switch
using the terahertz differential frequency [6]. Continuous-wave terahertz (CW-THz) can
be obtained using this method. In some cases, a T-ray image can also show the chemical
components of a target material [7]. Owing to these characteristics, the T-ray image has
attracted significant attention. The T-ray image has commercial applications in various
fields, including humidity analysis, quality management of plastic products, and packing
inspection (monitoring) [8–10].

Owing to its broad utilization and far-ranging applications, the THz-TDS techniques
could have the possibility to become a portable THz image. This approach is composed
of two sections, which both involve the use of the T-ray. First, the importance of fiber-
reinforced plastics (FRP) in the space and civil aviation fields is generally well known, and
the FRP-laminated plate is widely used. In addition, the waveforms of terahertz pulses in
the TDS mode have a strong resemblance to those of ultrasonic tastings. Regarding wave
propagation concepts such as time of flight (TOF), transmission and reflection coefficients,
refraction and diffraction are common to both waves. However, there are also fundamental
differences when materials are probed with terahertz radiation, an electromagnetic wave,
and with ultrasound, a mechanical wave [11]. In order to measure the thickness of a
specimen using conventional ultrasonic waves, a couplant medium is always required,
which makes the ultrasonic waves easily propagated. In the case of using air as a couplant
medium, selecting ultrasonic frequency is narrowly ranged; thus, there is a limitation to
measuring thinner samples. Therefore, due to the couplant medium, the factors affecting
the accuracy of the measurements should be considered such as attenuation, diffraction,
and dispersion of the samples [12]. By the way, the terahertz wave used in this study
requires no couplant medium and is utilized under the mode of noncontact. Thus, the
terahertz wave could make better reproducibility of data produced and also a higher
frequency could be selected, which could bring the stronger measurement of thickness in
case of thin samples.

The other is composed of the refractive index (n), the electrical conductivity of fiber-
embedded epoxy matrix composite material, and the measurement of T-ray thickness for
both glass fiber-reinforced plastics (GFRP) and thin Shim stock films, which are produced
as a standard sample with an arbitrary thickness (ranging from tens of μm to hundreds
of μm) [13]. Thus, the thicknesses for both GFRP and thin Shim stock films are measured
using T-ray technology. Carbon fiber-reinforced plastics (CFRP) are conductive, but epoxy
matrix is non-conductive [14,15]. However, the carbon fiber of the CFRP-laminated plate
has conductivity, enabling the T-ray characteristics evaluation of glass fiber and carbon
fibers [16].

In this study, the results of the experiment on the T-ray were obtained based on the non-
destructive evaluation methods using FRP composite materials. In addition, the correlation
was performed between the fiber direction and the E-field of the GFRP composites and the
CFRP composite-laminated plate according to the refractive index measurement technique,
which shows the properties of various materials and the existence of conductivity. A new
numerical method of measurement of refractive indexes in reflection and transmission
modes was proposed. In addition, we performed a fundamental experimentation and
brought a simple testing procedure for acquiring the thickness of samples as an existing
NDE method. Here, the measured thickness and the reference thickness of the Shim
stock films, which had a standard reference thickness, were compared. In addition, the
thicknesses of the GFRP composites with non-conductivity were measured.

Therefore, a difference in the time-of-flight (TOF) was utilized to measure the thickness
of the GFRP composites using the T-ray. The effectiveness of a T-ray examination was
successfully evaluated by comparing and reviewing the specimens using the resonance
frequency.
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2. Fundamental Theory

2.1. Measurement of Refractive Index

Using the refractive index measurement technique, the reflection mode was applied
in the time domain of the T-ray, and the refractive index was induced by picking up a
signal reflected through the specimen. The progress direction of the T-ray signal is shown
in Figure 1. Here, T is the transmitter of T-ray and R is the receiver of T-ray.

Figure 1. Diagram showing the geometry of the reflection mode [2].

The refractive index can be obtained by calculating the time of the T-ray, which is
reflected from the terahertz pulsed emitter’s arrival at the pulsed receiver and the time-of-
flight (TOF) when the T-ray passes through a specimen of a certain thickness [1].

This reflection mode obtains the refractive index by calculating each length of optical
fiber reflected on the top and bottom of the specimen in the T-ray time-of-flight (TOF).
Figure 1 shows the shape and path of T-ray. At first, if it is assumed that T-ray is projected
on the specimen vertically, a time difference (Δt) can be obtained as follows:

Δt =
2d
v

(1)

In consideration of the path of the oblique T-ray and the shape delay time in the
reflection mode, as shown in Figure 1, a time difference (Δt) between the surface-reflected
wave and back-reflected wave on the specimen can be obtained as follows:

Δt =
2l
v
− δ

Ca
(2)

Here, l = d
cosθr

, δ = 2lsin2θa = 2 d
cosθr

sin2θa, Ca is the velocity in air, d is the sample
thickness, v is the sample velocity, θa is the angle of inclination in the reflection mode, θr
is the refractive angle in the sample, and n is the refractive index. When the shape delay
time and the path of oblique T-ray are traced, both the time difference (Δt) and resonance
frequency (Δf ) can be expressed as follows [13]:

Δt =
(

2d
v cosθr

− δ

Ca

)
=

2d
cosθr

(
1
v

− sin2θa

Ca

)
(3)

Δ f =
1(

2d
v cosθr

− δ
Ca

) =
1

2d
cosθr

(
1
v − sin2θa

Ca

) (4)

Here, l is the refracted length in the sample, d is the thickness of specimen, v is the
velocity in the specimen, Ca is the velocity in the air, l is the refracted length in the sample,
δ is the skip length of refractive waves in the sample, θr is the refraction angle in the
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specimen, and θa is the refraction angle in the air. The refractive index, which is one of the
electromagnetic properties, can be calculated by following the steps above.

The refractive index can be obtained with the approximate solution as follows:

n4 − An4 − Asin2θp1 = 0 (5)

where d is the sample thickness, Vair is the light speed in air, and Vs is the light speed in
the sample. Δt (T) is the difference time between with sample and without sample, and

A =
T2V2

air
4d2

2
. Here, assuming that the normal reflection mode is vertical on the sample,

the refractive index (n) should be vΔt/2d. However, this reflection mode was composed
with some angles. Therefore, a correction factor needs to be considered to obtain a better
solution, as shown in Equation (5).

2.2. Measurement of Refractive Index

In through-transmission mode, the index of refraction (n) can be calculated using the
following equation, according to [2]:

∴ n = 1 +
Δt vair

d
(6)

where Δt is the time cap between with sample and without sample, d is the sample thickness,
Vair is the light speed in air, and L is the distance between the pulsed emitter and pulsed
receiver.

3. Experiment System and Measurement

3.1. Measurement System

Figure 2 shows a photo of the THz-TDS system, which is a non-destructive testing
device. This system is used to collect the material characteristics and scan the image of the
specimen. The T-ray system used in this study was produced by TeraView Ltd. Cambridge
in the United Kingdom. This system was composed of the time domain spectroscopy (TDS)
pulse device and the frequency domain continuous wave (CW) device. It was composed
of TDS technologies for generating, controlling, and searching terahertz pulses. The THz-
TDS system can obtain an image and improve data acquisition, and its unique structural
characteristics for manipulating the T-ray have a direct influence on the image production
experiment. This TDS system had a frequency range from 50 GHz to 4 THz, and the delay
time reached up to 300 ps. The T-ray beam was concentrated on the focal distances of
50 mm and 150 mm, and the full width at half-maximum (FWHM) values were 0.8 mm
and 2.5 mm, respectively. This TDS device can be set for measuring the penetration or
reflection (small-angle pitch-catch). The frequency range of the CW device was between
50 GHz and 1.5 THz. The focal distances of the CW device were also 50 mm and 150 mm.
The TDS and CW devices were connected to each other through the optical fiber. Figure 3
shows the schematic diagram of the T-ray system.

 

Figure 2. A photo of the THz-TDS system for imaging and measuring material parameters.
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Figure 3. Overview of the THz measurement method [2].

3.2. Measurement Method

Figure 3 exhibits the T-ray measurement system, which demonstrates the reflection
mode. When the test was carried out in this system, the T-ray was created from the emitter
and sent to the receiver. At this time, the test was carried out by matching the focal point
of the emitter and the receiver with the desired specimen. Then, the angle of inclination
of the T-ray lens was determined as 16.6◦. Figure 4 shows the Shim stock films and GFRP
composites. The thicknesses of the Shim stock films were 0.127 mm, 0.254 mm, 0.381 mm,
0.508 mm, and 0.762 mm, and the thicknesses of GFRP composites were 2.02 mm, 3.08 mm,
5.74 mm, and 5.92 mm, respectively. Figure 5 shows typical A-scan data, which is the
reflection mode of the GFRP composites of the T-ray. The thickness of the specimen was
3.0 mm.

 
(a) Shim stock films. 

 
(b) GFRP composites 

Figure 4. Samples of (a) Shim Stock films and (b) GFRP composites with various thicknesses.

Figure 5. T−ray pulses from the transmitted GFRP composites (n = 2.13 Δt = 42.7 ps, t = 3.0 mm).
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4. Results and Discussion

4.1. Measurement of Terahertz Refractive Index

To measure the T-ray parameter which indicated the material properties, the THz
pulse was obtained from the Shim stock films and GFRP composites in the reflection mode.
Figure 5 clearly shows the time difference (Δt) between the surface and the back of the GFRP
composites in the reflection mode. GFRP was used for the specimen, and the thickness
of specimen was approximately 3.0 mm. The time difference (Δt), which was obtained
according to the thickness of the specimen, was 42 ps. Therefore, the optical time difference
was calculated using the reflection mode, which is a measurement technique used to obtain
the refractive index. The optimal time difference was calculated using Equation (4). In
addition, the Shim stock films, GFRP composites, PMMA, and fused quartz specimens
were measured under the reflection mode method, as shown in Table 1. When the results
were compared with those from the previous references, only a difference within ±1% was
found [1,6].

Table 1. Averaged THz refractive indices of the individually studied materials.

Materials Refractive Index (n) *
Refractive Index (n)

Reflection Mode

PMMA 1.60 ± 0.08 1.59 ± 0.07
Shim Stock films - 1.52 ± 0.03

Fused quartz 1.95 ± 0.05 1.94 ± 0.09
GFRP - 2.17 ± 0.05

* Data in References [6,11].

Here, the reflection mode measurement techniques of the terahertz were performed in
one direction, and experiments were carried out considering various aspects. In addition,
since the measurement methods and the characteristics of the GFRP composites and Shim
stock films were different, it was difficult to compare them with the previous data.

4.2. Electric Field Evaluation of Carbon Fiber

Unlike non-conductive materials, the T-ray has limited penetrating power against
conductive materials [17]. At first, the test was carried out by applying the T-ray GFRP
composites composed of non-conductive materials and the CFRP composites composed
of conductive materials partially. The CFRP composites are composed of carbon fiber
with conductive and non-conductive resin. When the CFRP-laminated composite plate
is observed with a microscope, it is composed of various fibers and resins that could
affect conductivity significantly, so the quantitative characteristic evaluation of carbon fiber
composite material of T-ray is necessary. According to the previous reference, the radial
conductivity of carbon fiber is approximately three times larger in the case of the electrical
conductivity on the carbon fiber axis. The CFRP composites are composed of unidirec-
tional composites, and the conductivity of the CFRP laminated plate composed of various
lamination layers is affected. A transverse (vertical to the fiber axis) conductive generator
depends on the fiber contact that occurs between adjacent fibers. Studies regarding the
electrical conductivity of carbon fiber composite material are scarce. In some references,
researchers have reported that the value of longitudinal conductivity (σl) ranges between
1 × 104 s/m and 6 × 104 s/m, and the value of transverse conductivity (σt) ranges between
approximately 2 s/m and 600 s/m, which is much wider [18].

The transverse conductivity value of the laminated plate using the unidirectional
Prepreg sheet varies significantly according to the production process and the quality of
the laminated plate. The plane conductivity on the flowing current, while forming the θ

angle with the fiber axis in the unidirectional CFRP composites, is given as follows [19]:

σ = σlcos2cosθ+ σtsin2θ (7)
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Since it is significantly higher than the longitudinal conductivity of the fiber (σl >> σt),
the T-ray which penetrates the unidirectional CFRP composites significantly varies accord-
ing to the angle between the electric field vector and the axis of the carbon fiber. When the
electric field of the T-ray is parallel to the axial direction of carbon fiber, the conductivity
becomes the largest and the penetrating power becomes the smallest. On the contrary,
when the electric field vector is perpendicular to the axis of fiber, the conductivity becomes
the smallest and the penetrating power becomes the largest. The surface depth of the
unidirectional oriented CFRP composites on the T-ray using the value of 10 s/m is 0.2 mm
in 1 THz and 0.5 mm in 0.1 THz when the direction of electric field is vertical to the fiber
axis. The effect of the penetrating power on the angle in the 24-ply unidirectional CFRP
composite-laminated plate was experimentally evaluated using the CW terahertz device.

Figure 6 exhibits the amplitude profile of the penetrating power of both the GFRP and
CFRP composites by the function of angle under the frequency of 0.1 THz. The amplitude
profile of power was obtained, with values ranging from 0◦ to 90◦ for both the GFRP
composites and CFRP composites. Notably, in the case of the GFRP composites, there
was no change in the amplitude profile. However, the CFRP composites showed a higher
amplitude of penetrating power at 90◦, although they showed almost no amplitude of
penetrating power at 0◦. When the measurement was made, the GFRP composites were
not dependent on any angle, but the CFRP composites were dependent on the angle of the
carbon fibers.

 
(a) GFRP composites. 

 
(b) CFRP composites. 

Figure 6. Amplitude profile of the penetrating power of both the GFRP and CFRP composites by the
function of angle (a 24−ply glass and carbon composites).
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4.3. Measurement of Thickness Using the Reflection Mode

The THz-TDS reflection mode was applied to measure the thickness for both the Shim
stock films and GFRP composites with the one-side direction. Figure 7 exhibits the T-ray
scan images of the thin Shim stock films. The thicknesses of the thin Shim stock films were
0.127 mm, 0.254 mm, 0.381 mm, 0.508 mm, and 0.762 mm. The values of the thicknesses
were utilized as the standard samples of the films. Figure 7a exhibits the difference (Δt) in
the time-of-flight (TOF), which indicates the difference between the surface and the back of
the Shim stock films. Figure 7b represents Figure 7a as the FFT domain, and Δf refers to
the resonance frequency, which is correlated with the thickness of the thin Shim stock films.
Here, Δt is the difference time in the time-of-flight (TOF). Namely, 1/Δt should be Δf. Here,
the example thickness in the thin Shim stock film was 0.381 mm.

(a) A scan image. 

(b) Frequency domain signal. 

Figure 7. A TOF and FFT image of the thin Shim stock films under the reflection mode (0.381 mm
in thickness).

Table 2 shows the comparison of the TOF difference (Δt) of the thin Shim stock films,
resonance frequency (Δf ), and T-ray measurement and reference thickness. Figure 8 shows
the data after the T-ray scanning GFRP composites. The thicknesses of the GFRP composites
were 2.02 mm, 3.08 mm, 5.74 mm, and 5.92 mm. The values of the thicknesses were used as
the standard thickness of the samples.

Figure 8a shows the difference (Δt) in the time-of-flight (TOF), which indicates the
difference between the surface and the back of the GFRP composites. Figure 8b represents
Figure 8a as the FFT domain, and Δf exhibits the resonance frequency, which is related to
the thickness of the GFRP composites. Here, Δt is the TOF difference. Namely, 1/Δt should
be Δf. The thickness of the GFRP composites was 2.02 mm.

Table 3 shows the comparison of the TOF difference (Δt) of the GFRP composites,
resonance frequency (Δf ), T-ray measurement, and reference thickness.
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Table 2. Measurements of the Shim stock films with various thicknesses using the THz techniques.

Sample No.
Delay Time

(Δt, ps)
Resonance

Frequency (Δf )
T-ray Measure

ment (mm)
Reference

Thickness (mm)
Others

1 1.322 0.750 0.137 0.127 Shim stock Co., Ltd.
(Edenvale, South Africa)

2 2.551 0.392 0.250 0.254
3 3.846 0.260 0.396 0.381
4 5.881 0.170 0.539 0.508
5 8.600 0.115 0.789 0.762

(a) A scan image. 

 
(b) Frequency domain signal. 

Figure 8. A TOF and FFT image of the GFRP composites under the reflection mode (2.02 mm
in thickness).

Table 3. Measurements of the GFRP composites with various thicknesses using the THz techniques.

Sample No.
Delay Time (Δt,

ps)
Resonance

Frequency (Δf )

T-ray
Measurement

(mm)

Reference
Thickness (mm)

Others

1 24.480 0.041 2.000 2.020 Shim Stock Co., Ltd.
2 50.000 0.020 3.180 3.080
3 75.130 0.013 5.600 5.740
4 83.30 0.012 5.920 5.920

4.4. Relation between Nominal Thickness and Thickness Measured from T-ray Techniques

The Shim stock films and GFRP plates with non-conductivity were not dependent on
the direction of the T-ray, so the measurement was possible. In addition, the T-ray reflec-
tion mode which could enable the measurement in one direction was adopted. Figure 9
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exhibits the comparison between the nominal thickness in the thin Shim stock films and
the thickness measured using the T-ray. As shown in Figure 9, the thicknesses of the thin
Shim stock films were 0.127 mm, 0.254 mm, 0.381 mm, 0.508 mm, and 0.762 mm. The
thickness of the thin Shim stock films was shown in a straight, solid line. This line shows
the proportional relation with the standard thickness. Here, — represents the nominal
thickness; � represents the measured data in the case of the measurement, assuming that
the T-ray was vertical to the specimen; and � represents the measured data in the case of
the inclined T-ray. Here, to effectively obtain the Refractive index (n), a suitable sample is
the case with a thickness of several ones of mm. In case of the films, we did not prepare
such a thicker sample. In this testing, this value is the average value of all the samples.

Figure 9. The relation between the nominal thickness and the thickness measured from the T-ray
techniques in the Shim stock films.

Thus, the difference of data could be considered to be due to the average value of the
refractive index to some degree. Even though there was a difference of ±2%, the results
tended to be in agreement in the linear aspect.

Figure 10 shows the comparison between the nominal thickness of the GFRP compos-
ites and the thickness measured using the T-ray. The thicknesses of the GFRP composites
were 2.02 mm, 3.08 mm, 5.74 mm, and 5.92 mm. In Figure 9, — represents the nominal
thickness; � represents the case of the measurement, assuming that the T-ray was vertical
to the specimen; and � represents the case of the inclined T-ray. Unlike the thickness at
the microgram scale, the case of the inclined T-ray matched with the standard thickness at
the millimeter scale. This can be attributed to the thickness of the specimen, the relatively
small effect from the error, the strong received signal in electric field according to the fiber
orientation of the GFRP composites, and the high penetration ratio of T-ray, enabling us to
optimize a reception strong signal. Therefore, we found that it had potential reproducibility.
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Figure 10. The relation between the nominal thickness and the thickness measured from the T-ray
techniques in the GFRP composites.

5. Conclusions

In this approach, the refractive index measurement technique was established to cal-
culate the material properties regarding the utilization of the T-ray for the non-destructive
examination of Shim stock films and GFRP composites. In addition, the T-ray limitation in
the energy penetrating power was discussed with respect to the conduction characteristics
of the GFRP composites and the fiber lamination angle of CFRP plates. Possible THz-TDS
techniques are summarized for measuring the thickness of the thin Shim stock films and
GFRP composites as follows:

(1) It was possible to solve the refractive index of the thin Shim stock films and GFRP
composites utilizing T-ray techniques under the reflection mode.

(2) The T-ray showed a constant level of penetrating power in the glass fiber class
composites, which led to a very high penetration ratio and enabled the optimization of a
strong reception signal. Therefore, it was found that it had potential reproducibility.

(3) The values of the measured thicknesses for both Shim stock films and GFRP
composites were in agreement with those of the nominal thicknesses. The values were
successfully measured through the correlation between the TOF cap and the resonance
frequency under the reflection mode.

(4) We expect that the manufactured thickness measurement device using T-ray tech-
niques may be very useful for non-destructive examinations in future applications in the
advanced aerospace field.
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Abstract: Polychromatic and wavelength-selective neutron transmission radiography were applied
during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation
temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization
of austenitization upon welding and subsequent α’-martensite formation during cooling could
be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron
wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam).
The spatial resolution achieved in the experiments was approximately 200 μm. The transmitted
monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced
during cooling below the martensitic start temperature Ms since the emerging martensitic phase has
a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly
influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–
Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic
and by approx. 4% for polychromatic imaging.

Keywords: neutron radiography; Bragg-edge imaging; gas tungsten arc welding (GTAW); low
transformation temperature (LTT) steel; austenite-to-martensite transformation; Debye–Waller factor

1. Introduction

Welding residual stresses can have a crucial influence on the crack resistance of a steel
component under service load. It was found that phase transformations during the cooling
of the weld seam can have a significant influence on the residual stresses around the weld
seam. Therefore, it is advantageous to control such phase transformations during cooling to
minimize residual stresses and consequently improve the crack resistance of the welds [1].
Compressive residual stresses can thereby have a positive influence on crack prevention. A
unique possibility of generating compressive residual stresses already during the welding
procedure is offered by so-called low transformation temperature (LTT) filler wires [2–4].
Compared to conventional filler wires, these materials show lower phase transformation
temperatures, which can work against the cooling-specific contraction. In consequence,
distinct compressive residual stresses can be observed within the weld and adjacent areas.

The use of neutrons allows for examining samples with thicknesses in the cm-range,
e.g., for measuring residual stresses around weld seams by neutron diffraction [5,6], or
for visualizing grain orientations by tomographic neutron diffraction imaging [7,8]. An-
other imaging technique based on diffraction contrast is neutron Bragg-edge imaging
(NBEI). This technique allows the acquisition of monochromatic images at distinct wave-
lengths. Depending on the crystalline structure of the measured material, sudden trans-
mission intensity changes, so-called Bragg edges, occur at wavelength positions λ equal
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to twice the lattice plane distances dhkl in polycrystalline samples, as stated by Bragg’s
law (Equation (1)), considering the transmission geometry with θ = 90◦. Hence, taking
radiographic images before and after a Bragg edge achieves a contrast, which relates to the
crystallographic properties:

nλ = 2dhkl sinθ (1)

NBEI was already used by our team for visualizing the γ-austenite to α’-martensite
phase transformation, where a super martensitic stainless steel sample was heated until
complete austenitization and was subsequently cooled down to room temperature. The
phase transformation process was visualized by acquiring the transmission images of a
specific wavelength with a temporal resolution of 30 s and a spatial resolution of 100 μm [9].

In the present study, the aim was to film for the first time in situ the phase trans-
formation of an LTT steel induced by bead-on-plate GTAW. Therefore, we used neutron
imaging to visualize the sample remelting during the welding process using specific neu-
tron wavelengths to two-dimensionally visualize the phase transformations in the samples.
Additionally, some weldments were filmed using a polychromatic neutron beam.

2. Materials and Methods

The experiments were carried out at the Cold Neutron RADiography 2 (CONRAD 2)
instrument located at the research reactor BER II of the Helmholtz-Zentrum Berlin für
Materialien und Energie [10]. The imaging set-up consists of the sample holder system and
the welding torch located approx. 10 cm in front of a 200 μm thick 6LiF:ZnS scintillator.
The scintillator converts the transmitted neutrons into visible light and a mirror reflects the
visible light image of the sample out of the neutron beam and towards a high-sensitive CCD
camera with magnifying optics. A double-crystal monochromator allows the adjustment
of the neutron wavelength in the range between 0.2 nm and 0.6 nm with a resolution
of Δλ/λ ≈ 3%. More technical information regarding the CONRAD 2 instrument can be
found elsewhere [11].

The material used was LTT martensitic steel. The sample sheets were made by build-
up welding using LTT steel wire and subsequent machining to achieve plates of the required
dimensions. The sample dimensions in length, width, height are 100 mm, 5 mm, 13 mm,
where the width of 5 mm was the penetration length for the neutrons.

The microstructure consists mainly of cellular martensite in rows because of the
build-up welding process. The primary solidification state of the LTT steel was austenitic.
Micrographs showed that some retained austenite can be found as a fine network in the
microstructure due to segregation effects of Ni and Cr. The martensite transformation
temperature for this LTT steel upon cooling is Ms ≈ 250 ◦C and the transformation is
finalized at around Mf ≈ 80 ◦C. The chemical composition of the LTT steel is given in
Table 1. The composition was measured by spark emission spectroscopy with a relative
measurement error of Δc/c ≈ 10%.

Table 1. Chemical composition of the LTT steel in wt.-%.

C Ni Cr Si Mn Mo Fe

0.054 10.2 10.3 0.55 0.90 0.28 Bal.

A type K thermocouple covered by Inconel™ sheathing was positioned in the sample
side 2 mm below the surface and 20 mm behind the starting point of welding (see Figure 1).
The temperature was monitored during the complete welding process.
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Figure 1. Image of the welding set-up. Direction of view is in neutron flight direction. The sample is
fixed edgewise in a parallel vice and is thermally isolated with alumina felt (white). Welding takes
place on the long narrow side of the specimen.

The scintillator in the background is also protected against weld spatter by alumina
felt, which is almost transparent for neutrons. Welding direction is from right to left.

Gas tungsten arc welding (GTAW) was used to perform remote-controlled bead-
on-plate welds with argon as a shielding gas. The arc welding power source used was
a Castolin CastoTIG 1611 DC. The welding length for each parameter set was 45 mm,
which allowed for four weldments per sample (two on each side). The set-up is shown in
Figure 1. The used welding parameters together with the respective imaging parameters
are listed in Table 2. The energy input could be controlled by varying both the welding
current and the welding velocity.

Table 2. Welding parameters and neutron imaging parameters.

Welding Current/A Welding Velocity/cm min−1 Neutron Wavelength/nm Exposure Time/s

40 5 0.395/0.44 2

60 5 0.395/0.44 2

80 10 0.395/0.44
polychromatic

2
0.5

The welding experiments were performed twice, each time with a different neutron
wavelength as shown in Table 2. To obtain good contrast between the austenitic and
martensitic crystallographic phases, a neutron wavelength of λ = 0.395 nm was used. This
wavelength has been defined by performing a wavelength scan using the original set-up.

Although the monochromatic imaging allowed the recording of the phase transforma-
tion step by step, the needed exposure time of t = 2 s to gain a reasonable signal-to-noise
ratio allowed only for a few frames per weldment. To prolong the cooling state and
thus gain more images during the phase transformation of austenite to martensite, the
cooling rate was reduced by thermal isolation of the samples. For comparison, some
weldments were also filmed using a polychromatic beam that allowed the recording of
images continuously with an exposure time of t = 0.5 s.

In the preprocessing step of the image analysis, the acquired images were normalized
by background and flat-field corrections, which is standard procedure in quantitative
X-ray and neutron radiography [12]. In order to eliminate the attenuation of the ceramic
insulation and to further enhance the contrast inside the sample, each image series was
normalized by dividing a complete series by its first image. Thus, a transmission value
of “1” means a fully transparent sample, whereas “0” means no transmission of neutrons
through the sample. The very short exposure times of 0.5 s for the polychromatic images
led to the very low signal-to-noise ratio of the data. This ratio could be further improved
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by applying a sliding median filter using a set of three images for each welding experiment
image series.

3. Results

3.1. Ex Situ Monochromatic Imaging

The result of NBEI wavelength scans prior to and after welding with a current of 60A
at a welding speed of 5 cm/min is shown in Figure 2.

Figure 2. Calculated (colored) and measured (black) Bragg-edge curves for martensite and austenite
at room temperature for sample thickness of 5 mm as used in the experiments. The transmission
levels at 0.395 nm for the two phases are shown as colored dashed lines. The theoretical data were
calculated with the help of a program library [13].

The almost identical black curves measured before and after the welding clearly show
that the sample transformed back after welding into martensite. This finding is further
supported by the missing austenite Bragg edge at around 0.36 nm in both cases. Addition-
ally, retained austenite could not be detected at grain boundaries by light microscopy in
micrographs of the welded samples. This clearly indicates that only a very small volume
portion of retained austenite, if any, remains in the sample.

The shift of both measured curves towards higher wavelengths with respect to the
calculated martensite Bragg edge at λ≈ 0.405 nm by about Δλ≈ 0.012 nm can be related to a
slight miscalibration of the setup because there is experimental evidence from experiments
of other groups using other materials but the same imaging set-up for such a systematic
wavelength shift [14].

3.2. In Situ Monochromatic Imaging

As shown in Figure 2, martensite and austenite have different attenuation coefficients
in the wavelength interval between approx. 0.36 nm and 0.405 nm just below the Bragg-
edge wavelengths of both phases. Although the difference of both attenuation coefficients
is not as large as for the coefficients between both Bragg edges, a wavelength in this interval
is used for monochromatic imaging due to the abovementioned limits of the experimental
wavelength resolution. Thus, we present here the result of monochromatic imaging during
GTAW at 0.395 nm for the visualization of the phase transformations. For comparison,
we additionally measured after the Bragg edge at 0.44 nm using the same welding and
imaging parameter.

Figure 3 shows the mean value of the transmitted intensity approx. 1 mm underneath
the sample top surface as a function of time detected in the rectangular yellow Region-of-
Interest (ROI). The welding current was 80A, the welding velocity was 10 cm/min, and
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images were acquired every 2 s with an exposure time of 2 s. The transmission intensity
increases drastically as soon as the torch passes by the ROI from approx. 0.42 a.u. to
more than 0.56 a.u., i.e., by approx. 60%, and decreases slightly slower back to 0.42 a.u.
at t ≈ 150 s. This behavior can be even quantified using the theoretical data presented in
Figure 2, where for a neutron wavelength of 0.395 nm the transmission for the martensitic
phase is 0.42 a.u. and for the martensitic phase is 0.51 a.u. Thus, this transmission change
can be attributed to the transformation from martensite to austenite, where the transmission
decrease is due to the almost complete re-transformation to martensite upon cooling. The
asymmetry of the transmission curve is due to the different heat fluxes during heating and
cooling. Whereas the heat input from the electric welding arc fosters a very high heating
rate, the heat flow upon cooling is somewhat slower and limited by the thermal isolation
of the sample material. The slope of the transmission curve implies that the martensite
reformation is finished within 1–1.5 min.

Figure 3. Plot of the transmitted intensity at λ = 0.395 nm measured as mean value from the ROI
(yellow rectangle) as a function of time. The insert shows the monochromatic image taken at t ≈ 130 s.
The very low neutron intensity results in a poor image quality, showing essentially no visual image
contrast in the sample for all times.

For checking purposes, an additional in situ imaging experiment using the same
welding and imaging parameters was performed at a wavelength of 0.44 nm. Since this
wavelength is larger than the Bragg-edge wavelengths of both lattice types, we expected
that the transmitted intensity remains constant. The result is shown in Figure 4. Indeed, we
observed an intensity drop of approx. 15% during passing by of the ROI by the welding
arc. Subsequently, the measured intensity increases exponentially within approx. 30 s
and reaches the initial transmission of approx. 0.66 a.u., which correlates well with the
transmission for the martensitic phase in Figure 2.
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Figure 4. Plot of the transmitted intensity at λ = 0.44 nm taken as mean value from the ROI (yellow
rectangle) as a function of time. The insert shows the monochromatic image taken at t ≈ 130 s. The
very low neutron intensity results in a poor image quality, showing essentially no visual image
contrast in the sample.

A possible explanation of the observed drop in the transmitted neutron intensity is
the so-called Debye–Waller factor [15,16]. The Debye–Waller factor describes the scattering
of neutrons at an oscillating lattice. The immense heat input by the traveling welding arc
melts the material at the surface and excites massive lattice oscillations in the subjacent
crystalline material. Since the ROI is located 1 mm underneath the surface, most of the
material measured should be solid during analysis. These massive lattice oscillations
can influence the scattering cross section for neutrons. This effect of lattice oscillations is
commonly considered when using neutron scattering techniques. Until now, this effect
was not considered explicitly for neutron imaging. Whether neutrons are scattered with
increasing temperature depends on the scattering mechanism. Whereas the elastic neutron
cross section decreases with increasing temperature, the inelastic neutron cross section
increases. Coherent inelastic scattering, however, has the most significant effect and deflects
more neutrons at elevated temperatures [17]. Thus, the overall transmitted intensity starts
decreasing at high temperatures.

3.3. Polychromatic Imaging

The CONRAD beamline provides a cold neutron spectrum, which has a maximum
intensity peak at around 0.25 nm [18]. This resulting high neutron flux allows us to
observe the martensite–austenite phase transformation with very short exposure times and
provides a much better signal-to-noise ratio, i.e., a much better image contrast compared to
monochromatic imaging.

The same welding parameters as for the abovementioned measurements with monochro-
matic neutrons were used for the polychromatic imaging experiment. The exposure time
could be as low as 0.5 s, allowing a four times higher image acquisition rate. Figure 5
shows the transmitted intensity for an equal ROI as used for monochromatic imaging. A
sheathed type K thermocouple, inserted in a bore hole close to the welded surface, allowed
the measurement of the temperature.
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Figure 5. Plot of the transmitted intensity as a function of time taken as mean value from the ROI
(yellow rectangle). The insert shows the normalized polychromatic image taken just before switching
off the welding torch at the end position.

The intensity dip of approx. 4% relatively at t ≈ 25 s can be attributed again to
the increasing sample temperature due to the traveling welding torch and the associated
change of the Debye–Waller factor. The following intensity increase starting at t > 30 s is
due to the change in transmission because of the evolving austenitic phase. The austenitic
phase re-transforms to martensite between t ≈ 102 s and t ≈ 120 s, resulting in a drop in
the transmitted neutron intensity by around 7%.

Again, the welding nozzle can be seen twice due to the normalization of all images by
dividing all images by the first image. The starting position is to the right (white nozzle),
whereas the final position is to the left (black nozzle). The thermocouple was inserted in the
upper right hole and had also moved slightly during welding, showing its initial position
(white wire) in all images. The bright and dark streaks at the bottom and the top of the
sample were also caused by the image normalization. The thermal expansion bended the
sample upwards, and dividing all images by the image of the cold sample at t = 0 results in
such streaks at the sample edges.

The bright area in the upper part of the sample is the austenitic phase in the heat-
affected zone (HAZ), which is still present, and which is in the process of re-transformation
from austenite to martensite. The peak temperature reading, when the torch is passing by
the inserted thermocouple, is larger than 1200 ◦C. Measurements with type K thermocou-
ples above such temperatures are not possible. The temperature reading dropped down
to around 600 ◦C by the end of the welding. Another 2.5 min later the Ms temperature is
reached, and it takes another 7.5 min to reach Mf.

The increasing vertical dimension of the HAZ from the right to the left is due to the
heat accumulation during welding. Additionally, after stopping the torch movement, the
electric arc burns for another two seconds, introducing even more energy at this position.
The heat protection of both sides of the metal plate restricts the heat dissipation mainly in
the two dimensions perpendicular to the neutron flight direction, shaping the temperature
profile in the sample.
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4. Discussion

Neutron Bragg-edge imaging allows us to film phase changes during the welding
of martensitic steel and to film the spatial spread of the heat-affected zone during gas
tungsten arc welding. The use of a polychromatic beam results in a four times higher
temporal resolution and in an order of magnitude higher signal-to-noise ratio. This leads
to a significantly better image quality than for monochromatic imaging. Further, imaging
with a polychromatic beam allows us to film the spreading of the heat-affected zone that
corresponds to the moving welding torch. The use of monochromatic neutrons allows for
phase-specific imaging, but neutron scattering by thermally induced lattice vibrations may
influence the image quality.

In this investigation, the lattice vibrations at high temperatures disturbed the monochro-
matic imaging. From this, it follows that it should, in principle, be possible to measure the
temperature of a sample by energy-selective neutron radiography [19] using the tempera-
ture dependence of the Debye–Waller factor. A prerequisite for such measurements is the
knowledge of these temperature dependence data for all involved crystallographic phases.
However, systematic studies of the temperature dependence of such data are not known to
the authors up to now.

Generally, NBEI is a useful tool to study in situ phase changes in metals. This might
help in clarifying material-related problems, e.g., in components that show strain-induced
phase transformations [20] during service. For selected cases, NBEI is a useful non-
destructive testing method that might help in damage prevention and damage handling.
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