

Laravel 5 Official Documentation
Synced daily. A free ebook version of the Laravel 5.x
Official Documentation.

Gary Blankenship

This book is for sale at http://leanpub.com/laravel-5

This version was published on 2016-02-27

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

http://leanpub.com/laravel-5
http://leanpub.com
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Tweet This Book!
Please help Gary Blankenship by spreading the word about this book on Twitter!

The suggested hashtag for this book is #laravel.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#laravel

http://twitter.com
https://twitter.com/search?q=%23laravel
https://twitter.com/search?q=%23laravel

Contents

Contribution Guidelines . 2

Release Notes . 4
Support Policy . 4
Laravel 5.3 {#releases-laravel-5.3} . 4
Laravel 5.2 {#releases-laravel-5.2} . 4
Laravel 5.1.11 {#releases-laravel-5.1.11} . 8
Laravel 5.1.4 {#releases-laravel-5.1.4} . 8
Laravel 5.1 {#releases-laravel-5.1} . 8
Laravel 5.0 {#releases-laravel-5.0} . 12
Laravel 4.2 . 20
Laravel 4.1 . 22

Upgrade Guide . 25
Upgrading To 5.2.0 From 5.1 {#upgrade-upgrade-5.2.0} . 25
Upgrading To 5.1.11 {#upgrade-upgrade-5.1.11} . 33
Upgrading To 5.1.0 {#upgrade-upgrade-5.1.0} . 35
Upgrading To 5.0.16 {#upgrade-upgrade-5.0.16} . 40
Upgrading To 5.0 From 4.2 {#upgrade-upgrade-5.0} . 41
Upgrading To 4.2 From 4.1 . 47
Upgrading To 4.1.29 From <= 4.1.x . 49
Upgrading To 4.1.26 From <= 4.1.25 . 49
Upgrading To 4.1 From 4.0 . 51

Contribution Guide . 53
Bug Reports . 53
Core Development Discussion . 54
Which Branch? . 54
Security Vulnerabilities . 54
Coding Style . 54

Installation . 56
Installation . 56

Configuration . 59

CONTENTS

Introduction . 59
Accessing Configuration Values . 59
Environment Configuration . 59
Configuration Caching . 61
Maintenance Mode . 61

Laravel Homestead . 63
Introduction . 63
Installation & Setup . 64
Daily Usage . 68

Basic Task List . 71
Introduction . 71
Installation . 71
Prepping The Database . 72
Routing . 74
Building Layouts & Views . 76
Adding Tasks . 79
Deleting Tasks . 83

Intermediate Task List . 85
Introduction . 85
Installation . 85
Prepping The Database . 86
Routing . 91
Building Layouts & Views . 94
Adding Tasks . 97
Displaying Existing Tasks . 99
Deleting Tasks . 103

HTTP Routing . 109
Basic Routing . 109
Route Parameters . 110
Named Routes . 111
Route Groups . 113
CSRF Protection . 115
Route Model Binding . 118
Form Method Spoofing . 120
Accessing The Current Route . 121

HTTP Middleware . 122
Introduction . 122
Defining Middleware . 122
Registering Middleware . 125

CONTENTS

Middleware Parameters . 127
Terminable Middleware . 128

HTTP Controllers . 130
Introduction . 130
Basic Controllers . 130
Controller Middleware . 132
RESTful Resource Controllers . 133
Dependency Injection & Controllers . 134
Route Caching . 137

HTTP Requests . 138
Accessing The Request . 138
Retrieving Input . 141

HTTP Responses . 147
Basic Responses . 147
Other Response Types . 149
Redirects . 151
Response Macros . 153

Views . 155
Basic Usage . 155
View Composers . 157

Blade Templates . 161
Introduction . 161
Template Inheritance . 161
Displaying Data . 163
Control Structures . 165
Stacks . 167
Service Injection . 168
Extending Blade . 168

Request Lifecycle . 170
Introduction . 170
Lifecycle Overview . 170
Focus On Service Providers . 171

Application Structure . 172
Introduction . 172
The Root Directory . 172
The App Directory . 173

Service Providers . 174

CONTENTS

Introduction . 174
Writing Service Providers . 174
Registering Providers . 177
Deferred Providers . 177

Service Container . 179
Introduction . 179
Binding . 180
Resolving . 184
Container Events . 185

Contracts . 186
Introduction . 186
Why Contracts? . 186
Contract Reference . 189
How To Use Contracts . 190

Facades . 192
Introduction . 192
Using Facades . 192
Facade Class Reference . 194

Authentication . 197
Introduction . 197
Authentication Quickstart . 198
Manually Authenticating Users . 202
HTTP Basic Authentication . 206
Resetting Passwords . 207
Adding Custom Guards . 210
Adding Custom User Providers . 211
Events . 214

Authorization . 216
Introduction . 216
Defining Abilities . 216
Checking Abilities . 218
Policies . 222
Controller Authorization . 227

Artisan Console . 229
Introduction . 229
Writing Commands . 229
Command I/O . 232
Registering Commands . 238

CONTENTS

Calling Commands Via Code . 238

Laravel Cashier . 241
Introduction . 241
Subscriptions . 243
Handling Stripe Webhooks . 248
Single Charges . 249
Invoices . 250

Cache . 252
Configuration . 252
Cache Usage . 253
Cache Tags . 258
Adding Custom Cache Drivers . 259
Events . 261

Collections . 263
Introduction . 263
Creating Collections . 263
Available Methods . 264
Method Listing . 264

Laravel Elixir . 298
Introduction . 298
Installation & Setup . 298
Running Elixir . 300
Working With Stylesheets . 300
Working With Scripts . 303
Copying Files & Directories . 305
Versioning / Cache Busting . 306
BrowserSync . 307
Calling Existing Gulp Tasks . 308
Writing Elixir Extensions . 308

Encryption . 311
Configuration . 311
Basic Usage . 311

Errors & Logging . 313
Introduction . 313
Configuration . 313
The Exception Handler . 314
HTTP Exceptions . 315
Logging . 316

CONTENTS

Events . 319
Introduction . 319
Registering Events / Listeners . 319
Defining Events . 321
Defining Listeners . 322
Firing Events . 324
Broadcasting Events . 325
Event Subscribers . 330

Filesystem / Cloud Storage . 333
Introduction . 333
Configuration . 333
Basic Usage . 334
Custom Filesystems . 338

Hashing . 340
Introduction . 340
Basic Usage . 340

Helper Functions . 342
Introduction . 342
Available Methods . 342
Method Listing . 343
Arrays . 343
Paths . 350
Strings . 352
URLs . 357
Miscellaneous . 359

Localization . 365
Introduction . 365
Basic Usage . 366
Overriding Vendor Language Files . 367

Mail . 369
Introduction . 369
Sending Mail . 370
Mail & Local Development . 375
Events . 376

Package Development . 378
Introduction . 378
Service Providers . 378
Routing . 379

CONTENTS

Resources . 379
Public Assets . 383
Publishing File Groups . 384

Pagination . 385
Introduction . 385
Basic Usage . 385
Displaying Results In A View . 387
Converting Results To JSON . 389

Queues . 391
Introduction . 391
Writing Job Classes . 392
Pushing Jobs Onto The Queue . 395
Running The Queue Listener . 400
Dealing With Failed Jobs . 403

Redis . 407
Introduction . 407
Basic Usage . 408
Pub / Sub . 410

Session . 413
Introduction . 413
Basic Usage . 415
Adding Custom Session Drivers . 418

Envoy Task Runner . 421
Introduction . 421
Writing Tasks . 422
Running Tasks . 425

Task Scheduling . 427
Introduction . 427
Defining Schedules . 427
Task Output . 430
Task Hooks . 431

Testing . 433
Introduction . 433
Application Testing . 434
Working With Databases . 443
Mocking . 449

Validation . 453

CONTENTS

Introduction . 453
Validation Quickstart . 453
Other Validation Approaches . 458
Working With Error Messages . 463
Available Validation Rules . 466
Conditionally Adding Rules . 473
Custom Validation Rules . 475

Database: Getting Started . 478
Introduction . 478
Running Raw SQL Queries . 479
Database Transactions . 483
Using Multiple Database Connections . 484

Database: Query Builder . 485
Introduction . 485
Retrieving Results . 485
Selects . 489
Joins . 490
Unions . 491
Where Clauses . 491
Advanced Where Clauses . 494
Ordering, Grouping, Limit, & Offset . 495
Inserts . 497
Updates . 497
Deletes . 498
Pessimistic Locking . 499

Database: Migrations . 500
Introduction . 500
Generating Migrations . 500
Migration Structure . 501
Running Migrations . 502
Writing Migrations . 503

Database: Seeding . 511
Introduction . 511
Writing Seeders . 511
Running Seeders . 513

Eloquent: Getting Started . 515
Introduction . 515
Defining Models . 515
Retrieving Multiple Models . 519

CONTENTS

Retrieving Single Models / Aggregates . 521
Inserting & Updating Models . 522
Deleting Models . 526
Query Scopes . 530
Events . 535

Eloquent: Relationships . 537
Introduction . 537
Defining Relationships . 537
Querying Relations . 553
Inserting Related Models . 558

Eloquent: Collections . 564
Introduction . 564
Available Methods . 565
Custom Collections . 565

Eloquent: Mutators . 567
Introduction . 567
Accessors & Mutators . 567
Date Mutators . 569
Attribute Casting . 571

Eloquent: Serialization . 574
Introduction . 574
Basic Usage . 574
Hiding Attributes From JSON . 575
Appending Values To JSON . 577

CONTENTS 1

The MIT License (MIT) Copyright © Taylor Otwell

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Softwarewithout restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,OUTOFOR INCONNECTIONWITHTHE SOFTWAREORTHEUSEOROTHER
DEALINGS IN THE SOFTWARE.

Contribution Guidelines
If you are submitting documentation for the current stable release, submit it to the corresponding
branch. For example, documentation for Laravel 5.1 would be submitted to the 5.1 branch.
Documentation intended for the next release of Laravel should be submitted to the master branch.

• Prologue
– Release Notes
– Upgrade Guide
– Contribution Guide
– API Documentation¹

• Setup
– Installation
– Configuration
– Homestead

• Tutorials
– Beginner Task List
– Intermediate Task List

• The Basics
– Routing
– Middleware
– Controllers
– Requests
– Responses
– Views
– Blade Templates

• Architecture Foundations
– Request Lifecycle
– Application Structure
– Service Providers
– Service Container
– Facades

• Services
– Authentication
– Authorization
– Artisan Console
– Billing

¹/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax

2

/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax

Contribution Guidelines 3

– Cache
– Collections
– Elixir
– Encryption
– Errors & Logging
– Events
– Filesystem / Cloud Storage
– Hashing
– Helpers
– Localization
– Mail
– Package Development
– Pagination
– Queues
– Redis
– Session
– SSH Tasks
– Task Scheduling
– Testing
– Validation

• Database
– Getting Started
– Query Builder
– Migrations
– Seeding

• Eloquent ORM
– Getting Started
– Relationships
– Collections
– Mutators
– Serialization

Release Notes
• Support Policy
• Laravel 5.2
• Laravel 5.1.11
• Laravel 5.1.4
• Laravel 5.1
• Laravel 5.0
• Laravel 4.2
• Laravel 4.1

Support Policy

For LTS releases, such as Laravel 5.1, bug fixes are provided for 2 years and security fixes are provided
for 3 years. These releases provide the longest window of support and maintenance.

For general releases, bug fixes are provided for 6 months and security fixes are provided for 1 year.

Laravel 5.3 {#releases-laravel-5.3}

Laravel 5.3 continues the improvements made in Laravel 5.2.

PHP 5.6.4+

Since PHP 5.5 will enter “end of life” in June and will no longer receive security updates from the
PHP development team, Laravel 5.3 requires PHP 5.6.4 or greater. If you require PHP 5.5 support,
please see our 5.1 LTS series.

Laravel 5.2 {#releases-laravel-5.2}

Laravel 5.2 continues the improvementsmade in Laravel 5.1 by addingmultiple authentication driver
support, implicit model binding, simplified Eloquent global scopes, opt-in authentication scaffolding,
middleware groups, rate limiting middleware, array validation improvements, and more.

4

Release Notes 5

Authentication Drivers / “Multi-Auth”

In previous versions of Laravel, only the default, session-based authentication driver was supported
out of the box, and you could not havemore than one authenticatablemodel instance per application.

However, in Laravel 5.2, you may define additional authentication drivers as well define multiple
authenticatable models or user tables, and control their authentication process separately from each
other. For example, if your application has one database table for “admin” users and one database
table for “student” users, you may now use the Auth methods to authenticate against each of these
tables separately.

Authentication Scaffolding

Laravel already makes it easy to handle authentication on the back-end; however, Laravel 5.2
provides a convenient, lightning-fast way to scaffold the authentication views for your front-end.
Simply execute the make:auth command on your terminal:

1 php artisan make:auth

This command will generate plain, Bootstrap compatible views for user login, registration, and
password reset. The command will also update your routes file with the appropriate routes.

Note: This feature is only meant to be used on new applications, not during application
upgrades.

Implicit Model Binding

Implicit model binding makes it painless to inject relevant models directly into your routes and
controllers. For example, assume you have a route defined like the following:

1 use App\User;

2

3 Route::get('/user/{user}', function (User $user) {

4 return $user;

5 });

In Laravel 5.1, you would typically need to use the Route::model method to instruct Laravel to
inject the App\User instance that matches the {user} parameter in your route definition. However, in

Release Notes 6

Laravel 5.2, the framework will automatically inject this model based on the URI segment, allowing
you to quickly gain access to the model instances you need.

Laravel will automatically inject the model when the route parameter segment ({user}) matches
the route Closure or controller method’s corresponding variable name ($user) and the variable is
type-hinting an Eloquent model class.

Middleware Groups

Middleware groups allow you to group several route middleware under a single, convenient key,
allowing you to assign several middleware to a route at once. For example, this can be useful when
building a web UI and an API within the same application. You may group the session and CSRF
routes into a web group, and perhaps the rate limiter in the api group.

In fact, the default Laravel 5.2 application structure takes exactly this approach. For example, in the
default App\Http\Kernel.php file you will find the following:

1 /**

2 * The application's route middleware groups.

3 *

4 * @var array

5 */

6 protected $middlewareGroups = [

7 'web' => [

8 \App\Http\Middleware\EncryptCookies::class,

9 \Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,

10 \Illuminate\Session\Middleware\StartSession::class,

11 \Illuminate\View\Middleware\ShareErrorsFromSession::class,

12 \App\Http\Middleware\VerifyCsrfToken::class,

13],

14

15 'api' => [

16 'throttle:60,1',

17],

18];

Then, the web group may be assigned to routes like so:

1 Route::group(['middleware' => ['web']], function () {

2 //

Release Notes 7

3 });

Rate Limiting

A new rate limiter middleware is now included with the framework, allowing you to easily limit the
number of requests that a given IP address can make to a route over a specified number of minutes.
For example, to limit a route to 60 requests every minute from a single IP address, you may do the
following:

1 Route::get('/api/users', ['middleware' => 'throttle:60,1', function () {

2 //

3 }]);

Array Validation

Validating array form input fields is much easier in Laravel 5.2. For example, to validate that each
e-mail in a given array input field is unique, you may do the following:

1 $validator = Validator::make($request->all(), [

2 'person.*.email' => 'email|unique:users'

3]);

Likewise, you may use the * character when specifying your validation messages in your language
files, making it a breeze to use a single validation message for array based fields:

1 'custom' => [

2 'person.*.email' => [

3 'unique' => 'Each person must have a unique e-mail address',

4]

5],

Release Notes 8

Eloquent Global Scope Improvements

In previous versions of Laravel, global Eloquent scopes were complicated and error-prone to
implement; however, in Laravel 5.2, global query scopes only require you to implement a single,
simple method: apply.

For more information on writing global scopes, check out the full Eloquent documentation.

Laravel 5.1.11 {#releases-laravel-5.1.11}

Laravel 5.1.11 introduces authorization support out of the box! Conveniently organize your appli-
cation’s authorization logic using simple callbacks or policy classes, and authorize actions using
simple, expressive methods.

For more information, please refer to the authorization documentation.

Laravel 5.1.4 {#releases-laravel-5.1.4}

Laravel 5.1.4 introduces simple login throttling to the framework. Consult the authentication
documentation for more information.

Laravel 5.1 {#releases-laravel-5.1}

Laravel 5.1 continues the improvements made in Laravel 5.0 by adopting PSR-2 and adding event
broadcasting, middleware parameters, Artisan improvements, and more.

PHP 5.5.9+

Since PHP 5.4 will enter “end of life” in September and will no longer receive security updates from
the PHP development team, Laravel 5.1 requires PHP 5.5.9 or greater. PHP 5.5.9 allows compatibility
with the latest versions of popular PHP libraries such as Guzzle and the AWS SDK.

LTS

Laravel 5.1 is the first release of Laravel to receive long term support. Laravel 5.1 will receive bug
fixes for 2 years and security fixes for 3 years. This support window is the largest ever provided for
Laravel and provides stability and peace of mind for larger, enterprise clients and customers.

Release Notes 9

PSR-2

The PSR-2 coding style guide² has been adopted as the default style guide for the Laravel framework.
Additionally, all generators have been updated to generate PSR-2 compatible syntax.

Documentation

Every page of the Laravel documentation has been meticulously reviewed and dramatically
improved. All code examples have also been reviewed and expanded to provide more relevance
and context.

Event Broadcasting

In many modern web applications, web sockets are used to implement real-time, live-updating user
interfaces. When some data is updated on the server, a message is typically sent over a websocket
connection to be handled by the client.

To assist you in building these types of applications, Laravel makes it easy to “broadcast” your events
over a websocket connection. Broadcasting your Laravel events allows you to share the same event
names between your server-side code and your client-side JavaScript framework.

To learn more about event broadcasting, check out the event documentation.

Middleware Parameters

Middleware can now receive additional custom parameters. For example, if your application needs
to verify that the authenticated user has a given “role” before performing a given action, you could
create a RoleMiddleware that receives a role name as an additional argument:

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class RoleMiddleware

8 {

9 /**

10 * Run the request filter.

11 *

12 * @param \Illuminate\Http\Request $request

13 * @param \Closure $next

²https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

Release Notes 10

14 * @param string $role

15 * @return mixed

16 */

17 public function handle($request, Closure $next, $role)

18 {

19 if (! $request->user()->hasRole($role)) {

20 // Redirect...

21 }

22

23 return $next($request);

24 }

25

26 }

Middleware parameters may be specified when defining the route by separating the middleware
name and parameters with a :. Multiple parameters should be delimited by commas:

1 Route::put('post/{id}', ['middleware' => 'role:editor', function ($id) {

2 //

3 }]);

For more information on middleware, check out the middleware documentation.

Testing Overhaul

The built-in testing capabilities of Laravel have been dramatically improved. A variety of new
methods provide a fluent, expressive interface for interacting with your application and examining
its responses. For example, check out the following test:

1 public function testNewUserRegistration()

2 {

3 $this->visit('/register')

4 ->type('Taylor', 'name')

5 ->check('terms')

6 ->press('Register')

7 ->seePageIs('/dashboard');

8 }

Release Notes 11

For more information on testing, check out the testing documentation.

Model Factories

Laravel now ships with an easy way to create stub Eloquent models using model factories. Model
factories allow you to easily define a set of “default” attributes for your Eloquent model, and then
generate test model instances for your tests or database seeds. Model factories also take advantage
of the powerful Faker³ PHP library for generating random attribute data:

1 $factory->define(App\User::class, function ($faker) {

2 return [

3 'name' => $faker->name,

4 'email' => $faker->email,

5 'password' => str_random(10),

6 'remember_token' => str_random(10),

7];

8 });

For more information on model factories, check out the documentation.

Artisan Improvements

Artisan commands may now be defined using a simple, route-like “signature”, which provides an
extremely simple interface for defining command line arguments and options. For example, you
may define a simple command and its options like so:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send {user} {--force}';

For more information on defining Artisan commands, consult the Artisan documentation.

³https://github.com/fzaninotto/Faker

https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker

Release Notes 12

Folder Structure

To better express intent, the app/Commands directory has been renamed to app/Jobs. Additionally,
the app/Handlers directory has been consolidated into a single app/Listeners directory which
simply contains event listeners. However, this is not a breaking change and you are not required to
update to the new folder structure to use Laravel 5.1.

Encryption

In previous versions of Laravel, encryption was handled by the mcrypt PHP extension. However,
beginning in Laravel 5.1, encryption is handled by the openssl extension, which is more actively
maintained.

Laravel 5.0 {#releases-laravel-5.0}

Laravel 5.0 introduces a fresh application structure to the default Laravel project. This new structure
serves as a better foundation for building a robust application in Laravel, as well as embraces new
auto-loading standards (PSR-4) throughout the application. First, let’s examine some of the major
changes:

New Folder Structure

The old app/models directory has been entirely removed. Instead, all of your code lives directly
within the app folder, and, by default, is organized to the App namespace. This default namespace
can be quickly changed using the new app:name Artisan command.

Controllers, middleware, and requests (a new type of class in Laravel 5.0) are now grouped under the
app/Http directory, as they are all classes related to the HTTP transport layer of your application.
Instead of a single, flat file of route filters, all middleware are now broken into their own class files.

A new app/Providers directory replaces the app/start files from previous versions of Laravel
4.x. These service providers provide various bootstrapping functions to your application, such as
error handling, logging, route loading, and more. Of course, you are free to create additional service
providers for your application.

Application language files and views have been moved to the resources directory.

Contracts

Allmajor Laravel components implement interfaces which are located in the illuminate/contracts
repository. This repository has no external dependencies. Having a convenient, centrally located set
of interfaces you may use for decoupling and dependency injection will serve as an easy alternative
option to Laravel Facades.

For more information on contracts, consult the full documentation.

Release Notes 13

Route Cache

If your application is made up entirely of controller routes, you may utilize the new route:cache

Artisan command to drastically speed up the registration of your routes. This is primarily useful on
applications with 100+ routes and will drastically speed up this portion of your application.

Route Middleware

In addition to Laravel 4 style route “filters”, Laravel 5 now supports HTTP middleware, and
the included authentication and CSRF “filters” have been converted to middleware. Middleware
provides a single, consistent interface to replace all types of filters, allowing you to easily inspect,
and even reject, requests before they enter your application.

For more information on middleware, check out the documentation.

Controller Method Injection

In addition to the existing constructor injection, you may now type-hint dependencies on controller
methods. The service container will automatically inject the dependencies, even if the route contains
other parameters:

1 public function createPost(Request $request, PostRepository $posts)

2 {

3 //

4 }

Authentication Scaffolding

User registration, authentication, and password reset controllers are now included out of the box,
as well as simple corresponding views, which are located at resources/views/auth. In addition,
a “users” table migration has been included with the framework. Including these simple resources
allows rapid development of application ideas without bogging down on authentication boilerplate.
The authentication views may be accessed on the auth/login and auth/register routes. The
App\Services\Auth\Registrar service is responsible for user validation and creation.

Event Objects

You may now define events as objects instead of simply using strings. For example, check out the
following event:

Release Notes 14

1 <?php

2

3 class PodcastWasPurchased

4 {

5 public $podcast;

6

7 public function __construct(Podcast $podcast)

8 {

9 $this->podcast = $podcast;

10 }

11 }

The event may be dispatched like normal:

1 Event::fire(new PodcastWasPurchased($podcast));

Of course, your event handler will receive the event object instead of a list of data:

1 <?php

2

3 class ReportPodcastPurchase

4 {

5 public function handle(PodcastWasPurchased $event)

6 {

7 //

8 }

9 }

For more information on working with events, check out the full documentation.

Commands / Queueing

In addition to the queue job format supported in Laravel 4, Laravel 5 allows you to represent your
queued jobs as simple command objects. These commands live in the app/Commands directory. Here’s
a sample command:

Release Notes 15

1 <?php

2

3 class PurchasePodcast extends Command implements SelfHandling, ShouldBeQueued

4 {

5 use SerializesModels;

6

7 protected $user, $podcast;

8

9 /**

10 * Create a new command instance.

11 *

12 * @return void

13 */

14 public function __construct(User $user, Podcast $podcast)

15 {

16 $this->user = $user;

17 $this->podcast = $podcast;

18 }

19

20 /**

21 * Execute the command.

22 *

23 * @return void

24 */

25 public function handle()

26 {

27 // Handle the logic to purchase the podcast...

28

29 event(new PodcastWasPurchased($this->user, $this->podcast));

30 }

31 }

The base Laravel controller utilizes the new DispatchesCommands trait, allowing you to easily
dispatch your commands for execution:

1 $this->dispatch(new PurchasePodcastCommand($user, $podcast));

Of course, you may also use commands for tasks that are executed synchronously (are not queued).
In fact, using commands is a great way to encapsulate complex tasks your application needs to
perform. For more information, check out the command bus documentation.

Release Notes 16

Database Queue

A database queue driver is now included in Laravel, providing a simple, local queue driver that
requires no extra package installation beyond your database software.

Laravel Scheduler

In the past, developers have generated a Cron entry for each console command they wished to
schedule. However, this is a headache. Your console schedule is no longer in source control, and
you must SSH into your server to add the Cron entries. Let’s make our lives easier. The Laravel
command scheduler allows you to fluently and expressively define your command schedule within
Laravel itself, and only a single Cron entry is needed on your server.

It looks like this:

1 $schedule->command('artisan:command')->dailyAt('15:00');

Of course, check out the full documentation to learn all about the scheduler!

Tinker / Psysh

The php artisan tinker command now utilizes Psysh⁴ by Justin Hileman, a more robust REPL for
PHP. If you liked Boris in Laravel 4, you’re going to love Psysh. Even better, it works on Windows!
To get started, just try:

1 php artisan tinker

DotEnv

Instead of a variety of confusing, nested environment configuration directories, Laravel 5 now
utilizes DotEnv⁵ by Vance Lucas. This library provides a super simple way to manage your
environment configuration, andmakes environment detection in Laravel 5 a breeze. Formore details,
check out the full configuration documentation.

⁴https://github.com/bobthecow/psysh
⁵https://github.com/vlucas/phpdotenv

https://github.com/bobthecow/psysh
https://github.com/vlucas/phpdotenv
https://github.com/bobthecow/psysh
https://github.com/vlucas/phpdotenv

Release Notes 17

Laravel Elixir

Laravel Elixir, by JeffreyWay, provides a fluent, expressive interface to compiling and concatenating
your assets. If you’ve ever been intimidated by learning Grunt or Gulp, fear no more. Elixir makes it
a cinch to get started using Gulp to compile your Less, Sass, and CoffeeScript. It can even run your
tests for you!

For more information on Elixir, check out the full documentation.

Laravel Socialite

Laravel Socialite is an optional, Laravel 5.0+ compatible package that provides totally painless
authentication with OAuth providers. Currently, Socialite supports Facebook, Twitter, Google, and
GitHub. Here’s what it looks like:

1 public function redirectForAuth()

2 {

3 return Socialize::with('twitter')->redirect();

4 }

5

6 public function getUserFromProvider()

7 {

8 $user = Socialize::with('twitter')->user();

9 }

No more spending hours writing OAuth authentication flows. Get started in minutes! The full
documentation has all the details.

Flysystem Integration

Laravel now includes the powerful Flysystem⁶ filesystem abstraction library, providing pain free
integration with local, Amazon S3, and Rackspace cloud storage - all with one, unified and elegant
API! Storing a file in Amazon S3 is now as simple as:

1 Storage::put('file.txt', 'contents');

For more information on the Laravel Flysystem integration, consult the full documentation.

⁶https://github.com/thephpleague/flysystem

https://github.com/thephpleague/flysystem
https://github.com/thephpleague/flysystem

Release Notes 18

Form Requests

Laravel 5.0 introduces form requests, which extend the Illuminate\Foundation\Http\FormRequest
class. These request objects can be combined with controller method injection to provide a boiler-
plate free method of validating user input. Let’s dig in and look at a sample FormRequest:

1 <?php

2

3 namespace App\Http\Requests;

4

5 class RegisterRequest extends FormRequest

6 {

7 public function rules()

8 {

9 return [

10 'email' => 'required|email|unique:users',

11 'password' => 'required|confirmed|min:8',

12];

13 }

14

15 public function authorize()

16 {

17 return true;

18 }

19 }

Once the class has been defined, we can type-hint it on our controller action:

1 public function register(RegisterRequest $request)

2 {

3 var_dump($request->input());

4 }

When the Laravel service container identifies that the class it is injecting is a FormRequest instance,
the request will automatically be validated. This means that if your controller action is called, you
can safely assume the HTTP request input has been validated according to the rules you specified
in your form request class. Even more, if the request is invalid, an HTTP redirect, which you may
customize, will automatically be issued, and the error messages will be either flashed to the session
or converted to JSON. Form validation has never been more simple. For more information on
FormRequest validation, check out the documentation.

Release Notes 19

Simple Controller Request Validation

The Laravel 5 base controller now includes a ValidatesRequests trait. This trait provides a simple
validate method to validate incoming requests. If FormRequests are a little too much for your
application, check this out:

1 public function createPost(Request $request)

2 {

3 $this->validate($request, [

4 'title' => 'required|max:255',

5 'body' => 'required',

6]);

7 }

If the validation fails, an exception will be thrown and the proper HTTP response will automatically
be sent back to the browser. The validation errors will even be flashed to the session! If the request
was an AJAX request, Laravel even takes care of sending a JSON representation of the validation
errors back to you.

For more information on this new method, check out the documentation.

New Generators

To complement the new default application structure, new Artisan generator commands have been
added to the framework. See php artisan list for more details.

Configuration Cache

You may now cache all of your configuration in a single file using the config:cache command.

Symfony VarDumper

The popular dd helper function, which dumps variable debug information, has been upgraded to use
the amazing Symfony VarDumper. This provides color-coded output and even collapsing of arrays.
Just try the following in your project:

1 dd([1, 2, 3]);

Release Notes 20

Laravel 4.2

The full change list for this release by running the php artisan changes command from a
4.2 installation, or by viewing the change file on Github⁷. These notes only cover the major
enhancements and changes for the release.

Note: During the 4.2 release cycle, many small bug fixes and enhancements were incor-
porated into the various Laravel 4.1 point releases. So, be sure to check the change list for
Laravel 4.1 as well!

PHP 5.4 Requirement

Laravel 4.2 requires PHP 5.4 or greater. This upgraded PHP requirement allows us to use new PHP
features such as traits to provide more expressive interfaces for tools like Laravel Cashier. PHP 5.4
also brings significant speed and performance improvements over PHP 5.3.

Laravel Forge

Laravel Forge, a new web based application, provides a simple way to create and manage PHP
servers on the cloud of your choice, including Linode, DigitalOcean, Rackspace, and Amazon EC2.
Supporting automatedNginx configuration, SSH key access, Cron job automation, servermonitoring
via NewRelic & Papertrail, “Push To Deploy”, Laravel queue worker configuration, and more, Forge
provides the simplest and most affordable way to launch all of your Laravel applications.

The default Laravel 4.2 installation’s app/config/database.php configuration file is now configured
for Forge usage by default, allowing for more convenient deployment of fresh applications onto the
platform.

More information about Laravel Forge can be found on the official Forge website⁸.

Laravel Homestead

Laravel Homestead is an official Vagrant environment for developing robust Laravel and PHP
applications. The vast majority of the boxes’ provisioning needs are handled before the box
is packaged for distribution, allowing the box to boot extremely quickly. Homestead includes
Nginx 1.6, PHP 5.6, MySQL, Postgres, Redis, Memcached, Beanstalk, Node, Gulp, Grunt, & Bower.
Homestead includes a simple Homestead.yaml configuration file for managing multiple Laravel
applications on a single box.

⁷https://github.com/laravel/framework/blob/4.2/src/Illuminate/Foundation/changes.json
⁸https://forge.laravel.com

https://github.com/laravel/framework/blob/4.2/src/Illuminate/Foundation/changes.json
https://forge.laravel.com
https://github.com/laravel/framework/blob/4.2/src/Illuminate/Foundation/changes.json
https://forge.laravel.com

Release Notes 21

The default Laravel 4.2 installation now includes an app/config/local/database.php configuration
file that is configured to use the Homestead database out of the box, making Laravel initial
installation and configuration more convenient.

The official documentation has also been updated to include Homestead documentation.

Laravel Cashier

Laravel Cashier is a simple, expressive library for managing subscription billing with Stripe. With
the introduction of Laravel 4.2, we are including Cashier documentation alongwith themain Laravel
documentation, though installation of the component itself is still optional. This release of Cashier
brings numerous bug fixes, multi-currency support, and compatibility with the latest Stripe API.

Daemon Queue Workers

The Artisan queue:work command now supports a --daemon option to start a worker in “daemon
mode”, meaning the worker will continue to process jobs without ever re-booting the framework.
This results in a significant reduction in CPU usage at the cost of a slightly more complex application
deployment process.

More information about daemon queue workers can be found in the queue documentation.

Mail API Drivers

Laravel 4.2 introduces new Mailgun and Mandrill API drivers for the Mail functions. For many
applications, this provides a faster and more reliable method of sending e-mails than the SMTP
options. The new drivers utilize the Guzzle 4 HTTP library.

Soft Deleting Traits

A much cleaner architecture for “soft deletes” and other “global scopes” has been introduced via
PHP 5.4 traits. This new architecture allows for the easier construction of similar global traits, and
a cleaner separation of concerns within the framework itself.

More information on the new SoftDeletingTrait may be found in the Eloquent documentation.

Convenient Auth & Remindable Traits

The default Laravel 4.2 installation now uses simple traits for including the needed properties for the
authentication and password reminder user interfaces. This provides a much cleaner default User
model file out of the box.

Release Notes 22

“Simple Paginate”

A new simplePaginatemethod was added to the query and Eloquent builder which allows for more
efficient queries when using simple “Next” and “Previous” links in your pagination view.

Migration Confirmation

In production, destructive migration operations will now ask for confirmation. Commands may be
forced to run without any prompts using the --force command.

Laravel 4.1

Full Change List

The full change list for this release by running the php artisan changes command from a
4.1 installation, or by viewing the change file on Github⁹. These notes only cover the major
enhancements and changes for the release.

New SSH Component

An entirely new SSH component has been introduced with this release. This feature allows you
to easily SSH into remote servers and run commands. To learn more, consult the SSH component
documentation.

The new php artisan tail command utilizes the new SSH component. For more information,
consult the tail command documentation¹⁰.

Boris In Tinker

The php artisan tinker command now utilizes the Boris REPL¹¹ if your system supports it. The
readline and pcntl PHP extensions must be installed to use this feature. If you do not have these
extensions, the shell from 4.0 will be used.

Eloquent Improvements

A new hasManyThrough relationship has been added to Eloquent. To learn how to use it, consult the
Eloquent documentation.

A new whereHas method has also been introduced to allow retrieving models based on relationship
constraints.

⁹https://github.com/laravel/framework/blob/4.1/src/Illuminate/Foundation/changes.json
¹⁰http://laravel.com/docs/ssh#tailing-remote-logs
¹¹https://github.com/d11wtq/boris

https://github.com/laravel/framework/blob/4.1/src/Illuminate/Foundation/changes.json
http://laravel.com/docs/ssh#tailing-remote-logs
https://github.com/d11wtq/boris
https://github.com/laravel/framework/blob/4.1/src/Illuminate/Foundation/changes.json
http://laravel.com/docs/ssh#tailing-remote-logs
https://github.com/d11wtq/boris

Release Notes 23

Database Read / Write Connections

Automatic handling of separate read / write connections is now available throughout the database
layer, including the query builder and Eloquent. For more information, consult the documentation.

Queue Priority

Queue priorities are now supported by passing a comma-delimited list to the queue:listen

command.

Failed Queue Job Handling

The queue facilities now include automatic handling of failed jobs when using the new --tries

switch on queue:listen. More information on handling failed jobs can be found in the queue
documentation.

Cache Tags

Cache “sections” have been superseded by “tags”. Cache tags allow you to assign multiple “tags” to
a cache item, and flush all items assigned to a single tag. More information on using cache tags may
be found in the cache documentation.

Flexible Password Reminders

The password reminder engine has been changed to provide greater developer flexibility when
validating passwords, flashing status messages to the session, etc. For more information on using
the enhanced password reminder engine, consult the documentation.

Improved Routing Engine

Laravel 4.1 features a totally re-written routing layer. The API is the same; however, registering
routes is a full 100% faster compared to 4.0. The entire engine has been greatly simplified, and the
dependency on Symfony Routing has been minimized to the compiling of route expressions.

Improved Session Engine

With this release, we’re also introducing an entirely new session engine. Similar to the routing
improvements, the new session layer is leaner and faster. We are no longer using Symfony’s (and
therefore PHP’s) session handling facilities, and are using a custom solution that is simpler and
easier to maintain.

Release Notes 24

Doctrine DBAL

If you are using the renameColumn function in yourmigrations, youwill need to add the doctrine/d-
bal dependency to your composer.json file. This package is no longer included in Laravel by default.

Upgrade Guide
• Upgrading To 5.2.0 From 5.1
• Upgrading To 5.1.11
• Upgrading To 5.1.0
• Upgrading To 5.0.16
• Upgrading To 5.0 From 4.2
• Upgrading To 4.2 From 4.1
• Upgrading To 4.1.29 From <= 4.1.x
• Upgrading To 4.1.26 From <= 4.1.25
• Upgrading To 4.1 From 4.0

Upgrading To 5.2.0 From 5.1 {#upgrade-upgrade-5.2.0}

Estimated Upgrade Time: Less Than 1 Hour

Note: We attempt to provide a very comprehensive listing of every possible breaking
change made to the framework. However, many of these changes may not apply to your
own application.

Updating Dependencies

Update your composer.json file to point to laravel/framework 5.2.*.

Add "symfony/dom-crawler": "∼3.0" and "symfony/css-selector": "∼3.0" to the require-

dev section of your composer.json file.

Authentication

Configuration File

You should update your config/auth.php configuration file with the following: https://github.com/laravel/laravel/blob/master/config/auth.php¹²

¹²https://github.com/laravel/laravel/blob/master/config/auth.php

25

https://github.com/laravel/laravel/blob/master/config/auth.php
https://github.com/laravel/laravel/blob/master/config/auth.php

Upgrade Guide 26

Once you have updated the file with a fresh copy, set your authentication configuration options
to their desired value based on your old configuration file. If you were using the typical, Eloquent
based authentication services available in Laravel 5.1, most values should remain the same.

Take special note of the passwords.users.email configuration option in the new auth.php config-
uration file and verify that the view path matches the actual view path for your application, as the
default path to this view was changed in Laravel 5.2. If the default value in the new configuration
file does not match your existing view, update the configuration option.

Contracts

If you are implementing the Illuminate\Contracts\Auth\Authenticatable contract but are not
using the Authenticatable trait, you should add a new getAuthIdentifierName method to your
contract implementation. Typically, this method will return the column name of the “primary key”
of your authenticatable entity. For example: id.

This is unlikely to affect your application unless you were manually implementing this interface.

Custom Drivers

If you are using the Auth::extendmethod to define a custommethod of retrieving users, you should
now use Auth::provider to define your custom user provider. Once you have defined the custom
provider, you may configure it in the providers array of your new auth.php configuration file.

For more information on custom authentication providers, consult the full authentication documen-
tation.

Redirection

The loginPath()method has been removed from Illuminate\Foundation\Auth\AuthenticatesUsers,
so placing a $loginPath variable in your AuthController is no longer required. By default, the trait
will always redirect users back to their previous location on authentication errors.

Authorization

The Illuminate\Auth\Access\UnauthorizedException has been renamed to Illuminate\Auth\Access\AuthorizationException.
This is unlikely to affect your application if you are not manually catching this exception.

Collections

Eloquent Base Collections

The Eloquent collection instance now returns a base Collection (Illuminate\Support\Collection)
for the following methods: pluck, keys, zip, collapse, flatten, flip.

Upgrade Guide 27

Key Preservation

The slice, chunk, and reverse methods now preserve keys on the collection. If you do not want
these methods to preserve keys, use the values method on the Collection instance.

Composer Class

The Illuminate\Foundation\Composer class has been moved to Illuminate\Support\Composer.
This is unlikely to affect your application if you were not manually using this class.

Commands And Handlers

Self-Handling Commands

You no longer need to implement the SelfHandling contract on your jobs / commands. All jobs are
now self-handling by default, so you can remove this interface from your classes.

Separate Commands & Handlers

The Laravel 5.2 command bus now only supports self-handling commands and no longer supports
separate commands and handlers.

If you would like to continue using separate commands and handlers, you may install a Laravel Col-
lective packagewhich provides backwards-compatible support for this: https://github.com/LaravelCollective/bus¹³

Configuration

Environment Value

Add an env configuration option to your app.php configuration file that looks like the following:

1 'env' => env('APP_ENV', 'production'),

Caching And Env

If you are using the config:cache command during deployment, you must make sure that you are
only calling the env function from within your configuration files, and not from anywhere else in
your application.

If you are calling env from within your application, it is strongly recommended you add proper
configuration values to your configuration files and call env from that location instead, allowing
you to convert your env calls to config calls.

¹³https://github.com/laravelcollective/bus

https://github.com/laravelcollective/bus
https://github.com/laravelcollective/bus

Upgrade Guide 28

Compiled Classes

If present, remove the following lines from config/compile.php in the files array:

1 realpath(__DIR__.'/../app/Providers/BusServiceProvider.php'),

2 realpath(__DIR__.'/../app/Providers/ConfigServiceProvider.php'),

Not doing so can trigger an error when running php artisan optimize if the service providers
listed here do not exist.

CSRF Verification

CSRF verification is no longer automatically performed when running unit tests. This is unlikely to
affect your application.

Database

MySQL Dates

Starting with MySQL 5.7, 0000-00-00 00:00:00 is no longer considered a valid date, since strict
mode is enabled by default. All timestamp columns should receive a valid default value when you
insert records into your database. You may use the useCurrentmethod in your migrations to default
the timestamp columns to the current timestamps, or you may make the timestamps nullable to
allow null values:

1 $table->timestamp('foo')->nullable();

2

3 $table->timestamp('foo')->useCurrent();

4

5 $table->nullableTimestamps();

MySQL JSON Column Type

The json column type now creates actual JSON columns when used by the MySQL driver. If you
are not running MySQL 5.7 or above, this column type will not be available to you. Instead, use the
text column type in your migration.

Upgrade Guide 29

Seeding

When running database seeds, all Eloquent models are now unguarded by default. Previously
a call to Model::unguard() was required. You can call Model::reguard() at the top of your
DatabaseSeeder class if you would like models to be guarded during seeding.

Eloquent

Date Casts

Any attributes that have been added to your $casts property as date or datetime will now be
converted to a string when toArray is called on the model or collection of models. This makes the
date casting conversion consistent with dates specified in your $dates array.

Global Scopes

The global scopes implementation has been re-written to be much easier to use. Your global scopes
no longer need a remove method, so it may be removed from any global scopes you have written.

If you were calling getQuery on an Eloquent query builder to access the underlying query builder
instance, you should now call toBase.

If you were calling the remove method directly for any reason, you should change this call to
$eloquentBuilder->withoutGlobalScope($scope).

New methods withoutGlobalScope and withoutGlobalScopes have been added to the Eloquent
query builder. Any calls to $model->removeGlobalScopes($builder) may be changed to simply
$builder->withoutGlobalScopes().

Primary keys

By default, Eloquent assumes your primary keys are integers and will automatically cast them to
integers. For any primary key that is not an integer you should override the $incrementing property
on your Eloquent model to false:

1 /**

2 * Indicates if the IDs are auto-incrementing.

3 *

4 * @var bool

5 */

6 public $incrementing = true;

Upgrade Guide 30

Events

Core Event Objects

Some of the core events fired by Laravel now use event objects instead of string event names and
dynamic parameters. Below is a list of the old event names and their new object based counterparts:

Old | New ————- | ————- artisan.start | Illuminate\Console\Events\ArtisanStarting
auth.attempting | Illuminate\Auth\Events\Attempting auth.login | Illuminate\Auth\Events\Login
auth.logout | Illuminate\Auth\Events\Logout cache.missed | Illuminate\Cache\Events\CacheMissed
cache.hit | Illuminate\Cache\Events\CacheHit cache.write | Illuminate\Cache\Events\KeyWritten
cache.delete | Illuminate\Cache\Events\KeyForgotten connection.{name}.beginTransaction

| Illuminate\Database\Events\TransactionBeginning connection.{name}.committed | Illumi-
nate\Database\Events\TransactionCommitted connection.{name}.rollingBack | Illuminate\Database\Events\TransactionRolledBack
illuminate.query | Illuminate\Database\Events\QueryExecuted illuminate.queue.after | Il-
luminate\Queue\Events\JobProcessed illuminate.queue.failed | Illuminate\Queue\Events\JobFailed
illuminate.queue.stopping | Illuminate\Queue\Events\WorkerStopping mailer.sending | Il-
luminate\Mail\Events\MessageSending router.matched | Illuminate\Routing\Events\RouteMatched

Each of these event objects contains exactly the same parameters that were passed to the event
handler in Laravel 5.1. For example, if you were using DB::listen in 5.1., you may update your code
like so for 5.2.:

1 DB::listen(function ($event) {

2 dump($event->sql);

3 dump($event->bindings);

4 });

You may check out each of the new event object classes to see their public properties.

Exception Handling

Your App\Exceptions\Handler class’ $dontReport property should be updated to include at least
the following exception types:

Upgrade Guide 31

1 use Illuminate\Validation\ValidationException;

2 use Illuminate\Auth\Access\AuthorizationException;

3 use Illuminate\Database\Eloquent\ModelNotFoundException;

4 use Symfony\Component\HttpKernel\Exception\HttpException;

5

6 /**

7 * A list of the exception types that should not be reported.

8 *

9 * @var array

10 */

11 protected $dontReport = [

12 AuthorizationException::class,

13 HttpException::class,

14 ModelNotFoundException::class,

15 ValidationException::class,

16];

Helper Functions

The url() helper function now returns a Illuminate\Routing\UrlGenerator instance when no
path is provided.

Implicit Model Binding

Laravel 5.2 includes “implicit model binding”, a convenient new feature to automatically inject
model instances into routes and controllers based on the identifier present in the URI. However,
this does change the behavior of routes and controllers that type-hint model instances.

If you were type-hinting a model instance in your route or controller and were expecting an empty
model instance to be injected, you should remove this type-hint and create an empty model instance
directly within your route or controller; otherwise, Laravel will attempt to retrieve an existing model
instance from the database based on the identifier present in the route’s URI.

IronMQ

The IronMQ queue driver has been moved into its own package and is no longer shipped with the
core framework.

http://github.com/LaravelCollective/iron-queue¹⁴

¹⁴http://github.com/laravelcollective/iron-queue

http://github.com/laravelcollective/iron-queue
http://github.com/laravelcollective/iron-queue

Upgrade Guide 32

Jobs / Queue

The php artisan make:job command now creates a “queued” job class definition by default. If you
would like to create a “sync” job, use the --sync option when issuing the command.

Mail

The pretend mail configuration option has been removed. Instead, use the log mail driver, which
performs the same function as pretend and logs even more information about the mail message.

Pagination

To be consistent with other URLs generated by the framework, the paginator URLs no longer contain
a trailing slash. This is unlikely to affect your application.

Service Providers

The Illuminate\Foundation\Providers\ArtisanServiceProvider should be removed from your
service provider list in your app.php configuration file.

The Illuminate\Routing\ControllerServiceProvider should be removed fromyour service provider
list in your app.php configuration file.

Sessions

Because of changes to the authentication system, any existing sessions will be invalidated when you
upgrade to Laravel 5.2.

Database Session Driver

Anew database session driver has beenwritten for the frameworkwhich includesmore information
about the user such as their user ID, IP address, and user-agent. If you would like to continue using
the old driver you may specify the legacy-database driver in your session.php configuration file.

If you would like to use the new driver, you should add the user_id (nullable integer), ip_-
address (nullable string), and user_agent (text) columns to your session database table.

Stringy

The “Stringy” library is no longer included with the framework. You may install it manually via
Composer if you wish to use it in your application.

Upgrade Guide 33

Validation

Exception Types

The ValidatesRequests trait now throws an instance of Illuminate\Foundation\Validation\ValidationException
instead of throwing an instance of Illuminate\Http\Exception\HttpResponseException. This is
unlikely to affect your application unless you were manually catching this exception.

Deprecations

The following features are deprecated in 5.2 and will be removed in the 5.3 release in June 2016:

• Illuminate\Contracts\Bus\SelfHandling contract. Can be removed from jobs.
• The lists method on the Collection, query builder and Eloquent query builder objects has
been renamed to pluck. The method signature remains the same.

• Implicit controller routes using Route::controller have been deprecated. Please use explicit
route registration in your routes file. This will likely be extracted into a package.

• The get, post, and other route helper functions have been removed. You may use the Route
facade instead.

• The database session driver from 5.1 has been renamed to legacy-database and will be
removed. Consult notes on the “database session driver” above for more information.

• The Str::randomBytes function has been deprecated in favor of the random_bytes native PHP
function.

• The Str::equals function has been deprecated in favor of the hash_equals native PHP
function.

• Illuminate\View\Expression has been deprecated in favor of Illuminate\Support\HtmlString.

Upgrading To 5.1.11 {#upgrade-upgrade-5.1.11}

Laravel 5.1.11 includes support for authorization and policies. Incorporating these new features into
your existing Laravel 5.1 applications is simple.

Note: These upgrades are optional, and ignoring them will not affect your application.

Create The Policies Directory

First, create an empty app/Policies directory within your application.

Upgrade Guide 34

Create / Register The AuthServiceProvider & Gate Facade

Create a AuthServiceProvider within your app/Providers directory. You may copy the contents
of the default provider from GitHub¹⁵. Remember to change the provider’s namespace if your
application is using a custom namespace. After creating the provider, be sure to register it in your
app.php configuration file’s providers array.

Also, you should register the Gate facade in your app.php configuration file’s aliases array:

1 'Gate' => Illuminate\Support\Facades\Gate::class,

Update The User Model

Secondly, use the Illuminate\Foundation\Auth\Access\Authorizable trait and Illuminate\Contracts\Auth\Access\Authorizable
contract on your App\User model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Auth\Authenticatable;

6 use Illuminate\Database\Eloquent\Model;

7 use Illuminate\Auth\Passwords\CanResetPassword;

8 use Illuminate\Foundation\Auth\Access\Authorizable;

9 use Illuminate\Contracts\Auth\Authenticatable as AuthenticatableContract;

10 use Illuminate\Contracts\Auth\Access\Authorizable as AuthorizableContract;

11 use Illuminate\Contracts\Auth\CanResetPassword as CanResetPasswordContract;

12

13 class User extends Model implements AuthenticatableContract,

14 AuthorizableContract,

15 CanResetPasswordContract

16 {

17 use Authenticatable, Authorizable, CanResetPassword;

18 }

Update The Base Controller

Next, update your base App\Http\Controllers\Controller controller to use the Illuminate\Foundation\Auth\Access\AuthorizesRequests
trait:

¹⁵https://raw.githubusercontent.com/laravel/laravel/master/app/Providers/AuthServiceProvider.php

https://raw.githubusercontent.com/laravel/laravel/master/app/Providers/AuthServiceProvider.php
https://raw.githubusercontent.com/laravel/laravel/master/app/Providers/AuthServiceProvider.php

Upgrade Guide 35

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Foundation\Bus\DispatchesJobs;

6 use Illuminate\Routing\Controller as BaseController;

7 use Illuminate\Foundation\Validation\ValidatesRequests;

8 use Illuminate\Foundation\Auth\Access\AuthorizesRequests;

9

10 abstract class Controller extends BaseController

11 {

12 use AuthorizesRequests, DispatchesJobs, ValidatesRequests;

13 }

Upgrading To 5.1.0 {#upgrade-upgrade-5.1.0}

Estimated Upgrade Time: Less Than 1 Hour

Update bootstrap/autoload.php

Update the $compiledPath variable in bootstrap/autoload.php to the following:

1 $compiledPath = __DIR__.'/cache/compiled.php';

Create bootstrap/cache Directory

Within your bootstrap directory, create a cache directory (bootstrap/cache). Place a .gitignore
file in this directory with the following contents:

1 *

2 !.gitignore

This directory should be writable, and will be used by the framework to store temporary optimiza-
tion files like compiled.php, routes.php, config.php, and services.json.

Upgrade Guide 36

Add BroadcastServiceProvider Provider

Within your config/app.php configuration file, add Illuminate\Broadcasting\BroadcastServiceProvider
to the providers array.

Authentication

If you are using the provided AuthController which uses the AuthenticatesAndRegistersUsers

trait, you will need to make a few changes to how new users are validated and created.

First, you no longer need to pass the Guard and Registrar instances to the base constructor. You can
remove these dependencies entirely from your controller’s constructor.

Secondly, the App\Services\Registrar class used in Laravel 5.0 is no longer needed. You can
simply copy and paste your validator and create method from this class directly into your
AuthController. No other changes should need to be made to these methods; however, you should
be sure to import the Validator facade and your User model at the top of your AuthController.

Password Controller

The included PasswordController no longer requires any dependencies in its constructor. You may
remove both of the dependencies that were required under 5.0.

Validation

If you are overriding the formatValidationErrorsmethod on your base controller class, you should
now type-hint the Illuminate\Contracts\Validation\Validator contract instead of the concrete
Illuminate\Validation\Validator instance.

Likewise, if you are overriding the formatErrorsmethod on the base form request class, you should
now type-hint Illuminate\Contracts\Validation\Validator contract instead of the concrete
Illuminate\Validation\Validator instance.

Eloquent

The create Method

Eloquent’s create method can now be called without any parameters. If you are overriding the
createmethod in your own models, set the default value of the $attributes parameter to an array:

Upgrade Guide 37

1 public static function create(array $attributes = [])

2 {

3 // Your custom implementation

4 }

The find Method

If you are overriding the findmethod in your own models and calling parent::find()within your
custom method, you should now change it to call the find method on the Eloquent query builder:

1 public static function find($id, $columns = ['*'])

2 {

3 $model = static::query()->find($id, $columns);

4

5 // ...

6

7 return $model;

8 }

The lists Method

The listsmethod now returns a Collection instance instead of a plain array for Eloquent queries.
If you would like to convert the Collection into a plain array, use the all method:

1 User::lists('id')->all();

Be aware that the Query Builder lists method still returns an array.

Date Formatting

Previously, the storage format for Eloquent date fields could be modified by overriding the
getDateFormat method on your model. This is still possible; however, for convenience you may
simply specify a $dateFormat property on the model instead of overriding the method.

The date format is also now applied when serializing a model to an array or JSON. This may change
the format of your JSON serialized date fields whenmigrating from Laravel 5.0 to 5.1. To set a specific

Upgrade Guide 38

date format for serialized models, you may override the serializeDate(DateTime $date) method
on your model. This method allows you to have granular control over the formatting of serialized
Eloquent date fields without changing their storage format.

The Collection Class

The sort Method

The sortmethod now returns a fresh collection instance instead of modifying the existing collection:

1 $collection = $collection->sort($callback);

The sortBy Method

The sortBy method now returns a fresh collection instance instead of modifying the existing
collection:

1 $collection = $collection->sortBy('name');

The groupBy Method

The groupBy method now returns Collection instances for each item in the parent Collection. If
you would like to convert all of the items back to plain arrays, you may map over them:

1 $collection->groupBy('type')->map(function($item)

2 {

3 return $item->all();

4 });

The lists Method

The lists method now returns a Collection instance instead of a plain array. If you would like to
convert the Collection into a plain array, use the all method:

Upgrade Guide 39

1 $collection->lists('id')->all();

Commands & Handlers

The app/Commands directory has been renamed to app/Jobs. However, you are not required to move
all of your commands to the new location, and you may continue using the make:command and
handler:command Artisan commands to generate your classes.

Likewise, the app/Handlers directory has been renamed to app/Listeners and now only contains
event listeners. However, you are not required to move or rename your existing command and event
handlers, and you may continue to use the handler:event command to generate event handlers.

By providing backwards compatibility for the Laravel 5.0 folder structure, you may upgrade your
applications to Laravel 5.1 and slowly upgrade your events and commands to their new locations
when it is convenient for you or your team.

Blade

The createMatcher, createOpenMatcher, and createPlainMatcher methods have been removed
from the Blade compiler. Use the new directive method to create custom directives for Blade in
Laravel 5.1. Consult the extending blade documentation for more information.

Tests

Add the protected $baseUrl property to the tests/TestCase.php file:

1 protected $baseUrl = 'http://localhost';

Translation Files

The default directory for published language files for vendor packages has been moved. Move
any vendor package language files from resources/lang/packages/{locale}/{namespace} to
resources/lang/vendor/{namespace}/{locale} directory. For example, Acme/Anvil package’s
acme/anvil::foo namespaced English language file would be moved from resources/lang/pack-

ages/en/acme/anvil/foo.php to resources/lang/vendor/acme/anvil/en/foo.php.

Upgrade Guide 40

Amazon Web Services SDK

If you are using the AWS SQS queue driver or the AWS SES e-mail driver, you should update your
installed AWS PHP SDK to version 3.0.

If you are using the Amazon S3 filesystem driver, you will need to update the corresponding
Flysystem package via Composer:

• Amazon S3: league/flysystem-aws-s3-v3 ∼1.0

Deprecations

The following Laravel features have been deprecated and will be removed entirely with the release
of Laravel 5.2 in December 2015:

<div class=”content-list” markdown=”1”> - Route filters have been deprecated in preference of
middleware. - The Illuminate\Contracts\Routing\Middleware contract has been deprecated.
No contract is required on your middleware. In addition, the TerminableMiddleware contract
has also been deprecated. Instead of implementing the interface, simply define a terminate

method on your middleware. - The Illuminate\Contracts\Queue\ShouldBeQueued contract has
been deprecated in favor of Illuminate\Contracts\Queue\ShouldQueue. - Iron.io “push queues”
have been deprecated in favor of typical Iron.io queues and queue listeners. - The Illumi-

nate\Foundation\Bus\DispatchesCommands trait has been deprecated and renamed to Illumi-

nate\Foundation\Bus\DispatchesJobs. - Illuminate\Container\BindingResolutionException

has beenmoved to Illuminate\Contracts\Container\BindingResolutionException. - The service
container’s bindShared method has been deprecated in favor of the singleton method. - The
Eloquent and query builder pluck method has been deprecated and renamed to value. - The
collection fetch method has been deprecated in favor of the pluck method. - The array_fetch

helper has been deprecated in favor of the array_pluck method. </div>

Upgrading To 5.0.16 {#upgrade-upgrade-5.0.16}

In your bootstrap/autoload.php file, update the $compiledPath variable to:

1 $compiledPath = __DIR__.'/../vendor/compiled.php';

Service Providers

The App\Providers\BusServiceProvider may be removed from your service provider list in your
app.php configuration file.

Upgrade Guide 41

The App\Providers\ConfigServiceProvider may be removed from your service provider list in
your app.php configuration file.

Upgrading To 5.0 From 4.2 {#upgrade-upgrade-5.0}

Fresh Install, Then Migrate

The recommended method of upgrading is to create a new Laravel 5.0 install and then to copy your
4.2 site’s unique application files into the new application. This would include controllers, routes,
Eloquent models, Artisan commands, assets, and other code specific files to your application.

To start, install a new Laravel 5.0 application into a fresh directory in your local environment. Do
not install any versions newer than 5.0 yet, since we need to complete the migration steps for 5.0
first. We’ll discuss each piece of the migration process in further detail below.

Composer Dependencies & Packages

Don’t forget to copy any additional Composer dependencies into your 5.0 application. This includes
third-party code such as SDKs.

Some Laravel-specific packages may not be compatible with Laravel 5 on initial release. Check with
your package’s maintainer to determine the proper version of the package for Laravel 5. Once you
have added any additional Composer dependencies your application needs, run composer update.

Namespacing

By default, Laravel 4 applications did not utilize namespacing within your application code. So, for
example, all Eloquent models and controllers simply lived in the “global” namespace. For a quicker
migration, you can simply leave these classes in the global namespace in Laravel 5 as well.

Configuration

Migrating Environment Variables

Copy the new .env.example file to .env, which is the 5.0 equivalent of the old .env.php file. Set
any appropriate values there, like your APP_ENV and APP_KEY (your encryption key), your database
credentials, and your cache and session drivers.

Additionally, copy any custom values you had in your old .env.php file and place them in both
.env (the real value for your local environment) and .env.example (a sample instructional value for
other team members).

For more information on environment configuration, view the full documentation.

Upgrade Guide 42

Note: You will need to place the appropriate .env file and values on your production server
before deploying your Laravel 5 application.

Configuration Files

Laravel 5.0 no longer uses app/config/{environmentName}/ directories to provide specific con-
figuration files for a given environment. Instead, move any configuration values that vary by
environment into .env, and then access them in your configuration files using env('key', 'default

value'). You will see examples of this in the config/database.php configuration file.

Set the config files in the config/ directory to represent either the values that are consistent across
all of your environments, or set them to use env() to load values that vary by environment.

Remember, if you add more keys to .env file, add sample values to the .env.example file as well.
This will help your other team members create their own .env files.

Routes

Copy and paste your old routes.php file into your new app/Http/routes.php.

Controllers

Next, move all of your controllers into the app/Http/Controllers directory. Since we are not
going to migrate to full namespacing in this guide, add the app/Http/Controllers directory to
the classmap directive of your composer.json file. Next, you can remove the namespace from the
abstract app/Http/Controllers/Controller.php base class. Verify that your migrated controllers
are extending this base class.

In your app/Providers/RouteServiceProvider.php file, set the namespace property to null.

Route Filters

Copy your filter bindings from app/filters.php and place them into the boot() method of ap-
p/Providers/RouteServiceProvider.php. Add use Illuminate\Support\Facades\Route; in the
app/Providers/RouteServiceProvider.php in order to continue using the Route Facade.

You do not need to move over any of the default Laravel 4.0 filters such as auth and csrf; they’re
all here, but as middleware. Edit any routes or controllers that reference the old default filters (e.g.
['before' => 'auth']) and change them to reference the new middleware (e.g. ['middleware' =>

'auth'].)

Filters are not removed in Laravel 5. You can still bind and use your own custom filters using before
and after.

Upgrade Guide 43

Global CSRF

By default, CSRF protection is enabled on all routes. If you’d like to disable this, or only manually
enable it on certain routes, remove this line from App\Http\Kernel’s middleware array:

1 'App\Http\Middleware\VerifyCsrfToken',

If you want to use it elsewhere, add this line to $routeMiddleware:

1 'csrf' => 'App\Http\Middleware\VerifyCsrfToken',

Now you can add the middleware to individual routes / controllers using ['middleware' =>

'csrf'] on the route. For more information on middleware, consult the full documentation.

Eloquent Models

Feel free to create a new app/Models directory to house your Eloquent models. Again, add this
directory to the classmap directive of your composer.json file.

Update anymodels using SoftDeletingTrait to use Illuminate\Database\Eloquent\SoftDeletes.

Eloquent Caching

Eloquent no longer provides the remember method for caching queries. You now are responsible
for caching your queries manually using the Cache::remember function. For more information on
caching, consult the full documentation.

User Authentication Model

To upgrade your User model for Laravel 5’s authentication system, follow these instructions:

Delete the following from your use block:

1 use Illuminate\Auth\UserInterface;

2 use Illuminate\Auth\Reminders\RemindableInterface;

Add the following to your use block:

Upgrade Guide 44

1 use Illuminate\Auth\Authenticatable;

2 use Illuminate\Auth\Passwords\CanResetPassword;

3 use Illuminate\Contracts\Auth\Authenticatable as AuthenticatableContract;

4 use Illuminate\Contracts\Auth\CanResetPassword as CanResetPasswordContract;

Remove the UserInterface and RemindableInterface interfaces.

Mark the class as implementing the following interfaces:

1 implements AuthenticatableContract, CanResetPasswordContract

Include the following traits within the class declaration:

1 use Authenticatable, CanResetPassword;

If you used them, remove Illuminate\Auth\Reminders\RemindableTrait and Illuminate\Auth\UserTrait
from your use block and your class declaration.

Cashier User Changes

The name of the trait and interface used by Laravel Cashier has changed. Instead of using Billable-
Trait, use the Laravel\Cashier\Billable trait. And, instead of Laravel\Cashier\BillableInterface
implement the Laravel\Cashier\Contracts\Billable interface instead. No other method changes
are required.

Artisan Commands

Move all of your command classes from your old app/commands directory to the new app/Con-

sole/Commands directory. Next, add the app/Console/Commands directory to the classmap directive
of your composer.json file.

Then, copy your list of Artisan commands from start/artisan.php into the command array of the
app/Console/Kernel.php file.

Database Migrations & Seeds

Delete the two migrations included with Laravel 5.0, since you should already have the users table
in your database.

Move all of your migration classes from the old app/database/migrations directory to the
new database/migrations. All of your seeds should be moved from app/database/seeds to
database/seeds.

Upgrade Guide 45

Global IoC Bindings

If you have any service container bindings in start/global.php, move them all to the register

method of the app/Providers/AppServiceProvider.php file. You may need to import the App

facade.

Optionally, you may break these bindings up into separate service providers by category.

Views

Move your views from app/views to the new resources/views directory.

Blade Tag Changes

For better security by default, Laravel 5.0 escapes all output from both the {{ }} and {{{ }}} Blade
directives. A new {!! !!} directive has been introduced to display raw, unescaped output. The most
secure option when upgrading your application is to only use the new {!! !!} directive when you
are certain that it is safe to display raw output.

However, if youmust use the old Blade syntax, add the following lines at the bottom of AppServi-
ceProvider@register:

1 \Blade::setRawTags('{{', '}}');

2 \Blade::setContentTags('{{{', '}}}');

3 \Blade::setEscapedContentTags('{{{', '}}}');

This should not be done lightly, and may make your application more vulnerable to XSS exploits.
Also, comments with {{-- will no longer work.

Translation Files

Move your language files from app/lang to the new resources/lang directory.

Public Directory

Copy your application’s public assets from your 4.2 application’s public directory to your new
application’s public directory. Be sure to keep the 5.0 version of index.php.

Tests

Move your tests from app/tests to the new tests directory.

Upgrade Guide 46

Misc. Files

Copy in any other files in your project. For example, .scrutinizer.yml, bower.json and other
similar tooling configuration files.

You may move your Sass, Less, or CoffeeScript to any location you wish. The resources/assets

directory could be a good default location.

Form & HTML Helpers

If you’re using Form or HTML helpers, you will see an error stating class 'Form' not found

or class 'Html' not found. The Form and HTML helpers have been deprecated in Laravel 5.0;
however, there are community-driven replacements such as those maintained by the Laravel
Collective¹⁶.

For example, you may add "laravelcollective/html": "∼5.0" to your composer.json file’s
require section.

You’ll also need to add the Form and HTML facades and service provider. Edit config/app.php and
add this line to the ‘providers’ array:

1 'Collective\Html\HtmlServiceProvider',

Next, add these lines to the ‘aliases’ array:

1 'Form' => 'Collective\Html\FormFacade',

2 'Html' => 'Collective\Html\HtmlFacade',

CacheManager

If your application code was injecting Illuminate\Cache\CacheManager to get a non-Facade version
of Laravel’s cache, inject Illuminate\Contracts\Cache\Repository instead.

Pagination

Replace any calls to $paginator->links() with $paginator->render().

¹⁶http://laravelcollective.com/docs/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/
html

http://laravelcollective.com/docs/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /html
http://laravelcollective.com/docs/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /html
http://laravelcollective.com/docs/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /html
http://laravelcollective.com/docs/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /html

Upgrade Guide 47

Replace any calls to $paginator->getFrom() and $paginator->getTo()with $paginator->firstItem()
and $paginator->lastItem() respectively.

Remove the “get” prefix from calls to $paginator->getPerPage(), $paginator->getCurrentPage(),
$paginator->getLastPage() and $paginator->getTotal() (e.g. $paginator->perPage()).

Beanstalk Queuing

Laravel 5.0 now requires "pda/pheanstalk": "∼3.0" instead of "pda/pheanstalk": "∼2.1".

Remote

The Remote component has been deprecated.

Workbench

The Workbench component has been deprecated.

Upgrading To 4.2 From 4.1

PHP 5.4+

Laravel 4.2 requires PHP 5.4.0 or greater.

Encryption Defaults

Add a new cipher option in your app/config/app.php configuration file. The value of this option
should be MCRYPT_RIJNDAEL_256.

1 'cipher' => MCRYPT_RIJNDAEL_256

This setting may be used to control the default cipher used by the Laravel encryption facilities.

Note: In Laravel 4.2, the default cipher is MCRYPT_RIJNDAEL_128 (AES), which is considered
to be the most secure cipher. Changing the cipher back to MCRYPT_RIJNDAEL_256 is required
to decrypt cookies/values that were encrypted in Laravel <= 4.1

Upgrade Guide 48

Soft Deleting Models Now Use Traits

If you are using soft deleting models, the softDeletes property has been removed. You must now
use the SoftDeletingTrait like so:

1 use Illuminate\Database\Eloquent\SoftDeletingTrait;

2

3 class User extends Eloquent

4 {

5 use SoftDeletingTrait;

6 }

You must also manually add the deleted_at column to your dates property:

1 class User extends Eloquent

2 {

3 use SoftDeletingTrait;

4

5 protected $dates = ['deleted_at'];

6 }

The API for all soft delete operations remains the same.

Note: The SoftDeletingTrait can not be applied on a base model. It must be used on an
actual model class.

View / Pagination Environment Renamed

If you are directly referencing the Illuminate\View\Environment class or Illuminate\Pagination\Environment
class, update your code to reference Illuminate\View\Factory and Illuminate\Pagination\Factory
instead. These two classes have been renamed to better reflect their function.

Additional Parameter On Pagination Presenter

If you are extending the Illuminate\Pagination\Presenter class, the abstract method get-

PageLinkWrapper signature has changed to add the rel argument:

Upgrade Guide 49

1 abstract public function getPageLinkWrapper($url, $page, $rel = null);

Iron.Io Queue Encryption

If you are using the Iron.io queue driver, you will need to add a new encrypt option to your queue
configuration file:

1 'encrypt' => true

Upgrading To 4.1.29 From <= 4.1.x

Laravel 4.1.29 improves the column quoting for all database drivers. This protects your application
from some mass assignment vulnerabilities when not using the fillable property on models. If you
are using the fillable property on yourmodels to protect againstmass assignment, your application
is not vulnerable. However, if you are using guarded and are passing a user controlled array into
an “update” or “save” type function, you should upgrade to 4.1.29 immediately as your application
may be at risk of mass assignment.

To upgrade to Laravel 4.1.29, simply composer update. No breaking changes are introduced in this
release.

Upgrading To 4.1.26 From <= 4.1.25

Laravel 4.1.26 introduces security improvements for “remember me” cookies. Before this update, if a
remember cookie was hijacked by another malicious user, the cookie would remain valid for a long
period of time, even after the true owner of the account reset their password, logged out, etc.

This change requires the addition of a new remember_token column to your users (or equivalent)
database table. After this change, a fresh token will be assigned to the user each time they login to
your application. The token will also be refreshed when the user logs out of the application. The
implications of this change are: if a “remember me” cookie is hijacked, simply logging out of the
application will invalidate the cookie.

Upgrade Path

First, add a new, nullable remember_token of VARCHAR(100), TEXT, or equivalent to your users
table.

Upgrade Guide 50

Next, if you are using the Eloquent authentication driver, update your User class with the following
three methods:

1 public function getRememberToken()

2 {

3 return $this->remember_token;

4 }

5

6 public function setRememberToken($value)

7 {

8 $this->remember_token = $value;

9 }

10

11 public function getRememberTokenName()

12 {

13 return 'remember_token';

14 }

Note: All existing “remember me” sessions will be invalidated by this change, so all users
will be forced to re-authenticate with your application.

Package Maintainers

Two new methods were added to the Illuminate\Auth\UserProviderInterface interface. Sample
implementations may be found in the default drivers:

1 public function retrieveByToken($identifier, $token);

2

3 public function updateRememberToken(UserInterface $user, $token);

The Illuminate\Auth\UserInterface also received the three new methods described in the
“Upgrade Path”.

Upgrade Guide 51

Upgrading To 4.1 From 4.0

Upgrading Your Composer Dependency

To upgrade your application to Laravel 4.1, change your laravel/framework version to 4.1.* in
your composer.json file.

Replacing Files

Replace your public/index.php file with this fresh copy from the repository¹⁷.

Replace your artisan file with this fresh copy from the repository¹⁸.

Adding Configuration Files & Options

Update your aliases and providers arrays in your app/config/app.php configuration file. The
updated values for these arrays can be found in this file¹⁹. Be sure to add your custom and package
service providers / aliases back to the arrays.

Add the new app/config/remote.php file from the repository²⁰.

Add the new expire_on_close configuration option to your app/config/session.php file. The
default value should be false.

Add the new failed configuration section to your app/config/queue.php file. Here are the default
values for the section:

1 'failed' => [

2 'database' => 'mysql', 'table' => 'failed_jobs',

3],

(Optional) Update the pagination configuration option in your app/config/view.php file to
pagination::slider-3.

Controller Updates

If app/controllers/BaseController.php has a use statement at the top, change use Illumi-

nate\Routing\Controllers\Controller; to use Illuminate\Routing\Controller;.

¹⁷https://github.com/laravel/laravel/blob/v4.1.0/public/index.php
¹⁸https://github.com/laravel/laravel/blob/v4.1.0/artisan
¹⁹https://github.com/laravel/laravel/blob/v4.1.0/app/config/app.php
²⁰https://github.com/laravel/laravel/blob/v4.1.0/app/config/remote.php

https://github.com/laravel/laravel/blob/v4.1.0/public/index.php
https://github.com/laravel/laravel/blob/v4.1.0/artisan
https://github.com/laravel/laravel/blob/v4.1.0/app/config/app.php
https://github.com/laravel/laravel/blob/v4.1.0/app/config/remote.php
https://github.com/laravel/laravel/blob/v4.1.0/public/index.php
https://github.com/laravel/laravel/blob/v4.1.0/artisan
https://github.com/laravel/laravel/blob/v4.1.0/app/config/app.php
https://github.com/laravel/laravel/blob/v4.1.0/app/config/remote.php

Upgrade Guide 52

Password Reminders Updates

Password reminders have been overhauled for greater flexibility. You may examine the new stub
controller by running the php artisan auth:reminders-controller Artisan command. You may
also browse the updated documentation and update your application accordingly.

Update your app/lang/en/reminders.php language file to match this updated file²¹.

Environment Detection Updates

For security reasons, URL domains may no longer be used to detect your application environment.
These values are easily spoofable and allow attackers to modify the environment for a request. You
should convert your environment detection to use machine host names (hostname command on
Mac, Linux, and Windows).

Simpler Log Files

Laravel now generates a single log file: app/storage/logs/laravel.log. However, you may still
configure this behavior in your app/start/global.php file.

Removing Redirect Trailing Slash

In your bootstrap/start.php file, remove the call to $app->redirectIfTrailingSlash(). This
method is no longer needed as this functionality is now handled by the .htaccess file included
with the framework.

Next, replace your Apache .htaccess file with this new one²² that handles trailing slashes.

Current Route Access

The current route is now accessed via Route::current() instead of Route::getCurrentRoute().

Composer Update

Once you have completed the changes above, you can run the composer update function to update
your core application files! If you receive class load errors, try running the update command with
the --no-scripts option enabled like so: composer update --no-scripts.

Wildcard Event Listeners

The wildcard event listeners no longer append the event to your handler functions parameters. If
you require finding the event that was fired you should use Event::firing().

²¹https://github.com/laravel/laravel/blob/v4.1.0/app/lang/en/reminders.php
²²https://github.com/laravel/laravel/blob/v4.1.0/public/.htaccess

https://github.com/laravel/laravel/blob/v4.1.0/app/lang/en/reminders.php
https://github.com/laravel/laravel/blob/v4.1.0/public/.htaccess
https://github.com/laravel/laravel/blob/v4.1.0/app/lang/en/reminders.php
https://github.com/laravel/laravel/blob/v4.1.0/public/.htaccess

Contribution Guide
• Bug Reports
• Core Development Discussion
• Which Branch?
• Security Vulnerabilities
• Coding Style A> - Code Style Fixer

Bug Reports

To encourage active collaboration, Laravel strongly encourages pull requests, not just bug reports.
“Bug reports” may also be sent in the form of a pull request containing a failing test.

However, if you file a bug report, your issue should contain a title and a clear description of the
issue. You should also include as much relevant information as possible and a code sample that
demonstrates the issue. The goal of a bug report is to make it easy for yourself - and others - to
replicate the bug and develop a fix.

Remember, bug reports are created in the hope that others with the same problem will be able to
collaborate with you on solving it. Do not expect that the bug report will automatically see any
activity or that others will jump to fix it. Creating a bug report serves to help yourself and others
start on the path of fixing the problem.

The Laravel source code is managed on Github, and there are repositories for each of the Laravel
projects:

• Laravel Framework²³
• Laravel Application²⁴
• Laravel Documentation²⁵
• Laravel Cashier²⁶
• Laravel Envoy²⁷
• Laravel Homestead²⁸
• Laravel Homestead Build Scripts²⁹

²³https://github.com/laravel/framework
²⁴https://github.com/laravel/laravel
²⁵https://github.com/laravel/docs
²⁶https://github.com/laravel/cashier
²⁷https://github.com/laravel/envoy
²⁸https://github.com/laravel/homestead
²⁹https://github.com/laravel/settler

53

https://github.com/laravel/framework
https://github.com/laravel/laravel
https://github.com/laravel/docs
https://github.com/laravel/cashier
https://github.com/laravel/envoy
https://github.com/laravel/homestead
https://github.com/laravel/settler
https://github.com/laravel/framework
https://github.com/laravel/laravel
https://github.com/laravel/docs
https://github.com/laravel/cashier
https://github.com/laravel/envoy
https://github.com/laravel/homestead
https://github.com/laravel/settler

Contribution Guide 54

• Laravel Website³⁰
• Laravel Art³¹

Core Development Discussion

Discussion regarding bugs, new features, and implementation of existing features takes place in
the #internals channel of the LaraChat³² Slack team. Taylor Otwell, the maintainer of Laravel, is
typically present in the channel on weekdays from 8am-5pm (UTC-06:00 or America/Chicago), and
sporadically present in the channel at other times.

Which Branch?

All bug fixes should be sent to the latest stable branch. Bug fixes should never be sent to the master
branch unless they fix features that exist only in the upcoming release.

Minor features that are fully backwards compatible with the current Laravel release may be sent
to the latest stable branch.

Major new features should always be sent to the master branch, which contains the upcoming
Laravel release.

If you are unsure if your feature qualifies as a major or minor, please ask Taylor Otwell in the
#internals channel of the LaraChat³³ Slack team.

Security Vulnerabilities

If you discover a security vulnerability within Laravel, please send an e-mail to Taylor Otwell at
taylor@laravel.com. All security vulnerabilities will be
promptly addressed.

Coding Style

Laravel follows the PSR-2³⁴ coding standard and the PSR-4³⁵ autoloading standard.

³⁰https://github.com/laravel/laravel.com
³¹https://github.com/laravel/art
³²http://larachat.co
³³http://larachat.co
³⁴https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
³⁵https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

https://github.com/laravel/laravel.com
https://github.com/laravel/art
http://larachat.co
http://larachat.co
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/laravel/laravel.com
https://github.com/laravel/art
http://larachat.co
http://larachat.co
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

Contribution Guide 55

DocBlocks

@param tags should not be aligned and arguments should be separated by 2 spaces.

Here’s an example block:

1 /**

2 * Register a binding with the container.

3 *

4 * @param string|array $abstract

5 * @param \Closure|string|null $concrete

6 * @param bool $shared

7 * @return void

8 */

9 public function bind($abstract, $concrete = null, $shared = false)

10 {

11 //

12 }

Code Style Fixer

You may use the PHP-CS-Fixer³⁶ to fix your code style before committing.

To get started, install the tool globally³⁷ and check the code style by issuing the following terminal
command from your project’s root directory:

1 php-cs-fixer fix

³⁶https://github.com/FriendsOfPHP/PHP-CS-Fixer
³⁷https://github.com/FriendsOfPHP/PHP-CS-Fixer#globally-manual

https://github.com/FriendsOfPHP/PHP-CS-Fixer
https://github.com/FriendsOfPHP/PHP-CS-Fixer#globally-manual
https://github.com/FriendsOfPHP/PHP-CS-Fixer
https://github.com/FriendsOfPHP/PHP-CS-Fixer#globally-manual

Installation
• Installation A> - Server Requirements A> - Installing Laravel A> - Configuration

Installation

Server Requirements

The Laravel framework has a few system requirements. Of course, all of these requirements are
satisfied by the Laravel Homestead virtual machine, so it’s highly recommended that you use
Homestead as your local Laravel development environment.

However, if you are not usingHomestead, youwill need tomake sure your servermeets the following
requirements:

<div class=”content-list” markdown=”1”> - PHP >= 5.5.9 - OpenSSL PHP Extension - PDO PHP
Extension - Mbstring PHP Extension - Tokenizer PHP Extension </div>

Installing Laravel

Laravel utilizes Composer³⁸ to manage its dependencies. So, before using Laravel, make sure you
have Composer installed on your machine.

Via Laravel Installer

First, download the Laravel installer using Composer:

1 composer global require "laravel/installer"

Make sure to place the ∼/.composer/vendor/bin directory (or the equivalent directory for your
OS) in your PATH so the laravel executable can be located by your system.

Once installed, the laravel new command will create a fresh Laravel installation in the directory
you specify. For instance, laravel new blog will create a directory named blog containing a fresh
Laravel installation with all of Laravel’s dependencies already installed. This method of installation
is much faster than installing via Composer:

³⁸http://getcomposer.org

56

http://getcomposer.org
http://getcomposer.org

Installation 57

1 laravel new blog

Via Composer Create-Project

Alternatively, you may also install Laravel by issuing the Composer create-project command in
your terminal:

1 composer create-project --prefer-dist laravel/laravel blog

Configuration

All of the configuration files for the Laravel framework are stored in the config directory. Each
option is documented, so feel free to look through the files and get familiar with the options available
to you.

Directory Permissions

After installing Laravel, you may need to configure some permissions. Directories within the
storage and the bootstrap/cache directories should be writable by your web server or Laravel
will not run. If you are using the Homestead virtual machine, these permissions should already be
set.

Application Key

The next thing you should do after installing Laravel is set your application key to a random string.
If you installed Laravel via Composer or the Laravel installer, this key has already been set for you
by the artisan key:generate command. Typically, this string should be 32 characters long. The
key can be set in the .env environment file. If you have not renamed the .env.example file to .env,
you should do that now. If the application key is not set, your user sessions and other encrypted
data will not be secure!

Additional Configuration

Laravel needs almost no other configuration out of the box. You are free to get started developing!
However, youmaywish to review the config/app.php file and its documentation. It contains several
options such as timezone and locale that you may wish to change according to your application.

You may also want to configure a few additional components of Laravel, such as:

Installation 58

• Cache
• Database
• Session

Once Laravel is installed, you should also configure your local environment.

Configuration
• Introduction
• Accessing Configuration Values
• Environment Configuration A> - Determining The Current Environment
• Configuration Caching
• Maintenance Mode

Introduction

All of the configuration files for the Laravel framework are stored in the config directory. Each
option is documented, so feel free to look through the files and get familiar with the options available
to you.

Accessing Configuration Values

You may easily access your configuration values using the global config helper function from
anywhere in your application. The configuration values may be accessed using “dot” syntax, which
includes the name of the file and option you wish to access. A default value may also be specified
and will be returned if the configuration option does not exist:

1 $value = config('app.timezone');

To set configuration values at runtime, pass an array to the config helper:

1 config(['app.timezone' => 'America/Chicago']);

Environment Configuration

It is often helpful to have different configuration values based on the environment the application is
running in. For example, you may wish to use a different cache driver locally than you do on your
production server. It’s easy using environment based configuration.

59

Configuration 60

To make this a cinch, Laravel utilizes the DotEnv³⁹ PHP library by Vance Lucas. In a fresh Laravel
installation, the root directory of your application will contain a .env.example file. If you install
Laravel via Composer, this file will automatically be renamed to .env. Otherwise, you should rename
the file manually.

All of the variables listed in this file will be loaded into the $_ENV PHP super-global when your
application receives a request. However, you may use the env helper to retrieve values from these
variables in your configuration files. In fact, if you review the Laravel configuration files, you will
notice several of the options already using this helper:

1 'debug' => env('APP_DEBUG', false),

The second value passed to the env function is the “default value”. This value will be used if no
environment variable exists for the given key.

Your .env file should not be committed to your application’s source control, since each developer /
server using your application could require a different environment configuration.

If you are developing with a team, you may wish to continue including a .env.example file with
your application. By putting place-holder values in the example configuration file, other developers
on your team can clearly see which environment variables are needed to run your application.

Determining The Current Environment

The current application environment is determined via the APP_ENV variable from your .env file.
You may access this value via the environment method on the App facade:

1 $environment = App::environment();

You may also pass arguments to the environment method to check if the environment matches a
given value. If necessary, you may even pass multiple values to the environment method. If the
environment matches any of the given values, the method will return true:

³⁹https://github.com/vlucas/phpdotenv

https://github.com/vlucas/phpdotenv
https://github.com/vlucas/phpdotenv

Configuration 61

1 if (App::environment('local')) {

2 // The environment is local

3 }

4

5 if (App::environment('local', 'staging')) {

6 // The environment is either local OR staging...

7 }

An application instance may also be accessed via the app helper method:

1 $environment = app()->environment();

Configuration Caching

To give your application a speed boost, you should cache all of your configuration files into a single
file using the config:cache Artisan command. This will combine all of the configuration options
for your application into a single file which will be loaded quickly by the framework.

You should typically run the php artisan config:cache command as part of your production
deployment routine. The command should not be run during local development as configuration
options will frequently need to be changed during the course of your application’s development.

Maintenance Mode

When your application is in maintenance mode, a custom view will be displayed for all requests
into your application. This makes it easy to “disable” your application while it is updating or when
you are performing maintenance. A maintenance mode check is included in the default middleware
stack for your application. If the application is in maintenance mode, a MaintenanceModeException
will be thrown with a status code of 503.

To enable maintenance mode, simply execute the down Artisan command:

1 php artisan down

You may also provide message and retry options to the down command. The message value may be
used to display or log a custom message, while the retry value will be set as the Retry-AfterHTTP
header’s value:

Configuration 62

1 php artisan down --message='Upgrading Database' --retry=60

To disable maintenance mode, use the up command:

1 php artisan up

Maintenance Mode Response Template

The default template formaintenancemode responses is located in resources/views/errors/503.blade.php.
You are free to modify this view as needed for your application.

Maintenance Mode & Queues

While your application is in maintenance mode, no queued jobs will be handled. The jobs will
continue to be handled as normal once the application is out of maintenance mode.

Alternatives To Maintenance Mode

Since maintenance mode requires your application to have several seconds of downtime, you may
consider alternatives like Envoyer⁴⁰ to accomplish zero-downtime deployment with Laravel.

⁴⁰https://envoyer.io

https://envoyer.io
https://envoyer.io

Laravel Homestead
• Introduction
• Installation & Setup A> - First Steps A> - Configuring Homestead A> - Launching The Vagrant
Box A> - Per Project Installation

• Daily Usage A> - Accessing Homestead Globally A> - Connecting Via SSH A> - Connecting
To Databases A> - Adding Additional Sites A> - Configuring Cron Schedules A> - Ports

Introduction

Laravel strives to make the entire PHP development experience delightful, including your local
development environment. Vagrant⁴¹ provides a simple, elegant way to manage and provision
Virtual Machines.

Laravel Homestead is an official, pre-packaged Vagrant box that provides you a wonderful devel-
opment environment without requiring you to install PHP, HHVM, a web server, and any other
server software on your local machine. No more worrying about messing up your operating system!
Vagrant boxes are completely disposable. If something goes wrong, you can destroy and re-create
the box in minutes!

Homestead runs on any Windows, Mac, or Linux system, and includes the Nginx web server, PHP
7.0, MySQL, Postgres, Redis, Memcached, Node, and all of the other goodies you need to develop
amazing Laravel applications.

Note: If you are using Windows, you may need to enable hardware virtualization (VT-x).
It can usually be enabled via your BIOS.

Included Software

• Ubuntu 14.04
• Git
• PHP 7.0
• HHVM
• Nginx
• MySQL

⁴¹http://vagrantup.com

63

http://vagrantup.com
http://vagrantup.com

Laravel Homestead 64

• Sqlite3
• Postgres
• Composer
• Node (With PM2, Bower, Grunt, and Gulp)
• Redis
• Memcached
• Beanstalkd

Installation & Setup

First Steps

Before launching your Homestead environment, you must install VirtualBox 5.x⁴² or VMWare⁴³ as
well as Vagrant⁴⁴. All of these software packages provide easy-to-use visual installers for all popular
operating systems.

To use the VMware provider, you will need to purchase both VMware Fusion / Workstation and
the VMware Vagrant plug-in⁴⁵. Though it is not free, VMware can provide faster shared folder
performance out of the box.

Installing The Homestead Vagrant Box

Once VirtualBox / VMware and Vagrant have been installed, you should add the laravel/homestead
box to your Vagrant installation using the following command in your terminal. It will take a few
minutes to download the box, depending on your Internet connection speed:

1 vagrant box add laravel/homestead

If this command fails, make sure your Vagrant installation is up to date.

Installing Homestead

You may install Homestead by simply cloning the repository. Consider cloning the repository into
a Homestead folder within your “home” directory, as the Homestead box will serve as the host to all
of your Laravel projects:

⁴²https://www.virtualbox.org/wiki/Downloads
⁴³http://www.vmware.com
⁴⁴http://www.vagrantup.com/downloads.html
⁴⁵http://www.vagrantup.com/vmware

https://www.virtualbox.org/wiki/Downloads
http://www.vmware.com
http://www.vagrantup.com/downloads.html
http://www.vagrantup.com/vmware
https://www.virtualbox.org/wiki/Downloads
http://www.vmware.com
http://www.vagrantup.com/downloads.html
http://www.vagrantup.com/vmware

Laravel Homestead 65

1 cd ~

2

3 git clone https://github.com/laravel/homestead.git Homestead

Once you have cloned the Homestead repository, run the bash init.sh command from the
Homestead directory to create the Homestead.yaml configuration file. The Homestead.yaml file will
be placed in the ∼/.homestead hidden directory:

1 bash init.sh

Configuring Homestead

Setting Your Provider

The provider key in your ∼/.homestead/Homestead.yaml file indicates which Vagrant provider
should be used: virtualbox, vmware_fusion, or vmware_workstation. You may set this to the
provider you prefer:

1 provider: virtualbox

Configuring Shared Folders

The folders property of the Homestead.yaml file lists all of the folders you wish to share with your
Homestead environment. As files within these folders are changed, they will be kept in sync between
your local machine and the Homestead environment. You may configure as many shared folders as
necessary:

1 folders:

2 - map: ~/Code

3 to: /home/vagrant/Code

To enable NFS⁴⁶, just add a simple flag to your synced folder configuration:

⁴⁶http://docs.vagrantup.com/v2/synced-folders/nfs.html

http://docs.vagrantup.com/v2/synced-folders/nfs.html
http://docs.vagrantup.com/v2/synced-folders/nfs.html

Laravel Homestead 66

1 folders:

2 - map: ~/Code

3 to: /home/vagrant/Code

4 type: "nfs"

Configuring Nginx Sites

Not familiar with Nginx? No problem. The sites property allows you to easily map a “domain”
to a folder on your Homestead environment. A sample site configuration is included in the
Homestead.yaml file. Again, you may add as many sites to your Homestead environment as
necessary. Homestead can serve as a convenient, virtualized environment for every Laravel project
you are working on:

1 sites:

2 - map: homestead.app

3 to: /home/vagrant/Code/Laravel/public

You can make any Homestead site use HHVM⁴⁷ by setting the hhvm option to true:

1 sites:

2 - map: homestead.app

3 to: /home/vagrant/Code/Laravel/public

4 hhvm: true

If you change the sites property after provisioning the Homestead box, you should re-run vagrant

reload --provision to update the Nginx configuration on the virtual machine.

The Hosts File

You must add the “domains” for your Nginx sites to the hosts file on your machine. The hosts file
will redirect requests for your Homestead sites into your Homestead machine. On Mac and Linux,
this file is located at /etc/hosts. OnWindows, it is located at C:\Windows\System32\drivers\etc\hosts.
The lines you add to this file will look like the following:

⁴⁷http://hhvm.com

http://hhvm.com
http://hhvm.com

Laravel Homestead 67

1 192.168.10.10 homestead.app

Make sure the IP address listed is the one set in your∼/.homestead/Homestead.yaml file. Once you
have added the domain to your hosts file, you can access the site via your web browser:

1 http://homestead.app

Launching The Vagrant Box

Once you have edited the Homestead.yaml to your liking, run the vagrant up command from your
Homestead directory. Vagrant will boot the virtual machine and automatically configure your shared
folders and Nginx sites.

To destroy the machine, you may use the vagrant destroy --force command.

Per Project Installation

Instead of installing Homestead globally and sharing the same Homestead box across all of your
projects, you may instead configure a Homestead instance for each project you manage. Installing
Homestead per project may be beneficial if you wish to ship a Vagrantfile with your project,
allowing others working on the project to simply vagrant up.

To install Homestead directly into your project, require it using Composer:

1 composer require laravel/homestead --dev

Once Homestead has been installed, use the make command to generate the Vagrantfile and
Homestead.yaml file in your project root. The make command will automatically configure the sites
and folders directives in the Homestead.yaml file.

Mac / Linux:

1 php vendor/bin/homestead make

Windows:

Laravel Homestead 68

1 vendor\bin\homestead make

Next, run the vagrant up command in your terminal and access your project at http://homestead.app
in your browser. Remember, you will still need to add an /etc/hosts file entry for homestead.app
or the domain of your choice.

Daily Usage

Accessing Homestead Globally

Sometimes you may want to vagrant up your Homestead machine from anywhere on your
filesystem. You can do this by adding a simple Bash alias to your Bash profile. This alias will allow
you to run any Vagrant command from anywhere on your system and will automatically point that
command to your Homestead installation:

1 alias homestead='function __homestead() { (cd ~/Homestead && vagrant $*); unset \

2 -f __homestead; }; __homestead'

Make sure to tweak the ∼/Homestead path in the alias to the location of your actual Homestead
installation. Once the alias is installed, you may run commands like homestead up or homestead
ssh from anywhere on your system.

Connecting Via SSH

You can SSH into your virtual machine by issuing the vagrant ssh terminal command from your
Homestead directory.

But, since you will probably need to SSH into your Homestead machine frequently, consider adding
the “alias” described above to your host machine to quickly SSH into the Homestead box.

Connecting To Databases

A homestead database is configured for both MySQL and Postgres out of the box. For even more
convenience, Laravel’s .env file configures the framework to use this database out of the box.

To connect to your MySQL or Postgres database from your host machine via Navicat or Sequel Pro,
you should connect to 127.0.0.1 and port 33060 (MySQL) or 54320 (Postgres). The username and
password for both databases is homestead / secret.

Laravel Homestead 69

Note: You should only use these non-standard ports when connecting to the databases from
your host machine. You will use the default 3306 and 5432 ports in your Laravel database
configuration file since Laravel is running within the virtual machine.

Adding Additional Sites

Once your Homestead environment is provisioned and running, you may want to add additional
Nginx sites for your Laravel applications. You can run as many Laravel installations as you
wish on a single Homestead environment. To add an additional site, simply add the site to your
∼/.homestead/Homestead.yaml file and then run the vagrant provision terminal command from
your Homestead directory.

Configuring Cron Schedules

Laravel provides a convenient way to schedule Cron jobs by scheduling a single schedule:run

Artisan command to be run every minute. The schedule:run command will examine the job
scheduled defined in your App\Console\Kernel class to determine which jobs should be run.

If you would like the schedule:run command to be run for a Homestead site, you may set the
schedule option to true when defining the site:

1 sites:

2 - map: homestead.app

3 to: /home/vagrant/Code/Laravel/public

4 schedule: true

The Cron job for the site will be defined in the /etc/cron.d folder of the virtual machine.

Ports

By default, the following ports are forwarded to your Homestead environment:

• SSH: 2222→ Forwards To 22
• HTTP: 8000→ Forwards To 80
• HTTPS: 44300→ Forwards To 443
• MySQL: 33060→ Forwards To 3306
• Postgres: 54320→ Forwards To 5432

Laravel Homestead 70

Forwarding Additional Ports

If you wish, you may forward additional ports to the Vagrant box, as well as specify their protocol:

1 ports:

2 - send: 93000

3 to: 9300

4 - send: 7777

5 to: 777

6 protocol: udp

Basic Task List
• Introduction
• Installation
• Prepping The Database A> - Database Migrations A> - Eloquent Models
• Routing A> - Stubbing The Routes A> - Displaying A View
• Building Layouts & Views A> - Defining The Layout A> - Defining The Child View
• Adding Tasks A> - Validation A> - Creating The Task A> - Displaying Existing Tasks
• Deleting Tasks A> - Adding The Delete Button A> - Deleting The Task

Introduction

This quickstart guide provides a basic introduction to the Laravel framework and includes content
on database migrations, the Eloquent ORM, routing, validation, views, and Blade templates. This is
a great starting point if you are brand new to the Laravel framework or PHP frameworks in general.
If you have already used Laravel or other PHP frameworks, you may wish to consult one of our
more advanced quickstarts.

To sample a basic selection of Laravel features, we will build a simple task list we can use to track all
of the tasks we want to accomplish. In other words, the typical “to-do” list example. The complete,
finished source code for this project is available on GitHub⁴⁸.

Installation

Installing Laravel

Of course, first you will need a fresh installation of the Laravel framework. You may use the
Homestead virtual machine or the local PHP environment of your choice to run the framework.
Once your local environment is ready, you may install the Laravel framework using Composer:

1 composer create-project laravel/laravel quickstart --prefer-dist

⁴⁸https://github.com/laravel/quickstart-basic

71

https://github.com/laravel/quickstart-basic
https://github.com/laravel/quickstart-basic

Basic Task List 72

Installing The Quickstart (Optional)

You’re free to just read along for the remainder of this quickstart; however, if you would like to
download the source code for this quickstart and run it on your local machine, you may clone its
Git repository and install its dependencies:

1 git clone https://github.com/laravel/quickstart-basic quickstart

2 cd quickstart

3 composer install

4 php artisan migrate

For more complete documentation on building a local Laravel development environment, check out
the full Homestead and installation documentation.

Prepping The Database

Database Migrations

First, let’s use a migration to define a database table to hold all of our tasks. Laravel’s database
migrations provide an easy way to define your database table structure and modifications using
fluent, expressive PHP code. Instead of telling your team members to manually add columns to
their local copy of the database, your teammates can simply run the migrations you push into source
control.

So, let’s build a database table that will hold all of our tasks. The Artisan CLI can be used to generate
a variety of classes and will save you a lot of typing as you build your Laravel projects. In this case,
let’s use the make:migration command to generate a new database migration for our tasks table:

1 php artisan make:migration create_tasks_table --create=tasks

The migration will be placed in the database/migrations directory of your project. As you
may have noticed, the make:migration command already added an auto-incrementing ID and
timestamps to the migration file. Let’s edit this file and add an additional string column for the
name of our tasks:

Basic Task List 73

1 <?php

2

3 use Illuminate\Database\Schema\Blueprint;

4 use Illuminate\Database\Migrations\Migration;

5

6 class CreateTasksTable extends Migration

7 {

8 /**

9 * Run the migrations.

10 *

11 * @return void

12 */

13 public function up()

14 {

15 Schema::create('tasks', function (Blueprint $table) {

16 $table->increments('id');

17 $table->string('name');

18 $table->timestamps();

19 });

20 }

21

22 /**

23 * Reverse the migrations.

24 *

25 * @return void

26 */

27 public function down()

28 {

29 Schema::drop('tasks');

30 }

31 }

To run our migration, we will use the migrate Artisan command. If you are using Homestead, you
should run this command from within your virtual machine, since your host machine will not have
direct access to the database:

1 php artisan migrate

This command will create all of our database tables. If you inspect the database tables using the
database client of your choice, you should see a new tasks table which contains the columns defined

Basic Task List 74

in our migration. Next, we’re ready to define an Eloquent ORM model for our tasks!

Eloquent Models

Eloquent is Laravel’s default ORM (object-relational mapper). Eloquent makes it painless to retrieve
and store data in your database using clearly defined “models”. Usually, each Eloquent model
corresponds directly with a single database table.

So, let’s define a Taskmodel that corresponds to our tasks database table we just created. Again, we
can use an Artisan command to generate this model. In this case, we’ll use the make:model command:

1 php artisan make:model Task

The model will be placed in the app directory of your application. By default, the model class is
empty. We do not have to explicitly tell the Eloquent model which table it corresponds to because it
will assume the database table is the plural form of the model name. So, in this case, the Taskmodel
is assumed to correspond with the tasks database table. Here is what our empty model should look
like:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Task extends Model

8 {

9 //

10 }

We’ll learn more about how to use Eloquent models as we add routes to our application. Of course,
feel free to consult the complete Eloquent documentation for more information.

Routing

Stubbing The Routes

Next, we’re ready to add a few routes to our application. Routes are used to point URLs to controllers
or anonymous functions that should be executed when a user accesses a given page. By default, all
Laravel routes are defined in the app/Http/routes.php file that is included in every new project.

Basic Task List 75

For this application, we know we will need at least three routes: a route to display a list of all of our
tasks, a route to add new tasks, and a route to delete existing tasks. We’ll wrap all of these routes in
the web middleware so they have session state and CSRF protection. So, let’s stub all of these routes
in the app/Http/routes.php file:

1 <?php

2

3 use App\Task;

4 use Illuminate\Http\Request;

5

6 Route::group(['middleware' => 'web'], function () {

7

8 /**

9 * Show Task Dashboard

10 */

11 Route::get('/', function () {

12 //

13 });

14

15 /**

16 * Add New Task

17 */

18 Route::post('/task', function (Request $request) {

19 //

20 });

21

22 /**

23 * Delete Task

24 */

25 Route::delete('/task/{task}', function (Task $task) {

26 //

27 });

28 });

Displaying A View

Next, let’s fill out our / route. From this route, we want to render an HTML template that contains
a form to add new tasks, as well as a list of all current tasks.

In Laravel, all HTML templates are stored in the resources/views directory, and we can use the
view helper to return one of these templates from our route:

Basic Task List 76

1 Route::get('/', function () {

2 return view('tasks');

3 });

Passing tasks to the view functionwill create a View object instance that corresponds to the template
in resources/views/tasks.blade.php. Of course, we need to actually define this view, so let’s do
that now!

Building Layouts & Views

This application only has a single viewwhich contains a form for adding new tasks as well as a listing
of all current tasks. To help you visualize the view, here is a screenshot of the finished application
with basic Bootstrap CSS styling applied:

Application Image

Defining The Layout

Almost all web applications share the same layout across pages. For example, this application has a
top navigation bar that would be typically present on every page (if we had more than one). Laravel
makes it easy to share these common features across every page using Blade layouts.

As we discussed earlier, all Laravel views are stored in resources/views. So, let’s define a new
layout view in resources/views/layouts/app.blade.php. The .blade.php extension instructs the
framework to use the Blade templating engine to render the view. Of course, you may use plain
PHP templates with Laravel. However, Blade provides convenient short-cuts for writing clean, terse
templates.

Our app.blade.php view should look like the following:

Basic Task List 77

1 // resources/views/layouts/app.blade.php

2

3 <!DOCTYPE html>

4 <html lang="en">

5 <head>

6 <title>Laravel Quickstart - Basic</title>

7

8 <!-- CSS And JavaScript -->

9 </head>

10

11 <body>

12 <div class="container">

13 <nav class="navbar navbar-default">

14 <!-- Navbar Contents -->

15 </nav>

16 </div>

17

18 @yield('content')

19 </body>

20 </html>

Note the @yield('content') portion of the layout. This is a special Blade directive that specifies
where all child pages that extend the layout can inject their own content. Next, let’s define the child
view that will use this layout and provide its primary content.

Defining The Child View

Next, we need to define a view that contains a form to create a new task as well as a table that lists
all existing tasks. Let’s define this view in resources/views/tasks.blade.php.

We’ll skip over some of the Bootstrap CSS boilerplate and only focus on the things that matter.
Remember, you can download the full source for this application on GitHub⁴⁹:

⁴⁹https://github.com/laravel/quickstart-basic

https://github.com/laravel/quickstart-basic
https://github.com/laravel/quickstart-basic

Basic Task List 78

1 // resources/views/tasks.blade.php

2

3 @extends('layouts.app')

4

5 @section('content')

6

7 <!-- Bootstrap Boilerplate... -->

8

9 <div class="panel-body">

10 <!-- Display Validation Errors -->

11 @include('common.errors')

12

13 <!-- New Task Form -->

14 <form action="{{ url('task') }}" method="POST" class="form-horizontal">

15 {!! csrf_field() !!}

16

17 <!-- Task Name -->

18 <div class="form-group">

19 <label for="task" class="col-sm-3 control-label">Task</label>

20

21 <div class="col-sm-6">

22 <input type="text" name="name" id="task-name" class="form-control">

23 </div>

24 </div>

25

26 <!-- Add Task Button -->

27 <div class="form-group">

28 <div class="col-sm-offset-3 col-sm-6">

29 <button type="submit" class="btn btn-default">

30 <i class="fa fa-plus"></i> Add Task

31 </button>

32 </div>

33 </div>

34 </form>

35 </div>

36

37 <!-- TODO: Current Tasks -->

38 @endsection

A Few Notes Of Explanation

Before moving on, let’s talk about this template a bit. First, the @extends directive informs Blade
that we are using the layout we defined in resources/views/layouts/app.blade.php. All of the

Basic Task List 79

content between @section('content') and @endsection will be injected into the location of the
@yield('content') directive within the app.blade.php layout.

The @include('common.errors') directive will load the template located at resources/views/com-
mon/errors.blade.php. We haven’t defined this template, but we will soon!

Now we have defined a basic layout and view for our application. Remember, we are returning this
view from our / route like so:

1 Route::get('/', function () {

2 return view('tasks');

3 });

Next, we’re ready to add code to our POST /task route to handle the incoming form input and add
a new task to the database.

Adding Tasks

Validation

Now that we have a form in our view, we need to add code to our POST /task route to validate the
incoming form input and create a new task. First, let’s validate the input.

For this form, we will make the name field required and state that it must contain less than 255

characters. If the validation fails, we will redirect the user back to the / URL, as well as flash the old
input and errors into the session. Flashing the input into the session will allow us to maintain the
user’s input even when there are validation errors:

1 Route::post('/task', function (Request $request) {

2 $validator = Validator::make($request->all(), [

3 'name' => 'required|max:255',

4]);

5

6 if ($validator->fails()) {

7 return redirect('/')

8 ->withInput()

9 ->withErrors($validator);

10 }

11

12 // Create The Task...

Basic Task List 80

13 });

The $errors Variable

Let’s take a break for a moment to talk about the ->withErrors($validator) portion of this
example. The ->withErrors($validator) call will flash the errors from the given validator instance
into the session so that they can be accessed via the $errors variable in our view.

Remember that we used the @include('common.errors') directive within our view to render the
form’s validation errors. The common.errors will allow us to easily show validation errors in the
same format across all of our pages. Let’s define the contents of this view now:

1 // resources/views/common/errors.blade.php

2

3 @if (count($errors) > 0)

4 <!-- Form Error List -->

5 <div class="alert alert-danger">

6 Whoops! Something went wrong!

7

8

9

10

11 @foreach ($errors->all() as $error)

12 {{ $error }}

13 @endforeach

14

15 </div>

16 @endif

Note: The $errors variable is available in every Laravel view. It will simply be an empty
instance of ViewErrorBag if no validation errors are present.

Creating The Task

Now that input validation is handled, let’s actually create a new task by continuing to fill out our
route. Once the new task has been created, we will redirect the user back to the / URL. To create the
task, we may use the save method after creating and setting properties on a new Eloquent model:

Basic Task List 81

1 Route::post('/task', function (Request $request) {

2 $validator = Validator::make($request->all(), [

3 'name' => 'required|max:255',

4]);

5

6 if ($validator->fails()) {

7 return redirect('/')

8 ->withInput()

9 ->withErrors($validator);

10 }

11

12 $task = new Task;

13 $task->name = $request->name;

14 $task->save();

15

16 return redirect('/');

17 });

Great! We can now successfully create tasks. Next, let’s continue adding to our view by building a
list of all existing tasks.

Displaying Existing Tasks

First, we need to edit our / route to pass all of the existing tasks to the view. The view function
accepts a second argument which is an array of data that will be made available to the view, where
each key in the array will become a variable within the view:

1 Route::get('/', function () {

2 $tasks = Task::orderBy('created_at', 'asc')->get();

3

4 return view('tasks', [

5 'tasks' => $tasks

6]);

7 });

Once the data is passed, we can spin through the tasks in our tasks.blade.php view and display
them in a table. The @foreach Blade construct allows us to write concise loops that compile down
into blazing fast plain PHP code:

Basic Task List 82

1 @extends('layouts.app')

2

3 @section('content')

4 <!-- Create Task Form... -->

5

6 <!-- Current Tasks -->

7 @if (count($tasks) > 0)

8 <div class="panel panel-default">

9 <div class="panel-heading">

10 Current Tasks

11 </div>

12

13 <div class="panel-body">

14 <table class="table table-striped task-table">

15

16 <!-- Table Headings -->

17 <thead>

18 <th>Task</th>

19 <th> </th>

20 </thead>

21

22 <!-- Table Body -->

23 <tbody>

24 @foreach ($tasks as $task)

25 <tr>

26 <!-- Task Name -->

27 <td class="table-text">

28 <div>{{ $task->name }}</div>

29 </td>

30

31 <td>

32 <!-- TODO: Delete Button -->

33 </td>

34 </tr>

35 @endforeach

36 </tbody>

37 </table>

38 </div>

39 </div>

40 @endif

41 @endsection

Basic Task List 83

Our task application is almost complete. But, we have no way to delete our existing tasks when
they’re done. Let’s add that next!

Deleting Tasks

Adding The Delete Button

We left a “TODO” note in our code where our delete button is supposed to be. So, let’s add a delete
button to each row of our task listing within the tasks.blade.php view. We’ll create a small single-
button form for each task in the list. When the button is clicked, a DELETE /task request will be sent
to the application:

1 <tr>

2 <!-- Task Name -->

3 <td class="table-text">

4 <div>{{ $task->name }}</div>

5 </td>

6

7 <!-- Delete Button -->

8 <td>

9 <form action="{{ url('task/'.$task->id) }}" method="POST">

10 {!! csrf_field() !!}

11 {!! method_field('DELETE') !!}

12

13 <button>Delete Task</button>

14 </form>

15 </td>

16 </tr>

A Note On Method Spoofing

Note that the delete button’s form method is listed as POST, even though we are responding to the
request using a Route::delete route. HTML forms only allow the GET and POST HTTP verbs, so we
need a way to spoof a DELETE request from the form.

We can spoof a DELETE request by outputting the results of the method_field('DELETE') function
within our form. This function generates a hidden form input that Laravel recognizes and will use
to override the actual HTTP request method. The generated field will look like the following:

Basic Task List 84

1 <input type="hidden" name="_method" value="DELETE">

Deleting The Task

Finally, let’s add logic to our route to actually delete the given task. We can use implicit model
binding to automatically retrieve the Task model that corresponds to the {task} route parameter.

In our route callback, we will use the deletemethod to delete the record. Once the record is deleted,
we will redirect the user back to the / URL:

1 Route::delete('/task/{task}', function (Task $task) {

2 $task->delete();

3

4 return redirect('/');

5 });

Intermediate Task List
• Introduction
• Installation
• Prepping The Database A> - Database Migrations A> - Eloquent Models A> - Eloquent
Relationships

• Routing A> - Displaying A View A> - Authentication A> - The Task Controller
• Building Layouts & Views A> - Defining The Layout A> - Defining The Child View
• Adding Tasks A> - Validation A> - Creating The Task
• Displaying Existing Tasks A> - Dependency Injection A> - Displaying The Tasks
• Deleting Tasks A> - Adding The Delete Button A> - Route Model Binding A> - Authorization
A> - Deleting The Task

Introduction

This quickstart guide provides an intermediate introduction to the Laravel framework and includes
content on database migrations, the Eloquent ORM, routing, authentication, authorization, depen-
dency injection, validation, views, and Blade templates. This is a great starting point if you are
familiar with the basics of the Laravel framework or PHP frameworks in general.

To sample a basic selection of Laravel features, we will build a task list we can use to track all of
the tasks we want to accomplish. In other words, the typical “to-do” list example. In contrast to
the “basic” quickstart, this tutorial will allow users to create accounts and authenticate with the
application. The complete, finished source code for this project is available on GitHub⁵⁰.

Installation

Installing Laravel

Of course, first you will need a fresh installation of the Laravel framework. You may use the
Homestead virtual machine or the local PHP environment of your choice to run the framework.
Once your local environment is ready, you may install the Laravel framework using Composer:

⁵⁰https://github.com/laravel/quickstart-intermediate

85

https://github.com/laravel/quickstart-intermediate
https://github.com/laravel/quickstart-intermediate

Intermediate Task List 86

1 composer create-project laravel/laravel quickstart --prefer-dist

Installing The Quickstart (Optional)

You’re free to just read along for the remainder of this quickstart; however, if you would like to
download the source code for this quickstart and run it on your local machine, you may clone its
Git repository and install its dependencies:

1 git clone https://github.com/laravel/quickstart-intermediate quickstart

2 cd quickstart

3 composer install

4 php artisan migrate

For more complete documentation on building a local Laravel development environment, check out
the full Homestead and installation documentation.

Prepping The Database

Database Migrations

First, let’s use a migration to define a database table to hold all of our tasks. Laravel’s database
migrations provide an easy way to define your database table structure and modifications using
fluent, expressive PHP code. Instead of telling your team members to manually add columns to
their local copy of the database, your teammates can simply run the migrations you push into source
control.

The users Table

Since we are going to allow users to create their accounts within the application, we will need a
table to store all of our users. Thankfully, Laravel already ships with a migration to create a basic
users table, so we do not need to manually generate one. The default migration for the users table
is located in the database/migrations directory.

The tasks Table

Next, let’s build a database table that will hold all of our tasks. The Artisan CLI can be used to
generate a variety of classes and will save you a lot of typing as you build your Laravel projects.
In this case, let’s use the make:migration command to generate a new database migration for our
tasks table:

Intermediate Task List 87

1 php artisan make:migration create_tasks_table --create=tasks

The migration will be placed in the database/migrations directory of your project. As you
may have noticed, the make:migration command already added an auto-incrementing ID and
timestamps to the migration file. Let’s edit this file and add an additional string column for the
name of our tasks, as well as a user_id column which will link our tasks and users tables:

1 <?php

2

3 use Illuminate\Database\Schema\Blueprint;

4 use Illuminate\Database\Migrations\Migration;

5

6 class CreateTasksTable extends Migration

7 {

8 /**

9 * Run the migrations.

10 *

11 * @return void

12 */

13 public function up()

14 {

15 Schema::create('tasks', function (Blueprint $table) {

16 $table->increments('id');

17 $table->integer('user_id')->index();

18 $table->string('name');

19 $table->timestamps();

20 });

21 }

22

23 /**

24 * Reverse the migrations.

25 *

26 * @return void

27 */

28 public function down()

29 {

30 Schema::drop('tasks');

31 }

32 }

Intermediate Task List 88

To run our migrations, we will use the migrate Artisan command. If you are using Homestead, you
should run this command from within your virtual machine, since your host machine will not have
direct access to the database:

1 php artisan migrate

This command will create all of our database tables. If you inspect the database tables using the
database client of your choice, you should see new tasks and users tables which contains the
columns defined in our migration. Next, we’re ready to define our Eloquent ORM models!

Eloquent Models

Eloquent is Laravel’s default ORM (object-relational mapper). Eloquent makes it painless to retrieve
and store data in your database using clearly defined “models”. Usually, each Eloquent model
corresponds directly with a single database table.

The User Model

First, we need a model that corresponds to our users database table. However, if you look in the app
directory of your project, you will see that Laravel already ships with a User model, so we do not
need to generate one manually.

The Task Model

So, let’s define a Taskmodel that corresponds to our tasks database table we just created. Again, we
can use an Artisan command to generate this model. In this case, we’ll use the make:model command:

1 php artisan make:model Task

The model will be placed in the app directory of your application. By default, the model class is
empty. We do not have to explicitly tell the Eloquent model which table it corresponds to because it
will assume the database table is the plural form of the model name. So, in this case, the Taskmodel
is assumed to correspond with the tasks database table.

Let’s add a few things to this model. First, we will state that the name attribute on the model should
be “mass-assignable”. This will allow us to fill the name attribute when using Eloquent’s create
method:

Intermediate Task List 89

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Task extends Model

8 {

9 /**

10 * The attributes that are mass assignable.

11 *

12 * @var array

13 */

14 protected $fillable = ['name'];

15 }

We’ll learn more about how to use Eloquent models as we add routes to our application. Of course,
feel free to consult the complete Eloquent documentation for more information.

Eloquent Relationships

Now that our models are defined, we need to link them. For example, our User can have many Task

instances, while a Task is assigned to a single User. Defining a relationship will allow us to fluently
walk through our relations like so:

1 $user = App\User::find(1);

2

3 foreach ($user->tasks as $task) {

4 echo $task->name;

5 }

The tasks Relationship

First, let’s define the tasks relationship on our User model. Eloquent relationships are defined as
methods on models. Eloquent supports several different types of relationships, so be sure to consult
the full Eloquent documentation for more information. In this case, we will define a tasks function
on the User model which calls the hasMany method provided by Eloquent:

Intermediate Task List 90

1 <?php

2

3 namespace App;

4

5 use Illuminate\Foundation\Auth\User as Authenticatable;

6

7 class User extends Authenticatable

8 {

9 // Other Eloquent Properties...

10

11 /**

12 * Get all of the tasks for the user.

13 */

14 public function tasks()

15 {

16 return $this->hasMany(Task::class);

17 }

18 }

The user Relationship

Next, let’s define the user relationship on the Task model. Again, we will define the relationship
as a method on the model. In this case, we will use the belongsTo method provided by Eloquent to
define the relationship:

1 <?php

2

3 namespace App;

4

5 use App\User;

6 use Illuminate\Database\Eloquent\Model;

7

8 class Task extends Model

9 {

10 /**

11 * The attributes that are mass assignable.

12 *

13 * @var array

14 */

15 protected $fillable = ['name'];

16

Intermediate Task List 91

17 /**

18 * Get the user that owns the task.

19 */

20 public function user()

21 {

22 return $this->belongsTo(User::class);

23 }

24 }

Wonderful! Now that our relationships are defined, we can start building our controllers!

Routing

In the basic version of our task list application, we defined all of our logic using Closures within our
routes.php file. For the majority of this application, we will use controllers to organize our routes.
Controllers will allow us to break out HTTP request handling logic across multiple files for better
organization.

Displaying A View

We will have a single route that uses a Closure: our / route, which will simply be a landing page
for application guests. So, let’s fill out our / route. From this route, we want to render an HTML
template that contains the “welcome” page:

In Laravel, all HTML templates are stored in the resources/views directory, and we can use the
view helper to return one of these templates from our route:

1 Route::get('/', function () {

2 return view('welcome');

3 });

Of course, we need to actually define this view. We’ll do that in a bit!

Authentication

Remember, we also need to let users create accounts and login to our application. Typically, it can
be a tedious task to build an entire authentication layer into a web application. However, since it is
such a common need, Laravel attempts to make this procedure totally painless.

Intermediate Task List 92

First, notice that there is already a app/Http/Controllers/Auth/AuthController included in your
Laravel application. This controller uses a special AuthenticatesAndRegistersUsers trait which
contains all of the necessary logic to create and authenticate users.

Authentication Routes & Views

So, what’s left for us to do? Well, we still need to create the registration and login templates as
well as define the routes to point to the authentication controller. We can do all of this using the
make:auth Artisan command:

1 php artisan make:auth --views

Note: If you would like to view complete examples for these views, remember that the
entire application’s source code is available on GitHub⁵¹.

Now, all we have to do is add the authentication routes to our routes file. We can do this using the
authmethod on the Route facade, which will register all of the routes we need for registration, login,
and password reset:

1 // Authentication Routes...

2 Route::auth();

The Task Controller

Since we know we’re going to need to retrieve and store tasks, let’s create a TaskController using
the Artisan CLI, which will place the new controller in the app/Http/Controllers directory:

1 php artisan make:controller TaskController

Now that the controller has been generated, let’s go ahead and stub out some routes in our
app/Http/routes.php file to point to the controller:

⁵¹https://github.com/laravel/quickstart-intermediate

https://github.com/laravel/quickstart-intermediate
https://github.com/laravel/quickstart-intermediate

Intermediate Task List 93

1 Route::get('/tasks', 'TaskController@index');

2 Route::post('/task', 'TaskController@store');

3 Route::delete('/task/{task}', 'TaskController@destroy');

Authenticating All Task Routes

For this application, we want all of our task routes to require an authenticated user. In other words,
the user must be “logged into” the application in order to create a task. So, we need to restrict access
to our task routes to only authenticated users. Laravel makes this a cinch using middleware.

To require an authenticated users for all actions on the controller, we can add a call to the
middlewaremethod from the controller’s constructor. All available route middleware are defined in
the app/Http/Kernel.php file. In this case, we want to assign the authmiddleware to all actions on
the controller:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Http\Requests;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class TaskController extends Controller

10 {

11 /**

12 * Create a new controller instance.

13 *

14 * @return void

15 */

16 public function __construct()

17 {

18 $this->middleware('auth');

19 }

20 }

Intermediate Task List 94

Building Layouts & Views

The primary part of this application only has a single view which contains a form for adding new
tasks as well as a listing of all current tasks. To help you visualize the view, here is a screenshot of
the finished application with basic Bootstrap CSS styling applied:

Application Image

Defining The Layout

Almost all web applications share the same layout across pages. For example, this application has a
top navigation bar that would be typically present on every page (if we had more than one). Laravel
makes it easy to share these common features across every page using Blade layouts.

As we discussed earlier, all Laravel views are stored in resources/views. So, let’s define a new
layout view in resources/views/layouts/app.blade.php. The .blade.php extension instructs the
framework to use the Blade templating engine to render the view. Of course, you may use plain
PHP templates with Laravel. However, Blade provides convenient short-cuts for writing cleaner,
terse templates.

Our app.blade.php view should look like the following:

1 // resources/views/layouts/app.blade.php

2

3 <!DOCTYPE html>

4 <html lang="en">

5 <head>

6 <title>Laravel Quickstart - Intermediate</title>

7

8 <!-- CSS And JavaScript -->

9 </head>

10

11 <body>

12 <div class="container">

13 <nav class="navbar navbar-default">

14 <!-- Navbar Contents -->

15 </nav>

16 </div>

17

18 @yield('content')

19 </body>

Intermediate Task List 95

20 </html>

Note the @yield('content') portion of the layout. This is a special Blade directive that specifies
where all child pages that extend the layout can inject their own content. Next, let’s define the child
view that will use this layout and provide its primary content.

Defining The Child View

Great, our application layout is finished. Next, we need to define a view that contains a form
to create a new task as well as a table that lists all existing tasks. Let’s define this view in
resources/views/tasks/index.blade.php, which will correspond to the index method in our
TaskController.

We’ll skip over some of the Bootstrap CSS boilerplate and only focus on the things that matter.
Remember, you can download the full source for this application on GitHub⁵²:

1 // resources/views/tasks/index.blade.php

2

3 @extends('layouts.app')

4

5 @section('content')

6

7 <!-- Bootstrap Boilerplate... -->

8

9 <div class="panel-body">

10 <!-- Display Validation Errors -->

11 @include('common.errors')

12

13 <!-- New Task Form -->

14 <form action="{{ url('task') }}" method="POST" class="form-horizontal">

15 {!! csrf_field() !!}

16

17 <!-- Task Name -->

18 <div class="form-group">

19 <label for="task-name" class="col-sm-3 control-label">Task</label>

20

21 <div class="col-sm-6">

22 <input type="text" name="name" id="task-name" class="form-control">

23 </div>

24 </div>

⁵²https://github.com/laravel/quickstart-intermediate

https://github.com/laravel/quickstart-intermediate
https://github.com/laravel/quickstart-intermediate

Intermediate Task List 96

25

26 <!-- Add Task Button -->

27 <div class="form-group">

28 <div class="col-sm-offset-3 col-sm-6">

29 <button type="submit" class="btn btn-default">

30 <i class="fa fa-plus"></i> Add Task

31 </button>

32 </div>

33 </div>

34 </form>

35 </div>

36

37 <!-- TODO: Current Tasks -->

38 @endsection

A Few Notes Of Explanation

Before moving on, let’s talk about this template a bit. First, the @extends directive informs Blade
that we are using the layout we defined at resources/views/layouts/app.blade.php. All of the
content between @section('content') and @endsection will be injected into the location of the
@yield('content') directive within the app.blade.php layout.

The @include('common.errors') directive will load the template located at resources/views/com-
mon/errors.blade.php. We haven’t defined this template, but we will soon!

Now we have defined a basic layout and view for our application. Let’s go ahead and return this
view from the index method of our TaskController:

1 /**

2 * Display a list of all of the user's task.

3 *

4 * @param Request $request

5 * @return Response

6 */

7 public function index(Request $request)

8 {

9 return view('tasks.index');

10 }

Next, we’re ready to add code to our POST /task route’s controller method to handle the incoming
form input and add a new task to the database.

Intermediate Task List 97

Adding Tasks

Validation

Now that we have a form in our view, we need to add code to our TaskController@store method
to validate the incoming form input and create a new task. First, let’s validate the input.

For this form, we will make the name field required and state that it must contain less than 255

characters. If the validation fails, we want to redirect the user back to the /tasks URL, as well as
flash the old input and errors into the session:

1 /**

2 * Create a new task.

3 *

4 * @param Request $request

5 * @return Response

6 */

7 public function store(Request $request)

8 {

9 $this->validate($request, [

10 'name' => 'required|max:255',

11]);

12

13 // Create The Task...

14 }

If you followed along with the basic quickstart, you’ll notice this validation code looks quite a bit
different! Since we are in a controller, we can leverage the convenience of the ValidatesRequests
trait that is included in the base Laravel controller. This trait exposes a simple validate method
which accepts a request and an array of validation rules.

We don’t even have to manually determine if the validation failed or do manual redirection. If the
validation fails for the given rules, the user will automatically be redirected back to where they came
from and the errors will automatically be flashed to the session. Nice!

The $errors Variable

Remember that we used the @include('common.errors') directive within our view to render the
form’s validation errors. The common.errors will allow us to easily show validation errors in the
same format across all of our pages. Let’s define the contents of this view now:

Intermediate Task List 98

1 // resources/views/common/errors.blade.php

2

3 @if (count($errors) > 0)

4 <!-- Form Error List -->

5 <div class="alert alert-danger">

6 Whoops! Something went wrong!

7

8

9

10

11 @foreach ($errors->all() as $error)

12 {{ $error }}

13 @endforeach

14

15 </div>

16 @endif

Note: The $errors variable is available in every Laravel view. It will simply be an empty
instance of ViewErrorBag if no validation errors are present.

Creating The Task

Now that input validation is handled, let’s actually create a new task by continuing to fill out our
route. Once the new task has been created, we will redirect the user back to the /tasks URL. To
create the task, we are going to leverage the power of Eloquent’s relationships.

Most of Laravel’s relationships expose a create method, which accepts an array of attributes and
will automatically set the foreign key value on the related model before storing it in the database.
In this case, the create method will automatically set the user_id property of the given task to the
ID of the currently authenticated user, which we are accessing using $request->user():

Intermediate Task List 99

1 /**

2 * Create a new task.

3 *

4 * @param Request $request

5 * @return Response

6 */

7 public function store(Request $request)

8 {

9 $this->validate($request, [

10 'name' => 'required|max:255',

11]);

12

13 $request->user()->tasks()->create([

14 'name' => $request->name,

15]);

16

17 return redirect('/tasks');

18 }

Great! We can now successfully create tasks. Next, let’s continue adding to our view by building a
list of all existing tasks.

Displaying Existing Tasks

First, we need to edit our TaskController@indexmethod to pass all of the existing tasks to the view.
The view function accepts a second argument which is an array of data that will be made available
to the view, where each key in the array will become a variable within the view. For example, we
could do this:

1 /**

2 * Display a list of all of the user's task.

3 *

4 * @param Request $request

5 * @return Response

6 */

7 public function index(Request $request)

8 {

9 $tasks = Task::where('user_id', $request->user()->id)->get();

10

11 return view('tasks.index', [

12 'tasks' => $tasks,

Intermediate Task List 100

13]);

14 }

However, let’s explore some of the dependency injection capabilities of Laravel to inject a TaskRepos-
itory into our TaskController, which we will use for all of our data access.

Dependency Injection

Laravel’s service container is one of the most powerful features of the entire framework. After
reading this quickstart, be sure to read over all of the container’s documentation.

Creating The Repository

As we mentioned earlier, we want to define a TaskRepository that holds all of our data access logic
for the Task model. This will be especially useful if the application grows and you need to share
some Eloquent queries across the application.

So, let’s create an app/Repositories directory and add a TaskRepository class. Remember, all
Laravel app folders are auto-loaded using the PSR-4 auto-loading standard, so you are free to create
as many extra directories as needed:

1 <?php

2

3 namespace App\Repositories;

4

5 use App\User;

6 use App\Task;

7

8 class TaskRepository

9 {

10 /**

11 * Get all of the tasks for a given user.

12 *

13 * @param User $user

14 * @return Collection

15 */

16 public function forUser(User $user)

17 {

18 return Task::where('user_id', $user->id)

19 ->orderBy('created_at', 'asc')

20 ->get();

21 }

Intermediate Task List 101

22 }

Injecting The Repository

Once our repository is defined, we can simply “type-hint” it in the constructor of our TaskCon-
troller and utilize it within our index route. Since Laravel uses the container to resolve all
controllers, our dependencies will automatically be injected into the controller instance:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Task;

6 use App\Http\Requests;

7 use Illuminate\Http\Request;

8 use App\Http\Controllers\Controller;

9 use App\Repositories\TaskRepository;

10

11 class TaskController extends Controller

12 {

13 /**

14 * The task repository instance.

15 *

16 * @var TaskRepository

17 */

18 protected $tasks;

19

20 /**

21 * Create a new controller instance.

22 *

23 * @param TaskRepository $tasks

24 * @return void

25 */

26 public function __construct(TaskRepository $tasks)

27 {

28 $this->middleware('auth');

29

30 $this->tasks = $tasks;

31 }

32

33 /**

Intermediate Task List 102

34 * Display a list of all of the user's task.

35 *

36 * @param Request $request

37 * @return Response

38 */

39 public function index(Request $request)

40 {

41 return view('tasks.index', [

42 'tasks' => $this->tasks->forUser($request->user()),

43]);

44 }

45 }

Displaying The Tasks

Once the data is passed, we can spin through the tasks in our tasks/index.blade.php view and
display them in a table. The @foreach Blade construct allows us to write concise loops that compile
down into blazing fast plain PHP code:

1 @extends('layouts.app')

2

3 @section('content')

4 <!-- Create Task Form... -->

5

6 <!-- Current Tasks -->

7 @if (count($tasks) > 0)

8 <div class="panel panel-default">

9 <div class="panel-heading">

10 Current Tasks

11 </div>

12

13 <div class="panel-body">

14 <table class="table table-striped task-table">

15

16 <!-- Table Headings -->

17 <thead>

18 <th>Task</th>

19 <th> </th>

20 </thead>

21

22 <!-- Table Body -->

Intermediate Task List 103

23 <tbody>

24 @foreach ($tasks as $task)

25 <tr>

26 <!-- Task Name -->

27 <td class="table-text">

28 <div>{{ $task->name }}</div>

29 </td>

30

31 <td>

32 <!-- TODO: Delete Button -->

33 </td>

34 </tr>

35 @endforeach

36 </tbody>

37 </table>

38 </div>

39 </div>

40 @endif

41 @endsection

Our task application is almost complete. But, we have no way to delete our existing tasks when
they’re done. Let’s add that next!

Deleting Tasks

Adding The Delete Button

We left a “TODO” note in our code where our delete button is supposed to be. So, let’s add a delete
button to each row of our task listing within the tasks/index.blade.php view. We’ll create a small
single-button form for each task in the list. When the button is clicked, a DELETE /task request will
be sent to the application which will trigger our TaskController@destroy method:

1 <tr>

2 <!-- Task Name -->

3 <td class="table-text">

4 <div>{{ $task->name }}</div>

5 </td>

6

7 <!-- Delete Button -->

8 <td>

Intermediate Task List 104

9 <form action="{{ url('task/'.$task->id) }}" method="POST">

10 {!! csrf_field() !!}

11 {!! method_field('DELETE') !!}

12

13 <button>Delete Task</button>

14 </form>

15 </td>

16 </tr>

A Note On Method Spoofing

Note that the delete button’s form method is listed as POST, even though we are responding to the
request using a Route::delete route. HTML forms only allow the GET and POST HTTP verbs, so we
need a way to spoof a DELETE request from the form.

We can spoof a DELETE request by outputting the results of the method_field('DELETE') function
within our form. This function generates a hidden form input that Laravel recognizes and will use
to override the actual HTTP request method. The generated field will look like the following:

1 <input type="hidden" name="_method" value="DELETE">

Route Model Binding

Now,we’re almost ready to define the destroymethod on our TaskController. But, first, let’s revisit
our route declaration and controller method for this route:

1 Route::delete('/task/{task}', 'TaskController@destroy');

2

3 /**

4 * Destroy the given task.

5 *

6 * @param Request $request

7 * @param Task $task

8 * @return Response

9 */

10 public function destroy(Request $request, Task $task)

11 {

12 //

Intermediate Task List 105

13 }

Since the {task} variable in our route matches the $task variable defined in our controller method,
Laravel’s implicit model binding will automatically inject the corresponding Task model instance.

Authorization

Now, we have a Task instance injected into our destroy method; however, we have no guarantee
that the authenticated user actually “owns” the given task. For example, a malicious request could
have been concocted in an attempt to delete another user’s tasks by passing a random task ID to
the /tasks/{task} URL. So, we need to use Laravel’s authorization capabilities to make sure the
authenticated user actually owns the Task instance that was injected into the route.

Creating A Policy

Laravel uses “policies” to organize authorization logic into simple, small classes. Typically, each
policy corresponds to a model. So, let’s create a TaskPolicy using the Artisan CLI, which will place
the generated file in app/Policies/TaskPolicy.php:

1 php artisan make:policy TaskPolicy

Next, let’s add a destroymethod to the policy. This method will receive a User instance and a Task
instance. The method should simply check if the user’s ID matches the user_id on the task. In fact,
all policy methods should either return true or false:

1 <?php

2

3 namespace App\Policies;

4

5 use App\User;

6 use App\Task;

7 use Illuminate\Auth\Access\HandlesAuthorization;

8

9 class TaskPolicy

10 {

11 use HandlesAuthorization;

12

13 /**

14 * Determine if the given user can delete the given task.

Intermediate Task List 106

15 *

16 * @param User $user

17 * @param Task $task

18 * @return bool

19 */

20 public function destroy(User $user, Task $task)

21 {

22 return $user->id === $task->user_id;

23 }

24 }

Finally, we need to associate our Taskmodel with our TaskPolicy. We can do this by adding a line in
the app/Providers/AuthServiceProvider.php file’s $policies property. This will inform Laravel
which policy should be used whenever we try to authorize an action on a Task instance:

1 /**

2 * The policy mappings for the application.

3 *

4 * @var array

5 */

6 protected $policies = [

7 'App\Task' => 'App\Policies\TaskPolicy',

8];

Authorizing The Action

Now that our policy is written, let’s use it in our destroy method. All Laravel controllers may call
an authorize method, which is exposed by the AuthorizesRequest trait:

1 /**

2 * Destroy the given task.

3 *

4 * @param Request $request

5 * @param Task $task

6 * @return Response

7 */

8 public function destroy(Request $request, Task $task)

9 {

Intermediate Task List 107

10 $this->authorize('destroy', $task);

11

12 // Delete The Task...

13 }

Let’s examine this method call for a moment. The first argument passed to the authorize method
is the name of the policy method we wish to call. The second argument is the model instance that
is our current concern. Remember, we recently told Laravel that our Taskmodel corresponds to our
TaskPolicy, so the framework knows on which policy to fire the destroymethod. The current user
will automatically be sent to the policy method, so we do not need to manually pass it here.

If the action is authorized, our code will continue executing normally. However, if the action is not
authorized (meaning the policy’s destroy method returned false), a 403 exception will be thrown
and an error page will be displayed to the user.

Note: There are several other ways to interact with the authorization services Laravel
provides. Be sure to browse the complete authorization documentation.

Deleting The Task

Finally, let’s finish adding the logic to our destroymethod to actually delete the given task. We can
use Eloquent’s delete method to delete the given model instance in the database. Once the record
is deleted, we will redirect the user back to the /tasks URL:

1 /**

2 * Destroy the given task.

3 *

4 * @param Request $request

5 * @param Task $task

6 * @return Response

7 */

8 public function destroy(Request $request, Task $task)

9 {

10 $this->authorize('destroy', $task);

11

12 $task->delete();

13

14 return redirect('/tasks');

Intermediate Task List 108

15 }

HTTP Routing
• Basic Routing
• Route Parameters A> - Required Parameters A> - Optional Parameters
• Named Routes
• Route Groups A> - Middleware A> - Namespaces A> - Sub-Domain Routing A> - Route
Prefixes

• CSRF Protection A> - Introduction A> - Excluding URIs A> - X-CSRF-Token A> - X-XSRF-
Token

• Route Model Binding
• Form Method Spoofing
• Accessing The Current Route

Basic Routing

All Laravel routes are defined in the app/Http/routes.php file, which is automatically loaded by
the framework. The most basic Laravel routes simply accept a URI and a Closure, providing a very
simple and expressive method of defining routes:

1 Route::get('foo', function () {

2 return 'Hello World';

3 });

The Default Routes File

By default, the routes.php file contains a single route as well as a route group that applies the web
middleware group to all routes it contains. This middleware group provides session state and CSRF
protection to routes.

Any routes not placed within the web middleware group will not have access to sessions and CSRF
protection, so make sure any routes that need these features are placed within the group. Typically,
you will place most of your routes within this group:

109

HTTP Routing 110

1 Route::group(['middleware' => ['web']], function () {

2 //

3 });

Available Router Methods

The router allows you to register routes that respond to any HTTP verb:

1 Route::get($uri, $callback);

2 Route::post($uri, $callback);

3 Route::put($uri, $callback);

4 Route::patch($uri, $callback);

5 Route::delete($uri, $callback);

6 Route::options($uri, $callback);

Sometimes you may need to register a route that responds to multiple HTTP verbs. You may do so
using the match method. Or, you may even register a route that responds to all HTTP verbs using
the any method:

1 Route::match(['get', 'post'], '/', function () {

2 //

3 });

4

5 Route::any('foo', function () {

6 //

7 });

Route Parameters

Required Parameters

Of course, sometimes you will need to capture segments of the URI within your route. For example,
you may need to capture a user’s ID from the URL. You may do so by defining route parameters:

HTTP Routing 111

1 Route::get('user/{id}', function ($id) {

2 return 'User '.$id;

3 });

You may define as many route parameters as required by your route:

1 Route::get('posts/{post}/comments/{comment}', function ($postId, $commentId) {

2 //

3 });

Route parameters are always encased within “curly” braces. The parameters will be passed into your
route’s Closure when the route is executed.

Note: Route parameters cannot contain the - character. Use an underscore (_) instead.

Optional Parameters

Occasionally you may need to specify a route parameter, but make the presence of that route
parameter optional. You may do so by placing a ? mark after the parameter name. Make sure to
give the route’s corresponding variable a default value:

1 Route::get('user/{name?}', function ($name = null) {

2 return $name;

3 });

4

5 Route::get('user/{name?}', function ($name = 'John') {

6 return $name;

7 });

Named Routes

Named routes allow the convenient generation of URLs or redirects for specific routes. You may
specify a name for a route using the as array key when defining the route:

HTTP Routing 112

1 Route::get('profile', ['as' => 'profile', function () {

2 //

3 }]);

You may also specify route names for controller actions:

1 Route::get('profile', [

2 'as' => 'profile', 'uses' => 'UserController@showProfile'

3]);

Alternatively, instead of specifying the route name in the route array definition, you may chain the
name method onto the end of the route definition:

1 Route::get('user/profile', 'UserController@showProfile')->name('profile');

Route Groups & Named Routes

If you are using route groups, you may specify an as keyword in the route group attribute array,
allowing you to set a common route name prefix for all routes within the group:

1 Route::group(['as' => 'admin::'], function () {

2 Route::get('dashboard', ['as' => 'dashboard', function () {

3 // Route named "admin::dashboard"

4 }]);

5 });

Generating URLs To Named Routes

Once you have assigned a name to a given route, you may use the route’s name when generating
URLs or redirects via the global route function:

HTTP Routing 113

1 // Generating URLs...

2 $url = route('profile');

3

4 // Generating Redirects...

5 return redirect()->route('profile');

If the named route defines parameters, you may pass the parameters as the second argument to the
route function. The given parameters will automatically be inserted into the URL in their correct
positions:

1 Route::get('user/{id}/profile', ['as' => 'profile', function ($id) {

2 //

3 }]);

4

5 $url = route('profile', ['id' => 1]);

Route Groups

Route groups allow you to share route attributes, such as middleware or namespaces, across a
large number of routes without needing to define those attributes on each individual route. Shared
attributes are specified in an array format as the first parameter to the Route::group method.

To learn more about route groups, we’ll walk through several common use-cases for the feature.

Middleware

To assign middleware to all routes within a group, you may use the middleware key in the group
attribute array. Middleware will be executed in the order you define this array:

HTTP Routing 114

1 Route::group(['middleware' => 'auth'], function () {

2 Route::get('/', function () {

3 // Uses Auth Middleware

4 });

5

6 Route::get('user/profile', function () {

7 // Uses Auth Middleware

8 });

9 });

Namespaces

Another common use-case for route groups is assigning the same PHP namespace to a group of
controllers. You may use the namespace parameter in your group attribute array to specify the
namespace for all controllers within the group:

1 Route::group(['namespace' => 'Admin'], function()

2 {

3 // Controllers Within The "App\Http\Controllers\Admin" Namespace

4

5 Route::group(['namespace' => 'User'], function() {

6 // Controllers Within The "App\Http\Controllers\Admin\User" Namespace

7 });

8 });

Remember, by default, the RouteServiceProvider includes your routes.php file within a names-
pace group, allowing you to register controller routeswithout specifying the full App\Http\Controllers
namespace prefix. So, we only need to specify the portion of the namespace that comes after the base
App\Http\Controllers namespace.

Sub-Domain Routing

Route groups may also be used to route wildcard sub-domains. Sub-domains may be assigned route
parameters just like route URIs, allowing you to capture a portion of the sub-domain for usage
in your route or controller. The sub-domain may be specified using the domain key on the group
attribute array:

HTTP Routing 115

1 Route::group(['domain' => '{account}.myapp.com'], function () {

2 Route::get('user/{id}', function ($account, $id) {

3 //

4 });

5 });

Route Prefixes

The prefix group attribute may be used to prefix each route in the group with a given URI. For
example, you may want to prefix all route URIs within the group with admin:

1 Route::group(['prefix' => 'admin'], function () {

2 Route::get('users', function () {

3 // Matches The "/admin/users" URL

4 });

5 });

You may also use the prefix parameter to specify common parameters for your grouped routes:

1 Route::group(['prefix' => 'accounts/{account_id}'], function () {

2 Route::get('detail', function ($accountId) {

3 // Matches The "/accounts/{account_id}/detail" URL

4 });

5 });

CSRF Protection

Introduction

Laravel makes it easy to protect your application from cross-site request forgery⁵³ (CSRF) attacks.
Cross-site request forgeries are a type of malicious exploit whereby unauthorized commands are
performed on behalf of an authenticated user.

⁵³http://en.wikipedia.org/wiki/Cross-site_request_forgery

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery

HTTP Routing 116

Laravel automatically generates a CSRF “token” for each active user session managed by the
application. This token is used to verify that the authenticated user is the one actually making the
requests to the application.

Anytime you define a HTML form in your application, you should include a hidden CSRF token field
in the form so that the CSRF protection middleware will be able to validate the request. To generate a
hidden input field _token containing the CSRF token, you may use the csrf_field helper function:

1 // Vanilla PHP

2 <?php echo csrf_field(); ?>

3

4 // Blade Template Syntax

5 {{ csrf_field() }}

The csrf_field helper function generates the following HTML:

1 <input type="hidden" name="_token" value="<?php echo csrf_token(); ?>">

You do not need to manually verify the CSRF token on POST, PUT, or DELETE requests. The
VerifyCsrfToken middleware, which is included in the web middleware group, will automatically
verify that the token in the request input matches the token stored in the session.

Excluding URIs From CSRF Protection

Sometimes you may wish to exclude a set of URIs from CSRF protection. For example, if you are
using Stripe⁵⁴ to process payments and are utilizing their webhook system, you will need to exclude
your webhook handler route from Laravel’s CSRF protection.

You may exclude URIs by defining their routes outside of the webmiddleware group that is included
in the default routes.php file, or by adding the URIs to the $except property of the VerifyCsrfToken
middleware:

⁵⁴https://stripe.com

https://stripe.com
https://stripe.com

HTTP Routing 117

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Illuminate\Foundation\Http\Middleware\VerifyCsrfToken as BaseVerifier;

6

7 class VerifyCsrfToken extends BaseVerifier

8 {

9 /**

10 * The URIs that should be excluded from CSRF verification.

11 *

12 * @var array

13 */

14 protected $except = [

15 'stripe/*',

16];

17 }

X-CSRF-TOKEN

In addition to checking for the CSRF token as a POST parameter, the Laravel VerifyCsrfToken
middleware will also check for the X-CSRF-TOKEN request header. You could, for example, store the
token in a “meta” tag:

1 <meta name="csrf-token" content="{{ csrf_token() }}">

Once you have created the meta tag, you can instruct a library like jQuery to add the token
to all request headers. This provides simple, convenient CSRF protection for your AJAX based
applications:

1 $.ajaxSetup({

2 headers: {

3 'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')

4 }

5 });

HTTP Routing 118

X-XSRF-TOKEN

Laravel also stores the CSRF token in a XSRF-TOKEN cookie. You can use the cookie value to set the
X-XSRF-TOKEN request header. Some JavaScript frameworks, like Angular, do this automatically for
you. It is unlikely that you will need to use this value manually.

Route Model Binding

Laravel route model binding provides a convenient way to inject model instances into your routes.
For example, instead of injecting a user’s ID, you can inject the entire User model instance that
matches the given ID.

Implicit Binding

Laravel will automatically resolve type-hinted Eloquent model’s defined in routes or controller
actions whose variable names match a route segment name. For example:

1 Route::get('api/users/{user}', function (App\User $user) {

2 return $user->email;

3 });

In this example, since the Eloquent type-hinted $user variable defined on the route matches the
{user} segment in the route’s URI, Laravel will automatically inject the model instance that has an
ID matching the corresponding value from the request URI.

If a matchingmodel instance is not found in the database, a 404 HTTP response will be automatically
generated.

Customizing The Key Name

If you would like the implicit model binding to use a database column other than idwhen retrieving
models, you may override the getRouteKeyName method on your Eloquent model:

HTTP Routing 119

1 /**

2 * Get the route key for the model.

3 *

4 * @return string

5 */

6 public function getRouteKeyName()

7 {

8 return 'slug';

9 }

Explicit Binding

To register an explicit binding, use the router’s model method to specify the class for a given
parameter. You should define your model bindings in the RouteServiceProvider::boot method:

Binding A Parameter To A Model

1 public function boot(Router $router)

2 {

3 parent::boot($router);

4

5 $router->model('user', 'App\User');

6 }

Next, define a route that contains a {user} parameter:

1 $router->get('profile/{user}', function(App\User $user) {

2 //

3 });

Since we have bound the {user} parameter to the App\User model, a User instance will be injected
into the route. So, for example, a request to profile/1 will inject the User instance which has an ID
of 1.

If a matchingmodel instance is not found in the database, a 404 HTTP response will be automatically
generated.

HTTP Routing 120

Customizing The Resolution Logic

If you wish to use your own resolution logic, you should use the Route::bindmethod. The Closure
you pass to the bindmethod will receive the value of the URI segment, and should return an instance
of the class you want to be injected into the route:

1 $router->bind('user', function($value) {

2 return App\User::where('name', $value)->first();

3 });

Customizing The “Not Found” Behavior

If you wish to specify your own “not found” behavior, pass a Closure as the third argument to the
model method:

1 $router->model('user', 'App\User', function() {

2 throw new NotFoundHttpException;

3 });

Form Method Spoofing

HTML forms do not support PUT, PATCH or DELETE actions. So, when defining PUT, PATCH or DELETE
routes that are called from an HTML form, you will need to add a hidden _method field to the form.
The value sent with the _method field will be used as the HTTP request method:

1 <form action="/foo/bar" method="POST">

2 <input type="hidden" name="_method" value="PUT">

3 <input type="hidden" name="_token" value="{{ csrf_token() }}">

4 </form>

To generate the hidden input field _method, you may also use the method_field helper function:

1 <?php echo method_field('PUT'); ?>

HTTP Routing 121

Of course, using the Blade templating engine:

1 {{ method_field('PUT') }}

Accessing The Current Route

The Route::current() method will return the route handling the current HTTP request, allowing
you to inspect the full Illuminate\Routing\Route instance:

1 $route = Route::current();

2

3 $name = $route->getName();

4

5 $actionName = $route->getActionName();

You may also use the currentRouteName and currentRouteAction helper methods on the Route

facade to access the current route’s name or action:

1 $name = Route::currentRouteName();

2

3 $action = Route::currentRouteAction();

Please refer to the API documentation for both the underlying class of the Route facade⁵⁵ and Route
instance⁵⁶ to review all accessible methods.

⁵⁵http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Routing/Router.html

⁵⁶http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Routing/Route.html

http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Router.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Route.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Route.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Router.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Router.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Route.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Route.html

HTTP Middleware
• Introduction
• Defining Middleware
• Registering Middleware A> - Global Middleware A> - Assigning Middleware To Routes A> -
Middleware Groups

• Middleware Parameters
• Terminable Middleware

Introduction

HTTP middleware provide a convenient mechanism for filtering HTTP requests entering your
application. For example, Laravel includes a middleware that verifies the user of your application
is authenticated. If the user is not authenticated, the middleware will redirect the user to the login
screen. However, if the user is authenticated, the middleware will allow the request to proceed
further into the application.

Of course, additional middleware can be written to perform a variety of tasks besides authentication.
ACORSmiddlewaremight be responsible for adding the proper headers to all responses leaving your
application. A logging middleware might log all incoming requests to your application.

There are several middleware included in the Laravel framework, including middleware for
maintenance, authentication, CSRF protection, and more. All of these middleware are located in
the app/Http/Middleware directory.

Defining Middleware

To create a new middleware, use the make:middleware Artisan command:

1 php artisan make:middleware AgeMiddleware

This command will place a new AgeMiddleware class within your app/Http/Middleware directory.
In this middleware, we will only allow access to the route if the supplied age is greater than 200.
Otherwise, we will redirect the users back to the “home” URI.

122

HTTP Middleware 123

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class AgeMiddleware

8 {

9 /**

10 * Run the request filter.

11 *

12 * @param \Illuminate\Http\Request $request

13 * @param \Closure $next

14 * @return mixed

15 */

16 public function handle($request, Closure $next)

17 {

18 if ($request->input('age') <= 200) {

19 return redirect('home');

20 }

21

22 return $next($request);

23 }

24

25 }

As you can see, if the given age is less than or equal to 200, the middleware will return an HTTP
redirect to the client; otherwise, the request will be passed further into the application. To pass
the request deeper into the application (allowing the middleware to “pass”), simply call the $next
callback with the $request.

It’s best to envision middleware as a series of “layers” HTTP requests must pass through before they
hit your application. Each layer can examine the request and even reject it entirely.

Before / After Middleware

Whether a middleware runs before or after a request depends on the middleware itself. For example,
the followingmiddleware would perform some task before the request is handled by the application:

HTTP Middleware 124

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class BeforeMiddleware

8 {

9 public function handle($request, Closure $next)

10 {

11 // Perform action

12

13 return $next($request);

14 }

15 }

However, this middleware would perform its task after the request is handled by the application:

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class AfterMiddleware

8 {

9 public function handle($request, Closure $next)

10 {

11 $response = $next($request);

12

13 // Perform action

14

15 return $response;

16 }

17 }

HTTP Middleware 125

Registering Middleware

Global Middleware

If you want a middleware to be run during every HTTP request to your application, simply list the
middleware class in the $middleware property of your app/Http/Kernel.php class.

Assigning Middleware To Routes

If you would like to assign middleware to specific routes, you should first assign the middleware
a short-hand key in your app/Http/Kernel.php file. By default, the $routeMiddleware property
of this class contains entries for the middleware included with Laravel. To add your own, simply
append it to this list and assign it a key of your choosing. For example:

1 // Within App\Http\Kernel Class...

2

3 protected $routeMiddleware = [

4 'auth' => \App\Http\Middleware\Authenticate::class,

5 'auth.basic' => \Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

6 'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

7 'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::class,

8];

Once the middleware has been defined in the HTTP kernel, you may use the middleware key in the
route options array:

1 Route::get('admin/profile', ['middleware' => 'auth', function () {

2 //

3 }]);

Use an array to assign multiple middleware to the route:

1 Route::get('/', ['middleware' => ['first', 'second'], function () {

2 //

3 }]);

Instead of using an array, you may also chain the middleware method onto the route definition:

HTTP Middleware 126

1 Route::get('/', function () {

2 //

3 })->middleware(['first', 'second']);

Middleware Groups

Sometimes you may want to group several middleware under a single key to make them easier to
assign to routes. You may do this using the $middlewareGroups property of your HTTP kernel.

Out of the box, Laravel comes with web and api middleware groups that contains common
middleware you may want to apply to web UI and your API routes:

1 /**

2 * The application's route middleware groups.

3 *

4 * @var array

5 */

6 protected $middlewareGroups = [

7 'web' => [

8 \App\Http\Middleware\EncryptCookies::class,

9 \Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,

10 \Illuminate\Session\Middleware\StartSession::class,

11 \Illuminate\View\Middleware\ShareErrorsFromSession::class,

12 \App\Http\Middleware\VerifyCsrfToken::class,

13],

14

15 'api' => [

16 'throttle:60,1',

17 'auth:api',

18],

19];

Middleware groups may be assigned to routes and controller actions using the same syntax as
individual middleware. Again, middleware groups simply make it more convenient to assign many
middleware to a route at once:

HTTP Middleware 127

1 Route::group(['middleware' => ['web']], function () {

2 //

3 });

Middleware Parameters

Middleware can also receive additional custom parameters. For example, if your application needs
to verify that the authenticated user has a given “role” before performing a given action, you could
create a RoleMiddleware that receives a role name as an additional argument.

Additional middleware parameters will be passed to the middleware after the $next argument:

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class RoleMiddleware

8 {

9 /**

10 * Run the request filter.

11 *

12 * @param \Illuminate\Http\Request $request

13 * @param \Closure $next

14 * @param string $role

15 * @return mixed

16 */

17 public function handle($request, Closure $next, $role)

18 {

19 if (! $request->user()->hasRole($role)) {

20 // Redirect...

21 }

22

23 return $next($request);

24 }

25

26 }

HTTP Middleware 128

Middleware parameters may be specified when defining the route by separating the middleware
name and parameters with a :. Multiple parameters should be delimited by commas:

1 Route::put('post/{id}', ['middleware' => 'role:editor', function ($id) {

2 //

3 }]);

Terminable Middleware

Sometimes a middleware may need to do some work after the HTTP response has already been sent
to the browser. For example, the “session” middleware included with Laravel writes the session data
to storage after the response has been sent to the browser. To accomplish this, define the middleware
as “terminable” by adding a terminate method to the middleware:

1 <?php

2

3 namespace Illuminate\Session\Middleware;

4

5 use Closure;

6

7 class StartSession

8 {

9 public function handle($request, Closure $next)

10 {

11 return $next($request);

12 }

13

14 public function terminate($request, $response)

15 {

16 // Store the session data...

17 }

18 }

The terminate method should receive both the request and the response. Once you have defined a
terminable middleware, you should add it to the list of global middlewares in your HTTP kernel.

When calling the terminate method on your middleware, Laravel will resolve a fresh instance of
the middleware from the service container. If you would like to use the same middleware instance

HTTP Middleware 129

when the handle and terminate methods are called, register the middleware with the container
using the container’s singleton method.

HTTP Controllers
• Introduction
• Basic Controllers
• Controller Middleware
• RESTful Resource Controllers A> - Partial Resource Routes A> - Naming Resource Routes A>
- Supplementing Resource Controllers

• Dependency Injection & Controllers
• Route Caching

Introduction

Instead of defining all of your request handling logic in a single routes.php file, you may wish
to organize this behavior using Controller classes. Controllers can group related HTTP request
handling logic into a class. Controllers are stored in the app/Http/Controllers directory.

Basic Controllers

Here is an example of a basic controller class. All Laravel controllers should extend the base
controller class included with the default Laravel installation:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

13 * @param int $id

14 * @return Response

15 */

16 public function showProfile($id)

17 {

130

HTTP Controllers 131

18 return view('user.profile', ['user' => User::findOrFail($id)]);

19 }

20 }

We can route to the controller action like so:

1 Route::get('user/{id}', 'UserController@showProfile');

Now, when a request matches the specified route URI, the showProfile method on the UserCon-

troller class will be executed. Of course, the route parameters will also be passed to the method.

Controllers & Namespaces

It is very important to note that we did not need to specify the full controller namespace when
defining the controller route. We only defined the portion of the class name that comes after
the App\Http\Controllers namespace “root”. By default, the RouteServiceProvider will load the
routes.php file within a route group containing the root controller namespace.

If you choose to nest or organize your controllers using PHP namespaces deeper into the App\Http\Controllers
directory, simply use the specific class name relative to the App\Http\Controllers root namespace.
So, if your full controller class is App\Http\Controllers\Photos\AdminController, you would
register a route like so:

1 Route::get('foo', 'Photos\AdminController@method');

Naming Controller Routes

Like Closure routes, you may specify names on controller routes:

1 Route::get('foo', ['uses' => 'FooController@method', 'as' => 'name']);

You may also use the route helper to generate a URL to a named controller route:

HTTP Controllers 132

1 $url = route('name');

Controller Middleware

Middleware may be assigned to the controller’s routes like so:

1 Route::get('profile', [

2 'middleware' => 'auth',

3 'uses' => 'UserController@showProfile'

4]);

However, it is more convenient to specify middleware within your controller’s constructor. Using
the middleware method from your controller’s constructor, you may easily assign middleware to
the controller. You may even restrict the middleware to only certain methods on the controller class:

1 class UserController extends Controller

2 {

3 /**

4 * Instantiate a new UserController instance.

5 *

6 * @return void

7 */

8 public function __construct()

9 {

10 $this->middleware('auth');

11

12 $this->middleware('log', ['only' => [

13 'fooAction',

14 'barAction',

15]]);

16

17 $this->middleware('subscribed', ['except' => [

18 'fooAction',

19 'barAction',

20]]);

HTTP Controllers 133

21 }

22 }

RESTful Resource Controllers

Resource controllers make it painless to build RESTful controllers around resources. For example,
you may wish to create a controller that handles HTTP requests regarding “photos” stored by your
application. Using the make:controller Artisan command, we can quickly create such a controller:

1 php artisan make:controller PhotoController --resource

TheArtisan commandwill generate a controller file at app/Http/Controllers/PhotoController.php.
The controller will contain a method for each of the available resource operations.

Next, you may register a resourceful route to the controller:

1 Route::resource('photo', 'PhotoController');

This single route declaration creates multiple routes to handle a variety of RESTful actions on the
photo resource. Likewise, the generated controller will already have methods stubbed for each of
these actions, including notes informing you which URIs and verbs they handle.

Actions Handled By Resource Controller

| Verb | Path | Action | Route Name | ———-|———————–|————–|——————— | GET | /photo |
index | photo.index | | GET | /photo/create | create | photo.create | | POST | /photo | store | photo.store
| | GET | /photo/{photo} | show | photo.show | | GET | /photo/{photo}/edit | edit | photo.edit | |
PUT/PATCH | /photo/{photo} | update | photo.update | | DELETE | /photo/{photo} | destroy |
photo.destroy |

Partial Resource Routes

When declaring a resource route, you may specify a subset of actions to handle on the route:

HTTP Controllers 134

1 Route::resource('photo', 'PhotoController', ['only' => [

2 'index', 'show'

3]]);

4

5 Route::resource('photo', 'PhotoController', ['except' => [

6 'create', 'store', 'update', 'destroy'

7]]);

Naming Resource Routes

By default, all resource controller actions have a route name; however, you can override these names
by passing a names array with your options:

1 Route::resource('photo', 'PhotoController', ['names' => [

2 'create' => 'photo.build'

3]]);

Supplementing Resource Controllers

If it becomes necessary to add additional routes to a resource controller beyond the default resource
routes, you should define those routes before your call to Route::resource; otherwise, the routes
defined by the resource method may unintentionally take precedence over your supplemental
routes:

1 Route::get('photos/popular', 'PhotoController@method');

2

3 Route::resource('photos', 'PhotoController');

Dependency Injection & Controllers

Constructor Injection

The Laravel service container is used to resolve all Laravel controllers. As a result, you are able
to type-hint any dependencies your controller may need in its constructor. The dependencies will
automatically be resolved and injected into the controller instance:

HTTP Controllers 135

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Repositories\UserRepository;

6

7 class UserController extends Controller

8 {

9 /**

10 * The user repository instance.

11 */

12 protected $users;

13

14 /**

15 * Create a new controller instance.

16 *

17 * @param UserRepository $users

18 * @return void

19 */

20 public function __construct(UserRepository $users)

21 {

22 $this->users = $users;

23 }

24 }

Of course, you may also type-hint any Laravel contract. If the container can resolve it, you can
type-hint it.

Method Injection

In addition to constructor injection, youmay also type-hint dependencies on your controller’s action
methods. For example, let’s type-hint the Illuminate\Http\Request instance on one of ourmethods:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class UserController extends Controller

8 {

HTTP Controllers 136

9 /**

10 * Store a new user.

11 *

12 * @param Request $request

13 * @return Response

14 */

15 public function store(Request $request)

16 {

17 $name = $request->input('name');

18

19 //

20 }

21 }

If your controller method is also expecting input from a route parameter, simply list your route
arguments after your other dependencies. For example, if your route is defined like so:

1 Route::put('user/{id}', 'UserController@update');

You may still type-hint the Illuminate\Http\Request and access your route parameter id by
defining your controller method like the following:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class UserController extends Controller

8 {

9 /**

10 * Update the specified user.

11 *

12 * @param Request $request

13 * @param string $id

14 * @return Response

15 */

16 public function update(Request $request, $id)

17 {

HTTP Controllers 137

18 //

19 }

20 }

Route Caching

Note: Route caching does not work with Closure based routes. To use route caching, you
must convert any Closure routes to use controller classes.

If your application is exclusively using controller based routes, you should take advantage of
Laravel’s route cache. Using the route cache will drastically decrease the amount of time it takes
to register all of your application’s routes. In some cases, your route registration may even be up to
100x faster! To generate a route cache, just execute the route:cache Artisan command:

1 php artisan route:cache

That’s all there is to it! Your cached routes file will now be used instead of your app/Http/routes.php
file. Remember, if you add any new routes you will need to generate a fresh route cache. Because of
this, you should only run the route:cache command during your project’s deployment.

To remove the cached routes file without generating a new cache, use the route:clear command:

1 php artisan route:clear

HTTP Requests
• Accessing The Request A> - Basic Request Information A> - PSR-7 Requests
• Retrieving Input A> - Old Input A> - Cookies A> - Files

Accessing The Request

To obtain an instance of the current HTTP request via dependency injection, you should type-hint
the Illuminate\Http\Request class on your controller constructor or method. The current request
instance will automatically be injected by the service container:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class UserController extends Controller

8 {

9 /**

10 * Store a new user.

11 *

12 * @param Request $request

13 * @return Response

14 */

15 public function store(Request $request)

16 {

17 $name = $request->input('name');

18

19 //

20 }

21 }

If your controller method is also expecting input from a route parameter, simply list your route
arguments after your other dependencies. For example, if your route is defined like so:

138

HTTP Requests 139

1 Route::put('user/{id}', 'UserController@update');

You may still type-hint the Illuminate\Http\Request and access your route parameter id by
defining your controller method like the following:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class UserController extends Controller

8 {

9 /**

10 * Update the specified user.

11 *

12 * @param Request $request

13 * @param string $id

14 * @return Response

15 */

16 public function update(Request $request, $id)

17 {

18 //

19 }

20 }

Basic Request Information

The Illuminate\Http\Request instance provides a variety of methods for examining the HTTP
request for your application and extends the Symfony\Component\HttpFoundation\Request class.
Here are a few more of the useful methods available on this class:

Retrieving The Request URI

The pathmethod returns the request’s URI. So, if the incoming request is targeted at http://domain.com/foo/bar,
the path method will return foo/bar:

HTTP Requests 140

1 $uri = $request->path();

The is method allows you to verify that the incoming request URI matches a given pattern. You
may use the * character as a wildcard when utilizing this method:

1 if ($request->is('admin/*')) {

2 //

3 }

To get the full URL, not just the path info, you may use the url or fullUrl methods on the request
instance:

1 // Without Query String...

2 $url = $request->url();

3

4 // With Query String...

5 $url = $request->fullUrl();

Retrieving The Request Method

The method method will return the HTTP verb for the request. You may also use the isMethod

method to verify that the HTTP verb matches a given string:

1 $method = $request->method();

2

3 if ($request->isMethod('post')) {

4 //

5 }

PSR-7 Requests

The PSR-7 standard specifies interfaces for HTTP messages, including requests and responses. If
you would like to obtain an instance of a PSR-7 request, you will first need to install a few libraries.

HTTP Requests 141

Laravel uses the Symfony HTTP Message Bridge component to convert typical Laravel requests and
responses into PSR-7 compatible implementations:

1 composer require symfony/psr-http-message-bridge

2

3 composer require zendframework/zend-diactoros

Once you have installed these libraries, you may obtain a PSR-7 request by simply type-hinting the
request type on your route or controller:

1 use Psr\Http\Message\ServerRequestInterface;

2

3 Route::get('/', function (ServerRequestInterface $request) {

4 //

5 });

If you return a PSR-7 response instance from a route or controller, it will automatically be converted
back to a Laravel response instance and be displayed by the framework.

Retrieving Input

Retrieving An Input Value

Using a few simple methods, you may access all user input from your Illuminate\Http\Request
instance. You do not need to worry about the HTTP verb used for the request, as input is accessed
in the same way for all verbs:

1 $name = $request->input('name');

You may pass a default value as the second argument to the input method. This value will be
returned if the requested input value is not present on the request:

1 $name = $request->input('name', 'Sally');

HTTP Requests 142

When working on forms with array inputs, you may use “dot” notation to access the arrays:

1 $name = $request->input('products.0.name');

2

3 $names = $request->input('products.*.name');

Determining If An Input Value Is Present

To determine if a value is present on the request, you may use the has method. The has method
returns true if the value is present and is not an empty string:

1 if ($request->has('name')) {

2 //

3 }

Retrieving All Input Data

You may also retrieve all of the input data as an array using the all method:

1 $input = $request->all();

Retrieving A Portion Of The Input Data

If you need to retrieve a sub-set of the input data, you may use the only and except methods. Both
of these methods will accept a single array or a dynamic list of arguments:

1 $input = $request->only(['username', 'password']);

2

3 $input = $request->only('username', 'password');

4

5 $input = $request->except(['credit_card']);

6

7 $input = $request->except('credit_card');

HTTP Requests 143

Dynamic Properties

Youmay also access user input using dynamic properties on the Illuminate\Http\Request instance.
For example, if one of your application’s forms contains a name field, you may access the value of
the posted field like so:

1 $name = $request->name;

When using dynamic properties, Laravel will first look for the parameter’s value in the request
payload and then in the route parameters.

Old Input

Laravel allows you to keep input from one request during the next request. This feature is particularly
useful for re-populating forms after detecting validation errors. However, if you are using Laravel’s
included validation services, it is unlikely you will need to manually use these methods, as some of
Laravel’s built-in validation facilities will call them automatically.

Flashing Input To The Session

The flash method on the Illuminate\Http\Request instance will flash the current input to the
session so that it is available during the user’s next request to the application:

1 $request->flash();

You may also use the flashOnly and flashExcept methods to flash a sub-set of the request data
into the session:

1 $request->flashOnly(['username', 'email']);

2

3 $request->flashExcept('password');

HTTP Requests 144

Flash Input Into Session Then Redirect

Since you often will want to flash input in association with a redirect to the previous page, you may
easily chain input flashing onto a redirect using the withInput method:

1 return redirect('form')->withInput();

2

3 return redirect('form')->withInput($request->except('password'));

Retrieving Old Data

To retrieve flashed input from the previous request, use the old method on the Request instance.
The old method provides a convenient helper for pulling the flashed input data out of the session:

1 $username = $request->old('username');

Laravel also provides a global old helper function. If you are displaying old input within a Blade
template, it is more convenient to use the old helper. If no old input exists for the given string, null
will be returned:

1 <input type="text" name="username" value="{{ old('username') }}">

Cookies

Retrieving Cookies From The Request

All cookies created by the Laravel framework are encrypted and signed with an authentication code,
meaning they will be considered invalid if they have been changed by the client. To retrieve a cookie
value from the request, you may use the cookiemethod on the Illuminate\Http\Request instance:

1 $value = $request->cookie('name');

HTTP Requests 145

Attaching A New Cookie To A Response

Laravel provides a global cookie helper function which serves as a simple factory for generating
new Symfony\Component\HttpFoundation\Cookie instances. The cookies may be attached to a
Illuminate\Http\Response instance using the withCookie method:

1 $response = new Illuminate\Http\Response('Hello World');

2

3 $response->withCookie('name', 'value', $minutes);

4

5 return $response;

To create a long-lived cookie, which lasts for five years, you may use the forever method on the
cookie factory by first calling the cookie helper with no arguments, and then chaining the forever
method onto the returned cookie factory:

1 $response->withCookie(cookie()->forever('name', 'value'));

Files

Retrieving Uploaded Files

You may access uploaded files that are included with the Illuminate\Http\Request instance
using the file method. The object returned by the file method is an instance of the Sym-

fony\Component\HttpFoundation\File\UploadedFile class, which extends the PHP SplFileInfo

class and provides a variety of methods for interacting with the file:

1 $file = $request->file('photo');

You may determine if a file is present on the request using the hasFile method:

1 if ($request->hasFile('photo')) {

2 //

3 }

HTTP Requests 146

Validating Successful Uploads

In addition to checking if the file is present, you may verify that there were no problems uploading
the file via the isValid method:

1 if ($request->file('photo')->isValid()) {

2 //

3 }

Moving Uploaded Files

To move the uploaded file to a new location, you should use the move method. This method will
move the file from its temporary upload location (as determined by your PHP configuration) to a
more permanent destination of your choosing:

1 $request->file('photo')->move($destinationPath);

2

3 $request->file('photo')->move($destinationPath, $fileName);

Other File Methods

There are a variety of other methods available on UploadedFile instances. Check out the API
documentation for the class⁵⁷ for more information regarding these methods.

⁵⁷http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/File/UploadedFile.html

http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/File/UploadedFile.html
http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/File/UploadedFile.html
http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/File/UploadedFile.html

HTTP Responses
• Basic Responses A> - Attaching Headers To Responses A> - Attaching Cookies To Responses
• Other Response Types A> - View Responses A> - JSON Responses A> - File Downloads
• Redirects A> - Redirecting To Named Routes A> - Redirecting To Controller Actions A> -
Redirecting With Flashed Session Data

• Response Macros

Basic Responses

Of course, all routes and controllers should return some kind of response to be sent back to the
user’s browser. Laravel provides several different ways to return responses. The most basic response
is simply returning a string from a route or controller:

1 Route::get('/', function () {

2 return 'Hello World';

3 });

The given string will automatically be converted into an HTTP response by the framework.

Response Objects

However, formost routes and controller actions, youwill be returning a full Illuminate\Http\Response
instance or a view. Returning a full Response instance allows you to customize the response’s HTTP
status code and headers. A Response instance inherits from the Symfony\Component\HttpFoundation\Response
class, providing a variety of methods for building HTTP responses:

1 use Illuminate\Http\Response;

2

3 Route::get('home', function () {

4 return (new Response($content, $status))

5 ->header('Content-Type', $value);

6 });

For convenience, you may also use the response helper:

147

HTTP Responses 148

1 Route::get('home', function () {

2 return response($content, $status)

3 ->header('Content-Type', $value);

4 });

Note: For a full list of available Responsemethods, check out its API documentation⁵⁸ and
the Symfony API documentation⁵⁹.

Attaching Headers To Responses

Keep in mind that most response methods are chainable, allowing for the fluent building of
responses. For example, you may use the header method to add a series of headers to the response
before sending it back to the user:

1 return response($content)

2 ->header('Content-Type', $type)

3 ->header('X-Header-One', 'Header Value')

4 ->header('X-Header-Two', 'Header Value');

Or, you may use the withHeadersmethod to specify an array of headers to be added to the response:

1 return response($content)

2 ->withHeaders([

3 'Content-Type' => $type,

4 'X-Header-One' => 'Header Value',

5 'X-Header-Two' => 'Header Value',

6]);

Attaching Cookies To Responses

The cookie helper method on the response instance allows you to easily attach cookies to the
response. For example, you may use the cookie method to generate a cookie and attach it to the
response instance:

⁵⁸http://laravel.com/api/master/Illuminate/Http/Response.html
⁵⁹http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/Response.html

http://laravel.com/api/master/Illuminate/Http/Response.html
http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/Response.html
http://laravel.com/api/master/Illuminate/Http/Response.html
http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/Response.html

HTTP Responses 149

1 return response($content)

2 ->header('Content-Type', $type)

3 ->cookie('name', 'value');

The cookie method accepts additional optional arguments which allow you to further customize
your cookie’s properties:

1 ->cookie($name, $value, $minutes, $path, $domain, $secure, $httpOnly)

By default, all cookies generated by Laravel are encrypted and signed so that they can’t be modified
or read by the client. If you would like to disable encryption for a certain subset of cookies generated
by your application, youmay use the $except property of the App\Http\Middleware\EncryptCookies
middleware:

1 /**

2 * The names of the cookies that should not be encrypted.

3 *

4 * @var array

5 */

6 protected $except = [

7 'cookie_name',

8];

Other Response Types

The response helper may be used to conveniently generate other types of response instances. When
the response helper is calledwithout arguments, an implementation of the Illuminate\Contracts\Routing\ResponseFactory
contract is returned. This contract provides several helpful methods for generating responses.

View Responses

If you need control over the response status and headers, but also need to return a view as the
response content, you may use the view method:

HTTP Responses 150

1 return response()

2 ->view('hello', $data)

3 ->header('Content-Type', $type);

Of course, if you do not need to pass a custom HTTP status code or custom headers, you should
simply use the global view helper function.

JSON Responses

The json method will automatically set the Content-Type header to application/json, as well as
convert the given array into JSON using the json_encode PHP function:

1 return response()->json(['name' => 'Abigail', 'state' => 'CA']);

If you would like to create a JSONP response, you may use the json method in addition to
setCallback:

1 return response()

2 ->json(['name' => 'Abigail', 'state' => 'CA'])

3 ->setCallback($request->input('callback'));

File Downloads

The downloadmethodmay be used to generate a response that forces the user’s browser to download
the file at the given path. The download method accepts a file name as the second argument to the
method, which will determine the file name that is seen by the user downloading the file. Finally,
you may pass an array of HTTP headers as the third argument to the method:

1 return response()->download($pathToFile);

2

3 return response()->download($pathToFile, $name, $headers);

Note: Symfony HttpFoundation, which manages file downloads, requires the file being
downloaded to have an ASCII file name.

HTTP Responses 151

Redirects

Redirect responses are instances of the Illuminate\Http\RedirectResponse class, and contain the
proper headers needed to redirect the user to another URL. There are several ways to generate a
RedirectResponse instance. The simplest method is to use the global redirect helper method:

1 Route::get('dashboard', function () {

2 return redirect('home/dashboard');

3 });

Sometimes you may wish to redirect the user to their previous location, for example, after a form
submission that is invalid. You may do so by using the global back helper function. However, make
sure the route using the back function is using the web middleware group or has all of the session
middleware applied:

1 Route::post('user/profile', function () {

2 // Validate the request...

3

4 return back()->withInput();

5 });

Redirecting To Named Routes

When you call the redirect helperwith no parameters, an instance of Illuminate\Routing\Redirector
is returned, allowing you to call any method on the Redirector instance. For example, to generate
a RedirectResponse to a named route, you may use the route method:

1 return redirect()->route('login');

If your route has parameters, you may pass them as the second argument to the route method:

1 // For a route with the following URI: profile/{id}

2

HTTP Responses 152

3 return redirect()->route('profile', ['id' => 1]);

If you are redirecting to a route with an “ID” parameter that is being populated from an Eloquent
model, you may simply pass the model itself. The ID will be extracted automatically:

1 return redirect()->route('profile', [$user]);

Redirecting To Controller Actions

You may also generate redirects to controller actions. To do so, simply pass the controller and
action name to the action method. Remember, you do not need to specify the full namespace to
the controller since Laravel’s RouteServiceProvider will automatically set the default controller
namespace:

1 return redirect()->action('HomeController@index');

Of course, if your controller route requires parameters, you may pass them as the second argument
to the action method:

1 return redirect()->action('UserController@profile', ['id' => 1]);

Redirecting With Flashed Session Data

Redirecting to a new URL and flashing data to the session are typically done at the same time. So,
for convenience, you may create a RedirectResponse instance and flash data to the session in a
single method chain. This is particularly convenient for storing status messages after an action:

1 Route::post('user/profile', function () {

2 // Update the user's profile...

3

4 return redirect('dashboard')->with('status', 'Profile updated!');

HTTP Responses 153

5 });

Of course, after the user is redirected to a new page, youmay retrieve and display the flashedmessage
from the session. For example, using Blade syntax:

1 @if (session('status'))

2 <div class="alert alert-success">

3 {{ session('status') }}

4 </div>

5 @endif

Response Macros

If you would like to define a custom response that you can re-use in a variety of your routes
and controllers, you may use the macro method on the Response facade or the implementation
of Illuminate\Contracts\Routing\ResponseFactory.

For example, from a service provider’s boot method:

1 <?php

2

3 namespace App\Providers;

4

5 use Response;

6 use Illuminate\Support\ServiceProvider;

7

8 class ResponseMacroServiceProvider extends ServiceProvider

9 {

10 /**

11 * Perform post-registration booting of services.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 Response::macro('caps', function ($value) {

18 return Response::make(strtoupper($value));

19 });

HTTP Responses 154

20 }

21 }

The macro function accepts a name as its first argument, and a Closure as its second. The macro’s
Closure will be executed when calling the macro name from a ResponseFactory implementation or
the response helper:

1 return response()->caps('foo');

Views
• Basic Usage A> - Passing Data To Views A> - Sharing Data With All Views
• View Composers

Basic Usage

Views contain the HTML served by your application and separate your controller / application logic
from your presentation logic. Views are stored in the resources/views directory.

A simple view might look something like this:

1 <!-- View stored in resources/views/greeting.php -->

2

3 <html>

4 <body>

5 <h1>Hello, <?php echo $name; ?></h1>

6 </body>

7 </html>

Since this view is stored at resources/views/greeting.php, we may return it using the global view
helper function like so:

1 Route::get('/', function () {

2 return view('greeting', ['name' => 'James']);

3 });

As you can see, the first argument passed to the view helper corresponds to the name of the view
file in the resources/views directory. The second argument passed to helper is an array of data
that should be made available to the view. In this case, we are passing the name variable, which is
displayed in the view by executing echo on the variable.

Of course, views may also be nested within sub-directories of the resources/views directory.
“Dot” notation may be used to reference nested views. For example, if your view is stored at
resources/views/admin/profile.php, you may reference it like so:

155

Views 156

1 return view('admin.profile', $data);

Determining If A View Exists

If you need to determine if a view exists, you may use the exists method after calling the view

helper with no arguments. This method will return true if the view exists on disk:

1 if (view()->exists('emails.customer')) {

2 //

3 }

When the view helper is calledwithout arguments, an instance of Illuminate\Contracts\View\Factory
is returned, giving you access to any of the factory’s methods.

View Data

Passing Data To Views

As you saw in the previous examples, you may easily pass an array of data to views:

1 return view('greetings', ['name' => 'Victoria']);

When passing information in this manner, $data should be an array with key/value pairs. Inside
your view, you can then access each value using its corresponding key, such as <?php echo $key;

?>. As an alternative to passing a complete array of data to the view helper function, you may use
the with method to add individual pieces of data to the view:

1 return view('greeting')->with('name', 'Victoria');

Sharing Data With All Views

Occasionally, you may need to share a piece of data with all views that are rendered by your appli-
cation. You may do so using the view factory’s share method. Typically, you should place calls to

Views 157

sharewithin a service provider’s bootmethod. You are free to add them to the AppServiceProvider
or generate a separate service provider to house them:

1 <?php

2

3 namespace App\Providers;

4

5 class AppServiceProvider extends ServiceProvider

6 {

7 /**

8 * Bootstrap any application services.

9 *

10 * @return void

11 */

12 public function boot()

13 {

14 view()->share('key', 'value');

15 }

16

17 /**

18 * Register the service provider.

19 *

20 * @return void

21 */

22 public function register()

23 {

24 //

25 }

26 }

View Composers

View composers are callbacks or class methods that are called when a view is rendered. If you have
data that you want to be bound to a view each time that view is rendered, a view composer can help
you organize that logic into a single location.

Let’s register our view composers within a service provider. We’ll use the view helper to access
the underlying Illuminate\Contracts\View\Factory contract implementation. Remember, Laravel
does not include a default directory for view composers. You are free to organize them however you
wish. For example, you could create an App\Http\ViewComposers directory:

Views 158

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\ServiceProvider;

6

7 class ComposerServiceProvider extends ServiceProvider

8 {

9 /**

10 * Register bindings in the container.

11 *

12 * @return void

13 */

14 public function boot()

15 {

16 // Using class based composers...

17 view()->composer(

18 'profile', 'App\Http\ViewComposers\ProfileComposer'

19);

20

21 // Using Closure based composers...

22 view()->composer('dashboard', function ($view) {

23 //

24 });

25 }

26

27 /**

28 * Register the service provider.

29 *

30 * @return void

31 */

32 public function register()

33 {

34 //

35 }

36 }

Remember, if you create a new service provider to contain your view composer registrations, you
will need to add the service provider to the providers array in the config/app.php configuration
file.

Now that we have registered the composer, the ProfileComposer@composemethod will be executed
each time the profile view is being rendered. So, let’s define the composer class:

Views 159

1 <?php

2

3 namespace App\Http\ViewComposers;

4

5 use Illuminate\View\View;

6 use Illuminate\Users\Repository as UserRepository;

7

8 class ProfileComposer

9 {

10 /**

11 * The user repository implementation.

12 *

13 * @var UserRepository

14 */

15 protected $users;

16

17 /**

18 * Create a new profile composer.

19 *

20 * @param UserRepository $users

21 * @return void

22 */

23 public function __construct(UserRepository $users)

24 {

25 // Dependencies automatically resolved by service container...

26 $this->users = $users;

27 }

28

29 /**

30 * Bind data to the view.

31 *

32 * @param View $view

33 * @return void

34 */

35 public function compose(View $view)

36 {

37 $view->with('count', $this->users->count());

38 }

39 }

Just before the view is rendered, the composer’s compose method is called with the Illumi-

nate\View\View instance. You may use the with method to bind data to the view.

Views 160

Note: All view composers are resolved via the service container, so you may type-hint any
dependencies you need within a composer’s constructor.

Attaching A Composer To Multiple Views

You may attach a view composer to multiple views at once by passing an array of views as the first
argument to the composer method:

1 view()->composer(

2 ['profile', 'dashboard'],

3 'App\Http\ViewComposers\MyViewComposer'

4);

The composer method accepts the * character as a wildcard, allowing you to attach a composer to
all views:

1 view()->composer('*', function ($view) {

2 //

3 });

View Creators

View creators are very similar to view composers; however, they are fired immediately when the
view is instantiated instead of waiting until the view is about to render. To register a view creator,
use the creator method:

1 view()->creator('profile', 'App\Http\ViewCreators\ProfileCreator');

Blade Templates
• Introduction
• Template Inheritance A> - Defining A Layout A> - Extending A Layout
• Displaying Data
• Control Structures
• Stacks
• Service Injection
• Extending Blade

Introduction

Blade is the simple, yet powerful templating engine provided with Laravel. Unlike other popular
PHP templating engines, Blade does not restrict you from using plain PHP code in your views. All
Blade views are compiled into plain PHP code and cached until they are modified, meaning Blade
adds essentially zero overhead to your application. Blade view files use the .blade.php file extension
and are typically stored in the resources/views directory.

Template Inheritance

Defining A Layout

Two of the primary benefits of using Blade are template inheritance and sections. To get started,
let’s take a look at a simple example. First, we will examine a “master” page layout. Since most web
applications maintain the same general layout across various pages, it’s convenient to define this
layout as a single Blade view:

1 <!-- Stored in resources/views/layouts/master.blade.php -->

2

3 <html>

4 <head>

5 <title>App Name - @yield('title')</title>

6 </head>

7 <body>

8 @section('sidebar')

9 This is the master sidebar.

10 @show

161

Blade Templates 162

11

12 <div class="container">

13 @yield('content')

14 </div>

15 </body>

16 </html>

As you can see, this file contains typical HTML mark-up. However, take note of the @section and
@yield directives. The @section directive, as the name implies, defines a section of content, while
the @yield directive is used to display the contents of a given section.

Now that we have defined a layout for our application, let’s define a child page that inherits the
layout.

Extending A Layout

When defining a child page, you may use the Blade @extends directive to specify which layout
the child page should “inherit”. Views which @extends a Blade layout may inject content into the
layout’s sections using @section directives. Remember, as seen in the example above, the contents
of these sections will be displayed in the layout using @yield:

1 <!-- Stored in resources/views/child.blade.php -->

2

3 @extends('layouts.master')

4

5 @section('title', 'Page Title')

6

7 @section('sidebar')

8 @@parent

9

10 <p>This is appended to the master sidebar.</p>

11 @endsection

12

13 @section('content')

14 <p>This is my body content.</p>

15 @endsection

In this example, the sidebar section is utilizing the @@parent directive to append (rather than
overwriting) content to the layout’s sidebar. The @@parent directive will be replaced by the content
of the layout when the view is rendered.

Blade Templates 163

Of course, just like plain PHP views, Blade views may be returned from routes using the global view
helper function:

1 Route::get('blade', function () {

2 return view('child');

3 });

Displaying Data

You may display data passed to your Blade views by wrapping the variable in “curly” braces. For
example, given the following route:

1 Route::get('greeting', function () {

2 return view('welcome', ['name' => 'Samantha']);

3 });

You may display the contents of the name variable like so:

1 Hello, {{ $name }}.

Of course, you are not limited to displaying the contents of the variables passed to the view. You
may also echo the results of any PHP function. In fact, you can put any PHP code you wish inside
of a Blade echo statement:

1 The current UNIX timestamp is {{ time() }}.

Note:Blade {{ }} statements are automatically sent through PHP’s htmlentities function
to prevent XSS attacks.

Blade Templates 164

Blade & JavaScript Frameworks

Since many JavaScript frameworks also use “curly” braces to indicate a given expression should
be displayed in the browser, you may use the @ symbol to inform the Blade rendering engine an
expression should remain untouched. For example:

1 <h1>Laravel</h1>

2

3 Hello, @{{ name }}.

In this example, the @ symbol will be removed by Blade; however, {{ name }} expression will remain
untouched by the Blade engine, allowing it to instead be rendered by your JavaScript framework.

Echoing Data If It Exists

Sometimes you may wish to echo a variable, but you aren’t sure if the variable has been set. We can
express this in verbose PHP code like so:

1 {{ isset($name) ? $name : 'Default' }}

However, instead of writing a ternary statement, Blade provides you with the following convenient
short-cut:

1 {{ $name or 'Default' }}

In this example, if the $name variable exists, its value will be displayed. However, if it does not exist,
the word Default will be displayed.

Displaying Unescaped Data

By default, Blade {{ }} statements are automatically sent through PHP’s htmlentities function to
prevent XSS attacks. If you do not want your data to be escaped, you may use the following syntax:

1 Hello, {!! $name !!}.

Blade Templates 165

Note: Be very careful when echoing content that is supplied by users of your application.
Always use the double curly brace syntax to escape any HTML entities in the content.

Control Structures

In addition to template inheritance and displaying data, Blade also provides convenient short-cuts for
common PHP control structures, such as conditional statements and loops. These short-cuts provide
a very clean, terse way of working with PHP control structures, while also remaining familiar to
their PHP counterparts.

If Statements

You may construct if statements using the @if, @elseif, @else, and @endif directives. These
directives function identically to their PHP counterparts:

1 @if (count($records) === 1)

2 I have one record!

3 @elseif (count($records) > 1)

4 I have multiple records!

5 @else

6 I don't have any records!

7 @endif

For convenience, Blade also provides an @unless directive:

1 @unless (Auth::check())

2 You are not signed in.

3 @endunless

Loops

In addition to conditional statements, Blade provides simple directives for working with PHP’s
supported loop structures. Again, each of these directives functions identically to their PHP
counterparts:

Blade Templates 166

1 @for ($i = 0; $i < 10; $i++)

2 The current value is {{ $i }}

3 @endfor

4

5 @foreach ($users as $user)

6 <p>This is user {{ $user->id }}</p>

7 @endforeach

8

9 @forelse ($users as $user)

10 {{ $user->name }}

11 @empty

12 <p>No users</p>

13 @endforelse

14

15 @while (true)

16 <p>I'm looping forever.</p>

17 @endwhile

Including Sub-Views

Blade’s @include directive, allows you to easily include a Blade view from within an existing view.
All variables that are available to the parent view will be made available to the included view:

1 <div>

2 @include('shared.errors')

3

4 <form>

5 <!-- Form Contents -->

6 </form>

7 </div>

Even though the included view will inherit all data available in the parent view, you may also pass
an array of extra data to the included view:

1 @include('view.name', ['some' => 'data'])

Blade Templates 167

Note: You should avoid using the __DIR__ and __FILE__ constants in your Blade views,
since they will refer to the location of the cached view.

Rendering Views For Collections

You may combine loops and includes into one line with Blade’s @each directive:

1 @each('view.name', $jobs, 'job')

The first argument is the view partial to render for each element in the array or collection. The
second argument is the array or collection you wish to iterate over, while the third argument is
the variable name that will be assigned to the current iteration within the view. So, for example, if
you are iterating over an array of jobs, typically you will want to access each job as a job variable
within your view partial.

You may also pass a fourth argument to the @each directive. This argument determines the view
that will be rendered if the given array is empty.

1 @each('view.name', $jobs, 'job', 'view.empty')

Comments

Blade also allows you to define comments in your views. However, unlike HTML comments, Blade
comments are not included in the HTML returned by your application:

1 {{-- This comment will not be present in the rendered HTML --}}

Stacks

Blade also allows you to push to named stacks which can be rendered somewhere else in another
view or layout:

Blade Templates 168

1 @push('scripts')

2 <script src="/example.js"></script>

3 @endpush

You may push to the same stack as many times as needed. To render a stack, use the @stack syntax:

1 <head>

2 <!-- Head Contents -->

3

4 @stack('scripts')

5 </head>

Service Injection

The @inject directive may be used to retrieve a service from the Laravel service container. The first
argument passed to @inject is the name of the variable the service will be placed into, while the
second argument is the class / interface name of the service you wish to resolve:

1 @inject('metrics', 'App\Services\MetricsService')

2

3 <div>

4 Monthly Revenue: {{ $metrics->monthlyRevenue() }}.

5 </div>

Extending Blade

Blade even allows you to define your own custom directives. You can use the directive method to
register a directive. When the Blade compiler encounters the directive, it calls the provided callback
with its parameter.

The following example creates a @datetime($var) directive which formats a given $var:

Blade Templates 169

1 <?php

2

3 namespace App\Providers;

4

5 use Blade;

6 use Illuminate\Support\ServiceProvider;

7

8 class AppServiceProvider extends ServiceProvider

9 {

10 /**

11 * Perform post-registration booting of services.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 Blade::directive('datetime', function($expression) {

18 return "<?php echo with{$expression}->format('m/d/Y H:i'); ?>";

19 });

20 }

21

22 /**

23 * Register bindings in the container.

24 *

25 * @return void

26 */

27 public function register()

28 {

29 //

30 }

31 }

As you can see, Laravel’s with helper function was used in this directive. The with helper simply
returns the object / value it is given, allowing for convenient method chaining. The final PHP
generated by this directive will be:

1 <?php echo with($var)->format('m/d/Y H:i'); ?>

Request Lifecycle
• Introduction
• Lifecycle Overview
• Focus On Service Providers

Introduction

When using any tool in the “real world”, you feel more confident if you understand how that tool
works. Application development is no different. When you understand how your development tools
function, you feel more comfortable and confident using them.

The goal of this document is to give you a good, high-level overview of how the Laravel framework
“works”. By getting to know the overall framework better, everything feels less “magical” and you
will be more confident building your applications.

If you don’t understand all of the terms right away, don’t lose heart! Just try to get a basic grasp of
what is going on, and your knowledge will grow as you explore other sections of the documentation.

Lifecycle Overview

First Things

The entry point for all requests to a Laravel application is the public/index.php file. All requests are
directed to this file by your web server (Apache / Nginx) configuration. The index.php file doesn’t
contain much code. Rather, it is simply a starting point for loading the rest of the framework.

The index.php file loads the Composer generated autoloader definition, and then retrieves an
instance of the Laravel application from bootstrap/app.php script. The first action taken by Laravel
itself is to create an instance of the application / service container.

HTTP / Console Kernels

Next, the incoming request is sent to either the HTTP kernel or the console kernel, depending on
the type of request that is entering the application. These two kernels serve as the central location
that all requests flow through. For now, let’s just focus on the HTTP kernel, which is located in
app/Http/Kernel.php.

170

Request Lifecycle 171

The HTTP kernel extends the Illuminate\Foundation\Http\Kernel class, which defines an array
of bootstrappers that will be run before the request is executed. These bootstrappers configure
error handling, configure logging, detect the application environment, and perform other tasks that
need to be done before the request is actually handled.

The HTTP kernel also defines a list of HTTP middleware that all requests must pass through before
being handled by the application. These middleware handle reading and writing the HTTP session,
determine if the application is in maintenance mode, verifying the CSRF token, and more.

The method signature for the HTTP kernel’s handle method is quite simple: receive a Request

and return a Response. Think of the Kernel as being a big black box that represents your entire
application. Feed it HTTP requests and it will return HTTP responses.

Service Providers

One of the most important Kernel bootstrapping actions is loading the service providers for your
application. All of the service providers for the application are configured in the config/app.php

configuration file’s providers array. First, the registermethod will be called on all providers, then,
once all providers have been registered, the boot method will be called.

Service providers are responsible for bootstrapping all of the framework’s various components, such
as the database, queue, validation, and routing components. Since they bootstrap and configure
every feature offered by the framework, service providers are the most important aspect of the
entire Laravel bootstrap process.

Dispatch Request

Once the application has been bootstrapped and all service providers have been registered, the
Request will be handed off to the router for dispatching. The router will dispatch the request to
a route or controller, as well as run any route specific middleware.

Focus On Service Providers

Service providers are truly the key to bootstrapping a Laravel application. The application instance
is created, the service providers are registered, and the request is handed to the bootstrapped
application. It’s really that simple!

Having a firm grasp of how a Laravel application is built and bootstrapped via service providers is
very valuable. Of course, your application’s default service providers are stored in the app/Providers
directory.

By default, the AppServiceProvider is fairly empty. This provider is a great place to add your
application’s own bootstrapping and service container bindings. Of course, for large applications,
you may wish to create several service providers, each with a more granular type of bootstrapping.

Application Structure
• Introduction
• The Root Directory
• The App Directory

Introduction

The default Laravel application structure is intended to provide a great starting point for both
large and small applications. Of course, you are free to organize your application however you like.
Laravel imposes almost no restrictions on where any given class is located - as long as Composer
can autoload the class.

The Root Directory

The root directory of a fresh Laravel installation contains a variety of folders:

The app directory, as you might expect, contains the core code of your application. We’ll explore
this folder in more detail soon.

The bootstrap folder contains a few files that bootstrap the framework and configure autoloading,
as well as a cache folder that contains a few framework generated files for bootstrap performance
optimization.

The config directory, as the name implies, contains all of your application’s configuration files.

The database folder contains your database migration and seeds. If you wish, you may also use this
folder to hold an SQLite database.

The public directory contains the front controller and your assets (images, JavaScript, CSS, etc.).

The resources directory contains your views, raw assets (LESS, SASS, CoffeeScript), and localiza-
tion files.

The storage directory contains compiled Blade templates, file based sessions, file caches, and other
files generated by the framework. This folder is segregated into app, framework, and logs directories.
The app directory may be used to store any files utilized by your application. The framework

directory is used to store framework generated files and caches. Finally, the logs directory contains
your application’s log files.

172

Application Structure 173

The tests directory contains your automated tests. An example PHPUnit⁶⁰ is provided out of the
box.

The vendor directory contains your Composer⁶¹ dependencies.

The App Directory

The “meat” of your application lives in the app directory. By default, this directory is namespaced
under App and is autoloaded by Composer using the PSR-4 autoloading standard⁶².

The app directory shipswith a variety of additional directories such as Console, Http, and Providers.
Think of the Console and Http directories as providing an API into the “core” of your application.
The HTTP protocol and CLI are both mechanisms to interact with your application, but do not
actually contain application logic. In other words, they are simply two ways of issuing commands
to your application. The Console directory contains all of your Artisan commands, while the Http
directory contains your controllers, middleware, and requests.

The Events directory, as you might expect, houses event classes. Events may be used to alert other
parts of your application that a given action has occurred, providing a great deal of flexibility and
decoupling.

The Exceptions directory contains your application’s exception handler and is also a good place to
stick any exceptions thrown by your application.

The Jobs directory, of course, houses the queueable jobs for your application. Jobs may be queued
by your application or run synchronously within the current request lifecycle.

The Listeners directory contains the handler classes for your events. Handlers receive an event and
perform logic in response to the event being fired. For example, a UserRegistered event might be
handled by a SendWelcomeEmail listener.

The Policies directory contains the authorization policy classes for your application. Policies are
used to determine if a user can perform a given action against a resource. For more information,
check out the authorization documentation.

Note:Many of the classes in the app directory can be generated by Artisan via commands.
To review the available commands, run the php artisan list make command in your
terminal.

⁶⁰https://phpunit.de/
⁶¹https://getcomposer.org
⁶²http://www.php-fig.org/psr/psr-4/

https://phpunit.de/
https://getcomposer.org
http://www.php-fig.org/psr/psr-4/
https://phpunit.de/
https://getcomposer.org
http://www.php-fig.org/psr/psr-4/

Service Providers
• Introduction
• Writing Service Providers A> - The Register Method A> - The Boot Method
• Registering Providers
• Deferred Providers

Introduction

Service providers are the central place of all Laravel application bootstrapping. Your own application,
as well as all of Laravel’s core services are bootstrapped via service providers.

But, what do we mean by “bootstrapped”? In general, we mean registering things, including reg-
istering service container bindings, event listeners, middleware, and even routes. Service providers
are the central place to configure your application.

If you open the config/app.php file included with Laravel, you will see a providers array. These
are all of the service provider classes that will be loaded for your application. Of course, many of
them are “deferred” providers, meaning they will not be loaded on every request, but only when the
services they provide are actually needed.

In this overview you will learn how to write your own service providers and register them with
your Laravel application.

Writing Service Providers

All service providers extend the Illuminate\Support\ServiceProvider class. This abstract class
requires that you define at least one method on your provider: register. Within the register

method, you should only bind things into the service container. You should never attempt to
register any event listeners, routes, or any other piece of functionality within the registermethod.

The Artisan CLI can easily generate a new provider via the make:provider command:

1 php artisan make:provider RiakServiceProvider

174

Service Providers 175

The Register Method

As mentioned previously, within the registermethod, you should only bind things into the service
container. You should never attempt to register any event listeners, routes, or any other piece of
functionality within the register method. Otherwise, you may accidently use a service that is
provided by a service provider which has not loaded yet.

Now, let’s take a look at a basic service provider:

1 <?php

2

3 namespace App\Providers;

4

5 use Riak\Connection;

6 use Illuminate\Support\ServiceProvider;

7

8 class RiakServiceProvider extends ServiceProvider

9 {

10 /**

11 * Register bindings in the container.

12 *

13 * @return void

14 */

15 public function register()

16 {

17 $this->app->singleton(Connection::class, function ($app) {

18 return new Connection(config('riak'));

19 });

20 }

21 }

This service provider only defines a register method, and uses that method to define an imple-
mentation of Riak\Connection in the service container. If you don’t understand how the service
container works, check out its documentation.

The Boot Method

So, what if we need to register a view composer within our service provider? This should be
done within the boot method. This method is called after all other service providers have
been registered, meaning you have access to all other services that have been registered by the
framework:

Service Providers 176

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Contracts\Events\Dispatcher as DispatcherContract;

6 use Illuminate\Foundation\Support\Providers\EventServiceProvider as ServiceProvi\

7 der;

8

9 class EventServiceProvider extends ServiceProvider

10 {

11 // Other Service Provider Properties...

12

13 /**

14 * Register any other events for your application.

15 *

16 * @param \Illuminate\Contracts\Events\Dispatcher $events

17 * @return void

18 */

19 public function boot(DispatcherContract $events)

20 {

21 parent::boot($events);

22

23 view()->composer('view', function () {

24 //

25 });

26 }

27 }

Boot Method Dependency Injection

You are able to type-hint dependencies for your service provider’s boot method. The service
container will automatically inject any dependencies you need:

Service Providers 177

1 use Illuminate\Contracts\Routing\ResponseFactory;

2

3 public function boot(ResponseFactory $factory)

4 {

5 $factory->macro('caps', function ($value) {

6 //

7 });

8 }

Registering Providers

All service providers are registered in the config/app.php configuration file. This file contains a
providers array where you can list the names of your service providers. By default, a set of Laravel
core service providers are listed in this array. These providers bootstrap the core Laravel components,
such as the mailer, queue, cache, and others.

To register your provider, simply add it to the array:

1 'providers' => [

2 // Other Service Providers

3

4 App\Providers\AppServiceProvider::class,

5],

Deferred Providers

If your provider is only registering bindings in the service container, you may choose to defer its
registration until one of the registered bindings is actually needed. Deferring the loading of such a
provider will improve the performance of your application, since it is not loaded from the filesystem
on every request.

To defer the loading of a provider, set the defer property to true and define a provides method.
The provides method returns the service container bindings that the provider registers:

Service Providers 178

1 <?php

2

3 namespace App\Providers;

4

5 use Riak\Connection;

6 use Illuminate\Support\ServiceProvider;

7

8 class RiakServiceProvider extends ServiceProvider

9 {

10 /**

11 * Indicates if loading of the provider is deferred.

12 *

13 * @var bool

14 */

15 protected $defer = true;

16

17 /**

18 * Register the service provider.

19 *

20 * @return void

21 */

22 public function register()

23 {

24 $this->app->singleton(Connection::class, function ($app) {

25 return new Connection($app['config']['riak']);

26 });

27 }

28

29 /**

30 * Get the services provided by the provider.

31 *

32 * @return array

33 */

34 public function provides()

35 {

36 return [Connection::class];

37 }

38

39 }

Laravel compiles and stores a list of all of the services supplied by deferred service providers, along
with the name of its service provider class. Then, only when you attempt to resolve one of these
services does Laravel load the service provider.

Service Container
• Introduction
• Binding A> - Binding Interfaces To Implementations A> - Contextual Binding A> - Tagging
• Resolving
• Container Events

Introduction

The Laravel service container is a powerful tool for managing class dependencies and performing
dependency injection. Dependency injection is a fancy phrase that essentially means this: class
dependencies are “injected” into the class via the constructor or, in some cases, “setter” methods.

Let’s look at a simple example:

1 <?php

2

3 namespace App\Jobs;

4

5 use App\User;

6 use Illuminate\Contracts\Mail\Mailer;

7 use Illuminate\Contracts\Bus\SelfHandling;

8

9 class PurchasePodcast implements SelfHandling

10 {

11 /**

12 * The mailer implementation.

13 */

14 protected $mailer;

15

16 /**

17 * Create a new instance.

18 *

19 * @param Mailer $mailer

20 * @return void

21 */

22 public function __construct(Mailer $mailer)

23 {

24 $this->mailer = $mailer;

179

Service Container 180

25 }

26

27 /**

28 * Purchase a podcast.

29 *

30 * @return void

31 */

32 public function handle()

33 {

34 //

35 }

36 }

In this example, the PurchasePodcast job needs to send e-mails when a podcast is purchased. So, we
will inject a service that is able to send e-mails. Since the service is injected, we are able to easily
swap it out with another implementation. We are also able to easily “mock”, or create a dummy
implementation of the mailer when testing our application.

A deep understanding of the Laravel service container is essential to building a powerful, large
application, as well as for contributing to the Laravel core itself.

Binding

Almost all of your service container bindings will be registered within service providers, so all of
these examples will demonstrate using the container in that context. However, there is no need to
bind classes into the container if they do not depend on any interfaces. The container does not need
to be instructed on how to build these objects, since it can automatically resolve such “concrete”
objects using PHP’s reflection services.

Within a service provider, you always have access to the container via the $this->app instance
variable. We can register a binding using the bind method, passing the class or interface name that
we wish to register along with a Closure that returns an instance of the class:

1 $this->app->bind('HelpSpot\API', function ($app) {

2 return new HelpSpot\API($app['HttpClient']);

3 });

Notice that we receive the container itself as an argument to the resolver. We can then use the
container to resolve sub-dependencies of the object we are building.

Service Container 181

Binding A Singleton

The singletonmethod binds a class or interface into the container that should only be resolved one
time, and then that same instance will be returned on subsequent calls into the container:

1 $this->app->singleton('FooBar', function ($app) {

2 return new FooBar($app['SomethingElse']);

3 });

Binding Instances

You may also bind an existing object instance into the container using the instance method. The
given instance will always be returned on subsequent calls into the container:

1 $fooBar = new FooBar(new SomethingElse);

2

3 $this->app->instance('FooBar', $fooBar);

Binding Interfaces To Implementations

A very powerful feature of the service container is its ability to bind an interface to a given imple-
mentation. For example, let’s assume we have an EventPusher interface and a RedisEventPusher

implementation. Once we have coded our RedisEventPusher implementation of this interface, we
can register it with the service container like so:

1 $this->app->bind('App\Contracts\EventPusher', 'App\Services\RedisEventPusher');

This tells the container that it should inject the RedisEventPusherwhen a class needs an implemen-
tation of EventPusher. Now we can type-hint the EventPusher interface in a constructor, or any
other location where dependencies are injected by the service container:

Service Container 182

1 use App\Contracts\EventPusher;

2

3 /**

4 * Create a new class instance.

5 *

6 * @param EventPusher $pusher

7 * @return void

8 */

9 public function __construct(EventPusher $pusher)

10 {

11 $this->pusher = $pusher;

12 }

Contextual Binding

Sometimes you may have two classes that utilize the same interface, but you wish to inject different
implementations into each class. For example, when our system receives a new Order, we may want
to send an event via PubNub⁶³ rather than Pusher. Laravel provides a simple, fluent interface for
defining this behavior:

1 $this->app->when('App\Handlers\Commands\CreateOrderHandler')

2 ->needs('App\Contracts\EventPusher')

3 ->give('App\Services\PubNubEventPusher');

You may even pass a Closure to the give method:

1 $this->app->when('App\Handlers\Commands\CreateOrderHandler')

2 ->needs('App\Contracts\EventPusher')

3 ->give(function () {

4 // Resolve dependency...

5 });

⁶³http://www.pubnub.com/

http://www.pubnub.com/
http://www.pubnub.com/

Service Container 183

Binding Primitives

Sometimes you may have a class that receives some injected classes, but also needs an injected
primitive value such as an integer. You may easily use contextual binding to inject any value your
class may need:

1 $this->app->when('App\Handlers\Commands\CreateOrderHandler')

2 ->needs('$maxOrderCount')

3 ->give(10);

Tagging

Occasionally, you may need to resolve all of a certain “category” of binding. For example, perhaps
you are building a report aggregator that receives an array of many different Report interface
implementations. After registering the Report implementations, you can assign them a tag using
the tag method:

1 $this->app->bind('SpeedReport', function () {

2 //

3 });

4

5 $this->app->bind('MemoryReport', function () {

6 //

7 });

8

9 $this->app->tag(['SpeedReport', 'MemoryReport'], 'reports');

Once the services have been tagged, you may easily resolve them all via the tagged method:

1 $this->app->bind('ReportAggregator', function ($app) {

2 return new ReportAggregator($app->tagged('reports'));

3 });

Service Container 184

Resolving

There are several ways to resolve something out of the container. First, youmay use the makemethod,
which accepts the name of the class or interface you wish to resolve:

1 $fooBar = $this->app->make('FooBar');

Secondly, you may access the container like an array, since it implements PHP’s ArrayAccess

interface:

1 $fooBar = $this->app['FooBar'];

Lastly, but most importantly, you may simply “type-hint” the dependency in the constructor of a
class that is resolved by the container, including controllers, event listeners, queue jobs, middleware,
and more. In practice, this is how most of your objects are resolved by the container.

The container will automatically inject dependencies for the classes it resolves. For example, you
may type-hint a repository defined by your application in a controller’s constructor. The repository
will automatically be resolved and injected into the class:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Users\Repository as UserRepository;

6

7 class UserController extends Controller

8 {

9 /**

10 * The user repository instance.

11 */

12 protected $users;

13

14 /**

15 * Create a new controller instance.

16 *

17 * @param UserRepository $users

18 * @return void

19 */

Service Container 185

20 public function __construct(UserRepository $users)

21 {

22 $this->users = $users;

23 }

24

25 /**

26 * Show the user with the given ID.

27 *

28 * @param int $id

29 * @return Response

30 */

31 public function show($id)

32 {

33 //

34 }

35 }

Container Events

The service container fires an event each time it resolves an object. You may listen to this event
using the resolving method:

1 $this->app->resolving(function ($object, $app) {

2 // Called when container resolves object of any type...

3 });

4

5 $this->app->resolving(FooBar::class, function (FooBar $fooBar, $app) {

6 // Called when container resolves objects of type "FooBar"...

7 });

As you can see, the object being resolved will be passed to the callback, allowing you to set any
additional properties on the object before it is given to its consumer.

Contracts
• Introduction
• Why Contracts?
• Contract Reference
• How To Use Contracts

Introduction

Laravel’s Contracts are a set of interfaces that define the core services provided by the framework.
For example, a Illuminate\Contracts\Queue\Queue contract defines the methods needed for
queueing jobs, while the Illuminate\Contracts\Mail\Mailer contract defines the methods needed
for sending e-mail.

Each contract has a corresponding implementation provided by the framework. For example, Laravel
provides a queue implementation with a variety of drivers, and a mailer implementation that is
powered by SwiftMailer⁶⁴.

All of the Laravel contracts live in their own GitHub repository⁶⁵. This provides a quick reference
point for all available contracts, as well as a single, decoupled package that may be utilized by
package developers.

Contracts Vs. Facades

Laravel’s facades provide a simple way of utilizing Laravel’s services without needing to type-hint
and resolve contracts out of the service container. However, using contracts allows you to define
explicit dependencies for your classes. For most applications, using a facade is just fine. However, if
you really need the extra loose coupling that contracts can provide, keep reading!

Why Contracts?

You may have several questions regarding contracts. Why use interfaces at all? Isn’t using interfaces
more complicated? Let’s distil the reasons for using interfaces to the following headings: loose
coupling and simplicity.

⁶⁴http://swiftmailer.org/
⁶⁵https://github.com/illuminate/contracts

186

http://swiftmailer.org/
https://github.com/illuminate/contracts
http://swiftmailer.org/
https://github.com/illuminate/contracts

Contracts 187

Loose Coupling

First, let’s review some code that is tightly coupled to a cache implementation. Consider the
following:

1 <?php

2

3 namespace App\Orders;

4

5 class Repository

6 {

7 /**

8 * The cache instance.

9 */

10 protected $cache;

11

12 /**

13 * Create a new repository instance.

14 *

15 * @param \SomePackage\Cache\Memcached $cache

16 * @return void

17 */

18 public function __construct(\SomePackage\Cache\Memcached $cache)

19 {

20 $this->cache = $cache;

21 }

22

23 /**

24 * Retrieve an Order by ID.

25 *

26 * @param int $id

27 * @return Order

28 */

29 public function find($id)

30 {

31 if ($this->cache->has($id)) {

32 //

33 }

34 }

35 }

In this class, the code is tightly coupled to a given cache implementation. It is tightly coupled because
we are depending on a concrete Cache class from a package vendor. If the API of that package

Contracts 188

changes our code must change as well.

Likewise, if we want to replace our underlying cache technology (Memcached) with another
technology (Redis), we again will have to modify our repository. Our repository should not have so
much knowledge regarding who is providing them data or how they are providing it.

Instead of this approach, we can improve our code by depending on a simple, vendor agnostic
interface:

1 <?php

2

3 namespace App\Orders;

4

5 use Illuminate\Contracts\Cache\Repository as Cache;

6

7 class Repository

8 {

9 /**

10 * The cache instance.

11 */

12 protected $cache;

13

14 /**

15 * Create a new repository instance.

16 *

17 * @param Cache $cache

18 * @return void

19 */

20 public function __construct(Cache $cache)

21 {

22 $this->cache = $cache;

23 }

24 }

Now the code is not coupled to any specific vendor, or even Laravel. Since the contracts package
contains no implementation and no dependencies, you may easily write an alternative implementa-
tion of any given contract, allowing you to replace your cache implementation without modifying
any of your cache consuming code.

Simplicity

When all of Laravel’s services are neatly definedwithin simple interfaces, it is very easy to determine
the functionality offered by a given service. The contracts serve as succinct documentation to the
framework’s features.

Contracts 189

In addition, when you depend on simple interfaces, your code is easier to understand and maintain.
Rather than tracking down which methods are available to you within a large, complicated class,
you can refer to a simple, clean interface.

Contract Reference

This is a reference to most Laravel Contracts, as well as their Laravel “facade” counterparts:

Contract | References Facade ————- | ————- IlluminateContractsAuthGuard⁶⁶ | Auth Illuminate-
ContractsAuthPasswordBroker⁶⁷ | Password IlluminateContractsBusDispatcher⁶⁸ | Bus Illuminate-
ContractsBroadcastingBroadcaster⁶⁹ | IlluminateContractsCacheRepository⁷⁰ | Cache Illuminate-
ContractsCacheFactory⁷¹ | Cache::driver() IlluminateContractsConfigRepository⁷² | Config Illumi-
nateContractsContainerContainer⁷³ | App IlluminateContractsCookieFactory⁷⁴ | Cookie Illuminate-
ContractsCookieQueueingFactory⁷⁵ | Cookie::queue() IlluminateContractsEncryptionEncrypter⁷⁶ |
Crypt IlluminateContractsEventsDispatcher⁷⁷ | Event IlluminateContractsFilesystemCloud⁷⁸ | Il-
luminateContractsFilesystemFactory⁷⁹ | File IlluminateContractsFilesystemFilesystem⁸⁰ | File Illu-
minateContractsFoundationApplication⁸¹ | App IlluminateContractsHashingHasher⁸² | Hash Illumi-
nateContractsLoggingLog⁸³ | Log IlluminateContractsMailMailQueue⁸⁴ | Mail::queue() Illuminate-
ContractsMailMailer⁸⁵ | Mail IlluminateContractsQueueFactory⁸⁶ | Queue::driver() IlluminateCon-
tractsQueueQueue⁸⁷ | Queue IlluminateContractsRedisDatabase⁸⁸ | Redis IlluminateContractsRout-
ingRegistrar⁸⁹ | Route IlluminateContractsRoutingResponseFactory⁹⁰ | Response IlluminateContract-

⁶⁶https://github.com/illuminate/contracts/blob/master/Auth/Guard.php
⁶⁷https://github.com/illuminate/contracts/blob/master/Auth/PasswordBroker.php
⁶⁸https://github.com/illuminate/contracts/blob/master/Bus/Dispatcher.php
⁶⁹https://github.com/illuminate/contracts/blob/master/Broadcasting/Broadcaster.php
⁷⁰https://github.com/illuminate/contracts/blob/master/Cache/Repository.php
⁷¹https://github.com/illuminate/contracts/blob/master/Cache/Factory.php
⁷²https://github.com/illuminate/contracts/blob/master/Config/Repository.php
⁷³https://github.com/illuminate/contracts/blob/master/Container/Container.php
⁷⁴https://github.com/illuminate/contracts/blob/master/Cookie/Factory.php
⁷⁵https://github.com/illuminate/contracts/blob/master/Cookie/QueueingFactory.php
⁷⁶https://github.com/illuminate/contracts/blob/master/Encryption/Encrypter.php
⁷⁷https://github.com/illuminate/contracts/blob/master/Events/Dispatcher.php
⁷⁸https://github.com/illuminate/contracts/blob/master/Filesystem/Cloud.php
⁷⁹https://github.com/illuminate/contracts/blob/master/Filesystem/Factory.php
⁸⁰https://github.com/illuminate/contracts/blob/master/Filesystem/Filesystem.php
⁸¹https://github.com/illuminate/contracts/blob/master/Foundation/Application.php
⁸²https://github.com/illuminate/contracts/blob/master/Hashing/Hasher.php
⁸³https://github.com/illuminate/contracts/blob/master/Logging/Log.php
⁸⁴https://github.com/illuminate/contracts/blob/master/Mail/MailQueue.php
⁸⁵https://github.com/illuminate/contracts/blob/master/Mail/Mailer.php
⁸⁶https://github.com/illuminate/contracts/blob/master/Queue/Factory.php
⁸⁷https://github.com/illuminate/contracts/blob/master/Queue/Queue.php
⁸⁸https://github.com/illuminate/contracts/blob/master/Redis/Database.php
⁸⁹https://github.com/illuminate/contracts/blob/master/Routing/Registrar.php
⁹⁰https://github.com/illuminate/contracts/blob/master/Routing/ResponseFactory.php

https://github.com/illuminate/contracts/blob/master/Auth/Guard.php
https://github.com/illuminate/contracts/blob/master/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/master/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/master/Bus/Dispatcher.php
https://github.com/illuminate/contracts/blob/master/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/master/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/master/Cache/Repository.php
https://github.com/illuminate/contracts/blob/master/Cache/Factory.php
https://github.com/illuminate/contracts/blob/master/Cache/Factory.php
https://github.com/illuminate/contracts/blob/master/Config/Repository.php
https://github.com/illuminate/contracts/blob/master/Container/Container.php
https://github.com/illuminate/contracts/blob/master/Container/Container.php
https://github.com/illuminate/contracts/blob/master/Cookie/Factory.php
https://github.com/illuminate/contracts/blob/master/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/master/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/master/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/master/Events/Dispatcher.php
https://github.com/illuminate/contracts/blob/master/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/master/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/master/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/master/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/master/Foundation/Application.php
https://github.com/illuminate/contracts/blob/master/Foundation/Application.php
https://github.com/illuminate/contracts/blob/master/Hashing/Hasher.php
https://github.com/illuminate/contracts/blob/master/Logging/Log.php
https://github.com/illuminate/contracts/blob/master/Logging/Log.php
https://github.com/illuminate/contracts/blob/master/Mail/MailQueue.php
https://github.com/illuminate/contracts/blob/master/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/master/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/master/Queue/Factory.php
https://github.com/illuminate/contracts/blob/master/Queue/Queue.php
https://github.com/illuminate/contracts/blob/master/Queue/Queue.php
https://github.com/illuminate/contracts/blob/master/Redis/Database.php
https://github.com/illuminate/contracts/blob/master/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/master/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/master/Routing/ResponseFactory.php
https://github.com/illuminate/contracts/blob/master/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/master/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/master/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/master/Bus/Dispatcher.php
https://github.com/illuminate/contracts/blob/master/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/master/Cache/Repository.php
https://github.com/illuminate/contracts/blob/master/Cache/Factory.php
https://github.com/illuminate/contracts/blob/master/Config/Repository.php
https://github.com/illuminate/contracts/blob/master/Container/Container.php
https://github.com/illuminate/contracts/blob/master/Cookie/Factory.php
https://github.com/illuminate/contracts/blob/master/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/master/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/master/Events/Dispatcher.php
https://github.com/illuminate/contracts/blob/master/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/master/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/master/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/master/Foundation/Application.php
https://github.com/illuminate/contracts/blob/master/Hashing/Hasher.php
https://github.com/illuminate/contracts/blob/master/Logging/Log.php
https://github.com/illuminate/contracts/blob/master/Mail/MailQueue.php
https://github.com/illuminate/contracts/blob/master/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/master/Queue/Factory.php
https://github.com/illuminate/contracts/blob/master/Queue/Queue.php
https://github.com/illuminate/contracts/blob/master/Redis/Database.php
https://github.com/illuminate/contracts/blob/master/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/master/Routing/ResponseFactory.php

Contracts 190

sRoutingUrlGenerator⁹¹ | URL IlluminateContractsSupportArrayable⁹² | IlluminateContractsSup-
portJsonable⁹³ | IlluminateContractsSupportRenderable⁹⁴ | IlluminateContractsValidationFactory⁹⁵
| Validator::make() IlluminateContractsValidationValidator⁹⁶ | IlluminateContractsViewFactory⁹⁷ |
View::make() IlluminateContractsViewView⁹⁸ |

How To Use Contracts

So, how do you get an implementation of a contract? It’s actually quite simple.

Many types of classes in Laravel are resolved through the service container, including controllers,
event listeners, middleware, queued jobs, and even route Closures. So, to get an implementation of
a contract, you can just “type-hint” the interface in the constructor of the class being resolved.

For example, take a look at this event listener:

1 <?php

2

3 namespace App\Listeners;

4

5 use App\User;

6 use App\Events\NewUserRegistered;

7 use Illuminate\Contracts\Redis\Database;

8

9 class CacheUserInformation

10 {

11 /**

12 * The Redis database implementation.

13 */

14 protected $redis;

15

16 /**

17 * Create a new event handler instance.

18 *

19 * @param Database $redis

20 * @return void

21 */

⁹¹https://github.com/illuminate/contracts/blob/master/Routing/UrlGenerator.php
⁹²https://github.com/illuminate/contracts/blob/master/Support/Arrayable.php
⁹³https://github.com/illuminate/contracts/blob/master/Support/Jsonable.php
⁹⁴https://github.com/illuminate/contracts/blob/master/Support/Renderable.php
⁹⁵https://github.com/illuminate/contracts/blob/master/Validation/Factory.php
⁹⁶https://github.com/illuminate/contracts/blob/master/Validation/Validator.php
⁹⁷https://github.com/illuminate/contracts/blob/master/View/Factory.php
⁹⁸https://github.com/illuminate/contracts/blob/master/View/View.php

https://github.com/illuminate/contracts/blob/master/Support/Arrayable.php
https://github.com/illuminate/contracts/blob/master/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/master/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/master/Support/Renderable.php
https://github.com/illuminate/contracts/blob/master/Validation/Factory.php
https://github.com/illuminate/contracts/blob/master/Validation/Validator.php
https://github.com/illuminate/contracts/blob/master/View/Factory.php
https://github.com/illuminate/contracts/blob/master/View/View.php
https://github.com/illuminate/contracts/blob/master/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/master/Support/Arrayable.php
https://github.com/illuminate/contracts/blob/master/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/master/Support/Renderable.php
https://github.com/illuminate/contracts/blob/master/Validation/Factory.php
https://github.com/illuminate/contracts/blob/master/Validation/Validator.php
https://github.com/illuminate/contracts/blob/master/View/Factory.php
https://github.com/illuminate/contracts/blob/master/View/View.php

Contracts 191

22 public function __construct(Database $redis)

23 {

24 $this->redis = $redis;

25 }

26

27 /**

28 * Handle the event.

29 *

30 * @param NewUserRegistered $event

31 * @return void

32 */

33 public function handle(NewUserRegistered $event)

34 {

35 //

36 }

37 }

When the event listener is resolved, the service container will read the type-hints on the constructor
of the class, and inject the appropriate value. To learn more about registering things in the service
container, check out its documentation.

Facades
• Introduction
• Using Facades
• Facade Class Reference

Introduction

Facades provide a “static” interface to classes that are available in the application’s service container.
Laravel ships with many facades, and you have probably been using them without even knowing it!
Laravel “facades” serve as “static proxies” to underlying classes in the service container, providing
the benefit of a terse, expressive syntax while maintaining more testability and flexibility than
traditional static methods.

Using Facades

In the context of a Laravel application, a facade is a class that provides access to an object from the
container. The machinery that makes this work is in the Facade class. Laravel’s facades, and any
custom facades you create, will extend the base Illuminate\Support\Facades\Facade class.

A facade class only needs to implement a single method: getFacadeAccessor. It’s the getFacadeAc-
cessor method’s job to define what to resolve from the container. The Facade base class makes use
of the __callStatic() magic-method to defer calls from your facade to the resolved object.

In the example below, a call is made to the Laravel cache system. By glancing at this code, one might
assume that the static method get is being called on the Cache class:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Cache;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

192

Facades 193

13 * @param int $id

14 * @return Response

15 */

16 public function showProfile($id)

17 {

18 $user = Cache::get('user:'.$id);

19

20 return view('profile', ['user' => $user]);

21 }

22 }

Notice that near the top of the file we are “importing” the Cache facade. This facade serves as a
proxy to accessing the underlying implementation of the Illuminate\Contracts\Cache\Factory

interface. Any calls we make using the facade will be passed to the underlying instance of Laravel’s
cache service.

If we look at that Illuminate\Support\Facades\Cache class, you’ll see that there is no static method
get:

1 class Cache extends Facade

2 {

3 /**

4 * Get the registered name of the component.

5 *

6 * @return string

7 */

8 protected static function getFacadeAccessor() { return 'cache'; }

9 }

Instead, the Cache facade extends the base Facade class and defines the method getFacadeAcces-

sor(). Remember, this method’s job is to return the name of a service container binding. When a
user references any static method on the Cache facade, Laravel resolves the cache binding from the
service container and runs the requested method (in this case, get) against that object.

Facades 194

Facade Class Reference

Below youwill find every facade and its underlying class. This is a useful tool for quickly digging into
the API documentation for a given facade root. The service container binding key is also included
where applicable.

Facade Class Service Container Binding

App IlluminateFoundationApplication⁹⁹app
Artisan IlluminateContractsConsoleKernel¹⁰⁰artisan

Auth IlluminateAuthAuthManager¹⁰¹ auth

Blade IlluminateViewCompilersBladeCompiler¹⁰²blade.compiler

Bus IlluminateContractsBusDispatcher¹⁰³
Cache IlluminateCacheRepository¹⁰⁴ cache

Config IlluminateConfigRepository¹⁰⁵ config

Cookie IlluminateCookieCookieJar¹⁰⁶ cookie

Crypt IlluminateEncryptionEncrypter¹⁰⁷encrypter
DB IlluminateDatabaseDatabaseManager¹⁰⁸db

DB (Instance) IlluminateDatabaseConnection¹⁰⁹
Event IlluminateEventsDispatcher¹¹⁰ events

File IlluminateFilesystemFilesystem¹¹¹files
Gate IlluminateContractsAuthAccessGate¹¹²
Hash IlluminateContractsHashingHasher¹¹³hash

⁹⁹http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Foundation/Application.html
¹⁰⁰http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Console/Kernel.html
¹⁰¹http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Auth/AuthManager.html
¹⁰²http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

View/Compilers/BladeCompiler.html
¹⁰³http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Bus/Dispatcher.html
¹⁰⁴http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Cache/Repository.html
¹⁰⁵http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Config/Repository.html
¹⁰⁶http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Cookie/CookieJar.html
¹⁰⁷http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Encryption/Encrypter.html
¹⁰⁸http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Database/DatabaseManager.html
¹⁰⁹http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Database/Connection.html
¹¹⁰http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Events/Dispatcher.html
¹¹¹http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Filesystem/Filesystem.html
¹¹²http://laravel.com/api/5.1/Illuminate/Contracts/Auth/Access/Gate.html
¹¹³http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Hashing/Hasher.html

http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Foundation/Application.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Console/Kernel.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Auth/AuthManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/Compilers/BladeCompiler.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Bus/Dispatcher.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Cache/Repository.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Config/Repository.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Cookie/CookieJar.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Encryption/Encrypter.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/DatabaseManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/Connection.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Events/Dispatcher.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Filesystem/Filesystem.html
http://laravel.com/api/5.1/Illuminate/Contracts/Auth/Access/Gate.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Hashing/Hasher.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Foundation/Application.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Foundation/Application.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Console/Kernel.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Console/Kernel.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Auth/AuthManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Auth/AuthManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/Compilers/BladeCompiler.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/Compilers/BladeCompiler.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Bus/Dispatcher.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Bus/Dispatcher.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Cache/Repository.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Cache/Repository.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Config/Repository.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Config/Repository.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Cookie/CookieJar.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Cookie/CookieJar.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Encryption/Encrypter.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Encryption/Encrypter.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/DatabaseManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/DatabaseManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/Connection.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/Connection.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Events/Dispatcher.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Events/Dispatcher.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Filesystem/Filesystem.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Filesystem/Filesystem.html
http://laravel.com/api/5.1/Illuminate/Contracts/Auth/Access/Gate.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Hashing/Hasher.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Hashing/Hasher.html

Facades 195

Facade Class Service Container Binding

Lang IlluminateTranslationTranslator¹¹⁴translator
Log IlluminateLogWriter¹¹⁵ log

Mail IlluminateMailMailer¹¹⁶ mailer

Password IlluminateAuthPasswordsPasswordBroker¹¹⁷auth.password

Queue IlluminateQueueQueueManager¹¹⁸queue
Queue (Instance) IlluminateContractsQueueQueue¹¹⁹queue
Queue (Base Class) IlluminateQueueQueue¹²⁰
Redirect IlluminateRoutingRedirector¹²¹ redirect

Redis IlluminateRedisDatabase¹²² redis

Request IlluminateHttpRequest¹²³ request

Response IlluminateContractsRoutingResponseFactory¹²⁴
Route IlluminateRoutingRouter¹²⁵ router

Schema IlluminateDatabaseSchemaBlueprint¹²⁶
Session IlluminateSessionSessionManager¹²⁷session

Session (Instance) IlluminateSessionStore¹²⁸
Storage IlluminateContractsFilesystemFactory¹²⁹filesystem

URL IlluminateRoutingUrlGenerator¹³⁰url
Validator IlluminateValidationFactory¹³¹ validator

¹¹⁴http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Translation/Translator.html
¹¹⁵http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Log/Writer.html
¹¹⁶http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Mail/Mailer.html
¹¹⁷http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Auth/Passwords/PasswordBroker.html
¹¹⁸http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Queue/QueueManager.html
¹¹⁹http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Queue/Queue.html
¹²⁰http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Queue/Queue.html
¹²¹http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Routing/Redirector.html
¹²²http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Redis/Database.html
¹²³http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Http/Request.html
¹²⁴http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Routing/ResponseFactory.html
¹²⁵http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Routing/Router.html
¹²⁶http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Database/Schema/Blueprint.html
¹²⁷http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Session/SessionManager.html
¹²⁸http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Session/Store.html
¹²⁹http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Filesystem/Factory.html
¹³⁰http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Routing/UrlGenerator.html
¹³¹http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Validation/Factory.html

http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Translation/Translator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Log/Writer.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Mail/Mailer.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Auth/Passwords/PasswordBroker.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Queue/QueueManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Queue/Queue.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Queue/Queue.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Redirector.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Redis/Database.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Http/Request.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Routing/ResponseFactory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Router.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/Schema/Blueprint.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Session/SessionManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Session/Store.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Filesystem/Factory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/UrlGenerator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Validation/Factory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Translation/Translator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Translation/Translator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Log/Writer.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Log/Writer.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Mail/Mailer.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Mail/Mailer.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Auth/Passwords/PasswordBroker.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Auth/Passwords/PasswordBroker.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Queue/QueueManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Queue/QueueManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Queue/Queue.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Queue/Queue.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Queue/Queue.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Queue/Queue.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Redirector.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Redirector.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Redis/Database.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Redis/Database.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Http/Request.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Http/Request.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Routing/ResponseFactory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Routing/ResponseFactory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Router.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/Router.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/Schema/Blueprint.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Database/Schema/Blueprint.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Session/SessionManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Session/SessionManager.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Session/Store.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Session/Store.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Filesystem/Factory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Contracts/Filesystem/Factory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/UrlGenerator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Routing/UrlGenerator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Validation/Factory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Validation/Factory.html

Facades 196

Facade Class Service Container Binding

Validator (Instance) IlluminateValidationValidator¹³²
View IlluminateViewFactory¹³³ view

View (Instance) IlluminateViewView¹³⁴

¹³²http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Validation/Validator.html
¹³³http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

View/Factory.html
¹³⁴http://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

View/View.html

http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Validation/Validator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/Factory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/View.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Validation/Validator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/Validation/Validator.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/Factory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/Factory.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/View.html
http://laravel.com/api/\protect \char "007B\relax \protect \char "007B\relax version\protect \char "007D\relax \protect \char "007D\relax /Illuminate/View/View.html

Authentication
• Introduction A> - Database Considerations
• Authentication Quickstart A> - Routing A> - Views A> - Authenticating A> - Retrieving The
Authenticated User A> - Protecting Routes A> - Authentication Throttling

• Manually Authenticating Users A> - Remembering Users A> - Other Authentication Methods
• HTTP Basic Authentication A> - Stateless HTTP Basic Authentication
• Resetting Passwords A> - Database Considerations A> - Routing A> - Views A> - After
Resetting Passwords A> - Customization

• Social Authentication¹³⁵
• Adding Custom Guards
• Adding Custom User Providers
• Events

Introduction

Laravel makes implementing authentication very simple. In fact, almost everything is configured
for you out of the box. The authentication configuration file is located at config/auth.php, which
contains several well documented options for tweaking the behavior of the authentication services.

At its core, Laravel’s authentication facilities are made up of “guards” and “providers”. Guards define
how user’s are authenticated for each request. For example, Laravel ships with a session guard
which maintains state using session storage and cookies and a token guard, which authenticates
users using a “API token” that is passed with each request.

Providers define how users are retrieved from your persistent storage. Laravel ships with support
for retrieving users using Eloquent and the database query builder. However, you are free to define
additional providers as needed for your application.

Don’t worry if this all sounds confusing now!Most applications will never need tomodify the default
authentication configuration.

Database Considerations

By default, Laravel includes an App\User Eloquent model in your app directory. This model may be
used with the default Eloquent authentication driver. If your application is not using Eloquent, you
may use the database authentication driver which uses the Laravel query builder.

¹³⁵https://github.com/laravel/socialite

197

https://github.com/laravel/socialite
https://github.com/laravel/socialite

Authentication 198

When building the database schema for the App\User model, make sure the password column is at
least 60 characters in length.

Also, you should verify that your users (or equivalent) table contains a nullable, string remember_-
token column of 100 characters. This columnwill be used to store a token for “rememberme” sessions
being maintained by your application. This can be done by using $table->rememberToken(); in a
migration.

Authentication Quickstart

Laravel shipswith two authentication controllers out of the box, which are located in the App\Http\Controllers\Auth
namespace. The AuthController handles new user registration and authentication, while the
PasswordController contains the logic to help existing users reset their forgotten passwords. Each
of these controllers uses a trait to include their necessary methods. For many applications, you will
not need to modify these controllers at all.

Routing

Laravel provides a quick way to scaffold all of the routes and views you need for authentication
using one simple command:

1 php artisan make:auth

This command should be used on fresh applications and will install registration and login views,
as well as routes for all authentication end-points. A HomeController will also be generated, which
serves post-login requests to your application’s dashboard. However, you are free to customize or
even remove this controller based on the needs of your application.

Views

As mentioned in the previous section, the php artisan make:auth command will create all of the
views you need for authentication and place them in the resources/views/auth directory.

The make:auth command will also create a resources/views/layouts directory containing a base
layout for your application. All of these views use the Bootstrap CSS framework, but you are free
to customize them however you wish.

Authenticating

Now that you have routes and views setup for the included authentication controllers, you are ready
to register and authenticate new users for your application! You may simply access your application

Authentication 199

in a browser. The authentication controllers already contain the logic (via their traits) to authenticate
existing users and store new users in the database.

Path Customization

When a user is successfully authenticated, they will be redirected to the / URI. You can customize
the post-authentication redirect location by defining a redirectTo property on the AuthController:

1 protected $redirectTo = '/home';

When a user is not successfully authenticated, they will be redirected back to the login form location
automatically.

Guard Customization

You may also customize the “guard” that is used to authenticate users. To get started, define a guard
property on your AuthController. The value of this property should correspond with one of the
guards configured in your auth.php configuration file:

1 protected $guard = 'admin';

Validation / Storage Customization

To modify the form fields that are required when a new user registers with your application,
or to customize how new user records are inserted into your database, you may modify the
AuthController class. This class is responsible for validating and creating new users of your
application.

The validator method of the AuthController contains the validation rules for new users of the
application. You are free to modify this method as you wish.

The createmethod of the AuthController is responsible for creating new App\User records in your
database using the Eloquent ORM. You are free to modify this method according to the needs of your
database.

Retrieving The Authenticated User

You may access the authenticated user via the Auth facade:

Authentication 200

1 $user = Auth::user();

Alternatively, once a user is authenticated, you may access the authenticated user via an Illu-

minate\Http\Request instance. Remember, type-hinted classes will automatically be injected into
your controller methods:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class ProfileController extends Controller

8 {

9 /**

10 * Update the user's profile.

11 *

12 * @param Request $request

13 * @return Response

14 */

15 public function updateProfile(Request $request)

16 {

17 if ($request->user()) {

18 // $request->user() returns an instance of the authenticated user...

19 }

20 }

21 }

Determining If The Current User Is Authenticated

To determine if the user is already logged into your application, you may use the check method on
the Auth facade, which will return true if the user is authenticated:

1 if (Auth::check()) {

2 // The user is logged in...

3 }

Authentication 201

However, you may use middleware to verify that the user is authenticated before allowing the user
access to certain routes / controllers. To learn more about this, check out the documentation on
protecting routes.

Protecting Routes

Route middleware can be used to allow only authenticated users to access a given route. Laravel
ships with the authmiddleware, which is defined in app\Http\Middleware\Authenticate.php. All
you need to do is attach the middleware to a route definition:

1 // Using A Route Closure...

2

3 Route::get('profile', ['middleware' => 'auth', function() {

4 // Only authenticated users may enter...

5 }]);

6

7 // Using A Controller...

8

9 Route::get('profile', [

10 'middleware' => 'auth',

11 'uses' => 'ProfileController@show'

12]);

Of course, if you are using controller classes, you may call the middleware method from the
controller’s constructor instead of attaching it in the route definition directly:

1 public function __construct()

2 {

3 $this->middleware('auth');

4 }

Specifying A Guard

When attaching the auth middleware to a route, you may also specify which guard should be used
to perform the authentication:

Authentication 202

1 Route::get('profile', [

2 'middleware' => 'auth:api',

3 'uses' => 'ProfileController@show'

4]);

The guard specified should correspond to one of the keys in the guards array of your auth.php
configuration file.

Authentication Throttling

If you are using Laravel’s built-in AuthController class, the Illuminate\Foundation\Auth\ThrottlesLogins
trait may be used to throttle login attempts to your application. By default, the user will not be able
to login for one minute if they fail to provide the correct credentials after several attempts. The
throttling is unique to the user’s username / e-mail address and their IP address:

1 <?php

2

3 namespace App\Http\Controllers\Auth;

4

5 use App\User;

6 use Validator;

7 use App\Http\Controllers\Controller;

8 use Illuminate\Foundation\Auth\ThrottlesLogins;

9 use Illuminate\Foundation\Auth\AuthenticatesAndRegistersUsers;

10

11 class AuthController extends Controller

12 {

13 use AuthenticatesAndRegistersUsers, ThrottlesLogins;

14

15 // Rest of AuthController class...

16 }

Manually Authenticating Users

Of course, you are not required to use the authentication controllers included with Laravel. If you
choose to remove these controllers, you will need to manage user authentication using the Laravel
authentication classes directly. Don’t worry, it’s a cinch!

Authentication 203

We will access Laravel’s authentication services via the Auth facade, so we’ll need to make sure to
import the Auth facade at the top of the class. Next, let’s check out the attempt method:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Auth;

6

7 class AuthController extends Controller

8 {

9 /**

10 * Handle an authentication attempt.

11 *

12 * @return Response

13 */

14 public function authenticate()

15 {

16 if (Auth::attempt(['email' => $email, 'password' => $password])) {

17 // Authentication passed...

18 return redirect()->intended('dashboard');

19 }

20 }

21 }

The attempt method accepts an array of key / value pairs as its first argument. The values in the
array will be used to find the user in your database table. So, in the example above, the user will be
retrieved by the value of the email column. If the user is found, the hashed password stored in the
database will be compared with the hashed password value passed to the method via the array. If
the two hashed passwords match an authenticated session will be started for the user.

The attempt method will return true if authentication was successful. Otherwise, false will be
returned.

The intended method on the redirector will redirect the user to the URL they were attempting to
access before being caught by the authentication filter. A fallback URI may be given to this method
in case the intended destination is not available.

Specifying Additional Conditions

If you wish, you also may add extra conditions to the authentication query in addition to the user’s
e-mail and password. For example, we may verify that user is marked as “active”:

Authentication 204

1 if (Auth::attempt(['email' => $email, 'password' => $password, 'active' => 1])) {

2 // The user is active, not suspended, and exists.

3 }

Note: In these examples, email is not a required option, it is merely used as an example.
You should use whatever column name corresponds to a “username” in your database.

Accessing Specific Guard Instances

You may specify which guard instance you would like to utilize using the guard method on the
Auth facade. This allows you to manage authentication for separate parts of your application using
entirely separate authenticatable models or user tables.

The guard name passed to the guard method should correspond to one of the guards configured in
your auth.php configuration file:

1 if (Auth::guard('admin')->attempt($credentials)) {

2 //

3 }

Logging Out

To log users out of your application, you may use the logout method on the Auth facade. This will
clear the authentication information in the user’s session:

1 Auth::logout();

Remembering Users

If you would like to provide “remember me” functionality in your application, you may pass a
boolean value as the second argument to the attemptmethod, whichwill keep the user authenticated
indefinitely, or until they manually logout. Of course, your users table must include the string
remember_token column, which will be used to store the “remember me” token.

Authentication 205

1 if (Auth::attempt(['email' => $email, 'password' => $password], $remember)) {

2 // The user is being remembered...

3 }

If you are “remembering” users, you may use the viaRemembermethod to determine if the user was
authenticated using the “remember me” cookie:

1 if (Auth::viaRemember()) {

2 //

3 }

Other Authentication Methods

Authenticate A User Instance

If you need to log an existing user instance into your application, you may call the login

method with the user instance. The given object must be an implementation of the Illumi-

nate\Contracts\Auth\Authenticatable contract. Of course, the App\User model included with
Laravel already implements this interface:

1 Auth::login($user);

Authenticate A User By ID

To log a user into the application by their ID, you may use the loginUsingId method. This method
simply accepts the primary key of the user you wish to authenticate:

1 Auth::loginUsingId(1);

Authenticate A User Once

You may use the once method to log a user into the application for a single request. No sessions or
cookies will be utilized, which may be helpful when building a stateless API. The once method has

Authentication 206

the same signature as the attempt method:

1 if (Auth::once($credentials)) {

2 //

3 }

HTTP Basic Authentication

HTTPBasic Authentication¹³⁶ provides a quickway to authenticate users of your applicationwithout
setting up a dedicated “login” page. To get started, attach the auth.basicmiddleware to your route.
The auth.basic middleware is included with the Laravel framework, so you do not need to define
it:

1 Route::get('profile', ['middleware' => 'auth.basic', function() {

2 // Only authenticated users may enter...

3 }]);

Once the middleware has been attached to the route, you will automatically be prompted for
credentials when accessing the route in your browser. By default, the auth.basic middleware will
use the email column on the user record as the “username”.

A Note On FastCGI

If you are using PHP FastCGI, HTTP Basic authentication may not work correctly out of the box.
The following lines should be added to your .htaccess file:

1 RewriteCond %{HTTP:Authorization} ^(.+)$

2 RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

Stateless HTTP Basic Authentication

You may also use HTTP Basic Authentication without setting a user identifier cookie in the session,
which is particularly useful for API authentication. To do so, define a middleware that calls the

¹³⁶http://en.wikipedia.org/wiki/Basic_access_authentication

http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Basic_access_authentication

Authentication 207

onceBasic method. If no response is returned by the onceBasic method, the request may be passed
further into the application:

1 <?php

2

3 namespace Illuminate\Auth\Middleware;

4

5 use Auth;

6 use Closure;

7

8 class AuthenticateOnceWithBasicAuth

9 {

10 /**

11 * Handle an incoming request.

12 *

13 * @param \Illuminate\Http\Request $request

14 * @param \Closure $next

15 * @return mixed

16 */

17 public function handle($request, Closure $next)

18 {

19 return Auth::onceBasic() ?: $next($request);

20 }

21

22 }

Next, register the route middleware and attach it to a route:

1 Route::get('api/user', ['middleware' => 'auth.basic.once', function() {

2 // Only authenticated users may enter...

3 }]);

Resetting Passwords

Database Considerations

Most web applications provide a way for users to reset their forgotten passwords. Rather than forcing
you to re-implement this on each application, Laravel provides convenient methods for sending
password reminders and performing password resets.

Authentication 208

To get started, verify that your App\Usermodel implements the Illuminate\Contracts\Auth\CanResetPassword
contract. Of course, the App\User model included with the framework already implements this
interface, and uses the Illuminate\Auth\Passwords\CanResetPassword trait to include themethods
needed to implement the interface.

Generating The Reset Token Table Migration

Next, a table must be created to store the password reset tokens. The migration for this table is
included with Laravel out of the box, and resides in the database/migrations directory. So, all you
need to do is migrate:

1 php artisan migrate

Routing

Laravel includes an Auth\PasswordController that contains the logic necessary to reset user
passwords. All of the routes needed to perform password resets may be generated using the
make:auth Artisan command:

1 php artisan make:auth

Views

Again, Laravel will generate all of the necessary views for password reset when the make:auth

command is executed. These views are placed in resources/views/auth/passwords. You are free
to customize them as needed for your application.

After Resetting Passwords

Once you have defined the routes and views to reset your user’s passwords, you may simply
access the route in your browser at /password/reset. The PasswordController included with the
framework already includes the logic to send the password reset link e-mails as well as update
passwords in the database.

After the password is reset, the user will automatically be logged into the application and redirected
to /home. You can customize the post password reset redirect location by defining a redirectTo

property on the PasswordController:

Authentication 209

1 protected $redirectTo = '/dashboard';

Note: By default, password reset tokens expire after one hour. You may change this via the
password reset expire option in your config/auth.php file.

Customization

Authentication Guard Customization

In your auth.php configuration file, you may configure multiple “guards”, which may be used to
define authentication behavior for multiple user tables. You can customize the included Password-

Controller to use the guard of your choice by adding a $guard property to the controller:

1 /**

2 * The authentication guard that should be used.

3 *

4 * @var string

5 */

6 protected $guard = 'admins';

Password Broker Customization

In your auth.php configuration file, you may configure multiple password “brokers”, which may be
used to reset passwords onmultiple user tables. You can customize the included PasswordController
to use the broker of your choice by adding a $broker property to the controller:

1 /**

2 * The password broker that should be used.

3 *

4 * @var string

5 */

6 protected $broker = 'admins';

Authentication 210

Adding Custom Guards

You may define your own authentication guards using the extend method on the Auth facade. You
should place this call to provider within a service provider:

1 <?php

2

3 namespace App\Providers;

4

5 use Auth;

6 use App\Services\Auth\JwtGuard;

7 use Illuminate\Support\ServiceProvider;

8

9 class AuthServiceProvider extends ServiceProvider

10 {

11 /**

12 * Perform post-registration booting of services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Auth::extend('jwt', function($app, $name, array $config) {

19 // Return an instance of Illuminate\Contracts\Auth\Guard...

20

21 return new JwtGuard(Auth::createUserProvider($config['provider']));

22 });

23 }

24

25 /**

26 * Register bindings in the container.

27 *

28 * @return void

29 */

30 public function register()

31 {

32 //

33 }

34 }

As you can see in the example above, the callback passed to the extend method should return an
implementation of Illuminate\Contracts\Auth\Guard. This interface contains a few methods you

Authentication 211

will need to implement to define a custom guard.

Once your custom guard has been defined, you may use the guard in your guards configuration:

1 'guards' => [

2 'api' => [

3 'driver' => 'jwt',

4 'provider' => 'users',

5],

6],

Adding Custom User Providers

If you are not using a traditional relational database to store your users, you will need to extend
Laravel with your own authentication user provider. We will use the provider method on the Auth
facade to define a custom user provider. You should place this call to provider within a service
provider:

1 <?php

2

3 namespace App\Providers;

4

5 use Auth;

6 use App\Extensions\RiakUserProvider;

7 use Illuminate\Support\ServiceProvider;

8

9 class AuthServiceProvider extends ServiceProvider

10 {

11 /**

12 * Perform post-registration booting of services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Auth::provider('riak', function($app, array $config) {

19 // Return an instance of Illuminate\Contracts\Auth\UserProvider...

20 return new RiakUserProvider($app['riak.connection']);

21 });

22 }

Authentication 212

23

24 /**

25 * Register bindings in the container.

26 *

27 * @return void

28 */

29 public function register()

30 {

31 //

32 }

33 }

After you have registered the provider with the provider method, you may switch to the new user
provider in your config/auth.php configuration file. First, define a provider that uses your new
driver:

1 'providers' => [

2 'users' => [

3 'driver' => 'riak',

4],

5],

Then, you may use this provider in your guards configuration:

1 'guards' => [

2 'web' => [

3 'driver' => 'session',

4 'provider' => 'users',

5],

6],

The User Provider Contract

The Illuminate\Contracts\Auth\UserProvider implementations are only responsible for fetching
a Illuminate\Contracts\Auth\Authenticatable implementation out of a persistent storage sys-
tem, such as MySQL, Riak, etc. These two interfaces allow the Laravel authentication mechanisms

Authentication 213

to continue functioning regardless of how the user data is stored or what type of class is used to
represent it.

Let’s take a look at the Illuminate\Contracts\Auth\UserProvider contract:

1 <?php

2

3 namespace Illuminate\Contracts\Auth;

4

5 interface UserProvider {

6

7 public function retrieveById($identifier);

8 public function retrieveByToken($identifier, $token);

9 public function updateRememberToken(Authenticatable $user, $token);

10 public function retrieveByCredentials(array $credentials);

11 public function validateCredentials(Authenticatable $user, array $credential\

12 s);

13

14 }

The retrieveById function typically receives a key representing the user, such as an auto-
incrementing ID from a MySQL database. The Authenticatable implementation matching the ID
should be retrieved and returned by the method.

The retrieveByToken function retrieves a user by their unique $identifier and “remember me”
$token, stored in a field remember_token. As with the previous method, the Authenticatable

implementation should be returned.

The updateRememberToken method updates the $user field remember_token with the new $token.
The new token can be either a fresh token, assigned on a successful “remember me” login attempt,
or a null when the user is logged out.

The retrieveByCredentialsmethod receives the array of credentials passed to the Auth::attempt
methodwhen attempting to sign into an application. Themethod should then “query” the underlying
persistent storage for the user matching those credentials. Typically, this method will run a
query with a “where” condition on $credentials['username']. The method should then return
an implementation of UserInterface. This method should not attempt to do any password
validation or authentication.

The validateCredentials method should compare the given $user with the $credentials to
authenticate the user. For example, this method might compare the $user->getAuthPassword()

string to a Hash::make of $credentials['password']. This method should only validate the user’s
credentials and return a boolean.

Authentication 214

The Authenticatable Contract

Now that we have explored each of the methods on the UserProvider, let’s take a look at the
Authenticatable contract. Remember, the provider should return implementations of this interface
from the retrieveById and retrieveByCredentials methods:

1 <?php

2

3 namespace Illuminate\Contracts\Auth;

4

5 interface Authenticatable {

6

7 public function getAuthIdentifier();

8 public function getAuthPassword();

9 public function getRememberToken();

10 public function setRememberToken($value);

11 public function getRememberTokenName();

12

13 }

This interface is simple. The getAuthIdentifier method should return the “primary key” of
the user. In a MySQL back-end, again, this would be the auto-incrementing primary key. The
getAuthPassword should return the user’s hashed password. This interface allows the authentication
system to work with any User class, regardless of what ORM or storage abstraction layer you are
using. By default, Laravel includes a User class in the app directory which implements this interface,
so you may consult this class for an implementation example.

Events

Laravel raises a variety of events during the authentication process. Youmay attach listeners to these
events in your EventServiceProvider:

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 'Illuminate\Auth\Events\Attempting' => [

8 'App\Listeners\LogAuthenticationAttempt',

Authentication 215

9],

10

11 'Illuminate\Auth\Events\Login' => [

12 'App\Listeners\LogSuccessfulLogin',

13],

14

15 'Illuminate\Auth\Events\Logout' => [

16 'App\Listeners\LogSuccessfulLogout',

17],

18

19 'Illuminate\Auth\Events\Lockout' => [

20 'App\Listeners\LogLockout',

21],

22];

Authorization
• Introduction
• Defining Abilities
• Checking Abilities A> - Via The Gate Facade A> - Via The User Model A> - Within Blade
Templates A> - Within Form Requests

• Policies A> - Creating Policies A> - Writing Policies A> - Checking Policies
• Controller Authorization

Introduction

In addition to providing authentication services out of the box, Laravel also provides a simple way
to organize authorization logic and control access to resources. There are a variety of methods and
helpers to assist you in organizing your authorization logic, and we’ll cover each of them in this
document.

Defining Abilities

The simplest way to determine if a user may perform a given action is to define an “ability” using the
Illuminate\Auth\Access\Gate class. The AuthServiceProviderwhich ships with Laravel serves as
a convenient location to define all of the abilities for your application. For example, let’s define an
update-post ability which receives the current User and a Post model. Within our ability, we will
determine if the user’s id matches the post’s user_id:

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Contracts\Auth\Access\Gate as GateContract;

6 use Illuminate\Foundation\Support\Providers\AuthServiceProvider as ServiceProvid\

7 er;

8

9 class AuthServiceProvider extends ServiceProvider

10 {

11 /**

12 * Register any application authentication / authorization services.

13 *

14 * @param \Illuminate\Contracts\Auth\Access\Gate $gate

216

Authorization 217

15 * @return void

16 */

17 public function boot(GateContract $gate)

18 {

19 $this->registerPolicies($gate);

20

21 $gate->define('update-post', function ($user, $post) {

22 return $user->id === $post->user_id;

23 });

24 }

25 }

Note that we did not check if the given $user is not NULL. The Gate will automatically return false

for all abilities when there is not an authenticated user or a specific user has not been specified
using the forUser method.

Class Based Abilities

In addition to registering Closures as authorization callbacks, you may register class methods by
passing a string containing the class name and the method. When needed, the class will be resolved
via the service container:

1 $gate->define('update-post', 'Class@method');

 #### Intercepting Authorization Checks {#authorization-
intercepting-authorization-checks}

Sometimes, you may wish to grant all abilities to a specific user. For this situation, use the before
method to define a callback that is run before all other authorization checks:

1 $gate->before(function ($user, $ability) {

2 if ($user->isSuperAdmin()) {

3 return true;

4 }

5 });

If the before callback returns a non-null result that result will be considered the result of the check.

Authorization 218

You may use the after method to define a callback to be executed after every authorization check.
However, you may not modify the result of the authorization check from an after callback:

1 $gate->after(function ($user, $ability, $result, $arguments) {

2 //

3 });

Checking Abilities

Via The Gate Facade

Once an ability has been defined, we may “check” it in a variety of ways. First, we may use the
check, allows, or denies methods on the Gate facade. All of these methods receive the name of the
ability and the arguments that should be passed to the ability’s callback. You do not need to pass
the current user to these methods, since the Gate will automatically prepend the current user to the
arguments passed to the callback. So, when checking the update-post ability we defined earlier, we
only need to pass a Post instance to the denies method:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Gate;

6 use App\User;

7 use App\Post;

8 use App\Http\Controllers\Controller;

9

10 class PostController extends Controller

11 {

12 /**

13 * Update the given post.

14 *

15 * @param int $id

16 * @return Response

17 */

18 public function update($id)

19 {

20 $post = Post::findOrFail($id);

21

Authorization 219

22 if (Gate::denies('update-post', $post)) {

23 abort(403);

24 }

25

26 // Update Post...

27 }

28 }

Of course, the allows method is simply the inverse of the denies method, and returns true if the
action is authorized. The check method is an alias of the allows method.

Checking Abilities For Specific Users

If you would like to use the Gate facade to check if a user other than the currently authenticated
user has a given ability, you may use the forUser method:

1 if (Gate::forUser($user)->allows('update-post', $post)) {

2 //

3 }

Passing Multiple Arguments

Of course, ability callbacks may receive multiple arguments:

1 Gate::define('delete-comment', function ($user, $post, $comment) {

2 //

3 });

If your ability needs multiple arguments, simply pass an array of arguments to the Gate methods:

1 if (Gate::allows('delete-comment', [$post, $comment])) {

2 //

3 }

Authorization 220

Via The User Model

Alternatively, you may check abilities via the User model instance. By default, Laravel’s App\User
model uses an Authorizable trait which provides two methods: can and cannot. These methods
may be used similarly to the allows and denies methods present on the Gate facade. So, using our
previous example, we may modify our code like so:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Post;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class PostController extends Controller

10 {

11 /**

12 * Update the given post.

13 *

14 * @param \Illuminate\Http\Request $request

15 * @param int $id

16 * @return Response

17 */

18 public function update(Request $request, $id)

19 {

20 $post = Post::findOrFail($id);

21

22 if ($request->user()->cannot('update-post', $post)) {

23 abort(403);

24 }

25

26 // Update Post...

27 }

28 }

Of course, the can method is simply the inverse of the cannot method:

1 if ($request->user()->can('update-post', $post)) {

Authorization 221

2 // Update Post...

3 }

Within Blade Templates

For convenience, Laravel provides the @can Blade directive to quickly check if the currently
authenticated user has a given ability. For example:

1 id }}">View Post

2

3 @can('update-post', $post)

4 id }}/edit">Edit Post

5 @endcan

You may also combine the @can directive with @else directive:

1 @can('update-post', $post)

2 <!-- The Current User Can Update The Post -->

3 @else

4 <!-- The Current User Can't Update The Post -->

5 @endcan

Within Form Requests

You may also choose to utilize your Gate defined abilities from a form request’s authorizemethod.
For example:

Authorization 222

1 /**

2 * Determine if the user is authorized to make this request.

3 *

4 * @return bool

5 */

6 public function authorize()

7 {

8 $postId = $this->route('post');

9

10 return Gate::allows('update', Post::findOrFail($postId));

11 }

Policies

Creating Policies

Since defining all of your authorization logic in the AuthServiceProvider could become cumber-
some in large applications, Laravel allows you to split your authorization logic into “Policy” classes.
Policies are plain PHP classes that group authorization logic based on the resource they authorize.

First, let’s generate a policy to manage authorization for our Postmodel. You may generate a policy
using the make:policy artisan command. The generated policy will be placed in the app/Policies
directory:

1 php artisan make:policy PostPolicy

Registering Policies

Once the policy exists, we need to register it with the Gate class. The AuthServiceProvider contains
a policies property which maps various entities to the policies that manage them. So, we will
specify that the Post model’s policy is the PostPolicy class:

Authorization 223

1 <?php

2

3 namespace App\Providers;

4

5 use App\Post;

6 use App\Policies\PostPolicy;

7 use Illuminate\Foundation\Support\Providers\AuthServiceProvider as ServiceProvid\

8 er;

9

10 class AuthServiceProvider extends ServiceProvider

11 {

12 /**

13 * The policy mappings for the application.

14 *

15 * @var array

16 */

17 protected $policies = [

18 Post::class => PostPolicy::class,

19];

20

21 /**

22 * Register any application authentication / authorization services.

23 *

24 * @param \Illuminate\Contracts\Auth\Access\Gate $gate

25 * @return void

26 */

27 public function boot(GateContract $gate)

28 {

29 $this->registerPolicies($gate);

30 }

31 }

Writing Policies

Once the policy has been generated and registered, we can addmethods for each ability it authorizes.
For example, let’s define an update method on our PostPolicy, which will determine if the given
User can “update” a Post:

Authorization 224

1 <?php

2

3 namespace App\Policies;

4

5 use App\User;

6 use App\Post;

7

8 class PostPolicy

9 {

10 /**

11 * Determine if the given post can be updated by the user.

12 *

13 * @param \App\User $user

14 * @param \App\Post $post

15 * @return bool

16 */

17 public function update(User $user, Post $post)

18 {

19 return $user->id === $post->user_id;

20 }

21 }

You may continue to define additional methods on the policy as needed for the various abilities
it authorizes. For example, you might define show, destroy, or addComment methods to authorize
various Post actions.

Note: All policies are resolved via the Laravel service container, meaning you may type-
hint any needed dependencies in the policy’s constructor and they will be automatically
injected.

Intercepting All Checks

Sometimes, you may wish to grant all abilities to a specific user on a policy. For this situation, define
a beforemethod on the policy. This method will be run before all other authorization checks on the
policy:

Authorization 225

1 public function before($user, $ability)

2 {

3 if ($user->isSuperAdmin()) {

4 return true;

5 }

6 }

If the before method returns a non-null result that result will be considered the result of the check.

Checking Policies

Policy methods are called in exactly the same way as Closure based authorization callbacks. You
may use the Gate facade, the User model, the @can Blade directive, or the policy helper.

Via The Gate Facade

The Gatewill automatically determine which policy to use by examining the class of the arguments
passed to its methods. So, if we pass a Post instance to the denies method, the Gate will utilize the
corresponding PostPolicy to authorize actions:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Gate;

6 use App\User;

7 use App\Post;

8 use App\Http\Controllers\Controller;

9

10 class PostController extends Controller

11 {

12 /**

13 * Update the given post.

14 *

15 * @param int $id

16 * @return Response

17 */

18 public function update($id)

19 {

20 $post = Post::findOrFail($id);

21

Authorization 226

22 if (Gate::denies('update', $post)) {

23 abort(403);

24 }

25

26 // Update Post...

27 }

28 }

Via The User Model

The User model’s can and cannot methods will also automatically utilize policies when they are
available for the given arguments. These methods provide a convenient way to authorize actions for
any User instance retrieved by your application:

1 if ($user->can('update', $post)) {

2 //

3 }

4

5 if ($user->cannot('update', $post)) {

6 //

7 }

Within Blade Templates

Likewise, the @can Blade directive will utilize policies when they are available for the given
arguments:

1 @can('update', $post)

2 <!-- The Current User Can Update The Post -->

3 @endcan

Via The Policy Helper

The global policy helper function may be used to retrieve the Policy class for a given class
instance. For example, we may pass a Post instance to the policy helper to get an instance of our
corresponding PostPolicy class:

Authorization 227

1 if (policy($post)->update($user, $post)) {

2 //

3 }

Controller Authorization

By default, the base App\Http\Controllers\Controller class included with Laravel uses the
AuthorizesRequests trait. This trait provides the authorizemethod, which may be used to quickly
authorize a given action and throw a HttpException if the action is not authorized.

The authorizemethod shares the same signature as the various other authorizationmethods such as
Gate::allows and $user->can(). So, let’s use the authorizemethod to quickly authorize a request
to update a Post:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Post;

6 use App\Http\Controllers\Controller;

7

8 class PostController extends Controller

9 {

10 /**

11 * Update the given post.

12 *

13 * @param int $id

14 * @return Response

15 */

16 public function update($id)

17 {

18 $post = Post::findOrFail($id);

19

20 $this->authorize('update', $post);

21

22 // Update Post...

23 }

24 }

Authorization 228

If the action is authorized, the controller will continue executing normally; however, if the authorize
method determines that the action is not authorized, a HttpExceptionwill automatically be thrown
which generates a HTTP response with a 403 Not Authorized status code. As you can see, the
authorize method is a convenient, fast way to authorize an action or throw an exception with a
single line of code.

The AuthorizesRequests trait also provides the authorizeForUser method to authorize an action
on a user that is not the currently authenticated user:

1 $this->authorizeForUser($user, 'update', $post);

Automatically Determining Policy Methods

Frequently, a policy’s methods will correspond to the methods on a controller. For example, in the
update method above, the controller method and the policy method share the same name: update.

For this reason, Laravel allows you to simply pass the instance arguments to the authorizemethod,
and the ability being authorized will automatically be determined based on the name of the calling
function. In this example, since authorize is called from the controller’s updatemethod, the update
method will also be called on the PostPolicy:

1 /**

2 * Update the given post.

3 *

4 * @param int $id

5 * @return Response

6 */

7 public function update($id)

8 {

9 $post = Post::findOrFail($id);

10

11 $this->authorize($post);

12

13 // Update Post...

14 }

Artisan Console
• Introduction
• Writing Commands A> - Command Structure
• Command I/O A> - Defining Input Expectations A> - Retrieving Input A> - Prompting For
Input A> - Writing Output

• Registering Commands
• Calling Commands Via Code

Introduction

Artisan is the name of the command-line interface included with Laravel. It provides a number
of helpful commands for your use while developing your application. It is driven by the powerful
Symfony Console component. To view a list of all available Artisan commands, you may use the
list command:

1 php artisan list

Every command also includes a “help” screen which displays and describes the command’s available
arguments and options. To view a help screen, simply precede the name of the command with help:

1 php artisan help migrate

Writing Commands

In addition to the commands provided with Artisan, you may also build your own custom
commands for working with your application. You may store your custom commands in the
app/Console/Commands directory; however, you are free to choose your own storage location as
long as your commands can be autoloaded based on your composer.json settings.

To create a new command, you may use the make:console Artisan command, which will generate
a command stub to help you get started:

229

Artisan Console 230

1 php artisan make:console SendEmails

The command above would generate a class at app/Console/Commands/SendEmails.php. When
creating the command, the --command option may be used to assign the terminal command name:

1 php artisan make:console SendEmails --command=emails:send

Command Structure

Once your command is generated, you should fill out the signature and description properties of
the class, which will be used when displaying your command on the list screen.

The handle method will be called when your command is executed. You may place any command
logic in this method. Let’s take a look at an example command.

Note that we are able to inject any dependencies we need into the command’s constructor. The
Laravel service container will automatically inject all dependencies type-hinted in the constructor.
For greater code reusability, it is good practice to keep your console commands light and let them
defer to application services to accomplish their tasks.

1 <?php

2

3 namespace App\Console\Commands;

4

5 use App\User;

6 use App\DripEmailer;

7 use Illuminate\Console\Command;

8

9 class SendEmails extends Command

10 {

11 /**

12 * The name and signature of the console command.

13 *

14 * @var string

15 */

16 protected $signature = 'email:send {user}';

17

18 /**

19 * The console command description.

Artisan Console 231

20 *

21 * @var string

22 */

23 protected $description = 'Send drip e-mails to a user';

24

25 /**

26 * The drip e-mail service.

27 *

28 * @var DripEmailer

29 */

30 protected $drip;

31

32 /**

33 * Create a new command instance.

34 *

35 * @param DripEmailer $drip

36 * @return void

37 */

38 public function __construct(DripEmailer $drip)

39 {

40 parent::__construct();

41

42 $this->drip = $drip;

43 }

44

45 /**

46 * Execute the console command.

47 *

48 * @return mixed

49 */

50 public function handle()

51 {

52 $this->drip->send(User::find($this->argument('user')));

53 }

54 }

Artisan Console 232

Command I/O

Defining Input Expectations

When writing console commands, it is common to gather input from the user through arguments
or options. Laravel makes it very convenient to define the input you expect from the user using the
signature property on your commands. The signature property allows you to define the name,
arguments, and options for the command in a single, expressive, route-like syntax.

All user supplied arguments and options are wrapped in curly braces. In the following example, the
command defines one required argument: user:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send {user}';

You may also make arguments optional and define default values for optional arguments:

1 // Optional argument...

2 email:send {user?}

3

4 // Optional argument with default value...

5 email:send {user=foo}

Options, like arguments, are also a form of user input. However, they are prefixed by two hyphens
(--) when they are specified on the command line. We can define options in the signature like so:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send {user} {--queue}';

Artisan Console 233

In this example, the --queue switch may be specified when calling the Artisan command. If the
--queue switch is passed, the value of the option will be true. Otherwise, the value will be false:

1 php artisan email:send 1 --queue

You may also specify that the option should be assigned a value by the user by suffixing the option
name with a = sign, indicating that a value should be provided:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send {user} {--queue=}';

In this example, the user may pass a value for the option like so:

1 php artisan email:send 1 --queue=default

You may also assign default values to options:

1 email:send {user} {--queue=default}

To assign a shortcut when defining an option, you may specify it before the option name and use a
| delimiter to separate the shortcut from the full option name:

1 email:send {user} {--Q|queue}

If you would like to define arguments or options to expect array inputs, you may use the * character:

Artisan Console 234

1 email:send {user*}

2

3 email:send {user} {--id=*}

Input Descriptions

You may assign descriptions to input arguments and options by separating the parameter from the
description using a colon:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send

7 {user : The ID of the user}

8 {--queue= : Whether the job should be queued}';

Retrieving Input

While your command is executing, you will obviously need to access the values for the arguments
and options accepted by your command. To do so, you may use the argument and option methods:

1 /**

2 * Execute the console command.

3 *

4 * @return mixed

5 */

6 public function handle()

7 {

8 $userId = $this->argument('user');

9

10 //

11 }

If you need to retrieve all of the arguments as an array, call argument with no parameters:

Artisan Console 235

1 $arguments = $this->argument();

Options may be retrieved just as easily as arguments using the option method. Like the argument
method, you may call option without any parameters in order to retrieve all of the options as an
array:

1 // Retrieve a specific option...

2 $queueName = $this->option('queue');

3

4 // Retrieve all options...

5 $options = $this->option();

If the argument or option does not exist, null will be returned.

Prompting For Input

In addition to displaying output, you may also ask the user to provide input during the execution of
your command. The ask method will prompt the user with the given question, accept their input,
and then return the user’s input back to your command:

1 /**

2 * Execute the console command.

3 *

4 * @return mixed

5 */

6 public function handle()

7 {

8 $name = $this->ask('What is your name?');

9 }

The secret method is similar to ask, but the user’s input will not be visible to them as they type in
the console. This method is useful when asking for sensitive information such as a password:

1 $password = $this->secret('What is the password?');

Artisan Console 236

Asking For Confirmation

If you need to ask the user for a simple confirmation, you may use the confirm method. By default,
this method will return false. However, if the user enters y in response to the prompt, the method
will return true.

1 if ($this->confirm('Do you wish to continue? [y|N]')) {

2 //

3 }

Giving The User A Choice

The anticipate method can be used to provide autocompletion for possible choices. The user can
still choose any answer, regardless of the auto-completion hints:

1 $name = $this->anticipate('What is your name?', ['Taylor', 'Dayle']);

If you need to give the user a predefined set of choices, you may use the choice method. The user
chooses the index of the answer, but the value of the answer will be returned to you. You may set
the default value to be returned if nothing is chosen:

1 $name = $this->choice('What is your name?', ['Taylor', 'Dayle'], $default);

Writing Output

To send output to the console, use the line, info, comment, question and error methods. Each of
these methods will use the appropriate ANSI colors for their purpose.

To display an information message to the user, use the info method. Typically, this will display in
the console as green text:

Artisan Console 237

1 /**

2 * Execute the console command.

3 *

4 * @return mixed

5 */

6 public function handle()

7 {

8 $this->info('Display this on the screen');

9 }

To display an error message, use the errormethod. Error message text is typically displayed in red:

1 $this->error('Something went wrong!');

If you want to display plain console output, use the linemethod. The linemethod does not receive
any unique coloration:

1 $this->line('Display this on the screen');

Table Layouts

The table method makes it easy to correctly format multiple rows / columns of data. Just pass in
the headers and rows to the method. The width and height will be dynamically calculated based on
the given data:

1 $headers = ['Name', 'Email'];

2

3 $users = App\User::all(['name', 'email'])->toArray();

4

5 $this->table($headers, $users);

Progress Bars

For long running tasks, it could be helpful to show a progress indicator. Using the output object, we
can start, advance and stop the Progress Bar. You have to define the number of steps when you start

Artisan Console 238

the progress, then advance the Progress Bar after each step:

1 $users = App\User::all();

2

3 $bar = $this->output->createProgressBar(count($users));

4

5 foreach ($users as $user) {

6 $this->performTask($user);

7

8 $bar->advance();

9 }

10

11 $bar->finish();

For more advanced options, check out the Symfony Progress Bar component documentation¹³⁷.

Registering Commands

Once your command is finished, you need to register it with Artisan so it will be available for use.
This is done within the app/Console/Kernel.php file.

Within this file, you will find a list of commands in the commands property. To register your
command, simply add the class name to the list. When Artisan boots, all the commands listed in
this property will be resolved by the service container and registered with Artisan:

1 protected $commands = [

2 Commands\SendEmails::class

3];

Calling Commands Via Code

Sometimes you may wish to execute an Artisan command outside of the CLI. For example, you
may wish to fire an Artisan command from a route or controller. You may use the call method on
the Artisan facade to accomplish this. The call method accepts the name of the command as the
first argument, and an array of command parameters as the second argument. The exit code will be
returned:

¹³⁷http://symfony.com/doc/2.7/components/console/helpers/progressbar.html

http://symfony.com/doc/2.7/components/console/helpers/progressbar.html
http://symfony.com/doc/2.7/components/console/helpers/progressbar.html

Artisan Console 239

1 Route::get('/foo', function () {

2 $exitCode = Artisan::call('email:send', [

3 'user' => 1, '--queue' => 'default'

4]);

5

6 //

7 });

Using the queuemethod on the Artisan facade, you may even queue Artisan commands so they are
processed in the background by your queue workers:

1 Route::get('/foo', function () {

2 Artisan::queue('email:send', [

3 'user' => 1, '--queue' => 'default'

4]);

5

6 //

7 });

If you need to specify the value of an option that does not accept string values, such as the --force
flag on the migrate:refresh command, you may pass a boolean true or false:

1 $exitCode = Artisan::call('migrate:refresh', [

2 '--force' => true,

3]);

Calling Commands From Other Commands

Sometimes you may wish to call other commands from an existing Artisan command. You may do
so using the callmethod. This callmethod accepts the command name and an array of command
parameters:

Artisan Console 240

1 /**

2 * Execute the console command.

3 *

4 * @return mixed

5 */

6 public function handle()

7 {

8 $this->call('email:send', [

9 'user' => 1, '--queue' => 'default'

10]);

11

12 //

13 }

If you would like to call another console command and suppress all of its output, you may use the
callSilent method. The callSilent method has the same signature as the call method:

1 $this->callSilent('email:send', [

2 'user' => 1, '--queue' => 'default'

3]);

Laravel Cashier
• Introduction
• Subscriptions A> - Creating Subscriptions A> - Checking Subscription Status A> - Changing
Plans A> - Subscription Quantity A> - Subscription Taxes A> - Cancelling Subscriptions A> -
Resuming Subscriptions

• Handling Stripe Webhooks A> - Failed Subscriptions A> - Other Webhooks
• Single Charges
• Invoices A> - Generating Invoice PDFs

Introduction

Laravel Cashier provides an expressive, fluent interface to Stripe’s¹³⁸ subscription billing services. It
handles almost all of the boilerplate subscription billing code you are dreading writing. In addition
to basic subscription management, Cashier can handle coupons, swapping subscription, subscription
“quantities”, cancellation grace periods, and even generate invoice PDFs.

Configuration

Composer

First, add the Cashier package to your composer.json file and run the composer update command:

1 "laravel/cashier": "~6.0"

Service Provider

Next, register the Laravel\Cashier\CashierServiceProvider service provider in your app config-
uration file.

Migration

Before using Cashier, we’ll need to prepare the database. We need to add several columns to your
users table and create a new subscriptions table to hold all of our customer’s subscriptions:

¹³⁸https://stripe.com

241

https://stripe.com
https://stripe.com

Laravel Cashier 242

1 Schema::table('users', function ($table) {

2 $table->string('stripe_id')->nullable();

3 $table->string('card_brand')->nullable();

4 $table->string('card_last_four')->nullable();

5 });

6

7 Schema::create('subscriptions', function ($table) {

8 $table->increments('id');

9 $table->integer('user_id');

10 $table->string('name');

11 $table->string('stripe_id');

12 $table->string('stripe_plan');

13 $table->integer('quantity');

14 $table->timestamp('trial_ends_at')->nullable();

15 $table->timestamp('ends_at')->nullable();

16 $table->timestamps();

17 });

Once the migrations have been created, simply run the migrate command.

Model Setup

Next, add the Billable trait to your model definition:

1 use Laravel\Cashier\Billable;

2

3 class User extends Authenticatable

4 {

5 use Billable;

6 }

Stripe Key

Finally, set your Stripe key in your services.php configuration file:

Laravel Cashier 243

1 'stripe' => [

2 'model' => App\User::class,

3 'secret' => env('STRIPE_API_SECRET'),

4],

Subscriptions

Creating Subscriptions

To create a subscription, first retrieve an instance of your billable model, which typically will
be an instance of App\User. Once you have retrieved the model instance, you may use the
newSubscription method to create the model’s subscription:

1 $user = User::find(1);

2

3 $user->newSubscription('main', 'monthly')->create($creditCardToken);

The first argument passed to the newSubscription method should be the name of the subscription.
If your application only offers a single subscription, you might call this main or primary. The second
argument is the specific Stripe plan the user is subscribing to. This value should correspond to the
plan’s identifier in Stripe.

The createmethodwill automatically create the Stripe subscription, as well as update your database
with Stripe customer ID and other relevant billing information. If your plan has a trial configured
in Stripe, the trial end date will also automatically be set on the user record.

Additional User Details

If youwould like to specify additional customer details, youmay do so by passing them as the second
argument to the create method:

1 $user->newSubscription('main', 'monthly')->create($creditCardToken, [

2 'email' => $email, 'description' => 'Our First Customer'

3]);

Laravel Cashier 244

To learn more about the additional fields supported by Stripe, check out Stripe’s documentation on
customer creation¹³⁹.

Coupons

If you would like to apply a coupon when creating the subscription, you may use the withCoupon
method:

1 $user->newSubscription('main', 'monthly')

2 ->withCoupon('code')

3 ->create($creditCardToken);

Checking Subscription Status

Once a user is subscribed to your application, you may easily check their subscription status using a
variety of convenient methods. First, the subscribed method returns true if the user has an active
subscription, even if the subscription is currently within its trial period:

1 if ($user->subscribed('main')) {

2 //

3 }

The subscribedmethod also makes a great candidate for a route middleware, allowing you to filter
access to routes and controllers based on the user’s subscription status:

1 public function handle($request, Closure $next)

2 {

3 if ($request->user() && ! $request->user()->subscribed('main')) {

4 // This user is not a paying customer...

5 return redirect('billing');

6 }

7

8 return $next($request);

9 }

¹³⁹https://stripe.com/docs/api#create_customer

https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer

Laravel Cashier 245

If you would like to determine if a user is still within their trial period, you may use the onTrial
method. This method can be useful for displaying a warning to the user that they are still on their
trial period:

1 if ($user->subscription('main')->onTrial()) {

2 //

3 }

The onPlan method may be used to determine if the user is subscribed to a given plan based on its
Stripe ID:

1 if ($user->onPlan('monthly')) {

2 //

3 }

Cancelled Subscription Status

To determine if the user was once an active subscriber, but has cancelled their subscription, you may
use the cancelled method:

1 if ($user->subscription('main')->cancelled()) {

2 //

3 }

You may also determine if a user has cancelled their subscription, but are still on their “grace period”
until the subscription fully expires. For example, if a user cancels a subscription on March 5th that
was originally scheduled to expire on March 10th, the user is on their “grace period” until March
10th. Note that the subscribed method still returns true during this time.

1 if ($user->subscription('main')->onGracePeriod()) {

2 //

3 }

Laravel Cashier 246

Changing Plans

After a user is subscribed to your application, they may occasionally want to change to a new
subscription plan. To swap a user to a new subscription, use the swapmethod. For example, we may
easily switch a user to the premium subscription:

1 $user = App\User::find(1);

2

3 $user->subscription('main')->swap('stripe-plan-id');

If the user is on trial, the trial period will be maintained. Also, if a “quantity” exists for the
subscription, that quantity will also be maintained. If you would like to invoice the customer
immediately after swapping plans, use the invoice method:

1 $user->subscription('main')->swap('stripe-plan-id');

2

3 $user->invoice();

Subscription Quantity

Sometimes subscriptions are affected by “quantity”. For example, your application might charge $10
per month per user on an account. To easily increment or decrement your subscription quantity,
use the incrementQuantity and decrementQuantity methods:

1 $user = User::find(1);

2

3 $user->subscription('main')->incrementQuantity();

4

5 // Add five to the subscription's current quantity...

6 $user->subscription('main')->incrementQuantity(5);

7

8 $user->subscription('main')->decrementQuantity();

9

10 // Subtract five to the subscription's current quantity...

11 $user->subscription('main')->decrementQuantity(5);

Alternatively, you may set a specific quantity using the updateQuantity method:

Laravel Cashier 247

1 $user->subscription('main')->updateQuantity(10);

For more information on subscription quantities, consult the Stripe documentation¹⁴⁰.

Subscription Taxes

With Cashier, it’s easy to provide the tax_percent value sent to Stripe. To specify the tax percentage
a user pays on a subscription, implement the taxPercentage method on your billable model, and
return a numeric value between 0 and 100, with no more than 2 decimal places.

1 public function taxPercentage() {

2 return 20;

3 }

This enables you to apply a tax rate on a model-by-model basis, which may be helpful for a user
base that spans multiple countries.

Cancelling Subscriptions

To cancel a subscription, simply call the cancel method on the user’s subscription:

1 $user->subscription('main')->cancel();

When a subscription is cancelled, Cashier will automatically set the ends_at column in your
database. This column is used to know when the subscribedmethod should begin returning false.
For example, if a customer cancels a subscription on March 1st, but the subscription was not
scheduled to end until March 5th, the subscribed method will continue to return true until March
5th.

You may determine if a user has cancelled their subscription but are still on their “grace period”
using the onGracePeriod method:

¹⁴⁰https://stripe.com/docs/guides/subscriptions#setting-quantities

https://stripe.com/docs/guides/subscriptions#setting-quantities
https://stripe.com/docs/guides/subscriptions#setting-quantities

Laravel Cashier 248

1 if ($user->subscription('main')->onGracePeriod()) {

2 //

3 }

Resuming Subscriptions

If a user has cancelled their subscription and you wish to resume it, use the resume method. The
user must still be on their grace period in order to resume a subscription:

1 $user->subscription('main')->resume();

If the user cancels a subscription and then resumes that subscription before the subscription has fully
expired, they will not be billed immediately. Instead, their subscription will simply be re-activated,
and they will be billed on the original billing cycle.

Handling Stripe Webhooks

Failed Subscriptions

What if a customer’s credit card expires? No worries - Cashier includes a Webhook controller that
can easily cancel the customer’s subscription for you. Just point a route to the controller:

1 Route::post(

2 'stripe/webhook',

3 '\Laravel\Cashier\Http\Controllers\WebhookController@handleWebhook'

4);

That’s it! Failed payments will be captured and handled by the controller. The controller will cancel
the customer’s subscription when Stripe determines the subscription has failed (normally after three
failed payment attempts). Don’t forget: you will need to configure the webhook URI in your Stripe
control panel settings.

Since Stripe webhooks need to bypass Laravel’s CSRF verification, be sure to list the URI as an
exception in your VerifyCsrfToken middleware:

Laravel Cashier 249

1 protected $except = [

2 'stripe/*',

3];

Other Webhooks

If you have additional Stripe webhook events you would like to handle, simply extend the Webhook
controller. Your method names should correspond to Cashier’s expected convention, specifically,
methods should be prefixed with handle and the “camel case” name of the Stripe webhook you
wish to handle. For example, if you wish to handle the invoice.payment_succeeded webhook, you
should add a handleInvoicePaymentSucceeded method to the controller.

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Laravel\Cashier\Http\Controllers\WebhookController as BaseController;

6

7 class WebhookController extends BaseController

8 {

9 /**

10 * Handle a stripe webhook.

11 *

12 * @param array $payload

13 * @return Response

14 */

15 public function handleInvoicePaymentSucceeded($payload)

16 {

17 // Handle The Event

18 }

19 }

Single Charges

If you would like to make a “one off” charge against a subscribed customer’s credit card, you may
use the charge method on a billable model instance. The charge method accepts the amount you
would like to charge in the lowest denominator of the currency used by your application. So,
for example, the example below will charge 100 cents, or $1.00, against the user’s credit card:

Laravel Cashier 250

1 $user->charge(100);

The charge method accepts an array as its second argument, allowing you to pass any options you
wish to the underlying Stripe charge creation:

1 $user->charge(100, [

2 'source' => $token,

3 'receipt_email' => $user->email,

4]);

The charge method will return false if the charge fails. This typically indicates the charge was
denied:

1 if (! $user->charge(100)) {

2 // The charge was denied...

3 }

If the charge is successful, the full Stripe response will be returned from the method.

Invoices

You may easily retrieve an array of a billable model’s invoices using the invoices method:

1 $invoices = $user->invoices();

When listing the invoices for the customer, you may use the invoice’s helper methods to display the
relevant invoice information. For example, you may wish to list every invoice in a table, allowing
the user to easily download any of them:

Laravel Cashier 251

1 <table>

2 @foreach ($invoices as $invoice)

3 <tr>

4 <td>{{ $invoice->date()->toFormattedDateString() }}</td>

5 <td>{{ $invoice->total() }}</td>

6 <td>id }}">Download</td>

7 </tr>

8 @endforeach

9 </table>

Generating Invoice PDFs

Before generating invoice PDFs, you need to install the dompdf PHP library:

1 composer require dompdf/dompdf

From within a route or controller, use the downloadInvoice method to generate a PDF download
of the invoice. This method will automatically generate the proper HTTP response to send the
download to the browser:

1 Route::get('user/invoice/{invoice}', function ($invoiceId) {

2 return Auth::user()->downloadInvoice($invoiceId, [

3 'vendor' => 'Your Company',

4 'product' => 'Your Product',

5]);

6 });

Cache
• Configuration
• Cache Usage A> - Obtaining A Cache Instance A> - Retrieving Items From The Cache A> -
Storing Items In The Cache A> - Removing Items From The Cache

• Cache Tags A> - Storing Tagged Cache Items A> - Accessing Tagged Cache Items
• Adding Custom Cache Drivers
• Events

Configuration

Laravel provides a unified API for various caching systems. The cache configuration is located at
config/cache.php. In this file you may specify which cache driver you would like used by default
throughout your application. Laravel supports popular caching backends like Memcached¹⁴¹ and
Redis¹⁴² out of the box.

The cache configuration file also contains various other options, which are documented within
the file, so make sure to read over these options. By default, Laravel is configured to use the file
cache driver, which stores the serialized, cached objects in the filesystem. For larger applications,
it is recommended that you use an in-memory cache such as Memcached or APC. You may even
configure multiple cache configurations for the same driver.

Cache Prerequisites

Database

When using the database cache driver, you will need to setup a table to contain the cache items.
You’ll find an example Schema declaration for the table below:

1 Schema::create('cache', function($table) {

2 $table->string('key')->unique();

3 $table->text('value');

4 $table->integer('expiration');

5 });

¹⁴¹http://memcached.org
¹⁴²http://redis.io

252

http://memcached.org
http://redis.io
http://memcached.org
http://redis.io

Cache 253

Memcached

Using the Memcached cache requires the Memcached PECL package¹⁴³ to be installed.

The default configuration uses TCP/IP based on Memcached::addServer¹⁴⁴:

1 'memcached' => [

2 [

3 'host' => '127.0.0.1',

4 'port' => 11211,

5 'weight' => 100

6],

7],

You may also set the host option to a UNIX socket path. If you do this, the port option should be
set to 0:

1 'memcached' => [

2 [

3 'host' => '/var/run/memcached/memcached.sock',

4 'port' => 0,

5 'weight' => 100

6],

7],

Redis

Before using a Redis cache with Laravel, you will need to install the predis/predis package (∼1.0)
via Composer.

For more information on configuring Redis, consult its Laravel documentation page.

Cache Usage

Obtaining A Cache Instance

The Illuminate\Contracts\Cache\Factory and Illuminate\Contracts\Cache\Repository con-
tracts provide access to Laravel’s cache services. The Factory contract provides access to all cache

¹⁴³http://pecl.php.net/package/memcached
¹⁴⁴http://php.net/manual/en/memcached.addserver.php

http://pecl.php.net/package/memcached
http://php.net/manual/en/memcached.addserver.php
http://pecl.php.net/package/memcached
http://php.net/manual/en/memcached.addserver.php

Cache 254

drivers defined for your application. The Repository contract is typically an implementation of the
default cache driver for your application as specified by your cache configuration file.

However, you may also use the Cache facade, which is what we will use throughout this documen-
tation. The Cache facade provides convenient, terse access to the underlying implementations of the
Laravel cache contracts.

For example, let’s import the Cache facade into a controller:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Cache;

6

7 class UserController extends Controller

8 {

9 /**

10 * Show a list of all users of the application.

11 *

12 * @return Response

13 */

14 public function index()

15 {

16 $value = Cache::get('key');

17

18 //

19 }

20 }

Accessing Multiple Cache Stores

Using the Cache facade, you may access various cache stores via the store method. The key passed
to the storemethod should correspond to one of the stores listed in the stores configuration array
in your cache configuration file:

1 $value = Cache::store('file')->get('foo');

2

3 Cache::store('redis')->put('bar', 'baz', 10);

Cache 255

Retrieving Items From The Cache

The get method on the Cache facade is used to retrieve items from the cache. If the item does not
exist in the cache, null will be returned. If you wish, you may pass a second argument to the get
method specifying the custom default value you wish to be returned if the item doesn’t exist:

1 $value = Cache::get('key');

2

3 $value = Cache::get('key', 'default');

You may even pass a Closure as the default value. The result of the Closure will be returned if
the specified item does not exist in the cache. Passing a Closure allows you to defer the retrieval of
default values from a database or other external service:

1 $value = Cache::get('key', function() {

2 return DB::table(...)->get();

3 });

Checking For Item Existence

The has method may be used to determine if an item exists in the cache:

1 if (Cache::has('key')) {

2 //

3 }

Incrementing / Decrementing Values

The increment and decrement methods may be used to adjust the value of integer items in the
cache. Both of these methods optionally accept a second argument indicating the amount by which
to increment or decrement the item’s value:

Cache 256

1 Cache::increment('key');

2

3 Cache::increment('key', $amount);

4

5 Cache::decrement('key');

6

7 Cache::decrement('key', $amount);

Retrieve Or Update

Sometimes you may wish to retrieve an item from the cache, but also store a default value if the
requested item doesn’t exist. For example, you may wish to retrieve all users from the cache or, if
they don’t exist, retrieve them from the database and add them to the cache. You may do this using
the Cache::remember method:

1 $value = Cache::remember('users', $minutes, function() {

2 return DB::table('users')->get();

3 });

If the item does not exist in the cache, the Closure passed to the remember method will be executed
and its result will be placed in the cache.

You may also combine the remember and forever methods:

1 $value = Cache::rememberForever('users', function() {

2 return DB::table('users')->get();

3 });

Retrieve And Delete

If you need to retrieve an item from the cache and then delete it, you may use the pullmethod. Like
the get method, null will be returned if the item does not exist in the cache:

1 $value = Cache::pull('key');

Cache 257

Storing Items In The Cache

You may use the put method on the Cache facade to store items in the cache. When you place an
item in the cache, you will need to specify the number of minutes for which the value should be
cached:

1 Cache::put('key', 'value', $minutes);

Instead of passing the number of minutes until the item expires, you may also pass a PHP DateTime

instance representing the expiration time of the cached item:

1 $expiresAt = Carbon::now()->addMinutes(10);

2

3 Cache::put('key', 'value', $expiresAt);

The add method will only add the item to the cache if it does not already exist in the cache store.
The method will return true if the item is actually added to the cache. Otherwise, the method will
return false:

1 Cache::add('key', 'value', $minutes);

The forever method may be used to store an item in the cache permanently. These values must be
manually removed from the cache using the forget method:

1 Cache::forever('key', 'value');

Removing Items From The Cache

You may remove items from the cache using the forget method on the Cache facade:

1 Cache::forget('key');

Cache 258

You may clear the entire cache using the flush method:

1 Cache::flush();

Flushing the cache does not respect the cache prefix and will remove all entries from the cache.
Consider this carefully when clearing a cache which is shared by other applications.

Cache Tags

Note: Cache tags are not supported when using the file or database cache drivers.
Furthermore, when using multiple tags with caches that are stored “forever”, performance
will be best with a driver such as memcached, which automatically purges stale records.

Storing Tagged Cache Items

Cache tags allow you to tag related items in the cache and then flush all cached values that have
been assigned a given tag. You may access a tagged cache by passing in an ordered array of tag
names. For example, let’s access a tagged cache and put value in the cache:

1 Cache::tags(['people', 'artists'])->put('John', $john, $minutes);

2

3 Cache::tags(['people', 'authors'])->put('Anne', $anne, $minutes);

However, you are not limited to the put method. You may use any cache storage method while
working with tags.

Accessing Tagged Cache Items

To retrieve a tagged cache item, pass the same ordered list of tags to the tags method:

1 $john = Cache::tags(['people', 'artists'])->get('John');

2

3 $anne = Cache::tags(['people', 'authors'])->get('Anne');

Cache 259

You may flush all items that are assigned a tag or list of tags. For example, this statement would
remove all caches tagged with either people, authors, or both. So, both Anne and John would be
removed from the cache:

1 Cache::tags(['people', 'authors'])->flush();

In contrast, this statement would remove only caches tagged with authors, so Anne would be
removed, but not John.

1 Cache::tags('authors')->flush();

Adding Custom Cache Drivers

To extend the Laravel cache with a custom driver, we will use the extend method on the Cache

facade, which is used to bind a custom driver resolver to the manager. Typically, this is done within
a service provider.

For example, to register a new cache driver named “mongo”:

1 <?php

2

3 namespace App\Providers;

4

5 use Cache;

6 use App\Extensions\MongoStore;

7 use Illuminate\Support\ServiceProvider;

8

9 class CacheServiceProvider extends ServiceProvider

10 {

11 /**

12 * Perform post-registration booting of services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Cache::extend('mongo', function($app) {

19 return Cache::repository(new MongoStore);

Cache 260

20 });

21 }

22

23 /**

24 * Register bindings in the container.

25 *

26 * @return void

27 */

28 public function register()

29 {

30 //

31 }

32 }

The first argument passed to the extend method is the name of the driver. This will correspond to
your driver option in the config/cache.php configuration file. The second argument is a Closure
that should return an Illuminate\Cache\Repository instance. The Closure will be passed an $app

instance, which is an instance of the service container.

The call to Cache::extend could be done in the bootmethod of the default App\Providers\AppServiceProvider
that ships with fresh Laravel applications, or you may create your own service provider to house
the extension - just don’t forget to register the provider in the config/app.php provider array.

To create our custom cache driver, we first need to implement the Illuminate\Contracts\Cache\Store
contract contract. So, our MongoDB cache implementation would look something like this:

1 <?php

2

3 namespace App\Extensions;

4

5 class MongoStore implements \Illuminate\Contracts\Cache\Store

6 {

7 public function get($key) {}

8 public function put($key, $value, $minutes) {}

9 public function increment($key, $value = 1) {}

10 public function decrement($key, $value = 1) {}

11 public function forever($key, $value) {}

12 public function forget($key) {}

13 public function flush() {}

14 public function getPrefix() {}

15 }

Cache 261

We just need to implement each of these methods using a MongoDB connection. Once our
implementation is complete, we can finish our custom driver registration:

1 Cache::extend('mongo', function($app) {

2 return Cache::repository(new MongoStore);

3 });

Once your extension is complete, simply update your config/cache.php configuration file’s driver
option to the name of your extension.

If you’re wondering where to put your custom cache driver code, consider making it available on
Packagist! Or, you could create an Extensions namespace within your app directory. However, keep
in mind that Laravel does not have a rigid application structure and you are free to organize your
application according to your preferences.

Events

To execute code on every cache operation, youmay listen for the events fired by the cache. Typically,
you should place these event listeners within your EventServiceProvider:

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 'Illuminate\Cache\Events\CacheHit' => [

8 'App\Listeners\LogCacheHit',

9],

10

11 'Illuminate\Cache\Events\CacheMissed' => [

12 'App\Listeners\LogCacheMissed',

13],

14

15 'Illuminate\Cache\Events\KeyForgotten' => [

16 'App\Listeners\LogKeyForgotten',

17],

18

19 'Illuminate\Cache\Events\KeyWritten' => [

20 'App\Listeners\LogKeyWritten',

21],

Cache 262

22];

Collections
• Introduction
• Creating Collections
• Available Methods

Introduction

The Illuminate\Support\Collection class provides a fluent, convenient wrapper for working with
arrays of data. For example, check out the following code. We’ll use the collect helper to create
a new collection instance from the array, run the strtoupper function on each element, and then
remove all empty elements:

1 $collection = collect(['taylor', 'abigail', null])->map(function ($name) {

2 return strtoupper($name);

3 })

4 ->reject(function ($name) {

5 return empty($name);

6 });

As you can see, the Collection class allows you to chain its methods to perform fluent mapping
and reducing of the underlying array. In general, every Collectionmethod returns an entirely new
Collection instance.

Creating Collections

As mentioned above, the collect helper returns a new Illuminate\Support\Collection instance
for the given array. So, creating a collection is as simple as:

1 $collection = collect([1, 2, 3]);

By default, collections of Eloquent models are always returned as Collection instances; however,
feel free to use the Collection class wherever it is convenient for your application.

263

Collections 264

Available Methods

For the remainder of this documentation, we’ll discuss each method available on the Collection

class. Remember, all of these methods may be chained for fluently manipulating the underlying
array. Furthermore, almost every method returns a new Collection instance, allowing you to
preserve the original copy of the collection when necessary.

You may select any method from this table to see an example of its usage:

<style> A> #collection-method-list > p { A> column-count: 3; -moz-column-count: 3; -webkit-
column-count: 3; A> column-gap: 2em; -moz-column-gap: 2em; -webkit-column-gap: 2em; A> } A>
A> #collection-method-list a { A> display: block; A> }

</style>

<div id=”collection-method-list” markdown=”1”> all avg chunk collapse contains count diff each
every except filter first flatten flip forget forPage get groupBy has implode intersect isEmpty keyBy
keys last map max merge min only pluck pop prepend pull push put random reduce reject reverse
search shift shuffle slice sort sortBy sortByDesc splice sum take toArray toJson transform unique
values where whereLoose whereIn whereInLoose zip </div>

Method Listing

<style> A> #collection-method code { A> font-size: 14px; A> } A> A> #collection-method:not(.first-
collection-method) { A> margin-top: 50px; A> }

</style>

all() {#collection-method .first-collection-method}

The all method simply returns the underlying array represented by the collection:

1 collect([1, 2, 3])->all();

2

3 // [1, 2, 3]

avg() {#collection-method}

The avg method returns the average of all items in the collection:

Collections 265

1 collect([1, 2, 3, 4, 5])->avg();

2

3 // 3

If the collection contains nested arrays or objects, you should pass a key to use for determining
which values to calculate the average:

1 $collection = collect([

2 ['name' => 'JavaScript: The Good Parts', 'pages' => 176],

3 ['name' => 'JavaScript: The Definitive Guide', 'pages' => 1096],

4]);

5

6 $collection->avg('pages');

7

8 // 636

chunk() {#collection-method}

The chunk method breaks the collection into multiple, smaller collections of a given size:

1 $collection = collect([1, 2, 3, 4, 5, 6, 7]);

2

3 $chunks = $collection->chunk(4);

4

5 $chunks->toArray();

6

7 // [[1, 2, 3, 4], [5, 6, 7]]

This method is especially useful in views when working with a grid system such as Bootstrap¹⁴⁵.
Imagine you have a collection of Eloquent models you want to display in a grid:

¹⁴⁵http://getbootstrap.com/css/#grid

http://getbootstrap.com/css/#grid
http://getbootstrap.com/css/#grid

Collections 266

1 @foreach ($products->chunk(3) as $chunk)

2 <div class="row">

3 @foreach ($chunk as $product)

4 <div class="col-xs-4">{{ $product->name }}</div>

5 @endforeach

6 </div>

7 @endforeach

collapse() {#collection-method}

The collapse method collapses a collection of arrays into a flat collection:

1 $collection = collect([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);

2

3 $collapsed = $collection->collapse();

4

5 $collapsed->all();

6

7 // [1, 2, 3, 4, 5, 6, 7, 8, 9]

contains() {#collection-method}

The contains method determines whether the collection contains a given item:

1 $collection = collect(['name' => 'Desk', 'price' => 100]);

2

3 $collection->contains('Desk');

4

5 // true

6

7 $collection->contains('New York');

8

9 // false

You may also pass a key / value pair to the containsmethod, which will determine if the given pair
exists in the collection:

Collections 267

1 $collection = collect([

2 ['product' => 'Desk', 'price' => 200],

3 ['product' => 'Chair', 'price' => 100],

4]);

5

6 $collection->contains('product', 'Bookcase');

7

8 // false

Finally, you may also pass a callback to the contains method to perform your own truth test:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->contains(function ($key, $value) {

4 return $value > 5;

5 });

6

7 // false

count() {#collection-method}

The count method returns the total number of items in the collection:

1 $collection = collect([1, 2, 3, 4]);

2

3 $collection->count();

4

5 // 4

diff() {#collection-method}

The diff method compares the collection against another collection or a plain PHP array:

Collections 268

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $diff = $collection->diff([2, 4, 6, 8]);

4

5 $diff->all();

6

7 // [1, 3, 5]

each() {#collection-method}

The each method iterates over the items in the collection and passes each item to a given callback:

1 $collection = $collection->each(function ($item, $key) {

2 //

3 });

Return false from your callback to break out of the loop:

1 $collection = $collection->each(function ($item, $key) {

2 if (/* some condition */) {

3 return false;

4 }

5 });

every() {#collection-method}

The every method creates a new collection consisting of every n-th element:

1 $collection = collect(['a', 'b', 'c', 'd', 'e', 'f']);

2

3 $collection->every(4);

4

5 // ['a', 'e']

Collections 269

You may optionally pass offset as the second argument:

1 $collection->every(4, 1);

2

3 // ['b', 'f']

except() {#collection-method}

The except method returns all items in the collection except for those with the specified keys:

1 $collection = collect(['product_id' => 1, 'name' => 'Desk', 'price' => 100, 'dis\

2 count' => false]);

3

4 $filtered = $collection->except(['price', 'discount']);

5

6 $filtered->all();

7

8 // ['product_id' => 1, 'name' => 'Desk']

For the inverse of except, see the only method.

filter() {#collection-method}

The filter method filters the collection by a given callback, keeping only those items that pass a
given truth test:

1 $collection = collect([1, 2, 3, 4]);

2

3 $filtered = $collection->filter(function ($value, $key) {

4 return $value > 2;

5 });

6

7 $filtered->all();

8

9 // [3, 4]

For the inverse of filter, see the reject method.

Collections 270

first() {#collection-method}

The first method returns the first element in the collection that passes a given truth test:

1 collect([1, 2, 3, 4])->first(function ($key, $value) {

2 return $value > 2;

3 });

4

5 // 3

You may also call the first method with no arguments to get the first element in the collection. If
the collection is empty, null is returned:

1 collect([1, 2, 3, 4])->first();

2

3 // 1

flatten() {#collection-method}

The flatten method flattens a multi-dimensional collection into a single dimension:

1 $collection = collect(['name' => 'taylor', 'languages' => ['php', 'javascript']]\

2);

3

4 $flattened = $collection->flatten();

5

6 $flattened->all();

7

8 // ['taylor', 'php', 'javascript'];

flip() {#collection-method}

The flip method swaps the collection’s keys with their corresponding values:

Collections 271

1 $collection = collect(['name' => 'taylor', 'framework' => 'laravel']);

2

3 $flipped = $collection->flip();

4

5 $flipped->all();

6

7 // ['taylor' => 'name', 'laravel' => 'framework']

forget() {#collection-method}

The forget method removes an item from the collection by its key:

1 $collection = collect(['name' => 'taylor', 'framework' => 'laravel']);

2

3 $collection->forget('name');

4

5 $collection->all();

6

7 // [framework' => 'laravel']

Note: Unlike most other collection methods, forget does not return a new modified
collection; it modifies the collection it is called on.

forPage() {#collection-method}

The forPagemethod returns a new collection containing the items that would be present on a given
page number:

1 $collection = collect([1, 2, 3, 4, 5, 6, 7, 8, 9]);

2

3 $chunk = $collection->forPage(2, 3);

4

5 $chunk->all();

6

Collections 272

7 // [4, 5, 6]

The method requires the page number and the number of items to show per page, respectively.

get() {#collection-method}

The get method returns the item at a given key. If the key does not exist, null is returned:

1 $collection = collect(['name' => 'taylor', 'framework' => 'laravel']);

2

3 $value = $collection->get('name');

4

5 // taylor

You may optionally pass a default value as the second argument:

1 $collection = collect(['name' => 'taylor', 'framework' => 'laravel']);

2

3 $value = $collection->get('foo', 'default-value');

4

5 // default-value

You may even pass a callback as the default value. The result of the callback will be returned if the
specified key does not exist:

1 $collection->get('email', function () {

2 return 'default-value';

3 });

4

5 // default-value

groupBy() {#collection-method}

The groupBy method groups the collection’s items by a given key:

Collections 273

1 $collection = collect([

2 ['account_id' => 'account-x10', 'product' => 'Chair'],

3 ['account_id' => 'account-x10', 'product' => 'Bookcase'],

4 ['account_id' => 'account-x11', 'product' => 'Desk'],

5]);

6

7 $grouped = $collection->groupBy('account_id');

8

9 $grouped->toArray();

10

11 /*

12 [

13 'account-x10' => [

14 ['account_id' => 'account-x10', 'product' => 'Chair'],

15 ['account_id' => 'account-x10', 'product' => 'Bookcase'],

16],

17 'account-x11' => [

18 ['account_id' => 'account-x11', 'product' => 'Desk'],

19],

20]

21 */

In addition to passing a string key, you may also pass a callback. The callback should return the
value you wish to key the group by:

1 $grouped = $collection->groupBy(function ($item, $key) {

2 return substr($item['account_id'], -3);

3 });

4

5 $grouped->toArray();

6

7 /*

8 [

9 'x10' => [

10 ['account_id' => 'account-x10', 'product' => 'Chair'],

11 ['account_id' => 'account-x10', 'product' => 'Bookcase'],

12],

13 'x11' => [

14 ['account_id' => 'account-x11', 'product' => 'Desk'],

15],

16]

Collections 274

17 */

has() {#collection-method}

The has method determines if a given key exists in the collection:

1 $collection = collect(['account_id' => 1, 'product' => 'Desk']);

2

3 $collection->has('email');

4

5 // false

implode() {#collection-method}

The implode method joins the items in a collection. Its arguments depend on the type of items in
the collection.

If the collection contains arrays or objects, you should pass the key of the attributes you wish to
join, and the “glue” string you wish to place between the values:

1 $collection = collect([

2 ['account_id' => 1, 'product' => 'Desk'],

3 ['account_id' => 2, 'product' => 'Chair'],

4]);

5

6 $collection->implode('product', ', ');

7

8 // Desk, Chair

If the collection contains simple strings or numeric values, simply pass the “glue” as the only
argument to the method:

1 collect([1, 2, 3, 4, 5])->implode('-');

2

Collections 275

3 // '1-2-3-4-5'

intersect() {#collection-method}

The intersect method removes any values that are not present in the given array or collection:

1 $collection = collect(['Desk', 'Sofa', 'Chair']);

2

3 $intersect = $collection->intersect(['Desk', 'Chair', 'Bookcase']);

4

5 $intersect->all();

6

7 // [0 => 'Desk', 2 => 'Chair']

As you can see, the resulting collection will preserve the original collection’s keys.

isEmpty() {#collection-method}

The isEmpty method returns true if the collection is empty; otherwise, false is returned:

1 collect([])->isEmpty();

2

3 // true

keyBy() {#collection-method}

Keys the collection by the given key:

Collections 276

1 $collection = collect([

2 ['product_id' => 'prod-100', 'name' => 'desk'],

3 ['product_id' => 'prod-200', 'name' => 'chair'],

4]);

5

6 $keyed = $collection->keyBy('product_id');

7

8 $keyed->all();

9

10 /*

11 [

12 'prod-100' => ['product_id' => 'prod-100', 'name' => 'Desk'],

13 'prod-200' => ['product_id' => 'prod-200', 'name' => 'Chair'],

14]

15 */

If multiple items have the same key, only the last one will appear in the new collection.

You may also pass your own callback, which should return the value to key the collection by:

1 $keyed = $collection->keyBy(function ($item) {

2 return strtoupper($item['product_id']);

3 });

4

5 $keyed->all();

6

7 /*

8 [

9 'PROD-100' => ['product_id' => 'prod-100', 'name' => 'Desk'],

10 'PROD-200' => ['product_id' => 'prod-200', 'name' => 'Chair'],

11]

12 */

keys() {#collection-method}

The keys method returns all of the collection’s keys:

Collections 277

1 $collection = collect([

2 'prod-100' => ['product_id' => 'prod-100', 'name' => 'Desk'],

3 'prod-200' => ['product_id' => 'prod-200', 'name' => 'Chair'],

4]);

5

6 $keys = $collection->keys();

7

8 $keys->all();

9

10 // ['prod-100', 'prod-200']

last() {#collection-method}

The last method returns the last element in the collection that passes a given truth test:

1 collect([1, 2, 3, 4])->last(function ($key, $value) {

2 return $value < 3;

3 });

4

5 // 2

You may also call the last method with no arguments to get the last element in the collection. If
the collection is empty, null is returned:

1 collect([1, 2, 3, 4])->last();

2

3 // 4

map() {#collection-method}

The map method iterates through the collection and passes each value to the given callback. The
callback is free to modify the item and return it, thus forming a new collection of modified items:

Collections 278

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $multiplied = $collection->map(function ($item, $key) {

4 return $item * 2;

5 });

6

7 $multiplied->all();

8

9 // [2, 4, 6, 8, 10]

Note: Like most other collection methods, map returns a new collection instance; it does
not modify the collection it is called on. If you want to transform the original collection,
use the transform method.

max() {#collection-method}

The max method return the maximum value of a given key:

1 $max = collect([['foo' => 10], ['foo' => 20]])->max('foo');

2

3 // 20

4

5 $max = collect([1, 2, 3, 4, 5])->max();

6

7 // 5

merge() {#collection-method}

The mergemethod merges the given array into the collection. Any string key in the array matching
a string key in the collection will overwrite the value in the collection:

Collections 279

1 $collection = collect(['product_id' => 1, 'name' => 'Desk']);

2

3 $merged = $collection->merge(['price' => 100, 'discount' => false]);

4

5 $merged->all();

6

7 // ['product_id' => 1, 'name' => 'Desk', 'price' => 100, 'discount' => false]

If the given array’s keys are numeric, the values will be appended to the end of the collection:

1 $collection = collect(['Desk', 'Chair']);

2

3 $merged = $collection->merge(['Bookcase', 'Door']);

4

5 $merged->all();

6

7 // ['Desk', 'Chair', 'Bookcase', 'Door']

min() {#collection-method}

The min method return the minimum value of a given key:

1 $min = collect([['foo' => 10], ['foo' => 20]])->min('foo');

2

3 // 10

4

5 $min = collect([1, 2, 3, 4, 5])->min();

6

7 // 1

only() {#collection-method}

The only method returns the items in the collection with the specified keys:

Collections 280

1 $collection = collect(['product_id' => 1, 'name' => 'Desk', 'price' => 100, 'dis\

2 count' => false]);

3

4 $filtered = $collection->only(['product_id', 'name']);

5

6 $filtered->all();

7

8 // ['product_id' => 1, 'name' => 'Desk']

For the inverse of only, see the except method.

pluck() {#collection-method}

The pluck method retrieves all of the collection values for a given key:

1 $collection = collect([

2 ['product_id' => 'prod-100', 'name' => 'Desk'],

3 ['product_id' => 'prod-200', 'name' => 'Chair'],

4]);

5

6 $plucked = $collection->pluck('name');

7

8 $plucked->all();

9

10 // ['Desk', 'Chair']

You may also specify how you wish the resulting collection to be keyed:

1 $plucked = $collection->pluck('name', 'product_id');

2

3 $plucked->all();

4

5 // ['prod-100' => 'Desk', 'prod-200' => 'Chair']

pop() {#collection-method}

The pop method removes and returns the last item from the collection:

Collections 281

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->pop();

4

5 // 5

6

7 $collection->all();

8

9 // [1, 2, 3, 4]

prepend() {#collection-method}

The prepend method adds an item to the beginning of the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->prepend(0);

4

5 $collection->all();

6

7 // [0, 1, 2, 3, 4, 5]

You can optionally pass a second argument to set the key of the prepended item:

1 $collection = collect(['one' => 1, 'two', => 2]);

2

3 $collection->prepend(0, 'zero');

4

5 $collection->all();

6

7 // ['zero' => 0, 'one' => 1, 'two', => 2]

pull() {#collection-method}

The pull method removes and returns an item from the collection by its key:

Collections 282

1 $collection = collect(['product_id' => 'prod-100', 'name' => 'Desk']);

2

3 $collection->pull('name');

4

5 // 'Desk'

6

7 $collection->all();

8

9 // ['product_id' => 'prod-100']

push() {#collection-method}

The push method appends an item to the end of the collection:

1 $collection = collect([1, 2, 3, 4]);

2

3 $collection->push(5);

4

5 $collection->all();

6

7 // [1, 2, 3, 4, 5]

put() {#collection-method}

The put method sets the given key and value in the collection:

1 $collection = collect(['product_id' => 1, 'name' => 'Desk']);

2

3 $collection->put('price', 100);

4

5 $collection->all();

6

7 // ['product_id' => 1, 'name' => 'Desk', 'price' => 100]

Collections 283

random() {#collection-method}

The random method returns a random item from the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->random();

4

5 // 4 - (retrieved randomly)

You may optionally pass an integer to random. If that integer is more than 1, a collection of items is
returned:

1 $random = $collection->random(3);

2

3 $random->all();

4

5 // [2, 4, 5] - (retrieved randomly)

reduce() {#collection-method}

The reduce method reduces the collection to a single value, passing the result of each iteration into
the subsequent iteration:

1 $collection = collect([1, 2, 3]);

2

3 $total = $collection->reduce(function ($carry, $item) {

4 return $carry + $item;

5 });

6

7 // 6

The value for $carry on the first iteration is null; however, you may specify its initial value by
passing a second argument to reduce:

Collections 284

1 $collection->reduce(function ($carry, $item) {

2 return $carry + $item;

3 }, 4);

4

5 // 10

reject() {#collection-method}

The reject method filters the collection using the given callback. The callback should return true

for any items it wishes to remove from the resulting collection:

1 $collection = collect([1, 2, 3, 4]);

2

3 $filtered = $collection->reject(function ($value, $key) {

4 return $value > 2;

5 });

6

7 $filtered->all();

8

9 // [1, 2]

For the inverse of the reject method, see the filter method.

reverse() {#collection-method}

The reverse method reverses the order of the collection’s items:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $reversed = $collection->reverse();

4

5 $reversed->all();

6

7 // [5, 4, 3, 2, 1]

Collections 285

search() {#collection-method}

The search method searches the collection for the given value and returns its key if found. If the
item is not found, false is returned.

1 $collection = collect([2, 4, 6, 8]);

2

3 $collection->search(4);

4

5 // 1

The search is done using a “loose” comparison. To use strict comparison, pass true as the second
argument to the method:

1 $collection->search('4', true);

2

3 // false

Alternatively, you may pass in your own callback to search for the first item that passes your truth
test:

1 $collection->search(function ($item, $key) {

2 return $item > 5;

3 });

4

5 // 2

shift() {#collection-method}

The shift method removes and returns the first item from the collection:

Collections 286

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->shift();

4

5 // 1

6

7 $collection->all();

8

9 // [2, 3, 4, 5]

shuffle() {#collection-method}

The shuffle method randomly shuffles the items in the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $shuffled = $collection->shuffle();

4

5 $shuffled->all();

6

7 // [3, 2, 5, 1, 4] // (generated randomly)

slice() {#collection-method}

The slice method returns a slice of the collection starting at the given index:

1 $collection = collect([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

2

3 $slice = $collection->slice(4);

4

5 $slice->all();

6

7 // [5, 6, 7, 8, 9, 10]

If you would like to limit the size of the returned slice, pass the desired size as the second argument
to the method:

Collections 287

1 $slice = $collection->slice(4, 2);

2

3 $slice->all();

4

5 // [5, 6]

The returned slice will have new, numerically indexed keys. If you wish to preserve the original
keys, pass true as the third argument to the method.

sort() {#collection-method}

The sort method sorts the collection:

1 $collection = collect([5, 3, 1, 2, 4]);

2

3 $sorted = $collection->sort();

4

5 $sorted->values()->all();

6

7 // [1, 2, 3, 4, 5]

The sorted collection keeps the original array keys. In this example we used the values method to
reset the keys to consecutively numbered indexes.

For sorting a collection of nested arrays or objects, see the sortBy and sortByDesc methods.

If your sorting needs are more advanced, you may pass a callback to sortwith your own algorithm.
Refer to the PHP documentation on usort¹⁴⁶, which is what the collection’s sortmethod calls under
the hood.

sortBy() {#collection-method}

The sortBy method sorts the collection by the given key:

¹⁴⁶http://php.net/manual/en/function.usort.php#refsect1-function.usort-parameters

http://php.net/manual/en/function.usort.php#refsect1-function.usort-parameters
http://php.net/manual/en/function.usort.php#refsect1-function.usort-parameters

Collections 288

1 $collection = collect([

2 ['name' => 'Desk', 'price' => 200],

3 ['name' => 'Chair', 'price' => 100],

4 ['name' => 'Bookcase', 'price' => 150],

5]);

6

7 $sorted = $collection->sortBy('price');

8

9 $sorted->values()->all();

10

11 /*

12 [

13 ['name' => 'Chair', 'price' => 100],

14 ['name' => 'Bookcase', 'price' => 150],

15 ['name' => 'Desk', 'price' => 200],

16]

17 */

The sorted collection keeps the original array keys. In this example we used the values method to
reset the keys to consecutively numbered indexes.

You can also pass your own callback to determine how to sort the collection values:

1 $collection = collect([

2 ['name' => 'Desk', 'colors' => ['Black', 'Mahogany']],

3 ['name' => 'Chair', 'colors' => ['Black']],

4 ['name' => 'Bookcase', 'colors' => ['Red', 'Beige', 'Brown']],

5]);

6

7 $sorted = $collection->sortBy(function ($product, $key) {

8 return count($product['colors']);

9 });

10

11 $sorted->values()->all();

12

13 /*

14 [

15 ['name' => 'Chair', 'colors' => ['Black']],

16 ['name' => 'Desk', 'colors' => ['Black', 'Mahogany']],

17 ['name' => 'Bookcase', 'colors' => ['Red', 'Beige', 'Brown']],

Collections 289

18]

19 */

sortByDesc() {#collection-method}

This method has the same signature as the sortBymethod, but will sort the collection in the opposite
order.

splice() {#collection-method}

The splice method removes and returns a slice of items starting at the specified index:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $chunk = $collection->splice(2);

4

5 $chunk->all();

6

7 // [3, 4, 5]

8

9 $collection->all();

10

11 // [1, 2]

You may pass a second argument to limit the size of the resulting chunk:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $chunk = $collection->splice(2, 1);

4

5 $chunk->all();

6

7 // [3]

8

9 $collection->all();

10

11 // [1, 2, 4, 5]

Collections 290

In addition, you can pass a third argument containing the new items to replace the items removed
from the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $chunk = $collection->splice(2, 1, [10, 11]);

4

5 $chunk->all();

6

7 // [3]

8

9 $collection->all();

10

11 // [1, 2, 10, 11, 4, 5]

sum() {#collection-method}

The sum method returns the sum of all items in the collection:

1 collect([1, 2, 3, 4, 5])->sum();

2

3 // 15

If the collection contains nested arrays or objects, you should pass a key to use for determining
which values to sum:

1 $collection = collect([

2 ['name' => 'JavaScript: The Good Parts', 'pages' => 176],

3 ['name' => 'JavaScript: The Definitive Guide', 'pages' => 1096],

4]);

5

6 $collection->sum('pages');

7

8 // 1272

In addition, you may pass your own callback to determine which values of the collection to sum:

Collections 291

1 $collection = collect([

2 ['name' => 'Chair', 'colors' => ['Black']],

3 ['name' => 'Desk', 'colors' => ['Black', 'Mahogany']],

4 ['name' => 'Bookcase', 'colors' => ['Red', 'Beige', 'Brown']],

5]);

6

7 $collection->sum(function ($product) {

8 return count($product['colors']);

9 });

10

11 // 6

take() {#collection-method}

The take method returns a new collection with the specified number of items:

1 $collection = collect([0, 1, 2, 3, 4, 5]);

2

3 $chunk = $collection->take(3);

4

5 $chunk->all();

6

7 // [0, 1, 2]

You may also pass a negative integer to take the specified amount of items from the end of the
collection:

1 $collection = collect([0, 1, 2, 3, 4, 5]);

2

3 $chunk = $collection->take(-2);

4

5 $chunk->all();

6

7 // [4, 5]

Collections 292

toArray() {#collection-method}

The toArray method converts the collection into a plain PHP array. If the collection’s values are
Eloquent models, the models will also be converted to arrays:

1 $collection = collect(['name' => 'Desk', 'price' => 200]);

2

3 $collection->toArray();

4

5 /*

6 [

7 ['name' => 'Desk', 'price' => 200],

8]

9 */

Note: toArray also converts all of its nested objects to an array. If you want to get the
underlying array as is, use the all method instead.

toJson() {#collection-method}

The toJson method converts the collection into JSON:

1 $collection = collect(['name' => 'Desk', 'price' => 200]);

2

3 $collection->toJson();

4

5 // '{"name":"Desk","price":200}'

transform() {#collection-method}

The transformmethod iterates over the collection and calls the given callback with each item in the
collection. The items in the collection will be replaced by the values returned by the callback:

Collections 293

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->transform(function ($item, $key) {

4 return $item * 2;

5 });

6

7 $collection->all();

8

9 // [2, 4, 6, 8, 10]

Note:Unlike most other collection methods, transformmodifies the collection itself. If you
wish to create a new collection instead, use the map method.

unique() {#collection-method}

The unique method returns all of the unique items in the collection:

1 $collection = collect([1, 1, 2, 2, 3, 4, 2]);

2

3 $unique = $collection->unique();

4

5 $unique->values()->all();

6

7 // [1, 2, 3, 4]

The returned collection keeps the original array keys. In this example we used the values method
to reset the keys to consecutively numbered indexes.

When dealing with nested arrays or objects, you may specify the key used to determine uniqueness:

Collections 294

1 $collection = collect([

2 ['name' => 'iPhone 6', 'brand' => 'Apple', 'type' => 'phone'],

3 ['name' => 'iPhone 5', 'brand' => 'Apple', 'type' => 'phone'],

4 ['name' => 'Apple Watch', 'brand' => 'Apple', 'type' => 'watch'],

5 ['name' => 'Galaxy S6', 'brand' => 'Samsung', 'type' => 'phone'],

6 ['name' => 'Galaxy Gear', 'brand' => 'Samsung', 'type' => 'watch'],

7]);

8

9 $unique = $collection->unique('brand');

10

11 $unique->values()->all();

12

13 /*

14 [

15 ['name' => 'iPhone 6', 'brand' => 'Apple', 'type' => 'phone'],

16 ['name' => 'Galaxy S6', 'brand' => 'Samsung', 'type' => 'phone'],

17]

18 */

You may also pass your own callback to determine item uniqueness:

1 $unique = $collection->unique(function ($item) {

2 return $item['brand'].$item['type'];

3 });

4

5 $unique->values()->all();

6

7 /*

8 [

9 ['name' => 'iPhone 6', 'brand' => 'Apple', 'type' => 'phone'],

10 ['name' => 'Apple Watch', 'brand' => 'Apple', 'type' => 'watch'],

11 ['name' => 'Galaxy S6', 'brand' => 'Samsung', 'type' => 'phone'],

12 ['name' => 'Galaxy Gear', 'brand' => 'Samsung', 'type' => 'watch'],

13]

14 */

values() {#collection-method}

The values method returns a new collection with the keys reset to consecutive integers:

Collections 295

1 $collection = collect([

2 10 => ['product' => 'Desk', 'price' => 200],

3 11 => ['product' => 'Desk', 'price' => 200]

4]);

5

6 $values = $collection->values();

7

8 $values->all();

9

10 /*

11 [

12 0 => ['product' => 'Desk', 'price' => 200],

13 1 => ['product' => 'Desk', 'price' => 200],

14]

15 */

where() {#collection-method}

The where method filters the collection by a given key / value pair:

1 $collection = collect([

2 ['product' => 'Desk', 'price' => 200],

3 ['product' => 'Chair', 'price' => 100],

4 ['product' => 'Bookcase', 'price' => 150],

5 ['product' => 'Door', 'price' => 100],

6]);

7

8 $filtered = $collection->where('price', 100);

9

10 $filtered->all();

11

12 /*

13 [

14 ['product' => 'Chair', 'price' => 100],

15 ['product' => 'Door', 'price' => 100],

16]

17 */

The wheremethod uses strict comparisons when checking item values. Use the whereLoosemethod
to filter using “loose” comparisons.

Collections 296

whereLoose() {#collection-method}

This method has the same signature as the where method; however, all values are compared using
“loose” comparisons.

whereIn() {#collection-method}

The whereIn method filters the collection by a given key / value contained within the given array.

1 $collection = collect([

2 ['product' => 'Desk', 'price' => 200],

3 ['product' => 'Chair', 'price' => 100],

4 ['product' => 'Bookcase', 'price' => 150],

5 ['product' => 'Door', 'price' => 100],

6]);

7

8 $filtered = $collection->whereIn('price', [150, 200]);

9

10 $filtered->all();

11

12 /*

13 [

14 ['product' => 'Bookcase', 'price' => 150],

15 ['product' => 'Desk', 'price' => 200],

16]

17 */

The whereIn method uses strict comparisons when checking item values. Use the whereInLoose

method to filter using “loose” comparisons.

whereInLoose() {#collection-method}

This method has the same signature as the whereInmethod; however, all values are compared using
“loose” comparisons.

zip() {#collection-method}

The zip method merges together the values of the given array with the values of the collection at
the corresponding index:

Collections 297

1 $collection = collect(['Chair', 'Desk']);

2

3 $zipped = $collection->zip([100, 200]);

4

5 $zipped->all();

6

7 // [['Chair', 100], ['Desk', 200]]

Laravel Elixir
• Introduction
• Installation & Setup
• Running Elixir
• Working With Stylesheets A> - Less A> - Sass A> - Plain CSS A> - Source Maps
• Working With Scripts A> - CoffeeScript A> - Browserify A> - Babel A> - Scripts
• Copying Files & Directories
• Versioning / Cache Busting
• BrowserSync
• Calling Existing Gulp Tasks
• Writing Elixir Extensions

Introduction

Laravel Elixir provides a clean, fluent API for defining basic Gulp¹⁴⁷ tasks for your Laravel
application. Elixir supports several common CSS and JavaScript pre-processors, and even testing
tools. Using method chaining, Elixir allows you to fluently define your asset pipeline. For example:

1 elixir(function(mix) {

2 A> mix.sass('app.scss')

3 A> .coffee('app.coffee');

4

5 });

If you’ve ever been confused about how to get started with Gulp and asset compilation, you will
love Laravel Elixir. However, you are not required to use it while developing your application. You
are free to use any asset pipeline tool you wish, or even none at all.

Installation & Setup

Installing Node

Before triggering Elixir, you must first ensure that Node.js is installed on your machine.

¹⁴⁷http://gulpjs.com

298

http://gulpjs.com
http://gulpjs.com

Laravel Elixir 299

1 node -v

By default, Laravel Homestead includes everything you need; however, if you aren’t using Vagrant,
then you can easily install Node by visiting their download page¹⁴⁸.

Gulp

Next, you’ll want to pull in Gulp¹⁴⁹ as a global NPM package:

1 npm install --global gulp

If you use a version control system, you may wish to run the npm shrinkwrap to lock your NPM
requirements:

1 npm shrinkwrap

Once you have run this command, feel free to commit the [npm-shrinkwrap.json]https://docs.npmjs.com/cli/shrinkwrap
into source control.

Laravel Elixir

The only remaining step is to install Elixir! Within a fresh installation of Laravel, you’ll find a
package.json file in the root. Think of this like your composer.json file, except it defines Node
dependencies instead of PHP. You may install the dependencies it references by running:

1 npm install

If you are developing on aWindows system or you are running your VM on aWindows host system,
you may need to run the npm install command with the --no-bin-links switch enabled:

¹⁴⁸http://nodejs.org/download/
¹⁴⁹http://gulpjs.com

http://nodejs.org/download/
http://gulpjs.com
http://nodejs.org/download/
http://gulpjs.com

Laravel Elixir 300

1 npm install --no-bin-links

Running Elixir

Elixir is built on top of Gulp¹⁵⁰, so to run your Elixir tasks you only need to run the gulp command
in your terminal. Adding the --production flag to the command will instruct Elixir to minify your
CSS and JavaScript files:

1 // Run all tasks...

2 gulp

3

4 // Run all tasks and minify all CSS and JavaScript...

5 gulp --production

Watching Assets For Changes

Since it is inconvenient to run the gulp command on your terminal after every change to your assets,
you may use the gulp watch command. This command will continue running in your terminal and
watch your assets for any changes. When changes occur, new files will automatically be compiled:

1 gulp watch

Working With Stylesheets

The gulpfile.js file in your project’s root directory contains all of your Elixir tasks. Elixir tasks
can be chained together to define exactly how your assets should be compiled.

Less

To compile Less¹⁵¹ into CSS, you may use the less method. The less method assumes that your
Less files are stored in resources/assets/less. By default, the task will place the compiled CSS for
this example in public/css/app.css:

¹⁵⁰http://gulpjs.com
¹⁵¹http://lesscss.org/

http://gulpjs.com
http://lesscss.org/
http://gulpjs.com
http://lesscss.org/

Laravel Elixir 301

1 elixir(function(mix) {

2 A> mix.less('app.less');

3

4 });

You may also combine multiple Less files into a single CSS file. Again, the resulting CSS will be
placed in public/css/app.css:

1 elixir(function(mix) {

2 A> mix.less([

3 A> 'app.less',

4 A> 'controllers.less'

5 A>]);

6

7 });

If you wish to customize the output location of the compiled CSS, you may pass a second argument
to the less method:

1 elixir(function(mix) {

2 A> mix.less('app.less', 'public/stylesheets');

3

4 });

5

6 // Specifying a specific output filename...

7 elixir(function(mix) {

8 A> mix.less('app.less', 'public/stylesheets/style.css');

9

10 });

Sass

The sass method allows you to compile Sass¹⁵² into CSS. Assuming your Sass files are stored at
resources/assets/sass, you may use the method like so:

¹⁵²http://sass-lang.com/

http://sass-lang.com/
http://sass-lang.com/

Laravel Elixir 302

1 elixir(function(mix) {

2 A> mix.sass('app.scss');

3

4 });

Again, like the less method, you may compile multiple Sass files into a single CSS file, and even
customize the output directory of the resulting CSS:

1 elixir(function(mix) {

2 A> mix.sass([

3 A> 'app.scss',

4 A> 'controllers.scss'

5 A>], 'public/assets/css');

6

7 });

Plain CSS

If you would just like to combine some plain CSS stylesheets into a single file, you may use the
styles method. Paths passed to this method are relative to the resources/assets/css directory
and the resulting CSS will be placed in public/css/all.css:

1 elixir(function(mix) {

2 A> mix.styles([

3 A> 'normalize.css',

4 A> 'main.css'

5 A>]);

6

7 });

Of course, you may also output the resulting file to a custom location by passing a second argument
to the styles method:

1 elixir(function(mix) {

2 A> mix.styles([

3 A> 'normalize.css',

4 A> 'main.css'

5 A>], 'public/assets/css');

6

7 });

Laravel Elixir 303

Source Maps

Source maps are enabled out of the box. So, for each file that is compiled you will find a companion
*.css.map file in the same directory. This mapping allows you to trace your compiled stylesheet
selectors back to your original Sass or Less while debugging in your browser.

If you do not want source maps generated for your CSS, you may disable them using a simple
configuration option:

1 elixir.config.sourcemaps = false;

2

3 elixir(function(mix) {

4 A> mix.sass('app.scss');

5

6 });

Working With Scripts

Elixir also provides several functions to help you work with your JavaScript files, such as compiling
ECMAScript 6, compiling CoffeeScript, Browserify, minification, and simply concatenating plain
JavaScript files.

CoffeeScript

The coffee method may be used to compile CoffeeScript¹⁵³ into plain JavaScript. The coffee

function accepts a string or array of CoffeeScript files relative to the resources/assets/coffee

directory and generates a single app.js file in the public/js directory:

1 elixir(function(mix) {

2 A> mix.coffee(['app.coffee', 'controllers.coffee']);

3

4 });

Browserify

Elixir also ships with a browserify method, which gives you all the benefits of requiring modules
in the browser and using ECMAScript 6 and JSX.

This task assumes that your scripts are stored in resources/assets/js and will place the resulting
file in public/js/main.js:

¹⁵³http://coffeescript.org/

http://coffeescript.org/
http://coffeescript.org/

Laravel Elixir 304

1 elixir(function(mix) {

2 A> mix.browserify('main.js');

3

4 });

While Browserify ships with the Partialify and Babelify transformers, you’re free to install and add
more if you wish:

1 npm install aliasify --save-dev

1 elixir.config.js.browserify.transformers.push({

2 A> name: 'aliasify',

3 A> options: {}

4

5 });

6

7 elixir(function(mix) {

8 A> mix.browserify('main.js');

9

10 });

Babel

The babel method may be used to compile ECMAScript 6 and 7¹⁵⁴ and JSX¹⁵⁵ into plain JavaScript.
This function accepts an array of files relative to the resources/assets/js directory, and generates
a single all.js file in the public/js directory:

1 elixir(function(mix) {

2 A> mix.babel([

3 A> 'order.js',

4 A> 'product.js',

5 A> 'react-component.jsx'

6 A>]);

7

8 });

To choose a different output location, simply specify your desired path as the second argument.
The signature and functionality of this method are identical to mix.scripts(), excluding the Babel
compilation.

¹⁵⁴https://babeljs.io/docs/learn-es2015/
¹⁵⁵https://facebook.github.io/react/docs/jsx-in-depth.html

https://babeljs.io/docs/learn-es2015/
https://facebook.github.io/react/docs/jsx-in-depth.html
https://babeljs.io/docs/learn-es2015/
https://facebook.github.io/react/docs/jsx-in-depth.html

Laravel Elixir 305

Scripts

If you have multiple JavaScript files that you would like to combine into a single file, you may use
the scripts method.

The scripts method assumes all paths are relative to the resources/assets/js directory, and will
place the resulting JavaScript in public/js/all.js by default:

1 elixir(function(mix) {

2 A> mix.scripts([

3 A> 'jquery.js',

4 A> 'app.js'

5 A>]);

6

7 });

If you need to combine multiple sets of scripts into different files, you may make multiple calls to
the scripts method. The second argument given to the method determines the resulting file name
for each concatenation:

1 elixir(function(mix) {

2 A> mix.scripts(['app.js', 'controllers.js'], 'public/js/app.js')

3 A> .scripts(['forum.js', 'threads.js'], 'public/js/forum.js');

4

5 });

If you need to combine all of the scripts in a given directory, you may use the scriptsIn method.
The resulting JavaScript will be placed in public/js/all.js:

1 elixir(function(mix) {

2 A> mix.scriptsIn('public/js/some/directory');

3

4 });

Copying Files & Directories

The copy method may be used to copy files and directories to new locations. All operations are
relative to the project’s root directory:

Laravel Elixir 306

1 elixir(function(mix) {

2 A> mix.copy('vendor/foo/bar.css', 'public/css/bar.css');

3

4 });

5

6 elixir(function(mix) {

7 A> mix.copy('vendor/package/views', 'resources/views');

8

9 });

Versioning / Cache Busting

Many developers suffix their compiled assets with a timestamp or unique token to force browsers to
load the fresh assets instead of serving stale copies of the code. Elixir can handle this for you using
the version method.

The version method accepts a file name relative to the public directory, and will append a unique
hash to the filename, allowing for cache-busting. For example, the generated file name will look
something like: all-16d570a7.css:

1 elixir(function(mix) {

2 A> mix.version('css/all.css');

3

4 });

After generating the versioned file, you may use Laravel’s global elixir PHP helper function within
your views to load the appropriately hashed asset. The elixir function will automatically determine
the name of the hashed file:

1 <link rel="stylesheet" href="{{ elixir('css/all.css') }}">

Versioning Multiple Files

You may pass an array to the version method to version multiple files:

Laravel Elixir 307

1 elixir(function(mix) {

2 A> mix.version(['css/all.css', 'js/app.js']);

3

4 });

Once the files have been versioned, you may use the elixir helper function to generate links to the
proper hashed files. Remember, you only need to pass the name of the un-hashed file to the elixir
helper function. The helper will use the un-hashed name to determine the current hashed version
of the file:

1 <link rel="stylesheet" href="{{ elixir('css/all.css') }}">

2

3 <script src="{{ elixir('js/app.js') }}"></script>

BrowserSync

BrowserSync automatically refreshes your web browser after you make changes to your front-end
resources. You can use the browserSyncmethod to instruct Elixir to start a BrowserSync server when
you run the gulp watch command:

1 elixir(function(mix) {

2 A> mix.browserSync();

3

4 });

Once you run gulp watch, access your web application using port 3000 to enable browser syncing:
http://homestead.app:3000. If you’re using a domain other than homestead.app for local devel-
opment, you may pass an array of options¹⁵⁶ as the first argument to the browserSync method:

1 elixir(function(mix) {

2 A> mix.browserSync({

3 A> proxy: 'project.app'

4 A> });

5

6 });

¹⁵⁶http://www.browsersync.io/docs/options/

http://www.browsersync.io/docs/options/
http://www.browsersync.io/docs/options/

Laravel Elixir 308

Calling Existing Gulp Tasks

If you need to call an existing Gulp task from Elixir, you may use the task method. As an example,
imagine that you have a Gulp task that simply speaks a bit of text when called:

1 gulp.task('speak', function() {

2 A> var message = 'Tea...Earl Grey...Hot';

3 A>

4 A> gulp.src('').pipe(shell('say ' + message));

5

6 });

If you wish to call this task from Elixir, use the mix.task method and pass the name of the task as
the only argument to the method:

1 elixir(function(mix) {

2 A> mix.task('speak');

3

4 });

CustomWatchers

If you need to register a watcher to run your custom task each time some files are modified, pass a
regular expression as the second argument to the task method:

1 elixir(function(mix) {

2 A> mix.task('speak', 'app/**/*.php');

3

4 });

Writing Elixir Extensions

If you need more flexibility than Elixir’s task method can provide, you may create custom Elixir
extensions. Elixir extensions allow you to pass arguments to your custom tasks. For example, you
could write an extension like so:

Laravel Elixir 309

1 // File: elixir-extensions.js

2

3 var gulp = require('gulp');

4 var shell = require('gulp-shell');

5 var Elixir = require('laravel-elixir');

6

7 var Task = Elixir.Task;

8

9 Elixir.extend('speak', function(message) {

10

11 A> new Task('speak', function() {

12 A> return gulp.src('').pipe(shell('say ' + message));

13 A> });

14

15 });

16

17 // mix.speak('Hello World');

That’s it! Notice that your Gulp-specific logic should be placed within the function passed as the
second argument to the Task constructor. You may either place this at the top of your Gulpfile,
or instead extract it to a custom tasks file. For example, if you place your extensions in elixir-

extensions.js, you may require the file from your main Gulpfile like so:

1 // File: Gulpfile.js

2

3 var elixir = require('laravel-elixir');

4

5 require('./elixir-extensions')

6

7 elixir(function(mix) {

8 A> mix.speak('Tea, Earl Grey, Hot');

9

10 });

CustomWatchers

If you would like your custom task to be re-triggered while running gulp watch, you may register
a watcher:

Laravel Elixir 310

1 new Task('speak', function() {

2 A> return gulp.src('').pipe(shell('say ' + message));

3

4 })

5 .watch('./app/**');

Encryption
• Configuration
• Basic Usage

Configuration

Before using Laravel’s encrypter, you should set the key option of your config/app.php configu-
ration file to a 32 character, random string. If this value is not properly set, all values encrypted by
Laravel will be insecure.

Basic Usage

Encrypting A Value

You may encrypt a value using the Crypt facade. All encrypted values are encrypted using
OpenSSL and the AES-256-CBC cipher. Furthermore, all encrypted values are signed with a message
authentication code (MAC) to detect any modifications to the encrypted string.

For example, we may use the encryptmethod to encrypt a secret and store it on an Eloquent model:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Crypt;

6 use App\User;

7 use Illuminate\Http\Request;

8 use App\Http\Controllers\Controller;

9

10 class UserController extends Controller

11 {

12 /**

13 * Store a secret message for the user.

14 *

15 * @param Request $request

16 * @param int $id

17 * @return Response

18 */

311

Encryption 312

19 public function storeSecret(Request $request, $id)

20 {

21 $user = User::findOrFail($id);

22

23 $user->fill([

24 'secret' => Crypt::encrypt($request->secret)

25])->save();

26 }

27 }

Note: Encrypted values are passed through serialize during encryption, which allows for
“encryption” of objects and arrays. Thus, non-PHP clients receiving encrypted values will
need to unserialize the data.

Decrypting A Value

Of course, you may decrypt values using the decrypt method on the Crypt facade. If the value can
not be properly decrypted, such aswhen theMAC is invalid, an Illuminate\Contracts\Encryption\DecryptException
will be thrown:

1 use Illuminate\Contracts\Encryption\DecryptException;

2

3 try {

4 $decrypted = Crypt::decrypt($encryptedValue);

5 } catch (DecryptException $e) {

6 //

7 }

Errors & Logging
• Introduction
• Configuration
• The Exception Handler A> - Report Method A> - Render Method
• HTTP Exceptions A> - Custom HTTP Error Pages
• Logging

Introduction

When you start a new Laravel project, error and exception handling is already configured for you.
In addition, Laravel is integrated with the Monolog¹⁵⁷ logging library, which provides support for a
variety of powerful log handlers.

Configuration

Error Detail

The amount of error detail your application displays through the browser is controlled by the
debug configuration option in your config/app.php configuration file. By default, this configuration
option is set to respect the APP_DEBUG environment variable, which is stored in your .env file.

For local development, you should set the APP_DEBUG environment variable to true. In your
production environment, this value should always be false.

Log Modes

Out of the box, Laravel supports single, daily, syslog and errorlog logging modes. For example,
if you wish to use daily log files instead of a single file, you should simply set the log value in your
config/app.php configuration file:

1 'log' => 'daily'

¹⁵⁷https://github.com/Seldaek/monolog

313

https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog

Errors & Logging 314

Custom Monolog Configuration

If you would like to have complete control over howMonolog is configured for your application, you
may use the application’s configureMonologUsing method. You should place a call to this method
in your bootstrap/app.php file right before the $app variable is returned by the file:

1 $app->configureMonologUsing(function($monolog) {

2 $monolog->pushHandler(...);

3 });

4

5 return $app;

The Exception Handler

All exceptions are handled by the App\Exceptions\Handler class. This class contains two methods:
report and render. We’ll examine each of these methods in detail.

The Report Method

The report method is used to log exceptions or send them to an external service like BugSnag¹⁵⁸.
By default, the report method simply passes the exception to the base class where the exception is
logged. However, you are free to log exceptions however you wish.

For example, if you need to report different types of exceptions in different ways, you may use the
PHP instanceof comparison operator:

1 /**

2 * Report or log an exception.

3 *

4 * This is a great spot to send exceptions to Sentry, Bugsnag, etc.

5 *

6 * @param \Exception $e

7 * @return void

8 */

9 public function report(Exception $e)

10 {

11 if ($e instanceof CustomException) {

12 //

13 }

¹⁵⁸https://bugsnag.com

https://bugsnag.com
https://bugsnag.com

Errors & Logging 315

14

15 return parent::report($e);

16 }

Ignoring Exceptions By Type

The $dontReport property of the exception handler contains an array of exception types that will
not be logged. By default, exceptions resulting from 404 errors are not written to your log files. You
may add other exception types to this array as needed.

The Render Method

The render method is responsible for converting a given exception into an HTTP response that
should be sent back to the browser. By default, the exception is passed to the base class which
generates a response for you. However, you are free to check the exception type or return your own
custom response:

1 /**

2 * Render an exception into an HTTP response.

3 *

4 * @param \Illuminate\Http\Request $request

5 * @param \Exception $e

6 * @return \Illuminate\Http\Response

7 */

8 public function render($request, Exception $e)

9 {

10 if ($e instanceof CustomException) {

11 return response()->view('errors.custom', [], 500);

12 }

13

14 return parent::render($request, $e);

15 }

HTTP Exceptions

Some exceptions describe HTTP error codes from the server. For example, this may be a “page not
found” error (404), an “unauthorized error” (401) or even a developer generated 500 error. In order
to generate such a response from anywhere in your application, use the following:

Errors & Logging 316

1 abort(404);

The abort method will immediately raise an exception which will be rendered by the exception
handler. Optionally, you may provide the response text:

1 abort(403, 'Unauthorized action.');

This method may be used at any time during the request’s lifecycle.

Custom HTTP Error Pages

Laravel makes it easy to return custom error pages for various HTTP status codes. For example,
if you wish to customize the error page for 404 HTTP status codes, create a resources/views/er-
rors/404.blade.php. This file will be served on all 404 errors generated by your application.

The views within this directory should be named to match the HTTP status code they correspond
to.

Logging

The Laravel logging facilities provide a simple layer on top of the powerful Monolog¹⁵⁹ library. By
default, Laravel is configured to create daily log files for your application which are stored in the
storage/logs directory. You may write information to the logs using the Log facade:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Log;

6 use App\User;

7 use App\Http\Controllers\Controller;

8

9 class UserController extends Controller

10 {

11 /**

12 * Show the profile for the given user.

¹⁵⁹http://github.com/seldaek/monolog

http://github.com/seldaek/monolog
http://github.com/seldaek/monolog

Errors & Logging 317

13 *

14 * @param int $id

15 * @return Response

16 */

17 public function showProfile($id)

18 {

19 Log::info('Showing user profile for user: '.$id);

20

21 return view('user.profile', ['user' => User::findOrFail($id)]);

22 }

23 }

The logger provides the eight logging levels defined in RFC 5424¹⁶⁰: emergency, alert, critical, error,
warning, notice, info and debug.

1 Log::emergency($error);

2 Log::alert($error);

3 Log::critical($error);

4 Log::error($error);

5 Log::warning($error);

6 Log::notice($error);

7 Log::info($error);

8 Log::debug($error);

Contextual Information

An array of contextual data may also be passed to the log methods. This contextual data will be
formatted and displayed with the log message:

1 Log::info('User failed to login.', ['id' => $user->id]);

Accessing The Underlying Monolog Instance

Monolog has a variety of additional handlers you may use for logging. If needed, you may access
the underlying Monolog instance being used by Laravel:

¹⁶⁰http://tools.ietf.org/html/rfc5424

http://tools.ietf.org/html/rfc5424
http://tools.ietf.org/html/rfc5424

Errors & Logging 318

1 $monolog = Log::getMonolog();

Events
• Introduction
• Registering Events / Listeners
• Defining Events
• Defining Listeners A> - Queued Event Listeners
• Firing Events
• Broadcasting Events A> - Configuration A> - Marking Events For Broadcast A> - Broadcast
Data A> - Event Broadcasting Customizations A> - Consuming Event Broadcasts

• Event Subscribers

Introduction

Laravel’s events provides a simple observer implementation, allowing you to subscribe and listen
for events in your application. Event classes are typically stored in the app/Events directory, while
their listeners are stored in app/Listeners.

Registering Events / Listeners

The EventServiceProvider included with your Laravel application provides a convenient place to
register all event listeners. The listen property contains an array of all events (keys) and their
listeners (values). Of course, you may add as many events to this array as your application requires.
For example, let’s add our PodcastWasPurchased event:

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 'App\Events\PodcastWasPurchased' => [

8 'App\Listeners\EmailPurchaseConfirmation',

9],

10];

319

Events 320

Generating Event / Listener Classes

Of course, manually creating the files for each event and listener is cumbersome. Instead, simply
add listeners and events to your EventServiceProvider and use the event:generate command.
This command will generate any events or listeners that are listed in your EventServiceProvider.
Of course, events and listeners that already exist will be left untouched:

1 php artisan event:generate

Registering Events Manually

Typically, events should be registered via the EventServiceProvider $listen array; however, you
may also register events manually with the event dispatcher using either the Event facade or the
Illuminate\Contracts\Events\Dispatcher contract implementation:

1 /**

2 * Register any other events for your application.

3 *

4 * @param \Illuminate\Contracts\Events\Dispatcher $events

5 * @return void

6 */

7 public function boot(DispatcherContract $events)

8 {

9 parent::boot($events);

10

11 $events->listen('event.name', function ($foo, $bar) {

12 //

13 });

14 }

Wildcard Event Listeners

You may even register listeners using the * as a wildcard, allowing you to catch multiple events on
the same listener. Wildcard listeners receive the entire event data array as a single argument:

Events 321

1 $events->listen('event.*', function (array $data) {

2 //

3 });

Defining Events

An event class is simply a data container which holds the information related to the event. For
example, let’s assume our generated PodcastWasPurchased event receives an Eloquent ORM object:

1 <?php

2

3 namespace App\Events;

4

5 use App\Podcast;

6 use App\Events\Event;

7 use Illuminate\Queue\SerializesModels;

8

9 class PodcastWasPurchased extends Event

10 {

11 use SerializesModels;

12

13 public $podcast;

14

15 /**

16 * Create a new event instance.

17 *

18 * @param Podcast $podcast

19 * @return void

20 */

21 public function __construct(Podcast $podcast)

22 {

23 $this->podcast = $podcast;

24 }

25 }

As you can see, this event class contains no logic. It is simply a container for the Podcast object that
was purchased. The SerializesModels trait used by the event will gracefully serialize any Eloquent
models if the event object is serialized using PHP’s serialize function.

Events 322

Defining Listeners

Next, let’s take a look at the listener for our example event. Event listeners receive the event instance
in their handle method. The event:generate command will automatically import the proper event
class and type-hint the event on the handle method. Within the handle method, you may perform
any logic necessary to respond to the event.

1 <?php

2

3 namespace App\Listeners;

4

5 use App\Events\PodcastWasPurchased;

6 use Illuminate\Queue\InteractsWithQueue;

7 use Illuminate\Contracts\Queue\ShouldQueue;

8

9 class EmailPurchaseConfirmation

10 {

11 /**

12 * Create the event listener.

13 *

14 * @return void

15 */

16 public function __construct()

17 {

18 //

19 }

20

21 /**

22 * Handle the event.

23 *

24 * @param PodcastWasPurchased $event

25 * @return void

26 */

27 public function handle(PodcastWasPurchased $event)

28 {

29 // Access the podcast using $event->podcast...

30 }

31 }

Your event listeners may also type-hint any dependencies they need on their constructors. All
event listeners are resolved via the Laravel service container, so dependencies will be injected
automatically:

Events 323

1 use Illuminate\Contracts\Mail\Mailer;

2

3 public function __construct(Mailer $mailer)

4 {

5 $this->mailer = $mailer;

6 }

Stopping The Propagation Of An Event

Sometimes, you may wish to stop the propagation of an event to other listeners. You may do so by
returning false from your listener’s handle method.

Queued Event Listeners

Need to queue an event listener? It couldn’t be any easier. Simply add the ShouldQueue interface to
the listener class. Listeners generated by the event:generate Artisan command already have this
interface imported into the current namespace, so you can use it immediately:

1 <?php

2

3 namespace App\Listeners;

4

5 use App\Events\PodcastWasPurchased;

6 use Illuminate\Queue\InteractsWithQueue;

7 use Illuminate\Contracts\Queue\ShouldQueue;

8

9 class EmailPurchaseConfirmation implements ShouldQueue

10 {

11 //

12 }

That’s it! Now, when this listener is called for an event, it will be queued automatically by the event
dispatcher using Laravel’s queue system. If no exceptions are thrown when the listener is executed
by the queue, the queued job will automatically be deleted after it has processed.

Manually Accessing The Queue

If you need to access the underlying queue job’s delete and release methods manually, you may
do so. The Illuminate\Queue\InteractsWithQueue trait, which is imported by default on generated
listeners, gives you access to these methods:

Events 324

1 <?php

2

3 namespace App\Listeners;

4

5 use App\Events\PodcastWasPurchased;

6 use Illuminate\Queue\InteractsWithQueue;

7 use Illuminate\Contracts\Queue\ShouldQueue;

8

9 class EmailPurchaseConfirmation implements ShouldQueue

10 {

11 use InteractsWithQueue;

12

13 public function handle(PodcastWasPurchased $event)

14 {

15 if (true) {

16 $this->release(30);

17 }

18 }

19 }

Firing Events

To fire an event, you may use the Event facade, passing an instance of the event to the firemethod.
The fire method will dispatch the event to all of its registered listeners:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Event;

6 use App\Podcast;

7 use App\Events\PodcastWasPurchased;

8 use App\Http\Controllers\Controller;

9

10 class UserController extends Controller

11 {

12 /**

13 * Show the profile for the given user.

14 *

15 * @param int $userId

Events 325

16 * @param int $podcastId

17 * @return Response

18 */

19 public function purchasePodcast($userId, $podcastId)

20 {

21 $podcast = Podcast::findOrFail($podcastId);

22

23 // Purchase podcast logic...

24

25 Event::fire(new PodcastWasPurchased($podcast));

26 }

27 }

Alternatively, you may use the global event helper function to fire events:

1 event(new PodcastWasPurchased($podcast));

Broadcasting Events

In many modern web applications, web sockets are used to implement real-time, live-updating user
interfaces. When some data is updated on the server, a message is typically sent over a websocket
connection to be handled by the client.

To assist you in building these types of applications, Laravel makes it easy to “broadcast” your events
over a websocket connection. Broadcasting your Laravel events allows you to share the same event
names between your server-side code and your client-side JavaScript framework.

Configuration

All of the event broadcasting configuration options are stored in the config/broadcasting.php

configuration file. Laravel supports several broadcast drivers out of the box: Pusher¹⁶¹, Redis, and a
log driver for local development and debugging. A configuration example is included for each of
these drivers.

Broadcast Prerequisites

The following dependencies are needed for event broadcasting:

¹⁶¹https://pusher.com

https://pusher.com
https://pusher.com

Events 326

• Pusher: pusher/pusher-php-server ∼2.0

• Redis: predis/predis ∼1.0

Queue Prerequisites

Before broadcasting events, you will also need to configure and run a queue listener. All event
broadcasting is done via queued jobs so that the response time of your application is not seriously
affected.

Marking Events For Broadcast

To informLaravel that a given event should be broadcast, implement the Illuminate\Contracts\Broadcasting\ShouldBroadcast
interface on the event class. The ShouldBroadcast interface requires you to implement a single
method: broadcastOn. The broadcastOn method should return an array of “channel” names that
the event should be broadcast on:

1 <?php

2

3 namespace App\Events;

4

5 use App\User;

6 use App\Events\Event;

7 use Illuminate\Queue\SerializesModels;

8 use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

9

10 class ServerCreated extends Event implements ShouldBroadcast

11 {

12 use SerializesModels;

13

14 public $user;

15

16 /**

17 * Create a new event instance.

18 *

19 * @return void

20 */

21 public function __construct(User $user)

22 {

23 $this->user = $user;

24 }

25

26 /**

27 * Get the channels the event should be broadcast on.

28 *

Events 327

29 * @return array

30 */

31 public function broadcastOn()

32 {

33 return ['user.'.$this->user->id];

34 }

35 }

Then, you only need to fire the event as you normally would. Once the event has been fired, a
queued job will automatically broadcast the event over your specified broadcast driver.

Broadcast Data

When an event is broadcast, all of its public properties are automatically serialized and broadcast as
the event’s payload, allowing you to access any of its public data from your JavaScript application.
So, for example, if your event has a single public $user property that contains an Eloquent model,
the broadcast payload would be:

1 {

2 "user": {

3 "id": 1,

4 "name": "Jonathan Banks"

5 ...

6 }

7 }

However, if you wish to have even more fine-grained control over your broadcast payload, you may
add a broadcastWith method to your event. This method should return the array of data that you
wish to broadcast with the event:

1 /**

2 * Get the data to broadcast.

3 *

4 * @return array

5 */

6 public function broadcastWith()

7 {

Events 328

8 return ['user' => $this->user->id];

9 }

Event Broadcasting Customizations

Customizing The Event Name

By default, the broadcast event name will be the fully qualified class name of the event. So, if the
event’s class name is App\Events\ServerCreated, the broadcast eventwould be App\Events\ServerCreated.
You can customize this broadcast event name using by defining a broadcastAsmethod on your event
class:

1 /**

2 * Get the broadcast event name.

3 *

4 * @return string

5 */

6 public function broadcastAs()

7 {

8 return 'app.server-created';

9 }

Customizing The Queue

By default, each event to be broadcast is placed on the default queue for the default queue connection
in your queue.php configuration file. You may customize the queue used by the event broadcaster
by adding an onQueuemethod to your event class. This method should return the name of the queue
you wish to use:

1 /**

2 * Set the name of the queue the event should be placed on.

3 *

4 * @return string

5 */

6 public function onQueue()

7 {

Events 329

8 return 'your-queue-name';

9 }

Consuming Event Broadcasts

Pusher

Youmay conveniently consume events broadcast using the Pusher¹⁶² driver using Pusher’s JavaScript
SDK. For example, let’s consume the App\Events\ServerCreated event from our previous examples:

1 this.pusher = new Pusher('pusher-key');

2

3 this.pusherChannel = this.pusher.subscribe('user.' + USER_ID);

4

5 this.pusherChannel.bind('App\\Events\\ServerCreated', function(message) {

6 console.log(message.user);

7 });

Redis

If you are using the Redis broadcaster, you will need to write your own Redis pub/sub consumer
to receive the messages and broadcast them using the websocket technology of your choice. For
example, you may choose to use the popular Socket.io¹⁶³ library which is written in Node.

Using the socket.io and ioredis Node libraries, you can quickly write an event broadcaster to
publish all events that are broadcast by your Laravel application:

1 var app = require('http').createServer(handler);

2 var io = require('socket.io')(app);

3

4 var Redis = require('ioredis');

5 var redis = new Redis();

6

7 app.listen(6001, function() {

8 console.log('Server is running!');

9 });

¹⁶²https://pusher.com
¹⁶³http://socket.io

https://pusher.com
http://socket.io
https://pusher.com
http://socket.io

Events 330

10

11 function handler(req, res) {

12 res.writeHead(200);

13 res.end('');

14 }

15

16 io.on('connection', function(socket) {

17 //

18 });

19

20 redis.psubscribe('*', function(err, count) {

21 //

22 });

23

24 redis.on('pmessage', function(subscribed, channel, message) {

25 message = JSON.parse(message);

26 io.emit(channel + ':' + message.event, message.data);

27 });

Event Subscribers

Event subscribers are classes that may subscribe to multiple events from within the class itself,
allowing you to define several event handlers within a single class. Subscribers should define a
subscribe method, which will be passed an event dispatcher instance:

1 <?php

2

3 namespace App\Listeners;

4

5 class UserEventListener

6 {

7 /**

8 * Handle user login events.

9 */

10 public function onUserLogin($event) {}

11

12 /**

13 * Handle user logout events.

14 */

15 public function onUserLogout($event) {}

Events 331

16

17 /**

18 * Register the listeners for the subscriber.

19 *

20 * @param Illuminate\Events\Dispatcher $events

21 */

22 public function subscribe($events)

23 {

24 $events->listen(

25 'App\Events\UserLoggedIn',

26 'App\Listeners\UserEventListener@onUserLogin'

27);

28

29 $events->listen(

30 'App\Events\UserLoggedOut',

31 'App\Listeners\UserEventListener@onUserLogout'

32);

33 }

34

35 }

Registering An Event Subscriber

Once the subscriber has been defined, it may be registered with the event dispatcher. You may
register subscribers using the $subscribe property on the EventServiceProvider. For example,
let’s add the UserEventListener.

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Contracts\Events\Dispatcher as DispatcherContract;

6 use Illuminate\Foundation\Support\Providers\EventServiceProvider as ServiceProvi\

7 der;

8

9 class EventServiceProvider extends ServiceProvider

10 {

11 /**

12 * The event listener mappings for the application.

13 *

14 * @var array

Events 332

15 */

16 protected $listen = [

17 //

18];

19

20 /**

21 * The subscriber classes to register.

22 *

23 * @var array

24 */

25 protected $subscribe = [

26 'App\Listeners\UserEventListener',

27];

28 }

Filesystem / Cloud Storage
• Introduction
• Configuration
• Basic UsageA> -ObtainingDisk Instances A> - Retrieving Files A> - Storing Files A> - Deleting
Files A> - Directories

• Custom Filesystems

Introduction

Laravel provides a powerful filesystem abstraction thanks to the wonderful Flysystem¹⁶⁴ PHP
package by Frank de Jonge. The Laravel Flysystem integration provides simple to use drivers
for working with local filesystems, Amazon S3, and Rackspace Cloud Storage. Even better, it’s
amazingly simple to switch between these storage options as the API remains the same for each
system.

Configuration

The filesystem configuration file is located at config/filesystems.php. Within this file you may
configure all of your “disks”. Each disk represents a particular storage driver and storage location.
Example configurations for each supported driver is included in the configuration file. So, simply
modify the configuration to reflect your storage preferences and credentials.

Of course, you may configure as many disks as you like, and may even have multiple disks that use
the same driver.

The Local Driver

When using the local driver, note that all file operations are relative to the root directory defined
in your configuration file. By default, this value is set to the storage/app directory. Therefore, the
following method would store a file in storage/app/file.txt:

1 Storage::disk('local')->put('file.txt', 'Contents');

¹⁶⁴https://github.com/thephpleague/flysystem

333

https://github.com/thephpleague/flysystem
https://github.com/thephpleague/flysystem

Filesystem / Cloud Storage 334

Other Driver Prerequisites

Before using the S3 or Rackspace drivers, you will need to install the appropriate package via
Composer:

• Amazon S3: league/flysystem-aws-s3-v3 ∼1.0

• Rackspace: league/flysystem-rackspace ∼1.0

Basic Usage

Obtaining Disk Instances

The Storage facade may be used to interact with any of your configured disks. For example, you
may use the put method on the facade to store an avatar on the default disk. If you call methods
on the Storage facade without first calling the disk method, the method call will automatically be
passed to the default disk:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Storage;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class UserController extends Controller

10 {

11 /**

12 * Update the avatar for the given user.

13 *

14 * @param Request $request

15 * @param int $id

16 * @return Response

17 */

18 public function updateAvatar(Request $request, $id)

19 {

20 $user = User::findOrFail($id);

21

22 Storage::put(

23 'avatars/'.$user->id,

24 file_get_contents($request->file('avatar')->getRealPath())

25);

26 }

Filesystem / Cloud Storage 335

27 }

When using multiple disks, you may access a particular disk using the diskmethod on the Storage
facade. Of course, you may continue to chain methods to execute methods on the disk:

1 $disk = Storage::disk('s3');

2

3 $contents = Storage::disk('local')->get('file.jpg')

Retrieving Files

The get method may be used to retrieve the contents of a given file. The raw string contents of the
file will be returned by the method:

1 $contents = Storage::get('file.jpg');

The exists method may be used to determine if a given file exists on the disk:

1 $exists = Storage::disk('s3')->exists('file.jpg');

File Meta Information

The size method may be used to get the size of the file in bytes:

1 $size = Storage::size('file1.jpg');

The lastModified method returns the UNIX timestamp of the last time the file was modified:

Filesystem / Cloud Storage 336

1 $time = Storage::lastModified('file1.jpg');

Storing Files

The put method may be used to store a file on disk. You may also pass a PHP resource to
the put method, which will use Flysystem’s underlying stream support. Using streams is greatly
recommended when dealing with large files:

1 Storage::put('file.jpg', $contents);

2

3 Storage::put('file.jpg', $resource);

The copy method may be used to copy an existing file to a new location on the disk:

1 Storage::copy('old/file1.jpg', 'new/file1.jpg');

The move method may be used to rename or move an existing file to a new location:

1 Storage::move('old/file1.jpg', 'new/file1.jpg');

Prepending / Appending To Files

The prepend and appendmethods allow you to easily insert content at the beginning or end of a file:

1 Storage::prepend('file.log', 'Prepended Text');

2

3 Storage::append('file.log', 'Appended Text');

Filesystem / Cloud Storage 337

Deleting Files

The delete method accepts a single filename or an array of files to remove from the disk:

1 Storage::delete('file.jpg');

2

3 Storage::delete(['file1.jpg', 'file2.jpg']);

Directories

Get All Files Within A Directory

The filesmethod returns an array of all of the files in a given directory. If you would like to retrieve
a list of all files within a given directory including all sub-directories, you may use the allFiles

method:

1 $files = Storage::files($directory);

2

3 $files = Storage::allFiles($directory);

Get All Directories Within A Directory

The directories method returns an array of all the directories within a given directory. Addition-
ally, you may use the allDirectoriesmethod to get a list of all directories within a given directory
and all of its sub-directories:

1 $directories = Storage::directories($directory);

2

3 // Recursive...

4 $directories = Storage::allDirectories($directory);

Create A Directory

The makeDirectory method will create the given directory, including any needed sub-directories:

Filesystem / Cloud Storage 338

1 Storage::makeDirectory($directory);

Delete A Directory

Finally, the deleteDirectory may be used to remove a directory, including all of its files, from the
disk:

1 Storage::deleteDirectory($directory);

Custom Filesystems

Laravel’s Flysystem integration provides drivers for several “drivers” out of the box; however,
Flysystem is not limited to these and has adapters for many other storage systems. You can create a
custom driver if you want to use one of these additional adapters in your Laravel application.

In order to set up the custom filesystem you will need to create a service provider such as
DropboxServiceProvider. In the provider’s bootmethod, you may use the Storage facade’s extend
method to define the custom driver:

1 <?php

2

3 namespace App\Providers;

4

5 use Storage;

6 use League\Flysystem\Filesystem;

7 use Dropbox\Client as DropboxClient;

8 use Illuminate\Support\ServiceProvider;

9 use League\Flysystem\Dropbox\DropboxAdapter;

10

11 class DropboxServiceProvider extends ServiceProvider

12 {

13 /**

14 * Perform post-registration booting of services.

15 *

16 * @return void

17 */

18 public function boot()

Filesystem / Cloud Storage 339

19 {

20 Storage::extend('dropbox', function($app, $config) {

21 $client = new DropboxClient(

22 $config['accessToken'], $config['clientIdentifier']

23);

24

25 return new Filesystem(new DropboxAdapter($client));

26 });

27 }

28

29 /**

30 * Register bindings in the container.

31 *

32 * @return void

33 */

34 public function register()

35 {

36 //

37 }

38 }

The first argument of the extend method is the name of the driver and the second is a Closure
that receives the $app and $config variables. The resolver Closure must return an instance of
League\Flysystem\Filesystem. The $config variable contains the values defined in config/-

filesystems.php for the specified disk.

Once you have created the service provider to register the extension, youmay use the dropbox driver
in your config/filesystem.php configuration file.

Hashing
• Introduction
• Basic Usage

Introduction

The Laravel Hash facade provides secure Bcrypt hashing for storing user passwords. If you are using
the AuthController controller that is included with your Laravel application, it will automatically
use Bcrypt for registration and authentication.

Bcrypt is a great choice for hashing passwords because its “work factor” is adjustable, which means
that the time it takes to generate a hash can be increased as hardware power increases.

Basic Usage

You may hash a password by calling the make method on the Hash facade:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Hash;

6 use App\User;

7 use Illuminate\Http\Request;

8 use App\Http\Controllers\Controller;

9

10 class UserController extends Controller

11 {

12 /**

13 * Update the password for the user.

14 *

15 * @param Request $request

16 * @param int $id

17 * @return Response

18 */

19 public function updatePassword(Request $request, $id)

20 {

21 $user = User::findOrFail($id);

340

Hashing 341

22

23 // Validate the new password length...

24

25 $user->fill([

26 'password' => Hash::make($request->newPassword)

27])->save();

28 }

29 }

Alternatively, you may also use the global bcrypt helper function:

1 bcrypt('plain-text');

Verifying A Password Against A Hash

The check method allows you to verify that a given plain-text string corresponds to a given hash.
However, if you are using the AuthController included with Laravel, you will probably not need
to use this directly, as the included authentication controller automatically calls this method:

1 if (Hash::check('plain-text', $hashedPassword)) {

2 // The passwords match...

3 }

Checking If A Password Needs To Be Rehashed

The needsRehash function allows you to determine if the work factor used by the hasher has changed
since the password was hashed:

1 if (Hash::needsRehash($hashed)) {

2 $hashed = Hash::make('plain-text');

3 }

Helper Functions
• Introduction
• Available Methods

Introduction

Laravel includes a variety of “helper” PHP functions. Many of these functions are used by the
framework itself; however, you are free to use them in your own applications if you find them
convenient.

Available Methods

<style> A> .collection-method-list > p { A> column-count: 3; -moz-column-count: 3; -webkit-
column-count: 3; A> column-gap: 2em; -moz-column-gap: 2em; -webkit-column-gap: 2em; A> } A>
A> .collection-method-list a { A> display: block; A> }

</style>

Arrays

<div class=”collection-method-list” markdown=”1”> array_add array_collapse array_divide array_-
dot array_except array_first array_flatten array_forget array_get array_has array_only array_pluck
array_pull array_set array_sort array_sort_recursive array_where head last </div>

Paths

<div class=”collection-method-list” markdown=”1”> app_path base_path config_path database_-
path elixir public_path storage_path </div>

Strings

<div class=”collection-method-list”markdown=”1”> camel_case class_basename e ends_with snake_-
case str_limit starts_with str_contains str_finish str_is str_plural str_random str_singular str_slug
studly_case trans trans_choice </div>

342

Helper Functions 343

URLs

<div class=”collection-method-list” markdown=”1”> action asset secure_asset route url </div>

Miscellaneous

<div class=”collection-method-list” markdown=”1”> auth back bcrypt collect config csrf_field csrf_-
token dd dispatch env event factory method_field old redirect request response session value view
with </div>

Method Listing

<style> A> #collection-method code { A> font-size: 14px; A> } A> A> #collection-method:not(.first-
collection-method) { A> margin-top: 50px; A> }

</style>

Arrays

array_add() {#collection-method .first-collection-method}

The array_add function adds a given key / value pair to the array if the given key doesn’t already
exist in the array:

1 $array = array_add(['name' => 'Desk'], 'price', 100);

2

3 // ['name' => 'Desk', 'price' => 100]

array_collapse() {#collection-method}

The array_collapse function collapse an array of arrays into a single array:

1 $array = array_collapse([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);

2

3 // [1, 2, 3, 4, 5, 6, 7, 8, 9]

Helper Functions 344

array_divide() {#collection-method}

The array_divide function returns two arrays, one containing the keys, and the other containing
the values of the original array:

1 list($keys, $values) = array_divide(['name' => 'Desk']);

2

3 // $keys: ['name']

4

5 // $values: ['Desk']

array_dot() {#collection-method}

The array_dot function flattens a multi-dimensional array into a single level array that uses “dot”
notation to indicate depth:

1 $array = array_dot(['foo' => ['bar' => 'baz']]);

2

3 // ['foo.bar' => 'baz'];

array_except() {#collection-method}

The array_except function removes the given key / value pairs from the array:

1 $array = ['name' => 'Desk', 'price' => 100];

2

3 $array = array_except($array, ['price']);

4

5 // ['name' => 'Desk']

array_first() {#collection-method}

The array_first function returns the first element of an array passing a given truth test:

Helper Functions 345

1 $array = [100, 200, 300];

2

3 $value = array_first($array, function ($key, $value) {

4 return $value >= 150;

5 });

6

7 // 200

A default value may also be passed as the third parameter to the method. This value will be returned
if no value passes the truth test:

1 $value = array_first($array, $callback, $default);

array_flatten() {#collection-method}

The array_flatten function will flatten a multi-dimensional array into a single level.

1 $array = ['name' => 'Joe', 'languages' => ['PHP', 'Ruby']];

2

3 $array = array_flatten($array);

4

5 // ['Joe', 'PHP', 'Ruby'];

array_forget() {#collection-method}

The array_forget function removes a given key / value pair from a deeply nested array using “dot”
notation:

1 $array = ['products' => ['desk' => ['price' => 100]]];

2

3 array_forget($array, 'products.desk');

4

5 // ['products' => []]

Helper Functions 346

array_get() {#collection-method}

The array_get function retrieves a value from a deeply nested array using “dot” notation:

1 $array = ['products' => ['desk' => ['price' => 100]]];

2

3 $value = array_get($array, 'products.desk');

4

5 // ['price' => 100]

The array_get function also accepts a default value, which will be returned if the specific key is not
found:

1 $value = array_get($array, 'names.john', 'default');

array_has() {#collection-method}

The array_has function checks that a given item exists in an array using “dot” notation:

1 $array = ['products' => ['desk' => ['price' => 100]]];

2

3 $hasDesk = array_has($array, 'products.desk');

4

5 // true

array_only() {#collection-method}

The array_only function will return only the specified key / value pairs from the given array:

1 $array = ['name' => 'Desk', 'price' => 100, 'orders' => 10];

2

3 $array = array_only($array, ['name', 'price']);

4

5 // ['name' => 'Desk', 'price' => 100]

Helper Functions 347

array_pluck() {#collection-method}

The array_pluck function will pluck a list of the given key / value pairs from the array:

1 $array = [

2 ['developer' => ['id' => 1, 'name' => 'Taylor']],

3 ['developer' => ['id' => 2, 'name' => 'Abigail']],

4];

5

6 $array = array_pluck($array, 'developer.name');

7

8 // ['Taylor', 'Abigail'];

You may also specify how you wish the resulting list to be keyed:

1 $array = array_pluck($array, 'developer.name', 'developer.id');

2

3 // [1 => 'Taylor', 2 => 'Abigail'];

array_prepend() {#collection-method}

The array_prepend function will push an item onto the beginning of an array:

1 $array = ['one', 'two', 'three', 'four'];

2

3 $array = array_prepend($array, 'zero');

4

5 // $array: ['zero', 'one', 'two', 'three', 'four']

array_pull() {#collection-method}

The array_pull function returns and removes a key / value pair from the array:

Helper Functions 348

1 $array = ['name' => 'Desk', 'price' => 100];

2

3 $name = array_pull($array, 'name');

4

5 // $name: Desk

6

7 // $array: ['price' => 100]

array_set() {#collection-method}

The array_set function sets a value within a deeply nested array using “dot” notation:

1 $array = ['products' => ['desk' => ['price' => 100]]];

2

3 array_set($array, 'products.desk.price', 200);

4

5 // ['products' => ['desk' => ['price' => 200]]]

array_sort() {#collection-method}

The array_sort function sorts the array by the results of the given Closure:

1 $array = [

2 ['name' => 'Desk'],

3 ['name' => 'Chair'],

4];

5

6 $array = array_values(array_sort($array, function ($value) {

7 return $value['name'];

8 }));

9

10 /*

11 [

12 ['name' => 'Chair'],

13 ['name' => 'Desk'],

14]

Helper Functions 349

15 */

array_sort_recursive() {#collection-method}

The array_sort_recursive function recursively sorts the array using the sort function:

1 $array = [

2 [

3 'Roman',

4 'Taylor',

5 'Li',

6],

7 [

8 'PHP',

9 'Ruby',

10 'JavaScript',

11],

12];

13

14 $array = array_sort_recursive($array);

15

16 /*

17 [

18 [

19 'Li',

20 'Roman',

21 'Taylor',

22],

23 [

24 'JavaScript',

25 'PHP',

26 'Ruby',

27]

28];

29 */

array_where() {#collection-method}

The array_where function filters the array using the given Closure:

Helper Functions 350

1 $array = [100, '200', 300, '400', 500];

2

3 $array = array_where($array, function ($key, $value) {

4 return is_string($value);

5 });

6

7 // [1 => 200, 3 => 400]

head() {#collection-method}

The head function simply returns the first element in the given array:

1 $array = [100, 200, 300];

2

3 $first = head($array);

4

5 // 100

last() {#collection-method}

The last function returns the last element in the given array:

1 $array = [100, 200, 300];

2

3 $last = last($array);

4

5 // 300

Paths

app_path() {#collection-method}

The app_path function returns the fully qualified path to the app directory:

Helper Functions 351

1 $path = app_path();

You may also use the app_path function to generate a fully qualified path to a given file relative to
the application directory:

1 $path = app_path('Http/Controllers/Controller.php');

base_path() {#collection-method}

The base_path function returns the fully qualified path to the project root:

1 $path = base_path();

You may also use the base_path function to generate a fully qualified path to a given file relative to
the application directory:

1 $path = base_path('vendor/bin');

config_path() {#collection-method}

The config_path function returns the fully qualified path to the application configuration directory:

1 $path = config_path();

database_path() {#collection-method}

The database_path function returns the fully qualified path to the application’s database directory:

Helper Functions 352

1 $path = database_path();

elixir() {#collection-method}

The elixir function gets the path to the versioned Elixir file:

1 elixir($file);

public_path() {#collection-method}

The public_path function returns the fully qualified path to the public directory:

1 $path = public_path();

storage_path() {#collection-method}

The storage_path function returns the fully qualified path to the storage directory:

1 $path = storage_path();

You may also use the storage_path function to generate a fully qualified path to a given file relative
to the storage directory:

1 $path = storage_path('app/file.txt');

Strings

camel_case() {#collection-method}

The camel_case function converts the given string to camelCase:

Helper Functions 353

1 $camel = camel_case('foo_bar');

2

3 // fooBar

class_basename() {#collection-method}

The class_basename returns the class name of the given class with the class’ namespace removed:

1 $class = class_basename('Foo\Bar\Baz');

2

3 // Baz

e() {#collection-method}

The e function runs htmlentities over the given string:

1 echo e('<html>foo</html>');

2

3 // <html>foo</html>

ends_with() {#collection-method}

The ends_with function determines if the given string ends with the given value:

1 $value = ends_with('This is my name', 'name');

2

3 // true

snake_case() {#collection-method}

The snake_case function converts the given string to snake_case:

Helper Functions 354

1 $snake = snake_case('fooBar');

2

3 // foo_bar

str_limit() {#collection-method}

The str_limit function limits the number of characters in a string. The function accepts a string as
its first argument and the maximum number of resulting characters as its second argument:

1 $value = str_limit('The PHP framework for web artisans.', 7);

2

3 // The PHP...

starts_with() {#collection-method}

The starts_with function determines if the given string begins with the given value:

1 $value = starts_with('This is my name', 'This');

2

3 // true

str_contains() {#collection-method}

The str_contains function determines if the given string contains the given value:

1 $value = str_contains('This is my name', 'my');

2

3 // true

str_finish() {#collection-method}

The str_finish function adds a single instance of the given value to a string:

Helper Functions 355

1 $string = str_finish('this/string', '/');

2

3 // this/string/

str_is() {#collection-method}

The str_is function determines if a given string matches a given pattern. Asterisks may be used to
indicate wildcards:

1 $value = str_is('foo*', 'foobar');

2

3 // true

4

5 $value = str_is('baz*', 'foobar');

6

7 // false

str_plural() {#collection-method}

The str_plural function converts a string to its plural form. This function currently only supports
the English language:

1 $plural = str_plural('car');

2

3 // cars

4

5 $plural = str_plural('child');

6

7 // children

You may provide an integer as a second argument to the function to retrieve the singular or plural
form of the string:

Helper Functions 356

1 $plural = str_plural('child', 2);

2

3 // children

4

5 $plural = str_plural('child', 1);

6

7 // child

str_random() {#collection-method}

The str_random function generates a random string of the specified length:

1 $string = str_random(40);

str_singular() {#collection-method}

The str_singular function converts a string to its singular form. This function currently only
supports the English language:

1 $singular = str_singular('cars');

2

3 // car

str_slug() {#collection-method}

The str_slug function generates a URL friendly “slug” from the given string:

1 $title = str_slug("Laravel 5 Framework", "-");

2

3 // laravel-5-framework

Helper Functions 357

studly_case() {#collection-method}

The studly_case function converts the given string to StudlyCase:

1 $value = studly_case('foo_bar');

2

3 // FooBar

trans() {#collection-method}

The trans function translates the given language line using your localization files:

1 echo trans('validation.required'):

trans_choice() {#collection-method}

The trans_choice function translates the given language line with inflection:

1 $value = trans_choice('foo.bar', $count);

URLs

action() {#collection-method}

The action function generates a URL for the given controller action. You do not need to pass
the full namespace to the controller. Instead, pass the controller class name relative to the
App\Http\Controllers namespace:

1 $url = action('HomeController@getIndex');

If the method accepts route parameters, you may pass them as the second argument to the method:

Helper Functions 358

1 $url = action('UserController@profile', ['id' => 1]);

asset() {#collection-method}

Generate a URL for an asset using the current scheme of the request (HTTP or HTTPS):

1 $url = asset('img/photo.jpg');

secure_asset() {#collection-method}

Generate a URL for an asset using HTTPS:

1 echo secure_asset('foo/bar.zip', $title, $attributes = []);

route() {#collection-method}

The route function generates a URL for the given named route:

1 $url = route('routeName');

If the route accepts parameters, you may pass them as the second argument to the method:

1 $url = route('routeName', ['id' => 1]);

url() {#collection-method}

The url function generates a fully qualified URL to the given path:

Helper Functions 359

1 echo url('user/profile');

2

3 echo url('user/profile', [1]);

If no path is provided, a Illuminate\Routing\UrlGenerator instance is returned:

1 echo url()->current();

2 echo url()->full();

3 echo url()->previous();

Miscellaneous

auth() {#collection-method}

The auth function returns an authenticator instance. You may use it instead of the Auth facade for
convenience:

1 $user = auth()->user();

back() {#collection-method}

The back() function generates a redirect response to the user’s previous location:

1 return back();

bcrypt() {#collection-method}

The bcrypt function hashes the given value using Bcrypt. You may use it as an alternative to the
Hash facade:

Helper Functions 360

1 $password = bcrypt('my-secret-password');

collect() {#collection-method}

The collect function creates a collection instance from the supplied items:

1 $collection = collect(['taylor', 'abigail']);

config() {#collection-method}

The config function gets the value of a configuration variable. The configuration values may be
accessed using “dot” syntax, which includes the name of the file and the option you wish to access.
A default value may be specified and is returned if the configuration option does not exist:

1 $value = config('app.timezone');

2

3 $value = config('app.timezone', $default);

The config helper may also be used to set configuration variables at runtime by passing an array
of key / value pairs:

1 config(['app.debug' => true]);

csrf_field() {#collection-method}

The csrf_field function generates an HTML hidden input field containing the value of the CSRF
token. For example, using Blade syntax:

1 {!! csrf_field() !!}

Helper Functions 361

csrf_token() {#collection-method}

The csrf_token function retrieves the value of the current CSRF token:

1 $token = csrf_token();

dd() {#collection-method}

The dd function dumps the given variable and ends execution of the script:

1 dd($value);

dispatch() {#collection-method}

The dispatch function pushes a new job onto the Laravel job queue:

1 dispatch(new App\Jobs\SendEmails);

env() {#collection-method}

The env function gets the value of an environment variable or returns a default value:

1 $env = env('APP_ENV');

2

3 // Return a default value if the variable doesn't exist...

4 $env = env('APP_ENV', 'production');

event() {#collection-method}

The event function dispatches the given event to its listeners:

Helper Functions 362

1 event(new UserRegistered($user));

factory() {#collection-method}

The factory function creates a model factory builder for a given class, name, and amount. It can be
used while testing or seeding:

1 $user = factory(App\User::class)->make();

method_field() {#collection-method}

The method_field function generates an HTML hidden input field containing the spoofed value of
the form’s HTTP verb. For example, using Blade syntax:

1 <form method="POST">

2 {!! method_field('delete') !!}

3 </form>

old() {#collection-method}

The old function retrieves an old input value flashed into the session:

1 $value = old('value');

2

3 $value = old('value', 'default');

redirect() {#collection-method}

The redirect function returns an instance of the redirector to do redirects:

Helper Functions 363

1 return redirect('/home');

request() {#collection-method}

The request function returns the current request instance or obtains an input item:

1 $request = request();

2

3 $value = request('key', $default = null)

response() {#collection-method}

The response function creates a response instance or obtains an instance of the response factory:

1 return response('Hello World', 200, $headers);

2

3 return response()->json(['foo' => 'bar'], 200, $headers);

session() {#collection-method}

The session function may be used to get / set a session value:

1 $value = session('key');

You may set values by passing an array of key / value pairs to the function:

1 session(['chairs' => 7, 'instruments' => 3]);

The session store will be returned if no value is passed to the function:

Helper Functions 364

1 $value = session()->get('key');

2

3 session()->put('key', $value);

value() {#collection-method}

The value function’s behavior will simply return the value it is given. However, if you pass a Closure
to the function, the Closure will be executed then its result will be returned:

1 $value = value(function() { return 'bar'; });

view() {#collection-method}

The view function retrieves a view instance:

1 return view('auth.login');

with() {#collection-method}

The with function returns the value it is given. This function is primarily useful for method chaining
where it would otherwise be impossible:

1 $value = with(new Foo)->work();

Localization
• Introduction
• Basic Usage A> - Pluralization
• Overriding Vendor Language Files

Introduction

Laravel’s localization features provide a convenient way to retrieve strings in various languages,
allowing you to easily support multiple languages within your application.

Language strings are stored in files within the resources/lang directory. Within this directory there
should be a subdirectory for each language supported by the application:

1 /resources

2 /lang

3 /en

4 messages.php

5 /es

6 messages.php

All language files simply return an array of keyed strings. For example:

1 <?php

2

3 return [

4 'welcome' => 'Welcome to our application'

5];

Configuring The Locale

The default language for your application is stored in the config/app.php configuration file. Of
course, you may modify this value to suit the needs of your application. You may also change the
active language at runtime using the setLocale method on the App facade:

365

Localization 366

1 Route::get('welcome/{locale}', function ($locale) {

2 App::setLocale($locale);

3

4 //

5 });

You may also configure a “fallback language”, which will be used when the active language does not
contain a given language line. Like the default language, the fallback language is also configured in
the config/app.php configuration file:

1 'fallback_locale' => 'en',

Basic Usage

You may retrieve lines from language files using the trans helper function. The trans method
accepts the file and key of the language line as its first argument. For example, let’s retrieve the
language line welcome in the resources/lang/messages.php language file:

1 echo trans('messages.welcome');

Of course if you are using the Blade templating engine, you may use the {{ }} syntax to echo the
language line:

1 {{ trans('messages.welcome') }}

If the specified language line does not exist, the trans function will simply return the language
line key. So, using the example above, the trans function would return messages.welcome if the
language line does not exist.

Replacing Parameters In Language Lines

If you wish, you may define place-holders in your language lines. All place-holders are prefixed
with a :. For example, you may define a welcome message with a place-holder name:

Localization 367

1 'welcome' => 'Welcome, :name',

To replace the place-holders when retrieving a language line, pass an array of replacements as the
second argument to the trans function:

1 echo trans('messages.welcome', ['name' => 'Dayle']);

Pluralization

Pluralization is a complex problem, as different languages have a variety of complex rules for
pluralization. By using a “pipe” character, you may distinguish a singular and plural form of a
string:

1 'apples' => 'There is one apple|There are many apples',

Then, you may then use the trans_choice function to retrieve the line for a given “count”. In this
example, since the count is greater than one, the plural form of the language line is returned:

1 echo trans_choice('messages.apples', 10);

Since the Laravel translator is powered by the Symfony Translation component, you may create
even more complex pluralization rules:

1 'apples' => '{0} There are none|[1,19] There are some|[20,Inf] There are many',

Overriding Vendor Language Files

Some packages may ship with their own language files. Instead of hacking the package’s core files
to tweak these lines, you may override them by placing your own files in the resources/lang/ven-
dor/{package}/{locale} directory.

Localization 368

So, for example, if you need to override the English language lines in messages.php for a package
named skyrim/hearthfire, you would place a language file at: resources/lang/vendor/hearth-
fire/en/messages.php. In this file you should only define the language lines you wish to override.
Any language lines you don’t override will still be loaded from the package’s original language files.

Mail
• Introduction
• Sending Mail A> - Attachments A> - Inline Attachments A> - Queueing Mail
• Mail & Local Development
• Events

Introduction

Laravel provides a clean, simple API over the popular SwiftMailer¹⁶⁵ library. Laravel provides drivers
for SMTP, Mailgun, Mandrill, Amazon SES, PHP’s mail function, and sendmail, allowing you to
quickly get started sending mail through a local or cloud based service of your choice.

Driver Prerequisites

The API based drivers such as Mailgun andMandrill are often simpler and faster than SMTP servers.
All of the API drivers require that the Guzzle HTTP library be installed for your application. You
may install Guzzle to your project by adding the following line to your composer.json file:

1 "guzzlehttp/guzzle": "~5.3|~6.0"

Mailgun Driver

To use the Mailgun driver, first install Guzzle, then set the driver option in your config/mail.php
configuration file to mailgun. Next, verify that your config/services.php configuration file
contains the following options:

1 'mailgun' => [

2 'domain' => 'your-mailgun-domain',

3 'secret' => 'your-mailgun-key',

4],

¹⁶⁵http://swiftmailer.org

369

http://swiftmailer.org
http://swiftmailer.org

Mail 370

Mandrill Driver

To use the Mandrill driver, first install Guzzle, then set the driver option in your config/mail.php
configuration file to mandrill. Next, verify that your config/services.php configuration file
contains the following options:

1 'mandrill' => [

2 'secret' => 'your-mandrill-key',

3],

SES Driver

To use the Amazon SES driver, install the Amazon AWS SDK for PHP. You may install this library
by adding the following line to your composer.json file’s require section:

1 "aws/aws-sdk-php": "~3.0"

Next, set the driver option in your config/mail.php configuration file to ses. Then, verify that
your config/services.php configuration file contains the following options:

1 'ses' => [

2 'key' => 'your-ses-key',

3 'secret' => 'your-ses-secret',

4 'region' => 'ses-region', // e.g. us-east-1

5],

Sending Mail

Laravel allows you to store your e-mail messages in views. For example, to organize your e-mails,
you could create an emails directory within your resources/views directory:

To send a message, use the send method on the Mail facade. The send method accepts three
arguments. First, the name of a view that contains the e-mail message. Secondly, an array of data
you wish to pass to the view. Lastly, a Closure callback which receives a message instance, allowing
you to customize the recipients, subject, and other aspects of the mail message:

Mail 371

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Mail;

6 use App\User;

7 use Illuminate\Http\Request;

8 use App\Http\Controllers\Controller;

9

10 class UserController extends Controller

11 {

12 /**

13 * Send an e-mail reminder to the user.

14 *

15 * @param Request $request

16 * @param int $id

17 * @return Response

18 */

19 public function sendEmailReminder(Request $request, $id)

20 {

21 $user = User::findOrFail($id);

22

23 Mail::send('emails.reminder', ['user' => $user], function ($m) use ($use\

24 r) {

25 $m->from('hello@app.com', 'Your Application');

26

27 $m->to($user->email, $user->name)->subject('Your Reminder!');

28 });

29 }

30 }

Since we are passing an array containing the user key in the example above, we could display the
user’s name within our e-mail view using the following PHP code:

1 <?php echo $user->name; ?>

Note: A $message variable is always passed to e-mail views, and allows the inline
embedding of attachments. So, you should avoid passing a message variable in your view
payload.

Mail 372

Building The Message

As previously discussed, the third argument given to the send method is a Closure allowing you
to specify various options on the e-mail message itself. Using this Closure you may specify other
attributes of the message, such as carbon copies, blind carbon copies, etc:

1 Mail::send('emails.welcome', $data, function ($message) {

2 $message->from('us@example.com', 'Laravel');

3

4 $message->to('foo@example.com')->cc('bar@example.com');

5 });

Here is a list of the available methods on the $message message builder instance:

1 $message->from($address, $name = null);

2 $message->sender($address, $name = null);

3 $message->to($address, $name = null);

4 $message->cc($address, $name = null);

5 $message->bcc($address, $name = null);

6 $message->replyTo($address, $name = null);

7 $message->subject($subject);

8 $message->priority($level);

9 $message->attach($pathToFile, array $options = []);

10

11 // Attach a file from a raw $data string...

12 $message->attachData($data, $name, array $options = []);

13

14 // Get the underlying SwiftMailer message instance...

15 $message->getSwiftMessage();

Note: The message instance passed to a Mail::send Closure extends the SwiftMailer
message class, allowing you to call any method on that class to build your e-mail messages.

Mailing Plain Text

By default, the view given to the send method is assumed to contain HTML. However, by passing
an array as the first argument to the send method, you may specify a plain text view to send in
addition to the HTML view:

Mail 373

1 Mail::send(['html.view', 'text.view'], $data, $callback);

Or, if you only need to send a plain text e-mail, you may specify this using the text key in the array:

1 Mail::send(['text' => 'view'], $data, $callback);

Mailing Raw Strings

You may use the raw method if you wish to e-mail a raw string directly:

1 Mail::raw('Text to e-mail', function ($message) {

2 //

3 });

Attachments

To add attachments to an e-mail, use the attach method on the $message object passed to your
Closure. The attach method accepts the full path to the file as its first argument:

1 Mail::send('emails.welcome', $data, function ($message) {

2 //

3

4 $message->attach($pathToFile);

5 });

When attaching files to a message, you may also specify the display name and / or MIME type by
passing an array as the second argument to the attach method:

1 $message->attach($pathToFile, ['as' => $display, 'mime' => $mime]);

Mail 374

Inline Attachments

Embedding An Image In An E-Mail View

Embedding inline images into your e-mails is typically cumbersome; however, Laravel provides a
convenient way to attach images to your e-mails and retrieving the appropriate CID. To embed an
inline image, use the embed method on the $message variable within your e-mail view. Remember,
Laravel automatically makes the $message variable available to all of your e-mail views:

1 <body>

2 Here is an image:

3

4 <img src="<?php echo $message->embed($pathToFile); ?>">

5 </body>

Embedding Raw Data In An E-Mail View

If you already have a raw data string you wish to embed into an e-mail message, you may use the
embedData method on the $message variable:

1 <body>

2 Here is an image from raw data:

3

4 <img src="<?php echo $message->embedData($data, $name); ?>">

5 </body>

Queueing Mail

Queueing A Mail Message

Since sending e-mail messages can drastically lengthen the response time of your application, many
developers choose to queue e-mail messages for background sending. Laravel makes this easy using
its built-in unified queue API. To queue a mail message, use the queue method on the Mail facade:

Mail 375

1 Mail::queue('emails.welcome', $data, function ($message) {

2 //

3 });

This method will automatically take care of pushing a job onto the queue to send the mail message
in the background. Of course, you will need to configure your queues before using this feature.

Delayed Message Queueing

If you wish to delay the delivery of a queued e-mail message, you may use the latermethod. To get
started, simply pass the number of seconds by which you wish to delay the sending of the message
as the first argument to the method:

1 Mail::later(5, 'emails.welcome', $data, function ($message) {

2 //

3 });

Pushing To Specific Queues

If you wish to specify a specific queue on which to push the message, you may do so using the
queueOn and laterOn methods:

1 Mail::queueOn('queue-name', 'emails.welcome', $data, function ($message) {

2 //

3 });

4

5 Mail::laterOn('queue-name', 5, 'emails.welcome', $data, function ($message) {

6 //

7 });

Mail & Local Development

When developing an application that sends e-mail, you probably don’t want to actually send e-mails
to live e-mail addresses. Laravel provides several ways to “disable” the actual sending of e-mail
messages.

Mail 376

Log Driver

One solution is to use the logmail driver during local development. This driver will write all e-mail
messages to your log files for inspection. For more information on configuring your application per
environment, check out the configuration documentation.

Universal To

Another solution provided by Laravel is to set a universal recipient of all e-mails sent by the
framework. This way, all the emails generated by your application will be sent to a specific address,
instead of the address actually specified when sending the message. This can be done via the to

option in your config/mail.php configuration file:

1 'to' => [

2 'address' => 'dev@domain.com',

3 'name' => 'Dev Example'

4],

Mailtrap

Finally, you may use a service like Mailtrap¹⁶⁶ and the smtp driver to send your e-mail messages to a
“dummy” mailbox where you may view them in a true e-mail client. This approach has the benefit
of allowing you to actually inspect the final e-mails in Mailtrap’s message viewer.

Events

Laravel fires an event just before sendingmail messages. Remember, this event is fired when the mail
is sent, not when it is queued. You may register an event listener in your EventServiceProvider:

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 'Illuminate\Mail\Events\MessageSending' => [

8 'App\Listeners\LogSentMessage',

9],

¹⁶⁶https://mailtrap.io

https://mailtrap.io
https://mailtrap.io

Mail 377

10];

Package Development
• Introduction
• Service Providers
• Routing
• Resources A> - Views A> - Translations A> - Configuration
• Public Assets
• Publishing File Groups

Introduction

Packages are the primary way of adding functionality to Laravel. Packages might be anything from
a great way to work with dates like Carbon¹⁶⁷, or an entire BDD testing framework like Behat¹⁶⁸.

Of course, there are different types of packages. Some packages are stand-alone, meaning they work
with any framework, not just Laravel. Both Carbon and Behat are examples of stand-alone packages.
Any of these packages may be used with Laravel by simply requesting them in your composer.json
file.

On the other hand, other packages are specifically intended for use with Laravel. These packages
may have routes, controllers, views, and configuration specifically intended to enhance a Laravel
application. This guide primarily covers the development of those packages that are Laravel specific.

Service Providers

Service providers are the connection points between your package and Laravel. A service provider
is responsible for binding things into Laravel’s service container and informing Laravel where to
load package resources such as views, configuration, and localization files.

A service provider extends the Illuminate\Support\ServiceProvider class and contains two
methods: register and boot. The base ServiceProvider class is located in the illuminate/support
Composer package, which you should add to your own package’s dependencies.

To learn more about the structure and purpose of service providers, check out their documentation.

¹⁶⁷https://github.com/briannesbitt/Carbon
¹⁶⁸https://github.com/Behat/Behat

378

https://github.com/briannesbitt/Carbon
https://github.com/Behat/Behat
https://github.com/briannesbitt/Carbon
https://github.com/Behat/Behat

Package Development 379

Routing

To define routes for your package, simply require the routes file from within your package service
provider’s boot method. From within your routes file, you may use the Route facade to register
routes just as you would within a typical Laravel application:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 if (! $this->app->routesAreCached()) {

9 require __DIR__.'/../../routes.php';

10 }

11 }

Resources

Views

To register your package’s views with Laravel, you need to tell Laravel where the views are located.
You may do this using the service provider’s loadViewsFrom method. The loadViewsFrom method
accepts two arguments: the path to your view templates and your package’s name. For example, if
your package name is “courier”, add the following to your service provider’s boot method:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadViewsFrom(__DIR__.'/path/to/views', 'courier');

9 }

Package Development 380

Package views are referenced using a double-colon package::view syntax. So, you may load the
admin view from the courier package like so:

1 Route::get('admin', function () {

2 return view('courier::admin');

3 });

Overriding Package Views

When you use the loadViewsFrom method, Laravel actually registers two locations for your views:
one in the application’s resources/views/vendor directory and one in the directory you specify.
So, using our courier example: when requesting a package view, Laravel will first check if a custom
version of the view has been provided by the developer in resources/views/vendor/courier. Then,
if the view has not been customized, Laravel will search the package view directory you specified in
your call to loadViewsFrom. This makes it easy for end-users to customize / override your package’s
views.

Publishing Views

If youwould like tomake your views available for publishing to the application’s resources/views/ven-
dor directory, youmay use the service provider’s publishesmethod. The publishesmethod accepts
an array of package view paths and their corresponding publish locations.

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadViewsFrom(__DIR__.'/path/to/views', 'courier');

9

10 $this->publishes([

11 __DIR__.'/path/to/views' => resource_path('views/vendor/courier'),

12]);

13 }

Now, when users of your package execute Laravel’s vendor:publish Artisan command, your
package’s views will be copied to the specified location.

Package Development 381

Translations

If your package contains translation files, youmay use the loadTranslationsFrommethod to inform
Laravel how to load them. For example, if your package is named “courier”, you should add the
following to your service provider’s boot method:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadTranslationsFrom(__DIR__.'/path/to/translations', 'courier');

9 }

Package translations are referenced using a double-colon package::file.line syntax. So, you may
load the courier package’s welcome line from the messages file like so:

1 echo trans('courier::messages.welcome');

Publishing Translations

If you would like to publish your package’s translations to the application’s resources/lang/vendor
directory, you may use the service provider’s publishesmethod. The publishesmethod accepts an
array of package paths and their corresponding publish locations. For example, to the publish the
translation files for our example courier package:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadTranslationsFrom(__DIR__.'/path/to/translations', 'courier');

9

10 $this->publishes([

Package Development 382

11 __DIR__.'/path/to/translations' => resource_path('lang/vendor/courier'),

12]);

13 }

Now, when users of your package execute Laravel’s vendor:publish Artisan command, your
package’s translations will be published to the specified location.

Configuration

Typically, you will want to publish your package’s configuration file to the application’s own config
directory. This will allow users of your package to easily override your default configuration options.
To publish a configuration file, just use the publishesmethod from the bootmethod of your service
provider:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->publishes([

9 __DIR__.'/path/to/config/courier.php' => config_path('courier.php'),

10]);

11 }

Now, when users of your package execute Laravel’s vendor:publish command, your file will be
copied to the specified location. Of course, once your configuration has been published, it can be
accessed like any other configuration file:

1 $value = config('courier.option');

Default Package Configuration

You may also choose to merge your own package configuration file with the application’s copy. This
allows your users to include only the options they actually want to override in the published copy

Package Development 383

of the configuration. To merge the configurations, use the mergeConfigFrom method within your
service provider’s register method:

1 /**

2 * Register bindings in the container.

3 *

4 * @return void

5 */

6 public function register()

7 {

8 $this->mergeConfigFrom(

9 __DIR__.'/path/to/config/courier.php', 'courier'

10);

11 }

Public Assets

Your packages may have assets such as JavaScript, CSS, and images. To publish these assets to the
application’s public directory, use the service provider’s publishes method. In this example, we
will also add a public asset group tag, which may be used to publish groups of related assets:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->publishes([

9 __DIR__.'/path/to/assets' => public_path('vendor/courier'),

10], 'public');

11 }

Now, when your package’s users execute the vendor:publish command, your assets will be copied
to the specified location. Since you typically will need to overwrite the assets every time the package
is updated, you may use the --force flag:

Package Development 384

1 php artisan vendor:publish --tag=public --force

If you would like to make sure your public assets are always up-to-date, you can add this command
to the post-update-cmd list in your composer.json file.

Publishing File Groups

You may want to publish groups of package assets and resources separately. For instance, you might
want your users to be able to publish your package’s configuration files without being forced to
publish your package’s assets at the same time. You may do this by “tagging” them when calling the
publishes method. For example, let’s define two publish groups in the boot method of a package
service provider:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->publishes([

9 __DIR__.'/../config/package.php' => config_path('package.php')

10], 'config');

11

12 $this->publishes([

13 __DIR__.'/../database/migrations/' => database_path('migrations')

14], 'migrations');

15 }

Now your users may publish these groups separately by referencing their tag name when using the
vendor:publish Artisan command:

1 php artisan vendor:publish --provider="Vendor\Providers\PackageServiceProvider" \

2 --tag="config"

Pagination
• Introduction
• Basic Usage A> - Paginating Query Builder Results A> - Paginating Eloquent Results A> -
Manually Creating A Paginator

• Displaying Results In A View
• Converting Results To JSON

Introduction

In other frameworks, pagination can be very painful. Laravel makes it a breeze. Laravel can quickly
generate an intelligent “range” of links based on the current page, and the generated HTML is
compatible with the Bootstrap CSS framework¹⁶⁹.

Basic Usage

Paginating Query Builder Results

There are several ways to paginate items. The simplest is by using the paginatemethod on the query
builder or an Eloquent query. The paginate method provided by Laravel automatically takes care
of setting the proper limit and offset based on the current page being viewed by the user. By default,
the current page is detected by the value of the ?page query string argument on the HTTP request.
Of course, this value is automatically detected by Laravel, and is also automatically inserted into
links generated by the paginator.

First, let’s take a look at calling the paginatemethod on a query. In this example, the only argument
passed to paginate is the number of items you would like displayed “per page”. In this case, let’s
specify that we would like to display 15 items per page:

¹⁶⁹http://getbootstrap.com/

385

http://getbootstrap.com/
http://getbootstrap.com/

Pagination 386

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use DB;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show all of the users for the application.

12 *

13 * @return Response

14 */

15 public function index()

16 {

17 $users = DB::table('users')->paginate(15);

18

19 return view('user.index', ['users' => $users]);

20 }

21 }

Note: Currently, pagination operations that use a groupBy statement cannot be executed
efficiently by Laravel. If you need to use a groupBy with a paginated result set, it is
recommended that you query the database and create a paginator manually.

“Simple Pagination”

If you only need to display simple “Next” and “Previous” links in your pagination view, you have the
option of using the simplePaginate method to perform a more efficient query. This is very useful
for large datasets if you do not need to display a link for each page number when rendering your
view:

1 $users = DB::table('users')->simplePaginate(15);

Pagination 387

Paginating Eloquent Results

You may also paginate Eloquent queries. In this example, we will paginate the User model with 15

items per page. As you can see, the syntax is nearly identical to paginating query builder results:

1 $users = App\User::paginate(15);

Of course, you may call paginate after setting other constraints on the query, such as where clauses:

1 $users = User::where('votes', '>', 100)->paginate(15);

You may also use the simplePaginate method when paginating Eloquent models:

1 $users = User::where('votes', '>', 100)->simplePaginate(15);

Manually Creating A Paginator

Sometimes you may wish to create a pagination instance manually, passing it an array of items. You
may do so by creating either an Illuminate\Pagination\Paginator or Illuminate\Pagination\LengthAwarePaginator
instance, depending on your needs.

The Paginator class does not need to know the total number of items in the result set; however,
because of this, the class does not have methods for retrieving the index of the last page. The
LengthAwarePaginator accepts almost the same arguments as the Paginator; however, it does
require a count of the total number of items in the result set.

In other words, the Paginator corresponds to the simplePaginatemethod on the query builder and
Eloquent, while the LengthAwarePaginator corresponds to the paginate method.

When manually creating a paginator instance, you should manually “slice” the array of results you
pass to the paginator. If you’re unsure how to do this, check out the array_slice¹⁷⁰ PHP function.

Displaying Results In A View

When you call the paginate or simplePaginatemethods on a query builder or Eloquent query, you
will receive a paginator instance. When calling the paginate method, you will receive an instance

¹⁷⁰http://php.net/manual/en/function.array-slice.php

http://php.net/manual/en/function.array-slice.php
http://php.net/manual/en/function.array-slice.php

Pagination 388

of Illuminate\Pagination\LengthAwarePaginator. When calling the simplePaginate method,
you will receive an instance of Illuminate\Pagination\Paginator. These objects provide several
methods that describe the result set. In addition to these helpers methods, the paginator instances
are iterators and may be looped as an array.

So, once you have retrieved the results, you may display the results and render the page links using
Blade:

1 <div class="container">

2 @foreach ($users as $user)

3 {{ $user->name }}

4 @endforeach

5 </div>

6

7 {!! $users->links() !!}

The links method will render the links to the rest of the pages in the result set. Each of these links
will already contain the proper ?page query string variable. Remember, the HTML generated by the
links method is compatible with the Bootstrap CSS framework¹⁷¹.

Customizing The Paginator URI

The setPathmethod allows you to customize the URI used by the paginator when generating links.
For example, if youwant the paginator to generate links like http://example.com/custom/url?page=N,
you should pass custom/url to the setPath method:

1 Route::get('users', function () {

2 $users = App\User::paginate(15);

3

4 $users->setPath('custom/url');

5

6 //

7 });

Appending To Pagination Links

You may add to the query string of pagination links using the appends method. For example, to
append &sort=votes to each pagination link, you should make the following call to appends:

¹⁷¹https://getbootstrap.com

https://getbootstrap.com
https://getbootstrap.com

Pagination 389

1 {!! $users->appends(['sort' => 'votes'])->links() !!}

If you wish to append a “hash fragment” to the paginator’s URLs, youmay use the fragmentmethod.
For example, to append #foo to the end of each pagination link, make the following call to the
fragment method:

1 {!! $users->fragment('foo')->links() !!}

Additional Helper Methods

You may also access additional pagination information via the following methods on paginator
instances:

• $results->count()

• $results->currentPage()

• $results->firstItem()

• $results->hasMorePages()

• $results->lastItem()

• $results->lastPage() (Not available when using simplePaginate)

• $results->nextPageUrl()

• $results->perPage()

• $results->previousPageUrl()

• $results->total() (Not available when using simplePaginate)

• $results->url($page)

Converting Results To JSON

The Laravel paginator result classes implement the Illuminate\Contracts\Support\JsonableInterface
contract and expose the toJsonmethod, so it’s very easy to convert your pagination results to JSON.

You may also convert a paginator instance to JSON by simply returning it from a route or controller
action:

Pagination 390

1 Route::get('users', function () {

2 return App\User::paginate();

3 });

The JSON from the paginator will include meta information such as total, current_page, last_-
page, and more. The actual result objects will be available via the data key in the JSON array. Here
is an example of the JSON created by returning a paginator instance from a route:

Example Paginator JSON

1 {

2 "total": 50,

3 "per_page": 15,

4 "current_page": 1,

5 "last_page": 4,

6 "next_page_url": "http://laravel.app?page=2",

7 "prev_page_url": null,

8 "from": 1,

9 "to": 15,

10 "data":[

11 {

12 // Result Object

13 },

14 {

15 // Result Object

16 }

17]

18 }

Queues
• Introduction
• Writing Job Classes A> - Generating Job Classes A> - Job Class Structure
• Pushing Jobs Onto The Queue A> - Delayed Jobs A> - Job Events
• Running The Queue Listener A> - Supervisor Configuration A> - Daemon Queue Listener A>
- Deploying With Daemon Queue Listeners

• Dealing With Failed Jobs A> - Failed Job Events A> - Retrying Failed Jobs

Introduction

The Laravel queue service provides a unified API across a variety of different queue back-ends.
Queues allow you to defer the processing of a time consuming task, such as sending an e-mail, until
a later time which drastically speeds up web requests to your application.

Configuration

The queue configuration file is stored in config/queue.php. In this file you will find connection
configurations for each of the queue drivers that are included with the framework, which includes
a database, Beanstalkd¹⁷², Amazon SQS¹⁷³, Redis¹⁷⁴, and synchronous (for local use) driver.

A null queue driver is also included which simply discards queued jobs.

Driver Prerequisites

Database

In order to use the database queue driver, you will need a database table to hold the jobs. To generate
a migration that creates this table, run the queue:table Artisan command. Once the migration is
created, you may migrate your database using the migrate command:

¹⁷²http://kr.github.com/beanstalkd
¹⁷³http://aws.amazon.com/sqs
¹⁷⁴http://redis.io

391

http://kr.github.com/beanstalkd
http://aws.amazon.com/sqs
http://redis.io
http://kr.github.com/beanstalkd
http://aws.amazon.com/sqs
http://redis.io

Queues 392

1 php artisan queue:table

2

3 php artisan migrate

Other Queue Dependencies

The following dependencies are needed for the listed queue drivers:

• Amazon SQS: aws/aws-sdk-php ∼3.0

• Beanstalkd: pda/pheanstalk ∼3.0

• Redis: predis/predis ∼1.0

Writing Job Classes

Generating Job Classes

By default, all of the queueable jobs for your application are stored in the app/Jobs directory. You
may generate a new queued job using the Artisan CLI:

1 php artisan make:job SendReminderEmail

This command will generate a new class in the app/Jobs directory, and the class will implement the
Illuminate\Contracts\Queue\ShouldQueue interface, indicating to Laravel that the job should be
pushed onto the queue instead of run synchronously.

Job Class Structure

Job classes are very simple, normally containing only a handlemethod which is called when the job
is processed by the queue. To get started, let’s take a look at an example job class:

Queues 393

1 <?php

2

3 namespace App\Jobs;

4

5 use App\User;

6 use App\Jobs\Job;

7 use Illuminate\Contracts\Mail\Mailer;

8 use Illuminate\Queue\SerializesModels;

9 use Illuminate\Queue\InteractsWithQueue;

10 use Illuminate\Contracts\Queue\ShouldQueue;

11

12 class SendReminderEmail extends Job implements ShouldQueue

13 {

14 use InteractsWithQueue, SerializesModels;

15

16 protected $user;

17

18 /**

19 * Create a new job instance.

20 *

21 * @param User $user

22 * @return void

23 */

24 public function __construct(User $user)

25 {

26 $this->user = $user;

27 }

28

29 /**

30 * Execute the job.

31 *

32 * @param Mailer $mailer

33 * @return void

34 */

35 public function handle(Mailer $mailer)

36 {

37 $mailer->send('emails.reminder', ['user' => $this->user], function ($m) {

38 //

39 });

40

41 $this->user->reminders()->create(...);

42 }

43 }

Queues 394

In this example, note that we were able to pass an Eloquent model directly into the queued job’s
constructor. Because of the SerializesModels trait that the job is using, Eloquent models will be
gracefully serialized and unserialized when the job is processing. If your queued job accepts an
Eloquent model in its constructor, only the identifier for the model will be serialized onto the queue.
When the job is actually handled, the queue system will automatically re-retrieve the full model
instance from the database. It’s all totally transparent to your application and prevents issues that
can arise from serializing full Eloquent model instances.

The handle method is called when the job is processed by the queue. Note that we are able to type-
hint dependencies on the handle method of the job. The Laravel service container automatically
injects these dependencies.

When Things Go Wrong

If an exception is thrown while the job is being processed, it will automatically be released back
onto the queue so it may be attempted again. The job will continue to be released until it has been
attempted the maximum number of times allowed by your application. The number of maximum
attempts is defined by the --tries switch used on the queue:listen or queue:work Artisan jobs.
More information on running the queue listener can be found below.

Manually Releasing Jobs

If you would like to release the job manually, the InteractsWithQueue trait, which is already
included in your generated job class, provides access to the queue job releasemethod. The release
method accepts one argument: the number of seconds youwish towait until the job is made available
again:

1 public function handle(Mailer $mailer)

2 {

3 if (condition) {

4 $this->release(10);

5 }

6 }

Checking The Number Of Run Attempts

As noted above, if an exception occurs while the job is being processed, it will automatically be
released back onto the queue. You may check the number of attempts that have been made to run
the job using the attempts method:

Queues 395

1 public function handle(Mailer $mailer)

2 {

3 if ($this->attempts() > 3) {

4 //

5 }

6 }

Pushing Jobs Onto The Queue

The default Laravel controller located in app/Http/Controllers/Controller.php uses a Dispatch-
esJobs trait. This trait provides several methods allowing you to conveniently push jobs onto the
queue, such as the dispatch method:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use Illuminate\Http\Request;

7 use App\Jobs\SendReminderEmail;

8 use App\Http\Controllers\Controller;

9

10 class UserController extends Controller

11 {

12 /**

13 * Send a reminder e-mail to a given user.

14 *

15 * @param Request $request

16 * @param int $id

17 * @return Response

18 */

19 public function sendReminderEmail(Request $request, $id)

20 {

21 $user = User::findOrFail($id);

22

23 $this->dispatch(new SendReminderEmail($user));

24 }

25 }

Queues 396

The DispatchesJobs Trait

Of course, sometimes you may wish to dispatch a job from somewhere in your application besides a
route or controller. For that reason, you can include the DispatchesJobs trait on any of the classes
in your application to gain access to its various dispatch methods. For example, here is a sample
class that uses the trait:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Foundation\Bus\DispatchesJobs;

6

7 class ExampleClass

8 {

9 use DispatchesJobs;

10 }

The dispatch Function

Or, you may use the dispatch global function:

1 Route::get('/job', function () {

2 dispatch(new App\Jobs\PerformTask);

3

4 return 'Done!';

5 });

Specifying The Queue For A Job

You may also specify the queue a job should be sent to.

By pushing jobs to different queues, you may “categorize” your queued jobs, and even prioritize how
manyworkers you assign to various queues. This does not push jobs to different queue “connections”
as defined by your queue configuration file, but only to specific queues within a single connection.
To specify the queue, use the onQueue method on the job instance. The onQueue method is provided
by the Illuminate\Bus\Queueable trait, which is already included on the App\Jobs\Job base class:

Queues 397

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use Illuminate\Http\Request;

7 use App\Jobs\SendReminderEmail;

8 use App\Http\Controllers\Controller;

9

10 class UserController extends Controller

11 {

12 /**

13 * Send a reminder e-mail to a given user.

14 *

15 * @param Request $request

16 * @param int $id

17 * @return Response

18 */

19 public function sendReminderEmail(Request $request, $id)

20 {

21 $user = User::findOrFail($id);

22

23 $job = (new SendReminderEmail($user))->onQueue('emails');

24

25 $this->dispatch($job);

26 }

27 }

Delayed Jobs

Sometimes you may wish to delay the execution of a queued job. For instance, you may wish to
queue a job that sends a customer a reminder e-mail 5 minutes after sign-up. You may accomplish
this using the delaymethod on your job class, which is provided by the Illuminate\Bus\Queueable
trait:

Queues 398

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use Illuminate\Http\Request;

7 use App\Jobs\SendReminderEmail;

8 use App\Http\Controllers\Controller;

9

10 class UserController extends Controller

11 {

12 /**

13 * Send a reminder e-mail to a given user.

14 *

15 * @param Request $request

16 * @param int $id

17 * @return Response

18 */

19 public function sendReminderEmail(Request $request, $id)

20 {

21 $user = User::findOrFail($id);

22

23 $job = (new SendReminderEmail($user))->delay(60 * 5);

24

25 $this->dispatch($job);

26 }

27 }

In this example, we’re specifying that the job should be delayed in the queue for 5 minutes before
being made available to workers.

Note: The Amazon SQS service has a maximum delay time of 15 minutes.

Job Events

Job Completion Event

The Queue::after method allows you to register a callback to be executed when a queued job
executes successfully. This callback is a great opportunity to perform additional logging, queue a

Queues 399

subsequent job, or increment statistics for a dashboard. For example, we may attach a callback to
this event from the AppServiceProvider that is included with Laravel:

1 <?php

2

3 namespace App\Providers;

4

5 use Queue;

6 use Illuminate\Support\ServiceProvider;

7 use Illuminate\Queue\Events\JobProcessed;

8

9 class AppServiceProvider extends ServiceProvider

10 {

11 /**

12 * Bootstrap any application services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Queue::after(function (JobProcessed $event) {

19 // $event->connection

20 // $event->job

21 // $event->data

22 });

23 }

24

25 /**

26 * Register the service provider.

27 *

28 * @return void

29 */

30 public function register()

31 {

32 //

33 }

34 }

Queues 400

Running The Queue Listener

Starting The Queue Listener

Laravel includes an Artisan command that will run new jobs as they are pushed onto the queue.
You may run the listener using the queue:listen command:

1 php artisan queue:listen

You may also specify which queue connection the listener should utilize:

1 php artisan queue:listen connection

Note that once this task has started, it will continue to run until it is manually stopped. You may use
a process monitor such as Supervisor¹⁷⁵ to ensure that the queue listener does not stop running.

Queue Priorities

You may pass a comma-delimited list of queue connections to the listen job to set queue priorities:

1 php artisan queue:listen --queue=high,low

In this example, jobs on the high queue will always be processed before moving onto jobs from the
low queue.

Specifying The Job Timeout Parameter

You may also set the length of time (in seconds) each job should be allowed to run:

1 php artisan queue:listen --timeout=60

¹⁷⁵http://supervisord.org/

http://supervisord.org/
http://supervisord.org/

Queues 401

Specifying Queue Sleep Duration

In addition, you may specify the number of seconds to wait before polling for new jobs:

1 php artisan queue:listen --sleep=5

Note that the queue only “sleeps” if no jobs are on the queue. If more jobs are available, the queue
will continue to work them without sleeping.

Supervisor Configuration

Supervisor is a process monitor for the Linux operating system, and will automatically restart your
queue:listen or queue:work commands if they fail. To install Supervisor on Ubuntu, you may use
the following command:

1 sudo apt-get install supervisor

Supervisor configuration files are typically stored in the /etc/supervisor/conf.d directory. Within
this directory, you may create any number of configuration files that instruct supervisor how your
processes should be monitored. For example, let’s create a laravel-worker.conf file that starts and
monitors a queue:work process:

1 [program:laravel-worker]

2 process_name=%(program_name)s_%(process_num)02d

3 command=php /home/forge/app.com/artisan queue:work sqs --sleep=3 --tries=3 --dae\

4 mon

5 autostart=true

6 autorestart=true

7 user=forge

8 numprocs=8

9 redirect_stderr=true

10 stdout_logfile=/home/forge/app.com/worker.log

In this example, the numprocs directive will instruct Supervisor to run 8 queue:work processes and
monitor all of them, automatically restarting them if they fail. Of course, you should change the
queue:work sqs portion of the command directive to reflect your chosen queue driver.

Queues 402

Once the configuration file has been created, you may update the Supervisor configuration and start
the processes using the following commands:

1 sudo supervisorctl reread

2

3 sudo supervisorctl update

4

5 sudo supervisorctl start laravel-worker:*

Formore information on configuring and using Supervisor, consult the Supervisor documentation¹⁷⁶.
Alternatively, you may use Laravel Forge¹⁷⁷ to automatically configure and manage your Supervisor
configuration from a convenient web interface.

Daemon Queue Listener

The queue:work Artisan command includes a --daemon option for forcing the queue worker to
continue processing jobs without ever re-booting the framework. This results in a significant
reduction of CPU usage when compared to the queue:listen command:

To start a queue worker in daemon mode, use the --daemon flag:

1 php artisan queue:work connection --daemon

2

3 php artisan queue:work connection --daemon --sleep=3

4

5 php artisan queue:work connection --daemon --sleep=3 --tries=3

As you can see, the queue:work job supports most of the same options available to queue:listen.
You may use the php artisan help queue:work job to view all of the available options.

Coding Considerations For Daemon Queue Listeners

Daemon queue workers do not restart the framework before processing each job. Therefore, you
should be careful to free any heavy resources before your job finishes. For example, if you are doing
image manipulation with the GD library, you should free the memory with imagedestroywhen you
are done.

Similarly, your database connection may disconnect when being used by a long-running daemon.
You may use the DB::reconnect method to ensure you have a fresh connection.

¹⁷⁶http://supervisord.org/index.html
¹⁷⁷https://forge.laravel.com

http://supervisord.org/index.html
https://forge.laravel.com
http://supervisord.org/index.html
https://forge.laravel.com

Queues 403

Deploying With Daemon Queue Listeners

Since daemon queue workers are long-lived processes, they will not pick up changes in your code
without being restarted. So, the simplest way to deploy an application using daemon queue workers
is to restart the workers during your deployment script. You may gracefully restart all of the workers
by including the following command in your deployment script:

1 php artisan queue:restart

This command will gracefully instruct all queue workers to restart after they finish processing their
current job so that no existing jobs are lost.

Note: This command relies on the cache system to schedule the restart. By default, APCu
does not work for CLI jobs. If you are using APCu, add apc.enable_cli=1 to your APCu
configuration.

Dealing With Failed Jobs

Since things don’t always go as planned, sometimes your queued jobs will fail. Don’t worry, it
happens to the best of us! Laravel includes a convenient way to specify the maximum number
of times a job should be attempted. After a job has exceeded this amount of attempts, it will be
inserted into a failed_jobs table. The name of the table can be configured via the config/queue.php
configuration file.

To create a migration for the failed_jobs table, you may use the queue:failed-table command:

1 php artisan queue:failed-table

When running your queue listener, you may specify the maximum number of times a job should be
attempted using the --tries switch on the queue:listen command:

1 php artisan queue:listen connection-name --tries=3

Queues 404

Failed Job Events

If you would like to register an event that will be called when a queued job fails, you may use
the Queue::failing method. This event is a great opportunity to notify your team via e-mail or
HipChat¹⁷⁸. For example, we may attach a callback to this event from the AppServiceProvider that
is included with Laravel:

1 <?php

2

3 namespace App\Providers;

4

5 use Queue;

6 use Illuminate\Queue\Events\JobFailed;

7 use Illuminate\Support\ServiceProvider;

8

9 class AppServiceProvider extends ServiceProvider

10 {

11 /**

12 * Bootstrap any application services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Queue::failing(function (JobFailed $event) {

19 // $event->connection

20 // $event->$job

21 // $event->$data

22 });

23 }

24

25 /**

26 * Register the service provider.

27 *

28 * @return void

29 */

30 public function register()

31 {

32 //

33 }

34 }

¹⁷⁸https://www.hipchat.com

https://www.hipchat.com
https://www.hipchat.com

Queues 405

Failed Method On Job Classes

For more granular control, you may define a failed method directly on a queue job class, allowing
you to perform job specific actions when a failure occurs:

1 <?php

2

3 namespace App\Jobs;

4

5 use App\Jobs\Job;

6 use Illuminate\Contracts\Mail\Mailer;

7 use Illuminate\Queue\SerializesModels;

8 use Illuminate\Queue\InteractsWithQueue;

9 use Illuminate\Contracts\Queue\ShouldQueue;

10

11 class SendReminderEmail extends Job implements ShouldQueue

12 {

13 use InteractsWithQueue, SerializesModels;

14

15 /**

16 * Execute the job.

17 *

18 * @param Mailer $mailer

19 * @return void

20 */

21 public function handle(Mailer $mailer)

22 {

23 //

24 }

25

26 /**

27 * Handle a job failure.

28 *

29 * @return void

30 */

31 public function failed()

32 {

33 // Called when the job is failing...

34 }

35 }

Queues 406

Retrying Failed Jobs

To view all of your failed jobs that have been inserted into your failed_jobs database table, you
may use the queue:failed Artisan command:

1 php artisan queue:failed

The queue:failed commandwill list the job ID, connection, queue, and failure time. The job IDmay
be used to retry the failed job. For instance, to retry a failed job that has an ID of 5, the following
command should be issued:

1 php artisan queue:retry 5

To retry all of your failed jobs, use queue:retry with all as the ID:

1 php artisan queue:retry all

If you would like to delete a failed job, you may use the queue:forget command:

1 php artisan queue:forget 5

To delete all of your failed jobs, you may use the queue:flush command:

1 php artisan queue:flush

Redis
• Introduction
• Basic Usage A> - Pipelining Commands
• Pub / Sub

Introduction

Redis¹⁷⁹ is an open source, advanced key-value store. It is often referred to as a data structure server
since keys can contain strings¹⁸⁰, hashes¹⁸¹, lists¹⁸², sets¹⁸³, and sorted sets¹⁸⁴. Before using Redis with
Laravel, you will need to install the predis/predis package (∼1.0) via Composer.

Configuration

The Redis configuration for your application is located in the config/database.php configuration
file.Within this file, you will see a redis array containing the Redis servers used by your application:

1 'redis' => [

2

3 'cluster' => false,

4

5 'default' => [

6 'host' => '127.0.0.1',

7 'port' => 6379,

8 'database' => 0,

9],

10

11],

¹⁷⁹http://redis.io
¹⁸⁰http://redis.io/topics/data-types#strings
¹⁸¹http://redis.io/topics/data-types#hashes
¹⁸²http://redis.io/topics/data-types#lists
¹⁸³http://redis.io/topics/data-types#sets
¹⁸⁴http://redis.io/topics/data-types#sorted-sets

407

http://redis.io
http://redis.io/topics/data-types#strings
http://redis.io/topics/data-types#hashes
http://redis.io/topics/data-types#lists
http://redis.io/topics/data-types#sets
http://redis.io/topics/data-types#sorted-sets
http://redis.io
http://redis.io/topics/data-types#strings
http://redis.io/topics/data-types#hashes
http://redis.io/topics/data-types#lists
http://redis.io/topics/data-types#sets
http://redis.io/topics/data-types#sorted-sets

Redis 408

The default server configuration should suffice for development. However, you are free to modify
this array based on your environment. Simply give each Redis server a name, and specify the host
and port used by the server.

The cluster option will tell the Laravel Redis client to perform client-side sharding across your
Redis nodes, allowing you to pool nodes and create a large amount of available RAM. However,
note that client-side sharding does not handle failover; therefore, is primarily suited for cached data
that is available from another primary data store.

Additionally, you may define an options array value in your Redis connection definition, allowing
you to specify a set of Predis client options¹⁸⁵.

If your Redis server requires authentication, you may supply a password by adding a password

configuration item to your Redis server configuration array.

Note: If you have the Redis PHP extension installed via PECL, you will need to rename
the alias for Redis in your config/app.php file.

Basic Usage

You may interact with Redis by calling various methods on the Redis facade. The Redis facade
supports dynamic methods, meaning you may call any Redis command¹⁸⁶ on the facade and the
command will be passed directly to Redis. In this example, we will call the GET command on Redis
by calling the get method on the Redis facade:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Redis;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

13 * @param int $id

14 * @return Response

15 */

¹⁸⁵https://github.com/nrk/predis/wiki/Client-Options
¹⁸⁶http://redis.io/commands

https://github.com/nrk/predis/wiki/Client-Options
http://redis.io/commands
https://github.com/nrk/predis/wiki/Client-Options
http://redis.io/commands

Redis 409

16 public function showProfile($id)

17 {

18 $user = Redis::get('user:profile:'.$id);

19

20 return view('user.profile', ['user' => $user]);

21 }

22 }

Of course, as mentioned above, you may call any of the Redis commands on the Redis facade.
Laravel uses magic methods to pass the commands to the Redis server, so simply pass the arguments
the Redis command expects:

1 Redis::set('name', 'Taylor');

2

3 $values = Redis::lrange('names', 5, 10);

Alternatively, you may also pass commands to the server using the commandmethod, which accepts
the name of the command as its first argument, and an array of values as its second argument:

1 $values = Redis::command('lrange', ['name', 5, 10]);

Using Multiple Redis Connections

You may get a Redis instance by calling the Redis::connection method:

1 $redis = Redis::connection();

This will give you an instance of the default Redis server. If you are not using server clustering, you
may pass the server name to the connectionmethod to get a specific server as defined in your Redis
configuration:

1 $redis = Redis::connection('other');

Redis 410

Pipelining Commands

Pipelining should be used when you need to send many commands to the server in one operation.
The pipelinemethod accepts one argument: a Closure that receives a Redis instance. Youmay issue
all of your commands to this Redis instance and they will all be executed within a single operation:

1 Redis::pipeline(function ($pipe) {

2 for ($i = 0; $i < 1000; $i++) {

3 $pipe->set("key:$i", $i);

4 }

5 });

Pub / Sub

Laravel also provides a convenient interface to the Redis publish and subscribe commands. These
Redis commands allow you to listen for messages on a given “channel”. You may publish messages
to the channel from another application, or even using another programming language, allowing
easy communication between applications / processes.

First, let’s setup a listener on a channel via Redis using the subscribe method. We will place this
method call within an Artisan command since calling the subscribemethod begins a long-running
process:

1 <?php

2

3 namespace App\Console\Commands;

4

5 use Redis;

6 use Illuminate\Console\Command;

7

8 class RedisSubscribe extends Command

9 {

10 /**

11 * The name and signature of the console command.

12 *

13 * @var string

14 */

15 protected $signature = 'redis:subscribe';

16

17 /**

Redis 411

18 * The console command description.

19 *

20 * @var string

21 */

22 protected $description = 'Subscribe to a Redis channel';

23

24 /**

25 * Execute the console command.

26 *

27 * @return mixed

28 */

29 public function handle()

30 {

31 Redis::subscribe(['test-channel'], function($message) {

32 echo $message;

33 });

34 }

35 }

Now, we may publish messages to the channel using the publish method:

1 Route::get('publish', function () {

2 // Route logic...

3

4 Redis::publish('test-channel', json_encode(['foo' => 'bar']));

5 });

Wildcard Subscriptions

Using the psubscribemethod, youmay subscribe to a wildcard channel, which is useful for catching
all messages on all channels. The $channel name will be passed as the second argument to the
provided callback Closure:

Redis 412

1 Redis::psubscribe(['*'], function($message, $channel) {

2 echo $message;

3 });

4

5 Redis::psubscribe(['users.*'], function($message, $channel) {

6 echo $message;

7 });

Session
• Introduction
• Basic Usage A> - Flash Data
• Adding Custom Session Drivers

Introduction

Since HTTP driven applications are stateless, sessions provide a way to store information about the
user across requests. Laravel ships with a variety of session back-ends available for use through a
clean, unified API. Support for popular back-ends such as Memcached¹⁸⁷, Redis¹⁸⁸, and databases is
included out of the box.

Configuration

The session configuration file is stored at config/session.php. Be sure to review the well docu-
mented options available to you in this file. By default, Laravel is configured to use the file session
driver, which will work well for many applications. In production applications, you may consider
using the memcached or redis drivers for even faster session performance.

The session driver defines where session data will be stored for each request. Laravel ships with
several great drivers out of the box:

<div class=”content-list” markdown=”1”> - file - sessions are stored in storage/framework/ses-

sions. - cookie - sessions are stored in secure, encrypted cookies. - database - sessions are stored
in a database used by your application. - memcached / redis - sessions are stored in one of these
fast, cache based stores. - array - sessions are stored in a simple PHP array and will not be persisted
across requests. </div>

Note: The array driver is typically used for running tests to prevent session data from
persisting.

¹⁸⁷http://memcached.org
¹⁸⁸http://redis.io

413

http://memcached.org
http://redis.io
http://memcached.org
http://redis.io

Session 414

Driver Prerequisites

Database

When using the database session driver, you will need to setup a table to contain the session items.
Below is an example Schema declaration for the table:

1 Schema::create('sessions', function ($table) {

2 $table->string('id')->unique();

3 $table->integer('user_id')->nullable();

4 $table->string('ip_address', 45)->nullable();

5 $table->text('user_agent')->nullable();

6 $table->text('payload');

7 $table->integer('last_activity');

8 });

You may use the session:table Artisan command to generate this migration for you!

1 php artisan session:table

2

3 composer dump-autoload

4

5 php artisan migrate

Redis

Before using Redis sessions with Laravel, you will need to install the predis/predis package (∼1.0)
via Composer.

Other Session Considerations

The Laravel framework uses the flash session key internally, so you should not add an item to the
session by that name.

If you need all stored session data to be encrypted, set the encrypt configuration option to true.

Session 415

Basic Usage

Accessing The Session

First, let’s access the session. We can access the session instance via the HTTP request, which can
be type-hinted on a controller method. Remember, controller method dependencies are injected via
the Laravel service container:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

13 * @param Request $request

14 * @param int $id

15 * @return Response

16 */

17 public function showProfile(Request $request, $id)

18 {

19 $value = $request->session()->get('key');

20

21 //

22 }

23 }

When you retrieve a value from the session, you may also pass a default value as the second
argument to the get method. This default value will be returned if the specified key does not exist
in the session. If you pass a Closure as the default value to the get method, the Closure will be
executed and its result returned:

Session 416

1 $value = $request->session()->get('key', 'default');

2

3 $value = $request->session()->get('key', function() {

4 return 'default';

5 });

If you would like to retrieve all data from the session, you may use the all method:

1 $data = $request->session()->all();

You may also use the global session PHP function to retrieve and store data in the session:

1 Route::get('home', function () {

2 // Retrieve a piece of data from the session...

3 $value = session('key');

4

5 // Store a piece of data in the session...

6 session(['key' => 'value']);

7 });

Determining If An Item Exists In The Session

The has method may be used to check if an item exists in the session. This method will return true

if the item exists:

1 if ($request->session()->has('users')) {

2 //

3 }

Storing Data In The Session

Once you have access to the session instance, you may call a variety of functions to interact with
the underlying data. For example, the put method stores a new piece of data in the session:

Session 417

1 $request->session()->put('key', 'value');

Pushing To Array Session Values

The pushmethod may be used to push a new value onto a session value that is an array. For example,
if the user.teams key contains an array of team names, you may push a new value onto the array
like so:

1 $request->session()->push('user.teams', 'developers');

Retrieving And Deleting An Item

The pull method will retrieve and delete an item from the session:

1 $value = $request->session()->pull('key', 'default');

Deleting Items From The Session

The forget method will remove a piece of data from the session. If you would like to remove all
data from the session, you may use the flush method:

1 $request->session()->forget('key');

2

3 $request->session()->flush();

Regenerating The Session ID

If you need to regenerate the session ID, you may use the regenerate method:

Session 418

1 $request->session()->regenerate();

Flash Data

Sometimes you may wish to store items in the session only for the next request. You may do so
using the flash method. Data stored in the session using this method will only be available during
the subsequent HTTP request, and then will be deleted. Flash data is primarily useful for short-lived
status messages:

1 $request->session()->flash('status', 'Task was successful!');

If you need to keep your flash data around for evenmore requests, youmay use the reflashmethod,
whichwill keep all of the flash data around for an additional request. If you only need to keep specific
flash data around, you may use the keep method:

1 $request->session()->reflash();

2

3 $request->session()->keep(['username', 'email']);

Adding Custom Session Drivers

To add additional drivers to Laravel’s session back-end, you may use the extend method on the
Session facade. You can call the extend method from the boot method of a service provider:

1 <?php

2

3 namespace App\Providers;

4

5 use Session;

6 use App\Extensions\MongoSessionStore;

7 use Illuminate\Support\ServiceProvider;

8

9 class SessionServiceProvider extends ServiceProvider

10 {

Session 419

11 /**

12 * Perform post-registration booting of services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Session::extend('mongo', function($app) {

19 // Return implementation of SessionHandlerInterface...

20 return new MongoSessionStore;

21 });

22 }

23

24 /**

25 * Register bindings in the container.

26 *

27 * @return void

28 */

29 public function register()

30 {

31 //

32 }

33 }

Note that your custom session driver should implement the SessionHandlerInterface. This inter-
face contains just a few simplemethodswe need to implement. A stubbedMongoDB implementation
looks something like this:

1 <?php

2

3 namespace App\Extensions;

4

5 class MongoHandler implements SessionHandlerInterface

6 {

7 public function open($savePath, $sessionName) {}

8 public function close() {}

9 public function read($sessionId) {}

10 public function write($sessionId, $data) {}

11 public function destroy($sessionId) {}

12 public function gc($lifetime) {}

13 }

Session 420

Since these methods are not as readily understandable as the cache StoreInterface, let’s quickly
cover what each of the methods do:

<div class=”content-list” markdown=”1”> - The open method would typically be used in file based
session store systems. Since Laravel ships with a file session driver, you will almost never need
to put anything in this method. You can leave it as an empty stub. It is simply a fact of poor
interface design (which we’ll discuss later) that PHP requires us to implement this method. - The
close method, like the open method, can also usually be disregarded. For most drivers, it is not
needed. - The read method should return the string version of the session data associated with the
given $sessionId. There is no need to do any serialization or other encoding when retrieving or
storing session data in your driver, as Laravel will perform the serialization for you. - The write

method should write the given $data string associated with the $sessionId to some persistent
storage system, such as MongoDB, Dynamo, etc. - The destroy method should remove the data
associated with the $sessionId from persistent storage. - The gc method should destroy all session
data that is older than the given $lifetime, which is a UNIX timestamp. For self-expiring systems
like Memcached and Redis, this method may be left empty. </div>

Once the session driver has been registered, you may use the mongo driver in your config/ses-
sion.php configuration file.

Envoy Task Runner
• Introduction
• Writing Tasks A> - Task Variables A> - Multiple Servers A> - Task Macros
• Running Tasks
• Notifications A> - HipChat A> - Slack

Introduction

Laravel Envoy¹⁸⁹ provides a clean, minimal syntax for defining common tasks you run on your
remote servers. Using a Blade style syntax, you can easily setup tasks for deployment, Artisan
commands, and more. Currently, Envoy only supports the Mac and Linux operating systems.

Installation

First, install Envoy using the Composer global command:

1 composer global require "laravel/envoy=~1.0"

Make sure to place the ∼/.composer/vendor/bin directory in your PATH so the envoy executable
is found when you run the envoy command in your terminal.

Updating Envoy

You may also use Composer to keep your Envoy installation up to date:

1 composer global update

¹⁸⁹https://github.com/laravel/envoy

421

https://github.com/laravel/envoy
https://github.com/laravel/envoy

Envoy Task Runner 422

Writing Tasks

All of your Envoy tasks should be defined in an Envoy.blade.php file in the root of your project.
Here’s an example to get you started:

1 @servers(['web' => 'user@192.168.1.1'])

2

3 @task('foo', ['on' => 'web'])

4 ls -la

5 @endtask

As you can see, an array of @servers is defined at the top of the file, allowing you to reference these
servers in the on option of your task declarations. Within your @task declarations, you should place
the Bash code that will be run on your server when the task is executed.

Bootstrapping

Sometimes, you may need to execute some PHP code before evaluating your Envoy tasks. You may
use the @setup directive to declare variables and do general PHP work inside the Envoy file:

1 @setup

2 $now = new DateTime();

3

4 $environment = isset($env) ? $env : "testing";

5 @endsetup

You may also use @include to include any outside PHP files:

1 @include('vendor/autoload.php')

Confirming Tasks

If you would like to be prompted for confirmation before running a given task on your servers, you
may add the confirm directive to your task declaration:

Envoy Task Runner 423

1 @task('deploy', ['on' => 'web', 'confirm' => true])

2 cd site

3 git pull origin {{ $branch }}

4 php artisan migrate

5 @endtask

Task Variables

If needed, you may pass variables into the Envoy file using command line switches, allowing you
to customize your tasks:

1 envoy run deploy --branch=master

You may use the options in your tasks via Blade’s “echo” syntax:

1 @servers(['web' => '192.168.1.1'])

2

3 @task('deploy', ['on' => 'web'])

4 cd site

5 git pull origin {{ $branch }}

6 php artisan migrate

7 @endtask

Multiple Servers

You may easily run a task across multiple servers. First, add additional servers to your @servers
declaration. Each server should be assigned a unique name. Once you have defined your additional
servers, simply list the servers in the task declaration’s on array:

Envoy Task Runner 424

1 @servers(['web-1' => '192.168.1.1', 'web-2' => '192.168.1.2'])

2

3 @task('deploy', ['on' => ['web-1', 'web-2']])

4 cd site

5 git pull origin {{ $branch }}

6 php artisan migrate

7 @endtask

By default, the task will be executed on each server serially. Meaning, the task will finish running
on the first server before proceeding to execute on the next server.

Parallel Execution

If you would like to run a task across multiple servers in parallel, add the parallel option to your
task declaration:

1 @servers(['web-1' => '192.168.1.1', 'web-2' => '192.168.1.2'])

2

3 @task('deploy', ['on' => ['web-1', 'web-2'], 'parallel' => true])

4 cd site

5 git pull origin {{ $branch }}

6 php artisan migrate

7 @endtask

Task Macros

Macros allow you to define a set of tasks to be run in sequence using a single command. For instance,
a deploy macro may run the git and composer tasks:

1 @servers(['web' => '192.168.1.1'])

2

3 @macro('deploy')

4 git

5 composer

6 @endmacro

7

8 @task('git')

9 git pull origin master

10 @endtask

Envoy Task Runner 425

11

12 @task('composer')

13 composer install

14 @endtask

Once the macro has been defined, you may run it via single, simple command:

1 envoy run deploy

Running Tasks

To run a task from your Envoy.blade.php file, execute Envoy’s run command, passing the command
the name of the task or macro you would like to execute. Envoy will run the task and display the
output from the servers as the task is running:

1 envoy run task

 ## Notifications {#envoy-envoy-hipchat-notifications}

HipChat

After running a task, you may send a notification to your team’s HipChat room using Envoy’s
@hipchat directive. The directive accepts an API token, the name of the room, and the username to
be displayed as the sender of the message:

1 @servers(['web' => '192.168.1.1'])

2

3 @task('foo', ['on' => 'web'])

4 ls -la

5 @endtask

6

7 @after

8 @hipchat('token', 'room', 'Envoy')

Envoy Task Runner 426

9 @endafter

If you wish, you may also pass a custom message to send to the HipChat room. Any variables
available to your Envoy tasks will also be available when constructing the message:

1 @after

2 @hipchat('token', 'room', 'Envoy', "{{ $task }} ran in the {{ $env }} enviro\

3 nment.")

4 @endafter

Slack

In addition to HipChat, Envoy also supports sending notifications to Slack¹⁹⁰. The @slack directive
accepts a Slack hook URL, a channel name, and the message you wish to send to the channel:

1 @after

2 @slack('hook', 'channel', 'message')

3 @endafter

You may retrieve your webhook URL by creating an Incoming WebHooks integration on Slack’s
website. The hook argument should be the entire webhook URL provided by the IncomingWebhooks
Slack Integration. For example:

1 https://hooks.slack.com/services/ZZZZZZZZZ/YYYYYYYYY/XXXXXXXXXXXXXXX

You may provide one of the following as the channel argument:

• To send the notification to a channel: #channel
• To send the notification to a user: @user

¹⁹⁰https://slack.com

https://slack.com
https://slack.com

Task Scheduling
• Introduction
• Defining Schedules A> - Schedule Frequency Options A> - Preventing Task Overlaps
• Task Output
• Task Hooks

Introduction

In the past, developers have generated a Cron entry for each task they need to schedule. However, this
is a headache. Your task schedule is no longer in source control, and you must SSH into your server
to add the Cron entries. The Laravel command scheduler allows you to fluently and expressively
define your command schedule within Laravel itself, and only a single Cron entry is needed on your
server.

Your task schedule is defined in the app/Console/Kernel.php file’s schedule method. To help you
get started, a simple example is included with the method. You are free to add as many scheduled
tasks as you wish to the Schedule object.

Starting The Scheduler

Here is the only Cron entry you need to add to your server:

1 * * * * * php /path/to/artisan schedule:run >> /dev/null 2>&1

This Cron will call the Laravel command scheduler every minute. Then, Laravel evaluates your
scheduled tasks and runs the tasks that are due.

Defining Schedules

You may define all of your scheduled tasks in the schedule method of the App\Console\Kernel

class. To get started, let’s look at an example of scheduling a task. In this example, we will schedule
a Closure to be called every day at midnight. Within the Closure we will execute a database query
to clear a table:

427

Task Scheduling 428

1 <?php

2

3 namespace App\Console;

4

5 use DB;

6 use Illuminate\Console\Scheduling\Schedule;

7 use Illuminate\Foundation\Console\Kernel as ConsoleKernel;

8

9 class Kernel extends ConsoleKernel

10 {

11 /**

12 * The Artisan commands provided by your application.

13 *

14 * @var array

15 */

16 protected $commands = [

17 \App\Console\Commands\Inspire::class,

18];

19

20 /**

21 * Define the application's command schedule.

22 *

23 * @param \Illuminate\Console\Scheduling\Schedule $schedule

24 * @return void

25 */

26 protected function schedule(Schedule $schedule)

27 {

28 $schedule->call(function () {

29 DB::table('recent_users')->delete();

30 })->daily();

31 }

32 }

In addition to scheduling Closure calls, you may also schedule Artisan commands and operating
system commands. For example, youmay use the commandmethod to schedule an Artisan command:

1 $schedule->command('emails:send --force')->daily();

The exec command may be used to issue a command to the operating system:

Task Scheduling 429

1 $schedule->exec('node /home/forge/script.js')->daily();

Schedule Frequency Options

Of course, there are a variety of schedules you may assign to your task:

Method | Description ————- | ————- ->cron('* * * * * *'); | Run the task on a custom Cron
schedule ->everyMinute(); | Run the task every minute ->everyFiveMinutes(); | Run the task ev-
ery fiveminutes ->everyTenMinutes(); | Run the task every tenminutes ->everyThirtyMinutes();
| Run the task every thirty minutes ->hourly(); | Run the task every hour ->daily(); | Run the
task every day at midnight ->dailyAt('13:00'); | Run the task every day at 13:00 ->twiceDaily(1,
13); | Run the task daily at 1:00 & 13:00 ->weekly(); | Run the task every week ->monthly(); | Run
the task every month ->quarterly(); | Run the task every quarter ->yearly(); | Run the task every
year ->timezone('America/New_York'); | Set the timezone

These methods may be combined with additional constraints to create even more finely tuned
schedules that only run on certain days of the week. For example, to schedule a command to run
weekly on Monday:

1 $schedule->call(function () {

2 // Runs once a week on Monday at 13:00...

3 })->weekly()->mondays()->at('13:00');

Below is a list of the additional schedule constraints:

Method | Description ————- | ————- ->weekdays(); | Limit the task to weekdays ->sundays();
| Limit the task to Sunday ->mondays(); | Limit the task to Monday ->tuesdays(); | Limit the
task to Tuesday ->wednesdays(); | Limit the task to Wednesday ->thursdays(); | Limit the task
to Thursday ->fridays(); | Limit the task to Friday ->saturdays(); | Limit the task to Saturday
->when(Closure); | Limit the task based on a truth test

Truth Test Constraints

The when method may be used to limit the execution of a task based on the result of a given truth
test. In other words, if the given Closure returns true, the task will execute as long as no other
constraining conditions prevent the task from running:

Task Scheduling 430

1 $schedule->command('emails:send')->daily()->when(function () {

2 return true;

3 });

The reject method may be seen as the inverse of when. If the reject method returns true, the
scheduled task will not be executed:

1 $schedule->command('emails:send')->daily()->reject(function () {

2 return true;

3 });

When using chained whenmethods, the scheduled command will only execute if all when conditions
return true.

Preventing Task Overlaps

By default, scheduled tasks will be run even if the previous instance of the task is still running. To
prevent this, you may use the withoutOverlapping method:

1 $schedule->command('emails:send')->withoutOverlapping();

In this example, the emails:send Artisan command will be run every minute if it is not already
running. The withoutOverlappingmethod is especially useful if you have tasks that vary drastically
in their execution time, preventing you from predicting exactly how long a given task will take.

Task Output

The Laravel scheduler provides several convenient methods for working with the output generated
by scheduled tasks. First, using the sendOutputTomethod, you may send the output to a file for later
inspection:

1 $schedule->command('emails:send')

2 ->daily()

Task Scheduling 431

3 ->sendOutputTo($filePath);

If you would like to append the output to a given file, you may use the appendOutputTo method:

1 $schedule->command('emails:send')

2 ->daily()

3 ->appendOutputTo($filePath);

Using the emailOutputTo method, you may e-mail the output to an e-mail address of your choice.
Note that the output must first be sent to a file using the sendOutputTo method. Also, before e-
mailing the output of a task, you should configure Laravel’s e-mail services:

1 $schedule->command('foo')

2 ->daily()

3 ->sendOutputTo($filePath)

4 ->emailOutputTo('foo@example.com');

Note: The emailOutputTo and sendOutputTomethods are exclusive to the commandmethod
and are not supported for call.

Task Hooks

Using the before and after methods, you may specify code to be executed before and after the
scheduled task is complete:

1 $schedule->command('emails:send')

2 ->daily()

3 ->before(function () {

4 // Task is about to start...

5 })

6 ->after(function () {

7 // Task is complete...

Task Scheduling 432

8 });

Pinging URLs

Using the pingBefore and thenPing methods, the scheduler can automatically ping a given URL
before or after a task is complete. This method is useful for notifying an external service, such as
Laravel Envoyer¹⁹¹, that your scheduled task is commencing or complete:

1 $schedule->command('emails:send')

2 ->daily()

3 ->pingBefore($url)

4 ->thenPing($url);

Using either the pingBefore($url) or thenPing($url) feature requires the Guzzle HTTP library.
You can add Guzzle to your project by adding the following line to your composer.json file:

1 "guzzlehttp/guzzle": "~5.3|~6.0"

¹⁹¹https://envoyer.io

https://envoyer.io
https://envoyer.io

Testing
• Introduction
• Application Testing A> - Interacting With Your Application A> - Testing JSON APIs A> -
Sessions / Authentication A> - Disabling Middleware A> - Custom HTTP Requests A> -
PHPUnit Assertions

• Working With Databases A> - Resetting The Database After Each Test A> - Model Factories
• Mocking A> - Mocking Events A> - Mocking Jobs A> - Mocking Facades

Introduction

Laravel is built with testing in mind. In fact, support for testing with PHPUnit is included out of the
box, and a phpunit.xml file is already setup for your application. The framework also ships with
convenient helper methods allowing you to expressively test your applications.

An ExampleTest.php file is provided in the tests directory. After installing a new Laravel
application, simply run phpunit on the command line to run your tests.

Test Environment

When running tests, Laravel will automatically set the configuration environment to testing.
Laravel automatically configures the session and cache to the array driver while testing, meaning
no session or cache data will be persisted while testing.

You are free to create other testing environment configurations as necessary. The testing environ-
ment variables may be configured in the phpunit.xml file.

Defining & Running Tests

To create a new test case, use the make:test Artisan command:

1 php artisan make:test UserTest

This command will place a new UserTest class within your tests directory. You may then define
test methods as you normally would using PHPUnit. To run your tests, simply execute the phpunit
command from your terminal:

433

Testing 434

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseMigrations;

5 use Illuminate\Foundation\Testing\DatabaseTransactions;

6

7 class UserTest extends TestCase

8 {

9 /**

10 * A basic test example.

11 *

12 * @return void

13 */

14 public function testExample()

15 {

16 $this->assertTrue(true);

17 }

18 }

Note: If you define your own setUp method within a test class, be sure to call
parent::setUp.

Application Testing

Laravel provides a very fluent API for making HTTP requests to your application, examining the
output, and even filling out forms. For example, take a look at the ExampleTest.php file included in
your tests directory:

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseTransactions;

5

6 class ExampleTest extends TestCase

7 {

8 /**

9 * A basic functional test example.

10 *

Testing 435

11 * @return void

12 */

13 public function testBasicExample()

14 {

15 $this->visit('/')

16 ->see('Laravel 5')

17 ->dontSee('Rails');

18 }

19 }

The visitmethod makes a GET request into the application. The seemethod asserts that we should
see the given text in the response returned by the application. The dontSee method asserts that the
given text is not returned in the application response. This is the most basic application test available
in Laravel.

Interacting With Your Application

Of course, you can do much more than simply assert that text appears in a given response. Let’s take
a look at some examples of clicking links and filling out forms:

Clicking Links

In this test, we will make a request to the application, “click” a link in the returned response, and
then assert that we landed on a given URI. For example, let’s assume there is a link in our response
that has a text value of “About Us”:

1 About Us

Now, let’s write a test that clicks the link and asserts the user lands on the correct page:

1 public function testBasicExample()

2 {

3 $this->visit('/')

4 ->click('About Us')

5 ->seePageIs('/about-us');

6 }

Testing 436

Working With Forms

Laravel also provides several methods for testing forms. The type, select, check, attach, and press
methods allow you to interact with all of your form’s inputs. For example, let’s imagine this form
exists on the application’s registration page:

1 <form action="/register" method="POST">

2 {!! csrf_field() !!}

3

4 <div>

5 Name: <input type="text" name="name">

6 </div>

7

8 <div>

9 <input type="checkbox" value="yes" name="terms"> Accept Terms

10 </div>

11

12 <div>

13 <input type="submit" value="Register">

14 </div>

15 </form>

We can write a test to complete this form and inspect the result:

1 public function testNewUserRegistration()

2 {

3 $this->visit('/register')

4 ->type('Taylor', 'name')

5 ->check('terms')

6 ->press('Register')

7 ->seePageIs('/dashboard');

8 }

Of course, if your form contains other inputs such as radio buttons or drop-down boxes, you may
easily fill out those types of fields as well. Here is a list of each form manipulation method:

Method | Description ————- | ————- $this->type($text, $elementName) | “Type” text into
a given field. $this->select($value, $elementName) | “Select” a radio button or drop-down
field. $this->check($elementName) | “Check” a checkbox field. $this->uncheck($elementName)
| “Uncheck” a checkbox field. $this->attach($pathToFile, $elementName) | “Attach” a file to the
form. $this->press($buttonTextOrElementName) | “Press” a button with the given text or name.

Testing 437

Working With Attachments

If your form contains file input types, you may attach files to the form using the attach method:

1 public function testPhotoCanBeUploaded()

2 {

3 $this->visit('/upload')

4 ->type('File Name', 'name')

5 ->attach($absolutePathToFile, 'photo')

6 ->press('Upload')

7 ->see('Upload Successful!');

8 }

Testing JSON APIs

Laravel also provides several helpers for testing JSON APIs and their responses. For example, the
get, post, put, patch, and deletemethods may be used to issue requests with various HTTP verbs.
You may also easily pass data and headers to these methods. To get started, let’s write a test to make
a POST request to /user and assert that a given array was returned in JSON format:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 $this->post('/user', ['name' => 'Sally'])

13 ->seeJson([

14 'created' => true,

15]);

16 }

17 }

The seeJson method converts the given array into JSON, and then verifies that the JSON fragment

Testing 438

occurs anywherewithin the entire JSON response returned by the application. So, if there are other
properties in the JSON response, this test will still pass as long as the given fragment is present.

Verify Exact JSON Match

If you would like to verify that the given array is an exact match for the JSON returned by the
application, you should use the seeJsonEquals method:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 $this->post('/user', ['name' => 'Sally'])

13 ->seeJsonEquals([

14 'created' => true,

15]);

16 }

17 }

Verify Structural JSON Match

It is also possible to verify that a JSON response adheres to a specific structure. For this, you should
use the seeJsonStructure method and pass it a list of (nested) keys:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

Testing 439

11 {

12 $this->get('/user/1')

13 ->seeJsonStructure([

14 'name',

15 'pet' => [

16 'name', 'age'

17]

18]);

19 }

20 }

The above example illustrates an expectation of receiving a name and a nested pet object with its
own name and age. seeJsonStructurewill not fail if additional keys are present in the response. For
example, the test would still pass if the pet had a weight attribute.

You may use the * to assert that the returned JSON structure has a list where each list item contains
at least the attributes found in the set of values:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 // Assert that each user in the list has at least an id, name and email \

13 attribute.

14 $this->get('/users')

15 ->seeJsonStructure([

16 '*' => [

17 'id', 'name', 'email'

18]

19]);

20 }

21 }

You may also nest the * notation. In this case, we will assert that each user in the JSON response

Testing 440

contains a given set of attributes and that each pet on each user also contains a given set of attributes:

1 $this->get('/users')

2 ->seeJsonStructure([

3 '*' => [

4 'id', 'name', 'email', `pets` => [

5 '*' => [

6 'name', 'age'

7]

8]

9]

10]);

Sessions / Authentication

Laravel provides several helpers for working with the session during testing. First, you may set the
session data to a given array using the withSession method. This is useful for loading the session
with data before testing a request to your application:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testApplication()

6 {

7 $this->withSession(['foo' => 'bar'])

8 ->visit('/');

9 }

10 }

Of course, one common use of the session is for maintaining user state, such as the authenticated
user. The actingAs helper method provides a simple way to authenticate a given user as the current
user. For example, we may use a model factory to generate and authenticate a user:

Testing 441

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testApplication()

6 {

7 $user = factory(App\User::class)->create();

8

9 $this->actingAs($user)

10 ->withSession(['foo' => 'bar'])

11 ->visit('/')

12 ->see('Hello, '.$user->name);

13 }

14 }

You may also specify which guard should be used to authenticate the given user by passing the
guard name as the second argument to the actingAs method:

1 $this->actingAs($user, 'backend')

Disabling Middleware

When testing your application, you may find it convenient to disable middleware for some of your
tests. This will allow you to test your routes and controller in isolation from any middleware
concerns. Laravel includes a simple WithoutMiddleware trait that you can use to automatically
disable all middleware for the test class:

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseTransactions;

5

6 class ExampleTest extends TestCase

7 {

8 use WithoutMiddleware;

9

Testing 442

10 //

11 }

If you would like to only disable middleware for a few test methods, you may call the withoutMid-
dleware method from within the test methods:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 $this->withoutMiddleware();

13

14 $this->visit('/')

15 ->see('Laravel 5');

16 }

17 }

Custom HTTP Requests

If you would like to make a custom HTTP request into your application and get the full Illumi-
nate\Http\Response object, you may use the call method:

1 public function testApplication()

2 {

3 $response = $this->call('GET', '/');

4

5 $this->assertEquals(200, $response->status());

6 }

Testing 443

If you are making POST, PUT, or PATCH requests you may pass an array of input data with the request.
Of course, this data will be available in your routes and controller via the Request instance:

1 $response = $this->call('POST', '/user', ['name' => 'Taylor']);

PHPUnit Assertions

Laravel provides several additional assertion methods for PHPUnit¹⁹² tests:

Method | Description ————- | ————- ->assertResponseOk(); | Assert that the client response
has an OK status code. ->assertResponseStatus($code); | Assert that the client response has a
given code. ->assertViewHas($key, $value = null); | Assert that the response view has a given
piece of bound data. ->assertViewHasAll(array $bindings); | Assert that the view has a given
list of bound data. ->assertViewMissing($key); | Assert that the response view is missing a piece
of bound data. ->assertRedirectedTo($uri, $with = []); | Assert whether the client was redi-
rected to a given URI. ->assertRedirectedToRoute($name, $parameters = [], $with = []); |
Assert whether the client was redirected to a given route. ->assertRedirectedToAction($name,
$parameters = [], $with = []); | Assert whether the client was redirected to a given ac-
tion. ->assertSessionHas($key, $value = null); | Assert that the session has a given value. -
>assertSessionHasAll(array $bindings); | Assert that the session has a given list of values.
->assertSessionHasErrors($bindings = [], $format = null); | Assert that the session has
errors bound. ->assertHasOldInput(); | Assert that the session has old input.

Working With Databases

Laravel also provides a variety of helpful tools to make it easier to test your database driven
applications. First, you may use the seeInDatabase helper to assert that data exists in the database
matching a given set of criteria. For example, if we would like to verify that there is a record in the
users table with the email value of sally@example.com, we can do the following:

1 public function testDatabase()

2 {

3 // Make call to application...

4

5 $this->seeInDatabase('users', ['email' => 'sally@example.com']);

6 }

¹⁹²https://phpunit.de/

https://phpunit.de/
https://phpunit.de/

Testing 444

Of course, the seeInDatabase method and other helpers like it are for convenience. You are free to
use any of PHPUnit’s built-in assertion methods to supplement your tests.

Resetting The Database After Each Test

It is often useful to reset your database after each test so that data from a previous test does not
interfere with subsequent tests.

Using Migrations

One option is to rollback the database after each test and migrate it before the next test. Laravel
provides a simple DatabaseMigrations trait that will automatically handle this for you. Simply use
the trait on your test class:

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseMigrations;

5 use Illuminate\Foundation\Testing\DatabaseTransactions;

6

7 class ExampleTest extends TestCase

8 {

9 use DatabaseMigrations;

10

11 /**

12 * A basic functional test example.

13 *

14 * @return void

15 */

16 public function testBasicExample()

17 {

18 $this->visit('/')

19 ->see('Laravel 5');

20 }

21 }

Using Transactions

Another option is to wrap every test case in a database transaction. Again, Laravel provides a
convenient DatabaseTransactions trait that will automatically handle this:

Testing 445

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseMigrations;

5 use Illuminate\Foundation\Testing\DatabaseTransactions;

6

7 class ExampleTest extends TestCase

8 {

9 use DatabaseTransactions;

10

11 /**

12 * A basic functional test example.

13 *

14 * @return void

15 */

16 public function testBasicExample()

17 {

18 $this->visit('/')

19 ->see('Laravel 5');

20 }

21 }

Note: This trait will only wrap the default database connection in a transaction.

Model Factories

When testing, it is common to need to insert a few records into your database before executing your
test. Instead of manually specifying the value of each column when you create this test data, Laravel
allows you to define a default set of attributes for each of your Eloquent models using “factories”.
To get started, take a look at the database/factories/ModelFactory.php file in your application.
Out of the box, this file contains one factory definition:

Testing 446

1 $factory->define(App\User::class, function (Faker\Generator $faker) {

2 return [

3 'name' => $faker->name,

4 'email' => $faker->email,

5 'password' => bcrypt(str_random(10)),

6 'remember_token' => str_random(10),

7];

8 });

Within the Closure, which serves as the factory definition, you may return the default test values of
all attributes on the model. The Closure will receive an instance of the Faker¹⁹³ PHP library, which
allows you to conveniently generate various kinds of random data for testing.

Of course, you are free to add your own additional factories to the ModelFactory.php file.

Multiple Factory Types

Sometimes you may wish to have multiple factories for the same Eloquent model class. For example,
perhaps you would like to have a factory for “Administrator” users in addition to normal users. You
may define these factories using the defineAs method:

1 $factory->defineAs(App\User::class, 'admin', function ($faker) {

2 return [

3 'name' => $faker->name,

4 'email' => $faker->email,

5 'password' => str_random(10),

6 'remember_token' => str_random(10),

7 'admin' => true,

8];

9 });

Instead of duplicating all of the attributes from your base user factory, you may use the rawmethod
to retrieve the base attributes. Once you have the attributes, simply supplement them with any
additional values you require:

¹⁹³https://github.com/fzaninotto/Faker

https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker

Testing 447

1 $factory->defineAs(App\User::class, 'admin', function ($faker) use ($factory) {

2 $user = $factory->raw(App\User::class);

3

4 return array_merge($user, ['admin' => true]);

5 });

Using Factories In Tests

Once you have defined your factories, you may use them in your tests or database seed files to
generate model instances using the global factory function. So, let’s take a look at a few examples
of creating models. First, we’ll use the make method, which creates models but does not save them
to the database:

1 public function testDatabase()

2 {

3 $user = factory(App\User::class)->make();

4

5 // Use model in tests...

6 }

If you would like to override some of the default values of your models, you may pass an array of
values to the make method. Only the specified values will be replaced while the rest of the values
remain set to their default values as specified by the factory:

1 $user = factory(App\User::class)->make([

2 'name' => 'Abigail',

3]);

You may also create a Collection of many models or create models of a given type:

Testing 448

1 // Create three App\User instances...

2 $users = factory(App\User::class, 3)->make();

3

4 // Create an App\User "admin" instance...

5 $user = factory(App\User::class, 'admin')->make();

6

7 // Create three App\User "admin" instances...

8 $users = factory(App\User::class, 'admin', 3)->make();

Persisting Factory Models

The create method not only creates the model instances, but also saves them to the database using
Eloquent’s save method:

1 public function testDatabase()

2 {

3 $user = factory(App\User::class)->create();

4

5 // Use model in tests...

6 }

Again, you may override attributes on the model by passing an array to the create method:

1 $user = factory(App\User::class)->create([

2 'name' => 'Abigail',

3]);

Adding Relations To Models

You may even persist multiple models to the database. In this example, we’ll even attach a relation to
the createdmodels.When using the createmethod to create multiple models, an Eloquent collection
instance is returned, allowing you to use any of the convenient functions provided by the collection,
such as each:

Testing 449

1 $users = factory(App\User::class, 3)

2 ->create()

3 ->each(function($u) {

4 $u->posts()->save(factory(App\Post::class)->make());

5 });

Mocking

Mocking Events

If you are making heavy use of Laravel’s event system, you may wish to silence or mock certain
events while testing. For example, if you are testing user registration, you probably do not want all
of a UserRegistered event’s handlers firing, since these may send “welcome” e-mails, etc.

Laravel provides a convenient expectsEventsmethod that verifies the expected events are fired, but
prevents any handlers for those events from running:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testUserRegistration()

6 {

7 $this->expectsEvents(App\Events\UserRegistered::class);

8

9 // Test user registration...

10 }

11 }

You may use the doesntExpectEvents method to verify that the given events are not fired:

Testing 450

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testPodcastPurchase()

6 {

7 $this->expectsEvents(App\Events\PodcastWasPurchased::class);

8

9 $this->doesntExpectEvents(App\Events\PaymentWasDeclined::class);

10

11 // Test purchasing podcast...

12 }

13 }

If you would like to prevent all event handlers from running, you may use the withoutEvents

method:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testUserRegistration()

6 {

7 $this->withoutEvents();

8

9 // Test user registration code...

10 }

11 }

Mocking Jobs

Sometimes, you may wish to simply test that specific jobs are dispatched by your controllers when
making requests to your application. This allows you to test your routes / controllers in isolation -
set apart from your job’s logic. Of course, you can then test the job itself in a separate test class.

Laravel provides a convenient expectsJobs method that will verify that the expected jobs are
dispatched, but the job itself will not be executed:

Testing 451

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testPurchasePodcast()

6 {

7 $this->expectsJobs(App\Jobs\PurchasePodcast::class);

8

9 // Test purchase podcast code...

10 }

11 }

Note: This method only detects jobs that are dispatched via the DispatchesJobs trait’s
dispatch methods or the dispatch helper function. It does not detect jobs that are sent
directly to Queue::push.

Mocking Facades

When testing, you may often want to mock a call to a Laravel facade. For example, consider the
following controller action:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Cache;

6

7 class UserController extends Controller

8 {

9 /**

10 * Show a list of all users of the application.

11 *

12 * @return Response

13 */

14 public function index()

15 {

16 $value = Cache::get('key');

17

18 //

Testing 452

19 }

20 }

We can mock the call to the Cache facade by using the shouldReceive method, which will return
an instance of a Mockery¹⁹⁴ mock. Since facades are actually resolved and managed by the Laravel
service container, they have muchmore testability than a typical static class. For example, let’s mock
our call to the Cache facade:

1 <?php

2

3 class FooTest extends TestCase

4 {

5 public function testGetIndex()

6 {

7 Cache::shouldReceive('get')

8 ->once()

9 ->with('key')

10 ->andReturn('value');

11

12 $this->visit('/users')->see('value');

13 }

14 }

Note: You should not mock the Request facade. Instead, pass the input you desire into the
HTTP helper methods such as call and post when running your test.

¹⁹⁴https://github.com/padraic/mockery

https://github.com/padraic/mockery
https://github.com/padraic/mockery

Validation
• Introduction
• Validation Quickstart A> - Defining The Routes A> - Creating The Controller A> - Writing
The Validation Logic A> - Displaying The Validation Errors A> - AJAX Requests & Validation
A> - Validating Arrays

• Other ValidationApproaches A> -Manually Creating Validators A> - FormRequest Validation
• Working With Error Messages A> - Custom Error Messages
• Available Validation Rules
• Conditionally Adding Rules
• Custom Validation Rules

Introduction

Laravel provides several different approaches to validate your application’s incoming data. By
default, Laravel’s base controller class uses a ValidatesRequests trait which provides a convenient
method to validate incoming HTTP request with a variety of powerful validation rules.

Validation Quickstart

To learn about Laravel’s powerful validation features, let’s look at a complete example of validating
a form and displaying the error messages back to the user.

Defining The Routes

First, let’s assume we have the following routes defined in our app/Http/routes.php file:

1 // Display a form to create a blog post...

2 Route::get('post/create', 'PostController@create');

3

4 // Store a new blog post...

5 Route::post('post', 'PostController@store');

Of course, the GET route will display a form for the user to create a new blog post, while the POST
route will store the new blog post in the database.

453

Validation 454

Creating The Controller

Next, let’s take a look at a simple controller that handles these routes. We’ll leave the storemethod
empty for now:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6 use App\Http\Controllers\Controller;

7

8 class PostController extends Controller

9 {

10 /**

11 * Show the form to create a new blog post.

12 *

13 * @return Response

14 */

15 public function create()

16 {

17 return view('post.create');

18 }

19

20 /**

21 * Store a new blog post.

22 *

23 * @param Request $request

24 * @return Response

25 */

26 public function store(Request $request)

27 {

28 // Validate and store the blog post...

29 }

30 }

Writing The Validation Logic

Now we are ready to fill in our store method with the logic to validate the new blog post. If you
examine your application’s base controller (App\Http\Controllers\Controller) class, you will see
that the class uses a ValidatesRequests trait. This trait provides a convenient validate method in
all of your controllers.

Validation 455

The validate method accepts an incoming HTTP request and a set of validation rules. If the
validation rules pass, your code will keep executing normally; however, if validation fails, an
exception will be thrown and the proper error response will automatically be sent back to the user. In
the case of a traditional HTTP request, a redirect response will be generated, while a JSON response
will be sent for AJAX requests.

To get a better understanding of the validate method, let’s jump back into the store method:

1 /**

2 * Store a new blog post.

3 *

4 * @param Request $request

5 * @return Response

6 */

7 public function store(Request $request)

8 {

9 $this->validate($request, [

10 'title' => 'required|unique:posts|max:255',

11 'body' => 'required',

12]);

13

14 // The blog post is valid, store in database...

15 }

As you can see, we simply pass the incoming HTTP request and desired validation rules into the
validatemethod. Again, if the validation fails, the proper response will automatically be generated.
If the validation passes, our controller will continue executing normally.

Stopping On First Validation Failure

Sometimes you may wish to stop running validation rules on an attribute after the first validation
failure. To do so, assign the bail rule to the attribute:

1 $this->validate($request, [

2 'title' => 'bail|required|unique:posts|max:255',

3 'body' => 'required',

4]);

In this example, if the required rule on the title attribute fails, the unique rule will not be checked.
Rules will be validated in the order they are assigned.

Validation 456

A Note On Nested Attributes

If your HTTP request contains “nested” parameters, you may specify them in your validation rules
using “dot” syntax:

1 $this->validate($request, [

2 'title' => 'required|unique:posts|max:255',

3 'author.name' => 'required',

4 'author.description' => 'required',

5]);

Displaying The Validation Errors

So, what if the incoming request parameters do not pass the given validation rules? As mentioned
previously, Laravel will automatically redirect the user back to their previous location. In addition,
all of the validation errors will automatically be flashed to the session.

Again, notice that we did not have to explicitly bind the error messages to the view in our
GET route. This is because Laravel will check for errors in the session data, and automatically
bind them to the view if they are available. The $errors variable will be an instance of Illu-

minate\Support\MessageBag. For more information on working with this object, check out its
documentation.

Note: The $errors variable is bound to the view by the
Illuminate\View\Middleware\ShareErrorsFromSession middleware, which is provided
by the web middleware group. When this middleware is applied an $errors variable
will always be available in your views, allowing you to conveniently assume the
$errors variable is always defined and can be safely used.

So, in our example, the user will be redirected to our controller’s create method when validation
fails, allowing us to display the error messages in the view:

Validation 457

1 <!-- /resources/views/post/create.blade.php -->

2

3 <h1>Create Post</h1>

4

5 @if (count($errors) > 0)

6 <div class="alert alert-danger">

7

8 @foreach ($errors->all() as $error)

9 {{ $error }}

10 @endforeach

11

12 </div>

13 @endif

14

15 <!-- Create Post Form -->

Customizing The Flashed Error Format

If you wish to customize the format of the validation errors that are flashed to the session when
validation fails, override the formatValidationErrors on your base controller. Don’t forget to
import the Illuminate\Contracts\Validation\Validator class at the top of the file:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Foundation\Bus\DispatchesJobs;

6 use Illuminate\Contracts\Validation\Validator;

7 use Illuminate\Routing\Controller as BaseController;

8 use Illuminate\Foundation\Validation\ValidatesRequests;

9

10 abstract class Controller extends BaseController

11 {

12 use DispatchesJobs, ValidatesRequests;

13

14 /**

15 * {@inheritdoc}

16 */

17 protected function formatValidationErrors(Validator $validator)

18 {

19 return $validator->errors()->all();

Validation 458

20 }

21 }

AJAX Requests & Validation

In this example, we used a traditional form to send data to the application. However, many
applications use AJAX requests. When using the validatemethod during an AJAX request, Laravel
will not generate a redirect response. Instead, Laravel generates a JSON response containing all of
the validation errors. This JSON response will be sent with a 422 HTTP status code.

Validating Arrays

Validating array form input fields doesn’t have to be a pain. For example, to validate that each e-mail
in a given array input field is unique, you may do the following:

1 $validator = Validator::make($request->all(), [

2 'person.*.email' => 'email|unique:users'

3]);

Likewise, you may use the * character when specifying your validation messages in your language
files, making it a breeze to use a single validation message for array based fields:

1 'custom' => [

2 'person.*.email' => [

3 'unique' => 'Each person must have a unique e-mail address',

4]

5],

Other Validation Approaches

Manually Creating Validators

If you do not want to use the ValidatesRequests trait’s validate method, you may create a
validator instance manually using the Validator facade. The make method on the facade generates
a new validator instance:

Validation 459

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Validator;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class PostController extends Controller

10 {

11 /**

12 * Store a new blog post.

13 *

14 * @param Request $request

15 * @return Response

16 */

17 public function store(Request $request)

18 {

19 $validator = Validator::make($request->all(), [

20 'title' => 'required|unique:posts|max:255',

21 'body' => 'required',

22]);

23

24 if ($validator->fails()) {

25 return redirect('post/create')

26 ->withErrors($validator)

27 ->withInput();

28 }

29

30 // Store the blog post...

31 }

32 }

The first argument passed to the make method is the data under validation. The second argument is
the validation rules that should be applied to the data.

After checking if the request failed to pass validation, you may use the withErrorsmethod to flash
the error messages to the session. When using this method, the $errors variable will automatically
be shared with your views after redirection, allowing you to easily display them back to the user.
The withErrors method accepts a validator, a MessageBag, or a PHP array.

Validation 460

Named Error Bags

If you have multiple forms on a single page, you may wish to name the MessageBag of errors,
allowing you to retrieve the error messages for a specific form. Simply pass a name as the second
argument to withErrors:

1 return redirect('register')

2 ->withErrors($validator, 'login');

You may then access the named MessageBag instance from the $errors variable:

1 {{ $errors->login->first('email') }}

After Validation Hook

The validator also allows you to attach callbacks to be run after validation is completed. This allows
you to easily perform further validation and even addmore error messages to the message collection.
To get started, use the after method on a validator instance:

1 $validator = Validator::make(...);

2

3 $validator->after(function($validator) {

4 if ($this->somethingElseIsInvalid()) {

5 $validator->errors()->add('field', 'Something is wrong with this field!'\

6);

7 }

8 });

9

10 if ($validator->fails()) {

11 //

12 }

Form Request Validation

For more complex validation scenarios, you may wish to create a “form request”. Form requests
are custom request classes that contain validation logic. To create a form request class, use the
make:request Artisan CLI command:

Validation 461

1 php artisan make:request StoreBlogPostRequest

The generated class will be placed in the app/Http/Requests directory. Let’s add a few validation
rules to the rules method:

1 /**

2 * Get the validation rules that apply to the request.

3 *

4 * @return array

5 */

6 public function rules()

7 {

8 return [

9 'title' => 'required|unique:posts|max:255',

10 'body' => 'required',

11];

12 }

So, how are the validation rules evaluated? All you need to do is type-hint the request on your
controller method. The incoming form request is validated before the controller method is called,
meaning you do not need to clutter your controller with any validation logic:

1 /**

2 * Store the incoming blog post.

3 *

4 * @param StoreBlogPostRequest $request

5 * @return Response

6 */

7 public function store(StoreBlogPostRequest $request)

8 {

9 // The incoming request is valid...

10 }

If validation fails, a redirect response will be generated to send the user back to their previous
location. The errors will also be flashed to the session so they are available for display. If the request
was an AJAX request, a HTTP response with a 422 status code will be returned to the user including
a JSON representation of the validation errors.

Validation 462

Authorizing Form Requests

The form request class also contains an authorize method. Within this method, you may check if
the authenticated user actually has the authority to update a given resource. For example, if a user
is attempting to update a blog post comment, do they actually own that comment? For example:

1 /**

2 * Determine if the user is authorized to make this request.

3 *

4 * @return bool

5 */

6 public function authorize()

7 {

8 $commentId = $this->route('comment');

9

10 return Comment::where('id', $commentId)

11 ->where('user_id', Auth::id())->exists();

12 }

Note the call to the route method in the example above. This method grants you access to the URI
parameters defined on the route being called, such as the {comment} parameter in the example below:

1 Route::post('comment/{comment}');

If the authorize method returns false, a HTTP response with a 403 status code will automatically
be returned and your controller method will not execute.

If you plan to have authorization logic in another part of your application, simply return true from
the authorize method:

1 /**

2 * Determine if the user is authorized to make this request.

3 *

4 * @return bool

5 */

6 public function authorize()

7 {

8 return true;

9 }

Validation 463

Customizing The Flashed Error Format

If you wish to customize the format of the validation errors that are flashed to the session when
validation fails, override the formatErrors on your base request (App\Http\Requests\Request).
Don’t forget to import the Illuminate\Contracts\Validation\Validator class at the top of the
file:

1 /**

2 * {@inheritdoc}

3 */

4 protected function formatErrors(Validator $validator)

5 {

6 return $validator->errors()->all();

7 }

Customizing The Error Messages

Youmay customize the error messages used by the form request by overriding the messagesmethod.
This method should return an array of attribute / rule pairs and their corresponding error messages:

1 /**

2 * Get the error messages for the defined validation rules.

3 *

4 * @return array

5 */

6 public function messages()

7 {

8 return [

9 'title.required' => 'A title is required',

10 'body.required' => 'A message is required',

11];

12 }

Working With Error Messages

After calling the errorsmethod on a Validator instance, youwill receive an Illuminate\Support\MessageBag
instance, which has a variety of convenient methods for working with error messages.

Validation 464

Retrieving The First Error Message For A Field

To retrieve the first error message for a given field, use the first method:

1 $messages = $validator->errors();

2

3 echo $messages->first('email');

Retrieving All Error Messages For A Field

If you wish to simply retrieve an array of all of the messages for a given field, use the get method:

1 foreach ($messages->get('email') as $message) {

2 //

3 }

Retrieving All Error Messages For All Fields

To retrieve an array of all messages for all fields, use the all method:

1 foreach ($messages->all() as $message) {

2 //

3 }

Determining If Messages Exist For A Field

1 if ($messages->has('email')) {

2 //

3 }

Retrieving An Error Message With A Format

Validation 465

1 echo $messages->first('email', '<p>:message</p>');

Retrieving All Error Messages With A Format

1 foreach ($messages->all(':message') as $message) {

2 //

3 }

Custom Error Messages

If needed, youmay use custom errormessages for validation instead of the defaults. There are several
ways to specify custom messages. First, you may pass the custom messages as the third argument
to the Validator::make method:

1 $messages = [

2 'required' => 'The :attribute field is required.',

3];

4

5 $validator = Validator::make($input, $rules, $messages);

In this example, the :attribute place-holder will be replaced by the actual name of the field under
validation. You may also utilize other place-holders in validation messages. For example:

1 $messages = [

2 'same' => 'The :attribute and :other must match.',

3 'size' => 'The :attribute must be exactly :size.',

4 'between' => 'The :attribute must be between :min - :max.',

5 'in' => 'The :attribute must be one of the following types: :values',

6];

Specifying A Custom Message For A Given Attribute

Sometimes you may wish to specify a custom error messages only for a specific field. You may do
so using “dot” notation. Specify the attribute’s name first, followed by the rule:

Validation 466

1 $messages = [

2 'email.required' => 'We need to know your e-mail address!',

3];

Specifying Custom Messages In Language Files

In many cases, you may wish to specify your attribute specific custom messages in a language file
instead of passing them directly to the Validator. To do so, add your messages to custom array in
the resources/lang/xx/validation.php language file.

1 'custom' => [

2 'email' => [

3 'required' => 'We need to know your e-mail address!',

4],

5],

Available Validation Rules

Below is a list of all available validation rules and their function:

<style> A> .collection-method-list > p { A> column-count: 3; -moz-column-count: 3; -webkit-
column-count: 3; A> column-gap: 2em; -moz-column-gap: 2em; -webkit-column-gap: 2em; A> } A>
A> .collection-method-list a { A> display: block; A> }

</style>

<div class=”collection-method-list” markdown=”1”> Accepted Active URLAfter (Date) Alpha Alpha
Dash Alpha Numeric Array Before (Date) Between Boolean Confirmed Date Date Format Different
Digits Digits Between E-Mail Exists (Database) Image (File) In Integer IP Address JSON Max MIME
Types (File) Min Not In Numeric Regular Expression Required Required If Required Unless Required
With RequiredWith All RequiredWithout RequiredWithout All Same Size String Timezone Unique
(Database) URL </div>

accepted

The field under validation must be yes, on, 1, or true. This is useful for validating “Terms of Service”
acceptance.

Validation 467

active_url

The field under validation must be a valid URL according to the checkdnsrr PHP function.

after:date

The field under validation must be a value after a given date. The dates will be passed into the
strtotime PHP function:

1 'start_date' => 'required|date|after:tomorrow'

Instead of passing a date string to be evaluated by strtotime, you may specify another field to
compare against the date:

1 'finish_date' => 'required|date|after:start_date'

alpha

The field under validation must be entirely alphabetic characters.

alpha_dash

The field under validation may have alpha-numeric characters, as well as dashes and underscores.

alpha_num

The field under validation must be entirely alpha-numeric characters.

array

The field under validation must be a PHP array.

before:date

The field under validation must be a value preceding the given date. The dates will be passed into
the PHP strtotime function.

Validation 468

between:min,max

The field under validation must have a size between the givenmin and max. Strings, numerics, and
files are evaluated in the same fashion as the size rule.

boolean

The field under validation must be able to be cast as a boolean. Accepted input are true, false, 1,
0, "1", and "0".

confirmed

The field under validation must have a matching field of foo_confirmation. For example, if the
field under validation is password, a matching password_confirmation field must be present in the
input.

date

The field under validation must be a valid date according to the strtotime PHP function.

date_format:format

The field under validation must match the given format. The format will be evaluated using the PHP
date_parse_from_format function. You should use either date or date_format when validating a
field, not both.

different:field

The field under validation must have a different value than field.

digits:value

The field under validation must be numeric and must have an exact length of value.

digits_between:min,max

The field under validation must have a length between the given min and max.

email

The field under validation must be formatted as an e-mail address.

Validation 469

exists:table,column

The field under validation must exist on a given database table.

Basic Usage Of Exists Rule

1 'state' => 'exists:states'

Specifying A Custom Column Name

1 'state' => 'exists:states,abbreviation'

You may also specify more conditions that will be added as “where” clauses to the query:

1 'email' => 'exists:staff,email,account_id,1'

These conditions may be negated using the ! sign:

1 'email' => 'exists:staff,email,role,!admin'

You may also pass NULL or NOT_NULL to the “where” clause:

1 'email' => 'exists:staff,email,deleted_at,NULL'

2

3 'email' => 'exists:staff,email,deleted_at,NOT_NULL'

image

The file under validation must be an image (jpeg, png, bmp, gif, or svg)

in:foo,bar,…

The field under validation must be included in the given list of values.

Validation 470

integer

The field under validation must be an integer.

ip

The field under validation must be an IP address.

json

The field under validation must a valid JSON string.

max:value

The field under validation must be less than or equal to a maximum value. Strings, numerics, and
files are evaluated in the same fashion as the size rule.

mimes:foo,bar,…

The file under validation must have a MIME type corresponding to one of the listed extensions.

Basic Usage Of MIME Rule

1 'photo' => 'mimes:jpeg,bmp,png'

Even though you only need to specify the extensions, this rule actually validates against the MIME
type of the file by reading the file’s contents and guessing its MIME type.

A full listing of MIME types and their corresponding extensions may be found at the following
location: http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types¹⁹⁵

min:value

The field under validation must have a minimum value. Strings, numerics, and files are evaluated
in the same fashion as the size rule.

not_in:foo,bar,…

The field under validation must not be included in the given list of values.

¹⁹⁵http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types
http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Validation 471

numeric

The field under validation must be numeric.

regex:pattern

The field under validation must match the given regular expression.

Note: When using the regex pattern, it may be necessary to specify rules in an array instead of
using pipe delimiters, especially if the regular expression contains a pipe character.

required

The field under validation must be present in the input data and not empty. A field is considered
“empty” if one of the following conditions are true:

• The value is null.
• The value is an empty string.
• The value is an empty array or empty Countable object.
• The value is an uploaded file with no path.

required_if:anotherfield,value,…

The field under validation must be present if the anotherfield field is equal to any value.

required_unless:anotherfield,value,…

The field under validation must be present unless the anotherfield field is equal to any value.

required_with:foo,bar,…

The field under validation must be present only if any of the other specified fields are present.

required_with_all:foo,bar,…

The field under validation must be present only if all of the other specified fields are present.

required_without:foo,bar,…

The field under validationmust be present only when any of the other specified fields are not present.

required_without_all:foo,bar,…

The field under validation must be present only when all of the other specified fields are not present.

Validation 472

same:field

The given field must match the field under validation.

size:value

The field under validation must have a size matching the given value. For string data, value
corresponds to the number of characters. For numeric data, value corresponds to a given integer
value. For files, size corresponds to the file size in kilobytes.

string

The field under validation must be a string.

timezone

The field under validation must be a valid timezone identifier according to the timezone_identi-
fiers_list PHP function.

unique:table,column,except,idColumn

The field under validation must be unique on a given database table. If the column option is not
specified, the field name will be used.

Specifying A Custom Column Name:

1 'email' => 'unique:users,email_address'

Custom Database Connection

Occasionally, you may need to set a custom connection for database queries made by the Validator.
As seen above, setting unique:users as a validation rule will use the default database connection to
query the database. To override this, specify the connection followed by the table name using “dot”
syntax:

1 'email' => 'unique:connection.users,email_address'

Forcing A Unique Rule To Ignore A Given ID:

Sometimes, you may wish to ignore a given ID during the unique check. For example, consider an
“update profile” screen that includes the user’s name, e-mail address, and location. Of course, you

Validation 473

will want to verify that the e-mail address is unique. However, if the user only changes the name
field and not the e-mail field, you do not want a validation error to be thrown because the user
is already the owner of the e-mail address. You only want to throw a validation error if the user
provides an e-mail address that is already used by a different user. To tell the unique rule to ignore
the user’s ID, you may pass the ID as the third parameter:

1 'email' => 'unique:users,email_address,'.$user->id

If your table uses a primary key column name other than id, you may specify it as the fourth
parameter:

1 'email' => 'unique:users,email_address,'.$user->id.',user_id'

Adding Additional Where Clauses:

You may also specify more conditions that will be added as “where” clauses to the query:

1 'email' => 'unique:users,email_address,NULL,id,account_id,1'

In the rule above, only rows with an account_id of 1 would be included in the unique check.

url

The field under validation must be a valid URL according to PHP’s filter_var function.

Conditionally Adding Rules

In some situations, you may wish to run validation checks against a field only if that field is present
in the input array. To quickly accomplish this, add the sometimes rule to your rule list:

1 $v = Validator::make($data, [

2 'email' => 'sometimes|required|email',

3]);

In the example above, the email field will only be validated if it is present in the $data array.

Validation 474

Complex Conditional Validation

Sometimes you may wish to add validation rules based on more complex conditional logic. For
example, you may wish to require a given field only if another field has a greater value than 100.
Or, you may need two fields to have a given value only when another field is present. Adding these
validation rules doesn’t have to be a pain. First, create a Validator instance with your static rules
that never change:

1 $v = Validator::make($data, [

2 'email' => 'required|email',

3 'games' => 'required|numeric',

4]);

Let’s assume our web application is for game collectors. If a game collector registers with our
application and they own more than 100 games, we want them to explain why they own so many
games. For example, perhaps they run a game re-sell shop, or maybe they just enjoy collecting. To
conditionally add this requirement, we can use the sometimes method on the Validator instance.

1 $v->sometimes('reason', 'required|max:500', function($input) {

2 return $input->games >= 100;

3 });

The first argument passed to the sometimes method is the name of the field we are conditionally
validating. The second argument is the rules we want to add. If the Closure passed as the third
argument returns true, the rules will be added. This method makes it a breeze to build complex
conditional validations. You may even add conditional validations for several fields at once:

1 $v->sometimes(['reason', 'cost'], 'required', function($input) {

2 return $input->games >= 100;

3 });

Note: The $input parameter passed to your Closure will be an instance of
Illuminate\Support\Fluent and may be used to access your input and files.

Validation 475

Custom Validation Rules

Laravel provides a variety of helpful validation rules; however, you may wish to specify some of
your own. One method of registering custom validation rules is using the extend method on the
Validator facade. Let’s use this method within a service provider to register a custom validation
rule:

1 <?php

2

3 namespace App\Providers;

4

5 use Validator;

6 use Illuminate\Support\ServiceProvider;

7

8 class AppServiceProvider extends ServiceProvider

9 {

10 /**

11 * Bootstrap any application services.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 Validator::extend('foo', function($attribute, $value, $parameters, $vali\

18 dator) {

19 return $value == 'foo';

20 });

21 }

22

23 /**

24 * Register the service provider.

25 *

26 * @return void

27 */

28 public function register()

29 {

30 //

31 }

32 }

The custom validator Closure receives four arguments: the name of the $attribute being validated,
the $value of the attribute, an array of $parameters passed to the rule, and the Validator instance.

Validation 476

You may also pass a class and method to the extend method instead of a Closure:

1 Validator::extend('foo', 'FooValidator@validate');

Defining The Error Message

You will also need to define an error message for your custom rule. You can do so either using
an inline custom message array or by adding an entry in the validation language file. This message
should be placed in the first level of the array, not within the custom array, which is only for attribute-
specific error messages:

1 "foo" => "Your input was invalid!",

2

3 "accepted" => "The :attribute must be accepted.",

4

5 // The rest of the validation error messages...

When creating a custom validation rule, you may sometimes need to define custom place-holder
replacements for error messages. You may do so by creating a custom Validator as described above
then making a call to the replacer method on the Validator facade. You may do this within the
boot method of a service provider:

1 /**

2 * Bootstrap any application services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 Validator::extend(...);

9

10 Validator::replacer('foo', function($message, $attribute, $rule, $parameters\

11) {

12 return str_replace(...);

13 });

14 }

Validation 477

Implicit Extensions

By default, when an attribute being validated is not present or contains an empty value as defined by
the required rule, normal validation rules, including custom extensions, are not run. For example,
the unique rule will not be run against a null value:

1 $rules = ['name' => 'unique'];

2

3 $input = ['name' => null];

4

5 Validator::make($input, $rules)->passes(); // true

For a rule to run even when an attribute is empty, the rule must imply that the attribute is required.
To create such an “implicit” extension, use the Validator::extendImplicit() method:

1 Validator::extendImplicit('foo', function($attribute, $value, $parameters, $vali\

2 dator) {

3 return $value == 'foo';

4 });

Note:An “implicit” extension only implies that the attribute is required.Whether it actually
invalidates a missing or empty attribute is up to you.

Database: Getting Started
• Introduction
• Running Raw SQL Queries A> - Listening For Query Events
• Database Transactions
• Using Multiple Database Connections

Introduction

Laravel makes connecting with databases and running queries extremely simple across a variety
of database back-ends using either raw SQL, the fluent query builder, and the Eloquent ORM.
Currently, Laravel supports four database systems:

• MySQL
• Postgres
• SQLite
• SQL Server

Configuration

Laravel makes connecting with databases and running queries extremely simple. The database
configuration for your application is located at config/database.php. In this file you may define
all of your database connections, as well as specify which connection should be used by default.
Examples for all of the supported database systems are provided in this file.

By default, Laravel’s sample environment configuration is ready to use with Laravel Homestead,
which is a convenient virtual machine for doing Laravel development on your local machine. Of
course, you are free to modify this configuration as needed for your local database.

Read / Write Connections

Sometimes you may wish to use one database connection for SELECT statements, and another for
INSERT, UPDATE, and DELETE statements. Laravel makes this a breeze, and the proper connections
will always be used whether you are using raw queries, the query builder, or the Eloquent ORM.

To see how read / write connections should be configured, let’s look at this example:

478

Database: Getting Started 479

1 'mysql' => [

2 'read' => [

3 'host' => '192.168.1.1',

4],

5 'write' => [

6 'host' => '196.168.1.2'

7],

8 'driver' => 'mysql',

9 'database' => 'database',

10 'username' => 'root',

11 'password' => '',

12 'charset' => 'utf8',

13 'collation' => 'utf8_unicode_ci',

14 'prefix' => '',

15],

Note that two keys have been added to the configuration array: read and write. Both of these keys
have array values containing a single key: host. The rest of the database options for the read and
write connections will be merged from the main mysql array.

So, we only need to place items in the read and write arrays if we wish to override the values in the
main array. So, in this case, 192.168.1.1 will be used as the “read” connection, while 192.168.1.2
will be used as the “write” connection. The database credentials, prefix, character set, and all other
options in the main mysql array will be shared across both connections.

Running Raw SQL Queries

Once you have configured your database connection, you may run queries using the DB facade. The
DB facade provides methods for each type of query: select, update, insert, delete, and statement.

Running A Select Query

To run a basic query, we can use the select method on the DB facade:

Database: Getting Started 480

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use DB;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show a list of all of the application's users.

12 *

13 * @return Response

14 */

15 public function index()

16 {

17 $users = DB::select('select * from users where active = ?', [1]);

18

19 return view('user.index', ['users' => $users]);

20 }

21 }

The first argument passed to the select method is the raw SQL query, while the second argument
is any parameter bindings that need to be bound to the query. Typically, these are the values of the
where clause constraints. Parameter binding provides protection against SQL injection.

The select method will always return an array of results. Each result within the array will be a
PHP StdClass object, allowing you to access the values of the results:

1 foreach ($users as $user) {

2 echo $user->name;

3 }

Using Named Bindings

Instead of using ? to represent your parameter bindings, you may execute a query using named
bindings:

Database: Getting Started 481

1 $results = DB::select('select * from users where id = :id', ['id' => 1]);

Running An Insert Statement

To execute an insert statement, you may use the insertmethod on the DB facade. Like select, this
method takes the raw SQL query as its first argument, and bindings as the second argument:

1 DB::insert('insert into users (id, name) values (?, ?)', [1, 'Dayle']);

Running An Update Statement

The update method should be used to update existing records in the database. The number of rows
affected by the statement will be returned by the method:

1 $affected = DB::update('update users set votes = 100 where name = ?', ['John']);

Running A Delete Statement

The delete method should be used to delete records from the database. Like update, the number of
rows deleted will be returned:

1 $deleted = DB::delete('delete from users');

Running A General Statement

Some database statements should not return any value. For these types of operations, you may use
the statement method on the DB facade:

1 DB::statement('drop table users');

Database: Getting Started 482

Listening For Query Events

If you would like to receive each SQL query executed by your application, you may use the listen
method. This method is useful for logging queries or debugging. Youmay register your query listener
in a service provider:

1 <?php

2

3 namespace App\Providers;

4

5 use DB;

6 use Illuminate\Support\ServiceProvider;

7

8 class AppServiceProvider extends ServiceProvider

9 {

10 /**

11 * Bootstrap any application services.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 DB::listen(function($query) {

18 // $query->sql

19 // $query->bindings

20 // $query->time

21 });

22 }

23

24 /**

25 * Register the service provider.

26 *

27 * @return void

28 */

29 public function register()

30 {

31 //

32 }

33 }

Database: Getting Started 483

Database Transactions

To run a set of operations within a database transaction, you may use the transaction method
on the DB facade. If an exception is thrown within the transaction Closure, the transaction will
automatically be rolled back. If the Closure executes successfully, the transaction will automatically
be committed. You don’t need to worry about manually rolling back or committing while using the
transaction method:

1 DB::transaction(function () {

2 DB::table('users')->update(['votes' => 1]);

3

4 DB::table('posts')->delete();

5 });

Manually Using Transactions

If you would like to begin a transaction manually and have complete control over rollbacks and
commits, you may use the beginTransaction method on the DB facade:

1 DB::beginTransaction();

You can rollback the transaction via the rollBack method:

1 DB::rollBack();

Lastly, you can commit a transaction via the commit method:

1 DB::commit();

Note: Using the DB facade’s transaction methods also controls transactions for the query
builder and Eloquent ORM.

Database: Getting Started 484

Using Multiple Database Connections

When using multiple connections, you may access each connection via the connection method
on the DB facade. The name passed to the connection method should correspond to one of the
connections listed in your config/database.php configuration file:

1 $users = DB::connection('foo')->select(...);

You may also access the raw, underlying PDO instance using the getPdo method on a connection
instance:

1 $pdo = DB::connection()->getPdo();

Database: Query Builder
• Introduction
• Retrieving Results A> - Aggregates
• Selects
• Joins
• Unions
• Where Clauses A> - Advanced Where Clauses
• Ordering, Grouping, Limit, & Offset
• Inserts
• Updates
• Deletes
• Pessimistic Locking

Introduction

The database query builder provides a convenient, fluent interface to creating and running database
queries. It can be used to perform most database operations in your application, and works on all
supported database systems.

Note: The Laravel query builder uses PDO parameter binding to protect your application
against SQL injection attacks. There is no need to clean strings being passed as bindings.

Retrieving Results

Retrieving All Rows From A Table

To begin a fluent query, use the table method on the DB facade. The table method returns a fluent
query builder instance for the given table, allowing you to chain more constraints onto the query
and then finally get the results. In this example, let’s just get all records from a table:

485

Database: Query Builder 486

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use DB;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show a list of all of the application's users.

12 *

13 * @return Response

14 */

15 public function index()

16 {

17 $users = DB::table('users')->get();

18

19 return view('user.index', ['users' => $users]);

20 }

21 }

Like raw queries, the get method returns an array of results where each result is an instance of the
PHP StdClass object. You may access each column’s value by accessing the column as a property
of the object:

1 foreach ($users as $user) {

2 echo $user->name;

3 }

Retrieving A Single Row / Column From A Table

If you just need to retrieve a single row from the database table, you may use the first method.
This method will return a single StdClass object:

1 $user = DB::table('users')->where('name', 'John')->first();

2

Database: Query Builder 487

3 echo $user->name;

If you don’t even need an entire row, you may extract a single value from a record using the value
method. This method will return the value of the column directly:

1 $email = DB::table('users')->where('name', 'John')->value('email');

Chunking Results From A Table

If you need to work with thousands of database records, consider using the chunk method. This
method retrieves a small “chunk” of the results at a time, and feeds each chunk into a Closure for
processing. This method is very useful for writing Artisan commands that process thousands of
records. For example, let’s work with the entire users table in chunks of 100 records at a time:

1 DB::table('users')->chunk(100, function($users) {

2 foreach ($users as $user) {

3 //

4 }

5 });

You may stop further chunks from being processed by returning false from the Closure:

1 DB::table('users')->chunk(100, function($users) {

2 // Process the records...

3

4 return false;

5 });

Retrieving A List Of Column Values

If you would like to retrieve an array containing the values of a single column, you may use the
pluck method. In this example, we’ll retrieve an array of role titles:

Database: Query Builder 488

1 $titles = DB::table('roles')->pluck('title');

2

3 foreach ($titles as $title) {

4 echo $title;

5 }

You may also specify a custom key column for the returned array:

1 $roles = DB::table('roles')->pluck('title', 'name');

2

3 foreach ($roles as $name => $title) {

4 echo $title;

5 }

Aggregates

The query builder also provides a variety of aggregate methods, such as count, max, min, avg, and
sum. You may call any of these methods after constructing your query:

1 $users = DB::table('users')->count();

2

3 $price = DB::table('orders')->max('price');

Of course, you may combine these methods with other clauses to build your query:

1 $price = DB::table('orders')

2 ->where('finalized', 1)

3 ->avg('price');

Database: Query Builder 489

Selects

Specifying A Select Clause

Of course, you may not always want to select all columns from a database table. Using the select
method, you can specify a custom select clause for the query:

1 $users = DB::table('users')->select('name', 'email as user_email')->get();

The distinct method allows you to force the query to return distinct results:

1 $users = DB::table('users')->distinct()->get();

If you already have a query builder instance and you wish to add a column to its existing select
clause, you may use the addSelect method:

1 $query = DB::table('users')->select('name');

2

3 $users = $query->addSelect('age')->get();

Raw Expressions

Sometimes you may need to use a raw expression in a query. These expressions will be injected into
the query as strings, so be careful not to create any SQL injection points! To create a raw expression,
you may use the DB::raw method:

1 $users = DB::table('users')

2 ->select(DB::raw('count(*) as user_count, status'))

3 ->where('status', '<>', 1)

4 ->groupBy('status')

5 ->get();

Database: Query Builder 490

Joins

Inner Join Statement

The query builder may also be used to write join statements. To perform a basic SQL “inner join”,
you may use the join method on a query builder instance. The first argument passed to the join
method is the name of the table you need to join to, while the remaining arguments specify the
column constraints for the join. Of course, as you can see, you can join to multiple tables in a single
query:

1 $users = DB::table('users')

2 ->join('contacts', 'users.id', '=', 'contacts.user_id')

3 ->join('orders', 'users.id', '=', 'orders.user_id')

4 ->select('users.*', 'contacts.phone', 'orders.price')

5 ->get();

Left Join Statement

If you would like to perform a “left join” instead of an “inner join”, use the leftJoin method. The
leftJoin method has the same signature as the join method:

1 $users = DB::table('users')

2 ->leftJoin('posts', 'users.id', '=', 'posts.user_id')

3 ->get();

Advanced Join Statements

You may also specify more advanced join clauses. To get started, pass a Closure as the second
argument into the join method. The Closure will receive a JoinClause object which allows you to
specify constraints on the join clause:

1 DB::table('users')

2 ->join('contacts', function ($join) {

3 $join->on('users.id', '=', 'contacts.user_id')->orOn(...);

4 })

Database: Query Builder 491

5 ->get();

If you would like to use a “where” style clause on your joins, you may use the where and orWhere

methods on a join. Instead of comparing two columns, these methods will compare the column
against a value:

1 DB::table('users')

2 ->join('contacts', function ($join) {

3 $join->on('users.id', '=', 'contacts.user_id')

4 ->where('contacts.user_id', '>', 5);

5 })

6 ->get();

Unions

The query builder also provides a quick way to “union” two queries together. For example, you may
create an initial query, and then use the union method to union it with a second query:

1 $first = DB::table('users')

2 ->whereNull('first_name');

3

4 $users = DB::table('users')

5 ->whereNull('last_name')

6 ->union($first)

7 ->get();

The unionAll method is also available and has the same method signature as union.

Where Clauses

Simple Where Clauses

To add where clauses to the query, use the where method on a query builder instance. The most
basic call to where requires three arguments. The first argument is the name of the column. The

Database: Query Builder 492

second argument is an operator, which can be any of the database’s supported operators. The third
argument is the value to evaluate against the column.

For example, here is a query that verifies the value of the “votes” column is equal to 100:

1 $users = DB::table('users')->where('votes', '=', 100)->get();

For convenience, if you simply want to verify that a column is equal to a given value, you may pass
the value directly as the second argument to the where method:

1 $users = DB::table('users')->where('votes', 100)->get();

Of course, you may use a variety of other operators when writing a where clause:

1 $users = DB::table('users')

2 ->where('votes', '>=', 100)

3 ->get();

4

5 $users = DB::table('users')

6 ->where('votes', '<>', 100)

7 ->get();

8

9 $users = DB::table('users')

10 ->where('name', 'like', 'T%')

11 ->get();

You may also pass an array of conditions to the where function:

1 $users = DB::table('users')->where([

2 ['status','1'],

3 ['subscribed','<>','1'],

4])->get();

Database: Query Builder 493

Or Statements

You may chain where constraints together, as well as add or clauses to the query. The orWhere

method accepts the same arguments as the where method:

1 $users = DB::table('users')

2 ->where('votes', '>', 100)

3 ->orWhere('name', 'John')

4 ->get();

Additional Where Clauses

whereBetween

The whereBetween method verifies that a column’s value is between two values:

1 $users = DB::table('users')

2 ->whereBetween('votes', [1, 100])->get();

whereNotBetween

The whereNotBetween method verifies that a column’s value lies outside of two values:

1 $users = DB::table('users')

2 ->whereNotBetween('votes', [1, 100])

3 ->get();

whereIn / whereNotIn

The whereIn method verifies that a given column’s value is contained within the given array:

1 $users = DB::table('users')

2 ->whereIn('id', [1, 2, 3])

3 ->get();

The whereNotIn method verifies that the given column’s value is not contained in the given array:

Database: Query Builder 494

1 $users = DB::table('users')

2 ->whereNotIn('id', [1, 2, 3])

3 ->get();

whereNull / whereNotNull

The whereNull method verifies that the value of the given column is NULL:

1 $users = DB::table('users')

2 ->whereNull('updated_at')

3 ->get();

The whereNotNull method verifies that the column’s value is not NULL:

1 $users = DB::table('users')

2 ->whereNotNull('updated_at')

3 ->get();

Advanced Where Clauses

Parameter Grouping

Sometimes you may need to create more advanced where clauses such as “where exists” or nested
parameter groupings. The Laravel query builder can handle these as well. To get started, let’s look
at an example of grouping constraints within parenthesis:

1 DB::table('users')

2 ->where('name', '=', 'John')

3 ->orWhere(function ($query) {

4 $query->where('votes', '>', 100)

5 ->where('title', '<>', 'Admin');

6 })

7 ->get();

Database: Query Builder 495

As you can see, passing Closure into the orWhere method instructs the query builder to begin a
constraint group. The Closure will receive a query builder instance which you can use to set the
constraints that should be contained within the parenthesis group. The example above will produce
the following SQL:

1 select * from users where name = 'John' or (votes > 100 and title <> 'Admin')

Exists Statements

The whereExists method allows you to write where exist SQL clauses. The whereExists method
accepts a Closure argument, which will receive a query builder instance allowing you to define the
query that should be placed inside of the “exists” clause:

1 DB::table('users')

2 ->whereExists(function ($query) {

3 $query->select(DB::raw(1))

4 ->from('orders')

5 ->whereRaw('orders.user_id = users.id');

6 })

7 ->get();

The query above will produce the following SQL:

1 select * from users

2 where exists (

3 select 1 from orders where orders.user_id = users.id

4)

Ordering, Grouping, Limit, & Offset

orderBy

The orderBymethod allows you to sort the result of the query by a given column. The first argument
to the orderBymethod should be the column youwish to sort by, while the second argument controls
the direction of the sort and may be either asc or desc:

Database: Query Builder 496

1 $users = DB::table('users')

2 ->orderBy('name', 'desc')

3 ->get();

groupBy / having / havingRaw

The groupBy and having methods may be used to group the query results. The having method’s
signature is similar to that of the where method:

1 $users = DB::table('users')

2 ->groupBy('account_id')

3 ->having('account_id', '>', 100)

4 ->get();

The havingRawmethodmay be used to set a raw string as the value of the having clause. For example,
we can find all of the departments with sales greater than $2,500:

1 $users = DB::table('orders')

2 ->select('department', DB::raw('SUM(price) as total_sales'))

3 ->groupBy('department')

4 ->havingRaw('SUM(price) > 2500')

5 ->get();

skip / take

To limit the number of results returned from the query, or to skip a given number of results in the
query (OFFSET), you may use the skip and take methods:

1 $users = DB::table('users')->skip(10)->take(5)->get();

Database: Query Builder 497

Inserts

The query builder also provides an insertmethod for inserting records into the database table. The
insert method accepts an array of column names and values to insert:

1 DB::table('users')->insert(

2 ['email' => 'john@example.com', 'votes' => 0]

3);

You may even insert several records into the table with a single call to insert by passing an array
of arrays. Each array represents a row to be inserted into the table:

1 DB::table('users')->insert([

2 ['email' => 'taylor@example.com', 'votes' => 0],

3 ['email' => 'dayle@example.com', 'votes' => 0]

4]);

Auto-Incrementing IDs

If the table has an auto-incrementing id, use the insertGetId method to insert a record and then
retrieve the ID:

1 $id = DB::table('users')->insertGetId(

2 ['email' => 'john@example.com', 'votes' => 0]

3);

Note: When using PostgreSQL the insertGetId method expects the auto-incrementing
column to be named id. If you would like to retrieve the ID from a different “sequence”,
you may pass the sequence name as the second parameter to the insertGetId method.

Updates

Of course, in addition to inserting records into the database, the query builder can also update
existing records using the update method. The update method, like the insert method, accepts

Database: Query Builder 498

an array of column and value pairs containing the columns to be updated. You may constrain the
update query using where clauses:

1 DB::table('users')

2 ->where('id', 1)

3 ->update(['votes' => 1]);

Increment / Decrement

The query builder also provides convenient methods for incrementing or decrementing the value of
a given column. This is simply a short-cut, providing a more expressive and terse interface compared
to manually writing the update statement.

Both of these methods accept at least one argument: the column to modify. A second argument
may optionally be passed to control the amount by which the column should be incremented /
decremented.

1 DB::table('users')->increment('votes');

2

3 DB::table('users')->increment('votes', 5);

4

5 DB::table('users')->decrement('votes');

6

7 DB::table('users')->decrement('votes', 5);

You may also specify additional columns to update during the operation:

1 DB::table('users')->increment('votes', 1, ['name' => 'John']);

Deletes

Of course, the query builder may also be used to delete records from the table via the deletemethod:

Database: Query Builder 499

1 DB::table('users')->delete();

You may constrain delete statements by adding where clauses before calling the delete method:

1 DB::table('users')->where('votes', '<', 100)->delete();

If you wish to truncate the entire table, which will remove all rows and reset the auto-incrementing
ID to zero, you may use the truncate method:

1 DB::table('users')->truncate();

Pessimistic Locking

The query builder also includes a few functions to help you do “pessimistic locking” on your select
statements. To run the statement with a “shared lock”, you may use the sharedLock method on a
query. A shared lock prevents the selected rows from beingmodified until your transaction commits:

1 DB::table('users')->where('votes', '>', 100)->sharedLock()->get();

Alternatively, you may use the lockForUpdatemethod. A “for update” lock prevents the rows from
being modified or from being selected with another shared lock:

1 DB::table('users')->where('votes', '>', 100)->lockForUpdate()->get();

Database: Migrations
• Introduction
• Generating Migrations
• Migration Structure
• Running Migrations A> - Rolling Back Migrations
• Writing Migrations A> - Creating Tables A> - Renaming / Dropping Tables A> - Creating
Columns A> - Modifying Columns A> - Dropping Columns A> - Creating Indexes A> -
Dropping Indexes A> - Foreign Key Constraints

Introduction

Migrations are like version control for your database, allowing a team to easily modify and share
the application’s database schema. Migrations are typically paired with Laravel’s schema builder to
easily build your application’s database schema.

The Laravel Schema facade provides database agnostic support for creating and manipulating tables.
It shares the same expressive, fluent API across all of Laravel’s supported database systems.

Generating Migrations

To create a migration, use the make:migration Artisan command:

1 php artisan make:migration create_users_table

The newmigration will be placed in your database/migrations directory. Each migration file name
contains a timestamp which allows Laravel to determine the order of the migrations.

The --table and --create options may also be used to indicate the name of the table and whether
the migration will be creating a new table. These options simply pre-fill the generated migration
stub file with the specified table:

500

Database: Migrations 501

1 php artisan make:migration add_votes_to_users_table --table=users

2

3 php artisan make:migration create_users_table --create=users

If you would like to specify a custom output path for the generated migration, you may use the
--path option when executing the make:migration command. The provided path should be relative
to your application’s base path.

Migration Structure

A migration class contains two methods: up and down. The up method is used to add new tables,
columns, or indexes to your database, while the down method should simply reverse the operations
performed by the up method.

Within both of these methods you may use the Laravel schema builder to expressively create and
modify tables. To learn about all of the methods available on the Schema builder, check out its
documentation. For example, let’s look at a sample migration that creates a flights table:

1 <?php

2

3 use Illuminate\Database\Schema\Blueprint;

4 use Illuminate\Database\Migrations\Migration;

5

6 class CreateFlightsTable extends Migration

7 {

8 /**

9 * Run the migrations.

10 *

11 * @return void

12 */

13 public function up()

14 {

15 Schema::create('flights', function (Blueprint $table) {

16 $table->increments('id');

17 $table->string('name');

18 $table->string('airline');

19 $table->timestamps();

20 });

21 }

22

23 /**

Database: Migrations 502

24 * Reverse the migrations.

25 *

26 * @return void

27 */

28 public function down()

29 {

30 Schema::drop('flights');

31 }

32 }

Running Migrations

To run all outstanding migrations for your application, use the migrate Artisan command. If you
are using the Homestead virtual machine, you should run this command from within your VM:

1 php artisan migrate

If you receive a “class not found” error when running migrations, try running the composer dump-

autoload command and re-issuing the migrate command.

Forcing Migrations To Run In Production

Some migration operations are destructive, meaning they may cause you to lose data. In order to
protect you from running these commands against your production database, you will be prompted
for confirmation before these commands are executed. To force the commands to run without a
prompt, use the --force flag:

1 php artisan migrate --force

Rolling Back Migrations

To rollback the latest migration “operation”, you may use the rollback command. Note that this
rolls back the last “batch” of migrations that ran, which may include multiple migration files:

Database: Migrations 503

1 php artisan migrate:rollback

The migrate:reset command will roll back all of your application’s migrations:

1 php artisan migrate:reset

Rollback / Migrate In Single Command

The migrate:refresh command will first roll back all of your database migrations, and then run
the migrate command. This command effectively re-creates your entire database:

1 php artisan migrate:refresh

2

3 php artisan migrate:refresh --seed

Writing Migrations

Creating Tables

To create a new database table, use the create method on the Schema facade. The create method
accepts two arguments. The first is the name of the table, while the second is a Closure which
receives a Blueprint object used to define the new table:

1 Schema::create('users', function (Blueprint $table) {

2 $table->increments('id');

3 });

Of course, when creating the table, you may use any of the schema builder’s column methods to
define the table’s columns.

Checking For Table / Column Existence

You may easily check for the existence of a table or column using the hasTable and hasColumn

methods:

Database: Migrations 504

1 if (Schema::hasTable('users')) {

2 //

3 }

4

5 if (Schema::hasColumn('users', 'email')) {

6 //

7 }

Connection & Storage Engine

If you want to perform a schema operation on a database connection that is not your default
connection, use the connection method:

1 Schema::connection('foo')->create('users', function ($table) {

2 $table->increments('id');

3 });

To set the storage engine for a table, set the engine property on the schema builder:

1 Schema::create('users', function ($table) {

2 $table->engine = 'InnoDB';

3

4 $table->increments('id');

5 });

Renaming / Dropping Tables

To rename an existing database table, use the rename method:

1 Schema::rename($from, $to);

To drop an existing table, you may use the drop or dropIfExists methods:

Database: Migrations 505

1 Schema::drop('users');

2

3 Schema::dropIfExists('users');

Creating Columns

To update an existing table, we will use the table method on the Schema facade. Like the create

method, the tablemethod accepts two arguments: the name of the table and a Closure that receives
a Blueprint instance we can use to add columns to the table:

1 Schema::table('users', function ($table) {

2 $table->string('email');

3 });

Available Column Types

Of course, the schema builder contains a variety of column types that you may use when building
your tables:

Command | Description ————- | ————- $table->bigIncrements('id'); | Incrementing ID
(primary key) using a “UNSIGNED BIG INTEGER” equivalent. $table->bigInteger('votes'); |
BIGINT equivalent for the database. $table->binary('data'); | BLOB equivalent for the database.
$table->boolean('confirmed'); | BOOLEAN equivalent for the database. $table->char('name',
4); | CHAR equivalent with a length. $table->date('created_at'); | DATE equivalent for the
database. $table->dateTime('created_at'); | DATETIME equivalent for the database. $table-
>decimal('amount', 5, 2); | DECIMAL equivalentwith a precision and scale. $table->double('column',
15, 8); | DOUBLE equivalent with precision, 15 digits in total and 8 after the decimal point. $table-
>enum('choices', ['foo', 'bar']); | ENUMequivalent for the database. $table->float('amount');
| FLOAT equivalent for the database. $table->increments('id'); | Incrementing ID (primary
key) using a “UNSIGNED INTEGER” equivalent. $table->integer('votes'); | INTEGER equiv-
alent for the database. $table->json('options'); | JSON equivalent for the database. $table-
>jsonb('options'); | JSONB equivalent for the database. $table->longText('description');
| LONGTEXT equivalent for the database. $table->mediumInteger('numbers'); | MEDIUMINT
equivalent for the database. $table->mediumText('description'); | MEDIUMTEXT equivalent
for the database. $table->morphs('taggable'); | Adds INTEGER taggable_id and STRING
taggable_type. $table->nullableTimestamps(); | Same as timestamps(), except allows NULLs.
$table->rememberToken(); | Adds remember_token as VARCHAR(100) NULL. $table->smallInteger('votes');

Database: Migrations 506

| SMALLINT equivalent for the database. $table->softDeletes(); | Adds deleted_at column for
soft deletes. $table->string('email'); | VARCHAR equivalent column. $table->string('name',
100); | VARCHAR equivalent with a length. $table->text('description'); | TEXT equiva-
lent for the database. $table->time('sunrise'); | TIME equivalent for the database. $table-
>tinyInteger('numbers'); | TINYINT equivalent for the database. $table->timestamp('added_-
on'); | TIMESTAMP equivalent for the database. $table->timestamps(); | Adds created_at and
updated_at columns. $table->uuid('id'); | UUID equivalent for the database.

Column Modifiers

In addition to the column types listed above, there are several other column “modifiers” which you
may use while adding the column. For example, to make the column “nullable”, you may use the
nullable method:

1 Schema::table('users', function ($table) {

2 $table->string('email')->nullable();

3 });

Below is a list of all the available column modifiers. This list does not include the index modifiers:

Modifier | Description ————- | ————- ->first() | Place the column “first” in the table (MySQL
Only) ->after('column') | Place the column “after” another column (MySQL Only) ->nullable()
| Allow NULL values to be inserted into the column ->default($value) | Specify a “default” value
for the column ->unsigned() | Set integer columns to UNSIGNED

 ### Modifying Columns {#migrations-modifying-columns}

Prerequisites

Before modifying a column, be sure to add the doctrine/dbal dependency to your composer.json
file. The Doctrine DBAL library is used to determine the current state of the column and create the
SQL queries needed to make the specified adjustments to the column.

Updating Column Attributes

The changemethod allows you to modify an existing column to a new type, or modify the column’s
attributes. For example, you may wish to increase the size of a string column. To see the change

method in action, let’s increase the size of the name column from 25 to 50:

Database: Migrations 507

1 Schema::table('users', function ($table) {

2 $table->string('name', 50)->change();

3 });

We could also modify a column to be nullable:

1 Schema::table('users', function ($table) {

2 $table->string('name', 50)->nullable()->change();

3 });

Renaming Columns

To rename a column, you may use the renameColumn method on the Schema builder. Before
renaming a column, be sure to add the doctrine/dbal dependency to your composer.json file:

1 Schema::table('users', function ($table) {

2 $table->renameColumn('from', 'to');

3 });

Note: Renaming columns in a table with a enum column is not currently supported.

Dropping Columns

To drop a column, use the dropColumn method on the Schema builder:

1 Schema::table('users', function ($table) {

2 $table->dropColumn('votes');

3 });

Youmay dropmultiple columns from a table by passing an array of column names to the dropColumn
method:

Database: Migrations 508

1 Schema::table('users', function ($table) {

2 $table->dropColumn(['votes', 'avatar', 'location']);

3 });

Note: Before dropping columns from a SQLite database, you will need to add the
doctrine/dbal dependency to your composer.json file and run the composer update

command in your terminal to install the library.

Note: Dropping or modifying multiple columns within a single migration while using a
SQLite database is not supported.

Creating Indexes

The schema builder supports several types of indexes. First, let’s look at an example that specifies
a column’s values should be unique. To create the index, we can simply chain the unique method
onto the column definition:

1 $table->string('email')->unique();

Alternatively, you may create the index after defining the column. For example:

1 $table->unique('email');

You may even pass an array of columns to an index method to create a compound index:

1 $table->index(['account_id', 'created_at']);

Laravel will automatically generate a reasonable index name, but you may pass a second argument
to the method to specify the name yourself:

Database: Migrations 509

1 $table->index('email', 'my_index_name');

Available Index Types

Command | Description ————- | ————- $table->primary('id'); | Add a primary key. $table-
>primary(['first', 'last']); | Add composite keys. $table->unique('email'); | Add a unique
index. $table->unique('state', 'my_index_name'); | Add a custom index name. $table->index('state');
| Add a basic index.

Dropping Indexes

To drop an index, you must specify the index’s name. By default, Laravel automatically assigns a
reasonable name to the indexes. Simply concatenate the table name, the name of the indexed column,
and the index type. Here are some examples:

Command | Description ————- | ————- $table->dropPrimary('users_id_primary'); | Drop a
primary key from the “users” table. $table->dropUnique('users_email_unique'); | Drop a unique
index from the “users” table. $table->dropIndex('geo_state_index'); | Drop a basic index from
the “geo” table.

Foreign Key Constraints

Laravel also provides support for creating foreign key constraints, which are used to force referential
integrity at the database level. For example, let’s define a user_id column on the posts table that
references the id column on a users table:

1 Schema::table('posts', function ($table) {

2 $table->integer('user_id')->unsigned();

3

4 $table->foreign('user_id')->references('id')->on('users');

5 });

You may also specify the desired action for the “on delete” and “on update” properties of the
constraint:

Database: Migrations 510

1 $table->foreign('user_id')

2 ->references('id')->on('users')

3 ->onDelete('cascade');

To drop a foreign key, you may use the dropForeign method. Foreign key constraints use the same
naming convention as indexes. So, we will concatenate the table name and the columns in the
constraint then suffix the name with “_foreign”:

1 $table->dropForeign('posts_user_id_foreign');

Database: Seeding
• Introduction
• Writing Seeders A> - Using Model Factories A> - Calling Additional Seeders
• Running Seeders

Introduction

Laravel includes a simple method of seeding your database with test data using seed classes.
All seed classes are stored in database/seeds. Seed classes may have any name you wish, but
probably should follow some sensible convention, such as UsersTableSeeder, etc. By default, a
DatabaseSeeder class is defined for you. From this class, you may use the callmethod to run other
seed classes, allowing you to control the seeding order.

Writing Seeders

To generate a seeder, you may issue the make:seeder Artisan command. All seeders generated by
the framework will be placed in the database/seeds directory:

1 php artisan make:seeder UsersTableSeeder

A seeder class only contains one method by default: run. This method is called when the db:seed
Artisan command is executed. Within the run method, you may insert data into your database
however you wish. You may use the query builder to manually insert data or you may use Eloquent
model factories.

As an example, let’s modify the DatabaseSeeder class which is included with a default installation
of Laravel. Let’s add a database insert statement to the run method:

511

Database: Seeding 512

1 <?php

2

3 use Illuminate\Database\Seeder;

4 use Illuminate\Database\Eloquent\Model;

5

6 class DatabaseSeeder extends Seeder

7 {

8 /**

9 * Run the database seeds.

10 *

11 * @return void

12 */

13 public function run()

14 {

15 DB::table('users')->insert([

16 'name' => str_random(10),

17 'email' => str_random(10).'@gmail.com',

18 'password' => bcrypt('secret'),

19]);

20 }

21 }

Using Model Factories

Of course, manually specifying the attributes for each model seed is cumbersome. Instead, you can
use model factories to conveniently generate large amounts of database records. First, review the
model factory documentation to learn how to define your factories. Once you have defined your
factories, you may use the factory helper function to insert records into your database.

For example, let’s create 50 users and attach a relationship to each user:

1 /**

2 * Run the database seeds.

3 *

4 * @return void

5 */

6 public function run()

7 {

8 factory(App\User::class, 50)->create()->each(function($u) {

9 $u->posts()->save(factory(App\Post::class)->make());

10 });

Database: Seeding 513

11 }

Calling Additional Seeders

Within the DatabaseSeeder class, you may use the call method to execute additional seed classes.
Using the call method allows you to break up your database seeding into multiple files so that no
single seeder class becomes overwhelmingly large. Simply pass the name of the seeder class you
wish to run:

1 /**

2 * Run the database seeds.

3 *

4 * @return void

5 */

6 public function run()

7 {

8 Model::unguard();

9

10 $this->call(UsersTableSeeder::class);

11 $this->call(PostsTableSeeder::class);

12 $this->call(CommentsTableSeeder::class);

13

14 Model::reguard();

15 }

Running Seeders

Once you have written your seeder classes, you may use the db:seedArtisan command to seed your
database. By default, the db:seed command runs the DatabaseSeeder class, which may be used to
call other seed classes. However, you may use the --class option to specify a specific seeder class
to run individually:

1 php artisan db:seed

2

3 php artisan db:seed --class=UsersTableSeeder

Database: Seeding 514

You may also seed your database using the migrate:refresh command, which will also rollback
and re-run all of your migrations. This command is useful for completely re-building your database:

1 php artisan migrate:refresh --seed

Eloquent: Getting Started
• Introduction
• Defining Models A> - Eloquent Model Conventions
• Retrieving Multiple Models
• Retrieving Single Models / Aggregates A> - Retrieving Aggregates
• Inserting & Updating Models A> - Basic Inserts A> - Basic Updates A> - Mass Assignment
• Deleting Models A> - Soft Deleting A> - Querying Soft Deleted Models
• Query Scopes A> - Global Scopes A> - Local Scopes
• Events

Introduction

The Eloquent ORM includedwith Laravel provides a beautiful, simple ActiveRecord implementation
for working with your database. Each database table has a corresponding “Model” which is used to
interact with that table. Models allow you to query for data in your tables, as well as insert new
records into the table.

Before getting started, be sure to configure a database connection in config/database.php. For more
information on configuring your database, check out the documentation.

Defining Models

To get started, let’s create an Eloquent model. Models typically live in the app directory, but you
are free to place them anywhere that can be auto-loaded according to your composer.json file. All
Eloquent models extend Illuminate\Database\Eloquent\Model class.

The easiest way to create a model instance is using the make:model Artisan command:

1 php artisan make:model User

If you would like to generate a database migration when you generate the model, you may use the
--migration or -m option:

515

Eloquent: Getting Started 516

1 php artisan make:model User --migration

2

3 php artisan make:model User -m

Eloquent Model Conventions

Now, let’s look at an example Flightmodel class, whichwewill use to retrieve and store information
from our flights database table:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 //

10 }

Table Names

Note that we did not tell Eloquent which table to use for our Flightmodel. The “snake case”, plural
name of the class will be used as the table name unless another name is explicitly specified. So,
in this case, Eloquent will assume the Flight model stores records in the flights table. You may
specify a custom table by defining a table property on your model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The table associated with the model.

Eloquent: Getting Started 517

11 *

12 * @var string

13 */

14 protected $table = 'my_flights';

15 }

Primary Keys

Eloquent will also assume that each table has a primary key column named id. You may define a
$primaryKey property to override this convention.

In addition, Eloquent assumes that the primary key is an incrementing integer value. If you wish to
use a non-incrementing primary key, you must set the $incrementing property on your model to
false.

Timestamps

By default, Eloquent expects created_at and updated_at columns to exist on your tables. If you do
not wish to have these columns automatically managed by Eloquent, set the $timestamps property
on your model to false:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * Indicates if the model should be timestamped.

11 *

12 * @var bool

13 */

14 public $timestamps = false;

15 }

If you need to customize the format of your timestamps, set the $dateFormat property on your
model. This property determines how date attributes are stored in the database, as well as their
format when the model is serialized to an array or JSON:

Eloquent: Getting Started 518

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The storage format of the model's date columns.

11 *

12 * @var string

13 */

14 protected $dateFormat = 'U';

15 }

Database Connection

By default, all Eloquent models will use the default database connection configured for your
application. If you would like to specify a different connection for the model, use the $connection
property:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The connection name for the model.

11 *

12 * @var string

13 */

14 protected $connection = 'connection-name';

15 }

Eloquent: Getting Started 519

Retrieving Multiple Models

Once you have created a model and its associated database table, you are ready to start retrieving
data from your database. Think of each Eloquent model as a powerful query builder allowing you
to fluently query the database table associated with the model. For example:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Flight;

6 use App\Http\Controllers\Controller;

7

8 class FlightController extends Controller

9 {

10 /**

11 * Show a list of all available flights.

12 *

13 * @return Response

14 */

15 public function index()

16 {

17 $flights = Flight::all();

18

19 return view('flight.index', ['flights' => $flights]);

20 }

21 }

Accessing Column Values

If you have an Eloquent model instance, youmay access the column values of themodel by accessing
the corresponding property. For example, let’s loop through each Flight instance returned by our
query and echo the value of the name column:

1 foreach ($flights as $flight) {

2 echo $flight->name;

3 }

Eloquent: Getting Started 520

Adding Additional Constraints

The Eloquent all method will return all of the results in the model’s table. Since each Eloquent
model serves as a query builder, you may also add constraints to queries, and then use the get

method to retrieve the results:

1 $flights = App\Flight::where('active', 1)

2 ->orderBy('name', 'desc')

3 ->take(10)

4 ->get();

Note: Since Eloquent models are query builders, you should review all of the methods
available on the query builder. Youmay use any of these methods in your Eloquent queries.

Collections

For Eloquent methods like all and get which retrieve multiple results, an instance of Illumi-

nate\Database\Eloquent\Collection will be returned. The Collection class provides a variety of
helpful methods for working with your Eloquent results. Of course, you may simply loop over this
collection like an array:

1 foreach ($flights as $flight) {

2 echo $flight->name;

3 }

Chunking Results

If you need to process thousands of Eloquent records, use the chunk command. The chunk method
will retrieve a “chunk” of Eloquent models, feeding them to a given Closure for processing. Using
the chunk method will conserve memory when working with large result sets:

Eloquent: Getting Started 521

1 Flight::chunk(200, function ($flights) {

2 foreach ($flights as $flight) {

3 //

4 }

5 });

The first argument passed to the method is the number of records you wish to receive per “chunk”.
The Closure passed as the second argument will be called for each chunk that is retrieved from the
database.

Retrieving Single Models / Aggregates

Of course, in addition to retrieving all of the records for a given table, you may also retrieve single
records using find and first. Instead of returning a collection of models, these methods return a
single model instance:

1 // Retrieve a model by its primary key...

2 $flight = App\Flight::find(1);

3

4 // Retrieve the first model matching the query constraints...

5 $flight = App\Flight::where('active', 1)->first();

You may also call the find method with an array of primary keys, which will return a collection of
the matching records:

1 $flights = App\Flight::find([1, 2, 3]);

Not Found Exceptions

Sometimes you may wish to throw an exception if a model is not found. This is particularly useful in
routes or controllers. The findOrFail and firstOrFail methods will retrieve the first result of the
query. However, if no result is found, a Illuminate\Database\Eloquent\ModelNotFoundException
will be thrown:

Eloquent: Getting Started 522

1 $model = App\Flight::findOrFail(1);

2

3 $model = App\Flight::where('legs', '>', 100)->firstOrFail();

If the exception is not caught, a 404 HTTP response is automatically sent back to the user, so it is
not necessary to write explicit checks to return 404 responses when using these methods:

1 Route::get('/api/flights/{id}', function ($id) {

2 return App\Flight::findOrFail($id);

3 });

Retrieving Aggregates

Of course, you may also use count, sum, max, and other aggregate functions provided by the query
builder. These methods return the appropriate scalar value instead of a full model instance:

1 $count = App\Flight::where('active', 1)->count();

2

3 $max = App\Flight::where('active', 1)->max('price');

Inserting & Updating Models

Basic Inserts

To create a new record in the database, simply create a new model instance, set attributes on the
model, then call the save method:

Eloquent: Getting Started 523

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Flight;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class FlightController extends Controller

10 {

11 /**

12 * Create a new flight instance.

13 *

14 * @param Request $request

15 * @return Response

16 */

17 public function store(Request $request)

18 {

19 // Validate the request...

20

21 $flight = new Flight;

22

23 $flight->name = $request->name;

24

25 $flight->save();

26 }

27 }

In this example, we simply assign the name parameter from the incoming HTTP request to the name
attribute of the App\Flightmodel instance. When we call the savemethod, a record will be inserted
into the database. The created_at and updated_at timestamps will automatically be set when the
save method is called, so there is no need to set them manually.

Basic Updates

The save method may also be used to update models that already exist in the database. To update a
model, you should retrieve it, set any attributes you wish to update, and then call the save method.
Again, the updated_at timestamp will automatically be updated, so there is no need to manually
set its value:

Eloquent: Getting Started 524

1 $flight = App\Flight::find(1);

2

3 $flight->name = 'New Flight Name';

4

5 $flight->save();

Updates can also be performed against any number of models that match a given query. In this
example, all flights that are active and have a destination of San Diegowill be marked as delayed:

1 App\Flight::where('active', 1)

2 ->where('destination', 'San Diego')

3 ->update(['delayed' => 1]);

The updatemethod expects an array of column and value pairs representing the columns that should
be updated.

Mass Assignment

Youmay also use the createmethod to save a newmodel in a single line. The insertedmodel instance
will be returned to you from the method. However, before doing so, you will need to specify either a
fillable or guarded attribute on themodel, as all Eloquentmodels protect againstmass-assignment.

Amass-assignment vulnerability occurs when a user passes an unexpectedHTTP parameter through
a request, and that parameter changes a column in your database you did not expect. For example, a
malicious user might send an is_admin parameter through an HTTP request, which is then mapped
onto your model’s create method, allowing the user to escalate themselves to an administrator.

So, to get started, you should define which model attributes you want to make mass assignable. You
may do this using the $fillable property on the model. For example, let’s make the name attribute
of our Flight model mass assignable:

Eloquent: Getting Started 525

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The attributes that are mass assignable.

11 *

12 * @var array

13 */

14 protected $fillable = ['name'];

15 }

Once we have made the attributes mass assignable, we can use the create method to insert a new
record in the database. The create method returns the saved model instance:

1 $flight = App\Flight::create(['name' => 'Flight 10']);

While $fillable serves as a “white list” of attributes that should be mass assignable, you may also
choose to use $guarded. The $guarded property should contain an array of attributes that you do
not want to be mass assignable. All other attributes not in the array will be mass assignable. So,
$guarded functions like a “black list”. Of course, you should use either $fillable or $guarded - not
both:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The attributes that aren't mass assignable.

11 *

12 * @var array

Eloquent: Getting Started 526

13 */

14 protected $guarded = ['price'];

15 }

In the example above, all attributes except for price will be mass assignable.

Other Creation Methods

There are two other methods you may use to create models by mass assigning attributes: firstOr-
Create and firstOrNew. The firstOrCreate method will attempt to locate a database record using
the given column / value pairs. If the model can not be found in the database, a record will be
inserted with the given attributes.

The firstOrNewmethod, like firstOrCreatewill attempt to locate a record in the databasematching
the given attributes. However, if a model is not found, a new model instance will be returned. Note
that the model returned by firstOrNew has not yet been persisted to the database. You will need to
call save manually to persist it:

1 // Retrieve the flight by the attributes, or create it if it doesn't exist...

2 $flight = App\Flight::firstOrCreate(['name' => 'Flight 10']);

3

4 // Retrieve the flight by the attributes, or instantiate a new instance...

5 $flight = App\Flight::firstOrNew(['name' => 'Flight 10']);

Deleting Models

To delete a model, call the delete method on a model instance:

1 $flight = App\Flight::find(1);

2

3 $flight->delete();

Deleting An Existing Model By Key

In the example above, we are retrieving the model from the database before calling the delete

method. However, if you know the primary key of the model, you may delete the model without
retrieving it. To do so, call the destroy method:

Eloquent: Getting Started 527

1 App\Flight::destroy(1);

2

3 App\Flight::destroy([1, 2, 3]);

4

5 App\Flight::destroy(1, 2, 3);

Deleting Models By Query

Of course, you may also run a delete query on a set of models. In this example, we will delete all
flights that are marked as inactive:

1 $deletedRows = App\Flight::where('active', 0)->delete();

Soft Deleting

In addition to actually removing records from your database, Eloquent can also “soft delete” models.
When models are soft deleted, they are not actually removed from your database. Instead, a
deleted_at attribute is set on the model and inserted into the database. If a model has a non-
null deleted_at value, the model has been soft deleted. To enable soft deletes for a model, use the
Illuminate\Database\Eloquent\SoftDeletes trait on the model and add the deleted_at column
to your $dates property:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6 use Illuminate\Database\Eloquent\SoftDeletes;

7

8 class Flight extends Model

9 {

10 use SoftDeletes;

11

12 /**

13 * The attributes that should be mutated to dates.

14 *

15 * @var array

Eloquent: Getting Started 528

16 */

17 protected $dates = ['deleted_at'];

18 }

Of course, you should add the deleted_at column to your database table. The Laravel schema
builder contains a helper method to create this column:

1 Schema::table('flights', function ($table) {

2 $table->softDeletes();

3 });

Now, when you call the delete method on the model, the deleted_at column will be set to the
current date and time. And, when querying a model that uses soft deletes, the soft deleted models
will automatically be excluded from all query results.

To determine if a given model instance has been soft deleted, use the trashed method:

1 if ($flight->trashed()) {

2 //

3 }

Querying Soft Deleted Models

Including Soft Deleted Models

As noted above, soft deleted models will automatically be excluded from query results. However,
you may force soft deleted models to appear in a result set using the withTrashed method on the
query:

1 $flights = App\Flight::withTrashed()

2 ->where('account_id', 1)

3 ->get();

The withTrashed method may also be used on a relationship query:

Eloquent: Getting Started 529

1 $flight->history()->withTrashed()->get();

Retrieving Only Soft Deleted Models

The onlyTrashed method will retrieve only soft deleted models:

1 $flights = App\Flight::onlyTrashed()

2 ->where('airline_id', 1)

3 ->get();

Restoring Soft Deleted Models

Sometimes you may wish to “un-delete” a soft deleted model. To restore a soft deleted model into
an active state, use the restore method on a model instance:

1 $flight->restore();

You may also use the restore method in a query to quickly restore multiple models:

1 App\Flight::withTrashed()

2 ->where('airline_id', 1)

3 ->restore();

Like the withTrashed method, the restore method may also be used on relationships:

1 $flight->history()->restore();

Permanently Deleting Models

Sometimes you may need to truly remove a model from your database. To permanently remove a
soft deleted model from the database, use the forceDelete method:

Eloquent: Getting Started 530

1 // Force deleting a single model instance...

2 $flight->forceDelete();

3

4 // Force deleting all related models...

5 $flight->history()->forceDelete();

Query Scopes

Global Scopes

Global scopes allow you to add constraints to all queries for a given model. Laravel’s own soft
deleting functionality utilizes global scopes to only pull “non-deleted” models from the database.
Writing your own global scopes can provide a convenient, easy way to make sure every query for a
given model receives certain constraints.

Writing Global Scopes

Writing a global scope is simple. Define a class that implements the Illuminate\Database\Eloquent\Scope
interface. This interface requires you to implement one method: apply. The applymethod may add
where constraints to the query as needed:

1 <?php

2

3 namespace App\Scopes;

4

5 use Illuminate\Database\Eloquent\Scope;

6 use Illuminate\Database\Eloquent\Model;

7 use Illuminate\Database\Eloquent\Builder;

8

9 class AgeScope implements Scope

10 {

11 /**

12 * Apply the scope to a given Eloquent query builder.

13 *

14 * @param \Illuminate\Database\Eloquent\Builder $builder

15 * @param \Illuminate\Database\Eloquent\Model $model

16 * @return void

17 */

18 public function apply(Builder $builder, Model $model)

Eloquent: Getting Started 531

19 {

20 return $builder->where('age', '>', 200);

21 }

22 }

There is not a predefined folder for scopes in a default Laravel application, so feel free to make your
own Scopes folder within your Laravel application’s app directory.

Applying Global Scopes

To assign a global scope to a model, you should override a given model’s boot method and use the
addGlobalScope method:

1 <?php

2

3 namespace App;

4

5 use App\Scopes\AgeScope;

6 use Illuminate\Database\Eloquent\Model;

7

8 class User extends Model

9 {

10 /**

11 * The "booting" method of the model.

12 *

13 * @return void

14 */

15 protected static function boot()

16 {

17 parent::boot();

18

19 static::addGlobalScope(new AgeScope);

20 }

21 }

After adding the scope, a query to User::all() will produce the following SQL:

1 select * from `users` where `age` > 200

Eloquent: Getting Started 532

Anonymous Global Scopes

Eloquent also allows you to define global scopes using Closures, which is particularly useful for
simple scopes that do not warrant a separate class:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6 use Illuminate\Database\Eloquent\Builder;

7

8 class User extends Model

9 {

10 /**

11 * The "booting" method of the model.

12 *

13 * @return void

14 */

15 protected static function boot()

16 {

17 parent::boot();

18

19 static::addGlobalScope('age', function(Builder $builder) {

20 $builder->where('age', '>', 200);

21 });

22 }

23 }

The first argument of the addGlobalScope() serves as an identifier to remove the scope:

1 User::withoutGlobalScope('age')->get();

Removing Global Scopes

If you would like to remove a global scope for a given query, you may use the withoutGlobalScope
method:

Eloquent: Getting Started 533

1 User::withoutGlobalScope(AgeScope::class)->get();

If you would like to remove several or even all of the global scopes, you may use the withoutGlob-
alScopes method:

1 User::withoutGlobalScopes()->get();

2

3 User::withoutGlobalScopes([FirstScope::class, SecondScope::class])->get();

Local Scopes

Local scopes allow you to define common sets of constraints that you may easily re-use throughout
your application. For example, you may need to frequently retrieve all users that are considered
“popular”. To define a scope, simply prefix an Eloquent model method with scope.

Scopes should always return a query builder instance:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Scope a query to only include popular users.

11 *

12 * @return \Illuminate\Database\Eloquent\Builder

13 */

14 public function scopePopular($query)

15 {

16 return $query->where('votes', '>', 100);

17 }

18

19 /**

20 * Scope a query to only include active users.

21 *

Eloquent: Getting Started 534

22 * @return \Illuminate\Database\Eloquent\Builder

23 */

24 public function scopeActive($query)

25 {

26 return $query->where('active', 1);

27 }

28 }

Utilizing A Query Scope

Once the scope has been defined, you may call the scope methods when querying the model.
However, you do not need to include the scope prefix when calling the method. You can even chain
calls to various scopes, for example:

1 $users = App\User::popular()->active()->orderBy('created_at')->get();

Dynamic Scopes

Sometimes you may wish to define a scope that accepts parameters. To get started, just add your
additional parameters to your scope. Scope parameters should be defined after the $query argument:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Scope a query to only include users of a given type.

11 *

12 * @return \Illuminate\Database\Eloquent\Builder

13 */

14 public function scopeOfType($query, $type)

15 {

16 return $query->where('type', $type);

17 }

Eloquent: Getting Started 535

18 }

Now, you may pass the parameters when calling the scope:

1 $users = App\User::ofType('admin')->get();

Events

Eloquent models fire several events, allowing you to hook into various points in the model’s lifecycle
using the following methods: creating, created, updating, updated, saving, saved, deleting,
deleted, restoring, restored. Events allow you to easily execute code each time a specific model
class is saved or updated in the database.

Basic Usage

Whenever a new model is saved for the first time, the creating and created events will fire. If a
model already existed in the database and the savemethod is called, the updating / updated events
will fire. However, in both cases, the saving / saved events will fire.

For example, let’s define an Eloquent event listener in a service provider. Within our event listener,
we will call the isValid method on the given model, and return false if the model is not valid.
Returning false from an Eloquent event listener will cancel the save / update operation:

1 <?php

2

3 namespace App\Providers;

4

5 use App\User;

6 use Illuminate\Support\ServiceProvider;

7

8 class AppServiceProvider extends ServiceProvider

9 {

10 /**

11 * Bootstrap any application services.

12 *

13 * @return void

14 */

15 public function boot()

Eloquent: Getting Started 536

16 {

17 User::creating(function ($user) {

18 if (! $user->isValid()) {

19 return false;

20 }

21 });

22 }

23

24 /**

25 * Register the service provider.

26 *

27 * @return void

28 */

29 public function register()

30 {

31 //

32 }

33 }

Eloquent: Relationships
• Introduction
• Defining Relationships A> - One To One A> - One To Many A> - Many To Many A> - Has
Many Through A> - Polymorphic Relations A> - Many To Many Polymorphic Relations

• Querying Relations A> - Eager Loading A> - Constraining Eager Loads A> - Lazy Eager
Loading

• Inserting RelatedModels A> -Many ToMany Relationships A> - Touching Parent Timestamps

Introduction

Database tables are often related to one another. For example, a blog post may havemany comments,
or an order could be related to the user who placed it. Eloquent makes managing and working with
these relationships easy, and supports several different types of relationships:

• One To One
• One To Many
• Many To Many
• Has Many Through
• Polymorphic Relations
• Many To Many Polymorphic Relations

Defining Relationships

Eloquent relationships are defined as functions on your Eloquent model classes. Since, like Eloquent
models themselves, relationships also serve as powerful query builders, defining relationships as
functions provides powerful method chaining and querying capabilities. For example:

1 $user->posts()->where('active', 1)->get();

But, before diving too deep into using relationships, let’s learn how to define each type:

537

Eloquent: Relationships 538

One To One

A one-to-one relationship is a very basic relation. For example, a User model might be associated
with one Phone. To define this relationship, we place a phonemethod on the Usermodel. The phone
method should return the results of the hasOne method on the base Eloquent model class:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Get the phone record associated with the user.

11 */

12 public function phone()

13 {

14 return $this->hasOne('App\Phone');

15 }

16 }

The first argument passed to the hasOne method is the name of the related model. Once the
relationship is defined, we may retrieve the related record using Eloquent’s dynamic properties.
Dynamic properties allow you to access relationship functions as if they were properties defined on
the model:

1 $phone = User::find(1)->phone;

Eloquent assumes the foreign key of the relationship based on the model name. In this case, the
Phone model is automatically assumed to have a user_id foreign key. If you wish to override this
convention, you may pass a second argument to the hasOne method:

1 return $this->hasOne('App\Phone', 'foreign_key');

Additionally, Eloquent assumes that the foreign key should have a value matching the id column of
the parent. In other words, Eloquent will look for the value of the user’s id column in the user_id

Eloquent: Relationships 539

column of the Phone record. If you would like the relationship to use a value other than id, you may
pass a third argument to the hasOne method specifying your custom key:

1 return $this->hasOne('App\Phone', 'foreign_key', 'local_key');

Defining The Inverse Of The Relation

So, we can access the Phone model from our User. Now, let’s define a relationship on the Phone

model that will let us access the User that owns the phone. We can define the inverse of a hasOne

relationship using the belongsTo method:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Phone extends Model

8 {

9 /**

10 * Get the user that owns the phone.

11 */

12 public function user()

13 {

14 return $this->belongsTo('App\User');

15 }

16 }

In the example above, Eloquent will try to match the user_id from the Phone model to an id on
the User model. Eloquent determines the default foreign key name by examining the name of the
relationship method and suffixing the method name with _id. However, if the foreign key on the
Phone model is not user_id, you may pass a custom key name as the second argument to the
belongsTo method:

Eloquent: Relationships 540

1 /**

2 * Get the user that owns the phone.

3 */

4 public function user()

5 {

6 return $this->belongsTo('App\User', 'foreign_key');

7 }

If your parent model does not use id as its primary key, or you wish to join the child model to a
different column, you may pass a third argument to the belongsTo method specifying your parent
table’s custom key:

1 /**

2 * Get the user that owns the phone.

3 */

4 public function user()

5 {

6 return $this->belongsTo('App\User', 'foreign_key', 'other_key');

7 }

One To Many

A “one-to-many” relationship is used to define relationships where a single model owns any amount
of other models. For example, a blog post may have an infinite number of comments. Like all
other Eloquent relationships, one-to-many relationships are defined by placing a function on your
Eloquent model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Post extends Model

8 {

9 /**

10 * Get the comments for the blog post.

11 */

Eloquent: Relationships 541

12 public function comments()

13 {

14 return $this->hasMany('App\Comment');

15 }

16 }

Remember, Eloquent will automatically determine the proper foreign key column on the Comment

model. By convention, Eloquent will take the “snake case” name of the owning model and suffix
it with _id. So, for this example, Eloquent will assume the foreign key on the Comment model is
post_id.

Once the relationship has been defined, we can access the collection of comments by accessing
the comments property. Remember, since Eloquent provides “dynamic properties”, we can access
relationship functions as if they were defined as properties on the model:

1 $comments = App\Post::find(1)->comments;

2

3 foreach ($comments as $comment) {

4 //

5 }

Of course, since all relationships also serve as query builders, you can add further constraints to
which comments are retrieved by calling the comments method and continuing to chain conditions
onto the query:

1 $comments = App\Post::find(1)->comments()->where('title', 'foo')->first();

Like the hasOne method, you may also override the foreign and local keys by passing additional
arguments to the hasMany method:

1 return $this->hasMany('App\Comment', 'foreign_key');

2

3 return $this->hasMany('App\Comment', 'foreign_key', 'local_key');

Eloquent: Relationships 542

Defining The Inverse Of The Relation

Now that we can access all of a post’s comments, let’s define a relationship to allow a comment to
access its parent post. To define the inverse of a hasMany relationship, define a relationship function
on the child model which calls the belongsTo method:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Comment extends Model

8 {

9 /**

10 * Get the post that owns the comment.

11 */

12 public function post()

13 {

14 return $this->belongsTo('App\Post');

15 }

16 }

Once the relationship has been defined, we can retrieve the Post model for a Comment by accessing
the post “dynamic property”:

1 $comment = App\Comment::find(1);

2

3 echo $comment->post->title;

In the example above, Eloquent will try to match the post_id from the Comment model to an id on
the Post model. Eloquent determines the default foreign key name by examining the name of the
relationship method and suffixing the method name with _id. However, if the foreign key on the
Comment model is not post_id, you may pass a custom key name as the second argument to the
belongsTo method:

Eloquent: Relationships 543

1 /**

2 * Get the post that owns the comment.

3 */

4 public function post()

5 {

6 return $this->belongsTo('App\Post', 'foreign_key');

7 }

If your parent model does not use id as its primary key, or you wish to join the child model to a
different column, you may pass a third argument to the belongsTo method specifying your parent
table’s custom key:

1 /**

2 * Get the post that owns the comment.

3 */

4 public function post()

5 {

6 return $this->belongsTo('App\Post', 'foreign_key', 'other_key');

7 }

Many To Many

Many-to-many relations are slightly more complicated than hasOne and hasMany relationships. An
example of such a relationship is a user with many roles, where the roles are also shared by other
users. For example, many users may have the role of “Admin”. To define this relationship, three
database tables are needed: users, roles, and role_user. The role_user table is derived from the
alphabetical order of the related model names, and contains the user_id and role_id columns.

Many-to-many relationships are defined by writing a method that calls the belongsToMany method
on the base Eloquent class. For example, let’s define the roles method on our User model:

Eloquent: Relationships 544

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The roles that belong to the user.

11 */

12 public function roles()

13 {

14 return $this->belongsToMany('App\Role');

15 }

16 }

Once the relationship is defined, you may access the user’s roles using the roles dynamic property:

1 $user = App\User::find(1);

2

3 foreach ($user->roles as $role) {

4 //

5 }

Of course, like all other relationship types, you may call the roles method to continue chaining
query constraints onto the relationship:

1 $roles = App\User::find(1)->roles()->orderBy('name')->get();

As mentioned previously, to determine the table name of the relationship’s joining table, Eloquent
will join the two related model names in alphabetical order. However, you are free to override this
convention. You may do so by passing a second argument to the belongsToMany method:

1 return $this->belongsToMany('App\Role', 'user_roles');

Eloquent: Relationships 545

In addition to customizing the name of the joining table, you may also customize the column names
of the keys on the table by passing additional arguments to the belongsToMany method. The third
argument is the foreign key name of the model on which you are defining the relationship, while
the fourth argument is the foreign key name of the model that you are joining to:

1 return $this->belongsToMany('App\Role', 'user_roles', 'user_id', 'role_id');

Defining The Inverse Of The Relationship

To define the inverse of a many-to-many relationship, you simply place another call to belongsToM-
any on your related model. To continue our user roles example, let’s define the usersmethod on the
Role model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Role extends Model

8 {

9 /**

10 * The users that belong to the role.

11 */

12 public function users()

13 {

14 return $this->belongsToMany('App\User');

15 }

16 }

As you can see, the relationship is defined exactly the same as its User counterpart, with the
exception of simply referencing the App\User model. Since we’re reusing the belongsToMany

method, all of the usual table and key customization options are available when defining the inverse
of many-to-many relationships.

Retrieving Intermediate Table Columns

As you have already learned, working with many-to-many relations requires the presence of an
intermediate table. Eloquent provides some very helpful ways of interacting with this table. For

Eloquent: Relationships 546

example, let’s assume our User object has many Role objects that it is related to. After accessing
this relationship, we may access the intermediate table using the pivot attribute on the models:

1 $user = App\User::find(1);

2

3 foreach ($user->roles as $role) {

4 echo $role->pivot->created_at;

5 }

Notice that each Role model we retrieve is automatically assigned a pivot attribute. This attribute
contains a model representing the intermediate table, and may be used like any other Eloquent
model.

By default, only the model keys will be present on the pivot object. If your pivot table contains extra
attributes, you must specify them when defining the relationship:

1 return $this->belongsToMany('App\Role')->withPivot('column1', 'column2');

If you want your pivot table to have automatically maintained created_at and updated_at

timestamps, use the withTimestamps method on the relationship definition:

1 return $this->belongsToMany('App\Role')->withTimestamps();

Has Many Through

The “has-many-through” relationship provides a convenient short-cut for accessing distant relations
via an intermediate relation. For example, a Country model might have many Post models through
an intermediate User model. In this example, you could easily gather all blog posts for a given
country. Let’s look at the tables required to define this relationship:

Eloquent: Relationships 547

1 countries

2 id - integer

3 name - string

4

5 users

6 id - integer

7 country_id - integer

8 name - string

9

10 posts

11 id - integer

12 user_id - integer

13 title - string

Though posts does not contain a country_id column, the hasManyThrough relation provides access
to a country’s posts via $country->posts. To perform this query, Eloquent inspects the country_id
on the intermediate users table. After finding the matching user IDs, they are used to query the
posts table.

Now that we have examined the table structure for the relationship, let’s define it on the Country
model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Country extends Model

8 {

9 /**

10 * Get all of the posts for the country.

11 */

12 public function posts()

13 {

14 return $this->hasManyThrough('App\Post', 'App\User');

15 }

16 }

The first argument passed to the hasManyThroughmethod is the name of the final model we wish to
access, while the second argument is the name of the intermediate model.

Eloquent: Relationships 548

Typical Eloquent foreign key conventions will be used when performing the relationship’s queries. If
you would like to customize the keys of the relationship, you may pass them as the third and fourth
arguments to the hasManyThroughmethod. The third argument is the name of the foreign key on the
intermediate model, while the fourth argument is the name of the foreign key on the final model.

1 class Country extends Model

2 {

3 public function posts()

4 {

5 return $this->hasManyThrough('App\Post', 'App\User', 'country_id', 'user\

6 _id');

7 }

8 }

Polymorphic Relations

Table Structure

Polymorphic relations allow a model to belong to more than one other model on a single association.
For example, imagine users of your application can “like” both posts and comments. Using
polymorphic relationships, you can use a single likes table for both of these scenarios. First, let’s
examine the table structure required to build this relationship:

1 posts

2 id - integer

3 title - string

4 body - text

5

6 comments

7 id - integer

8 post_id - integer

9 body - text

10

11 likes

12 id - integer

13 likeable_id - integer

14 likeable_type - string

Two important columns to note are the likeable_id and likeable_type columns on the likes table.

Eloquent: Relationships 549

The likeable_id columnwill contain the ID value of the post or comment, while the likeable_type
column will contain the class name of the owning model. The likeable_type column is how the
ORM determines which “type” of owning model to return when accessing the likeable relation.

Model Structure

Next, let’s examine the model definitions needed to build this relationship:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Like extends Model

8 {

9 /**

10 * Get all of the owning likeable models.

11 */

12 public function likeable()

13 {

14 return $this->morphTo();

15 }

16 }

17

18 class Post extends Model

19 {

20 /**

21 * Get all of the product's likes.

22 */

23 public function likes()

24 {

25 return $this->morphMany('App\Like', 'likeable');

26 }

27 }

28

29 class Comment extends Model

30 {

31 /**

32 * Get all of the comment's likes.

33 */

34 public function likes()

35 {

36 return $this->morphMany('App\Like', 'likeable');

Eloquent: Relationships 550

37 }

38 }

Retrieving Polymorphic Relations

Once your database table and models are defined, you may access the relationships via your models.
For example, to access all of the likes for a post, we can simply use the likes dynamic property:

1 $post = App\Post::find(1);

2

3 foreach ($post->likes as $like) {

4 //

5 }

Youmay also retrieve the owner of a polymorphic relation from the polymorphic model by accessing
the name of the method that performs the call to morphTo. In our case, that is the likeable method
on the Like model. So, we will access that method as a dynamic property:

1 $like = App\Like::find(1);

2

3 $likeable = $like->likeable;

The likeable relation on the Like model will return either a Post or Comment instance, depending
on which type of model owns the like.

Many To Many Polymorphic Relations

Table Structure

In addition to traditional polymorphic relations, you may also define “many-to-many” polymorphic
relations. For example, a blog Post and Video model could share a polymorphic relation to a Tag

model. Using a many-to-many polymorphic relation allows you to have a single list of unique tags
that are shared across blog posts and videos. First, let’s examine the table structure:

Eloquent: Relationships 551

1 posts

2 id - integer

3 name - string

4

5 videos

6 id - integer

7 name - string

8

9 tags

10 id - integer

11 name - string

12

13 taggables

14 tag_id - integer

15 taggable_id - integer

16 taggable_type - string

Model Structure

Next, we’re ready to define the relationships on the model. The Post and Video models will both
have a tags method that calls the morphToMany method on the base Eloquent class:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Post extends Model

8 {

9 /**

10 * Get all of the tags for the post.

11 */

12 public function tags()

13 {

14 return $this->morphToMany('App\Tag', 'taggable');

15 }

16 }

Eloquent: Relationships 552

Defining The Inverse Of The Relationship

Next, on the Tag model, you should define a method for each of its related models. So, for this
example, we will define a posts method and a videos method:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Tag extends Model

8 {

9 /**

10 * Get all of the posts that are assigned this tag.

11 */

12 public function posts()

13 {

14 return $this->morphedByMany('App\Post', 'taggable');

15 }

16

17 /**

18 * Get all of the videos that are assigned this tag.

19 */

20 public function videos()

21 {

22 return $this->morphedByMany('App\Video', 'taggable');

23 }

24 }

Retrieving The Relationship

Once your database table and models are defined, you may access the relationships via your models.
For example, to access all of the tags for a post, you can simply use the tags dynamic property:

1 $post = App\Post::find(1);

2

3 foreach ($post->tags as $tag) {

4 //

5 }

Eloquent: Relationships 553

Youmay also retrieve the owner of a polymorphic relation from the polymorphic model by accessing
the name of the method that performs the call to morphedByMany. In our case, that is the posts or
videos methods on the Tag model. So, you will access those methods as dynamic properties:

1 $tag = App\Tag::find(1);

2

3 foreach ($tag->videos as $video) {

4 //

5 }

Querying Relations

Since all types of Eloquent relationships are defined via functions, you may call those functions to
obtain an instance of the relationshipwithout actually executing the relationship queries. In addition,
all types of Eloquent relationships also serve as query builders, allowing you to continue to chain
constraints onto the relationship query before finally executing the SQL against your database.

For example, imagine a blog system in which a User model has many associated Post models:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Get all of the posts for the user.

11 */

12 public function posts()

13 {

14 return $this->hasMany('App\Post');

15 }

16 }

You may query the posts relationship and add additional constraints to the relationship like so:

Eloquent: Relationships 554

1 $user = App\User::find(1);

2

3 $user->posts()->where('active', 1)->get();

Note that you are able to use any of the query builder methods on the relationship!

Relationship Methods Vs. Dynamic Properties

If you do not need to add additional constraints to an Eloquent relationship query, you may simply
access the relationship as if it were a property. For example, continuing to use our User and Post

example models, we may access all of a user’s posts like so:

1 $user = App\User::find(1);

2

3 foreach ($user->posts as $post) {

4 //

5 }

Dynamic properties are “lazy loading”, meaning they will only load their relationship data when you
actually access them. Because of this, developers often use eager loading to pre-load relationships
they know will be accessed after loading the model. Eager loading provides a significant reduction
in SQL queries that must be executed to load a model’s relations.

Querying Relationship Existence

When accessing the records for a model, you may wish to limit your results based on the existence
of a relationship. For example, imagine you want to retrieve all blog posts that have at least one
comment. To do so, you may pass the name of the relationship to the has method:

1 // Retrieve all posts that have at least one comment...

2 $posts = App\Post::has('comments')->get();

You may also specify an operator and count to further customize the query:

Eloquent: Relationships 555

1 // Retrieve all posts that have three or more comments...

2 $posts = Post::has('comments', '>=', 3)->get();

Nested has statements may also be constructed using “dot” notation. For example, you may retrieve
all posts that have at least one comment and vote:

1 // Retrieve all posts that have at least one comment with votes...

2 $posts = Post::has('comments.votes')->get();

If you need even more power, you may use the whereHas and orWhereHas methods to put “where”
conditions on your has queries. These methods allow you to add customized constraints to a
relationship constraint, such as checking the content of a comment:

1 // Retrieve all posts with at least one comment containing words like foo%

2 $posts = Post::whereHas('comments', function ($query) {

3 $query->where('content', 'like', 'foo%');

4 })->get();

Eager Loading

When accessing Eloquent relationships as properties, the relationship data is “lazy loaded”. This
means the relationship data is not actually loaded until you first access the property. However,
Eloquent can “eager load” relationships at the time you query the parent model. Eager loading
alleviates the N + 1 query problem. To illustrate the N + 1 query problem, consider a Book model
that is related to Author:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Book extends Model

8 {

9 /**

Eloquent: Relationships 556

10 * Get the author that wrote the book.

11 */

12 public function author()

13 {

14 return $this->belongsTo('App\Author');

15 }

16 }

Now, let’s retrieve all books and their authors:

1 $books = App\Book::all();

2

3 foreach ($books as $book) {

4 echo $book->author->name;

5 }

This loop will execute 1 query to retrieve all of the books on the table, then another query for each
book to retrieve the author. So, if we have 25 books, this loop would run 26 queries: 1 for the original
book, and 25 additional queries to retrieve the author of each book.

Thankfully, we can use eager loading to reduce this operation to just 2 queries. When querying, you
may specify which relationships should be eager loaded using the with method:

1 $books = App\Book::with('author')->get();

2

3 foreach ($books as $book) {

4 echo $book->author->name;

5 }

For this operation, only two queries will be executed:

1 select * from books

2

3 select * from authors where id in (1, 2, 3, 4, 5, ...)

Eloquent: Relationships 557

Eager Loading Multiple Relationships

Sometimes you may need to eager load several different relationships in a single operation. To do
so, just pass additional arguments to the with method:

1 $books = App\Book::with('author', 'publisher')->get();

Nested Eager Loading

To eager load nested relationships, you may use “dot” syntax. For example, let’s eager load all of the
book’s authors and all of the author’s personal contacts in one Eloquent statement:

1 $books = App\Book::with('author.contacts')->get();

Constraining Eager Loads

Sometimes you may wish to eager load a relationship, but also specify additional query constraints
for the eager loading query. Here’s an example:

1 $users = App\User::with(['posts' => function ($query) {

2 $query->where('title', 'like', '%first%');

3

4 }])->get();

In this example, Eloquent will only eager load posts that if the post’s title column contains the
word first. Of course, you may call other query builder to further customize the eager loading
operation:

1 $users = App\User::with(['posts' => function ($query) {

2 $query->orderBy('created_at', 'desc');

3

4 }])->get();

Eloquent: Relationships 558

Lazy Eager Loading

Sometimes you may need to eager load a relationship after the parent model has already been
retrieved. For example, this may be useful if you need to dynamically decide whether to load related
models:

1 $books = App\Book::all();

2

3 if ($someCondition) {

4 $books->load('author', 'publisher');

5 }

If you need to set additional query constraints on the eager loading query, you may pass a Closure
to the load method:

1 $books->load(['author' => function ($query) {

2 $query->orderBy('published_date', 'asc');

3 }]);

Inserting Related Models

The Save Method

Eloquent provides convenientmethods for adding newmodels to relationships. For example, perhaps
you need to insert a new Comment for a Postmodel. Instead of manually setting the post_id attribute
on the Comment, you may insert the Comment directly from the relationship’s save method:

1 $comment = new App\Comment(['message' => 'A new comment.']);

2

3 $post = App\Post::find(1);

4

5 $post->comments()->save($comment);

Notice that we did not access the comments relationship as a dynamic property. Instead, we called
the comments method to obtain an instance of the relationship. The save method will automatically
add the appropriate post_id value to the new Comment model.

Eloquent: Relationships 559

If you need to save multiple related models, you may use the saveMany method:

1 $post = App\Post::find(1);

2

3 $post->comments()->saveMany([

4 new App\Comment(['message' => 'A new comment.']),

5 new App\Comment(['message' => 'Another comment.']),

6]);

Save & Many To Many Relationships

When working with a many-to-many relationship, the save method accepts an array of additional
intermediate table attributes as its second argument:

1 App\User::find(1)->roles()->save($role, ['expires' => $expires]);

The Create Method

In addition to the save and saveManymethods, you may also use the createmethod, which accepts
an array of attributes, creates a model, and inserts it into the database. Again, the difference between
save and create is that save accepts a full Eloquent model instance while create accepts a plain
PHP array:

1 $post = App\Post::find(1);

2

3 $comment = $post->comments()->create([

4 'message' => 'A new comment.',

5]);

Before using the createmethod, be sure to review the documentation on attribute mass assignment.

Updating “Belongs To” Relationships

When updating a belongsTo relationship, you may use the associatemethod. This method will set
the foreign key on the child model:

Eloquent: Relationships 560

1 $account = App\Account::find(10);

2

3 $user->account()->associate($account);

4

5 $user->save();

When removing a belongsTo relationship, you may use the dissociate method. This method will
reset the foreign key as well as the relation on the child model:

1 $user->account()->dissociate();

2

3 $user->save();

Many To Many Relationships

Attaching / Detaching

When working with many-to-many relationships, Eloquent provides a few additional helper
methods to make working with related models more convenient. For example, let’s imagine a user
can have many roles and a role can have many users. To attach a role to a user by inserting a record
in the intermediate table that joins the models, use the attach method:

1 $user = App\User::find(1);

2

3 $user->roles()->attach($roleId);

When attaching a relationship to a model, you may also pass an array of additional data to be
inserted into the intermediate table:

1 $user->roles()->attach($roleId, ['expires' => $expires]);

Of course, sometimes it may be necessary to remove a role from a user. To remove a many-to-many
relationship record, use the detachmethod. The detachmethod will remove the appropriate record
out of the intermediate table; however, both models will remain in the database:

Eloquent: Relationships 561

1 // Detach a single role from the user...

2 $user->roles()->detach($roleId);

3

4 // Detach all roles from the user...

5 $user->roles()->detach();

For convenience, attach and detach also accept arrays of IDs as input:

1 $user = App\User::find(1);

2

3 $user->roles()->detach([1, 2, 3]);

4

5 $user->roles()->attach([1 => ['expires' => $expires], 2, 3]);

Updating A Record On A Pivot Table

If you need to update an existing row in your pivot table, you may use updateExistingPivot

method:

1 $user = App\User::find(1);

2

3 $user->roles()->updateExistingPivot($roleId, $attributes);

Syncing For Convenience

You may also use the sync method to construct many-to-many associations. The sync method
accepts an array of IDs to place on the intermediate table. Any IDs that are not in the given array
will be removed from the intermediate table. So, after this operation is complete, only the IDs in the
array will exist in the intermediate table:

1 $user->roles()->sync([1, 2, 3]);

You may also pass additional intermediate table values with the IDs:

Eloquent: Relationships 562

1 $user->roles()->sync([1 => ['expires' => true], 2, 3]);

Touching Parent Timestamps

When a model belongsTo or belongsToMany another model, such as a Comment which belongs to a
Post, it is sometimes helpful to update the parent’s timestamp when the child model is updated. For
example, when a Commentmodel is updated, you may want to automatically “touch” the updated_at
timestamp of the owning Post. Eloquent makes it easy. Just add a touches property containing the
names of the relationships to the child model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Comment extends Model

8 {

9 /**

10 * All of the relationships to be touched.

11 *

12 * @var array

13 */

14 protected $touches = ['post'];

15

16 /**

17 * Get the post that the comment belongs to.

18 */

19 public function post()

20 {

21 return $this->belongsTo('App\Post');

22 }

23 }

Now, when you update a Comment, the owning Post will have its updated_at column updated as
well:

Eloquent: Relationships 563

1 $comment = App\Comment::find(1);

2

3 $comment->text = 'Edit to this comment!';

4

5 $comment->save();

Eloquent: Collections
• Introduction
• Available Methods
• Custom Collections

Introduction

Allmulti-result sets returned by Eloquent are an instance of the Illuminate\Database\Eloquent\Collection
object, including results retrieved via the get method or accessed via a relationship. The Eloquent
collection object extends the Laravel base collection, so it naturally inherits dozens of methods used
to fluently work with the underlying array of Eloquent models.

Of course, all collections also serve as iterators, allowing you to loop over them as if they were
simple PHP arrays:

1 $users = App\User::where('active', 1)->get();

2

3 foreach ($users as $user) {

4 echo $user->name;

5 }

However, collections are much more powerful than arrays and expose a variety of map / reduce
operations that may be chained using an intuitive interface. For example, let’s remove all inactive
models and gather the first name for each remaining user:

1 $users = App\User::where('active', 1)->get();

2

3 $names = $users->reject(function ($user) {

4 return $user->active === false;

5 })

6 ->map(function ($user) {

7 return $user->name;

8 });

564

Eloquent: Collections 565

Note: While most Eloquent collection methods return a new instance of an Eloquent
collection, the pluck, keys, zip, collapse, flatten and flip methods return a base
collection instance.

Available Methods

The Base Collection

All Eloquent collections extend the base Laravel collection object; therefore, they inherit all of the
powerful methods provided by the base collection class:

<style> A> #collection-method-list > p { A> column-count: 3; -moz-column-count: 3; -webkit-
column-count: 3; A> column-gap: 2em; -moz-column-gap: 2em; -webkit-column-gap: 2em; A> } A>
A> #collection-method-list a { A> display: block; A> }

</style>

<div id=”collection-method-list” markdown=”1”> all chunk collapse contains count diff each every
filter first flatten flip forget forPage get groupBy has implode intersect isEmpty keyBy keys last map
merge pluck pop prepend pull push put random reduce reject reverse search shift shuffle slice sort
sortBy sortByDesc splice sum take toArray toJson transform unique values where whereLoose zip
</div>

Custom Collections

If you need to use a custom Collection object with your own extension methods, you may override
the newCollection method on your model:

1 <?php

2

3 namespace App;

4

5 use App\CustomCollection;

6 use Illuminate\Database\Eloquent\Model;

7

8 class User extends Model

9 {

10 /**

11 * Create a new Eloquent Collection instance.

12 *

13 * @param array $models

14 * @return \Illuminate\Database\Eloquent\Collection

Eloquent: Collections 566

15 */

16 public function newCollection(array $models = [])

17 {

18 return new CustomCollection($models);

19 }

20 }

Once you have defined a newCollection method, you will receive an instance of your custom
collection anytime Eloquent returns a Collection instance of that model. If you would like to use
a custom collection for every model in your application, you should override the newCollection

method on a model base class that is extended by all of your models.

Eloquent: Mutators
• Introduction
• Accessors & Mutators
• Date Mutators
• Attribute Casting

Introduction

Accessors and mutators allow you to format Eloquent attributes when retrieving them from a model
or setting their value. For example, you may want to use the Laravel encrypter to encrypt a value
while it is stored in the database, and then automatically decrypt the attribute when you access it
on an Eloquent model.

In addition to custom accessors and mutators, Eloquent can also automatically cast date fields to
Carbon¹⁹⁶ instances or even cast text fields to JSON.

Accessors & Mutators

Defining An Accessor

To define an accessor, create a getFooAttribute method on your model where Foo is the “camel”
cased name of the column you wish to access. In this example, we’ll define an accessor for the
first_name attribute. The accessor will automatically be called by Eloquent when attempting to
retrieve the value of first_name:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Get the user's first name.

11 *

¹⁹⁶https://github.com/briannesbitt/Carbon

567

https://github.com/briannesbitt/Carbon
https://github.com/briannesbitt/Carbon

Eloquent: Mutators 568

12 * @param string $value

13 * @return string

14 */

15 public function getFirstNameAttribute($value)

16 {

17 return ucfirst($value);

18 }

19 }

As you can see, the original value of the column is passed to the accessor, allowing you to manipulate
and return the value. To access the value of the mutator, you may simply access the first_name

attribute:

1 $user = App\User::find(1);

2

3 $firstName = $user->first_name;

Defining A Mutator

To define a mutator, define a setFooAttribute method on your model where Foo is the “camel”
cased name of the column you wish to access. So, again, let’s define a mutator for the first_-

name attribute. This mutator will be automatically called when we attempt to set the value of the
first_name attribute on the model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Set the user's first name.

11 *

12 * @param string $value

13 * @return string

14 */

15 public function setFirstNameAttribute($value)

Eloquent: Mutators 569

16 {

17 $this->attributes['first_name'] = strtolower($value);

18 }

19 }

The mutator will receive the value that is being set on the attribute, allowing you to manipulate the
value and set the manipulated value on the Eloquent model’s internal $attributes property. So, for
example, if we attempt to set the first_name attribute to Sally:

1 $user = App\User::find(1);

2

3 $user->first_name = 'Sally';

In this example, the setFirstNameAttribute function will be called with the value Sally. The
mutator will then apply the strtolower function to the name and set its value in the internal
$attributes array.

Date Mutators

By default, Eloquent will convert the created_at and updated_at columns to instances of Carbon¹⁹⁷,
which provides an assortment of helpful methods, and extends the native PHP DateTime class.

You may customize which fields are automatically mutated, and even completely disable this
mutation, by overriding the $dates property of your model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be mutated to dates.

11 *

12 * @var array

¹⁹⁷https://github.com/briannesbitt/Carbon

https://github.com/briannesbitt/Carbon
https://github.com/briannesbitt/Carbon

Eloquent: Mutators 570

13 */

14 protected $dates = ['created_at', 'updated_at', 'deleted_at'];

15 }

When a column is considered a date, you may set its value to a UNIX timestamp, date string (Y-m-d),
date-time string, and of course a DateTime / Carbon instance, and the date’s value will automatically
be correctly stored in your database:

1 $user = App\User::find(1);

2

3 $user->deleted_at = Carbon::now();

4

5 $user->save();

As noted above, when retrieving attributes that are listed in your $dates property, they will
automatically be cast to Carbon¹⁹⁸ instances, allowing you to use any of Carbon’s methods on your
attributes:

1 $user = App\User::find(1);

2

3 return $user->deleted_at->getTimestamp();

By default, timestamps are formatted as 'Y-m-d H:i:s'. If you need to customize the timestamp
format, set the $dateFormat property on your model. This property determines how date attributes
are stored in the database, as well as their format when the model is serialized to an array or JSON:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

¹⁹⁸https://github.com/briannesbitt/Carbon

https://github.com/briannesbitt/Carbon
https://github.com/briannesbitt/Carbon

Eloquent: Mutators 571

10 * The storage format of the model's date columns.

11 *

12 * @var string

13 */

14 protected $dateFormat = 'U';

15 }

Attribute Casting

The $casts property on your model provides a convenient method of converting attributes to
common data types. The $casts property should be an array where the key is the name of the
attribute being cast, while the value is the type you wish to cast to the column to. The supported
cast types are: integer, real, float, double, string, boolean, object, array, collection, date and
datetime.

For example, let’s cast the is_admin attribute, which is stored in our database as an integer (0 or 1)
to a boolean value:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be casted to native types.

11 *

12 * @var array

13 */

14 protected $casts = [

15 'is_admin' => 'boolean',

16];

17 }

Now the is_admin attribute will always be cast to a boolean when you access it, even if the
underlying value is stored in the database as an integer:

Eloquent: Mutators 572

1 $user = App\User::find(1);

2

3 if ($user->is_admin) {

4 //

5 }

Array Casting

The array cast type is particularly useful when working with columns that are stored as serialized
JSON. For example, if your database has a TEXT field type that contains serialized JSON, adding the
array cast to that attribute will automatically deserialize the attribute to a PHP array when you
access it on your Eloquent model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be casted to native types.

11 *

12 * @var array

13 */

14 protected $casts = [

15 'options' => 'array',

16];

17 }

Once the cast is defined, you may access the options attribute and it will automatically be
deserialized from JSON into a PHP array. When you set the value of the options attribute, the
given array will automatically be serialized back into JSON for storage:

Eloquent: Mutators 573

1 $user = App\User::find(1);

2

3 $options = $user->options;

4

5 $options['key'] = 'value';

6

7 $user->options = $options;

8

9 $user->save();

Eloquent: Serialization
• Introduction
• Basic Usage
• Hiding Attributes From JSON
• Appending Values To JSON

Introduction

When building JSON APIs, you will often need to convert your models and relationships to arrays
or JSON. Eloquent includes convenient methods for making these conversions, as well as controlling
which attributes are included in your serializations.

Basic Usage

Converting A Model To An Array

To convert a model and its loaded relationships to an array, you may use the toArray method. This
method is recursive, so all attributes and all relations (including the relations of relations) will be
converted to arrays:

1 $user = App\User::with('roles')->first();

2

3 return $user->toArray();

You may also convert collections to arrays:

1 $users = App\User::all();

2

3 return $users->toArray();

574

Eloquent: Serialization 575

Converting A Model To JSON

To convert a model to JSON, you may use the toJson method. Like toArray, the toJson method is
recursive, so all attributes and relations will be converted to JSON:

1 $user = App\User::find(1);

2

3 return $user->toJson();

Alternatively, youmay cast amodel or collection to a string, whichwill automatically call the toJson
method:

1 $user = App\User::find(1);

2

3 return (string) $user;

Since models and collections are converted to JSON when cast to a string, you can return Eloquent
objects directly from your application’s routes or controllers:

1 Route::get('users', function () {

2 return App\User::all();

3 });

Hiding Attributes From JSON

Sometimes youmaywish to limit the attributes, such as passwords, that are included in yourmodel’s
array or JSON representation. To do so, add a $hidden property definition to your model:

Eloquent: Serialization 576

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be hidden for arrays.

11 *

12 * @var array

13 */

14 protected $hidden = ['password'];

15 }

Note: When hiding relationships, use the relationship’s method name, not its dynamic
property name.

Alternatively, you may use the visible property to define a white-list of attributes that should be
included in your model’s array and JSON representation:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be visible in arrays.

11 *

12 * @var array

13 */

14 protected $visible = ['first_name', 'last_name'];

15 }

Eloquent: Serialization 577

Temporarily Exposing Hidden Properties

If you would like to make some typically hidden attributes visible on a given model instance,
you may use the makeVisible method. The makeVisible method returns the model instance for
convenient method chaining:

1 return $user->makeVisible('attribute')->toArray();

Appending Values To JSON

Occasionally, you may need to add array attributes that do not have a corresponding column in your
database. To do so, first define an accessor for the value:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Get the administrator flag for the user.

11 *

12 * @return bool

13 */

14 public function getIsAdminAttribute()

15 {

16 return $this->attributes['admin'] == 'yes';

17 }

18 }

Once you have created the accessor, add the attribute name to the appends property on the model:

Eloquent: Serialization 578

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The accessors to append to the model's array form.

11 *

12 * @var array

13 */

14 protected $appends = ['is_admin'];

15 }

Once the attribute has been added to the appends list, it will be included in both the model’s array
and JSON forms. Attributes in the appends array will also respect the visible and hidden settings
configured on the model.

	Table of Contents
	Contribution Guidelines
	Release Notes
	Support Policy
	Laravel 5.3 {#releases-laravel-5.3}
	Laravel 5.2 {#releases-laravel-5.2}
	Laravel 5.1.11 {#releases-laravel-5.1.11}
	Laravel 5.1.4 {#releases-laravel-5.1.4}
	Laravel 5.1 {#releases-laravel-5.1}
	Laravel 5.0 {#releases-laravel-5.0}
	Laravel 4.2
	Laravel 4.1

	Upgrade Guide
	Upgrading To 5.2.0 From 5.1 {#upgrade-upgrade-5.2.0}
	Upgrading To 5.1.11 {#upgrade-upgrade-5.1.11}
	Upgrading To 5.1.0 {#upgrade-upgrade-5.1.0}
	Upgrading To 5.0.16 {#upgrade-upgrade-5.0.16}
	Upgrading To 5.0 From 4.2 {#upgrade-upgrade-5.0}
	Upgrading To 4.2 From 4.1
	Upgrading To 4.1.29 From <= 4.1.x
	Upgrading To 4.1.26 From <= 4.1.25
	Upgrading To 4.1 From 4.0

	Contribution Guide
	Bug Reports
	Core Development Discussion
	Which Branch?
	Security Vulnerabilities
	Coding Style

	Installation
	Installation

	Configuration
	Introduction
	Accessing Configuration Values
	Environment Configuration
	Configuration Caching
	Maintenance Mode

	Laravel Homestead
	Introduction
	Installation & Setup
	Daily Usage

	Basic Task List
	Introduction
	Installation
	Prepping The Database
	Routing
	Building Layouts & Views
	Adding Tasks
	Deleting Tasks

	Intermediate Task List
	Introduction
	Installation
	Prepping The Database
	Routing
	Building Layouts & Views
	Adding Tasks
	Displaying Existing Tasks
	Deleting Tasks

	HTTP Routing
	Basic Routing
	Route Parameters
	Named Routes
	Route Groups
	CSRF Protection
	Route Model Binding
	Form Method Spoofing
	Accessing The Current Route

	HTTP Middleware
	Introduction
	Defining Middleware
	Registering Middleware
	Middleware Parameters
	Terminable Middleware

	HTTP Controllers
	Introduction
	Basic Controllers
	Controller Middleware
	RESTful Resource Controllers
	Dependency Injection & Controllers
	Route Caching

	HTTP Requests
	Accessing The Request
	Retrieving Input

	HTTP Responses
	Basic Responses
	Other Response Types
	Redirects
	Response Macros

	Views
	Basic Usage
	View Composers

	Blade Templates
	Introduction
	Template Inheritance
	Displaying Data
	Control Structures
	Stacks
	Service Injection
	Extending Blade

	Request Lifecycle
	Introduction
	Lifecycle Overview
	Focus On Service Providers

	Application Structure
	Introduction
	The Root Directory
	The App Directory

	Service Providers
	Introduction
	Writing Service Providers
	Registering Providers
	Deferred Providers

	Service Container
	Introduction
	Binding
	Resolving
	Container Events

	Contracts
	Introduction
	Why Contracts?
	Contract Reference
	How To Use Contracts

	Facades
	Introduction
	Using Facades
	Facade Class Reference

	Authentication
	Introduction
	Authentication Quickstart
	Manually Authenticating Users
	HTTP Basic Authentication
	Resetting Passwords
	Adding Custom Guards
	Adding Custom User Providers
	Events

	Authorization
	Introduction
	Defining Abilities
	Checking Abilities
	Policies
	Controller Authorization

	Artisan Console
	Introduction
	Writing Commands
	Command I/O
	Registering Commands
	Calling Commands Via Code

	Laravel Cashier
	Introduction
	Subscriptions
	Handling Stripe Webhooks
	Single Charges
	Invoices

	Cache
	Configuration
	Cache Usage
	Cache Tags
	Adding Custom Cache Drivers
	Events

	Collections
	Introduction
	Creating Collections
	Available Methods
	Method Listing

	Laravel Elixir
	Introduction
	Installation & Setup
	Running Elixir
	Working With Stylesheets
	Working With Scripts
	Copying Files & Directories
	Versioning / Cache Busting
	BrowserSync
	Calling Existing Gulp Tasks
	Writing Elixir Extensions

	Encryption
	Configuration
	Basic Usage

	Errors & Logging
	Introduction
	Configuration
	The Exception Handler
	HTTP Exceptions
	Logging

	Events
	Introduction
	Registering Events / Listeners
	Defining Events
	Defining Listeners
	Firing Events
	Broadcasting Events
	Event Subscribers

	Filesystem / Cloud Storage
	Introduction
	Configuration
	Basic Usage
	Custom Filesystems

	Hashing
	Introduction
	Basic Usage

	Helper Functions
	Introduction
	Available Methods
	Method Listing
	Arrays
	Paths
	Strings
	URLs
	Miscellaneous

	Localization
	Introduction
	Basic Usage
	Overriding Vendor Language Files

	Mail
	Introduction
	Sending Mail
	Mail & Local Development
	Events

	Package Development
	Introduction
	Service Providers
	Routing
	Resources
	Public Assets
	Publishing File Groups

	Pagination
	Introduction
	Basic Usage
	Displaying Results In A View
	Converting Results To JSON

	Queues
	Introduction
	Writing Job Classes
	Pushing Jobs Onto The Queue
	Running The Queue Listener
	Dealing With Failed Jobs

	Redis
	Introduction
	Basic Usage
	Pub / Sub

	Session
	Introduction
	Basic Usage
	Adding Custom Session Drivers

	Envoy Task Runner
	Introduction
	Writing Tasks
	Running Tasks

	Task Scheduling
	Introduction
	Defining Schedules
	Task Output
	Task Hooks

	Testing
	Introduction
	Application Testing
	Working With Databases
	Mocking

	Validation
	Introduction
	Validation Quickstart
	Other Validation Approaches
	Working With Error Messages
	Available Validation Rules
	Conditionally Adding Rules
	Custom Validation Rules

	Database: Getting Started
	Introduction
	Running Raw SQL Queries
	Database Transactions
	Using Multiple Database Connections

	Database: Query Builder
	Introduction
	Retrieving Results
	Selects
	Joins
	Unions
	Where Clauses
	Advanced Where Clauses
	Ordering, Grouping, Limit, & Offset
	Inserts
	Updates
	Deletes
	Pessimistic Locking

	Database: Migrations
	Introduction
	Generating Migrations
	Migration Structure
	Running Migrations
	Writing Migrations

	Database: Seeding
	Introduction
	Writing Seeders
	Running Seeders

	Eloquent: Getting Started
	Introduction
	Defining Models
	Retrieving Multiple Models
	Retrieving Single Models / Aggregates
	Inserting & Updating Models
	Deleting Models
	Query Scopes
	Events

	Eloquent: Relationships
	Introduction
	Defining Relationships
	Querying Relations
	Inserting Related Models

	Eloquent: Collections
	Introduction
	Available Methods
	Custom Collections

	Eloquent: Mutators
	Introduction
	Accessors & Mutators
	Date Mutators
	Attribute Casting

	Eloquent: Serialization
	Introduction
	Basic Usage
	Hiding Attributes From JSON
	Appending Values To JSON

