

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 Welcome

 What users say:

 “Cheers for a great tool that actually makes programmers want
 to write documentation!”

 Sphinx is a tool that makes it easy to create intelligent and beautiful
 documentation, written by Georg Brandl and licensed under the BSD license.

 It was originally created for the
 new Python documentation, and it has excellent facilities for the
 documentation of Python projects, but C/C++ is already supported as well,
 and it is planned to add special support for other languages as well. Of
 course, this site is also created from reStructuredText sources using
 Sphinx! The following features should be highlighted:

 	Output formats: HTML (including Windows HTML Help), LaTeX (for
 printable PDF versions), ePub, Texinfo, manual pages, plain text

 	Extensive cross-references: semantic markup and automatic links
 for functions, classes, citations, glossary terms and similar pieces of
 information

 	Hierarchical structure: easy definition of a document tree, with
 automatic links to siblings, parents and children

 	Automatic indices: general index as well as a language-specific
 module indices

 	Code handling: automatic highlighting using the Pygments highlighter

 	Extensions: automatic testing of code snippets, inclusion of
 docstrings from Python modules (API docs), and
 more

 	Contributed extensions: more than
 50 extensions contributed by users
 in a second repository; most of them installable from PyPI

 Sphinx uses reStructuredText
 as its markup language, and many of its strengths come from the power and
 straightforwardness of reStructuredText and its parsing and translating
 suite, the Docutils.

 Documentation

 	
 First steps with Sphinx

 overview of basic tasks

 Contents

 for a complete overview

 	

 You can also download PDF/EPUB versions of the Sphinx documentation:
 a PDF version generated from
 the LaTeX Sphinx produces, and
 a EPUB version.

 Examples

 Links to documentation generated with Sphinx can be found on the
 Projects using Sphinx page.

 For examples of how Sphinx source files look, use the “Show
 source” links on all pages of the documentation apart from this
 welcome page.

 You may also be interested in the very nice
 tutorial on how to
 create a customized documentation using Sphinx written by the matplotlib
 developers.

 There is a Japanese translation
 of this documentation, thanks to the Japanese Sphinx user group.

 A Japanese book about Sphinx has been published by O'Reilly:
 Sphinxをはじめよう /
 Learning Sphinx.

 Hosting

 Need a place to host your Sphinx docs?
 readthedocs.org hosts a lot of Sphinx docs
 already, and integrates well with projects' source control. It also features a
 powerful built-in search that exceeds the possibilities of Sphinx' JavaScript-based
 offline search.

 Contributor Guide

 If you want to contribute to the project,
 this part of the documentation is for you.

 	Sphinx Developer’s Guide

 	Sphinx Authors

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	Sphinx 1.4.1 documentation »

Sphinx documentation contents

	Introduction
	Conversion from other systems

	Use with other systems

	Prerequisites

	Usage

	First Steps with Sphinx
	Install Sphinx

	Setting up the documentation sources

	Defining document structure

	Adding content

	Running the build

	Documenting objects

	Basic configuration

	Autodoc

	Intersphinx

	More topics to be covered

	Invocation of sphinx-quickstart
	Structure options

	Project basic options

	Extension options

	Makefile and Batchfile creation options

	Invocation of sphinx-build
	Makefile options

	Invocation of sphinx-apidoc

	reStructuredText Primer
	Paragraphs

	Inline markup

	Lists and Quote-like blocks

	Source Code

	Tables

	Hyperlinks

	Sections

	Explicit Markup

	Directives

	Images

	Footnotes

	Citations

	Substitutions

	Comments

	Source encoding

	Gotchas

	Sphinx Markup Constructs
	The TOC tree

	Paragraph-level markup

	Table-of-contents markup

	Glossary

	Grammar production displays

	Showing code examples

	Inline markup

	Miscellaneous markup

	Sphinx Domains
	What is a Domain?

	Basic Markup

	The Python Domain

	The C Domain

	The C++ Domain

	The Standard Domain

	The JavaScript Domain

	The reStructuredText domain

	More domains

	Available builders
	Serialization builder details

	The build configuration file
	General configuration

	Project information

	Options for internationalization

	Options for HTML output

	Options for Apple Help output

	Options for epub output

	Options for LaTeX output

	Options for text output

	Options for manual page output

	Options for Texinfo output

	Options for the linkcheck builder

	Options for the XML builder

	Internationalization
	Sphinx internationalization details

	Translating with sphinx-intl

	Using Transifex service for team translation

	Contributing to Sphinx reference translation

	HTML theming support
	Using a theme

	Builtin themes

	Creating themes

	Templating
	Do I need to use Sphinx’s templates to produce HTML?

	Jinja/Sphinx Templating Primer

	Working with the builtin templates

	Sphinx Extensions
	Builtin Sphinx extensions

	Third-party extensions

	Developing extensions for Sphinx
	Extension metadata

	APIs used for writing extensions

	Sphinx Web Support
	Web Support Quick Start

	The WebSupport Class

	Search Adapters

	Storage Backends

	Sphinx FAQ
	How do I...

	Using Sphinx with...

	Epub info

	Texinfo info

	Glossary

	Sphinx Developer’s Guide
	Bug Reports and Feature Requests

	Contributing to Sphinx

	Coding Guide

	Changes in Sphinx
	Release 1.4.2 (in development)

	Release 1.4.1 (released Apr 12, 2016)

	Release 1.4 (released Mar 28, 2016)

	Release 1.3.6 (released Feb 29, 2016)

	Release 1.3.5 (released Jan 24, 2016)

	Release 1.3.4 (released Jan 12, 2016)

	Release 1.3.3 (released Dec 2, 2015)

	Release 1.3.2 (released Nov 29, 2015)

	Release 1.3.1 (released Mar 17, 2015)

	Release 1.3 (released Mar 10, 2015)

	Release 1.3b3 (released Feb 24, 2015)

	Release 1.3b2 (released Dec 5, 2014)

	Release 1.3b1 (released Oct 10, 2014)

	Release 1.2.3 (released Sep 1, 2014)

	Release 1.2.2 (released Mar 2, 2014)

	Release 1.2.1 (released Jan 19, 2014)

	Release 1.2 (released Dec 10, 2013)

	Release 1.2 beta3 (released Oct 3, 2013)

	Release 1.2 beta2 (released Sep 17, 2013)

	Release 1.2 beta1 (released Mar 31, 2013)

	Release 1.1.3 (Mar 10, 2012)

	Release 1.1.2 (Nov 1, 2011) – 1.1.1 is a silly version number anyway!

	Release 1.1.1 (Nov 1, 2011)

	Release 1.1 (Oct 9, 2011)

	Release 1.0.8 (Sep 23, 2011)

	Release 1.0.7 (Jan 15, 2011)

	Release 1.0.6 (Jan 04, 2011)

	Release 1.0.5 (Nov 12, 2010)

	Release 1.0.4 (Sep 17, 2010)

	Release 1.0.3 (Aug 23, 2010)

	Release 1.0.2 (Aug 14, 2010)

	Release 1.0.1 (Jul 27, 2010)

	Release 1.0 (Jul 23, 2010)

	Previous versions

	Projects using Sphinx
	Documentation using the alabaster theme

	Documentation using the classic theme

	Documentation using a customized version of the classic theme

	Documentation using the sphinxdoc theme

	Documentation using another builtin theme

	Documentation using a custom theme/integrated in a site

	Homepages and other non-documentation sites

	Books produced using Sphinx

	Thesis using Sphinx

	Sphinx authors

Indices and tables

	Module Index

	Glossary

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Introduction

This is the documentation for the Sphinx documentation builder. Sphinx is a
tool that translates a set of reStructuredText [http://docutils.sourceforge.net/rst.html] source files into various output
formats, automatically producing cross-references, indices etc. That is, if
you have a directory containing a bunch of reST-formatted documents (and
possibly subdirectories of docs in there as well), Sphinx can generate a
nicely-organized arrangement of HTML files (in some other directory) for easy
browsing and navigation. But from the same source, it can also generate a
LaTeX file that you can compile into a PDF version of the documents, or a
PDF file directly using rst2pdf [https://github.com/rst2pdf/rst2pdf].

The focus is on hand-written documentation, rather than auto-generated API docs.
Though there is support for that kind of docs as well (which is intended to be
freely mixed with hand-written content), if you need pure API docs have a look
at Epydoc [http://epydoc.sourceforge.net/], which also understands reST.

For a great “introduction” to writing docs in general – the whys and hows, see
also Write the docs [http://write-the-docs.readthedocs.org/], written by Eric
Holscher.

Conversion from other systems

This section is intended to collect helpful hints for those wanting to migrate
to reStructuredText/Sphinx from other documentation systems.

	Gerard Flanagan has written a script to convert pure HTML to reST; it can be
found at the Python Package Index [https://pypi.python.org/pypi/html2rest].

	For converting the old Python docs to Sphinx, a converter was written which
can be found at the Python SVN repository [http://svn.python.org/projects/doctools/converter]. It contains generic
code to convert Python-doc-style LaTeX markup to Sphinx reST.

	Marcin Wojdyr has written a script to convert Docbook to reST with Sphinx
markup; it is at Google Code [https://github.com/wojdyr/db2rst].

	Christophe de Vienne wrote a tool to convert from Open/LibreOffice documents
to Sphinx: odt2sphinx [https://pypi.python.org/pypi/odt2sphinx/].

	To convert different markups, Pandoc [http://pandoc.org/] is
a very helpful tool.

Use with other systems

See the pertinent section in the FAQ list.

Prerequisites

Sphinx needs at least Python 2.6 or Python 3.3 to run, as well as the
docutils [http://docutils.sourceforge.net/] and Jinja2 [http://jinja.pocoo.org/] libraries. Sphinx should work with docutils version 0.10
or some (not broken) SVN trunk snapshot. If you like to have source code
highlighting support, you must also install the Pygments [http://pygments.org/] library.

Usage

See First Steps with Sphinx for an introduction. It also contains links to more
advanced sections in this manual for the topics it discusses.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

First Steps with Sphinx

This document is meant to give a tutorial-like overview of all common tasks
while using Sphinx.

The green arrows designate “more info” links leading to advanced sections about
the described task.

Install Sphinx

Install Sphinx, either from a distribution package or from
PyPI [https://pypi.python.org/pypi/Sphinx] with

$ pip install Sphinx

Setting up the documentation sources

The root directory of a Sphinx collection of reStructuredText document sources
is called the source directory. This directory also contains the Sphinx
configuration file conf.py, where you can configure all aspects of how
Sphinx reads your sources and builds your documentation. [1]

Sphinx comes with a script called sphinx-quickstart that sets up a
source directory and creates a default conf.py with the most useful
configuration values from a few questions it asks you. Just run

$ sphinx-quickstart

and answer its questions. (Be sure to say yes to the “autodoc” extension.)

There is also an automatic “API documentation” generator called
sphinx-apidoc; see Invocation of sphinx-apidoc for details.

Defining document structure

Let’s assume you’ve run sphinx-quickstart. It created a source
directory with conf.py and a master document, index.rst (if you
accepted the defaults). The main function of the master document is to
serve as a welcome page, and to contain the root of the “table of contents tree”
(or toctree). This is one of the main things that Sphinx adds to
reStructuredText, a way to connect multiple files to a single hierarchy of
documents.

reStructuredText directives

toctree is a reStructuredText directive, a very versatile piece of
markup. Directives can have arguments, options and content.

Arguments are given directly after the double colon following the
directive’s name. Each directive decides whether it can have arguments, and
how many.

Options are given after the arguments, in form of a “field list”. The
maxdepth is such an option for the toctree directive.

Content follows the options or arguments after a blank line. Each
directive decides whether to allow content, and what to do with it.

A common gotcha with directives is that the first line of the content must
be indented to the same level as the options are.

The toctree directive initially is empty, and looks like this:

.. toctree::
 :maxdepth: 2

You add documents listing them in the content of the directive:

.. toctree::
 :maxdepth: 2

 intro
 tutorial
 ...

This is exactly how the toctree for this documentation looks. The documents to
include are given as document names, which in short means that you
leave off the file name extension and use slashes as directory separators.

[image: more info] Read more about the toctree directive.

You can now create the files you listed in the toctree and add content, and
their section titles will be inserted (up to the “maxdepth” level) at the place
where the toctree directive is placed. Also, Sphinx now knows about the order
and hierarchy of your documents. (They may contain toctree directives
themselves, which means you can create deeply nested hierarchies if necessary.)

Adding content

In Sphinx source files, you can use most features of standard reStructuredText.
There are also several features added by Sphinx. For example, you can add
cross-file references in a portable way (which works for all output types) using
the ref role.

For an example, if you are viewing the HTML version you can look at the source
for this document – use the “Show Source” link in the sidebar.

[image: more info] See reStructuredText Primer for a more in-depth introduction to
reStructuredText and Sphinx Markup Constructs for a full list of markup added by
Sphinx.

Running the build

Now that you have added some files and content, let’s make a first build of the
docs. A build is started with the sphinx-build program, called like
this:

$ sphinx-build -b html sourcedir builddir

where sourcedir is the source directory, and builddir is the
directory in which you want to place the built documentation.
The -b option selects a builder; in this example
Sphinx will build HTML files.

[image: more info] See Invocation of sphinx-quickstart for all options that sphinx-build
supports.

However, sphinx-quickstart script creates a Makefile and a
make.bat which make life even easier for you: with them you only need
to run

$ make html

to build HTML docs in the build directory you chose. Execute make without
an argument to see which targets are available.

How do I generate PDF documents?

make latexpdf runs the LaTeX builder and readily invokes the pdfTeX
toolchain for you.

Documenting objects

One of Sphinx’s main objectives is easy documentation of objects (in a
very general sense) in any domain. A domain is a collection of object
types that belong together, complete with markup to create and reference
descriptions of these objects.

The most prominent domain is the Python domain. To e.g. document the Python
built-in function enumerate(), you would add this to one of your source
files:

.. py:function:: enumerate(sequence[, start=0])

 Return an iterator that yields tuples of an index and an item of the
 sequence. (And so on.)

This is rendered like this:

	
enumerate(sequence[, start=0])

	Return an iterator that yields tuples of an index and an item of the
sequence. (And so on.)

The argument of the directive is the signature of the object you
describe, the content is the documentation for it. Multiple signatures can be
given, each in its own line.

The Python domain also happens to be the default domain, so you don’t need to
prefix the markup with the domain name:

.. function:: enumerate(sequence[, start=0])

 ...

does the same job if you keep the default setting for the default domain.

There are several more directives for documenting other types of Python objects,
for example py:class or py:method. There is also a
cross-referencing role for each of these object types. This markup will
create a link to the documentation of enumerate():

The :py:func:`enumerate` function can be used for ...

And here is the proof: A link to enumerate().

Again, the py: can be left out if the Python domain is the default one. It
doesn’t matter which file contains the actual documentation for enumerate();
Sphinx will find it and create a link to it.

Each domain will have special rules for how the signatures can look like, and
make the formatted output look pretty, or add specific features like links to
parameter types, e.g. in the C/C++ domains.

[image: more info] See Sphinx Domains for all the available domains and their
directives/roles.

Basic configuration

Earlier we mentioned that the conf.py file controls how Sphinx processes
your documents. In that file, which is executed as a Python source file, you
assign configuration values. For advanced users: since it is executed by
Sphinx, you can do non-trivial tasks in it, like extending sys.path or
importing a module to find out the version you are documenting.

The config values that you probably want to change are already put into the
conf.py by sphinx-quickstart and initially commented out
(with standard Python syntax: a # comments the rest of the line). To change
the default value, remove the hash sign and modify the value. To customize a
config value that is not automatically added by sphinx-quickstart,
just add an additional assignment.

Keep in mind that the file uses Python syntax for strings, numbers, lists and so
on. The file is saved in UTF-8 by default, as indicated by the encoding
declaration in the first line. If you use non-ASCII characters in any string
value, you need to use Python Unicode strings (like project = u'Exposé').

[image: more info] See The build configuration file for documentation of all available config values.

Autodoc

When documenting Python code, it is common to put a lot of documentation in the
source files, in documentation strings. Sphinx supports the inclusion of
docstrings from your modules with an extension (an extension is a Python
module that provides additional features for Sphinx projects) called “autodoc”.

In order to use autodoc, you need to activate it in conf.py by putting
the string 'sphinx.ext.autodoc' into the list assigned to the
extensions config value. Then, you have a few additional directives
at your disposal.

For example, to document the function io.open(), reading its
signature and docstring from the source file, you’d write this:

.. autofunction:: io.open

You can also document whole classes or even modules automatically, using member
options for the auto directives, like

.. automodule:: io
 :members:

autodoc needs to import your modules in order to extract the docstrings.
Therefore, you must add the appropriate path to sys.path in your
conf.py.

Warning

autodoc imports the modules to be documented. If any
modules have side effects on import, these will be executed by autodoc
when sphinx-build is run.

If you document scripts (as opposed to library modules), make sure their main
routine is protected by a if __name__ == '__main__' condition.

[image: more info] See sphinx.ext.autodoc for the complete description of the
features of autodoc.

Intersphinx

Many Sphinx documents including the Python documentation [https://docs.python.org/3] are published on the
internet. When you want to make links to such documents from your
documentation, you can do it with sphinx.ext.intersphinx.

In order to use intersphinx, you need to activate it in conf.py by
putting the string 'sphinx.ext.intersphinx' into the extensions
list and set up the intersphinx_mapping config value.

For example, to link to io.open() in the Python library manual, you need to
setup your intersphinx_mapping like:

intersphinx_mapping = {'python': ('https://docs.python.org/3', None)}

And now, you can write a cross-reference like :py:func:`io.open`. Any
cross-reference that has no matching target in the current documentation set,
will be looked up in the documentation sets configured in
intersphinx_mapping (this needs access to the URL in order to
download the list of valid targets). Intersphinx also works for some other
domains’ roles including :ref:, however it doesn’t work for
:doc: as that is non-domain role.

[image: more info] See sphinx.ext.intersphinx for the complete description of the
features of intersphinx.

More topics to be covered

	Other extensions (math, viewcode, doctest)

	Static files

	Selecting a theme

	Templating

	Using extensions

	Writing extensions

Footnotes

	[1]	This is the usual layout. However, conf.py can also live in
another directory, the configuration directory. See
Invocation of sphinx-quickstart.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Invocation of sphinx-quickstart

The sphinx-quickstart script generates a Sphinx documentation set.
It is called like this:

$ sphinx-quickstart [options] [projectdir]

where projectdir is the Sphinx documentation set directory in which you want
to place. If you omit projectdir, files are generated into current directory
by default.

The sphinx-quickstart script has several options:

	
-q, --quiet

	Quiet mode that will skips interactive wizard to specify options.
This option requires -p, -a and -v options.

	
-h, --help, --version

	Display usage summary or Sphinx version.

Structure options

	
--sep

	If specified, separate source and build directories.

	
--dot=DOT

	Inside the root directory, two more directories will be created;
“_templates” for custom HTML templates and “_static” for custom stylesheets
and other static files. You can enter another prefix (such as ”.”) to
replace the underscore.

Project basic options

	
-p PROJECT, --project=PROJECT

	Project name will be set. (see project).

	
-a AUTHOR, --author=AUTHOR

	Author names. (see copyright).

	
-v VERSION

	Version of project. (see version).

	
-r RELEASE, --release=RELEASE

	Release of project. (see release).

	
-l LANGUAGE, --language=LANGUAGE

	Document language. (see language).

	
--suffix=SUFFIX

	Source file suffix. (see source_suffix).

	
--master=MASTER

	Master document name. (see master_doc).

	
--epub

	Use epub.

Extension options

	
--ext-autodoc

	Enable sphinx.ext.autodoc extension.

	
--ext-doctest

	Enable sphinx.ext.doctest extension.

	
--ext-intersphinx

	Enable sphinx.ext.intersphinx extension.

	
--ext-todo

	Enable sphinx.ext.todo extension.

	
--ext-coverage

	Enable sphinx.ext.coverage extension.

	
--ext-imgmath

	Enable sphinx.ext.imgmath extension.

	
--ext-mathjax

	Enable sphinx.ext.mathjax extension.

	
--ext-ifconfig

	Enable sphinx.ext.ifconfig extension.

	
--ext-viewcode

	Enable sphinx.ext.viewcode extension.

Makefile and Batchfile creation options

	
--use-make-mode, --no-use-make-mode

	Makefile/make.bat uses (or not use) make-mode. Default is not use.

	
--makefile, --no-makefile

	Create (or not create) makefile.

	
--batchfile, --no-batchfile

	Create (or not create) batchfile

New in version 1.3: Add various options for sphinx-quickstart invocation.

Invocation of sphinx-build

The sphinx-build script builds a Sphinx documentation set. It is
called like this:

$ sphinx-build [options] sourcedir builddir [filenames]

where sourcedir is the source directory, and builddir is the
directory in which you want to place the built documentation. Most of the time,
you don’t need to specify any filenames.

The sphinx-build script has several options:

	
-b buildername

	The most important option: it selects a builder. The most common builders
are:

	html

	Build HTML pages. This is the default builder.

	dirhtml

	Build HTML pages, but with a single directory per document. Makes for
prettier URLs (no .html) if served from a webserver.

	singlehtml

	Build a single HTML with the whole content.

	htmlhelp, qthelp, devhelp, epub

	Build HTML files with additional information for building a documentation
collection in one of these formats.

	applehelp

	Build an Apple Help Book. Requires hiutil and
codesign, which are not Open Source and presently only
available on Mac OS X 10.6 and higher.

	latex

	Build LaTeX sources that can be compiled to a PDF document using
pdflatex.

	man

	Build manual pages in groff format for UNIX systems.

	texinfo

	Build Texinfo files that can be processed into Info files using
makeinfo.

	text

	Build plain text files.

	gettext

	Build gettext-style message catalogs (.pot files).

	doctest

	Run all doctests in the documentation, if the doctest
extension is enabled.

	linkcheck

	Check the integrity of all external links.

	xml

	Build Docutils-native XML files.

	pseudoxml

	Build compact pretty-printed “pseudo-XML” files displaying the
internal structure of the intermediate document trees.

See Available builders for a list of all builders shipped with Sphinx.
Extensions can add their own builders.

	
-a

	If given, always write all output files. The default is to only write output
files for new and changed source files. (This may not apply to all
builders.)

	
-E

	Don’t use a saved environment (the structure caching all
cross-references), but rebuild it completely. The default is to only read
and parse source files that are new or have changed since the last run.

	
-t tag

	Define the tag tag. This is relevant for only directives that
only include their content if this tag is set.

New in version 0.6.

	
-d path

	Since Sphinx has to read and parse all source files before it can write an
output file, the parsed source files are cached as “doctree pickles”.
Normally, these files are put in a directory called .doctrees under
the build directory; with this option you can select a different cache
directory (the doctrees can be shared between all builders).

	
-j N

	Distribute the build over N processes in parallel, to make building on
multiprocessor machines more effective. Note that not all parts and not all
builders of Sphinx can be parallelized.

New in version 1.2: This option should be considered experimental.

	
-c path

	Don’t look for the conf.py in the source directory, but use the given
configuration directory instead. Note that various other files and paths
given by configuration values are expected to be relative to the
configuration directory, so they will have to be present at this location
too.

New in version 0.3.

	
-C

	Don’t look for a configuration file; only take options via the -D option.

New in version 0.5.

	
-D setting=value

	Override a configuration value set in the conf.py file. The value
must be a number, string, list or dictionary value.

For lists, you can separate elements with a comma like this: -D
html_theme_path=path1,path2.

For dictionary values, supply the setting name and key like this:
-D latex_elements.docclass=scrartcl.

For boolean values, use 0 or 1 as the value.

Changed in version 0.6: The value can now be a dictionary value.

Changed in version 1.3: The value can now also be a list value.

	
-A name=value

	Make the name assigned to value in the HTML templates.

New in version 0.5.

	
-n

	Run in nit-picky mode. Currently, this generates warnings for all missing
references. See the config value nitpick_ignore for a way to
exclude some references as “known missing”.

	
-N

	Do not emit colored output.

	
-v

	Increase verbosity (loglevel). This option can be given up to three times
to get more debug logging output. It implies -T.

New in version 1.2.

	
-q

	Do not output anything on standard output, only write warnings and errors to
standard error.

	
-Q

	Do not output anything on standard output, also suppress warnings. Only
errors are written to standard error.

	
-w file

	Write warnings (and errors) to the given file, in addition to standard error.

	
-W

	Turn warnings into errors. This means that the build stops at the first
warning and sphinx-build exits with exit status 1.

	
-T

	Display the full traceback when an unhandled exception occurs. Otherwise,
only a summary is displayed and the traceback information is saved to a file
for further analysis.

New in version 1.2.

	
-P

	(Useful for debugging only.) Run the Python debugger, pdb, if an
unhandled exception occurs while building.

	
-h, --help, --version

	Display usage summary or Sphinx version.

New in version 1.2.

You can also give one or more filenames on the command line after the source and
build directories. Sphinx will then try to build only these output files (and
their dependencies).

Makefile options

The Makefile and make.bat files created by
sphinx-quickstart usually run sphinx-build only with the
-b and -d options. However, they support the following
variables to customize behavior:

	
PAPER

	The value for latex_paper_size.

	
SPHINXBUILD

	The command to use instead of sphinx-build.

	
BUILDDIR

	The build directory to use instead of the one chosen in
sphinx-quickstart.

	
SPHINXOPTS

	Additional options for sphinx-build.

Invocation of sphinx-apidoc

The sphinx-apidoc generates completely automatic API documentation
for a Python package. It is called like this:

$ sphinx-apidoc [options] -o outputdir packagedir [pathnames]

where packagedir is the path to the package to document, and outputdir is
the directory where the generated sources are placed. Any pathnames given
are paths to be excluded ignored during generation.

Warning

sphinx-apidoc generates reST files that use sphinx.ext.autodoc to
document all found modules. If any modules have side effects on import,
these will be executed by autodoc when sphinx-build is run.

If you document scripts (as opposed to library modules), make sure their main
routine is protected by a if __name__ == '__main__' condition.

The sphinx-apidoc script has several options:

	
-o outputdir

	Gives the directory in which to place the generated output.

	
-f, --force

	Normally, sphinx-apidoc does not overwrite any files. Use this option to
force the overwrite of all files that it generates.

	
-n, --dry-run

	With this option given, no files will be written at all.

	
-s suffix

	This option selects the file name suffix of output files. By default, this
is rst.

	
-d maxdepth

	This sets the maximum depth of the table of contents, if one is generated.

	
-l, --follow-links

	This option makes sphinx-apidoc follow symbolic links when recursing the
filesystem to discover packages and modules. You may need it if you want
to generate documentation from a source directory managed by
collective.recipe.omelette [https://pypi.python.org/pypi/collective.recipe.omelette/].
By default, symbolic links are skipped.

New in version 1.2.

	
-T, --no-toc

	This prevents the generation of a table-of-contents file modules.rst.
This has no effect when --full is given.

	
-F, --full

	This option makes sphinx-apidoc create a full Sphinx project, using the same
mechanism as sphinx-quickstart. Most configuration values are set
to default values, but you can influence the most important ones using the
following options.

	
-M

	This option makes sphinx-apidoc put module documentation before submodule
documentation.

	
-H project

	Sets the project name to put in generated files (see project).

	
-A author

	Sets the author name(s) to put in generated files (see copyright).

	
-V version

	Sets the project version to put in generated files (see version).

	
-R release

	Sets the project release to put in generated files (see release).

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

reStructuredText Primer

This section is a brief introduction to reStructuredText (reST) concepts and
syntax, intended to provide authors with enough information to author documents
productively. Since reST was designed to be a simple, unobtrusive markup
language, this will not take too long.

See also

The authoritative reStructuredText User Documentation [http://docutils.sourceforge.net/rst.html]. The “ref” links in this
document link to the description of the individual constructs in the reST
reference.

Paragraphs

The paragraph (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#paragraphs]) is the most basic block in a reST
document. Paragraphs are simply chunks of text separated by one or more blank
lines. As in Python, indentation is significant in reST, so all lines of the
same paragraph must be left-aligned to the same level of indentation.

Inline markup

The standard reST inline markup is quite simple: use

	one asterisk: *text* for emphasis (italics),

	two asterisks: **text** for strong emphasis (boldface), and

	backquotes: ``text`` for code samples.

If asterisks or backquotes appear in running text and could be confused with
inline markup delimiters, they have to be escaped with a backslash.

Be aware of some restrictions of this markup:

	it may not be nested,

	content may not start or end with whitespace: * text* is wrong,

	it must be separated from surrounding text by non-word characters. Use a
backslash escaped space to work around that: thisis\ *one*\ word.

These restrictions may be lifted in future versions of the docutils.

reST also allows for custom “interpreted text roles”, which signify that the
enclosed text should be interpreted in a specific way. Sphinx uses this to
provide semantic markup and cross-referencing of identifiers, as described in
the appropriate section. The general syntax is :rolename:`content`.

Standard reST provides the following roles:

	emphasis [http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis] – alternate spelling for *emphasis*

	strong [http://docutils.sourceforge.net/docs/ref/rst/roles.html#strong] – alternate spelling for **strong**

	literal [http://docutils.sourceforge.net/docs/ref/rst/roles.html#literal] – alternate spelling for ``literal``

	subscript [http://docutils.sourceforge.net/docs/ref/rst/roles.html#subscript] – subscript text

	superscript [http://docutils.sourceforge.net/docs/ref/rst/roles.html#superscript] – superscript text

	title-reference [http://docutils.sourceforge.net/docs/ref/rst/roles.html#title-reference] – for titles of books, periodicals, and other
materials

See Inline markup for roles added by Sphinx.

Lists and Quote-like blocks

List markup (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#bullet-lists]) is natural: just place an asterisk at
the start of a paragraph and indent properly. The same goes for numbered lists;
they can also be autonumbered using a # sign:

* This is a bulleted list.
* It has two items, the second
 item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the
parent list items by blank lines:

* this is
* a list

 * with a nested list
 * and some subitems

* and here the parent list continues

Definition lists (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists]) are created as follows:

term (up to a line of text)
 Definition of the term, which must be indented

 and can even consist of multiple paragraphs

next term
 Description.

Note that the term cannot have more than one line of text.

Quoted paragraphs (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#block-quotes]) are created by just indenting
them more than the surrounding paragraphs.

Line blocks (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#line-blocks]) are a way of preserving line breaks:

| These lines are
| broken exactly like in
| the source file.

There are also several more special blocks available:

	field lists (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field-lists])

	option lists (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#option-lists])

	quoted literal blocks (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#quoted-literal-blocks])

	doctest blocks (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#doctest-blocks])

Source Code

Literal code blocks (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#literal-blocks]) are introduced by ending a
paragraph with the special marker ::. The literal block must be indented
(and, like all paragraphs, separated from the surrounding ones by blank lines):

This is a normal text paragraph. The next paragraph is a code sample::

 It is not processed in any way, except
 that the indentation is removed.

 It can span multiple lines.

This is a normal text paragraph again.

The handling of the :: marker is smart:

	If it occurs as a paragraph of its own, that paragraph is completely left
out of the document.

	If it is preceded by whitespace, the marker is removed.

	If it is preceded by non-whitespace, the marker is replaced by a single
colon.

That way, the second sentence in the above example’s first paragraph would be
rendered as “The next paragraph is a code sample:”.

Tables

Two forms of tables are supported. For grid tables (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables]), you have to “paint” the cell grid yourself. They look like
this:

+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+========================+============+==========+==========+
| body row 1, column 1 | column 2 | column 3 | column 4 |
+------------------------+------------+----------+----------+
| body row 2 | ... | ... | |
+------------------------+------------+----------+----------+

Simple tables (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables]) are easier to write, but
limited: they must contain more than one row, and the first column cannot
contain multiple lines. They look like this:

===== ===== =======
A B A and B
===== ===== =======
False False False
True False False
False True False
True True True
===== ===== =======

Hyperlinks

External links

Use `Link text <http://example.com/>`_ for inline web links. If the link
text should be the web address, you don’t need special markup at all, the parser
finds links and mail addresses in ordinary text.

You can also separate the link and the target definition (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#hyperlink-targets]), like this:

This is a paragraph that contains `a link`_.

.. _a link: http://example.com/

Internal links

Internal linking is done via a special reST role provided by Sphinx, see the
section on specific markup, Cross-referencing arbitrary locations.

Sections

Section headers (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections]) are created by underlining (and
optionally overlining) the section title with a punctuation character, at least
as long as the text:

=================
This is a heading
=================

Normally, there are no heading levels assigned to certain characters as the
structure is determined from the succession of headings. However, this
convention is used in Python’s Style Guide for documentating [https://docs.python.org/devguide/documenting.html#style-guide] which you may
follow:

	# with overline, for parts

	* with overline, for chapters

	=, for sections

	-, for subsections

	^, for subsubsections

	", for paragraphs

Of course, you are free to use your own marker characters (see the reST
documentation), and use a deeper nesting level, but keep in mind that most
target formats (HTML, LaTeX) have a limited supported nesting depth.

Explicit Markup

“Explicit markup” (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#explicit-markup-blocks]) is used in reST for
most constructs that need special handling, such as footnotes,
specially-highlighted paragraphs, comments, and generic directives.

An explicit markup block begins with a line starting with .. followed by
whitespace and is terminated by the next paragraph at the same level of
indentation. (There needs to be a blank line between explicit markup and normal
paragraphs. This may all sound a bit complicated, but it is intuitive enough
when you write it.)

Directives

A directive (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#directives]) is a generic block of explicit markup.
Besides roles, it is one of the extension mechanisms of reST, and Sphinx makes
heavy use of it.

Docutils supports the following directives:

	Admonitions: attention [http://docutils.sourceforge.net/docs/ref/rst/directives.html#attention], caution [http://docutils.sourceforge.net/docs/ref/rst/directives.html#caution], danger [http://docutils.sourceforge.net/docs/ref/rst/directives.html#danger],
error [http://docutils.sourceforge.net/docs/ref/rst/directives.html#error], hint [http://docutils.sourceforge.net/docs/ref/rst/directives.html#hint], important [http://docutils.sourceforge.net/docs/ref/rst/directives.html#important], note [http://docutils.sourceforge.net/docs/ref/rst/directives.html#note],
tip [http://docutils.sourceforge.net/docs/ref/rst/directives.html#tip], warning [http://docutils.sourceforge.net/docs/ref/rst/directives.html#warning] and the generic
admonition [http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions]. (Most themes style only “note” and
“warning” specially.)

	Images:

	image [http://docutils.sourceforge.net/docs/ref/rst/directives.html#image] (see also Images below)

	figure [http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure] (an image with caption and optional legend)

	Additional body elements:

	contents [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents] (a local, i.e. for the current file
only, table of contents)

	container [http://docutils.sourceforge.net/docs/ref/rst/directives.html#container] (a container with a custom class, useful to generate an
outer <div> in HTML)

	rubric [http://docutils.sourceforge.net/docs/ref/rst/directives.html#rubric] (a heading without relation to the document sectioning)

	topic [http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic], sidebar [http://docutils.sourceforge.net/docs/ref/rst/directives.html#sidebar] (special highlighted body elements)

	parsed-literal [http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal] (literal block that supports inline markup)

	epigraph [http://docutils.sourceforge.net/docs/ref/rst/directives.html#epigraph] (a block quote with optional attribution line)

	highlights [http://docutils.sourceforge.net/docs/ref/rst/directives.html#highlights], pull-quote [http://docutils.sourceforge.net/docs/ref/rst/directives.html#pull-quote] (block quotes with their own
class attribute)

	compound [http://docutils.sourceforge.net/docs/ref/rst/directives.html#compound-paragraph] (a compound paragraph)

	Special tables:

	table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table] (a table with title)

	csv-table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table] (a table generated from comma-separated values)

	list-table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table] (a table generated from a list of lists)

	Special directives:

	raw [http://docutils.sourceforge.net/docs/ref/rst/directives.html#raw-data-pass-through] (include raw target-format markup)

	include [http://docutils.sourceforge.net/docs/ref/rst/directives.html#include] (include reStructuredText from another file)
– in Sphinx, when given an absolute include file path, this directive takes
it as relative to the source directory

	class [http://docutils.sourceforge.net/docs/ref/rst/directives.html#class] (assign a class attribute to the next element) [1]

	HTML specifics:

	meta [http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta] (generation of HTML <meta> tags)

	title [http://docutils.sourceforge.net/docs/ref/rst/directives.html#metadata-document-title] (override document title)

	Influencing markup:

	default-role [http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role] (set a new default role)

	role [http://docutils.sourceforge.net/docs/ref/rst/directives.html#role] (create a new role)

Since these are only per-file, better use Sphinx’s facilities for setting the
default_role.

Do not use the directives sectnum [http://docutils.sourceforge.net/docs/ref/rst/directives.html#sectnum], header [http://docutils.sourceforge.net/docs/ref/rst/directives.html#header] and
footer [http://docutils.sourceforge.net/docs/ref/rst/directives.html#footer].

Directives added by Sphinx are described in Sphinx Markup Constructs.

Basically, a directive consists of a name, arguments, options and content. (Keep
this terminology in mind, it is used in the next chapter describing custom
directives.) Looking at this example,

.. function:: foo(x)
 foo(y, z)
 :module: some.module.name

 Return a line of text input from the user.

function is the directive name. It is given two arguments here, the
remainder of the first line and the second line, as well as one option
module (as you can see, options are given in the lines immediately following
the arguments and indicated by the colons). Options must be indented to the
same level as the directive content.

The directive content follows after a blank line and is indented relative to the
directive start.

Images

reST supports an image directive (ref [http://docutils.sourceforge.net/docs/ref/rst/directives.html#image]), used like so:

.. image:: gnu.png
 (options)

When used within Sphinx, the file name given (here gnu.png) must either be
relative to the source file, or absolute which means that they are relative to
the top source directory. For example, the file sketch/spam.rst could refer
to the image images/spam.png as ../images/spam.png or
/images/spam.png.

Sphinx will automatically copy image files over to a subdirectory of the output
directory on building (e.g. the _static directory for HTML output.)

Interpretation of image size options (width and height) is as follows:
if the size has no unit or the unit is pixels, the given size will only be
respected for output channels that support pixels (i.e. not in LaTeX output).
Other units (like pt for points) will be used for HTML and LaTeX output.

Sphinx extends the standard docutils behavior by allowing an asterisk for the
extension:

.. image:: gnu.*

Sphinx then searches for all images matching the provided pattern and determines
their type. Each builder then chooses the best image out of these candidates.
For instance, if the file name gnu.* was given and two files gnu.pdf
and gnu.png existed in the source tree, the LaTeX builder would choose
the former, while the HTML builder would prefer the latter.
Supported image types and choosing priority are defined at Available builders.

Note that image file names should not contain spaces.

Changed in version 0.4: Added the support for file names ending in an asterisk.

Changed in version 0.6: Image paths can now be absolute.

Footnotes

For footnotes (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#footnotes]), use [#name]_ to mark the footnote
location, and add the footnote body at the bottom of the document after a
“Footnotes” rubric heading, like so:

Lorem ipsum [#f1]_ dolor sit amet ... [#f2]_

.. rubric:: Footnotes

.. [#f1] Text of the first footnote.
.. [#f2] Text of the second footnote.

You can also explicitly number the footnotes ([1]_) or use auto-numbered
footnotes without names ([#]_).

Citations

Standard reST citations (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#citations]) are supported, with the
additional feature that they are “global”, i.e. all citations can be referenced
from all files. Use them like so:

Lorem ipsum [Ref]_ dolor sit amet.

.. [Ref] Book or article reference, URL or whatever.

Citation usage is similar to footnote usage, but with a label that is not
numeric or begins with #.

Substitutions

reST supports “substitutions” (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions]), which
are pieces of text and/or markup referred to in the text by |name|. They
are defined like footnotes with explicit markup blocks, like this:

.. |name| replace:: replacement *text*

or this:

.. |caution| image:: warning.png
 :alt: Warning!

See the reST reference for substitutions [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions]
for details.

If you want to use some substitutions for all documents, put them into
rst_prolog or put them into a separate file and include it into all
documents you want to use them in, using the include directive. (Be
sure to give the include file a file name extension differing from that of other
source files, to avoid Sphinx finding it as a standalone document.)

Sphinx defines some default substitutions, see Substitutions.

Comments

Every explicit markup block which isn’t a valid markup construct (like the
footnotes above) is regarded as a comment (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#comments]). For
example:

.. This is a comment.

You can indent text after a comment start to form multiline comments:

..
 This whole indented block
 is a comment.

 Still in the comment.

Source encoding

Since the easiest way to include special characters like em dashes or copyright
signs in reST is to directly write them as Unicode characters, one has to
specify an encoding. Sphinx assumes source files to be encoded in UTF-8 by
default; you can change this with the source_encoding config value.

Gotchas

There are some problems one commonly runs into while authoring reST documents:

	Separation of inline markup: As said above, inline markup spans must be
separated from the surrounding text by non-word characters, you have to use a
backslash-escaped space to get around that. See
the reference [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions] for the details.

	No nested inline markup: Something like *see :func:`foo`* is not
possible.

Footnotes

	[1]	When the default domain contains a class directive, this
directive will be shadowed. Therefore, Sphinx re-exports it as
rst-class.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Sphinx Markup Constructs

Sphinx adds a lot of new directives and interpreted text roles to standard reST
markup [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]. This section contains the reference material for these facilities.

	The TOC tree
	Special names

	Paragraph-level markup

	Table-of-contents markup

	Glossary

	Grammar production displays

	Showing code examples
	Line numbers

	Includes

	Caption and name

	Dedent

	Inline markup
	Cross-referencing syntax
	Cross-referencing anything

	Cross-referencing objects

	Cross-referencing arbitrary locations

	Cross-referencing documents

	Referencing downloadable files

	Cross-referencing figures by figure number

	Cross-referencing other items of interest

	Other semantic markup

	Substitutions

	Miscellaneous markup
	File-wide metadata

	Meta-information markup

	Index-generating markup

	Including content based on tags

	Tables

More markup is added by Sphinx Domains.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Markup Constructs »

The TOC tree

Since reST does not have facilities to interconnect several documents, or split
documents into multiple output files, Sphinx uses a custom directive to add
relations between the single files the documentation is made of, as well as
tables of contents. The toctree directive is the central element.

Note

Simple “inclusion” of one file in another can be done with the
include [http://docutils.sourceforge.net/docs/ref/rst/directives.html#include] directive.

	
.. toctree::

	This directive inserts a “TOC tree” at the current location, using the
individual TOCs (including “sub-TOC trees”) of the documents given in the
directive body. Relative document names (not beginning with a slash) are
relative to the document the directive occurs in, absolute names are relative
to the source directory. A numeric maxdepth option may be given to
indicate the depth of the tree; by default, all levels are included. [1]

Consider this example (taken from the Python docs’ library reference index):

.. toctree::
 :maxdepth: 2

 intro
 strings
 datatypes
 numeric
 (many more documents listed here)

This accomplishes two things:

	Tables of contents from all those documents are inserted, with a maximum
depth of two, that means one nested heading. toctree directives in
those documents are also taken into account.

	Sphinx knows that the relative order of the documents intro,
strings and so forth, and it knows that they are children of the shown
document, the library index. From this information it generates “next
chapter”, “previous chapter” and “parent chapter” links.

Entries

Document titles in the toctree will be automatically read from the
title of the referenced document. If that isn’t what you want, you can
specify an explicit title and target using a similar syntax to reST
hyperlinks (and Sphinx’s cross-referencing syntax). This
looks like:

.. toctree::

 intro
 All about strings <strings>
 datatypes

The second line above will link to the strings document, but will use the
title “All about strings” instead of the title of the strings document.

You can also add external links, by giving an HTTP URL instead of a document
name.

Section numbering

If you want to have section numbers even in HTML output, give the
toplevel toctree a numbered option. For example:

.. toctree::
 :numbered:

 foo
 bar

Numbering then starts at the heading of foo. Sub-toctrees are
automatically numbered (don’t give the numbered flag to those).

Numbering up to a specific depth is also possible, by giving the depth as a
numeric argument to numbered.

Additional options

You can use caption option to provide a toctree caption and you can use
name option to provide implicit target name that can be referenced by
using ref:

.. toctree::
 :caption: Table of Contents
 :name: mastertoc

 foo

If you want only the titles of documents in the tree to show up, not other
headings of the same level, you can use the titlesonly option:

.. toctree::
 :titlesonly:

 foo
 bar

You can use “globbing” in toctree directives, by giving the glob flag
option. All entries are then matched against the list of available
documents, and matches are inserted into the list alphabetically. Example:

.. toctree::
 :glob:

 intro*
 recipe/*
 *

This includes first all documents whose names start with intro, then all
documents in the recipe folder, then all remaining documents (except the
one containing the directive, of course.) [2]

The special entry name self stands for the document containing the
toctree directive. This is useful if you want to generate a “sitemap” from
the toctree.

You can also give a “hidden” option to the directive, like this:

.. toctree::
 :hidden:

 doc_1
 doc_2

This will still notify Sphinx of the document hierarchy, but not insert links
into the document at the location of the directive – this makes sense if you
intend to insert these links yourself, in a different style, or in the HTML
sidebar.

In cases where you want to have only one top-level toctree and hide all other
lower level toctrees you can add the “includehidden” option to the top-level
toctree entry:

.. toctree::
 :includehidden:

 doc_1
 doc_2

All other toctree entries can then be eliminated by the “hidden” option.

In the end, all documents in the source directory (or subdirectories)
must occur in some toctree directive; Sphinx will emit a warning if it
finds a file that is not included, because that means that this file will not
be reachable through standard navigation.

Use exclude_patterns to explicitly exclude documents or
directories from building completely. Use the “orphan” metadata to let a document be built, but notify Sphinx that it is not
reachable via a toctree.

The “master document” (selected by master_doc) is the “root” of
the TOC tree hierarchy. It can be used as the documentation’s main page, or
as a “full table of contents” if you don’t give a maxdepth option.

Changed in version 0.3: Added “globbing” option.

Changed in version 0.6: Added “numbered” and “hidden” options as well as external links and
support for “self” references.

Changed in version 1.0: Added “titlesonly” option.

Changed in version 1.1: Added numeric argument to “numbered”.

Changed in version 1.2: Added “includehidden” option.

Changed in version 1.3: Added “caption” and “name” option.

Special names

Sphinx reserves some document names for its own use; you should not try to
create documents with these names – it will cause problems.

The special document names (and pages generated for them) are:

	genindex, modindex, search

These are used for the general index, the Python module index, and the search
page, respectively.

The general index is populated with entries from modules, all index-generating
object descriptions, and from index
directives.

The Python module index contains one entry per py:module directive.

The search page contains a form that uses the generated JSON search index and
JavaScript to full-text search the generated documents for search words; it
should work on every major browser that supports modern JavaScript.

	every name beginning with _

Though only few such names are currently used by Sphinx, you should not create
documents or document-containing directories with such names. (Using _ as
a prefix for a custom template directory is fine.)

Warning

Be careful with unusual characters in filenames. Some formats may interpret
these characters in unexpected ways:

	Do not use the colon : for HTML based formats. Links to other parts
may not work.

	Do not use the plus + for the ePub format. Some resources may not be
found.

Footnotes

	[1]	The LaTeX writer only refers the maxdepth option of first toctree
directive in the document.

	[2]	A note on available globbing syntax: you can use the standard shell
constructs *, ?, [...] and [!...] with the feature that
these all don’t match slashes. A double star ** can be used to match
any sequence of characters including slashes.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Markup Constructs »

Paragraph-level markup

These directives create short paragraphs and can be used inside information
units as well as normal text:

	
.. note::

	An especially important bit of information about an API that a user should be
aware of when using whatever bit of API the note pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation.

Example:

.. note::

 This function is not suitable for sending spam e-mails.

	
.. warning::

	An important bit of information about an API that a user should be very aware
of when using whatever bit of API the warning pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation. This differs from note in that it is
recommended over note for information regarding security.

	
.. versionadded:: version

	This directive documents the version of the project which added the described
feature to the library or C API. When this applies to an entire module, it
should be placed at the top of the module section before any prose.

The first argument must be given and is the version in question; you can add
a second argument consisting of a brief explanation of the change.

Example:

.. versionadded:: 2.5
 The *spam* parameter.

Note that there must be no blank line between the directive head and the
explanation; this is to make these blocks visually continuous in the markup.

	
.. versionchanged:: version

	Similar to versionadded, but describes when and what changed in
the named feature in some way (new parameters, changed side effects, etc.).

	
.. deprecated:: version

	Similar to versionchanged, but describes when the feature was
deprecated. An explanation can also be given, for example to inform the
reader what should be used instead. Example:

.. deprecated:: 3.1
 Use :func:`spam` instead.

	
.. seealso::

	Many sections include a list of references to module documentation or
external documents. These lists are created using the seealso
directive.

The seealso directive is typically placed in a section just before
any subsections. For the HTML output, it is shown boxed off from the main
flow of the text.

The content of the seealso directive should be a reST definition
list. Example:

.. seealso::

 Module :py:mod:`zipfile`
 Documentation of the :py:mod:`zipfile` standard module.

 `GNU tar manual, Basic Tar Format <http://link>`_
 Documentation for tar archive files, including GNU tar extensions.

There’s also a “short form” allowed that looks like this:

.. seealso:: modules :py:mod:`zipfile`, :py:mod:`tarfile`

New in version 0.5: The short form.

	
.. rubric:: title

	This directive creates a paragraph heading that is not used to create a
table of contents node.

Note

If the title of the rubric is “Footnotes” (or the selected language’s
equivalent), this rubric is ignored by the LaTeX writer, since it is
assumed to only contain footnote definitions and therefore would create an
empty heading.

	
.. centered::

	This directive creates a centered boldfaced line of text. Use it as
follows:

.. centered:: LICENSE AGREEMENT

Deprecated since version 1.1: This presentation-only directive is a legacy from older versions. Use a
rst-class directive instead and add an appropriate style.

	
.. hlist::

	This directive must contain a bullet list. It will transform it into a more
compact list by either distributing more than one item horizontally, or
reducing spacing between items, depending on the builder.

For builders that support the horizontal distribution, there is a columns
option that specifies the number of columns; it defaults to 2. Example:

.. hlist::
 :columns: 3

 * A list of
 * short items
 * that should be
 * displayed
 * horizontally

New in version 0.6.

Table-of-contents markup

The toctree directive, which generates tables of contents of
subdocuments, is described in The TOC tree.

For local tables of contents, use the standard reST contents directive [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents].

Glossary

	
.. glossary::

	This directive must contain a reST definition-list-like markup with terms and
definitions. The definitions will then be referencable with the
term role. Example:

.. glossary::

 environment
 A structure where information about all documents under the root is
 saved, and used for cross-referencing. The environment is pickled
 after the parsing stage, so that successive runs only need to read
 and parse new and changed documents.

 source directory
 The directory which, including its subdirectories, contains all
 source files for one Sphinx project.

In contrast to regular definition lists, multiple terms per entry are
allowed, and inline markup is allowed in terms. You can link to all of the
terms. For example:

.. glossary::

 term 1
 term 2
 Definition of both terms.

(When the glossary is sorted, the first term determines the sort order.)

If you want to specify “grouping key” for general index entries, you can put a “key”
as “term : key”. For example:

.. glossary::

 term 1 : A
 term 2 : B
 Definition of both terms.

Note that “key” is used for grouping key as is.
The “key” isn’t normalized; key “A” and “a” become different groups.
The whole characters in “key” is used instead of a first character; it is used for
“Combining Character Sequence” and “Surrogate Pairs” grouping key.

In i18n situation, you can specify “localized term : key” even if original text only
have “term” part. In this case, translated “localized term” will be categorized in
“key” group.

New in version 0.6: You can now give the glossary directive a :sorted: flag that will
automatically sort the entries alphabetically.

Changed in version 1.1: Now supports multiple terms and inline markup in terms.

Changed in version 1.4: Index key for glossary term should be considered experimental.

Grammar production displays

Special markup is available for displaying the productions of a formal grammar.
The markup is simple and does not attempt to model all aspects of BNF (or any
derived forms), but provides enough to allow context-free grammars to be
displayed in a way that causes uses of a symbol to be rendered as hyperlinks to
the definition of the symbol. There is this directive:

	
.. productionlist:: [name]

	This directive is used to enclose a group of productions. Each production is
given on a single line and consists of a name, separated by a colon from the
following definition. If the definition spans multiple lines, each
continuation line must begin with a colon placed at the same column as in the
first line.

The argument to productionlist serves to distinguish different
sets of production lists that belong to different grammars.

Blank lines are not allowed within productionlist directive arguments.

The definition can contain token names which are marked as interpreted text
(e.g. sum ::= `integer` "+" `integer`) – this generates cross-references
to the productions of these tokens. Outside of the production list, you can
reference to token productions using token.

Note that no further reST parsing is done in the production, so that you
don’t have to escape * or | characters.

The following is an example taken from the Python Reference Manual:

.. productionlist::
 try_stmt: try1_stmt | try2_stmt
 try1_stmt: "try" ":" `suite`
 : ("except" [`expression` ["," `target`]] ":" `suite`)+
 : ["else" ":" `suite`]
 : ["finally" ":" `suite`]
 try2_stmt: "try" ":" `suite`
 : "finally" ":" `suite`

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Markup Constructs »

Showing code examples

Examples of Python source code or interactive sessions are represented using
standard reST literal blocks. They are started by a :: at the end of the
preceding paragraph and delimited by indentation.

Representing an interactive session requires including the prompts and output
along with the Python code. No special markup is required for interactive
sessions. After the last line of input or output presented, there should not be
an “unused” primary prompt; this is an example of what not to do:

>>> 1 + 1
2
>>>

Syntax highlighting is done with Pygments [http://pygments.org] and handled
in a smart way:

	There is a “highlighting language” for each source file. Per default, this is
'python' as the majority of files will have to highlight Python snippets,
but the doc-wide default can be set with the highlight_language
config value.

	Within Python highlighting mode, interactive sessions are recognized
automatically and highlighted appropriately. Normal Python code is only
highlighted if it is parseable (so you can use Python as the default, but
interspersed snippets of shell commands or other code blocks will not be
highlighted as Python).

	The highlighting language can be changed using the highlight directive,
used as follows:

	
.. highlight:: language

	Example:

.. highlight:: c

This language is used until the next highlight directive is encountered.

	For documents that have to show snippets in different languages, there’s also
a code-block directive that is given the highlighting language
directly:

	
.. code-block:: language

	Use it like this:

.. code-block:: ruby

 Some Ruby code.

The directive’s alias name sourcecode works as well.

	The valid values for the highlighting language are:

	none (no highlighting)

	python (the default when highlight_language isn’t set)

	guess (let Pygments guess the lexer based on contents, only works with
certain well-recognizable languages)

	rest

	c

	... and any other lexer alias that Pygments supports [http://pygments.org/docs/lexers/].

	If highlighting with the selected language fails (i.e. Pygments emits an
“Error” token), the block is not highlighted in any way.

Line numbers

Pygments can generate line numbers for code blocks. For
automatically-highlighted blocks (those started by ::), line numbers must be
switched on in a highlight directive, with the linenothreshold
option:

.. highlight:: python
 :linenothreshold: 5

This will produce line numbers for all code blocks longer than five lines.

For code-block blocks, a linenos flag option can be given to
switch on line numbers for the individual block:

.. code-block:: ruby
 :linenos:

 Some more Ruby code.

The first line number can be selected with the lineno-start option. If
present, linenos is automatically activated as well.

	10

	Some more Ruby code, with line numbering starting at 10.

Additionally, an emphasize-lines option can be given to have Pygments
emphasize particular lines:

.. code-block:: python
 :emphasize-lines: 3,5

 def some_function():
 interesting = False
 print 'This line is highlighted.'
 print 'This one is not...'
 print '...but this one is.'

Changed in version 1.1: emphasize-lines has been added.

Changed in version 1.3: lineno-start has been added.

Includes

	
.. literalinclude:: filename

	Longer displays of verbatim text may be included by storing the example text
in an external file containing only plain text. The file may be included
using the literalinclude directive. [1] For example, to include the
Python source file example.py, use:

.. literalinclude:: example.py

The file name is usually relative to the current file’s path. However, if it
is absolute (starting with /), it is relative to the top source
directory.

Tabs in the input are expanded if you give a tab-width option with the
desired tab width.

Like code-block, the directive supports the linenos flag
option to switch on line numbers, the lineno-start option to select the
first line number, the emphasize-lines option to emphasize particular
lines, and a language option to select a language different from the
current file’s standard language. Example with options:

.. literalinclude:: example.rb
 :language: ruby
 :emphasize-lines: 12,15-18
 :linenos:

Include files are assumed to be encoded in the source_encoding.
If the file has a different encoding, you can specify it with the
encoding option:

.. literalinclude:: example.py
 :encoding: latin-1

The directive also supports including only parts of the file. If it is a
Python module, you can select a class, function or method to include using
the pyobject option:

.. literalinclude:: example.py
 :pyobject: Timer.start

This would only include the code lines belonging to the start() method in
the Timer class within the file.

Alternately, you can specify exactly which lines to include by giving a
lines option:

.. literalinclude:: example.py
 :lines: 1,3,5-10,20-

This includes the lines 1, 3, 5 to 10 and lines 20 to the last line.

Another way to control which part of the file is included is to use the
start-after and end-before options (or only one of them). If
start-after is given as a string option, only lines that follow the first
line containing that string are included. If end-before is given as a
string option, only lines that precede the first lines containing that string
are included.

When specifying particular parts of a file to display, it can be useful to
display exactly which lines are being presented.
This can be done using the lineno-match option.

You can prepend and/or append a line to the included code, using the
prepend and append option, respectively. This is useful e.g. for
highlighting PHP code that doesn’t include the <?php/?> markers.

If you want to show the diff of the code, you can specify the old
file by giving a diff option:

.. literalinclude:: example.py
 :diff: example.py.orig

This shows the diff between example.py and example.py.orig with unified diff
format.

New in version 0.4.3: The encoding option.

New in version 0.6: The pyobject, lines, start-after and end-before options,
as well as support for absolute filenames.

New in version 1.0: The prepend and append options, as well as tab-width.

New in version 1.3: The diff option.
The lineno-match option.

Caption and name

New in version 1.3.

A caption option can be given to show that name before the code block.
A name option can be provided implicit target name that can be referenced
by using ref.
For example:

.. code-block:: python
 :caption: this.py
 :name: this-py

 print 'Explicit is better than implicit.'

literalinclude also supports the caption and name option.
caption has a additional feature that if you leave the value empty, the shown
filename will be exactly the one given as an argument.

Dedent

New in version 1.3.

A dedent option can be given to strip a precedence characters from the code
block. For example:

.. literalinclude:: example.rb
 :language: ruby
 :dedent: 4
 :lines: 10-15

code-block also supports the dedent option.

Footnotes

	[1]	There is a standard .. include directive, but it raises errors if the
file is not found. This one only emits a warning.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Markup Constructs »

Inline markup

Sphinx uses interpreted text roles to insert semantic markup into documents.
They are written as :rolename:`content`.

Note

The default role (`content`) has no special meaning by default. You are
free to use it for anything you like, e.g. variable names; use the
default_role config value to set it to a known role – the
any role to find anything or the py:obj role to find
Python objects are very useful for this.

See Sphinx Domains for roles added by domains.

Cross-referencing syntax

Cross-references are generated by many semantic interpreted text roles.
Basically, you only need to write :role:`target`, and a link will be created
to the item named target of the type indicated by role. The link’s text
will be the same as target.

There are some additional facilities, however, that make cross-referencing roles
more versatile:

	You may supply an explicit title and reference target, like in reST direct
hyperlinks: :role:`title <target>` will refer to target, but the link
text will be title.

	If you prefix the content with !, no reference/hyperlink will be created.

	If you prefix the content with ~, the link text will only be the last
component of the target. For example, :py:meth:`~Queue.Queue.get` will
refer to Queue.Queue.get but only display get as the link text. This
does not work with all cross-reference roles, but is domain specific.

In HTML output, the link’s title attribute (that is e.g. shown as a
tool-tip on mouse-hover) will always be the full target name.

Cross-referencing anything

	
:any:

	
New in version 1.3.

This convenience role tries to do its best to find a valid target for its
reference text.

	First, it tries standard cross-reference targets that would be referenced
by doc, ref or option.

Custom objects added to the standard domain by extensions (see
add_object_type()) are also searched.

	Then, it looks for objects (targets) in all loaded domains. It is up to
the domains how specific a match must be. For example, in the Python
domain a reference of :any:`Builder` would match the
sphinx.builders.Builder class.

If none or multiple targets are found, a warning will be emitted. In the
case of multiple targets, you can change “any” to a specific role.

This role is a good candidate for setting default_role. If you
do, you can write cross-references without a lot of markup overhead. For
example, in this Python function documentation

.. function:: install()

 This function installs a `handler` for every signal known by the
 `signal` module. See the section `about-signals` for more information.

there could be references to a glossary term (usually :term:`handler`), a
Python module (usually :py:mod:`signal` or :mod:`signal`) and a
section (usually :ref:`about-signals`).

The any role also works together with the
intersphinx extension: when no local cross-reference is
found, all object types of intersphinx inventories are also searched.

Cross-referencing objects

These roles are described with their respective domains:

	Python

	C

	C++

	JavaScript

	ReST

Cross-referencing arbitrary locations

	
:ref:

	To support cross-referencing to arbitrary locations in any document, the
standard reST labels are used. For this to work label names must be unique
throughout the entire documentation. There are two ways in which you can
refer to labels:

	If you place a label directly before a section title, you can reference to
it with :ref:`label-name`. Example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

The :ref: role would then generate a link to the section, with the link
title being “Section to cross-reference”. This works just as well when
section and reference are in different source files.

Automatic labels also work with figures: given

.. _my-figure:

.. figure:: whatever

 Figure caption

a reference :ref:`my-figure` would insert a reference to the figure
with link text “Figure caption”.

The same works for tables that are given an explicit caption using the
table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table] directive.

	Labels that aren’t placed before a section title can still be referenced
to, but you must give the link an explicit title, using this syntax:
:ref:`Link title <label-name>`.

Using ref is advised over standard reStructuredText links to
sections (like `Section title`_) because it works across files, when
section headings are changed, and for all builders that support
cross-references.

Cross-referencing documents

New in version 0.6.

There is also a way to directly link to documents:

	
:doc:

	Link to the specified document; the document name can be specified in
absolute or relative fashion. For example, if the reference
:doc:`parrot` occurs in the document sketches/index, then the link
refers to sketches/parrot. If the reference is :doc:`/people` or
:doc:`../people`, the link refers to people.

If no explicit link text is given (like usual: :doc:`Monty Python members
</people>`), the link caption will be the title of the given document.

Referencing downloadable files

New in version 0.6.

	
:download:

	This role lets you link to files within your source tree that are not reST
documents that can be viewed, but files that can be downloaded.

When you use this role, the referenced file is automatically marked for
inclusion in the output when building (obviously, for HTML output only).
All downloadable files are put into the _downloads subdirectory of the
output directory; duplicate filenames are handled.

An example:

See :download:`this example script <../example.py>`.

The given filename is usually relative to the directory the current source
file is contained in, but if it absolute (starting with /), it is taken
as relative to the top source directory.

The example.py file will be copied to the output directory, and a
suitable link generated to it.

Cross-referencing figures by figure number

New in version 1.3.

	
:numref:

	Link to the specified figures, tables and code-blocks; the standard reST
labels are used. When you use this role, it will insert a reference to the
figure with link text by its figure number like “Fig. 1.1”.

If an explicit link text is given (like usual: :numref:`Image of Sphinx (Fig.
%s) <my-figure>`), the link caption will be the title of the reference.
As a special character, %s will be replaced to figure number.

If numfig is False, figures are not numbered.
so this role inserts not a reference but labels or link text.

Cross-referencing other items of interest

The following roles do possibly create a cross-reference, but do not refer to
objects:

	
:envvar:

	An environment variable. Index entries are generated. Also generates a link
to the matching envvar directive, if it exists.

	
:token:

	The name of a grammar token (used to create links between
productionlist directives).

	
:keyword:

	The name of a keyword in Python. This creates a link to a reference label
with that name, if it exists.

	
:option:

	A command-line option to an executable program. This generates a link to
a option directive, if it exists.

The following role creates a cross-reference to a term in a
glossary:

	
:term:

	Reference to a term in a glossary. A glossary is created using the
glossary directive containing a definition list with terms and
definitions. It does not have to be in the same file as the term markup,
for example the Python docs have one global glossary in the glossary.rst
file.

If you use a term that’s not explained in a glossary, you’ll get a warning
during build.

Other semantic markup

The following roles don’t do anything special except formatting the text
in a different style:

	
:abbr:

	An abbreviation. If the role content contains a parenthesized explanation,
it will be treated specially: it will be shown in a tool-tip in HTML, and
output only once in LaTeX.

Example: :abbr:`LIFO (last-in, first-out)`.

New in version 0.6.

	
:command:

	The name of an OS-level command, such as rm.

	
:dfn:

	Mark the defining instance of a term in the text. (No index entries are
generated.)

	
:file:

	The name of a file or directory. Within the contents, you can use curly
braces to indicate a “variable” part, for example:

... is installed in :file:`/usr/lib/python2.{x}/site-packages` ...

In the built documentation, the x will be displayed differently to
indicate that it is to be replaced by the Python minor version.

	
:guilabel:

	Labels presented as part of an interactive user interface should be marked
using guilabel. This includes labels from text-based interfaces such as
those created using curses or other text-based libraries. Any label
used in the interface should be marked with this role, including button
labels, window titles, field names, menu and menu selection names, and even
values in selection lists.

Changed in version 1.0: An accelerator key for the GUI label can be included using an ampersand;
this will be stripped and displayed underlined in the output (example:
:guilabel:`&Cancel`). To include a literal ampersand, double it.

	
:kbd:

	Mark a sequence of keystrokes. What form the key sequence takes may depend
on platform- or application-specific conventions. When there are no relevant
conventions, the names of modifier keys should be spelled out, to improve
accessibility for new users and non-native speakers. For example, an
xemacs key sequence may be marked like :kbd:`C-x C-f`, but without
reference to a specific application or platform, the same sequence should be
marked as :kbd:`Control-x Control-f`.

	
:mailheader:

	The name of an RFC 822-style mail header. This markup does not imply that
the header is being used in an email message, but can be used to refer to any
header of the same “style.” This is also used for headers defined by the
various MIME specifications. The header name should be entered in the same
way it would normally be found in practice, with the camel-casing conventions
being preferred where there is more than one common usage. For example:
:mailheader:`Content-Type`.

	
:makevar:

	The name of a make variable.

	
:manpage:

	A reference to a Unix manual page including the section,
e.g. :manpage:`ls(1)`.

	
:menuselection:

	Menu selections should be marked using the menuselection role. This is
used to mark a complete sequence of menu selections, including selecting
submenus and choosing a specific operation, or any subsequence of such a
sequence. The names of individual selections should be separated by
-->.

For example, to mark the selection “Start > Programs”, use this markup:

:menuselection:`Start --> Programs`

When including a selection that includes some trailing indicator, such as the
ellipsis some operating systems use to indicate that the command opens a
dialog, the indicator should be omitted from the selection name.

menuselection also supports ampersand accelerators just like
guilabel.

	
:mimetype:

	The name of a MIME type, or a component of a MIME type (the major or minor
portion, taken alone).

	
:newsgroup:

	The name of a Usenet newsgroup.

	
:program:

	The name of an executable program. This may differ from the file name for
the executable for some platforms. In particular, the .exe (or other)
extension should be omitted for Windows programs.

	
:regexp:

	A regular expression. Quotes should not be included.

	
:samp:

	A piece of literal text, such as code. Within the contents, you can use
curly braces to indicate a “variable” part, as in file. For
example, in :samp:`print 1+{variable}`, the part variable would be
emphasized.

If you don’t need the “variable part” indication, use the standard
``code`` instead.

There is also an index role to generate index entries.

The following roles generate external links:

	
:pep:

	A reference to a Python Enhancement Proposal. This generates appropriate
index entries. The text “PEP number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified PEP. You can
link to a specific section by saying :pep:`number#anchor`.

	
:rfc:

	A reference to an Internet Request for Comments. This generates appropriate
index entries. The text “RFC number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified RFC. You can
link to a specific section by saying :rfc:`number#anchor`.

Note that there are no special roles for including hyperlinks as you can use
the standard reST markup for that purpose.

Substitutions

The documentation system provides three substitutions that are defined by
default. They are set in the build configuration file.

	
|release|

	Replaced by the project release the documentation refers to. This is meant
to be the full version string including alpha/beta/release candidate tags,
e.g. 2.5.2b3. Set by release.

	
|version|

	Replaced by the project version the documentation refers to. This is meant to
consist only of the major and minor version parts, e.g. 2.5, even for
version 2.5.1. Set by version.

	
|today|

	Replaced by either today’s date (the date on which the document is read), or
the date set in the build configuration file. Normally has the format
April 14, 2007. Set by today_fmt and today.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Markup Constructs »

Miscellaneous markup

File-wide metadata

reST has the concept of “field lists”; these are a sequence of fields marked up
like this:

:fieldname: Field content

A field list near the top of a file is parsed by docutils as the “docinfo”
which is normally used to record the author, date of publication and other
metadata. In Sphinx, a field list preceding any other markup is moved from
the docinfo to the Sphinx environment as document metadata and is not displayed
in the output; a field list appearing after the document title will be part of
the docinfo as normal and will be displayed in the output.

At the moment, these metadata fields are recognized:

	tocdepth

	The maximum depth for a table of contents of this file.

New in version 0.4.

	nocomments

	If set, the web application won’t display a comment form for a page generated
from this source file.

	orphan

	If set, warnings about this file not being included in any toctree will be
suppressed.

New in version 1.0.

Meta-information markup

	
.. sectionauthor:: name <email>

	Identifies the author of the current section. The argument should include
the author’s name such that it can be used for presentation and email
address. The domain name portion of the address should be lower case.
Example:

.. sectionauthor:: Guido van Rossum <guido@python.org>

By default, this markup isn’t reflected in the output in any way (it helps
keep track of contributions), but you can set the configuration value
show_authors to True to make them produce a paragraph in the
output.

	
.. codeauthor:: name <email>

	The codeauthor directive, which can appear multiple times, names
the authors of the described code, just like sectionauthor names
the author(s) of a piece of documentation. It too only produces output if
the show_authors configuration value is True.

Index-generating markup

Sphinx automatically creates index entries from all object descriptions (like
functions, classes or attributes) like discussed in Sphinx Domains.

However, there is also explicit markup available, to make the index more
comprehensive and enable index entries in documents where information is not
mainly contained in information units, such as the language reference.

	
.. index:: <entries>

	This directive contains one or more index entries. Each entry consists of a
type and a value, separated by a colon.

For example:

.. index::
 single: execution; context
 module: __main__
 module: sys
 triple: module; search; path

The execution context

...

This directive contains five entries, which will be converted to entries in
the generated index which link to the exact location of the index statement
(or, in case of offline media, the corresponding page number).

Since index directives generate cross-reference targets at their location in
the source, it makes sense to put them before the thing they refer to –
e.g. a heading, as in the example above.

The possible entry types are:

	single

	Creates a single index entry. Can be made a subentry by separating the
subentry text with a semicolon (this notation is also used below to
describe what entries are created).

	pair

	pair: loop; statement is a shortcut that creates two index entries,
namely loop; statement and statement; loop.

	triple

	Likewise, triple: module; search; path is a shortcut that creates
three index entries, which are module; search path, search; path,
module and path; module search.

	see

	see: entry; other creates an index entry that refers from entry to
other.

	seealso

	Like see, but inserts “see also” instead of “see”.

	module, keyword, operator, object, exception, statement, builtin

	These all create two index entries. For example, module: hashlib
creates the entries module; hashlib and hashlib; module. (These
are Python-specific and therefore deprecated.)

You can mark up “main” index entries by prefixing them with an exclamation
mark. The references to “main” entries are emphasized in the generated
index. For example, if two pages contain

.. index:: Python

and one page contains

.. index:: ! Python

then the backlink to the latter page is emphasized among the three backlinks.

For index directives containing only “single” entries, there is a shorthand
notation:

.. index:: BNF, grammar, syntax, notation

This creates four index entries.

Changed in version 1.1: Added see and seealso types, as well as marking main entries.

	
:index:

	While the index directive is a block-level markup and links to the
beginning of the next paragraph, there is also a corresponding role that sets
the link target directly where it is used.

The content of the role can be a simple phrase, which is then kept in the
text and used as an index entry. It can also be a combination of text and
index entry, styled like with explicit targets of cross-references. In that
case, the “target” part can be a full entry as described for the directive
above. For example:

This is a normal reST :index:`paragraph` that contains several
:index:`index entries <pair: index; entry>`.

New in version 1.1.

Including content based on tags

	
.. only:: <expression>

	Include the content of the directive only if the expression is true. The
expression should consist of tags, like this:

.. only:: html and draft

Undefined tags are false, defined tags (via the -t command-line option or
within conf.py, see here) are true. Boolean
expressions, also using parentheses (like html and (latex or draft)) are
supported.

The format and the name of the current builder (html, latex or
text) are always set as a tag [1]. To make the distinction between
format and name explicit, they are also added with the prefix format_ and
builder_, e.g. the epub builder defines the tags html, epub,
format_html and builder_epub.

These standard tags are set after the configuration file is read, so they
are not available there.

All tags must follow the standard Python identifier syntax as set out in
the Identifiers and keywords [https://docs.python.org/2/reference/lexical_analysis.html#identifiers]
documentation. That is, a tag expression may only consist of tags that
conform to the syntax of Python variables. In ASCII, this consists of the
uppercase and lowercase letters A through Z, the underscore _
and, except for the first character, the digits 0 through 9.

New in version 0.6.

Changed in version 1.2: Added the name of the builder and the prefixes.

Tables

Use standard reStructuredText tables. They work fine in
HTML output, however there are some gotchas when using tables in LaTeX: the
column width is hard to determine correctly automatically. For this reason, the
following directive exists:

	
.. tabularcolumns:: column spec

	This directive gives a “column spec” for the next table occurring in the
source file. The spec is the second argument to the LaTeX tabulary
package’s environment (which Sphinx uses to translate tables). It can have
values like

|l|l|l|

which means three left-adjusted, nonbreaking columns. For columns with
longer text that should automatically be broken, use either the standard
p{width} construct, or tabulary’s automatic specifiers:

	L
	flush left column with automatic width

	R
	flush right column with automatic width

	C
	centered column with automatic width

	J
	justified column with automatic width

The automatic width is determined by rendering the content in the table, and
scaling them according to their share of the total width.

By default, Sphinx uses a table layout with L for every column.

New in version 0.3.

Warning

Tables that contain list-like elements such as object descriptions,
blockquotes or any kind of lists cannot be set out of the box with
tabulary. They are therefore set with the standard LaTeX tabular
environment if you don’t give a tabularcolumns directive. If you do, the
table will be set with tabulary, but you must use the p{width}
construct for the columns that contain these elements.

Literal blocks do not work with tabulary at all, so tables containing a
literal block are always set with tabular. Also, the verbatim
environment used for literal blocks only works in p{width} columns, which
means that by default, Sphinx generates such column specs for such tables.
Use the tabularcolumns directive to get finer control over such
tables.

Footnotes

	[1]	For most builders name and format are the same. At the moment only
builders derived from the html builder distinguish between the builder
format and the builder name.

Note that the current builder tag is not available in conf.py, it is
only available after the builder is initialized.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Sphinx Domains

New in version 1.0.

What is a Domain?

Originally, Sphinx was conceived for a single project, the documentation of the
Python language. Shortly afterwards, it was made available for everyone as a
documentation tool, but the documentation of Python modules remained deeply
built in – the most fundamental directives, like function, were designed
for Python objects. Since Sphinx has become somewhat popular, interest
developed in using it for many different purposes: C/C++ projects, JavaScript,
or even reStructuredText markup (like in this documentation).

While this was always possible, it is now much easier to easily support
documentation of projects using different programming languages or even ones not
supported by the main Sphinx distribution, by providing a domain for every
such purpose.

A domain is a collection of markup (reStructuredText directives and
roles) to describe and link to objects belonging together,
e.g. elements of a programming language. Directive and role names in a domain
have names like domain:name, e.g. py:function. Domains can also provide
custom indices (like the Python Module Index).

Having domains means that there are no naming problems when one set of
documentation wants to refer to e.g. C++ and Python classes. It also means that
extensions that support the documentation of whole new languages are much easier
to write.

This section describes what the domains that come with Sphinx provide. The
domain API is documented as well, in the section Domain API.

Basic Markup

Most domains provide a number of object description directives, used to
describe specific objects provided by modules. Each directive requires one or
more signatures to provide basic information about what is being described, and
the content should be the description. The basic version makes entries in the
general index; if no index entry is desired, you can give the directive option
flag :noindex:. An example using a Python domain directive:

.. py:function:: spam(eggs)
 ham(eggs)

 Spam or ham the foo.

This describes the two Python functions spam and ham. (Note that when
signatures become too long, you can break them if you add a backslash to lines
that are continued in the next line. Example:

.. py:function:: filterwarnings(action, message='', category=Warning, \
 module='', lineno=0, append=False)
 :noindex:

(This example also shows how to use the :noindex: flag.)

The domains also provide roles that link back to these object descriptions. For
example, to link to one of the functions described in the example above, you
could say

The function :py:func:`spam` does a similar thing.

As you can see, both directive and role names contain the domain name and the
directive name.

Default Domain

To avoid having to writing the domain name all the time when you e.g. only
describe Python objects, a default domain can be selected with either the config
value primary_domain or this directive:

	
.. default-domain:: name

	Select a new default domain. While the primary_domain selects a
global default, this only has an effect within the same file.

If no other default is selected, the Python domain (named py) is the default
one, mostly for compatibility with documentation written for older versions of
Sphinx.

Directives and roles that belong to the default domain can be mentioned without
giving the domain name, i.e.

.. function:: pyfunc()

 Describes a Python function.

Reference to :func:`pyfunc`.

Cross-referencing syntax

For cross-reference roles provided by domains, the same facilities exist as for
general cross-references. See Cross-referencing syntax.

In short:

	You may supply an explicit title and reference target: :role:`title
<target>` will refer to target, but the link text will be title.

	If you prefix the content with !, no reference/hyperlink will be created.

	If you prefix the content with ~, the link text will only be the last
component of the target. For example, :py:meth:`~Queue.Queue.get` will
refer to Queue.Queue.get but only display get as the link text.

The Python Domain

The Python domain (name py) provides the following directives for module
declarations:

	
.. py:module:: name

	This directive marks the beginning of the description of a module (or package
submodule, in which case the name should be fully qualified, including the
package name). It does not create content (like e.g. py:class
does).

This directive will also cause an entry in the global module index.

The platform option, if present, is a comma-separated list of the
platforms on which the module is available (if it is available on all
platforms, the option should be omitted). The keys are short identifiers;
examples that are in use include “IRIX”, “Mac”, “Windows”, and “Unix”. It is
important to use a key which has already been used when applicable.

The synopsis option should consist of one sentence describing the
module’s purpose – it is currently only used in the Global Module Index.

The deprecated option can be given (with no value) to mark a module as
deprecated; it will be designated as such in various locations then.

	
.. py:currentmodule:: name

	This directive tells Sphinx that the classes, functions etc. documented from
here are in the given module (like py:module), but it will not
create index entries, an entry in the Global Module Index, or a link target
for py:mod. This is helpful in situations where documentation
for things in a module is spread over multiple files or sections – one
location has the py:module directive, the others only
py:currentmodule.

The following directives are provided for module and class contents:

	
.. py:function:: name(parameters)

	Describes a module-level function. The signature should include the
parameters as given in the Python function definition, see Python Signatures.
For example:

.. py:function:: Timer.repeat(repeat=3, number=1000000)

For methods you should use py:method.

The description normally includes information about the parameters required
and how they are used (especially whether mutable objects passed as
parameters are modified), side effects, and possible exceptions.

This information can (in any py directive) optionally be given in a
structured form, see Info field lists.

	
.. py:data:: name

	Describes global data in a module, including both variables and values used
as “defined constants.” Class and object attributes are not documented
using this environment.

	
.. py:exception:: name

	Describes an exception class. The signature can, but need not include
parentheses with constructor arguments.

	
.. py:class:: name

	
.. py:class:: name(parameters)

	Describes a class. The signature can optionally include parentheses with
parameters which will be shown as the constructor arguments. See also
Python Signatures.

Methods and attributes belonging to the class should be placed in this
directive’s body. If they are placed outside, the supplied name should
contain the class name so that cross-references still work. Example:

.. py:class:: Foo

 .. py:method:: quux()

-- or --

.. py:class:: Bar

.. py:method:: Bar.quux()

The first way is the preferred one.

	
.. py:attribute:: name

	Describes an object data attribute. The description should include
information about the type of the data to be expected and whether it may be
changed directly.

	
.. py:method:: name(parameters)

	Describes an object method. The parameters should not include the self
parameter. The description should include similar information to that
described for function. See also Python Signatures and
Info field lists.

	
.. py:staticmethod:: name(parameters)

	Like py:method, but indicates that the method is a static method.

New in version 0.4.

	
.. py:classmethod:: name(parameters)

	Like py:method, but indicates that the method is a class method.

New in version 0.6.

	
.. py:decorator:: name

	
.. py:decorator:: name(parameters)

	Describes a decorator function. The signature should represent the usage as
a decorator. For example, given the functions

def removename(func):
 func.__name__ = ''
 return func

def setnewname(name):
 def decorator(func):
 func.__name__ = name
 return func
 return decorator

the descriptions should look like this:

.. py:decorator:: removename

 Remove name of the decorated function.

.. py:decorator:: setnewname(name)

 Set name of the decorated function to *name*.

(as opposed to .. py:decorator:: removename(func).)

There is no py:deco role to link to a decorator that is marked up with
this directive; rather, use the py:func role.

	
.. py:decoratormethod:: name

	
.. py:decoratormethod:: name(signature)

	Same as py:decorator, but for decorators that are methods.

Refer to a decorator method using the py:meth role.

Python Signatures

Signatures of functions, methods and class constructors can be given like they
would be written in Python.

Default values for optional arguments can be given (but if they contain commas,
they will confuse the signature parser). Python 3-style argument annotations
can also be given as well as return type annotations:

.. py:function:: compile(source : string, filename, symbol='file') -> ast object

For functions with optional parameters that don’t have default values (typically
functions implemented in C extension modules without keyword argument support),
you can use brackets to specify the optional parts:

	
compile(source[, filename[, symbol]])

	

It is customary to put the opening bracket before the comma.

Info field lists

New in version 0.4.

Inside Python object description directives, reST field lists with these fields
are recognized and formatted nicely:

	param, parameter, arg, argument, key, keyword:
Description of a parameter.

	type: Type of a parameter. Creates a link if possible.

	raises, raise, except, exception: That (and when) a specific
exception is raised.

	var, ivar, cvar: Description of a variable.

	vartype: Type of a variable. Creates a link if possible.

	returns, return: Description of the return value.

	rtype: Return type. Creates a link if possible.

The field names must consist of one of these keywords and an argument (except
for returns and rtype, which do not need an argument). This is best
explained by an example:

.. py:function:: send_message(sender, recipient, message_body, [priority=1])

 Send a message to a recipient

 :param str sender: The person sending the message
 :param str recipient: The recipient of the message
 :param str message_body: The body of the message
 :param priority: The priority of the message, can be a number 1-5
 :type priority: integer or None
 :return: the message id
 :rtype: int
 :raises ValueError: if the message_body exceeds 160 characters
 :raises TypeError: if the message_body is not a basestring

This will render like this:

	
send_message(sender, recipient, message_body[, priority=1])

	Send a message to a recipient

	Parameters:	
	sender (str) – The person sending the message

	recipient (str) – The recipient of the message

	message_body (str) – The body of the message

	priority (integer or None) – The priority of the message, can be a number 1-5

	Returns:	the message id

	Return type:	int

	Raises:	
	ValueError – if the message_body exceeds 160 characters

	TypeError – if the message_body is not a basestring

It is also possible to combine parameter type and description, if the type is a
single word, like this:

:param int priority: The priority of the message, can be a number 1-5

Cross-referencing Python objects

The following roles refer to objects in modules and are possibly hyperlinked if
a matching identifier is found:

	
:py:mod:

	Reference a module; a dotted name may be used. This should also be used for
package names.

	
:py:func:

	Reference a Python function; dotted names may be used. The role text needs
not include trailing parentheses to enhance readability; they will be added
automatically by Sphinx if the add_function_parentheses config
value is True (the default).

	
:py:data:

	Reference a module-level variable.

	
:py:const:

	Reference a “defined” constant. This may be a Python variable that is not
intended to be changed.

	
:py:class:

	Reference a class; a dotted name may be used.

	
:py:meth:

	Reference a method of an object. The role text can include the type name and
the method name; if it occurs within the description of a type, the type name
can be omitted. A dotted name may be used.

	
:py:attr:

	Reference a data attribute of an object.

	
:py:exc:

	Reference an exception. A dotted name may be used.

	
:py:obj:

	Reference an object of unspecified type. Useful e.g. as the
default_role.

New in version 0.4.

The name enclosed in this markup can include a module name and/or a class name.
For example, :py:func:`filter` could refer to a function named filter in
the current module, or the built-in function of that name. In contrast,
:py:func:`foo.filter` clearly refers to the filter function in the
foo module.

Normally, names in these roles are searched first without any further
qualification, then with the current module name prepended, then with the
current module and class name (if any) prepended. If you prefix the name with a
dot, this order is reversed. For example, in the documentation of Python’s
codecs module, :py:func:`open` always refers to the built-in
function, while :py:func:`.open` refers to codecs.open().

A similar heuristic is used to determine whether the name is an attribute of the
currently documented class.

Also, if the name is prefixed with a dot, and no exact match is found, the
target is taken as a suffix and all object names with that suffix are
searched. For example, :py:meth:`.TarFile.close` references the
tarfile.TarFile.close() function, even if the current module is not
tarfile. Since this can get ambiguous, if there is more than one possible
match, you will get a warning from Sphinx.

Note that you can combine the ~ and . prefixes:
:py:meth:`~.TarFile.close` will reference the tarfile.TarFile.close()
method, but the visible link caption will only be close().

The C Domain

The C domain (name c) is suited for documentation of C API.

	
.. c:function:: type name(signature)

	Describes a C function. The signature should be given as in C, e.g.:

.. c:function:: PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

This is also used to describe function-like preprocessor macros. The names
of the arguments should be given so they may be used in the description.

Note that you don’t have to backslash-escape asterisks in the signature, as
it is not parsed by the reST inliner.

	
.. c:member:: type name

	Describes a C struct member. Example signature:

.. c:member:: PyObject* PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how
the value should be interpreted, and whether the value can be changed.
References to structure members in text should use the member role.

	
.. c:macro:: name

	Describes a “simple” C macro. Simple macros are macros which are used for
code expansion, but which do not take arguments so cannot be described as
functions. This is a simple C-language #define. Examples of its use in
the Python documentation include PyObject_HEAD and
Py_BEGIN_ALLOW_THREADS.

	
.. c:type:: name

	Describes a C type (whether defined by a typedef or struct). The signature
should just be the type name.

	
.. c:var:: type name

	Describes a global C variable. The signature should include the type, such
as:

.. c:var:: PyObject* PyClass_Type

Cross-referencing C constructs

The following roles create cross-references to C-language constructs if they are
defined in the documentation:

	
:c:data:

	Reference a C-language variable.

	
:c:func:

	Reference a C-language function. Should include trailing parentheses.

	
:c:macro:

	Reference a “simple” C macro, as defined above.

	
:c:type:

	Reference a C-language type.

The C++ Domain

The C++ domain (name cpp) supports documenting C++ projects.

The following directives are available. All declarations can start with
a visibility statement (public, private or protected).

	
.. cpp:class:: class specifier

	Describe a class/struct, possibly with specification of inheritance, e.g.,:

.. cpp:class:: MyClass : public MyBase, MyOtherBase

The class can be directly declared inside a nested scope, e.g.,:

.. cpp:class:: OuterScope::MyClass : public MyBase, MyOtherBase

A template class can be declared:

.. cpp:class:: template<typename T, std::size_t N> std::array

or with a line break:

.. cpp:class:: template<typename T, std::size_t N> \
 std::array

Full and partial template specialisations can be declared:

.. cpp::class:: template<> \
 std::array<bool, 256>

.. cpp::class:: template<typename T> \
 std::array<T, 42>

	
.. cpp:function:: (member) function prototype

	Describe a function or member function, e.g.,:

.. cpp:function:: bool myMethod(int arg1, std::string arg2)

 A function with parameters and types.

.. cpp:function:: bool myMethod(int, double)

 A function with unnamed parameters.

.. cpp:function:: const T &MyClass::operator[](std::size_t i) const

 An overload for the indexing operator.

.. cpp:function:: operator bool() const

 A casting operator.

.. cpp:function:: constexpr void foo(std::string &bar[2]) noexcept

 A constexpr function.

.. cpp:function:: MyClass::MyClass(const MyClass&) = default

 A copy constructor with default implementation.

Function templates can also be described:

.. cpp:function:: template<typename U> \
 void print(U &&u)

and function template specialisations:

.. cpp:function:: template<> \
 void print(int i)

	
.. cpp:member:: (member) variable declaration

	
.. cpp:var:: (member) variable declaration

	Describe a variable or member variable, e.g.,:

.. cpp:member:: std::string MyClass::myMember

.. cpp:var:: std::string MyClass::myOtherMember[N][M]

.. cpp:member:: int a = 42

Variable templates can also be described:

.. cpp:member:: template<class T> \
 constexpr T pi = T(3.1415926535897932385)

	
.. cpp:type:: typedef declaration

	
.. cpp:type:: name

	
.. cpp:type:: type alias declaration

	Describe a type as in a typedef declaration, a type alias declaration,
or simply the name of a type with unspecified type, e.g.,:

.. cpp:type:: std::vector<int> MyList

 A typedef-like declaration of a type.

.. cpp:type:: MyContainer::const_iterator

 Declaration of a type alias with unspecified type.

.. cpp:type:: MyType = std::unordered_map<int, std::string>

 Declaration of a type alias.

A type alias can also be templated:

.. cpp:type:: template<typename T> \
 MyContainer = std::vector<T>

The example are rendered as follows.

	
typedef std::vector<int> MyList

	A typedef-like declaration of a type.

	
type MyContainer::const_iterator

	Declaration of a type alias with unspecified type.

	
using MyType = std::unordered_map<int, std::string>

	Declaration of a type alias.

	
template<typename T>

	
using MyContainer = std::vector<T>

	

	
.. cpp:enum:: unscoped enum declaration

	
.. cpp:enum-struct:: scoped enum declaration

	
.. cpp:enum-class:: scoped enum declaration

	Describe a (scoped) enum, possibly with the underlying type specified.
Any enumerators declared inside an unscoped enum will be declared both in the enum scope
and in the parent scope.
Examples:

.. cpp:enum:: MyEnum

 An unscoped enum.

.. cpp:enum:: MySpecificEnum : long

 An unscoped enum with specified underlying type.

.. cpp:enum-class:: MyScopedEnum

 A scoped enum.

.. cpp:enum-struct:: protected MyScopedVisibilityEnum : std::underlying_type<MySpecificEnum>::type

 A scoped enum with non-default visibility, and with a specified underlying type.

	
.. cpp:enumerator:: name

	
.. cpp:enumerator:: name = constant

	Describe an enumerator, optionally with its value defined, e.g.,:

.. cpp::enumerator:: MyEnum::myEnumerator

.. cpp::enumerator:: MyEnum::myOtherEnumerator = 42

Namespacing

Declarations in the C++ domain are as default placed in global scope.
The current scope can be changed using three namespace directives.
They manage a stack declarations where cpp:namespace resets the stack and
changes a given scope.
The cpp:namespace-push directive changes the scope to a given inner scope
of the current one.
The cpp:namespace-pop directive undos the most recent cpp:namespace-push
directive.

	
.. cpp:namespace:: scope specification

	Changes the current scope for the subsequent objects to the given scope,
and resets the namespace directive stack.
Note that the namespace does not need to correspond to C++ namespaces,
but can end in names of classes, e.g.,:

.. cpp:namespace:: Namespace1::Namespace2::SomeClass::AnInnerClass

All subsequent objects will be defined as if their name were declared with the scope
prepended. The subsequent cross-references will be searched for starting in the current scope.

Using NULL, 0, or nullptr as the scope will change to global scope.

A namespace declaration can also be templated, e.g.,:

.. cpp:class:: template<typename T> \
 std::vector

.. cpp:namespace:: template<typename T> std::vector

.. cpp:function:: std::size_t size() const

declares size as a member function of the template class std::vector.
Equivalently this could have been declared using:

.. cpp:class:: template<typename T> \
 std::vector

 .. cpp:function:: std::size_t size() const

or::

.. cpp:class:: template<typename T> \
 std::vector

	
.. cpp:namespace-push:: scope specification

	Change the scope relatively to the current scope. For example, after:

.. cpp:namespace:: A::B

.. cpp:namespace-push:: C::D

the current scope will be A::B::C::D.

	
.. cpp:namespace-pop::

	Undo the previous cpp:namespace-push directive (not just pop a scope).
For example, after:

.. cpp:namespace:: A::B

.. cpp:namespace-push:: C::D

.. cpp:namespace-pop::

the current scope will be A::B (not A::B::C).

If no previous cpp:namespace-push directive has been used, but only a cpp:namespace
directive, then the current scope will be reset to global scope.
That is, .. cpp:namespace:: A::B is equivalent to:

.. cpp:namespace:: nullptr

.. cpp:namespace-push:: A::B

Info field lists

The C++ directives support the following info fields (see also Info field lists):

	param, parameter, arg, argument: Description of a parameter.

	tparam: Description of a template parameter.

	returns, return: Description of a return value.

	throws, throw, exception: Description of a possibly thrown exception.

Cross-referencing

These roles link to the given declaration types:

	
:cpp:any:

	
:cpp:class:

	
:cpp:func:

	
:cpp:member:

	
:cpp:var:

	
:cpp:type:

	
:cpp:enum:

	
:cpp:enumerator:

	Reference a C++ declaration by name (see below for details).
The name must be properly qualified relative to the position of the link.

Note on References with Templates Parameters/Arguments

Sphinx’s syntax to give references a custom title can interfere with
linking to template classes, if nothing follows the closing angle
bracket, i.e. if the link looks like this: :cpp:class:`MyClass<int>`.
This is interpreted as a link to int with a title of MyClass.
In this case, please escape the opening angle bracket with a backslash,
like this: :cpp:class:`MyClass\<int>`.

Note on References to Overloaded Functions

It is currently impossible to link to a specific version of an
overloaded method. Currently the C++ domain is the first domain
that has basic support for overloaded methods and until there is more
data for comparison we don’t want to select a bad syntax to reference a
specific overload. Currently Sphinx will link to the first overloaded
version of the method / function.

Declarations without template parameters and template arguments

For linking to non-templated declarations the name must be a nested name,
e.g., f or MyClass::f.

Templated declarations

Assume the following declarations.

	
class Wrapper

	

	
template<typename TOuter>

	
class Outer

	

	
template<typename TInner>

	
class Inner

	

In general the reference must include the template paraemter declarations, e.g.,
template\<typename TOuter> Wrapper::Outer (template<typename TOuter> Wrapper::Outer).
Currently the lookup only succeed if the template parameter identifiers are equal strings. That is,
template\<typename UOuter> Wrapper::Outer will not work.

The inner template class can not be directly referenced, unless the current namespace
is changed or the following shorthand is used.
If a template parameter list is omitted, then the lookup will assume either a template or a non-template,
but not a partial template specialisation.
This means the following references work.

	Wrapper::Outer (Wrapper::Outer)

	Wrapper::Outer::Inner (Wrapper::Outer::Inner)

	template\<typename TInner> Wrapper::Outer::Inner (template<typename TInner> Wrapper::Outer::Inner)

(Full) Template Specialisations

Assume the following declarations.

	
template<typename TOuter>

	
class Outer

	

	
template<typename TInner>

	
class Inner

	

	
template<>

	
class Outer<int>

	

	
template<typename TInner>

	
class Inner

	

	
template<>

	
class Inner<bool>

	

In general the reference must include a template parameter list for each template argument list.
The full specialisation above can therefore be referenced with template\<> Outer\<int> (template<> Outer<int>)
and template\<> template\<> Outer\<int>::Inner\<bool> (template<> template<> Outer<int>::Inner<bool>).
As a shorthand the empty template parameter list can be omitted, e.g., Outer\<int> (Outer<int>)
and Outer\<int>::Inner\<bool> (Outer<int>::Inner<bool>).

Partial Template Specialisations

Assume the following declaration.

	
template<typename T>

	
class Outer<T *>

	

References to partial specialisations must always include the template parameter lists, e.g.,
template\<typename T> Outer\<T*> (template<typename T> Outer<T*>).
Currently the lookup only succeed if the template parameter identifiers are equal strings.

The Standard Domain

The so-called “standard” domain collects all markup that doesn’t warrant a
domain of its own. Its directives and roles are not prefixed with a domain
name.

The standard domain is also where custom object descriptions, added using the
add_object_type() API, are placed.

There is a set of directives allowing documenting command-line programs:

	
.. option:: name args, name args, ...

	Describes a command line argument or switch. Option argument names should be
enclosed in angle brackets. Examples:

.. option:: dest_dir

 Destination directory.

.. option:: -m <module>, --module <module>

 Run a module as a script.

The directive will create cross-reference targets for the given options,
referencable by option (in the example case, you’d use something
like :option:`dest_dir`, :option:`-m`, or :option:`--module`).

cmdoption directive is a deprecated alias for the option directive.

	
.. envvar:: name

	Describes an environment variable that the documented code or program uses or
defines. Referencable by envvar.

	
.. program:: name

	Like py:currentmodule, this directive produces no output.
Instead, it serves to notify Sphinx that all following option
directives document options for the program called name.

If you use program, you have to qualify the references in your
option roles by the program name, so if you have the following
situation

.. program:: rm

.. option:: -r

 Work recursively.

.. program:: svn

.. option:: -r revision

 Specify the revision to work upon.

then :option:`rm -r` would refer to the first option, while
:option:`svn -r` would refer to the second one.

The program name may contain spaces (in case you want to document subcommands
like svn add and svn commit separately).

New in version 0.5.

There is also a very generic object description directive, which is not tied to
any domain:

	
.. describe:: text

	
.. object:: text

	This directive produces the same formatting as the specific ones provided by
domains, but does not create index entries or cross-referencing targets.
Example:

.. describe:: PAPER

 You can set this variable to select a paper size.

The JavaScript Domain

The JavaScript domain (name js) provides the following directives:

	
.. js:function:: name(signature)

	Describes a JavaScript function or method. If you want to describe
arguments as optional use square brackets as documented for Python signatures.

You can use fields to give more details about arguments and their expected
types, errors which may be thrown by the function, and the value being
returned:

.. js:function:: $.getJSON(href, callback[, errback])

 :param string href: An URI to the location of the resource.
 :param callback: Gets called with the object.
 :param errback:
 Gets called in case the request fails. And a lot of other
 text so we need multiple lines.
 :throws SomeError: For whatever reason in that case.
 :returns: Something.

This is rendered as:

	
$.getJSON(href, callback[, errback])

	

	Arguments:	
	href (string) – An URI to the location of the resource.

	callback – Gets called with the object.

	errback – Gets called in case the request fails. And a lot of other
text so we need multiple lines.

	Throws:	SomeError – For whatever reason in that case.

	Returns:	Something.

	
.. js:class:: name

	Describes a constructor that creates an object. This is basically like
a function but will show up with a class prefix:

.. js:class:: MyAnimal(name[, age])

 :param string name: The name of the animal
 :param number age: an optional age for the animal

This is rendered as:

	
class MyAnimal(name[, age])

	

	Arguments:	
	name (string) – The name of the animal

	age (number) – an optional age for the animal

	
.. js:data:: name

	Describes a global variable or constant.

	
.. js:attribute:: object.name

	Describes the attribute name of object.

These roles are provided to refer to the described objects:

	
:js:func:

	
:js:class:

	
:js:data:

	
:js:attr:

	

The reStructuredText domain

The reStructuredText domain (name rst) provides the following directives:

	
.. rst:directive:: name

	Describes a reST directive. The name can be a single directive name or
actual directive syntax (.. prefix and :: suffix) with arguments that
will be rendered differently. For example:

.. rst:directive:: foo

 Foo description.

.. rst:directive:: .. bar:: baz

 Bar description.

will be rendered as:

	
.. foo::

	Foo description.

	
.. bar:: baz

	Bar description.

	
.. rst:role:: name

	Describes a reST role. For example:

.. rst:role:: foo

 Foo description.

will be rendered as:

	
:foo:

	Foo description.

These roles are provided to refer to the described objects:

	
:rst:dir:

	
:rst:role:

	

More domains

The sphinx-contrib [https://bitbucket.org/birkenfeld/sphinx-contrib/] repository contains more domains available as extensions;
currently Ada [https://pypi.python.org/pypi/sphinxcontrib-adadomain], CoffeeScript [https://pypi.python.org/pypi/sphinxcontrib-coffee], Erlang [https://pypi.python.org/pypi/sphinxcontrib-erlangdomain], HTTP [https://pypi.python.org/pypi/sphinxcontrib-httpdomain], Lasso [https://pypi.python.org/pypi/sphinxcontrib-lassodomain], MATLAB [https://pypi.python.org/pypi/sphinxcontrib-matlabdomain], PHP [https://pypi.python.org/pypi/sphinxcontrib-phpdomain], and Ruby [https://bitbucket.org/birkenfeld/sphinx-contrib/src/default/rubydomain]
domains. Also available are domains for Chapel [https://pypi.python.org/pypi/sphinxcontrib-chapeldomain], Common Lisp [https://pypi.python.org/pypi/sphinxcontrib-cldomain], dqn [https://pypi.python.org/pypi/sphinxcontrib-dqndomain], Go [https://pypi.python.org/pypi/sphinxcontrib-golangdomain],
Jinja [https://pypi.python.org/pypi/sphinxcontrib-jinjadomain], Operation [https://pypi.python.org/pypi/sphinxcontrib-operationdomain], and Scala [https://pypi.python.org/pypi/sphinxcontrib-scaladomain].

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Available builders

These are the built-in Sphinx builders. More builders can be added by
extensions.

The builder’s “name” must be given to the -b command-line option of
sphinx-build to select a builder.

	
class sphinx.builders.html.StandaloneHTMLBuilder[source]

	This is the standard HTML builder. Its output is a directory with HTML
files, complete with style sheets and optionally the reST sources. There are
quite a few configuration values that customize the output of this builder,
see the chapter Options for HTML output for details.

	
name = 'html'

	

	
format = 'html'

	

	
supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

	

	
class sphinx.builders.html.DirectoryHTMLBuilder[source]

	This is a subclass of the standard HTML builder. Its output is a directory
with HTML files, where each file is called index.html and placed in a
subdirectory named like its page name. For example, the document
markup/rest.rst will not result in an output file markup/rest.html,
but markup/rest/index.html. When generating links between pages, the
index.html is omitted, so that the URL would look like markup/rest/.

	
name = 'dirhtml'

	

	
format = 'html'

	

	
supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

	

New in version 0.6.

	
class sphinx.builders.html.SingleFileHTMLBuilder[source]

	This is an HTML builder that combines the whole project in one output file.
(Obviously this only works with smaller projects.) The file is named like
the master document. No indices will be generated.

	
name = 'singlehtml'

	

	
format = 'html'

	

	
supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

	

New in version 1.0.

	
class sphinx.builders.htmlhelp.HTMLHelpBuilder[source]

	This builder produces the same output as the standalone HTML builder, but
also generates HTML Help support files that allow the Microsoft HTML Help
Workshop to compile them into a CHM file.

	
name = 'htmlhelp'

	

	
format = 'html'

	

	
supported_image_types = ['image/png', 'image/gif', 'image/jpeg']

	

	
class sphinx.builders.qthelp.QtHelpBuilder[source]

	This builder produces the same output as the standalone HTML builder, but
also generates Qt help [http://doc.qt.io/qt-4.8/qthelp-framework.html] collection support files that allow
the Qt collection generator to compile them.

	
name = 'qthelp'

	

	
format = 'html'

	

	
supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

	

	
class sphinx.builders.applehelp.AppleHelpBuilder[source]

	This builder produces an Apple Help Book based on the same output as the
standalone HTML builder.

If the source directory contains any .lproj folders, the one
corresponding to the selected language will have its contents merged with
the generated output. These folders will be ignored by all other
documentation types.

In order to generate a valid help book, this builder requires the command
line tool hiutil, which is only available on Mac OS X 10.6 and
above. You can disable the indexing step by setting
applehelp_disable_external_tools to True, in which case the
output will not be valid until hiutil has been run on all of the
.lproj folders within the bundle.

	
name = 'applehelp'

	

	
format = 'html'

	

	
supported_image_types = ['image/png', 'image/gif', 'image/jpeg', 'image/tiff', 'image/jp2', 'image/svg+xml']

	

New in version 1.3.

	
class sphinx.builders.devhelp.DevhelpBuilder[source]

	This builder produces the same output as the standalone HTML builder, but
also generates GNOME Devhelp [https://wiki.gnome.org/Apps/Devhelp]
support file that allows the GNOME Devhelp reader to view them.

	
name = 'devhelp'

	

	
format = 'html'

	

	
supported_image_types = ['image/png', 'image/gif', 'image/jpeg']

	

	
class sphinx.builders.epub.EpubBuilder[source]

	This builder produces the same output as the standalone HTML builder, but
also generates an epub file for ebook readers. See Epub info for
details about it. For definition of the epub format, have a look at
http://idpf.org/epub or https://en.wikipedia.org/wiki/EPUB.
The builder creates EPUB 2 files.

	
name = 'epub'

	

	
format = 'html'

	

	
supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

	

	
class sphinx.builders.epub3.Epub3Builder[source]

	This builder produces the same output as the standalone HTML builder, but
also generates an epub file for ebook readers. See Epub info for
details about it. For definition of the epub format, have a look at
http://idpf.org/epub or https://en.wikipedia.org/wiki/EPUB.
The builder creates EPUB 3 files.

This builder is still experimental because it can’t generate valid EPUB 3
files.

	
name = 'epub3'

	

	
format = 'html'

	

	
supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

	

New in version 1.4.

	
class sphinx.builders.latex.LaTeXBuilder[source]

	This builder produces a bunch of LaTeX files in the output directory. You
have to specify which documents are to be included in which LaTeX files via
the latex_documents configuration value. There are a few
configuration values that customize the output of this builder, see the
chapter Options for LaTeX output for details.

Note

The produced LaTeX file uses several LaTeX packages that may not be
present in a “minimal” TeX distribution installation. For TeXLive,
the following packages need to be installed:

	latex-recommended

	latex-extra

	fonts-recommended

	
name = 'latex'

	

	
format = 'latex'

	

	
supported_image_types = ['application/pdf', 'image/png', 'image/jpeg']

	

Note that a direct PDF builder using ReportLab is available in rst2pdf [https://github.com/rst2pdf/rst2pdf] version 0.12 or greater. You need to add
'rst2pdf.pdfbuilder' to your extensions to enable it, its name is
pdf. Refer to the rst2pdf manual [http://ralsina.me/static/manual.pdf]
for details.

	
class sphinx.builders.text.TextBuilder[source]

	This builder produces a text file for each reST file – this is almost the
same as the reST source, but with much of the markup stripped for better
readability.

	
name = 'text'

	

	
format = 'text'

	

	
supported_image_types = []

	

New in version 0.4.

	
class sphinx.builders.manpage.ManualPageBuilder[source]

	This builder produces manual pages in the groff format. You have to specify
which documents are to be included in which manual pages via the
man_pages configuration value.

	
name = 'man'

	

	
format = 'man'

	

	
supported_image_types = []

	

New in version 1.0.

	
class sphinx.builders.texinfo.TexinfoBuilder[source]

	This builder produces Texinfo files that can be processed into Info files by
the makeinfo program. You have to specify which documents are to
be included in which Texinfo files via the texinfo_documents
configuration value.

The Info format is the basis of the on-line help system used by GNU Emacs and
the terminal-based program info. See Texinfo info for more
details. The Texinfo format is the official documentation system used by the
GNU project. More information on Texinfo can be found at
http://www.gnu.org/software/texinfo/.

	
name = 'texinfo'

	

	
format = 'texinfo'

	

	
supported_image_types = ['image/png', 'image/jpeg', 'image/gif']

	

New in version 1.1.

	
class sphinx.builders.html.SerializingHTMLBuilder[source]

	This builder uses a module that implements the Python serialization API
(pickle, simplejson, phpserialize, and others) to dump the generated
HTML documentation. The pickle builder is a subclass of it.

A concrete subclass of this builder serializing to the PHP serialization [https://pypi.python.org/pypi/phpserialize]
format could look like this:

import phpserialize

class PHPSerializedBuilder(SerializingHTMLBuilder):
 name = 'phpserialized'
 implementation = phpserialize
 out_suffix = '.file.phpdump'
 globalcontext_filename = 'globalcontext.phpdump'
 searchindex_filename = 'searchindex.phpdump'

	
implementation

	A module that implements dump(), load(), dumps() and loads()
functions that conform to the functions with the same names from the
pickle module. Known modules implementing this interface are
simplejson (or json in Python 2.6), phpserialize, plistlib,
and others.

	
out_suffix

	The suffix for all regular files.

	
globalcontext_filename

	The filename for the file that contains the “global context”. This
is a dict with some general configuration values such as the name
of the project.

	
searchindex_filename

	The filename for the search index Sphinx generates.

See Serialization builder details for details about the output format.

New in version 0.5.

	
class sphinx.builders.html.PickleHTMLBuilder[source]

	This builder produces a directory with pickle files containing mostly HTML
fragments and TOC information, for use of a web application (or custom
postprocessing tool) that doesn’t use the standard HTML templates.

See Serialization builder details for details about the output format.

	
name = 'pickle'

	The old name web still works as well.

	
format = 'html'

	

	
supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

	

The file suffix is .fpickle. The global context is called
globalcontext.pickle, the search index searchindex.pickle.

	
class sphinx.builders.html.JSONHTMLBuilder[source]

	This builder produces a directory with JSON files containing mostly HTML
fragments and TOC information, for use of a web application (or custom
postprocessing tool) that doesn’t use the standard HTML templates.

See Serialization builder details for details about the output format.

	
name = 'json'

	

	
format = 'html'

	

	
supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg']

	

The file suffix is .fjson. The global context is called
globalcontext.json, the search index searchindex.json.

New in version 0.5.

	
class sphinx.builders.gettext.MessageCatalogBuilder[source]

	This builder produces gettext-style message catalogs. Each top-level file or
subdirectory grows a single .pot catalog template.

See the documentation on Internationalization for further reference.

	
name = u'gettext'

	

	
format = ''

	

	
supported_image_types = []

	

New in version 1.1.

	
class sphinx.builders.changes.ChangesBuilder[source]

	This builder produces an HTML overview of all versionadded,
versionchanged and deprecated directives for the
current version. This is useful to generate a ChangeLog file, for
example.

	
name = 'changes'

	

	
format = ''

	

	
supported_image_types = []

	

	
class sphinx.builders.dummy.DummyBuilder[source]

	This builder produces no output. The input is only parsed and checked for
consistency. This is useful for linting purposes.

	
name = 'dummy'

	

	
supported_image_types = []

	

New in version 1.4.

	
class sphinx.builders.linkcheck.CheckExternalLinksBuilder[source]

	This builder scans all documents for external links, tries to open them with
urllib2, and writes an overview which ones are broken and redirected
to standard output and to output.txt in the output directory.

	
name = 'linkcheck'

	

	
format = ''

	

	
supported_image_types = []

	

	
class sphinx.builders.xml.XMLBuilder[source]

	This builder produces Docutils-native XML files. The output can be
transformed with standard XML tools such as XSLT processors into arbitrary
final forms.

	
name = 'xml'

	

	
format = 'xml'

	

	
supported_image_types = []

	

New in version 1.2.

	
class sphinx.builders.xml.PseudoXMLBuilder[source]

	This builder is used for debugging the Sphinx/Docutils “Reader to Transform
to Writer” pipeline. It produces compact pretty-printed “pseudo-XML”, files
where nesting is indicated by indentation (no end-tags). External
attributes for all elements are output, and internal attributes for any
leftover “pending” elements are also given.

	
name = 'pseudoxml'

	

	
format = 'pseudoxml'

	

	
supported_image_types = []

	

New in version 1.2.

Built-in Sphinx extensions that offer more builders are:

	doctest

	coverage

Serialization builder details

All serialization builders outputs one file per source file and a few special
files. They also copy the reST source files in the directory _sources
under the output directory.

The PickleHTMLBuilder is a builtin subclass that implements the pickle
serialization interface.

The files per source file have the extensions of
out_suffix, and are arranged in directories
just as the source files are. They unserialize to a dictionary (or dictionary
like structure) with these keys:

	body

	The HTML “body” (that is, the HTML rendering of the source file), as rendered
by the HTML translator.

	title

	The title of the document, as HTML (may contain markup).

	toc

	The table of contents for the file, rendered as an HTML .

	display_toc

	A boolean that is True if the toc contains more than one entry.

	current_page_name

	The document name of the current file.

	parents, prev and next

	Information about related chapters in the TOC tree. Each relation is a
dictionary with the keys link (HREF for the relation) and title
(title of the related document, as HTML). parents is a list of
relations, while prev and next are a single relation.

	sourcename

	The name of the source file under _sources.

The special files are located in the root output directory. They are:

	SerializingHTMLBuilder.globalcontext_filename

	A pickled dict with these keys:

	project, copyright, release, version

	The same values as given in the configuration file.

	style

	html_style.

	last_updated

	Date of last build.

	builder

	Name of the used builder, in the case of pickles this is always
'pickle'.

	titles

	A dictionary of all documents’ titles, as HTML strings.

SerializingHTMLBuilder.searchindex_filename
An index that can be used for searching the documentation. It is a pickled
list with these entries:

	A list of indexed docnames.

	A list of document titles, as HTML strings, in the same order as the first
list.

	A dict mapping word roots (processed by an English-language stemmer) to a
list of integers, which are indices into the first list.

environment.pickle
The build environment. This is always a pickle file, independent of the
builder and a copy of the environment that was used when the builder was
started.

Todo

Document common members.

Unlike the other pickle files this pickle file requires that the sphinx
package is available on unpickling.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

The build configuration file

The configuration directory must contain a file named conf.py.
This file (containing Python code) is called the “build configuration file” and
contains all configuration needed to customize Sphinx input and output behavior.

The configuration file is executed as Python code at build time (using
execfile(), and with the current directory set to its containing
directory), and therefore can execute arbitrarily complex code. Sphinx then
reads simple names from the file’s namespace as its configuration.

Important points to note:

	If not otherwise documented, values must be strings, and their default is the
empty string.

	The term “fully-qualified name” refers to a string that names an importable
Python object inside a module; for example, the FQN
"sphinx.builders.Builder" means the Builder class in the
sphinx.builders module.

	Remember that document names use / as the path separator and don’t contain
the file name extension.

	Since conf.py is read as a Python file, the usual rules apply for
encodings and Unicode support: declare the encoding using an encoding cookie
(a comment like # -*- coding: utf-8 -*-) and use Unicode string literals
when you include non-ASCII characters in configuration values.

	The contents of the config namespace are pickled (so that Sphinx can find out
when configuration changes), so it may not contain unpickleable values –
delete them from the namespace with del if appropriate. Modules are
removed automatically, so you don’t need to del your imports after use.

	There is a special object named tags available in the config file.
It can be used to query and change the tags (see Including content based on tags). Use
tags.has('tag') to query, tags.add('tag') and tags.remove('tag')
to change. Only tags set via the -t command-line option or via
tags.add('tag') can be queried using tags.has('tag').
Note that the current builder tag is not available in conf.py, as it is
created after the builder is initialized.

General configuration

	
extensions

	A list of strings that are module names of Sphinx extensions. These can be
extensions coming with Sphinx (named sphinx.ext.*) or custom ones.

Note that you can extend sys.path within the conf file if your
extensions live in another directory – but make sure you use absolute paths.
If your extension path is relative to the configuration directory,
use os.path.abspath() like so:

import sys, os

sys.path.append(os.path.abspath('sphinxext'))

extensions = ['extname']

That way, you can load an extension called extname from the subdirectory
sphinxext.

The configuration file itself can be an extension; for that, you only need to
provide a setup() function in it.

	
source_suffix

	The file name extension, or list of extensions, of source files. Only files
with this suffix will be read as sources. Default is '.rst'.

Changed in version 1.3: Can now be a list of extensions.

	
source_encoding

	The encoding of all reST source files. The recommended encoding, and the
default value, is 'utf-8-sig'.

New in version 0.5: Previously, Sphinx accepted only UTF-8 encoded sources.

	
source_parsers

	If given, a dictionary of parser classes for different source suffices. The
keys are the suffix, the values can be either a class or a string giving a
fully-qualified name of a parser class. The parser class can be either
docutils.parsers.Parser or sphinx.parsers.Parser. Files with a
suffix that is not in the dictionary will be parsed with the default
reStructuredText parser.

For example:

source_parsers = {'.md': 'some.markdown.module.Parser'}

New in version 1.3.

	
master_doc

	The document name of the “master” document, that is, the document that
contains the root toctree directive. Default is 'contents'.

	
exclude_patterns

	A list of glob-style patterns that should be excluded when looking for source
files. [1] They are matched against the source file names relative to the
source directory, using slashes as directory separators on all platforms.

Example patterns:

	'library/xml.rst' – ignores the library/xml.rst file (replaces
entry in unused_docs)

	'library/xml' – ignores the library/xml directory (replaces entry
in exclude_trees)

	'library/xml*' – ignores all files and directories starting with
library/xml

	'**/.svn' – ignores all .svn directories (replaces entry in
exclude_dirnames)

exclude_patterns is also consulted when looking for static files
in html_static_path and html_extra_path.

New in version 1.0.

	
templates_path

	A list of paths that contain extra templates (or templates that overwrite
builtin/theme-specific templates). Relative paths are taken as relative to
the configuration directory.

Changed in version 1.3: As these files are not meant to be built, they are automatically added to
exclude_patterns.

	
template_bridge

	A string with the fully-qualified name of a callable (or simply a class) that
returns an instance of TemplateBridge. This
instance is then used to render HTML documents, and possibly the output of
other builders (currently the changes builder). (Note that the template
bridge must be made theme-aware if HTML themes are to be used.)

	
rst_epilog

	A string of reStructuredText that will be included at the end of every source
file that is read. This is the right place to add substitutions that should
be available in every file. An example:

rst_epilog = """
.. |psf| replace:: Python Software Foundation
"""

New in version 0.6.

	
rst_prolog

	A string of reStructuredText that will be included at the beginning of every
source file that is read.

New in version 1.0.

	
primary_domain

	The name of the default domain. Can also be None to
disable a default domain. The default is 'py'. Those objects in other
domains (whether the domain name is given explicitly, or selected by a
default-domain directive) will have the domain name explicitly
prepended when named (e.g., when the default domain is C, Python functions
will be named “Python function”, not just “function”).

New in version 1.0.

	
default_role

	The name of a reST role (builtin or Sphinx extension) to use as the default
role, that is, for text marked up `like this`. This can be set to
'py:obj' to make `filter` a cross-reference to the Python function
“filter”. The default is None, which doesn’t reassign the default role.

The default role can always be set within individual documents using the
standard reST default-role directive.

New in version 0.4.

	
keep_warnings

	If true, keep warnings as “system message” paragraphs in the built documents.
Regardless of this setting, warnings are always written to the standard error
stream when sphinx-build is run.

The default is False, the pre-0.5 behavior was to always keep them.

New in version 0.5.

	
suppress_warnings

	A list of warning types to suppress arbitrary warning messages.

Sphinx supports following warning types:

	app.add_node

	app.add_directive

	app.add_role

	app.add_generic_role

	app.add_source_parser

	image.data_uri

	image.nonlocal_uri

	ref.term

	ref.ref

	ref.numref

	ref.keyword

	ref.option

	ref.citation

	ref.doc

You can choose from these types.

Now, this option should be considered experimental.

New in version 1.4.

	
needs_sphinx

	If set to a major.minor version string like '1.1', Sphinx will
compare it with its version and refuse to build if it is too old. Default is
no requirement.

New in version 1.0.

Changed in version 1.4: also accepts micro version string

	
needs_extensions

	This value can be a dictionary specifying version requirements for extensions
in extensions, e.g. needs_extensions =
{'sphinxcontrib.something': '1.5'}. The version strings should be in the
form major.minor. Requirements do not have to be specified for all
extensions, only for those you want to check.

This requires that the extension specifies its version to Sphinx (see
Developing extensions for Sphinx for how to do that).

New in version 1.3.

	
nitpicky

	If true, Sphinx will warn about all references where the target cannot be
found. Default is False. You can activate this mode temporarily using
the -n command-line switch.

New in version 1.0.

	
nitpick_ignore

	A list of (type, target) tuples (by default empty) that should be ignored
when generating warnings in “nitpicky mode”. Note that type should
include the domain name if present. Example entries would be ('py:func',
'int') or ('envvar', 'LD_LIBRARY_PATH').

New in version 1.1.

	
numfig

	If true, figures, tables and code-blocks are automatically numbered if they
have a caption. For now, it works only with the HTML builder. Default is False.

New in version 1.3.

	
numfig_format

	A dictionary mapping 'figure', 'table' and 'code-block' to
strings that are used for format of figure numbers. Default is to use
'Fig. %s' for 'figure', 'Table %s' for 'table' and
'Listing %s' for 'code-block'.

New in version 1.3.

	
numfig_secnum_depth

	The scope of figure numbers, that is, the numfig feature numbers figures
in which scope. 0 means “whole document”. 1 means “in a section”.
Sphinx numbers like x.1, x.2, x.3... 2 means “in a subsection”. Sphinx
numbers like x.x.1, x.x.2, x.x.3..., and so on. Default is 1.

New in version 1.3.

Project information

	
project

	The documented project’s name.

	
copyright

	A copyright statement in the style '2008, Author Name'.

	
version

	The major project version, used as the replacement for |version|. For
example, for the Python documentation, this may be something like 2.6.

	
release

	The full project version, used as the replacement for |release| and
e.g. in the HTML templates. For example, for the Python documentation, this
may be something like 2.6.0rc1.

If you don’t need the separation provided between version and
release, just set them both to the same value.

	
today

	
today_fmt

	These values determine how to format the current date, used as the
replacement for |today|.

	If you set today to a non-empty value, it is used.

	Otherwise, the current time is formatted using time.strftime() and
the format given in today_fmt.

The default is no today and a today_fmt of '%B %d,
%Y' (or, if translation is enabled with language, an equivalent
format for the selected locale).

Changed in version 1.4: Format specification was changed from strftime to Locale Data Markup
Language. strftime format is also supported for backward compatibility
until Sphinx-1.5.

Changed in version 1.4.1: Format specification was changed again from Locale Data Markup Language
to strftime. LDML format is also supported for backward compatibility
until Sphinx-1.5.

	
highlight_language

	The default language to highlight source code in. The default is
'python3'. The value should be a valid Pygments lexer name, see
Showing code examples for more details.

New in version 0.5.

Changed in version 1.4: The default is now 'default'. It is similar to 'python3';
it is mostly a superset of 'python'. but it fallbacks to
'none' without warning if failed. 'python3' and other
languages will emit warning if failed. If you prefer Python 2
only highlighting, you can set it back to 'python'.

	
highlight_options

	A dictionary of options that modify how the lexer specified by
highlight_language generates highlighted source code. These are
lexer-specific; for the options understood by each, see the
Pygments documentation [http://pygments.org/docs/lexers/].

New in version 1.3.

	
pygments_style

	The style name to use for Pygments highlighting of source code. If not set,
either the theme’s default style or 'sphinx' is selected for HTML output.

Changed in version 0.3: If the value is a fully-qualified name of a custom Pygments style class,
this is then used as custom style.

	
add_function_parentheses

	A boolean that decides whether parentheses are appended to function and
method role text (e.g. the content of :func:`input`) to signify that the
name is callable. Default is True.

	
add_module_names

	A boolean that decides whether module names are prepended to all
object names (for object types where a “module” of some kind is
defined), e.g. for py:function directives. Default is True.

	
show_authors

	A boolean that decides whether codeauthor and
sectionauthor directives produce any output in the built files.

	
modindex_common_prefix

	A list of prefixes that are ignored for sorting the Python module index
(e.g., if this is set to ['foo.'], then foo.bar is shown under B,
not F). This can be handy if you document a project that consists of a
single package. Works only for the HTML builder currently. Default is
[].

New in version 0.6.

	
trim_footnote_reference_space

	Trim spaces before footnote references that are necessary for the reST parser
to recognize the footnote, but do not look too nice in the output.

New in version 0.6.

	
trim_doctest_flags

	If true, doctest flags (comments looking like # doctest: FLAG, ...) at
the ends of lines and <BLANKLINE> markers are removed for all code
blocks showing interactive Python sessions (i.e. doctests). Default is
True. See the extension doctest for more
possibilities of including doctests.

New in version 1.0.

Changed in version 1.1: Now also removes <BLANKLINE>.

Options for internationalization

These options influence Sphinx’s Native Language Support. See the
documentation on Internationalization for details.

	
language

	The code for the language the docs are written in. Any text automatically
generated by Sphinx will be in that language. Also, Sphinx will try to
substitute individual paragraphs from your documents with the translation
sets obtained from locale_dirs. Sphinx will search
language-specific figures named by figure_language_filename and substitute
them for original figures. In the LaTeX builder, a suitable language will
be selected as an option for the Babel package. Default is None,
which means that no translation will be done.

New in version 0.5.

Changed in version 1.4: Support figure substitution

Currently supported languages by Sphinx are:

	bn – Bengali

	ca – Catalan

	cs – Czech

	da – Danish

	de – German

	en – English

	es – Spanish

	et – Estonian

	eu – Basque

	fa – Iranian

	fi – Finnish

	fr – French

	he – Hebrew

	hr – Croatian

	hu – Hungarian

	id – Indonesian

	it – Italian

	ja – Japanese

	ko – Korean

	lt – Lithuanian

	lv – Latvian

	mk – Macedonian

	nb_NO – Norwegian Bokmal

	ne – Nepali

	nl – Dutch

	pl – Polish

	pt_BR – Brazilian Portuguese

	pt_PT – European Portuguese

	ru – Russian

	si – Sinhala

	sk – Slovak

	sl – Slovenian

	sv – Swedish

	tr – Turkish

	uk_UA – Ukrainian

	vi – Vietnamese

	zh_CN – Simplified Chinese

	zh_TW – Traditional Chinese

	
locale_dirs

	
New in version 0.5.

Directories in which to search for additional message catalogs (see
language), relative to the source directory. The directories on
this path are searched by the standard gettext module.

Internal messages are fetched from a text domain of sphinx; so if you
add the directory ./locale to this setting, the message catalogs
(compiled from .po format using msgfmt) must be in
./locale/language/LC_MESSAGES/sphinx.mo. The text domain of
individual documents depends on gettext_compact.

The default is [].

	
gettext_compact

	
New in version 1.1.

If true, a document’s text domain is its docname if it is a top-level
project file and its very base directory otherwise.

By default, the document markup/code.rst ends up in the markup text
domain. With this option set to False, it is markup/code.

	
gettext_uuid

	If true, Sphinx generates uuid information for version tracking in message
catalogs. It is used for:

	Add uid line for each msgids in .pot files.

	Calculate similarity between new msgids and previously saved old msgids.
This calculation takes a long time.

If you want to accelerate the calculation, you can use
python-levenshtein 3rd-party package written in C by using
pip install python-levenshtein.

The default is False.

New in version 1.3.

	
gettext_location

	If true, Sphinx generates location information for messages in message
catalogs.

The default is True.

New in version 1.3.

	
gettext_auto_build

	If true, Sphinx builds mo file for each translation catalog files.

The default is True.

New in version 1.3.

	
gettext_additional_targets

	To specify names to enable gettext extracting and translation applying for
i18n additionally. You can specify below names:

	Index:	index terms

	Literal-block:	literal blocks: :: and code-block.

	Doctest-block:	doctest block

	Raw:	raw content

	Image:	image/figure uri and alt

For example: gettext_additional_targets = ['literal-block', 'image'].

The default is [].

New in version 1.3.

	
figure_language_filename

	The filename format for language-specific figures. The default value is
{root}.{language}{ext}. It will be expanded to
dirname/filename.en.png from .. image:: dirname/filename.png.

New in version 1.4.

Options for HTML output

These options influence HTML as well as HTML Help output, and other builders
that use Sphinx’s HTMLWriter class.

	
html_theme

	The “theme” that the HTML output should use. See the section about
theming. The default is 'alabaster'.

New in version 0.6.

	
html_theme_options

	A dictionary of options that influence the look and feel of the selected
theme. These are theme-specific. For the options understood by the builtin
themes, see this section.

New in version 0.6.

	
html_theme_path

	A list of paths that contain custom themes, either as subdirectories or as
zip files. Relative paths are taken as relative to the configuration
directory.

New in version 0.6.

	
html_style

	The style sheet to use for HTML pages. A file of that name must exist either
in Sphinx’s static/ path, or in one of the custom paths given in
html_static_path. Default is the stylesheet given by the selected
theme. If you only want to add or override a few things compared to the
theme’s stylesheet, use CSS @import to import the theme’s stylesheet.

	
html_title

	The “title” for HTML documentation generated with Sphinx’s own templates.
This is appended to the <title> tag of individual pages, and used in the
navigation bar as the “topmost” element. It defaults to '<project>
v<revision> documentation'.

	
html_short_title

	A shorter “title” for the HTML docs. This is used in for links in the header
and in the HTML Help docs. If not given, it defaults to the value of
html_title.

New in version 0.4.

	
html_context

	A dictionary of values to pass into the template engine’s context for all
pages. Single values can also be put in this dictionary using the
-A command-line option of sphinx-build.

New in version 0.5.

	
html_logo

	If given, this must be the name of an image file (path relative to the
configuration directory) that is the logo of the docs. It is placed
at the top of the sidebar; its width should therefore not exceed 200 pixels.
Default: None.

New in version 0.4.1: The image file will be copied to the _static directory of the output
HTML, but only if the file does not already exist there.

	
html_favicon

	If given, this must be the name of an image file (path relative to the
configuration directory) that is the favicon of the docs. Modern
browsers use this as the icon for tabs, windows and bookmarks. It should
be a Windows-style icon file (.ico), which is 16x16 or 32x32
pixels large. Default: None.

New in version 0.4: The image file will be copied to the _static directory of the output
HTML, but only if the file does not already exist there.

	
html_static_path

	A list of paths that contain custom static files (such as style
sheets or script files). Relative paths are taken as relative to
the configuration directory. They are copied to the output’s
_static directory after the theme’s static files, so a file
named default.css will overwrite the theme’s
default.css.

Changed in version 0.4: The paths in html_static_path can now contain subdirectories.

Changed in version 1.0: The entries in html_static_path can now be single files.

	
html_extra_path

	A list of paths that contain extra files not directly related to
the documentation, such as robots.txt or .htaccess.
Relative paths are taken as relative to the configuration
directory. They are copied to the output directory. They will
overwrite any existing file of the same name.

As these files are not meant to be built, they are automatically added to
exclude_patterns.

New in version 1.2.

Changed in version 1.4: The dotfiles in the extra directory will be copied to the output directory.
And it refers exclude_patterns on copying extra files and
directories, and ignores if path matches to patterns.

	
html_last_updated_fmt

	If this is not None, a ‘Last updated on:’ timestamp is inserted
at every page bottom, using the given strftime() format.
The empty string is equivalent to '%b %d, %Y' (or a
locale-dependent equivalent).

Changed in version 1.4: Format specification was changed from strftime to Locale Data Markup
Language. strftime format is also supported for backward compatibility
until Sphinx-1.5.

Changed in version 1.4.1: Format specification was changed again from Locale Data Markup Language
to strftime. LDML format is also supported for backward compatibility
until Sphinx-1.5.

	
html_use_smartypants

	If true, SmartyPants [http://daringfireball.net/projects/smartypants/]
will be used to convert quotes and dashes to typographically correct
entities. Default: True.

	
html_add_permalinks

	Sphinx will add “permalinks” for each heading and description environment as
paragraph signs that become visible when the mouse hovers over them.

This value determines the text for the permalink; it defaults to "¶".
Set it to None or the empty string to disable permalinks.

New in version 0.6: Previously, this was always activated.

Changed in version 1.1: This can now be a string to select the actual text of the link.
Previously, only boolean values were accepted.

	
html_sidebars

	Custom sidebar templates, must be a dictionary that maps document names to
template names.

The keys can contain glob-style patterns [1], in which case all matching
documents will get the specified sidebars. (A warning is emitted when a
more than one glob-style pattern matches for any document.)

The values can be either lists or single strings.

	If a value is a list, it specifies the complete list of sidebar templates
to include. If all or some of the default sidebars are to be included,
they must be put into this list as well.

The default sidebars (for documents that don’t match any pattern) are:
['localtoc.html', 'relations.html', 'sourcelink.html',
'searchbox.html'].

	If a value is a single string, it specifies a custom sidebar to be added
between the 'sourcelink.html' and 'searchbox.html' entries. This
is for compatibility with Sphinx versions before 1.0.

Builtin sidebar templates that can be rendered are:

	localtoc.html – a fine-grained table of contents of the current
document

	globaltoc.html – a coarse-grained table of contents for the whole
documentation set, collapsed

	relations.html – two links to the previous and next documents

	sourcelink.html – a link to the source of the current document, if
enabled in html_show_sourcelink

	searchbox.html – the “quick search” box

Example:

html_sidebars = {
 '**': ['globaltoc.html', 'sourcelink.html', 'searchbox.html'],
 'using/windows': ['windowssidebar.html', 'searchbox.html'],
}

This will render the custom template windowssidebar.html and the quick
search box within the sidebar of the given document, and render the default
sidebars for all other pages (except that the local TOC is replaced by the
global TOC).

New in version 1.0: The ability to use globbing keys and to specify multiple sidebars.

Note that this value only has no effect if the chosen theme does not possess
a sidebar, like the builtin scrolls and haiku themes.

	
html_additional_pages

	Additional templates that should be rendered to HTML pages, must be a
dictionary that maps document names to template names.

Example:

html_additional_pages = {
 'download': 'customdownload.html',
}

This will render the template customdownload.html as the page
download.html.

	
html_domain_indices

	If true, generate domain-specific indices in addition to the general index.
For e.g. the Python domain, this is the global module index. Default is
True.

This value can be a bool or a list of index names that should be generated.
To find out the index name for a specific index, look at the HTML file name.
For example, the Python module index has the name 'py-modindex'.

New in version 1.0.

	
html_use_modindex

	If true, add a module index to the HTML documents. Default is True.

Deprecated since version 1.0: Use html_domain_indices.

	
html_use_index

	If true, add an index to the HTML documents. Default is True.

New in version 0.4.

	
html_split_index

	If true, the index is generated twice: once as a single page with all the
entries, and once as one page per starting letter. Default is False.

New in version 0.4.

	
html_copy_source

	If true, the reST sources are included in the HTML build as
_sources/name. The default is True.

Warning

If this config value is set to False, the JavaScript search function
will only display the titles of matching documents, and no excerpt from
the matching contents.

	
html_show_sourcelink

	If true (and html_copy_source is true as well), links to the
reST sources will be added to the sidebar. The default is True.

New in version 0.6.

	
html_use_opensearch

	If nonempty, an OpenSearch [http://www.opensearch.org/Home] description file will be
output, and all pages will contain a <link> tag referring to it. Since
OpenSearch doesn’t support relative URLs for its search page location, the
value of this option must be the base URL from which these documents are
served (without trailing slash), e.g. "https://docs.python.org". The
default is ''.

	
html_file_suffix

	This is the file name suffix for generated HTML files. The default is
".html".

New in version 0.4.

	
html_link_suffix

	Suffix for generated links to HTML files. The default is whatever
html_file_suffix is set to; it can be set differently (e.g. to
support different web server setups).

New in version 0.6.

	
html_translator_class

	A string with the fully-qualified name of a HTML Translator class, that is, a
subclass of Sphinx’s HTMLTranslator, that is
used to translate document trees to HTML. Default is None (use the
builtin translator).

See also

set_translator()

	
html_show_copyright

	If true, “(C) Copyright ...” is shown in the HTML footer. Default is
True.

New in version 1.0.

	
html_show_sphinx

	If true, “Created using Sphinx” is shown in the HTML footer. Default is
True.

New in version 0.4.

	
html_output_encoding

	Encoding of HTML output files. Default is 'utf-8'. Note that this
encoding name must both be a valid Python encoding name and a valid HTML
charset value.

New in version 1.0.

	
html_compact_lists

	If true, list items containing only a single paragraph will not be rendered
with a <p> element. This is standard docutils behavior. Default:
True.

New in version 1.0.

	
html_secnumber_suffix

	Suffix for section numbers. Default: ". ". Set to " " to suppress
the final dot on section numbers.

New in version 1.0.

	
html_search_language

	Language to be used for generating the HTML full-text search index. This
defaults to the global language selected with language. If there
is no support for this language, "en" is used which selects the English
language.

Support is present for these languages:

	da – Danish

	nl – Dutch

	en – English

	fi – Finnish

	fr – French

	de – German

	hu – Hungarian

	it – Italian

	ja – Japanese

	no – Norwegian

	pt – Portuguese

	ro – Romanian

	ru – Russian

	es – Spanish

	sv – Swedish

	tr – Turkish

	zh – Chinese

Accelerating build speed

Each language (except Japanese) provides its own stemming algorithm.
Sphinx uses a Python implementation by default. You can use a C
implementation to accelerate building the index file.

	PorterStemmer [https://pypi.python.org/pypi/PorterStemmer] (en)

	PyStemmer [https://pypi.python.org/pypi/PyStemmer] (all languages)

New in version 1.1: With support for en and ja.

Changed in version 1.3: Added additional languages.

	
html_search_options

	A dictionary with options for the search language support, empty by default.
The meaning of these options depends on the language selected.

The English support has no options.

The Japanese support has these options:

	Type:	type is dotted module path string to specify Splitter implementation which
should be derived from sphinx.search.ja.BaseSplitter.
If not specified or None is specified, 'sphinx.search.ja.DefaultSplitter' will
be used.

You can choose from these modules:

	‘sphinx.search.ja.DefaultSplitter’:

	 	TinySegmenter algorithm. This is default splitter.

	‘sphinx.search.ja.MeCabSplitter’:

	 	MeCab binding. To use this splitter, ‘mecab’ python binding or dynamic link
library (‘libmecab.so’ for linux, ‘libmecab.dll’ for windows) is required.

	‘sphinx.search.ja.JanomeSplitter’:

	 	Janome binding. To use this splitter,
Janome [https://pypi.python.org/pypi/Janome] is required.

To keep compatibility, 'mecab', 'janome' and 'default' are also
acceptable. However it will be deprecated in Sphinx-1.6.

Other option values depend on splitter value which you choose.

	Options for 'mecab':

	

	dic_enc:	dic_enc option is the encoding for the MeCab algorithm.

	dict:	dict option is the dictionary to use for the MeCab algorithm.

	lib:	lib option is the library name for finding the MeCab library via ctypes if
the Python binding is not installed.

For example:

html_search_options = {
 'type': 'mecab',
 'dic_enc': 'utf-8',
 'dict': '/path/to/mecab.dic',
 'lib': '/path/to/libmecab.so',
}

	Options for 'janome':

	

	user_dic:	user_dic option is the user dictionary file path for Janome.

	user_dic_enc:	user_dic_enc option is the encoding for the user dictionary file specified by
user_dic option. Default is ‘utf8’.

New in version 1.1.

Changed in version 1.4: html_search_options for Japanese is re-organized and any custom splitter can be
used by type settings.

The Chinese support has these options:

	dict – the jieba dictionary path if want to use
custom dictionary.

	
html_search_scorer

	The name of a JavaScript file (relative to the configuration directory) that
implements a search results scorer. If empty, the default will be used.

New in version 1.2.

	
html_scaled_image_link

	If true, images itself links to the original image if it doesn’t have
‘target’ option or scale related options: ‘scale’, ‘width’, ‘height’.
The default is True.

New in version 1.3.

	
htmlhelp_basename

	Output file base name for HTML help builder. Default is 'pydoc'.

Options for Apple Help output

New in version 1.3.

These options influence the Apple Help output. This builder derives from the
HTML builder, so the HTML options also apply where appropriate.

Note

Apple Help output will only work on Mac OS X 10.6 and higher, as it
requires the hiutil and codesign command line tools,
neither of which are Open Source.

You can disable the use of these tools using
applehelp_disable_external_tools, but the result will not be a
valid help book until the indexer is run over the .lproj folders within
the bundle.

	
applehelp_bundle_name

	The basename for the Apple Help Book. Defaults to the project
name.

	
applehelp_bundle_id

	The bundle ID for the help book bundle.

Warning

You must set this value in order to generate Apple Help.

	
applehelp_dev_region

	The development region. Defaults to 'en-us', which is Apple’s
recommended setting.

	
applehelp_bundle_version

	The bundle version (as a string). Defaults to '1'.

	
applehelp_icon

	The help bundle icon file, or None for no icon. According to Apple’s
documentation, this should be a 16-by-16 pixel version of the application’s
icon with a transparent background, saved as a PNG file.

	
applehelp_kb_product

	The product tag for use with applehelp_kb_url. Defaults to
'<project>-<release>'.

	
applehelp_kb_url

	The URL for your knowledgebase server,
e.g. https://example.com/kbsearch.py?p='product'&q='query'&l='lang'.
Help Viewer will replace the values 'product', 'query' and
'lang' at runtime with the contents of applehelp_kb_product,
the text entered by the user in the search box and the user’s system
language respectively.

Defaults to None for no remote search.

	
applehelp_remote_url

	The URL for remote content. You can place a copy of your Help Book’s
Resources folder at this location and Help Viewer will attempt to use
it to fetch updated content.

e.g. if you set it to https://example.com/help/Foo/ and Help Viewer
wants a copy of index.html for an English speaking customer, it will
look at https://example.com/help/Foo/en.lproj/index.html.

Defaults to None for no remote content.

	
applehelp_index_anchors

	If True, tell the help indexer to index anchors in the generated HTML.
This can be useful for jumping to a particular topic using the
AHLookupAnchor function or the openHelpAnchor:inBook: method in
your code. It also allows you to use help:anchor URLs; see the Apple
documentation for more information on this topic.

	
applehelp_min_term_length

	Controls the minimum term length for the help indexer. Defaults to
None, which means the default will be used.

	
applehelp_stopwords

	Either a language specification (to use the built-in stopwords), or the
path to a stopwords plist, or None if you do not want to use stopwords.
The default stopwords plist can be found at
/usr/share/hiutil/Stopwords.plist and contains, at time of writing,
stopwords for the following languages:

	Language
	Code

	English
	en

	German
	de

	Spanish
	es

	French
	fr

	Swedish
	sv

	Hungarian
	hu

	Italian
	it

Defaults to language, or if that is not set, to en.

	
applehelp_locale

	Specifies the locale to generate help for. This is used to determine
the name of the .lproj folder inside the Help Book’s Resources, and
is passed to the help indexer.

Defaults to language, or if that is not set, to en.

	
applehelp_title

	Specifies the help book title. Defaults to '<project> Help'.

	
applehelp_codesign_identity

	Specifies the identity to use for code signing, or None if code signing
is not to be performed.

Defaults to the value of the environment variable CODE_SIGN_IDENTITY,
which is set by Xcode for script build phases, or None if that variable
is not set.

	
applehelp_codesign_flags

	A list of additional arguments to pass to codesign when
signing the help book.

Defaults to a list based on the value of the environment variable
OTHER_CODE_SIGN_FLAGS, which is set by Xcode for script build phases,
or the empty list if that variable is not set.

	
applehelp_indexer_path

	The path to the hiutil program. Defaults to
'/usr/bin/hiutil'.

	
applehelp_codesign_path

	The path to the codesign program. Defaults to
'/usr/bin/codesign'.

	
applehelp_disable_external_tools

	If True, the builder will not run the indexer or the code signing tool,
no matter what other settings are specified.

This is mainly useful for testing, or where you want to run the Sphinx
build on a non-Mac OS X platform and then complete the final steps on OS X
for some reason.

Defaults to False.

Options for epub output

These options influence the epub output. As this builder derives from the HTML
builder, the HTML options also apply where appropriate. The actual values for
some of the options is not really important, they just have to be entered into
the Dublin Core metadata [http://dublincore.org/].

	
epub_basename

	The basename for the epub file. It defaults to the project name.

	
epub_theme

	The HTML theme for the epub output. Since the default themes are not
optimized for small screen space, using the same theme for HTML and epub
output is usually not wise. This defaults to 'epub', a theme designed to
save visual space.

	
epub_theme_options

	A dictionary of options that influence the look and feel of the selected
theme. These are theme-specific. For the options understood by the builtin
themes, see this section.

New in version 1.2.

	
epub_title

	The title of the document. It defaults to the html_title option
but can be set independently for epub creation.

	
epub3_description

	The description of the document. The default value is ''.

New in version 1.4.

	
epub_author

	The author of the document. This is put in the Dublin Core metadata. The
default value is 'unknown'.

	
epub3_contributor

	The name of a person, organization, etc. that played a secondary role in
the creation of the content of an EPUB Publication. The default value is
'unknown'.

New in version 1.4.

	
epub_language

	The language of the document. This is put in the Dublin Core metadata. The
default is the language option or 'en' if unset.

	
epub_publisher

	The publisher of the document. This is put in the Dublin Core metadata. You
may use any sensible string, e.g. the project homepage. The default value is
'unknown'.

	
epub_copyright

	The copyright of the document. It defaults to the copyright
option but can be set independently for epub creation.

	
epub_identifier

	An identifier for the document. This is put in the Dublin Core metadata.
For published documents this is the ISBN number, but you can also use an
alternative scheme, e.g. the project homepage. The default value is
'unknown'.

	
epub_scheme

	The publication scheme for the epub_identifier. This is put in
the Dublin Core metadata. For published books the scheme is 'ISBN'. If
you use the project homepage, 'URL' seems reasonable. The default value
is 'unknown'.

	
epub_uid

	A unique identifier for the document. This is put in the Dublin Core
metadata. You may use a random string. The default value is 'unknown'.

	
epub_cover

	The cover page information. This is a tuple containing the filenames of
the cover image and the html template. The rendered html cover page is
inserted as the first item in the spine in content.opf. If the
template filename is empty, no html cover page is created. No cover at all
is created if the tuple is empty. Examples:

epub_cover = ('_static/cover.png', 'epub-cover.html')
epub_cover = ('_static/cover.png', '')
epub_cover = ()

The default value is ().

New in version 1.1.

	
epub_guide

	Meta data for the guide element of content.opf. This is a
sequence of tuples containing the type, the uri and the title of
the optional guide information. See the OPF documentation
at http://idpf.org/epub for details. If possible, default entries
for the cover and toc types are automatically inserted. However,
the types can be explicitly overwritten if the default entries are not
appropriate. Example:

epub_guide = (('cover', 'cover.html', u'Cover Page'),)

The default value is ().

	
epub_pre_files

	Additional files that should be inserted before the text generated by
Sphinx. It is a list of tuples containing the file name and the title.
If the title is empty, no entry is added to toc.ncx. Example:

epub_pre_files = [
 ('index.html', 'Welcome'),
]

The default value is [].

	
epub_post_files

	Additional files that should be inserted after the text generated by Sphinx.
It is a list of tuples containing the file name and the title. This option
can be used to add an appendix. If the title is empty, no entry is added
to toc.ncx. The default value is [].

	
epub_exclude_files

	A list of files that are generated/copied in the build directory but should
not be included in the epub file. The default value is [].

	
epub_tocdepth

	The depth of the table of contents in the file toc.ncx. It should
be an integer greater than zero. The default value is 3. Note: A deeply
nested table of contents may be difficult to navigate.

	
epub_tocdup

	This flag determines if a toc entry is inserted again at the beginning of
its nested toc listing. This allows easier navigation to the top of
a chapter, but can be confusing because it mixes entries of different
depth in one list. The default value is True.

	
epub_tocscope

	This setting control the scope of the epub table of contents. The setting
can have the following values:

	'default' – include all toc entries that are not hidden (default)

	'includehidden' – include all toc entries

New in version 1.2.

	
epub_fix_images

	This flag determines if sphinx should try to fix image formats that are not
supported by some epub readers. At the moment palette images with a small
color table are upgraded. You need the Python Image Library (Pillow the
successor of the PIL) installed to use this option. The default value is
False because the automatic conversion may lose information.

New in version 1.2.

	
epub_max_image_width

	This option specifies the maximum width of images. If it is set to a value
greater than zero, images with a width larger than the given value are
scaled accordingly. If it is zero, no scaling is performed. The default
value is 0. You need the Python Image Library (Pillow) installed to use
this option.

New in version 1.2.

	
epub_show_urls

	Control whether to display URL addresses. This is very useful for
readers that have no other means to display the linked URL. The
settings can have the following values:

	'inline' – display URLs inline in parentheses (default)

	'footnote' – display URLs in footnotes

	'no' – do not display URLs

The display of inline URLs can be customized by adding CSS rules for the
class link-target.

New in version 1.2.

	
epub_use_index

	If true, add an index to the epub document. It defaults to the
html_use_index option but can be set independently for epub
creation.

New in version 1.2.

	
epub3_page_progression_direction

	The global direction in which the content flows.
Allowed values are 'ltr' (left-to-right), 'rtl' (right-to-left) and
'default'. The default value is 'ltr'.

When the 'default' value is specified, the Author is expressing no
preference and the Reading System may chose the rendering direction.

New in version 1.4.

Options for LaTeX output

These options influence LaTeX output.

	
latex_documents

	This value determines how to group the document tree into LaTeX source files.
It must be a list of tuples (startdocname, targetname, title, author,
documentclass, toctree_only), where the items are:

	startdocname: document name that is the “root” of the LaTeX file. All
documents referenced by it in TOC trees will be included in the LaTeX file
too. (If you want only one LaTeX file, use your master_doc
here.)

	targetname: file name of the LaTeX file in the output directory.

	title: LaTeX document title. Can be empty to use the title of the
startdoc. This is inserted as LaTeX markup, so special characters like a
backslash or ampersand must be represented by the proper LaTeX commands if
they are to be inserted literally.

	author: Author for the LaTeX document. The same LaTeX markup caveat as
for title applies. Use \and to separate multiple authors, as in:
'John \and Sarah'.

	documentclass: Normally, one of 'manual' or 'howto' (provided by
Sphinx). Other document classes can be given, but they must include the
“sphinx” package in order to define Sphinx’s custom LaTeX commands. “howto”
documents will not get appendices. Also, howtos will have a simpler title
page.

	toctree_only: Must be True or False. If true, the startdoc
document itself is not included in the output, only the documents
referenced by it via TOC trees. With this option, you can put extra stuff
in the master document that shows up in the HTML, but not the LaTeX output.

New in version 1.2: In the past including your own document class required you to prepend the
document class name with the string “sphinx”. This is not necessary
anymore.

New in version 0.3: The 6th item toctree_only. Tuples with 5 items are still accepted.

	
latex_logo

	If given, this must be the name of an image file (relative to the
configuration directory) that is the logo of the docs. It is placed at the
top of the title page. Default: None.

	
latex_toplevel_sectioning

	This value determines the topmost sectioning unit. It should be chosen from
part, chapter or section. The default is None; the topmost
sectioning unit is switched by documentclass. section is used if
documentclass will be howto, otherwise chapter will be used.

New in version 1.4.

	
latex_use_parts

	If true, the topmost sectioning unit is parts, else it is chapters. Default:
False.

New in version 0.3.

Deprecated since version 1.4: Use latex_toplevel_sectioning.

	
latex_appendices

	A list of document names to append as an appendix to all manuals.

	
latex_domain_indices

	If true, generate domain-specific indices in addition to the general index.
For e.g. the Python domain, this is the global module index. Default is
True.

This value can be a bool or a list of index names that should be generated,
like for html_domain_indices.

New in version 1.0.

	
latex_use_modindex

	If true, add a module index to LaTeX documents. Default is True.

Deprecated since version 1.0: Use latex_domain_indices.

	
latex_show_pagerefs

	If true, add page references after internal references. This is very useful
for printed copies of the manual. Default is False.

New in version 1.0.

	
latex_show_urls

	Control whether to display URL addresses. This is very useful for printed
copies of the manual. The setting can have the following values:

	'no' – do not display URLs (default)

	'footnote' – display URLs in footnotes

	'inline' – display URLs inline in parentheses

New in version 1.0.

Changed in version 1.1: This value is now a string; previously it was a boolean value, and a true
value selected the 'inline' display. For backwards compatibility,
True is still accepted.

	
latex_elements

	
New in version 0.5.

A dictionary that contains LaTeX snippets that override those Sphinx usually
puts into the generated .tex files.

Keep in mind that backslashes must be doubled in Python string literals to
avoid interpretation as escape sequences.

	Keys that you may want to override include:

	'papersize'

	Paper size option of the document class ('a4paper' or
'letterpaper'), default 'letterpaper'.

	'pointsize'

	Point size option of the document class ('10pt', '11pt' or
'12pt'), default '10pt'.

	'babel'

	“babel” package inclusion, default '\\usepackage{babel}'.

	'fontpkg'

	Font package inclusion, default '\\usepackage{times}' (which uses
Times and Helvetica). You can set this to '' to use the Computer
Modern fonts.

Changed in version 1.2: Defaults to '' when the language uses the Cyrillic
script.

	'fncychap'

	Inclusion of the “fncychap” package (which makes fancy chapter titles),
default '\\usepackage[Bjarne]{fncychap}' for English documentation,
'\\usepackage[Sonny]{fncychap}' for internationalized docs (because
the “Bjarne” style uses numbers spelled out in English). Other
“fncychap” styles you can try include “Lenny”, “Glenn”, “Conny” and
“Rejne”. You can also set this to '' to disable fncychap.

	'passoptionstopackages'

	“PassOptionsToPackage” call, default empty.

New in version 1.4.

	'preamble'

	Additional preamble content, default empty.

	'figure_align'

	Latex figure float alignment, default ‘htbp’ (here, top, bottom, page).
Whenever an image doesn’t fit into the current page, it will be
‘floated’ into the next page but may be preceded by any other text.
If you don’t like this behavior, use ‘H’ which will disable floating
and position figures strictly in the order they appear in the source.

New in version 1.3.

	'footer'

	Additional footer content (before the indices), default empty.

Keys that don’t need be overridden unless in special cases are:

	'inputenc'

	“inputenc” package inclusion, default
'\\usepackage[utf8]{inputenc}'.

	'cmappkg'

	“cmap” package inclusion, default '\\usepackage{cmap}'.

New in version 1.2.

	'fontenc'

	“fontenc” package inclusion, default '\\usepackage[T1]{fontenc}'.

	'maketitle'

	“maketitle” call, default '\\maketitle'. Override if you want to
generate a differently-styled title page.

	'releasename'

	value that prefixes 'release' element on title page, default
'Release'.

	'tableofcontents'

	“tableofcontents” call, default '\\tableofcontents'. Override if
you want to generate a different table of contents or put content
between the title page and the TOC.

	'transition'

	Commands used to display transitions, default
'\n\n\\bigskip\\hrule{}\\bigskip\n\n'. Override if you want to
display transitions differently.

New in version 1.2.

	'printindex'

	“printindex” call, the last thing in the file, default
'\\printindex'. Override if you want to generate the index
differently or append some content after the index.

Keys that are set by other options and therefore should not be overridden
are:

'docclass'
'classoptions'
'title'
'date'
'release'
'author'
'logo'
'makeindex'
'shorthandoff'

	
latex_docclass

	A dictionary mapping 'howto' and 'manual' to names of real document
classes that will be used as the base for the two Sphinx classes. Default
is to use 'article' for 'howto' and 'report' for 'manual'.

New in version 1.0.

	
latex_additional_files

	A list of file names, relative to the configuration directory, to copy to the
build directory when building LaTeX output. This is useful to copy files
that Sphinx doesn’t copy automatically, e.g. if they are referenced in custom
LaTeX added in latex_elements. Image files that are referenced in source
files (e.g. via .. image::) are copied automatically.

You have to make sure yourself that the filenames don’t collide with those of
any automatically copied files.

New in version 0.6.

Changed in version 1.2: This overrides the files which is provided from Sphinx such as sphinx.sty.

	
latex_preamble

	Additional LaTeX markup for the preamble.

Deprecated since version 0.5: Use the 'preamble' key in the latex_elements value.

	
latex_paper_size

	The output paper size ('letter' or 'a4'). Default is 'letter'.

Deprecated since version 0.5: Use the 'papersize' key in the latex_elements value.

	
latex_font_size

	The font size (‘10pt’, ‘11pt’ or ‘12pt’). Default is '10pt'.

Deprecated since version 0.5: Use the 'pointsize' key in the latex_elements value.

Options for text output

These options influence text output.

	
text_newlines

	Determines which end-of-line character(s) are used in text output.

	'unix': use Unix-style line endings (\n)

	'windows': use Windows-style line endings (\r\n)

	'native': use the line ending style of the platform the documentation
is built on

Default: 'unix'.

New in version 1.1.

	
text_sectionchars

	A string of 7 characters that should be used for underlining sections.
The first character is used for first-level headings, the second for
second-level headings and so on.

The default is '*=-~"+`'.

New in version 1.1.

Options for manual page output

These options influence manual page output.

	
man_pages

	This value determines how to group the document tree into manual pages. It
must be a list of tuples (startdocname, name, description, authors,
section), where the items are:

	startdocname: document name that is the “root” of the manual page. All
documents referenced by it in TOC trees will be included in the manual file
too. (If you want one master manual page, use your master_doc
here.)

	name: name of the manual page. This should be a short string without
spaces or special characters. It is used to determine the file name as
well as the name of the manual page (in the NAME section).

	description: description of the manual page. This is used in the NAME
section.

	authors: A list of strings with authors, or a single string. Can be an
empty string or list if you do not want to automatically generate an
AUTHORS section in the manual page.

	section: The manual page section. Used for the output file name as well
as in the manual page header.

New in version 1.0.

	
man_show_urls

	If true, add URL addresses after links. Default is False.

New in version 1.1.

Options for Texinfo output

These options influence Texinfo output.

	
texinfo_documents

	This value determines how to group the document tree into Texinfo source
files. It must be a list of tuples (startdocname, targetname, title,
author, dir_entry, description, category, toctree_only), where the items
are:

	startdocname: document name that is the “root” of the Texinfo file. All
documents referenced by it in TOC trees will be included in the Texinfo
file too. (If you want only one Texinfo file, use your
master_doc here.)

	targetname: file name (no extension) of the Texinfo file in the output
directory.

	title: Texinfo document title. Can be empty to use the title of the
startdoc. Inserted as Texinfo markup, so special characters like @ and
{} will need to be escaped to be inserted literally.

	author: Author for the Texinfo document. Inserted as Texinfo markup.
Use @* to separate multiple authors, as in: 'John@*Sarah'.

	dir_entry: The name that will appear in the top-level DIR menu file.

	description: Descriptive text to appear in the top-level DIR menu
file.

	category: Specifies the section which this entry will appear in the
top-level DIR menu file.

	toctree_only: Must be True or False. If true, the startdoc
document itself is not included in the output, only the documents
referenced by it via TOC trees. With this option, you can put extra stuff
in the master document that shows up in the HTML, but not the Texinfo
output.

New in version 1.1.

	
texinfo_appendices

	A list of document names to append as an appendix to all manuals.

New in version 1.1.

	
texinfo_domain_indices

	If true, generate domain-specific indices in addition to the general index.
For e.g. the Python domain, this is the global module index. Default is
True.

This value can be a bool or a list of index names that should be generated,
like for html_domain_indices.

New in version 1.1.

	
texinfo_show_urls

	Control how to display URL addresses.

	'footnote' – display URLs in footnotes (default)

	'no' – do not display URLs

	'inline' – display URLs inline in parentheses

New in version 1.1.

	
texinfo_no_detailmenu

	If true, do not generate a @detailmenu in the “Top” node’s menu
containing entries for each sub-node in the document. Default is False.

New in version 1.2.

	
texinfo_elements

	A dictionary that contains Texinfo snippets that override those Sphinx
usually puts into the generated .texi files.

	Keys that you may want to override include:

	'paragraphindent'

	Number of spaces to indent the first line of each paragraph, default
2. Specify 0 for no indentation.

	'exampleindent'

	Number of spaces to indent the lines for examples or literal blocks,
default 4. Specify 0 for no indentation.

	'preamble'

	Texinfo markup inserted near the beginning of the file.

	'copying'

	Texinfo markup inserted within the @copying block and displayed
after the title. The default value consists of a simple title page
identifying the project.

Keys that are set by other options and therefore should not be overridden
are:

'author'
'body'
'date'
'direntry'
'filename'
'project'
'release'
'title'

New in version 1.1.

Options for the linkcheck builder

	
linkcheck_ignore

	A list of regular expressions that match URIs that should not be checked
when doing a linkcheck build. Example:

linkcheck_ignore = [r'http://localhost:\d+/']

New in version 1.1.

	
linkcheck_retries

	The number of times the linkcheck builder will attempt to check a URL before
declaring it broken. Defaults to 1 attempt.

New in version 1.4.

	
linkcheck_timeout

	A timeout value, in seconds, for the linkcheck builder. Only works in
Python 2.6 and higher. The default is to use Python’s global socket
timeout.

New in version 1.1.

	
linkcheck_workers

	The number of worker threads to use when checking links. Default is 5
threads.

New in version 1.1.

	
linkcheck_anchors

	If true, check the validity of #anchors in links. Since this requires
downloading the whole document, it’s considerably slower when enabled.
Default is True.

New in version 1.2.

Options for the XML builder

	
xml_pretty

	If true, pretty-print the XML. Default is True.

New in version 1.2.

Footnotes

	[1]	(1, 2) A note on available globbing syntax: you can use the standard shell
constructs *, ?, [...] and [!...] with the feature that
these all don’t match slashes. A double star ** can be used to match
any sequence of characters including slashes.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Internationalization

New in version 1.1.

Complementary to translations provided for Sphinx-generated messages such as
navigation bars, Sphinx provides mechanisms facilitating document translations
in itself. See the Options for internationalization for details on configuration.

Workflow visualization of translations in Sphinx. (The stick-figure is taken
from an XKCD comic [http://xkcd.com/779/].)

	Sphinx internationalization details

	Translating with sphinx-intl
	Quick guide

	Translating

	Update your po files by new pot files

	Using Transifex service for team translation

	Contributing to Sphinx reference translation

Sphinx internationalization details

gettext [1] is an established standard for internationalization and
localization. It naively maps messages in a program to a translated string.
Sphinx uses these facilities to translate whole documents.

Initially project maintainers have to collect all translatable strings (also
referred to as messages) to make them known to translators. Sphinx extracts
these through invocation of sphinx-build -b gettext.

Every single element in the doctree will end up in a single message which
results in lists being equally split into different chunks while large
paragraphs will remain as coarsely-grained as they were in the original
document. This grants seamless document updates while still providing a little
bit of context for translators in free-text passages. It is the maintainer’s
task to split up paragraphs which are too large as there is no sane automated
way to do that.

After Sphinx successfully ran the
MessageCatalogBuilder you will find a
collection of .pot files in your output directory. These are catalog
templates and contain messages in your original language only.

They can be delivered to translators which will transform them to .po files
— so called message catalogs — containing a mapping from the original
messages to foreign-language strings.

Gettext compiles them into a binary format known as binary catalogs through
msgfmt for efficiency reasons. If you make these files discoverable
with locale_dirs for your language, Sphinx will pick them
up automatically.

An example: you have a document usage.rst in your Sphinx project. The
gettext builder will put its messages into usage.pot. Imagine you have
Spanish translations [2] on your hands in usage.po — for your builds to
be translated you need to follow these instructions:

	Compile your message catalog to a locale directory, say locale, so it
ends up in ./locale/es/LC_MESSAGES/usage.mo in your source directory
(where es is the language code for Spanish.)

msgfmt "usage.po" -o "locale/es/LC_MESSAGES/usage.mo"

	Set locale_dirs to ["locale/"].

	Set language to es (also possible via -D).

	Run your desired build.

Translating with sphinx-intl

Quick guide

sphinx-intl [https://pypi.python.org/pypi/sphinx-intl] is a useful tool to work with Sphinx translation flow.
This section describe a easy way to translate with sphinx-intl.

	Install sphinx-intl [https://pypi.python.org/pypi/sphinx-intl] by pip install sphinx-intl or
easy_install sphinx-intl.

	Add configurations to your conf.py:

locale_dirs = ['locale/'] # path is example but recommended.
gettext_compact = False # optional.

This case-study assumes that locale_dirs is set to ‘locale/’ and
gettext_compact is set to False (the Sphinx document is
already configured as such).

	Extract document’s translatable messages into pot files:

$ make gettext

As a result, many pot files are generated under _build/locale
directory.

	Setup/Update your locale_dir:

$ sphinx-intl update -p _build/locale -l de -l ja

Done. You got these directories that contain po files:

	./locale/de/LC_MESSAGES/

	./locale/ja/LC_MESSAGES/

	Translate your po files under ./locale/<lang>/LC_MESSAGES/.

	make translated document.

You need a language parameter in conf.py or you may also
specify the parameter on the command line:

$ make -e SPHINXOPTS="-D language='de'" html

Congratulations! You got the translated documentation in the _build/html
directory.

New in version 1.3: sphinx-build that is invoked by make command will build po files into mo files.

If you are using 1.2.x or earlier, please invoke sphinx-intl build command
before make command.

Translating

Translate po file under ./locale/de/LC_MESSAGES directory.
The case of builders.po file for sphinx document:

a5600c3d2e3d48fc8c261ea0284db79b
#: ../../builders.rst:4
msgid "Available builders"
msgstr "<FILL HERE BY TARGET LANGUAGE>"

Another case, msgid is multi-line text and contains reStructuredText
syntax:

302558364e1d41c69b3277277e34b184
#: ../../builders.rst:9
msgid ""
"These are the built-in Sphinx builders. More builders can be added by "
":ref:`extensions <extensions>`."
msgstr ""
"FILL HERE BY TARGET LANGUAGE FILL HERE BY TARGET LANGUAGE FILL HERE "
"BY TARGET LANGUAGE :ref:`EXTENSIONS <extensions>` FILL HERE."

Please be careful not to break reST notation. Most po-editors will help you
with that.

Update your po files by new pot files

If a document is updated, it is necessary to generate updated pot files
and to apply differences to translated po files.
In order to apply the updating difference of a pot file to po file,
use the sphinx-intl update command.

$ sphinx-intl update -p _build/locale

Using Transifex service for team translation

Transifex [https://www.transifex.com/] is one of several services that allow collaborative translation via a
web interface. It has a nifty Python-based command line client that makes it
easy to fetch and push translations.

	Install transifex-client [https://pypi.python.org/pypi/transifex-client]

You need tx command to upload resources (pot files).

$ pip install transifex-client

See also

Transifex Client v0.8 — Transifex documentation [http://docs.transifex.com/developer/client/]

	Create your transifex [https://www.transifex.com/] account and create new project for your document

Currently, transifex does not allow for a translation project to have more
than one version of the document, so you’d better include a version number in
your project name.

For example:

	Project ID:	sphinx-document-test_1_0

	Project URL:	https://www.transifex.com/projects/p/sphinx-document-test_1_0/

	Create config files for tx command

This process will create .tx/config in the current directory, as well as
a ~/.transifexrc file that includes auth information.

$ tx init
Creating .tx folder...
Transifex instance [https://www.transifex.com]:
...
Please enter your transifex username: <transifex-username>
Password: <transifex-password>
...
Done.

	Upload pot files to transifex service

Register pot files to .tx/config file:

$ cd /your/document/root
$ sphinx-intl update-txconfig-resources --pot-dir _build/locale \
 --transifex-project-name sphinx-document-test_1_0

and upload pot files:

$ tx push -s
Pushing translations for resource sphinx-document-test_1_0.builders:
Pushing source file (locale/pot/builders.pot)
Resource does not exist. Creating...
...
Done.

	Forward the translation on transifex

	Pull translated po files and make translated html

Get translated catalogs and build mo files (ex. for ‘de’):

$ cd /your/document/root
$ tx pull -l de
Pulling translations for resource sphinx-document-test_1_0.builders (...)
 -> de: locale/de/LC_MESSAGES/builders.po
...
Done.

Invoke make html:

$ make -e SPHINXOPTS="-D language='de'" html

That’s all!

Tip

Translating locally and on Transifex

If you want to push all language’s po files, you can be done by using
tx push -t command.
Watch out! This operation overwrites translations in transifex.

In other words, if you have updated each in the service and local po files,
it would take much time and effort to integrate them.

Contributing to Sphinx reference translation

The recommended way for new contributors to translate Sphinx reference
is to join the translation team on Transifex.

There is sphinx translation page [https://www.transifex.com/sphinx-doc/sphinx-doc-1_3/] for Sphinx-1.3 documentation.

	Login to transifex [https://www.transifex.com/] service.

	Go to sphinx translation page [https://www.transifex.com/sphinx-doc/sphinx-doc-1_3/].

	Click Request language and fill form.

	Wait acceptance by transifex sphinx translation maintainers.

	(after acceptance) translate on transifex.

Footnotes

	[1]	See the GNU gettext utilities [http://www.gnu.org/software/gettext/manual/gettext.html#Introduction]
for details on that software suite.

	[2]	Because nobody expects the Spanish Inquisition!

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

HTML theming support

New in version 0.6.

Sphinx supports changing the appearance of its HTML output via themes. A
theme is a collection of HTML templates, stylesheet(s) and other static files.
Additionally, it has a configuration file which specifies from which theme to
inherit, which highlighting style to use, and what options exist for customizing
the theme’s look and feel.

Themes are meant to be project-unaware, so they can be used for different
projects without change.

Using a theme

Using an existing theme is easy. If the theme is builtin to Sphinx, you only
need to set the html_theme config value. With the
html_theme_options config value you can set theme-specific options
that change the look and feel. For example, you could have the following in
your conf.py:

html_theme = "classic"
html_theme_options = {
 "rightsidebar": "true",
 "relbarbgcolor": "black"
}

That would give you the classic theme, but with a sidebar on the right side and
a black background for the relation bar (the bar with the navigation links at
the page’s top and bottom).

If the theme does not come with Sphinx, it can be in two static forms: either a
directory (containing theme.conf and other needed files), or a zip file
with the same contents. Either of them must be put where Sphinx can find it;
for this there is the config value html_theme_path. It gives a list
of directories, relative to the directory containing conf.py, that can
contain theme directories or zip files. For example, if you have a theme in the
file blue.zip, you can put it right in the directory containing
conf.py and use this configuration:

html_theme = "blue"
html_theme_path = ["."]

The third form provides your theme path dynamically to Sphinx if the
setuptools package is installed. You can provide an entry point section
called sphinx_themes in your setup.py file and write a get_path function
that has to return the directory with themes in it:

'setup.py'

setup(
 ...
 entry_points = {
 'sphinx_themes': [
 'path = your_package:get_path',
]
 },
 ...
)

'your_package.py'

from os import path
package_dir = path.abspath(path.dirname(__file__))
template_path = path.join(package_dir, 'themes')

def get_path():
 return template_path

New in version 1.2: ‘sphinx_themes’ entry_points feature.

Builtin themes

	Theme overview
	

	[image: alabaster]

alabaster

	[image: sphinx_rtd_theme]

sphinx_rtd_theme

	[image: classic]

classic

	[image: sphinxdoc]

sphinxdoc

	[image: scrolls]

scrolls

	[image: agogo]

agogo

	[image: traditional]

traditional

	[image: nature]

nature

	[image: haiku]

haiku

	[image: pyramid]

pyramid

	[image: bizstyle]

bizstyle

	

Sphinx comes with a selection of themes to choose from.

These themes are:

	basic – This is a basically unstyled layout used as the base for the
other themes, and usable as the base for custom themes as well. The HTML
contains all important elements like sidebar and relation bar. There are
these options (which are inherited by the other themes):

	nosidebar (true or false): Don’t include the sidebar. Defaults to
False.

	sidebarwidth (an integer): Width of the sidebar in pixels. (Do not
include px in the value.) Defaults to 230 pixels.

	alabaster – Alabaster theme [https://pypi.python.org/pypi/alabaster] is a modified “Kr” Sphinx theme from @kennethreitz
(especially as used in his Requests project), which was itself originally based on
@mitsuhiko’s theme used for Flask & related projects. You can get options information
at Alabaster theme [https://pypi.python.org/pypi/alabaster] page.

	sphinx_rtd_theme – Read the Docs Sphinx Theme [https://pypi.python.org/pypi/sphinx_rtd_theme].
This is a mobile-friendly sphinx theme that was made for readthedocs.org.
View a working demo over on readthedocs.org. You can get options information
at Read the Docs Sphinx Theme [https://pypi.python.org/pypi/sphinx_rtd_theme] page.

	classic – This is the classic theme, which looks like the Python 2
documentation [https://docs.python.org/2/]. It can be customized via
these options:

	rightsidebar (true or false): Put the sidebar on the right side.
Defaults to False.

	stickysidebar (true or false): Make the sidebar “fixed” so that it
doesn’t scroll out of view for long body content. This may not work well
with all browsers. Defaults to False.

	collapsiblesidebar (true or false): Add an experimental JavaScript
snippet that makes the sidebar collapsible via a button on its side.
Doesn’t work with “stickysidebar”. Defaults to False.

	externalrefs (true or false): Display external links differently from
internal links. Defaults to False.

There are also various color and font options that can change the color scheme
without having to write a custom stylesheet:

	footerbgcolor (CSS color): Background color for the footer line.

	footertextcolor (CSS color): Text color for the footer line.

	sidebarbgcolor (CSS color): Background color for the sidebar.

	sidebarbtncolor (CSS color): Background color for the sidebar collapse
button (used when collapsiblesidebar is True).

	sidebartextcolor (CSS color): Text color for the sidebar.

	sidebarlinkcolor (CSS color): Link color for the sidebar.

	relbarbgcolor (CSS color): Background color for the relation bar.

	relbartextcolor (CSS color): Text color for the relation bar.

	relbarlinkcolor (CSS color): Link color for the relation bar.

	bgcolor (CSS color): Body background color.

	textcolor (CSS color): Body text color.

	linkcolor (CSS color): Body link color.

	visitedlinkcolor (CSS color): Body color for visited links.

	headbgcolor (CSS color): Background color for headings.

	headtextcolor (CSS color): Text color for headings.

	headlinkcolor (CSS color): Link color for headings.

	codebgcolor (CSS color): Background color for code blocks.

	codetextcolor (CSS color): Default text color for code blocks, if not
set differently by the highlighting style.

	bodyfont (CSS font-family): Font for normal text.

	headfont (CSS font-family): Font for headings.

	sphinxdoc – The theme used for this documentation. It features a sidebar
on the right side. There are currently no options beyond nosidebar and
sidebarwidth.

	scrolls – A more lightweight theme, based on the Jinja documentation [http://jinja.pocoo.org/]. The following color options are available:

	headerbordercolor

	subheadlinecolor

	linkcolor

	visitedlinkcolor

	admonitioncolor

	agogo – A theme created by Andi Albrecht. The following options are
supported:

	bodyfont (CSS font family): Font for normal text.

	headerfont (CSS font family): Font for headings.

	pagewidth (CSS length): Width of the page content, default 70em.

	documentwidth (CSS length): Width of the document (without sidebar),
default 50em.

	sidebarwidth (CSS length): Width of the sidebar, default 20em.

	bgcolor (CSS color): Background color.

	headerbg (CSS value for “background”): background for the header area,
default a grayish gradient.

	footerbg (CSS value for “background”): background for the footer area,
default a light gray gradient.

	linkcolor (CSS color): Body link color.

	headercolor1, headercolor2 (CSS color): colors for <h1> and <h2>
headings.

	headerlinkcolor (CSS color): Color for the backreference link in
headings.

	textalign (CSS text-align value): Text alignment for the body, default
is justify.

	nature – A greenish theme. There are currently no options beyond
nosidebar and sidebarwidth.

	pyramid – A theme from the Pyramid web framework project, designed by
Blaise Laflamme. There are currently no options beyond nosidebar and
sidebarwidth.

	haiku – A theme without sidebar inspired by the Haiku OS user guide [https://www.haiku-os.org/docs/userguide/en/contents.html]. The following
options are supported:

	full_logo (true or false, default False): If this is true, the
header will only show the html_logo. Use this for large logos.
If this is false, the logo (if present) will be shown floating right, and
the documentation title will be put in the header.

	textcolor, headingcolor, linkcolor, visitedlinkcolor,
hoverlinkcolor (CSS colors): Colors for various body elements.

	traditional – A theme resembling the old Python documentation. There are
currently no options beyond nosidebar and sidebarwidth.

	epub – A theme for the epub builder. This theme tries to save visual
space which is a sparse resource on ebook readers. The following options
are supported:

	relbar1 (true or false, default True): If this is true, the
relbar1 block is inserted in the epub output, otherwise it is omitted.

	footer (true or false, default True): If this is true, the
footer block is inserted in the epub output, otherwise it is omitted.

	bizstyle – A simple bluish theme. The following options are supported
beyond nosidebar and sidebarwidth:
	rightsidebar (true or false): Put the sidebar on the right side.
Defaults to False.

New in version 1.3: ‘alabaster’, ‘sphinx_rtd_theme’ and ‘bizstyle’ theme.

Changed in version 1.3: The ‘default’ theme has been renamed to ‘classic’. ‘default’ is still
available, however it will emit notice a recommendation that using new
‘alabaster’ theme.

Creating themes

As said, themes are either a directory or a zipfile (whose name is the theme
name), containing the following:

	A theme.conf file, see below.

	HTML templates, if needed.

	A static/ directory containing any static files that will be copied to the
output static directory on build. These can be images, styles, script files.

The theme.conf file is in INI format [1] (readable by the standard
Python ConfigParser module) and has the following structure:

[theme]
inherit = base theme
stylesheet = main CSS name
pygments_style = stylename

[options]
variable = default value

	The inherit setting gives the name of a “base theme”, or none. The
base theme will be used to locate missing templates (most themes will not have
to supply most templates if they use basic as the base theme), its options
will be inherited, and all of its static files will be used as well.

	The stylesheet setting gives the name of a CSS file which will be
referenced in the HTML header. If you need more than one CSS file, either
include one from the other via CSS’ @import, or use a custom HTML template
that adds <link rel="stylesheet"> tags as necessary. Setting the
html_style config value will override this setting.

	The pygments_style setting gives the name of a Pygments style to use for
highlighting. This can be overridden by the user in the
pygments_style config value.

	The options section contains pairs of variable names and default values.
These options can be overridden by the user in html_theme_options
and are accessible from all templates as theme_<name>.

Templating

The guide to templating is helpful if you want to write your
own templates. What is important to keep in mind is the order in which Sphinx
searches for templates:

	First, in the user’s templates_path directories.

	Then, in the selected theme.

	Then, in its base theme, its base’s base theme, etc.

When extending a template in the base theme with the same name, use the theme
name as an explicit directory: {% extends "basic/layout.html" %}. From a
user templates_path template, you can still use the “exclamation mark”
syntax as described in the templating document.

Static templates

Since theme options are meant for the user to configure a theme more easily,
without having to write a custom stylesheet, it is necessary to be able to
template static files as well as HTML files. Therefore, Sphinx supports
so-called “static templates”, like this:

If the name of a file in the static/ directory of a theme (or in the user’s
static path, for that matter) ends with _t, it will be processed by the
template engine. The _t will be left from the final file name. For
example, the classic theme has a file static/classic.css_t which uses
templating to put the color options into the stylesheet. When a documentation
is built with the classic theme, the output directory will contain a
_static/classic.css file where all template tags have been processed.

	[1]	It is not an executable Python file, as opposed to conf.py,
because that would pose an unnecessary security risk if themes are
shared.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Templating

Sphinx uses the Jinja [http://jinja.pocoo.org] templating engine for its HTML
templates. Jinja is a text-based engine, and inspired by Django templates, so
anyone having used Django will already be familiar with it. It also has
excellent documentation for those who need to make themselves familiar with it.

Do I need to use Sphinx’s templates to produce HTML?

No. You have several other options:

	You can write a TemplateBridge subclass that
calls your template engine of choice, and set the template_bridge
configuration value accordingly.

	You can write a custom builder that derives from
StandaloneHTMLBuilder and calls your template
engine of choice.

	You can use the PickleHTMLBuilder that produces
pickle files with the page contents, and postprocess them using a custom tool,
or use them in your Web application.

Jinja/Sphinx Templating Primer

The default templating language in Sphinx is Jinja. It’s Django/Smarty inspired
and easy to understand. The most important concept in Jinja is template
inheritance, which means that you can overwrite only specific blocks within a
template, customizing it while also keeping the changes at a minimum.

To customize the output of your documentation you can override all the templates
(both the layout templates and the child templates) by adding files with the
same name as the original filename into the template directory of the structure
the Sphinx quickstart generated for you.

Sphinx will look for templates in the folders of templates_path
first, and if it can’t find the template it’s looking for there, it falls back
to the selected theme’s templates.

A template contains variables, which are replaced with values when the
template is evaluated, tags, which control the logic of the template and
blocks which are used for template inheritance.

Sphinx’s basic theme provides base templates with a couple of blocks it will
fill with data. These are located in the themes/basic subdirectory of
the Sphinx installation directory, and used by all builtin Sphinx themes.
Templates with the same name in the templates_path override templates
supplied by the selected theme.

For example, to add a new link to the template area containing related links all
you have to do is to add a new template called layout.html with the
following contents:

{% extends "!layout.html" %}
{% block rootrellink %}
 Project Homepage »
 {{ super() }}
{% endblock %}

By prefixing the name of the overridden template with an exclamation mark,
Sphinx will load the layout template from the underlying HTML theme.

Important: If you override a block, call {{ super() }} somewhere to
render the block’s content in the extended template – unless you don’t want
that content to show up.

Working with the builtin templates

The builtin basic theme supplies the templates that all builtin Sphinx
themes are based on. It has the following elements you can override or use:

Blocks

The following blocks exist in the layout.html template:

	doctype

	The doctype of the output format. By default this is XHTML 1.0 Transitional
as this is the closest to what Sphinx and Docutils generate and it’s a good
idea not to change it unless you want to switch to HTML 5 or a different but
compatible XHTML doctype.

	linktags

	This block adds a couple of <link> tags to the head section of the
template.

	extrahead

	This block is empty by default and can be used to add extra contents into
the <head> tag of the generated HTML file. This is the right place to
add references to JavaScript or extra CSS files.

	relbar1 / relbar2

	This block contains the relation bar, the list of related links (the
parent documents on the left, and the links to index, modules etc. on the
right). relbar1 appears before the document, relbar2 after the
document. By default, both blocks are filled; to show the relbar only
before the document, you would override relbar2 like this:

{% block relbar2 %}{% endblock %}

	rootrellink / relbaritems

	Inside the relbar there are three sections: The rootrellink, the links
from the documentation and the custom relbaritems. The rootrellink is a
block that by default contains a list item pointing to the master document
by default, the relbaritems is an empty block. If you override them to
add extra links into the bar make sure that they are list items and end with
the reldelim1.

	document

	The contents of the document itself. It contains the block “body” where the
individual content is put by subtemplates like page.html.

	sidebar1 / sidebar2

	A possible location for a sidebar. sidebar1 appears before the document
and is empty by default, sidebar2 after the document and contains the
default sidebar. If you want to swap the sidebar location override this and
call the sidebar helper:

{% block sidebar1 %}{{ sidebar() }}{% endblock %}
{% block sidebar2 %}{% endblock %}

(The sidebar2 location for the sidebar is needed by the sphinxdoc.css
stylesheet, for example.)

	sidebarlogo

	The logo location within the sidebar. Override this if you want to place
some content at the top of the sidebar.

	footer

	The block for the footer div. If you want a custom footer or markup before
or after it, override this one.

The following four blocks are only used for pages that do not have assigned a
list of custom sidebars in the html_sidebars config value. Their use
is deprecated in favor of separate sidebar templates, which can be included via
html_sidebars.

	sidebartoc

	The table of contents within the sidebar.

Deprecated since version 1.0.

	sidebarrel

	The relation links (previous, next document) within the sidebar.

Deprecated since version 1.0.

	sidebarsourcelink

	The “Show source” link within the sidebar (normally only shown if this is
enabled by html_show_sourcelink).

Deprecated since version 1.0.

	sidebarsearch

	The search box within the sidebar. Override this if you want to place some
content at the bottom of the sidebar.

Deprecated since version 1.0.

Configuration Variables

Inside templates you can set a couple of variables used by the layout template
using the {% set %} tag:

	
reldelim1

	The delimiter for the items on the left side of the related bar. This
defaults to ' »' Each item in the related bar ends with the value
of this variable.

	
reldelim2

	The delimiter for the items on the right side of the related bar. This
defaults to ' |'. Each item except of the last one in the related bar
ends with the value of this variable.

Overriding works like this:

{% extends "!layout.html" %}
{% set reldelim1 = ' >' %}

	
script_files

	Add additional script files here, like this:

{% set script_files = script_files + ["_static/myscript.js"] %}

	
css_files

	Similar to script_files, for CSS files.

Helper Functions

Sphinx provides various Jinja functions as helpers in the template. You can use
them to generate links or output multiply used elements.

	
pathto(document)

	Return the path to a Sphinx document as a URL. Use this to refer to built
documents.

	
pathto(file, 1)

	Return the path to a file which is a filename relative to the root of the
generated output. Use this to refer to static files.

	
hasdoc(document)

	Check if a document with the name document exists.

	
sidebar()

	Return the rendered sidebar.

	
relbar()

	Return the rendered relation bar.

Global Variables

These global variables are available in every template and are safe to use.
There are more, but most of them are an implementation detail and might change
in the future.

	
builder

	The name of the builder (e.g. html or htmlhelp).

	
copyright

	The value of copyright.

	
docstitle

	The title of the documentation (the value of html_title), except
when the “single-file” builder is used, when it is set to None.

	
embedded

	True if the built HTML is meant to be embedded in some viewing application
that handles navigation, not the web browser, such as for HTML help or Qt
help formats. In this case, the sidebar is not included.

	
favicon

	The path to the HTML favicon in the static path, or ''.

	
file_suffix

	The value of the builder’s out_suffix
attribute, i.e. the file name extension that the output files will get. For
a standard HTML builder, this is usually .html.

	
has_source

	True if the reST document sources are copied (if html_copy_source
is True).

	
language

	The value of language.

	
last_updated

	The build date.

	
logo

	The path to the HTML logo image in the static path, or ''.

	
master_doc

	The value of master_doc, for usage with pathto().

	
next

	The next document for the navigation. This variable is either false or has
two attributes link and title. The title contains HTML markup. For
example, to generate a link to the next page, you can use this snippet:

{% if next %}
{{ next.title }}
{% endif %}

	
pagename

	The “page name” of the current file, i.e. either the document name if the
file is generated from a reST source, or the equivalent hierarchical name
relative to the output directory ([directory/]filename_without_extension).

	
parents

	A list of parent documents for navigation, structured like the next
item.

	
prev

	Like next, but for the previous page.

	
project

	The value of project.

	
release

	The value of release.

	
rellinks

	A list of links to put at the left side of the relbar, next to “next” and
“prev”. This usually contains links to the general index and other indices,
such as the Python module index. If you add something yourself, it must be a
tuple (pagename, link title, accesskey, link text).

	
shorttitle

	The value of html_short_title.

	
show_source

	True if html_show_sourcelink is True.

	
sphinx_version

	The version of Sphinx used to build.

	
style

	The name of the main stylesheet, as given by the theme or
html_style.

	
title

	The title of the current document, as used in the <title> tag.

	
use_opensearch

	The value of html_use_opensearch.

	
version

	The value of version.

In addition to these values, there are also all theme options available
(prefixed by theme_), as well as the values given by the user in
html_context.

In documents that are created from source files (as opposed to
automatically-generated files like the module index, or documents that already
are in HTML form), these variables are also available:

	
meta

	Document metadata (a dictionary), see File-wide metadata.

	
sourcename

	The name of the copied source file for the current document. This is only
nonempty if the html_copy_source value is True.

	
toc

	The local table of contents for the current page, rendered as HTML bullet
lists.

	
toctree

	A callable yielding the global TOC tree containing the current page, rendered
as HTML bullet lists. Optional keyword arguments:

	collapse (True by default): if true, all TOC entries that are not
ancestors of the current page are collapsed

	maxdepth (defaults to the max depth selected in the toctree directive):
the maximum depth of the tree; set it to -1 to allow unlimited depth

	titles_only (False by default): if true, put only toplevel document
titles in the tree

	includehidden (False by default): if true, the TOC tree will also
contain hidden entries.

	
page_source_suffix

	The suffix of the file that was rendered. Since we support a list of source_suffix,
this will allow you to properly link to the original source file.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Sphinx Extensions

Since many projects will need special features in their documentation, Sphinx
allows to add “extensions” to the build process, each of which can modify almost
any aspect of document processing.

This chapter describes the extensions bundled with Sphinx. For the API
documentation on writing your own extension, see Developing extensions for Sphinx.

Builtin Sphinx extensions

These extensions are built in and can be activated by respective entries in the
extensions configuration value:

	sphinx.ext.autodoc – Include documentation from docstrings
	Docstring preprocessing

	Skipping members

	sphinx.ext.autosectionlabel – Allow reference sections using its title

	sphinx.ext.autosummary – Generate autodoc summaries
	sphinx-autogen – generate autodoc stub pages

	Generating stub pages automatically

	Customizing templates

	sphinx.ext.coverage – Collect doc coverage stats

	sphinx.ext.doctest – Test snippets in the documentation
	Directives

	Configuration

	sphinx.ext.extlinks – Markup to shorten external links

	sphinx.ext.githubpages – Publish HTML docs in GitHub Pages

	sphinx.ext.graphviz – Add Graphviz graphs

	sphinx.ext.ifconfig – Include content based on configuration

	sphinx.ext.inheritance_diagram – Include inheritance diagrams

	sphinx.ext.intersphinx – Link to other projects’ documentation

	sphinx.ext.linkcode – Add external links to source code

	Math support in Sphinx
	sphinx.ext.imgmath – Render math as images

	sphinx.ext.mathjax – Render math via JavaScript

	sphinx.ext.jsmath – Render math via JavaScript

	sphinx.ext.napoleon – Support for NumPy and Google style docstrings
	Napoleon - Marching toward legible docstrings
	Getting Started

	Docstrings

	Docstring Sections

	Google vs NumPy

	Configuration

	sphinx.ext.todo – Support for todo items

	sphinx.ext.viewcode – Add links to highlighted source code

Third-party extensions

You can find several extensions contributed by users in the Sphinx Contrib [https://bitbucket.org/birkenfeld/sphinx-contrib]
repository. It is open for anyone who wants to maintain an extension
publicly; just send a short message asking for write permissions.

There are also several extensions hosted elsewhere. The Sphinx extension
survey [http://sphinxext-survey.readthedocs.org/en/latest/] contains a
comprehensive list.

If you write an extension that you think others will find useful or you think
should be included as a part of Sphinx, please write to the project mailing
list (join here [https://groups.google.com/forum/#!forum/sphinx-dev]).

Where to put your own extensions?

Extensions local to a project should be put within the project’s directory
structure. Set Python’s module search path, sys.path, accordingly so that
Sphinx can find them.
E.g., if your extension foo.py lies in the exts subdirectory of the
project root, put into conf.py:

import sys, os

sys.path.append(os.path.abspath('exts'))

extensions = ['foo']

You can also install extensions anywhere else on sys.path, e.g. in the
site-packages directory.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.autodoc – Include documentation from docstrings

This extension can import the modules you are documenting, and pull in
documentation from docstrings in a semi-automatic way.

Note

For Sphinx (actually, the Python interpreter that executes Sphinx) to find
your module, it must be importable. That means that the module or the
package must be in one of the directories on sys.path – adapt your
sys.path in the configuration file accordingly.

Warning

autodoc imports the modules to be documented. If any
modules have side effects on import, these will be executed by autodoc
when sphinx-build is run.

If you document scripts (as opposed to library modules), make sure their main
routine is protected by a if __name__ == '__main__' condition.

For this to work, the docstrings must of course be written in correct
reStructuredText. You can then use all of the usual Sphinx markup in the
docstrings, and it will end up correctly in the documentation. Together with
hand-written documentation, this technique eases the pain of having to maintain
two locations for documentation, while at the same time avoiding
auto-generated-looking pure API documentation.

If you prefer NumPy [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] or Google [https://google.github.io/styleguide/pyguide.html#Comments] style docstrings over reStructuredText,
you can also enable the napoleon extension.
napoleon is a preprocessor that converts your
docstrings to correct reStructuredText before autodoc processes them.

autodoc provides several directives that are versions of the usual
py:module, py:class and so forth. On parsing time, they
import the corresponding module and extract the docstring of the given objects,
inserting them into the page source under a suitable py:module,
py:class etc. directive.

Note

Just as py:class respects the current py:module,
autoclass will also do so. Likewise, automethod will
respect the current py:class.

	
.. automodule::

	
.. autoclass::

	
.. autoexception::

	Document a module, class or exception. All three directives will by default
only insert the docstring of the object itself:

.. autoclass:: Noodle

will produce source like this:

.. class:: Noodle

 Noodle's docstring.

The “auto” directives can also contain content of their own, it will be
inserted into the resulting non-auto directive source after the docstring
(but before any automatic member documentation).

Therefore, you can also mix automatic and non-automatic member documentation,
like so:

.. autoclass:: Noodle
 :members: eat, slurp

 .. method:: boil(time=10)

 Boil the noodle *time* minutes.

Options and advanced usage

	If you want to automatically document members, there’s a members
option:

.. automodule:: noodle
 :members:

will document all module members (recursively), and

.. autoclass:: Noodle
 :members:

will document all non-private member functions and properties (that is,
those whose name doesn’t start with _).

For modules, __all__ will be respected when looking for members; the
order of the members will also be the order in __all__.

You can also give an explicit list of members; only these will then be
documented:

.. autoclass:: Noodle
 :members: eat, slurp

	If you want to make the members option (or other flag options described
below) the default, see autodoc_default_flags.

	Members without docstrings will be left out, unless you give the
undoc-members flag option:

.. automodule:: noodle
 :members:
 :undoc-members:

	“Private” members (that is, those named like _private or __private)
will be included if the private-members flag option is given.

New in version 1.1.

	Python “special” members (that is, those named like __special__) will
be included if the special-members flag option is given:

.. autoclass:: my.Class
 :members:
 :private-members:
 :special-members:

would document both “private” and “special” members of the class.

New in version 1.1.

Changed in version 1.2: The option can now take arguments, i.e. the special members to document.

	For classes and exceptions, members inherited from base classes will be
left out when documenting all members, unless you give the
inherited-members flag option, in addition to members:

.. autoclass:: Noodle
 :members:
 :inherited-members:

This can be combined with undoc-members to document all available
members of the class or module.

Note: this will lead to markup errors if the inherited members come from a
module whose docstrings are not reST formatted.

New in version 0.3.

	It’s possible to override the signature for explicitly documented callable
objects (functions, methods, classes) with the regular syntax that will
override the signature gained from introspection:

.. autoclass:: Noodle(type)

 .. automethod:: eat(persona)

This is useful if the signature from the method is hidden by a decorator.

New in version 0.4.

	The automodule, autoclass and
autoexception directives also support a flag option called
show-inheritance. When given, a list of base classes will be inserted
just below the class signature (when used with automodule, this
will be inserted for every class that is documented in the module).

New in version 0.4.

	All autodoc directives support the noindex flag option that has the
same effect as for standard py:function etc. directives: no
index entries are generated for the documented object (and all
autodocumented members).

New in version 0.4.

	automodule also recognizes the synopsis, platform and
deprecated options that the standard py:module directive
supports.

New in version 0.5.

	automodule and autoclass also has an member-order
option that can be used to override the global value of
autodoc_member_order for one directive.

New in version 0.6.

	The directives supporting member documentation also have a
exclude-members option that can be used to exclude single member names
from documentation, if all members are to be documented.

New in version 0.6.

	In an automodule directive with the members option set, only
module members whose __module__ attribute is equal to the module name
as given to automodule will be documented. This is to prevent
documentation of imported classes or functions. Set the
imported-members option if you want to prevent this behavior and
document all available members. Note that attributes from imported modules
will not be documented, because attribute documentation is discovered by
parsing the source file of the current module.

New in version 1.2.

	Add a list of modules in the autodoc_mock_imports to prevent
import errors to halt the building process when some external dependencies
are not importable at build time.

New in version 1.3.

	
.. autofunction::

	
.. autodata::

	
.. automethod::

	
.. autoattribute::

	These work exactly like autoclass etc.,
but do not offer the options used for automatic member documentation.

autodata and autoattribute support
the annotation option.
Without this option, the representation of the object
will be shown in the documentation.
When the option is given without arguments,
only the name of the object will be printed:

.. autodata:: CD_DRIVE
 :annotation:

You can tell sphinx what should be printed after the name:

.. autodata:: CD_DRIVE
 :annotation: = your CD device name

For module data members and class attributes, documentation can either be put
into a comment with special formatting (using a #: to start the comment
instead of just #), or in a docstring after the definition. Comments
need to be either on a line of their own before the definition, or
immediately after the assignment on the same line. The latter form is
restricted to one line only.

This means that in the following class definition, all attributes can be
autodocumented:

class Foo:
 """Docstring for class Foo."""

 #: Doc comment for class attribute Foo.bar.
 #: It can have multiple lines.
 bar = 1

 flox = 1.5 #: Doc comment for Foo.flox. One line only.

 baz = 2
 """Docstring for class attribute Foo.baz."""

 def __init__(self):
 #: Doc comment for instance attribute qux.
 self.qux = 3

 self.spam = 4
 """Docstring for instance attribute spam."""

Changed in version 0.6: autodata and autoattribute can now extract
docstrings.

Changed in version 1.1: Comment docs are now allowed on the same line after an assignment.

Changed in version 1.2: autodata and autoattribute have an annotation
option.

Note

If you document decorated functions or methods, keep in mind that autodoc
retrieves its docstrings by importing the module and inspecting the
__doc__ attribute of the given function or method. That means that if
a decorator replaces the decorated function with another, it must copy the
original __doc__ to the new function.

From Python 2.5, functools.wraps() can be used to create
well-behaved decorating functions.

There are also new config values that you can set:

	
autoclass_content

	This value selects what content will be inserted into the main body of an
autoclass directive. The possible values are:

	"class"

	Only the class’ docstring is inserted. This is the default. You can
still document __init__ as a separate method using
automethod or the members option to autoclass.

	"both"

	Both the class’ and the __init__ method’s docstring are concatenated
and inserted.

	"init"

	Only the __init__ method’s docstring is inserted.

New in version 0.3.

If the class has no __init__ method or if the __init__ method’s
docstring is empty, but the class has a __new__ method’s docstring,
it is used instead.

New in version 1.4.

	
autodoc_member_order

	This value selects if automatically documented members are sorted
alphabetical (value 'alphabetical'), by member type (value
'groupwise') or by source order (value 'bysource'). The default is
alphabetical.

Note that for source order, the module must be a Python module with the
source code available.

New in version 0.6.

Changed in version 1.0: Support for 'bysource'.

	
autodoc_default_flags

	This value is a list of autodoc directive flags that should be automatically
applied to all autodoc directives. The supported flags are 'members',
'undoc-members', 'private-members', 'special-members',
'inherited-members' and 'show-inheritance'.

If you set one of these flags in this config value, you can use a negated
form, 'no-flag', in an autodoc directive, to disable it once.
For example, if autodoc_default_flags is set to ['members',
'undoc-members'], and you write a directive like this:

.. automodule:: foo
 :no-undoc-members:

the directive will be interpreted as if only :members: was given.

New in version 1.0.

	
autodoc_docstring_signature

	Functions imported from C modules cannot be introspected, and therefore the
signature for such functions cannot be automatically determined. However, it
is an often-used convention to put the signature into the first line of the
function’s docstring.

If this boolean value is set to True (which is the default), autodoc will
look at the first line of the docstring for functions and methods, and if it
looks like a signature, use the line as the signature and remove it from the
docstring content.

New in version 1.1.

	
autodoc_mock_imports

	This value contains a list of modules to be mocked up. This is useful when
some external dependencies are not met at build time and break the building
process.

New in version 1.3.

Docstring preprocessing

autodoc provides the following additional events:

	
autodoc-process-docstring(app, what, name, obj, options, lines)

	
New in version 0.4.

Emitted when autodoc has read and processed a docstring. lines is a list
of strings – the lines of the processed docstring – that the event handler
can modify in place to change what Sphinx puts into the output.

	Parameters:	
	app – the Sphinx application object

	what – the type of the object which the docstring belongs to (one of
"module", "class", "exception", "function", "method",
"attribute")

	name – the fully qualified name of the object

	obj – the object itself

	options – the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and
noindex that are true if the flag option of same name was given to the
auto directive

	lines – the lines of the docstring, see above

	
autodoc-process-signature(app, what, name, obj, options, signature, return_annotation)

	
New in version 0.5.

Emitted when autodoc has formatted a signature for an object. The event
handler can return a new tuple (signature, return_annotation) to change
what Sphinx puts into the output.

	Parameters:	
	app – the Sphinx application object

	what – the type of the object which the docstring belongs to (one of
"module", "class", "exception", "function", "method",
"attribute")

	name – the fully qualified name of the object

	obj – the object itself

	options – the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and
noindex that are true if the flag option of same name was given to the
auto directive

	signature – function signature, as a string of the form
"(parameter_1, parameter_2)", or None if introspection didn’t
succeed and signature wasn’t specified in the directive.

	return_annotation – function return annotation as a string of the form
" -> annotation", or None if there is no return annotation

The sphinx.ext.autodoc module provides factory functions for commonly
needed docstring processing in event autodoc-process-docstring:

	
sphinx.ext.autodoc.cut_lines(pre, post=0, what=None)[source]

	Return a listener that removes the first pre and last post
lines of every docstring. If what is a sequence of strings,
only docstrings of a type in what will be processed.

Use like this (e.g. in the setup() function of conf.py):

from sphinx.ext.autodoc import cut_lines
app.connect('autodoc-process-docstring', cut_lines(4, what=['module']))

This can (and should) be used in place of automodule_skip_lines.

	
sphinx.ext.autodoc.between(marker, what=None, keepempty=False, exclude=False)[source]

	Return a listener that either keeps, or if exclude is True excludes,
lines between lines that match the marker regular expression. If no line
matches, the resulting docstring would be empty, so no change will be made
unless keepempty is true.

If what is a sequence of strings, only docstrings of a type in what will
be processed.

Skipping members

autodoc allows the user to define a custom method for determining whether a
member should be included in the documentation by using the following event:

	
autodoc-skip-member(app, what, name, obj, skip, options)

	
New in version 0.5.

Emitted when autodoc has to decide whether a member should be included in the
documentation. The member is excluded if a handler returns True. It is
included if the handler returns False.

	Parameters:	
	app – the Sphinx application object

	what – the type of the object which the docstring belongs to (one of
"module", "class", "exception", "function", "method",
"attribute")

	name – the fully qualified name of the object

	obj – the object itself

	skip – a boolean indicating if autodoc will skip this member if the
user handler does not override the decision

	options – the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and
noindex that are true if the flag option of same name was given to the
auto directive

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.autosectionlabel – Allow reference sections using its title

New in version 1.4.

This extension allows you to refer sections its title. This affects to the
reference role (ref).

For example:

A Plain Title

This is the text of the section.

It refers to the section title, see :ref:`A Plain Title`.

Internally, this extension generates the labels for each section. If same
section names are used in whole of document, any one is used for a target.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.autosummary – Generate autodoc summaries

New in version 0.6.

This extension generates function/method/attribute summary lists, similar to
those output e.g. by Epydoc and other API doc generation tools. This is
especially useful when your docstrings are long and detailed, and putting each
one of them on a separate page makes them easier to read.

The sphinx.ext.autosummary extension does this in two parts:

	There is an autosummary directive for generating summary listings
that contain links to the documented items, and short summary blurbs
extracted from their docstrings.

	Optionally, the convenience script sphinx-autogen or the new
autosummary_generate config value can be used to generate short
“stub” files for the entries listed in the autosummary directives.
These files by default contain only the corresponding
sphinx.ext.autodoc directive, but can be customized with templates.

	
.. autosummary::

	Insert a table that contains links to documented items, and a short summary
blurb (the first sentence of the docstring) for each of them.

The autosummary directive can also optionally serve as a
toctree entry for the included items. Optionally, stub
.rst files for these items can also be automatically generated.

For example,

.. currentmodule:: sphinx

.. autosummary::

 environment.BuildEnvironment
 util.relative_uri

produces a table like this:

	environment.BuildEnvironment(srcdir, ...)
	The environment in which the ReST files are translated.

	util.relative_uri(base, to)
	Return a relative URL from base to to.

Autosummary preprocesses the docstrings and signatures with the same
autodoc-process-docstring and autodoc-process-signature
hooks as autodoc.

Options

	If you want the autosummary table to also serve as a
toctree entry, use the toctree option, for example:

.. autosummary::
 :toctree: DIRNAME

 sphinx.environment.BuildEnvironment
 sphinx.util.relative_uri

The toctree option also signals to the sphinx-autogen script
that stub pages should be generated for the entries listed in this
directive. The option accepts a directory name as an argument;
sphinx-autogen will by default place its output in this
directory. If no argument is given, output is placed in the same directory
as the file that contains the directive.

	If you don’t want the autosummary to show function signatures in
the listing, include the nosignatures option:

.. autosummary::
 :nosignatures:

 sphinx.environment.BuildEnvironment
 sphinx.util.relative_uri

	You can specify a custom template with the template option.
For example,

.. autosummary::
 :template: mytemplate.rst

 sphinx.environment.BuildEnvironment

would use the template mytemplate.rst in your
templates_path to generate the pages for all entries
listed. See Customizing templates below.

New in version 1.0.

sphinx-autogen – generate autodoc stub pages

The sphinx-autogen script can be used to conveniently generate stub
documentation pages for items included in autosummary listings.

For example, the command

$ sphinx-autogen -o generated *.rst

will read all autosummary tables in the *.rst files that have
the :toctree: option set, and output corresponding stub pages in directory
generated for all documented items. The generated pages by default contain
text of the form:

sphinx.util.relative_uri
========================

.. autofunction:: sphinx.util.relative_uri

If the -o option is not given, the script will place the output files in the
directories specified in the :toctree: options.

Generating stub pages automatically

If you do not want to create stub pages with sphinx-autogen, you can
also use this new config value:

	
autosummary_generate

	Boolean indicating whether to scan all found documents for autosummary
directives, and to generate stub pages for each.

Can also be a list of documents for which stub pages should be generated.

The new files will be placed in the directories specified in the
:toctree: options of the directives.

Customizing templates

New in version 1.0.

You can customize the stub page templates, in a similar way as the HTML Jinja
templates, see Templating. (TemplateBridge
is not supported.)

Note

If you find yourself spending much time tailoring the stub templates, this
may indicate that it’s a better idea to write custom narrative documentation
instead.

Autosummary uses the following template files:

	autosummary/base.rst – fallback template

	autosummary/module.rst – template for modules

	autosummary/class.rst – template for classes

	autosummary/function.rst – template for functions

	autosummary/attribute.rst – template for class attributes

	autosummary/method.rst – template for class methods

The following variables available in the templates:

	
name

	Name of the documented object, excluding the module and class parts.

	
objname

	Name of the documented object, excluding the module parts.

	
fullname

	Full name of the documented object, including module and class parts.

	
module

	Name of the module the documented object belongs to.

	
class

	Name of the class the documented object belongs to. Only available for
methods and attributes.

	
underline

	A string containing len(full_name) * '='.

	
members

	List containing names of all members of the module or class. Only available
for modules and classes.

	
functions

	List containing names of “public” functions in the module. Here, “public”
here means that the name does not start with an underscore. Only available
for modules.

	
classes

	List containing names of “public” classes in the module. Only available for
modules.

	
exceptions

	List containing names of “public” exceptions in the module. Only available
for modules.

	
methods

	List containing names of “public” methods in the class. Only available for
classes.

	
attributes

	List containing names of “public” attributes in the class. Only available
for classes.

Note

You can use the autosummary directive in the stub pages.
Stub pages are generated also based on these directives.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.coverage – Collect doc coverage stats

This extension features one additional builder, the CoverageBuilder.

	
class sphinx.ext.coverage.CoverageBuilder[source]

	To use this builder, activate the coverage extension in your configuration
file and give -b coverage on the command line.

Todo

Write this section.

Several new configuration values can be used to specify what the builder
should check:

	
coverage_ignore_modules

	

	
coverage_ignore_functions

	

	
coverage_ignore_classes

	

	
coverage_c_path

	

	
coverage_c_regexes

	

	
coverage_ignore_c_items

	

	
coverage_write_headline

	Set to False to not write headlines.

New in version 1.1.

	
coverage_skip_undoc_in_source

	Skip objects that are not documented in the source with a docstring.
False by default.

New in version 1.1.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.doctest – Test snippets in the documentation

This extension allows you to test snippets in the documentation in a natural
way. It works by collecting specially-marked up code blocks and running them as
doctest tests.

Within one document, test code is partitioned in groups, where each group
consists of:

	zero or more setup code blocks (e.g. importing the module to test)

	one or more test blocks

When building the docs with the doctest builder, groups are collected for
each document and run one after the other, first executing setup code blocks,
then the test blocks in the order they appear in the file.

There are two kinds of test blocks:

	doctest-style blocks mimic interactive sessions by interleaving Python code
(including the interpreter prompt) and output.

	code-output-style blocks consist of an ordinary piece of Python code, and
optionally, a piece of output for that code.

Directives

The group argument below is interpreted as follows: if it is empty, the block
is assigned to the group named default. If it is *, the block is
assigned to all groups (including the default group). Otherwise, it must be
a comma-separated list of group names.

	
.. testsetup:: [group]

	A setup code block. This code is not shown in the output for other builders,
but executed before the doctests of the group(s) it belongs to.

	
.. testcleanup:: [group]

	A cleanup code block. This code is not shown in the output for other
builders, but executed after the doctests of the group(s) it belongs to.

New in version 1.1.

	
.. doctest:: [group]

	A doctest-style code block. You can use standard doctest flags for
controlling how actual output is compared with what you give as output. By
default, these options are enabled: ELLIPSIS (allowing you to put
ellipses in the expected output that match anything in the actual output),
IGNORE_EXCEPTION_DETAIL (not comparing tracebacks),
DONT_ACCEPT_TRUE_FOR_1 (by default, doctest accepts “True” in the output
where “1” is given – this is a relic of pre-Python 2.2 times).

This directive supports two options:

	hide, a flag option, hides the doctest block in other builders. By
default it is shown as a highlighted doctest block.

	options, a string option, can be used to give a comma-separated list of
doctest flags that apply to each example in the tests. (You still can give
explicit flags per example, with doctest comments, but they will show up in
other builders too.)

Note that like with standard doctests, you have to use <BLANKLINE> to
signal a blank line in the expected output. The <BLANKLINE> is removed
when building presentation output (HTML, LaTeX etc.).

Also, you can give inline doctest options, like in doctest:

>>> datetime.date.now() # doctest: +SKIP
datetime.date(2008, 1, 1)

They will be respected when the test is run, but stripped from presentation
output.

	
.. testcode:: [group]

	A code block for a code-output-style test.

This directive supports one option:

	hide, a flag option, hides the code block in other builders. By
default it is shown as a highlighted code block.

Note

Code in a testcode block is always executed all at once, no matter how
many statements it contains. Therefore, output will not be generated
for bare expressions – use print. Example:

.. testcode::

 1+1 # this will give no output!
 print 2+2 # this will give output

.. testoutput::

 4

Also, please be aware that since the doctest module does not support
mixing regular output and an exception message in the same snippet, this
applies to testcode/testoutput as well.

	
.. testoutput:: [group]

	The corresponding output, or the exception message, for the last
testcode block.

This directive supports two options:

	hide, a flag option, hides the output block in other builders. By
default it is shown as a literal block without highlighting.

	options, a string option, can be used to give doctest flags
(comma-separated) just like in normal doctest blocks.

Example:

.. testcode::

 print 'Output text.'

.. testoutput::
 :hide:
 :options: -ELLIPSIS, +NORMALIZE_WHITESPACE

 Output text.

The following is an example for the usage of the directives. The test via
doctest and the test via testcode and
testoutput are equivalent.

The parrot module
=================

.. testsetup:: *

 import parrot

The parrot module is a module about parrots.

Doctest example:

.. doctest::

 >>> parrot.voom(3000)
 This parrot wouldn't voom if you put 3000 volts through it!

Test-Output example:

.. testcode::

 parrot.voom(3000)

This would output:

.. testoutput::

 This parrot wouldn't voom if you put 3000 volts through it!

Configuration

The doctest extension uses the following configuration values:

	
doctest_path

	A list of directories that will be added to sys.path when the doctest
builder is used. (Make sure it contains absolute paths.)

	
doctest_global_setup

	Python code that is treated like it were put in a testsetup directive for
every file that is tested, and for every group. You can use this to
e.g. import modules you will always need in your doctests.

New in version 0.6.

	
doctest_global_cleanup

	Python code that is treated like it were put in a testcleanup directive
for every file that is tested, and for every group. You can use this to
e.g. remove any temporary files that the tests leave behind.

New in version 1.1.

	
doctest_test_doctest_blocks

	If this is a nonempty string (the default is 'default'), standard reST
doctest blocks will be tested too. They will be assigned to the group name
given.

reST doctest blocks are simply doctests put into a paragraph of their own,
like so:

Some documentation text.

>>> print 1
1

Some more documentation text.

(Note that no special :: is used to introduce a doctest block; docutils
recognizes them from the leading >>>. Also, no additional indentation is
used, though it doesn’t hurt.)

If this value is left at its default value, the above snippet is interpreted
by the doctest builder exactly like the following:

Some documentation text.

.. doctest::

 >>> print 1
 1

Some more documentation text.

This feature makes it easy for you to test doctests in docstrings included
with the autodoc extension without marking them up with a
special directive.

Note though that you can’t have blank lines in reST doctest blocks. They
will be interpreted as one block ending and another one starting. Also,
removal of <BLANKLINE> and # doctest: options only works in
doctest blocks, though you may set trim_doctest_flags
to achieve that in all code blocks with Python console content.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.extlinks – Markup to shorten external links

Module author: Georg Brandl

New in version 1.0.

This extension is meant to help with the common pattern of having many external
links that point to URLs on one and the same site, e.g. links to bug trackers,
version control web interfaces, or simply subpages in other websites. It does
so by providing aliases to base URLs, so that you only need to give the subpage
name when creating a link.

Let’s assume that you want to include many links to issues at the Sphinx
tracker, at https://github.com/sphinx-doc/sphinx/issues/num. Typing
this URL again and again is tedious, so you can use extlinks
to avoid repeating yourself.

The extension adds one new config value:

	
extlinks

	This config value must be a dictionary of external sites, mapping unique
short alias names to a base URL and a prefix. For example, to create an
alias for the above mentioned issues, you would add

extlinks = {'issue': ('https://github.com/sphinx-doc/sphinx/issues/%s',
 'issue ')}

Now, you can use the alias name as a new role, e.g. :issue:`123`. This
then inserts a link to https://github.com/sphinx-doc/sphinx/issues/123.
As you can see, the target given in the role is substituted in the base URL
in the place of %s.

The link caption depends on the second item in the tuple, the prefix:

	If the prefix is None, the link caption is the full URL.

	If the prefix is the empty string, the link caption is the partial URL
given in the role content (123 in this case.)

	If the prefix is a non-empty string, the link caption is the partial URL,
prepended by the prefix – in the above example, the link caption would be
issue 123.

You can also use the usual “explicit title” syntax supported by other roles
that generate links, i.e. :issue:`this issue <123>`. In this case, the
prefix is not relevant.

Note

Since links are generated from the role in the reading stage, they appear as
ordinary links to e.g. the linkcheck builder.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.githubpages – Publish HTML docs in GitHub Pages

New in version 1.4.

This extension creates .nojekyll file on generated HTML directory to publish
the document on GitHub Pages.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.graphviz – Add Graphviz graphs

New in version 0.6.

This extension allows you to embed Graphviz [http://graphviz.org/] graphs in
your documents.

It adds these directives:

	
.. graphviz::

	Directive to embed graphviz code. The input code for dot is given as the
content. For example:

.. graphviz::

 digraph foo {
 "bar" -> "baz";
 }

In HTML output, the code will be rendered to a PNG or SVG image (see
graphviz_output_format). In LaTeX output, the code will be
rendered to an embeddable PDF file.

You can also embed external dot files, by giving the file name as an
argument to graphviz and no additional content:

.. graphviz:: external.dot

As for all file references in Sphinx, if the filename is absolute, it is
taken as relative to the source directory.

Changed in version 1.1: Added support for external files.

	
.. graph::

	Directive for embedding a single undirected graph. The name is given as a
directive argument, the contents of the graph are the directive content.
This is a convenience directive to generate graph <name> { <content> }.

For example:

.. graph:: foo

 "bar" -- "baz";

Note

The graph name is passed unchanged to Graphviz. If it contains
non-alphanumeric characters (e.g. a dash), you will have to double-quote
it.

	
.. digraph::

	Directive for embedding a single directed graph. The name is given as a
directive argument, the contents of the graph are the directive content.
This is a convenience directive to generate digraph <name> { <content> }.

For example:

.. digraph:: foo

 "bar" -> "baz" -> "quux";

New in version 1.0: All three directives support an alt option that determines the image’s
alternate text for HTML output. If not given, the alternate text defaults to
the graphviz code.

New in version 1.1: All three directives support an inline flag that controls paragraph
breaks in the output. When set, the graph is inserted into the current
paragraph. If the flag is not given, paragraph breaks are introduced before
and after the image (the default).

New in version 1.1: All three directives support a caption option that can be used to give a
caption to the diagram. Naturally, diagrams marked as “inline” cannot have a
caption.

Deprecated since version 1.4: inline option is deprecated.
All three directives generate inline node by default. If caption is given,
these generate block node instead.

Changed in version 1.4: All three directives support a graphviz_dot option that can be switch the
dot command within the directive.

There are also these new config values:

	
graphviz_dot

	The command name with which to invoke dot. The default is 'dot'; you
may need to set this to a full path if dot is not in the executable
search path.

Since this setting is not portable from system to system, it is normally not
useful to set it in conf.py; rather, giving it on the
sphinx-build command line via the -D
option should be preferable, like this:

sphinx-build -b html -D graphviz_dot=C:\graphviz\bin\dot.exe . _build/html

	
graphviz_dot_args

	Additional command-line arguments to give to dot, as a list. The default is
an empty list. This is the right place to set global graph, node or edge
attributes via dot’s -G, -N and -E options.

	
graphviz_output_format

	The output format for Graphviz when building HTML files. This must be either
'png' or 'svg'; the default is 'png'. If 'svg' is used, in
order to make the URL links work properly, an appropriate target
attribute must be set, such as "_top" and "_blank". For example, the
link in the following graph should work in the svg output:

.. graphviz::

 digraph example {
 a [label="sphinx", href="http://sphinx-doc.org", target="_top"];
 b [label="other"];
 a -> b;
 }

New in version 1.0: Previously, output always was PNG.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.ifconfig – Include content based on configuration

This extension is quite simple, and features only one directive:

	
.. ifconfig::

	Include content of the directive only if the Python expression given as an
argument is True, evaluated in the namespace of the project’s
configuration (that is, all registered variables from conf.py are
available).

For example, one could write

.. ifconfig:: releaselevel in ('alpha', 'beta', 'rc')

 This stuff is only included in the built docs for unstable versions.

To make a custom config value known to Sphinx, use
add_config_value() in the setup function in
conf.py, e.g.:

def setup(app):
 app.add_config_value('releaselevel', '', 'env')

The second argument is the default value, the third should always be 'env'
for such values (it selects if Sphinx re-reads the documents if the value
changes).

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.inheritance_diagram – Include inheritance diagrams

New in version 0.6.

This extension allows you to include inheritance diagrams, rendered via the
Graphviz extension.

It adds this directive:

	
.. inheritance-diagram::

	This directive has one or more arguments, each giving a module or class
name. Class names can be unqualified; in that case they are taken to exist
in the currently described module (see py:module).

For each given class, and each class in each given module, the base classes
are determined. Then, from all classes and their base classes, a graph is
generated which is then rendered via the graphviz extension to a directed
graph.

This directive supports an option called parts that, if given, must be an
integer, advising the directive to remove that many parts of module names
from the displayed names. (For example, if all your class names start with
lib., you can give :parts: 1 to remove that prefix from the displayed
node names.)

It also supports a private-bases flag option; if given, private base
classes (those whose name starts with _) will be included.

Changed in version 1.1: Added private-bases option; previously, all bases were always
included.

New config values are:

	
inheritance_graph_attrs

	A dictionary of graphviz graph attributes for inheritance diagrams.

For example:

inheritance_graph_attrs = dict(rankdir="LR", size='"6.0, 8.0"',
 fontsize=14, ratio='compress')

	
inheritance_node_attrs

	A dictionary of graphviz node attributes for inheritance diagrams.

For example:

inheritance_node_attrs = dict(shape='ellipse', fontsize=14, height=0.75,
 color='dodgerblue1', style='filled')

	
inheritance_edge_attrs

	A dictionary of graphviz edge attributes for inheritance diagrams.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.intersphinx – Link to other projects’ documentation

New in version 0.5.

This extension can generate automatic links to the documentation of objects in
other projects.

Usage is simple: whenever Sphinx encounters a cross-reference that has no
matching target in the current documentation set, it looks for targets in the
documentation sets configured in intersphinx_mapping. A reference
like :py:class:`zipfile.ZipFile` can then link to the Python documentation
for the ZipFile class, without you having to specify where it is located
exactly.

When using the “new” format (see below), you can even force lookup in a foreign
set by prefixing the link target appropriately. A link like :ref:`comparison
manual <python:comparisons>` will then link to the label “comparisons” in the
doc set “python”, if it exists.

Behind the scenes, this works as follows:

	Each Sphinx HTML build creates a file named objects.inv that contains
a mapping from object names to URIs relative to the HTML set’s root.

	Projects using the Intersphinx extension can specify the location of such
mapping files in the intersphinx_mapping config value. The mapping
will then be used to resolve otherwise missing references to objects into
links to the other documentation.

	By default, the mapping file is assumed to be at the same location as the rest
of the documentation; however, the location of the mapping file can also be
specified individually, e.g. if the docs should be buildable without Internet
access.

To use intersphinx linking, add 'sphinx.ext.intersphinx' to your
extensions config value, and use these new config values to activate
linking:

	
intersphinx_mapping

	This config value contains the locations and names of other projects that
should be linked to in this documentation.

Relative local paths for target locations are taken as relative to the base
of the built documentation, while relative local paths for inventory
locations are taken as relative to the source directory.

When fetching remote inventory files, proxy settings will be read from
the $HTTP_PROXY environment variable.

Old format for this config value

This is the format used before Sphinx 1.0. It is still recognized.

A dictionary mapping URIs to either None or an URI. The keys are the
base URI of the foreign Sphinx documentation sets and can be local paths or
HTTP URIs. The values indicate where the inventory file can be found: they
can be None (at the same location as the base URI) or another local or
HTTP URI.

New format for this config value

New in version 1.0.

A dictionary mapping unique identifiers to a tuple (target, inventory).
Each target is the base URI of a foreign Sphinx documentation set and can
be a local path or an HTTP URI. The inventory indicates where the
inventory file can be found: it can be None (at the same location as
the base URI) or another local or HTTP URI.

The unique identifier can be used to prefix cross-reference targets, so that
it is clear which intersphinx set the target belongs to. A link like
:ref:`comparison manual <python:comparisons>` will link to the label
“comparisons” in the doc set “python”, if it exists.

Example

To add links to modules and objects in the Python standard library
documentation, use:

intersphinx_mapping = {'python': ('https://docs.python.org/3.4', None)}

This will download the corresponding objects.inv file from the
Internet and generate links to the pages under the given URI. The downloaded
inventory is cached in the Sphinx environment, so it must be re-downloaded
whenever you do a full rebuild.

A second example, showing the meaning of a non-None value of the second
tuple item:

intersphinx_mapping = {'python': ('https://docs.python.org/3.4',
 'python-inv.txt')}

This will read the inventory from python-inv.txt in the source
directory, but still generate links to the pages under
https://docs.python.org/3.4. It is up to you to update the inventory file
as new objects are added to the Python documentation.

Multiple target for the inventory

New in version 1.3.

Alternative files can be specified for each inventory. One can give a
tuple for the second inventory tuple item as shown in the following
example. This will read the inventory iterating through the (second)
tuple items until the first successful fetch. The primary use case for
this to specify mirror sites for server downtime of the primary
inventory:

intersphinx_mapping = {'python': ('https://docs.python.org/3.4',
 (None, 'python-inv.txt'))}

	
intersphinx_cache_limit

	The maximum number of days to cache remote inventories. The default is
5, meaning five days. Set this to a negative value to cache inventories
for unlimited time.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.linkcode – Add external links to source code

Module author: Pauli Virtanen

New in version 1.2.

This extension looks at your object descriptions (.. class::,
.. function:: etc.) and adds external links to code hosted
somewhere on the web. The intent is similar to the
sphinx.ext.viewcode extension, but assumes the source code can be
found somewhere on the Internet.

In your configuration, you need to specify a linkcode_resolve
function that returns an URL based on the object.

	
linkcode_resolve

	This is a function linkcode_resolve(domain, info),
which should return the URL to source code corresponding to
the object in given domain with given information.

The function should return None if no link is to be added.

The argument domain specifies the language domain the object is
in. info is a dictionary with the following keys guaranteed to
be present (dependent on the domain):

	py: module (name of the module), fullname (name of the object)

	c: names (list of names for the object)

	cpp: names (list of names for the object)

	javascript: object (name of the object), fullname
(name of the item)

Example:

def linkcode_resolve(domain, info):
 if domain != 'py':
 return None
 if not info['module']:
 return None
 filename = info['module'].replace('.', '/')
 return "http://somesite/sourcerepo/%s.py" % filename

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

Math support in Sphinx

New in version 0.5.

Since mathematical notation isn’t natively supported by HTML in any way, Sphinx
supports math in documentation with several extensions.

The basic math support is contained in sphinx.ext.mathbase. Other math
support extensions should, if possible, reuse that support too.

Note

mathbase is not meant to be added to the extensions config
value, instead, use either sphinx.ext.imgmath or
sphinx.ext.mathjax as described below.

The input language for mathematics is LaTeX markup. This is the de-facto
standard for plain-text math notation and has the added advantage that no
further translation is necessary when building LaTeX output.

Keep in mind that when you put math markup in Python docstrings read by
autodoc, you either have to double all backslashes,
or use Python raw strings (r"raw").

mathbase provides the following config values:

	
math_number_all

	Set this option to True if you want all displayed math to be numbered.
The default is False.

mathbase defines these new markup elements:

	
:math:

	Role for inline math. Use like this:

Since Pythagoras, we know that :math:`a^2 + b^2 = c^2`.

	
.. math::

	Directive for displayed math (math that takes the whole line for itself).

The directive supports multiple equations, which should be separated by a
blank line:

.. math::

 (a + b)^2 = a^2 + 2ab + b^2

 (a - b)^2 = a^2 - 2ab + b^2

In addition, each single equation is set within a split environment,
which means that you can have multiple aligned lines in an equation,
aligned at & and separated by \\:

.. math::

 (a + b)^2 &= (a + b)(a + b) \\
 &= a^2 + 2ab + b^2

For more details, look into the documentation of the AmSMath LaTeX
package [http://www.ams.org/publications/authors/tex/amslatex].

When the math is only one line of text, it can also be given as a directive
argument:

.. math:: (a + b)^2 = a^2 + 2ab + b^2

Normally, equations are not numbered. If you want your equation to get a
number, use the label option. When given, it selects an internal label
for the equation, by which it can be cross-referenced, and causes an equation
number to be issued. See eqref for an example. The numbering
style depends on the output format.

There is also an option nowrap that prevents any wrapping of the given
math in a math environment. When you give this option, you must make sure
yourself that the math is properly set up. For example:

.. math::
 :nowrap:

 \begin{eqnarray}
 y & = & ax^2 + bx + c \\
 f(x) & = & x^2 + 2xy + y^2
 \end{eqnarray}

	
:eq:

	Role for cross-referencing equations via their label. This currently works
only within the same document. Example:

.. math:: e^{i\pi} + 1 = 0
 :label: euler

Euler's identity, equation :eq:`euler`, was elected one of the most
beautiful mathematical formulas.

sphinx.ext.imgmath – Render math as images

New in version 1.4.

This extension renders math via LaTeX and dvipng [http://savannah.nongnu.org/projects/dvipng/] or dvisvgm [http://dvisvgm.bplaced.net/] into PNG or SVG
images. This of course means that the computer where the docs are built must
have both programs available.

There are various config values you can set to influence how the images are
built:

	
imgmath_image_format

	The output image format. The default is 'png'. It should be either
'png' or 'svg'.

	
imgmath_latex

	The command name with which to invoke LaTeX. The default is 'latex'; you
may need to set this to a full path if latex is not in the executable
search path.

Since this setting is not portable from system to system, it is normally not
useful to set it in conf.py; rather, giving it on the
sphinx-build command line via the -D
option should be preferable, like this:

sphinx-build -b html -D imgmath_latex=C:\tex\latex.exe . _build/html

This value should only contain the path to the latex executable, not further
arguments; use imgmath_latex_args for that purpose.

	
imgmath_dvipng

	The command name with which to invoke dvipng. The default is
'dvipng'; you may need to set this to a full path if dvipng is not in
the executable search path. This option is only used when
imgmath_image_format is set to 'png'.

	
imgmath_dvisvgm

	The command name with which to invoke dvisvgm. The default is
'dvisvgm'; you may need to set this to a full path if dvisvgm is not
in the executable search path. This option is only used when
imgmath_image_format is 'svg'.

	
imgmath_latex_args

	Additional arguments to give to latex, as a list. The default is an empty
list.

	
imgmath_latex_preamble

	Additional LaTeX code to put into the preamble of the short LaTeX files that
are used to translate the math snippets. This is empty by default. Use it
e.g. to add more packages whose commands you want to use in the math.

	
imgmath_dvipng_args

	Additional arguments to give to dvipng, as a list. The default value is
['-gamma', '1.5', '-D', '110', '-bg', 'Transparent'] which makes the
image a bit darker and larger then it is by default, and produces PNGs with a
transparent background. This option is used only when
imgmath_image_format is 'png'.

	
imgmath_dvisvgm_args

	Additional arguments to give to dvisvgm, as a list. The default value is
['--no-fonts']. This option is used only when imgmath_image_format
is 'svg'.

	
imgmath_use_preview

	dvipng has the ability to determine the “depth” of the rendered text: for
example, when typesetting a fraction inline, the baseline of surrounding text
should not be flush with the bottom of the image, rather the image should
extend a bit below the baseline. This is what TeX calls “depth”. When this
is enabled, the images put into the HTML document will get a
vertical-align style that correctly aligns the baselines.

Unfortunately, this only works when the preview-latex package [http://www.gnu.org/software/auctex/preview-latex.html] is
installed. Therefore, the default for this option is False.

Currently this option is only used when imgmath_image_format is
'png'.

	
imgmath_add_tooltips

	Default: True. If false, do not add the LaTeX code as an “alt” attribute
for math images.

	
imgmath_font_size

	The font size (in pt) of the displayed math. The default value is
12. It must be a positive integer.

sphinx.ext.mathjax – Render math via JavaScript

New in version 1.1.

This extension puts math as-is into the HTML files. The JavaScript package
MathJax [https://www.mathjax.org/] is then loaded and transforms the LaTeX markup to readable math live in
the browser.

Because MathJax (and the necessary fonts) is very large, it is not included in
Sphinx.

	
mathjax_path

	The path to the JavaScript file to include in the HTML files in order to load
MathJax.

The default is the http:// URL that loads the JS files from the MathJax
CDN [http://docs.mathjax.org/en/latest/start.html]. If you want MathJax to
be available offline, you have to download it and set this value to a
different path.

The path can be absolute or relative; if it is relative, it is relative to
the _static directory of the built docs.

For example, if you put MathJax into the static path of the Sphinx docs, this
value would be MathJax/MathJax.js. If you host more than one Sphinx
documentation set on one server, it is advisable to install MathJax in a
shared location.

You can also give a full http:// URL different from the CDN URL.

sphinx.ext.jsmath – Render math via JavaScript

This extension works just as the MathJax extension does, but uses the older
package jsMath [http://www.math.union.edu/~dpvc/jsmath/]. It provides this config value:

	
jsmath_path

	The path to the JavaScript file to include in the HTML files in order to load
JSMath. There is no default.

The path can be absolute or relative; if it is relative, it is relative to
the _static directory of the built docs.

For example, if you put JSMath into the static path of the Sphinx docs, this
value would be jsMath/easy/load.js. If you host more than one
Sphinx documentation set on one server, it is advisable to install jsMath in
a shared location.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.napoleon – Support for NumPy and Google style docstrings

Module author: Rob Ruana

New in version 1.3.

Napoleon - Marching toward legible docstrings

Are you tired of writing docstrings that look like this:

:param path: The path of the file to wrap
:type path: str
:param field_storage: The :class:`FileStorage` instance to wrap
:type field_storage: FileStorage
:param temporary: Whether or not to delete the file when the File
 instance is destructed
:type temporary: bool
:returns: A buffered writable file descriptor
:rtype: BufferedFileStorage

ReStructuredText [http://docutils.sourceforge.net/rst.html] is great, but it creates visually dense, hard to read
docstrings [https://www.python.org/dev/peps/pep-0287/]. Compare the jumble above to the same thing rewritten
according to the Google Python Style Guide [http://google.github.io/styleguide/pyguide.html]:

Args:
 path (str): The path of the file to wrap
 field_storage (FileStorage): The :class:`FileStorage` instance to wrap
 temporary (bool): Whether or not to delete the file when the File
 instance is destructed

Returns:
 BufferedFileStorage: A buffered writable file descriptor

Much more legible, no?

Napoleon is a Sphinx Extensions that enables Sphinx to parse both NumPy [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]
and Google [http://google.github.io/styleguide/pyguide.html#Comments] style docstrings - the style recommended by Khan Academy [https://github.com/Khan/style-guides/blob/master/style/python.md#docstrings].

Napoleon is a pre-processor that parses NumPy [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] and Google [http://google.github.io/styleguide/pyguide.html#Comments] style
docstrings and converts them to reStructuredText before Sphinx attempts to
parse them. This happens in an intermediate step while Sphinx is processing
the documentation, so it doesn’t modify any of the docstrings in your actual
source code files.

Getting Started

	After setting up Sphinx to build your docs, enable
napoleon in the Sphinx conf.py file:

conf.py

Add autodoc and napoleon to the extensions list
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon']

	Use sphinx-apidoc to build your API documentation:

$ sphinx-apidoc -f -o docs/source projectdir

Docstrings

Napoleon interprets every docstring that autodoc
can find, including docstrings on: modules, classes, attributes,
methods, functions, and variables. Inside each docstring,
specially formatted Sections are parsed and converted to
reStructuredText.

All standard reStructuredText formatting still works as expected.

Docstring Sections

All of the following section headers are supported:

	Args (alias of Parameters)

	Arguments (alias of Parameters)

	Attributes

	Example

	Examples

	Keyword Args (alias of Keyword Arguments)

	Keyword Arguments

	Methods

	Note

	Notes

	Other Parameters

	Parameters

	Return (alias of Returns)

	Returns

	Raises

	References

	See Also

	Todo

	Warning

	Warnings (alias of Warning)

	Warns

	Yield (alias of Yields)

	Yields

Google vs NumPy

Napoleon supports two styles of docstrings: Google [http://google.github.io/styleguide/pyguide.html#Comments] and NumPy [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]. The
main difference between the two styles is that Google uses indention to
separate sections, whereas NumPy uses underlines.

Google style:

def func(arg1, arg2):
 """Summary line.

 Extended description of function.

 Args:
 arg1 (int): Description of arg1
 arg2 (str): Description of arg2

 Returns:
 bool: Description of return value

 """
 return True

NumPy style:

def func(arg1, arg2):
 """Summary line.

 Extended description of function.

 Parameters

 arg1 : int
 Description of arg1
 arg2 : str
 Description of arg2

 Returns

 bool
 Description of return value

 """
 return True

NumPy style tends to require more vertical space, whereas Google style
tends to use more horizontal space. Google style tends to be easier to
read for short and simple docstrings, whereas NumPy style tends be easier
to read for long and in-depth docstrings.

The Khan Academy [https://github.com/Khan/style-guides/blob/master/style/python.md#docstrings] recommends using Google style.

The choice between styles is largely aesthetic, but the two styles should
not be mixed. Choose one style for your project and be consistent with it.

See also

For complete examples:

	Example Google Style Python Docstrings

	Example NumPy Style Python Docstrings

For Python type annotations, see PEP 484 [https://www.python.org/dev/peps/pep-0484/].

Configuration

Listed below are all the settings used by napoleon and their default
values. These settings can be changed in the Sphinx conf.py file. Make
sure that both “sphinx.ext.autodoc” and “sphinx.ext.napoleon” are
enabled in conf.py:

conf.py

Add any Sphinx extension module names here, as strings
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon']

Napoleon settings
napoleon_google_docstring = True
napoleon_numpy_docstring = True
napoleon_include_private_with_doc = False
napoleon_include_special_with_doc = True
napoleon_use_admonition_for_examples = False
napoleon_use_admonition_for_notes = False
napoleon_use_admonition_for_references = False
napoleon_use_ivar = False
napoleon_use_param = True
napoleon_use_rtype = True

	
napoleon_google_docstring

	True to parse Google style [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html] docstrings. False to disable support
for Google style docstrings. Defaults to True.

	
napoleon_numpy_docstring

	True to parse NumPy style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] docstrings. False to disable support
for NumPy style docstrings. Defaults to True.

	
napoleon_include_private_with_doc

	True to include private members (like _membername) with docstrings
in the documentation. False to fall back to Sphinx’s default behavior.
Defaults to False.

If True:

def _included(self):
 """
 This will be included in the docs because it has a docstring
 """
 pass

def _skipped(self):
 # This will NOT be included in the docs
 pass

	
napoleon_include_special_with_doc

	True to include special members (like __membername__) with
docstrings in the documentation. False to fall back to Sphinx’s
default behavior. Defaults to True.

If True:

def __str__(self):
 """
 This will be included in the docs because it has a docstring
 """
 return unicode(self).encode('utf-8')

def __unicode__(self):
 # This will NOT be included in the docs
 return unicode(self.__class__.__name__)

	
napoleon_use_admonition_for_examples

	True to use the .. admonition:: directive for the Example and
Examples sections. False to use the .. rubric:: directive
instead. One may look better than the other depending on what HTML
theme is used. Defaults to False.

This NumPy style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] snippet will be converted as follows:

Example

This is just a quick example

If True:

.. admonition:: Example

 This is just a quick example

If False:

.. rubric:: Example

This is just a quick example

	
napoleon_use_admonition_for_notes

	True to use the .. admonition:: directive for Notes sections.
False to use the .. rubric:: directive instead. Defaults to False.

Note

The singular Note section will always be converted to a
.. note:: directive.

See also

napoleon_use_admonition_for_examples

	
napoleon_use_admonition_for_references

	True to use the .. admonition:: directive for References
sections. False to use the .. rubric:: directive instead.
Defaults to False.

See also

napoleon_use_admonition_for_examples

	
napoleon_use_ivar

	True to use the :ivar: role for instance variables. False to use
the .. attribute:: directive instead. Defaults to False.

This NumPy style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] snippet will be converted as follows:

Attributes

attr1 : int
 Description of `attr1`

If True:

:ivar attr1: Description of `attr1`
:vartype attr1: int

If False:

.. attribute:: attr1

 int

 Description of `attr1`

	
napoleon_use_param

	True to use a :param: role for each function parameter. False to
use a single :parameters: role for all the parameters.
Defaults to True.

This NumPy style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] snippet will be converted as follows:

Parameters

arg1 : str
 Description of `arg1`
arg2 : int, optional
 Description of `arg2`, defaults to 0

If True:

:param arg1: Description of `arg1`
:type arg1: str
:param arg2: Description of `arg2`, defaults to 0
:type arg2: int, optional

If False:

:parameters: * **arg1** (*str*) --
 Description of `arg1`
 * **arg2** (*int, optional*) --
 Description of `arg2`, defaults to 0

	
napoleon_use_rtype

	True to use the :rtype: role for the return type. False to output
the return type inline with the description. Defaults to True.

This NumPy style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] snippet will be converted as follows:

Returns

bool
 True if successful, False otherwise

If True:

:returns: True if successful, False otherwise
:rtype: bool

If False:

:returns: *bool* -- True if successful, False otherwise

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.todo – Support for todo items

Module author: Daniel Bültmann

New in version 0.5.

There are two additional directives when using this extension:

	
.. todo::

	Use this directive like, for example, note.

It will only show up in the output if todo_include_todos is
True.

New in version 1.3.2: This directive supports an class option that determines the class attribute
for HTML output. If not given, the class defaults to admonition-todo.

	
.. todolist::

	This directive is replaced by a list of all todo directives in the whole
documentation, if todo_include_todos is True.

There is also an additional config value:

	
todo_include_todos

	If this is True, todo and todolist produce output,
else they produce nothing. The default is False.

	
todo_link_only

	If this is True, todolist produce output without file path and line,
The default is False.

New in version 1.4.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Extensions »

sphinx.ext.viewcode – Add links to highlighted source code

Module author: Georg Brandl

New in version 1.0.

This extension looks at your Python object descriptions (.. class::,
.. function:: etc.) and tries to find the source files where the objects are
contained. When found, a separate HTML page will be output for each module with
a highlighted version of the source code, and a link will be added to all object
descriptions that leads to the source code of the described object. A link back
from the source to the description will also be inserted.

There is an additional config value:

	
viewcode_import

	If this is True, viewcode extension will follow alias objects that
imported from another module such as functions, classes and attributes.
As side effects, this option
else they produce nothing. The default is True.

Warning

viewcode_import imports the modules to be followed real
location. If any modules have side effects on import, these will be
executed by viewcode when sphinx-build is run.

If you document scripts (as opposed to library modules), make sure their
main routine is protected by a if __name__ == '__main__' condition.

New in version 1.3.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Developing extensions for Sphinx

Since many projects will need special features in their documentation, Sphinx is
designed to be extensible on several levels.

This is what you can do in an extension: First, you can add new
builders to support new output formats or actions on the parsed
documents. Then, it is possible to register custom reStructuredText roles and
directives, extending the markup. And finally, there are so-called “hook
points” at strategic places throughout the build process, where an extension can
register a hook and run specialized code.

An extension is simply a Python module. When an extension is loaded, Sphinx
imports this module and executes its setup() function, which in turn
notifies Sphinx of everything the extension offers – see the extension tutorial
for examples.

The configuration file itself can be treated as an extension if it contains a
setup() function. All other extensions to load must be listed in the
extensions configuration value.

Extension metadata

New in version 1.3.

The setup() function can return a dictionary. This is treated by Sphinx
as metadata of the extension. Metadata keys currently recognized are:

	'version': a string that identifies the extension version. It is used for
extension version requirement checking (see needs_extensions) and
informational purposes. If not given, "unknown version" is substituted.

	'parallel_read_safe': a boolean that specifies if parallel reading of
source files can be used when the extension is loaded. It defaults to
False, i.e. you have to explicitly specify your extension to be
parallel-read-safe after checking that it is.

	'parallel_write_safe': a boolean that specifies if parallel writing of
output files can be used when the extension is loaded. Since extensions
usually don’t negatively influence the process, this defaults to True.

APIs used for writing extensions

	Tutorial: Writing a simple extension
	Important objects

	Build Phases

	Extension Design

	The Setup Function

	The Node Classes

	The Directive Classes

	The Event Handlers

	Application API
	Extension setup

	Emitting events

	Producing messages / logging

	Sphinx core events

	Checking the Sphinx version

	The Config object

	The template bridge

	Exceptions

	Build environment API

	Builder API

	Docutils markup API
	Roles

	Directives
	ViewLists

	Parsing directive content as ReST

	Domain API

	Parser API

	Doctree node classes added by Sphinx
	Nodes for domain-specific object descriptions

	New admonition-like constructs

	Other paragraph-level nodes

	New inline nodes

	Special nodes

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Developing extensions for Sphinx »

Tutorial: Writing a simple extension

This section is intended as a walkthrough for the creation of custom extensions.
It covers the basics of writing and activating an extension, as well as
commonly used features of extensions.

As an example, we will cover a “todo” extension that adds capabilities to
include todo entries in the documentation, and to collect these in a central
place. (A similar “todo” extension is distributed with Sphinx.)

Important objects

There are several key objects whose API you will use while writing an
extension. These are:

	Application

	The application object (usually called app) is an instance of
Sphinx. It controls most high-level functionality, such as the
setup of extensions, event dispatching and producing output (logging).

If you have the environment object, the application is available as
env.app.

	Environment

	The build environment object (usually called env) is an instance of
BuildEnvironment. It is responsible for parsing the source
documents, stores all metadata about the document collection and is
serialized to disk after each build.

Its API provides methods to do with access to metadata, resolving references,
etc. It can also be used by extensions to cache information that should
persist for incremental rebuilds.

If you have the application or builder object, the environment is available
as app.env or builder.env.

	Builder

	The builder object (usually called builder) is an instance of a specific
subclass of Builder. Each builder class knows how to convert the
parsed documents into an output format, or otherwise process them (e.g. check
external links).

If you have the application object, the builder is available as
app.builder.

	Config

	The config object (usually called config) provides the values of
configuration values set in conf.py as attributes. It is an instance
of Config.

The config is available as app.config or env.config.

Build Phases

One thing that is vital in order to understand extension mechanisms is the way
in which a Sphinx project is built: this works in several phases.

Phase 0: Initialization

In this phase, almost nothing of interest to us happens. The source
directory is searched for source files, and extensions are initialized.
Should a stored build environment exist, it is loaded, otherwise a new one is
created.

Phase 1: Reading

In Phase 1, all source files (and on subsequent builds, those that are new or
changed) are read and parsed. This is the phase where directives and roles
are encountered by docutils, and the corresponding code is executed. The
output of this phase is a doctree for each source file; that is a tree of
docutils nodes. For document elements that aren’t fully known until all
existing files are read, temporary nodes are created.

There are nodes provided by docutils, which are documented in the docutils
documentation [http://docutils.sourceforge.net/docs/ref/doctree.html].
Additional nodes are provided by Sphinx and documented here.

During reading, the build environment is updated with all meta- and cross
reference data of the read documents, such as labels, the names of headings,
described Python objects and index entries. This will later be used to
replace the temporary nodes.

The parsed doctrees are stored on the disk, because it is not possible to
hold all of them in memory.

Phase 2: Consistency checks

Some checking is done to ensure no surprises in the built documents.

Phase 3: Resolving

Now that the metadata and cross-reference data of all existing documents is
known, all temporary nodes are replaced by nodes that can be converted into
output. For example, links are created for object references that exist, and
simple literal nodes are created for those that don’t.

Phase 4: Writing

This phase converts the resolved doctrees to the desired output format, such
as HTML or LaTeX. This happens via a so-called docutils writer that visits
the individual nodes of each doctree and produces some output in the process.

Note

Some builders deviate from this general build plan, for example, the builder
that checks external links does not need anything more than the parsed
doctrees and therefore does not have phases 2–4.

Extension Design

We want the extension to add the following to Sphinx:

	A “todo” directive, containing some content that is marked with “TODO”, and
only shown in the output if a new config value is set. (Todo entries should
not be in the output by default.)

	A “todolist” directive that creates a list of all todo entries throughout the
documentation.

For that, we will need to add the following elements to Sphinx:

	New directives, called todo and todolist.

	New document tree nodes to represent these directives, conventionally also
called todo and todolist. We wouldn’t need new nodes if the new
directives only produced some content representable by existing nodes.

	A new config value todo_include_todos (config value names should start
with the extension name, in order to stay unique) that controls whether todo
entries make it into the output.

	New event handlers: one for the doctree-resolved event, to replace
the todo and todolist nodes, and one for env-purge-doc (the reason
for that will be covered later).

The Setup Function

The new elements are added in the extension’s setup function. Let us create a
new Python module called todo.py and add the setup function:

def setup(app):
 app.add_config_value('todo_include_todos', False, 'html')

 app.add_node(todolist)
 app.add_node(todo,
 html=(visit_todo_node, depart_todo_node),
 latex=(visit_todo_node, depart_todo_node),
 text=(visit_todo_node, depart_todo_node))

 app.add_directive('todo', TodoDirective)
 app.add_directive('todolist', TodolistDirective)
 app.connect('doctree-resolved', process_todo_nodes)
 app.connect('env-purge-doc', purge_todos)

 return {'version': '0.1'} # identifies the version of our extension

The calls in this function refer to classes and functions not yet written. What
the individual calls do is the following:

	add_config_value() lets Sphinx know that it should recognize the
new config value todo_include_todos, whose default value should be
False (this also tells Sphinx that it is a boolean value).

If the third argument was 'html', HTML documents would be full rebuild if the
config value changed its value. This is needed for config values that
influence reading (build phase 1).

	add_node() adds a new node class to the build system. It also
can specify visitor functions for each supported output format. These visitor
functions are needed when the new nodes stay until phase 4 – since the
todolist node is always replaced in phase 3, it doesn’t need any.

We need to create the two node classes todo and todolist later.

	add_directive() adds a new directive, given by name and class.

The handler functions are created later.

	Finally, connect() adds an event handler to the event whose
name is given by the first argument. The event handler function is called
with several arguments which are documented with the event.

The Node Classes

Let’s start with the node classes:

from docutils import nodes

class todo(nodes.Admonition, nodes.Element):
 pass

class todolist(nodes.General, nodes.Element):
 pass

def visit_todo_node(self, node):
 self.visit_admonition(node)

def depart_todo_node(self, node):
 self.depart_admonition(node)

Node classes usually don’t have to do anything except inherit from the standard
docutils classes defined in docutils.nodes. todo inherits from
Admonition because it should be handled like a note or warning, todolist
is just a “general” node.

Note

Many extensions will not have to create their own node classes and work fine
with the nodes already provided by docutils [http://docutils.sourceforge.net/docs/ref/doctree.html] and Sphinx.

The Directive Classes

A directive class is a class deriving usually from
docutils.parsers.rst.Directive. The directive interface is also
covered in detail in the docutils documentation [http://docutils.sourceforge.net/docs/ref/rst/directives.html]; the important thing is that
the class should have attributes that configure the allowed markup,
and a run method that returns a list of nodes.

The todolist directive is quite simple:

from docutils.parsers.rst import Directive

class TodolistDirective(Directive):

 def run(self):
 return [todolist('')]

An instance of our todolist node class is created and returned. The
todolist directive has neither content nor arguments that need to be handled.

The todo directive function looks like this:

from sphinx.util.compat import make_admonition
from sphinx.locale import _

class TodoDirective(Directive):

 # this enables content in the directive
 has_content = True

 def run(self):
 env = self.state.document.settings.env

 targetid = "todo-%d" % env.new_serialno('todo')
 targetnode = nodes.target('', '', ids=[targetid])

 ad = make_admonition(todo, self.name, [_('Todo')], self.options,
 self.content, self.lineno, self.content_offset,
 self.block_text, self.state, self.state_machine)

 if not hasattr(env, 'todo_all_todos'):
 env.todo_all_todos = []
 env.todo_all_todos.append({
 'docname': env.docname,
 'lineno': self.lineno,
 'todo': ad[0].deepcopy(),
 'target': targetnode,
 })

 return [targetnode] + ad

Several important things are covered here. First, as you can see, you can refer
to the build environment instance using self.state.document.settings.env.

Then, to act as a link target (from the todolist), the todo directive needs to
return a target node in addition to the todo node. The target ID (in HTML, this
will be the anchor name) is generated by using env.new_serialno which
returns a new unique integer on each call and therefore leads to unique target
names. The target node is instantiated without any text (the first two
arguments).

An admonition is created using a standard docutils function (wrapped in Sphinx
for docutils cross-version compatibility). The first argument gives the node
class, in our case todo. The third argument gives the admonition title (use
arguments here to let the user specify the title). A list of nodes is
returned from make_admonition.

Then, the todo node is added to the environment. This is needed to be able to
create a list of all todo entries throughout the documentation, in the place
where the author puts a todolist directive. For this case, the environment
attribute todo_all_todos is used (again, the name should be unique, so it is
prefixed by the extension name). It does not exist when a new environment is
created, so the directive must check and create it if necessary. Various
information about the todo entry’s location are stored along with a copy of the
node.

In the last line, the nodes that should be put into the doctree are returned:
the target node and the admonition node.

The node structure that the directive returns looks like this:

+--------------------+
| target node |
+--------------------+
+--------------------+
| todo node |
+--------------------+
 __+--------------------+
 | admonition title |
 +--------------------+
 | paragraph |
 +--------------------+
 | ... |
 +--------------------+

The Event Handlers

Finally, let’s look at the event handlers. First, the one for the
env-purge-doc event:

def purge_todos(app, env, docname):
 if not hasattr(env, 'todo_all_todos'):
 return
 env.todo_all_todos = [todo for todo in env.todo_all_todos
 if todo['docname'] != docname]

Since we store information from source files in the environment, which is
persistent, it may become out of date when the source file changes. Therefore,
before each source file is read, the environment’s records of it are cleared,
and the env-purge-doc event gives extensions a chance to do the same.
Here we clear out all todos whose docname matches the given one from the
todo_all_todos list. If there are todos left in the document, they will be
added again during parsing.

The other handler belongs to the doctree-resolved event. This event is
emitted at the end of phase 3 and allows custom resolving to be done:

def process_todo_nodes(app, doctree, fromdocname):
 if not app.config.todo_include_todos:
 for node in doctree.traverse(todo):
 node.parent.remove(node)

 # Replace all todolist nodes with a list of the collected todos.
 # Augment each todo with a backlink to the original location.
 env = app.builder.env

 for node in doctree.traverse(todolist):
 if not app.config.todo_include_todos:
 node.replace_self([])
 continue

 content = []

 for todo_info in env.todo_all_todos:
 para = nodes.paragraph()
 filename = env.doc2path(todo_info['docname'], base=None)
 description = (
 _('(The original entry is located in %s, line %d and can be found ') %
 (filename, todo_info['lineno']))
 para += nodes.Text(description, description)

 # Create a reference
 newnode = nodes.reference('', '')
 innernode = nodes.emphasis(_('here'), _('here'))
 newnode['refdocname'] = todo_info['docname']
 newnode['refuri'] = app.builder.get_relative_uri(
 fromdocname, todo_info['docname'])
 newnode['refuri'] += '#' + todo_info['target']['refid']
 newnode.append(innernode)
 para += newnode
 para += nodes.Text('.)', '.)')

 # Insert into the todolist
 content.append(todo_info['todo'])
 content.append(para)

 node.replace_self(content)

It is a bit more involved. If our new “todo_include_todos” config value is
false, all todo and todolist nodes are removed from the documents.

If not, todo nodes just stay where and how they are. Todolist nodes are
replaced by a list of todo entries, complete with backlinks to the location
where they come from. The list items are composed of the nodes from the todo
entry and docutils nodes created on the fly: a paragraph for each entry,
containing text that gives the location, and a link (reference node containing
an italic node) with the backreference. The reference URI is built by
app.builder.get_relative_uri which creates a suitable URI depending on the
used builder, and appending the todo node’s (the target’s) ID as the anchor
name.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Developing extensions for Sphinx »

Application API

Each Sphinx extension is a Python module with at least a setup() function.
This function is called at initialization time with one argument, the
application object representing the Sphinx process.

	
class sphinx.application.Sphinx[source]

	This application object has the public API described in the following.

Extension setup

These methods are usually called in an extension’s setup() function.

Examples of using the Sphinx extension API can be seen in the sphinx.ext
package.

	
Sphinx.setup_extension(name)[source]

	Load the extension given by the module name. Use this if your extension
needs the features provided by another extension.

	
Sphinx.add_builder(builder)[source]

	Register a new builder. builder must be a class that inherits from
Builder.

	
Sphinx.add_config_value(name, default, rebuild)[source]

	Register a configuration value. This is necessary for Sphinx to recognize
new values and set default values accordingly. The name should be prefixed
with the extension name, to avoid clashes. The default value can be any
Python object. The string value rebuild must be one of those values:

	'env' if a change in the setting only takes effect when a document is
parsed – this means that the whole environment must be rebuilt.

	'html' if a change in the setting needs a full rebuild of HTML
documents.

	'' if a change in the setting will not need any special rebuild.

Changed in version 0.4: If the default value is a callable, it will be called with the config
object as its argument in order to get the default value. This can be
used to implement config values whose default depends on other values.

Changed in version 0.6: Changed rebuild from a simple boolean (equivalent to '' or
'env') to a string. However, booleans are still accepted and
converted internally.

	
Sphinx.add_domain(domain)[source]

	Make the given domain (which must be a class; more precisely, a subclass of
Domain) known to Sphinx.

New in version 1.0.

	
Sphinx.override_domain(domain)[source]

	Make the given domain class known to Sphinx, assuming that there is already
a domain with its .name. The new domain must be a subclass of the
existing one.

New in version 1.0.

	
Sphinx.add_index_to_domain(domain, index)[source]

	Add a custom index class to the domain named domain. index must be a
subclass of Index.

New in version 1.0.

	
Sphinx.add_event(name)[source]

	Register an event called name. This is needed to be able to emit it.

	
Sphinx.set_translator(name, translator_class)[source]

	Register or override a Docutils translator class. This is used to register
a custom output translator or to replace a builtin translator.
This allows extensions to use custom translator and define custom
nodes for the translator (see add_node()).

This is a API version of html_translator_class for all other
builders. Note that if html_translator_class is specified and
this API is called for html related builders, API overriding takes
precedence.

New in version 1.3.

	
Sphinx.add_node(node, **kwds)[source]

	Register a Docutils node class. This is necessary for Docutils internals.
It may also be used in the future to validate nodes in the parsed documents.

Node visitor functions for the Sphinx HTML, LaTeX, text and manpage writers
can be given as keyword arguments: the keyword should be one or more of
'html', 'latex', 'text', 'man', 'texinfo' or any other
supported translators, the value a 2-tuple of (visit, depart) methods.
depart can be None if the visit function raises
docutils.nodes.SkipNode. Example:

class math(docutils.nodes.Element): pass

def visit_math_html(self, node):
 self.body.append(self.starttag(node, 'math'))
def depart_math_html(self, node):
 self.body.append('</math>')

app.add_node(math, html=(visit_math_html, depart_math_html))

Obviously, translators for which you don’t specify visitor methods will choke
on the node when encountered in a document to translate.

Changed in version 0.5: Added the support for keyword arguments giving visit functions.

	
Sphinx.add_enumerable_node(node, figtype, title_getter=None, **kwds)[source]

	Register a Docutils node class as a numfig target. Sphinx numbers the node
automatically. And then the users can refer it using numref.

figtype is a type of enumerable nodes. Each figtypes have individual
numbering sequences. As a system figtypes, figure, table and
code-block are defined. It is able to add custom nodes to these
default figtypes. It is also able to define new custom figtype if new
figtype is given.

title_getter is a getter function to obtain the title of node. It takes
an instance of the enumerable node, and it must return its title as string.
The title is used to the default title of references for ref.
By default, Sphinx searches docutils.nodes.caption or
docutils.nodes.title from the node as a title.

Other keyword arguments are used for node visitor functions. See the
Sphinx.add_node() for details.

New in version 1.4.

	
Sphinx.add_directive(name, func, content, arguments, **options)[source]

	
Sphinx.add_directive(name, directiveclass)

	Register a Docutils directive. name must be the prospective directive
name. There are two possible ways to write a directive:

	In the docutils 0.4 style, obj is the directive function. content,
arguments and options are set as attributes on the function and
determine whether the directive has content, arguments and options,
respectively. This style is deprecated.

	In the docutils 0.5 style, directiveclass is the directive class. It
must already have attributes named has_content, required_arguments,
optional_arguments, final_argument_whitespace and option_spec that
correspond to the options for the function way. See the Docutils docs [http://docutils.sourceforge.net/docs/howto/rst-directives.html] for
details.

The directive class must inherit from the class
docutils.parsers.rst.Directive.

For example, the (already existing) literalinclude directive would
be added like this:

from docutils.parsers.rst import directives
add_directive('literalinclude', literalinclude_directive,
 content = 0, arguments = (1, 0, 0),
 linenos = directives.flag,
 language = directives.unchanged,
 encoding = directives.encoding)

Changed in version 0.6: Docutils 0.5-style directive classes are now supported.

	
Sphinx.add_directive_to_domain(domain, name, func, content, arguments, **options)[source]

	
Sphinx.add_directive_to_domain(domain, name, directiveclass)

	Like add_directive(), but the directive is added to the domain named
domain.

New in version 1.0.

	
Sphinx.add_role(name, role)[source]

	Register a Docutils role. name must be the role name that occurs in the
source, role the role function (see the Docutils documentation [http://docutils.sourceforge.net/docs/howto/rst-roles.html] on details).

	
Sphinx.add_role_to_domain(domain, name, role)[source]

	Like add_role(), but the role is added to the domain named domain.

New in version 1.0.

	
Sphinx.add_generic_role(name, nodeclass)[source]

	Register a Docutils role that does nothing but wrap its contents in the
node given by nodeclass.

New in version 0.6.

	
Sphinx.add_object_type(directivename, rolename, indextemplate='', parse_node=None, ref_nodeclass=None, objname='', doc_field_types=[])[source]

	This method is a very convenient way to add a new object type that
can be cross-referenced. It will do this:

	Create a new directive (called directivename) for documenting an object.
It will automatically add index entries if indextemplate is nonempty; if
given, it must contain exactly one instance of %s. See the example
below for how the template will be interpreted.

	Create a new role (called rolename) to cross-reference to these
object descriptions.

	If you provide parse_node, it must be a function that takes a string and
a docutils node, and it must populate the node with children parsed from
the string. It must then return the name of the item to be used in
cross-referencing and index entries. See the conf.py file in the
source for this documentation for an example.

	The objname (if not given, will default to directivename) names the
type of object. It is used when listing objects, e.g. in search results.

For example, if you have this call in a custom Sphinx extension:

app.add_object_type('directive', 'dir', 'pair: %s; directive')

you can use this markup in your documents:

.. rst:directive:: function

 Document a function.

<...>

See also the :rst:dir:`function` directive.

For the directive, an index entry will be generated as if you had prepended

.. index:: pair: function; directive

The reference node will be of class literal (so it will be rendered in a
proportional font, as appropriate for code) unless you give the
ref_nodeclass argument, which must be a docutils node class. Most useful
are docutils.nodes.emphasis or docutils.nodes.strong – you can also
use docutils.nodes.generated if you want no further text decoration. If
the text should be treated as literal (e.g. no smart quote replacement), but
not have typewriter styling, use sphinx.addnodes.literal_emphasis or
sphinx.addnodes.literal_strong.

For the role content, you have the same syntactical possibilities as for
standard Sphinx roles (see Cross-referencing syntax).

This method is also available under the deprecated alias
add_description_unit.

	
Sphinx.add_crossref_type(directivename, rolename, indextemplate='', ref_nodeclass=None, objname='')[source]

	This method is very similar to add_object_type() except that the
directive it generates must be empty, and will produce no output.

That means that you can add semantic targets to your sources, and refer to
them using custom roles instead of generic ones (like ref).
Example call:

app.add_crossref_type('topic', 'topic', 'single: %s', docutils.nodes.emphasis)

Example usage:

.. topic:: application API

The application API

<...>

See also :topic:`this section <application API>`.

(Of course, the element following the topic directive needn’t be a
section.)

	
Sphinx.add_transform(transform)[source]

	Add the standard docutils Transform subclass transform to the list
of transforms that are applied after Sphinx parses a reST document.

	
Sphinx.add_javascript(filename)[source]

	Add filename to the list of JavaScript files that the default HTML template
will include. The filename must be relative to the HTML static path, see
the docs for the config value. A full URI with
scheme, like http://example.org/foo.js, is also supported.

New in version 0.5.

	
Sphinx.add_stylesheet(filename)[source]

	Add filename to the list of CSS files that the default HTML template will
include. Like for add_javascript(), the filename must be relative to
the HTML static path, or a full URI with scheme.

New in version 1.0.

	
Sphinx.add_latex_package(packagename, options=None)[source]

	Add packagename to the list of packages that LaTeX source code will include.
If you provide options, it will be taken to usepackage declaration.

app.add_latex_package('mypackage') # => \usepackage{mypackage}
app.add_latex_package('mypackage', 'foo,bar') # => \usepackage[foo,bar]{mypackage}

New in version 1.3.

	
Sphinx.add_lexer(alias, lexer)[source]

	Use lexer, which must be an instance of a Pygments lexer class, to
highlight code blocks with the given language alias.

New in version 0.6.

	
Sphinx.add_autodocumenter(cls)[source]

	Add cls as a new documenter class for the sphinx.ext.autodoc
extension. It must be a subclass of sphinx.ext.autodoc.Documenter.
This allows to auto-document new types of objects. See the source of the
autodoc module for examples on how to subclass Documenter.

New in version 0.6.

	
Sphinx.add_autodoc_attrgetter(type, getter)[source]

	Add getter, which must be a function with an interface compatible to the
getattr() builtin, as the autodoc attribute getter for objects that are
instances of type. All cases where autodoc needs to get an attribute of a
type are then handled by this function instead of getattr().

New in version 0.6.

	
Sphinx.add_search_language(cls)[source]

	Add cls, which must be a subclass of sphinx.search.SearchLanguage,
as a support language for building the HTML full-text search index. The
class must have a lang attribute that indicates the language it should be
used for. See html_search_language.

New in version 1.1.

	
Sphinx.add_source_parser(name, suffix, parser)[source]

	Register a parser class for specified suffix.

New in version 1.4.

	
Sphinx.require_sphinx(version)[source]

	Compare version (which must be a major.minor version string,
e.g. '1.1') with the version of the running Sphinx, and abort the build
when it is too old.

New in version 1.0.

	
Sphinx.connect(event, callback)[source]

	Register callback to be called when event is emitted. For details on
available core events and the arguments of callback functions, please see
Sphinx core events.

The method returns a “listener ID” that can be used as an argument to
disconnect().

	
Sphinx.disconnect(listener_id)[source]

	Unregister callback listener_id.

	
exception sphinx.application.ExtensionError[source]

	All these methods raise this exception if something went wrong with the
extension API.

Emitting events

	
Sphinx.emit(event, *arguments)[source]

	Emit event and pass arguments to the callback functions. Return the
return values of all callbacks as a list. Do not emit core Sphinx events
in extensions!

	
Sphinx.emit_firstresult(event, *arguments)[source]

	Emit event and pass arguments to the callback functions. Return the
result of the first callback that doesn’t return None.

New in version 0.5.

Producing messages / logging

The application object also provides support for emitting leveled messages.

Note

There is no “error” call: in Sphinx, errors are defined as things that stop
the build; just raise an exception (sphinx.errors.SphinxError or a
custom subclass) to do that.

	
Sphinx.warn(message, location=None, prefix='WARNING: ', type=None, subtype=None)[source]

	Emit a warning.

If location is given, it should either be a tuple of (docname, lineno)
or a string describing the location of the warning as well as possible.

prefix usually should not be changed.

type and subtype are used to suppress warnings with suppress_warnings.

Note

For warnings emitted during parsing, you should use
BuildEnvironment.warn() since that will collect all
warnings during parsing for later output.

	
Sphinx.info(message='', nonl=False)[source]

	Emit an informational message.

If nonl is true, don’t emit a newline at the end (which implies that
more info output will follow soon.)

	
Sphinx.verbose(message, *args, **kwargs)[source]

	Emit a verbose informational message.

The message will only be emitted for verbosity levels >= 1 (i.e. at
least one -v option was given).

The message can contain %-style interpolation placeholders, which is
formatted with either the *args or **kwargs when output.

	
Sphinx.debug(message, *args, **kwargs)[source]

	Emit a debug-level informational message.

The message will only be emitted for verbosity levels >= 2 (i.e. at
least two -v options were given).

The message can contain %-style interpolation placeholders, which is
formatted with either the *args or **kwargs when output.

	
Sphinx.debug2(message, *args, **kwargs)[source]

	Emit a lowlevel debug-level informational message.

The message will only be emitted for verbosity level 3 (i.e. three
-v options were given).

The message can contain %-style interpolation placeholders, which is
formatted with either the *args or **kwargs when output.

Sphinx core events

These events are known to the core. The arguments shown are given to the
registered event handlers. Use connect() in an extension’s setup
function (note that conf.py can also have a setup function) to connect
handlers to the events. Example:

def source_read_handler(app, docname, source):
 print('do something here...')

def setup(app):
 app.connect('source-read', source_read_handler)

	
builder-inited(app)

	Emitted when the builder object has been created. It is available as
app.builder.

	
env-get-outdated(app, env, added, changed, removed)

	Emitted when the environment determines which source files have changed and
should be re-read. added, changed and removed are sets of docnames
that the environment has determined. You can return a list of docnames to
re-read in addition to these.

New in version 1.1.

	
env-purge-doc(app, env, docname)

	Emitted when all traces of a source file should be cleaned from the
environment, that is, if the source file is removed or before it is freshly
read. This is for extensions that keep their own caches in attributes of the
environment.

For example, there is a cache of all modules on the environment. When a
source file has been changed, the cache’s entries for the file are cleared,
since the module declarations could have been removed from the file.

New in version 0.5.

	
env-before-read-docs(app, env, docnames)

	Emitted after the environment has determined the list of all added and
changed files and just before it reads them. It allows extension authors to
reorder the list of docnames (inplace) before processing, or add more
docnames that Sphinx did not consider changed (but never add any docnames
that are not in env.found_docs).

You can also remove document names; do this with caution since it will make
Sphinx treat changed files as unchanged.

New in version 1.3.

	
source-read(app, docname, source)

	Emitted when a source file has been read. The source argument is a list
whose single element is the contents of the source file. You can process the
contents and replace this item to implement source-level transformations.

For example, if you want to use $ signs to delimit inline math, like in
LaTeX, you can use a regular expression to replace $...$ by
:math:`...`.

New in version 0.5.

	
doctree-read(app, doctree)

	Emitted when a doctree has been parsed and read by the environment, and is
about to be pickled. The doctree can be modified in-place.

	
missing-reference(app, env, node, contnode)

	Emitted when a cross-reference to a Python module or object cannot be
resolved. If the event handler can resolve the reference, it should return a
new docutils node to be inserted in the document tree in place of the node
node. Usually this node is a reference node containing contnode
as a child.

	Parameters:	
	env – The build environment (app.builder.env).

	node – The pending_xref node to be resolved. Its attributes
reftype, reftarget, modname and classname attributes
determine the type and target of the reference.

	contnode – The node that carries the text and formatting inside the
future reference and should be a child of the returned reference node.

New in version 0.5.

	
doctree-resolved(app, doctree, docname)

	Emitted when a doctree has been “resolved” by the environment, that is, all
references have been resolved and TOCs have been inserted. The doctree can
be modified in place.

Here is the place to replace custom nodes that don’t have visitor methods in
the writers, so that they don’t cause errors when the writers encounter them.

	
env-merge-info(env, docnames, other)

	This event is only emitted when parallel reading of documents is enabled. It
is emitted once for every subprocess that has read some documents.

You must handle this event in an extension that stores data in the
environment in a custom location. Otherwise the environment in the main
process will not be aware of the information stored in the subprocess.

other is the environment object from the subprocess, env is the
environment from the main process. docnames is a set of document names
that have been read in the subprocess.

For a sample of how to deal with this event, look at the standard
sphinx.ext.todo extension. The implementation is often similar to that
of env-purge-doc, only that information is not removed, but added to
the main environment from the other environment.

New in version 1.3.

	
env-updated(app, env)

	Emitted when the update() method of the build environment has
completed, that is, the environment and all doctrees are now up-to-date.

You can return an iterable of docnames from the handler. These documents
will then be considered updated, and will be (re-)written during the writing
phase.

New in version 0.5.

Changed in version 1.3: The handlers’ return value is now used.

	
html-collect-pages(app)

	Emitted when the HTML builder is starting to write non-document pages. You
can add pages to write by returning an iterable from this event consisting of
(pagename, context, templatename).

New in version 1.0.

	
html-page-context(app, pagename, templatename, context, doctree)

	Emitted when the HTML builder has created a context dictionary to render a
template with – this can be used to add custom elements to the context.

The pagename argument is the canonical name of the page being rendered,
that is, without .html suffix and using slashes as path separators. The
templatename is the name of the template to render, this will be
'page.html' for all pages from reST documents.

The context argument is a dictionary of values that are given to the
template engine to render the page and can be modified to include custom
values. Keys must be strings.

The doctree argument will be a doctree when the page is created from a reST
documents; it will be None when the page is created from an HTML template
alone.

You can return a string from the handler, it will then replace
'page.html' as the HTML template for this page.

New in version 0.4.

Changed in version 1.3: The return value can now specify a template name.

	
build-finished(app, exception)

	Emitted when a build has finished, before Sphinx exits, usually used for
cleanup. This event is emitted even when the build process raised an
exception, given as the exception argument. The exception is reraised in
the application after the event handlers have run. If the build process
raised no exception, exception will be None. This allows to customize
cleanup actions depending on the exception status.

New in version 0.5.

Checking the Sphinx version

Use this to adapt your extension to API changes in Sphinx.

	
sphinx.version_info

	A tuple of five elements; for Sphinx version 1.2.1 beta 3 this would be
(1, 2, 1, 'beta', 3).

New in version 1.2: Before version 1.2, check the string sphinx.__version__.

The Config object

	
class sphinx.config.Config[source]

	The config object makes the values of all config values available as
attributes.

It is available as the config attribute on the application and
environment objects. For example, to get the value of language,
use either app.config.language or env.config.language.

The template bridge

	
class sphinx.application.TemplateBridge[source]

	This class defines the interface for a “template bridge”, that is, a class
that renders templates given a template name and a context.

	
init(builder, theme=None, dirs=None)[source]

	Called by the builder to initialize the template system.

builder is the builder object; you’ll probably want to look at the
value of builder.config.templates_path.

theme is a sphinx.theming.Theme object or None; in the latter
case, dirs can be list of fixed directories to look for templates.

	
newest_template_mtime()[source]

	Called by the builder to determine if output files are outdated
because of template changes. Return the mtime of the newest template
file that was changed. The default implementation returns 0.

	
render(template, context)[source]

	Called by the builder to render a template given as a filename with
a specified context (a Python dictionary).

	
render_string(template, context)[source]

	Called by the builder to render a template given as a string with a
specified context (a Python dictionary).

Exceptions

	
exception sphinx.errors.SphinxError[source]

	This is the base class for “nice” exceptions. When such an exception is
raised, Sphinx will abort the build and present the exception category and
message to the user.

Extensions are encouraged to derive from this exception for their custom
errors.

Exceptions not derived from SphinxError are treated as unexpected
and shown to the user with a part of the traceback (and the full traceback
saved in a temporary file).

	
category

	Description of the exception “category”, used in converting the exception
to a string (“category: message”). Should be set accordingly in
subclasses.

	
exception sphinx.errors.ConfigError[source]

	Used for erroneous values or nonsensical combinations of configuration
values.

	
exception sphinx.errors.ExtensionError[source]

	Used for errors in setting up extensions.

	
exception sphinx.errors.ThemeError[source]

	Used for errors to do with themes.

	
exception sphinx.errors.VersionRequirementError[source]

	Raised when the docs require a higher Sphinx version than the current one.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Developing extensions for Sphinx »

Build environment API

	
class sphinx.environment.BuildEnvironment[source]

	Attributes

	
app

	Reference to the Sphinx (application) object.

	
config

	Reference to the Config object.

	
srcdir

	Source directory.

	
confdir

	Directory containing conf.py.

	
doctreedir

	Directory for storing pickled doctrees.

	
found_docs

	A set of all existing docnames.

	
metadata

	Dictionary mapping docnames to “metadata” (see File-wide metadata).

	
titles

	Dictionary mapping docnames to the docutils node for their main title.

	
docname

	Returns the docname of the document currently being parsed.

Utility methods

	
warn(docname, msg, lineno=None, **kwargs)[source]

	Emit a warning.

This differs from using app.warn() in that the warning may not
be emitted instantly, but collected for emitting all warnings after
the update of the environment.

	
warn_node(msg, node, **kwargs)[source]

	Like warn(), but with source information taken from node.

	
doc2path(docname, base=True, suffix=None)[source]

	Return the filename for the document name.

If base is True, return absolute path under self.srcdir.
If base is None, return relative path to self.srcdir.
If base is a path string, return absolute path under that.
If suffix is not None, add it instead of config.source_suffix.

	
relfn2path(filename, docname=None)[source]

	Return paths to a file referenced from a document, relative to
documentation root and absolute.

In the input “filename”, absolute filenames are taken as relative to the
source dir, while relative filenames are relative to the dir of the
containing document.

	
note_dependency(filename)[source]

	Add filename as a dependency of the current document.

This means that the document will be rebuilt if this file changes.

filename should be absolute or relative to the source directory.

	
new_serialno(category='')[source]

	Return a serial number, e.g. for index entry targets.

The number is guaranteed to be unique in the current document.

	
note_reread()[source]

	Add the current document to the list of documents that will
automatically be re-read at the next build.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Developing extensions for Sphinx »

Builder API

Todo

Expand this.

	
class sphinx.builders.Builder[source]

	This is the base class for all builders.

These methods are predefined and will be called from the application:

	
get_relative_uri(from_, to, typ=None)[source]

	Return a relative URI between two source filenames.

May raise environment.NoUri if there’s no way to return a sensible URI.

	
build_all()[source]

	Build all source files.

	
build_specific(filenames)[source]

	Only rebuild as much as needed for changes in the filenames.

	
build_update()[source]

	Only rebuild what was changed or added since last build.

	
build(docnames, summary=None, method='update')[source]

	Main build method.

First updates the environment, and then calls write().

These methods can be overridden in concrete builder classes:

	
init()[source]

	Load necessary templates and perform initialization. The default
implementation does nothing.

	
get_outdated_docs()[source]

	Return an iterable of output files that are outdated, or a string
describing what an update build will build.

If the builder does not output individual files corresponding to
source files, return a string here. If it does, return an iterable
of those files that need to be written.

	
get_target_uri(docname, typ=None)[source]

	Return the target URI for a document name.

typ can be used to qualify the link characteristic for individual
builders.

	
prepare_writing(docnames)[source]

	A place where you can add logic before write_doc() is run

	
write_doc(docname, doctree)[source]

	Where you actually write something to the filesystem.

	
finish()[source]

	Finish the building process.

The default implementation does nothing.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Developing extensions for Sphinx »

Docutils markup API

This section describes the API for adding ReST markup elements (roles and
directives).

Roles

Directives

Directives are handled by classes derived from
docutils.parsers.rst.Directive. They have to be registered by an extension
using Sphinx.add_directive() or Sphinx.add_directive_to_domain().

	
class docutils.parsers.rst.Directive[source]

	The markup syntax of the new directive is determined by the follow five class
attributes:

	
required_arguments = 0

	Number of required directive arguments.

	
optional_arguments = 0

	Number of optional arguments after the required arguments.

	
final_argument_whitespace = False

	May the final argument contain whitespace?

	
option_spec = None

	Mapping of option names to validator functions.

Option validator functions take a single parameter, the option argument
(or None if not given), and should validate it or convert it to the
proper form. They raise ValueError or TypeError to indicate
failure.

There are several predefined and possibly useful validators in the
docutils.parsers.rst.directives module.

	
has_content = False

	May the directive have content?

New directives must implement the run() method:

	
run()[source]

	This method must process the directive arguments, options and content, and
return a list of Docutils/Sphinx nodes that will be inserted into the
document tree at the point where the directive was encountered.

Instance attributes that are always set on the directive are:

	
name

	The directive name (useful when registering the same directive class under
multiple names).

	
arguments

	The arguments given to the directive, as a list.

	
options

	The options given to the directive, as a dictionary mapping option names
to validated/converted values.

	
content

	The directive content, if given, as a ViewList.

	
lineno

	The absolute line number on which the directive appeared. This is not
always a useful value; use srcline instead.

	
src

	The source file of the directive.

	
srcline

	The line number in the source file on which the directive appeared.

	
content_offset

	Internal offset of the directive content. Used when calling
nested_parse (see below).

	
block_text

	The string containing the entire directive.

	
state

	
state_machine

	The state and state machine which controls the parsing. Used for
nested_parse.

ViewLists

Docutils represents document source lines in a class
docutils.statemachine.ViewList. This is a list with extended functionality
– for one, slicing creates views of the original list, and also the list
contains information about the source line numbers.

The Directive.content attribute is a ViewList. If you generate content
to be parsed as ReST, you have to create a ViewList yourself. Important for
content generation are the following points:

	The constructor takes a list of strings (lines) and a source (document) name.

	The .append() method takes a line and a source name as well.

Parsing directive content as ReST

Many directives will contain more markup that must be parsed. To do this, use
one of the following APIs from the Directive.run() method:

	self.state.nested_parse

	sphinx.util.nodes.nested_parse_with_titles() – this allows titles in
the parsed content.

Both APIs parse the content into a given node. They are used like this:

node = docutils.nodes.paragraph()
either
nested_parse_with_titles(self.state, self.result, node)
or
self.state.nested_parse(self.result, 0, node)

If you don’t need the wrapping node, you can use any concrete node type and
return node.children from the Directive.

See also

	Creating directives [http://docutils.sourceforge.net/docs/howto/rst-directives.html]

	HOWTO of the Docutils documentation

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Developing extensions for Sphinx »

Domain API

	
class sphinx.domains.Domain(env)[source]

	A Domain is meant to be a group of “object” description directives for
objects of a similar nature, and corresponding roles to create references to
them. Examples would be Python modules, classes, functions etc., elements
of a templating language, Sphinx roles and directives, etc.

Each domain has a separate storage for information about existing objects
and how to reference them in self.data, which must be a dictionary. It
also must implement several functions that expose the object information in
a uniform way to parts of Sphinx that allow the user to reference or search
for objects in a domain-agnostic way.

About self.data: since all object and cross-referencing information is
stored on a BuildEnvironment instance, the domain.data object is also
stored in the env.domaindata dict under the key domain.name. Before the
build process starts, every active domain is instantiated and given the
environment object; the domaindata dict must then either be nonexistent or
a dictionary whose ‘version’ key is equal to the domain class’
data_version attribute. Otherwise, IOError is raised and the
pickled environment is discarded.

	
clear_doc(docname)[source]

	Remove traces of a document in the domain-specific inventories.

	
directive(name)[source]

	Return a directive adapter class that always gives the registered
directive its full name (‘domain:name’) as self.name.

	
get_objects()[source]

	Return an iterable of “object descriptions”, which are tuples with
five items:

	name – fully qualified name

	dispname – name to display when searching/linking

	type – object type, a key in self.object_types

	docname – the document where it is to be found

	anchor – the anchor name for the object

	priority – how “important” the object is (determines placement
in search results)
	1: default priority (placed before full-text matches)

	0: object is important (placed before default-priority objects)

	2: object is unimportant (placed after full-text matches)

	-1: object should not show up in search at all

	
get_type_name(type, primary=False)[source]

	Return full name for given ObjType.

	
merge_domaindata(docnames, otherdata)[source]

	Merge in data regarding docnames from a different domaindata
inventory (coming from a subprocess in parallel builds).

	
process_doc(env, docname, document)[source]

	Process a document after it is read by the environment.

	
resolve_any_xref(env, fromdocname, builder, target, node, contnode)[source]

	Resolve the pending_xref node with the given target.

The reference comes from an “any” or similar role, which means that we
don’t know the type. Otherwise, the arguments are the same as for
resolve_xref().

The method must return a list (potentially empty) of tuples
('domain:role', newnode), where 'domain:role' is the name of a
role that could have created the same reference, e.g. 'py:func'.
newnode is what resolve_xref() would return.

New in version 1.3.

	
resolve_xref(env, fromdocname, builder, typ, target, node, contnode)[source]

	Resolve the pending_xref node with the given typ and target.

This method should return a new node, to replace the xref node,
containing the contnode which is the markup content of the
cross-reference.

If no resolution can be found, None can be returned; the xref node will
then given to the ‘missing-reference’ event, and if that yields no
resolution, replaced by contnode.

The method can also raise sphinx.environment.NoUri to suppress
the ‘missing-reference’ event being emitted.

	
role(name)[source]

	Return a role adapter function that always gives the registered
role its full name (‘domain:name’) as the first argument.

	
dangling_warnings = {}

	role name -> a warning message if reference is missing

	
data_version = 0

	data version, bump this when the format of self.data changes

	
directives = {}

	directive name -> directive class

	
indices = []

	a list of Index subclasses

	
initial_data = {}

	data value for a fresh environment

	
label = ''

	domain label: longer, more descriptive (used in messages)

	
name = ''

	domain name: should be short, but unique

	
object_types = {}

	type (usually directive) name -> ObjType instance

	
roles = {}

	role name -> role callable

	
class sphinx.domains.ObjType(lname, *roles, **attrs)[source]

	An ObjType is the description for a type of object that a domain can
document. In the object_types attribute of Domain subclasses, object type
names are mapped to instances of this class.

Constructor arguments:

	lname: localized name of the type (do not include domain name)

	roles: all the roles that can refer to an object of this type

	attrs: object attributes – currently only “searchprio” is known,
which defines the object’s priority in the full-text search index,
see Domain.get_objects().

	
class sphinx.domains.Index(domain)[source]

	An Index is the description for a domain-specific index. To add an index to
a domain, subclass Index, overriding the three name attributes:

	name is an identifier used for generating file names.

	localname is the section title for the index.

	shortname is a short name for the index, for use in the relation bar in
HTML output. Can be empty to disable entries in the relation bar.

and providing a generate() method. Then, add the index class to
your domain’s indices list. Extensions can add indices to existing
domains using add_index_to_domain().

	
generate(docnames=None)[source]

	Return entries for the index given by name. If docnames is
given, restrict to entries referring to these docnames.

The return value is a tuple of (content, collapse), where collapse
is a boolean that determines if sub-entries should start collapsed (for
output formats that support collapsing sub-entries).

content is a sequence of (letter, entries) tuples, where letter
is the “heading” for the given entries, usually the starting letter.

entries is a sequence of single entries, where a single entry is a
sequence [name, subtype, docname, anchor, extra, qualifier, descr].
The items in this sequence have the following meaning:

	name – the name of the index entry to be displayed

	subtype – sub-entry related type:
0 – normal entry
1 – entry with sub-entries
2 – sub-entry

	docname – docname where the entry is located

	anchor – anchor for the entry within docname

	extra – extra info for the entry

	qualifier – qualifier for the description

	descr – description for the entry

Qualifier and description are not rendered e.g. in LaTeX output.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Developing extensions for Sphinx »

Parser API

	
class sphinx.parsers.Parser[source]

	A base class of source parsers. The additonal parsers should inherits this class instead
of docutils.parsers.Parser. Compared with docutils.parsers.Parser, this class
improves accessibility to Sphinx APIs.

The subclasses can access following objects and functions:

	self.app

	The application object (sphinx.application.Sphinx)

	self.config

	The config object (sphinx.config.Config)

	self.env

	The environment object (sphinx.environment.BuildEnvironment)

	self.warn()

	Emit a warning. (Same as sphinx.application.Sphinx.warn())

	self.info()

	Emit a informational message. (Same as sphinx.application.Sphinx.info())

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Developing extensions for Sphinx »

Doctree node classes added by Sphinx

Nodes for domain-specific object descriptions

	
class sphinx.addnodes.desc(rawsource='', *children, **attributes)[source]

	Node for object descriptions.

This node is similar to a “definition list” with one definition. It
contains one or more desc_signature and a desc_content.

	
class sphinx.addnodes.desc_signature(rawsource='', text='', *children, **attributes)[source]

	Node for object signatures.

The “term” part of the custom Sphinx definition list.

	
class sphinx.addnodes.desc_addname(rawsource='', text='', *children, **attributes)[source]

	Node for additional name parts (module name, class name).

	
class sphinx.addnodes.desc_type(rawsource='', text='', *children, **attributes)[source]

	Node for return types or object type names.

	
class sphinx.addnodes.desc_returns(rawsource='', text='', *children, **attributes)[source]

	Node for a “returns” annotation (a la -> in Python).

	
class sphinx.addnodes.desc_name(rawsource='', text='', *children, **attributes)[source]

	Node for the main object name.

	
class sphinx.addnodes.desc_parameterlist(rawsource='', text='', *children, **attributes)[source]

	Node for a general parameter list.

	
class sphinx.addnodes.desc_parameter(rawsource='', text='', *children, **attributes)[source]

	Node for a single parameter.

	
class sphinx.addnodes.desc_optional(rawsource='', text='', *children, **attributes)[source]

	Node for marking optional parts of the parameter list.

	
class sphinx.addnodes.desc_annotation(rawsource='', text='', *children, **attributes)[source]

	Node for signature annotations (not Python 3-style annotations).

	
class sphinx.addnodes.desc_content(rawsource='', *children, **attributes)[source]

	Node for object description content.

This is the “definition” part of the custom Sphinx definition list.

New admonition-like constructs

	
class sphinx.addnodes.versionmodified(rawsource='', text='', *children, **attributes)[source]

	Node for version change entries.

Currently used for “versionadded”, “versionchanged” and “deprecated”
directives.

	
class sphinx.addnodes.seealso(rawsource='', *children, **attributes)[source]

	Custom “see also” admonition.

Other paragraph-level nodes

	
class sphinx.addnodes.compact_paragraph(rawsource='', text='', *children, **attributes)[source]

	Node for a compact paragraph (which never makes a <p> node).

New inline nodes

	
class sphinx.addnodes.index(rawsource='', text='', *children, **attributes)[source]

	Node for index entries.

This node is created by the index directive and has one attribute,
entries. Its value is a list of 4-tuples of (entrytype, entryname,
target, ignored).

entrytype is one of “single”, “pair”, “double”, “triple”.

	
class sphinx.addnodes.pending_xref(rawsource='', *children, **attributes)[source]

	Node for cross-references that cannot be resolved without complete
information about all documents.

These nodes are resolved before writing output, in
BuildEnvironment.resolve_references.

	
class sphinx.addnodes.literal_emphasis(rawsource='', text='', *children, **attributes)[source]

	Node that behaves like emphasis, but further text processors are not
applied (e.g. smartypants for HTML output).

	
class sphinx.addnodes.abbreviation(rawsource='', text='', *children, **attributes)[source]

	Node for abbreviations with explanations.

	
class sphinx.addnodes.download_reference(rawsource='', text='', *children, **attributes)[source]

	Node for download references, similar to pending_xref.

Special nodes

	
class sphinx.addnodes.only(rawsource='', *children, **attributes)[source]

	Node for “only” directives (conditional inclusion based on tags).

	
class sphinx.addnodes.meta(rawsource='', *children, **attributes)[source]

	Node for meta directive – same as docutils’ standard meta node,
but pickleable.

	
class sphinx.addnodes.highlightlang(rawsource='', *children, **attributes)[source]

	Inserted to set the highlight language and line number options for
subsequent code blocks.

You should not need to generate the nodes below in extensions.

	
class sphinx.addnodes.glossary(rawsource='', *children, **attributes)[source]

	Node to insert a glossary.

	
class sphinx.addnodes.toctree(rawsource='', *children, **attributes)[source]

	Node for inserting a “TOC tree”.

	
class sphinx.addnodes.start_of_file(rawsource='', *children, **attributes)[source]

	Node to mark start of a new file, used in the LaTeX builder only.

	
class sphinx.addnodes.productionlist(rawsource='', *children, **attributes)[source]

	Node for grammar production lists.

Contains production nodes.

	
class sphinx.addnodes.production(rawsource='', text='', *children, **attributes)[source]

	Node for a single grammar production rule.

	
class sphinx.addnodes.termsep(*args, **kw)[source]

	Separates two terms within a <term> node.

Changed in version 1.4: sphinx.addnodes.termsep is deprecated. It will be removed at Sphinx-1.5.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Sphinx Web Support

New in version 1.1.

Sphinx provides a Python API to easily integrate Sphinx documentation into your
web application. To learn more read the Web Support Quick Start.

	Web Support Quick Start
	Building Documentation Data

	Integrating Sphinx Documents Into Your Webapp
	Authentication

	Performing Searches

	Comments & Proposals

	Comment Moderation

	The WebSupport Class
	Methods

	Search Adapters
	BaseSearch Methods

	Storage Backends
	StorageBackend Methods

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Web Support »

Web Support Quick Start

Building Documentation Data

To make use of the web support package in your application you’ll need to build
the data it uses. This data includes pickle files representing documents,
search indices, and node data that is used to track where comments and other
things are in a document. To do this you will need to create an instance of the
WebSupport class and call its build() method:

from sphinx.websupport import WebSupport

support = WebSupport(srcdir='/path/to/rst/sources/',
 builddir='/path/to/build/outdir',
 search='xapian')

support.build()

This will read reStructuredText sources from srcdir and place the necessary
data in builddir. The builddir will contain two sub-directories: one named
“data” that contains all the data needed to display documents, search through
documents, and add comments to documents. The other directory will be called
“static” and contains static files that should be served from “/static”.

Note

If you wish to serve static files from a path other than “/static”, you can
do so by providing the staticdir keyword argument when creating the
WebSupport object.

Integrating Sphinx Documents Into Your Webapp

Now that the data is built, it’s time to do something useful with it. Start off
by creating a WebSupport object for your application:

from sphinx.websupport import WebSupport

support = WebSupport(datadir='/path/to/the/data',
 search='xapian')

You’ll only need one of these for each set of documentation you will be working
with. You can then call its get_document() method to access
individual documents:

contents = support.get_document('contents')

This will return a dictionary containing the following items:

	body: The main body of the document as HTML

	sidebar: The sidebar of the document as HTML

	relbar: A div containing links to related documents

	title: The title of the document

	css: Links to CSS files used by Sphinx

	script: JavaScript containing comment options

This dict can then be used as context for templates. The goal is to be easy to
integrate with your existing templating system. An example using Jinja2 [http://jinja.pocoo.org/] is:

{%- extends "layout.html" %}

{%- block title %}
 {{ document.title }}
{%- endblock %}

{% block css %}
 {{ super() }}
 {{ document.css|safe }}
 <link rel="stylesheet" href="/static/websupport-custom.css" type="text/css">
{% endblock %}

{%- block script %}
 {{ super() }}
 {{ document.script|safe }}
{%- endblock %}

{%- block relbar %}
 {{ document.relbar|safe }}
{%- endblock %}

{%- block body %}
 {{ document.body|safe }}
{%- endblock %}

{%- block sidebar %}
 {{ document.sidebar|safe }}
{%- endblock %}

Authentication

To use certain features such as voting, it must be possible to authenticate
users. The details of the authentication are left to your application. Once a
user has been authenticated you can pass the user’s details to certain
WebSupport methods using the username and moderator keyword
arguments. The web support package will store the username with comments and
votes. The only caveat is that if you allow users to change their username you
must update the websupport package’s data:

support.update_username(old_username, new_username)

username should be a unique string which identifies a user, and moderator
should be a boolean representing whether the user has moderation privileges.
The default value for moderator is False.

An example Flask [http://flask.pocoo.org/] function that checks whether a
user is logged in and then retrieves a document is:

from sphinx.websupport.errors import *

@app.route('/<path:docname>')
def doc(docname):
 username = g.user.name if g.user else ''
 moderator = g.user.moderator if g.user else False
 try:
 document = support.get_document(docname, username, moderator)
 except DocumentNotFoundError:
 abort(404)
 return render_template('doc.html', document=document)

The first thing to notice is that the docname is just the request path. This
makes accessing the correct document easy from a single view. If the user is
authenticated, then the username and moderation status are passed along with the
docname to get_document(). The web support package will then
add this data to the COMMENT_OPTIONS that are used in the template.

Note

This only works if your documentation is served from your
document root. If it is served from another directory, you will
need to prefix the url route with that directory, and give the docroot
keyword argument when creating the web support object:

support = WebSupport(..., docroot='docs')

@app.route('/docs/<path:docname>')

Performing Searches

To use the search form built-in to the Sphinx sidebar, create a function to
handle requests to the url ‘search’ relative to the documentation root. The
user’s search query will be in the GET parameters, with the key q. Then use
the get_search_results() method to retrieve
search results. In Flask [http://flask.pocoo.org/] that would be like this:

@app.route('/search')
def search():
 q = request.args.get('q')
 document = support.get_search_results(q)
 return render_template('doc.html', document=document)

Note that we used the same template to render our search results as we did to
render our documents. That’s because get_search_results()
returns a context dict in the same format that get_document()
does.

Comments & Proposals

Now that this is done it’s time to define the functions that handle the AJAX
calls from the script. You will need three functions. The first function is
used to add a new comment, and will call the web support method
add_comment():

@app.route('/docs/add_comment', methods=['POST'])
def add_comment():
 parent_id = request.form.get('parent', '')
 node_id = request.form.get('node', '')
 text = request.form.get('text', '')
 proposal = request.form.get('proposal', '')
 username = g.user.name if g.user is not None else 'Anonymous'
 comment = support.add_comment(text, node_id='node_id',
 parent_id='parent_id',
 username=username, proposal=proposal)
 return jsonify(comment=comment)

You’ll notice that both a parent_id and node_id are sent with the
request. If the comment is being attached directly to a node, parent_id
will be empty. If the comment is a child of another comment, then node_id
will be empty. Then next function handles the retrieval of comments for a
specific node, and is aptly named
get_data():

@app.route('/docs/get_comments')
def get_comments():
 username = g.user.name if g.user else None
 moderator = g.user.moderator if g.user else False
 node_id = request.args.get('node', '')
 data = support.get_data(node_id, username, moderator)
 return jsonify(**data)

The final function that is needed will call process_vote(),
and will handle user votes on comments:

@app.route('/docs/process_vote', methods=['POST'])
def process_vote():
 if g.user is None:
 abort(401)
 comment_id = request.form.get('comment_id')
 value = request.form.get('value')
 if value is None or comment_id is None:
 abort(400)
 support.process_vote(comment_id, g.user.id, value)
 return "success"

Comment Moderation

By default, all comments added through add_comment() are
automatically displayed. If you wish to have some form of moderation, you can
pass the displayed keyword argument:

comment = support.add_comment(text, node_id='node_id',
 parent_id='parent_id',
 username=username, proposal=proposal,
 displayed=False)

You can then create a new view to handle the moderation of comments. It
will be called when a moderator decides a comment should be accepted and
displayed:

@app.route('/docs/accept_comment', methods=['POST'])
def accept_comment():
 moderator = g.user.moderator if g.user else False
 comment_id = request.form.get('id')
 support.accept_comment(comment_id, moderator=moderator)
 return 'OK'

Rejecting comments happens via comment deletion.

To perform a custom action (such as emailing a moderator) when a new comment is
added but not displayed, you can pass callable to the WebSupport
class when instantiating your support object:

def moderation_callback(comment):
 """Do something..."""

support = WebSupport(..., moderation_callback=moderation_callback)

The moderation callback must take one argument, which will be the same comment
dict that is returned by add_comment().

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Web Support »

The WebSupport Class

	
class sphinx.websupport.WebSupport[source]

	The main API class for the web support package. All interactions with the
web support package should occur through this class.

The class takes the following keyword arguments:

	srcdir

	The directory containing reStructuredText source files.

	builddir

	The directory that build data and static files should be placed in. This
should be used when creating a WebSupport object that will be
used to build data.

	datadir

	The directory that the web support data is in. This should be used when
creating a WebSupport object that will be used to retrieve data.

	search

	This may contain either a string (e.g. ‘xapian’) referencing a built-in
search adapter to use, or an instance of a subclass of
BaseSearch.

	storage

	This may contain either a string representing a database uri, or an
instance of a subclass of StorageBackend. If this is
not provided, a new sqlite database will be created.

	moderation_callback

	A callable to be called when a new comment is added that is not
displayed. It must accept one argument: a dictionary representing the
comment that was added.

	staticdir

	If static files are served from a location besides '/static', this
should be a string with the name of that location
(e.g. '/static_files').

	docroot

	If the documentation is not served from the base path of a URL, this
should be a string specifying that path (e.g. 'docs').

Methods

	
WebSupport.build()[source]

	Build the documentation. Places the data into the outdir
directory. Use it like this:

support = WebSupport(srcdir, builddir, search='xapian')
support.build()

This will read reStructured text files from srcdir. Then it will
build the pickles and search index, placing them into builddir.
It will also save node data to the database.

	
WebSupport.get_document(docname, username='', moderator=False)[source]

	Load and return a document from a pickle. The document will
be a dict object which can be used to render a template:

support = WebSupport(datadir=datadir)
support.get_document('index', username, moderator)

In most cases docname will be taken from the request path and
passed directly to this function. In Flask, that would be something
like this:

@app.route('/<path:docname>')
def index(docname):
 username = g.user.name if g.user else ''
 moderator = g.user.moderator if g.user else False
 try:
 document = support.get_document(docname, username,
 moderator)
 except DocumentNotFoundError:
 abort(404)
 render_template('doc.html', document=document)

The document dict that is returned contains the following items
to be used during template rendering.

	body: The main body of the document as HTML

	sidebar: The sidebar of the document as HTML

	relbar: A div containing links to related documents

	title: The title of the document

	css: Links to css files used by Sphinx

	script: Javascript containing comment options

This raises DocumentNotFoundError
if a document matching docname is not found.

	Parameters:	docname – the name of the document to load.

	
WebSupport.get_data(node_id, username=None, moderator=False)[source]

	Get the comments and source associated with node_id. If
username is given vote information will be included with the
returned comments. The default CommentBackend returns a dict with
two keys, source, and comments. source is raw source of the
node and is used as the starting point for proposals a user can
add. comments is a list of dicts that represent a comment, each
having the following items:

	Key
	Contents

	text
	The comment text.

	username
	The username that was stored with the comment.

	id
	The comment’s unique identifier.

	rating
	The comment’s current rating.

	age
	The time in seconds since the comment was added.

	time
	A dict containing time information. It contains the
following keys: year, month, day, hour, minute, second,
iso, and delta. iso is the time formatted in ISO
8601 format. delta is a printable form of how old
the comment is (e.g. “3 hours ago”).

	vote
	If user_id was given, this will be an integer
representing the vote. 1 for an upvote, -1 for a
downvote, or 0 if unvoted.

	node
	The id of the node that the comment is attached to.
If the comment’s parent is another comment rather than
a node, this will be null.

	parent
	The id of the comment that this comment is attached
to if it is not attached to a node.

	children
	A list of all children, in this format.

	proposal_diff
	An HTML representation of the differences between the
the current source and the user’s proposed source.

	Parameters:	
	node_id – the id of the node to get comments for.

	username – the username of the user viewing the comments.

	moderator – whether the user is a moderator.

	
WebSupport.add_comment(text, node_id='', parent_id='', displayed=True, username=None, time=None, proposal=None, moderator=False)[source]

	Add a comment to a node or another comment. Returns the comment
in the same format as get_comments(). If the comment is being
attached to a node, pass in the node’s id (as a string) with the
node keyword argument:

comment = support.add_comment(text, node_id=node_id)

If the comment is the child of another comment, provide the parent’s
id (as a string) with the parent keyword argument:

comment = support.add_comment(text, parent_id=parent_id)

If you would like to store a username with the comment, pass
in the optional username keyword argument:

comment = support.add_comment(text, node=node_id,
 username=username)

	Parameters:	
	parent_id – the prefixed id of the comment’s parent.

	text – the text of the comment.

	displayed – for moderation purposes

	username – the username of the user making the comment.

	time – the time the comment was created, defaults to now.

	
WebSupport.process_vote(comment_id, username, value)[source]

	Process a user’s vote. The web support package relies
on the API user to perform authentication. The API user will
typically receive a comment_id and value from a form, and then
make sure the user is authenticated. A unique username must be
passed in, which will also be used to retrieve the user’s past
voting data. An example, once again in Flask:

@app.route('/docs/process_vote', methods=['POST'])
def process_vote():
 if g.user is None:
 abort(401)
 comment_id = request.form.get('comment_id')
 value = request.form.get('value')
 if value is None or comment_id is None:
 abort(400)
 support.process_vote(comment_id, g.user.name, value)
 return "success"

	Parameters:	
	comment_id – the comment being voted on

	username – the unique username of the user voting

	value – 1 for an upvote, -1 for a downvote, 0 for an unvote.

	
WebSupport.get_search_results(q)[source]

	Perform a search for the query q, and create a set
of search results. Then render the search results as html and
return a context dict like the one created by
get_document():

document = support.get_search_results(q)

	Parameters:	q – the search query

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Web Support »

Search Adapters

To create a custom search adapter you will need to subclass the
BaseSearch class. Then create an instance of the new class and pass
that as the search keyword argument when you create the WebSupport
object:

support = WebSupport(srcdir=srcdir,
 builddir=builddir,
 search=MySearch())

For more information about creating a custom search adapter, please see the
documentation of the BaseSearch class below.

	
class sphinx.websupport.search.BaseSearch[source]

	Defines an interface for search adapters.

BaseSearch Methods

The following methods are defined in the BaseSearch class. Some methods do
not need to be overridden, but some (add_document() and
handle_query()) must be overridden in your subclass. For a
working example, look at the built-in adapter for whoosh.

	
BaseSearch.init_indexing(changed=[])[source]

	Called by the builder to initialize the search indexer. changed
is a list of pagenames that will be reindexed. You may want to remove
these from the search index before indexing begins.

	Parameters:	changed – a list of pagenames that will be re-indexed

	
BaseSearch.finish_indexing()[source]

	Called by the builder when writing has been completed. Use this
to perform any finalization or cleanup actions after indexing is
complete.

	
BaseSearch.feed(pagename, title, doctree)[source]

	Called by the builder to add a doctree to the index. Converts the
doctree to text and passes it to add_document(). You probably
won’t want to override this unless you need access to the doctree.
Override add_document() instead.

	Parameters:	
	pagename – the name of the page to be indexed

	title – the title of the page to be indexed

	doctree – is the docutils doctree representation of the page

	
BaseSearch.add_document(pagename, title, text)[source]

	Called by feed() to add a document to the search index.
This method should should do everything necessary to add a single
document to the search index.

pagename is name of the page being indexed. It is the combination
of the source files relative path and filename,
minus the extension. For example, if the source file is
“ext/builders.rst”, the pagename would be “ext/builders”. This
will need to be returned with search results when processing a
query.

	Parameters:	
	pagename – the name of the page being indexed

	title – the page’s title

	text – the full text of the page

	
BaseSearch.query(q)[source]

	Called by the web support api to get search results. This method
compiles the regular expression to be used when extracting
context, then calls handle_query(). You
won’t want to override this unless you don’t want to use the included
extract_context() method. Override handle_query() instead.

	Parameters:	q – the search query string.

	
BaseSearch.handle_query(q)[source]

	Called by query() to retrieve search results for a search
query q. This should return an iterable containing tuples of the
following format:

(<path>, <title>, <context>)

path and title are the same values that were passed to
add_document(), and context should be a short text snippet
of the text surrounding the search query in the document.

The extract_context() method is provided as a simple way
to create the context.

	Parameters:	q – the search query

	
BaseSearch.extract_context(text, length=240)[source]

	Extract the context for the search query from the document’s
full text.

	Parameters:	
	text – the full text of the document to create the context for

	length – the length of the context snippet to return.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

 	Sphinx Web Support »

Storage Backends

To create a custom storage backend you will need to subclass the
StorageBackend class. Then create an instance of the new class and
pass that as the storage keyword argument when you create the
WebSupport object:

support = WebSupport(srcdir=srcdir,
 builddir=builddir,
 storage=MyStorage())

For more information about creating a custom storage backend, please see the
documentation of the StorageBackend class below.

	
class sphinx.websupport.storage.StorageBackend[source]

	Defines an interface for storage backends.

StorageBackend Methods

	
StorageBackend.pre_build()[source]

	Called immediately before the build process begins. Use this
to prepare the StorageBackend for the addition of nodes.

	
StorageBackend.add_node(id, document, source)[source]

	Add a node to the StorageBackend.

	Parameters:	
	id – a unique id for the comment.

	document – the name of the document the node belongs to.

	source – the source files name.

	
StorageBackend.post_build()[source]

	Called after a build has completed. Use this to finalize the
addition of nodes if needed.

	
StorageBackend.add_comment(text, displayed, username, time, proposal, node_id, parent_id, moderator)[source]

	Called when a comment is being added.

	Parameters:	
	text – the text of the comment

	displayed – whether the comment should be displayed

	username – the name of the user adding the comment

	time – a date object with the time the comment was added

	proposal – the text of the proposal the user made

	node_id – the id of the node that the comment is being added to

	parent_id – the id of the comment’s parent comment.

	moderator – whether the user adding the comment is a moderator

	
StorageBackend.delete_comment(comment_id, username, moderator)[source]

	Delete a comment.

Raises UserNotAuthorizedError
if moderator is False and username doesn’t match the username
on the comment.

	Parameters:	
	comment_id – The id of the comment being deleted.

	username – The username of the user requesting the deletion.

	moderator – Whether the user is a moderator.

	
StorageBackend.get_data(node_id, username, moderator)[source]

	Called to retrieve all data for a node. This should return a
dict with two keys, source and comments as described by
WebSupport‘s
get_data() method.

	Parameters:	
	node_id – The id of the node to get data for.

	username – The name of the user requesting the data.

	moderator – Whether the requestor is a moderator.

	
StorageBackend.process_vote(comment_id, username, value)[source]

	Process a vote that is being cast. value will be either -1, 0,
or 1.

	Parameters:	
	comment_id – The id of the comment being voted on.

	username – The username of the user casting the vote.

	value – The value of the vote being cast.

	
StorageBackend.update_username(old_username, new_username)[source]

	If a user is allowed to change their username this method should
be called so that there is not stagnate data in the storage system.

	Parameters:	
	old_username – The username being changed.

	new_username – What the username is being changed to.

	
StorageBackend.accept_comment(comment_id)[source]

	Called when a moderator accepts a comment. After the method is
called the comment should be displayed to all users.

	Parameters:	comment_id – The id of the comment being accepted.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Sphinx FAQ

This is a list of Frequently Asked Questions about Sphinx. Feel free to
suggest new entries!

How do I...

	... create PDF files without LaTeX?

	You can use rst2pdf [https://github.com/rst2pdf/rst2pdf] version 0.12 or
greater which comes with built-in Sphinx integration. See the
Available builders section for details.

	... get section numbers?

	They are automatic in LaTeX output; for HTML, give a :numbered: option to
the toctree directive where you want to start numbering.

	... customize the look of the built HTML files?

	Use themes, see HTML theming support.

	... add global substitutions or includes?

	Add them in the rst_epilog config value.

	... display the whole TOC tree in the sidebar?

	Use the toctree callable in a custom layout template, probably in the
sidebartoc block.

	... write my own extension?

	See the extension tutorial.

	... convert from my existing docs using MoinMoin markup?

	The easiest way is to convert to xhtml, then convert xhtml to reST [http://docutils.sourceforge.net/sandbox/xhtml2rest/xhtml2rest.py].
You’ll still need to mark up classes and such, but the headings and code
examples come through cleanly.

	... create HTML slides from Sphinx documents?

	See the “Hieroglyph” package at https://github.com/nyergler/hieroglyph.

For many more extensions and other contributed stuff, see the sphinx-contrib [https://bitbucket.org/birkenfeld/sphinx-contrib/]
repository.

Using Sphinx with...

	Read the Docs

	https://readthedocs.org is a documentation hosting service based around
Sphinx. They will host sphinx documentation, along with supporting a number
of other features including version support, PDF generation, and more. The
Getting Started [http://read-the-docs.readthedocs.org/en/latest/getting_started.html]
guide is a good place to start.

	Epydoc

	There’s a third-party extension providing an api role [http://git.savannah.gnu.org/cgit/kenozooid.git/tree/doc/extapi.py] which refers to
Epydoc’s API docs for a given identifier.

	Doxygen

	Michael Jones is developing a reST/Sphinx bridge to doxygen called breathe [https://github.com/michaeljones/breathe/tree/master].

	SCons

	Glenn Hutchings has written a SCons build script to build Sphinx
documentation; it is hosted here: https://bitbucket.org/zondo/sphinx-scons

	PyPI

	Jannis Leidel wrote a setuptools command [https://pypi.python.org/pypi/Sphinx-PyPI-upload] that automatically
uploads Sphinx documentation to the PyPI package documentation area at
http://pythonhosted.org/.

	GitHub Pages

	Directories starting with underscores are ignored by default which breaks
static files in Sphinx. GitHub’s preprocessor can be disabled [https://github.com/blog/572-bypassing-jekyll-on-github-pages] to support
Sphinx HTML output properly.

	MediaWiki

	See https://bitbucket.org/kevindunn/sphinx-wiki/wiki/Home, a project by Kevin Dunn.

	Google Analytics

	You can use a custom layout.html template, like this:

{% extends "!layout.html" %}

{%- block extrahead %}
{{ super() }}
<script type="text/javascript">
 var _gaq = _gaq || [];
 _gaq.push(['_setAccount', 'XXX account number XXX']);
 _gaq.push(['_trackPageview']);
</script>
{% endblock %}

{% block footer %}
{{ super() }}
<div class="footer">This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.
<script type="text/javascript">
 (function() {
 var ga = document.createElement('script');
 ga.src = ('https:' == document.location.protocol ?
 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
 ga.setAttribute('async', 'true');
 document.documentElement.firstChild.appendChild(ga);
 })();
</script>
</div>
{% endblock %}

Epub info

The following list gives some hints for the creation of epub files:

	Split the text into several files. The longer the individual HTML files are,
the longer it takes the ebook reader to render them. In extreme cases, the
rendering can take up to one minute.

	Try to minimize the markup. This also pays in rendering time.

	For some readers you can use embedded or external fonts using the CSS
@font-face directive. This is extremely useful for code listings which
are often cut at the right margin. The default Courier font (or variant) is
quite wide and you can only display up to 60 characters on a line. If you
replace it with a narrower font, you can get more characters on a line. You
may even use FontForge [http://fontforge.github.io/] and create
narrow variants of some free font. In my case I get up to 70 characters on a
line.

You may have to experiment a little until you get reasonable results.

	Test the created epubs. You can use several alternatives. The ones I am aware
of are Epubcheck [https://code.google.com/archive/p/epubcheck], Calibre [http://calibre-ebook.com/], FBreader [https://fbreader.org/] (although it does not render the CSS),
and Bookworm [http://www.oreilly.com/bookworm/index.html]. For bookworm you can download the source from
https://code.google.com/archive/p/threepress and run your own local server.

	Large floating divs are not displayed properly.
If they cover more than one page, the div is only shown on the first page.
In that case you can copy the epub.css from the
sphinx/themes/epub/static/ directory to your local _static/
directory and remove the float settings.

	Files that are inserted outside of the toctree directive must be manually
included. This sometimes applies to appendixes, e.g. the glossary or
the indices. You can add them with the epub_post_files option.

	The handling of the epub cover page differs from the reStructuredText
procedure which automatically resolves image paths and puts the images
into the _images directory. For the epub cover page put the image in the
html_static_path directory and reference it with its full path in
the epub_cover config option.

Texinfo info

There are two main programs for reading Info files, info and GNU Emacs. The
info program has less features but is available in most Unix environments
and can be quickly accessed from the terminal. Emacs provides better font and
color display and supports extensive customization (of course).

Displaying Links

One noticeable problem you may encounter with the generated Info files is how
references are displayed. If you read the source of an Info file, a reference
to this section would look like:

* note Displaying Links: target-id

In the stand-alone reader, info, references are displayed just as they
appear in the source. Emacs, on the other-hand, will by default replace
*note: with see and hide the target-id. For example:

Displaying Links

The exact behavior of how Emacs displays references is dependent on the variable
Info-hide-note-references. If set to the value of hide, Emacs will hide
both the *note: part and the target-id. This is generally the best way
to view Sphinx-based documents since they often make frequent use of links and
do not take this limitation into account. However, changing this variable
affects how all Info documents are displayed and most due take this behavior
into account.

If you want Emacs to display Info files produced by Sphinx using the value
hide for Info-hide-note-references and the default value for all other
Info files, try adding the following Emacs Lisp code to your start-up file,
~/.emacs.d/init.el.

(defadvice info-insert-file-contents (after
 sphinx-info-insert-file-contents
 activate)
 "Hack to make `Info-hide-note-references' buffer-local and
automatically set to `hide' iff it can be determined that this file
was created from a Texinfo file generated by Docutils or Sphinx."
 (set (make-local-variable 'Info-hide-note-references)
 (default-value 'Info-hide-note-references))
 (save-excursion
 (save-restriction
 (widen) (goto-char (point-min))
 (when (re-search-forward
 "^Generated by \\(Sphinx\\|Docutils\\)"
 (save-excursion (search-forward "\x1f" nil t)) t)
 (set (make-local-variable 'Info-hide-note-references)
 'hide)))))

Notes

The following notes may be helpful if you want to create Texinfo files:

	Each section corresponds to a different node in the Info file.

	Colons (:) cannot be properly escaped in menu entries and xrefs.
They will be replaced with semicolons (;).

	Links to external Info files can be created using the somewhat official URI
scheme info. For example:

info:Texinfo#makeinfo_options

which produces:

info:Texinfo#makeinfo_options

	Inline markup

The standard formatting for *strong* and _emphasis_ can
result in ambiguous output when used to markup parameter names and
other values. Since this is a fairly common practice, the default
formatting has been changed so that emphasis and strong are
now displayed like `literal's.

The standard formatting can be re-enabled by adding the following to
your conf.py:

texinfo_elements = {'preamble': """
@definfoenclose strong,*,*
@definfoenclose emph,_,_
"""}

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Glossary

	builder

	A class (inheriting from Builder) that takes
parsed documents and performs an action on them. Normally, builders
translate the documents to an output format, but it is also possible to
use the builder builders that e.g. check for broken links in the
documentation, or build coverage information.

See Available builders for an overview over Sphinx’s built-in builders.

	configuration directory

	The directory containing conf.py. By default, this is the same as
the source directory, but can be set differently with the -c
command-line option.

	directive

	A reStructuredText markup element that allows marking a block of content
with special meaning. Directives are supplied not only by docutils, but
Sphinx and custom extensions can add their own. The basic directive
syntax looks like this:

.. directivename:: argument ...
 :option: value

 Content of the directive.

See Directives for more information.

	document name

	Since reST source files can have different extensions (some people like
.txt, some like .rst – the extension can be configured with
source_suffix) and different OSes have different path
separators, Sphinx abstracts them: document names are always
relative to the source directory, the extension is stripped, and
path separators are converted to slashes. All values, parameters and such
referring to “documents” expect such document names.

Examples for document names are index, library/zipfile, or
reference/datamodel/types. Note that there is no leading or trailing
slash.

	domain

	A domain is a collection of markup (reStructuredText directives
and roles) to describe and link to objects belonging
together, e.g. elements of a programming language. Directive and role
names in a domain have names like domain:name, e.g. py:function.

Having domains means that there are no naming problems when one set of
documentation wants to refer to e.g. C++ and Python classes. It also
means that extensions that support the documentation of whole new
languages are much easier to write. For more information about domains,
see the chapter Sphinx Domains.

	environment

	A structure where information about all documents under the root is saved,
and used for cross-referencing. The environment is pickled after the
parsing stage, so that successive runs only need to read and parse new and
changed documents.

	master document

	The document that contains the root toctree directive.

	object

	The basic building block of Sphinx documentation. Every “object
directive” (e.g. function or object) creates such a
block; and most objects can be cross-referenced to.

	role

	A reStructuredText markup element that allows marking a piece of text.
Like directives, roles are extensible. The basic syntax looks like this:
:rolename:`content`. See Inline markup for details.

	source directory

	The directory which, including its subdirectories, contains all source
files for one Sphinx project.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Sphinx Developer’s Guide

Abstract

This document describes the development process of Sphinx, a documentation
system used by developers to document systems used by other developers to
develop other systems that may also be documented using Sphinx.

The Sphinx source code is managed using Git and is hosted on Github.

git clone git://github.com/sphinx-doc/sphinx

Community

	sphinx-users <sphinx-users@googlegroups.com>

	Mailing list for user support.

	sphinx-dev <sphinx-dev@googlegroups.com>

	Mailing list for development related discussions.

	#sphinx-doc on irc.freenode.net

	IRC channel for development questions and user support.

Bug Reports and Feature Requests

If you have encountered a problem with Sphinx or have an idea for a new
feature, please submit it to the issue tracker [https://github.com/sphinx-doc/sphinx/issues] on Github or discuss it
on the sphinx-dev mailing list.

For bug reports, please include the output produced during the build process
and also the log file Sphinx creates after it encounters an un-handled
exception. The location of this file should be shown towards the end of the
error message.

Including or providing a link to the source files involved may help us fix the
issue. If possible, try to create a minimal project that produces the error
and post that instead.

Contributing to Sphinx

The recommended way for new contributors to submit code to Sphinx is to fork
the repository on Github and then submit a pull request after
committing the changes. The pull request will then need to be approved by one
of the core developers before it is merged into the main repository.

	Check for open issues or open a fresh issue to start a discussion around a
feature idea or a bug.

	If you feel uncomfortable or uncertain about an issue or your changes, feel
free to email sphinx-dev@googlegroups.com.

	Fork the repository [https://github.com/sphinx-doc/sphinx] on Github to start making your changes to the
master branch for next major version, or stable branch for next
minor version.

	Write a test which shows that the bug was fixed or that the feature works
as expected.

	Send a pull request and bug the maintainer until it gets merged and
published. Make sure to add yourself to AUTHORS [https://github.com/sphinx-doc/sphinx/blob/master/AUTHORS] and the change to
CHANGES [https://github.com/sphinx-doc/sphinx/blob/master/CHANGES].

Getting Started

These are the basic steps needed to start developing on Sphinx.

	Create an account on Github.

	Fork the main Sphinx repository (sphinx-doc/sphinx [https://github.com/sphinx-doc/sphinx]) using the Github interface.

	Clone the forked repository to your machine.

git clone https://github.com/USERNAME/sphinx
cd sphinx

	Checkout the appropriate branch.

For changes that should be included in the next minor release (namely bug
fixes), use the stable branch.

git checkout stable

For new features or other substantial changes that should wait until the
next major release, use the master branch.

	Optional: setup a virtual environment.

virtualenv ~/sphinxenv
. ~/sphinxenv/bin/activate
pip install -e .

	Create a new working branch. Choose any name you like.

git checkout -b feature-xyz

	Hack, hack, hack.

For tips on working with the code, see the Coding Guide.

	Test, test, test. Possible steps:

	Run the unit tests:

pip install -r test-reqs.txt
make test

	Build the documentation and check the output for different builders:

cd doc
make clean html latexpdf

	Run the unit tests under different Python environments using
tox:

pip install tox
tox -v

	Add a new unit test in the tests directory if you can.

	For bug fixes, first add a test that fails without your changes and passes
after they are applied.

	Tests that need a sphinx-build run should be integrated in one of the
existing test modules if possible. New tests that to @with_app and
then build_all for a few assertions are not good since the test suite
should not take more than a minute to run.

	Please add a bullet point to CHANGES if the fix or feature is not
trivial (small doc updates, typo fixes). Then commit:

git commit -m '#42: Add useful new feature that does this.'

Github recognizes certain phrases that can be used to automatically
update the issue tracker.

For example:

git commit -m 'Closes #42: Fix invalid markup in docstring of Foo.bar.'

would close issue #42.

	Push changes in the branch to your forked repository on Github.

git push origin feature-xyz

	Submit a pull request from your branch to the respective branch (master
or stable) on sphinx-doc/sphinx using the Github interface.

	Wait for a core developer to review your changes.

Core Developers

The core developers of Sphinx have write access to the main repository. They
can commit changes, accept/reject pull requests, and manage items on the issue
tracker.

You do not need to be a core developer or have write access to be involved in
the development of Sphinx. You can submit patches or create pull requests
from forked repositories and have a core developer add the changes for you.

The following are some general guidelines for core developers:

	Questionable or extensive changes should be submitted as a pull request
instead of being committed directly to the main repository. The pull
request should be reviewed by another core developer before it is merged.

	Trivial changes can be committed directly but be sure to keep the repository
in a good working state and that all tests pass before pushing your changes.

	When committing code written by someone else, please attribute the original
author in the commit message and any relevant CHANGES entry.

Locale updates

The parts of messages in Sphinx that go into builds are translated into several
locales. The translations are kept as gettext .po files translated from the
master template sphinx/locale/sphinx.pot.

Sphinx uses Babel [http://babel.edgewall.org] to extract messages and
maintain the catalog files. It is integrated in setup.py:

	Use python setup.py extract_messages to update the .pot template.

	Use python setup.py update_catalog to update all existing language
catalogs in sphinx/locale/*/LC_MESSAGES with the current messages in the
template file.

	Use python setup.py compile_catalog to compile the .po files to binary
.mo files and .js files.

When an updated .po file is submitted, run compile_catalog to commit both
the source and the compiled catalogs.

When a new locale is submitted, add a new directory with the ISO 639-1 language
identifier and put sphinx.po in there. Don’t forget to update the possible
values for language in doc/config.rst.

The Sphinx core messages can also be translated on Transifex [https://www.transifex.com/]. There exists a client tool named tx in the
Python package “transifex_client”, which can be used to pull translations in
.po format from Transifex. To do this, go to sphinx/locale and then run
tx pull -f -l LANG where LANG is an existing language identifier. It is
good practice to run python setup.py update_catalog afterwards to make sure
the .po file has the canonical Babel formatting.

Coding Guide

	Try to use the same code style as used in the rest of the project. See the
Pocoo Styleguide [http://flask.pocoo.org/docs/styleguide/] for more information.

	For non-trivial changes, please update the CHANGES file. If your
changes alter existing behavior, please document this.

	New features should be documented. Include examples and use cases where
appropriate. If possible, include a sample that is displayed in the
generated output.

	When adding a new configuration variable, be sure to document it and update
sphinx/quickstart.py if it’s important enough.

	Use the included utils/check_sources.py script to check for
common formatting issues (trailing whitespace, lengthy lines, etc).

	Add appropriate unit tests.

Debugging Tips

	Delete the build cache before building documents if you make changes in the
code by running the command make clean or using the
sphinx-build -E option.

	Use the sphinx-build -P option to run Pdb on exceptions.

	Use node.pformat() and node.asdom().toxml() to generate a printable
representation of the document structure.

	Set the configuration variable keep_warnings to True so
warnings will be displayed in the generated output.

	Set the configuration variable nitpicky to True so that Sphinx
will complain about references without a known target.

	Set the debugging options in the Docutils configuration file [http://docutils.sourceforge.net/docs/user/config.html].

	JavaScript stemming algorithms in sphinx/search/*.py (except en.py) are
generated by this
modified snowballcode generator [https://github.com/shibukawa/snowball].
Generated JSX [http://jsx.github.io/] files are
in this repository [https://github.com/shibukawa/snowball-stemmer.jsx].
You can get the resulting JavaScript files using the following command:

$ npm install
$ node_modules/.bin/grunt build # -> dest/*.global.js

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Changes in Sphinx

Release 1.4.2 (in development)

Features added

	Now suppress_warnings accepts following configurations (ref: #2451, #2466):

	app.add_node

	app.add_directive

	app.add_role

	app.add_generic_role

	app.add_source_parser

	image.data_uri

	image.nonlocal_uri

	#2453: LaTeX writer allows page breaks in topic contents; and their
horizontal extent now fits in the line width (with shadow in margin). Also
warning-type admonitions allow page breaks and their vertical spacing has
been made more coherent with the one for hint-type notices (ref #2446).

	#2459: the framing of literal code-blocks in LaTeX output (and not only the
code lines themselves) obey the indentation in lists or quoted blocks.

	
	#2343: the long source lines in code-blocks are wrapped (without modifying

	the line numbering) in LaTeX output (ref #1534, #2304).

Bugs fixed

	#2370: the equations are slightly misaligned in LaTeX writer

	#1817, #2077: suppress pep8 warnings on conf.py generated by sphinx-quickstart

	#2407: building docs crash if document includes large data image URIs

	#2436: Sphinx does not check version by needs_sphinx if loading extensions failed

	#2397: Setup shorthandoff for turkish documents

	#2447: VerbatimBorderColor wrongly used also for captions of PDF

	#2456: C++, fix crash related to document merging (e.g., singlehtml and Latex builders).

	#2446: latex(pdf) sets local tables of contents (or more generally topic nodes) in unbreakable boxes, causes overflow at bottom

	#2476: Omit MathJax markers if :nowrap: is given

	#2465: latex builder fails in case no caption option is provided to toctree directive

	Sphinx crashes if self referenced toctree found

	#2481: spelling mistake for mecab search splitter. Thanks to Naoki Sato.

	#2309: Fix could not refer “indirect hyperlink targets” by ref-role

	intersphinx fails if mapping URL contains any port

	#2088: intersphinx crashes if the mapping URL requires basic auth

	#2304: auto line breaks in latexpdf codeblocks

	#1534: Word wrap long lines in Latex verbatim blocks

	#2460: too much white space on top of captioned literal blocks in PDF output

	Show error reason when multiple math extensions are loaded (ref: #2499)

	#2483: any figure number was not assigned if figure title contains only non text objects

	#2501: Unicode subscript numbers are normalized in LaTeX

	#2492: Figure directive with :figwidth: generates incorrect Latex-code

	The caption of figure is always put on center even if :align: was specified

	#2526: LaTeX writer crashes if the section having only images

	#2522: Sphinx touches mo files under installed directory that caused permission error.

Release 1.4.1 (released Apr 12, 2016)

Incompatible changes

	The default format of today_fmt and html_last_updated_fmt is back to
strftime format again. Locale Date Markup Language is also supported for
backward compatibility until Sphinx-1.5.

Translations

	Added Welsh translation, thanks to Geraint Palmer.

	Added Greek translation, thanks to Stelios Vitalis.

	Added Esperanto translation, thanks to Dinu Gherman.

	Added Hindi translation, thanks to Purnank H. Ghumalia.

	Added Romanian translation, thanks to Razvan Stefanescu.

Bugs fixed

	C++, added support for extern and thread_local.

	C++, type declarations are now using the prefixes typedef, using, and type,
depending on the style of declaration.

	#2413: C++, fix crash on duplicate declarations

	#2394: Sphinx crashes when html_last_updated_fmt is invalid

	#2408: dummy builder not available in Makefile and make.bat

	#2412: hyperlink targets are broken in LaTeX builder

	figure directive crashes if non paragraph item is given as caption

	#2418: time formats no longer allowed in today_fmt

	#2395: Sphinx crashes if unicode character in image filename

	#2396: “too many values to unpack” in genindex-single

	#2405: numref link in PDF jumps to the wrong location

	#2414: missing number in PDF hyperlinks to code listings

	#2440: wrong import for gmtime. Thanks to Uwe L. Korn.

Release 1.4 (released Mar 28, 2016)

Incompatible changes

	Drop PorterStemmer package support. Use PyStemmer instead of PorterStemmer
to accelerate stemming.

	sphinx_rtd_theme has become optional. Please install it manually.
Refs #2087, #2086, #1845 and #2097. Thanks to Victor Zverovich.

	#2231: Use DUrole instead of DUspan for custom roles in LaTeX writer. It enables to take
title of roles as an argument of custom macros.

	#2022: ‘Thumbs.db’ and ‘.DS_Store’ are added to exclude_patterns default values in
conf.py that will be provided on sphinx-quickstart.

	#2027, #2208: The html_title accepts string values only. And The None value cannot be
accepted.

	sphinx.ext.graphviz: show graph image in inline by default

	#2060, #2224: The manpage role now generate sphinx.addnodes.manpage node instead
of sphinx.addnodes.literal_emphasis node.

	#2022: html_extra_path also copies dotfiles in the extra directory, and
refers to exclude_patterns to exclude extra files and directories.

	#2300: enhance autoclass:: to use the docstring of __new__ if __init__ method’s is missing
of empty

	#2251: Previously, under glossary directives, multiple terms for one definition are
converted into single term node and the each terms in the term node are separated
by termsep node. In new implementation, each terms are converted into individual
term nodes and termsep node is removed.
By this change, output layout of every builders are changed a bit.

	The default highlight language is now Python 3. This means that source code
is highlighted as Python 3 (which is mostly a superset of Python 2), and no
parsing is attempted to distinguish valid code. To get the old behavior back,
add highlight_language = "python" to conf.py.

	Locale Date Markup Language [http://unicode.org/reports/tr35/tr35-dates.html#Date_Format_Patterns] like
"MMMM dd, YYYY" is default format for today_fmt and html_last_updated_fmt.
However strftime format like "%B %d, %Y" is also supported for backward
compatibility until Sphinx-1.5. Later format will be disabled from Sphinx-1.5.

	#2327: latex_use_parts is deprecated now. Use latex_toplevel_sectioning instead.

	#2337: Use \url{URL} macro instead of \href{URL}{URL} in LaTeX writer.

	#1498: manpage writer: don’t make whole of item in definition list bold if it includes strong node.

	#582: Remove hint message from quick search box for html output.

	#2378: Sphinx now bundles newfloat.sty

Features added

	#2092: add todo directive support in napoleon package.

	#1962: when adding directives, roles or nodes from an extension, warn if such
an element is already present (built-in or added by another extension).

	#1909: Add “doc” references to Intersphinx inventories.

	C++ type alias support (e.g., .. type:: T = int).

	C++ template support for classes, functions, type aliases, and variables (#1729, #1314).

	C++, added new scope management directives namespace-push and namespace-pop.

	#1970: Keyboard shortcuts to navigate Next and Previous topics

	Intersphinx: Added support for fetching Intersphinx inventories with URLs
using HTTP basic auth.

	C++, added support for template parameter in function info field lists.

	C++, added support for pointers to member (function).

	#2113: Allow :class: option to code-block directive.

	#2192: Imgmath (pngmath with svg support).

	#2200: Support XeTeX and LuaTeX for the LaTeX builder.

	#1906: Use xcolor over color for fcolorbox where available for LaTeX output.

	#2216: Texinputs makefile improvements.

	#2170: Support for Chinese language search index.

	#2214: Add sphinx.ext.githubpages to publish the docs on GitHub Pages

	#1030: Make page reference names for latex_show_pagerefs translatable

	#2162: Add Sphinx.add_source_parser() to add source_suffix and source_parsers from extension

	#2207: Add sphinx.parsers.Parser class; a base class for new parsers

	#656: Add graphviz_dot option to graphviz directives to switch the dot command

	#1939: Added the dummy builder: syntax check without output.

	#2230: Add math_number_all option to number all displayed math in math extensions

	#2235: needs_sphinx supports micro version comparison

	#2282: Add “language” attribute to html tag in the “basic” theme

	#1779: Add EPUB 3 builder

	#1751: Add todo_link_only to avoid file path and line indication on
todolist. Thanks to Francesco Montesano.

	#2199: Use imagesize package to obtain size of images.

	#1099: Add configurable retries to the linkcheck builder. Thanks to Alex Gaynor.
Also don’t check anchors starting with !.

	#2300: enhance autoclass:: to use the docstring of __new__ if __init__ method’s is missing
of empty

	#1858: Add Sphinx.add_enumerable_node() to add enumerable nodes for numfig feature

	#1286, #2099: Add sphinx.ext.autosectionlabel extension to allow reference
sections using its title. Thanks to Tadhg O’Higgins.

	#1854: Allow to choose Janome for Japanese splitter.

	#1853: support custom text splitter on html search with language='ja'.

	#2320: classifier of glossary terms can be used for index entries grouping key.
The classifier also be used for translation. See also Glossary.

	#2308: Define \tablecontinued macro to redefine the style of continued label for
longtables.

	Select an image by similarity if multiple images are globbed by .. image:: filename.*

	#1921: Support figure substitutions by language and figure_language_filename

	#2245: Add latex_elements["passoptionstopackages"] option to call PassOptionsToPackages
in early stage of preambles.

	#2340: Math extension: support alignment of multiple equations for MathJAX.

	#2338: Define \titleref macro to redefine the style of title-reference roles.

	Define \menuselection and \accelerator macros to redefine the style of menuselection roles.

	Define \crossref macro to redefine the style of references

	#2301: Texts in the classic html theme should be hyphenated.

	#2355: Define \termref macro to redefine the style of term roles.

	Add suppress_warnings to suppress arbitrary warning message (experimental)

	#2229: Fix no warning is given for unknown options

	#2327: Add latex_toplevel_sectioning to switch the top level sectioning of LaTeX document.

Bugs fixed

	#1913: C++, fix assert bug for enumerators in next-to-global and global scope.

	C++, fix parsing of ‘signed char’ and ‘unsigned char’ as types.

	C++, add missing support for ‘friend’ functions.

	C++, add missing support for virtual base classes (thanks to Rapptz).

	C++, add support for final classes.

	C++, fix parsing of types prefixed with ‘enum’.

	#2023: Dutch search support uses Danish stemming info.

	C++, add support for user-defined literals.

	#1804: Now html output wraps overflowed long-line-text in the sidebar. Thanks to
Hassen ben tanfous.

	#2183: Fix porterstemmer causes make json to fail.

	#1899: Ensure list is sent to OptParse.

	#2164: Fix wrong check for pdftex inside sphinx.sty (for graphicx package option).

	#2165, #2218: Remove faulty and non-need conditional from sphinx.sty.

	Fix broken LaTeX code is generated if unknown language is given

	#1944: Fix rst_prolog breaks file-wide metadata

	#2074: make gettext should use canonical relative paths for .pot. Thanks to
anatoly techtonik.

	#2311: Fix sphinx.ext.inheritance_diagram raises AttributeError

	#2251: Line breaks in .rst files are transferred to .pot files in a wrong way.

	#794: Fix date formatting in latex output is not localized

	Remove image/gif from supported_image_types of LaTeX writer (#2272)

	Fix ValueError is raised if LANGUAGE is empty string

	Fix unpack warning is shown when the directives generated from Sphinx.add_crossref_type is used

	The default highlight language is now default. This means that source code
is highlighted as Python 3 (which is mostly a superset of Python 2) if possible.
To get the old behavior back, add highlight_language = "python" to conf.py.

	#2329: Refresh environment forcely if source directory has changed.

	#2331: Fix code-blocks are filled by block in dvi; remove xcdraw option from xcolor package

	Fix the confval type checker emits warnings if unicode is given to confvals which expects string value

	#2360: Fix numref in LaTeX output is broken

	#2361: Fix additional paragraphs inside the “compound” directive are indented

	#2364: Fix KeyError ‘rootSymbol’ on Sphinx upgrade from older version.

	#2348: Move amsmath and amssymb to before fontpkg on LaTeX writer.

	#2368: Ignore emacs lock files like .#foo.rst by default.

	#2262: literal_block and its caption has been separated by pagebreak in LaTeX output.

	#2319: Fix table counter is overrided by code-block’s in LaTeX. Thanks to jfbu.

	Fix unpack warning if combinated with 3rd party domain extensions.

	#1153: Fix figures in sidebar causes latex build error.

	#2358: Fix user-preamble could not override the tocdepth definition.

	#2358: Redece tocdepth if part or chapter is used for top_sectionlevel.

	#2351: Fix footnote spacing

	#2363: Fix toctree() in templates generates broken links in SingleHTMLBuilder.

	#2366: Fix empty hyperref is generated on toctree in HTML builder.

Documentation

	#1757: Fix for usage of html_last_updated_fmt. Thanks to Ralf Hemmecke.

Release 1.3.6 (released Feb 29, 2016)

Features added

	#1873, #1876, #2278: Add page_source_suffix html context variable. This should be
introduced with source_parsers feature. Thanks for Eric Holscher.

Bugs fixed

	#2265: Fix babel is used in spite of disabling it on latex_elements

	#2295: Avoid mutating dictionary errors while enumerating members in autodoc
with Python 3

	#2291: Fix pdflatex “Counter too large” error from footnotes inside tables of contents

	#2292: Fix some footnotes disappear from LaTeX output

	#2287: sphinx.transforms.Locale always uses rst parser. Sphinx i18n feature should
support parsers that specified source_parsers.

	#2290: Fix sphinx.ext.mathbase use of amsfonts may break user choice of math fonts

	#2324: Print a hint how to increase the recursion limit when it is hit.

	#1565, #2229: Revert new warning; the new warning will be triggered from version 1.4 on.

	#2329: Refresh environment forcely if source directory has changed.

	#2019: Fix the domain objects in search result are not escaped

Release 1.3.5 (released Jan 24, 2016)

Bugs fixed

	Fix line numbers was not shown on warnings in LaTeX and texinfo builders

	Fix filenames were not shown on warnings of citations

	Fix line numbers was not shown on warnings in LaTeX and texinfo builders

	Fix line numbers was not shown on warnings of indices

	#2026: Fix LaTeX builder raises error if parsed-literal includes links

	#2243: Ignore strange docstring types for classes, do not crash

	#2247: Fix #2205 breaks make html for definition list with classifiers
that contains regular-expression like string

	#1565: Sphinx will now emit a warning that highlighting was skipped if the syntax
is incorrect for code-block, literalinclude and so on.

	#2211: Fix paragraphs in table cell doesn’t work in Latex output

	#2253: :pyobject: option of literalinclude directive can’t detect indented
body block when the block starts with blank or comment lines.

	Fix TOC is not shown when no :maxdepth: for toctrees (ref: #771)

	Fix warning message for :numref: if target is in orphaned doc (ref: #2244)

Release 1.3.4 (released Jan 12, 2016)

Bugs fixed

	#2134: Fix figure caption with reference causes latex build error

	#2094: Fix rubric with reference not working in Latex

	#2147: Fix literalinclude code in latex does not break in pages

	#1833: Fix email addresses is showed again if latex_show_urls is not None

	#2176: sphinx.ext.graphviz: use <object> instead of to embed svg

	#967: Fix SVG inheritance diagram is not hyperlinked (clickable)

	#1237: Fix footnotes not working in definition list in LaTeX

	#2168: Fix raw directive does not work for text writer

	#2171: Fix cannot linkcheck url with unicode

	#2182: LaTeX: support image file names with more than 1 dots

	#2189: Fix previous sibling link for first file in subdirectory uses last file, not
intended previous from root toctree

	#2003: Fix decode error under python2 (only) when make linkcheck is run

	#2186: Fix LaTeX output of mathbb in math

	#1480, #2188: LaTeX: Support math in section titles

	#2071: Fix same footnote in more than two section titles => LaTeX/PDF Bug

	#2040: Fix UnicodeDecodeError in sphinx-apidoc when author contains non-ascii characters

	#2193: Fix shutil.SameFileError if source directory and destination directory are same

	#2178: Fix unparseable C++ cross-reference when referencing a function with :cpp:any:

	#2206: Fix Sphinx latex doc build failed due to a footnotes

	#2201: Fix wrong table caption for tables with over 30 rows

	#2213: Set <blockquote> in the classic theme to fit with <p>

	#1815: Fix linkcheck does not raise an exception if warniserror set to true and link is
broken

	#2197: Fix slightly cryptic error message for missing index.rst file

	#1894: Unlisted phony targets in quickstart Makefile

	#2125: Fix unifies behavior of collapsed fields (GroupedField and TypedField)

	#1408: Check latex_logo validity before copying

	#771: Fix latex output doesn’t set tocdepth

	#1820: On Windows, console coloring is broken with colorama version 0.3.3.
Now sphinx use colorama>=0.3.5 to avoid this problem.

	#2072: Fix footnotes in chapter-titles do not appear in PDF output

	#1580: Fix paragraphs in longtable don’t work in Latex output

	#1366: Fix centered image not centered in latex

	#1860: Fix man page using :samp: with braces - font doesn’t reset

	#1610: Sphinx crashes in japanese indexing in some systems

	Fix Sphinx crashes if mecab initialization failed

	#2160: Fix broken TOC of PDFs if section includes an image

	#2172: Fix dysfunctional admonition py@lightbox in sphinx.sty. Thanks to jfbu.

	#2198,#2205: make gettext generate broken msgid for definition lists.

	#2062: Escape characters in doctests are treated incorrectly with Python 2.

	#2225: Fix if the option does not begin with dash, linking is not performed

	#2226: Fix math is not HTML-encoded when :nowrap: is given (jsmath, mathjax)

	#1601, #2220: ‘any’ role breaks extended domains behavior. Affected extensions doesn’t
support resolve_any_xref and resolve_xref returns problematic node instead of None.
sphinxcontrib-httpdomain is one of them.

	#2229: Fix no warning is given for unknown options

Release 1.3.3 (released Dec 2, 2015)

Bugs fixed

	#2177: Fix parallel hangs

	#2012: Fix exception occurred if numfig_format is invalid

	#2142: Provide non-minified JS code in sphinx/search/non-minified-js/*.js for
source distribution on PyPI.

	#2148: Error while building devhelp target with non-ASCII document.

Release 1.3.2 (released Nov 29, 2015)

Features added

	#1935: Make “numfig_format” overridable in latex_elements.

Bugs fixed

	#1976: Avoid “2.0” version of Babel because it doesn’t work with Windows environment.

	Add a “default.css” stylesheet (which imports “classic.css”) for compatibility.

	#1788: graphviz extension raises exception when caption option is present.

	#1789: :pyobject: option of literalinclude directive includes following
lines after class definitions

	#1790: literalinclude strips empty lines at the head and tail

	#1802: load plugin themes automatically when theme.conf use it as ‘inherit’. Thanks to
Takayuki Hirai.

	#1794: custom theme extended from alabaster or sphinx_rtd_theme can’t find base theme.

	#1834: compatibility for docutils-0.13: handle_io_errors keyword argument for
docutils.io.FileInput cause TypeError.

	#1823: ‘.’ as <module_path> for sphinx-apidoc cause an unfriendly error. Now ‘.’
is converted to absolute path automatically.

	Fix a crash when setting up extensions which do not support metadata.

	#1784: Provide non-minified JS code in sphinx/search/non-minified-js/*.js

	#1822, #1892: Fix regression for #1061. autosummary can’t generate doc for imported
members since sphinx-1.3b3. Thanks to Eric Larson.

	#1793, #1819: “see also” misses a linebreak in text output. Thanks to Takayuki Hirai.

	#1780, #1866: “make text” shows “class” keyword twice. Thanks to Takayuki
Hirai.

	#1871: Fix for LaTeX output of tables with one column and multirows.

	Work around the lack of the HTMLParserError exception in Python 3.5.

	#1949: Use safe_getattr in the coverage builder to avoid aborting with
descriptors that have custom behavior.

	#1915: Do not generate smart quotes in doc field type annotations.

	#1796: On py3, automated .mo building caused UnicodeDecodeError.

	#1923: Use babel features only if the babel latex element is nonempty.

	#1942: Fix a KeyError in websupport.

	#1903: Fix strange id generation for glossary terms.

	make text will crush if a definition list item has more than 1 classifiers as:
term : classifier1 : classifier2.

	#1855: make gettext generates broken po file for definition lists with classifier.

	#1869: Fix problems when dealing with files containing non-ASCII characters. Thanks to
Marvin Schmidt.

	#1798: Fix building LaTeX with references in titles.

	#1725: On py2 environment, doctest with using non-ASCII characters causes
'ascii' codec can't decode byte exception.

	#1540: Fix RuntimeError with circular referenced toctree

	#1983: i18n translation feature breaks references which uses section name.

	#1990: Use caption of toctree to title of tableofcontents in LaTeX

	#1987: Fix ampersand is ignored in :menuselection: and :guilabel: on LaTeX builder

	#1994: More supporting non-standard parser (like recommonmark parser) for Translation and
WebSupport feature. Now node.rawsource is fall backed to node.astext() during docutils
transforming.

	#1989: “make blahblah” on Windows indicate help messages for sphinx-build every time.
It was caused by wrong make.bat that generated by Sphinx-1.3.0/1.3.1.

	On Py2 environment, conf.py that is generated by sphinx-quickstart should have u prefixed
config value for ‘version’ and ‘release’.

	#2102: On Windows + Py3, using |today| and non-ASCII date format will raise
UnicodeEncodeError.

	#1974: UnboundLocalError: local variable ‘domain’ referenced before assignment when
using any role and sphinx.ext.intersphinx in same time.

	#2121: multiple words search doesn’t find pages when words across on the page title and
the page content.

	#1884, #1885: plug-in html themes cannot inherit another plug-in theme. Thanks to
Suzumizaki.

	#1818: sphinx.ext.todo directive generates broken html class attribute as
‘admonition-‘ when language is specified with non-ASCII linguistic area like
‘ru’ or ‘ja’. To fix this, now todo directive can use :class: option.

	#2140: Fix footnotes in table has broken in LaTeX

	#2127: MecabBinder for html searching feature doesn’t work with Python 3.
Thanks to Tomoko Uchida.

Release 1.3.1 (released Mar 17, 2015)

Bugs fixed

	#1769: allows generating quickstart files/dirs for destination dir that
doesn’t overwrite existent files/dirs. Thanks to WAKAYAMA shirou.

	#1773: sphinx-quickstart doesn’t accept non-ASCII character as a option argument.

	#1766: the message “least Python 2.6 to run” is at best misleading.

	#1772: cross reference in docstrings like :param .write: breaks building.

	#1770, #1774: literalinclude with empty file occurs exception. Thanks to
Takayuki Hirai.

	#1777: Sphinx 1.3 can’t load extra theme. Thanks to tell-k.

	#1776: source_suffix = ['.rst'] cause unfriendly error on prior version.

	#1771: automated .mo building doesn’t work properly.

	#1783: Autodoc: Python2 Allow unicode string in __all__.
Thanks to Jens Hedegaard Nielsen.

	#1781: Setting html_domain_indices to a list raises a type check warnings.

Release 1.3 (released Mar 10, 2015)

Incompatible changes

	Roles ref, term and menusel now don’t generate emphasis [http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis]
nodes anymore. If you want to keep italic style, adapt your stylesheet.

	Role numref uses %s as special character to indicate position of
figure numbers instead # symbol.

Features added

	Add convenience directives and roles to the C++ domain:
directive cpp:var as alias for cpp:member, role :cpp:var as alias
for :cpp:member, and role any for cross-reference to any C++
declaraction. #1577, #1744

	The source_suffix config value can now be a list of multiple
suffixes.

	Add the ability to specify source parsers by source suffix with the
source_parsers config value.

	#1675: A new builder, AppleHelpBuilder, has been added that builds Apple
Help Books.

Bugs fixed

	1.3b3 change breaks a previous gettext output that contains duplicated
msgid such as “foo bar” and “version changes in 1.3: foo bar”.

	#1745: latex builder cause maximum recursion depth exceeded when a
footnote has a footnote mark itself.

	#1748: SyntaxError in sphinx/ext/ifconfig.py with Python 2.6.

	#1658, #1750: No link created (and warning given) if option does not
begin with -, / or +. Thanks to Takayuki Hirai.

	#1753: C++, added missing support for more complex declarations.

	#1700: Add :caption: option for toctree.

	#1742: :name: option is provided for toctree, code-block and
literalinclude dirctives.

	#1756: Incorrect section titles in search that was introduced from 1.3b3.

	#1746: C++, fixed name lookup procedure, and added missing lookups in declarations.

	#1765: C++, fix old id generation to use fully qualified names.

Documentation

	#1651: Add vartype field descritpion for python domain.

Release 1.3b3 (released Feb 24, 2015)

Incompatible changes

	Dependency requirement updates: docutils 0.11, Pygments 2.0

	The gettext_enables config value has been renamed to
gettext_additional_targets.

	#1735: Use https://docs.python.org/ instead of http protocol.
It was used for sphinx.ext.intersphinx and some documentation.

Features added

	#1346: Add new default theme;
	Add ‘alabaster’ theme.

	Add ‘sphinx_rtd_theme’ theme.

	The ‘default’ html theme has been renamed to ‘classic’. ‘default’ is still
available, however it will emit notice a recommendation that using new
‘alabaster’ theme.

	Added highlight_options configuration value.

	The language config value is now available in the HTML templates.

	The env-updated event can now return a value, which is interpreted
as an iterable of additional docnames that need to be rewritten.

	#772: Support for scoped and unscoped enums in C++. Enumerators in unscoped
enums are injected into the parent scope in addition to the enum scope.

	Add todo_include_todos config option to quickstart conf file, handled as
described in documentation.

	HTML breadcrumb items tag has class “nav-item” and “nav-item-N” (like
nav-item-0, 1, 2...).

	New option sphinx-quickstart --use-make-mode for generating Makefile that
use sphinx-build make-mode.

	#1235: i18n: several node can be translated if it is set to
gettext_additional_targets in conf.py. Supported nodes are:
	‘literal-block’

	‘doctest-block’

	‘raw’

	‘image’

	#1227: Add html_scaled_image_link config option to conf.py, to control
scaled image link.

Bugs fixed

	LaTeX writer now generates correct markup for cells spanning multiple rows.

	#1674: Do not crash if a module’s __all__ is not a list of strings.

	#1629: Use VerbatimBorderColor to add frame to code-block in LaTeX

	On windows, make-mode didn’t work on Win32 platform if sphinx was invoked as
python sphinx-build.py.

	#1687: linkcheck now treats 401 Unauthorized responses as “working”.

	#1690: toctrees with glob option now can also contain entries for single
documents with explicit title.

	#1591: html search results for C++ elements now has correct interpage links.

	bizstyle theme: nested long title pages make long breadcrumb that breaks page layout.

	bizstyle theme: all breadcrumb items become ‘Top’ on some mobile browser
(iPhone5s safari).

	#1722: restore toctree() template function behavior that was changed at 1.3b1.

	#1732: i18n: localized table caption raises exception.

	#1718: :numref: does not work with capital letters in the label

	#1630: resolve CSS conflicts, div.container css target for literal block wrapper
now renamed to div.literal-block-wrapper.

	sphinx.util.pycompat has been restored in its backwards-compatibility;
slated for removal in Sphinx 1.4.

	#1719: LaTeX writer does not respect numref_format option in captions

Release 1.3b2 (released Dec 5, 2014)

Incompatible changes

	update bundled ez_setup.py for setuptools-7.0 that requires Python 2.6 or
later.

Features added

	#1597: Added possibility to return a new template name from
html-page-context.

	PR#314, #1150: Configuration values are now checked for their type. A
warning is raised if the configured and the default value do not have the
same type and do not share a common non-trivial base class.

Bugs fixed

	PR#311: sphinx-quickstart does not work on python 3.4.

	Fix autodoc_docstring_signature not working with signatures
in class docstrings.

	Rebuilding cause crash unexpectedly when source files were added.

	#1607: Fix a crash when building latexpdf with “howto” class

	#1251: Fix again. Sections which depth are lower than :tocdepth: should not
be shown on localtoc sidebar.

	make-mode didn’t work on Win32 platform if sphinx was installed by wheel
package.

Release 1.3b1 (released Oct 10, 2014)

Incompatible changes

	Dropped support for Python 2.5, 3.1 and 3.2.

	Dropped support for docutils versions up to 0.9.

	Removed the sphinx.ext.oldcmarkup extension.

	The deprecated config values exclude_trees, exclude_dirnames and
unused_docs have been removed.

	A new node, sphinx.addnodes.literal_strong, has been added, for text that
should appear literally (i.e. no smart quotes) in strong font. Custom writers
will have to be adapted to handle this node.

	PR#269, #1476: replace <tt> tag by <code>. User customized stylesheets
should be updated If the css contain some styles for tt> tag.
Thanks to Takeshi Komiya.

	#1543: templates_path is automatically added to
exclude_patterns to avoid reading autosummary rst templates in the
templates directory.

	Custom domains should implement the new Domain.resolve_any_xref
method to make the any role work properly.

	gettext builder: gettext doesn’t emit uuid information to generated pot files
by default. Please set True to gettext_uuid to emit uuid information.
Additionally, if the python-levenshtein 3rd-party package is installed,
it will improve the calculation time.

	gettext builder: disable extracting/apply ‘index’ node by default. Please set
‘index’ to gettext_enables to enable extracting index entries.

	PR#307: Add frame to code-block in LaTeX. Thanks to Takeshi Komiya.

Features added

	Add support for Python 3.4.

	Add support for docutils 0.12

	Added sphinx.ext.napoleon extension for NumPy and Google style docstring
support.

	Added support for parallel reading (parsing) of source files with the
sphinx-build -j option. Third-party extensions will need to be checked for
compatibility and may need to be adapted if they store information in the
build environment object. See env-merge-info.

	Added the any role that can be used to find a cross-reference of
any type in any domain. Custom domains should implement the new
Domain.resolve_any_xref method to make this work properly.

	Exception logs now contain the last 10 messages emitted by Sphinx.

	Added support for extension versions (a string returned by setup(), these
can be shown in the traceback log files). Version requirements for extensions
can be specified in projects using the new needs_extensions config
value.

	Changing the default role within a document with the default-role [http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role]
directive is now supported.

	PR#214: Added stemming support for 14 languages, so that the built-in document
search can now handle these. Thanks to Shibukawa Yoshiki.

	PR#296, PR#303, #76: numfig feature: Assign numbers to figures, tables and
code-blocks. This feature is configured with numfig, numfig_secnum_depth
and numfig_format. Also numref role is available. Thanks to Takeshi
Komiya.

	PR#202: Allow ”.” and “~” prefixed references in :param: doc fields
for Python.

	PR#184: Add autodoc_mock_imports, allowing to mock imports of
external modules that need not be present when autodocumenting.

	#925: Allow list-typed config values to be provided on the command line,
like -D key=val1,val2.

	#668: Allow line numbering of code-block and literalinclude directives
to start at an arbitrary line number, with a new lineno-start option.

	PR#172, PR#266: The code-block and literalinclude
directives now can have a caption option that shows a filename before the
code in the output. Thanks to Nasimul Haque, Takeshi Komiya.

	Prompt for the document language in sphinx-quickstart.

	PR#217: Added config values to suppress UUID and location information in
generated gettext catalogs.

	PR#236, #1456: apidoc: Add a -M option to put module documentation before
submodule documentation. Thanks to Wes Turner and Luc Saffre.

	#1434: Provide non-minified JS files for jquery.js and underscore.js to
clarify the source of the minified files.

	PR#252, #1291: Windows color console support. Thanks to meu31.

	PR#255: When generating latex references, also insert latex target/anchor
for the ids defined on the node. Thanks to Olivier Heurtier.

	PR#229: Allow registration of other translators. Thanks to Russell Sim.

	Add app.set_translator() API to register or override a Docutils translator
class like html_translator_class.

	PR#267, #1134: add ‘diff’ parameter to literalinclude. Thanks to Richard Wall
and WAKAYAMA shirou.

	PR#272: Added ‘bizstyle’ theme. Thanks to Shoji KUMAGAI.

	Automatically compile *.mo files from *.po files when
gettext_auto_build is True (default) and *.po is newer than
*.mo file.

	#623: sphinx.ext.viewcode supports imported function/class aliases.

	PR#275: sphinx.ext.intersphinx supports multiple target for the
inventory. Thanks to Brigitta Sipocz.

	PR#261: Added the env-before-read-docs event that can be connected to modify
the order of documents before they are read by the environment.

	#1284: Program options documented with option can now start with
+.

	PR#291: The caption of code-block is recognised as a title of ref
target. Thanks to Takeshi Komiya.

	PR#298: Add new API: add_latex_package().
Thanks to Takeshi Komiya.

	#1344: add gettext_enables to enable extracting ‘index’ to gettext
catalog output / applying translation catalog to generated documentation.

	PR#301, #1583: Allow the line numbering of the directive literalinclude to
match that of the included file, using a new lineno-match option. Thanks
to Jeppe Pihl.

	PR#299: add various options to sphinx-quickstart. Quiet mode option
--quiet will skips wizard mode. Thanks to WAKAYAMA shirou.

	#1623: Return types specified with :rtype: are now turned into links if
possible.

Bugs fixed

	#1438: Updated jQuery version from 1.8.3 to 1.11.1.

	#1568: Fix a crash when a “centered” directive contains a reference.

	Now sphinx.ext.autodoc works with python-2.5 again.

	#1563: add_search_language() raises
AssertionError for correct type of argument. Thanks to rikoman.

	#1174: Fix smart quotes being applied inside roles like program or
makevar.

	PR#235: comment db schema of websupport lacked a length of the node_id field.
Thanks to solos.

	#1466,PR#241: Fix failure of the cpp domain parser to parse C+11
“variadic templates” declarations. Thanks to Victor Zverovich.

	#1459,PR#244: Fix default mathjax js path point to http:// that cause
mixed-content error on HTTPS server. Thanks to sbrandtb and robo9k.

	PR#157: autodoc remove spurious signatures from @property decorated
attributes. Thanks to David Ham.

	PR#159: Add coverage targets to quickstart generated Makefile and make.bat.
Thanks to Matthias Troffaes.

	#1251: When specifying toctree :numbered: option and :tocdepth: metadata,
sub section number that is larger depth than :tocdepth: is shrunk.

	PR#260: Encode underscore in citation labels for latex export. Thanks to
Lennart Fricke.

	PR#264: Fix could not resolve xref for figure node with :name: option.
Thanks to Takeshi Komiya.

	PR#265: Fix could not capture caption of graphviz node by xref. Thanks to
Takeshi Komiya.

	PR#263, #1013, #1103: Rewrite of C++ domain. Thanks to Jakob Lykke Andersen.
	Hyperlinks to all found nested names and template arguments (#1103).

	Support for function types everywhere, e.g., in
std::function<bool(int, int)> (#1013).

	Support for virtual functions.

	Changed interpretation of function arguments to following standard
prototype declarations, i.e., void f(arg) means that arg is the type of the
argument, instead of it being the name.

	Updated tests.

	Updated documentation with elaborate description of what declarations are
supported and how the namespace declarations influence declaration and
cross-reference lookup.

	Index names may be different now. Elements are indexed by their fully
qualified name. It should be rather easy to change this behaviour and
potentially index by namespaces/classes as well.

	PR#258, #939: Add dedent option for code-block and
literalinclude. Thanks to Zafar Siddiqui.

	PR#268: Fix numbering section does not work at singlehtml mode. It still
ad-hoc fix because there is a issue that section IDs are conflicted.
Thanks to Takeshi Komiya.

	PR#273, #1536: Fix RuntimeError with numbered circular toctree. Thanks to
Takeshi Komiya.

	PR#274: Set its URL as a default title value if URL appears in toctree.
Thanks to Takeshi Komiya.

	PR#276, #1381: rfc and pep roles support custom link
text. Thanks to Takeshi Komiya.

	PR#277, #1513: highlights for function pointers in argument list of
c:function. Thanks to Takeshi Komiya.

	PR#278: Fix section entries were shown twice if toctree has been put under
only directive. Thanks to Takeshi Komiya.

	#1547: pgen2 tokenizer doesn’t recognize ... literal (Ellipsis for py3).

	PR#294: On LaTeX builder, wrap float environment on writing literal_block
to avoid separation of caption and body. Thanks to Takeshi Komiya.

	PR#295, #1520: make.bat latexpdf mechanism to cd back to the current
directory. Thanks to Peter Suter.

	PR#297, #1571: Add imgpath property to all builders. It make easier to
develop builder extensions. Thanks to Takeshi Komiya.

	#1584: Point to master doc in HTML “top” link.

	#1585: Autosummary of modules broken in Sphinx-1.2.3.

	#1610: Sphinx cause AttributeError when MeCab search option is enabled and
python-mecab is not installed.

	#1674: Do not crash if a module’s __all__ is not a list of strings.

	#1673: Fix crashes with nitpick_ignore and :doc: references.

	#1686: ifconfig directive doesn’t care about default config values.

	#1642: Fix only one search result appearing in Chrome.

Documentation

	Add clarification about the syntax of tags. (doc/markup/misc.rst)

Release 1.2.3 (released Sep 1, 2014)

Features added

	#1518: sphinx-apidoc command now has a --version option to show version
information and exit

	New locales: Hebrew, European Portuguese, Vietnamese.

Bugs fixed

	#636: Keep straight single quotes in literal blocks in the LaTeX build.

	#1419: Generated i18n sphinx.js files are missing message catalog entries
from ‘.js_t’ and ‘.html’. The issue was introduced from Sphinx-1.1

	#1363: Fix i18n: missing python domain’s cross-references with currentmodule
directive or currentclass directive.

	#1444: autosummary does not create the description from attributes docstring.

	#1457: In python3 environment, make linkcheck cause “Can’t convert ‘bytes’
object to str implicitly” error when link target url has a hash part.
Thanks to Jorge_C.

	#1467: Exception on Python3 if nonexistent method is specified by automethod

	#1441: autosummary can’t handle nested classes correctly.

	#1499: With non-callable setup in a conf.py, now sphinx-build emits
a user-friendly error message.

	#1502: In autodoc, fix display of parameter defaults containing backslashes.

	#1226: autodoc, autosummary: importing setup.py by automodule will invoke
setup process and execute sys.exit(). Now sphinx avoids SystemExit
exception and emits warnings without unexpected termination.

	#1503: py:function directive generate incorrectly signature when specifying
a default parameter with an empty list []. Thanks to Geert Jansen.

	#1508: Non-ASCII filename raise exception on make singlehtml, latex, man,
texinfo and changes.

	#1531: On Python3 environment, docutils.conf with ‘source_link=true’ in the
general section cause type error.

	PR#270, #1533: Non-ASCII docstring cause UnicodeDecodeError when uses with
inheritance-diagram directive. Thanks to WAKAYAMA shirou.

	PR#281, PR#282, #1509: TODO extension not compatible with websupport. Thanks
to Takeshi Komiya.

	#1477: gettext does not extract nodes.line in a table or list.

	#1544: make text generates wrong table when it has empty table cells.

	#1522: Footnotes from table get displayed twice in LaTeX. This problem has
been appeared from Sphinx-1.2.1 by #949.

	#508: Sphinx every time exit with zero when is invoked from setup.py command.
ex. python setup.py build_sphinx -b doctest return zero even if doctest
failed.

Release 1.2.2 (released Mar 2, 2014)

Bugs fixed

	PR#211: When checking for existence of the html_logo file, check
the full relative path and not the basename.

	PR#212: Fix traceback with autodoc and __init__ methods without docstring.

	PR#213: Fix a missing import in the setup command.

	#1357: Option names documented by option are now again allowed to
not start with a dash or slash, and referencing them will work correctly.

	#1358: Fix handling of image paths outside of the source directory when using
the “wildcard” style reference.

	#1374: Fix for autosummary generating overly-long summaries if first line
doesn’t end with a period.

	#1383: Fix Python 2.5 compatibility of sphinx-apidoc.

	#1391: Actually prevent using “pngmath” and “mathjax” extensions at the same
time in sphinx-quickstart.

	#1386: Fix bug preventing more than one theme being added by the entry point
mechanism.

	#1370: Ignore “toctree” nodes in text writer, instead of raising.

	#1364: Fix ‘make gettext’ fails when the ‘.. todolist::’ directive is present.

	#1367: Fix a change of PR#96 that break sphinx.util.docfields.Field.make_field
interface/behavior for item argument usage.

Documentation

	Extended the documentation about building extensions.

Release 1.2.1 (released Jan 19, 2014)

Bugs fixed

	#1335: Fix autosummary template overloading with exclamation prefix like
{% extends "!autosummary/class.rst" %} cause infinite recursive function
call. This was caused by PR#181.

	#1337: Fix autodoc with autoclass_content="both" uses useless
object.__init__ docstring when class does not have __init__.
This was caused by a change for #1138.

	#1340: Can’t search alphabetical words on the HTML quick search generated
with language=’ja’.

	#1319: Do not crash if the html_logo file does not exist.

	#603: Do not use the HTML-ized title for building the search index (that
resulted in “literal” being found on every page with a literal in the
title).

	#751: Allow production lists longer than a page in LaTeX by using longtable.

	#764: Always look for stopwords lowercased in JS search.

	#814: autodoc: Guard against strange type objects that don’t have
__bases__.

	#932: autodoc: Do not crash if __doc__ is not a string.

	#933: Do not crash if an option value is malformed (contains
spaces but no option name).

	#908: On Python 3, handle error messages from LaTeX correctly in the pngmath
extension.

	#943: In autosummary, recognize “first sentences” to pull from the docstring
if they contain uppercase letters.

	#923: Take the entire LaTeX document into account when caching
pngmath-generated images. This rebuilds them correctly when
pngmath_latex_preamble changes.

	#901: Emit a warning when using docutils’ new “math” markup without a Sphinx
math extension active.

	#845: In code blocks, when the selected lexer fails, display line numbers
nevertheless if configured.

	#929: Support parsed-literal blocks in LaTeX output correctly.

	#949: Update the tabulary.sty packed with Sphinx.

	#1050: Add anonymous labels into objects.inv to be referenced via
intersphinx.

	#1095: Fix print-media stylesheet being included always in the “scrolls”
theme.

	#1085: Fix current classname not getting set if class description has
:noindex: set.

	#1181: Report option errors in autodoc directives more gracefully.

	#1155: Fix autodocumenting C-defined methods as attributes in Python 3.

	#1233: Allow finding both Python classes and exceptions with the “class” and
“exc” roles in intersphinx.

	#1198: Allow “image” for the “figwidth” option of the figure [http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure]
directive as documented by docutils.

	#1152: Fix pycode parsing errors of Python 3 code by including two grammar
versions for Python 2 and 3, and loading the appropriate version for the
running Python version.

	#1017: Be helpful and tell the user when the argument to option
does not match the required format.

	#1345: Fix two bugs with nitpick_ignore; now you don’t have to
remove the store environment for changes to have effect.

	#1072: In the JS search, fix issues searching for upper-cased words by
lowercasing words before stemming.

	#1299: Make behavior of the math directive more consistent and
avoid producing empty environments in LaTeX output.

	#1308: Strip HTML tags from the content of “raw” nodes before feeding it
to the search indexer.

	#1249: Fix duplicate LaTeX page numbering for manual documents.

	#1292: In the linkchecker, retry HEAD requests when denied by HTTP 405.
Also make the redirect code apparent and tweak the output a bit to be
more obvious.

	#1285: Avoid name clashes between C domain objects and section titles.

	#848: Always take the newest code in incremental rebuilds with the
sphinx.ext.viewcode extension.

	#979, #1266: Fix exclude handling in sphinx-apidoc.

	#1302: Fix regression in sphinx.ext.inheritance_diagram when
documenting classes that can’t be pickled.

	#1316: Remove hard-coded font-face resources from epub theme.

	#1329: Fix traceback with empty translation msgstr in .po files.

	#1300: Fix references not working in translated documents in some instances.

	#1283: Fix a bug in the detection of changed files that would try to access
doctrees of deleted documents.

	#1330: Fix exclude_patterns behavior with subdirectories in the
html_static_path.

	#1323: Fix emitting empty tags in the HTML writer, which is not
valid HTML.

	#1147: Don’t emit a sidebar search box in the “singlehtml” builder.

Documentation

	#1325: Added a “Intersphinx” tutorial section. (doc/tutorial.rst)

Release 1.2 (released Dec 10, 2013)

Features added

	Added sphinx.version_info tuple for programmatic checking of the Sphinx
version.

Incompatible changes

	Removed the sphinx.ext.refcounting extension – it is very specific to
CPython and has no place in the main distribution.

Bugs fixed

	Restore versionmodified CSS class for versionadded/changed and deprecated
directives.

	PR#181: Fix html_theme_path = ['.'] is a trigger of rebuild all documents
always (This change keeps the current “theme changes cause a rebuild”
feature).

	#1296: Fix invalid charset in HTML help generated HTML files for default
locale.

	PR#190: Fix gettext does not extract figure caption and rubric title inside
other blocks. Thanks to Michael Schlenker.

	PR#176: Make sure setup_command test can always import Sphinx. Thanks to
Dmitry Shachnev.

	#1311: Fix test_linkcode.test_html fails with C locale and Python 3.

	#1269: Fix ResourceWarnings with Python 3.2 or later.

	#1138: Fix: When autodoc_docstring_signature = True and
autoclass_content = 'init' or 'both', __init__ line should be
removed from class documentation.

Release 1.2 beta3 (released Oct 3, 2013)

Features added

	The Sphinx error log files will now include a list of the loaded extensions
for help in debugging.

Incompatible changes

	PR#154: Remove “sphinx” prefix from LaTeX class name except ‘sphinxmanual’
and ‘sphinxhowto’. Now you can use your custom document class without
‘sphinx’ prefix. Thanks to Erik B.

Bugs fixed

	#1265: Fix i18n: crash when translating a section name that is pointed to from
a named target.

	A wrong condition broke the search feature on first page that is usually
index.rst. This issue was introduced in 1.2b1.

	#703: When Sphinx can’t decode filenames with non-ASCII characters, Sphinx now
catches UnicodeError and will continue if possible instead of raising the
exception.

Release 1.2 beta2 (released Sep 17, 2013)

Features added

	apidoc now ignores “_private” modules by default, and has an option -P
to include them.

	apidoc now has an option to not generate headings for packages and
modules, for the case that the module docstring already includes a reST
heading.

	PR#161: apidoc can now write each module to a standalone page instead of
combining all modules in a package on one page.

	Builders: rebuild i18n target document when catalog updated.

	Support docutils.conf ‘writers’ and ‘html4css1 writer’ section in the HTML
writer. The latex, manpage and texinfo writers also support their respective
‘writers’ sections.

	The new html_extra_path config value allows to specify directories
with files that should be copied directly to the HTML output directory.

	Autodoc directives for module data and attributes now support an
annotation option, so that the default display of the data/attribute
value can be overridden.

	PR#136: Autodoc directives now support an imported-members option to
include members imported from different modules.

	New locales: Macedonian, Sinhala, Indonesian.

	Theme package collection by using setuptools plugin mechanism.

Incompatible changes

	PR#144, #1182: Force timezone offset to LocalTimeZone on POT-Creation-Date
that was generated by gettext builder. Thanks to masklinn and Jakub Wilk.

Bugs fixed

	PR#132: Updated jQuery version to 1.8.3.

	PR#141, #982: Avoid crash when writing PNG file using Python 3. Thanks to
Marcin Wojdyr.

	PR#145: In parallel builds, sphinx drops second document file to write.
Thanks to tychoish.

	PR#151: Some styling updates to tables in LaTeX.

	PR#153: The “extensions” config value can now be overridden.

	PR#155: Added support for some C++11 function qualifiers.

	Fix: ‘make gettext’ caused UnicodeDecodeError when templates contain utf-8
encoded strings.

	#828: use inspect.getfullargspec() to be able to document functions with
keyword-only arguments on Python 3.

	#1090: Fix i18n: multiple cross references (term, ref, doc) in the same line
return the same link.

	#1157: Combination of ‘globaltoc.html’ and hidden toctree caused exception.

	#1159: fix wrong generation of objects inventory for Python modules, and
add a workaround in intersphinx to fix handling of affected inventories.

	#1160: Citation target missing caused an AssertionError.

	#1162, PR#139: singlehtml builder didn’t copy images to _images/.

	#1173: Adjust setup.py dependencies because Jinja2 2.7 discontinued
compatibility with Python < 3.3 and Python < 2.6. Thanks to Alexander Dupuy.

	#1185: Don’t crash when a Python module has a wrong or no encoding declared,
and non-ASCII characters are included.

	#1188: sphinx-quickstart raises UnicodeEncodeError if “Project version”
includes non-ASCII characters.

	#1189: “Title underline is too short” WARNING is given when using fullwidth
characters to “Project name” on quickstart.

	#1190: Output TeX/texinfo/man filename has no basename (only extension)
when using non-ASCII characters in the “Project name” on quickstart.

	#1192: Fix escaping problem for hyperlinks in the manpage writer.

	#1193: Fix i18n: multiple link references in the same line return the same
link.

	#1176: Fix i18n: footnote reference number missing for auto numbered named
footnote and auto symbol footnote.

	PR#146,#1172: Fix ZeroDivisionError in parallel builds. Thanks to tychoish.

	#1204: Fix wrong generation of links to local intersphinx targets.

	#1206: Fix i18n: gettext did not translate admonition directive’s title.

	#1232: Sphinx generated broken ePub files on Windows.

	#1259: Guard the debug output call when emitting events; to prevent the
repr() implementation of arbitrary objects causing build failures.

	#1142: Fix NFC/NFD normalizing problem of rst filename on Mac OS X.

	#1234: Ignoring the string consists only of white-space characters.

Release 1.2 beta1 (released Mar 31, 2013)

Incompatible changes

	Removed sphinx.util.compat.directive_dwim() and
sphinx.roles.xfileref_role() which were deprecated since version 1.0.

	PR#122: the files given in latex_additional_files now override TeX
files included by Sphinx, such as sphinx.sty.

	PR#124: the node generated by versionadded,
versionchanged and deprecated directives now includes
all added markup (such as “New in version X”) as child nodes, and no
additional text must be generated by writers.

	PR#99: the seealso directive now generates admonition nodes instead
of the custom seealso node.

Features added

	Markup
	The toctree directive and the toctree() template function now
have an includehidden option that includes hidden toctree entries (bugs
#790 and #1047). A bug in the maxdepth option for the toctree()
template function has been fixed (bug #1046).

	PR#99: Strip down seealso directives to normal admonitions. This removes
their unusual CSS classes (admonition-see-also), inconsistent LaTeX
admonition title (“See Also” instead of “See also”), and spurious indentation
in the text builder.

	HTML builder
	#783: Create a link to full size image if it is scaled with width or height.

	#1067: Improve the ordering of the JavaScript search results: matches in titles
come before matches in full text, and object results are better categorized.
Also implement a pluggable search scorer.

	#1053: The “rightsidebar” and “collapsiblesidebar” HTML theme options now work
together.

	Update to jQuery 1.7.1 and Underscore.js 1.3.1.

	Texinfo builder
	An “Index” node is no longer added when there are no entries.

	“deffn” categories are no longer capitalized if they contain capital
letters.

	desc_annotation nodes are now rendered.

	strong and emphasis nodes are now formatted like
literals. The reason for this is because the standard Texinfo markup
(*strong* and _emphasis_) resulted in confusing output due to the
common usage of using these constructs for documenting parameter names.

	Field lists formatting has been tweaked to better display
“Info field lists”.

	system_message and problematic nodes are now formatted in a similar
fashion as done by the text builder.

	“en-dash” and “em-dash” conversion of hyphens is no longer performed in
option directive signatures.

	@ref is now used instead of @pxref for cross-references which
prevents the word “see” from being added before the link (does not affect
the Info output).

	The @finalout command has been added for better TeX output.

	transition nodes are now formatted using underscores (“_”) instead of
asterisks (“*”).

	The default value for the paragraphindent has been changed from 2 to 0
meaning that paragraphs are no longer indented by default.

	#1110: A new configuration value texinfo_no_detailmenu has been
added for controlling whether a @detailmenu is added in the “Top”
node’s menu.

	Detailed menus are no longer created except for the “Top” node.

	Fixed an issue where duplicate domain indices would result in invalid
output.

	LaTeX builder:
	PR#115: Add 'transition' item in latex_elements for
customizing how transitions are displayed. Thanks to Jeff Klukas.

	PR#114: The LaTeX writer now includes the “cmap” package by default. The
'cmappkg' item in latex_elements can be used to control this.
Thanks to Dmitry Shachnev.

	The 'fontpkg' item in latex_elements now defaults to ''
when the language uses the Cyrillic script. Suggested by Dmitry
Shachnev.

	The latex_documents, texinfo_documents, and
man_pages configuration values will be set to default values based
on the master_doc if not explicitly set in conf.py.
Previously, if these values were not set, no output would be generated by
their respective builders.

	Internationalization:
	Add i18n capabilities for custom templates. For example: The Sphinx
reference documentation in doc directory provides a sphinx.pot file with
message strings from doc/_templates/*.html when using make gettext.

	PR#61,#703: Add support for non-ASCII filename handling.

	Other builders:
	Added the Docutils-native XML and pseudo-XML builders. See
XMLBuilder and PseudoXMLBuilder.

	PR#45: The linkcheck builder now checks #anchors for existence.

	PR#123, #1106: Add epub_use_index configuration value. If
provided, it will be used instead of html_use_index for epub
builder.

	PR#126: Add epub_tocscope configuration value. The setting
controls the generation of the epub toc. The user can now also include
hidden toc entries.

	PR#112: Add epub_show_urls configuration value.

	Extensions:
	PR#52: special_members flag to autodoc now behaves like members.

	PR#47: Added sphinx.ext.linkcode extension.

	PR#25: In inheritance diagrams, the first line of the class docstring
is now the tooltip for the class.

	Command-line interfaces:
	PR#75: Added --follow-links option to sphinx-apidoc.

	#869: sphinx-build now has the option -T for printing the full
traceback after an unhandled exception.

	sphinx-build now supports the standard --help and --version options.

	sphinx-build now provides more specific error messages when called with
invalid options or arguments.

	sphinx-build now has a verbose option -v which can be repeated for
greater effect. A single occurrence provides a slightly more verbose output
than normal. Two or more occurrences of this option provides more detailed
output which may be useful for debugging.

	Locales:
	PR#74: Fix some Russian translation.

	PR#54: Added Norwegian bokmaal translation.

	PR#35: Added Slovak translation.

	PR#28: Added Hungarian translation.

	#1113: Add Hebrew locale.

	#1097: Add Basque locale.

	#1037: Fix typos in Polish translation. Thanks to Jakub Wilk.

	#1012: Update Estonian translation.

	Optimizations:
	Speed up building the search index by caching the results of the word
stemming routines. Saves about 20 seconds when building the Python
documentation.

	PR#108: Add experimental support for parallel building with a new
sphinx-build -j option.

Documentation

	PR#88: Added the “Sphinx Developer’s Guide” (doc/devguide.rst)
which outlines the basic development process of the Sphinx project.

	Added a detailed “Installing Sphinx” document (doc/install.rst).

Bugs fixed

	PR#124: Fix paragraphs in versionmodified are ignored when it has no
dangling paragraphs. Fix wrong html output (nested <p> tag). Fix
versionmodified is not translatable. Thanks to Nozomu Kaneko.

	PR#111: Respect add_autodoc_attrgetter() even when inherited-members is set.
Thanks to A. Jesse Jiryu Davis.

	PR#97: Fix footnote handling in translated documents.

	Fix text writer not handling visit_legend for figure directive contents.

	Fix text builder not respecting wide/fullwidth characters: title underline
width, table layout width and text wrap width.

	Fix leading space in LaTeX table header cells.

	#1132: Fix LaTeX table output for multi-row cells in the first column.

	#1128: Fix Unicode errors when trying to format time strings with a
non-standard locale.

	#1127: Fix traceback when autodoc tries to tokenize a non-Python file.

	#1126: Fix double-hyphen to en-dash conversion in wrong places such as
command-line option names in LaTeX.

	#1123: Allow whitespaces in filenames given to literalinclude.

	#1120: Added improvements about i18n for themes “basic”, “haiku” and
“scrolls” that Sphinx built-in. Thanks to Leonardo J. Caballero G.

	#1118: Updated Spanish translation. Thanks to Leonardo J. Caballero G.

	#1117: Handle .pyx files in sphinx-apidoc.

	#1112: Avoid duplicate download files when referenced from documents in
different ways (absolute/relative).

	#1111: Fix failure to find uppercase words in search when
html_search_language is ‘ja’. Thanks to Tomo Saito.

	#1108: The text writer now correctly numbers enumerated lists with
non-default start values (based on patch by Ewan Edwards).

	#1102: Support multi-context “with” statements in autodoc.

	#1090: Fix gettext not extracting glossary terms.

	#1074: Add environment version info to the generated search index to avoid
compatibility issues with old builds.

	#1070: Avoid un-pickling issues when running Python 3 and the saved
environment was created under Python 2.

	#1069: Fixed error caused when autodoc would try to format signatures of
“partial” functions without keyword arguments (patch by Artur Gaspar).

	#1062: sphinx.ext.autodoc use __init__ method signature for class signature.

	#1055: Fix web support with relative path to source directory.

	#1043: Fix sphinx-quickstart asking again for yes/no questions because
input() returns values with an extra ‘r’ on Python 3.2.0 +
Windows. Thanks to Régis Décamps.

	#1041: Fix failure of the cpp domain parser to parse a const type with a
modifier.

	#1038: Fix failure of the cpp domain parser to parse C+11 “static constexpr”
declarations. Thanks to Jakub Wilk.

	#1029: Fix intersphinx_mapping values not being stable if the mapping has
plural key/value set with Python 3.3.

	#1028: Fix line block output in the text builder.

	#1024: Improve Makefile/make.bat error message if Sphinx is not found. Thanks
to Anatoly Techtonik.

	#1018: Fix “container” directive handling in the text builder.

	#1015: Stop overriding jQuery contains() in the JavaScript.

	#1010: Make pngmath images transparent by default; IE7+ should handle it.

	#1008: Fix test failures with Python 3.3.

	#995: Fix table-of-contents and page numbering for the LaTeX “howto” class.

	#976: Fix gettext does not extract index entries.

	PR#72: #975: Fix gettext not extracting definition terms before docutils 0.10.

	#961: Fix LaTeX output for triple quotes in code snippets.

	#958: Do not preserve environment.pickle after a failed build.

	#955: Fix i18n transformation.

	#940: Fix gettext does not extract figure caption.

	#920: Fix PIL packaging issue that allowed to import Image without PIL
namespace. Thanks to Marc Schlaich.

	#723: Fix the search function on local files in WebKit based browsers.

	#440: Fix coarse timestamp resolution in some filesystem generating a wrong
list of outdated files.

Release 1.1.3 (Mar 10, 2012)

	PR#40: Fix safe_repr function to decode bytestrings with non-ASCII
characters correctly.

	PR#37: Allow configuring sphinx-apidoc via SPHINX_APIDOC_OPTIONS.

	PR#34: Restore Python 2.4 compatibility.

	PR#36: Make the “bibliography to TOC” fix in LaTeX output specific to
the document class.

	#695: When the highlight language “python” is specified explicitly,
do not try to parse the code to recognize non-Python snippets.

	#859: Fix exception under certain circumstances when not finding
appropriate objects to link to.

	#860: Do not crash when encountering invalid doctest examples, just
emit a warning.

	#864: Fix crash with some settings of modindex_common_prefix.

	#862: Fix handling of -D and -A options on Python 3.

	#851: Recognize and warn about circular toctrees, instead of running
into recursion errors.

	#853: Restore compatibility with docutils trunk.

	#852: Fix HtmlHelp index entry links again.

	#854: Fix inheritance_diagram raising attribute errors on builtins.

	#832: Fix crashes when putting comments or lone terms in a glossary.

	#834, #818: Fix HTML help language/encoding mapping for all Sphinx
supported languages.

	#844: Fix crashes when dealing with Unicode output in doctest extension.

	#831: Provide --project flag in setup_command as advertised.

	#875: Fix reading config files under Python 3.

	#876: Fix quickstart test under Python 3.

	#870: Fix spurious KeyErrors when removing documents.

	#892: Fix single-HTML builder misbehaving with the master document in a
subdirectory.

	#873: Fix assertion errors with empty only directives.

	#816: Fix encoding issues in the Qt help builder.

Release 1.1.2 (Nov 1, 2011) – 1.1.1 is a silly version number anyway!

	#809: Include custom fixers in the source distribution.

Release 1.1.1 (Nov 1, 2011)

	#791: Fix QtHelp, DevHelp and HtmlHelp index entry links.

	#792: Include “sphinx-apidoc” in the source distribution.

	#797: Don’t crash on a misformatted glossary.

	#801: Make intersphinx work properly without SSL support.

	#805: Make the Sphinx.add_index_to_domain method work correctly.

	#780: Fix Python 2.5 compatibility.

Release 1.1 (Oct 9, 2011)

Incompatible changes

	The py:module directive doesn’t output its platform option
value anymore. (It was the only thing that the directive did output, and
therefore quite inconsistent.)

	Removed support for old dependency versions; requirements are now:
	Pygments >= 1.2

	Docutils >= 0.7

	Jinja2 >= 2.3

Features added

	Added Python 3.x support.

	New builders and subsystems:
	Added a Texinfo builder.

	Added i18n support for content, a gettext builder and related
utilities.

	Added the websupport library and builder.

	#98: Added a sphinx-apidoc script that autogenerates a hierarchy
of source files containing autodoc directives to document modules
and packages.

	#273: Add an API for adding full-text search support for languages
other than English. Add support for Japanese.

	Markup:
	#138: Added an index role, to make inline index entries.

	#454: Added more index markup capabilities: marking see/seealso entries,
and main entries for a given key.

	#460: Allowed limiting the depth of section numbers for HTML using the
toctree‘s numbered option.

	#586: Implemented improved glossary markup which allows
multiple terms per definition.

	#478: Added py:decorator directive to describe decorators.

	C++ domain now supports array definitions.

	C++ domain now supports doc fields (:param x: inside directives).

	Section headings in only directives are now correctly
handled.

	Added emphasize-lines option to source code directives.

	#678: C++ domain now supports superclasses.

	HTML builder:
	Added pyramid theme.

	#559: html_add_permalinks is now a string giving the
text to display in permalinks.

	#259: HTML table rows now have even/odd CSS classes to enable
“Zebra styling”.

	#554: Add theme option sidebarwidth to the basic theme.

	Other builders:
	#516: Added new value of the latex_show_urls option to
show the URLs in footnotes.

	#209: Added text_newlines and text_sectionchars
config values.

	Added man_show_urls config value.

	#472: linkcheck builder: Check links in parallel, use HTTP HEAD
requests and allow configuring the timeout. New config values:
linkcheck_timeout and linkcheck_workers.

	#521: Added linkcheck_ignore config value.

	#28: Support row/colspans in tables in the LaTeX builder.

	Configuration and extensibility:
	#537: Added nitpick_ignore.

	#306: Added env-get-outdated event.

	Application.add_stylesheet() now accepts full URIs.

	Autodoc:
	#564: Add autodoc_docstring_signature. When enabled (the
default), autodoc retrieves the signature from the first line of the
docstring, if it is found there.

	#176: Provide private-members option for autodoc directives.

	#520: Provide special-members option for autodoc directives.

	#431: Doc comments for attributes can now be given on the same line
as the assignment.

	#437: autodoc now shows values of class data attributes.

	autodoc now supports documenting the signatures of
functools.partial objects.

	Other extensions:
	Added the sphinx.ext.mathjax extension.

	#443: Allow referencing external graphviz files.

	Added inline option to graphviz directives, and fixed the
default (block-style) in LaTeX output.

	#590: Added caption option to graphviz directives.

	#553: Added testcleanup blocks in the doctest extension.

	#594: trim_doctest_flags now also removes <BLANKLINE>
indicators.

	#367: Added automatic exclusion of hidden members in inheritance
diagrams, and an option to selectively enable it.

	Added pngmath_add_tooltips.

	The math extension displaymath directives now support name in
addition to label for giving the equation label, for compatibility
with Docutils.

	New locales:
	#221: Added Swedish locale.

	#526: Added Iranian locale.

	#694: Added Latvian locale.

	Added Nepali locale.

	#714: Added Korean locale.

	#766: Added Estonian locale.

	Bugs fixed:
	#778: Fix “hide search matches” link on pages linked by search.

	Fix the source positions referenced by the “viewcode” extension.

Release 1.0.8 (Sep 23, 2011)

	#627: Fix tracebacks for AttributeErrors in autosummary generation.

	Fix the abbr role when the abbreviation has newlines in it.

	#727: Fix the links to search results with custom object types.

	#648: Fix line numbers reported in warnings about undefined
references.

	#696, #666: Fix C++ array definitions and template arguments
that are not type names.

	#633: Allow footnotes in section headers in LaTeX output.

	#616: Allow keywords to be linked via intersphinx.

	#613: Allow Unicode characters in production list token names.

	#720: Add dummy visitors for graphviz nodes for text and man.

	#704: Fix image file duplication bug.

	#677: Fix parsing of multiple signatures in C++ domain.

	#637: Ignore Emacs lock files when looking for source files.

	#544: Allow .pyw extension for importable modules in autodoc.

	#700: Use $(MAKE) in quickstart-generated Makefiles.

	#734: Make sidebar search box width consistent in browsers.

	#644: Fix spacing of centered figures in HTML output.

	#767: Safely encode SphinxError messages when printing them to
sys.stderr.

	#611: Fix LaTeX output error with a document with no sections but
a link target.

	Correctly treat built-in method descriptors as methods in autodoc.

	#706: Stop monkeypatching the Python textwrap module.

	#657: viewcode now works correctly with source files that have
non-ASCII encoding.

	#669: Respect the noindex flag option in py:module directives.

	#675: Fix IndexErrors when including nonexisting lines with
literalinclude.

	#676: Respect custom function/method parameter separator strings.

	#682: Fix JS incompatibility with jQuery >= 1.5.

	#693: Fix double encoding done when writing HTMLHelp .hhk files.

	#647: Do not apply SmartyPants in parsed-literal blocks.

	C++ domain now supports array definitions.

Release 1.0.7 (Jan 15, 2011)

	#347: Fix wrong generation of directives of static methods in
autosummary.

	#599: Import PIL as from PIL import Image.

	#558: Fix longtables with captions in LaTeX output.

	Make token references work as hyperlinks again in LaTeX output.

	#572: Show warnings by default when reference labels cannot be
found.

	#536: Include line number when complaining about missing reference
targets in nitpicky mode.

	#590: Fix inline display of graphviz diagrams in LaTeX output.

	#589: Build using app.build() in setup command.

	Fix a bug in the inheritance diagram exception that caused base
classes to be skipped if one of them is a builtin.

	Fix general index links for C++ domain objects.

	#332: Make admonition boundaries in LaTeX output visible.

	#573: Fix KeyErrors occurring on rebuild after removing a file.

	Fix a traceback when removing files with globbed toctrees.

	If an autodoc object cannot be imported, always re-read the
document containing the directive on next build.

	If an autodoc object cannot be imported, show the full traceback
of the import error.

	Fix a bug where the removal of download files and images wasn’t
noticed.

	#571: Implement ~ cross-reference prefix for the C domain.

	Fix regression of LaTeX output with the fix of #556.

	#568: Fix lookup of class attribute documentation on descriptors
so that comment documentation now works.

	Fix traceback with only directives preceded by targets.

	Fix tracebacks occurring for duplicate C++ domain objects.

	Fix JavaScript domain links to objects with $ in their name.

Release 1.0.6 (Jan 04, 2011)

	#581: Fix traceback in Python domain for empty cross-reference
targets.

	#283: Fix literal block display issues on Chrome browsers.

	#383, #148: Support sorting a limited range of accented characters
in the general index and the glossary.

	#570: Try decoding -D and -A command-line arguments with
the locale’s preferred encoding.

	#528: Observe locale_dirs when looking for the JS
translations file.

	#574: Add special code for better support of Japanese documents
in the LaTeX builder.

	Regression of #77: If there is only one parameter given with
:param: markup, the bullet list is now suppressed again.

	#556: Fix missing paragraph breaks in LaTeX output in certain
situations.

	#567: Emit the autodoc-process-docstring event even for objects
without a docstring so that it can add content.

	#565: In the LaTeX builder, not only literal blocks require different
table handling, but also quite a few other list-like block elements.

	#515: Fix tracebacks in the viewcode extension for Python objects
that do not have a valid signature.

	Fix strange reports of line numbers for warnings generated from
autodoc-included docstrings, due to different behavior depending
on docutils version.

	Several fixes to the C++ domain.

Release 1.0.5 (Nov 12, 2010)

	#557: Add CSS styles required by docutils 0.7 for aligned images
and figures.

	In the Makefile generated by LaTeX output, do not delete pdf files
on clean; they might be required images.

	#535: Fix LaTeX output generated for line blocks.

	#544: Allow .pyw as a source file extension.

Release 1.0.4 (Sep 17, 2010)

	#524: Open intersphinx inventories in binary mode on Windows,
since version 2 contains zlib-compressed data.

	#513: Allow giving non-local URIs for JavaScript files, e.g.
in the JSMath extension.

	#512: Fix traceback when intersphinx_mapping is empty.

Release 1.0.3 (Aug 23, 2010)

	#495: Fix internal vs. external link distinction for links coming
from a docutils table-of-contents.

	#494: Fix the maxdepth option for the toctree() template
callable when used with collapse=True.

	#507: Fix crash parsing Python argument lists containing brackets
in string literals.

	#501: Fix regression when building LaTeX docs with figures that
don’t have captions.

	#510: Fix inheritance diagrams for classes that are not picklable.

	#497: Introduce separate background color for the sidebar collapse
button, making it easier to see.

	#502, #503, #496: Fix small layout bugs in several builtin themes.

Release 1.0.2 (Aug 14, 2010)

	#490: Fix cross-references to objects of types added by the
add_object_type() API function.

	Fix handling of doc field types for different directive types.

	Allow breaking long signatures, continuing with backlash-escaped
newlines.

	Fix unwanted styling of C domain references (because of a namespace
clash with Pygments styles).

	Allow references to PEPs and RFCs with explicit anchors.

	#471: Fix LaTeX references to figures.

	#482: When doing a non-exact search, match only the given type
of object.

	#481: Apply non-exact search for Python reference targets with
.name for modules too.

	#484: Fix crash when duplicating a parameter in an info field list.

	#487: Fix setting the default role to one provided by the
oldcmarkup extension.

	#488: Fix crash when json-py is installed, which provides a
json module but is incompatible to simplejson.

	#480: Fix handling of target naming in intersphinx.

	#486: Fix removal of ! for all cross-reference roles.

Release 1.0.1 (Jul 27, 2010)

	#470: Fix generated target names for reST domain objects; they
are not in the same namespace.

	#266: Add Bengali language.

	#473: Fix a bug in parsing JavaScript object names.

	#474: Fix building with SingleHTMLBuilder when there is no toctree.

	Fix display names for objects linked to by intersphinx with
explicit targets.

	Fix building with the JSON builder.

	Fix hyperrefs in object descriptions for LaTeX.

Release 1.0 (Jul 23, 2010)

Incompatible changes

	Support for domains has been added. A domain is a collection of
directives and roles that all describe objects belonging together,
e.g. elements of a programming language. A few builtin domains are
provided:
	Python

	C

	C++

	JavaScript

	reStructuredText

	The old markup for defining and linking to C directives is now
deprecated. It will not work anymore in future versions without
activating the oldcmarkup extension; in Sphinx
1.0, it is activated by default.

	Removed support for old dependency versions; requirements are now:
	docutils >= 0.5

	Jinja2 >= 2.2

	Removed deprecated elements:
	exclude_dirs config value

	sphinx.builder module

Features added

	General:
	Added a “nitpicky” mode that emits warnings for all missing
references. It is activated by the sphinx-build -n command-line switch
or the nitpicky config value.

	Added latexpdf target in quickstart Makefile.

	Markup:
	The menuselection and guilabel roles now
support ampersand accelerators.

	New more compact doc field syntax is now recognized: :param type
name: description.

	Added tab-width option to literalinclude directive.

	Added titlesonly option to toctree directive.

	Added the prepend and append options to the
literalinclude directive.

	#284: All docinfo metadata is now put into the document metadata, not
just the author.

	The ref role can now also reference tables by caption.

	The include [http://docutils.sourceforge.net/docs/ref/rst/directives.html#include] directive now supports absolute paths, which
are interpreted as relative to the source directory.

	In the Python domain, references like :func:`.name` now look for
matching names with any prefix if no direct match is found.

	Configuration:
	Added rst_prolog config value.

	Added html_secnumber_suffix config value to control
section numbering format.

	Added html_compact_lists config value to control
docutils’ compact lists feature.

	The html_sidebars config value can now contain patterns
as keys, and the values can be lists that explicitly select which
sidebar templates should be rendered. That means that the builtin
sidebar contents can be included only selectively.

	html_static_path can now contain single file entries.

	The new universal config value exclude_patterns makes the
old unused_docs, exclude_trees and
exclude_dirnames obsolete.

	Added html_output_encoding config value.

	Added the latex_docclass config value and made the
“twoside” documentclass option overridable by “oneside”.

	Added the trim_doctest_flags config value, which is true
by default.

	Added html_show_copyright config value.

	Added latex_show_pagerefs and latex_show_urls
config values.

	The behavior of html_file_suffix changed slightly: the
empty string now means “no suffix” instead of “default suffix”, use
None for “default suffix”.

	New builders:
	Added a builder for the Epub format.

	Added a builder for manual pages.

	Added a single-file HTML builder.

	HTML output:
	Inline roles now get a CSS class with their name, allowing styles to
customize their appearance. Domain-specific roles get two classes,
domain and domain-rolename.

	References now get the class internal if they are internal to
the whole project, as opposed to internal to the current page.

	External references can be styled differently with the new
externalrefs theme option for the default theme.

	In the default theme, the sidebar can experimentally now be made
collapsible using the new collapsiblesidebar theme option.

	#129: Toctrees are now wrapped in a div tag with class
toctree-wrapper in HTML output.

	The toctree callable in templates now has a maxdepth
keyword argument to control the depth of the generated tree.

	The toctree callable in templates now accepts a
titles_only keyword argument.

	Added htmltitle block in layout template.

	In the JavaScript search, allow searching for object names including
the module name, like sys.argv.

	Added new theme haiku, inspired by the Haiku OS user guide.

	Added new theme nature.

	Added new theme agogo, created by Andi Albrecht.

	Added new theme scrolls, created by Armin Ronacher.

	#193: Added a visitedlinkcolor theme option to the default
theme.

	#322: Improved responsiveness of the search page by loading the
search index asynchronously.

	Extension API:
	Added html-collect-pages.

	Added needs_sphinx config value and
require_sphinx() application API
method.

	#200: Added add_stylesheet()
application API method.

	Extensions:
	Added the viewcode extension.

	Added the extlinks extension.

	Added support for source ordering of members in autodoc, with
autodoc_member_order = 'bysource'.

	Added autodoc_default_flags config value, which can be
used to select default flags for all autodoc directives.

	Added a way for intersphinx to refer to named labels in other
projects, and to specify the project you want to link to.

	#280: Autodoc can now document instance attributes assigned in
__init__ methods.

	Many improvements and fixes to the autosummary
extension, thanks to Pauli Virtanen.

	#309: The graphviz extension can now output SVG
instead of PNG images, controlled by the
graphviz_output_format config value.

	Added alt option to graphviz extension directives.

	Added exclude argument to autodoc.between().

	Translations:
	Added Croatian translation, thanks to Bojan Mihelač.

	Added Turkish translation, thanks to Firat Ozgul.

	Added Catalan translation, thanks to Pau Fernández.

	Added simplified Chinese translation.

	Added Danish translation, thanks to Hjorth Larsen.

	Added Lithuanian translation, thanks to Dalius Dobravolskas.

	Bugs fixed:
	#445: Fix links to result pages when using the search function
of HTML built with the dirhtml builder.

	#444: In templates, properly re-escape values treated with the
“striptags” Jinja filter.

Previous versions

The changelog for versions before 1.0 can be found in the file CHANGES.old
in the source distribution or at Github [https://github.com/sphinx-doc/sphinx/raw/master/CHANGES.old].

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	Sphinx 1.4.1 documentation »

Projects using Sphinx

This is an (incomplete) alphabetic list of projects that use Sphinx or
are experimenting with using it for their documentation. If you like to
be included, please mail to the Google group [https://groups.google.com/forum/#!forum/sphinx-users].

I’ve grouped the list into sections to make it easier to find
interesting examples.

Documentation using the alabaster theme

	PyLangAcq: http://pylangacq.org/

Documentation using the classic theme

	APSW: http://apidoc.apsw.googlecode.com/hg/index.html

	ASE: https://wiki.fysik.dtu.dk/ase/

	Calibre: http://manual.calibre-ebook.com/

	CodePy: https://documen.tician.de/codepy/

	Cython: http://docs.cython.org/

	Cormoran: http://cormoran.nhopkg.org/docs/

	Director: http://pythonhosted.org/director/

	Dirigible: http://www.projectdirigible.com/

	F2py: http://f2py.sourceforge.net/docs/

	GeoDjango: https://docs.djangoproject.com/en/dev/ref/contrib/gis/

	Genomedata:
http://noble.gs.washington.edu/proj/genomedata/doc/1.2.2/genomedata.html

	gevent: http://www.gevent.org/

	Google Wave API:
http://wave-robot-python-client.googlecode.com/svn/trunk/pydocs/index.html

	GSL Shell: http://www.nongnu.org/gsl-shell/

	Heapkeeper: http://heapkeeper.org/

	Hands-on Python Tutorial:
http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/

	Hedge: https://documen.tician.de/hedge/

	Leo: http://leoeditor.com/

	Lino: http://www.lino-framework.org/

	MeshPy: https://documen.tician.de/meshpy/

	mpmath: http://mpmath.googlecode.com/svn/trunk/doc/build/index.html

	OpenEXR: http://excamera.com/articles/26/doc/index.html

	OpenGDA: http://www.opengda.org/gdadoc/html/

	openWNS: http://docs.openwns.org/

	Paste: http://pythonpaste.org/script/

	Paver: http://paver.github.io/paver/

	Pioneers and Prominent Men of Utah: http://pioneers.rstebbing.com/

	PyCantonese: http://pycantonese.org/

	Pyccuracy: https://github.com/heynemann/pyccuracy/wiki/

	PyCuda: https://documen.tician.de/pycuda/

	Pyevolve: http://pyevolve.sourceforge.net/

	Pylo: https://documen.tician.de/pylo/

	PyMQI: http://pythonhosted.org/pymqi/

	PyPubSub: http://pubsub.sourceforge.net/

	pySPACE: http://pyspace.github.io/pyspace/

	Python: https://docs.python.org/3/

	python-apt: http://apt.alioth.debian.org/python-apt-doc/

	PyUblas: https://documen.tician.de/pyublas/

	Quex: http://quex.sourceforge.net/doc/html/main.html

	Ring programming language: http://ring-lang.sourceforge.net/doc/index.html

	Scapy: http://www.secdev.org/projects/scapy/doc/

	Segway: http://noble.gs.washington.edu/proj/segway/doc/1.1.0/segway.html

	SimPy: http://simpy.readthedocs.org/en/latest/

	SymPy: http://docs.sympy.org/

	WTForms: http://wtforms.simplecodes.com/docs/

	z3c: http://www.ibiblio.org/paulcarduner/z3ctutorial/

Documentation using a customized version of the classic theme

	Advanced Generic Widgets:
http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html

	Arb: http://fredrikj.net/arb/

	Bazaar: http://doc.bazaar.canonical.com/en/

	CakePHP: http://book.cakephp.org/2.0/en/index.html

	Chaco: http://docs.enthought.com/chaco/

	Chef: https://docs.chef.io/index.html

	Djagios: http://djagios.org/

	EZ-Draw: http://pageperso.lif.univ-mrs.fr/~edouard.thiel/ez-draw/doc/en/html/ez-manual.html

	GetFEM++: http://home.gna.org/getfem/

	Google or-tools:
https://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html

	GPAW: https://wiki.fysik.dtu.dk/gpaw/

	Grok: http://grok.zope.org/doc/current/

	Kaa: http://api.freevo.org/kaa-base/

	LEPL: http://www.acooke.org/lepl/

	Mayavi: http://docs.enthought.com/mayavi/mayavi/

	NICOS: http://trac.frm2.tum.de/nicos/doc/nicos-master/index.html

	NOC: http://redmine.nocproject.org/projects/noc

	NumPy: http://docs.scipy.org/doc/numpy/reference/

	OpenCV: http://docs.opencv.org/

	Peach^3: http://peach3.nl/doc/latest/userdoc/

	Sage: http://www.sagemath.org/doc/

	SciPy: http://docs.scipy.org/doc/scipy/reference/

	simuPOP: http://simupop.sourceforge.net/manual_release/build/userGuide.html

	Sprox: http://sprox.org/

	TurboGears: http://turbogears.readthedocs.org/en/latest/

	Varnish: https://www.varnish-cache.org/docs/

	Zentyal: http://doc.zentyal.org/

	Zope: http://docs.zope.org/zope2/index.html

	zc.async: http://pythonhosted.org/zc.async/1.5.0/

Documentation using the sphinxdoc theme

	Fityk: http://fityk.nieto.pl/

	MapServer: http://mapserver.org/

	Matplotlib: http://matplotlib.org/

	Music21: http://web.mit.edu/music21/doc/index.html

	NetworkX: http://networkx.github.io/

	Pweave: http://mpastell.com/pweave/

	Pyre: http://docs.danse.us/pyre/sphinx/

	Pysparse: http://pysparse.sourceforge.net/

	PyTango:
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/index.html

	Python Wild Magic: http://vmlaker.github.io/pythonwildmagic/

	Reteisi: http://www.reteisi.org/contents.html

	Sqlkit: http://sqlkit.argolinux.org/

	Turbulenz: http://docs.turbulenz.com/

	WebFaction: https://docs.webfaction.com/

Documentation using another builtin theme

	C/C++ Development with Eclipse: http://eclipsebook.in/ (agogo)

	ESWP3 (http://eswp3.org) (sphinx_rtd_theme)

	Jinja: http://jinja.pocoo.org/ (scrolls)

	jsFiddle: http://doc.jsfiddle.net/ (nature)

	libLAS: http://www.liblas.org/ (nature)

	Linguistica: http://linguistica-uchicago.github.io/lxa5/ (sphinx_rtd_theme)

	MPipe: http://vmlaker.github.io/mpipe/ (sphinx13)

	pip: https://pip.pypa.io/en/latest/ (sphinx_rtd_theme)

	Pyramid web framework:
http://docs.pylonsproject.org/projects/pyramid/en/latest/ (pyramid)

	Programmieren mit PyGTK und Glade (German):
http://www.florian-diesch.de/doc/python-und-glade/online/ (agogo)

	Satchmo: http://docs.satchmoproject.com/en/latest/ (sphinx_rtd_theme)

	Setuptools: http://pythonhosted.org/setuptools/ (nature)

	Spring Python: http://docs.spring.io/spring-python/1.2.x/sphinx/html/ (nature)

	sqlparse: http://python-sqlparse.googlecode.com/svn/docs/api/index.html
(agogo)

	Sylli: http://sylli.sourceforge.net/ (nature)

	Tuleap Open ALM: https://tuleap.net/doc/en/ (nature)

	Valence: http://docs.valence.desire2learn.com/ (haiku)

Documentation using a custom theme/integrated in a site

	Blender: https://www.blender.org/api/250PythonDoc/

	Blinker: http://discorporate.us/projects/Blinker/docs/

	Ceph: http://docs.ceph.com/docs/master/

	Classy: http://www.pocoo.org/projects/classy/

	DEAP: http://deap.gel.ulaval.ca/doc/0.8/index.html

	Django: https://docs.djangoproject.com/

	Elemental: http://libelemental.org/documentation/dev/index.html

	Enterprise Toolkit for Acrobat products:
http://www.adobe.com/devnet-docs/acrobatetk/

	e-cidadania: http://e-cidadania.readthedocs.org/en/latest/

	Flask: http://flask.pocoo.org/docs/

	Flask-OpenID: http://pythonhosted.org/Flask-OpenID/

	Gameduino: http://excamera.com/sphinx/gameduino/

	GeoServer: http://docs.geoserver.org/

	GHC - Glasgow Haskell Compiler: http://downloads.haskell.org/~ghc/master/users-guide/

	Glashammer: http://glashammer.org/

	Istihza (Turkish Python documentation project): http://belgeler.istihza.com/py2/

	Lasso: http://lassoguide.com/

	Manage documentation such as source code (fr): http://redaction-technique.org/

	MathJax: http://docs.mathjax.org/en/latest/

	MirrorBrain: http://mirrorbrain.org/docs/

	MyHDL: http://docs.myhdl.org/en/latest/

	nose: http://nose.readthedocs.org/en/latest/

	NoTex: https://www.notex.ch/overview/

	ObjectListView: http://objectlistview.sourceforge.net/python/

	Open ERP: https://doc.odoo.com/

	OpenCV: http://docs.opencv.org/

	Open Dylan: http://opendylan.org/documentation/

	OpenLayers: http://docs.openlayers.org/

	PyEphem: http://rhodesmill.org/pyephem/

	German Plone user manual: http://www.hasecke.com/plone-benutzerhandbuch/

	PSI4: http://www.psicode.org/psi4manual/master/index.html

	Pylons: http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/

	PyMOTW: https://pymotw.com/2/

	python-aspectlib: http://python-aspectlib.readthedocs.org/en/latest/
(sphinx-py3doc-enhanced-theme [https://pypi.python.org/pypi/sphinx_py3doc_enhanced_theme])

	QGIS: http://qgis.org/en/docs/index.html

	qooxdoo: http://manual.qooxdoo.org/current/

	Roundup: http://www.roundup-tracker.org/

	Selenium: http://docs.seleniumhq.org/docs/

	Self: http://www.selflanguage.org/

	Substance D: http://docs.pylonsproject.org/projects/substanced/en/latest/

	Tablib: http://tablib.org/

	SQLAlchemy: http://www.sqlalchemy.org/docs/

	tinyTiM: http://tinytim.sourceforge.net/docs/2.0/

	Ubuntu packaging guide: http://packaging.ubuntu.com/html/

	Werkzeug: http://werkzeug.pocoo.org/docs/

	WFront: http://discorporate.us/projects/WFront/

Homepages and other non-documentation sites

	A personal page: http://www.dehlia.in/

	Benoit Boissinot: http://bboissin.appspot.com/

	lunarsite: http://lunaryorn.de/

	The Wine Cellar Book: http://www.thewinecellarbook.com/doc/en/

	UC Berkeley Advanced Control Systems course:
http://msc.berkeley.edu/tomizuka/me233spring13/

	VOR: http://www.vor-cycling.be/

Books produced using Sphinx

	“The repoze.bfg Web Application Framework”:
http://www.amazon.com/repoze-bfg-Web-Application-Framework-Version/dp/0615345379

	A Theoretical Physics Reference book: http://www.theoretical-physics.net/

	“Simple and Steady Way of Learning for Software Engineering” (in Japanese):
http://www.amazon.co.jp/dp/477414259X/

	“Expert Python Programming”:
https://www.packtpub.com/application-development/expert-python-programming

	“Expert Python Programming” (Japanese translation):
http://www.amazon.co.jp/dp/4048686291/

	“Pomodoro Technique Illustrated” (Japanese translation):
http://www.amazon.co.jp/dp/4048689525/

	“Python Professional Programming” (in Japanese):
http://www.amazon.co.jp/dp/4798032948/

	“Die Wahrheit des Sehens. Der DEKALOG von Krzysztof Kieślowski”:
http://www.hasecke.eu/Dekalog/

	The “Varnish Book”:
http://book.varnish-software.com/4.0/

	“Learning Sphinx” (in Japanese):
http://www.oreilly.co.jp/books/9784873116488/

	“LassoGuide”:
http://www.lassosoft.com/Lasso-Documentation

	“Software-Dokumentation mit Sphinx”: http://www.amazon.de/dp/1497448689/

Thesis using Sphinx

	“A Web-Based System for Comparative Analysis of OpenStreetMap Data
by the Use of CouchDB”:
https://www.yumpu.com/et/document/view/11722645/masterthesis-markusmayr-0542042

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	
 previous |

 	Sphinx 1.4.1 documentation »

Sphinx authors

Sphinx is written and maintained by Georg Brandl <georg@python.org>.

Substantial parts of the templates were written by Armin Ronacher
<armin.ronacher@active-4.com>.

Other co-maintainers:

	Takayuki Shimizukawa <shimizukawa@gmail.com>

	Daniel Neuhäuser <@DasIch>

	Jon Waltman <@jonwaltman>

	Rob Ruana <@RobRuana>

	Robert Lehmann <@lehmannro>

	Roland Meister <@rolmei>

Other contributors, listed alphabetically, are:

	Alastair Houghton – Apple Help builder

	Andi Albrecht – agogo theme

	Jakob Lykke Andersen – Rewritten C++ domain

	Henrique Bastos – SVG support for graphviz extension

	Daniel Bültmann – todo extension

	Etienne Desautels – apidoc module

	Michael Droettboom – inheritance_diagram extension

	Charles Duffy – original graphviz extension

	Kevin Dunn – MathJax extension

	Josip Dzolonga – coverage builder

	Buck Evan – dummy builder

	Hernan Grecco – search improvements

	Horst Gutmann – internationalization support

	Martin Hans – autodoc improvements

	Doug Hellmann – graphviz improvements

	Timotheus Kampik - JS enhancements, stop words language fix

	Takeshi Komiya – numref feature

	Dave Kuhlman – original LaTeX writer

	Blaise Laflamme – pyramid theme

	Thomas Lamb – linkcheck builder

	Łukasz Langa – partial support for autodoc

	Ian Lee – quickstart improvements

	Robert Lehmann – gettext builder (GSOC project)

	Dan MacKinlay – metadata fixes

	Martin Mahner – nature theme

	Will Maier – directory HTML builder

	Jacob Mason – websupport library (GSOC project)

	Roland Meister – epub builder

	Ezio Melotti – collapsible sidebar JavaScript

	Daniel Neuhäuser – JavaScript domain, Python 3 support (GSOC)

	Christopher Perkins – autosummary integration

	Benjamin Peterson – unittests

	
	Powers – HTML output improvements

	Jeppe Pihl – literalinclude improvements

	Rob Ruana – napoleon extension

	Stefan Seefeld – toctree improvements

	Shibukawa Yoshiki – pluggable search API and Japanese search

	Taku Shimizu – epub3 builder

	Antonio Valentino – qthelp builder

	Filip Vavera – napoleon todo directive

	Pauli Virtanen – autodoc improvements, autosummary extension

	Stefan van der Walt – autosummary extension

	Thomas Waldmann – apidoc module fixes

	John Waltman – Texinfo builder

	Barry Warsaw – setup command improvements

	Sebastian Wiesner – image handling, distutils support

	Michael Wilson – Intersphinx HTTP basic auth support

	Joel Wurtz – cellspanning support in LaTeX

	Hong Xu – svg support in imgmath extension and various bug fixes

Many thanks for all contributions!

There are also a few modules or functions incorporated from other
authors and projects:

	sphinx.util.jsdump uses the basestring encoding from simplejson,
written by Bob Ippolito, released under the MIT license

	sphinx.util.stemmer was written by Vivake Gupta, placed in the
Public Domain

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

Installing Sphinx

Since Sphinx is written in the Python language, you need to install Python
(the required version is at least 2.6) and Sphinx.

Sphinx packages are available on the Python Package Index [https://pypi.python.org/pypi/Sphinx].

You can also download a snapshot from the Git repository:

	as a .tar.gz [https://github.com/sphinx-doc/sphinx/archive/master.tar.gz]
file or

	as a .zip [https://github.com/sphinx-doc/sphinx/archive/master.zip] file

There are introductions for several environments:

	Debian/Ubuntu: Install Sphinx using packaging system

	Other Linux distributions

	Mac OS X: Install Sphinx using MacPorts

	Windows: Install Python and Sphinx

	Installing Sphinx with pip

Debian/Ubuntu: Install Sphinx using packaging system

You may install using this command if you use Debian/Ubuntu.

$ apt-get install python-sphinx

Other Linux distributions

Most Linux distributions have Sphinx in their package repositories. Usually the
package is called “python-sphinx”, “python-Sphinx” or “sphinx”. Be aware that
there are two other packages with “sphinx” in their name: a speech recognition
toolkit (CMU Sphinx) and a full-text search database (Sphinx search).

Mac OS X: Install Sphinx using MacPorts

If you use Mac OS X MacPorts [http://www.macports.org/], use this command to
install all necessary software.

$ sudo port install py27-sphinx

To set up the executable paths, use the port select command:

$ sudo port select --set python python27
$ sudo port select --set sphinx py27-sphinx

Type which sphinx-quickstart to check if the installation was
successful.

Windows: Install Python and Sphinx

Install Python

Most Windows users do not have Python, so we begin with the installation of
Python itself. If you have already installed Python, please skip this section.

Go to https://www.python.org/, the main download site for Python. Look at the left
sidebar and under “Quick Links”, click “Windows Installer” to download.

[image: _images/pythonorg.png]

Note

Currently, Python offers two major versions, 2.x and 3.x. Sphinx 1.3 can run
under Python 2.6, 2.7, 3.3, 3.4, with the recommended version being
2.7. This chapter assumes you have installed Python 2.7.

Follow the Windows installer for Python.

[image: _images/installpython.jpg]
After installation, you better add the Python executable directories to the
environment variable PATH in order to run Python and package commands such
as sphinx-build easily from the Command Prompt.

	Right-click the “My Computer” icon and choose “Properties”

	Click the “Environment Variables” button under the “Advanced” tab

	If “Path” (or “PATH”) is already an entry in the “System variables” list, edit
it. If it is not present, add a new variable called “PATH”.

	Add these paths, separating entries by ”;”:

	C:\Python27 – this folder contains the main Python executable

	C:\Python27\Scripts – this folder will contain executables added by
Python packages installed with pip (see below)

This is for Python 2.7. If you use another version of
Python or installed to a non-default location, change the digits “27”
accordingly.

	Now run the Command Prompt. After command prompt window appear, type
python and Enter. If the Python installation was successful, the
installed Python version is printed, and you are greeted by the prompt
>>>. Type Ctrl+Z and Enter to quit.

Install the pip command

Python has a very useful pip command which can download and install
3rd-party libraries with a single command. This is provided by the
Python Packaging Authority(PyPA):
https://groups.google.com/forum/#!forum/pypa-dev

To install pip, download https://bootstrap.pypa.io/get-pip.py and
save it somewhere. After download, invoke the command prompt, go to the
directory with get-pip.py and run this command:

C:\> python get-pip.py

Now pip command is installed. From there we can go to the Sphinx
install.

Note

	pip has been contained in the Python official installation after version

	of Python-3.4.0 or Python-2.7.9.

Installing Sphinx with pip

If you finished the installation of pip, type this line in the command prompt:

C:\> pip install sphinx

After installation, type sphinx-build -h on the command prompt. If
everything worked fine, you will get a Sphinx version number and a list of
options for this command.

That it. Installation is over. Head to First Steps with Sphinx to make a Sphinx
project.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

Sphinx development

Sphinx is a maintained by a group of volunteers. We value every contribution!

	The code can be found in a Git repository, at
https://github.com/sphinx-doc/sphinx/.

	Issues and feature requests should be raised in the tracker [https://github.com/sphinx-doc/sphinx/issues].

	The mailing list for development is at Google Groups [https://groups.google.com/forum/#!forum/sphinx-dev].

	There is also the #sphinx-doc IRC channel on freenode [http://freenode.net/].

For more about our development process and methods, see the Sphinx Developer’s Guide.

Extensions

To learn how to write your own extension, see Developing extensions for Sphinx.

The sphinx-contrib [https://bitbucket.org/birkenfeld/sphinx-contrib/]
repository contains many contributed extensions. Some of them have their own
releases on PyPI, others you can install from a checkout.

This is the current list of contributed extensions in that repository:

	aafig: render embedded ASCII art as nice images using aafigure [https://launchpad.net/aafigure].

	actdiag: embed activity diagrams by using actdiag [http://blockdiag.com/en/]

	adadomain: an extension for Ada support (Sphinx 1.0 needed)

	ansi: parse ANSI color sequences inside documents

	autorun: Execute code in a runblock directive.

	blockdiag: embed block diagrams by using blockdiag [http://blockdiag.com/en/]

	cheeseshop: easily link to PyPI packages

	clearquest: create tables from ClearQuest [http://www-03.ibm.com/software/products/en/clearquest] queries.

	cmakedomain [https://bitbucket.org/klorenz/sphinxcontrib-cmakedomain]: a domain for CMake [https://cmake.org]

	coffeedomain: a domain for (auto)documenting CoffeeScript source code.

	context: a builder for ConTeXt.

	doxylink: Link to external Doxygen-generated HTML documentation

	domaintools [https://bitbucket.org/klorenz/sphinxcontrib-domaintools]: A tool for easy domain creation.

	email: obfuscate email addresses

	erlangdomain: an extension for Erlang support (Sphinx 1.0 needed)

	exceltable: embed Excel spreadsheets into documents using exceltable [http://pythonhosted.org/sphinxcontrib-exceltable/]

	feed: an extension for creating syndication feeds and time-based overviews
from your site content

	findanything [https://bitbucket.org/klorenz/sphinxcontrib-findanything]: an extension to add Sublime Text 2-like findanything panels
to your documentation to find pages, sections and index entries while typing

	gnuplot: produces images using gnuplot [http://www.gnuplot.info/] language.

	googleanalytics: track web visitor statistics by using Google Analytics [http://www.google.com/analytics/]

	googlechart: embed charts by using Google Chart [https://developers.google.com/chart/]

	googlemaps: embed maps by using Google Maps [https://www.google.com/maps]

	httpdomain: a domain for documenting RESTful HTTP APIs.

	hyphenator: client-side hyphenation of HTML using hyphenator [https://github.com/mnater/hyphenator]

	inlinesyntaxhighlight [http://sphinxcontrib-inlinesyntaxhighlight.readthedocs.org]: inline syntax highlighting

	lassodomain: a domain for documenting Lasso [http://www.lassosoft.com/] source code

	libreoffice: an extension to include any drawing supported by LibreOffice (e.g. odg, vsd...).

	lilypond: an extension inserting music scripts from Lilypond [http://lilypond.org/] in PNG format.

	makedomain [https://bitbucket.org/klorenz/sphinxcontrib-makedomain]: a domain for GNU Make [http://www.gnu.org/software/make/]

	matlabdomain: document MATLAB [http://www.mathworks.com/products/matlab/] code.

	mockautodoc: mock imports.

	mscgen: embed mscgen-formatted MSC (Message Sequence Chart)s.

	napoleon: supports Google style [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html] and NumPy style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] docstrings.

	nicoviceo: embed videos from nicovideo

	nwdiag: embed network diagrams by using nwdiag [http://blockdiag.com/en/]

	omegat: support tools to collaborate with OmegaT [http://www.omegat.org/] (Sphinx 1.1 needed)

	osaka: convert standard Japanese doc to Osaka dialect (it is joke extension)

	paverutils: an alternate integration of Sphinx with Paver [http://paver.github.io/paver/].

	phpdomain: an extension for PHP support

	plantuml: embed UML diagram by using PlantUML [http://plantuml.com/]

	py_directive: Execute python code in a py directive and return a math
node.

	rawfiles: copy raw files, like a CNAME.

	requirements: declare requirements wherever you need (e.g. in test
docstrings), mark statuses and collect them in a single list

	restbuilder: a builder for reST (reStructuredText) files.

	rubydomain: an extension for Ruby support (Sphinx 1.0 needed)

	sadisplay: display SqlAlchemy model sadisplay [https://bitbucket.org/estin/sadisplay/wiki/Home]

	sdedit: an extension inserting sequence diagram by using Quick Sequence
Diagram Editor (sdedit [http://sdedit.sourceforge.net/])

	seqdiag: embed sequence diagrams by using seqdiag [http://blockdiag.com/en/]

	slide: embed presentation slides on slideshare [http://www.slideshare.net/] and other sites.

	swf [https://bitbucket.org/klorenz/sphinxcontrib-swf]: embed flash files

	sword: an extension inserting Bible verses from Sword [http://www.crosswire.org/sword/].

	tikz: draw pictures with the TikZ/PGF LaTeX package [https://sourceforge.net/projects/pgf/].

	traclinks: create TracLinks [http://trac.edgewall.org/wiki/TracLinks] to a Trac [http://trac.edgewall.org] instance from within Sphinx

	whooshindex: whoosh indexer extension

	youtube: embed videos from YouTube [http://www.youtube.com/]

	zopeext: provide an autointerface directive for using Zope interfaces [http://docs.zope.org/zope.interface/README.html].

See the extension tutorial on getting started with writing your
own extensions.

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 Python Module Index

 a |
 b |
 c |
 d |
 e |
 p

 		 	

 		
 a	

 	
 	
 sphinx.addnodes	

 	
 	
 sphinx.application	
 Application class and extensibility interface.

 		 	

 		
 b	

 	[image: -]
 	
 sphinx.builders	
 Available built-in builder classes.

 	
 	
 sphinx.builders.applehelp	

 	
 	
 sphinx.builders.changes	

 	
 	
 sphinx.builders.devhelp	

 	
 	
 sphinx.builders.dummy	

 	
 	
 sphinx.builders.epub	

 	
 	
 sphinx.builders.epub3	

 	
 	
 sphinx.builders.gettext	

 	
 	
 sphinx.builders.html	

 	
 	
 sphinx.builders.htmlhelp	

 	
 	
 sphinx.builders.latex	

 	
 	
 sphinx.builders.linkcheck	

 	
 	
 sphinx.builders.manpage	

 	
 	
 sphinx.builders.qthelp	

 	
 	
 sphinx.builders.texinfo	

 	
 	
 sphinx.builders.text	

 	
 	
 sphinx.builders.xml	

 		 	

 		
 c	

 	
 	
 conf	
 Build configuration file.

 	
 	
 sphinx.config	

 		 	

 		
 d	

 	[image: -]
 	
 docutils	

 	
 	
 docutils.parsers.rst	

 	
 	
 sphinx.domains	

 		 	

 		
 e	

 	
 	
 sphinx.environment	

 	
 	
 sphinx.errors	

 	[image: -]
 	
 sphinx.ext	

 	
 	
 sphinx.ext.autodoc	
 Include documentation from docstrings.

 	
 	
 sphinx.ext.autosectionlabel	
 Allow reference section its title.

 	
 	
 sphinx.ext.autosummary	
 Generate autodoc summaries

 	
 	
 sphinx.ext.coverage	
 Check Python modules and C API for coverage in the documentation.

 	
 	
 sphinx.ext.doctest	
 Test snippets in the documentation.

 	
 	
 sphinx.ext.extlinks	
 Allow inserting external links with common base URLs easily.

 	
 	
 sphinx.ext.githubpages	
 Publish HTML docs in GitHub Pages

 	
 	
 sphinx.ext.graphviz	
 Support for Graphviz graphs.

 	
 	
 sphinx.ext.ifconfig	
 Include documentation content based on configuration values.

 	
 	
 sphinx.ext.imgmath	
 Render math as PNG or SVG images.

 	
 	
 sphinx.ext.inheritance_diagram	
 Support for displaying inheritance diagrams via graphviz.

 	
 	
 sphinx.ext.intersphinx	
 Link to other Sphinx documentation.

 	
 	
 sphinx.ext.jsmath	
 Render math using JavaScript via JSMath.

 	
 	
 sphinx.ext.linkcode	
 Add external links to source code.

 	
 	
 sphinx.ext.mathbase	
 Common math support for imgmath and mathjax / jsmath.

 	
 	
 sphinx.ext.mathjax	
 Render math using JavaScript via MathJax.

 	
 	
 sphinx.ext.napoleon	
 Support for NumPy and Google style docstrings

 	
 	
 sphinx.ext.todo	
 Allow inserting todo items into documents.

 	
 	
 sphinx.ext.viewcode	
 Add links to a highlighted version of the source code.

 		 	

 		
 p	

 	
 	
 sphinx.parsers	

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 Source code for docutils.parsers.rst

$Id: __init__.py 7598 2013-01-30 12:39:24Z milde $
Author: David Goodger <goodger@python.org>
Copyright: This module has been placed in the public domain.

"""
This is ``docutils.parsers.rst`` package. It exports a single class, `Parser`,
the reStructuredText parser.

Usage
=====

1. Create a parser::

 parser = docutils.parsers.rst.Parser()

 Several optional arguments may be passed to modify the parser's behavior.
 Please see `Customizing the Parser`_ below for details.

2. Gather input (a multi-line string), by reading a file or the standard
 input::

 input = sys.stdin.read()

3. Create a new empty `docutils.nodes.document` tree::

 document = docutils.utils.new_document(source, settings)

 See `docutils.utils.new_document()` for parameter details.

4. Run the parser, populating the document tree::

 parser.parse(input, document)

Parser Overview
===============

The reStructuredText parser is implemented as a state machine, examining its
input one line at a time. To understand how the parser works, please first
become familiar with the `docutils.statemachine` module, then see the
`states` module.

Customizing the Parser

Anything that isn't already customizable is that way simply because that type
of customizability hasn't been implemented yet. Patches welcome!

When instantiating an object of the `Parser` class, two parameters may be
passed: ``rfc2822`` and ``inliner``. Pass ``rfc2822=True`` to enable an
initial RFC-2822 style header block, parsed as a "field_list" element (with
"class" attribute set to "rfc2822"). Currently this is the only body-level
element which is customizable without subclassing. (Tip: subclass `Parser`
and change its "state_classes" and "initial_state" attributes to refer to new
classes. Contact the author if you need more details.)

The ``inliner`` parameter takes an instance of `states.Inliner` or a subclass.
It handles inline markup recognition. A common extension is the addition of
further implicit hyperlinks, like "RFC 2822". This can be done by subclassing
`states.Inliner`, adding a new method for the implicit markup, and adding a
``(pattern, method)`` pair to the "implicit_dispatch" attribute of the
subclass. See `states.Inliner.implicit_inline()` for details. Explicit
inline markup can be customized in a `states.Inliner` subclass via the
``patterns.initial`` and ``dispatch`` attributes (and new methods as
appropriate).
"""

__docformat__ = 'reStructuredText'

import docutils.parsers
import docutils.statemachine
from docutils.parsers.rst import states
from docutils import frontend, nodes, Component
from docutils.transforms import universal

class Parser(docutils.parsers.Parser):

 """The reStructuredText parser."""

 supported = ('restructuredtext', 'rst', 'rest', 'restx', 'rtxt', 'rstx')
 """Aliases this parser supports."""

 settings_spec = (
 'reStructuredText Parser Options',
 None,
 (('Recognize and link to standalone PEP references (like "PEP 258").',
 ['--pep-references'],
 {'action': 'store_true', 'validator': frontend.validate_boolean}),
 ('Base URL for PEP references '
 '(default "http://www.python.org/dev/peps/").',
 ['--pep-base-url'],
 {'metavar': '<URL>', 'default': 'http://www.python.org/dev/peps/',
 'validator': frontend.validate_url_trailing_slash}),
 ('Template for PEP file part of URL. (default "pep-%04d")',
 ['--pep-file-url-template'],
 {'metavar': '<URL>', 'default': 'pep-%04d'}),
 ('Recognize and link to standalone RFC references (like "RFC 822").',
 ['--rfc-references'],
 {'action': 'store_true', 'validator': frontend.validate_boolean}),
 ('Base URL for RFC references (default "http://www.faqs.org/rfcs/").',
 ['--rfc-base-url'],
 {'metavar': '<URL>', 'default': 'http://www.faqs.org/rfcs/',
 'validator': frontend.validate_url_trailing_slash}),
 ('Set number of spaces for tab expansion (default 8).',
 ['--tab-width'],
 {'metavar': '<width>', 'type': 'int', 'default': 8,
 'validator': frontend.validate_nonnegative_int}),
 ('Remove spaces before footnote references.',
 ['--trim-footnote-reference-space'],
 {'action': 'store_true', 'validator': frontend.validate_boolean}),
 ('Leave spaces before footnote references.',
 ['--leave-footnote-reference-space'],
 {'action': 'store_false', 'dest': 'trim_footnote_reference_space'}),
 ('Disable directives that insert the contents of external file '
 '("include" & "raw"); replaced with a "warning" system message.',
 ['--no-file-insertion'],
 {'action': 'store_false', 'default': 1,
 'dest': 'file_insertion_enabled',
 'validator': frontend.validate_boolean}),
 ('Enable directives that insert the contents of external file '
 '("include" & "raw"). Enabled by default.',
 ['--file-insertion-enabled'],
 {'action': 'store_true'}),
 ('Disable the "raw" directives; replaced with a "warning" '
 'system message.',
 ['--no-raw'],
 {'action': 'store_false', 'default': 1, 'dest': 'raw_enabled',
 'validator': frontend.validate_boolean}),
 ('Enable the "raw" directive. Enabled by default.',
 ['--raw-enabled'],
 {'action': 'store_true'}),
 ('Token name set for parsing code with Pygments: one of '
 '"long", "short", or "none (no parsing)". Default is "long".',
 ['--syntax-highlight'],
 {'choices': ['long', 'short', 'none'],
 'default': 'long', 'metavar': '<format>'}),
 ('Change straight quotation marks to typographic form: '
 'one of "yes", "no", "alt[ernative]" (default "no").',
 ['--smart-quotes'],
 {'default': False, 'validator': frontend.validate_ternary}),
))

 config_section = 'restructuredtext parser'
 config_section_dependencies = ('parsers',)

 def __init__(self, rfc2822=False, inliner=None):
 if rfc2822:
 self.initial_state = 'RFC2822Body'
 else:
 self.initial_state = 'Body'
 self.state_classes = states.state_classes
 self.inliner = inliner

 def get_transforms(self):
 return Component.get_transforms(self) + [
 universal.SmartQuotes]

 def parse(self, inputstring, document):
 """Parse `inputstring` and populate `document`, a document tree."""
 self.setup_parse(inputstring, document)
 self.statemachine = states.RSTStateMachine(
 state_classes=self.state_classes,
 initial_state=self.initial_state,
 debug=document.reporter.debug_flag)
 inputlines = docutils.statemachine.string2lines(
 inputstring, tab_width=document.settings.tab_width,
 convert_whitespace=True)
 self.statemachine.run(inputlines, document, inliner=self.inliner)
 self.finish_parse()

class DirectiveError(Exception):

 """
 Store a message and a system message level.

 To be thrown from inside directive code.

 Do not instantiate directly -- use `Directive.directive_error()`
 instead!
 """

 def __init__(self, level, message):
 """Set error `message` and `level`"""
 Exception.__init__(self)
 self.level = level
 self.msg = message

[docs]class Directive(object):

 """
 Base class for reStructuredText directives.

 The following attributes may be set by subclasses. They are
 interpreted by the directive parser (which runs the directive
 class):

 - `required_arguments`: The number of required arguments (default:
 0).

 - `optional_arguments`: The number of optional arguments (default:
 0).

 - `final_argument_whitespace`: A boolean, indicating if the final
 argument may contain whitespace (default: False).

 - `option_spec`: A dictionary, mapping known option names to
 conversion functions such as `int` or `float` (default: {}, no
 options). Several conversion functions are defined in the
 directives/__init__.py module.

 Option conversion functions take a single parameter, the option
 argument (a string or ``None``), validate it and/or convert it
 to the appropriate form. Conversion functions may raise
 `ValueError` and `TypeError` exceptions.

 - `has_content`: A boolean; True if content is allowed. Client
 code must handle the case where content is required but not
 supplied (an empty content list will be supplied).

 Arguments are normally single whitespace-separated words. The
 final argument may contain whitespace and/or newlines if
 `final_argument_whitespace` is True.

 If the form of the arguments is more complex, specify only one
 argument (either required or optional) and set
 `final_argument_whitespace` to True; the client code must do any
 context-sensitive parsing.

 When a directive implementation is being run, the directive class
 is instantiated, and the `run()` method is executed. During
 instantiation, the following instance variables are set:

 - ``name`` is the directive type or name (string).

 - ``arguments`` is the list of positional arguments (strings).

 - ``options`` is a dictionary mapping option names (strings) to
 values (type depends on option conversion functions; see
 `option_spec` above).

 - ``content`` is a list of strings, the directive content line by line.

 - ``lineno`` is the absolute line number of the first line
 of the directive.

 - ``src`` is the name (or path) of the rst source of the directive.

 - ``srcline`` is the line number of the first line of the directive
 in its source. It may differ from ``lineno``, if the main source
 includes other sources with the ``.. include::`` directive.

 - ``content_offset`` is the line offset of the first line of the content from
 the beginning of the current input. Used when initiating a nested parse.

 - ``block_text`` is a string containing the entire directive.

 - ``state`` is the state which called the directive function.

 - ``state_machine`` is the state machine which controls the state which called
 the directive function.

 Directive functions return a list of nodes which will be inserted
 into the document tree at the point where the directive was
 encountered. This can be an empty list if there is nothing to
 insert.

 For ordinary directives, the list must contain body elements or
 structural elements. Some directives are intended specifically
 for substitution definitions, and must return a list of `Text`
 nodes and/or inline elements (suitable for inline insertion, in
 place of the substitution reference). Such directives must verify
 substitution definition context, typically using code like this::

 if not isinstance(state, states.SubstitutionDef):
 error = state_machine.reporter.error(
 'Invalid context: the "%s" directive can only be used '
 'within a substitution definition.' % (name),
 nodes.literal_block(block_text, block_text), line=lineno)
 return [error]
 """

 # There is a "Creating reStructuredText Directives" how-to at
 # <http://docutils.sf.net/docs/howto/rst-directives.html>. If you
 # update this docstring, please update the how-to as well.

 required_arguments = 0
 """Number of required directive arguments."""

 optional_arguments = 0
 """Number of optional arguments after the required arguments."""

 final_argument_whitespace = False
 """May the final argument contain whitespace?"""

 option_spec = None
 """Mapping of option names to validator functions."""

 has_content = False
 """May the directive have content?"""

 def __init__(self, name, arguments, options, content, lineno,
 content_offset, block_text, state, state_machine):
 self.name = name
 self.arguments = arguments
 self.options = options
 self.content = content
 self.lineno = lineno
 self.content_offset = content_offset
 self.block_text = block_text
 self.state = state
 self.state_machine = state_machine

[docs] def run(self):
 raise NotImplementedError('Must override run() is subclass.')

 # Directive errors:

 def directive_error(self, level, message):
 """
 Return a DirectiveError suitable for being thrown as an exception.

 Call "raise self.directive_error(level, message)" from within
 a directive implementation to return one single system message
 at level `level`, which automatically gets the directive block
 and the line number added.

 Preferably use the `debug`, `info`, `warning`, `error`, or `severe`
 wrapper methods, e.g. ``self.error(message)`` to generate an
 ERROR-level directive error.
 """
 return DirectiveError(level, message)

 def debug(self, message):
 return self.directive_error(0, message)

 def info(self, message):
 return self.directive_error(1, message)

 def warning(self, message):
 return self.directive_error(2, message)

 def error(self, message):
 return self.directive_error(3, message)

 def severe(self, message):
 return self.directive_error(4, message)

 # Convenience methods:

 def assert_has_content(self):
 """
 Throw an ERROR-level DirectiveError if the directive doesn't
 have contents.
 """
 if not self.content:
 raise self.error('Content block expected for the "%s" directive; '
 'none found.' % self.name)

 def add_name(self, node):
 """Append self.options['name'] to node['names'] if it exists.

 Also normalize the name string and register it as explicit target.
 """
 if 'name' in self.options:
 name = nodes.fully_normalize_name(self.options.pop('name'))
 if 'name' in node:
 del(node['name'])
 node['names'].append(name)
 self.state.document.note_explicit_target(node, node)

def convert_directive_function(directive_fn):
 """
 Define & return a directive class generated from `directive_fn`.

 `directive_fn` uses the old-style, functional interface.
 """

 class FunctionalDirective(Directive):

 option_spec = getattr(directive_fn, 'options', None)
 has_content = getattr(directive_fn, 'content', False)
 _argument_spec = getattr(directive_fn, 'arguments', (0, 0, False))
 required_arguments, optional_arguments, final_argument_whitespace \
 = _argument_spec

 def run(self):
 return directive_fn(
 self.name, self.arguments, self.options, self.content,
 self.lineno, self.content_offset, self.block_text,
 self.state, self.state_machine)

 # Return new-style directive.
 return FunctionalDirective

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 All modules for which code is available

	docutils.parsers.rst

	sphinx.addnodes

	sphinx.application

	sphinx.builders

	sphinx.builders.applehelp

	sphinx.builders.changes

	sphinx.builders.devhelp

	sphinx.builders.dummy

	sphinx.builders.epub

	sphinx.builders.epub3

	sphinx.builders.gettext

	sphinx.builders.html

	sphinx.builders.htmlhelp

	sphinx.builders.latex

	sphinx.builders.linkcheck

	sphinx.builders.manpage

	sphinx.builders.qthelp

	sphinx.builders.texinfo

	sphinx.builders.text

	sphinx.builders.xml

	sphinx.config

	sphinx.domains

	sphinx.environment

	sphinx.errors

	sphinx.ext.autodoc

	sphinx.ext.coverage

	sphinx.parsers

	sphinx.websupport

	sphinx.websupport.search

	sphinx.websupport.storage

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 Source code for sphinx.addnodes

-*- coding: utf-8 -*-
"""
 sphinx.addnodes
    ~~~~~~~~~~~~~~~

    Additional docutils nodes.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import warnings

from docutils import nodes


[docs]class toctree(nodes.General, nodes.Element):
    """Node for inserting a "TOC tree"."""



# domain-specific object descriptions (class, function etc.)

[docs]class desc(nodes.Admonition, nodes.Element):
    """Node for object descriptions.

    This node is similar to a "definition list" with one definition.  It
    contains one or more ``desc_signature`` and a ``desc_content``.
    """



[docs]class desc_signature(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for object signatures.

    The "term" part of the custom Sphinx definition list.
    """



# nodes to use within a desc_signature

[docs]class desc_addname(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for additional name parts (module name, class name)."""

# compatibility alias
desc_classname = desc_addname


[docs]class desc_type(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for return types or object type names."""



[docs]class desc_returns(desc_type):
    """Node for a "returns" annotation (a la -> in Python)."""
    def astext(self):
        return ' -> ' + nodes.TextElement.astext(self)



[docs]class desc_name(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for the main object name."""



[docs]class desc_parameterlist(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for a general parameter list."""
    child_text_separator = ', '



[docs]class desc_parameter(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for a single parameter."""



[docs]class desc_optional(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for marking optional parts of the parameter list."""
    child_text_separator = ', '

    def astext(self):
        return '[' + nodes.TextElement.astext(self) + ']'



[docs]class desc_annotation(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for signature annotations (not Python 3-style annotations)."""



[docs]class desc_content(nodes.General, nodes.Element):
    """Node for object description content.

    This is the "definition" part of the custom Sphinx definition list.
    """



# new admonition-like constructs

[docs]class versionmodified(nodes.Admonition, nodes.TextElement):
    """Node for version change entries.

    Currently used for "versionadded", "versionchanged" and "deprecated"
    directives.
    """



[docs]class seealso(nodes.Admonition, nodes.Element):
    """Custom "see also" admonition."""



[docs]class productionlist(nodes.Admonition, nodes.Element):
    """Node for grammar production lists.

    Contains ``production`` nodes.
    """



[docs]class production(nodes.Part, nodes.Inline, nodes.TextElement):
    """Node for a single grammar production rule."""



# other directive-level nodes

[docs]class index(nodes.Invisible, nodes.Inline, nodes.TextElement):
    """Node for index entries.

    This node is created by the ``index`` directive and has one attribute,
    ``entries``.  Its value is a list of 4-tuples of ``(entrytype, entryname,
    target, ignored)``.

    *entrytype* is one of "single", "pair", "double", "triple".
    """



class centered(nodes.Part, nodes.TextElement):
    """Deprecated."""


class acks(nodes.Element):
    """Special node for "acks" lists."""


class hlist(nodes.Element):
    """Node for "horizontal lists", i.e. lists that should be compressed to
    take up less vertical space.
    """


class hlistcol(nodes.Element):
    """Node for one column in a horizontal list."""


[docs]class compact_paragraph(nodes.paragraph):
    """Node for a compact paragraph (which never makes a <p> node)."""



[docs]class glossary(nodes.Element):
    """Node to insert a glossary."""



[docs]class only(nodes.Element):
    """Node for "only" directives (conditional inclusion based on tags)."""



# meta-information nodes

[docs]class start_of_file(nodes.Element):
    """Node to mark start of a new file, used in the LaTeX builder only."""



[docs]class highlightlang(nodes.Element):
    """Inserted to set the highlight language and line number options for
    subsequent code blocks.
    """



class tabular_col_spec(nodes.Element):
    """Node for specifying tabular columns, used for LaTeX output."""


[docs]class meta(nodes.Special, nodes.PreBibliographic, nodes.Element):
    """Node for meta directive -- same as docutils' standard meta node,
    but pickleable.
    """



# inline nodes

[docs]class pending_xref(nodes.Inline, nodes.Element):
    """Node for cross-references that cannot be resolved without complete
    information about all documents.

    These nodes are resolved before writing output, in
    BuildEnvironment.resolve_references.
    """



class number_reference(nodes.reference):
    """Node for number references, similar to pending_xref."""


[docs]class download_reference(nodes.reference):
    """Node for download references, similar to pending_xref."""



[docs]class literal_emphasis(nodes.emphasis):
    """Node that behaves like `emphasis`, but further text processors are not
    applied (e.g. smartypants for HTML output).
    """



class literal_strong(nodes.strong):
    """Node that behaves like `strong`, but further text processors are not
    applied (e.g. smartypants for HTML output).
    """


[docs]class abbreviation(nodes.Inline, nodes.TextElement):
    """Node for abbreviations with explanations."""



[docs]class termsep(nodes.Structural, nodes.Element):
    """Separates two terms within a <term> node.

    .. versionchanged:: 1.4
       sphinx.addnodes.termsep is deprecated. It will be removed at Sphinx-1.5.
    """

    def __init__(self, *args, **kw):
        warnings.warn('sphinx.addnodes.termsep will be removed at Sphinx-1.5',
                      DeprecationWarning, stacklevel=2)
        super(termsep, self).__init__(*args, **kw)



class manpage(nodes.Inline, nodes.TextElement):
    """Node for references to manpages."""


# make the new nodes known to docutils; needed because the HTML writer will
# choke at some point if these are not added
nodes._add_node_class_names(k for k in globals().keys()
                            if k != 'nodes' and k[0] != '_')




          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »
 
      

    


    
      
          
            
  Source code for sphinx.application

# -*- coding: utf-8 -*-
"""
    sphinx.application
    ~~~~~~~~~~~~~~~~~~

 Sphinx application object.

 Gracefully adapted from the TextPress system by Armin.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""
from __future__ import print_function

import os
import sys
import types
import posixpath
import traceback
from os import path
from collections import deque

from six import iteritems, itervalues, text_type
from six.moves import cStringIO
from docutils import nodes
from docutils.parsers.rst import convert_directive_function, \
 directives, roles

import sphinx
from sphinx import package_dir, locale
from sphinx.roles import XRefRole
from sphinx.config import Config
from sphinx.errors import SphinxError, SphinxWarning, ExtensionError, \
 VersionRequirementError, ConfigError
from sphinx.domains import ObjType, BUILTIN_DOMAINS
from sphinx.domains.std import GenericObject, Target, StandardDomain
from sphinx.builders import BUILTIN_BUILDERS
from sphinx.environment import BuildEnvironment
from sphinx.io import SphinxStandaloneReader
from sphinx.util import pycompat # noqa: imported for side-effects
from sphinx.util import import_object
from sphinx.util.tags import Tags
from sphinx.util.osutil import ENOENT
from sphinx.util.logging import is_suppressed_warning
from sphinx.util.console import bold, lightgray, darkgray, darkgreen, \
 term_width_line
from sphinx.util.i18n import find_catalog_source_files

if hasattr(sys, 'intern'):
 intern = sys.intern

List of all known core events. Maps name to arguments description.
events = {
 'builder-inited': '',
 'env-get-outdated': 'env, added, changed, removed',
 'env-purge-doc': 'env, docname',
 'env-before-read-docs': 'env, docnames',
 'source-read': 'docname, source text',
 'doctree-read': 'the doctree before being pickled',
 'env-merge-info': 'env, read docnames, other env instance',
 'missing-reference': 'env, node, contnode',
 'doctree-resolved': 'doctree, docname',
 'env-updated': 'env',
 'html-collect-pages': 'builder',
 'html-page-context': 'pagename, context, doctree or None',
 'build-finished': 'exception',
}

CONFIG_FILENAME = 'conf.py'
ENV_PICKLE_FILENAME = 'environment.pickle'

[docs]class Sphinx(object):

 def __init__(self, srcdir, confdir, outdir, doctreedir, buildername,
 confoverrides=None, status=sys.stdout, warning=sys.stderr,
 freshenv=False, warningiserror=False, tags=None, verbosity=0,
 parallel=0):
 self.verbosity = verbosity
 self.next_listener_id = 0
 self._extensions = {}
 self._extension_metadata = {}
 self._additional_source_parsers = {}
 self._listeners = {}
 self._setting_up_extension = ['?']
 self.domains = BUILTIN_DOMAINS.copy()
 self.buildername = buildername
 self.builderclasses = BUILTIN_BUILDERS.copy()
 self.builder = None
 self.env = None
 self.enumerable_nodes = {}

 self.srcdir = srcdir
 self.confdir = confdir
 self.outdir = outdir
 self.doctreedir = doctreedir

 self.parallel = parallel

 if status is None:
 self._status = cStringIO()
 self.quiet = True
 else:
 self._status = status
 self.quiet = False

 if warning is None:
 self._warning = cStringIO()
 else:
 self._warning = warning
 self._warncount = 0
 self.warningiserror = warningiserror

 self._events = events.copy()
 self._translators = {}

 # keep last few messages for traceback
 self.messagelog = deque(maxlen=10)

 # say hello to the world
 self.info(bold('Running Sphinx v%s' % sphinx.__display_version__))

 # status code for command-line application
 self.statuscode = 0

 if not path.isdir(outdir):
 self.info('making output directory...')
 os.makedirs(outdir)

 # read config
 self.tags = Tags(tags)
 self.config = Config(confdir, CONFIG_FILENAME,
 confoverrides or {}, self.tags)
 self.config.check_unicode(self.warn)
 # defer checking types until i18n has been initialized

 # initialize some limited config variables before loading extensions
 self.config.pre_init_values(self.warn)

 # check the Sphinx version if requested
 if self.config.needs_sphinx and self.config.needs_sphinx > sphinx.__display_version__:
 raise VersionRequirementError(
 'This project needs at least Sphinx v%s and therefore cannot '
 'be built with this version.' % self.config.needs_sphinx)

 # set confdir to srcdir if -C given (!= no confdir); a few pieces
 # of code expect a confdir to be set
 if self.confdir is None:
 self.confdir = self.srcdir

 # extension loading support for alabaster theme
 # self.config.html_theme is not set from conf.py at here
 # for now, sphinx always load a 'alabaster' extension.
 if 'alabaster' not in self.config.extensions:
 self.config.extensions.append('alabaster')

 # load all user-given extension modules
 for extension in self.config.extensions:
 self.setup_extension(extension)
 # the config file itself can be an extension
 if self.config.setup:
 self._setting_up_extension = ['conf.py']
 # py31 doesn't have 'callable' function for below check
 if hasattr(self.config.setup, '__call__'):
 self.config.setup(self)
 else:
 raise ConfigError(
 "'setup' that is specified in the conf.py has not been " +
 "callable. Please provide a callable `setup` function " +
 "in order to behave as a sphinx extension conf.py itself."
)

 # now that we know all config values, collect them from conf.py
 self.config.init_values(self.warn)

 # check extension versions if requested
 if self.config.needs_extensions:
 for extname, needs_ver in self.config.needs_extensions.items():
 if extname not in self._extensions:
 self.warn('needs_extensions config value specifies a '
 'version requirement for extension %s, but it is '
 'not loaded' % extname)
 continue
 has_ver = self._extension_metadata[extname]['version']
 if has_ver == 'unknown version' or needs_ver > has_ver:
 raise VersionRequirementError(
 'This project needs the extension %s at least in '
 'version %s and therefore cannot be built with the '
 'loaded version (%s).' % (extname, needs_ver, has_ver))

 # set up translation infrastructure
 self._init_i18n()
 # check all configuration values for permissible types
 self.config.check_types(self.warn)
 # set up source_parsers
 self._init_source_parsers()
 # set up the build environment
 self._init_env(freshenv)
 # set up the builder
 self._init_builder(self.buildername)
 # set up the enumerable nodes
 self._init_enumerable_nodes()

 def _init_i18n(self):
 """Load translated strings from the configured localedirs if enabled in
 the configuration.
 """
 if self.config.language is not None:
 self.info(bold('loading translations [%s]... ' %
 self.config.language), nonl=True)
 user_locale_dirs = [
 path.join(self.srcdir, x) for x in self.config.locale_dirs]
 # compile mo files if sphinx.po file in user locale directories are updated
 for catinfo in find_catalog_source_files(
 user_locale_dirs, self.config.language, domains=['sphinx'],
 charset=self.config.source_encoding):
 catinfo.write_mo(self.config.language)
 locale_dirs = [None, path.join(package_dir, 'locale')] + user_locale_dirs
 else:
 locale_dirs = []
 self.translator, has_translation = locale.init(locale_dirs, self.config.language)
 if self.config.language is not None:
 if has_translation or self.config.language == 'en':
 # "en" never needs to be translated
 self.info('done')
 else:
 self.info('not available for built-in messages')

 def _init_source_parsers(self):
 for suffix, parser in iteritems(self._additional_source_parsers):
 if suffix not in self.config.source_suffix:
 self.config.source_suffix.append(suffix)
 if suffix not in self.config.source_parsers:
 self.config.source_parsers[suffix] = parser

 def _init_env(self, freshenv):
 if freshenv:
 self.env = BuildEnvironment(self.srcdir, self.doctreedir,
 self.config)
 self.env.find_files(self.config)
 for domain in self.domains.keys():
 self.env.domains[domain] = self.domains[domain](self.env)
 else:
 try:
 self.info(bold('loading pickled environment... '), nonl=True)
 self.env = BuildEnvironment.frompickle(
 self.srcdir, self.config, path.join(self.doctreedir, ENV_PICKLE_FILENAME))
 self.env.domains = {}
 for domain in self.domains.keys():
 # this can raise if the data version doesn't fit
 self.env.domains[domain] = self.domains[domain](self.env)
 self.info('done')
 except Exception as err:
 if isinstance(err, IOError) and err.errno == ENOENT:
 self.info('not yet created')
 else:
 self.info('failed: %s' % err)
 return self._init_env(freshenv=True)

 self.env.set_warnfunc(self.warn)

 def _init_builder(self, buildername):
 if buildername is None:
 print('No builder selected, using default: html', file=self._status)
 buildername = 'html'
 if buildername not in self.builderclasses:
 raise SphinxError('Builder name %s not registered' % buildername)

 builderclass = self.builderclasses[buildername]
 if isinstance(builderclass, tuple):
 # builtin builder
 mod, cls = builderclass
 builderclass = getattr(
 __import__('sphinx.builders.' + mod, None, None, [cls]), cls)
 self.builder = builderclass(self)
 self.emit('builder-inited')

 def _init_enumerable_nodes(self):
 for node, settings in iteritems(self.enumerable_nodes):
 self.env.domains['std'].enumerable_nodes[node] = settings

 # ---- main "build" method ---

 def build(self, force_all=False, filenames=None):
 try:
 if force_all:
 self.builder.compile_all_catalogs()
 self.builder.build_all()
 elif filenames:
 self.builder.compile_specific_catalogs(filenames)
 self.builder.build_specific(filenames)
 else:
 self.builder.compile_update_catalogs()
 self.builder.build_update()

 status = (self.statuscode == 0 and
 'succeeded' or 'finished with problems')
 if self._warncount:
 self.info(bold('build %s, %s warning%s.' %
 (status, self._warncount,
 self._warncount != 1 and 's' or '')))
 else:
 self.info(bold('build %s.' % status))
 except Exception as err:
 # delete the saved env to force a fresh build next time
 envfile = path.join(self.doctreedir, ENV_PICKLE_FILENAME)
 if path.isfile(envfile):
 os.unlink(envfile)
 self.emit('build-finished', err)
 raise
 else:
 self.emit('build-finished', None)
 self.builder.cleanup()

 # ---- logging handling --

 def _log(self, message, wfile, nonl=False):
 try:
 wfile.write(message)
 except UnicodeEncodeError:
 encoding = getattr(wfile, 'encoding', 'ascii') or 'ascii'
 wfile.write(message.encode(encoding, 'replace'))
 if not nonl:
 wfile.write('\n')
 if hasattr(wfile, 'flush'):
 wfile.flush()
 self.messagelog.append(message)

[docs] def warn(self, message, location=None, prefix='WARNING: ', type=None, subtype=None):
 """Emit a warning.

 If *location* is given, it should either be a tuple of (docname, lineno)
 or a string describing the location of the warning as well as possible.

 prefix usually should not be changed.

 type and *subtype* are used to suppress warnings with :confval:`suppress_warnings`.

 .. note::

 For warnings emitted during parsing, you should use
 :meth:`.BuildEnvironment.warn` since that will collect all
 warnings during parsing for later output.
 """
 if is_suppressed_warning(type, subtype, self.config.suppress_warnings):
 return

 if isinstance(location, tuple):
 docname, lineno = location
 if docname:
 location = '%s:%s' % (self.env.doc2path(docname), lineno or '')
 else:
 location = None
 warntext = location and '%s: %s%s\n' % (location, prefix, message) or \
 '%s%s\n' % (prefix, message)
 if self.warningiserror:
 raise SphinxWarning(warntext)
 self._warncount += 1
 self._log(warntext, self._warning, True)

[docs] def info(self, message='', nonl=False):
 """Emit an informational message.

 If *nonl* is true, don't emit a newline at the end (which implies that
 more info output will follow soon.)
 """
 self._log(message, self._status, nonl)

[docs] def verbose(self, message, *args, **kwargs):
 """Emit a verbose informational message.

 The message will only be emitted for verbosity levels >= 1 (i.e. at
 least one ``-v`` option was given).

 The message can contain %-style interpolation placeholders, which is
 formatted with either the ``*args`` or ``**kwargs`` when output.
 """
 if self.verbosity < 1:
 return
 if args or kwargs:
 message = message % (args or kwargs)
 self._log(message, self._status)

[docs] def debug(self, message, *args, **kwargs):
 """Emit a debug-level informational message.

 The message will only be emitted for verbosity levels >= 2 (i.e. at
 least two ``-v`` options were given).

 The message can contain %-style interpolation placeholders, which is
 formatted with either the ``*args`` or ``**kwargs`` when output.
 """
 if self.verbosity < 2:
 return
 if args or kwargs:
 message = message % (args or kwargs)
 self._log(darkgray(message), self._status)

[docs] def debug2(self, message, *args, **kwargs):
 """Emit a lowlevel debug-level informational message.

 The message will only be emitted for verbosity level 3 (i.e. three
 ``-v`` options were given).

 The message can contain %-style interpolation placeholders, which is
 formatted with either the ``*args`` or ``**kwargs`` when output.
 """
 if self.verbosity < 3:
 return
 if args or kwargs:
 message = message % (args or kwargs)
 self._log(lightgray(message), self._status)

 def _display_chunk(chunk):
 if isinstance(chunk, (list, tuple)):
 if len(chunk) == 1:
 return text_type(chunk[0])
 return '%s .. %s' % (chunk[0], chunk[-1])
 return text_type(chunk)

 def old_status_iterator(self, iterable, summary, colorfunc=darkgreen,
 stringify_func=_display_chunk):
 l = 0
 for item in iterable:
 if l == 0:
 self.info(bold(summary), nonl=1)
 l = 1
 self.info(colorfunc(stringify_func(item)) + ' ', nonl=1)
 yield item
 if l == 1:
 self.info()

 # new version with progress info
 def status_iterator(self, iterable, summary, colorfunc=darkgreen, length=0,
 stringify_func=_display_chunk):
 if length == 0:
 for item in self.old_status_iterator(iterable, summary, colorfunc,
 stringify_func):
 yield item
 return
 l = 0
 summary = bold(summary)
 for item in iterable:
 l += 1
 s = '%s[%3d%%] %s' % (summary, 100*l/length,
 colorfunc(stringify_func(item)))
 if self.verbosity:
 s += '\n'
 else:
 s = term_width_line(s)
 self.info(s, nonl=1)
 yield item
 if l > 0:
 self.info()

 # ---- general extensibility interface -------------------------------------

[docs] def setup_extension(self, extension):
 """Import and setup a Sphinx extension module. No-op if called twice."""
 self.debug('[app] setting up extension: %r', extension)
 if extension in self._extensions:
 return
 self._setting_up_extension.append(extension)
 try:
 mod = __import__(extension, None, None, ['setup'])
 except ImportError as err:
 self.verbose('Original exception:\n' + traceback.format_exc())
 raise ExtensionError('Could not import extension %s' % extension,
 err)
 if not hasattr(mod, 'setup'):
 self.warn('extension %r has no setup() function; is it really '
 'a Sphinx extension module?' % extension)
 ext_meta = None
 else:
 try:
 ext_meta = mod.setup(self)
 except VersionRequirementError as err:
 # add the extension name to the version required
 raise VersionRequirementError(
 'The %s extension used by this project needs at least '
 'Sphinx v%s; it therefore cannot be built with this '
 'version.' % (extension, err))
 if ext_meta is None:
 ext_meta = {}
 # special-case for compatibility
 if extension == 'rst2pdf.pdfbuilder':
 ext_meta = {'parallel_read_safe': True}
 try:
 if not ext_meta.get('version'):
 ext_meta['version'] = 'unknown version'
 except Exception:
 self.warn('extension %r returned an unsupported object from '
 'its setup() function; it should return None or a '
 'metadata dictionary' % extension)
 ext_meta = {'version': 'unknown version'}
 self._extensions[extension] = mod
 self._extension_metadata[extension] = ext_meta
 self._setting_up_extension.pop()

[docs] def require_sphinx(self, version):
 # check the Sphinx version if requested
 if version > sphinx.__display_version__[:3]:
 raise VersionRequirementError(version)

 def import_object(self, objname, source=None):
 """Import an object from a 'module.name' string."""
 return import_object(objname, source=None)

 # event interface

 def _validate_event(self, event):
 event = intern(event)
 if event not in self._events:
 raise ExtensionError('Unknown event name: %s' % event)

[docs] def connect(self, event, callback):
 self._validate_event(event)
 listener_id = self.next_listener_id
 if event not in self._listeners:
 self._listeners[event] = {listener_id: callback}
 else:
 self._listeners[event][listener_id] = callback
 self.next_listener_id += 1
 self.debug('[app] connecting event %r: %r [id=%s]',
 event, callback, listener_id)
 return listener_id

[docs] def disconnect(self, listener_id):
 self.debug('[app] disconnecting event: [id=%s]', listener_id)
 for event in itervalues(self._listeners):
 event.pop(listener_id, None)

[docs] def emit(self, event, *args):
 try:
 self.debug2('[app] emitting event: %r%s', event, repr(args)[:100])
 except Exception:
 # not every object likes to be repr()'d (think
 # random stuff coming via autodoc)
 pass
 results = []
 if event in self._listeners:
 for _, callback in iteritems(self._listeners[event]):
 results.append(callback(self, *args))
 return results

[docs] def emit_firstresult(self, event, *args):
 for result in self.emit(event, *args):
 if result is not None:
 return result
 return None

 # registering addon parts

[docs] def add_builder(self, builder):
 self.debug('[app] adding builder: %r', builder)
 if not hasattr(builder, 'name'):
 raise ExtensionError('Builder class %s has no "name" attribute'
 % builder)
 if builder.name in self.builderclasses:
 if isinstance(self.builderclasses[builder.name], tuple):
 raise ExtensionError('Builder %r is a builtin builder' %
 builder.name)
 else:
 raise ExtensionError(
 'Builder %r already exists (in module %s)' % (
 builder.name, self.builderclasses[builder.name].__module__))
 self.builderclasses[builder.name] = builder

[docs] def add_config_value(self, name, default, rebuild, types=()):
 self.debug('[app] adding config value: %r',
 (name, default, rebuild) + ((types,) if types else ()))
 if name in self.config.values:
 raise ExtensionError('Config value %r already present' % name)
 if rebuild in (False, True):
 rebuild = rebuild and 'env' or ''
 self.config.values[name] = (default, rebuild, types)

[docs] def add_event(self, name):
 self.debug('[app] adding event: %r', name)
 if name in self._events:
 raise ExtensionError('Event %r already present' % name)
 self._events[name] = ''

[docs] def set_translator(self, name, translator_class):
 self.info(bold('A Translator for the %s builder is changed.' % name))
 self._translators[name] = translator_class

[docs] def add_node(self, node, **kwds):
 self.debug('[app] adding node: %r', (node, kwds))
 if not kwds.pop('override', False) and \
 hasattr(nodes.GenericNodeVisitor, 'visit_' + node.__name__):
 self.warn('while setting up extension %s: node class %r is '
 'already registered, its visitors will be overridden' %
 (self._setting_up_extension, node.__name__),
 type='app', subtype='add_node')
 nodes._add_node_class_names([node.__name__])
 for key, val in iteritems(kwds):
 try:
 visit, depart = val
 except ValueError:
 raise ExtensionError('Value for key %r must be a '
 '(visit, depart) function tuple' % key)
 translator = self._translators.get(key)
 if translator is not None:
 pass
 elif key == 'html':
 from sphinx.writers.html import HTMLTranslator as translator
 elif key == 'latex':
 from sphinx.writers.latex import LaTeXTranslator as translator
 elif key == 'text':
 from sphinx.writers.text import TextTranslator as translator
 elif key == 'man':
 from sphinx.writers.manpage import ManualPageTranslator \
 as translator
 elif key == 'texinfo':
 from sphinx.writers.texinfo import TexinfoTranslator \
 as translator
 else:
 # ignore invalid keys for compatibility
 continue
 setattr(translator, 'visit_'+node.__name__, visit)
 if depart:
 setattr(translator, 'depart_'+node.__name__, depart)

[docs] def add_enumerable_node(self, node, figtype, title_getter=None, **kwds):
 self.enumerable_nodes[node] = (figtype, title_getter)
 self.add_node(node, **kwds)

 def _directive_helper(self, obj, content=None, arguments=None, **options):
 if isinstance(obj, (types.FunctionType, types.MethodType)):
 obj.content = content
 obj.arguments = arguments or (0, 0, False)
 obj.options = options
 return convert_directive_function(obj)
 else:
 if content or arguments or options:
 raise ExtensionError('when adding directive classes, no '
 'additional arguments may be given')
 return obj

[docs] def add_directive(self, name, obj, content=None, arguments=None, **options):
 self.debug('[app] adding directive: %r',
 (name, obj, content, arguments, options))
 if name in directives._directives:
 self.warn('while setting up extension %s: directive %r is '
 'already registered, it will be overridden' %
 (self._setting_up_extension[-1], name),
 type='app', subtype='add_directive')
 directives.register_directive(
 name, self._directive_helper(obj, content, arguments, **options))

[docs] def add_role(self, name, role):
 self.debug('[app] adding role: %r', (name, role))
 if name in roles._roles:
 self.warn('while setting up extension %s: role %r is '
 'already registered, it will be overridden' %
 (self._setting_up_extension[-1], name),
 type='app', subtype='add_role')
 roles.register_local_role(name, role)

[docs] def add_generic_role(self, name, nodeclass):
 # don't use roles.register_generic_role because it uses
 # register_canonical_role
 self.debug('[app] adding generic role: %r', (name, nodeclass))
 if name in roles._roles:
 self.warn('while setting up extension %s: role %r is '
 'already registered, it will be overridden' %
 (self._setting_up_extension[-1], name),
 type='app', subtype='add_generic_role')
 role = roles.GenericRole(name, nodeclass)
 roles.register_local_role(name, role)

[docs] def add_domain(self, domain):
 self.debug('[app] adding domain: %r', domain)
 if domain.name in self.domains:
 raise ExtensionError('domain %s already registered' % domain.name)
 self.domains[domain.name] = domain

[docs] def override_domain(self, domain):
 self.debug('[app] overriding domain: %r', domain)
 if domain.name not in self.domains:
 raise ExtensionError('domain %s not yet registered' % domain.name)
 if not issubclass(domain, self.domains[domain.name]):
 raise ExtensionError('new domain not a subclass of registered %s '
 'domain' % domain.name)
 self.domains[domain.name] = domain

[docs] def add_directive_to_domain(self, domain, name, obj,
 content=None, arguments=None, **options):
 self.debug('[app] adding directive to domain: %r',
 (domain, name, obj, content, arguments, options))
 if domain not in self.domains:
 raise ExtensionError('domain %s not yet registered' % domain)
 self.domains[domain].directives[name] = \
 self._directive_helper(obj, content, arguments, **options)

[docs] def add_role_to_domain(self, domain, name, role):
 self.debug('[app] adding role to domain: %r', (domain, name, role))
 if domain not in self.domains:
 raise ExtensionError('domain %s not yet registered' % domain)
 self.domains[domain].roles[name] = role

[docs] def add_index_to_domain(self, domain, index):
 self.debug('[app] adding index to domain: %r', (domain, index))
 if domain not in self.domains:
 raise ExtensionError('domain %s not yet registered' % domain)
 self.domains[domain].indices.append(index)

[docs] def add_object_type(self, directivename, rolename, indextemplate='',
 parse_node=None, ref_nodeclass=None, objname='',
 doc_field_types=[]):
 self.debug('[app] adding object type: %r',
 (directivename, rolename, indextemplate, parse_node,
 ref_nodeclass, objname, doc_field_types))
 StandardDomain.object_types[directivename] = \
 ObjType(objname or directivename, rolename)
 # create a subclass of GenericObject as the new directive
 new_directive = type(directivename, (GenericObject, object),
 {'indextemplate': indextemplate,
 'parse_node': staticmethod(parse_node),
 'doc_field_types': doc_field_types})
 StandardDomain.directives[directivename] = new_directive
 # XXX support more options?
 StandardDomain.roles[rolename] = XRefRole(innernodeclass=ref_nodeclass)

 # backwards compatible alias
 add_description_unit = add_object_type

[docs] def add_crossref_type(self, directivename, rolename, indextemplate='',
 ref_nodeclass=None, objname=''):
 self.debug('[app] adding crossref type: %r',
 (directivename, rolename, indextemplate, ref_nodeclass,
 objname))
 StandardDomain.object_types[directivename] = \
 ObjType(objname or directivename, rolename)
 # create a subclass of Target as the new directive
 new_directive = type(directivename, (Target, object),
 {'indextemplate': indextemplate})
 StandardDomain.directives[directivename] = new_directive
 # XXX support more options?
 StandardDomain.roles[rolename] = XRefRole(innernodeclass=ref_nodeclass)

[docs] def add_transform(self, transform):
 self.debug('[app] adding transform: %r', transform)
 SphinxStandaloneReader.transforms.append(transform)

[docs] def add_javascript(self, filename):
 self.debug('[app] adding javascript: %r', filename)
 from sphinx.builders.html import StandaloneHTMLBuilder
 if '://' in filename:
 StandaloneHTMLBuilder.script_files.append(filename)
 else:
 StandaloneHTMLBuilder.script_files.append(
 posixpath.join('_static', filename))

[docs] def add_stylesheet(self, filename):
 self.debug('[app] adding stylesheet: %r', filename)
 from sphinx.builders.html import StandaloneHTMLBuilder
 if '://' in filename:
 StandaloneHTMLBuilder.css_files.append(filename)
 else:
 StandaloneHTMLBuilder.css_files.append(
 posixpath.join('_static', filename))

[docs] def add_latex_package(self, packagename, options=None):
 self.debug('[app] adding latex package: %r', packagename)
 from sphinx.builders.latex import LaTeXBuilder
 LaTeXBuilder.usepackages.append((packagename, options))

[docs] def add_lexer(self, alias, lexer):
 self.debug('[app] adding lexer: %r', (alias, lexer))
 from sphinx.highlighting import lexers
 if lexers is None:
 return
 lexers[alias] = lexer

[docs] def add_autodocumenter(self, cls):
 self.debug('[app] adding autodocumenter: %r', cls)
 from sphinx.ext import autodoc
 autodoc.add_documenter(cls)
 self.add_directive('auto' + cls.objtype, autodoc.AutoDirective)

[docs] def add_autodoc_attrgetter(self, type, getter):
 self.debug('[app] adding autodoc attrgetter: %r', (type, getter))
 from sphinx.ext import autodoc
 autodoc.AutoDirective._special_attrgetters[type] = getter

[docs] def add_search_language(self, cls):
 self.debug('[app] adding search language: %r', cls)
 from sphinx.search import languages, SearchLanguage
 assert issubclass(cls, SearchLanguage)
 languages[cls.lang] = cls

[docs] def add_source_parser(self, suffix, parser):
 self.debug('[app] adding search source_parser: %r, %r', (suffix, parser))
 if suffix in self._additional_source_parsers:
 self.warn('while setting up extension %s: source_parser for %r is '
 'already registered, it will be overridden' %
 (self._setting_up_extension[-1], suffix),
 type='app', subtype='add_source_parser')
 self._additional_source_parsers[suffix] = parser

[docs]class TemplateBridge(object):
 """
 This class defines the interface for a "template bridge", that is, a class
 that renders templates given a template name and a context.
 """

[docs] def init(self, builder, theme=None, dirs=None):
 """Called by the builder to initialize the template system.

 builder is the builder object; you'll probably want to look at the
 value of ``builder.config.templates_path``.

 theme is a :class:`sphinx.theming.Theme` object or None; in the latter
 case, *dirs* can be list of fixed directories to look for templates.
 """
 raise NotImplementedError('must be implemented in subclasses')

[docs] def newest_template_mtime(self):
 """Called by the builder to determine if output files are outdated
 because of template changes. Return the mtime of the newest template
 file that was changed. The default implementation returns ``0``.
 """
 return 0

[docs] def render(self, template, context):
 """Called by the builder to render a template given as a filename with
 a specified context (a Python dictionary).
 """
 raise NotImplementedError('must be implemented in subclasses')

[docs] def render_string(self, template, context):
 """Called by the builder to render a template given as a string with a
 specified context (a Python dictionary).
 """
 raise NotImplementedError('must be implemented in subclasses')

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 Source code for sphinx.builders

-*- coding: utf-8 -*-
"""
 sphinx.builders
    ~~~~~~~~~~~~~~~

    Builder superclass for all builders.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import os
from os import path

try:
    import multiprocessing
except ImportError:
    multiprocessing = None

from docutils import nodes

from sphinx.util import i18n, path_stabilize
from sphinx.util.osutil import SEP, relative_uri
from sphinx.util.i18n import find_catalog
from sphinx.util.console import bold, darkgreen
from sphinx.util.parallel import ParallelTasks, SerialTasks, make_chunks, \
    parallel_available

# side effect: registers roles and directives
from sphinx import roles       # noqa
from sphinx import directives  # noqa


[docs]class Builder(object):
    """
    Builds target formats from the reST sources.
    """

    # builder's name, for the -b command line options
    name = ''
    # builder's output format, or '' if no document output is produced
    format = ''
    # doctree versioning method
    versioning_method = 'none'
    versioning_compare = False
    # allow parallel write_doc() calls
    allow_parallel = False

    def __init__(self, app):
        self.env = app.env
        self.env.set_versioning_method(self.versioning_method,
                                       self.versioning_compare)
        self.srcdir = app.srcdir
        self.confdir = app.confdir
        self.outdir = app.outdir
        self.doctreedir = app.doctreedir
        if not path.isdir(self.doctreedir):
            os.makedirs(self.doctreedir)

        self.app = app
        self.warn = app.warn
        self.info = app.info
        self.config = app.config
        self.tags = app.tags
        self.tags.add(self.format)
        self.tags.add(self.name)
        self.tags.add("format_%s" % self.format)
        self.tags.add("builder_%s" % self.name)
        # compatibility aliases
        self.status_iterator = app.status_iterator
        self.old_status_iterator = app.old_status_iterator

        # images that need to be copied over (source -> dest)
        self.images = {}
        # basename of images directory
        self.imagedir = ""
        # relative path to image directory from current docname (used at writing docs)
        self.imgpath = ""

        # these get set later
        self.parallel_ok = False
        self.finish_tasks = None

        # load default translator class
        self.translator_class = app._translators.get(self.name)

        self.init()

    # helper methods
[docs]    def init(self):
        """Load necessary templates and perform initialization.  The default
        implementation does nothing.
        """
        pass


    def create_template_bridge(self):
        """Return the template bridge configured."""
        if self.config.template_bridge:
            self.templates = self.app.import_object(
                self.config.template_bridge, 'template_bridge setting')()
        else:
            from sphinx.jinja2glue import BuiltinTemplateLoader
            self.templates = BuiltinTemplateLoader()

[docs]    def get_target_uri(self, docname, typ=None):
        """Return the target URI for a document name.

        *typ* can be used to qualify the link characteristic for individual
        builders.
        """
        raise NotImplementedError


[docs]    def get_relative_uri(self, from_, to, typ=None):
        """Return a relative URI between two source filenames.

        May raise environment.NoUri if there's no way to return a sensible URI.
        """
        return relative_uri(self.get_target_uri(from_),
                            self.get_target_uri(to, typ))


[docs]    def get_outdated_docs(self):
        """Return an iterable of output files that are outdated, or a string
        describing what an update build will build.

        If the builder does not output individual files corresponding to
        source files, return a string here.  If it does, return an iterable
        of those files that need to be written.
        """
        raise NotImplementedError


    supported_image_types = []

    def post_process_images(self, doctree):
        """Pick the best candidate for all image URIs."""
        for node in doctree.traverse(nodes.image):
            if '?' in node['candidates']:
                # don't rewrite nonlocal image URIs
                continue
            if '*' not in node['candidates']:
                for imgtype in self.supported_image_types:
                    candidate = node['candidates'].get(imgtype, None)
                    if candidate:
                        break
                else:
                    self.warn(
                        'no matching candidate for image URI %r' % node['uri'],
                        '%s:%s' % (node.source, getattr(node, 'line', '')))
                    continue
                node['uri'] = candidate
            else:
                candidate = node['uri']
            if candidate not in self.env.images:
                # non-existing URI; let it alone
                continue
            self.images[candidate] = self.env.images[candidate][1]

    # compile po methods

    def compile_catalogs(self, catalogs, message):
        if not self.config.gettext_auto_build:
            return

        def cat2relpath(cat):
            return path.relpath(cat.mo_path, self.env.srcdir).replace(path.sep, SEP)

        self.info(bold('building [mo]: ') + message)
        for catalog in self.app.status_iterator(
                catalogs, 'writing output... ', darkgreen, len(catalogs),
                cat2relpath):
            catalog.write_mo(self.config.language)

    def compile_all_catalogs(self):
        catalogs = i18n.find_catalog_source_files(
            [path.join(self.srcdir, x) for x in self.config.locale_dirs],
            self.config.language,
            charset=self.config.source_encoding,
            gettext_compact=self.config.gettext_compact,
            force_all=True)
        message = 'all of %d po files' % len(catalogs)
        self.compile_catalogs(catalogs, message)

    def compile_specific_catalogs(self, specified_files):
        def to_domain(fpath):
            docname, _ = path.splitext(path_stabilize(fpath))
            dom = find_catalog(docname, self.config.gettext_compact)
            return dom

        specified_domains = set(map(to_domain, specified_files))
        catalogs = i18n.find_catalog_source_files(
            [path.join(self.srcdir, x) for x in self.config.locale_dirs],
            self.config.language,
            domains=list(specified_domains),
            charset=self.config.source_encoding,
            gettext_compact=self.config.gettext_compact)
        message = 'targets for %d po files that are specified' % len(catalogs)
        self.compile_catalogs(catalogs, message)

    def compile_update_catalogs(self):
        catalogs = i18n.find_catalog_source_files(
            [path.join(self.srcdir, x) for x in self.config.locale_dirs],
            self.config.language,
            charset=self.config.source_encoding,
            gettext_compact=self.config.gettext_compact)
        message = 'targets for %d po files that are out of date' % len(catalogs)
        self.compile_catalogs(catalogs, message)

    # build methods

[docs]    def build_all(self):
        """Build all source files."""
        self.build(None, summary='all source files', method='all')


[docs]    def build_specific(self, filenames):
        """Only rebuild as much as needed for changes in the *filenames*."""
        # bring the filenames to the canonical format, that is,
        # relative to the source directory and without source_suffix.
        dirlen = len(self.srcdir) + 1
        to_write = []
        suffixes = tuple(self.config.source_suffix)
        for filename in filenames:
            filename = path.normpath(path.abspath(filename))
            if not filename.startswith(self.srcdir):
                self.warn('file %r given on command line is not under the '
                          'source directory, ignoring' % filename)
                continue
            if not (path.isfile(filename) or
                    any(path.isfile(filename + suffix) for suffix in suffixes)):
                self.warn('file %r given on command line does not exist, '
                          'ignoring' % filename)
                continue
            filename = filename[dirlen:]
            for suffix in suffixes:
                if filename.endswith(suffix):
                    filename = filename[:-len(suffix)]
                    break
            filename = filename.replace(path.sep, SEP)
            to_write.append(filename)
        self.build(to_write, method='specific',
                   summary='%d source files given on command '
                   'line' % len(to_write))


[docs]    def build_update(self):
        """Only rebuild what was changed or added since last build."""
        to_build = self.get_outdated_docs()
        if isinstance(to_build, str):
            self.build(['__all__'], to_build)
        else:
            to_build = list(to_build)
            self.build(to_build,
                       summary='targets for %d source files that are '
                       'out of date' % len(to_build))


[docs]    def build(self, docnames, summary=None, method='update'):
        """Main build method.

        First updates the environment, and then calls :meth:`write`.
        """
        if summary:
            self.info(bold('building [%s]' % self.name) + ': ' + summary)

        # while reading, collect all warnings from docutils
        warnings = []
        self.env.set_warnfunc(lambda *args, **kwargs: warnings.append((args, kwargs)))
        updated_docnames = set(self.env.update(self.config, self.srcdir,
                                               self.doctreedir, self.app))
        self.env.set_warnfunc(self.warn)
        for warning, kwargs in warnings:
            self.warn(*warning, **kwargs)

        doccount = len(updated_docnames)
        self.info(bold('looking for now-outdated files... '), nonl=1)
        for docname in self.env.check_dependents(updated_docnames):
            updated_docnames.add(docname)
        outdated = len(updated_docnames) - doccount
        if outdated:
            self.info('%d found' % outdated)
        else:
            self.info('none found')

        if updated_docnames:
            # save the environment
            from sphinx.application import ENV_PICKLE_FILENAME
            self.info(bold('pickling environment... '), nonl=True)
            self.env.topickle(path.join(self.doctreedir, ENV_PICKLE_FILENAME))
            self.info('done')

            # global actions
            self.info(bold('checking consistency... '), nonl=True)
            self.env.check_consistency()
            self.info('done')
        else:
            if method == 'update' and not docnames:
                self.info(bold('no targets are out of date.'))
                return

        # filter "docnames" (list of outdated files) by the updated
        # found_docs of the environment; this will remove docs that
        # have since been removed
        if docnames and docnames != ['__all__']:
            docnames = set(docnames) & self.env.found_docs

        # determine if we can write in parallel
        self.parallel_ok = False
        if parallel_available and self.app.parallel > 1 and self.allow_parallel:
            self.parallel_ok = True
            for extname, md in self.app._extension_metadata.items():
                par_ok = md.get('parallel_write_safe', True)
                if not par_ok:
                    self.app.warn('the %s extension is not safe for parallel '
                                  'writing, doing serial write' % extname)
                    self.parallel_ok = False
                    break

        #  create a task executor to use for misc. "finish-up" tasks
        # if self.parallel_ok:
        #     self.finish_tasks = ParallelTasks(self.app.parallel)
        # else:
        # for now, just execute them serially
        self.finish_tasks = SerialTasks()

        # write all "normal" documents (or everything for some builders)
        self.write(docnames, list(updated_docnames), method)

        # finish (write static files etc.)
        self.finish()

        # wait for all tasks
        self.finish_tasks.join()


    def write(self, build_docnames, updated_docnames, method='update'):
        if build_docnames is None or build_docnames == ['__all__']:
            # build_all
            build_docnames = self.env.found_docs
        if method == 'update':
            # build updated ones as well
            docnames = set(build_docnames) | set(updated_docnames)
        else:
            docnames = set(build_docnames)
        self.app.debug('docnames to write: %s', ', '.join(sorted(docnames)))

        # add all toctree-containing files that may have changed
        for docname in list(docnames):
            for tocdocname in self.env.files_to_rebuild.get(docname, []):
                if tocdocname in self.env.found_docs:
                    docnames.add(tocdocname)
        docnames.add(self.config.master_doc)

        self.info(bold('preparing documents... '), nonl=True)
        self.prepare_writing(docnames)
        self.info('done')

        warnings = []
        self.env.set_warnfunc(lambda *args, **kwargs: warnings.append((args, kwargs)))
        if self.parallel_ok:
            # number of subprocesses is parallel-1 because the main process
            # is busy loading doctrees and doing write_doc_serialized()
            self._write_parallel(sorted(docnames), warnings,
                                 nproc=self.app.parallel - 1)
        else:
            self._write_serial(sorted(docnames), warnings)
        self.env.set_warnfunc(self.warn)

    def _write_serial(self, docnames, warnings):
        for docname in self.app.status_iterator(
                docnames, 'writing output... ', darkgreen, len(docnames)):
            doctree = self.env.get_and_resolve_doctree(docname, self)
            self.write_doc_serialized(docname, doctree)
            self.write_doc(docname, doctree)
        for warning, kwargs in warnings:
            self.warn(*warning, **kwargs)

    def _write_parallel(self, docnames, warnings, nproc):
        def write_process(docs):
            local_warnings = []

            def warnfunc(*args, **kwargs):
                local_warnings.append((args, kwargs))
            self.env.set_warnfunc(warnfunc)
            for docname, doctree in docs:
                self.write_doc(docname, doctree)
            return local_warnings

        def add_warnings(docs, wlist):
            warnings.extend(wlist)

        # warm up caches/compile templates using the first document
        firstname, docnames = docnames[0], docnames[1:]
        doctree = self.env.get_and_resolve_doctree(firstname, self)
        self.write_doc_serialized(firstname, doctree)
        self.write_doc(firstname, doctree)

        tasks = ParallelTasks(nproc)
        chunks = make_chunks(docnames, nproc)

        for chunk in self.app.status_iterator(
                chunks, 'writing output... ', darkgreen, len(chunks)):
            arg = []
            for i, docname in enumerate(chunk):
                doctree = self.env.get_and_resolve_doctree(docname, self)
                self.write_doc_serialized(docname, doctree)
                arg.append((docname, doctree))
            tasks.add_task(write_process, arg, add_warnings)

        # make sure all threads have finished
        self.info(bold('waiting for workers...'))
        tasks.join()

        for warning, kwargs in warnings:
            self.warn(*warning, **kwargs)

[docs]    def prepare_writing(self, docnames):
        """A place where you can add logic before :meth:`write_doc` is run"""
        raise NotImplementedError


[docs]    def write_doc(self, docname, doctree):
        """Where you actually write something to the filesystem."""
        raise NotImplementedError


    def write_doc_serialized(self, docname, doctree):
        """Handle parts of write_doc that must be called in the main process
        if parallel build is active.
        """
        pass

[docs]    def finish(self):
        """Finish the building process.

        The default implementation does nothing.
        """
        pass


    def cleanup(self):
        """Cleanup any resources.

        The default implementation does nothing.
        """
        pass

    def get_builder_config(self, option, default):
        """Return a builder specific option.

        This method allows customization of common builder settings by
        inserting the name of the current builder in the option key.
        If the key does not exist, use default as builder name.
        """
        # At the moment, only XXX_use_index is looked up this way.
        # Every new builder variant must be registered in Config.config_values.
        try:
            optname = '%s_%s' % (self.name, option)
            return getattr(self.config, optname)
        except AttributeError:
            optname = '%s_%s' % (default, option)
            return getattr(self.config, optname)


BUILTIN_BUILDERS = {
    'dummy':      ('dummy', 'DummyBuilder'),
    'html':       ('html', 'StandaloneHTMLBuilder'),
    'dirhtml':    ('html', 'DirectoryHTMLBuilder'),
    'singlehtml': ('html', 'SingleFileHTMLBuilder'),
    'pickle':     ('html', 'PickleHTMLBuilder'),
    'json':       ('html', 'JSONHTMLBuilder'),
    'web':        ('html', 'PickleHTMLBuilder'),
    'htmlhelp':   ('htmlhelp', 'HTMLHelpBuilder'),
    'devhelp':    ('devhelp', 'DevhelpBuilder'),
    'qthelp':     ('qthelp', 'QtHelpBuilder'),
    'applehelp':  ('applehelp', 'AppleHelpBuilder'),
    'epub':       ('epub', 'EpubBuilder'),
    'epub3':      ('epub3', 'Epub3Builder'),
    'latex':      ('latex', 'LaTeXBuilder'),
    'text':       ('text', 'TextBuilder'),
    'man':        ('manpage', 'ManualPageBuilder'),
    'texinfo':    ('texinfo', 'TexinfoBuilder'),
    'changes':    ('changes', 'ChangesBuilder'),
    'linkcheck':  ('linkcheck', 'CheckExternalLinksBuilder'),
    'websupport': ('websupport', 'WebSupportBuilder'),
    'gettext':    ('gettext', 'MessageCatalogBuilder'),
    'xml':        ('xml', 'XMLBuilder'),
    'pseudoxml':  ('xml', 'PseudoXMLBuilder'),
}




          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.builders »
 
      

    


    
      
          
            
  Source code for sphinx.builders.applehelp

# -*- coding: utf-8 -*-
"""
    sphinx.builders.applehelp
    ~~~~~~~~~~~~~~~~~~~~~~~~~

 Build Apple help books.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""
from __future__ import print_function

import codecs
import pipes

from os import path

from sphinx.builders.html import StandaloneHTMLBuilder
from sphinx.util import copy_static_entry
from sphinx.util.osutil import copyfile, ensuredir
from sphinx.util.console import bold
from sphinx.util.pycompat import htmlescape
from sphinx.util.matching import compile_matchers
from sphinx.errors import SphinxError

import plistlib
import subprocess

Use plistlib.dump in 3.4 and above
try:
 write_plist = plistlib.dump
except AttributeError:
 write_plist = plistlib.writePlist

False access page (used because helpd expects strict XHTML)
access_page_template = '''\
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"\
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>%(title)s</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta name="robots" content="noindex" />
 <meta http-equiv="refresh" content="0;url=%(toc)s" />
 </head>
 <body>
 </body>
</html>
'''

class AppleHelpIndexerFailed(SphinxError):
 category = 'Help indexer failed'

class AppleHelpCodeSigningFailed(SphinxError):
 category = 'Code signing failed'

[docs]class AppleHelpBuilder(StandaloneHTMLBuilder):
 """
 Builder that outputs an Apple help book. Requires Mac OS X as it relies
 on the ``hiutil`` command line tool.
 """
 name = 'applehelp'

 # don't copy the reST source
 copysource = False
 supported_image_types = ['image/png', 'image/gif', 'image/jpeg',
 'image/tiff', 'image/jp2', 'image/svg+xml']

 # don't add links
 add_permalinks = False

 # this is an embedded HTML format
 embedded = True

 # don't generate the search index or include the search page
 search = False

 def init(self):
 super(AppleHelpBuilder, self).init()
 # the output files for HTML help must be .html only
 self.out_suffix = '.html'

 if self.config.applehelp_bundle_id is None:
 raise SphinxError('You must set applehelp_bundle_id before '
 'building Apple Help output')

 self.bundle_path = path.join(self.outdir,
 self.config.applehelp_bundle_name +
 '.help')
 self.outdir = path.join(self.bundle_path,
 'Contents',
 'Resources',
 self.config.applehelp_locale + '.lproj')

 def handle_finish(self):
 super(AppleHelpBuilder, self).handle_finish()

 self.finish_tasks.add_task(self.copy_localized_files)
 self.finish_tasks.add_task(self.build_helpbook)

 def copy_localized_files(self):
 source_dir = path.join(self.confdir,
 self.config.applehelp_locale + '.lproj')
 target_dir = self.outdir

 if path.isdir(source_dir):
 self.info(bold('copying localized files... '), nonl=True)

 ctx = self.globalcontext.copy()
 matchers = compile_matchers(self.config.exclude_patterns)
 copy_static_entry(source_dir, target_dir, self, ctx,
 exclude_matchers=matchers)

 self.info('done')

 def build_helpbook(self):
 contents_dir = path.join(self.bundle_path, 'Contents')
 resources_dir = path.join(contents_dir, 'Resources')
 language_dir = path.join(resources_dir,
 self.config.applehelp_locale + '.lproj')

 for d in [contents_dir, resources_dir, language_dir]:
 ensuredir(d)

 # Construct the Info.plist file
 toc = self.config.master_doc + self.out_suffix

 info_plist = {
 'CFBundleDevelopmentRegion': self.config.applehelp_dev_region,
 'CFBundleIdentifier': self.config.applehelp_bundle_id,
 'CFBundleInfoDictionaryVersion': '6.0',
 'CFBundlePackageType': 'BNDL',
 'CFBundleShortVersionString': self.config.release,
 'CFBundleSignature': 'hbwr',
 'CFBundleVersion': self.config.applehelp_bundle_version,
 'HPDBookAccessPath': '_access.html',
 'HPDBookIndexPath': 'search.helpindex',
 'HPDBookTitle': self.config.applehelp_title,
 'HPDBookType': '3',
 'HPDBookUsesExternalViewer': False,
 }

 if self.config.applehelp_icon is not None:
 info_plist['HPDBookIconPath'] \
 = path.basename(self.config.applehelp_icon)

 if self.config.applehelp_kb_url is not None:
 info_plist['HPDBookKBProduct'] = self.config.applehelp_kb_product
 info_plist['HPDBookKBURL'] = self.config.applehelp_kb_url

 if self.config.applehelp_remote_url is not None:
 info_plist['HPDBookRemoteURL'] = self.config.applehelp_remote_url

 self.info(bold('writing Info.plist... '), nonl=True)
 with open(path.join(contents_dir, 'Info.plist'), 'wb') as f:
 write_plist(info_plist, f)
 self.info('done')

 # Copy the icon, if one is supplied
 if self.config.applehelp_icon:
 self.info(bold('copying icon... '), nonl=True)

 try:
 copyfile(path.join(self.srcdir, self.config.applehelp_icon),
 path.join(resources_dir, info_plist['HPDBookIconPath']))

 self.info('done')
 except Exception as err:
 self.warn('cannot copy icon file %r: %s' %
 (path.join(self.srcdir, self.config.applehelp_icon),
 err))
 del info_plist['HPDBookIconPath']

 # Build the access page
 self.info(bold('building access page...'), nonl=True)
 f = codecs.open(path.join(language_dir, '_access.html'), 'w')
 try:
 f.write(access_page_template % {
 'toc': htmlescape(toc, quote=True),
 'title': htmlescape(self.config.applehelp_title)
 })
 finally:
 f.close()
 self.info('done')

 # Generate the help index
 self.info(bold('generating help index... '), nonl=True)

 args = [
 self.config.applehelp_indexer_path,
 '-Cf',
 path.join(language_dir, 'search.helpindex'),
 language_dir
]

 if self.config.applehelp_index_anchors is not None:
 args.append('-a')

 if self.config.applehelp_min_term_length is not None:
 args += ['-m', '%s' % self.config.applehelp_min_term_length]

 if self.config.applehelp_stopwords is not None:
 args += ['-s', self.config.applehelp_stopwords]

 if self.config.applehelp_locale is not None:
 args += ['-l', self.config.applehelp_locale]

 if self.config.applehelp_disable_external_tools:
 self.info('skipping')

 self.warn('you will need to index this help book with:\n %s'
 % (' '.join([pipes.quote(arg) for arg in args])))
 else:
 p = subprocess.Popen(args,
 stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT)

 output = p.communicate()[0]

 if p.returncode != 0:
 raise AppleHelpIndexerFailed(output)
 else:
 self.info('done')

 # If we've been asked to, sign the bundle
 if self.config.applehelp_codesign_identity:
 self.info(bold('signing help book... '), nonl=True)

 args = [
 self.config.applehelp_codesign_path,
 '-s', self.config.applehelp_codesign_identity,
 '-f'
]

 args += self.config.applehelp_codesign_flags

 args.append(self.bundle_path)

 if self.config.applehelp_disable_external_tools:
 self.info('skipping')

 self.warn('you will need to sign this help book with:\n %s'
 % (' '.join([pipes.quote(arg) for arg in args])))
 else:
 p = subprocess.Popen(args,
 stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT)

 output = p.communicate()[0]

 if p.returncode != 0:
 raise AppleHelpCodeSigningFailed(output)
 else:
 self.info('done')

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.builders »

 Source code for sphinx.builders.changes

-*- coding: utf-8 -*-
"""
 sphinx.builders.changes
    ~~~~~~~~~~~~~~~~~~~~~~~

    Changelog builder.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import codecs
from os import path

from six import iteritems

from sphinx import package_dir
from sphinx.util import copy_static_entry
from sphinx.locale import _
from sphinx.theming import Theme
from sphinx.builders import Builder
from sphinx.util.osutil import ensuredir, os_path
from sphinx.util.console import bold
from sphinx.util.pycompat import htmlescape


[docs]class ChangesBuilder(Builder):
    """
    Write a summary with all versionadded/changed directives.
    """
    name = 'changes'

    def init(self):
        self.create_template_bridge()
        Theme.init_themes(self.confdir, self.config.html_theme_path,
                          warn=self.warn)
        self.theme = Theme('default')
        self.templates.init(self, self.theme)

    def get_outdated_docs(self):
        return self.outdir

    typemap = {
        'versionadded': 'added',
        'versionchanged': 'changed',
        'deprecated': 'deprecated',
    }

    def write(self, *ignored):
        version = self.config.version
        libchanges = {}
        apichanges = []
        otherchanges = {}
        if version not in self.env.versionchanges:
            self.info(bold('no changes in version %s.' % version))
            return
        self.info(bold('writing summary file...'))
        for type, docname, lineno, module, descname, content in \
                self.env.versionchanges[version]:
            if isinstance(descname, tuple):
                descname = descname[0]
            ttext = self.typemap[type]
            context = content.replace('\n', ' ')
            if descname and docname.startswith('c-api'):
                if not descname:
                    continue
                if context:
                    entry = '<b>%s</b>: <i>%s:</i> %s' % (descname, ttext,
                                                          context)
                else:
                    entry = '<b>%s</b>: <i>%s</i>.' % (descname, ttext)
                apichanges.append((entry, docname, lineno))
            elif descname or module:
                if not module:
                    module = _('Builtins')
                if not descname:
                    descname = _('Module level')
                if context:
                    entry = '<b>%s</b>: <i>%s:</i> %s' % (descname, ttext,
                                                          context)
                else:
                    entry = '<b>%s</b>: <i>%s</i>.' % (descname, ttext)
                libchanges.setdefault(module, []).append((entry, docname,
                                                          lineno))
            else:
                if not context:
                    continue
                entry = '<i>%s:</i> %s' % (ttext.capitalize(), context)
                title = self.env.titles[docname].astext()
                otherchanges.setdefault((docname, title), []).append(
                    (entry, docname, lineno))

        ctx = {
            'project': self.config.project,
            'version': version,
            'docstitle': self.config.html_title,
            'shorttitle': self.config.html_short_title,
            'libchanges': sorted(iteritems(libchanges)),
            'apichanges': sorted(apichanges),
            'otherchanges': sorted(iteritems(otherchanges)),
            'show_copyright': self.config.html_show_copyright,
            'show_sphinx': self.config.html_show_sphinx,
        }
        f = codecs.open(path.join(self.outdir, 'index.html'), 'w', 'utf8')
        try:
            f.write(self.templates.render('changes/frameset.html', ctx))
        finally:
            f.close()
        f = codecs.open(path.join(self.outdir, 'changes.html'), 'w', 'utf8')
        try:
            f.write(self.templates.render('changes/versionchanges.html', ctx))
        finally:
            f.close()

        hltext = ['.. versionadded:: %s' % version,
                  '.. versionchanged:: %s' % version,
                  '.. deprecated:: %s' % version]

        def hl(no, line):
            line = '<a name="L%s"> </a>' % no + htmlescape(line)
            for x in hltext:
                if x in line:
                    line = '<span class="hl">%s</span>' % line
                    break
            return line

        self.info(bold('copying source files...'))
        for docname in self.env.all_docs:
            f = codecs.open(self.env.doc2path(docname), 'r',
                            self.env.config.source_encoding)
            try:
                lines = f.readlines()
            except UnicodeDecodeError:
                self.warn('could not read %r for changelog creation' % docname)
                continue
            finally:
                f.close()
            targetfn = path.join(self.outdir, 'rst', os_path(docname)) + '.html'
            ensuredir(path.dirname(targetfn))
            f = codecs.open(targetfn, 'w', 'utf-8')
            try:
                text = ''.join(hl(i+1, line) for (i, line) in enumerate(lines))
                ctx = {
                    'filename': self.env.doc2path(docname, None),
                    'text': text
                }
                f.write(self.templates.render('changes/rstsource.html', ctx))
            finally:
                f.close()
        themectx = dict(('theme_' + key, val) for (key, val) in
                        iteritems(self.theme.get_options({})))
        copy_static_entry(path.join(package_dir, 'themes', 'default',
                                    'static', 'default.css_t'),
                          self.outdir, self, themectx)
        copy_static_entry(path.join(package_dir, 'themes', 'basic',
                                    'static', 'basic.css'),
                          self.outdir, self)

    def hl(self, text, version):
        text = htmlescape(text)
        for directive in ['versionchanged', 'versionadded', 'deprecated']:
            text = text.replace('.. %s:: %s' % (directive, version),
                                '<b>.. %s:: %s</b>' % (directive, version))
        return text

    def finish(self):
        pass





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.builders »
 
      

    


    
      
          
            
  Source code for sphinx.builders.devhelp

# -*- coding: utf-8 -*-
"""
    sphinx.builders.devhelp
    ~~~~~~~~~~~~~~~~~~~~~~~

 Build HTML documentation and Devhelp_ support files.

 .. _Devhelp: http://live.gnome.org/devhelp

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""
from __future__ import absolute_import

import re
from os import path

from docutils import nodes

from sphinx import addnodes
from sphinx.builders.html import StandaloneHTMLBuilder

try:
 import xml.etree.ElementTree as etree
except ImportError:
 try:
 import lxml.etree as etree
 except ImportError:
 try:
 import elementtree.ElementTree as etree
 except ImportError:
 import cElementTree as etree

try:
 import gzip

 def comp_open(filename, mode='rb'):
 return gzip.open(filename + '.gz', mode)
except ImportError:
 def comp_open(filename, mode='rb'):
 return open(filename, mode)

[docs]class DevhelpBuilder(StandaloneHTMLBuilder):
 """
 Builder that also outputs GNOME Devhelp file.
 """
 name = 'devhelp'

 # don't copy the reST source
 copysource = False
 supported_image_types = ['image/png', 'image/gif', 'image/jpeg']

 # don't add links
 add_permalinks = False
 # don't add sidebar etc.
 embedded = True

 def init(self):
 StandaloneHTMLBuilder.init(self)
 self.out_suffix = '.html'

 def handle_finish(self):
 self.build_devhelp(self.outdir, self.config.devhelp_basename)

 def build_devhelp(self, outdir, outname):
 self.info('dumping devhelp index...')

 # Basic info
 root = etree.Element('book',
 title=self.config.html_title,
 name=self.config.project,
 link="index.html",
 version=self.config.version)
 tree = etree.ElementTree(root)

 # TOC
 chapters = etree.SubElement(root, 'chapters')

 tocdoc = self.env.get_and_resolve_doctree(
 self.config.master_doc, self, prune_toctrees=False)

 def write_toc(node, parent):
 if isinstance(node, addnodes.compact_paragraph) or \
 isinstance(node, nodes.bullet_list):
 for subnode in node:
 write_toc(subnode, parent)
 elif isinstance(node, nodes.list_item):
 item = etree.SubElement(parent, 'sub')
 for subnode in node:
 write_toc(subnode, item)
 elif isinstance(node, nodes.reference):
 parent.attrib['link'] = node['refuri']
 parent.attrib['name'] = node.astext()

 def istoctree(node):
 return isinstance(node, addnodes.compact_paragraph) and \
 'toctree' in node

 for node in tocdoc.traverse(istoctree):
 write_toc(node, chapters)

 # Index
 functions = etree.SubElement(root, 'functions')
 index = self.env.create_index(self)

 def write_index(title, refs, subitems):
 if len(refs) == 0:
 pass
 elif len(refs) == 1:
 etree.SubElement(functions, 'function',
 name=title, link=refs[0][1])
 else:
 for i, ref in enumerate(refs):
 etree.SubElement(functions, 'function',
 name="[%d] %s" % (i, title),
 link=ref[1])

 if subitems:
 parent_title = re.sub(r'\s*\(.*\)\s*$', '', title)
 for subitem in subitems:
 write_index("%s %s" % (parent_title, subitem[0]),
 subitem[1], [])

 for (key, group) in index:
 for title, (refs, subitems) in group:
 write_index(title, refs, subitems)

 # Dump the XML file
 f = comp_open(path.join(outdir, outname + '.devhelp'), 'w')
 try:
 tree.write(f, 'utf-8')
 finally:
 f.close()

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.builders »

 Source code for sphinx.builders.dummy

-*- coding: utf-8 -*-
"""
 sphinx.builders.dummy
    ~~~~~~~~~~~~~~~~~~~~~

    Do syntax checks, but no writing.

    :copyright: Copyright 2007-2015 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""


from sphinx.builders import Builder


[docs]class DummyBuilder(Builder):
    name = 'dummy'
    allow_parallel = True

    def init(self):
        pass

    def get_outdated_docs(self):
        return self.env.found_docs

    def get_target_uri(self, docname, typ=None):
        return ''

    def prepare_writing(self, docnames):
        pass

    def write_doc(self, docname, doctree):
        pass

    def finish(self):
        pass





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.builders »
 
      

    


    
      
          
            
  Source code for sphinx.builders.epub

# -*- coding: utf-8 -*-
"""
    sphinx.builders.epub
    ~~~~~~~~~~~~~~~~~~~~

 Build epub files.
 Originally derived from qthelp.py.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import os
import re
import codecs
import zipfile
from os import path

try:
 from PIL import Image
except ImportError:
 try:
 import Image
 except ImportError:
 Image = None

from docutils import nodes

from sphinx import addnodes
from sphinx.builders.html import StandaloneHTMLBuilder
from sphinx.util.i18n import format_date
from sphinx.util.osutil import ensuredir, copyfile, EEXIST
from sphinx.util.smartypants import sphinx_smarty_pants as ssp
from sphinx.util.console import brown

(Fragment) templates from which the metainfo files content.opf, toc.ncx,
mimetype, and META-INF/container.xml are created.
This template section also defines strings that are embedded in the html
output but that may be customized by (re-)setting module attributes,
e.g. from conf.py.

MIMETYPE_TEMPLATE = 'application/epub+zip' # no EOL!

CONTAINER_TEMPLATE = u'''\
<?xml version="1.0" encoding="UTF-8"?>
<container version="1.0"
 xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
 <rootfiles>
 <rootfile full-path="content.opf"
 media-type="application/oebps-package+xml"/>
 </rootfiles>
</container>
'''

TOC_TEMPLATE = u'''\
<?xml version="1.0"?>
<ncx version="2005-1" xmlns="http://www.daisy.org/z3986/2005/ncx/">
 <head>
 <meta name="dtb:uid" content="%(uid)s"/>
 <meta name="dtb:depth" content="%(level)d"/>
 <meta name="dtb:totalPageCount" content="0"/>
 <meta name="dtb:maxPageNumber" content="0"/>
 </head>
 <docTitle>
 <text>%(title)s</text>
 </docTitle>
 <navMap>
%(navpoints)s
 </navMap>
</ncx>
'''

NAVPOINT_TEMPLATE = u'''\
%(indent)s <navPoint id="%(navpoint)s" playOrder="%(playorder)d">
%(indent)s <navLabel>
%(indent)s <text>%(text)s</text>
%(indent)s </navLabel>
%(indent)s <content src="%(refuri)s" />
%(indent)s </navPoint>'''

NAVPOINT_INDENT = ' '
NODE_NAVPOINT_TEMPLATE = 'navPoint%d'

CONTENT_TEMPLATE = u'''\
<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://www.idpf.org/2007/opf" version="2.0"
 unique-identifier="%(uid)s">
 <metadata xmlns:opf="http://www.idpf.org/2007/opf"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:language>%(lang)s</dc:language>
 <dc:title>%(title)s</dc:title>
 <dc:creator opf:role="aut">%(author)s</dc:creator>
 <dc:publisher>%(publisher)s</dc:publisher>
 <dc:rights>%(copyright)s</dc:rights>
 <dc:identifier id="%(uid)s" opf:scheme="%(scheme)s">%(id)s</dc:identifier>
 <dc:date>%(date)s</dc:date>
 </metadata>
 <manifest>
 <item id="ncx" href="toc.ncx" media-type="application/x-dtbncx+xml" />
%(files)s
 </manifest>
 <spine toc="ncx">
%(spine)s
 </spine>
 <guide>
%(guide)s
 </guide>
</package>
'''

COVER_TEMPLATE = u'''\
 <meta name="cover" content="%(cover)s"/>
'''

COVERPAGE_NAME = u'epub-cover.html'

FILE_TEMPLATE = u'''\
 <item id="%(id)s"
 href="%(href)s"
 media-type="%(media_type)s" />'''

SPINE_TEMPLATE = u'''\
 <itemref idref="%(idref)s" />'''

GUIDE_TEMPLATE = u'''\
 <reference type="%(type)s" title="%(title)s" href="%(uri)s" />'''

TOCTREE_TEMPLATE = u'toctree-l%d'

LINK_TARGET_TEMPLATE = u' [%(uri)s]'

FOOTNOTE_LABEL_TEMPLATE = u'#%d'

FOOTNOTES_RUBRIC_NAME = u'Footnotes'

CSS_LINK_TARGET_CLASS = u'link-target'

XXX These strings should be localized according to epub_language
GUIDE_TITLES = {
 'toc': u'Table of Contents',
 'cover': u'Cover'
}

MEDIA_TYPES = {
 '.html': 'application/xhtml+xml',
 '.css': 'text/css',
 '.png': 'image/png',
 '.gif': 'image/gif',
 '.svg': 'image/svg+xml',
 '.jpg': 'image/jpeg',
 '.jpeg': 'image/jpeg',
 '.otf': 'application/x-font-otf',
 '.ttf': 'application/x-font-ttf',
}

VECTOR_GRAPHICS_EXTENSIONS = ('.svg',)

Regular expression to match colons only in local fragment identifiers.
If the URI contains a colon before the #,
it is an external link that should not change.
REFURI_RE = re.compile("([^#:]*#)(.*)")

The epub publisher

[docs]class EpubBuilder(StandaloneHTMLBuilder):
 """
 Builder that outputs epub files.

 It creates the metainfo files container.opf, toc.ncx, mimetype, and
 META-INF/container.xml. Afterwards, all necessary files are zipped to an
 epub file.
 """
 name = 'epub'

 # don't copy the reST source
 copysource = False
 supported_image_types = ['image/svg+xml', 'image/png', 'image/gif',
 'image/jpeg']

 # don't add links
 add_permalinks = False
 # don't add sidebar etc.
 embedded = True

 mimetype_template = MIMETYPE_TEMPLATE
 container_template = CONTAINER_TEMPLATE
 toc_template = TOC_TEMPLATE
 navpoint_template = NAVPOINT_TEMPLATE
 navpoint_indent = NAVPOINT_INDENT
 node_navpoint_template = NODE_NAVPOINT_TEMPLATE
 content_template = CONTENT_TEMPLATE
 cover_template = COVER_TEMPLATE
 coverpage_name = COVERPAGE_NAME
 file_template = FILE_TEMPLATE
 spine_template = SPINE_TEMPLATE
 guide_template = GUIDE_TEMPLATE
 toctree_template = TOCTREE_TEMPLATE
 link_target_template = LINK_TARGET_TEMPLATE
 css_link_target_class = CSS_LINK_TARGET_CLASS
 guide_titles = GUIDE_TITLES
 media_types = MEDIA_TYPES
 refuri_re = REFURI_RE

 def init(self):
 StandaloneHTMLBuilder.init(self)
 # the output files for epub must be .html only
 self.out_suffix = '.html'
 self.playorder = 0
 self.tocid = 0

 def get_theme_config(self):
 return self.config.epub_theme, self.config.epub_theme_options

 # generic support functions
 def make_id(self, name, id_cache={}):
 # id_cache is intentionally mutable
 """Return a unique id for name."""
 id = id_cache.get(name)
 if not id:
 id = 'epub-%d' % self.env.new_serialno('epub')
 id_cache[name] = id
 return id

 def esc(self, name):
 """Replace all characters not allowed in text an attribute values."""
 # Like cgi.escape, but also replace apostrophe
 name = name.replace('&', '&')
 name = name.replace('<', '<')
 name = name.replace('>', '>')
 name = name.replace('"', '"')
 name = name.replace('\'', ''')
 return name

 def get_refnodes(self, doctree, result):
 """Collect section titles, their depth in the toc and the refuri."""
 # XXX: is there a better way than checking the attribute
 # toctree-l[1-8] on the parent node?
 if isinstance(doctree, nodes.reference) and 'refuri' in doctree:
 refuri = doctree['refuri']
 if refuri.startswith('http://') or refuri.startswith('https://') \
 or refuri.startswith('irc:') or refuri.startswith('mailto:'):
 return result
 classes = doctree.parent.attributes['classes']
 for level in range(8, 0, -1): # or range(1, 8)?
 if (self.toctree_template % level) in classes:
 result.append({
 'level': level,
 'refuri': self.esc(refuri),
 'text': ssp(self.esc(doctree.astext()))
 })
 break
 else:
 for elem in doctree.children:
 result = self.get_refnodes(elem, result)
 return result

 def get_toc(self):
 """Get the total table of contents, containing the master_doc
 and pre and post files not managed by sphinx.
 """
 doctree = self.env.get_and_resolve_doctree(self.config.master_doc,
 self, prune_toctrees=False,
 includehidden=True)
 self.refnodes = self.get_refnodes(doctree, [])
 master_dir = path.dirname(self.config.master_doc)
 if master_dir:
 master_dir += '/' # XXX or os.sep?
 for item in self.refnodes:
 item['refuri'] = master_dir + item['refuri']
 self.toc_add_files(self.refnodes)

 def toc_add_files(self, refnodes):
 """Add the master_doc, pre and post files to a list of refnodes.
 """
 refnodes.insert(0, {
 'level': 1,
 'refuri': self.esc(self.config.master_doc + '.html'),
 'text': ssp(self.esc(
 self.env.titles[self.config.master_doc].astext()))
 })
 for file, text in reversed(self.config.epub_pre_files):
 refnodes.insert(0, {
 'level': 1,
 'refuri': self.esc(file),
 'text': ssp(self.esc(text))
 })
 for file, text in self.config.epub_post_files:
 refnodes.append({
 'level': 1,
 'refuri': self.esc(file),
 'text': ssp(self.esc(text))
 })

 def fix_fragment(self, prefix, fragment):
 """Return a href/id attribute with colons replaced by hyphens."""
 return prefix + fragment.replace(':', '-')

 def fix_ids(self, tree):
 """Replace colons with hyphens in href and id attributes.

 Some readers crash because they interpret the part as a
 transport protocol specification.
 """
 for node in tree.traverse(nodes.reference):
 if 'refuri' in node:
 m = self.refuri_re.match(node['refuri'])
 if m:
 node['refuri'] = self.fix_fragment(m.group(1), m.group(2))
 if 'refid' in node:
 node['refid'] = self.fix_fragment('', node['refid'])
 for node in tree.traverse(addnodes.desc_signature):
 ids = node.attributes['ids']
 newids = []
 for id in ids:
 newids.append(self.fix_fragment('', id))
 node.attributes['ids'] = newids

 def add_visible_links(self, tree, show_urls='inline'):
 """Add visible link targets for external links"""

 def make_footnote_ref(doc, label):
 """Create a footnote_reference node with children"""
 footnote_ref = nodes.footnote_reference('[#]_')
 footnote_ref.append(nodes.Text(label))
 doc.note_autofootnote_ref(footnote_ref)
 return footnote_ref

 def make_footnote(doc, label, uri):
 """Create a footnote node with children"""
 footnote = nodes.footnote(uri)
 para = nodes.paragraph()
 para.append(nodes.Text(uri))
 footnote.append(para)
 footnote.insert(0, nodes.label('', label))
 doc.note_autofootnote(footnote)
 return footnote

 def footnote_spot(tree):
 """Find or create a spot to place footnotes.

 The function returns the tuple (parent, index)."""
 # The code uses the following heuristic:
 # a) place them after the last existing footnote
 # b) place them after an (empty) Footnotes rubric
 # c) create an empty Footnotes rubric at the end of the document
 fns = tree.traverse(nodes.footnote)
 if fns:
 fn = fns[-1]
 return fn.parent, fn.parent.index(fn) + 1
 for node in tree.traverse(nodes.rubric):
 if len(node.children) == 1 and \
 node.children[0].astext() == FOOTNOTES_RUBRIC_NAME:
 return node.parent, node.parent.index(node) + 1
 doc = tree.traverse(nodes.document)[0]
 rub = nodes.rubric()
 rub.append(nodes.Text(FOOTNOTES_RUBRIC_NAME))
 doc.append(rub)
 return doc, doc.index(rub) + 1

 if show_urls == 'no':
 return
 if show_urls == 'footnote':
 doc = tree.traverse(nodes.document)[0]
 fn_spot, fn_idx = footnote_spot(tree)
 nr = 1
 for node in tree.traverse(nodes.reference):
 uri = node.get('refuri', '')
 if (uri.startswith('http:') or uri.startswith('https:') or
 uri.startswith('ftp:')) and uri not in node.astext():
 idx = node.parent.index(node) + 1
 if show_urls == 'inline':
 uri = self.link_target_template % {'uri': uri}
 link = nodes.inline(uri, uri)
 link['classes'].append(self.css_link_target_class)
 node.parent.insert(idx, link)
 elif show_urls == 'footnote':
 label = FOOTNOTE_LABEL_TEMPLATE % nr
 nr += 1
 footnote_ref = make_footnote_ref(doc, label)
 node.parent.insert(idx, footnote_ref)
 footnote = make_footnote(doc, label, uri)
 fn_spot.insert(fn_idx, footnote)
 footnote_ref['refid'] = footnote['ids'][0]
 footnote.add_backref(footnote_ref['ids'][0])
 fn_idx += 1

 def write_doc(self, docname, doctree):
 """Write one document file.

 This method is overwritten in order to fix fragment identifiers
 and to add visible external links.
 """
 self.fix_ids(doctree)
 self.add_visible_links(doctree, self.config.epub_show_urls)
 return StandaloneHTMLBuilder.write_doc(self, docname, doctree)

 def fix_genindex(self, tree):
 """Fix href attributes for genindex pages."""
 # XXX: modifies tree inline
 # Logic modeled from themes/basic/genindex.html
 for key, columns in tree:
 for entryname, (links, subitems, key_) in columns:
 for (i, (ismain, link)) in enumerate(links):
 m = self.refuri_re.match(link)
 if m:
 links[i] = (ismain,
 self.fix_fragment(m.group(1), m.group(2)))
 for subentryname, subentrylinks in subitems:
 for (i, (ismain, link)) in enumerate(subentrylinks):
 m = self.refuri_re.match(link)
 if m:
 subentrylinks[i] = (ismain,
 self.fix_fragment(m.group(1), m.group(2)))

 def is_vector_graphics(self, filename):
 """Does the filename extension indicate a vector graphic format?"""
 ext = path.splitext(filename)[-1]
 return ext in VECTOR_GRAPHICS_EXTENSIONS

 def copy_image_files_pil(self):
 """Copy images using the PIL.
 The method tries to read and write the files with the PIL,
 converting the format and resizing the image if necessary/possible.
 """
 ensuredir(path.join(self.outdir, self.imagedir))
 for src in self.app.status_iterator(self.images, 'copying images... ',
 brown, len(self.images)):
 dest = self.images[src]
 try:
 img = Image.open(path.join(self.srcdir, src))
 except IOError:
 if not self.is_vector_graphics(src):
 self.warn('cannot read image file %r: copying it instead' %
 (path.join(self.srcdir, src),))
 try:
 copyfile(path.join(self.srcdir, src),
 path.join(self.outdir, self.imagedir, dest))
 except (IOError, OSError) as err:
 self.warn('cannot copy image file %r: %s' %
 (path.join(self.srcdir, src), err))
 continue
 if self.config.epub_fix_images:
 if img.mode in ('P',):
 # See PIL documentation for Image.convert()
 img = img.convert()
 if self.config.epub_max_image_width > 0:
 (width, height) = img.size
 nw = self.config.epub_max_image_width
 if width > nw:
 nh = (height * nw) / width
 img = img.resize((nw, nh), Image.BICUBIC)
 try:
 img.save(path.join(self.outdir, self.imagedir, dest))
 except (IOError, OSError) as err:
 self.warn('cannot write image file %r: %s' %
 (path.join(self.srcdir, src), err))

 def copy_image_files(self):
 """Copy image files to destination directory.
 This overwritten method can use the PIL to convert image files.
 """
 if self.images:
 if self.config.epub_fix_images or self.config.epub_max_image_width:
 if not Image:
 self.warn('PIL not found - copying image files')
 super(EpubBuilder, self).copy_image_files()
 else:
 self.copy_image_files_pil()
 else:
 super(EpubBuilder, self).copy_image_files()

 def handle_page(self, pagename, addctx, templatename='page.html',
 outfilename=None, event_arg=None):
 """Create a rendered page.

 This method is overwritten for genindex pages in order to fix href link
 attributes.
 """
 if pagename.startswith('genindex'):
 self.fix_genindex(addctx['genindexentries'])
 StandaloneHTMLBuilder.handle_page(self, pagename, addctx, templatename,
 outfilename, event_arg)

 # Finish by building the epub file
 def handle_finish(self):
 """Create the metainfo files and finally the epub."""
 self.get_toc()
 self.build_mimetype(self.outdir, 'mimetype')
 self.build_container(self.outdir, 'META-INF/container.xml')
 self.build_content(self.outdir, 'content.opf')
 self.build_toc(self.outdir, 'toc.ncx')
 self.build_epub(self.outdir, self.config.epub_basename + '.epub')

 def build_mimetype(self, outdir, outname):
 """Write the metainfo file mimetype."""
 self.info('writing %s file...' % outname)
 f = codecs.open(path.join(outdir, outname), 'w', 'utf-8')
 try:
 f.write(self.mimetype_template)
 finally:
 f.close()

 def build_container(self, outdir, outname):
 """Write the metainfo file META-INF/cointainer.xml."""
 self.info('writing %s file...' % outname)
 fn = path.join(outdir, outname)
 try:
 os.mkdir(path.dirname(fn))
 except OSError as err:
 if err.errno != EEXIST:
 raise
 f = codecs.open(path.join(outdir, outname), 'w', 'utf-8')
 try:
 f.write(self.container_template)
 finally:
 f.close()

 def content_metadata(self, files, spine, guide):
 """Create a dictionary with all metadata for the content.opf
 file properly escaped.
 """
 metadata = {}
 metadata['title'] = self.esc(self.config.epub_title)
 metadata['author'] = self.esc(self.config.epub_author)
 metadata['uid'] = self.esc(self.config.epub_uid)
 metadata['lang'] = self.esc(self.config.epub_language)
 metadata['publisher'] = self.esc(self.config.epub_publisher)
 metadata['copyright'] = self.esc(self.config.epub_copyright)
 metadata['scheme'] = self.esc(self.config.epub_scheme)
 metadata['id'] = self.esc(self.config.epub_identifier)
 metadata['date'] = self.esc(format_date('%Y-%m-%d', language=self.config.language,
 warn=self.warn))
 metadata['files'] = files
 metadata['spine'] = spine
 metadata['guide'] = guide
 return metadata

 def build_content(self, outdir, outname):
 """Write the metainfo file content.opf It contains bibliographic data,
 a file list and the spine (the reading order).
 """
 self.info('writing %s file...' % outname)

 # files
 if not outdir.endswith(os.sep):
 outdir += os.sep
 olen = len(outdir)
 projectfiles = []
 self.files = []
 self.ignored_files = ['.buildinfo', 'mimetype', 'content.opf',
 'toc.ncx', 'META-INF/container.xml',
 self.config.epub_basename + '.epub'] + \
 self.config.epub_exclude_files
 for root, dirs, files in os.walk(outdir):
 for fn in files:
 filename = path.join(root, fn)[olen:]
 if filename in self.ignored_files:
 continue
 ext = path.splitext(filename)[-1]
 if ext not in self.media_types:
 # we always have JS and potentially OpenSearch files, don't
 # always warn about them
 if ext not in ('.js', '.xml'):
 self.warn('unknown mimetype for %s, ignoring' % filename)
 continue
 filename = filename.replace(os.sep, '/')
 projectfiles.append(self.file_template % {
 'href': self.esc(filename),
 'id': self.esc(self.make_id(filename)),
 'media_type': self.esc(self.media_types[ext])
 })
 self.files.append(filename)

 # spine
 spine = []
 for item in self.refnodes:
 if '#' in item['refuri']:
 continue
 if item['refuri'] in self.ignored_files:
 continue
 spine.append(self.spine_template % {
 'idref': self.esc(self.make_id(item['refuri']))
 })
 for info in self.domain_indices:
 spine.append(self.spine_template % {
 'idref': self.esc(self.make_id(info[0] + self.out_suffix))
 })
 if self.get_builder_config('use_index', 'epub'):
 spine.append(self.spine_template % {
 'idref': self.esc(self.make_id('genindex' + self.out_suffix))
 })

 # add the optional cover
 content_tmpl = self.content_template
 html_tmpl = None
 if self.config.epub_cover:
 image, html_tmpl = self.config.epub_cover
 image = image.replace(os.sep, '/')
 mpos = content_tmpl.rfind('</metadata>')
 cpos = content_tmpl.rfind('\n', 0, mpos) + 1
 content_tmpl = content_tmpl[:cpos] + \
 COVER_TEMPLATE % {'cover': self.esc(self.make_id(image))} + \
 content_tmpl[cpos:]
 if html_tmpl:
 spine.insert(0, self.spine_template % {
 'idref': self.esc(self.make_id(self.coverpage_name))})
 if self.coverpage_name not in self.files:
 ext = path.splitext(self.coverpage_name)[-1]
 self.files.append(self.coverpage_name)
 projectfiles.append(self.file_template % {
 'href': self.esc(self.coverpage_name),
 'id': self.esc(self.make_id(self.coverpage_name)),
 'media_type': self.esc(self.media_types[ext])
 })
 ctx = {'image': self.esc(image), 'title': self.config.project}
 self.handle_page(
 path.splitext(self.coverpage_name)[0], ctx, html_tmpl)

 guide = []
 auto_add_cover = True
 auto_add_toc = True
 if self.config.epub_guide:
 for type, uri, title in self.config.epub_guide:
 file = uri.split('#')[0]
 if file not in self.files:
 self.files.append(file)
 if type == 'cover':
 auto_add_cover = False
 if type == 'toc':
 auto_add_toc = False
 guide.append(self.guide_template % {
 'type': self.esc(type),
 'title': self.esc(title),
 'uri': self.esc(uri)
 })
 if auto_add_cover and html_tmpl:
 guide.append(self.guide_template % {
 'type': 'cover',
 'title': self.guide_titles['cover'],
 'uri': self.esc(self.coverpage_name)
 })
 if auto_add_toc and self.refnodes:
 guide.append(self.guide_template % {
 'type': 'toc',
 'title': self.guide_titles['toc'],
 'uri': self.esc(self.refnodes[0]['refuri'])
 })
 projectfiles = '\n'.join(projectfiles)
 spine = '\n'.join(spine)
 guide = '\n'.join(guide)

 # write the project file
 f = codecs.open(path.join(outdir, outname), 'w', 'utf-8')
 try:
 f.write(content_tmpl %
 self.content_metadata(projectfiles, spine, guide))
 finally:
 f.close()

 def new_navpoint(self, node, level, incr=True):
 """Create a new entry in the toc from the node at given level."""
 # XXX Modifies the node
 if incr:
 self.playorder += 1
 self.tocid += 1
 node['indent'] = self.navpoint_indent * level
 node['navpoint'] = self.esc(self.node_navpoint_template % self.tocid)
 node['playorder'] = self.playorder
 return self.navpoint_template % node

 def insert_subnav(self, node, subnav):
 """Insert nested navpoints for given node.

 The node and subnav are already rendered to text.
 """
 nlist = node.rsplit('\n', 1)
 nlist.insert(-1, subnav)
 return '\n'.join(nlist)

 def build_navpoints(self, nodes):
 """Create the toc navigation structure.

 Subelements of a node are nested inside the navpoint. For nested nodes
 the parent node is reinserted in the subnav.
 """
 navstack = []
 navlist = []
 level = 1
 lastnode = None
 for node in nodes:
 if not node['text']:
 continue
 file = node['refuri'].split('#')[0]
 if file in self.ignored_files:
 continue
 if node['level'] > self.config.epub_tocdepth:
 continue
 if node['level'] == level:
 navlist.append(self.new_navpoint(node, level))
 elif node['level'] == level + 1:
 navstack.append(navlist)
 navlist = []
 level += 1
 if lastnode and self.config.epub_tocdup:
 # Insert starting point in subtoc with same playOrder
 navlist.append(self.new_navpoint(lastnode, level, False))
 navlist.append(self.new_navpoint(node, level))
 else:
 while node['level'] < level:
 subnav = '\n'.join(navlist)
 navlist = navstack.pop()
 navlist[-1] = self.insert_subnav(navlist[-1], subnav)
 level -= 1
 navlist.append(self.new_navpoint(node, level))
 lastnode = node
 while level != 1:
 subnav = '\n'.join(navlist)
 navlist = navstack.pop()
 navlist[-1] = self.insert_subnav(navlist[-1], subnav)
 level -= 1
 return '\n'.join(navlist)

 def toc_metadata(self, level, navpoints):
 """Create a dictionary with all metadata for the toc.ncx file
 properly escaped.
 """
 metadata = {}
 metadata['uid'] = self.config.epub_uid
 metadata['title'] = self.config.epub_title
 metadata['level'] = level
 metadata['navpoints'] = navpoints
 return metadata

 def build_toc(self, outdir, outname):
 """Write the metainfo file toc.ncx."""
 self.info('writing %s file...' % outname)

 if self.config.epub_tocscope == 'default':
 doctree = self.env.get_and_resolve_doctree(self.config.master_doc,
 self, prune_toctrees=False,
 includehidden=False)
 refnodes = self.get_refnodes(doctree, [])
 self.toc_add_files(refnodes)
 else:
 # 'includehidden'
 refnodes = self.refnodes
 navpoints = self.build_navpoints(refnodes)
 level = max(item['level'] for item in self.refnodes)
 level = min(level, self.config.epub_tocdepth)
 f = codecs.open(path.join(outdir, outname), 'w', 'utf-8')
 try:
 f.write(self.toc_template % self.toc_metadata(level, navpoints))
 finally:
 f.close()

 def build_epub(self, outdir, outname):
 """Write the epub file.

 It is a zip file with the mimetype file stored uncompressed as the first
 entry.
 """
 self.info('writing %s file...' % outname)
 projectfiles = ['META-INF/container.xml', 'content.opf', 'toc.ncx'] \
 + self.files
 epub = zipfile.ZipFile(path.join(outdir, outname), 'w',
 zipfile.ZIP_DEFLATED)
 epub.write(path.join(outdir, 'mimetype'), 'mimetype',
 zipfile.ZIP_STORED)
 for file in projectfiles:
 fp = path.join(outdir, file)
 epub.write(fp, file, zipfile.ZIP_DEFLATED)
 epub.close()

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.builders »

 Source code for sphinx.builders.epub3

-*- coding: utf-8 -*-
"""
 sphinx.builders.epub3
    ~~~~~~~~~~~~~~~~~~~~~

    Build epub3 files.
    Originally derived from epub.py.

    :copyright: Copyright 2007-2015 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import codecs
from os import path

from sphinx.builders.epub import EpubBuilder


# (Fragment) templates from which the metainfo files content.opf, toc.ncx,
# mimetype, and META-INF/container.xml are created.
# This template section also defines strings that are embedded in the html
# output but that may be customized by (re-)setting module attributes,
# e.g. from conf.py.

NAVIGATION_DOC_TEMPLATE = u'''\
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"\
 xmlns:epub="http://www.idpf.org/2007/ops" lang="%(lang)s" xml:lang="%(lang)s">
  <head>
    <title>%(toc_locale)s</title>
  </head>
  <body>
    <nav epub:type="toc">
      <h1>%(toc_locale)s</h1>
      <ol>
%(navlist)s
      </ol>
    </nav>
  </body>
</html>
'''

NAVLIST_TEMPLATE = u'''\
%(indent)s  <li>
%(indent)s    <a href="%(refuri)s">%(text)s</a>
%(indent)s  </li>
'''
NAVLIST_INDENT = '      '


PACKAGE_DOC_TEMPLATE = u'''\
<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://www.idpf.org/2007/opf" version="3.0" xml:lang="%(lang)s"
      unique-identifier="%(uid)s">
  <metadata xmlns:opf="http://www.idpf.org/2007/opf"
        xmlns:dc="http://purl.org/dc/elements/1.1/">
    <dc:language>%(lang)s</dc:language>
    <dc:title>%(title)s</dc:title>
    <dc:description>%(description)s</dc:description>
    <dc:creator>%(author)s</dc:creator>
    <dc:contributor>%(contributor)s</dc:contributor>
    <dc:publisher>%(publisher)s</dc:publisher>
    <dc:rights>%(copyright)s</dc:rights>
    <dc:identifier id="%(uid)s">%(id)s</dc:identifier>
    <dc:date>%(date)s</dc:date>
    <meta property="dcterms:modified">%(date)s</meta>
  </metadata>
  <manifest>
    <item id="ncx" href="toc.ncx" media-type="application/x-dtbncx+xml" />
    <item id="nav" href="nav.xhtml"\
 media-type="application/xhtml+xml" properties="nav"/>
%(files)s
  </manifest>
  <spine toc="ncx" page-progression-direction="%(page_progression_direction)s">
    <itemref idref="nav" />
%(spine)s
  </spine>
  <guide>
%(guide)s
  </guide>
</package>
'''

# The epub3 publisher


[docs]class Epub3Builder(EpubBuilder):
    """
    Builder that outputs epub3 files.

    It creates the metainfo files content.opf, nav.xhtml, toc.ncx, mimetype,
    and META-INF/container.xml. Afterwards, all necessary files are zipped to
    an epub file.
    """
    name = 'epub3'

    navigation_doc_template = NAVIGATION_DOC_TEMPLATE
    navlist_template = NAVLIST_TEMPLATE
    navlist_indent = NAVLIST_INDENT
    content_template = PACKAGE_DOC_TEMPLATE

    # Finish by building the epub file
    def handle_finish(self):
        """Create the metainfo files and finally the epub."""
        self.get_toc()
        self.build_mimetype(self.outdir, 'mimetype')
        self.build_container(self.outdir, 'META-INF/container.xml')
        self.build_content(self.outdir, 'content.opf')
        self.build_navigation_doc(self.outdir, 'nav.xhtml')
        self.build_toc(self.outdir, 'toc.ncx')
        self.build_epub(self.outdir, self.config.epub_basename + '.epub')

    def content_metadata(self, files, spine, guide):
        """Create a dictionary with all metadata for the content.opf
        file properly escaped.
        """
        metadata = super(Epub3Builder, self).content_metadata(
            files, spine, guide)
        metadata['description'] = self.esc(self.config.epub3_description)
        metadata['contributor'] = self.esc(self.config.epub3_contributor)
        metadata['page_progression_direction'] = self.esc(
            self.config.epub3_page_progression_direction) or 'default'
        return metadata

    def new_navlist(self, node, level):
        """Create a new entry in the toc from the node at given level."""
        # XXX Modifies the node
        self.tocid += 1
        node['indent'] = self.navlist_indent * level
        navpoint = self.navlist_template % node
        return navpoint

    def build_navlist(self, nodes):
        """Create the toc navigation structure.

        This method is almost same as build_navpoints method in epub.py.
        This is because the logical navigation structure of epub3 is not
        different from one of epub2.

        The difference from build_navpoints method is templates which are used
        when generating navigation documents.
        """
        navstack = []
        navlist = []
        level = 1
        lastnode = None
        for node in nodes:
            if not node['text']:
                continue
            file = node['refuri'].split('#')[0]
            if file in self.ignored_files:
                continue
            if node['level'] > self.config.epub_tocdepth:
                continue
            if node['level'] == level:
                navlist.append(self.new_navlist(node, level))
            elif node['level'] == level + 1:
                navstack.append(navlist)
                navlist = []
                level += 1
                if lastnode and self.config.epub_tocdup:
                    navlist.append(self.new_navlist(node, level))
                    navlist[-1] = '<ol>\n' + navlist[-1]
            else:
                while node['level'] < level:
                    subnav = '\n'.join(navlist)
                    navlist = navstack.pop()
                    navlist[-1] = self.insert_subnav(navlist[-1], subnav)
                    level -= 1
                    navlist[-1] = navlist[-1] + '</ol>'
                navlist.append(self.new_navlist(node, level))
            lastnode = node
        while level != 1:
            subnav = '\n'.join(navlist)
            navlist = navstack.pop()
            navlist[-1] = self.insert_subnav(navlist[-1], subnav)
            level -= 1
            navlist[-1] = navlist[-1] + '</ol>'
        return '\n'.join(navlist)

    def navigation_doc_metadata(self, navlist):
        """Create a dictionary with all metadata for the nav.xhtml file
        properly escaped.
        """
        metadata = {}
        metadata['lang'] = self.esc(self.config.epub_language)
        metadata['toc_locale'] = self.esc(self.guide_titles['toc'])
        metadata['navlist'] = navlist
        return metadata

    def build_navigation_doc(self, outdir, outname):
        """Write the metainfo file nav.xhtml."""
        self.info('writing %s file...' % outname)

        if self.config.epub_tocscope == 'default':
            doctree = self.env.get_and_resolve_doctree(
                self.config.master_doc, self,
                prune_toctrees=False, includehidden=False)
            refnodes = self.get_refnodes(doctree, [])
            self.toc_add_files(refnodes)
        else:
            # 'includehidden'
            refnodes = self.refnodes
        navlist = self.build_navlist(refnodes)
        f = codecs.open(path.join(outdir, outname), 'w', 'utf-8')
        try:
            f.write(self.navigation_doc_template %
                    self.navigation_doc_metadata(navlist))
        finally:
            f.close()
            # Add nav.xhtml to epub file
            self.files.append(outname)





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.builders »
 
      

    


    
      
          
            
  Source code for sphinx.builders.gettext

# -*- coding: utf-8 -*-
"""
    sphinx.builders.gettext
    ~~~~~~~~~~~~~~~~~~~~~~~

 The MessageCatalogBuilder class.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

from __future__ import unicode_literals

from os import path, walk, getenv
from codecs import open
from time import time
from datetime import datetime, tzinfo, timedelta
from collections import defaultdict
from uuid import uuid4

from six import iteritems

from sphinx.builders import Builder
from sphinx.util import split_index_msg
from sphinx.util.nodes import extract_messages, traverse_translatable_index
from sphinx.util.osutil import safe_relpath, ensuredir, canon_path
from sphinx.util.i18n import find_catalog
from sphinx.util.console import darkgreen, purple, bold
from sphinx.locale import pairindextypes

POHEADER = r"""
SOME DESCRIPTIVE TITLE.
Copyright (C) %(copyright)s
This file is distributed under the same license as the %(project)s package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: %(project)s %(version)s\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: %(ctime)s\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

"""[1:]

class Catalog(object):
 """Catalog of translatable messages."""

 def __init__(self):
 self.messages = [] # retain insertion order, a la OrderedDict
 self.metadata = {} # msgid -> file, line, uid

 def add(self, msg, origin):
 if not hasattr(origin, 'uid'):
 # Nodes that are replicated like todo don't have a uid,
 # however i18n is also unnecessary.
 return
 if msg not in self.metadata: # faster lookup in hash
 self.messages.append(msg)
 self.metadata[msg] = []
 self.metadata[msg].append((origin.source, origin.line, origin.uid))

class MsgOrigin(object):
 """
 Origin holder for Catalog message origin.
 """

 def __init__(self, source, line):
 self.source = source
 self.line = line
 self.uid = uuid4().hex

class I18nBuilder(Builder):
 """
 General i18n builder.
 """
 name = 'i18n'
 versioning_method = 'text'
 versioning_compare = None # be set by `gettext_uuid`

 def __init__(self, app):
 self.versioning_compare = app.env.config.gettext_uuid
 super(I18nBuilder, self).__init__(app)

 def init(self):
 Builder.init(self)
 self.catalogs = defaultdict(Catalog)

 def get_target_uri(self, docname, typ=None):
 return ''

 def get_outdated_docs(self):
 return self.env.found_docs

 def prepare_writing(self, docnames):
 return

 def compile_catalogs(self, catalogs, message):
 return

 def write_doc(self, docname, doctree):
 catalog = self.catalogs[find_catalog(docname,
 self.config.gettext_compact)]

 for node, msg in extract_messages(doctree):
 catalog.add(msg, node)

 if 'index' in self.env.config.gettext_additional_targets:
 # Extract translatable messages from index entries.
 for node, entries in traverse_translatable_index(doctree):
 for typ, msg, tid, main, key_ in entries:
 for m in split_index_msg(typ, msg):
 if typ == 'pair' and m in pairindextypes.values():
 # avoid built-in translated message was incorporated
 # in 'sphinx.util.nodes.process_index_entry'
 continue
 catalog.add(m, node)

determine tzoffset once to remain unaffected by DST change during build
timestamp = time()
tzdelta = datetime.fromtimestamp(timestamp) - \
 datetime.utcfromtimestamp(timestamp)
set timestamp from SOURCE_DATE_EPOCH if set
see https://reproducible-builds.org/specs/source-date-epoch/
source_date_epoch = getenv('SOURCE_DATE_EPOCH')
if source_date_epoch is not None:
 timestamp = float(source_date_epoch)
 tzdelta = 0

class LocalTimeZone(tzinfo):

 def __init__(self, *args, **kw):
 super(LocalTimeZone, self).__init__(*args, **kw)
 self.tzdelta = tzdelta

 def utcoffset(self, dt):
 return self.tzdelta

 def dst(self, dt):
 return timedelta(0)

ltz = LocalTimeZone()

[docs]class MessageCatalogBuilder(I18nBuilder):
 """
 Builds gettext-style message catalogs (.pot files).
 """
 name = 'gettext'

 def init(self):
 I18nBuilder.init(self)
 self.create_template_bridge()
 self.templates.init(self)

 def _collect_templates(self):
 template_files = set()
 for template_path in self.config.templates_path:
 tmpl_abs_path = path.join(self.app.srcdir, template_path)
 for dirpath, dirs, files in walk(tmpl_abs_path):
 for fn in files:
 if fn.endswith('.html'):
 filename = canon_path(path.join(dirpath, fn))
 template_files.add(filename)
 return template_files

 def _extract_from_template(self):
 files = self._collect_templates()
 self.info(bold('building [%s]: ' % self.name), nonl=1)
 self.info('targets for %d template files' % len(files))

 extract_translations = self.templates.environment.extract_translations

 for template in self.app.status_iterator(
 files, 'reading templates... ', purple, len(files)):
 with open(template, 'r', encoding='utf-8') as f:
 context = f.read()
 for line, meth, msg in extract_translations(context):
 origin = MsgOrigin(template, line)
 self.catalogs['sphinx'].add(msg, origin)

 def build(self, docnames, summary=None, method='update'):
 self._extract_from_template()
 I18nBuilder.build(self, docnames, summary, method)

 def finish(self):
 I18nBuilder.finish(self)
 data = dict(
 version = self.config.version,
 copyright = self.config.copyright,
 project = self.config.project,
 ctime = datetime.fromtimestamp(
 timestamp, ltz).strftime('%Y-%m-%d %H:%M%z'),
)
 for textdomain, catalog in self.app.status_iterator(
 iteritems(self.catalogs), "writing message catalogs... ",
 darkgreen, len(self.catalogs),
 lambda textdomain__: textdomain__[0]):
 # noop if config.gettext_compact is set
 ensuredir(path.join(self.outdir, path.dirname(textdomain)))

 pofn = path.join(self.outdir, textdomain + '.pot')
 pofile = open(pofn, 'w', encoding='utf-8')
 try:
 pofile.write(POHEADER % data)

 for message in catalog.messages:
 positions = catalog.metadata[message]

 if self.config.gettext_location:
 # generate "#: file1:line1\n#: file2:line2 ..."
 pofile.write("#: %s\n" % "\n#: ".join(
 "%s:%s" % (canon_path(
 safe_relpath(source, self.outdir)), line)
 for source, line, _ in positions))
 if self.config.gettext_uuid:
 # generate "# uuid1\n# uuid2\n ..."
 pofile.write("# %s\n" % "\n# ".join(
 uid for _, _, uid in positions))

 # message contains *one* line of text ready for translation
 message = message.replace('\\', r'\\'). \
 replace('"', r'\"'). \
 replace('\n', '\\n"\n"')
 pofile.write('msgid "%s"\nmsgstr ""\n\n' % message)

 finally:
 pofile.close()

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.builders »

 Source code for sphinx.builders.html

-*- coding: utf-8 -*-
"""
 sphinx.builders.html
    ~~~~~~~~~~~~~~~~~~~~

    Several HTML builders.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import os
import sys
import zlib
import codecs
import posixpath
from os import path
from hashlib import md5

from six import iteritems, text_type, string_types
from six.moves import cPickle as pickle
from docutils import nodes
from docutils.io import DocTreeInput, StringOutput
from docutils.core import Publisher
from docutils.utils import new_document, relative_path
from docutils.frontend import OptionParser
from docutils.readers.doctree import Reader as DoctreeReader

from sphinx import package_dir, __display_version__
from sphinx.util import jsonimpl, copy_static_entry, copy_extra_entry
from sphinx.util.i18n import format_date
from sphinx.util.osutil import SEP, os_path, relative_uri, ensuredir, \
    movefile, copyfile
from sphinx.util.nodes import inline_all_toctrees
from sphinx.util.matching import patmatch, compile_matchers
from sphinx.locale import _
from sphinx.search import js_index
from sphinx.theming import Theme
from sphinx.builders import Builder
from sphinx.application import ENV_PICKLE_FILENAME
from sphinx.highlighting import PygmentsBridge
from sphinx.util.console import bold, darkgreen, brown
from sphinx.writers.html import HTMLWriter, HTMLTranslator, \
    SmartyPantsHTMLTranslator

#: the filename for the inventory of objects
INVENTORY_FILENAME = 'objects.inv'
#: the filename for the "last build" file (for serializing builders)
LAST_BUILD_FILENAME = 'last_build'


def get_stable_hash(obj):
    """
    Return a stable hash for a Python data structure.  We can't just use
    the md5 of str(obj) since for example dictionary items are enumerated
    in unpredictable order due to hash randomization in newer Pythons.
    """
    if isinstance(obj, dict):
        return get_stable_hash(list(obj.items()))
    elif isinstance(obj, (list, tuple)):
        obj = sorted(get_stable_hash(o) for o in obj)
    return md5(text_type(obj).encode('utf8')).hexdigest()


[docs]class StandaloneHTMLBuilder(Builder):
    """
    Builds standalone HTML docs.
    """
    name = 'html'
    format = 'html'
    copysource = True
    allow_parallel = True
    out_suffix = '.html'
    link_suffix = '.html'  # defaults to matching out_suffix
    indexer_format = js_index
    indexer_dumps_unicode = True
    supported_image_types = ['image/svg+xml', 'image/png',
                             'image/gif', 'image/jpeg']
    searchindex_filename = 'searchindex.js'
    add_permalinks = True
    embedded = False  # for things like HTML help or Qt help: suppresses sidebar
    search = True  # for things like HTML help and Apple help: suppress search

    # This is a class attribute because it is mutated by Sphinx.add_javascript.
    script_files = ['_static/jquery.js', '_static/underscore.js',
                    '_static/doctools.js']
    # Dito for this one.
    css_files = []

    default_sidebars = ['localtoc.html', 'relations.html',
                        'sourcelink.html', 'searchbox.html']

    # cached publisher object for snippets
    _publisher = None

    def init(self):
        # a hash of all config values that, if changed, cause a full rebuild
        self.config_hash = ''
        self.tags_hash = ''
        # basename of images directory
        self.imagedir = '_images'
        # section numbers for headings in the currently visited document
        self.secnumbers = {}
        # currently written docname
        self.current_docname = None

        self.init_templates()
        self.init_highlighter()
        self.init_translator_class()
        if self.config.html_file_suffix is not None:
            self.out_suffix = self.config.html_file_suffix

        if self.config.html_link_suffix is not None:
            self.link_suffix = self.config.html_link_suffix
        else:
            self.link_suffix = self.out_suffix

        if self.config.language is not None:
            if self._get_translations_js():
                self.script_files.append('_static/translations.js')

    def _get_translations_js(self):
        candidates = [path.join(package_dir, 'locale', self.config.language,
                                'LC_MESSAGES', 'sphinx.js'),
                      path.join(sys.prefix, 'share/sphinx/locale',
                                self.config.language, 'sphinx.js')] + \
                     [path.join(dir, self.config.language,
                                'LC_MESSAGES', 'sphinx.js')
                      for dir in self.config.locale_dirs]
        for jsfile in candidates:
            if path.isfile(jsfile):
                return jsfile
        return None

    def get_theme_config(self):
        return self.config.html_theme, self.config.html_theme_options

    def init_templates(self):
        Theme.init_themes(self.confdir, self.config.html_theme_path,
                          warn=self.warn)
        themename, themeoptions = self.get_theme_config()
        self.theme = Theme(themename, warn=self.warn)
        self.theme_options = themeoptions.copy()
        self.create_template_bridge()
        self.templates.init(self, self.theme)

    def init_highlighter(self):
        # determine Pygments style and create the highlighter
        if self.config.pygments_style is not None:
            style = self.config.pygments_style
        elif self.theme:
            style = self.theme.get_confstr('theme', 'pygments_style', 'none')
        else:
            style = 'sphinx'
        self.highlighter = PygmentsBridge('html', style,
                                          self.config.trim_doctest_flags)

    def init_translator_class(self):
        if self.translator_class is not None:
            pass
        elif self.config.html_translator_class:
            self.translator_class = self.app.import_object(
                self.config.html_translator_class,
                'html_translator_class setting')
        elif self.config.html_use_smartypants:
            self.translator_class = SmartyPantsHTMLTranslator
        else:
            self.translator_class = HTMLTranslator

    def get_outdated_docs(self):
        cfgdict = dict((name, self.config[name])
                       for (name, desc) in iteritems(self.config.values)
                       if desc[1] == 'html')
        self.config_hash = get_stable_hash(cfgdict)
        self.tags_hash = get_stable_hash(sorted(self.tags))
        old_config_hash = old_tags_hash = ''
        try:
            fp = open(path.join(self.outdir, '.buildinfo'))
            try:
                version = fp.readline()
                if version.rstrip() != '# Sphinx build info version 1':
                    raise ValueError
                fp.readline()  # skip commentary
                cfg, old_config_hash = fp.readline().strip().split(': ')
                if cfg != 'config':
                    raise ValueError
                tag, old_tags_hash = fp.readline().strip().split(': ')
                if tag != 'tags':
                    raise ValueError
            finally:
                fp.close()
        except ValueError:
            self.warn('unsupported build info format in %r, building all' %
                      path.join(self.outdir, '.buildinfo'))
        except Exception:
            pass
        if old_config_hash != self.config_hash or \
           old_tags_hash != self.tags_hash:
            for docname in self.env.found_docs:
                yield docname
            return

        if self.templates:
            template_mtime = self.templates.newest_template_mtime()
        else:
            template_mtime = 0
        for docname in self.env.found_docs:
            if docname not in self.env.all_docs:
                yield docname
                continue
            targetname = self.get_outfilename(docname)
            try:
                targetmtime = path.getmtime(targetname)
            except Exception:
                targetmtime = 0
            try:
                srcmtime = max(path.getmtime(self.env.doc2path(docname)),
                               template_mtime)
                if srcmtime > targetmtime:
                    yield docname
            except EnvironmentError:
                # source doesn't exist anymore
                pass

    def render_partial(self, node):
        """Utility: Render a lone doctree node."""
        if node is None:
            return {'fragment': ''}
        doc = new_document(b'<partial node>')
        doc.append(node)

        if self._publisher is None:
            self._publisher = Publisher(
                source_class = DocTreeInput,
                destination_class=StringOutput)
            self._publisher.set_components('standalone',
                                           'restructuredtext', 'pseudoxml')

        pub = self._publisher

        pub.reader = DoctreeReader()
        pub.writer = HTMLWriter(self)
        pub.process_programmatic_settings(
            None, {'output_encoding': 'unicode'}, None)
        pub.set_source(doc, None)
        pub.set_destination(None, None)
        pub.publish()
        return pub.writer.parts

    def prepare_writing(self, docnames):
        # create the search indexer
        self.indexer = None
        if self.search:
            from sphinx.search import IndexBuilder, languages
            lang = self.config.html_search_language or self.config.language
            if not lang or lang not in languages:
                lang = 'en'
            self.indexer = IndexBuilder(self.env, lang,
                                        self.config.html_search_options,
                                        self.config.html_search_scorer)
            self.load_indexer(docnames)

        self.docwriter = HTMLWriter(self)
        self.docsettings = OptionParser(
            defaults=self.env.settings,
            components=(self.docwriter,),
            read_config_files=True).get_default_values()
        self.docsettings.compact_lists = bool(self.config.html_compact_lists)

        # determine the additional indices to include
        self.domain_indices = []
        # html_domain_indices can be False/True or a list of index names
        indices_config = self.config.html_domain_indices
        if indices_config:
            for domain_name in sorted(self.env.domains):
                domain = self.env.domains[domain_name]
                for indexcls in domain.indices:
                    indexname = '%s-%s' % (domain.name, indexcls.name)
                    if isinstance(indices_config, list):
                        if indexname not in indices_config:
                            continue
                    # deprecated config value
                    if indexname == 'py-modindex' and \
                       not self.config.html_use_modindex:
                        continue
                    content, collapse = indexcls(domain).generate()
                    if content:
                        self.domain_indices.append(
                            (indexname, indexcls, content, collapse))

        # format the "last updated on" string, only once is enough since it
        # typically doesn't include the time of day
        lufmt = self.config.html_last_updated_fmt
        if lufmt is not None:
            self.last_updated = format_date(lufmt or _('%b %d, %Y'),
                                            language=self.config.language,
                                            warn=self.warn)
        else:
            self.last_updated = None

        logo = self.config.html_logo and \
            path.basename(self.config.html_logo) or ''

        favicon = self.config.html_favicon and \
            path.basename(self.config.html_favicon) or ''
        if favicon and os.path.splitext(favicon)[1] != '.ico':
            self.warn('html_favicon is not an .ico file')

        if not isinstance(self.config.html_use_opensearch, string_types):
            self.warn('html_use_opensearch config value must now be a string')

        self.relations = self.env.collect_relations()

        rellinks = []
        if self.get_builder_config('use_index', 'html'):
            rellinks.append(('genindex', _('General Index'), 'I', _('index')))
        for indexname, indexcls, content, collapse in self.domain_indices:
            # if it has a short name
            if indexcls.shortname:
                rellinks.append((indexname, indexcls.localname,
                                 '', indexcls.shortname))

        if self.config.html_style is not None:
            stylename = self.config.html_style
        elif self.theme:
            stylename = self.theme.get_confstr('theme', 'stylesheet')
        else:
            stylename = 'default.css'

        self.globalcontext = dict(
            embedded = self.embedded,
            project = self.config.project,
            release = self.config.release,
            version = self.config.version,
            last_updated = self.last_updated,
            copyright = self.config.copyright,
            master_doc = self.config.master_doc,
            use_opensearch = self.config.html_use_opensearch,
            docstitle = self.config.html_title,
            shorttitle = self.config.html_short_title,
            show_copyright = self.config.html_show_copyright,
            show_sphinx = self.config.html_show_sphinx,
            has_source = self.config.html_copy_source,
            show_source = self.config.html_show_sourcelink,
            file_suffix = self.out_suffix,
            script_files = self.script_files,
            language = self.config.language,
            css_files = self.css_files,
            sphinx_version = __display_version__,
            style = stylename,
            rellinks = rellinks,
            builder = self.name,
            parents = [],
            logo = logo,
            favicon = favicon,
        )
        if self.theme:
            self.globalcontext.update(
                ('theme_' + key, val) for (key, val) in
                iteritems(self.theme.get_options(self.theme_options)))
        self.globalcontext.update(self.config.html_context)

    def get_doc_context(self, docname, body, metatags):
        """Collect items for the template context of a page."""
        # find out relations
        prev = next = None
        parents = []
        rellinks = self.globalcontext['rellinks'][:]
        related = self.relations.get(docname)
        titles = self.env.titles
        if related and related[2]:
            try:
                next = {
                    'link': self.get_relative_uri(docname, related[2]),
                    'title': self.render_partial(titles[related[2]])['title']
                }
                rellinks.append((related[2], next['title'], 'N', _('next')))
            except KeyError:
                next = None
        if related and related[1]:
            try:
                prev = {
                    'link': self.get_relative_uri(docname, related[1]),
                    'title': self.render_partial(titles[related[1]])['title']
                }
                rellinks.append((related[1], prev['title'], 'P', _('previous')))
            except KeyError:
                # the relation is (somehow) not in the TOC tree, handle
                # that gracefully
                prev = None
        while related and related[0]:
            try:
                parents.append(
                    {'link': self.get_relative_uri(docname, related[0]),
                     'title': self.render_partial(titles[related[0]])['title']})
            except KeyError:
                pass
            related = self.relations.get(related[0])
        if parents:
            # remove link to the master file; we have a generic
            # "back to index" link already
            parents.pop()
        parents.reverse()

        # title rendered as HTML
        title = self.env.longtitles.get(docname)
        title = title and self.render_partial(title)['title'] or ''
        # the name for the copied source
        sourcename = self.config.html_copy_source and docname + '.txt' or ''

        # metadata for the document
        meta = self.env.metadata.get(docname)

        # Suffix for the document
        source_suffix = '.' + self.env.doc2path(docname).split('.')[-1]

        # local TOC and global TOC tree
        self_toc = self.env.get_toc_for(docname, self)
        toc = self.render_partial(self_toc)['fragment']

        return dict(
            parents = parents,
            prev = prev,
            next = next,
            title = title,
            meta = meta,
            body = body,
            metatags = metatags,
            rellinks = rellinks,
            sourcename = sourcename,
            toc = toc,
            # only display a TOC if there's more than one item to show
            display_toc = (self.env.toc_num_entries[docname] > 1),
            page_source_suffix = source_suffix,
        )

    def write_doc(self, docname, doctree):
        destination = StringOutput(encoding='utf-8')
        doctree.settings = self.docsettings

        self.secnumbers = self.env.toc_secnumbers.get(docname, {})
        self.fignumbers = self.env.toc_fignumbers.get(docname, {})
        self.imgpath = relative_uri(self.get_target_uri(docname), '_images')
        self.dlpath = relative_uri(self.get_target_uri(docname), '_downloads')
        self.current_docname = docname
        self.docwriter.write(doctree, destination)
        self.docwriter.assemble_parts()
        body = self.docwriter.parts['fragment']
        metatags = self.docwriter.clean_meta

        ctx = self.get_doc_context(docname, body, metatags)
        self.handle_page(docname, ctx, event_arg=doctree)

    def write_doc_serialized(self, docname, doctree):
        self.imgpath = relative_uri(self.get_target_uri(docname), self.imagedir)
        self.post_process_images(doctree)
        title = self.env.longtitles.get(docname)
        title = title and self.render_partial(title)['title'] or ''
        self.index_page(docname, doctree, title)

    def finish(self):
        self.finish_tasks.add_task(self.gen_indices)
        self.finish_tasks.add_task(self.gen_additional_pages)
        self.finish_tasks.add_task(self.copy_image_files)
        self.finish_tasks.add_task(self.copy_download_files)
        self.finish_tasks.add_task(self.copy_static_files)
        self.finish_tasks.add_task(self.copy_extra_files)
        self.finish_tasks.add_task(self.write_buildinfo)

        # dump the search index
        self.handle_finish()

    def gen_indices(self):
        self.info(bold('generating indices...'), nonl=1)

        # the global general index
        if self.get_builder_config('use_index', 'html'):
            self.write_genindex()

        # the global domain-specific indices
        self.write_domain_indices()

        self.info()

    def gen_additional_pages(self):
        # pages from extensions
        for pagelist in self.app.emit('html-collect-pages'):
            for pagename, context, template in pagelist:
                self.handle_page(pagename, context, template)

        self.info(bold('writing additional pages...'), nonl=1)

        # additional pages from conf.py
        for pagename, template in self.config.html_additional_pages.items():
            self.info(' '+pagename, nonl=1)
            self.handle_page(pagename, {}, template)

        # the search page
        if self.search:
            self.info(' search', nonl=1)
            self.handle_page('search', {}, 'search.html')

        # the opensearch xml file
        if self.config.html_use_opensearch and self.search:
            self.info(' opensearch', nonl=1)
            fn = path.join(self.outdir, '_static', 'opensearch.xml')
            self.handle_page('opensearch', {}, 'opensearch.xml', outfilename=fn)

        self.info()

    def write_genindex(self):
        # the total count of lines for each index letter, used to distribute
        # the entries into two columns
        genindex = self.env.create_index(self)
        indexcounts = []
        for _k, entries in genindex:
            indexcounts.append(sum(1 + len(subitems)
                                   for _, (_, subitems, _) in entries))

        genindexcontext = dict(
            genindexentries = genindex,
            genindexcounts = indexcounts,
            split_index = self.config.html_split_index,
        )
        self.info(' genindex', nonl=1)

        if self.config.html_split_index:
            self.handle_page('genindex', genindexcontext,
                             'genindex-split.html')
            self.handle_page('genindex-all', genindexcontext,
                             'genindex.html')
            for (key, entries), count in zip(genindex, indexcounts):
                ctx = {'key': key, 'entries': entries, 'count': count,
                       'genindexentries': genindex}
                self.handle_page('genindex-' + key, ctx,
                                 'genindex-single.html')
        else:
            self.handle_page('genindex', genindexcontext, 'genindex.html')

    def write_domain_indices(self):
        for indexname, indexcls, content, collapse in self.domain_indices:
            indexcontext = dict(
                indextitle = indexcls.localname,
                content = content,
                collapse_index = collapse,
            )
            self.info(' ' + indexname, nonl=1)
            self.handle_page(indexname, indexcontext, 'domainindex.html')

    def copy_image_files(self):
        # copy image files
        if self.images:
            ensuredir(path.join(self.outdir, self.imagedir))
            for src in self.app.status_iterator(self.images, 'copying images... ',
                                                brown, len(self.images)):
                dest = self.images[src]
                try:
                    copyfile(path.join(self.srcdir, src),
                             path.join(self.outdir, self.imagedir, dest))
                except Exception as err:
                    self.warn('cannot copy image file %r: %s' %
                              (path.join(self.srcdir, src), err))

    def copy_download_files(self):
        def to_relpath(f):
            return relative_path(self.srcdir, f)
        # copy downloadable files
        if self.env.dlfiles:
            ensuredir(path.join(self.outdir, '_downloads'))
            for src in self.app.status_iterator(self.env.dlfiles,
                                                'copying downloadable files... ',
                                                brown, len(self.env.dlfiles),
                                                stringify_func=to_relpath):
                dest = self.env.dlfiles[src][1]
                try:
                    copyfile(path.join(self.srcdir, src),
                             path.join(self.outdir, '_downloads', dest))
                except Exception as err:
                    self.warn('cannot copy downloadable file %r: %s' %
                              (path.join(self.srcdir, src), err))

    def copy_static_files(self):
        # copy static files
        self.info(bold('copying static files... '), nonl=True)
        ensuredir(path.join(self.outdir, '_static'))
        # first, create pygments style file
        f = open(path.join(self.outdir, '_static', 'pygments.css'), 'w')
        f.write(self.highlighter.get_stylesheet())
        f.close()
        # then, copy translations JavaScript file
        if self.config.language is not None:
            jsfile = self._get_translations_js()
            if jsfile:
                copyfile(jsfile, path.join(self.outdir, '_static',
                                           'translations.js'))

        # copy non-minified stemmer JavaScript file
        if self.indexer is not None:
            jsfile = self.indexer.get_js_stemmer_rawcode()
            if jsfile:
                copyfile(jsfile, path.join(self.outdir, '_static', '_stemmer.js'))

        ctx = self.globalcontext.copy()

        # add context items for search function used in searchtools.js_t
        if self.indexer is not None:
            ctx.update(self.indexer.context_for_searchtool())

        # then, copy over theme-supplied static files
        if self.theme:
            themeentries = [path.join(themepath, 'static')
                            for themepath in self.theme.get_dirchain()[::-1]]
            for entry in themeentries:
                copy_static_entry(entry, path.join(self.outdir, '_static'),
                                  self, ctx)
        # then, copy over all user-supplied static files
        staticentries = [path.join(self.confdir, spath)
                         for spath in self.config.html_static_path]
        matchers = compile_matchers(self.config.exclude_patterns)
        for entry in staticentries:
            if not path.exists(entry):
                self.warn('html_static_path entry %r does not exist' % entry)
                continue
            copy_static_entry(entry, path.join(self.outdir, '_static'), self,
                              ctx, exclude_matchers=matchers)
        # copy logo and favicon files if not already in static path
        if self.config.html_logo:
            logobase = path.basename(self.config.html_logo)
            logotarget = path.join(self.outdir, '_static', logobase)
            if not path.isfile(path.join(self.confdir, self.config.html_logo)):
                self.warn('logo file %r does not exist' % self.config.html_logo)
            elif not path.isfile(logotarget):
                copyfile(path.join(self.confdir, self.config.html_logo),
                         logotarget)
        if self.config.html_favicon:
            iconbase = path.basename(self.config.html_favicon)
            icontarget = path.join(self.outdir, '_static', iconbase)
            if not path.isfile(path.join(self.confdir, self.config.html_favicon)):
                self.warn('favicon file %r does not exist' % self.config.html_favicon)
            elif not path.isfile(icontarget):
                copyfile(path.join(self.confdir, self.config.html_favicon),
                         icontarget)
        self.info('done')

    def copy_extra_files(self):
        # copy html_extra_path files
        self.info(bold('copying extra files... '), nonl=True)
        extraentries = [path.join(self.confdir, epath)
                        for epath in self.config.html_extra_path]
        matchers = compile_matchers(self.config.exclude_patterns)
        for entry in extraentries:
            if not path.exists(entry):
                self.warn('html_extra_path entry %r does not exist' % entry)
                continue
            copy_extra_entry(entry, self.outdir, matchers)
        self.info('done')

    def write_buildinfo(self):
        # write build info file
        fp = open(path.join(self.outdir, '.buildinfo'), 'w')
        try:
            fp.write('# Sphinx build info version 1\n'
                     '# This file hashes the configuration used when building'
                     ' these files. When it is not found, a full rebuild will'
                     ' be done.\nconfig: %s\ntags: %s\n' %
                     (self.config_hash, self.tags_hash))
        finally:
            fp.close()

    def cleanup(self):
        # clean up theme stuff
        if self.theme:
            self.theme.cleanup()

    def post_process_images(self, doctree):
        """Pick the best candidate for an image and link down-scaled images to
        their high res version.
        """
        Builder.post_process_images(self, doctree)

        if self.config.html_scaled_image_link:
            for node in doctree.traverse(nodes.image):
                scale_keys = ('scale', 'width', 'height')
                if not any((key in node) for key in scale_keys) or \
                   isinstance(node.parent, nodes.reference):
                    # docutils does unfortunately not preserve the
                    # ``target`` attribute on images, so we need to check
                    # the parent node here.
                    continue
                uri = node['uri']
                reference = nodes.reference('', '', internal=True)
                if uri in self.images:
                    reference['refuri'] = posixpath.join(self.imgpath,
                                                         self.images[uri])
                else:
                    reference['refuri'] = uri
                node.replace_self(reference)
                reference.append(node)

    def load_indexer(self, docnames):
        keep = set(self.env.all_docs) - set(docnames)
        try:
            searchindexfn = path.join(self.outdir, self.searchindex_filename)
            if self.indexer_dumps_unicode:
                f = codecs.open(searchindexfn, 'r', encoding='utf-8')
            else:
                f = open(searchindexfn, 'rb')
            try:
                self.indexer.load(f, self.indexer_format)
            finally:
                f.close()
        except (IOError, OSError, ValueError):
            if keep:
                self.warn('search index couldn\'t be loaded, but not all '
                          'documents will be built: the index will be '
                          'incomplete.')
        # delete all entries for files that will be rebuilt
        self.indexer.prune(keep)

    def index_page(self, pagename, doctree, title):
        # only index pages with title
        if self.indexer is not None and title:
            self.indexer.feed(pagename, title, doctree)

    def _get_local_toctree(self, docname, collapse=True, **kwds):
        if 'includehidden' not in kwds:
            kwds['includehidden'] = False
        return self.render_partial(self.env.get_toctree_for(
            docname, self, collapse, **kwds))['fragment']

    def get_outfilename(self, pagename):
        return path.join(self.outdir, os_path(pagename) + self.out_suffix)

    def add_sidebars(self, pagename, ctx):
        def has_wildcard(pattern):
            return any(char in pattern for char in '*?[')
        sidebars = None
        matched = None
        customsidebar = None
        for pattern, patsidebars in iteritems(self.config.html_sidebars):
            if patmatch(pagename, pattern):
                if matched:
                    if has_wildcard(pattern):
                        # warn if both patterns contain wildcards
                        if has_wildcard(matched):
                            self.warn('page %s matches two patterns in '
                                      'html_sidebars: %r and %r' %
                                      (pagename, matched, pattern))
                        # else the already matched pattern is more specific
                        # than the present one, because it contains no wildcard
                        continue
                matched = pattern
                sidebars = patsidebars
        if sidebars is None:
            # keep defaults
            pass
        elif isinstance(sidebars, string_types):
            # 0.x compatible mode: insert custom sidebar before searchbox
            customsidebar = sidebars
            sidebars = None
        ctx['sidebars'] = sidebars
        ctx['customsidebar'] = customsidebar

    # --------- these are overwritten by the serialization builder

    def get_target_uri(self, docname, typ=None):
        return docname + self.link_suffix

    def handle_page(self, pagename, addctx, templatename='page.html',
                    outfilename=None, event_arg=None):
        ctx = self.globalcontext.copy()
        # current_page_name is backwards compatibility
        ctx['pagename'] = ctx['current_page_name'] = pagename
        default_baseuri = self.get_target_uri(pagename)
        # in the singlehtml builder, default_baseuri still contains an #anchor
        # part, which relative_uri doesn't really like...
        default_baseuri = default_baseuri.rsplit('#', 1)[0]

        def pathto(otheruri, resource=False, baseuri=default_baseuri):
            if resource and '://' in otheruri:
                # allow non-local resources given by scheme
                return otheruri
            elif not resource:
                otheruri = self.get_target_uri(otheruri)
            uri = relative_uri(baseuri, otheruri) or '#'
            return uri
        ctx['pathto'] = pathto
        ctx['hasdoc'] = lambda name: name in self.env.all_docs
        if self.name != 'htmlhelp':
            ctx['encoding'] = encoding = self.config.html_output_encoding
        else:
            ctx['encoding'] = encoding = self.encoding
        ctx['toctree'] = lambda **kw: self._get_local_toctree(pagename, **kw)
        self.add_sidebars(pagename, ctx)
        ctx.update(addctx)

        newtmpl = self.app.emit_firstresult('html-page-context', pagename,
                                            templatename, ctx, event_arg)
        if newtmpl:
            templatename = newtmpl

        try:
            output = self.templates.render(templatename, ctx)
        except UnicodeError:
            self.warn("a Unicode error occurred when rendering the page %s. "
                      "Please make sure all config values that contain "
                      "non-ASCII content are Unicode strings." % pagename)
            return

        if not outfilename:
            outfilename = self.get_outfilename(pagename)
        # outfilename's path is in general different from self.outdir
        ensuredir(path.dirname(outfilename))
        try:
            f = codecs.open(outfilename, 'w', encoding, 'xmlcharrefreplace')
            try:
                f.write(output)
            finally:
                f.close()
        except (IOError, OSError) as err:
            self.warn("error writing file %s: %s" % (outfilename, err))
        if self.copysource and ctx.get('sourcename'):
            # copy the source file for the "show source" link
            source_name = path.join(self.outdir, '_sources',
                                    os_path(ctx['sourcename']))
            ensuredir(path.dirname(source_name))
            copyfile(self.env.doc2path(pagename), source_name)

    def handle_finish(self):
        if self.indexer:
            self.finish_tasks.add_task(self.dump_search_index)
        self.finish_tasks.add_task(self.dump_inventory)

    def dump_inventory(self):
        self.info(bold('dumping object inventory... '), nonl=True)
        f = open(path.join(self.outdir, INVENTORY_FILENAME), 'wb')
        try:
            f.write((u'# Sphinx inventory version 2\n'
                     u'# Project: %s\n'
                     u'# Version: %s\n'
                     u'# The remainder of this file is compressed using zlib.\n'
                     % (self.config.project, self.config.version)).encode('utf-8'))
            compressor = zlib.compressobj(9)
            for domainname, domain in sorted(self.env.domains.items()):
                for name, dispname, type, docname, anchor, prio in \
                        sorted(domain.get_objects()):
                    if anchor.endswith(name):
                        # this can shorten the inventory by as much as 25%
                        anchor = anchor[:-len(name)] + '$'
                    uri = self.get_target_uri(docname)
                    if anchor:
                        uri += '#' + anchor
                    if dispname == name:
                        dispname = u'-'
                    f.write(compressor.compress(
                        (u'%s %s:%s %s %s %s\n' % (name, domainname, type,
                                                   prio, uri, dispname)).encode('utf-8')))
            f.write(compressor.flush())
        finally:
            f.close()
        self.info('done')

    def dump_search_index(self):
        self.info(
            bold('dumping search index in %s ... ' % self.indexer.label()),
            nonl=True)
        self.indexer.prune(self.env.all_docs)
        searchindexfn = path.join(self.outdir, self.searchindex_filename)
        # first write to a temporary file, so that if dumping fails,
        # the existing index won't be overwritten
        if self.indexer_dumps_unicode:
            f = codecs.open(searchindexfn + '.tmp', 'w', encoding='utf-8')
        else:
            f = open(searchindexfn + '.tmp', 'wb')
        try:
            self.indexer.dump(f, self.indexer_format)
        finally:
            f.close()
        movefile(searchindexfn + '.tmp', searchindexfn)
        self.info('done')



[docs]class DirectoryHTMLBuilder(StandaloneHTMLBuilder):
    """
    A StandaloneHTMLBuilder that creates all HTML pages as "index.html" in
    a directory given by their pagename, so that generated URLs don't have
    ``.html`` in them.
    """
    name = 'dirhtml'

    def get_target_uri(self, docname, typ=None):
        if docname == 'index':
            return ''
        if docname.endswith(SEP + 'index'):
            return docname[:-5]  # up to sep
        return docname + SEP

    def get_outfilename(self, pagename):
        if pagename == 'index' or pagename.endswith(SEP + 'index'):
            outfilename = path.join(self.outdir, os_path(pagename) +
                                    self.out_suffix)
        else:
            outfilename = path.join(self.outdir, os_path(pagename),
                                    'index' + self.out_suffix)

        return outfilename

    def prepare_writing(self, docnames):
        StandaloneHTMLBuilder.prepare_writing(self, docnames)
        self.globalcontext['no_search_suffix'] = True



[docs]class SingleFileHTMLBuilder(StandaloneHTMLBuilder):
    """
    A StandaloneHTMLBuilder subclass that puts the whole document tree on one
    HTML page.
    """
    name = 'singlehtml'
    copysource = False

    def get_outdated_docs(self):
        return 'all documents'

    def get_target_uri(self, docname, typ=None):
        if docname in self.env.all_docs:
            # all references are on the same page...
            return self.config.master_doc + self.out_suffix + \
                '#document-' + docname
        else:
            # chances are this is a html_additional_page
            return docname + self.out_suffix

    def get_relative_uri(self, from_, to, typ=None):
        # ignore source
        return self.get_target_uri(to, typ)

    def fix_refuris(self, tree):
        # fix refuris with double anchor
        fname = self.config.master_doc + self.out_suffix
        for refnode in tree.traverse(nodes.reference):
            if 'refuri' not in refnode:
                continue
            refuri = refnode['refuri']
            hashindex = refuri.find('#')
            if hashindex < 0:
                continue
            hashindex = refuri.find('#', hashindex+1)
            if hashindex >= 0:
                refnode['refuri'] = fname + refuri[hashindex:]

    def _get_local_toctree(self, docname, collapse=True, **kwds):
        if 'includehidden' not in kwds:
            kwds['includehidden'] = False
        toctree = self.env.get_toctree_for(docname, self, collapse, **kwds)
        self.fix_refuris(toctree)
        return self.render_partial(toctree)['fragment']

    def assemble_doctree(self):
        master = self.config.master_doc
        tree = self.env.get_doctree(master)
        tree = inline_all_toctrees(self, set(), master, tree, darkgreen, [master])
        tree['docname'] = master
        self.env.resolve_references(tree, master, self)
        self.fix_refuris(tree)
        return tree

    def assemble_toc_secnumbers(self):
        # Assemble toc_secnumbers to resolve section numbers on SingleHTML.
        # Merge all secnumbers to single secnumber.
        #
        # Note: current Sphinx has refid confliction in singlehtml mode.
        #       To avoid the problem, it replaces key of secnumbers to
        #       tuple of docname and refid.
        #
        #       There are related codes in inline_all_toctres() and
        #       HTMLTranslter#add_secnumber().
        new_secnumbers = {}
        for docname, secnums in iteritems(self.env.toc_secnumbers):
            for id, secnum in iteritems(secnums):
                new_secnumbers[(docname, id)] = secnum

        return {self.config.master_doc: new_secnumbers}

    def get_doc_context(self, docname, body, metatags):
        # no relation links...
        toc = self.env.get_toctree_for(self.config.master_doc, self, False)
        # if there is no toctree, toc is None
        if toc:
            self.fix_refuris(toc)
            toc = self.render_partial(toc)['fragment']
            display_toc = True
        else:
            toc = ''
            display_toc = False
        return dict(
            parents = [],
            prev = None,
            next = None,
            docstitle = None,
            title = self.config.html_title,
            meta = None,
            body = body,
            metatags = metatags,
            rellinks = [],
            sourcename = '',
            toc = toc,
            display_toc = display_toc,
        )

    def write(self, *ignored):
        docnames = self.env.all_docs

        self.info(bold('preparing documents... '), nonl=True)
        self.prepare_writing(docnames)
        self.info('done')

        self.info(bold('assembling single document... '), nonl=True)
        doctree = self.assemble_doctree()
        self.env.toc_secnumbers = self.assemble_toc_secnumbers()
        self.info()
        self.info(bold('writing... '), nonl=True)
        self.write_doc_serialized(self.config.master_doc, doctree)
        self.write_doc(self.config.master_doc, doctree)
        self.info('done')

    def finish(self):
        # no indices or search pages are supported
        self.info(bold('writing additional files...'), nonl=1)

        # additional pages from conf.py
        for pagename, template in self.config.html_additional_pages.items():
            self.info(' '+pagename, nonl=1)
            self.handle_page(pagename, {}, template)

        if self.config.html_use_opensearch:
            self.info(' opensearch', nonl=1)
            fn = path.join(self.outdir, '_static', 'opensearch.xml')
            self.handle_page('opensearch', {}, 'opensearch.xml', outfilename=fn)

        self.info()

        self.copy_image_files()
        self.copy_download_files()
        self.copy_static_files()
        self.copy_extra_files()
        self.write_buildinfo()
        self.dump_inventory()



[docs]class SerializingHTMLBuilder(StandaloneHTMLBuilder):
    """
    An abstract builder that serializes the generated HTML.
    """
    #: the serializing implementation to use.  Set this to a module that
    #: implements a `dump`, `load`, `dumps` and `loads` functions
    #: (pickle, simplejson etc.)
    implementation = None
    implementation_dumps_unicode = False
    #: additional arguments for dump()
    additional_dump_args = ()

    #: the filename for the global context file
    globalcontext_filename = None

    supported_image_types = ['image/svg+xml', 'image/png',
                             'image/gif', 'image/jpeg']

    def init(self):
        self.config_hash = ''
        self.tags_hash = ''
        self.imagedir = '_images'
        self.theme = None       # no theme necessary
        self.templates = None   # no template bridge necessary
        self.init_translator_class()
        self.init_highlighter()

    def get_target_uri(self, docname, typ=None):
        if docname == 'index':
            return ''
        if docname.endswith(SEP + 'index'):
            return docname[:-5]  # up to sep
        return docname + SEP

    def dump_context(self, context, filename):
        if self.implementation_dumps_unicode:
            f = codecs.open(filename, 'w', encoding='utf-8')
        else:
            f = open(filename, 'wb')
        try:
            self.implementation.dump(context, f, *self.additional_dump_args)
        finally:
            f.close()

    def handle_page(self, pagename, ctx, templatename='page.html',
                    outfilename=None, event_arg=None):
        ctx['current_page_name'] = pagename
        self.add_sidebars(pagename, ctx)

        if not outfilename:
            outfilename = path.join(self.outdir,
                                    os_path(pagename) + self.out_suffix)

        # we're not taking the return value here, since no template is
        # actually rendered
        self.app.emit('html-page-context', pagename, templatename, ctx, event_arg)

        ensuredir(path.dirname(outfilename))
        self.dump_context(ctx, outfilename)

        # if there is a source file, copy the source file for the
        # "show source" link
        if ctx.get('sourcename'):
            source_name = path.join(self.outdir, '_sources',
                                    os_path(ctx['sourcename']))
            ensuredir(path.dirname(source_name))
            copyfile(self.env.doc2path(pagename), source_name)

    def handle_finish(self):
        # dump the global context
        outfilename = path.join(self.outdir, self.globalcontext_filename)
        self.dump_context(self.globalcontext, outfilename)

        # super here to dump the search index
        StandaloneHTMLBuilder.handle_finish(self)

        # copy the environment file from the doctree dir to the output dir
        # as needed by the web app
        copyfile(path.join(self.doctreedir, ENV_PICKLE_FILENAME),
                 path.join(self.outdir, ENV_PICKLE_FILENAME))

        # touch 'last build' file, used by the web application to determine
        # when to reload its environment and clear the cache
        open(path.join(self.outdir, LAST_BUILD_FILENAME), 'w').close()



[docs]class PickleHTMLBuilder(SerializingHTMLBuilder):
    """
    A Builder that dumps the generated HTML into pickle files.
    """
    implementation = pickle
    implementation_dumps_unicode = False
    additional_dump_args = (pickle.HIGHEST_PROTOCOL,)
    indexer_format = pickle
    indexer_dumps_unicode = False
    name = 'pickle'
    out_suffix = '.fpickle'
    globalcontext_filename = 'globalcontext.pickle'
    searchindex_filename = 'searchindex.pickle'


# compatibility alias
WebHTMLBuilder = PickleHTMLBuilder


[docs]class JSONHTMLBuilder(SerializingHTMLBuilder):
    """
    A builder that dumps the generated HTML into JSON files.
    """
    implementation = jsonimpl
    implementation_dumps_unicode = True
    indexer_format = jsonimpl
    indexer_dumps_unicode = True
    name = 'json'
    out_suffix = '.fjson'
    globalcontext_filename = 'globalcontext.json'
    searchindex_filename = 'searchindex.json'

    def init(self):
        SerializingHTMLBuilder.init(self)





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.builders »
 
      

    


    
      
          
            
  Source code for sphinx.builders.htmlhelp

# -*- coding: utf-8 -*-
"""
    sphinx.builders.htmlhelp
    ~~~~~~~~~~~~~~~~~~~~~~~~

 Build HTML help support files.
 Parts adapted from Python's Doc/tools/prechm.py.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""
from __future__ import print_function

import os
import codecs
from os import path

from docutils import nodes

from sphinx import addnodes
from sphinx.builders.html import StandaloneHTMLBuilder
from sphinx.util.pycompat import htmlescape

Project file (*.hhp) template. 'outname' is the file basename (like
the pythlp in pythlp.hhp); 'version' is the doc version number (like
the 2.2 in Python 2.2).
The magical numbers in the long line under [WINDOWS] set most of the
user-visible features (visible buttons, tabs, etc).
About 0x10384e: This defines the buttons in the help viewer. The
following defns are taken from htmlhelp.h. Not all possibilities
actually work, and not all those that work are available from the Help
Workshop GUI. In particular, the Zoom/Font button works and is not
available from the GUI. The ones we're using are marked with 'x':
#
0x000002 Hide/Show x
0x000004 Back x
0x000008 Forward x
0x000010 Stop
0x000020 Refresh
0x000040 Home x
0x000080 Forward
0x000100 Back
0x000200 Notes
0x000400 Contents
0x000800 Locate x
0x001000 Options x
0x002000 Print x
0x004000 Index
0x008000 Search
0x010000 History
0x020000 Favorites
0x040000 Jump 1
0x080000 Jump 2
0x100000 Zoom/Font x
0x200000 TOC Next
0x400000 TOC Prev

project_template = '''\
[OPTIONS]
Binary TOC=No
Binary Index=No
Compiled file=%(outname)s.chm
Contents file=%(outname)s.hhc
Default Window=%(outname)s
Default topic=index.html
Display compile progress=No
Full text search stop list file=%(outname)s.stp
Full-text search=Yes
Index file=%(outname)s.hhk
Language=%(lcid)#x
Title=%(title)s

[WINDOWS]
%(outname)s="%(title)s","%(outname)s.hhc","%(outname)s.hhk",\
"index.html","index.html",,,,,0x63520,220,0x10384e,[0,0,1024,768],,,,,,,0

[FILES]
'''

contents_header = '''\
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML>
<HEAD>
<meta name="GENERATOR" content="Microsoft® HTML Help Workshop 4.1">
<!-- Sitemap 1.0 -->
</HEAD><BODY>
<OBJECT type="text/site properties">
 <param name="Window Styles" value="0x801227">
 <param name="ImageType" value="Folder">
</OBJECT>

'''

contents_footer = '''\
</BODY></HTML>
'''

object_sitemap = '''\
<OBJECT type="text/sitemap">
 <param name="Name" value="%s">
 <param name="Local" value="%s">
</OBJECT>
'''

List of words the full text search facility shouldn't index. This
becomes file outname.stp. Note that this list must be pretty small!
Different versions of the MS docs claim the file has a maximum size of
256 or 512 bytes (including \r\n at the end of each line).
Note that "and", "or", "not" and "near" are operators in the search
language, so no point indexing them even if we wanted to.
stopwords = """
a and are as at
be but by
for
if in into is it
near no not
of on or
such
that the their then there these they this to
was will with
""".split()

The following list includes only languages supported by Sphinx.
See http://msdn.microsoft.com/en-us/library/ms930130.aspx for more.
chm_locales = {
 # lang: LCID, encoding
 'ca': (0x403, 'cp1252'),
 'cs': (0x405, 'cp1250'),
 'da': (0x406, 'cp1252'),
 'de': (0x407, 'cp1252'),
 'en': (0x409, 'cp1252'),
 'es': (0x40a, 'cp1252'),
 'et': (0x425, 'cp1257'),
 'fa': (0x429, 'cp1256'),
 'fi': (0x40b, 'cp1252'),
 'fr': (0x40c, 'cp1252'),
 'hr': (0x41a, 'cp1250'),
 'hu': (0x40e, 'cp1250'),
 'it': (0x410, 'cp1252'),
 'ja': (0x411, 'cp932'),
 'ko': (0x412, 'cp949'),
 'lt': (0x427, 'cp1257'),
 'lv': (0x426, 'cp1257'),
 'nl': (0x413, 'cp1252'),
 'no_NB': (0x414, 'cp1252'),
 'pl': (0x415, 'cp1250'),
 'pt_BR': (0x416, 'cp1252'),
 'ru': (0x419, 'cp1251'),
 'sk': (0x41b, 'cp1250'),
 'sl': (0x424, 'cp1250'),
 'sv': (0x41d, 'cp1252'),
 'tr': (0x41f, 'cp1254'),
 'uk_UA': (0x422, 'cp1251'),
 'zh_CN': (0x804, 'cp936'),
 'zh_TW': (0x404, 'cp950'),
}

[docs]class HTMLHelpBuilder(StandaloneHTMLBuilder):
 """
 Builder that also outputs Windows HTML help project, contents and
 index files. Adapted from the original Doc/tools/prechm.py.
 """
 name = 'htmlhelp'

 # don't copy the reST source
 copysource = False
 supported_image_types = ['image/png', 'image/gif', 'image/jpeg']

 # don't add links
 add_permalinks = False
 # don't add sidebar etc.
 embedded = True

 # don't generate search index or include search page
 search = False

 lcid = 0x409
 encoding = 'cp1252'

 def init(self):
 StandaloneHTMLBuilder.init(self)
 # the output files for HTML help must be .html only
 self.out_suffix = '.html'
 # determine the correct locale setting
 locale = chm_locales.get(self.config.language)
 if locale is not None:
 self.lcid, self.encoding = locale

 def open_file(self, outdir, basename, mode='w'):
 # open a file with the correct encoding for the selected language
 return codecs.open(path.join(outdir, basename), mode,
 self.encoding, 'xmlcharrefreplace')

 def handle_finish(self):
 self.build_hhx(self.outdir, self.config.htmlhelp_basename)

 def build_hhx(self, outdir, outname):
 self.info('dumping stopword list...')
 f = self.open_file(outdir, outname+'.stp')
 try:
 for word in sorted(stopwords):
 print(word, file=f)
 finally:
 f.close()

 self.info('writing project file...')
 f = self.open_file(outdir, outname+'.hhp')
 try:
 f.write(project_template % {'outname': outname,
 'title': self.config.html_title,
 'version': self.config.version,
 'project': self.config.project,
 'lcid': self.lcid})
 if not outdir.endswith(os.sep):
 outdir += os.sep
 olen = len(outdir)
 for root, dirs, files in os.walk(outdir):
 staticdir = root.startswith(path.join(outdir, '_static'))
 for fn in files:
 if (staticdir and not fn.endswith('.js')) or \
 fn.endswith('.html'):
 print(path.join(root, fn)[olen:].replace(os.sep, '\\'),
 file=f)
 finally:
 f.close()

 self.info('writing TOC file...')
 f = self.open_file(outdir, outname+'.hhc')
 try:
 f.write(contents_header)
 # special books
 f.write(' ' + object_sitemap % (self.config.html_short_title,
 'index.html'))
 for indexname, indexcls, content, collapse in self.domain_indices:
 f.write(' ' + object_sitemap % (indexcls.localname,
 '%s.html' % indexname))
 # the TOC
 tocdoc = self.env.get_and_resolve_doctree(
 self.config.master_doc, self, prune_toctrees=False)

 def write_toc(node, ullevel=0):
 if isinstance(node, nodes.list_item):
 f.write(' ')
 for subnode in node:
 write_toc(subnode, ullevel)
 elif isinstance(node, nodes.reference):
 link = node['refuri']
 title = htmlescape(node.astext()).replace('"', '"')
 f.write(object_sitemap % (title, link))
 elif isinstance(node, nodes.bullet_list):
 if ullevel != 0:
 f.write('\n')
 for subnode in node:
 write_toc(subnode, ullevel+1)
 if ullevel != 0:
 f.write('\n')
 elif isinstance(node, addnodes.compact_paragraph):
 for subnode in node:
 write_toc(subnode, ullevel)

 def istoctree(node):
 return isinstance(node, addnodes.compact_paragraph) and \
 'toctree' in node
 for node in tocdoc.traverse(istoctree):
 write_toc(node)
 f.write(contents_footer)
 finally:
 f.close()

 self.info('writing index file...')
 index = self.env.create_index(self)
 f = self.open_file(outdir, outname+'.hhk')
 try:
 f.write('\n')

 def write_index(title, refs, subitems):
 def write_param(name, value):
 item = ' <param name="%s" value="%s">\n' % \
 (name, value)
 f.write(item)
 title = htmlescape(title)
 f.write(' <OBJECT type="text/sitemap">\n')
 write_param('Keyword', title)
 if len(refs) == 0:
 write_param('See Also', title)
 elif len(refs) == 1:
 write_param('Local', refs[0][1])
 else:
 for i, ref in enumerate(refs):
 # XXX: better title?
 write_param('Name', '[%d] %s' % (i, ref[1]))
 write_param('Local', ref[1])
 f.write('</OBJECT>\n')
 if subitems:
 f.write(' ')
 for subitem in subitems:
 write_index(subitem[0], subitem[1], [])
 f.write('')
 for (key, group) in index:
 for title, (refs, subitems, key_) in group:
 write_index(title, refs, subitems)
 f.write('\n')
 finally:
 f.close()

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.builders »

 Source code for sphinx.builders.latex

-*- coding: utf-8 -*-
"""
 sphinx.builders.latex
    ~~~~~~~~~~~~~~~~~~~~~

    LaTeX builder.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import os
from os import path
import warnings

from six import iteritems
from docutils import nodes
from docutils.io import FileOutput
from docutils.utils import new_document
from docutils.frontend import OptionParser

from sphinx import package_dir, addnodes
from sphinx.util import texescape
from sphinx.errors import SphinxError
from sphinx.locale import _
from sphinx.builders import Builder
from sphinx.environment import NoUri
from sphinx.util.nodes import inline_all_toctrees
from sphinx.util.osutil import SEP, copyfile
from sphinx.util.console import bold, darkgreen
from sphinx.writers.latex import LaTeXWriter


[docs]class LaTeXBuilder(Builder):
    """
    Builds LaTeX output to create PDF.
    """
    name = 'latex'
    format = 'latex'
    supported_image_types = ['application/pdf', 'image/png', 'image/jpeg']
    usepackages = []

    def init(self):
        self.docnames = []
        self.document_data = []
        texescape.init()
        self.check_options()

    def check_options(self):
        if self.config.latex_toplevel_sectioning not in (None, 'part', 'chapter', 'section'):
            self.warn('invalid latex_toplevel_sectioning, ignored: %s' %
                      self.config.latex_top_sectionlevel)
            self.config.latex_top_sectionlevel = None

        if self.config.latex_use_parts:
            warnings.warn('latex_use_parts will be removed at Sphinx-1.5. '
                          'Use latex_toplevel_sectioning instead.',
                          DeprecationWarning)

            if self.config.latex_toplevel_sectioning:
                self.warn('latex_use_parts conflicts with latex_toplevel_sectioning, ignored.')

    def get_outdated_docs(self):
        return 'all documents'  # for now

    def get_target_uri(self, docname, typ=None):
        if docname not in self.docnames:
            raise NoUri
        else:
            return '%' + docname

    def get_relative_uri(self, from_, to, typ=None):
        # ignore source path
        return self.get_target_uri(to, typ)

    def init_document_data(self):
        preliminary_document_data = [list(x) for x in self.config.latex_documents]
        if not preliminary_document_data:
            self.warn('no "latex_documents" config value found; no documents '
                      'will be written')
            return
        # assign subdirs to titles
        self.titles = []
        for entry in preliminary_document_data:
            docname = entry[0]
            if docname not in self.env.all_docs:
                self.warn('"latex_documents" config value references unknown '
                          'document %s' % docname)
                continue
            self.document_data.append(entry)
            if docname.endswith(SEP+'index'):
                docname = docname[:-5]
            self.titles.append((docname, entry[2]))

    def write(self, *ignored):
        docwriter = LaTeXWriter(self)
        docsettings = OptionParser(
            defaults=self.env.settings,
            components=(docwriter,),
            read_config_files=True).get_default_values()

        self.init_document_data()

        for entry in self.document_data:
            docname, targetname, title, author, docclass = entry[:5]
            toctree_only = False
            if len(entry) > 5:
                toctree_only = entry[5]
            destination = FileOutput(
                destination_path=path.join(self.outdir, targetname),
                encoding='utf-8')
            self.info("processing " + targetname + "... ", nonl=1)
            toctrees = self.env.get_doctree(docname).traverse(addnodes.toctree)
            if toctrees:
                if toctrees[0].get('maxdepth') > 0:
                    tocdepth = toctrees[0].get('maxdepth')
                else:
                    tocdepth = None
            else:
                tocdepth = None
            doctree = self.assemble_doctree(
                docname, toctree_only,
                appendices=((docclass != 'howto') and self.config.latex_appendices or []))
            doctree['tocdepth'] = tocdepth
            self.post_process_images(doctree)
            self.info("writing... ", nonl=1)
            doctree.settings = docsettings
            doctree.settings.author = author
            doctree.settings.title = title
            doctree.settings.contentsname = self.get_contentsname(docname)
            doctree.settings.docname = docname
            doctree.settings.docclass = docclass
            docwriter.write(doctree, destination)
            self.info("done")

    def get_contentsname(self, indexfile):
        tree = self.env.get_doctree(indexfile)
        contentsname = None
        for toctree in tree.traverse(addnodes.toctree):
            if 'caption' in toctree:
                contentsname = toctree['caption']
                break

        return contentsname

    def assemble_doctree(self, indexfile, toctree_only, appendices):
        self.docnames = set([indexfile] + appendices)
        self.info(darkgreen(indexfile) + " ", nonl=1)
        tree = self.env.get_doctree(indexfile)
        tree['docname'] = indexfile
        if toctree_only:
            # extract toctree nodes from the tree and put them in a
            # fresh document
            new_tree = new_document('<latex output>')
            new_sect = nodes.section()
            new_sect += nodes.title(u'<Set title in conf.py>',
                                    u'<Set title in conf.py>')
            new_tree += new_sect
            for node in tree.traverse(addnodes.toctree):
                new_sect += node
            tree = new_tree
        largetree = inline_all_toctrees(self, self.docnames, indexfile, tree,
                                        darkgreen, [indexfile])
        largetree['docname'] = indexfile
        for docname in appendices:
            appendix = self.env.get_doctree(docname)
            appendix['docname'] = docname
            largetree.append(appendix)
        self.info()
        self.info("resolving references...")
        self.env.resolve_references(largetree, indexfile, self)
        # resolve :ref:s to distant tex files -- we can't add a cross-reference,
        # but append the document name
        for pendingnode in largetree.traverse(addnodes.pending_xref):
            docname = pendingnode['refdocname']
            sectname = pendingnode['refsectname']
            newnodes = [nodes.emphasis(sectname, sectname)]
            for subdir, title in self.titles:
                if docname.startswith(subdir):
                    newnodes.append(nodes.Text(_(' (in '), _(' (in ')))
                    newnodes.append(nodes.emphasis(title, title))
                    newnodes.append(nodes.Text(')', ')'))
                    break
            else:
                pass
            pendingnode.replace_self(newnodes)
        return largetree

    def finish(self):
        # copy image files
        if self.images:
            self.info(bold('copying images...'), nonl=1)
            for src, dest in iteritems(self.images):
                self.info(' '+src, nonl=1)
                copyfile(path.join(self.srcdir, src),
                         path.join(self.outdir, dest))
            self.info()

        # copy TeX support files from texinputs
        self.info(bold('copying TeX support files...'))
        staticdirname = path.join(package_dir, 'texinputs')
        for filename in os.listdir(staticdirname):
            if not filename.startswith('.'):
                copyfile(path.join(staticdirname, filename),
                         path.join(self.outdir, filename))

        # copy additional files
        if self.config.latex_additional_files:
            self.info(bold('copying additional files...'), nonl=1)
            for filename in self.config.latex_additional_files:
                self.info(' '+filename, nonl=1)
                copyfile(path.join(self.confdir, filename),
                         path.join(self.outdir, path.basename(filename)))
            self.info()

        # the logo is handled differently
        if self.config.latex_logo:
            logobase = path.basename(self.config.latex_logo)
            logotarget = path.join(self.outdir, logobase)
            if not path.isfile(path.join(self.confdir, self.config.latex_logo)):
                raise SphinxError('logo file %r does not exist' % self.config.latex_logo)
            elif not path.isfile(logotarget):
                copyfile(path.join(self.confdir, self.config.latex_logo), logotarget)
        self.info('done')





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.builders »
 
      

    


    
      
          
            
  Source code for sphinx.builders.linkcheck

# -*- coding: utf-8 -*-
"""
    sphinx.builders.linkcheck
    ~~~~~~~~~~~~~~~~~~~~~~~~~

 The CheckExternalLinksBuilder class.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import re
import socket
import codecs
import threading
from os import path

from six.moves import queue
from six.moves.urllib.request import build_opener, Request, HTTPRedirectHandler
from six.moves.urllib.parse import unquote
from six.moves.urllib.error import HTTPError
from six.moves.html_parser import HTMLParser
from docutils import nodes

2015-06-25 barry@python.org. This exception was deprecated in Python 3.3 and
removed in Python 3.5, however for backward compatibility reasons, we're not
going to just remove it. If it doesn't exist, define an exception that will
never be caught but leaves the code in check_anchor() intact.
try:
 from six.moves.html_parser import HTMLParseError
except ImportError:
 class HTMLParseError(Exception):
 pass

from sphinx.builders import Builder
from sphinx.util import encode_uri
from sphinx.util.console import purple, red, darkgreen, darkgray, \
 darkred, turquoise
from sphinx.util.pycompat import TextIOWrapper

class RedirectHandler(HTTPRedirectHandler):
 """A RedirectHandler that records the redirect code we got."""

 def redirect_request(self, req, fp, code, msg, headers, newurl):
 new_req = HTTPRedirectHandler.redirect_request(self, req, fp, code,
 msg, headers, newurl)
 req.redirect_code = code
 return new_req

create an opener that will simulate a browser user-agent
opener = build_opener(RedirectHandler)
opener.addheaders = [('User-agent', 'Mozilla/5.0 (X11; Linux x86_64; rv:25.0) '
 'Gecko/20100101 Firefox/25.0')]

class HeadRequest(Request):
 """Subclass of urllib2.Request that sends a HEAD request."""
 def get_method(self):
 return 'HEAD'

class AnchorCheckParser(HTMLParser):
 """Specialized HTML parser that looks for a specific anchor."""

 def __init__(self, search_anchor):
 HTMLParser.__init__(self)

 self.search_anchor = search_anchor
 self.found = False

 def handle_starttag(self, tag, attrs):
 for key, value in attrs:
 if key in ('id', 'name') and value == self.search_anchor:
 self.found = True

def check_anchor(f, anchor):
 """Reads HTML data from a filelike object 'f' searching for *anchor*.
 Returns True if anchor was found, False otherwise.
 """
 parser = AnchorCheckParser(anchor)
 try:
 # Read file in chunks of 8192 bytes. If we find a matching anchor, we
 # break the loop early in hopes not to have to download the whole thing.
 chunk = f.read(8192)
 while chunk and not parser.found:
 parser.feed(chunk)
 chunk = f.read(8192)
 parser.close()
 except HTMLParseError:
 # HTMLParser is usually pretty good with sloppy HTML, but it tends to
 # choke on EOF. But we're done then anyway.
 pass
 return parser.found

def get_content_charset(f):
 content_type = f.headers.get('content-type')
 if content_type:
 params = (p.strip() for p in content_type.split(';')[1:])
 for param in params:
 if param.startswith('charset='):
 return param[8:]

 return None

[docs]class CheckExternalLinksBuilder(Builder):
 """
 Checks for broken external links.
 """
 name = 'linkcheck'

 def init(self):
 self.to_ignore = [re.compile(x) for x in self.app.config.linkcheck_ignore]
 self.good = set()
 self.broken = {}
 self.redirected = {}
 # set a timeout for non-responding servers
 socket.setdefaulttimeout(5.0)
 # create output file
 open(path.join(self.outdir, 'output.txt'), 'w').close()

 # create queues and worker threads
 self.wqueue = queue.Queue()
 self.rqueue = queue.Queue()
 self.workers = []
 for i in range(self.app.config.linkcheck_workers):
 thread = threading.Thread(target=self.check_thread)
 thread.setDaemon(True)
 thread.start()
 self.workers.append(thread)

 def check_thread(self):
 kwargs = {}
 if self.app.config.linkcheck_timeout:
 kwargs['timeout'] = self.app.config.linkcheck_timeout

 def check_uri():
 # split off anchor
 if '#' in uri:
 req_url, anchor = uri.split('#', 1)
 else:
 req_url = uri
 anchor = None

 # handle non-ASCII URIs
 try:
 req_url.encode('ascii')
 except UnicodeError:
 req_url = encode_uri(req_url)

 try:
 if anchor and self.app.config.linkcheck_anchors and \
 not anchor.startswith('!'):
 # Read the whole document and see if #anchor exists
 # (Anchors starting with ! are ignored since they are
 # commonly used for dynamic pages)
 req = Request(req_url)
 f = opener.open(req, **kwargs)
 encoding = 'utf-8'
 if hasattr(f.headers, 'get_content_charset'):
 encoding = f.headers.get_content_charset() or encoding
 else:
 encoding = get_content_charset(f) or encoding
 found = check_anchor(TextIOWrapper(f, encoding),
 unquote(anchor))
 f.close()

 if not found:
 raise Exception("Anchor '%s' not found" % anchor)
 else:
 try:
 # try a HEAD request, which should be easier on
 # the server and the network
 req = HeadRequest(req_url)
 f = opener.open(req, **kwargs)
 f.close()
 except HTTPError as err:
 if err.code != 405:
 raise
 # retry with GET if that fails, some servers
 # don't like HEAD requests and reply with 405
 req = Request(req_url)
 f = opener.open(req, **kwargs)
 f.close()
 except HTTPError as err:
 if err.code == 401:
 # We'll take "Unauthorized" as working.
 return 'working', ' - unauthorized', 0
 else:
 return 'broken', str(err), 0
 except Exception as err:
 return 'broken', str(err), 0
 if f.url.rstrip('/') == req_url.rstrip('/'):
 return 'working', '', 0
 else:
 new_url = f.url
 if anchor:
 new_url += '#' + anchor
 code = getattr(req, 'redirect_code', 0)
 return 'redirected', new_url, code

 def check():
 # check for various conditions without bothering the network
 if len(uri) == 0 or uri.startswith(('#', 'mailto:', 'ftp:')):
 return 'unchecked', '', 0
 elif not uri.startswith(('http:', 'https:')):
 return 'local', '', 0
 elif uri in self.good:
 return 'working', 'old', 0
 elif uri in self.broken:
 return 'broken', self.broken[uri], 0
 elif uri in self.redirected:
 return 'redirected', self.redirected[uri][0], self.redirected[uri][1]
 for rex in self.to_ignore:
 if rex.match(uri):
 return 'ignored', '', 0

 # need to actually check the URI
 for _ in range(self.app.config.linkcheck_retries):
 status, info, code = check_uri()
 if status != "broken":
 break

 if status == "working":
 self.good.add(uri)
 elif status == "broken":
 self.broken[uri] = info
 elif status == "redirected":
 self.redirected[uri] = (info, code)

 return (status, info, code)

 while True:
 uri, docname, lineno = self.wqueue.get()
 if uri is None:
 break
 status, info, code = check()
 self.rqueue.put((uri, docname, lineno, status, info, code))

 def process_result(self, result):
 uri, docname, lineno, status, info, code = result
 if status == 'unchecked':
 return
 if status == 'working' and info == 'old':
 return
 if lineno:
 self.info('(line %4d) ' % lineno, nonl=1)
 if status == 'ignored':
 self.info(darkgray('-ignored- ') + uri)
 elif status == 'local':
 self.info(darkgray('-local- ') + uri)
 self.write_entry('local', docname, lineno, uri)
 elif status == 'working':
 self.info(darkgreen('ok ') + uri + info)
 elif status == 'broken':
 self.write_entry('broken', docname, lineno, uri + ': ' + info)
 if self.app.quiet or self.app.warningiserror:
 self.warn('broken link: %s' % uri,
 '%s:%s' % (self.env.doc2path(docname), lineno))
 else:
 self.info(red('broken ') + uri + red(' - ' + info))
 elif status == 'redirected':
 text, color = {
 301: ('permanently', darkred),
 302: ('with Found', purple),
 303: ('with See Other', purple),
 307: ('temporarily', turquoise),
 0: ('with unknown code', purple),
 }[code]
 self.write_entry('redirected ' + text, docname, lineno,
 uri + ' to ' + info)
 self.info(color('redirect ') + uri + color(' - ' + text + ' to ' + info))

 def get_target_uri(self, docname, typ=None):
 return ''

 def get_outdated_docs(self):
 return self.env.found_docs

 def prepare_writing(self, docnames):
 return

 def write_doc(self, docname, doctree):
 self.info()
 n = 0
 for node in doctree.traverse(nodes.reference):
 if 'refuri' not in node:
 continue
 uri = node['refuri']
 lineno = None
 while lineno is None:
 node = node.parent
 if node is None:
 break
 lineno = node.line
 self.wqueue.put((uri, docname, lineno), False)
 n += 1
 done = 0
 while done < n:
 self.process_result(self.rqueue.get())
 done += 1

 if self.broken:
 self.app.statuscode = 1

 def write_entry(self, what, docname, line, uri):
 output = codecs.open(path.join(self.outdir, 'output.txt'), 'a', 'utf-8')
 output.write("%s:%s: [%s] %s\n" % (self.env.doc2path(docname, None),
 line, what, uri))
 output.close()

 def finish(self):
 for worker in self.workers:
 self.wqueue.put((None, None, None), False)

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.builders »

 Source code for sphinx.builders.manpage

-*- coding: utf-8 -*-
"""
 sphinx.builders.manpage
    ~~~~~~~~~~~~~~~~~~~~~~~

    Manual pages builder.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

from os import path

from six import string_types
from docutils.io import FileOutput
from docutils.frontend import OptionParser

from sphinx import addnodes
from sphinx.builders import Builder
from sphinx.environment import NoUri
from sphinx.util.nodes import inline_all_toctrees
from sphinx.util.console import bold, darkgreen
from sphinx.writers.manpage import ManualPageWriter


[docs]class ManualPageBuilder(Builder):
    """
    Builds groff output in manual page format.
    """
    name = 'man'
    format = 'man'
    supported_image_types = []

    def init(self):
        if not self.config.man_pages:
            self.warn('no "man_pages" config value found; no manual pages '
                      'will be written')

    def get_outdated_docs(self):
        return 'all manpages'  # for now

    def get_target_uri(self, docname, typ=None):
        if typ == 'token':
            return ''
        raise NoUri

    def write(self, *ignored):
        docwriter = ManualPageWriter(self)
        docsettings = OptionParser(
            defaults=self.env.settings,
            components=(docwriter,),
            read_config_files=True).get_default_values()

        self.info(bold('writing... '), nonl=True)

        for info in self.config.man_pages:
            docname, name, description, authors, section = info
            if isinstance(authors, string_types):
                if authors:
                    authors = [authors]
                else:
                    authors = []

            targetname = '%s.%s' % (name, section)
            self.info(darkgreen(targetname) + ' { ', nonl=True)
            destination = FileOutput(
                destination_path=path.join(self.outdir, targetname),
                encoding='utf-8')

            tree = self.env.get_doctree(docname)
            docnames = set()
            largetree = inline_all_toctrees(self, docnames, docname, tree,
                                            darkgreen, [docname])
            self.info('} ', nonl=True)
            self.env.resolve_references(largetree, docname, self)
            # remove pending_xref nodes
            for pendingnode in largetree.traverse(addnodes.pending_xref):
                pendingnode.replace_self(pendingnode.children)

            largetree.settings = docsettings
            largetree.settings.title = name
            largetree.settings.subtitle = description
            largetree.settings.authors = authors
            largetree.settings.section = section

            docwriter.write(largetree, destination)
        self.info()

    def finish(self):
        pass





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.builders »
 
      

    


    
      
          
            
  Source code for sphinx.builders.qthelp

# -*- coding: utf-8 -*-
"""
    sphinx.builders.qthelp
    ~~~~~~~~~~~~~~~~~~~~~~

 Build input files for the Qt collection generator.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import os
import re
import codecs
import posixpath
from os import path

from six import text_type
from docutils import nodes

from sphinx import addnodes
from sphinx.builders.html import StandaloneHTMLBuilder
from sphinx.util import force_decode
from sphinx.util.pycompat import htmlescape

_idpattern = re.compile(
 r'(?P<title>.+) (\((class in)?(?P<id>[\w\.]+)((?P<descr>\w+))?\))$')

Qt Help Collection Project (.qhcp).
Is the input file for the help collection generator.
It contains references to compressed help files which should be
included in the collection.
It may contain various other information for customizing Qt Assistant.
collection_template = u'''\
<?xml version="1.0" encoding="utf-8" ?>
<QHelpCollectionProject version="1.0">
 <assistant>
 <title>%(title)s</title>
 <homePage>%(homepage)s</homePage>
 <startPage>%(startpage)s</startPage>
 </assistant>
 <docFiles>
 <generate>
 <file>
 <input>%(outname)s.qhp</input>
 <output>%(outname)s.qch</output>
 </file>
 </generate>
 <register>
 <file>%(outname)s.qch</file>
 </register>
 </docFiles>
</QHelpCollectionProject>
'''

Qt Help Project (.qhp)
This is the input file for the help generator.
It contains the table of contents, indices and references to the
actual documentation files (*.html).
In addition it defines a unique namespace for the documentation.
project_template = u'''\
<?xml version="1.0" encoding="utf-8" ?>
<QtHelpProject version="1.0">
 <namespace>%(namespace)s</namespace>
 <virtualFolder>doc</virtualFolder>
 <customFilter name="%(project)s %(version)s">
 <filterAttribute>%(outname)s</filterAttribute>
 <filterAttribute>%(version)s</filterAttribute>
 </customFilter>
 <filterSection>
 <filterAttribute>%(outname)s</filterAttribute>
 <filterAttribute>%(version)s</filterAttribute>
 <toc>
 <section title="%(title)s" ref="%(masterdoc)s.html">
%(sections)s
 </section>
 </toc>
 <keywords>
%(keywords)s
 </keywords>
 <files>
%(files)s
 </files>
 </filterSection>
</QtHelpProject>
'''

section_template = '<section title="%(title)s" ref="%(ref)s"/>'
file_template = ' '*12 + '<file>%(filename)s</file>'

[docs]class QtHelpBuilder(StandaloneHTMLBuilder):
 """
 Builder that also outputs Qt help project, contents and index files.
 """
 name = 'qthelp'

 # don't copy the reST source
 copysource = False
 supported_image_types = ['image/svg+xml', 'image/png', 'image/gif',
 'image/jpeg']

 # don't add links
 add_permalinks = False
 # don't add sidebar etc.
 embedded = True

 def init(self):
 StandaloneHTMLBuilder.init(self)
 # the output files for HTML help must be .html only
 self.out_suffix = '.html'
 # self.config.html_style = 'traditional.css'

 def handle_finish(self):
 self.build_qhp(self.outdir, self.config.qthelp_basename)

 def build_qhp(self, outdir, outname):
 self.info('writing project file...')

 # sections
 tocdoc = self.env.get_and_resolve_doctree(self.config.master_doc, self,
 prune_toctrees=False)

 def istoctree(node):
 return isinstance(node, addnodes.compact_paragraph) and \
 'toctree' in node
 sections = []
 for node in tocdoc.traverse(istoctree):
 sections.extend(self.write_toc(node))

 for indexname, indexcls, content, collapse in self.domain_indices:
 item = section_template % {'title': indexcls.localname,
 'ref': '%s.html' % indexname}
 sections.append(' ' * 4 * 4 + item)
 # sections may be unicode strings or byte strings, we have to make sure
 # they are all unicode strings before joining them
 new_sections = []
 for section in sections:
 if not isinstance(section, text_type):
 new_sections.append(force_decode(section, None))
 else:
 new_sections.append(section)
 sections = u'\n'.join(new_sections)

 # keywords
 keywords = []
 index = self.env.create_index(self, group_entries=False)
 for (key, group) in index:
 for title, (refs, subitems, key_) in group:
 keywords.extend(self.build_keywords(title, refs, subitems))
 keywords = u'\n'.join(keywords)

 # files
 if not outdir.endswith(os.sep):
 outdir += os.sep
 olen = len(outdir)
 projectfiles = []
 staticdir = path.join(outdir, '_static')
 imagesdir = path.join(outdir, self.imagedir)
 for root, dirs, files in os.walk(outdir):
 resourcedir = root.startswith(staticdir) or \
 root.startswith(imagesdir)
 for fn in files:
 if (resourcedir and not fn.endswith('.js')) or \
 fn.endswith('.html'):
 filename = path.join(root, fn)[olen:]
 projectfiles.append(file_template %
 {'filename': htmlescape(filename)})
 projectfiles = '\n'.join(projectfiles)

 # it seems that the "namespace" may not contain non-alphanumeric
 # characters, and more than one successive dot, or leading/trailing
 # dots, are also forbidden
 nspace = 'org.sphinx.%s.%s' % (outname, self.config.version)
 nspace = re.sub('[^a-zA-Z0-9.]', '', nspace)
 nspace = re.sub(r'\.+', '.', nspace).strip('.')
 nspace = nspace.lower()

 # write the project file
 f = codecs.open(path.join(outdir, outname+'.qhp'), 'w', 'utf-8')
 try:
 f.write(project_template % {
 'outname': htmlescape(outname),
 'title': htmlescape(self.config.html_title),
 'version': htmlescape(self.config.version),
 'project': htmlescape(self.config.project),
 'namespace': htmlescape(nspace),
 'masterdoc': htmlescape(self.config.master_doc),
 'sections': sections,
 'keywords': keywords,
 'files': projectfiles})
 finally:
 f.close()

 homepage = 'qthelp://' + posixpath.join(
 nspace, 'doc', self.get_target_uri(self.config.master_doc))
 startpage = 'qthelp://' + posixpath.join(nspace, 'doc', 'index.html')

 self.info('writing collection project file...')
 f = codecs.open(path.join(outdir, outname+'.qhcp'), 'w', 'utf-8')
 try:
 f.write(collection_template % {
 'outname': htmlescape(outname),
 'title': htmlescape(self.config.html_short_title),
 'homepage': htmlescape(homepage),
 'startpage': htmlescape(startpage)})
 finally:
 f.close()

 def isdocnode(self, node):
 if not isinstance(node, nodes.list_item):
 return False
 if len(node.children) != 2:
 return False
 if not isinstance(node.children[0], addnodes.compact_paragraph):
 return False
 if not isinstance(node.children[0][0], nodes.reference):
 return False
 if not isinstance(node.children[1], nodes.bullet_list):
 return False
 return True

 def write_toc(self, node, indentlevel=4):
 # XXX this should return a Unicode string, not a bytestring
 parts = []
 if self.isdocnode(node):
 refnode = node.children[0][0]
 link = refnode['refuri']
 title = htmlescape(refnode.astext()).replace('"', '"')
 item = '<section title="%(title)s" ref="%(ref)s">' % \
 {'title': title, 'ref': link}
 parts.append(' '*4*indentlevel + item)
 for subnode in node.children[1]:
 parts.extend(self.write_toc(subnode, indentlevel+1))
 parts.append(' '*4*indentlevel + '</section>')
 elif isinstance(node, nodes.list_item):
 for subnode in node:
 parts.extend(self.write_toc(subnode, indentlevel))
 elif isinstance(node, nodes.reference):
 link = node['refuri']
 title = htmlescape(node.astext()).replace('"', '"')
 item = section_template % {'title': title, 'ref': link}
 item = u' ' * 4 * indentlevel + item
 parts.append(item.encode('ascii', 'xmlcharrefreplace'))
 elif isinstance(node, nodes.bullet_list):
 for subnode in node:
 parts.extend(self.write_toc(subnode, indentlevel))
 elif isinstance(node, addnodes.compact_paragraph):
 for subnode in node:
 parts.extend(self.write_toc(subnode, indentlevel))

 return parts

 def keyword_item(self, name, ref):
 matchobj = _idpattern.match(name)
 if matchobj:
 groupdict = matchobj.groupdict()
 shortname = groupdict['title']
 id = groupdict.get('id')
 # descr = groupdict.get('descr')
 if shortname.endswith('()'):
 shortname = shortname[:-2]
 id = '%s.%s' % (id, shortname)
 else:
 id = None

 if id:
 item = ' '*12 + '<keyword name="%s" id="%s" ref="%s"/>' % (
 name, id, ref[1])
 else:
 item = ' '*12 + '<keyword name="%s" ref="%s"/>' % (name, ref[1])
 item.encode('ascii', 'xmlcharrefreplace')
 return item

 def build_keywords(self, title, refs, subitems):
 keywords = []

 title = htmlescape(title)
 # if len(refs) == 0: # XXX
 # write_param('See Also', title)
 if len(refs) == 1:
 keywords.append(self.keyword_item(title, refs[0]))
 elif len(refs) > 1:
 for i, ref in enumerate(refs): # XXX
 # item = (' '*12 +
 # '<keyword name="%s [%d]" ref="%s"/>' % (
 # title, i, ref))
 # item.encode('ascii', 'xmlcharrefreplace')
 # keywords.append(item)
 keywords.append(self.keyword_item(title, ref))

 if subitems:
 for subitem in subitems:
 keywords.extend(self.build_keywords(subitem[0], subitem[1], []))

 return keywords

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.builders »

 Source code for sphinx.builders.texinfo

-*- coding: utf-8 -*-
"""
 sphinx.builders.texinfo
    ~~~~~~~~~~~~~~~~~~~~~~~

    Texinfo builder.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

from os import path

from six import iteritems
from docutils import nodes
from docutils.io import FileOutput
from docutils.utils import new_document
from docutils.frontend import OptionParser

from sphinx import addnodes
from sphinx.locale import _
from sphinx.builders import Builder
from sphinx.environment import NoUri
from sphinx.util.nodes import inline_all_toctrees
from sphinx.util.osutil import SEP, copyfile
from sphinx.util.console import bold, darkgreen
from sphinx.writers.texinfo import TexinfoWriter


TEXINFO_MAKEFILE = '''\
# Makefile for Sphinx Texinfo output

infodir ?= /usr/share/info

MAKEINFO = makeinfo --no-split
MAKEINFO_html = makeinfo --no-split --html
MAKEINFO_plaintext = makeinfo --no-split --plaintext
TEXI2PDF = texi2pdf --batch --expand
INSTALL_INFO = install-info

ALLDOCS = $(basename $(wildcard *.texi))

all: info
info: $(addsuffix .info,$(ALLDOCS))
plaintext: $(addsuffix .txt,$(ALLDOCS))
html: $(addsuffix .html,$(ALLDOCS))
pdf: $(addsuffix .pdf,$(ALLDOCS))

install-info: info
\tfor f in *.info; do \\
\t  cp -t $(infodir) "$$f" && \\
\t  $(INSTALL_INFO) --info-dir=$(infodir) "$$f" ; \\
\tdone

uninstall-info: info
\tfor f in *.info; do \\
\t  rm -f "$(infodir)/$$f"  ; \\
\t  $(INSTALL_INFO) --delete --info-dir=$(infodir) "$$f" ; \\
\tdone

%.info: %.texi
\t$(MAKEINFO) -o '$@' '$<'

%.txt: %.texi
\t$(MAKEINFO_plaintext) -o '$@' '$<'

%.html: %.texi
\t$(MAKEINFO_html) -o '$@' '$<'

%.pdf: %.texi
\t-$(TEXI2PDF) '$<'
\t-$(TEXI2PDF) '$<'
\t-$(TEXI2PDF) '$<'

clean:
\trm -f *.info *.pdf *.txt *.html
\trm -f *.log *.ind *.aux *.toc *.syn *.idx *.out *.ilg *.pla *.ky *.pg
\trm -f *.vr *.tp *.fn *.fns *.def *.defs *.cp *.cps *.ge *.ges *.mo

.PHONY: all info plaintext html pdf install-info uninstall-info clean
'''


[docs]class TexinfoBuilder(Builder):
    """
    Builds Texinfo output to create Info documentation.
    """
    name = 'texinfo'
    format = 'texinfo'
    supported_image_types = ['image/png', 'image/jpeg',
                             'image/gif']

    def init(self):
        self.docnames = []
        self.document_data = []

    def get_outdated_docs(self):
        return 'all documents'  # for now

    def get_target_uri(self, docname, typ=None):
        if docname not in self.docnames:
            raise NoUri
        else:
            return '%' + docname

    def get_relative_uri(self, from_, to, typ=None):
        # ignore source path
        return self.get_target_uri(to, typ)

    def init_document_data(self):
        preliminary_document_data = [list(x) for x in self.config.texinfo_documents]
        if not preliminary_document_data:
            self.warn('no "texinfo_documents" config value found; no documents '
                      'will be written')
            return
        # assign subdirs to titles
        self.titles = []
        for entry in preliminary_document_data:
            docname = entry[0]
            if docname not in self.env.all_docs:
                self.warn('"texinfo_documents" config value references unknown '
                          'document %s' % docname)
                continue
            self.document_data.append(entry)
            if docname.endswith(SEP+'index'):
                docname = docname[:-5]
            self.titles.append((docname, entry[2]))

    def write(self, *ignored):
        self.init_document_data()
        for entry in self.document_data:
            docname, targetname, title, author = entry[:4]
            targetname += '.texi'
            direntry = description = category = ''
            if len(entry) > 6:
                direntry, description, category = entry[4:7]
            toctree_only = False
            if len(entry) > 7:
                toctree_only = entry[7]
            destination = FileOutput(
                destination_path=path.join(self.outdir, targetname),
                encoding='utf-8')
            self.info("processing " + targetname + "... ", nonl=1)
            doctree = self.assemble_doctree(
                docname, toctree_only,
                appendices=(self.config.texinfo_appendices or []))
            self.info("writing... ", nonl=1)
            self.post_process_images(doctree)
            docwriter = TexinfoWriter(self)
            settings = OptionParser(
                defaults=self.env.settings,
                components=(docwriter,),
                read_config_files=True).get_default_values()
            settings.author = author
            settings.title = title
            settings.texinfo_filename = targetname[:-5] + '.info'
            settings.texinfo_elements = self.config.texinfo_elements
            settings.texinfo_dir_entry = direntry or ''
            settings.texinfo_dir_category = category or ''
            settings.texinfo_dir_description = description or ''
            settings.docname = docname
            doctree.settings = settings
            docwriter.write(doctree, destination)
            self.info("done")

    def assemble_doctree(self, indexfile, toctree_only, appendices):
        self.docnames = set([indexfile] + appendices)
        self.info(darkgreen(indexfile) + " ", nonl=1)
        tree = self.env.get_doctree(indexfile)
        tree['docname'] = indexfile
        if toctree_only:
            # extract toctree nodes from the tree and put them in a
            # fresh document
            new_tree = new_document('<texinfo output>')
            new_sect = nodes.section()
            new_sect += nodes.title(u'<Set title in conf.py>',
                                    u'<Set title in conf.py>')
            new_tree += new_sect
            for node in tree.traverse(addnodes.toctree):
                new_sect += node
            tree = new_tree
        largetree = inline_all_toctrees(self, self.docnames, indexfile, tree,
                                        darkgreen, [indexfile])
        largetree['docname'] = indexfile
        for docname in appendices:
            appendix = self.env.get_doctree(docname)
            appendix['docname'] = docname
            largetree.append(appendix)
        self.info()
        self.info("resolving references...")
        self.env.resolve_references(largetree, indexfile, self)
        # TODO: add support for external :ref:s
        for pendingnode in largetree.traverse(addnodes.pending_xref):
            docname = pendingnode['refdocname']
            sectname = pendingnode['refsectname']
            newnodes = [nodes.emphasis(sectname, sectname)]
            for subdir, title in self.titles:
                if docname.startswith(subdir):
                    newnodes.append(nodes.Text(_(' (in '), _(' (in ')))
                    newnodes.append(nodes.emphasis(title, title))
                    newnodes.append(nodes.Text(')', ')'))
                    break
            else:
                pass
            pendingnode.replace_self(newnodes)
        return largetree

    def finish(self):
        # copy image files
        if self.images:
            self.info(bold('copying images...'), nonl=1)
            for src, dest in iteritems(self.images):
                self.info(' '+src, nonl=1)
                copyfile(path.join(self.srcdir, src),
                         path.join(self.outdir, dest))
            self.info()

        self.info(bold('copying Texinfo support files... '), nonl=True)
        # copy Makefile
        fn = path.join(self.outdir, 'Makefile')
        self.info(fn, nonl=1)
        try:
            mkfile = open(fn, 'w')
            try:
                mkfile.write(TEXINFO_MAKEFILE)
            finally:
                mkfile.close()
        except (IOError, OSError) as err:
            self.warn("error writing file %s: %s" % (fn, err))
        self.info(' done')





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.builders »
 
      

    


    
      
          
            
  Source code for sphinx.builders.text

# -*- coding: utf-8 -*-
"""
    sphinx.builders.text
    ~~~~~~~~~~~~~~~~~~~~

 Plain-text Sphinx builder.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import codecs
from os import path

from docutils.io import StringOutput

from sphinx.builders import Builder
from sphinx.util.osutil import ensuredir, os_path
from sphinx.writers.text import TextWriter

[docs]class TextBuilder(Builder):
 name = 'text'
 format = 'text'
 out_suffix = '.txt'
 allow_parallel = True

 def init(self):
 pass

 def get_outdated_docs(self):
 for docname in self.env.found_docs:
 if docname not in self.env.all_docs:
 yield docname
 continue
 targetname = self.env.doc2path(docname, self.outdir,
 self.out_suffix)
 try:
 targetmtime = path.getmtime(targetname)
 except Exception:
 targetmtime = 0
 try:
 srcmtime = path.getmtime(self.env.doc2path(docname))
 if srcmtime > targetmtime:
 yield docname
 except EnvironmentError:
 # source doesn't exist anymore
 pass

 def get_target_uri(self, docname, typ=None):
 return ''

 def prepare_writing(self, docnames):
 self.writer = TextWriter(self)

 def write_doc(self, docname, doctree):
 self.current_docname = docname
 destination = StringOutput(encoding='utf-8')
 self.writer.write(doctree, destination)
 outfilename = path.join(self.outdir, os_path(docname) + self.out_suffix)
 ensuredir(path.dirname(outfilename))
 try:
 f = codecs.open(outfilename, 'w', 'utf-8')
 try:
 f.write(self.writer.output)
 finally:
 f.close()
 except (IOError, OSError) as err:
 self.warn("error writing file %s: %s" % (outfilename, err))

 def finish(self):
 pass

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.builders »

 Source code for sphinx.builders.xml

-*- coding: utf-8 -*-
"""
 sphinx.builders.xml
    ~~~~~~~~~~~~~~~~~~~

    Docutils-native XML and pseudo-XML builders.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import codecs
from os import path

from docutils import nodes
from docutils.io import StringOutput

from sphinx.builders import Builder
from sphinx.util.osutil import ensuredir, os_path
from sphinx.writers.xml import XMLWriter, PseudoXMLWriter


[docs]class XMLBuilder(Builder):
    """
    Builds Docutils-native XML.
    """
    name = 'xml'
    format = 'xml'
    out_suffix = '.xml'
    allow_parallel = True

    _writer_class = XMLWriter

    def init(self):
        pass

    def get_outdated_docs(self):
        for docname in self.env.found_docs:
            if docname not in self.env.all_docs:
                yield docname
                continue
            targetname = self.env.doc2path(docname, self.outdir,
                                           self.out_suffix)
            try:
                targetmtime = path.getmtime(targetname)
            except Exception:
                targetmtime = 0
            try:
                srcmtime = path.getmtime(self.env.doc2path(docname))
                if srcmtime > targetmtime:
                    yield docname
            except EnvironmentError:
                # source doesn't exist anymore
                pass

    def get_target_uri(self, docname, typ=None):
        return docname

    def prepare_writing(self, docnames):
        self.writer = self._writer_class(self)

    def write_doc(self, docname, doctree):
        # work around multiple string % tuple issues in docutils;
        # replace tuples in attribute values with lists
        doctree = doctree.deepcopy()
        for node in doctree.traverse(nodes.Element):
            for att, value in node.attributes.items():
                if isinstance(value, tuple):
                    node.attributes[att] = list(value)
                value = node.attributes[att]
                if isinstance(value, list):
                    for i, val in enumerate(value):
                        if isinstance(val, tuple):
                            value[i] = list(val)
        destination = StringOutput(encoding='utf-8')
        self.writer.write(doctree, destination)
        outfilename = path.join(self.outdir, os_path(docname) + self.out_suffix)
        ensuredir(path.dirname(outfilename))
        try:
            f = codecs.open(outfilename, 'w', 'utf-8')
            try:
                f.write(self.writer.output)
            finally:
                f.close()
        except (IOError, OSError) as err:
            self.warn("error writing file %s: %s" % (outfilename, err))

    def finish(self):
        pass



[docs]class PseudoXMLBuilder(XMLBuilder):
    """
    Builds pseudo-XML for display purposes.
    """
    name = 'pseudoxml'
    format = 'pseudoxml'
    out_suffix = '.pseudoxml'

    _writer_class = PseudoXMLWriter





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »
 
      

    


    
      
          
            
  Source code for sphinx.config

# -*- coding: utf-8 -*-
"""
    sphinx.config
    ~~~~~~~~~~~~~

 Build configuration file handling.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import re
from os import path, environ, getenv
import shlex

from six import PY2, PY3, iteritems, string_types, binary_type, text_type, integer_types

from sphinx.errors import ConfigError
from sphinx.locale import l_
from sphinx.util.osutil import make_filename, cd
from sphinx.util.pycompat import execfile_, NoneType
from sphinx.util.i18n import format_date

nonascii_re = re.compile(br'[\x80-\xff]')
copyright_year_re = re.compile(r'^((\d{4}-)?)(\d{4})(?=[,])')

CONFIG_SYNTAX_ERROR = "There is a syntax error in your configuration file: %s"
if PY3:
 CONFIG_SYNTAX_ERROR += "\nDid you change the syntax from 2.x to 3.x?"
CONFIG_EXIT_ERROR = "The configuration file (or one of the modules it imports) " \
 "called sys.exit()"
CONFIG_TYPE_WARNING = "The config value `{name}' has type `{current.__name__}', " \
 "defaults to `{default.__name__}.'"

string_classes = [text_type]
if PY2:
 string_classes.append(binary_type) # => [str, unicode]

[docs]class Config(object):
 """
 Configuration file abstraction.
 """

 # the values are: (default, what needs to be rebuilt if changed)

 # If you add a value here, don't forget to include it in the
 # quickstart.py file template as well as in the docs!

 config_values = dict(
 # general options
 project = ('Python', 'env'),
 copyright = ('', 'html'),
 version = ('', 'env'),
 release = ('', 'env'),
 today = ('', 'env'),
 # the real default is locale-dependent
 today_fmt = (None, 'env', string_classes),

 language = (None, 'env', string_classes),
 locale_dirs = ([], 'env'),
 figure_language_filename = (u'{root}.{language}{ext}', 'env', [str]),

 master_doc = ('contents', 'env'),
 source_suffix = (['.rst'], 'env'),
 source_encoding = ('utf-8-sig', 'env'),
 source_parsers = ({}, 'env'),
 exclude_patterns = ([], 'env'),
 default_role = (None, 'env', string_classes),
 add_function_parentheses = (True, 'env'),
 add_module_names = (True, 'env'),
 trim_footnote_reference_space = (False, 'env'),
 show_authors = (False, 'env'),
 pygments_style = (None, 'html', string_classes),
 highlight_language = ('default', 'env'),
 highlight_options = ({}, 'env'),
 templates_path = ([], 'html'),
 template_bridge = (None, 'html', string_classes),
 keep_warnings = (False, 'env'),
 suppress_warnings = ([], 'env'),
 modindex_common_prefix = ([], 'html'),
 rst_epilog = (None, 'env', string_classes),
 rst_prolog = (None, 'env', string_classes),
 trim_doctest_flags = (True, 'env'),
 primary_domain = ('py', 'env', [NoneType]),
 needs_sphinx = (None, None, string_classes),
 needs_extensions = ({}, None),
 nitpicky = (False, 'env'),
 nitpick_ignore = ([], 'html'),
 numfig = (False, 'env'),
 numfig_secnum_depth = (1, 'env'),
 numfig_format = ({'figure': l_('Fig. %s'),
 'table': l_('Table %s'),
 'code-block': l_('Listing %s')},
 'env'),

 # HTML options
 html_theme = ('alabaster', 'html'),
 html_theme_path = ([], 'html'),
 html_theme_options = ({}, 'html'),
 html_title = (lambda self: l_('%s %s documentation') %
 (self.project, self.release),
 'html', string_classes),
 html_short_title = (lambda self: self.html_title, 'html'),
 html_style = (None, 'html', string_classes),
 html_logo = (None, 'html', string_classes),
 html_favicon = (None, 'html', string_classes),
 html_static_path = ([], 'html'),
 html_extra_path = ([], 'html'),
 # the real default is locale-dependent
 html_last_updated_fmt = (None, 'html', string_classes),
 html_use_smartypants = (True, 'html'),
 html_translator_class = (None, 'html', string_classes),
 html_sidebars = ({}, 'html'),
 html_additional_pages = ({}, 'html'),
 html_use_modindex = (True, 'html'), # deprecated
 html_domain_indices = (True, 'html', [list]),
 html_add_permalinks = (u'\u00B6', 'html'),
 html_use_index = (True, 'html'),
 html_split_index = (False, 'html'),
 html_copy_source = (True, 'html'),
 html_show_sourcelink = (True, 'html'),
 html_use_opensearch = ('', 'html'),
 html_file_suffix = (None, 'html', string_classes),
 html_link_suffix = (None, 'html', string_classes),
 html_show_copyright = (True, 'html'),
 html_show_sphinx = (True, 'html'),
 html_context = ({}, 'html'),
 html_output_encoding = ('utf-8', 'html'),
 html_compact_lists = (True, 'html'),
 html_secnumber_suffix = ('. ', 'html'),
 html_search_language = (None, 'html', string_classes),
 html_search_options = ({}, 'html'),
 html_search_scorer = ('', None),
 html_scaled_image_link = (True, 'html'),

 # HTML help only options
 htmlhelp_basename = (lambda self: make_filename(self.project), None),

 # Qt help only options
 qthelp_basename = (lambda self: make_filename(self.project), None),

 # Devhelp only options
 devhelp_basename = (lambda self: make_filename(self.project), None),

 # Apple help options
 applehelp_bundle_name = (lambda self: make_filename(self.project),
 'applehelp'),
 applehelp_bundle_id = (None, 'applehelp', string_classes),
 applehelp_dev_region = ('en-us', 'applehelp'),
 applehelp_bundle_version = ('1', 'applehelp'),
 applehelp_icon = (None, 'applehelp', string_classes),
 applehelp_kb_product = (lambda self: '%s-%s' %
 (make_filename(self.project), self.release),
 'applehelp'),
 applehelp_kb_url = (None, 'applehelp', string_classes),
 applehelp_remote_url = (None, 'applehelp', string_classes),
 applehelp_index_anchors = (False, 'applehelp', string_classes),
 applehelp_min_term_length = (None, 'applehelp', string_classes),
 applehelp_stopwords = (lambda self: self.language or 'en', 'applehelp'),
 applehelp_locale = (lambda self: self.language or 'en', 'applehelp'),
 applehelp_title = (lambda self: self.project + ' Help', 'applehelp'),
 applehelp_codesign_identity = (lambda self:
 environ.get('CODE_SIGN_IDENTITY', None),
 'applehelp'),
 applehelp_codesign_flags = (lambda self:
 shlex.split(
 environ.get('OTHER_CODE_SIGN_FLAGS',
 '')),
 'applehelp'),
 applehelp_indexer_path = ('/usr/bin/hiutil', 'applehelp'),
 applehelp_codesign_path = ('/usr/bin/codesign', 'applehelp'),
 applehelp_disable_external_tools = (False, None),

 # Epub options
 epub_basename = (lambda self: make_filename(self.project), None),
 epub_theme = ('epub', 'html'),
 epub_theme_options = ({}, 'html'),
 epub_title = (lambda self: self.html_title, 'html'),
 epub3_description = ('', 'epub3', string_classes),
 epub_author = ('unknown', 'html'),
 epub3_contributor = ('unknown', 'epub3', string_classes),
 epub_language = (lambda self: self.language or 'en', 'html'),
 epub_publisher = ('unknown', 'html'),
 epub_copyright = (lambda self: self.copyright, 'html'),
 epub_identifier = ('unknown', 'html'),
 epub_scheme = ('unknown', 'html'),
 epub_uid = ('unknown', 'env'),
 epub_cover = ((), 'env'),
 epub_guide = ((), 'env'),
 epub_pre_files = ([], 'env'),
 epub_post_files = ([], 'env'),
 epub_exclude_files = ([], 'env'),
 epub_tocdepth = (3, 'env'),
 epub_tocdup = (True, 'env'),
 epub_tocscope = ('default', 'env'),
 epub_fix_images = (False, 'env'),
 epub_max_image_width = (0, 'env'),
 epub_show_urls = ('inline', 'html'),
 epub_use_index = (lambda self: self.html_use_index, 'html'),
 epub3_page_progression_direction = ('ltr', 'epub3', string_classes),

 # LaTeX options
 latex_documents = (lambda self: [(self.master_doc,
 make_filename(self.project) + '.tex',
 self.project,
 '', 'manual')],
 None),
 latex_logo = (None, None, string_classes),
 latex_appendices = ([], None),
 # now deprecated - use latex_toplevel_sectioning
 latex_use_parts = (False, None),
 latex_toplevel_sectioning = (None, None, [str]),
 latex_use_modindex = (True, None), # deprecated
 latex_domain_indices = (True, None, [list]),
 latex_show_urls = ('no', None),
 latex_show_pagerefs = (False, None),
 # paper_size and font_size are still separate values
 # so that you can give them easily on the command line
 latex_paper_size = ('letter', None),
 latex_font_size = ('10pt', None),
 latex_elements = ({}, None),
 latex_additional_files = ([], None),
 latex_docclass = ({}, None),
 # now deprecated - use latex_elements
 latex_preamble = ('', None),

 # text options
 text_sectionchars = ('*=-~"+`', 'env'),
 text_newlines = ('unix', 'env'),

 # manpage options
 man_pages = (lambda self: [(self.master_doc,
 make_filename(self.project).lower(),
 '%s %s' % (self.project, self.release),
 [], 1)],
 None),
 man_show_urls = (False, None),

 # Texinfo options
 texinfo_documents = (lambda self: [(self.master_doc,
 make_filename(self.project).lower(),
 self.project, '',
 make_filename(self.project),
 'The %s reference manual.' %
 make_filename(self.project),
 'Python')],
 None),
 texinfo_appendices = ([], None),
 texinfo_elements = ({}, None),
 texinfo_domain_indices = (True, None, [list]),
 texinfo_show_urls = ('footnote', None),
 texinfo_no_detailmenu = (False, None),

 # linkcheck options
 linkcheck_ignore = ([], None),
 linkcheck_retries = (1, None),
 linkcheck_timeout = (None, None, [int]),
 linkcheck_workers = (5, None),
 linkcheck_anchors = (True, None),

 # gettext options
 gettext_compact = (True, 'gettext'),
 gettext_location = (True, 'gettext'),
 gettext_uuid = (False, 'gettext'),
 gettext_auto_build = (True, 'env'),
 gettext_additional_targets = ([], 'env'),

 # XML options
 xml_pretty = (True, 'env'),
)

 def __init__(self, dirname, filename, overrides, tags):
 self.overrides = overrides
 self.values = Config.config_values.copy()
 config = {}
 if 'extensions' in overrides: # XXX do we need this?
 if isinstance(overrides['extensions'], string_types):
 config['extensions'] = overrides.pop('extensions').split(',')
 else:
 config['extensions'] = overrides.pop('extensions')
 if dirname is not None:
 config_file = path.join(dirname, filename)
 config['__file__'] = config_file
 config['tags'] = tags
 with cd(dirname):
 # we promise to have the config dir as current dir while the
 # config file is executed
 try:
 execfile_(filename, config)
 except SyntaxError as err:
 raise ConfigError(CONFIG_SYNTAX_ERROR % err)
 except SystemExit:
 raise ConfigError(CONFIG_EXIT_ERROR)

 self._raw_config = config
 # these two must be preinitialized because extensions can add their
 # own config values
 self.setup = config.get('setup', None)
 self.extensions = config.get('extensions', [])

 # correct values of copyright year that are not coherent with
 # the SOURCE_DATE_EPOCH environment variable (if set)
 # See https://reproducible-builds.org/specs/source-date-epoch/
 if getenv('SOURCE_DATE_EPOCH') is not None:
 for k in ('copyright', 'epub_copyright'):
 if k in config:
 config[k] = copyright_year_re.sub('\g<1>%s' % format_date('%Y'),
 config[k])

 def check_types(self, warn):
 # check all values for deviation from the default value's type, since
 # that can result in TypeErrors all over the place
 # NB. since config values might use l_() we have to wait with calling
 # this method until i18n is initialized
 for name in self._raw_config:
 if name not in self.values:
 continue # we don't know a default value
 settings = self.values[name]
 default, dummy_rebuild = settings[:2]
 permitted = settings[2] if len(settings) == 3 else ()

 if hasattr(default, '__call__'):
 default = default(self) # could invoke l_()
 if default is None and not permitted:
 continue # neither inferrable nor expliclitly permitted types
 current = self[name]
 if type(current) is type(default):
 continue
 if type(current) in permitted:
 continue

 common_bases = (set(type(current).__bases__ + (type(current),)) &
 set(type(default).__bases__))
 common_bases.discard(object)
 if common_bases:
 continue # at least we share a non-trivial base class

 warn(CONFIG_TYPE_WARNING.format(
 name=name, current=type(current), default=type(default)))

 def check_unicode(self, warn):
 # check all string values for non-ASCII characters in bytestrings,
 # since that can result in UnicodeErrors all over the place
 for name, value in iteritems(self._raw_config):
 if isinstance(value, binary_type) and nonascii_re.search(value):
 warn('the config value %r is set to a string with non-ASCII '
 'characters; this can lead to Unicode errors occurring. '
 'Please use Unicode strings, e.g. %r.' % (name, u'Content'))

 def convert_overrides(self, name, value):
 if not isinstance(value, string_types):
 return value
 else:
 defvalue = self.values[name][0]
 if isinstance(defvalue, dict):
 raise ValueError('cannot override dictionary config setting %r, '
 'ignoring (use %r to set individual elements)' %
 (name, name + '.key=value'))
 elif isinstance(defvalue, list):
 return value.split(',')
 elif isinstance(defvalue, integer_types):
 try:
 return int(value)
 except ValueError:
 raise ValueError('invalid number %r for config value %r, ignoring' %
 (value, name))
 elif hasattr(defvalue, '__call__'):
 return value
 elif defvalue is not None and not isinstance(defvalue, string_types):
 raise ValueError('cannot override config setting %r with unsupported '
 'type, ignoring' % name)
 else:
 return value

 def pre_init_values(self, warn):
 """Initialize some limited config variables before loading extensions"""
 variables = ['needs_sphinx', 'suppress_warnings']
 for name in variables:
 try:
 if name in self.overrides:
 self.__dict__[name] = self.convert_overrides(name, self.overrides[name])
 elif name in self._raw_config:
 self.__dict__[name] = self._raw_config[name]
 except ValueError as exc:
 warn(exc)

 def init_values(self, warn):
 config = self._raw_config
 for valname, value in iteritems(self.overrides):
 try:
 if '.' in valname:
 realvalname, key = valname.split('.', 1)
 config.setdefault(realvalname, {})[key] = value
 continue
 elif valname not in self.values:
 warn('unknown config value %r in override, ignoring' % valname)
 continue
 if isinstance(value, string_types):
 config[valname] = self.convert_overrides(valname, value)
 else:
 config[valname] = value
 except ValueError as exc:
 warn(exc)
 for name in config:
 if name in self.values:
 self.__dict__[name] = config[name]
 if isinstance(self.source_suffix, string_types):
 self.source_suffix = [self.source_suffix]

 def __getattr__(self, name):
 if name.startswith('_'):
 raise AttributeError(name)
 if name not in self.values:
 raise AttributeError('No such config value: %s' % name)
 default = self.values[name][0]
 if hasattr(default, '__call__'):
 return default(self)
 return default

 def __getitem__(self, name):
 return getattr(self, name)

 def __setitem__(self, name, value):
 setattr(self, name, value)

 def __delitem__(self, name):
 delattr(self, name)

 def __contains__(self, name):
 return name in self.values

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 Source code for sphinx.domains

-*- coding: utf-8 -*-
"""
 sphinx.domains
    ~~~~~~~~~~~~~~

    Support for domains, which are groupings of description directives
    and roles describing e.g. constructs of one programming language.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

from six import iteritems

from sphinx.errors import SphinxError
from sphinx.locale import _


[docs]class ObjType(object):
    """
    An ObjType is the description for a type of object that a domain can
    document.  In the object_types attribute of Domain subclasses, object type
    names are mapped to instances of this class.

    Constructor arguments:

    - *lname*: localized name of the type (do not include domain name)
    - *roles*: all the roles that can refer to an object of this type
    - *attrs*: object attributes -- currently only "searchprio" is known,
      which defines the object's priority in the full-text search index,
      see :meth:`Domain.get_objects()`.
    """

    known_attrs = {
        'searchprio': 1,
    }

    def __init__(self, lname, *roles, **attrs):
        self.lname = lname
        self.roles = roles
        self.attrs = self.known_attrs.copy()
        self.attrs.update(attrs)



[docs]class Index(object):
    """
    An Index is the description for a domain-specific index.  To add an index to
    a domain, subclass Index, overriding the three name attributes:

    * `name` is an identifier used for generating file names.
    * `localname` is the section title for the index.
    * `shortname` is a short name for the index, for use in the relation bar in
      HTML output.  Can be empty to disable entries in the relation bar.

    and providing a :meth:`generate()` method.  Then, add the index class to
    your domain's `indices` list.  Extensions can add indices to existing
    domains using :meth:`~sphinx.application.Sphinx.add_index_to_domain()`.
    """

    name = None
    localname = None
    shortname = None

    def __init__(self, domain):
        if self.name is None or self.localname is None:
            raise SphinxError('Index subclass %s has no valid name or localname'
                              % self.__class__.__name__)
        self.domain = domain

[docs]    def generate(self, docnames=None):
        """Return entries for the index given by *name*.  If *docnames* is
        given, restrict to entries referring to these docnames.

        The return value is a tuple of ``(content, collapse)``, where *collapse*
        is a boolean that determines if sub-entries should start collapsed (for
        output formats that support collapsing sub-entries).

        *content* is a sequence of ``(letter, entries)`` tuples, where *letter*
        is the "heading" for the given *entries*, usually the starting letter.

        *entries* is a sequence of single entries, where a single entry is a
        sequence ``[name, subtype, docname, anchor, extra, qualifier, descr]``.
        The items in this sequence have the following meaning:

        - `name` -- the name of the index entry to be displayed
        - `subtype` -- sub-entry related type:
          0 -- normal entry
          1 -- entry with sub-entries
          2 -- sub-entry
        - `docname` -- docname where the entry is located
        - `anchor` -- anchor for the entry within `docname`
        - `extra` -- extra info for the entry
        - `qualifier` -- qualifier for the description
        - `descr` -- description for the entry

        Qualifier and description are not rendered e.g. in LaTeX output.
        """
        return []




[docs]class Domain(object):
    """
    A Domain is meant to be a group of "object" description directives for
    objects of a similar nature, and corresponding roles to create references to
    them.  Examples would be Python modules, classes, functions etc., elements
    of a templating language, Sphinx roles and directives, etc.

    Each domain has a separate storage for information about existing objects
    and how to reference them in `self.data`, which must be a dictionary.  It
    also must implement several functions that expose the object information in
    a uniform way to parts of Sphinx that allow the user to reference or search
    for objects in a domain-agnostic way.

    About `self.data`: since all object and cross-referencing information is
    stored on a BuildEnvironment instance, the `domain.data` object is also
    stored in the `env.domaindata` dict under the key `domain.name`.  Before the
    build process starts, every active domain is instantiated and given the
    environment object; the `domaindata` dict must then either be nonexistent or
    a dictionary whose 'version' key is equal to the domain class'
    :attr:`data_version` attribute.  Otherwise, `IOError` is raised and the
    pickled environment is discarded.
    """

    #: domain name: should be short, but unique
    name = ''
    #: domain label: longer, more descriptive (used in messages)
    label = ''
    #: type (usually directive) name -> ObjType instance
    object_types = {}
    #: directive name -> directive class
    directives = {}
    #: role name -> role callable
    roles = {}
    #: a list of Index subclasses
    indices = []
    #: role name -> a warning message if reference is missing
    dangling_warnings = {}

    #: data value for a fresh environment
    initial_data = {}
    #: data version, bump this when the format of `self.data` changes
    data_version = 0

    def __init__(self, env):
        self.env = env
        if self.name not in env.domaindata:
            assert isinstance(self.initial_data, dict)
            new_data = self.initial_data.copy()
            new_data['version'] = self.data_version
            self.data = env.domaindata[self.name] = new_data
        else:
            self.data = env.domaindata[self.name]
            if self.data['version'] != self.data_version:
                raise IOError('data of %r domain out of date' % self.label)
        self._role_cache = {}
        self._directive_cache = {}
        self._role2type = {}
        self._type2role = {}
        for name, obj in iteritems(self.object_types):
            for rolename in obj.roles:
                self._role2type.setdefault(rolename, []).append(name)
            self._type2role[name] = obj.roles[0] if obj.roles else ''
        self.objtypes_for_role = self._role2type.get
        self.role_for_objtype = self._type2role.get

[docs]    def role(self, name):
        """Return a role adapter function that always gives the registered
        role its full name ('domain:name') as the first argument.
        """
        if name in self._role_cache:
            return self._role_cache[name]
        if name not in self.roles:
            return None
        fullname = '%s:%s' % (self.name, name)

        def role_adapter(typ, rawtext, text, lineno, inliner,
                         options={}, content=[]):
            return self.roles[name](fullname, rawtext, text, lineno,
                                    inliner, options, content)
        self._role_cache[name] = role_adapter
        return role_adapter


[docs]    def directive(self, name):
        """Return a directive adapter class that always gives the registered
        directive its full name ('domain:name') as ``self.name``.
        """
        if name in self._directive_cache:
            return self._directive_cache[name]
        if name not in self.directives:
            return None
        fullname = '%s:%s' % (self.name, name)
        BaseDirective = self.directives[name]

        class DirectiveAdapter(BaseDirective):
            def run(self):
                self.name = fullname
                return BaseDirective.run(self)
        self._directive_cache[name] = DirectiveAdapter
        return DirectiveAdapter


    # methods that should be overwritten

[docs]    def clear_doc(self, docname):
        """Remove traces of a document in the domain-specific inventories."""
        pass


[docs]    def merge_domaindata(self, docnames, otherdata):
        """Merge in data regarding *docnames* from a different domaindata
        inventory (coming from a subprocess in parallel builds).
        """
        raise NotImplementedError('merge_domaindata must be implemented in %s '
                                  'to be able to do parallel builds!' %
                                  self.__class__)


[docs]    def process_doc(self, env, docname, document):
        """Process a document after it is read by the environment."""
        pass


[docs]    def resolve_xref(self, env, fromdocname, builder,
                     typ, target, node, contnode):
        """Resolve the pending_xref *node* with the given *typ* and *target*.

        This method should return a new node, to replace the xref node,
        containing the *contnode* which is the markup content of the
        cross-reference.

        If no resolution can be found, None can be returned; the xref node will
        then given to the 'missing-reference' event, and if that yields no
        resolution, replaced by *contnode*.

        The method can also raise :exc:`sphinx.environment.NoUri` to suppress
        the 'missing-reference' event being emitted.
        """
        pass


[docs]    def resolve_any_xref(self, env, fromdocname, builder, target, node, contnode):
        """Resolve the pending_xref *node* with the given *target*.

        The reference comes from an "any" or similar role, which means that we
        don't know the type.  Otherwise, the arguments are the same as for
        :meth:`resolve_xref`.

        The method must return a list (potentially empty) of tuples
        ``('domain:role', newnode)``, where ``'domain:role'`` is the name of a
        role that could have created the same reference, e.g. ``'py:func'``.
        ``newnode`` is what :meth:`resolve_xref` would return.

        .. versionadded:: 1.3
        """
        raise NotImplementedError


[docs]    def get_objects(self):
        """Return an iterable of "object descriptions", which are tuples with
        five items:

        * `name`     -- fully qualified name
        * `dispname` -- name to display when searching/linking
        * `type`     -- object type, a key in ``self.object_types``
        * `docname`  -- the document where it is to be found
        * `anchor`   -- the anchor name for the object
        * `priority` -- how "important" the object is (determines placement
          in search results)

          - 1: default priority (placed before full-text matches)
          - 0: object is important (placed before default-priority objects)
          - 2: object is unimportant (placed after full-text matches)
          - -1: object should not show up in search at all
        """
        return []


[docs]    def get_type_name(self, type, primary=False):
        """Return full name for given ObjType."""
        if primary:
            return type.lname
        return _('%s %s') % (self.label, type.lname)




from sphinx.domains.c import CDomain                     # noqa
from sphinx.domains.cpp import CPPDomain                 # noqa
from sphinx.domains.std import StandardDomain            # noqa
from sphinx.domains.python import PythonDomain           # noqa
from sphinx.domains.javascript import JavaScriptDomain   # noqa
from sphinx.domains.rst import ReSTDomain                # noqa

BUILTIN_DOMAINS = {
    'std': StandardDomain,
    'py': PythonDomain,
    'c': CDomain,
    'cpp': CPPDomain,
    'js': JavaScriptDomain,
    'rst': ReSTDomain,
}




          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »
 
      

    


    
      
          
            
  Source code for sphinx.environment

# -*- coding: utf-8 -*-
"""
    sphinx.environment
    ~~~~~~~~~~~~~~~~~~

 Global creation environment.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import re
import os
import sys
import time
import types
import bisect
import codecs
import string
import unicodedata
from os import path
from glob import glob
from itertools import groupby

from six import iteritems, itervalues, text_type, class_types, next
from six.moves import cPickle as pickle
from docutils import nodes
from docutils.io import NullOutput
from docutils.core import Publisher
from docutils.utils import Reporter, relative_path, get_source_line
from docutils.parsers.rst import roles, directives
from docutils.parsers.rst.languages import en as english
from docutils.parsers.rst.directives.html import MetaBody
from docutils.frontend import OptionParser

from sphinx import addnodes
from sphinx.io import SphinxStandaloneReader, SphinxDummyWriter, SphinxFileInput
from sphinx.util import url_re, get_matching_docs, docname_join, split_into, \
 FilenameUniqDict, split_index_msg
from sphinx.util.nodes import clean_astext, make_refnode, WarningStream, is_translatable
from sphinx.util.osutil import SEP, getcwd, fs_encoding, ensuredir
from sphinx.util.images import guess_mimetype
from sphinx.util.i18n import find_catalog_files, get_image_filename_for_language, \
 search_image_for_language
from sphinx.util.console import bold, purple
from sphinx.util.matching import compile_matchers
from sphinx.util.parallel import ParallelTasks, parallel_available, make_chunks
from sphinx.util.websupport import is_commentable
from sphinx.errors import SphinxError, ExtensionError
from sphinx.locale import _
from sphinx.versioning import add_uids, merge_doctrees
from sphinx.transforms import SphinxContentsFilter

orig_role_function = roles.role
orig_directive_function = directives.directive

class ElementLookupError(Exception):
 pass

default_settings = {
 'embed_stylesheet': False,
 'cloak_email_addresses': True,
 'pep_base_url': 'https://www.python.org/dev/peps/',
 'rfc_base_url': 'https://tools.ietf.org/html/',
 'input_encoding': 'utf-8-sig',
 'doctitle_xform': False,
 'sectsubtitle_xform': False,
 'halt_level': 5,
 'file_insertion_enabled': True,
}

This is increased every time an environment attribute is added
or changed to properly invalidate pickle files.
#
NOTE: increase base version by 2 to have distinct numbers for Py2 and 3
ENV_VERSION = 48 + (sys.version_info[0] - 2)

dummy_reporter = Reporter('', 4, 4)

versioning_conditions = {
 'none': False,
 'text': is_translatable,
 'commentable': is_commentable,
}

class NoUri(Exception):
 """Raised by get_relative_uri if there is no URI available."""
 pass

[docs]class BuildEnvironment:
 """
 The environment in which the ReST files are translated.
 Stores an inventory of cross-file targets and provides doctree
 transformations to resolve links to them.
 """

 # --------- ENVIRONMENT PERSISTENCE --

 @staticmethod
 def frompickle(srcdir, config, filename):
 picklefile = open(filename, 'rb')
 try:
 env = pickle.load(picklefile)
 finally:
 picklefile.close()
 if env.version != ENV_VERSION:
 raise IOError('build environment version not current')
 if env.srcdir != srcdir:
 raise IOError('source directory has changed')
 env.config.values = config.values
 return env

 def topickle(self, filename):
 # remove unpicklable attributes
 warnfunc = self._warnfunc
 self.set_warnfunc(None)
 values = self.config.values
 del self.config.values
 domains = self.domains
 del self.domains
 picklefile = open(filename, 'wb')
 # remove potentially pickling-problematic values from config
 for key, val in list(vars(self.config).items()):
 if key.startswith('_') or \
 isinstance(val, types.ModuleType) or \
 isinstance(val, types.FunctionType) or \
 isinstance(val, class_types):
 del self.config[key]
 try:
 pickle.dump(self, picklefile, pickle.HIGHEST_PROTOCOL)
 finally:
 picklefile.close()
 # reset attributes
 self.domains = domains
 self.config.values = values
 self.set_warnfunc(warnfunc)

 # --------- ENVIRONMENT INITIALIZATION -------------------------------------

 def __init__(self, srcdir, doctreedir, config):
 self.doctreedir = doctreedir
 self.srcdir = srcdir
 self.config = config

 # the method of doctree versioning; see set_versioning_method
 self.versioning_condition = None
 self.versioning_compare = None

 # the application object; only set while update() runs
 self.app = None

 # all the registered domains, set by the application
 self.domains = {}

 # the docutils settings for building
 self.settings = default_settings.copy()
 self.settings['env'] = self

 # the function to write warning messages with
 self._warnfunc = None

 # this is to invalidate old pickles
 self.version = ENV_VERSION

 # All "docnames" here are /-separated and relative and exclude
 # the source suffix.

 self.found_docs = set() # contains all existing docnames
 self.all_docs = {} # docname -> mtime at the time of reading
 # contains all read docnames
 self.dependencies = {} # docname -> set of dependent file
 # names, relative to documentation root
 self.reread_always = set() # docnames to re-read unconditionally on
 # next build

 # File metadata
 self.metadata = {} # docname -> dict of metadata items

 # TOC inventory
 self.titles = {} # docname -> title node
 self.longtitles = {} # docname -> title node; only different if
 # set differently with title directive
 self.tocs = {} # docname -> table of contents nodetree
 self.toc_num_entries = {} # docname -> number of real entries
 # used to determine when to show the TOC
 # in a sidebar (don't show if it's only one item)
 self.toc_secnumbers = {} # docname -> dict of sectionid -> number
 self.toc_fignumbers = {} # docname -> dict of figtype ->
 # dict of figureid -> number

 self.toctree_includes = {} # docname -> list of toctree includefiles
 self.files_to_rebuild = {} # docname -> set of files
 # (containing its TOCs) to rebuild too
 self.glob_toctrees = set() # docnames that have :glob: toctrees
 self.numbered_toctrees = set() # docnames that have :numbered: toctrees

 # domain-specific inventories, here to be pickled
 self.domaindata = {} # domainname -> domain-specific dict

 # Other inventories
 self.citations = {} # citation name -> docname, labelid
 self.indexentries = {} # docname -> list of
 # (type, string, target, aliasname)
 self.versionchanges = {} # version -> list of (type, docname,
 # lineno, module, descname, content)

 # these map absolute path -> (docnames, unique filename)
 self.images = FilenameUniqDict()
 self.dlfiles = FilenameUniqDict()

 # temporary data storage while reading a document
 self.temp_data = {}
 # context for cross-references (e.g. current module or class)
 # this is similar to temp_data, but will for example be copied to
 # attributes of "any" cross references
 self.ref_context = {}

 def set_warnfunc(self, func):
 self._warnfunc = func
 self.settings['warning_stream'] = WarningStream(func)

 def set_versioning_method(self, method, compare):
 """This sets the doctree versioning method for this environment.

 Versioning methods are a builder property; only builders with the same
 versioning method can share the same doctree directory. Therefore, we
 raise an exception if the user tries to use an environment with an
 incompatible versioning method.
 """
 if method not in versioning_conditions:
 raise ValueError('invalid versioning method: %r' % method)
 condition = versioning_conditions[method]
 if self.versioning_condition not in (None, condition):
 raise SphinxError('This environment is incompatible with the '
 'selected builder, please choose another '
 'doctree directory.')
 self.versioning_condition = condition
 self.versioning_compare = compare

[docs] def warn(self, docname, msg, lineno=None, **kwargs):
 """Emit a warning.

 This differs from using ``app.warn()`` in that the warning may not
 be emitted instantly, but collected for emitting all warnings after
 the update of the environment.
 """
 # strange argument order is due to backwards compatibility
 self._warnfunc(msg, (docname, lineno), **kwargs)

[docs] def warn_node(self, msg, node, **kwargs):
 """Like :meth:`warn`, but with source information taken from *node*."""
 self._warnfunc(msg, '%s:%s' % get_source_line(node), **kwargs)

 def clear_doc(self, docname):
 """Remove all traces of a source file in the inventory."""
 if docname in self.all_docs:
 self.all_docs.pop(docname, None)
 self.reread_always.discard(docname)
 self.metadata.pop(docname, None)
 self.dependencies.pop(docname, None)
 self.titles.pop(docname, None)
 self.longtitles.pop(docname, None)
 self.tocs.pop(docname, None)
 self.toc_secnumbers.pop(docname, None)
 self.toc_fignumbers.pop(docname, None)
 self.toc_num_entries.pop(docname, None)
 self.toctree_includes.pop(docname, None)
 self.indexentries.pop(docname, None)
 self.glob_toctrees.discard(docname)
 self.numbered_toctrees.discard(docname)
 self.images.purge_doc(docname)
 self.dlfiles.purge_doc(docname)

 for subfn, fnset in list(self.files_to_rebuild.items()):
 fnset.discard(docname)
 if not fnset:
 del self.files_to_rebuild[subfn]
 for key, (fn, _ignore) in list(self.citations.items()):
 if fn == docname:
 del self.citations[key]
 for version, changes in self.versionchanges.items():
 new = [change for change in changes if change[1] != docname]
 changes[:] = new

 for domain in self.domains.values():
 domain.clear_doc(docname)

 def merge_info_from(self, docnames, other, app):
 """Merge global information gathered about *docnames* while reading them
 from the *other* environment.

 This possibly comes from a parallel build process.
 """
 docnames = set(docnames)
 for docname in docnames:
 self.all_docs[docname] = other.all_docs[docname]
 if docname in other.reread_always:
 self.reread_always.add(docname)
 self.metadata[docname] = other.metadata[docname]
 if docname in other.dependencies:
 self.dependencies[docname] = other.dependencies[docname]
 self.titles[docname] = other.titles[docname]
 self.longtitles[docname] = other.longtitles[docname]
 self.tocs[docname] = other.tocs[docname]
 self.toc_num_entries[docname] = other.toc_num_entries[docname]
 # toc_secnumbers and toc_fignumbers are not assigned during read
 if docname in other.toctree_includes:
 self.toctree_includes[docname] = other.toctree_includes[docname]
 self.indexentries[docname] = other.indexentries[docname]
 if docname in other.glob_toctrees:
 self.glob_toctrees.add(docname)
 if docname in other.numbered_toctrees:
 self.numbered_toctrees.add(docname)

 self.images.merge_other(docnames, other.images)
 self.dlfiles.merge_other(docnames, other.dlfiles)

 for subfn, fnset in other.files_to_rebuild.items():
 self.files_to_rebuild.setdefault(subfn, set()).update(fnset & docnames)
 for key, data in other.citations.items():
 # XXX duplicates?
 if data[0] in docnames:
 self.citations[key] = data
 for version, changes in other.versionchanges.items():
 self.versionchanges.setdefault(version, []).extend(
 change for change in changes if change[1] in docnames)

 for domainname, domain in self.domains.items():
 domain.merge_domaindata(docnames, other.domaindata[domainname])
 app.emit('env-merge-info', self, docnames, other)

[docs] def doc2path(self, docname, base=True, suffix=None):
 """Return the filename for the document name.

 If *base* is True, return absolute path under self.srcdir.
 If *base* is None, return relative path to self.srcdir.
 If *base* is a path string, return absolute path under that.
 If *suffix* is not None, add it instead of config.source_suffix.
 """
 docname = docname.replace(SEP, path.sep)
 if suffix is None:
 for candidate_suffix in self.config.source_suffix:
 if path.isfile(path.join(self.srcdir, docname) +
 candidate_suffix):
 suffix = candidate_suffix
 break
 else:
 # document does not exist
 suffix = self.config.source_suffix[0]
 if base is True:
 return path.join(self.srcdir, docname) + suffix
 elif base is None:
 return docname + suffix
 else:
 return path.join(base, docname) + suffix

[docs] def relfn2path(self, filename, docname=None):
 """Return paths to a file referenced from a document, relative to
 documentation root and absolute.

 In the input "filename", absolute filenames are taken as relative to the
 source dir, while relative filenames are relative to the dir of the
 containing document.
 """
 if filename.startswith('/') or filename.startswith(os.sep):
 rel_fn = filename[1:]
 else:
 docdir = path.dirname(self.doc2path(docname or self.docname,
 base=None))
 rel_fn = path.join(docdir, filename)
 try:
 # the path.abspath() might seem redundant, but otherwise artifacts
 # such as ".." will remain in the path
 return rel_fn, path.abspath(path.join(self.srcdir, rel_fn))
 except UnicodeDecodeError:
 # the source directory is a bytestring with non-ASCII characters;
 # let's try to encode the rel_fn in the file system encoding
 enc_rel_fn = rel_fn.encode(sys.getfilesystemencoding())
 return rel_fn, path.abspath(path.join(self.srcdir, enc_rel_fn))

 def find_files(self, config):
 """Find all source files in the source dir and put them in
 self.found_docs.
 """
 matchers = compile_matchers(
 config.exclude_patterns[:] +
 config.templates_path +
 config.html_extra_path +
 ['**/_sources', '.#*', '**/.#*', '*.lproj/**']
)
 self.found_docs = set(get_matching_docs(
 self.srcdir, config.source_suffix, exclude_matchers=matchers))

 # add catalog mo file dependency
 for docname in self.found_docs:
 catalog_files = find_catalog_files(
 docname,
 self.srcdir,
 self.config.locale_dirs,
 self.config.language,
 self.config.gettext_compact)
 for filename in catalog_files:
 self.dependencies.setdefault(docname, set()).add(filename)

 def get_outdated_files(self, config_changed):
 """Return (added, changed, removed) sets."""
 # clear all files no longer present
 removed = set(self.all_docs) - self.found_docs

 added = set()
 changed = set()

 if config_changed:
 # config values affect e.g. substitutions
 added = self.found_docs
 else:
 for docname in self.found_docs:
 if docname not in self.all_docs:
 added.add(docname)
 continue
 # if the doctree file is not there, rebuild
 if not path.isfile(self.doc2path(docname, self.doctreedir,
 '.doctree')):
 changed.add(docname)
 continue
 # check the "reread always" list
 if docname in self.reread_always:
 changed.add(docname)
 continue
 # check the mtime of the document
 mtime = self.all_docs[docname]
 newmtime = path.getmtime(self.doc2path(docname))
 if newmtime > mtime:
 changed.add(docname)
 continue
 # finally, check the mtime of dependencies
 for dep in self.dependencies.get(docname, ()):
 try:
 # this will do the right thing when dep is absolute too
 deppath = path.join(self.srcdir, dep)
 if not path.isfile(deppath):
 changed.add(docname)
 break
 depmtime = path.getmtime(deppath)
 if depmtime > mtime:
 changed.add(docname)
 break
 except EnvironmentError:
 # give it another chance
 changed.add(docname)
 break

 return added, changed, removed

 def update(self, config, srcdir, doctreedir, app):
 """(Re-)read all files new or changed since last update.

 Store all environment docnames in the canonical format (ie using SEP as
 a separator in place of os.path.sep).
 """
 config_changed = False
 if self.config is None:
 msg = '[new config] '
 config_changed = True
 else:
 # check if a config value was changed that affects how
 # doctrees are read
 for key, descr in iteritems(config.values):
 if descr[1] != 'env':
 continue
 if self.config[key] != config[key]:
 msg = '[config changed] '
 config_changed = True
 break
 else:
 msg = ''
 # this value is not covered by the above loop because it is handled
 # specially by the config class
 if self.config.extensions != config.extensions:
 msg = '[extensions changed] '
 config_changed = True
 # the source and doctree directories may have been relocated
 self.srcdir = srcdir
 self.doctreedir = doctreedir
 self.find_files(config)
 self.config = config

 # this cache also needs to be updated every time
 self._nitpick_ignore = set(self.config.nitpick_ignore)

 app.info(bold('updating environment: '), nonl=1)

 added, changed, removed = self.get_outdated_files(config_changed)

 # allow user intervention as well
 for docs in app.emit('env-get-outdated', self, added, changed, removed):
 changed.update(set(docs) & self.found_docs)

 # if files were added or removed, all documents with globbed toctrees
 # must be reread
 if added or removed:
 # ... but not those that already were removed
 changed.update(self.glob_toctrees & self.found_docs)

 msg += '%s added, %s changed, %s removed' % (len(added), len(changed),
 len(removed))
 app.info(msg)

 self.app = app

 # clear all files no longer present
 for docname in removed:
 app.emit('env-purge-doc', self, docname)
 self.clear_doc(docname)

 # read all new and changed files
 docnames = sorted(added | changed)
 # allow changing and reordering the list of docs to read
 app.emit('env-before-read-docs', self, docnames)

 # check if we should do parallel or serial read
 par_ok = False
 if parallel_available and len(docnames) > 5 and app.parallel > 1:
 par_ok = True
 for extname, md in app._extension_metadata.items():
 ext_ok = md.get('parallel_read_safe')
 if ext_ok:
 continue
 if ext_ok is None:
 app.warn('the %s extension does not declare if it '
 'is safe for parallel reading, assuming it '
 'isn\'t - please ask the extension author to '
 'check and make it explicit' % extname)
 app.warn('doing serial read')
 else:
 app.warn('the %s extension is not safe for parallel '
 'reading, doing serial read' % extname)
 par_ok = False
 break
 if par_ok:
 self._read_parallel(docnames, app, nproc=app.parallel)
 else:
 self._read_serial(docnames, app)

 if config.master_doc not in self.all_docs:
 raise SphinxError('master file %s not found' %
 self.doc2path(config.master_doc))

 self.app = None

 for retval in app.emit('env-updated', self):
 if retval is not None:
 docnames.extend(retval)

 return sorted(docnames)

 def _read_serial(self, docnames, app):
 for docname in app.status_iterator(docnames, 'reading sources... ',
 purple, len(docnames)):
 # remove all inventory entries for that file
 app.emit('env-purge-doc', self, docname)
 self.clear_doc(docname)
 self.read_doc(docname, app)

 def _read_parallel(self, docnames, app, nproc):
 # clear all outdated docs at once
 for docname in docnames:
 app.emit('env-purge-doc', self, docname)
 self.clear_doc(docname)

 def read_process(docs):
 self.app = app
 self.warnings = []
 self.set_warnfunc(lambda *args, **kwargs: self.warnings.append((args, kwargs)))
 for docname in docs:
 self.read_doc(docname, app)
 # allow pickling self to send it back
 self.set_warnfunc(None)
 del self.app
 del self.domains
 del self.config.values
 del self.config
 return self

 def merge(docs, otherenv):
 warnings.extend(otherenv.warnings)
 self.merge_info_from(docs, otherenv, app)

 tasks = ParallelTasks(nproc)
 chunks = make_chunks(docnames, nproc)

 warnings = []
 for chunk in app.status_iterator(
 chunks, 'reading sources... ', purple, len(chunks)):
 tasks.add_task(read_process, chunk, merge)

 # make sure all threads have finished
 app.info(bold('waiting for workers...'))
 tasks.join()

 for warning, kwargs in warnings:
 self._warnfunc(*warning, **kwargs)

 def check_dependents(self, already):
 to_rewrite = self.assign_section_numbers() + self.assign_figure_numbers()
 for docname in set(to_rewrite):
 if docname not in already:
 yield docname

 # --------- SINGLE FILE READING --

 def warn_and_replace(self, error):
 """Custom decoding error handler that warns and replaces."""
 linestart = error.object.rfind(b'\n', 0, error.start)
 lineend = error.object.find(b'\n', error.start)
 if lineend == -1:
 lineend = len(error.object)
 lineno = error.object.count(b'\n', 0, error.start) + 1
 self.warn(self.docname, 'undecodable source characters, '
 'replacing with "?": %r' %
 (error.object[linestart+1:error.start] + b'>>>' +
 error.object[error.start:error.end] + b'<<<' +
 error.object[error.end:lineend]), lineno)
 return (u'?', error.end)

 def lookup_domain_element(self, type, name):
 """Lookup a markup element (directive or role), given its name which can
 be a full name (with domain).
 """
 name = name.lower()
 # explicit domain given?
 if ':' in name:
 domain_name, name = name.split(':', 1)
 if domain_name in self.domains:
 domain = self.domains[domain_name]
 element = getattr(domain, type)(name)
 if element is not None:
 return element, []
 # else look in the default domain
 else:
 def_domain = self.temp_data.get('default_domain')
 if def_domain is not None:
 element = getattr(def_domain, type)(name)
 if element is not None:
 return element, []
 # always look in the std domain
 element = getattr(self.domains['std'], type)(name)
 if element is not None:
 return element, []
 raise ElementLookupError

 def patch_lookup_functions(self):
 """Monkey-patch directive and role dispatch, so that domain-specific
 markup takes precedence.
 """
 def directive(name, lang_module, document):
 try:
 return self.lookup_domain_element('directive', name)
 except ElementLookupError:
 return orig_directive_function(name, lang_module, document)

 def role(name, lang_module, lineno, reporter):
 try:
 return self.lookup_domain_element('role', name)
 except ElementLookupError:
 return orig_role_function(name, lang_module, lineno, reporter)

 directives.directive = directive
 roles.role = role

 def read_doc(self, docname, app=None):
 """Parse a file and add/update inventory entries for the doctree."""

 self.temp_data['docname'] = docname
 # defaults to the global default, but can be re-set in a document
 self.temp_data['default_domain'] = \
 self.domains.get(self.config.primary_domain)

 self.settings['input_encoding'] = self.config.source_encoding
 self.settings['trim_footnote_reference_space'] = \
 self.config.trim_footnote_reference_space
 self.settings['gettext_compact'] = self.config.gettext_compact

 self.patch_lookup_functions()

 docutilsconf = path.join(self.srcdir, 'docutils.conf')
 # read docutils.conf from source dir, not from current dir
 OptionParser.standard_config_files[1] = docutilsconf
 if path.isfile(docutilsconf):
 self.note_dependency(docutilsconf)

 if self.config.default_role:
 role_fn, messages = roles.role(self.config.default_role, english,
 0, dummy_reporter)
 if role_fn:
 roles._roles[''] = role_fn
 else:
 self.warn(docname, 'default role %s not found' %
 self.config.default_role)

 codecs.register_error('sphinx', self.warn_and_replace)

 # publish manually
 reader = SphinxStandaloneReader(self.app, parsers=self.config.source_parsers)
 pub = Publisher(reader=reader,
 writer=SphinxDummyWriter(),
 destination_class=NullOutput)
 pub.set_components(None, 'restructuredtext', None)
 pub.process_programmatic_settings(None, self.settings, None)
 src_path = self.doc2path(docname)
 source = SphinxFileInput(app, self, source=None, source_path=src_path,
 encoding=self.config.source_encoding)
 pub.source = source
 pub.settings._source = src_path
 pub.set_destination(None, None)
 pub.publish()
 doctree = pub.document

 # post-processing
 self.filter_messages(doctree)
 self.process_dependencies(docname, doctree)
 self.process_images(docname, doctree)
 self.process_downloads(docname, doctree)
 self.process_metadata(docname, doctree)
 self.process_refonly_bullet_lists(docname, doctree)
 self.create_title_from(docname, doctree)
 self.note_indexentries_from(docname, doctree)
 self.note_citations_from(docname, doctree)
 self.build_toc_from(docname, doctree)
 for domain in itervalues(self.domains):
 domain.process_doc(self, docname, doctree)

 # allow extension-specific post-processing
 if app:
 app.emit('doctree-read', doctree)

 # store time of reading, for outdated files detection
 # (Some filesystems have coarse timestamp resolution;
 # therefore time.time() can be older than filesystem's timestamp.
 # For example, FAT32 has 2sec timestamp resolution.)
 self.all_docs[docname] = max(
 time.time(), path.getmtime(self.doc2path(docname)))

 if self.versioning_condition:
 old_doctree = None
 if self.versioning_compare:
 # get old doctree
 try:
 f = open(self.doc2path(docname,
 self.doctreedir, '.doctree'), 'rb')
 try:
 old_doctree = pickle.load(f)
 finally:
 f.close()
 except EnvironmentError:
 pass

 # add uids for versioning
 if not self.versioning_compare or old_doctree is None:
 list(add_uids(doctree, self.versioning_condition))
 else:
 list(merge_doctrees(
 old_doctree, doctree, self.versioning_condition))

 # make it picklable
 doctree.reporter = None
 doctree.transformer = None
 doctree.settings.warning_stream = None
 doctree.settings.env = None
 doctree.settings.record_dependencies = None
 for metanode in doctree.traverse(MetaBody.meta):
 # docutils' meta nodes aren't picklable because the class is nested
 metanode.__class__ = addnodes.meta

 # cleanup
 self.temp_data.clear()
 self.ref_context.clear()
 roles._roles.pop('', None) # if a document has set a local default role

 # save the parsed doctree
 doctree_filename = self.doc2path(docname, self.doctreedir,
 '.doctree')
 ensuredir(path.dirname(doctree_filename))
 f = open(doctree_filename, 'wb')
 try:
 pickle.dump(doctree, f, pickle.HIGHEST_PROTOCOL)
 finally:
 f.close()

 # utilities to use while reading a document

 @property
 def docname(self):
 """Returns the docname of the document currently being parsed."""
 return self.temp_data['docname']

 @property
 def currmodule(self):
 """Backwards compatible alias. Will be removed."""
 self.warn(self.docname, 'env.currmodule is being referenced by an '
 'extension; this API will be removed in the future')
 return self.ref_context.get('py:module')

 @property
 def currclass(self):
 """Backwards compatible alias. Will be removed."""
 self.warn(self.docname, 'env.currclass is being referenced by an '
 'extension; this API will be removed in the future')
 return self.ref_context.get('py:class')

[docs] def new_serialno(self, category=''):
 """Return a serial number, e.g. for index entry targets.

 The number is guaranteed to be unique in the current document.
 """
 key = category + 'serialno'
 cur = self.temp_data.get(key, 0)
 self.temp_data[key] = cur + 1
 return cur

[docs] def note_dependency(self, filename):
 """Add *filename* as a dependency of the current document.

 This means that the document will be rebuilt if this file changes.

 filename should be absolute or relative to the source directory.
 """
 self.dependencies.setdefault(self.docname, set()).add(filename)

[docs] def note_reread(self):
 """Add the current document to the list of documents that will
 automatically be re-read at the next build.
 """
 self.reread_always.add(self.docname)

 def note_versionchange(self, type, version, node, lineno):
 self.versionchanges.setdefault(version, []).append(
 (type, self.temp_data['docname'], lineno,
 self.ref_context.get('py:module'),
 self.temp_data.get('object'), node.astext()))

 # post-processing of read doctrees

 def filter_messages(self, doctree):
 """Filter system messages from a doctree."""
 filterlevel = self.config.keep_warnings and 2 or 5
 for node in doctree.traverse(nodes.system_message):
 if node['level'] < filterlevel:
 self.app.debug('%s [filtered system message]', node.astext())
 node.parent.remove(node)

 def process_dependencies(self, docname, doctree):
 """Process docutils-generated dependency info."""
 cwd = getcwd()
 frompath = path.join(path.normpath(self.srcdir), 'dummy')
 deps = doctree.settings.record_dependencies
 if not deps:
 return
 for dep in deps.list:
 # the dependency path is relative to the working dir, so get
 # one relative to the srcdir
 if isinstance(dep, bytes):
 dep = dep.decode(fs_encoding)
 relpath = relative_path(frompath,
 path.normpath(path.join(cwd, dep)))
 self.dependencies.setdefault(docname, set()).add(relpath)

 def process_downloads(self, docname, doctree):
 """Process downloadable file paths. """
 for node in doctree.traverse(addnodes.download_reference):
 targetname = node['reftarget']
 rel_filename, filename = self.relfn2path(targetname, docname)
 self.dependencies.setdefault(docname, set()).add(rel_filename)
 if not os.access(filename, os.R_OK):
 self.warn_node('download file not readable: %s' % filename,
 node)
 continue
 uniquename = self.dlfiles.add_file(docname, filename)
 node['filename'] = uniquename

 def process_images(self, docname, doctree):
 """Process and rewrite image URIs."""
 def collect_candidates(imgpath, candidates):
 globbed = {}
 for filename in glob(imgpath):
 new_imgpath = relative_path(path.join(self.srcdir, 'dummy'),
 filename)
 try:
 mimetype = guess_mimetype(filename)
 if mimetype not in candidates:
 globbed.setdefault(mimetype, []).append(new_imgpath)
 except (OSError, IOError) as err:
 self.warn_node('image file %s not readable: %s' %
 (filename, err), node)
 for key, files in iteritems(globbed):
 candidates[key] = sorted(files, key=len)[0] # select by similarity

 for node in doctree.traverse(nodes.image):
 # Map the mimetype to the corresponding image. The writer may
 # choose the best image from these candidates. The special key * is
 # set if there is only single candidate to be used by a writer.
 # The special key ? is set for nonlocal URIs.
 node['candidates'] = candidates = {}
 imguri = node['uri']
 if imguri.startswith('data:'):
 self.warn_node('image data URI found. some builders might not support', node,
 type='image', subtype='data_uri')
 candidates['?'] = imguri
 continue
 elif imguri.find('://') != -1:
 self.warn_node('nonlocal image URI found: %s' % imguri, node,
 type='image', subtype='nonlocal_uri')
 candidates['?'] = imguri
 continue
 rel_imgpath, full_imgpath = self.relfn2path(imguri, docname)
 if self.config.language:
 # substitute figures (ex. foo.png -> foo.en.png)
 i18n_full_imgpath = search_image_for_language(full_imgpath, self)
 if i18n_full_imgpath != full_imgpath:
 full_imgpath = i18n_full_imgpath
 rel_imgpath = relative_path(path.join(self.srcdir, 'dummy'),
 i18n_full_imgpath)
 # set imgpath as default URI
 node['uri'] = rel_imgpath
 if rel_imgpath.endswith(os.extsep + '*'):
 if self.config.language:
 # Search language-specific figures at first
 i18n_imguri = get_image_filename_for_language(imguri, self)
 _, full_i18n_imgpath = self.relfn2path(i18n_imguri, docname)
 collect_candidates(full_i18n_imgpath, candidates)

 collect_candidates(full_imgpath, candidates)
 else:
 candidates['*'] = rel_imgpath

 # map image paths to unique image names (so that they can be put
 # into a single directory)
 for imgpath in itervalues(candidates):
 self.dependencies.setdefault(docname, set()).add(imgpath)
 if not os.access(path.join(self.srcdir, imgpath), os.R_OK):
 self.warn_node('image file not readable: %s' % imgpath,
 node)
 continue
 self.images.add_file(docname, imgpath)

 def process_metadata(self, docname, doctree):
 """Process the docinfo part of the doctree as metadata.

 Keep processing minimal -- just return what docutils says.
 """
 self.metadata[docname] = md = {}
 try:
 docinfo = doctree[0]
 except IndexError:
 # probably an empty document
 return
 if docinfo.__class__ is not nodes.docinfo:
 # nothing to see here
 return
 for node in docinfo:
 # nodes are multiply inherited...
 if isinstance(node, nodes.authors):
 md['authors'] = [author.astext() for author in node]
 elif isinstance(node, nodes.TextElement): # e.g. author
 md[node.__class__.__name__] = node.astext()
 else:
 name, body = node
 md[name.astext()] = body.astext()
 for name, value in md.items():
 if name in ('tocdepth',):
 try:
 value = int(value)
 except ValueError:
 value = 0
 md[name] = value

 del doctree[0]

 def process_refonly_bullet_lists(self, docname, doctree):
 """Change refonly bullet lists to use compact_paragraphs.

 Specifically implemented for 'Indices and Tables' section, which looks
 odd when html_compact_lists is false.
 """
 if self.config.html_compact_lists:
 return

 class RefOnlyListChecker(nodes.GenericNodeVisitor):
 """Raise `nodes.NodeFound` if non-simple list item is encountered.

 Here 'simple' means a list item containing only a paragraph with a
 single reference in it.
 """

 def default_visit(self, node):
 raise nodes.NodeFound

 def visit_bullet_list(self, node):
 pass

 def visit_list_item(self, node):
 children = []
 for child in node.children:
 if not isinstance(child, nodes.Invisible):
 children.append(child)
 if len(children) != 1:
 raise nodes.NodeFound
 if not isinstance(children[0], nodes.paragraph):
 raise nodes.NodeFound
 para = children[0]
 if len(para) != 1:
 raise nodes.NodeFound
 if not isinstance(para[0], addnodes.pending_xref):
 raise nodes.NodeFound
 raise nodes.SkipChildren

 def invisible_visit(self, node):
 """Invisible nodes should be ignored."""
 pass

 def check_refonly_list(node):
 """Check for list with only references in it."""
 visitor = RefOnlyListChecker(doctree)
 try:
 node.walk(visitor)
 except nodes.NodeFound:
 return False
 else:
 return True

 for node in doctree.traverse(nodes.bullet_list):
 if check_refonly_list(node):
 for item in node.traverse(nodes.list_item):
 para = item[0]
 ref = para[0]
 compact_para = addnodes.compact_paragraph()
 compact_para += ref
 item.replace(para, compact_para)

 def create_title_from(self, docname, document):
 """Add a title node to the document (just copy the first section title),
 and store that title in the environment.
 """
 titlenode = nodes.title()
 longtitlenode = titlenode
 # explicit title set with title directive; use this only for
 # the <title> tag in HTML output
 if 'title' in document:
 longtitlenode = nodes.title()
 longtitlenode += nodes.Text(document['title'])
 # look for first section title and use that as the title
 for node in document.traverse(nodes.section):
 visitor = SphinxContentsFilter(document)
 node[0].walkabout(visitor)
 titlenode += visitor.get_entry_text()
 break
 else:
 # document has no title
 titlenode += nodes.Text('<no title>')
 self.titles[docname] = titlenode
 self.longtitles[docname] = longtitlenode

 def note_indexentries_from(self, docname, document):
 entries = self.indexentries[docname] = []
 for node in document.traverse(addnodes.index):
 try:
 for entry in node['entries']:
 split_index_msg(entry[0], entry[1])
 except ValueError as exc:
 self.warn_node(exc, node)
 node.parent.remove(node)
 else:
 for entry in node['entries']:
 if len(entry) == 5:
 # Since 1.4: new index structure including index_key (5th column)
 entries.append(entry)
 else:
 entries.append(entry + (None,))

 def note_citations_from(self, docname, document):
 for node in document.traverse(nodes.citation):
 label = node[0].astext()
 if label in self.citations:
 self.warn_node('duplicate citation %s, ' % label +
 'other instance in %s' % self.doc2path(
 self.citations[label][0]), node)
 self.citations[label] = (docname, node['ids'][0])

 def note_toctree(self, docname, toctreenode):
 """Note a TOC tree directive in a document and gather information about
 file relations from it.
 """
 if toctreenode['glob']:
 self.glob_toctrees.add(docname)
 if toctreenode.get('numbered'):
 self.numbered_toctrees.add(docname)
 includefiles = toctreenode['includefiles']
 for includefile in includefiles:
 # note that if the included file is rebuilt, this one must be
 # too (since the TOC of the included file could have changed)
 self.files_to_rebuild.setdefault(includefile, set()).add(docname)
 self.toctree_includes.setdefault(docname, []).extend(includefiles)

 def build_toc_from(self, docname, document):
 """Build a TOC from the doctree and store it in the inventory."""
 numentries = [0] # nonlocal again...

 def traverse_in_section(node, cls):
 """Like traverse(), but stay within the same section."""
 result = []
 if isinstance(node, cls):
 result.append(node)
 for child in node.children:
 if isinstance(child, nodes.section):
 continue
 result.extend(traverse_in_section(child, cls))
 return result

 def build_toc(node, depth=1):
 entries = []
 for sectionnode in node:
 # find all toctree nodes in this section and add them
 # to the toc (just copying the toctree node which is then
 # resolved in self.get_and_resolve_doctree)
 if isinstance(sectionnode, addnodes.only):
 onlynode = addnodes.only(expr=sectionnode['expr'])
 blist = build_toc(sectionnode, depth)
 if blist:
 onlynode += blist.children
 entries.append(onlynode)
 continue
 if not isinstance(sectionnode, nodes.section):
 for toctreenode in traverse_in_section(sectionnode,
 addnodes.toctree):
 item = toctreenode.copy()
 entries.append(item)
 # important: do the inventory stuff
 self.note_toctree(docname, toctreenode)
 continue
 title = sectionnode[0]
 # copy the contents of the section title, but without references
 # and unnecessary stuff
 visitor = SphinxContentsFilter(document)
 title.walkabout(visitor)
 nodetext = visitor.get_entry_text()
 if not numentries[0]:
 # for the very first toc entry, don't add an anchor
 # as it is the file's title anyway
 anchorname = ''
 else:
 anchorname = '#' + sectionnode['ids'][0]
 numentries[0] += 1
 # make these nodes:
 # list_item -> compact_paragraph -> reference
 reference = nodes.reference(
 '', '', internal=True, refuri=docname,
 anchorname=anchorname, *nodetext)
 para = addnodes.compact_paragraph('', '', reference)
 item = nodes.list_item('', para)
 sub_item = build_toc(sectionnode, depth + 1)
 item += sub_item
 entries.append(item)
 if entries:
 return nodes.bullet_list('', *entries)
 return []
 toc = build_toc(document)
 if toc:
 self.tocs[docname] = toc
 else:
 self.tocs[docname] = nodes.bullet_list('')
 self.toc_num_entries[docname] = numentries[0]

 def get_toc_for(self, docname, builder):
 """Return a TOC nodetree -- for use on the same page only!"""
 tocdepth = self.metadata[docname].get('tocdepth', 0)
 try:
 toc = self.tocs[docname].deepcopy()
 self._toctree_prune(toc, 2, tocdepth)
 except KeyError:
 # the document does not exist anymore: return a dummy node that
 # renders to nothing
 return nodes.paragraph()
 self.process_only_nodes(toc, builder, docname)
 for node in toc.traverse(nodes.reference):
 node['refuri'] = node['anchorname'] or '#'
 return toc

 def get_toctree_for(self, docname, builder, collapse, **kwds):
 """Return the global TOC nodetree."""
 doctree = self.get_doctree(self.config.master_doc)
 toctrees = []
 if 'includehidden' not in kwds:
 kwds['includehidden'] = True
 if 'maxdepth' not in kwds:
 kwds['maxdepth'] = 0
 kwds['collapse'] = collapse
 for toctreenode in doctree.traverse(addnodes.toctree):
 toctree = self.resolve_toctree(docname, builder, toctreenode,
 prune=True, **kwds)
 if toctree:
 toctrees.append(toctree)
 if not toctrees:
 return None
 result = toctrees[0]
 for toctree in toctrees[1:]:
 result.extend(toctree.children)
 return result

 def get_domain(self, domainname):
 """Return the domain instance with the specified name.

 Raises an ExtensionError if the domain is not registered.
 """
 try:
 return self.domains[domainname]
 except KeyError:
 raise ExtensionError('Domain %r is not registered' % domainname)

 # --------- RESOLVING REFERENCES AND TOCTREES ------------------------------

 def get_doctree(self, docname):
 """Read the doctree for a file from the pickle and return it."""
 doctree_filename = self.doc2path(docname, self.doctreedir, '.doctree')
 f = open(doctree_filename, 'rb')
 try:
 doctree = pickle.load(f)
 finally:
 f.close()
 doctree.settings.env = self
 doctree.reporter = Reporter(self.doc2path(docname), 2, 5,
 stream=WarningStream(self._warnfunc))
 return doctree

 def get_and_resolve_doctree(self, docname, builder, doctree=None,
 prune_toctrees=True, includehidden=False):
 """Read the doctree from the pickle, resolve cross-references and
 toctrees and return it.
 """
 if doctree is None:
 doctree = self.get_doctree(docname)

 # resolve all pending cross-references
 self.resolve_references(doctree, docname, builder)

 # now, resolve all toctree nodes
 for toctreenode in doctree.traverse(addnodes.toctree):
 result = self.resolve_toctree(docname, builder, toctreenode,
 prune=prune_toctrees,
 includehidden=includehidden)
 if result is None:
 toctreenode.replace_self([])
 else:
 toctreenode.replace_self(result)

 return doctree

 def _toctree_prune(self, node, depth, maxdepth, collapse=False):
 """Utility: Cut a TOC at a specified depth."""
 for subnode in node.children[:]:
 if isinstance(subnode, (addnodes.compact_paragraph,
 nodes.list_item)):
 # for <p> and , just recurse
 self._toctree_prune(subnode, depth, maxdepth, collapse)
 elif isinstance(subnode, nodes.bullet_list):
 # for , determine if the depth is too large or if the
 # entry is to be collapsed
 if maxdepth > 0 and depth > maxdepth:
 subnode.parent.replace(subnode, [])
 else:
 # cull sub-entries whose parents aren't 'current'
 if (collapse and depth > 1 and
 'iscurrent' not in subnode.parent):
 subnode.parent.remove(subnode)
 else:
 # recurse on visible children
 self._toctree_prune(subnode, depth+1, maxdepth, collapse)

 def get_toctree_ancestors(self, docname):
 parent = {}
 for p, children in iteritems(self.toctree_includes):
 for child in children:
 parent[child] = p
 ancestors = []
 d = docname
 while d in parent and d not in ancestors:
 ancestors.append(d)
 d = parent[d]
 return ancestors

 def resolve_toctree(self, docname, builder, toctree, prune=True, maxdepth=0,
 titles_only=False, collapse=False, includehidden=False):
 """Resolve a *toctree* node into individual bullet lists with titles
 as items, returning None (if no containing titles are found) or
 a new node.

 If *prune* is True, the tree is pruned to *maxdepth*, or if that is 0,
 to the value of the *maxdepth* option on the *toctree* node.
 If *titles_only* is True, only toplevel document titles will be in the
 resulting tree.
 If *collapse* is True, all branches not containing docname will
 be collapsed.
 """
 if toctree.get('hidden', False) and not includehidden:
 return None

 # For reading the following two helper function, it is useful to keep
 # in mind the node structure of a toctree (using HTML-like node names
 # for brevity):
 #
 #
 #
 # <p><a></p>
 # <p><a></p>
 # ...
 #
 # ...
 #
 #
 #
 #
 # The transformation is made in two passes in order to avoid
 # interactions between marking and pruning the tree (see bug #1046).

 toctree_ancestors = self.get_toctree_ancestors(docname)

 def _toctree_add_classes(node, depth):
 """Add 'toctree-l%d' and 'current' classes to the toctree."""
 for subnode in node.children:
 if isinstance(subnode, (addnodes.compact_paragraph,
 nodes.list_item)):
 # for <p> and , indicate the depth level and recurse
 subnode['classes'].append('toctree-l%d' % (depth-1))
 _toctree_add_classes(subnode, depth)
 elif isinstance(subnode, nodes.bullet_list):
 # for , just recurse
 _toctree_add_classes(subnode, depth+1)
 elif isinstance(subnode, nodes.reference):
 # for <a>, identify which entries point to the current
 # document and therefore may not be collapsed
 if subnode['refuri'] == docname:
 if not subnode['anchorname']:
 # give the whole branch a 'current' class
 # (useful for styling it differently)
 branchnode = subnode
 while branchnode:
 branchnode['classes'].append('current')
 branchnode = branchnode.parent
 # mark the list_item as "on current page"
 if subnode.parent.parent.get('iscurrent'):
 # but only if it's not already done
 return
 while subnode:
 subnode['iscurrent'] = True
 subnode = subnode.parent

 def _entries_from_toctree(toctreenode, parents,
 separate=False, subtree=False):
 """Return TOC entries for a toctree node."""
 refs = [(e[0], e[1]) for e in toctreenode['entries']]
 entries = []
 for (title, ref) in refs:
 try:
 refdoc = None
 if url_re.match(ref):
 if title is None:
 title = ref
 reference = nodes.reference('', '', internal=False,
 refuri=ref, anchorname='',
 *[nodes.Text(title)])
 para = addnodes.compact_paragraph('', '', reference)
 item = nodes.list_item('', para)
 toc = nodes.bullet_list('', item)
 elif ref == 'self':
 # 'self' refers to the document from which this
 # toctree originates
 ref = toctreenode['parent']
 if not title:
 title = clean_astext(self.titles[ref])
 reference = nodes.reference('', '', internal=True,
 refuri=ref,
 anchorname='',
 *[nodes.Text(title)])
 para = addnodes.compact_paragraph('', '', reference)
 item = nodes.list_item('', para)
 # don't show subitems
 toc = nodes.bullet_list('', item)
 else:
 if ref in parents:
 self.warn(ref, 'circular toctree references '
 'detected, ignoring: %s <- %s' %
 (ref, ' <- '.join(parents)))
 continue
 refdoc = ref
 toc = self.tocs[ref].deepcopy()
 maxdepth = self.metadata[ref].get('tocdepth', 0)
 if ref not in toctree_ancestors or (prune and maxdepth > 0):
 self._toctree_prune(toc, 2, maxdepth, collapse)
 self.process_only_nodes(toc, builder, ref)
 if title and toc.children and len(toc.children) == 1:
 child = toc.children[0]
 for refnode in child.traverse(nodes.reference):
 if refnode['refuri'] == ref and \
 not refnode['anchorname']:
 refnode.children = [nodes.Text(title)]
 if not toc.children:
 # empty toc means: no titles will show up in the toctree
 self.warn_node(
 'toctree contains reference to document %r that '
 'doesn\'t have a title: no link will be generated'
 % ref, toctreenode)
 except KeyError:
 # this is raised if the included file does not exist
 self.warn_node(
 'toctree contains reference to nonexisting document %r'
 % ref, toctreenode)
 else:
 # if titles_only is given, only keep the main title and
 # sub-toctrees
 if titles_only:
 # delete everything but the toplevel title(s)
 # and toctrees
 for toplevel in toc:
 # nodes with length 1 don't have any children anyway
 if len(toplevel) > 1:
 subtrees = toplevel.traverse(addnodes.toctree)
 toplevel[1][:] = subtrees
 # resolve all sub-toctrees
 for subtocnode in toc.traverse(addnodes.toctree):
 if not (subtocnode.get('hidden', False) and
 not includehidden):
 i = subtocnode.parent.index(subtocnode) + 1
 for item in _entries_from_toctree(
 subtocnode, [refdoc] + parents,
 subtree=True):
 subtocnode.parent.insert(i, item)
 i += 1
 subtocnode.parent.remove(subtocnode)
 if separate:
 entries.append(toc)
 else:
 entries.extend(toc.children)
 if not subtree and not separate:
 ret = nodes.bullet_list()
 ret += entries
 return [ret]
 return entries

 maxdepth = maxdepth or toctree.get('maxdepth', -1)
 if not titles_only and toctree.get('titlesonly', False):
 titles_only = True
 if not includehidden and toctree.get('includehidden', False):
 includehidden = True

 # NOTE: previously, this was separate=True, but that leads to artificial
 # separation when two or more toctree entries form a logical unit, so
 # separating mode is no longer used -- it's kept here for history's sake
 tocentries = _entries_from_toctree(toctree, [], separate=False)
 if not tocentries:
 return None

 newnode = addnodes.compact_paragraph('', '')
 caption = toctree.attributes.get('caption')
 if caption:
 newnode += nodes.caption(caption, '', *[nodes.Text(caption)])
 newnode.extend(tocentries)
 newnode['toctree'] = True

 # prune the tree to maxdepth, also set toc depth and current classes
 _toctree_add_classes(newnode, 1)
 self._toctree_prune(newnode, 1, prune and maxdepth or 0, collapse)

 # set the target paths in the toctrees (they are not known at TOC
 # generation time)
 for refnode in newnode.traverse(nodes.reference):
 if not url_re.match(refnode['refuri']):
 refnode['refuri'] = builder.get_relative_uri(
 docname, refnode['refuri']) + refnode['anchorname']
 return newnode

 def resolve_references(self, doctree, fromdocname, builder):
 for node in doctree.traverse(addnodes.pending_xref):
 contnode = node[0].deepcopy()
 newnode = None

 typ = node['reftype']
 target = node['reftarget']
 refdoc = node.get('refdoc', fromdocname)
 domain = None

 try:
 if 'refdomain' in node and node['refdomain']:
 # let the domain try to resolve the reference
 try:
 domain = self.domains[node['refdomain']]
 except KeyError:
 raise NoUri
 newnode = domain.resolve_xref(self, refdoc, builder,
 typ, target, node, contnode)
 # really hardwired reference types
 elif typ == 'any':
 newnode = self._resolve_any_reference(builder, node, contnode)
 elif typ == 'doc':
 newnode = self._resolve_doc_reference(builder, node, contnode)
 elif typ == 'citation':
 newnode = self._resolve_citation(builder, refdoc, node, contnode)
 # no new node found? try the missing-reference event
 if newnode is None:
 newnode = builder.app.emit_firstresult(
 'missing-reference', self, node, contnode)
 # still not found? warn if node wishes to be warned about or
 # we are in nit-picky mode
 if newnode is None:
 self._warn_missing_reference(refdoc, typ, target, node, domain)
 except NoUri:
 newnode = contnode
 node.replace_self(newnode or contnode)

 # remove only-nodes that do not belong to our builder
 self.process_only_nodes(doctree, builder, fromdocname)

 # allow custom references to be resolved
 builder.app.emit('doctree-resolved', doctree, fromdocname)

 def _warn_missing_reference(self, refdoc, typ, target, node, domain):
 warn = node.get('refwarn')
 if self.config.nitpicky:
 warn = True
 if self._nitpick_ignore:
 dtype = domain and '%s:%s' % (domain.name, typ) or typ
 if (dtype, target) in self._nitpick_ignore:
 warn = False
 # for "std" types also try without domain name
 if (not domain or domain.name == 'std') and \
 (typ, target) in self._nitpick_ignore:
 warn = False
 if not warn:
 return
 if domain and typ in domain.dangling_warnings:
 msg = domain.dangling_warnings[typ]
 elif typ == 'doc':
 msg = 'unknown document: %(target)s'
 elif typ == 'citation':
 msg = 'citation not found: %(target)s'
 elif node.get('refdomain', 'std') not in ('', 'std'):
 msg = '%s:%s reference target not found: %%(target)s' % \
 (node['refdomain'], typ)
 else:
 msg = '%r reference target not found: %%(target)s' % typ
 self.warn_node(msg % {'target': target}, node, type='ref', subtype=typ)

 def _resolve_doc_reference(self, builder, node, contnode):
 # directly reference to document by source name;
 # can be absolute or relative
 docname = docname_join(node['refdoc'], node['reftarget'])
 if docname in self.all_docs:
 if node['refexplicit']:
 # reference with explicit title
 caption = node.astext()
 else:
 caption = clean_astext(self.titles[docname])
 innernode = nodes.inline(caption, caption)
 innernode['classes'].append('doc')
 newnode = nodes.reference('', '', internal=True)
 newnode['refuri'] = builder.get_relative_uri(node['refdoc'], docname)
 newnode.append(innernode)
 return newnode

 def _resolve_citation(self, builder, fromdocname, node, contnode):
 docname, labelid = self.citations.get(node['reftarget'], ('', ''))
 if docname:
 try:
 newnode = make_refnode(builder, fromdocname,
 docname, labelid, contnode)
 return newnode
 except NoUri:
 # remove the ids we added in the CitationReferences
 # transform since they can't be transfered to
 # the contnode (if it's a Text node)
 if not isinstance(contnode, nodes.Element):
 del node['ids'][:]
 raise
 elif 'ids' in node:
 # remove ids attribute that annotated at
 # transforms.CitationReference.apply.
 del node['ids'][:]

 def _resolve_any_reference(self, builder, node, contnode):
 """Resolve reference generated by the "any" role."""
 refdoc = node['refdoc']
 target = node['reftarget']
 results = []
 # first, try resolving as :doc:
 doc_ref = self._resolve_doc_reference(builder, node, contnode)
 if doc_ref:
 results.append(('doc', doc_ref))
 # next, do the standard domain (makes this a priority)
 results.extend(self.domains['std'].resolve_any_xref(
 self, refdoc, builder, target, node, contnode))
 for domain in self.domains.values():
 if domain.name == 'std':
 continue # we did this one already
 try:
 results.extend(domain.resolve_any_xref(self, refdoc, builder,
 target, node, contnode))
 except NotImplementedError:
 # the domain doesn't yet support the new interface
 # we have to manually collect possible references (SLOW)
 for role in domain.roles:
 res = domain.resolve_xref(self, refdoc, builder, role, target,
 node, contnode)
 if res and isinstance(res[0], nodes.Element):
 results.append(('%s:%s' % (domain.name, role), res))
 # now, see how many matches we got...
 if not results:
 return None
 if len(results) > 1:
 nice_results = ' or '.join(':%s:' % r[0] for r in results)
 self.warn_node('more than one target found for \'any\' cross-'
 'reference %r: could be %s' % (target, nice_results),
 node)
 res_role, newnode = results[0]
 # Override "any" class with the actual role type to get the styling
 # approximately correct.
 res_domain = res_role.split(':')[0]
 if newnode and newnode[0].get('classes'):
 newnode[0]['classes'].append(res_domain)
 newnode[0]['classes'].append(res_role.replace(':', '-'))
 return newnode

 def process_only_nodes(self, doctree, builder, fromdocname=None):
 # A comment on the comment() nodes being inserted: replacing by [] would
 # result in a "Losing ids" exception if there is a target node before
 # the only node, so we make sure docutils can transfer the id to
 # something, even if it's just a comment and will lose the id anyway...
 for node in doctree.traverse(addnodes.only):
 try:
 ret = builder.tags.eval_condition(node['expr'])
 except Exception as err:
 self.warn_node('exception while evaluating only '
 'directive expression: %s' % err, node)
 node.replace_self(node.children or nodes.comment())
 else:
 if ret:
 node.replace_self(node.children or nodes.comment())
 else:
 node.replace_self(nodes.comment())

 def assign_section_numbers(self):
 """Assign a section number to each heading under a numbered toctree."""
 # a list of all docnames whose section numbers changed
 rewrite_needed = []

 assigned = set()
 old_secnumbers = self.toc_secnumbers
 self.toc_secnumbers = {}

 def _walk_toc(node, secnums, depth, titlenode=None):
 # titlenode is the title of the document, it will get assigned a
 # secnumber too, so that it shows up in next/prev/parent rellinks
 for subnode in node.children:
 if isinstance(subnode, nodes.bullet_list):
 numstack.append(0)
 _walk_toc(subnode, secnums, depth-1, titlenode)
 numstack.pop()
 titlenode = None
 elif isinstance(subnode, nodes.list_item):
 _walk_toc(subnode, secnums, depth, titlenode)
 titlenode = None
 elif isinstance(subnode, addnodes.only):
 # at this stage we don't know yet which sections are going
 # to be included; just include all of them, even if it leads
 # to gaps in the numbering
 _walk_toc(subnode, secnums, depth, titlenode)
 titlenode = None
 elif isinstance(subnode, addnodes.compact_paragraph):
 numstack[-1] += 1
 if depth > 0:
 number = tuple(numstack)
 else:
 number = None
 secnums[subnode[0]['anchorname']] = \
 subnode[0]['secnumber'] = number
 if titlenode:
 titlenode['secnumber'] = number
 titlenode = None
 elif isinstance(subnode, addnodes.toctree):
 _walk_toctree(subnode, depth)

 def _walk_toctree(toctreenode, depth):
 if depth == 0:
 return
 for (title, ref) in toctreenode['entries']:
 if url_re.match(ref) or ref == 'self' or ref in assigned:
 # don't mess with those
 continue
 if ref in self.tocs:
 secnums = self.toc_secnumbers[ref] = {}
 assigned.add(ref)
 _walk_toc(self.tocs[ref], secnums, depth,
 self.titles.get(ref))
 if secnums != old_secnumbers.get(ref):
 rewrite_needed.append(ref)

 for docname in self.numbered_toctrees:
 assigned.add(docname)
 doctree = self.get_doctree(docname)
 for toctreenode in doctree.traverse(addnodes.toctree):
 depth = toctreenode.get('numbered', 0)
 if depth:
 # every numbered toctree gets new numbering
 numstack = [0]
 _walk_toctree(toctreenode, depth)

 return rewrite_needed

 def assign_figure_numbers(self):
 """Assign a figure number to each figure under a numbered toctree."""

 rewrite_needed = []

 assigned = set()
 old_fignumbers = self.toc_fignumbers
 self.toc_fignumbers = {}
 fignum_counter = {}

 def get_section_number(docname, section):
 anchorname = '#' + section['ids'][0]
 secnumbers = self.toc_secnumbers.get(docname, {})
 if anchorname in secnumbers:
 secnum = secnumbers.get(anchorname)
 else:
 secnum = secnumbers.get('')

 return secnum or tuple()

 def get_next_fignumber(figtype, secnum):
 counter = fignum_counter.setdefault(figtype, {})

 secnum = secnum[:self.config.numfig_secnum_depth]
 counter[secnum] = counter.get(secnum, 0) + 1
 return secnum + (counter[secnum],)

 def register_fignumber(docname, secnum, figtype, fignode):
 self.toc_fignumbers.setdefault(docname, {})
 fignumbers = self.toc_fignumbers[docname].setdefault(figtype, {})
 figure_id = fignode['ids'][0]

 fignumbers[figure_id] = get_next_fignumber(figtype, secnum)

 def _walk_doctree(docname, doctree, secnum):
 for subnode in doctree.children:
 if isinstance(subnode, nodes.section):
 next_secnum = get_section_number(docname, subnode)
 if next_secnum:
 _walk_doctree(docname, subnode, next_secnum)
 else:
 _walk_doctree(docname, subnode, secnum)
 continue
 elif isinstance(subnode, addnodes.toctree):
 for title, subdocname in subnode['entries']:
 if url_re.match(subdocname) or subdocname == 'self':
 # don't mess with those
 continue

 _walk_doc(subdocname, secnum)

 continue

 figtype = self.domains['std'].get_figtype(subnode)
 if figtype and subnode['ids']:
 register_fignumber(docname, secnum, figtype, subnode)

 _walk_doctree(docname, subnode, secnum)

 def _walk_doc(docname, secnum):
 if docname not in assigned:
 assigned.add(docname)
 doctree = self.get_doctree(docname)
 _walk_doctree(docname, doctree, secnum)

 if self.config.numfig:
 _walk_doc(self.config.master_doc, tuple())
 for docname, fignums in iteritems(self.toc_fignumbers):
 if fignums != old_fignumbers.get(docname):
 rewrite_needed.append(docname)

 return rewrite_needed

 def create_index(self, builder, group_entries=True,
 _fixre=re.compile(r'(.*) ([(][^()]*[)])')):
 """Create the real index from the collected index entries."""
 new = {}

 def add_entry(word, subword, link=True, dic=new, key=None):
 # Force the word to be unicode if it's a ASCII bytestring.
 # This will solve problems with unicode normalization later.
 # For instance the RFC role will add bytestrings at the moment
 word = text_type(word)
 entry = dic.get(word)
 if not entry:
 dic[word] = entry = [[], {}, key]
 if subword:
 add_entry(subword, '', link=link, dic=entry[1], key=key)
 elif link:
 try:
 uri = builder.get_relative_uri('genindex', fn) + '#' + tid
 except NoUri:
 pass
 else:
 # maintain links in sorted/deterministic order
 bisect.insort(entry[0], (main, uri))

 for fn, entries in iteritems(self.indexentries):
 # new entry types must be listed in directives/other.py!
 for type, value, tid, main, index_key in entries:
 try:
 if type == 'single':
 try:
 entry, subentry = split_into(2, 'single', value)
 except ValueError:
 entry, = split_into(1, 'single', value)
 subentry = ''
 add_entry(entry, subentry, key=index_key)
 elif type == 'pair':
 first, second = split_into(2, 'pair', value)
 add_entry(first, second, key=index_key)
 add_entry(second, first, key=index_key)
 elif type == 'triple':
 first, second, third = split_into(3, 'triple', value)
 add_entry(first, second+' '+third, key=index_key)
 add_entry(second, third+', '+first, key=index_key)
 add_entry(third, first+' '+second, key=index_key)
 elif type == 'see':
 first, second = split_into(2, 'see', value)
 add_entry(first, _('see %s') % second, link=False,
 key=index_key)
 elif type == 'seealso':
 first, second = split_into(2, 'see', value)
 add_entry(first, _('see also %s') % second, link=False,
 key=index_key)
 else:
 self.warn(fn, 'unknown index entry type %r' % type)
 except ValueError as err:
 self.warn(fn, str(err))

 # sort the index entries; put all symbols at the front, even those
 # following the letters in ASCII, this is where the chr(127) comes from
 def keyfunc(entry, lcletters=string.ascii_lowercase + '_'):
 lckey = unicodedata.normalize('NFD', entry[0].lower())
 if lckey[0:1] in lcletters:
 lckey = chr(127) + lckey
 # ensure a determinstic order *within* letters by also sorting on
 # the entry itself
 return (lckey, entry[0])
 newlist = sorted(new.items(), key=keyfunc)

 if group_entries:
 # fixup entries: transform
 # func() (in module foo)
 # func() (in module bar)
 # into
 # func()
 # (in module foo)
 # (in module bar)
 oldkey = ''
 oldsubitems = None
 i = 0
 while i < len(newlist):
 key, (targets, subitems, _key) = newlist[i]
 # cannot move if it has subitems; structure gets too complex
 if not subitems:
 m = _fixre.match(key)
 if m:
 if oldkey == m.group(1):
 # prefixes match: add entry as subitem of the
 # previous entry
 oldsubitems.setdefault(m.group(2), [[], {}, _key])[0].\
 extend(targets)
 del newlist[i]
 continue
 oldkey = m.group(1)
 else:
 oldkey = key
 oldsubitems = subitems
 i += 1

 # group the entries by letter
 def keyfunc2(item, letters=string.ascii_uppercase + '_'):
 # hack: mutating the subitems dicts to a list in the keyfunc
 k, v = item
 v[1] = sorted((si, se) for (si, (se, void, void)) in iteritems(v[1]))
 if v[2] is None:
 # now calculate the key
 letter = unicodedata.normalize('NFD', k[0])[0].upper()
 if letter in letters:
 return letter
 else:
 # get all other symbols under one heading
 return _('Symbols')
 else:
 return v[2]
 return [(key_, list(group))
 for (key_, group) in groupby(newlist, keyfunc2)]

 def collect_relations(self):
 traversed = set()

 def traverse_toctree(parent, docname):
 if parent == docname:
 self.warn(docname, 'self referenced toctree found. Ignored.')
 return

 # traverse toctree by pre-order
 yield parent, docname
 traversed.add(docname)

 for child in (self.toctree_includes.get(docname) or []):
 for subparent, subdocname in traverse_toctree(docname, child):
 if subdocname not in traversed:
 yield subparent, subdocname
 traversed.add(subdocname)

 relations = {}
 docnames = traverse_toctree(None, self.config.master_doc)
 prevdoc = None
 parent, docname = next(docnames)
 for nextparent, nextdoc in docnames:
 relations[docname] = [parent, prevdoc, nextdoc]
 prevdoc = docname
 docname = nextdoc
 parent = nextparent

 relations[docname] = [parent, prevdoc, None]

 return relations

 def check_consistency(self):
 """Do consistency checks."""
 for docname in sorted(self.all_docs):
 if docname not in self.files_to_rebuild:
 if docname == self.config.master_doc:
 # the master file is not included anywhere ;)
 continue
 if 'orphan' in self.metadata[docname]:
 continue
 self.warn(docname, 'document isn\'t included in any toctree')

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 Source code for sphinx.errors

-*- coding: utf-8 -*-
"""
 sphinx.errors
    ~~~~~~~~~~~~~

    Contains SphinxError and a few subclasses (in an extra module to avoid
    circular import problems).

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import traceback


[docs]class SphinxError(Exception):
    """
    Base class for Sphinx errors that are shown to the user in a nicer
    way than normal exceptions.
    """
    category = 'Sphinx error'



class SphinxWarning(SphinxError):
    """Raised for warnings if warnings are treated as errors."""
    category = 'Warning, treated as error'


[docs]class ExtensionError(SphinxError):
    """Raised if something's wrong with the configuration."""
    category = 'Extension error'

    def __init__(self, message, orig_exc=None):
        SphinxError.__init__(self, message)
        self.orig_exc = orig_exc

    def __repr__(self):
        if self.orig_exc:
            return '%s(%r, %r)' % (self.__class__.__name__,
                                   self.message, self.orig_exc)
        return '%s(%r)' % (self.__class__.__name__, self.message)

    def __str__(self):
        parent_str = SphinxError.__str__(self)
        if self.orig_exc:
            return '%s (exception: %s)' % (parent_str, self.orig_exc)
        return parent_str



[docs]class ConfigError(SphinxError):
    category = 'Configuration error'



[docs]class ThemeError(SphinxError):
    category = 'Theme error'



[docs]class VersionRequirementError(SphinxError):
    category = 'Sphinx version error'



class PycodeError(Exception):
    def __str__(self):
        res = self.args[0]
        if len(self.args) > 1:
            res += ' (exception was: %r)' % self.args[1]
        return res


class SphinxParallelError(Exception):
    def __init__(self, orig_exc, traceback):
        self.orig_exc = orig_exc
        self.traceback = traceback

    def __str__(self):
        return traceback.format_exception_only(
            self.orig_exc.__class__, self.orig_exc)[0].strip()




          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »
 
      

    


    
      
          
            
  Source code for sphinx.ext.autodoc

# -*- coding: utf-8 -*-
"""
    sphinx.ext.autodoc
    ~~~~~~~~~~~~~~~~~~

 Automatically insert docstrings for functions, classes or whole modules into
 the doctree, thus avoiding duplication between docstrings and documentation
 for those who like elaborate docstrings.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import re
import sys
import inspect
import traceback
from types import FunctionType, BuiltinFunctionType, MethodType

from six import PY2, iterkeys, iteritems, itervalues, text_type, class_types, \
 string_types, StringIO
from docutils import nodes
from docutils.utils import assemble_option_dict
from docutils.statemachine import ViewList

import sphinx
from sphinx.util import rpartition, force_decode
from sphinx.locale import _
from sphinx.pycode import ModuleAnalyzer, PycodeError
from sphinx.application import ExtensionError
from sphinx.util.nodes import nested_parse_with_titles
from sphinx.util.compat import Directive
from sphinx.util.inspect import getargspec, isdescriptor, safe_getmembers, \
 safe_getattr, object_description, is_builtin_class_method
from sphinx.util.docstrings import prepare_docstring

try:
 import typing
except ImportError:
 typing = None

#: extended signature RE: with explicit module name separated by ::
py_ext_sig_re = re.compile(
 r'''^ ([\w.]+::)? # explicit module name
 ([\w.]+\.)? # module and/or class name(s)
 (\w+) \s* # thing name
 (?: \((.*)\) # optional: arguments
 (?:\s* -> \s* (.*))? # return annotation
)? $ # and nothing more
 ''', re.VERBOSE)

class DefDict(dict):
 """A dict that returns a default on nonexisting keys."""
 def __init__(self, default):
 dict.__init__(self)
 self.default = default

 def __getitem__(self, key):
 try:
 return dict.__getitem__(self, key)
 except KeyError:
 return self.default

 def __bool__(self):
 # docutils check "if option_spec"
 return True
 __nonzero__ = __bool__ # for python2 compatibility

def identity(x):
 return x

class Options(dict):
 """A dict/attribute hybrid that returns None on nonexisting keys."""
 def __getattr__(self, name):
 try:
 return self[name.replace('_', '-')]
 except KeyError:
 return None

class _MockModule(object):
 """Used by autodoc_mock_imports."""
 def __init__(self, *args, **kwargs):
 pass

 def __call__(self, *args, **kwargs):
 return _MockModule()

 @classmethod
 def __getattr__(cls, name):
 if name in ('__file__', '__path__'):
 return '/dev/null'
 elif name[0] == name[0].upper():
 # Not very good, we assume Uppercase names are classes...
 mocktype = type(name, (), {})
 mocktype.__module__ = __name__
 return mocktype
 else:
 return _MockModule()

def mock_import(modname):
 if '.' in modname:
 pkg, _n, mods = modname.rpartition('.')
 mock_import(pkg)
 mod = _MockModule()
 sys.modules[modname] = mod
 return mod

ALL = object()
INSTANCEATTR = object()

def members_option(arg):
 """Used to convert the :members: option to auto directives."""
 if arg is None:
 return ALL
 return [x.strip() for x in arg.split(',')]

def members_set_option(arg):
 """Used to convert the :members: option to auto directives."""
 if arg is None:
 return ALL
 return set(x.strip() for x in arg.split(','))

SUPPRESS = object()

def annotation_option(arg):
 if arg is None:
 # suppress showing the representation of the object
 return SUPPRESS
 else:
 return arg

def bool_option(arg):
 """Used to convert flag options to auto directives. (Instead of
 directives.flag(), which returns None).
 """
 return True

class AutodocReporter(object):
 """
 A reporter replacement that assigns the correct source name
 and line number to a system message, as recorded in a ViewList.
 """
 def __init__(self, viewlist, reporter):
 self.viewlist = viewlist
 self.reporter = reporter

 def __getattr__(self, name):
 return getattr(self.reporter, name)

 def system_message(self, level, message, *children, **kwargs):
 if 'line' in kwargs and 'source' not in kwargs:
 try:
 source, line = self.viewlist.items[kwargs['line']]
 except IndexError:
 pass
 else:
 kwargs['source'] = source
 kwargs['line'] = line
 return self.reporter.system_message(level, message,
 *children, **kwargs)

 def debug(self, *args, **kwargs):
 if self.reporter.debug_flag:
 return self.system_message(0, *args, **kwargs)

 def info(self, *args, **kwargs):
 return self.system_message(1, *args, **kwargs)

 def warning(self, *args, **kwargs):
 return self.system_message(2, *args, **kwargs)

 def error(self, *args, **kwargs):
 return self.system_message(3, *args, **kwargs)

 def severe(self, *args, **kwargs):
 return self.system_message(4, *args, **kwargs)

Some useful event listener factories for autodoc-process-docstring.

[docs]def cut_lines(pre, post=0, what=None):
 """Return a listener that removes the first *pre* and last *post*
 lines of every docstring. If *what* is a sequence of strings,
 only docstrings of a type in *what* will be processed.

 Use like this (e.g. in the ``setup()`` function of :file:`conf.py`)::

 from sphinx.ext.autodoc import cut_lines
 app.connect('autodoc-process-docstring', cut_lines(4, what=['module']))

 This can (and should) be used in place of :confval:`automodule_skip_lines`.
 """
 def process(app, what_, name, obj, options, lines):
 if what and what_ not in what:
 return
 del lines[:pre]
 if post:
 # remove one trailing blank line.
 if lines and not lines[-1]:
 lines.pop(-1)
 del lines[-post:]
 # make sure there is a blank line at the end
 if lines and lines[-1]:
 lines.append('')
 return process

[docs]def between(marker, what=None, keepempty=False, exclude=False):
 """Return a listener that either keeps, or if *exclude* is True excludes,
 lines between lines that match the *marker* regular expression. If no line
 matches, the resulting docstring would be empty, so no change will be made
 unless *keepempty* is true.

 If *what* is a sequence of strings, only docstrings of a type in *what* will
 be processed.
 """
 marker_re = re.compile(marker)

 def process(app, what_, name, obj, options, lines):
 if what and what_ not in what:
 return
 deleted = 0
 delete = not exclude
 orig_lines = lines[:]
 for i, line in enumerate(orig_lines):
 if delete:
 lines.pop(i - deleted)
 deleted += 1
 if marker_re.match(line):
 delete = not delete
 if delete:
 lines.pop(i - deleted)
 deleted += 1
 if not lines and not keepempty:
 lines[:] = orig_lines
 # make sure there is a blank line at the end
 if lines and lines[-1]:
 lines.append('')
 return process

def format_annotation(annotation):
 """Return formatted representation of a type annotation.

 Show qualified names for types and additional details for types from
 the ``typing`` module.

 Displaying complex types from ``typing`` relies on its private API.
 """
 qualified_name = (annotation.__module__ + '.' + annotation.__qualname__
 if annotation else repr(annotation))

 if not isinstance(annotation, type):
 return repr(annotation)
 elif annotation.__module__ == 'builtins':
 return annotation.__qualname__
 elif typing:
 if isinstance(annotation, typing.TypeVar):
 return annotation.__name__
 elif hasattr(typing, 'GenericMeta') and \
 isinstance(annotation, typing.GenericMeta) and \
 hasattr(annotation, '__parameters__'):
 params = annotation.__parameters__
 if params is not None:
 param_str = ', '.join(format_annotation(p) for p in params)
 return '%s[%s]' % (qualified_name, param_str)
 elif hasattr(typing, 'UnionMeta') and \
 isinstance(annotation, typing.UnionMeta) and \
 hasattr(annotation, '__union_params__'):
 params = annotation.__union_params__
 if params is not None:
 param_str = ', '.join(format_annotation(p) for p in params)
 return '%s[%s]' % (qualified_name, param_str)
 elif hasattr(typing, 'CallableMeta') and \
 isinstance(annotation, typing.CallableMeta) and \
 hasattr(annotation, '__args__') and \
 hasattr(annotation, '__result__'):
 args = annotation.__args__
 if args is Ellipsis:
 args_str = '...'
 else:
 formatted_args = (format_annotation(a) for a in args)
 args_str = '[%s]' % ', '.join(formatted_args)
 return '%s[%s, %s]' % (qualified_name,
 args_str,
 format_annotation(annotation.__result__))
 elif hasattr(typing, 'TupleMeta') and \
 isinstance(annotation, typing.TupleMeta) and \
 hasattr(annotation, '__tuple_params__') and \
 hasattr(annotation, '__tuple_use_ellipsis__'):
 params = annotation.__tuple_params__
 if params is not None:
 param_strings = [format_annotation(p) for p in params]
 if annotation.__tuple_use_ellipsis__:
 param_strings.append('...')
 return '%s[%s]' % (qualified_name,
 ', '.join(param_strings))
 return qualified_name

def formatargspec(function, args, varargs=None, varkw=None, defaults=None,
 kwonlyargs=(), kwonlydefaults={}, annotations={}):
 """Return a string representation of an ``inspect.FullArgSpec`` tuple.

 An enhanced version of ``inspect.formatargspec()`` that handles typing
 annotations better.
 """

 def format_arg_with_annotation(name):
 if name in annotations:
 return '%s: %s' % (name, format_annotation(get_annotation(name)))
 return name

 def get_annotation(name):
 value = annotations[name]
 if isinstance(value, string_types):
 return introspected_hints.get(name, value)
 else:
 return value

 introspected_hints = (typing.get_type_hints(function)
 if typing and hasattr(function, '__code__') else {})

 fd = StringIO()
 fd.write('(')

 formatted = []
 defaults_start = len(args) - len(defaults) if defaults else len(args)

 for i, arg in enumerate(args):
 arg_fd = StringIO()
 arg_fd.write(format_arg_with_annotation(arg))
 if defaults and i >= defaults_start:
 arg_fd.write(' = ' if arg in annotations else '=')
 arg_fd.write(object_description(defaults[i - defaults_start]))
 formatted.append(arg_fd.getvalue())

 if varargs:
 formatted.append('*' + format_arg_with_annotation(varargs))

 if kwonlyargs:
 formatted.append('*')
 for kwarg in kwonlyargs:
 arg_fd = StringIO()
 arg_fd.write(format_arg_with_annotation(kwarg))
 if kwonlydefaults and kwarg in kwonlydefaults:
 arg_fd.write(' = ' if kwarg in annotations else '=')
 arg_fd.write(object_description(kwonlydefaults[kwarg]))
 formatted.append(arg_fd.getvalue())

 if varkw:
 formatted.append('**' + format_arg_with_annotation(varkw))

 fd.write(', '.join(formatted))
 fd.write(')')

 if 'return' in annotations:
 fd.write(' -> ')
 fd.write(format_annotation(get_annotation('return')))

 return fd.getvalue()

class Documenter(object):
 """
 A Documenter knows how to autodocument a single object type. When
 registered with the AutoDirective, it will be used to document objects
 of that type when needed by autodoc.

 Its *objtype* attribute selects what auto directive it is assigned to
 (the directive name is 'auto' + objtype), and what directive it generates
 by default, though that can be overridden by an attribute called
 directivetype.

 A Documenter has an *option_spec* that works like a docutils directive's;
 in fact, it will be used to parse an auto directive's options that matches
 the documenter.
 """
 #: name by which the directive is called (auto...) and the default
 #: generated directive name
 objtype = 'object'
 #: indentation by which to indent the directive content
 content_indent = u' '
 #: priority if multiple documenters return True from can_document_member
 priority = 0
 #: order if autodoc_member_order is set to 'groupwise'
 member_order = 0
 #: true if the generated content may contain titles
 titles_allowed = False

 option_spec = {'noindex': bool_option}

 @staticmethod
 def get_attr(obj, name, *defargs):
 """getattr() override for types such as Zope interfaces."""
 for typ, func in iteritems(AutoDirective._special_attrgetters):
 if isinstance(obj, typ):
 return func(obj, name, *defargs)
 return safe_getattr(obj, name, *defargs)

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 """Called to see if a member can be documented by this documenter."""
 raise NotImplementedError('must be implemented in subclasses')

 def __init__(self, directive, name, indent=u''):
 self.directive = directive
 self.env = directive.env
 self.options = directive.genopt
 self.name = name
 self.indent = indent
 # the module and object path within the module, and the fully
 # qualified name (all set after resolve_name succeeds)
 self.modname = None
 self.module = None
 self.objpath = None
 self.fullname = None
 # extra signature items (arguments and return annotation,
 # also set after resolve_name succeeds)
 self.args = None
 self.retann = None
 # the object to document (set after import_object succeeds)
 self.object = None
 self.object_name = None
 # the parent/owner of the object to document
 self.parent = None
 # the module analyzer to get at attribute docs, or None
 self.analyzer = None

 def add_line(self, line, source, *lineno):
 """Append one line of generated reST to the output."""
 self.directive.result.append(self.indent + line, source, *lineno)

 def resolve_name(self, modname, parents, path, base):
 """Resolve the module and name of the object to document given by the
 arguments and the current module/class.

 Must return a pair of the module name and a chain of attributes; for
 example, it would return ``('zipfile', ['ZipFile', 'open'])`` for the
 ``zipfile.ZipFile.open`` method.
 """
 raise NotImplementedError('must be implemented in subclasses')

 def parse_name(self):
 """Determine what module to import and what attribute to document.

 Returns True and sets *self.modname*, *self.objpath*, *self.fullname*,
 self.args and *self.retann* if parsing and resolving was successful.
 """
 # first, parse the definition -- auto directives for classes and
 # functions can contain a signature which is then used instead of
 # an autogenerated one
 try:
 explicit_modname, path, base, args, retann = \
 py_ext_sig_re.match(self.name).groups()
 except AttributeError:
 self.directive.warn('invalid signature for auto%s (%r)' %
 (self.objtype, self.name))
 return False

 # support explicit module and class name separation via ::
 if explicit_modname is not None:
 modname = explicit_modname[:-2]
 parents = path and path.rstrip('.').split('.') or []
 else:
 modname = None
 parents = []

 self.modname, self.objpath = \
 self.resolve_name(modname, parents, path, base)

 if not self.modname:
 return False

 self.args = args
 self.retann = retann
 self.fullname = (self.modname or '') + \
 (self.objpath and '.' + '.'.join(self.objpath) or '')
 return True

 def import_object(self):
 """Import the object given by *self.modname* and *self.objpath* and set
 it as *self.object*.

 Returns True if successful, False if an error occurred.
 """
 dbg = self.env.app.debug
 if self.objpath:
 dbg('[autodoc] from %s import %s',
 self.modname, '.'.join(self.objpath))
 try:
 dbg('[autodoc] import %s', self.modname)
 for modname in self.env.config.autodoc_mock_imports:
 dbg('[autodoc] adding a mock module %s!', self.modname)
 mock_import(modname)
 __import__(self.modname)
 parent = None
 obj = self.module = sys.modules[self.modname]
 dbg('[autodoc] => %r', obj)
 for part in self.objpath:
 parent = obj
 dbg('[autodoc] getattr(_, %r)', part)
 obj = self.get_attr(obj, part)
 dbg('[autodoc] => %r', obj)
 self.object_name = part
 self.parent = parent
 self.object = obj
 return True
 # this used to only catch SyntaxError, ImportError and AttributeError,
 # but importing modules with side effects can raise all kinds of errors
 except (Exception, SystemExit) as e:
 if self.objpath:
 errmsg = 'autodoc: failed to import %s %r from module %r' % \
 (self.objtype, '.'.join(self.objpath), self.modname)
 else:
 errmsg = 'autodoc: failed to import %s %r' % \
 (self.objtype, self.fullname)
 if isinstance(e, SystemExit):
 errmsg += ('; the module executes module level statement ' +
 'and it might call sys.exit().')
 else:
 errmsg += '; the following exception was raised:\n%s' % \
 traceback.format_exc()
 if PY2:
 errmsg = errmsg.decode('utf-8')
 dbg(errmsg)
 self.directive.warn(errmsg)
 self.env.note_reread()
 return False

 def get_real_modname(self):
 """Get the real module name of an object to document.

 It can differ from the name of the module through which the object was
 imported.
 """
 return self.get_attr(self.object, '__module__', None) or self.modname

 def check_module(self):
 """Check if *self.object* is really defined in the module given by
 self.modname.
 """
 if self.options.imported_members:
 return True

 modname = self.get_attr(self.object, '__module__', None)
 if modname and modname != self.modname:
 return False
 return True

 def format_args(self):
 """Format the argument signature of *self.object*.

 Should return None if the object does not have a signature.
 """
 return None

 def format_name(self):
 """Format the name of *self.object*.

 This normally should be something that can be parsed by the generated
 directive, but doesn't need to be (Sphinx will display it unparsed
 then).
 """
 # normally the name doesn't contain the module (except for module
 # directives of course)
 return '.'.join(self.objpath) or self.modname

 def format_signature(self):
 """Format the signature (arguments and return annotation) of the object.

 Let the user process it via the ``autodoc-process-signature`` event.
 """
 if self.args is not None:
 # signature given explicitly
 args = "(%s)" % self.args
 else:
 # try to introspect the signature
 try:
 args = self.format_args()
 except Exception as err:
 self.directive.warn('error while formatting arguments for '
 '%s: %s' % (self.fullname, err))
 args = None

 retann = self.retann

 result = self.env.app.emit_firstresult(
 'autodoc-process-signature', self.objtype, self.fullname,
 self.object, self.options, args, retann)
 if result:
 args, retann = result

 if args is not None:
 return args + (retann and (' -> %s' % retann) or '')
 else:
 return ''

 def add_directive_header(self, sig):
 """Add the directive header and options to the generated content."""
 domain = getattr(self, 'domain', 'py')
 directive = getattr(self, 'directivetype', self.objtype)
 name = self.format_name()
 sourcename = self.get_sourcename()
 self.add_line(u'.. %s:%s:: %s%s' % (domain, directive, name, sig),
 sourcename)
 if self.options.noindex:
 self.add_line(u' :noindex:', sourcename)
 if self.objpath:
 # Be explicit about the module, this is necessary since .. class::
 # etc. don't support a prepended module name
 self.add_line(u' :module: %s' % self.modname, sourcename)

 def get_doc(self, encoding=None, ignore=1):
 """Decode and return lines of the docstring(s) for the object."""
 docstring = self.get_attr(self.object, '__doc__', None)
 # make sure we have Unicode docstrings, then sanitize and split
 # into lines
 if isinstance(docstring, text_type):
 return [prepare_docstring(docstring, ignore)]
 elif isinstance(docstring, str): # this will not trigger on Py3
 return [prepare_docstring(force_decode(docstring, encoding),
 ignore)]
 # ... else it is something strange, let's ignore it
 return []

 def process_doc(self, docstrings):
 """Let the user process the docstrings before adding them."""
 for docstringlines in docstrings:
 if self.env.app:
 # let extensions preprocess docstrings
 self.env.app.emit('autodoc-process-docstring',
 self.objtype, self.fullname, self.object,
 self.options, docstringlines)
 for line in docstringlines:
 yield line

 def get_sourcename(self):
 if self.analyzer:
 # prevent encoding errors when the file name is non-ASCII
 if not isinstance(self.analyzer.srcname, text_type):
 filename = text_type(self.analyzer.srcname,
 sys.getfilesystemencoding(), 'replace')
 else:
 filename = self.analyzer.srcname
 return u'%s:docstring of %s' % (filename, self.fullname)
 return u'docstring of %s' % self.fullname

 def add_content(self, more_content, no_docstring=False):
 """Add content from docstrings, attribute documentation and user."""
 # set sourcename and add content from attribute documentation
 sourcename = self.get_sourcename()
 if self.analyzer:
 attr_docs = self.analyzer.find_attr_docs()
 if self.objpath:
 key = ('.'.join(self.objpath[:-1]), self.objpath[-1])
 if key in attr_docs:
 no_docstring = True
 docstrings = [attr_docs[key]]
 for i, line in enumerate(self.process_doc(docstrings)):
 self.add_line(line, sourcename, i)

 # add content from docstrings
 if not no_docstring:
 encoding = self.analyzer and self.analyzer.encoding
 docstrings = self.get_doc(encoding)
 if not docstrings:
 # append at least a dummy docstring, so that the event
 # autodoc-process-docstring is fired and can add some
 # content if desired
 docstrings.append([])
 for i, line in enumerate(self.process_doc(docstrings)):
 self.add_line(line, sourcename, i)

 # add additional content (e.g. from document), if present
 if more_content:
 for line, src in zip(more_content.data, more_content.items):
 self.add_line(line, src[0], src[1])

 def get_object_members(self, want_all):
 """Return `(members_check_module, members)` where `members` is a
 list of `(membername, member)` pairs of the members of *self.object*.

 If *want_all* is True, return all members. Else, only return those
 members given by *self.options.members* (which may also be none).
 """
 analyzed_member_names = set()
 if self.analyzer:
 attr_docs = self.analyzer.find_attr_docs()
 namespace = '.'.join(self.objpath)
 for item in iteritems(attr_docs):
 if item[0][0] == namespace:
 analyzed_member_names.add(item[0][1])
 if not want_all:
 if not self.options.members:
 return False, []
 # specific members given
 members = []
 for mname in self.options.members:
 try:
 members.append((mname, self.get_attr(self.object, mname)))
 except AttributeError:
 if mname not in analyzed_member_names:
 self.directive.warn('missing attribute %s in object %s'
 % (mname, self.fullname))
 elif self.options.inherited_members:
 # safe_getmembers() uses dir() which pulls in members from all
 # base classes
 members = safe_getmembers(self.object, attr_getter=self.get_attr)
 else:
 # __dict__ contains only the members directly defined in
 # the class (but get them via getattr anyway, to e.g. get
 # unbound method objects instead of function objects);
 # using list(iterkeys()) because apparently there are objects for which
 # __dict__ changes while getting attributes
 try:
 obj_dict = self.get_attr(self.object, '__dict__')
 except AttributeError:
 members = []
 else:
 members = [(mname, self.get_attr(self.object, mname, None))
 for mname in list(iterkeys(obj_dict))]
 membernames = set(m[0] for m in members)
 # add instance attributes from the analyzer
 for aname in analyzed_member_names:
 if aname not in membernames and \
 (want_all or aname in self.options.members):
 members.append((aname, INSTANCEATTR))
 return False, sorted(members)

 def filter_members(self, members, want_all):
 """Filter the given member list.

 Members are skipped if

 - they are private (except if given explicitly or the private-members
 option is set)
 - they are special methods (except if given explicitly or the
 special-members option is set)
 - they are undocumented (except if the undoc-members option is set)

 The user can override the skipping decision by connecting to the
 ``autodoc-skip-member`` event.
 """
 ret = []

 # search for members in source code too
 namespace = '.'.join(self.objpath) # will be empty for modules

 if self.analyzer:
 attr_docs = self.analyzer.find_attr_docs()
 else:
 attr_docs = {}

 # process members and determine which to skip
 for (membername, member) in members:
 # if isattr is True, the member is documented as an attribute
 isattr = False

 doc = self.get_attr(member, '__doc__', None)
 # if the member __doc__ is the same as self's __doc__, it's just
 # inherited and therefore not the member's doc
 cls = self.get_attr(member, '__class__', None)
 if cls:
 cls_doc = self.get_attr(cls, '__doc__', None)
 if cls_doc == doc:
 doc = None
 has_doc = bool(doc)

 keep = False
 if want_all and membername.startswith('__') and \
 membername.endswith('__') and len(membername) > 4:
 # special __methods__
 if self.options.special_members is ALL and \
 membername != '__doc__':
 keep = has_doc or self.options.undoc_members
 elif self.options.special_members and \
 self.options.special_members is not ALL and \
 membername in self.options.special_members:
 keep = has_doc or self.options.undoc_members
 elif want_all and membername.startswith('_'):
 # ignore members whose name starts with _ by default
 keep = self.options.private_members and \
 (has_doc or self.options.undoc_members)
 elif (namespace, membername) in attr_docs:
 # keep documented attributes
 keep = True
 isattr = True
 else:
 # ignore undocumented members if :undoc-members: is not given
 keep = has_doc or self.options.undoc_members

 # give the user a chance to decide whether this member
 # should be skipped
 if self.env.app:
 # let extensions preprocess docstrings
 skip_user = self.env.app.emit_firstresult(
 'autodoc-skip-member', self.objtype, membername, member,
 not keep, self.options)
 if skip_user is not None:
 keep = not skip_user

 if keep:
 ret.append((membername, member, isattr))

 return ret

 def document_members(self, all_members=False):
 """Generate reST for member documentation.

 If *all_members* is True, do all members, else those given by
 self.options.members.
 """
 # set current namespace for finding members
 self.env.temp_data['autodoc:module'] = self.modname
 if self.objpath:
 self.env.temp_data['autodoc:class'] = self.objpath[0]

 want_all = all_members or self.options.inherited_members or \
 self.options.members is ALL
 # find out which members are documentable
 members_check_module, members = self.get_object_members(want_all)

 # remove members given by exclude-members
 if self.options.exclude_members:
 members = [(membername, member) for (membername, member) in members
 if membername not in self.options.exclude_members]

 # document non-skipped members
 memberdocumenters = []
 for (mname, member, isattr) in self.filter_members(members, want_all):
 classes = [cls for cls in itervalues(AutoDirective._registry)
 if cls.can_document_member(member, mname, isattr, self)]
 if not classes:
 # don't know how to document this member
 continue
 # prefer the documenter with the highest priority
 classes.sort(key=lambda cls: cls.priority)
 # give explicitly separated module name, so that members
 # of inner classes can be documented
 full_mname = self.modname + '::' + \
 '.'.join(self.objpath + [mname])
 documenter = classes[-1](self.directive, full_mname, self.indent)
 memberdocumenters.append((documenter, isattr))
 member_order = self.options.member_order or \
 self.env.config.autodoc_member_order
 if member_order == 'groupwise':
 # sort by group; relies on stable sort to keep items in the
 # same group sorted alphabetically
 memberdocumenters.sort(key=lambda e: e[0].member_order)
 elif member_order == 'bysource' and self.analyzer:
 # sort by source order, by virtue of the module analyzer
 tagorder = self.analyzer.tagorder

 def keyfunc(entry):
 fullname = entry[0].name.split('::')[1]
 return tagorder.get(fullname, len(tagorder))
 memberdocumenters.sort(key=keyfunc)

 for documenter, isattr in memberdocumenters:
 documenter.generate(
 all_members=True, real_modname=self.real_modname,
 check_module=members_check_module and not isattr)

 # reset current objects
 self.env.temp_data['autodoc:module'] = None
 self.env.temp_data['autodoc:class'] = None

 def generate(self, more_content=None, real_modname=None,
 check_module=False, all_members=False):
 """Generate reST for the object given by *self.name*, and possibly for
 its members.

 If *more_content* is given, include that content. If *real_modname* is
 given, use that module name to find attribute docs. If *check_module* is
 True, only generate if the object is defined in the module name it is
 imported from. If *all_members* is True, document all members.
 """
 if not self.parse_name():
 # need a module to import
 self.directive.warn(
 'don\'t know which module to import for autodocumenting '
 '%r (try placing a "module" or "currentmodule" directive '
 'in the document, or giving an explicit module name)'
 % self.name)
 return

 # now, import the module and get object to document
 if not self.import_object():
 return

 # If there is no real module defined, figure out which to use.
 # The real module is used in the module analyzer to look up the module
 # where the attribute documentation would actually be found in.
 # This is used for situations where you have a module that collects the
 # functions and classes of internal submodules.
 self.real_modname = real_modname or self.get_real_modname()

 # try to also get a source code analyzer for attribute docs
 try:
 self.analyzer = ModuleAnalyzer.for_module(self.real_modname)
 # parse right now, to get PycodeErrors on parsing (results will
 # be cached anyway)
 self.analyzer.find_attr_docs()
 except PycodeError as err:
 self.env.app.debug('[autodoc] module analyzer failed: %s', err)
 # no source file -- e.g. for builtin and C modules
 self.analyzer = None
 # at least add the module.__file__ as a dependency
 if hasattr(self.module, '__file__') and self.module.__file__:
 self.directive.filename_set.add(self.module.__file__)
 else:
 self.directive.filename_set.add(self.analyzer.srcname)

 # check __module__ of object (for members not given explicitly)
 if check_module:
 if not self.check_module():
 return

 sourcename = self.get_sourcename()

 # make sure that the result starts with an empty line. This is
 # necessary for some situations where another directive preprocesses
 # reST and no starting newline is present
 self.add_line(u'', sourcename)

 # format the object's signature, if any
 sig = self.format_signature()

 # generate the directive header and options, if applicable
 self.add_directive_header(sig)
 self.add_line(u'', sourcename)

 # e.g. the module directive doesn't have content
 self.indent += self.content_indent

 # add all content (from docstrings, attribute docs etc.)
 self.add_content(more_content)

 # document members, if possible
 self.document_members(all_members)

class ModuleDocumenter(Documenter):
 """
 Specialized Documenter subclass for modules.
 """
 objtype = 'module'
 content_indent = u''
 titles_allowed = True

 option_spec = {
 'members': members_option, 'undoc-members': bool_option,
 'noindex': bool_option, 'inherited-members': bool_option,
 'show-inheritance': bool_option, 'synopsis': identity,
 'platform': identity, 'deprecated': bool_option,
 'member-order': identity, 'exclude-members': members_set_option,
 'private-members': bool_option, 'special-members': members_option,
 'imported-members': bool_option,
 }

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 # don't document submodules automatically
 return False

 def resolve_name(self, modname, parents, path, base):
 if modname is not None:
 self.directive.warn('"::" in automodule name doesn\'t make sense')
 return (path or '') + base, []

 def parse_name(self):
 ret = Documenter.parse_name(self)
 if self.args or self.retann:
 self.directive.warn('signature arguments or return annotation '
 'given for automodule %s' % self.fullname)
 return ret

 def add_directive_header(self, sig):
 Documenter.add_directive_header(self, sig)

 sourcename = self.get_sourcename()

 # add some module-specific options
 if self.options.synopsis:
 self.add_line(
 u' :synopsis: ' + self.options.synopsis, sourcename)
 if self.options.platform:
 self.add_line(
 u' :platform: ' + self.options.platform, sourcename)
 if self.options.deprecated:
 self.add_line(u' :deprecated:', sourcename)

 def get_object_members(self, want_all):
 if want_all:
 if not hasattr(self.object, '__all__'):
 # for implicit module members, check __module__ to avoid
 # documenting imported objects
 return True, safe_getmembers(self.object)
 else:
 memberlist = self.object.__all__
 # Sometimes __all__ is broken...
 if not isinstance(memberlist, (list, tuple)) or not \
 all(isinstance(entry, string_types) for entry in memberlist):
 self.directive.warn(
 '__all__ should be a list of strings, not %r '
 '(in module %s) -- ignoring __all__' %
 (memberlist, self.fullname))
 # fall back to all members
 return True, safe_getmembers(self.object)
 else:
 memberlist = self.options.members or []
 ret = []
 for mname in memberlist:
 try:
 ret.append((mname, safe_getattr(self.object, mname)))
 except AttributeError:
 self.directive.warn(
 'missing attribute mentioned in :members: or __all__: '
 'module %s, attribute %s' % (
 safe_getattr(self.object, '__name__', '???'), mname))
 return False, ret

class ModuleLevelDocumenter(Documenter):
 """
 Specialized Documenter subclass for objects on module level (functions,
 classes, data/constants).
 """
 def resolve_name(self, modname, parents, path, base):
 if modname is None:
 if path:
 modname = path.rstrip('.')
 else:
 # if documenting a toplevel object without explicit module,
 # it can be contained in another auto directive ...
 modname = self.env.temp_data.get('autodoc:module')
 # ... or in the scope of a module directive
 if not modname:
 modname = self.env.ref_context.get('py:module')
 # ... else, it stays None, which means invalid
 return modname, parents + [base]

class ClassLevelDocumenter(Documenter):
 """
 Specialized Documenter subclass for objects on class level (methods,
 attributes).
 """
 def resolve_name(self, modname, parents, path, base):
 if modname is None:
 if path:
 mod_cls = path.rstrip('.')
 else:
 mod_cls = None
 # if documenting a class-level object without path,
 # there must be a current class, either from a parent
 # auto directive ...
 mod_cls = self.env.temp_data.get('autodoc:class')
 # ... or from a class directive
 if mod_cls is None:
 mod_cls = self.env.ref_context.get('py:class')
 # ... if still None, there's no way to know
 if mod_cls is None:
 return None, []
 modname, cls = rpartition(mod_cls, '.')
 parents = [cls]
 # if the module name is still missing, get it like above
 if not modname:
 modname = self.env.temp_data.get('autodoc:module')
 if not modname:
 modname = self.env.ref_context.get('py:module')
 # ... else, it stays None, which means invalid
 return modname, parents + [base]

class DocstringSignatureMixin(object):
 """
 Mixin for FunctionDocumenter and MethodDocumenter to provide the
 feature of reading the signature from the docstring.
 """

 def _find_signature(self, encoding=None):
 docstrings = self.get_doc(encoding)
 self._new_docstrings = docstrings[:]
 result = None
 for i, doclines in enumerate(docstrings):
 # no lines in docstring, no match
 if not doclines:
 continue
 # match first line of docstring against signature RE
 match = py_ext_sig_re.match(doclines[0])
 if not match:
 continue
 exmod, path, base, args, retann = match.groups()
 # the base name must match ours
 valid_names = [self.objpath[-1]]
 if isinstance(self, ClassDocumenter):
 valid_names.append('__init__')
 if hasattr(self.object, '__mro__'):
 valid_names.extend(cls.__name__ for cls in self.object.__mro__)
 if base not in valid_names:
 continue
 # re-prepare docstring to ignore more leading indentation
 self._new_docstrings[i] = prepare_docstring('\n'.join(doclines[1:]))
 result = args, retann
 # don't look any further
 break
 return result

 def get_doc(self, encoding=None, ignore=1):
 lines = getattr(self, '_new_docstrings', None)
 if lines is not None:
 return lines
 return Documenter.get_doc(self, encoding, ignore)

 def format_signature(self):
 if self.args is None and self.env.config.autodoc_docstring_signature:
 # only act if a signature is not explicitly given already, and if
 # the feature is enabled
 result = self._find_signature()
 if result is not None:
 self.args, self.retann = result
 return Documenter.format_signature(self)

class DocstringStripSignatureMixin(DocstringSignatureMixin):
 """
 Mixin for AttributeDocumenter to provide the
 feature of stripping any function signature from the docstring.
 """
 def format_signature(self):
 if self.args is None and self.env.config.autodoc_docstring_signature:
 # only act if a signature is not explicitly given already, and if
 # the feature is enabled
 result = self._find_signature()
 if result is not None:
 # Discarding _args is a only difference with
 # DocstringSignatureMixin.format_signature.
 # Documenter.format_signature use self.args value to format.
 _args, self.retann = result
 return Documenter.format_signature(self)

class FunctionDocumenter(DocstringSignatureMixin, ModuleLevelDocumenter):
 """
 Specialized Documenter subclass for functions.
 """
 objtype = 'function'
 member_order = 30

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 return isinstance(member, (FunctionType, BuiltinFunctionType))

 def format_args(self):
 if inspect.isbuiltin(self.object) or \
 inspect.ismethoddescriptor(self.object):
 # cannot introspect arguments of a C function or method
 return None
 try:
 argspec = getargspec(self.object)
 except TypeError:
 if (is_builtin_class_method(self.object, '__new__') and
 is_builtin_class_method(self.object, '__init__')):
 raise TypeError('%r is a builtin class' % self.object)

 # if a class should be documented as function (yay duck
 # typing) we try to use the constructor signature as function
 # signature without the first argument.
 try:
 argspec = getargspec(self.object.__new__)
 except TypeError:
 argspec = getargspec(self.object.__init__)
 if argspec[0]:
 del argspec[0][0]
 args = formatargspec(self.object, *argspec)
 # escape backslashes for reST
 args = args.replace('\\', '\\\\')
 return args

 def document_members(self, all_members=False):
 pass

class ClassDocumenter(DocstringSignatureMixin, ModuleLevelDocumenter):
 """
 Specialized Documenter subclass for classes.
 """
 objtype = 'class'
 member_order = 20
 option_spec = {
 'members': members_option, 'undoc-members': bool_option,
 'noindex': bool_option, 'inherited-members': bool_option,
 'show-inheritance': bool_option, 'member-order': identity,
 'exclude-members': members_set_option,
 'private-members': bool_option, 'special-members': members_option,
 }

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 return isinstance(member, class_types)

 def import_object(self):
 ret = ModuleLevelDocumenter.import_object(self)
 # if the class is documented under another name, document it
 # as data/attribute
 if ret:
 if hasattr(self.object, '__name__'):
 self.doc_as_attr = (self.objpath[-1] != self.object.__name__)
 else:
 self.doc_as_attr = True
 return ret

 def format_args(self):
 # for classes, the relevant signature is the __init__ method's
 initmeth = self.get_attr(self.object, '__init__', None)
 # classes without __init__ method, default __init__ or
 # __init__ written in C?
 if initmeth is None or \
 is_builtin_class_method(self.object, '__init__') or \
 not(inspect.ismethod(initmeth) or inspect.isfunction(initmeth)):
 return None
 try:
 argspec = getargspec(initmeth)
 except TypeError:
 # still not possible: happens e.g. for old-style classes
 # with __init__ in C
 return None
 if argspec[0] and argspec[0][0] in ('cls', 'self'):
 del argspec[0][0]
 return formatargspec(initmeth, *argspec)

 def format_signature(self):
 if self.doc_as_attr:
 return ''

 return DocstringSignatureMixin.format_signature(self)

 def add_directive_header(self, sig):
 if self.doc_as_attr:
 self.directivetype = 'attribute'
 Documenter.add_directive_header(self, sig)

 # add inheritance info, if wanted
 if not self.doc_as_attr and self.options.show_inheritance:
 sourcename = self.get_sourcename()
 self.add_line(u'', sourcename)
 if hasattr(self.object, '__bases__') and len(self.object.__bases__):
 bases = [b.__module__ in ('__builtin__', 'builtins') and
 u':class:`%s`' % b.__name__ or
 u':class:`%s.%s`' % (b.__module__, b.__name__)
 for b in self.object.__bases__]
 self.add_line(_(u' Bases: %s') % ', '.join(bases),
 sourcename)

 def get_doc(self, encoding=None, ignore=1):
 lines = getattr(self, '_new_docstrings', None)
 if lines is not None:
 return lines

 content = self.env.config.autoclass_content

 docstrings = []
 attrdocstring = self.get_attr(self.object, '__doc__', None)
 if attrdocstring:
 docstrings.append(attrdocstring)

 # for classes, what the "docstring" is can be controlled via a
 # config value; the default is only the class docstring
 if content in ('both', 'init'):
 initdocstring = self.get_attr(
 self.get_attr(self.object, '__init__', None), '__doc__')
 # for new-style classes, no __init__ means default __init__
 if (initdocstring is not None and
 (initdocstring == object.__init__.__doc__ or # for pypy
 initdocstring.strip() == object.__init__.__doc__)): # for !pypy
 initdocstring = None
 if not initdocstring:
 # try __new__
 initdocstring = self.get_attr(
 self.get_attr(self.object, '__new__', None), '__doc__')
 # for new-style classes, no __new__ means default __new__
 if (initdocstring is not None and
 (initdocstring == object.__new__.__doc__ or # for pypy
 initdocstring.strip() == object.__new__.__doc__)): # for !pypy
 initdocstring = None
 if initdocstring:
 if content == 'init':
 docstrings = [initdocstring]
 else:
 docstrings.append(initdocstring)
 doc = []
 for docstring in docstrings:
 if isinstance(docstring, text_type):
 doc.append(prepare_docstring(docstring, ignore))
 elif isinstance(docstring, str): # this will not trigger on Py3
 doc.append(prepare_docstring(force_decode(docstring, encoding),
 ignore))
 return doc

 def add_content(self, more_content, no_docstring=False):
 if self.doc_as_attr:
 classname = safe_getattr(self.object, '__name__', None)
 if classname:
 content = ViewList(
 [_('alias of :class:`%s`') % classname], source='')
 ModuleLevelDocumenter.add_content(self, content,
 no_docstring=True)
 else:
 ModuleLevelDocumenter.add_content(self, more_content)

 def document_members(self, all_members=False):
 if self.doc_as_attr:
 return
 ModuleLevelDocumenter.document_members(self, all_members)

class ExceptionDocumenter(ClassDocumenter):
 """
 Specialized ClassDocumenter subclass for exceptions.
 """
 objtype = 'exception'
 member_order = 10

 # needs a higher priority than ClassDocumenter
 priority = 10

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 return isinstance(member, class_types) and \
 issubclass(member, BaseException)

class DataDocumenter(ModuleLevelDocumenter):
 """
 Specialized Documenter subclass for data items.
 """
 objtype = 'data'
 member_order = 40
 priority = -10
 option_spec = dict(ModuleLevelDocumenter.option_spec)
 option_spec["annotation"] = annotation_option

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 return isinstance(parent, ModuleDocumenter) and isattr

 def add_directive_header(self, sig):
 ModuleLevelDocumenter.add_directive_header(self, sig)
 sourcename = self.get_sourcename()
 if not self.options.annotation:
 try:
 objrepr = object_description(self.object)
 except ValueError:
 pass
 else:
 self.add_line(u' :annotation: = ' + objrepr, sourcename)
 elif self.options.annotation is SUPPRESS:
 pass
 else:
 self.add_line(u' :annotation: %s' % self.options.annotation,
 sourcename)

 def document_members(self, all_members=False):
 pass

class MethodDocumenter(DocstringSignatureMixin, ClassLevelDocumenter):
 """
 Specialized Documenter subclass for methods (normal, static and class).
 """
 objtype = 'method'
 member_order = 50
 priority = 1 # must be more than FunctionDocumenter

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 return inspect.isroutine(member) and \
 not isinstance(parent, ModuleDocumenter)

 def import_object(self):
 ret = ClassLevelDocumenter.import_object(self)
 if not ret:
 return ret

 # to distinguish classmethod/staticmethod
 obj = self.parent.__dict__.get(self.object_name)

 if isinstance(obj, classmethod):
 self.directivetype = 'classmethod'
 # document class and static members before ordinary ones
 self.member_order = self.member_order - 1
 elif isinstance(obj, staticmethod):
 self.directivetype = 'staticmethod'
 # document class and static members before ordinary ones
 self.member_order = self.member_order - 1
 else:
 self.directivetype = 'method'
 return ret

 def format_args(self):
 if inspect.isbuiltin(self.object) or \
 inspect.ismethoddescriptor(self.object):
 # can never get arguments of a C function or method
 return None
 argspec = getargspec(self.object)
 if argspec[0] and argspec[0][0] in ('cls', 'self'):
 del argspec[0][0]
 args = formatargspec(self.object, *argspec)
 # escape backslashes for reST
 args = args.replace('\\', '\\\\')
 return args

 def document_members(self, all_members=False):
 pass

class AttributeDocumenter(DocstringStripSignatureMixin, ClassLevelDocumenter):
 """
 Specialized Documenter subclass for attributes.
 """
 objtype = 'attribute'
 member_order = 60
 option_spec = dict(ModuleLevelDocumenter.option_spec)
 option_spec["annotation"] = annotation_option

 # must be higher than the MethodDocumenter, else it will recognize
 # some non-data descriptors as methods
 priority = 10

 method_types = (FunctionType, BuiltinFunctionType, MethodType)

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 isdatadesc = isdescriptor(member) and not \
 isinstance(member, cls.method_types) and not \
 type(member).__name__ in ("type", "method_descriptor",
 "instancemethod")
 return isdatadesc or (not isinstance(parent, ModuleDocumenter) and
 not inspect.isroutine(member) and
 not isinstance(member, class_types))

 def document_members(self, all_members=False):
 pass

 def import_object(self):
 ret = ClassLevelDocumenter.import_object(self)
 if isdescriptor(self.object) and \
 not isinstance(self.object, self.method_types):
 self._datadescriptor = True
 else:
 # if it's not a data descriptor
 self._datadescriptor = False
 return ret

 def get_real_modname(self):
 return self.get_attr(self.parent or self.object, '__module__', None) \
 or self.modname

 def add_directive_header(self, sig):
 ClassLevelDocumenter.add_directive_header(self, sig)
 sourcename = self.get_sourcename()
 if not self.options.annotation:
 if not self._datadescriptor:
 try:
 objrepr = object_description(self.object)
 except ValueError:
 pass
 else:
 self.add_line(u' :annotation: = ' + objrepr, sourcename)
 elif self.options.annotation is SUPPRESS:
 pass
 else:
 self.add_line(u' :annotation: %s' % self.options.annotation,
 sourcename)

 def add_content(self, more_content, no_docstring=False):
 if not self._datadescriptor:
 # if it's not a data descriptor, its docstring is very probably the
 # wrong thing to display
 no_docstring = True
 ClassLevelDocumenter.add_content(self, more_content, no_docstring)

class InstanceAttributeDocumenter(AttributeDocumenter):
 """
 Specialized Documenter subclass for attributes that cannot be imported
 because they are instance attributes (e.g. assigned in __init__).
 """
 objtype = 'instanceattribute'
 directivetype = 'attribute'
 member_order = 60

 # must be higher than AttributeDocumenter
 priority = 11

 @classmethod
 def can_document_member(cls, member, membername, isattr, parent):
 """This documents only INSTANCEATTR members."""
 return isattr and (member is INSTANCEATTR)

 def import_object(self):
 """Never import anything."""
 # disguise as an attribute
 self.objtype = 'attribute'
 self._datadescriptor = False
 return True

 def add_content(self, more_content, no_docstring=False):
 """Never try to get a docstring from the object."""
 AttributeDocumenter.add_content(self, more_content, no_docstring=True)

class AutoDirective(Directive):
 """
 The AutoDirective class is used for all autodoc directives. It dispatches
 most of the work to one of the Documenters, which it selects through its
 _registry dictionary.

 The *_special_attrgetters* attribute is used to customize ``getattr()``
 calls that the Documenters make; its entries are of the form ``type:
 getattr_function``.

 Note: When importing an object, all items along the import chain are
 accessed using the descendant's *_special_attrgetters*, thus this
 dictionary should include all necessary functions for accessing
 attributes of the parents.
 """
 # a registry of objtype -> documenter class
 _registry = {}

 # a registry of type -> getattr function
 _special_attrgetters = {}

 # flags that can be given in autodoc_default_flags
 _default_flags = set([
 'members', 'undoc-members', 'inherited-members', 'show-inheritance',
 'private-members', 'special-members',
])

 # standard docutils directive settings
 has_content = True
 required_arguments = 1
 optional_arguments = 0
 final_argument_whitespace = True
 # allow any options to be passed; the options are parsed further
 # by the selected Documenter
 option_spec = DefDict(identity)

 def warn(self, msg):
 self.warnings.append(self.reporter.warning(msg, line=self.lineno))

 def run(self):
 self.filename_set = set() # a set of dependent filenames
 self.reporter = self.state.document.reporter
 self.env = self.state.document.settings.env
 self.warnings = []
 self.result = ViewList()

 try:
 source, lineno = self.reporter.get_source_and_line(self.lineno)
 except AttributeError:
 source = lineno = None
 self.env.app.debug('[autodoc] %s:%s: input:\n%s',
 source, lineno, self.block_text)

 # find out what documenter to call
 objtype = self.name[4:]
 doc_class = self._registry[objtype]
 # add default flags
 for flag in self._default_flags:
 if flag not in doc_class.option_spec:
 continue
 negated = self.options.pop('no-' + flag, 'not given') is None
 if flag in self.env.config.autodoc_default_flags and \
 not negated:
 self.options[flag] = None
 # process the options with the selected documenter's option_spec
 try:
 self.genopt = Options(assemble_option_dict(
 self.options.items(), doc_class.option_spec))
 except (KeyError, ValueError, TypeError) as err:
 # an option is either unknown or has a wrong type
 msg = self.reporter.error('An option to %s is either unknown or '
 'has an invalid value: %s' % (self.name, err),
 line=self.lineno)
 return [msg]
 # generate the output
 documenter = doc_class(self, self.arguments[0])
 documenter.generate(more_content=self.content)
 if not self.result:
 return self.warnings

 self.env.app.debug2('[autodoc] output:\n%s', '\n'.join(self.result))

 # record all filenames as dependencies -- this will at least
 # partially make automatic invalidation possible
 for fn in self.filename_set:
 self.state.document.settings.record_dependencies.add(fn)

 # use a custom reporter that correctly assigns lines to source
 # filename/description and lineno
 old_reporter = self.state.memo.reporter
 self.state.memo.reporter = AutodocReporter(self.result,
 self.state.memo.reporter)

 if documenter.titles_allowed:
 node = nodes.section()
 # necessary so that the child nodes get the right source/line set
 node.document = self.state.document
 nested_parse_with_titles(self.state, self.result, node)
 else:
 node = nodes.paragraph()
 node.document = self.state.document
 self.state.nested_parse(self.result, 0, node)
 self.state.memo.reporter = old_reporter
 return self.warnings + node.children

def add_documenter(cls):
 """Register a new Documenter."""
 if not issubclass(cls, Documenter):
 raise ExtensionError('autodoc documenter %r must be a subclass '
 'of Documenter' % cls)
 # actually, it should be possible to override Documenters
 # if cls.objtype in AutoDirective._registry:
 # raise ExtensionError('autodoc documenter for %r is already '
 # 'registered' % cls.objtype)
 AutoDirective._registry[cls.objtype] = cls

def setup(app):
 app.add_autodocumenter(ModuleDocumenter)
 app.add_autodocumenter(ClassDocumenter)
 app.add_autodocumenter(ExceptionDocumenter)
 app.add_autodocumenter(DataDocumenter)
 app.add_autodocumenter(FunctionDocumenter)
 app.add_autodocumenter(MethodDocumenter)
 app.add_autodocumenter(AttributeDocumenter)
 app.add_autodocumenter(InstanceAttributeDocumenter)

 app.add_config_value('autoclass_content', 'class', True)
 app.add_config_value('autodoc_member_order', 'alphabetic', True)
 app.add_config_value('autodoc_default_flags', [], True)
 app.add_config_value('autodoc_docstring_signature', True, True)
 app.add_config_value('autodoc_mock_imports', [], True)
 app.add_event('autodoc-process-docstring')
 app.add_event('autodoc-process-signature')
 app.add_event('autodoc-skip-member')

 return {'version': sphinx.__display_version__, 'parallel_read_safe': True}

class testcls:
 """test doc string"""

 def __getattr__(self, x):
 return x

 def __setattr__(self, x, y):
 """Attr setter."""

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 Source code for sphinx.ext.coverage

-*- coding: utf-8 -*-
"""
 sphinx.ext.coverage
    ~~~~~~~~~~~~~~~~~~~

    Check Python modules and C API for coverage.  Mostly written by Josip
    Dzolonga for the Google Highly Open Participation contest.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import re
import glob
import inspect
from os import path

from six import iteritems
from six.moves import cPickle as pickle

import sphinx
from sphinx.builders import Builder
from sphinx.util.inspect import safe_getattr


# utility
def write_header(f, text, char='-'):
    f.write(text + '\n')
    f.write(char * len(text) + '\n')


def compile_regex_list(name, exps, warnfunc):
    lst = []
    for exp in exps:
        try:
            lst.append(re.compile(exp))
        except Exception:
            warnfunc('invalid regex %r in %s' % (exp, name))
    return lst


[docs]class CoverageBuilder(Builder):

    name = 'coverage'

    def init(self):
        self.c_sourcefiles = []
        for pattern in self.config.coverage_c_path:
            pattern = path.join(self.srcdir, pattern)
            self.c_sourcefiles.extend(glob.glob(pattern))

        self.c_regexes = []
        for (name, exp) in self.config.coverage_c_regexes.items():
            try:
                self.c_regexes.append((name, re.compile(exp)))
            except Exception:
                self.warn('invalid regex %r in coverage_c_regexes' % exp)

        self.c_ignorexps = {}
        for (name, exps) in iteritems(self.config.coverage_ignore_c_items):
            self.c_ignorexps[name] = compile_regex_list(
                'coverage_ignore_c_items', exps, self.warn)
        self.mod_ignorexps = compile_regex_list(
            'coverage_ignore_modules', self.config.coverage_ignore_modules,
            self.warn)
        self.cls_ignorexps = compile_regex_list(
            'coverage_ignore_classes', self.config.coverage_ignore_classes,
            self.warn)
        self.fun_ignorexps = compile_regex_list(
            'coverage_ignore_functions', self.config.coverage_ignore_functions,
            self.warn)

    def get_outdated_docs(self):
        return 'coverage overview'

    def write(self, *ignored):
        self.py_undoc = {}
        self.build_py_coverage()
        self.write_py_coverage()

        self.c_undoc = {}
        self.build_c_coverage()
        self.write_c_coverage()

    def build_c_coverage(self):
        # Fetch all the info from the header files
        c_objects = self.env.domaindata['c']['objects']
        for filename in self.c_sourcefiles:
            undoc = set()
            f = open(filename, 'r')
            try:
                for line in f:
                    for key, regex in self.c_regexes:
                        match = regex.match(line)
                        if match:
                            name = match.groups()[0]
                            if name not in c_objects:
                                for exp in self.c_ignorexps.get(key, ()):
                                    if exp.match(name):
                                        break
                                else:
                                    undoc.add((key, name))
                            continue
            finally:
                f.close()
            if undoc:
                self.c_undoc[filename] = undoc

    def write_c_coverage(self):
        output_file = path.join(self.outdir, 'c.txt')
        op = open(output_file, 'w')
        try:
            if self.config.coverage_write_headline:
                write_header(op, 'Undocumented C API elements', '=')
            op.write('\n')

            for filename, undoc in iteritems(self.c_undoc):
                write_header(op, filename)
                for typ, name in sorted(undoc):
                    op.write(' * %-50s [%9s]\n' % (name, typ))
                op.write('\n')
        finally:
            op.close()

    def build_py_coverage(self):
        objects = self.env.domaindata['py']['objects']
        modules = self.env.domaindata['py']['modules']

        skip_undoc = self.config.coverage_skip_undoc_in_source

        for mod_name in modules:
            ignore = False
            for exp in self.mod_ignorexps:
                if exp.match(mod_name):
                    ignore = True
                    break
            if ignore:
                continue

            try:
                mod = __import__(mod_name, fromlist=['foo'])
            except ImportError as err:
                self.warn('module %s could not be imported: %s' %
                          (mod_name, err))
                self.py_undoc[mod_name] = {'error': err}
                continue

            funcs = []
            classes = {}

            for name, obj in inspect.getmembers(mod):
                # diverse module attributes are ignored:
                if name[0] == '_':
                    # begins in an underscore
                    continue
                if not hasattr(obj, '__module__'):
                    # cannot be attributed to a module
                    continue
                if obj.__module__ != mod_name:
                    # is not defined in this module
                    continue

                full_name = '%s.%s' % (mod_name, name)

                if inspect.isfunction(obj):
                    if full_name not in objects:
                        for exp in self.fun_ignorexps:
                            if exp.match(name):
                                break
                        else:
                            if skip_undoc and not obj.__doc__:
                                continue
                            funcs.append(name)
                elif inspect.isclass(obj):
                    for exp in self.cls_ignorexps:
                        if exp.match(name):
                            break
                    else:
                        if full_name not in objects:
                            if skip_undoc and not obj.__doc__:
                                continue
                            # not documented at all
                            classes[name] = []
                            continue

                        attrs = []

                        for attr_name in dir(obj):
                            if attr_name not in obj.__dict__:
                                continue
                            try:
                                attr = safe_getattr(obj, attr_name)
                            except AttributeError:
                                continue
                            if not (inspect.ismethod(attr) or
                                    inspect.isfunction(attr)):
                                continue
                            if attr_name[0] == '_':
                                # starts with an underscore, ignore it
                                continue
                            if skip_undoc and not attr.__doc__:
                                # skip methods without docstring if wished
                                continue

                            full_attr_name = '%s.%s' % (full_name, attr_name)
                            if full_attr_name not in objects:
                                attrs.append(attr_name)

                        if attrs:
                            # some attributes are undocumented
                            classes[name] = attrs

            self.py_undoc[mod_name] = {'funcs': funcs, 'classes': classes}

    def write_py_coverage(self):
        output_file = path.join(self.outdir, 'python.txt')
        op = open(output_file, 'w')
        failed = []
        try:
            if self.config.coverage_write_headline:
                write_header(op, 'Undocumented Python objects', '=')
            keys = sorted(self.py_undoc.keys())
            for name in keys:
                undoc = self.py_undoc[name]
                if 'error' in undoc:
                    failed.append((name, undoc['error']))
                else:
                    if not undoc['classes'] and not undoc['funcs']:
                        continue

                    write_header(op, name)
                    if undoc['funcs']:
                        op.write('Functions:\n')
                        op.writelines(' * %s\n' % x for x in undoc['funcs'])
                        op.write('\n')
                    if undoc['classes']:
                        op.write('Classes:\n')
                        for name, methods in sorted(
                                iteritems(undoc['classes'])):
                            if not methods:
                                op.write(' * %s\n' % name)
                            else:
                                op.write(' * %s -- missing methods:\n\n' % name)
                                op.writelines('   - %s\n' % x for x in methods)
                        op.write('\n')

            if failed:
                write_header(op, 'Modules that failed to import')
                op.writelines(' * %s -- %s\n' % x for x in failed)
        finally:
            op.close()

    def finish(self):
        # dump the coverage data to a pickle file too
        picklepath = path.join(self.outdir, 'undoc.pickle')
        dumpfile = open(picklepath, 'wb')
        try:
            pickle.dump((self.py_undoc, self.c_undoc), dumpfile)
        finally:
            dumpfile.close()



def setup(app):
    app.add_builder(CoverageBuilder)
    app.add_config_value('coverage_ignore_modules', [], False)
    app.add_config_value('coverage_ignore_functions', [], False)
    app.add_config_value('coverage_ignore_classes', [], False)
    app.add_config_value('coverage_c_path', [], False)
    app.add_config_value('coverage_c_regexes', {}, False)
    app.add_config_value('coverage_ignore_c_items', {}, False)
    app.add_config_value('coverage_write_headline', True, False)
    app.add_config_value('coverage_skip_undoc_in_source', False, False)
    return {'version': sphinx.__display_version__, 'parallel_read_safe': True}




          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »
 
      

    


    
      
          
            
  Source code for sphinx.parsers

# -*- coding: utf-8 -*-
"""
    sphinx.parsers
    ~~~~~~~~~~~~~~

 A Base class for additional parsers.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import docutils.parsers

[docs]class Parser(docutils.parsers.Parser):
 """
 A base class of source parsers. The additonal parsers should inherits this class instead
 of ``docutils.parsers.Parser``. Compared with ``docutils.parsers.Parser``, this class
 improves accessibility to Sphinx APIs.

 The subclasses can access following objects and functions:

 self.app
 The application object (:class:`sphinx.application.Sphinx`)
 self.config
 The config object (:class:`sphinx.config.Config`)
 self.env
 The environment object (:class:`sphinx.environment.BuildEnvironment`)
 self.warn()
 Emit a warning. (Same as :meth:`sphinx.application.Sphinx.warn()`)
 self.info()
 Emit a informational message. (Same as :meth:`sphinx.application.Sphinx.info()`)
 """

 def set_application(self, app):
 """set_application will be called from Sphinx to set app and other instance variables

 :param sphinx.application.Sphinx app: Sphinx application object
 """
 self.app = app
 self.config = app.config
 self.env = app.env
 self.warn = app.warn
 self.info = app.info

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 Source code for sphinx.websupport

-*- coding: utf-8 -*-
"""
 sphinx.websupport
    ~~~~~~~~~~~~~~~~~

    Base Module for web support functions.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

import sys
import posixpath
from os import path

from six.moves import cPickle as pickle
from jinja2 import Environment, FileSystemLoader
from docutils.core import publish_parts

from sphinx.application import Sphinx
from sphinx.locale import _
from sphinx.util.osutil import ensuredir
from sphinx.util.jsonimpl import dumps as dump_json
from sphinx.util.pycompat import htmlescape
from sphinx.websupport import errors
from sphinx.websupport.search import BaseSearch, SEARCH_ADAPTERS
from sphinx.websupport.storage import StorageBackend


[docs]class WebSupport(object):
    """The main API class for the web support package. All interactions
    with the web support package should occur through this class.
    """
    def __init__(self,
                 srcdir=None,      # only required for building
                 builddir='',      # the dir with data/static/doctrees subdirs
                 datadir=None,     # defaults to builddir/data
                 staticdir=None,   # defaults to builddir/static
                 doctreedir=None,  # defaults to builddir/doctrees
                 search=None,      # defaults to no search
                 storage=None,     # defaults to SQLite in datadir
                 status=sys.stdout,
                 warning=sys.stderr,
                 moderation_callback=None,
                 allow_anonymous_comments=True,
                 docroot='',
                 staticroot='static',
                 ):
        # directories
        self.srcdir = srcdir
        self.builddir = builddir
        self.outdir = path.join(builddir, 'data')
        self.datadir = datadir or self.outdir
        self.staticdir = staticdir or path.join(self.builddir, 'static')
        self.doctreedir = staticdir or path.join(self.builddir, 'doctrees')
        # web server virtual paths
        self.staticroot = staticroot.strip('/')
        self.docroot = docroot.strip('/')

        self.status = status
        self.warning = warning
        self.moderation_callback = moderation_callback
        self.allow_anonymous_comments = allow_anonymous_comments

        self._init_templating()
        self._init_search(search)
        self._init_storage(storage)

        self._globalcontext = None

        self._make_base_comment_options()

    def _init_storage(self, storage):
        if isinstance(storage, StorageBackend):
            self.storage = storage
        else:
            # If a StorageBackend isn't provided, use the default
            # SQLAlchemy backend.
            from sphinx.websupport.storage.sqlalchemystorage \
                import SQLAlchemyStorage
            if not storage:
                # no explicit DB path given; create default sqlite database
                db_path = path.join(self.datadir, 'db', 'websupport.db')
                ensuredir(path.dirname(db_path))
                storage = 'sqlite:///' + db_path
            self.storage = SQLAlchemyStorage(storage)

    def _init_templating(self):
        import sphinx
        template_path = path.join(sphinx.package_dir,
                                  'themes', 'basic')
        loader = FileSystemLoader(template_path)
        self.template_env = Environment(loader=loader)

    def _init_search(self, search):
        if isinstance(search, BaseSearch):
            self.search = search
        else:
            mod, cls = SEARCH_ADAPTERS[search or 'null']
            mod = 'sphinx.websupport.search.' + mod
            SearchClass = getattr(__import__(mod, None, None, [cls]), cls)
            search_path = path.join(self.datadir, 'search')
            self.search = SearchClass(search_path)
        self.results_template = \
            self.template_env.get_template('searchresults.html')

[docs]    def build(self):
        """Build the documentation. Places the data into the `outdir`
        directory. Use it like this::

            support = WebSupport(srcdir, builddir, search='xapian')
            support.build()

        This will read reStructured text files from `srcdir`. Then it will
        build the pickles and search index, placing them into `builddir`.
        It will also save node data to the database.
        """
        if not self.srcdir:
            raise RuntimeError('No srcdir associated with WebSupport object')
        app = Sphinx(self.srcdir, self.srcdir, self.outdir, self.doctreedir,
                     'websupport', status=self.status, warning=self.warning)
        app.builder.set_webinfo(self.staticdir, self.staticroot,
                                self.search, self.storage)

        self.storage.pre_build()
        app.build()
        self.storage.post_build()


    def get_globalcontext(self):
        """Load and return the "global context" pickle."""
        if not self._globalcontext:
            infilename = path.join(self.datadir, 'globalcontext.pickle')
            f = open(infilename, 'rb')
            try:
                self._globalcontext = pickle.load(f)
            finally:
                f.close()
        return self._globalcontext

[docs]    def get_document(self, docname, username='', moderator=False):
        """Load and return a document from a pickle. The document will
        be a dict object which can be used to render a template::

            support = WebSupport(datadir=datadir)
            support.get_document('index', username, moderator)

        In most cases `docname` will be taken from the request path and
        passed directly to this function. In Flask, that would be something
        like this::

            @app.route('/<path:docname>')
            def index(docname):
                username = g.user.name if g.user else ''
                moderator = g.user.moderator if g.user else False
                try:
                    document = support.get_document(docname, username,
                                                    moderator)
                except DocumentNotFoundError:
                    abort(404)
                render_template('doc.html', document=document)

        The document dict that is returned contains the following items
        to be used during template rendering.

        * **body**: The main body of the document as HTML
        * **sidebar**: The sidebar of the document as HTML
        * **relbar**: A div containing links to related documents
        * **title**: The title of the document
        * **css**: Links to css files used by Sphinx
        * **script**: Javascript containing comment options

        This raises :class:`~sphinx.websupport.errors.DocumentNotFoundError`
        if a document matching `docname` is not found.

        :param docname: the name of the document to load.
        """
        docpath = path.join(self.datadir, 'pickles', docname)
        if path.isdir(docpath):
            infilename = docpath + '/index.fpickle'
            if not docname:
                docname = 'index'
            else:
                docname += '/index'
        else:
            infilename = docpath + '.fpickle'

        try:
            f = open(infilename, 'rb')
        except IOError:
            raise errors.DocumentNotFoundError(
                'The document "%s" could not be found' % docname)
        try:
            document = pickle.load(f)
        finally:
            f.close()

        comment_opts = self._make_comment_options(username, moderator)
        comment_meta = self._make_metadata(
            self.storage.get_metadata(docname, moderator))

        document['script'] = comment_opts + comment_meta + document['script']
        return document


[docs]    def get_search_results(self, q):
        """Perform a search for the query `q`, and create a set
        of search results. Then render the search results as html and
        return a context dict like the one created by
        :meth:`get_document`::

            document = support.get_search_results(q)

        :param q: the search query
        """
        results = self.search.query(q)
        ctx = {
            'q': q,
            'search_performed': True,
            'search_results': results,
            'docroot': '../',  # XXX
            '_': _,
        }
        document = {
            'body': self.results_template.render(ctx),
            'title': 'Search Results',
            'sidebar': '',
            'relbar': ''
        }
        return document


[docs]    def get_data(self, node_id, username=None, moderator=False):
        """Get the comments and source associated with `node_id`. If
        `username` is given vote information will be included with the
        returned comments. The default CommentBackend returns a dict with
        two keys, *source*, and *comments*. *source* is raw source of the
        node and is used as the starting point for proposals a user can
        add. *comments* is a list of dicts that represent a comment, each
        having the following items:

        ============= ======================================================
        Key           Contents
        ============= ======================================================
        text          The comment text.
        username      The username that was stored with the comment.
        id            The comment's unique identifier.
        rating        The comment's current rating.
        age           The time in seconds since the comment was added.
        time          A dict containing time information. It contains the
                      following keys: year, month, day, hour, minute, second,
                      iso, and delta. `iso` is the time formatted in ISO
                      8601 format. `delta` is a printable form of how old
                      the comment is (e.g. "3 hours ago").
        vote          If `user_id` was given, this will be an integer
                      representing the vote. 1 for an upvote, -1 for a
                      downvote, or 0 if unvoted.
        node          The id of the node that the comment is attached to.
                      If the comment's parent is another comment rather than
                      a node, this will be null.
        parent        The id of the comment that this comment is attached
                      to if it is not attached to a node.
        children      A list of all children, in this format.
        proposal_diff An HTML representation of the differences between the
                      the current source and the user's proposed source.
        ============= ======================================================

        :param node_id: the id of the node to get comments for.
        :param username: the username of the user viewing the comments.
        :param moderator: whether the user is a moderator.
        """
        return self.storage.get_data(node_id, username, moderator)


    def delete_comment(self, comment_id, username='', moderator=False):
        """Delete a comment.

        If `moderator` is True, the comment and all descendants will be deleted
        from the database, and the function returns ``True``.

        If `moderator` is False, the comment will be marked as deleted (but not
        removed from the database so as not to leave any comments orphaned), but
        only if the `username` matches the `username` on the comment.  The
        username and text files are replaced with "[deleted]" .  In this case,
        the function returns ``False``.

        This raises :class:`~sphinx.websupport.errors.UserNotAuthorizedError`
        if moderator is False and `username` doesn't match username on the
        comment.

        :param comment_id: the id of the comment to delete.
        :param username: the username requesting the deletion.
        :param moderator: whether the requestor is a moderator.
        """
        return self.storage.delete_comment(comment_id, username, moderator)

[docs]    def add_comment(self, text, node_id='', parent_id='', displayed=True,
                    username=None, time=None, proposal=None,
                    moderator=False):
        """Add a comment to a node or another comment. Returns the comment
        in the same format as :meth:`get_comments`. If the comment is being
        attached to a node, pass in the node's id (as a string) with the
        node keyword argument::

            comment = support.add_comment(text, node_id=node_id)

        If the comment is the child of another comment, provide the parent's
        id (as a string) with the parent keyword argument::

            comment = support.add_comment(text, parent_id=parent_id)

        If you would like to store a username with the comment, pass
        in the optional `username` keyword argument::

            comment = support.add_comment(text, node=node_id,
                                          username=username)

        :param parent_id: the prefixed id of the comment's parent.
        :param text: the text of the comment.
        :param displayed: for moderation purposes
        :param username: the username of the user making the comment.
        :param time: the time the comment was created, defaults to now.
        """
        if username is None:
            if self.allow_anonymous_comments:
                username = 'Anonymous'
            else:
                raise errors.UserNotAuthorizedError()
        parsed = self._parse_comment_text(text)
        comment = self.storage.add_comment(parsed, displayed, username,
                                           time, proposal, node_id,
                                           parent_id, moderator)
        comment['original_text'] = text
        if not displayed and self.moderation_callback:
            self.moderation_callback(comment)
        return comment


[docs]    def process_vote(self, comment_id, username, value):
        """Process a user's vote. The web support package relies
        on the API user to perform authentication. The API user will
        typically receive a comment_id and value from a form, and then
        make sure the user is authenticated. A unique username  must be
        passed in, which will also be used to retrieve the user's past
        voting data. An example, once again in Flask::

            @app.route('/docs/process_vote', methods=['POST'])
            def process_vote():
                if g.user is None:
                    abort(401)
                comment_id = request.form.get('comment_id')
                value = request.form.get('value')
                if value is None or comment_id is None:
                    abort(400)
                support.process_vote(comment_id, g.user.name, value)
                return "success"

        :param comment_id: the comment being voted on
        :param username: the unique username of the user voting
        :param value: 1 for an upvote, -1 for a downvote, 0 for an unvote.
        """
        value = int(value)
        if not -1 <= value <= 1:
            raise ValueError('vote value %s out of range (-1, 1)' % value)
        self.storage.process_vote(comment_id, username, value)


    def update_username(self, old_username, new_username):
        """To remain decoupled from a webapp's authentication system, the
        web support package stores a user's username with each of their
        comments and votes. If the authentication system allows a user to
        change their username, this can lead to stagnate data in the web
        support system. To avoid this, each time a username is changed, this
        method should be called.

        :param old_username: The original username.
        :param new_username: The new username.
        """
        self.storage.update_username(old_username, new_username)

    def accept_comment(self, comment_id, moderator=False):
        """Accept a comment that is pending moderation.

        This raises :class:`~sphinx.websupport.errors.UserNotAuthorizedError`
        if moderator is False.

        :param comment_id: The id of the comment that was accepted.
        :param moderator: Whether the user making the request is a moderator.
        """
        if not moderator:
            raise errors.UserNotAuthorizedError()
        self.storage.accept_comment(comment_id)

    def _make_base_comment_options(self):
        """Helper method to create the part of the COMMENT_OPTIONS javascript
        that remains the same throughout the lifetime of the
        :class:`~sphinx.websupport.WebSupport` object.
        """
        self.base_comment_opts = {}

        if self.docroot != '':
            comment_urls = [
                ('addCommentURL', '_add_comment'),
                ('getCommentsURL', '_get_comments'),
                ('processVoteURL', '_process_vote'),
                ('acceptCommentURL', '_accept_comment'),
                ('deleteCommentURL', '_delete_comment')
            ]
            for key, value in comment_urls:
                self.base_comment_opts[key] = \
                    '/' + posixpath.join(self.docroot, value)
        if self.staticroot != 'static':
            static_urls = [
                ('commentImage', 'comment.png'),
                ('closeCommentImage', 'comment-close.png'),
                ('loadingImage', 'ajax-loader.gif'),
                ('commentBrightImage', 'comment-bright.png'),
                ('upArrow', 'up.png'),
                ('upArrowPressed', 'up-pressed.png'),
                ('downArrow', 'down.png'),
                ('downArrowPressed', 'down-pressed.png')
            ]
            for key, value in static_urls:
                self.base_comment_opts[key] = \
                    '/' + posixpath.join(self.staticroot, '_static', value)

    def _make_comment_options(self, username, moderator):
        """Helper method to create the parts of the COMMENT_OPTIONS
        javascript that are unique to each request.

        :param username: The username of the user making the request.
        :param moderator: Whether the user making the request is a moderator.
        """
        rv = self.base_comment_opts.copy()
        if username:
            rv.update({
                'voting': True,
                'username': username,
                'moderator': moderator,
            })
        return '''\
        <script type="text/javascript">
        var COMMENT_OPTIONS = %s;
        </script>
        ''' % dump_json(rv)

    def _make_metadata(self, data):
        return '''\
        <script type="text/javascript">
        var COMMENT_METADATA = %s;
        </script>
        ''' % dump_json(data)

    def _parse_comment_text(self, text):
        settings = {'file_insertion_enabled': False,
                    'raw_enabled': False,
                    'output_encoding': 'unicode'}
        try:
            ret = publish_parts(text, writer_name='html',
                                settings_overrides=settings)['fragment']
        except Exception:
            ret = htmlescape(text)
        return ret





          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »

          	Module code »

          	sphinx.websupport »
 
      

    


    
      
          
            
  Source code for sphinx.websupport.search

# -*- coding: utf-8 -*-
"""
    sphinx.websupport.search
    ~~~~~~~~~~~~~~~~~~~~~~~~

 Server side search support for the web support package.

 :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
 :license: BSD, see LICENSE for details.
"""

import re

from six import text_type

[docs]class BaseSearch(object):
 def __init__(self, path):
 pass

[docs] def init_indexing(self, changed=[]):
 """Called by the builder to initialize the search indexer. `changed`
 is a list of pagenames that will be reindexed. You may want to remove
 these from the search index before indexing begins.

 :param changed: a list of pagenames that will be re-indexed
 """
 pass

[docs] def finish_indexing(self):
 """Called by the builder when writing has been completed. Use this
 to perform any finalization or cleanup actions after indexing is
 complete.
 """
 pass

[docs] def feed(self, pagename, title, doctree):
 """Called by the builder to add a doctree to the index. Converts the
 `doctree` to text and passes it to :meth:`add_document`. You probably
 won't want to override this unless you need access to the `doctree`.
 Override :meth:`add_document` instead.

 :param pagename: the name of the page to be indexed
 :param title: the title of the page to be indexed
 :param doctree: is the docutils doctree representation of the page
 """
 self.add_document(pagename, title, doctree.astext())

[docs] def add_document(self, pagename, title, text):
 """Called by :meth:`feed` to add a document to the search index.
 This method should should do everything necessary to add a single
 document to the search index.

 `pagename` is name of the page being indexed. It is the combination
 of the source files relative path and filename,
 minus the extension. For example, if the source file is
 "ext/builders.rst", the `pagename` would be "ext/builders". This
 will need to be returned with search results when processing a
 query.

 :param pagename: the name of the page being indexed
 :param title: the page's title
 :param text: the full text of the page
 """
 raise NotImplementedError()

[docs] def query(self, q):
 """Called by the web support api to get search results. This method
 compiles the regular expression to be used when :meth:`extracting
 context <extract_context>`, then calls :meth:`handle_query`. You
 won't want to override this unless you don't want to use the included
 :meth:`extract_context` method. Override :meth:`handle_query` instead.

 :param q: the search query string.
 """
 self.context_re = re.compile('|'.join(q.split()), re.I)
 return self.handle_query(q)

[docs] def handle_query(self, q):
 """Called by :meth:`query` to retrieve search results for a search
 query `q`. This should return an iterable containing tuples of the
 following format::

 (<path>, <title>, <context>)

 `path` and `title` are the same values that were passed to
 :meth:`add_document`, and `context` should be a short text snippet
 of the text surrounding the search query in the document.

 The :meth:`extract_context` method is provided as a simple way
 to create the `context`.

 :param q: the search query
 """
 raise NotImplementedError()

[docs] def extract_context(self, text, length=240):
 """Extract the context for the search query from the document's
 full `text`.

 :param text: the full text of the document to create the context for
 :param length: the length of the context snippet to return.
 """
 res = self.context_re.search(text)
 if res is None:
 return ''
 context_start = max(res.start() - int(length/2), 0)
 context_end = context_start + length
 context = ''.join([context_start > 0 and '...' or '',
 text[context_start:context_end],
 context_end < len(text) and '...' or ''])

 try:
 return text_type(context, errors='ignore')
 except TypeError:
 return context

 def context_for_searchtool(self):
 """Required by the HTML builder."""
 return {}

 def get_js_stemmer_rawcode(self):
 """Required by the HTML builder."""
 return None

The built-in search adapters.
SEARCH_ADAPTERS = {
 'xapian': ('xapiansearch', 'XapianSearch'),
 'whoosh': ('whooshsearch', 'WhooshSearch'),
 'null': ('nullsearch', 'NullSearch'),
}

 © Copyright 2007-2016, Georg Brandl and the Sphinx team.
 Created using Sphinx 1.4.1+.

 Navigation

 	
 modules

 	Sphinx 1.4.1 documentation »

 	Module code »

 	sphinx.websupport »

 Source code for sphinx.websupport.storage

-*- coding: utf-8 -*-
"""
 sphinx.websupport.storage
    ~~~~~~~~~~~~~~~~~~~~~~~~~

    Storage for the websupport package.

    :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""


[docs]class StorageBackend(object):
[docs]    def pre_build(self):
        """Called immediately before the build process begins. Use this
        to prepare the StorageBackend for the addition of nodes.
        """
        pass


    def has_node(self, id):
        """Check to see if a node exists.

        :param id: the id to check for.
        """
        raise NotImplementedError()

[docs]    def add_node(self, id, document, source):
        """Add a node to the StorageBackend.

        :param id: a unique id for the comment.
        :param document: the name of the document the node belongs to.
        :param source: the source files name.
        """
        raise NotImplementedError()


[docs]    def post_build(self):
        """Called after a build has completed. Use this to finalize the
        addition of nodes if needed.
        """
        pass


[docs]    def add_comment(self, text, displayed, username, time,
                    proposal, node_id, parent_id, moderator):
        """Called when a comment is being added.

        :param text: the text of the comment
        :param displayed: whether the comment should be displayed
        :param username: the name of the user adding the comment
        :param time: a date object with the time the comment was added
        :param proposal: the text of the proposal the user made
        :param node_id: the id of the node that the comment is being added to
        :param parent_id: the id of the comment's parent comment.
        :param moderator: whether the user adding the comment is a moderator
        """
        raise NotImplementedError()


[docs]    def delete_comment(self, comment_id, username, moderator):
        """Delete a comment.

        Raises :class:`~sphinx.websupport.errors.UserNotAuthorizedError`
        if moderator is False and `username` doesn't match the username
        on the comment.

        :param comment_id: The id of the comment being deleted.
        :param username: The username of the user requesting the deletion.
        :param moderator: Whether the user is a moderator.
        """
        raise NotImplementedError()


    def get_metadata(self, docname, moderator):
        """Get metadata for a document. This is currently just a dict
        of node_id's with associated comment counts.

        :param docname: the name of the document to get metadata for.
        :param moderator: whether the requester is a moderator.
        """
        raise NotImplementedError()

[docs]    def get_data(self, node_id, username, moderator):
        """Called to retrieve all data for a node. This should return a
        dict with two keys, *source* and *comments* as described by
        :class:`~sphinx.websupport.WebSupport`'s
        :meth:`~sphinx.websupport.WebSupport.get_data` method.

        :param node_id: The id of the node to get data for.
        :param username: The name of the user requesting the data.
        :param moderator: Whether the requestor is a moderator.
        """
        raise NotImplementedError()


[docs]    def process_vote(self, comment_id, username, value):
        """Process a vote that is being cast. `value` will be either -1, 0,
        or 1.

        :param comment_id: The id of the comment being voted on.
        :param username: The username of the user casting the vote.
        :param value: The value of the vote being cast.
        """
        raise NotImplementedError()


[docs]    def update_username(self, old_username, new_username):
        """If a user is allowed to change their username this method should
        be called so that there is not stagnate data in the storage system.

        :param old_username: The username being changed.
        :param new_username: What the username is being changed to.
        """
        raise NotImplementedError()


[docs]    def accept_comment(self, comment_id):
        """Called when a moderator accepts a comment. After the method is
        called the comment should be displayed to all users.

        :param comment_id: The id of the comment being accepted.
        """
        raise NotImplementedError()






          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »
 
      

    


    
      
          
            
  
Example Google Style Python Docstrings


See also

Example NumPy Style Python Docstrings



Download: example_google.py

# -*- coding: utf-8 -*-
"""Example Google style docstrings.

This module demonstrates documentation as specified by the `Google Python
Style Guide`_. Docstrings may extend over multiple lines. Sections are created
with a section header and a colon followed by a block of indented text.

Example:
    Examples can be given using either the ``Example`` or ``Examples``
    sections. Sections support any reStructuredText formatting, including
    literal blocks::

        $ python example_google.py

Section breaks are created by resuming unindented text. Section breaks
are also implicitly created anytime a new section starts.

Attributes:
    module_level_variable1 (int): Module level variables may be documented in
        either the ``Attributes`` section of the module docstring, or in an
        inline docstring immediately following the variable.

        Either form is acceptable, but the two should not be mixed. Choose
        one convention to document module level variables and be consistent
        with it.

Todo:
    * For module TODOs
    * You have to also use ``sphinx.ext.todo`` extension

.. _Google Python Style Guide:
   http://google.github.io/styleguide/pyguide.html

"""

module_level_variable1 = 12345

module_level_variable2 = 98765
"""int: Module level variable documented inline.

The docstring may span multiple lines. The type may optionally be specified
on the first line, separated by a colon.
"""


def module_level_function(param1, param2=None, *args, **kwargs):
    """This is an example of a module level function.

    Function parameters should be documented in the ``Args`` section. The name
    of each parameter is required. The type and description of each parameter
    is optional, but should be included if not obvious.

    Parameter types -- if given -- should be specified according to
    `PEP 484`_, though `PEP 484`_ conformance isn't required or enforced.

    If \*args or \*\*kwargs are accepted,
    they should be listed as ``*args`` and ``**kwargs``.

    The format for a parameter is::

        name (type): description
            The description may span multiple lines. Following
            lines should be indented. The "(type)" is optional.

            Multiple paragraphs are supported in parameter
            descriptions.

    Args:
        param1 (int): The first parameter.
        param2 (Optional[str]): The second parameter. Defaults to None.
            Second line of description should be indented.
        *args: Variable length argument list.
        **kwargs: Arbitrary keyword arguments.

    Returns:
        bool: True if successful, False otherwise.

        The return type is optional and may be specified at the beginning of
        the ``Returns`` section followed by a colon.

        The ``Returns`` section may span multiple lines and paragraphs.
        Following lines should be indented to match the first line.

        The ``Returns`` section supports any reStructuredText formatting,
        including literal blocks::

            {
                'param1': param1,
                'param2': param2
            }

    Raises:
        AttributeError: The ``Raises`` section is a list of all exceptions
            that are relevant to the interface.
        ValueError: If `param2` is equal to `param1`.


    .. _PEP 484:
       https://www.python.org/dev/peps/pep-0484/

    """
    if param1 == param2:
        raise ValueError('param1 may not be equal to param2')
    return True


def example_generator(n):
    """Generators have a ``Yields`` section instead of a ``Returns`` section.

    Args:
        n (int): The upper limit of the range to generate, from 0 to `n` - 1.

    Yields:
        int: The next number in the range of 0 to `n` - 1.

    Examples:
        Examples should be written in doctest format, and should illustrate how
        to use the function.

        >>> print([i for i in example_generator(4)])
        [0, 1, 2, 3]

    """
    for i in range(n):
        yield i


class ExampleError(Exception):
    """Exceptions are documented in the same way as classes.

    The __init__ method may be documented in either the class level
    docstring, or as a docstring on the __init__ method itself.

    Either form is acceptable, but the two should not be mixed. Choose one
    convention to document the __init__ method and be consistent with it.

    Note:
        Do not include the `self` parameter in the ``Args`` section.

    Args:
        msg (str): Human readable string describing the exception.
        code (Optional[int]): Error code.

    Attributes:
        msg (str): Human readable string describing the exception.
        code (int): Exception error code.

    """

    def __init__(self, msg, code):
        self.msg = msg
        self.code = code


class ExampleClass(object):
    """The summary line for a class docstring should fit on one line.

    If the class has public attributes, they may be documented here
    in an ``Attributes`` section and follow the same formatting as a
    function's ``Args`` section. Alternatively, attributes may be documented
    inline with the attribute's declaration (see __init__ method below).

    Properties created with the ``@property`` decorator should be documented
    in the property's getter method.

    Attribute and property types -- if given -- should be specified according
    to `PEP 484`_, though `PEP 484`_ conformance isn't required or enforced.

    Attributes:
        attr1 (str): Description of `attr1`.
        attr2 (Optional[int]): Description of `attr2`.


    .. _PEP 484:
       https://www.python.org/dev/peps/pep-0484/

    """

    def __init__(self, param1, param2, param3):
        """Example of docstring on the __init__ method.

        The __init__ method may be documented in either the class level
        docstring, or as a docstring on the __init__ method itself.

        Either form is acceptable, but the two should not be mixed. Choose one
        convention to document the __init__ method and be consistent with it.

        Note:
            Do not include the `self` parameter in the ``Args`` section.

        Args:
            param1 (str): Description of `param1`.
            param2 (Optional[int]): Description of `param2`. Multiple
                lines are supported.
            param3 (List[str]): Description of `param3`.

        """
        self.attr1 = param1
        self.attr2 = param2
        self.attr3 = param3  #: Doc comment *inline* with attribute

        #: List[str]: Doc comment *before* attribute, with type specified
        self.attr4 = ['attr4']

        self.attr5 = None
        """Optional[str]: Docstring *after* attribute, with type specified."""

    @property
    def readonly_property(self):
        """str: Properties should be documented in their getter method."""
        return 'readonly_property'

    @property
    def readwrite_property(self):
        """List[str]: Properties with both a getter and setter should only
        be documented in their getter method.

        If the setter method contains notable behavior, it should be
        mentioned here.
        """
        return ['readwrite_property']

    @readwrite_property.setter
    def readwrite_property(self, value):
        value

    def example_method(self, param1, param2):
        """Class methods are similar to regular functions.

        Note:
            Do not include the `self` parameter in the ``Args`` section.

        Args:
            param1: The first parameter.
            param2: The second parameter.

        Returns:
            True if successful, False otherwise.

        """
        return True

    def __special__(self):
        """By default special members with docstrings are not included.

        Special members are any methods or attributes that start with and
        end with a double underscore. Any special member with a docstring
        will be included in the output, if
        ``napoleon_include_special_with_doc`` is set to True.

        This behavior can be enabled by changing the following setting in
        Sphinx's conf.py::

            napoleon_include_special_with_doc = True

        """
        pass

    def __special_without_docstring__(self):
        pass

    def _private(self):
        """By default private members are not included.

        Private members are any methods or attributes that start with an
        underscore and are *not* special. By default they are not included
        in the output.

        This behavior can be changed such that private members *are* included
        by changing the following setting in Sphinx's conf.py::

            napoleon_include_private_with_doc = True

        """
        pass

    def _private_without_docstring(self):
        pass









          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »
 
      

    


    
      
          
            
  
Example NumPy Style Python Docstrings


See also

Example Google Style Python Docstrings



Download: example_numpy.py

# -*- coding: utf-8 -*-
"""Example NumPy style docstrings.

This module demonstrates documentation as specified by the `NumPy
Documentation HOWTO`_. Docstrings may extend over multiple lines. Sections
are created with a section header followed by an underline of equal length.

Example
-------
Examples can be given using either the ``Example`` or ``Examples``
sections. Sections support any reStructuredText formatting, including
literal blocks::

    $ python example_numpy.py


Section breaks are created with two blank lines. Section breaks are also
implicitly created anytime a new section starts. Section bodies *may* be
indented:

Notes
-----
    This is an example of an indented section. It's like any other section,
    but the body is indented to help it stand out from surrounding text.

If a section is indented, then a section break is created by
resuming unindented text.

Attributes
----------
module_level_variable1 : int
    Module level variables may be documented in either the ``Attributes``
    section of the module docstring, or in an inline docstring immediately
    following the variable.

    Either form is acceptable, but the two should not be mixed. Choose
    one convention to document module level variables and be consistent
    with it.

.. _NumPy Documentation HOWTO:
   https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

"""

module_level_variable1 = 12345

module_level_variable2 = 98765
"""int: Module level variable documented inline.

The docstring may span multiple lines. The type may optionally be specified
on the first line, separated by a colon.
"""


def module_level_function(param1, param2=None, *args, **kwargs):
    """This is an example of a module level function.

    Function parameters should be documented in the ``Parameters`` section.
    The name of each parameter is required. The type and description of each
    parameter is optional, but should be included if not obvious.

    Parameter types -- if given -- should be specified according to
    `PEP 484`_, though `PEP 484`_ conformance isn't required or enforced.

    If \*args or \*\*kwargs are accepted,
    they should be listed as ``*args`` and ``**kwargs``.

    The format for a parameter is::

        name : type
            description

            The description may span multiple lines. Following lines
            should be indented to match the first line of the description.
            The ": type" is optional.

            Multiple paragraphs are supported in parameter
            descriptions.

    Parameters
    ----------
    param1 : int
        The first parameter.
    param2 : Optional[str]
        The second parameter.
    *args
        Variable length argument list.
    **kwargs
        Arbitrary keyword arguments.

    Returns
    -------
    bool
        True if successful, False otherwise.

        The return type is not optional. The ``Returns`` section may span
        multiple lines and paragraphs. Following lines should be indented to
        match the first line of the description.

        The ``Returns`` section supports any reStructuredText formatting,
        including literal blocks::

            {
                'param1': param1,
                'param2': param2
            }

    Raises
    ------
    AttributeError
        The ``Raises`` section is a list of all exceptions
        that are relevant to the interface.
    ValueError
        If `param2` is equal to `param1`.


    .. _PEP 484:
       https://www.python.org/dev/peps/pep-0484/

    """
    if param1 == param2:
        raise ValueError('param1 may not be equal to param2')
    return True


def example_generator(n):
    """Generators have a ``Yields`` section instead of a ``Returns`` section.

    Parameters
    ----------
    n : int
        The upper limit of the range to generate, from 0 to `n` - 1.

    Yields
    ------
    int
        The next number in the range of 0 to `n` - 1.

    Examples
    --------
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> print([i for i in example_generator(4)])
    [0, 1, 2, 3]

    """
    for i in range(n):
        yield i


class ExampleError(Exception):
    """Exceptions are documented in the same way as classes.

    The __init__ method may be documented in either the class level
    docstring, or as a docstring on the __init__ method itself.

    Either form is acceptable, but the two should not be mixed. Choose one
    convention to document the __init__ method and be consistent with it.

    Note
    ----
    Do not include the `self` parameter in the ``Parameters`` section.

    Parameters
    ----------
    msg : str
        Human readable string describing the exception.
    code : Optional[int]
        Numeric error code.

    Attributes
    ----------
    msg : str
        Human readable string describing the exception.
    code : int
        Numeric error code.

    """

    def __init__(self, msg, code):
        self.msg = msg
        self.code = code


class ExampleClass(object):
    """The summary line for a class docstring should fit on one line.

    If the class has public attributes, they may be documented here
    in an ``Attributes`` section and follow the same formatting as a
    function's ``Args`` section. Alternatively, attributes may be documented
    inline with the attribute's declaration (see __init__ method below).

    Properties created with the ``@property`` decorator should be documented
    in the property's getter method.

    Attribute and property types -- if given -- should be specified according
    to `PEP 484`_, though `PEP 484`_ conformance isn't required or enforced.

    Attributes
    ----------
    attr1 : str
        Description of `attr1`.
    attr2 : Optional[int]
        Description of `attr2`.


    .. _PEP 484:
       https://www.python.org/dev/peps/pep-0484/

    """

    def __init__(self, param1, param2, param3):
        """Example of docstring on the __init__ method.

        The __init__ method may be documented in either the class level
        docstring, or as a docstring on the __init__ method itself.

        Either form is acceptable, but the two should not be mixed. Choose one
        convention to document the __init__ method and be consistent with it.

        Note
        ----
        Do not include the `self` parameter in the ``Parameters`` section.

        Parameters
        ----------
        param1 : str
            Description of `param1`.
        param2 : List[str]
            Description of `param2`. Multiple
            lines are supported.
        param3 : Optional[int]
            Description of `param3`.

        """
        self.attr1 = param1
        self.attr2 = param2
        self.attr3 = param3  #: Doc comment *inline* with attribute

        #: List[str]: Doc comment *before* attribute, with type specified
        self.attr4 = ["attr4"]

        self.attr5 = None
        """Optional[str]: Docstring *after* attribute, with type specified."""

    @property
    def readonly_property(self):
        """str: Properties should be documented in their getter method."""
        return "readonly_property"

    @property
    def readwrite_property(self):
        """List[str]: Properties with both a getter and setter should only
        be documented in their getter method.

        If the setter method contains notable behavior, it should be
        mentioned here.
        """
        return ["readwrite_property"]

    @readwrite_property.setter
    def readwrite_property(self, value):
        value

    def example_method(self, param1, param2):
        """Class methods are similar to regular functions.

        Note
        ----
        Do not include the `self` parameter in the ``Parameters`` section.

        Parameters
        ----------
        param1
            The first parameter.
        param2
            The second parameter.

        Returns
        -------
        bool
            True if successful, False otherwise.

        """
        return True

    def __special__(self):
        """By default special members with docstrings are not included.

        Special members are any methods or attributes that start with and
        end with a double underscore. Any special member with a docstring
        will be included in the output, if
        ``napoleon_include_special_with_doc`` is set to True.

        This behavior can be enabled by changing the following setting in
        Sphinx's conf.py::

            napoleon_include_special_with_doc = True

        """
        pass

    def __special_without_docstring__(self):
        pass

    def _private(self):
        """By default private members are not included.

        Private members are any methods or attributes that start with an
        underscore and are *not* special. By default they are not included
        in the output.

        This behavior can be changed such that private members *are* included
        by changing the following setting in Sphinx's conf.py::

            napoleon_include_private_with_doc = True

        """
        pass

    def _private_without_docstring(self):
        pass









          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »
 
      

    


    
      
          
            
  
sphinx-apidoc manual page


Synopsis

sphinx-apidoc [options] -o <outputdir> <sourcedir> [pathnames ...]




Description

sphinx-apidoc is a tool for automatic generation of Sphinx sources
that, using the autodoc extension, document a whole package in the style of
other automatic API documentation tools.

sourcedir must point to a Python package.  Any pathnames given are paths to
be excluded from the generation.


Warning

sphinx-apidoc generates source files that use sphinx.ext.autodoc
to document all found modules.  If any modules have side effects on import,
these will be executed by autodoc when sphinx-build is run.

If you document scripts (as opposed to library modules), make sure their main
routine is protected by a if __name__ == '__main__' condition.






Options





	
-o <outputdir>
	Directory to place the output files.  If it does not exist,
it is created.

	
-f, --force
	Usually, apidoc does not overwrite files, unless this option
is given.

	
-l, --follow-links


	 	Follow symbolic links.

	
-n, --dry-run
	If given, apidoc does not create any files.

	
-s <suffix>
	Suffix for the source files generated, default is rst.

	
-d <maxdepth>
	Maximum depth for the generated table of contents file.

	
-T, --no-toc
	Do not create a table of contents file.

	
-F, --full
	If given, a full Sphinx project is generated (conf.py,
Makefile etc.) using sphinx-quickstart.

	
-e, --separate
	Put each module file in its own page.

	
-E, --no-headings


	 	Don’t create headings for the modules/packages

	
-P, --private
	Include “_private” modules




These options are used with -F:





	
-H <project>
	Project name to put into the configuration.

	
-A <author>
	Author name(s) to put into the configuration.

	
-V <version>
	Project version.

	
-R <release>
	Project release.







See also

sphinx-build(1)




Author

Etienne Desautels, <etienne.desautels@gmail.com>, Georg Brandl
<georg@python.org> et al.







          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »
 
      

    


    
      
          
            
  
sphinx-build manual page


Synopsis

sphinx-build [options] <sourcedir> <outdir> [filenames ...]




Description

sphinx-build generates documentation from the files in
<sourcedir> and places it in the <outdir>.

sphinx-build looks for <sourcedir>/conf.py for the configuration
settings.  sphinx-quickstart(1) may be used to generate template
files, including conf.py.

sphinx-build can create documentation in different formats.  A format
is selected by specifying the builder name on the command line; it defaults to
HTML.  Builders can also perform other tasks related to documentation
processing.

By default, everything that is outdated is built.  Output only for selected
files can be built by specifying individual filenames.

List of available builders:


	html

	HTML file generation.  This is the default builder.

	dirhtml

	HTML file generation with every HTML file named “index.html” in a separate
directory.

	singlehtml

	HTML file generation with all content in a single HTML file.

	htmlhelp

	Generates files for CHM (compiled help files) generation.

	qthelp

	Generates files for Qt help collection generation.

	devhelp

	Generates files for the GNOME Devhelp help viewer.

	latex

	Generates LaTeX output that can be compiled to a PDF document.

	man

	Generates manual pages.

	texinfo

	Generates Texinfo output that can be processed by makeinfo to
generate an Info document.

	epub

	Generates an ePub e-book version of the HTML output.

	text

	Generates a plain-text version of the documentation.

	gettext

	Generates Gettext message catalogs for content translation.

	changes

	Generates HTML files listing changed/added/deprecated items for
the current version of the documented project.

	linkcheck

	Checks the integrity of all external links in the source.

	pickle / json

	Generates serialized HTML files for use in web applications.

	xml

	Generates Docutils-native XML files.

	pseudoxml

	Generates compact pretty-printed “pseudo-XML” files displaying the
internal structure of the intermediate document trees.






Options





	
-b <builder>
	Builder to use; defaults to html. See the full list
of builders above.

	
-a
	Generate output for all files; without this option only
output for new and changed files is generated.

	
-E
	Ignore cached files, forces to re-read all source files
from disk.

	
-d <path>
	Path to cached files; defaults to <outdir>/.doctrees.

	
-j <N>
	Build in parallel with N processes where possible.

	
-c <path>
	Locate the conf.py file in the specified path instead of
<sourcedir>.

	
-C
	Specify that no conf.py file at all is to be used.
Configuration can only be set with the -D option.

	
-D <setting=value>


	 	Override a setting from the configuration file.

	
-t <tag>
	Define tag for use in “only” blocks.

	
-A <name=value>


	 	Pass a value into the HTML templates (only for HTML
builders).

	
-n
	Run in nit-picky mode, warn about all missing references.

	
-v
	Increase verbosity (can be repeated).

	
-N
	Prevent colored output.

	
-q
	Quiet operation, just print warnings and errors on stderr.

	
-Q
	Very quiet operation, don’t print anything except for
errors.

	
-w <file>
	Write warnings and errors into the given file, in addition
to stderr.

	
-W
	Turn warnings into errors.

	
-T
	Show full traceback on exception.

	
-P
	Run Pdb on exception.







See also

sphinx-quickstart(1)




Author

Georg Brandl <georg@python.org>, Armin Ronacher <armin.ronacher@active-4.com> et
al.

This manual page was initially written by Mikhail Gusarov
<dottedmag@dottedmag.net>, for the Debian project.







          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  

    
      Navigation

      
        	
          modules

        	Sphinx 1.4.1 documentation »
 
      

    


    
      
          
            
  
sphinx-quickstart manual page


Synopsis

sphinx-quickstart




Description

sphinx-quickstart is an interactive tool that asks some questions
about your project and then generates a complete documentation directory and
sample Makefile to be used with sphinx-build(1).




See also

sphinx-build(1)




Author

Georg Brandl <georg@python.org>, Armin Ronacher <armin.ronacher@active-4.com> et
al.

This manual page was initially written by Mikhail Gusarov
<dottedmag@dottedmag.net>, for the Debian project.







          

      

      

    


    
        © Copyright 2007-2016, Georg Brandl and the Sphinx team.
      Created using Sphinx 1.4.1+.
    

  OEBPS/Images/image00772.jpeg





OEBPS/Images/image00773.jpeg





OEBPS/Images/image00771.jpeg





OEBPS/Images/image00776.jpeg





OEBPS/Images/image00777.jpeg





OEBPS/Images/image00774.jpeg





OEBPS/Images/image00775.jpeg
T e UL






OEBPS/Images/image00779.jpeg
Select whether to install Python 2.7.3
for all users of this computer.

o

@ T

python
windows






OEBPS/Images/image00780.gif





OEBPS/Images/image00778.jpeg
#, Python Programming . x
& = ¢ [ipythonorg Qi Gund R @

@ python e

ssour Python Programming Language — Official Website

s Prtvonis s programming ongusge hatets You  EERTTSTT

oocumENTATION work more quicklyand nfegrate your systems.

powor more efectively. You can lean o use Python and e e Fyon commnty by

T ‘see almost immedite gains i productvityand | be20mng a1 sssoceis member o
lower mainenance costs. g aone.tme donaton

FoucaTion Pythonruns on Widows, Lo, iac OS X, and

i e soriea ot ava and T v machnes.
ore oeveLopENT 1w tere was Pytnan 3 support

Python i e 0 use, even forcommercsproducts,

Package ndex because of 5 OS-approved open sourceicense
(enter yotpactage name)

ok Links @731
O L B New o ythonorchoosng between ython 2 and ) et
pickare Pytion 37 Read Pynan 2o Python 2. —

» Sourc Smion Somware Foundaton hos he eectual
ik Lnks @301 o behn Pynon, underwrtes e PYCon
» Doaumantaton Eonternce, and unds many oterprojecs n the

it et Pt cammunty

mq nstaler of Python under Windows 1% ey
ython g/ o/ pythTT T ik python org taken down for __ Raciapce ncusral ot snd

e






OEBPS/Images/cover00770.jpeg
SPHINX

PYTHON DOCUMENTATION GENERATOR

Sphinx Documentation
Release 1.4.1

Georg Brandl





OEBPS/Images/image00767.jpeg
akorcamn  HIML theming support
g e






OEBPS/Images/image00766.jpeg





OEBPS/Images/image00765.jpeg





OEBPS/Images/image00768.jpeg





OEBPS/Images/image00769.jpeg
9. sched — Even schecter






