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Abstract: The authors establish a set of six new theta-function identities involving multivariable
R-functions which are based upon a number of q-product identities and Jacobi’s celebrated
triple-product identity. These theta-function identities depict the inter-relationships that exist
among theta-function identities and combinatorial partition-theoretic identities. Here, in this
paper, we consider and relate the multivariable R-functions to several interesting q-identities such
as (for example) a number of q-product identities and Jacobi’s celebrated triple-product identity.
Various recent developments on the subject-matter of this article as well as some of its potential
application areas are also briefly indicated. Finally, we choose to further emphasize upon some close
connections with combinatorial partition-theoretic identities and present a presumably open problem.

Keywords: theta-function identities; multivariable R-functions; Jacobi’s triple-product identity;
Ramanujan’s theta functions; q-product identities; Euler’s pentagonal number theorem;
Rogers-Ramanujan continued fraction; Rogers-Ramanujan identities; combinatorial partition-theoretic
identities; Schur’s, the Göllnitz-Gordon’s and the Göllnitz’s partition identities; Schur’s second
partition theorem

1. Introduction and Definitions

Throughout this article, we denote by N, Z, and C the set of positive integers, the set of integers
and the set of complex numbers, respectively. We also let

N0 := N∪ {0} = {0, 1, 2, · · · }.

In what follows, we shall make use of the following q-notations for the details of which we refer
the reader to a recent monograph on q-calculus by Ernst [1] and also to the earlier works on the subject
by Slater [2] (Chapter 3, Section 3.2.1), and by Srivastava et al.

(
[3] (pp. 346 et seq.) and [4] (Chapter 6)

)
.

Mathematics 2020, 8, 918; doi:10.3390/math8060918 www.mdpi.com/journal/mathematics1
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The q-shifted factorial (a; q)n is defined (for |q| < 1) by

(a; q)n :=

⎧⎪⎪⎨⎪⎪⎩
1 (n = 0)

n−1
∏

k=0
(1− aqk) (n ∈ N),

(1)

where a, q ∈ C, and it is assumed tacitly that a �= q−m (m ∈ N0). We also write

(a; q)∞ :=
∞

∏
k=0

(1− aqk) =
∞

∏
k=1

(1− aqk−1) (a, q ∈ C; |q| < 1). (2)

It should be noted that, when a �= 0 and |q| � 1, the infinite product in Equation (2) diverges.
Thus, whenever (a; q)∞ is involved in a given formula, the constraint |q| < 1 will be tacitly assumed to
be satisfied.

The following notations are also frequently used in our investigation:

(a1, a2, · · · , am; q)n := (a1; q)n (a2; q)n · · · (am; q)n (3)

and
(a1, a2, · · · , am; q)∞ := (a1; q)∞ (a2; q)∞ · · · (am; q)∞. (4)

Ramanujan (see [5,6]) defined the general theta function f(a, b) as follows (see, for details,
in [7] (p. 31, Equation (18.1)) and [8,9]):

f(a, b) = 1 +
∞

∑
n=1

(ab)
n(n−1)

2 (an + bn)

=
∞

∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 = f(b, a) (|ab| < 1). (5)

We find from this last Equation (5) that

f(a, b) = a
n(n+1)

2 b
n(n−1)

2 f
(
a(ab)n, b(ab)−n)

= f(b, a) (n ∈ Z). (6)

In fact, Ramanujan (see [5,6]) also rediscovered Jacobi’s famous triple-product identity,
which, in Ramanujan’s notation, is given by (see [7] (p. 35, Entry 19)):

f(a, b) = (−a; ab)∞ (−b; ab)∞ (ab; ab)∞ (7)

or, equivalently, by (see [10])

∞

∑
n=−∞

qn2
zn =

∞

∏
n=1

(
1− q2n

) (
1 + zq2n−1

) (
1 +

1
z

q2n−1
)

=
(

q2; q2
)

∞

(
−zq; q2

)
∞

(
− q

z
; q2

)
∞

(|q| < 1; z �= 0).

Remark 1. Equation (6) holds true as stated only if n is any integer. In case n is not an integer, this result
(6) is only approximately true

(
see, for details, [5] (Vol. 2, Chapter XVI, p. 193, Entry 18 (iv))

)
.

Moreover, historically speaking, the q-series identity (7) or its above-mentioned equivalent form was first
proved by Carl Friedrich Gauss (1777–1855).

2
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Several q-series identities, which emerge naturally from Jacobi’s triple-product identity (7),
are worthy of note here (see, for details, (pp. 36–37, Entry 22) in [7]):

ϕ(q) :=
∞

∑
n=−∞

qn2
= 1 + 2

∞

∑
n=1

qn2

=
{
(−q; q2)∞

}2
(q2; q2)∞ =

(−q; q2)∞ (q2; q2)∞

(q; q2)∞ (−q2; q2)∞
; (8)

ψ(q) := f(q, q3) =
∞

∑
n=0

q
n(n+1)

2 =
(q2; q2)∞

(q; q2)∞
; (9)

f (−q) := f(−q,−q2) =
∞

∑
n=−∞

(−1)n q
n(3n−1)

2

=
∞

∑
n=0

(−1)n q
n(3n−1)

2 +
∞

∑
n=1

(−1)n q
n(3n+1)

2 = (q; q)∞. (10)

Equation (10) is known as Euler’s Pentagonal Number Theorem. Remarkably, the following
q-series identity:

(−q; q)∞ =
1

(q; q2)∞
=

1
χ(−q)

(11)

provides the analytic equivalent form of Euler’s famous theorem (see, for details, [11,12]).

Theorem 1. (Euler’s Pentagonal Number Theorem) The number of partitions of a given positive integer n into
distinct parts is equal to the number of partitions of n into odd parts.

We also recall the Rogers-Ramanujan continued fraction R(q) given by

R(q) := q
1
5

H(q)
G(q)

= q
1
5
f(−q,−q4)

f(−q2,−q3)
= q

1
5
(q; q5)∞ (q4; q5)∞

(q2; q5)∞ (q3; q5)∞

=
q

1
5

1+
q

1+
q2

1+
q3

1+
(|q| < 1). (12)

Here, G(q) and H(q), which are associated with the widely-investigated Roger-Ramanujan
identities, are defined as follows:

G(q) :=
∞

∑
n=0

qn2

(q; q)n
=

f (−q5)

f(−q,−q4)

=
1

(q; q5)∞ (q4; q5)∞
=

(q2; q5)∞ (q3; q5)∞ (q5; q5)∞

(q; q)∞
(13)

and

H(q) :=
∞

∑
n=0

qn(n+1)

(q; q)n
=

f (−q5)

f(−q2,−q3)
=

1
(q2; q5)∞ (q3; q5)∞

=
(q; q5)∞ (q4; q5)∞ (q5; q5)∞

(q; q)∞
, (14)

and the functions f(a, b) and f (−q) are given by Equations (5) and (10), respectively.

3
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For a detailed historical account of (and for various related developments stemming from) the
Rogers-Ramanujan continued fraction (12) as well as the Rogers-Ramanujan identities (13) and (14),
the interested reader may refer to the monumental work [7] (p. 77 et seq.) (see also [4,8]).

The following continued-fraction results may be recalled now (see, for example, (p. 5, Equation (2.8))
in [13]).

Theorem 2. Suppose that |q| < 1. Then,

A(q) := (q2; q2)∞(−q; q)∞

=
(q2; q2)∞

(q; q2)∞
=

1
1−

q
1+

q(1− q)
1−

q3

1+
q2(1− q2)

1−
q5

1+
q3(1− q3)

1− · · ·

=
1

1− q

1 +
q(1− q)

1− q3

1 +
q2(1− q2)

1− q5

1 +
q3(1− q3)

1− · · ·

, (15)

B(q) :=
(q; q5)∞(q4; q5)∞

(q2; q5)∞(q3; q5)∞
=

1
1+

q
1+

q2

1+
q3

1+
q4

1+
q5

1+
q6

1+
· · ·

=
1

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

1 +
q6

1 + · · ·

(16)

and

C(q) :=
(q2; q5)∞(q3; q5)∞

(q; q5)∞(q4; q5)∞
= 1 +

q
1+

q2

1+
q3

1+
q4

1+
q5

1+
q6

1+
· · ·

= 1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

1 +
q6

1 + · · ·

. (17)

By introducing the general family R(s, t, l, u, v, w), Andrews et al. [14] investigated a number of
interesting double-summation hypergeometric q-series representations for several families of partitions
and further explored the rôle of double series in combinatorial-partition identities:

R(s, t, l, u, v, w) :=
∞

∑
n=0

qs(n
2)+tn r(l, u, v, w; n), (18)

4
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where

r(l, u, v, w : n) :=
[ n

u ]

∑
j=0

(−1)j quv( j
2)+(w−ul)j

(q; q)n−uj (quv; quv)j
. (19)

We also recall the following interesting special cases of (18) (see, for details, (p. 106, Theorem 3)
in [14]; see also [8]):

R(2, 1, 1, 1, 2, 2) = (−q; q2)∞, (20)

R(2, 2, 1, 1, 2, 2) = (−q2; q2)∞ (21)

and

R(m, m, 1, 1, 1, 2) =
(q2m; q2m)∞

(qm; q2m)∞
. (22)

For the sake of brevity in our presentation of the main results, we now introduce the
following notations:

Rα = R(2, 1, 1, 1, 2, 2),

Rβ = R(2, 2, 1, 1, 2, 2)

and
Rm = R(m, m, 1, 1, 1, 2) (m ∈ N).

Ever since the year 2015, several new advancements and generalizations of the existing results
were made in regard to combinatorial partition-theoretic identities (see, for example, [8,15–24]).
In particular, Chaudhary et al. generalized several known results on character formulas (see [22]),
Roger-Ramanujan type identities (see [19]), Eisenstein series, the Ramanujan-Göllnitz-Gordon
continued fraction (see [20]), the 3-dissection property (see [18]), Ramanujan’s modular equations
of degrees 3, 7, and 9 (see [16,17]), and so on, by using combinatorial partition-theoretic identities.
An interesting recent investigation on the subject of combinatorial partition-theoretic identities by
Hahn et al. [25] is also worth mentioning in this connection.

Here, in this paper, our main objective is to establish a set of six new theta-function identities which
depict the inter-relationships that exist between the multivariable R-functions, q-product identities,
and partition-theoretic identities.

Each of the following preliminary results will be needed for the demonstration of our main results
in this paper (see [26] (pp. 1749–1750 and 1752–1754)):
I. If

P =
ψ(q)

q
1
2 ψ(q5)

and Q =
ψ(q3)

q
3
2 ψ(q15)

,

then

PQ +
5

PQ
=

(
Q
P

)2
−

(
P
Q

)2
+ 3

(
Q
P
+

P
Q

)
. (23)

II. If

P =
ψ(q)

q
1
4 ψ(q3)

and Q =
ψ(q5)

q
5
4 ψ(q15)

,

then

(PQ)2 +

(
3

PQ

)2
=

(
Q
P

)3
−

(
P
Q

)3
− 5

(
Q
P
− P

Q

)
+ 5

(
P
Q

)2
+ 5

(
Q
P

)2
. (24)
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III. If

P =
ψ(q)

q
1
4 ψ(q3)

and Q =
ψ(q7)

q
7
4 ψ(q21)

,

then

(PQ)3

[(
P
Q

)8
− 1

]
+ 14P5Q

[(
P
Q

)4
− 1

]
= P6Q2(7− P4) + 7P6

Q2

(
P4 − 3

)
−

{
27

(
P
Q

)4
− 7P4

[
3 + 3

(
P
Q

)4
− P4

]}
. (25)

IV. If

P =
ψ(q)

q
1
4 ψ(q3)

and Q =
ψ(q2)

q
1
2 ; ψ(q6)

,

then (
P
Q

)2
+

3
P2 − P2 +

(
Q
P

)2
= 0. (26)

V. If

P =
ψ(−q)

q
1
4 ψ(−q3)

and Q =
ψ(q2)

q
1
2 ψ(q6)

,

then (
P
Q

)2
+

3
P2 + P2 −

(
Q
P

)2
= 0. (27)

VI. If

P =
ψ(−q)

q
1
4 ψ(−q3)

and Q =
ψ(q)

q
1
4 ψ(q3)

,

then [(
P
Q

)2
−

(
Q
P

)2
]
·
[(

3
PQ

)2
− (PQ)2

]
+

(
P
Q

)4
+

(
Q
P

)4
− 10 = 0. (28)

2. A Set of Main Results

In this section, we state and prove a set of six new theta-function identities which depict
inter-relationships among q-product identities and the multivariate R-functions.

Theorem 3. Each of the following relationships holds true:

R1R3

R5R15
=

(
R3R5

R1R15

)2
−

(
q2R1R15

R3R5

)2

+

(
3qR3R5

R1R15

}
+

(
3q3R1R15

R3R5

)
−

(
5q4R5R15

R1R3

)
(29)

and (
R1R5

R3R15

)2
=

(
R3R5

R1R15

)3
−

(
q2R1R15

R3R5

)3

−
(

5q2R3R5

R1R15

)
+

(
5q4R1R15

R3R5

)
+ 5q5

(
R1R15

R3R5

)2
+ 5q

(
R3R5

R1R15

)2
−

(
3q3R3R15

R1R5

)2

. (30)

6
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Equations (29) and (30) give inter-relationships between R1, R3, R5 and R15.

(
R1R7

q2R3R21

)3
·
(

q12[R1R21]
8

[R3R7]8
− 1

)
=

1
q5

(
[R1]

3R7

[R3]3R21

)2 (
7− [R1]

4

q[R3]4

)
+

(
q[R1]

3R21

[R3]3R7

)2 (
[R1]

4

q[R3]4
− 3

)
− 14

q3

(
[R1]

5R7

[R3]5R21

)
·
(

q6[R1R21]
4

[R3R7]4
− 1

)
− 27q6

(
R1R21

R3R7

)4
+

21
q

(
R1

R3

)4
+ 21q5

(
[R1]

2R21

[R3]2R7

)4

− 7
q2

(
R1

R3

)8
. (31)

Equation (31) gives inter-relationships between R1, R3, R7, and R21.

(
R1

R3

)2
=

(
q

1
2 R1R6

R2R3

)2

+

(
(3q)

1
2 R3

R1

)2

+

(
R2R3

R1R6

)2
. (32)

Equation (32) gives inter-relationships between R1, R2, R3, and R6.

(
RαR2(q6; q6)∞

R6(q2; q2)∞ (−q3; q6)∞

)2

=

(
(3q)

1
2 Rα(q6; q6)∞

(q2; q2)∞ (−q3; q6)∞

)2

+

(
(q2; q2)∞ (−q3; q6)∞

Rα(q6; q6)∞

)2

+

(
q

1
2 R6(q2; q2)∞ (−q3; q6)∞

RαR2(q6; q6)∞

)2

. (33)

Equation (33) gives inter-relationships between R2, R6, and Rα. Furthermore, it is asserted that

(
R3(q2; q2)∞(−q3; q6)∞

R1Rα(q6; q6)∞

)4

+

(
R1Rα(q6; q6)∞

R3(q2; q2)∞ (−q3; q6)∞

)4

+

[ (
R3(q2; q2)∞ (−q3; q6)∞

R1Rα(q6; q6)∞

)2

−
(

R1Rα(q6; q6)∞

R3(q2; q2)∞ (−q3; q6)∞

)2 ]

·
[ (

3q
1
2 RαR3(q6; q6)∞

R1(q2; q2)∞ (−q3; q6)∞

)2

−
(

R1(q2; q2)∞(−q3; q6)∞

q
1
2 RαR3(q6; q6)∞

)2 ]
− 10 = 0. (34)

Equation (34) gives inter-relationships between R1, R3 and Rα.
It is assumed that each member of the assertions (29) to (34) exists.

Proof. First of all, in order to prove the assertion (29) of Theorem 3, we apply the identity (9) (with
q replaced by q3, q5 q15) under the given precondition of result (23). Thus, by using (20) and (21),
and, after some simplifications, we get the values for P and Q as follows:

P =
ψ(q)

q
1
2 ψ(q5)

=
R1

q
1
2 R5

(35)

and

Q =
ψ(q3)

q
3
2 ψ(q15)

=
R3

q
3
2 R15

. (36)

Now, upon substituting from these last results (35) and (36) into (23), if we rearrange the terms
and use some algebraic manipulations, we are led to the first assertion (29) of Theorem 3.

Secondly, we prove the second relationship (30) of Theorem 3. Indeed, if we first apply the identity
(9) (with q replaced by q3, q5 and q15) under the given precondition of the assertion (24), and then make
use of (20) and (21), after some simplifications, the following values for P and Q would follow:

7
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P =
ψ(q)

q
1
4 ψ(q3)

=
R1

q
1
4 R3

(37)

and

Q =
ψ(q5)

q
5
4 ψ(q15)

=
R5

q
5
4 R15

. (38)

Now, upon substituting from these last results (37) and (38) into (24), if we rearrange the terms
and use some algebraic manipulations, we obtain the second assertion (30) of Theorem 3.

Thirdly, we prove the third relationship (31) of Theorem 3. For this purpose, we first apply the
identity (9) (with q replaced by q3, q7 and q21) under the given precondition of (25), and then use (20)
and (21). We thus find for the values of P and Q that

P =
ψ(q)

q
1
4 ψ(q3)

=
R1

q
1
4 R3

(39)

and

Q =
ψ(q7)

q
7
4 ψ(q21)

=
R7

q
7
4 R21

, (40)

which, in view of (25) and after some rearrangements of the terms and the resulting algebraic
manipulations, yields the third assertion (31) of Theorem 3.

Fourthly, we prove the identity (32) by applying the identity (9) (with the parameter q replaced
by q2, q3 and q6) under the given precondition of (26), we further use the assertions (20) and (21).
Then, upon simplifications, we get the values for P and Q as follows:

P =
ψ(q)

q
1
4 ψ(q3)

=
R1

q
1
2 R3

(41)

and

Q =
ψ(q2)

q
1
2 ψ(q6)

=
R2

q
1
2 R6

. (42)

Now, after using (41) and (42) in (26), if we rearrange the terms and and apply some algebraic
manipulations, we get required result (32) asserted by Theorem 3.

We next prove the fifth identity (33). We apply the identity (9) (with the parameter q replaced by
−q, −q3, q2 and q6) under the given precondition of (27). We then further use the results (20) and (21).
After simplification, we find the values for P and Q as follows:

P =
ψ(−q)

q
1
4 ψ(−q3)

=
(q2; q2)∞ (−q3; q6)∞

q
1
4 Rα(q6; q6)∞

(43)

and

Q =
ψ(q2)

q
1
2 ψ(q6)

=
R2

q
1
2 R6

. (44)

Now, after using (43) and (44) in (27), we rearrange the terms and apply some algebraic
manipulations. We are thus led to the required result (33).

Finally, we proceed to prove the last identity (34) asserted by Theorem 3. We make use of the
identity (9) (with the parameter q replaced by −q, −q3 and q3) under the given precondition of (28).
Then, by applying the identities (20) and (21), we obtain the values for P and Q as follows:

8
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P =
ψ(−q)

q
1
4 ψ(−q3)

=
(q2; q2)∞ (−q3; q6)∞

q
1
4 Rα(q6; q6)∞

(45)

and

Q =
ψ(q)

q
1
4 ψ(q3)

=
R1

q
1
4 R3

. (46)

Thus, upon using (45) and (46) in (28), we rearrange the terms and apply some algebraic
simplifications. This leads us to the required result (34), thereby completing the proof of Theorem 3.

3. Applications Based upon Ramanujan’s Continued-Fraction Identities

In this section, we first suggest some possible applications of our findings in Theorem 3 within
the context of continued fraction identities. We begin by recalling that Naika et al. [27] studied the
following continued fraction:

U(q) :=
q(1− q)
(1− q3)+

q3(1− q2)(1− q4)

(1− q3)(1 + q6) + · · ·+
q3(1− q6n−4)(1− q6n−2)

(1− q3)(1 + q6n) + · · · , (47)

which is a special case of a fascinating continued fraction recorded by Ramanujan in his second
notebook [5,28,29]. On the other hand, Chaudhary et al. (see p. 861, Equations (3.1) to (3.5))
developed the following identities for the continued fraction U(q) in (47) by using such R-functions as
(for example) R(1, 1, 1, 1, 1, 2), R(2, 2, 1, 1, 2, 2), R(2, 1, 1, 1, 2, 2), R(3, 3, 1, 1, 1, 2) and R(6, 6, 1, 1, 1, 2):

1
U(q)

+ U(q) =
R(1, 1, 1, 1, 1, 2)R(2, 2, 1, 1, 2, 2)

{R(2, 1, 1, 1, 2, 2)}2 · {(q3; q6)∞(q6; q12)∞}3, (48)

1√
U(q)

+
√

U(q) =
R(2, 1, 1, 1, 2, 2)
R(2, 2, 1, 1, 2, 2)

{
R(1, 1, 1, 1, 1, 2)R(2, 2, 1, 1, 1, 2)

q R(3, 3, 1, 1, 1, 2)R(6, 6, 1, 1, 1, 2)

} 1
2

, (49)

1√
U(q)

−
√

U(q) = f (−q, q3)

·
{

R(1, 1, 1, 1, 1, 2){R(2, 2, 1, 1, 2, 2)}2

q R(6, 6, 1, 1, 1, 2)R(3, 3, 1, 1, 1, 2)R(2, 2, 1, 1, 1, 2)

} 1
2

, (50)

1√
U(q)

+
√

U(q) + 2 =
R(2, 1, 1, 1, 2, 2){R(1, 1, 1, 1, 1, 2)}2

q R(6, 6, 1, 1, 1, 2)R(3, 3, 1, 1, 1, 2)R(2, 2, 1, 1, 2, 2)
(51)

and

1√
U(q)

+
√

U(q)− 2 =
R(2, 2, 1, 1, 1, 2){R(3, 3, 1, 1, 1, 2)}3

q R(1, 1, 1, 1, 1, 2){R(6, 6, 1, 1, 1, 2)}3 . (52)

By using the above formulas (48) to (52), we can express our results (29) to (34) in Theorem 3 in
terms of Ramanujan’s continued fraction U(q) given here by (47).

Remark 2. Even though the results of Theorem 3 are apparently considerably involved, each of the asserted
theta-function identities does have the potential for other applications in analytic number theory and partition
theory (see, for example, [30,31]) as well as in real and complex analysis, especially in connection with
a significant number of wide-spread problems dealing with various basic (or q-) series and basic (or q-) operators
(see, for example, [32,33]).

9
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Each of the theta-function identities (29) to (34), which are asserted by Theorem 3, obviously depict
the inter-relationships that exist between q-product identities and the multivariate R-functions. Some
corollaries and consequences of Theorem 3 may be worth pursuing for further research in the direction
of the developments which we have presented in this article.

4. Connections with Combinatorial Partition-Theoretic Identities

Various extensions and generalizations of partition-theoretic identities and other q-identities,
which we have investigated in this paper, as well as their connections with combinatorial
partition-theoretic identities, can be found in several recent works (see, for example, [31,34,35]).
The demonstrations in some of these recent developments are also based upon their combinatorial
interpretations and generating functions (see also [25]).

As far as the connections with many different partition-theoretic identities are concerned,
the existing literature is full of interesting findings and observations on the subject. In fact, in the
year 2015, valuable progress in this direction was made by Andrews et al. [14], who established
a number of interesting results including those for the q-series, q-products, and q-hypergeometric
functions, which are associated closely with Schur’s partitions, the Göllnitz-Gordon’s partitions,
and the Göllnitz’s partitions in terms of multivariate R-functions. With a view to making our
presentation to be self-sufficient, we choose to recall here some relevant parts of the developments in
the remarkable investigation by Andrews et al. (see, for details, [14]).

We consider an integer partition of λ with parts λ1 � · · · � λ� and denote, as usual, its size by

|λ| := λ1 + · · ·+ λ�

and its length (that is, the number of parts) by �(λ) (see, for details, [36]).

Let us now assume that S denotes the set of Schur’s partitions of λ such that

λj − λj+1 > 3 (1 � j � �− 1),

with a strict inequality. We recall Schur’s partitions as follows:

fS(x; q) := ∑
λ∈S

x�(λ) q|λ|, (53)

which is of special interest here due to the following strikingly important infinite-product identity
known as Schur’s Second Partition Theorem (see [37]):

fS(1; q) = (−q; q3)∞ (−q2; q3)∞ (54)

In fact, Equation (54) yields a double-series representation for the two-parameter generating
function for Schur partitions, which is given below:

fS(x; q) = ∑
m,n�0

(−1)n xm+2n q(m+3n)2+ m(m−1)
2

(q; q)m(q6; q6)n
(55)

or, alternatively, as follows (see [14] (p. 103)):

fS(x; q) = (x; q3)∞ ∑
n�0

xn (−q,−q2; q3)n

(q3; q3)n
.

10
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We next suppose that GG denotes the set of the Göllnitz-Gordon partitions which satisfy the
following inequality:

λj − λj+1 � 2 (1 � j � �− 1) (56)

with strict inequality if either part is even. A direct combinatorial argument would now show that

fGG(x; q) := ∑
λ∈GG

x�(λ) q|λ| = ∑
n�0

xn qn2
(−q; q2)n

(q2; q2)n
(57)

Hence, clearly, we have a new double-series representation of the generating function for the
Göllnitz-Gordon partitions, which is given below:

fGG(x; q) = ∑
k,m�0

(−1)k xm++2k qm2+4mk+6k2

(q; q)m (q4; q4)k
. (58)

We also let G denote the set of the Göllnitz partitions which satisfy the following inequality:

λj − λj+1 � 2 (1 � j � �− 1)

with strict inequality if either part is odd. Then, the corresponding generating function for the Göllnitz
partitions is given by

fG(x; q) := ∑
λ∈G

x�(λ) q|λ|. (59)

We thus find the following double-series representation of the generating function for the
Göllnitz partitions:

fG(x; q) = ∑
k,m�0

(−1)k xm++2k qm2+4mk+6k2−2k

(q; q)m (q4; q4)k
. (60)

Remark 3. As pointed out by Andrews et al. [14]
(
p. 105, Equations (1.8) and (1.9)

)
, alternative double-series

representations for the double series in Equations (58) and (60) were given in an earlier publication by Alladi
and Berkovich [38].

In order to illustrate the connections of the above-mentioned partition-theoretic identities
with the multivariable R-functions given by Equations (18) and (19), we note that the Schur’s,
the Göllnitz-Gordon and the Göllnitz partition identities can be expressed as follows:

R(3, t, 0, 2, 3, 4) = fS
(
qt−1; q

)
, (61)

R(2, t, 0, 2, 2, 2) = fGG
(
qt−1; q

)
(62)

and

R(2, t, 1, 2, 2, 2) = fG(qt−1; q). (63)

5. An Open Problem

Based upon the work presented in this paper, we find it to be worthwhile to motivate the
interested reader to consider the following related open problem.

Open Problem. Find inter-relationships between Rβ and Rα, Rm (m ∈ N), q-product identities and
continued-fraction identities.

11
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6. Concluding Remarks and Observations

The present investigation was motivated by several recent developments dealing essentially
with theta-function identities and combinatorial partition-theoretic identities. Here, in this article,
we have established a family of six presumably new theta-function identities which depict the
inter-relationships that exist among q-product identities and combinatorial partition-theoretic identities.
We have also considered several closely-related identities such as (for example) q-product identities
and Jacobi’s triple-product identities. In addition, with a view to further motivating research involving
theta-function identities and combinatorial partition-theoretic identities, we have chosen to indicate
rather briefly a number of recent developments on the subject-matter of this article.

The list of citations, which we have included in this article, is believed to be potentially useful for
indicating some of the directions for further research and related developments on the subject-matter
which we have dealt with here. In particular, the recent works by Adiga et al. (see [28,39]), Cao et al. [40],
Chaudhary et al. (see [13,21,22]), Hahn et al. [25], and Srivastava et al. (see [23,29,33,41–45]), and by
Yee [35] and Yi [31], are worth mentioning here.
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Abstract: Certain new classes of q-convex and q-close to convex functions that involve the q-Janowski
type functions have been defined by using the concepts of quantum (or q-) calculus as well as q-conic
domain

(
Ωk,q[λ, α]

)
. This study explores some important geometric properties such as coefficient

estimates, sufficiency criteria and convolution properties of these classes. A distinction of new
findings with those obtained in earlier investigations is also provided, where appropriate.

Keywords: analytic functions; Janowski functions; conic domain; q-convex functions; q-close-to-convex functions

1. Introduction

The mathematical study of q-calculus, particularly q-fractional calculus and q-integral calculus,
q-transform analysis has been a topic of great interest for researchers due to its wide applications
in different fields (see [1,2]). Some of the earlier work on the applications of the q-calculus was
introduced by Jackson [3,4]. Later, q-analysis with geometrical interpretation was turned into identified
through quantum groups. Due to the applications of q-analysis in mathematics and other fields,
numerous researchers [3,5–14] did some significant work on q-calculus and studied its several other
applications. Recently, Srivastava [15] in his survey-cum-expository article, explored the mathematical
application of q-calculus, fractional q- calculus and fractional q-differential operators in geometric
function theory. Keeping in view the significance of q-operators instead of ordinary operators and due
to the wide range of applications of q-calculus, many researchers comprehensively studied q-calculus
such as Srivastava et al. [16], Muhammad and Darus [17], Kanas and Reducanu [18] and Muhammad
and Sokol [19]. Motivated by [15–21], we consider subfamilies of q-convex functions and q-close to
convex functions with respect to Janowski functions connected with q-conic domain.

Let A be the class of functions of the form

f (z) = z +
∞

∑
n=2

anzn, an ∈ C, z ∈ U, (1)

which are analytic in the open unit disk U = {z : z ∈ C, |z| < 1}. Let A ⊇ S , where S represents
the set of all univalent functions in U. The classes of starlike (S∗) and convex (C) functions in U are

Mathematics 2020, 8, 440; doi:10.3390/math8030440 www.mdpi.com/journal/mathematics15
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the well known subclasses of S. Moreover, the class K of close to convex functions in U consists of
normalized functions f ∈ A that satisfy the following conditions:

f ∈ A and Re

(
z f

′
(z)

g(z)

)
> 0, where g(z) ∈ S∗.

Now, for κ ≥ 0, the classes κ-uniformly convex mappings (κ −UCV) and κ-starlike mappings
(κ −UST), explored by Kanas and Wiśniowska, see [22–28]. Kanas and Wiśniowska [22,23] also
initiated the study of analytic functions on conic domain Ωκ , κ ≥ 0 as:

Ωκ =

{
u + iv : u > κ

√
(u− 1)2 + v2

}
.

See [22,23] for geometric interpretation of Ωκ . These conic regions are images of the unit disk
under the extremal functions hκ (z) given by:

hκ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1+z
1−z κ = 0,

1 +
(

log
√

z+1
1−√z

)2 2
π2 κ = 1,

1 + sinh2 {
arctan h

√
z
( 2

π arccos κ
)} 2

1−κ2 0 < κ < 1,

1 + 1
κ2−1 sin

(
π

2R(y)

∫ u(z)√
y

0
dx√

1−x2
√

1−y2x2

)
+ 1

κ2−1 κ > 1,

(2)

where

u(z) =
z−√y

1−√yz
, z ∈ U.

Here, κ = cosh (πR′(y)/(4R(y))) ∈ (0, 1), where R(y) is Legendre’s complete elliptic
integral of first kind and R′(y) = R(

√
1− y2) is its complementary integral, see [22,23,29–34].

If hκ (z) = 1 + δ (κ) z + δ1 (κ) z2 + · · · is taken from [23] for (2), then

δ (κ) =

⎧⎪⎪⎨⎪⎪⎩
8(arccos κ)2

π2(1−κ2)
0 ≤ κ < 1,

8
π2 κ = 1,

π2

4
√

y(κ2−1)R2(y)(1+y) κ > 1,

(3)

δ1 (κ) = δ2 (κ) δ (κ) ,

where

δ2 (κ) =

⎧⎪⎪⎨⎪⎪⎩
T 2

1 +2
3 0 ≤ κ < 1,

2
3 κ = 1,
4R2(y)(y2+6y+1)−π2

24R2(y)(1+y)
√

y κ > 1,

(4)

where T1 = 2
π arccos κ, and y ∈ (0, 1).

Definition 1. ([35]) Let p ∈ A and p(0) = 1 be in the class P (λ, α) if and only if

p (z) ≺ 1 + λz
1 + αz

, (−1 ≤ α < λ ≤ 1),

where ≺ stands for subordination.
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Janowski [35] initiated the class P (λ, α) by showing that p ∈ P (λ, α) if and only if there exists
a mapping p ∈ P such that

p (z) (λ + 1)− (λ− 1)
p (z) (α + 1)− (α− 1)

≺ 1 + λz
1 + αz

,

where P is class the of mappings with non-negative real parts.

Definition 2. ([36]) Let function f ∈ A be in the class S∗ (λ, α) if and only if

z f
′
(z)

f (z)
=

p (z) (λ + 1)− (λ− 1)
p (z) (α + 1)− (α− 1)

, (−1 ≤ α < λ ≤ 1) .

Definition 3. ([36]) Let function f ∈ A is in the class C (λ, α) if and only if

(
z f

′
(z)

)′

( f (z))
′ =

p (z) (λ + 1)− (λ− 1)
p (z) (α + 1)− (α− 1)

, (−1 ≤ α < λ ≤ 1) .

Definition 4. ([7]) Let function f ∈ A, n ∈ N0 and q ∈ (0, 1), the q-difference (or q− derivative) operator
Dq is defined as:

Dq f (z) = − f (z)− f (qz)
(q− 1)z

.

Note that

Dqzn = [n]qzn−1, Dq

{
∞

∑
n=1

anzn

}
=

∞

∑
n=1

[n]qanzn−1,

where
[n]q =

1− qn

1− q
.

Definition 5. ([37]) Let function f ∈ A is in the class S∗q (λ, α) if and only if

zDq f (z)
f (z)

=
(λ + 1) p̃ (z)− (λ− 1)
(α + 1) p̃ (z)− (α− 1)

, (−1 ≤ α < λ ≤ 1) , q ∈ (0, 1) .

By principle of subordination we can be written as follows:

zDq f (z)
f (z)

≺ (λ + 1)z + 2 + (λ− 1) qz
(α + 1) z + 2 + (α− 1) qz

,

where
p̃ (z) =

1 + z
1− qz

.

Definition 6. ([37]) Let function f ∈ A is in class Cq (λ, α) if and only if

Dq
(
zDq f (z)

)
Dq f (z)

=
p̃ (z) (λ + 1)− (λ− 1)
p̃ (z) (α + 1)− (α− 1)

, (−1 ≤ α < λ ≤ 1) , q ∈ (0, 1) .

Similarly, by principle of subordination, we can be written as follows:

Dq
(
zDq f (z)

)
Dq f (z)

≺ z(λ + 1) + (λ− 1) qz + 2
z (α + 1) + (α− 1) qz + 2

.

Mahmood et al. [38] introduced the class k−Pq (λ, α) as:
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Definition 7. ([38]) A function h ∈ k−Pq (λ, α), if and only if

h (z) ≺ (λO1 + O3) hk (z)− (λO1 −O3)

(αO1 + O3) hk (z)− (αO1 −O3)
, k ≥ 0, q ∈ (0, 1) ,

where
O1 = 1 + q and O3 = 3− q.

In addition, hk(z) is defined in Label (2). Geometrically, the mapping h ∈ k−Pq (λ, α) takes all
domain values Ωk,q (λ, α) , 1 ≤ α < λ ≤ 1, k ≥ 0, which is definable as:

Ωk,q(λ, α) = {r = u + iv : 
 (Ψ) > k |Ψ− 1|} ,

where

Ψ =
(αO1 −O3) r (z)− (λO1 −O3)

(αO1 + O3) r (z)− (λO1 + O3)
.

This domain describes the conic type domain; for details, see [38].
Note that

(i) When q → 1, then domain Ωκ,q (λ, α) reduces to the domain Ωκ (λ, α) (see [39]).
(ii) When q → 1, then the class κ −Pq (λ, α) reduces to the class κ −P (λ, α) (see [39]).

(iii) When q → 1, and κ = 0, then κ −Pq (λ, α) = P(λ, α) also κ −P(1,−1) = P (hκ) (see ([35]).

Definition 8. ([38]) Let f ∈ A be in the class k− ST q(β, γ), if and only if




⎛⎝ (γO1 −O3)
zDq f (z)

f (z) − (βO1 −O3)

(γO1 + O3)
zDq f (z)

f (z) − (βO1 + O3)

⎞⎠
> k

∣∣∣∣∣∣
(γO1 −O3)

zDq f (z)
f (z) − (βO1 −O3)

(γO1 + O3)
zDq f (z)

f (z) − (βO1 + O3)
− 1

∣∣∣∣∣∣ ,

or, equivalently,
zDq f (z)

f (z)
∈ k−Pq(β, γ),

where k ≥ 0, −1 ≤ γ < β ≤ 1.

We can see that, when q → 1, then κ − ST q(β, γ) diminishes to the renowned class which is
stated in [39].

Motivated by the definition above, we introduced new classes κ−UCV q(β, γ), κ−UKq(λ, α, β, γ)

and κ − UQq(λ, α, β, γ) of analytic functions.

Definition 9. Let f ∈ A, be in the class k− UCV q(β, γ) if and only if




⎛⎜⎝ (γO1 −O3)
Dq(zDq f (z))

Dq f (z) − (βO1 − (O3)

(γO1 + O3)
Dq(zDq f (z))

Dq f (z) − (βO1 + O3)

⎞⎟⎠

> k

∣∣∣∣∣∣∣
(γO1 −O3)

Dq(zDq f (z))
Dq f (z) − (βO1 −O3)

(γO1 + O3)
Dq(zDq f (z))

Dq f (z) − (βO1 + O3)
− 1

∣∣∣∣∣∣∣ ,

18
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or, equivalently,
Dq

(
zDq f (z)

)
Dq f (z)

∈ k−Pq(β, γ),

where k ≥ 0, −1 ≤ γ < β ≤ 1.

One can clearly see that

f ∈ κ − UCV q(β, γ)⇔ zDq(z) ∈ κ − ST q(β, γ). (5)

Note that, when q → 1, then the class κ − UCV q(β, γ) reduces to a well-known class
defined in [39].

Definition 10. Let f ∈ A, be in the class k− UKq(λ, α, β, γ) if and only if there exists g ∈ k− ST q(β, γ),
such that




⎛⎝ (αO1 −O3)
zDq f (z)

g(z) − (λO1 −O3)

(αO1 + O3)
zDq f (z)

g(z) − (λO1 + O3)

⎞⎠

> k

∣∣∣∣∣∣
(αO1 −O3)

zDq f (z)
g(z) − (λO1 −O3)

(αO1 + O3)
zDq f (z)

g(z) − (λO1 + O3)
− 1

∣∣∣∣∣∣ .

We can write equivalently
zDq f (z)

g(z)
∈ k−Pq(λ, α),

where k ≥ 0, −1 ≤ γ < β ≤ 1, −1 ≤ α < λ ≤ 1.

Note that, when q → 1, then, the class k− UKq(λ, α, β, γ) reduces into the well-known class that
is defined in (see [40]).

Definition 11. Let f ∈ A, belong to the class k−UQq(λ, α, β, γ) if and only if there exist g ∈ k−CV q(β, γ),
such that




⎛⎜⎝ (αO1 −O3)
Dq(zDq f (z))

Dqg(z) − (λO1 −O3)

(αO1 + O3)
Dq(zDq f (z))

Dqg(z) − (λO1 + O3)

⎞⎟⎠

> k

∣∣∣∣∣∣∣
(αO1 −O3)

Dq(zDq f (z))
Dqg(z) − (λO1 −O3)

(αO1 + O3)
Dq(zDq f (z))

Dqg(z) − (λO1 + O3)
− 1

∣∣∣∣∣∣∣ ,

or, equivalently,
Dq

(
zDq f (z)

)
Dqg(z)

∈ k−Pq(λ, α),

where, for k ≥ 0, −1 ≤ γ < β ≤ 1, −1 ≤ α < λ ≤ 1.

It is simple to verify this

f ∈ κ − UQq(λ, α, β, γ)⇔ zDq f ∈ κ − UKq(λ, α, β, γ). (6)
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A special case arises when q → 1, then the class κ −UQq(λ, α, β, γ) reduces to a well known class
defined in [40].

2. Set of Lemmas

Lemma 1. ([41]) Suppose 1 + ∑∞
n=1 cnzn = d(z) ≺ H(z) = 1 + ∑∞

n=1 Cnzn. If H(U) is convex and H(z)
∈ A, then

|cn| ≤ |C1| , n ≥ 1.

Lemma 2. ([38]) Suppose d(z) = 1 + ∑∞
n=1 cnzn ∈ k−Pq(λ, α), then

|cn| ≤ |δ (k, λ, α)| = O1(λ− α)

4
δ(k),

where δ (k) is given by (3).

Lemma 3. ([38]) Suppose d ∈ k− ST q(β, γ), k ≥ 0 is given by

d(z) = z +
∞

∑
n=2

bnzn, z ∈ U,

then

|bn| ≤ ∏n−2
m=0

⎛⎝
∣∣∣δ(k)O1(β− γ)− 4q [m]q γ

∣∣∣
4q [m + 1]q

⎞⎠ ,

where δ(k) is given by (3).

Lemma 4. ([42]) Suppose d ∈ S∗, f ∈ C and G ∈ S , then we have

f (z) ∗ d(z)G(z)
f (z) ∗ d(z)

∈ co(G(U)), z ∈ U.

Here, “*” means convolution and co(G(U) means the closed convex hull G(U).

Lemma 5. ([38]) The function f ∈ A will belong to the class k− ST q(β, γ), if the following inequality holds:

∞

∑
n=2

{
2O3(1 + k)q [n− 1]q +

∣∣∣(γO1 + O3) [n]q − (βO1 + (O3)
∣∣∣} |an|

≤ O1 |γ− β| .

Throughout this paper, we assume that k ≥ 0, −1 ≤ γ < β ≤ 1, −1 ≤ α < λ ≤ 1, and q ∈ (0, 1) ,
unless otherwise specified.

3. Main Results

Theorem 1. Let f ∈ A; then, f is in the class k− UCV q(β, γ), if the following inequality holds:

∞

∑
n=2

[n]q
{

2O3(k + 1)q [n− 1]q +
∣∣∣(γO1 + O3) [n]q − (βO1 + O3)

∣∣∣} |an|

≤ O1 |γ− β| .

Proof. By Lemma 5 and relation (5), the proof is straightforward.

For q → 1−, in Theorem 1, then we obtained following corollary, proved by Malik and Noor [39].
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Corollary 1. Let f ∈ A; then, f belongs to k− UCV(β, γ), if the following inequality holds

∞

∑
n=2

n {2(k + 1) (n− 1) + |n (γ + 1)− (β + 1)|} |an| ≤ |γ− β| .

Theorem 2. Let f ∈ A, then f is in the class k− UKq(λ, α, β, γ), if the condition (7) holds

∞

∑
n=2

{
2O3(k + 1)

∣∣∣bn − [n]q an

∣∣∣ + ∣∣∣(αO1 + O3) [n]q an − (λO1 + O3)bn

∣∣∣}

≤ O1 |α− λ| . (7)

Proof. Presuming that (7) holds, then it is enough to show that

k

∣∣∣∣∣∣
(αO1 −O3)

zDq f (z)
g(z) − (λO1 −O3)

(αO1 + O3)
zDq f (z)

g(z) − (λO1 + O3)
− 1

∣∣∣∣∣∣

− Re

⎧⎨⎩ (αO1 −O3)
zDq f (z)

g(z) − (λO1 −O3)

(αO1 + O3)
zDq f (z)

g(z) − (λO1 + O3)
− 1

⎫⎬⎭
< 1.

We have

k

∣∣∣∣∣∣
(αO1 −O3)

zDq f (z)
g(z) − (λO1 −O3)

(αO1 + O3)
zDq f (z)

g(z) − (λO1 + O3)
− 1

∣∣∣∣∣∣

− Re

⎧⎨⎩ (αO1 −O3)
zDq f (z)

g(z) − (λO1 −O3)

(αO1 + O3)
zDq f (z)

g(z) − (λO1 + O3)
− 1

⎫⎬⎭ ,

≤ (k + 1)

∣∣∣∣∣∣
(αO1 −O3)

zDq f (z)
g(z) − (λO1 −O3)

(αO1 + O3)
zDq f (z)

g(z) − (λO1 + O3)
− 1

∣∣∣∣∣∣ , (8)

= 2O3(k + 1)
∣∣∣∣ g(z)− zDq f (z)
(αO1 + O3) zDq f (z)− (λO1 + O3) g(z)

∣∣∣∣ ,

= 2O3(k + 1)

∣∣∣∣∣∣
∑∞

n=2

{
bn − [n]q an

}
zn

O1 (α− λ) z + ∑∞
n=2

{
(αO1 + O3) [n]q an − (λO1 + O3)bn

}
zn

∣∣∣∣∣∣ ,

≤
2O3(k + 1)∑∞

n=2

{∣∣∣bn − [n]q an

∣∣∣}
O1 |α− λ| −∑∞

n=2

∣∣∣(αO1 + O3) [n]q an − (λO1 + O3)bn

∣∣∣ .
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The expression (8) is bounded above by 1 if

∞

∑
n=2

[
2O3(k + 1)

∣∣∣bn − [n]q an

∣∣∣ + ∣∣∣(αO1 + O3) [n]q an − (λO1 + O3)bn

∣∣∣]
≤ (O1) |α− λ| .

Corollary 2. ([40]) Let f ∈ A. Then, f is in the class k − UKq→1(λ, α, β, γ) = k − UK(λ, α, β, γ),
if the following condition holds:

∞

∑
n=2

{2(k + 1) |bn − nan|+ |(α + 1)nan − (λ + 1)bn|} ≤ |α− λ| .

Here, q → 1 represents the limiting value of q as it approaches 1.

Theorem 3. Let f ∈ A. Then, f is in the class k− UQq(λ, α, β, γ), if the following condition holds:

∞

∑
n=2

[n]q
[
2O3(k + 1)

∣∣∣bn − [n]q an

∣∣∣ + ∣∣∣(αO1 + O3) [n]q an − (λO1 + O3)bn

∣∣∣]
≤ O1 |α− λ| .

Proof. By Theorem 2 and relation (6), the proof is straightforward.

Corollary 3. ([40]) Let f ∈ A. Then, f is in the class k− UKq→1(λ, α, β, γ) = k− UQ(λ, α, β, γ), if

∞

∑
n=2

n {2(k + 1) |bn − nan|+ |(α + 1)nan − (λ + 1)bn|} ≤ |α− λ| .

Corollary 4. ([43]) Let f ∈ A. Then, f is in the class 1− UKq→1(1− 2τ,−1, 1,−1) = UK(τ) if

∞

∑
n=2

n2 |an| ≤
1− τ

2
.

Theorem 4. Let f ∈ k− UCV q(β, γ), is of the form (1). Then,

|an| ≤
1

[n]q
∏n−2

m=0

⎛⎝
∣∣∣δ(k)O1(β− γ)− 4q [m]q γ

∣∣∣
4q [m + 1]q

⎞⎠ ,

where δ(k) is given by (3).

Proof. By Lemma 3 and relation (5), the proof is straightforward.

For q → 1−, Theorem 4 brings to the following corollary, proved by Noor [39].

Corollary 5. Let f ∈ k− UCV(β, γ). Then,

|an| ≤
1
n ∏n−2

m=0

( |δ(k)(β− γ)− 2mγ|
2 (m + 1)

)
,

where δ(k) is given by (3).
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Theorem 5. If f ∈ k− UKq(λ, α, β, γ) and g ∈ k− ST q(β, γ), then,

|an| ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

[n]q
∏n−2

m=0

∣∣∣δ(k)O1(β−γ)−4q[m]qγ
∣∣∣

4q[m+1]q

+ δ(k)O1(λ−α)
4[n]q

∑n−1
j=1 ∏

j−2
m=0

∣∣∣δ(k)O1(β−γ)−4q[j]qγ
∣∣∣

4q[j+1]q
, n ≥ 2,

where δ(k) is given in (3).

Proof. Let us take
zDq f (z)

g(z)
= h(z), (9)

where
h ∈ k−Pq(λ, α) and g ∈ k− ST q(β, γ).

Now, from (9), we have
zDq f (z) = g(z)h(z),

which implies that

z + ∑∞
n=2 [n]q anzn = (1 + ∑∞

n=1cnzn) (z + ∑∞
n=2bnzn) .

By equating zn coefficients

[n]q an = bn + ∑n−1
j=1 bjcn−j, a = 1, b1 = 1.

This implies that

[n]q |an| ≤ |bn|+ ∑n−1
j=1

∣∣bj
∣∣ ∣∣cn−j

∣∣ . (10)

Since h ∈ k−Pq(λ, α), therefore, by using Lemma 2 on (10), we have

[n]q |an| ≤ |bn|+
δ(k)O1(λ− α)

4 ∑n−1
j=1

∣∣bj
∣∣ . (11)

Again g ∈ k− ST q(β, γ), therefore, by using Lemma 3 on (11), we have

|an| ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
[n]q

∏n−2
m=0

(
|δ(k)O1(β−γ)−4q[m]qγ|

4q[m+1]q

)

+ δ(k)O1(λ−α)
4[n]q

∑n−1
j=1 ∏

j−2
m=0

(∣∣∣δ(k)O1(β−γ)−4q[m]qγ
∣∣∣

4q[m+1]q

)
.

Corollary 6. ([40]) If f ∈ k− UKq→1(λ, α, β, γ) = k− UK(λ, α, β, γ), then

|an| ≤

⎧⎪⎪⎨⎪⎪⎩
1
n ∏n−2

m=0

(
|δ(k)(β−γ)−2mγ|

2(m+1)

)
+ δ(k)(λ−α)

2n ∑n−1
j=1 ∏

j−2
m=0

(
|δ(k)(β−γ)−2mγ|

2(m+1)

)
, n ≥ 2,
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where δ(k) is defined by (3).

Corollary 7. ([26]) If f ∈ k− UKq→1(1,−1, 1,−1) = k− UK, then

|an| ≤
(δ(k))n−1

n!
+

δ(k)
n ∑n−1

j=0

(δ(k))j−1

(j− 1)!
, n ≥ 2.

Corollary 8. ([44]) If f ∈ 0− UKq→1(1,−1, 1,−1) = K, then

|an| ≤ n, n ≥ 2.

Theorem 6. If f ∈ k− UQq(λ, α, β, γ), then

|an| ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1(
[n]q

)2 ∏n−2
m=0

∣∣∣δ(k)O1(β−γ)−4q[m]qγ
∣∣∣

4q[m+1]q

+ δ(k)O1(λ−α)

4
(
[n]q

)2 ∑n−1
j=1 ∏

j−2
m=0

∣∣∣δ(k)O1(β−γ)−4q[j]qγ
∣∣∣

4q[j+1]q
, n ≥ 2,

where δ(k) is defined by (3).

Proof. By Theorem 5 and relation (6), the proof is straightforward.

Corollary 9. ([40]) If f ∈ k− UQq→1(λ, α, β, γ) = UQ(λ, α, β, γ) and is of the form (1), then

|an| ≤

⎧⎪⎪⎨⎪⎪⎩
1

n2 ∏n−2
m=0

(
|δ(k)(β−γ)−2mγ|

2(m+1)

)
+ δ(k)(λ−α)

2n2 ∑n−1
j=1 ∏

j−2
m=0

(
|δ(k)(β−γ)−2mγ|

2(m+1)

)
, n ≥ 2.

Theorem 7. If f ∈ k−Pq(β, γ) and χ ∈ C, then f ∗ χ ∈ k−Pq(β, γ).

Proof. Here, we prove that

zDq (χ(z) ∗ f (z))
(χ(z) ∗ f (z))

∈ k−Pq(β, γ).

Consider

zDq (χ(z) ∗ f (z))
(χ(z) ∗ f (z))

=
χ(z) ∗ f (z)

(
zDq f (z)

f (z)

)
χ(z) ∗ f (z)

,

=
χ(z) ∗ f (z)Ψ(z)

χ(z) ∗ f (z)
,

where zDq f (z)
f (z) = Ψ(z) ∈ Pq(β, γ). By using Lemma 4, we obtain the required result.

Theorem 8. If f ∈ k− UKq(λ, α, β, γ) and χ ∈ C, then f ∗ χ ∈ k− UKq(λ, α, β, γ).

Proof. Since f ∈ k− UKq(λ, α, β, γ), there exist g ∈ k− ST q(β, γ), such that zDq f (z)
g(z) ∈ k−Pq(λ, α).

It follows from Lemma 4 that χ ∗ g ∈ k− ST q(β, γ).
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Consider

zDq (χ(z) ∗ f (z))
(χ(z) ∗ g(z))

=
χ(z) ∗

(
zDq f (z)

)
(χ(z) ∗ g(z))

,

=
χ(z) ∗

(
zDq f (z)

g(z)

)
g(z)

χ(z) ∗ f (z)
,

=
χ(z) ∗ F(z)g(z)

χ(z) ∗ g(z)
,

where F ∈ k− ST q(λ, α). By using Lemma 4, we obtain the required result.

4. Conclusions

In this paper, we use Quantum Calculus to define new subclasses k− CV q(β, γ), k− UKq(λ, α, β, γ)

and k− UQq→1(λ, α, β, γ) of analytic functions involving conic domain and associated with Janowski
type function. We then investigate many geometric properties and characteristics of each of these
families such as coefficient inequalities, sufficient condition, necessary condition, and convolution
properties. For verification and validity of our main results, we have also pointed out relevant
connections of our main results with those in several earlier related works on this subject.

For further investigation, we can make connections between the q-analysis and (p, q)-analysis,
and the results for q-analogues which we have included in this article for 0 < q < 1 can be possibly
be translated into the relevant findings for the (p, q)-analogues with (0 < q < p ≤ 1) by adding
some parameter.
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1. Introduction and Preliminaries

Let U denote the open unit dick in the complex plane C. A function ω : U→ C is called a Schwarz
function if ω is a analytic function in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U. Clearly, a Schwarz
function ω is the form

ω(z) = w1z + w2z2 + · · · .

We denote by Ω the set of all Schwarz functions on U.
Let A be consisting of all analytic functions of the following normalized form:

f (z) = z +
∞

∑
n=2

anzn, (1)

in the open unit disk U. An analytic function f is said to be univalent in a domain if it provides
a one-to-one mapping onto its image: f (z1) = f (z2) ⇒ z1 = z2. Geometrically, this means that
different points in the domain will be mapped into different points on the image domain. Also, let S
be the class of functions f ∈ A which are univalent in U. A domain D in the complex plane C is called
starlike with respect to a point w0 ∈ D, if the line segment joining w0 to every other point w ∈ D lies in
the interior of D. In other words, for any w ∈ D and 0 ≤ t ≤ 1, tw0 + (1− t)w ∈ D. A function f ∈ A
is starlike if the image f (D) is starlike with respect to the origin.

Mathematics 2020, 8, 88; doi:10.3390/math8010088 www.mdpi.com/journal/mathematics29
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For two analytic functions f and F in U, we say that the function f is subordinate to the function F
in U and we write f (z) ≺ F(z), if there exists a Schwarz function ω such that f (z) = F

(
ω(z)

)
for all

z ∈ U. Specifically, if the function F is univalent in U, then we have the next equivalence:

f (z) ≺ F(z) ⇐⇒ f (0) = F(0) and f (U) ⊂ F(U).

The logarithmic coefficients γn of f ∈ S are defined with the following series expansion:

log
(

f (z)
z

)
= 2

∞

∑
n=1

γn( f )zn, z ∈ U. (2)

These coefficients are an important factor in studying diverse estimates in the theory of univalent
functions. Note that we use γn instead of γn( f ). The concept of logarithmic coefficients inspired
Kayumov [1] to solve Brennan’s conjecture for conformal mappings. The importance of the logarithmic
coefficients follows from Lebedev-Milin inequalities [2] (Chapter 2), see also [3,4], where estimates of
the logarithmic coefficients were used to find bounds on the coefficients of f . Milin [2] conjectured
the inequality

n

∑
m=1

m

∑
k=1

(
k|γk|2 −

1
k

)
≤ 0 (n = 1, 2, 3, · · · ),

which implies Robertson’s conjecture [5], and hence, Bieberbach’s conjecture [6]. This is the famous
coefficient problem in univalent function theory. L. de Branges [7] established Bieberbach’s conjecture
by proving Milin’s conjecture.

Definition 1. Let q, n ∈ N. The qth Hankel determinant is denote by Hq(n) and defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
. . .

...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣
, (3)

where ak (k = 1, 2, . . .) are the coefficients of the Taylor series expansion of a function f of the form (1). Note
that a1 = 1.

The Hankel determinant Hq(n) was defined by Pommerenke [8,9] and for fixed q, n the bounds
of |Hq(n)| have been studied for several subfamilies of univalent functions. Different properties of
these determinants can be observed in [10] (Chapter 4). The Hankel determinants H2(1) = a3 − a2

2
and H2(2) = a2a4 − a2

3, are well-known as Fekete-Szegö and second Hankel determinant functionals,
respectively. In addition, Fekete and Szegö [11] introduced the generalized functional a3 − λa2

2,
where λ is a real number. Recently, Hankel determinants and other problems for various classes of
bi-univalent functions have been studied, see [12–16].

For α ∈ [0, 1), we denote by S∗(α) the subclass of A including of all f ∈ A for which f is a starlike
function of order α in U, with

Re
z f ′(z)

f (z)
> α (z ∈ U).

Also, for α ∈ (0, 1], we denote by S̃∗(α) the subclass of A consisting of all f ∈ A for which f is
a strongly starlike function of order α in U, with∣∣∣∣Arg

(
z f ′(z)

f (z)

)∣∣∣∣ < απ

2
(z ∈ U).

Note that S̃∗(1) = S∗(0) = S∗, the class of starlike functions in U.
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For α ∈ (0, 1], we denote by C̃(α) the subclass of A including all of f ∈ A for which∣∣Arg
(

f ′(z)
)∣∣ < απ

2
(z ∈ U).

Note that C̃(1) = C, the subclass of close-to-convex functions in U. Here we understand that Arg w
is a number in (−π, π].

For α ∈ (0, 1], Nunokawa and Saitoh in [17] defined the more general class G(α) consisting of all
f ∈ A satisfying

Re
(

1 +
z f ′′(z)
f ′(z)

)
< 1 +

α

2
(z ∈ U).

They proved that G(α) is a subclass of S∗. Ozaki in [18] showed that every function G(1) is
univalent in the unit disk U. In the following, Umezawa [19], Sakaguchi [20] and Singh and Singh [21]
obtained some geometric properties of G(1) including, convex in one direction, close-to-convex and
starlike, respectively. Obradović et al. in [22] proved the sharp coefficient bounds for the moduli of the
Taylor coefficients an of f ∈ G(α) and determined the sharp bound for the Fekete-Szegö functional for
functions in G(α) with complex parameter λ. Also, Ponnusamy et al. [22,23] studied bounds for the
logarithmic coefficients for functions in G(α).

Here, we introduce a class as follows:

Definition 2. For α, δ ∈ (0, 1], we define the subclass G (α, δ) of A as the following:

G (α, δ) :=
{

f ∈ A :
∣∣∣ Arg

(
2 + α

α
− 2

α

(
1 +

z f ′′(z)
f ′(z)

)) ∣∣∣ < δπ

2
(z ∈ U )

}
.

It is clear that G (α, 1) = G(α) for α ∈ (0, 1]. Let α, δ ∈ (0, 1], identity function on U belongs to
G (α, δ) which implies that G (α, δ) �= ∅. By means of the principle of subordination between analytic
functions, we deduce

G (α, δ) :=

{
f ∈ A : 1 +

z f ′′(z)
f ′(z)

≺ −α

2

(
1 + z
1− z

)δ

+
2 + α

2
:= φ(z) (z ∈ U)

}
. (4)

Since the function f defined by

f (z) =
∫ z

0
exp

⎛⎜⎝∫ x

0

− α
2

(
1+t
1−t

)δ
+ α

2

t
dt

⎞⎟⎠ dx (z ∈ U)

satisfies

1 +
z f ′′(z)
f ′(z)

= φ(z) ≺ φ(z),

we deduce f ∈ G (α, δ).
The aim of the present paper is to study some geometric properties for the class G (α, δ) such

as strongly starlikeness and close-to-convexity. Also we investigate sharp bounds on logarithmic
coefficients and Fekete-Szegö functionals for functions belonging to the class G (α, δ), which incorporate
some known results as the special cases.
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2. Some Properties of the Class G (α, δ)

We denote by Q the class of all complex-valued functions q for which q is univalent at each
U \ E(q) and q′(ξ) �= 0 for all ξ ∈ ∂U \ E(q) where

E(q) =
{

ξ ∈ ∂U : lim
z→ξ

q(z) = ∞
}

.

The following lemmas will be required to establish our main results.

Lemma 1 ([24] (Lemma 2.2d (i))). Let q ∈ Q with q(0) = a and let p(z) = a + pnzn + . . . be analytic in U

with p(z) �≡ 1 and n ≥ 1. If p is not subordinate to q in U then there exist z0 ∈ U and ξ0 ∈ ∂U \ E(q) such
that

{
p (z) : z ∈ U, |z| < |z0|

}
⊂ q(U),

p(z0) = q(ξ0).

Lemma 2. (see [25,26]) Let the function p given by

p(z) = 1 +
∞

∑
n=1

cnzn

be analytic in U with p(0) = 1 and p(z) �= 0 for all z ∈ U. If there exists a point z0 ∈ U with

∣∣ arg
(

p(z)
)∣∣ < βπ

2
(|z| < |z0|)

and ∣∣ arg
(

p(z0)
)∣∣ = βπ

2
,

for some β > 0, then
z0 p′(z0)

p(z0)
= ikβ (i =

√
−1),

where

k ≥ a + a−1

2
≥ 1 when arg

(
p(z0)

)
=

βπ

2
(5)

and

k ≤ − a + a−1

2
≤ −1 when arg

(
p(z0)

)
= − βπ

2
, (6)

where
[p(z0)]

1/β = ±ia and a > 0.

Theorem 1. Let α, β ∈ (0, 1]. If f ∈ A satisfies the condition∣∣∣ Arg
(

2 + α

α
− 2

α

(
1 +

z f ′′(z)
f ′(z)

)) ∣∣∣ < Arctan
(

4β

2 + α

)
, (7)

then ∣∣ Arg
( z f ′(z)

f (z)

)∣∣ < βπ

2
(z ∈ U).

Proof. Let f ∈ A and define the function p : U→ C by

p(z) =
z f ′(z)

f (z)
= 1 +

∞

∑
n=1

cnzn (z ∈ U).
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Then it follows that p is analytic in U, p(0) = 1,

1 +
z f ′′(z)
f ′(z)

= p(z) +
zp′(z)
p(z)

(z ∈ U)

and p(z) �= 0 for all z ∈ U. In fact, if p has a zero z0 ∈ U of order m, then we may write

p(z) = (z− z0)
m p1(z) (m ∈ N = 1, 2, 3, · · · ),

where p1 is analytic in U with p1(z0) �= 0. Then

2 + α

α
− 2

α

(
p(z) +

zp′(z)
p(z)

)
=

2 + α

α
− 2

α

(
p(z) +

zp′1(z)
p1(z)

+
mz

z− z0

)
.

Thus, choosing z → z0, suitably the argument of the right-hand of the above equality can take
any value between −π and π, which contradicts (7).

Define the function q : U \ {1} → C by

q(z) =
(

1 + z
1− z

)β

(z ∈ U \ {1}).

Then q ∈ Q, q(0) = 1 and E(q) = {1}. It is clear that
∣∣ Arg

(
p(z)

)∣∣ < βπ

2
for all z ∈ U if and only

if p ≺ q on U. Let
∣∣ Arg

(
p(z1)

)∣∣ ≥ βπ

2
for some z1 ∈ U. Then p is not subordinate to q. By Lemma 1

there exists z0 ∈ U and ξ0 ∈ ∂U \ {1} such that
{

p (z) : z ∈ U, |z| < |z0|
}
⊂ q(U) and p(z0) = q(ξ0).

Therefore, ∣∣ Arg
(

p(z)
)∣∣ < βπ

2
,

for all z ∈ U with |z| < |z0| and ∣∣ Arg
(

p(z0)
)∣∣ = βπ

2
.

Then, Lemma 2, gives us that
z0 p′(z0)

p(z0)
= ikβ,

where [p(z0)]
1
β = ±ia (a > 0) and k is given by (5) or (6).

Define the function g : (0, a)→ R by

g(t) =
2

2+α

(
tβ sin( βπ

2 ) + β
)

1− 2
2+α tβ cos βπ

2

t ∈ (0, a).

Then g is a differentiable function on (0, a) and g′(t) > 0 for all t ∈ (0, a). This implies that the
function h : (0, a)→ R defined by

h(t) = Arctan (g(t)) t ∈ (0, a),

is a non-decreasing function on (0, a). Thus

h(a) ≥ lim
t→0+

h(t) = Arctan
(

2β

2 + α

)
.
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Therefore, we have

Arctan

⎛⎝ 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2

⎞⎠ ≥ Arctan
(

2β

2 + α

)
. (8)

Now we consider six cases for estimation of Arg
(

p(z0)
)

as follows:

Case 1. Arg
(

p(z0)
)
=

βπ

2
and 1− 2

2+α aβ cos βπ
2 > 0. In this case we have [p(z0)]

1
β = ia (a > 0),

and k ≥ 1. Therefore,

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α
aβ cos

βπ

2
− i

2
2 + α

(
aβ sin

βπ

2
+ kβ

))

= Arctan

⎛⎝− 2
2+α

(
aβ sin βπ

2 + kβ
)

1− 2
2+α aβ cos βπ

2

⎞⎠
≤ Arctan

⎛⎝− 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2

⎞⎠
= −Arctan

⎛⎝ 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2

⎞⎠
= −h(a)

≤ −Arctan
(

2β

2 + α

)
. (9)

Now applying (8) and (9) we get

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

))
= Arg

(
1− 2

2 + α

(
1 +

z0 f ′′(z0)

f ′(z0)

))

≤ −Arctan

⎛⎝ 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2

⎞⎠
≤ −Arctan

(
2β

2 + α

)
,

which contradicts (7).

Case 2. Arg
(

p(z0)
)
=

βπ

2
and 1− 2

2+α aβ cos βπ
2 = 0. In this case, we have p(z0) = aβ(cos βπ

2 +

i sin βπ
2 ) and k ≥ 1. Thus − 2

2+α

(
aβ sin βπ

2 + kβ
)
< 0 and so

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
−i

2
2 + α

(
aβ sin

βπ

2
+ kβ

))
= −π

2
< −Arctan

(
2β

2 + α

)
,

which contradicts (7).

Case 3. Arg
(

p(z0)
)
=

βπ

2
and 1− 2

2+α aβ cos βπ
2 < 0. In this case, we have p(z0) = aβ(cos βπ

2 +

i sin βπ
2 ) and k ≥ 1. Thus

− 2
2+α

(
aβ sin βπ

2 + kβ
)

1− 2
2+α aβ cos βπ

2

> 0.
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Therefore,

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α
aβ cos

βπ

2
− i

2
2 + α

(
aβ sin

βπ

2
+ kβ

))

= −π + Arctan

⎛⎝− 2
2+α

(
aβ sin βπ

2 + kβ
)

1− 2
2+α aβ cos βπ

2

⎞⎠
< −π +

π

2

= −π

2

< −Arctan
(

2β

2 + α

)
,

which contradicts (7).

Case 4. Arg
(

p(z0)
)
= − βπ

2
and 1− 2

2+α aβ cos βπ
2 > 0. In this case we have p(z0) = aβ(cos βπ

2 −
i sin βπ

2 ) and k ≤ −1. Thus − 2
2+α

(
−aβ sin βπ

2 + kβ
)
< 0. Now , applying (8) we get

Arg
(

2 + α

α

(
1− α

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α

(
aβe

−iβπ
2 + ikβ

))

= Arctan

⎛⎝− 2
2+α

(
−aβ sin βπ

2 + kβ
)

1− 2
2+α aβ cos βπ

2

⎞⎠
≥ Arctan

⎛⎝− 2
2+α

(
−aβ sin βπ

2 − β
)

1− 2
2+α aβ cos βπ

2

⎞⎠
= Arctan

⎛⎝ 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2

⎞⎠
≥ Arctan

(
2β

2 + α

)
,

which contradicts (7).
For other cases applying the same method in Case 2. and Case 3. with k ≤ −1 we obtain

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
≥ Arctan

(
2β

2 + α

)
,

which contradicts (7). Hence the proof is completed.

Corollary 1. Let α, β ∈ (0, 1] and δ = 2
π Arctan

(
2β

2+α

)
. If f ∈ G (α, δ), then f ∈ S̃∗(β).

Theorem 2. Let α, β ∈ (0, 1]. If f ∈ A and∣∣∣ Arg
(

2 + α

α
− 2

α

(
1 +

z f ′′(z)
f ′(z)

)) ∣∣∣ < Arctan
(

2β

α

)
, (10)

then ∣∣ Arg
(

f ′(z)
)∣∣ < βπ

2
(z ∈ U).
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Proof. Define the function p : U→ C by

p(z) = f ′(z) = 1 +
∞

∑
n=1

cnzn (z ∈ U).

Then p is analytic in U, p(0) = 1,

1 +
z f ′′(z)
f ′(z)

= 1 +
zp′(z)
p(z)

.

and p(z) �= 0 for all z ∈ U. If there exists a point z0 ∈ U such that

∣∣ Arg
(

p(z)
)∣∣ < βπ

2
,

for all z ∈ U with |z| < |z0| and ∣∣ Arg
(

p(z0)
)∣∣ = βπ

2
.

Then, Lemma 2, gives us that
z0 p′(z0)

p(z0)
= ikβ,

where [p(z0)]
1
β = ±ia (a > 0) and k is given by (5) or (6).

For the case Arg
(

p(z0)
)
=

απ

2
when

p(z0)]
1
β = ia (a > 0)

and k ≥ 1, we have

Arg
(

2 + α

α

(
1− 2

2 + α

(
1 +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α

(
1 +

z0 p′(z0)

p(z0)

))
= Arg

(
1− 2

2 + α
(1 + ikβ)

)
= Arctan

(−2kβ

α

)
≤ −Arctan

(
2β

α

)
,

which contradicts (10).
Next, for the case Arg

(
p(z0)

)
= −απ

2
when

p(z0) = −ia (a > 0)

and k ≤ −1, using the same method as before, we can obtain

Arg
(

2 + α

α

(
1− 2

2 + α

(
1 +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α

(
1 +

z0 p′(z0)

p(z0)

))
= Arg

(
1− 2

2 + α
(1 + ikβ)

)
= Arctan

(−2kβ

α

)
≥ Arctan

(
2β

α

)
,
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which is a contradicts (10).
Consequently, from the two above-discussed contradictions, it follows that

∣∣ Arg
(

f ′(z)
)∣∣ < βπ

2
(z ∈ U).

and hence the proof is completed.

Corollary 2. Let α, β ∈ (0, 1] and δ = 2
π Arctan

(
2β
α

)
. If f ∈ G (α, δ), then f ∈ C̃(β). In other words, if

f ∈ G (α, δ), then f (z) is close-to-convex (univalent) in U.

3. Coefficient Bounds

In this section, we give a the general problem of coefficients in the class G (α, δ) like the estimates
of coefficients for membership of this, bounds of logarithmic coefficients and the Fekete-Szegö problem
with sharp inequalities. In order to achieve our aim we need to establish some knowledge.

Lemma 3 ([27] (p. 172)). Let ω ∈ Ω with ω(z) =
∞
∑

n=1
wnzn for all z ∈ U. Then |w1| ≤ 1 and

|wn| ≤ 1− |w1|2 for all n ∈ N with n ≥ 2.

Lemma 4 ([28] (Inequality 7, p. 10)). Let ω ∈ Ω with ω(z) =
∞
∑

n=1
wnzn for all z ∈ U. Then

|w2 − tw2
1| ≤ max{1, |t|} for all t ∈ C.

The inequality is sharp for the functions ω(z) = z2 or ω(z) = z.

Lemma 5 ([29]). If ω ∈ Ω with ω(z) =
∞
∑

n=1
wnzn (z ∈ U), then for any real numbers q1 and q2, we have the

following sharp estimate:
|p3 + q1w1w2 + q2w3

1| ≤ H(q1; q2),

where

H(q1; q2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (q1, q2) ∈ D1 ∪ D2 ∪ {(2, 1)},
|q2| if (q1, q2) ∈ ∪7

k=3Dk,

2
3 (|q1|+ 1)

( |q1|+1
3(|q1|+1+q2)

) 1
2 if (q1, q2) ∈ D8 ∪ D9,

q2
3

(
q2

1−4
q2

1−4q2

) (
q2

1−4
3(q2−1)

) 1
2

if (q1, q2) ∈ D10 ∪ D11 \{(2, 1)},

2
3 (|q1| − 1)

( |q1|−1
3(|q1|−1−q2)

) 1
2 if (q1, q2) ∈ D12,

and the sets Dk, k = 1, 2, . . . , 12 are stated as given below:

D1 =

{
(q1, q2) : |q1| ≤

1
2

, |q2| ≤ 1
}

,

D2 =

{
(q1, q2) :

1
2
≤ |q1| ≤ 2,

4
27

(
(|q1|+ 1)3

)
− (|q1|+ 1) ≤ q2 ≤ 1

}
,

D3 =

{
(q1, q2) : |q1| ≤

1
2

, q2 ≤ −1
}

,
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D4 =

{
(q1, q2) : |q1| ≥

1
2

, |q2| ≤ − 2
3
(|q1|+ 1)

}
,

D5 = {(q1, q2) : |q1| ≤ 2, q2 ≥ 1} ,

D6 =

{
(q1, q2) : 2 ≤ |q1| ≤ 4, q2 ≥

1
12

(q2
1 + 8)

}
,

D7 =

{
(q1, q2) : |q1| ≥ 4, q2 ≥

2
3
(|q1| − 1)

}
,

D8 =

{
(q1, q2) :

1
2
≤ |q1| ≤ 2, − 2

3
(|q1|+ 1) ≤ q2 ≤

4
27

(
(|q1|+ 1)3

)
− (|q1|+ 1)

}
,

D9 =

{
(q1, q2) : |q1| ≥ 2, − 2

3
(|q1|+ 1) ≤ q2 ≤

2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4

}
,

D10 =

{
(q1, q2) : 2 ≤ |q1| ≤ 4,

2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4
≤ q2 ≤

1
12

(q2
1 + 8)

}
,

D11 =

{
(q1, q2) : |q1| ≥ 4,

2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4
≤ q2 ≤

2|q1|(|q1| − 1)
q2

1 − 2|q1|+ 4

}
,

D12 =

{
(q1, q2) : |q1| ≥ 4,

2|q1|(|q1| − 1)
q2

1 − 2|q1|+ 4
≤ q2 ≤

2
3
(|q1| − 1)

}
.

We assume that ϕ is a univalent function in the unit disk U satisfying ϕ(0) = 1 such that it has
the power series expansion of the following form

ϕ(z) = 1 + B1z + B2z2 + B3z3 + . . . , z ∈ U, with B1 �= 0. (11)

Lemma 6 ([30] (Theorem 2)). Let the function f ∈ K(ϕ). Then the logarithmic coefficients of f satisfy the
inequalities

|γ1| ≤
|B1|

4
, (12)

|γ2| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|B1|
12

if |4B2 + B2
1 | ≤ 4|B1|,

|4B2 + B2
1 |

48
if |4B2 + B2

1 | > 4|B1|,
(13)

and if B1, B2, and B3 are real values,

|γ3| ≤
|B1|
24

H(q1; q2), (14)

where H(q1; q2) is given by Lemma 5, q1 =
B1+

4B2
B1

2 and q2 =
B2+

2B3
B1

2 . The bounds (12) and (13) are sharp.

Theorem 3. Let f ∈ G (α, δ). Then

|a2| ≤
αδ

2
, |a3| ≤

αδ

6
, |a4| ≤

αδ

12
H(q1; q2),

where H(q1; q2) is given by Lemma 5,

q1 =
−3αδ

2
+ 2δ and q2 = δ2

(−3α

2
+

α2

2
+

2
3

)
+

1
3

.

The first two bounds are sharp.
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Proof. Set g(z) =: z f ′(z), where f ∈ G (α, δ) and suppose that g(z) = z +
∞
∑

n=2
bnzn. Hence bn = nan

for n ≥ 1. Then from (4), it follows that

zg′(z)
g(z)

≺ −α

2

(
1 + z
1− z

)δ

+
2 + α

2
=: φ(z)

= 1− αδz− αδ2z2 − 1
3

αδ(2δ2 + 1)z3 + · · ·

:= 1 + B1z + B2z2 + B3z3 + · · · .

Now, by the definition of the subordination, there is a ω ∈ Ω with ω(z) = ∑∞
n=1 wnzn so that

zg′(z)
g(z)

=φ(ω(z))

=1 + B1w1z + (B1w2 + B2w2
1)z

2 + (B1w3 + 2w1w2B2 + B3w3
1)z

3 + · · · .

From the above equality, it concludes that⎧⎪⎨⎪⎩
b2 = B1w1

2b3 − b2
2 = B1w2 + B2w2

1
3b4 − 3b2b3 + b3

2 = B1w3 + 2w1w2B2 + B3w3
1.

First, for b2, from Lemma 3 we get |b2| ≤ αδ, and so |a2| ≤ αδ
2 . Next, utilizing Lemma 3 for b3 and

using |B2 + B2
1 | ≤ |B1|, we have

|b3| ≤
|B1|(1− |w1|2) + |B2 + B2

1 ||w1|2
2

=
|B1|+

[
|B2 + B2

1 | − |B1|
]
|w1|2

2

≤|B1|
2

=
αδ

2
.

Ultimately, utilizing Lemma 5 for a4, we have

|b4| ≤
B1

3

∣∣∣∣c3 +

(
3
2

B1 +
2B2

B1

)
w1w2 +

(
3
2

B2 +
1
2

B2
1 +

B3

B1

)
w3

1

∣∣∣∣
≤B1

3
H(q1; q2),

where

q1 =
3
2

B1 +
2B2

B1
=
−3αδ

2
+ 2δ and q2 =

3
2

B2 +
1
2

B2
1 +

B3

B1
= δ2

(−3α

2
+

α2

2
+

2
3

)
+

1
3

.

The extremal functions for the initial coefficients an (n = 2, 3) are of the form:

fn(z) =
∫ z

0
exp

(∫ x

0

φ(tn)− 1
t

dt
)

dx = z− αβ

n(n + 1)
zn+1 +

αβ2(α/n− 1)
2n(2n + 1)

z2n+1 + · · · ,

obtained by taking ω(z) = zn in (4). Therefore, this completes the proof.

Theorem 4. Let f ∈ G (α, δ). Then

|γ1| ≤
αδ

4
, |γ2| ≤

αδ

12
, |γ3| ≤

αδ

24
H(q1; q2),
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where H(q1; q2) is given by Lemma 5, q1 = −αδ+4δ
2 , and q2 =

−αδ2+ 2(2δ2+1)
3

2 . The first two bounds are sharp.

Proof. The results are concluded from Theorem 6 by setting ϕ := φ. Also, two first bounds are sharp
for fn(z) for n = 1, 2, respectively. Therefore, this completes the proof.

Theorem 5. Let f ∈ G (α, δ). Then we have sharp inequalities for complex parameter μ

∣∣∣a3 − μa2
2

∣∣∣ ≤
⎧⎨⎩

αδ2

6

∣∣∣1− α + 3μ
2 α

∣∣∣ f or
∣∣μ + 2

3α (1− α)
∣∣ ≥ 2

3αδ ,

αδ
6 f or

∣∣μ + 2
3α (1− α)

∣∣ < 2
3αδ .

Proof. Let f ∈ G (α, δ), then from (4), by the definition of the subordination, there is a ω ∈ Ω with
ω(z) = ∑∞

n=1 wnzn so that

1 +
z f ′′(z)
f ′(z)

= φ(ω(z)) = 1 + B1w1z + (B1w2 + B2w2
1)z

2 + · · · .

Therefore, we get that

2a2 = B1w1 and 6a3 − 4a2
2 = B1w2 + B2w2

1.

Form the above equalities, we have∣∣∣a3 − μa2
2

∣∣∣ = 1
6
|B1|

∣∣∣w2 + νw2
1

∣∣∣ .

The results are obtained by the application of Lemma 4 with ν =
[

B2
B1

+ B1(1− 3μ
2 )

]
, where

B1 = −αδ and B2 = −αδ2. Equality is attained in the first inequality by the function f = f1 and in the
second inequality for f = f2.

Remark 1.

(i) Taking into account δ = 1 in Theorem 3, we get the result obtained in [31] (Theorem 1) for n = 2, 3, 4.
(ii) Setting δ = 1 in Theorem 3, we have the result obtained in [23] (Theorem 2.10).

(iii) Letting δ = 1 in Theorem 4, we obtain a correction of the result presented in [31] (Theorem 2).
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Abstract: The purpose of this paper is to introduce q-analogues of generalized Lupaş operators,
whose construction depends on a continuously differentiable, increasing, and unbounded function ρ.
Depending on the selection of q, these operators provide more flexibility in approximation and the
convergence is at least as fast as the generalized Lupaş operators, while retaining their approximation
properties. For these operators, we give weighted approximations, Voronovskaja-type theorems, and
quantitative estimates for the local approximation.

Keywords: generalized Lupas. operators; q analogue; Korovkin’s type theorem; convergence
theorems; Voronovskaya type theorem

1. Introduction

Approximation theory rudimentarily deals with the approximation of functions by simpler functions
or more easily calculated functions. Broadly, it is divided into theoretical and constructive approximation.
In 1912, S.N. Bernstein [1] was the first to construct a sequence of positive linear operators to provide
a constructive proof of the prominent Weierstrass approximation theorem [2] using a probabilistic
approach. One can find a detailed monograph about the Bernstein polynomials in [3,4]. Cárdenas
et al. [5] in 2011, defined the Bernstein type operators by Bn( f oτ−1)oτ and showed that its Korovkin
set is

{
e0, τ, τ2} instead of {e0, e1, e2}. These operators present an interesting byproduct sequence of

positive linear operators of polynomial type with nice geometric shape preserving properties, which
converge to the identity, which in a certain sense improves Bn in approximating a number of increasing
functions, and which, apart from the constant functions, fixes suitable polynomials of a prescribed degree.
The notion of convexity with respect to τ plays an important role. Recently, Aral et al. [6] in 2014
defined a similar modification of Szász-Mirakyan type operators obtaining approximation properties
of these operators on the interval [0, ∞).

Very recently motivated by the above work, İlarslan et al. [7] introduced a new modification of
Lupaş operators [8] using a suitable function ρ, which satisfies the following properties:

(ρ1) ρ be a continuously differentiable function on [0, ∞),
(ρ2) ρ(0) = 0 and inf

u∈[0,∞)
ρ
′
(u) ≥ 1.

The generalized Lupaş operators are defined as

Lρ
m( f ; u) = 2−mρ(u)

∞

∑
l=0

(mρ(u))l

2l l!

(
f oρ−1

) (
l
m

)
, (1)
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for m ≥ 1, u ≥ 0, and suitable functions f are defined on [0, ∞). If ρ(u) = u then (1) reduces to the
Lupaş operators defined in [8].

İlarslan et al. [7] gave uniform convergence results on a weighted space, where the weight function
is φ(u) = 1 + ρ2(u) satisfying the conditions (ρ1) and and (ρ2) given above, in the sense of Gadjiev’s
results [9,10]. For the rate of convergence, the authors used a weighted modulus of continuity stated by
Holhoş in [11] using the weight function. They obtained a Voronovskaya-type result and monotonicity
of the sequence of operators Lρ

m( f ; u). Moreover, they obtained some quantitative type theorems on
weighted spaces.

The purpose of this paper is to define the q-analogue of operators (1) which depend on ρ.
Before proceeding further, let us recall some basic definitions and notations of quantum calculus [12].

For any fixed real number q > 0, the q-integer [l]q, for l ∈ N (set of natural numbers) are defined as

[l]q :=

⎧⎨⎩
(1−ql)
(1−q) , q �= 1

l, q = 1,

and the q-factorial by

[l]q! :=

{
[l]q[l − 1]q...[1]q, l ≥ 1

l, l = 0.

The q-Binomial expansion is

(u + y)m
q := (u + y)(u + qy)(u + q2y) · · · (u + qm−1y),

and the q-binomial coefficients are as follows:[
m
l

]
q

:=
[m]q!

[l]q![m− l]q!
.

The Gauss-formula is defined as:

(u + y)m
q =

m

∑
j=0

[
m
l

]
q

qj(j−1)/2yjum−j.

After development of q-calculus, Lupaş [13] introduced the q-Lupaş operator (rational) as follows:

Lm,q( f ; u) =
m

∑
l=0

f
(

[l]q
[m]q

) [
m
l

]
q

q
l(l−1)

2 ul (1− u)m−l

m
∏
j=1
{(1− u) + qj−1u}

, (2)

and studied its approximation properties.
Similarly, Phillips [14] constructed another q-analogue of Bernstein operators (polynomials)

as follows:

Bm,q( f ; u) =
m

∑
l=0

[
m
l

]
q

ul
m−l−1

∏
s=0

(1− qsu) f
(

[l]q
[m]q

)
, u ∈ [0, 1] (3)

where Bm,q : C[0, 1]→ C[0, 1] defined for any m ∈ N and any function f ∈ C[0, 1], where C[0, 1] denotes
the set of all continuous functions on [0, 1].

The basis of these operators have been used in Computer Aided Geometric Design (CAGD) to
study curves and surfaces. Then it became an active area of research in approximation theory as well
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as CAGD [15–17]. In the recent past, q-analogues of various operators were investigated by several
researchers (see [18–23]).

The q-analogue is a very interesting idea. It can also be used in statistical and biological
physics, multi- type directed scalefree percolation, and modeling epidemic spread with awareness and
heterogeneous transmission rates in networks.

Persuaded by the above mentioned work, we introduce the q-analogue of operators (1) which
depends on a suitable function ρ, as follows:

Definition 1. Let 0 < q < 1 and m ∈ N. For f : [0, ∞) → R, we define q-analogue of generalized Lupaş
operators as

Lρ
m,q( f ; u) = 2−[m]qρ(u)

∞

∑
l=0

([m]qρ(u))l

2l [l]q!

(
f oρ−1

) (
[l]q
[m]q

)
, (4)

where ([m]qρ(u))l is the rising factorial defined as:

([m]qρ(u))0 = 1,

([m]qρ(u))l = ([m]qρ(u))([m]qρ(u) + 1)([m]qρ(u) + 2) · · · ([m]qρ(u) + l − 1), l ≥ 0.

The operators (4) are linear and positive. For q = 1, the operators (4) turn out to be generalized
Lupaş operators defined in (1). Next, we prove some auxiliary results for (4).

Lemma 1. Let Lρ
m,q be given by (4). Then for each u ≥ 0 and m ∈ N we have

(i) Lρ
m,q(1; u) = 1,

(ii) Lρ
m,q(ρ; u) = ρ(u),

(iii) Lρ
m,q(ρ

2; u) = ρ2(u) + (1+q)
[m]q

ρ(u),

(iv) Lρ
m,q(ρ

3; u) = ρ3(u)q3 + (3q3+q2+2q)
[m]q

ρ2(u) + (2q3+q2+2q+1)
[m]2q

ρ(u),

(v) Lρ
m,q(ρ

4; u) = ρ4(u)q6 + (6q6+q5+2q4+3q3)
[m]q

ρ3(u) + (11q6+3q5+6q4+1oq3+3q2+3q)
[m]2q

ρ2(u)

+ (6q6+2q5+4q4+7q3+3q2+3q+1)
[m]3q

ρ(u).

Proof. By taking into account the recurrence relation ([m]qρ(u))0 = 1, ([m]qρ(u))l = ([m]qρ(u))
([m]qρ(u) + 1)l−1, l ≥ 1, we have

(i)

Lρ
m,q(1; u) = 2−[m]qρ(u)

∞

∑
l=0

([m]qρ(u))l

2l [l]q!
= 1.

(ii)

Lρ
m,q(ρ; u) = 2−[m]qρ(u)

∞

∑
l=0

([m]qρ(u))l

[l]q!2l

[l]q
[m]q

=
2−([m]qρ(u)+1)[m]qρ(u)

[m]q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l

= ρ(u).
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(iii)

Lρ
m,q(ρ

2; u) = 2−[m]qρ(u)
∞

∑
l=0

([m]qρ(u))l

[l]q!2l

[l]2q
[m]2q

=
2−[m]qρ(u)

[m]2q

∞

∑
l=0

([m]qu)l

[l]q!2l [l]2q

=
2−([m]qρ(u)+1)[m]qρ(u)

[m]2q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l [l]q

= ρ2(u) +
(1 + q)
[m]q

ρ(u).

(iv)

Lρ
m,q(ρ

3; u) = 2−[m]qρ(u)
∞

∑
l=0

([m]qρ(u))l

[l]q!2l

[l]3q
[m]3q

Now by using [l + 1]q = (1 + q[l]q) and shifting l to l + 1, we have

Lρ
m,q(ρ

3; u) =
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l [l + 1]2q

=
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l (1 + q[l]q)2

=
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l ,

+
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l q2[l]2q

+
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 2q[l]q,

= A + B + C(Say).

Now, let us calculate the values of A, B, and C

A =
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l ,

=
ρ(u)
[m]2q

.

B =
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l q2[l]2q

=
2−([m]qρ(u)+2)([m]qρ(u) + 1)ρ(u)

[m]2q
q2

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l [l + 1]q

=
2−([m]qρ(u)+2)([m]qρ(u) + 1)ρ(u)

[m]2q
q2

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l (1 + q[l]q)

= ρ3(u)q3 +
3ρ2(u)q3

[m]q
+

2ρ(u)q3

[m]2q
+

ρ2(u)q2

[m]q
+

ρ(u)q2

[m]2q
.
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Also,

C =
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 2q[l]q,

=
2ρ2(u)q
[m]q

+
2ρ(u)q
[m]2q

.

On adding A, B, and C we have,

Lρ
m,q(ρ

3; u) = ρ3(u)q3 +
(3q3 + q2 + 2q)

[m]q
ρ2(u) +

(2q3 + q2 + 2q + 1)
[m]2q

ρ(u).

(v)

Lρ
m,q(ρ

4; u) = 2−[m]qρ(u)
∞

∑
l=0

([m]qρ(u))l

[l]q!2l

[l]4q
[m]4q.

Now, by using [l + 1]q = (1 + q[l]q) and shifting l to l + 1, we have

Lρ
m,q(ρ

4; u) =
2−([m]qρ(u)+1)[m]qρ(u)

[m]4q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l [l + 1]3q

=
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l (1 + q[l]q)3

=
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l

+
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l q3[l]3q

+
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 3q2[l]2q

+
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 3q[l]q,

= D + E + F + G(Say).

Now, let us calculate the values of D, E, F, and G

D =
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l

=
ρ(u)
[m]3q

.
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E =
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l q3[l]3q

=
2−([m]qρ(u)+2)ρ(u)([m]qρ(u) + 1)

[m]3q
q3

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l [l + 1]2q

=
2−([m]qρ(u)+2)ρ(u)([m]qρ(u) + 1)

[m]3q
q3

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l (1 + q[l]q)2

=
2−([m]qρ(u)+2)ρ(u)([m]qρ(u) + 1)

[m]3q
q3

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l (1 + q2[l]2q + 2q[l]q)

=

(
ρ4(u) +

6ρ3(u)
[m]q

+
11ρ2(u)
[m]2q

+
6ρ(u)
[m]3q

)
q6 +

(
ρ3(u)
[m]q

+
3ρ2(u)
[m]2q

+
2ρ(u)
[m]3q

)
q5

+

(
2ρ3(u)
[m]q

+
6ρ2(u)
[m]2q

+
4ρ(u)
[m]3q

)
q4 +

(
ρ2(u)
[m]2q

+
ρ(u)
[m]3q

)
q3.

Similarly,

F =
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 3q2[l]2q

=

(
3ρ3(u)
[m]q

+
9ρ2(u)
[m]2q

+
6ρ(u)
[m]3q

)
q3 +

(
3ρ2(u)
[m]2q

+
3ρ(u)
[m]3q

)
q2.

Also,

G =
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 3q[l]q

=

(
3ρ2(u)
[m]2q

+
3ρ(u)
[m]3q

)
q.

On adding D, E, F, and G we have,

Lρ
m,q(ρ

4; u) = ρ4(u)q6 +
(6q6 + q5 + 2q4 + 3q3)

[m]q
ρ3(u)

+
(11q6 + 3q5 + 6q4 + 1oq3 + 3q2 + 3q)

[m]2q
ρ2(u)

+
(6q6 + 2q5 + 4q4 + 7q3 + 3q2 + 3q + 1)

[m]3q
ρ(u).

Corollary 1. For n = 1, 2, 3, 4 the nth order central moments of Lρ
m,q defined as μ

ρ
n,m(q; u) = Lρ

m,q((ρ(t)−
ρ(u))n

q ; u), by using linearity of operators (4) and by Lemma 1 we have

(i) Lρ
m,q(ρ(t)− ρ(u); u) = Lρ

m,q(ρ(t); u)− ρ(u)Lρ
m,q(1; u) = 0,

(ii) Lρ
m,q((ρ(t)− ρ(u))2; u) = Lρ

m,q(ρ
2(t); u) + ρ2(u)Lρ

m,q(1; u)− 2ρ(u)Lρ
m,q(ρ(t); u) = (1+q)

[m]q
ρ(u),

(iii) Lρ
m,q((ρ(t)− ρ(u))3; u) = Lρ

m,q(ρ
3(t); u) − ρ3(u)Lρ

m,q(1; u) − 3ρ(u)Lρ
m,q(ρ

2(t); u) − 3ρ2(u)Lρ
m,q

(ρ(t); u) = (q3 − 1)ρ3(u) + (3q3+q2−q−3)
[m]q

ρ2(u) + (2q3+q2+2q+1)
[m]2q

ρ(u),

(iv) Lρ
m,q((ρ(t)− ρ(u))4; u) = Lρ

m,q(ρ
4(t); u) + ρ4(u)Lρ

m,q(1; u) + 6ρ2(u)Lρ
m,q(ρ

2(t); u) − 4ρ3(u)Lρ
m,q

(ρ(t); u) − 4ρ(u)Lρ
m,q(ρ

3(t); u) = (q6 − 4q3 + 3)ρ4(u) + (6q6+q5+2q4−9q3−4q2−2q+6)
[m]q

ρ3(u) +

(11q6+3q5+6q4+2q3−q2−5q−4)
[m]2q

ρ2(u) + (6q6+2q5+4q4+7q3+3q2+3q+1)
[m]3q

ρ(u).
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Remark 1. We observe from Lemma 1 and Corollary 1, that for q = 1, we get the moments and central moments
of generalized Lupaş operators [7].

2. Weighted Approximation

We start by noting that ρ not only defines a Korovkin-type set {1, ρ, ρ2} but also characterizes
growth of the functions that are approximated.

Let φ(u) = 1+ ρ2(u) be a weight function satisfying the conditions (ρ1) and and (ρ2) given above
let Bφ[0, ∞) be the weighted space defined by

Bφ[0, ∞) = { f : [0, ∞)→ R
∣∣| f (u)| ≤ K f φ(u), u ≥ 0},

where K f is a constant which depends only on f . Bφ[0, ∞) is a normed linear space equipped with
the norm

‖ f ‖φ= sup
u∈[0,∞)

| f (u)|
φ(u)

.

Also, we define the following subspaces of Bφ[0, ∞) as

Cφ[0, ∞) = { f ∈ Bφ[0, ∞) : f is continuous on [0, ∞)},

C∗φ[0, ∞) =

{
f ∈ Cφ[0, ∞) : lim

u→∞

f (u)
φ(u)

= K f

}
,

where K f is a constant depending on f and

Uφ[0, ∞) = { f ∈ Cφ[0, ∞) :
f (u)
φ(u)

is uniformly continuous on [0, ∞)}.

Obviously,
C∗φ[0, ∞) ⊂ Uφ[0, ∞) ⊂ Cφ[0, ∞) ⊂ Bφ[0, ∞).

For the weighted uniform approximation by linear positive operators acting from Cφ[0, ∞) to
Bφ[0, ∞), we state the following results due to Gadjiev in [9,10].

Lemma 2 ([9]). Let (Am)m≥1 be a sequence of positive linear operators which acts from Cφ[0, ∞) to Bφ[0, ∞)

if and only if the inequality
|Am(φ; u)| ≤ Kmφ(u), u ≥ 0,

holds, where Km > 0 is a constant depending on m.

Theorem 1 ([10]). Let (Am)m≥1 be a sequence of positive linear operators, acting from Cφ[0, ∞) to Bφ[0, ∞)

and satisfying
lim

m→∞
‖ Lmρi − ρi ‖φ= 0, i = 0, 1, 2.

Then we have

lim
m→∞

‖ Lm( f )− f ‖φ= 0, for any f ∈ C∗φ[0, ∞).

Remark 2. It is clear from Lemma 1 and Lemma 2 that the operatorsLρ
m,q act from Cφ[0, ∞) to Bφ[0, ∞). Also the

convergence of these operators are applicable in studying switched linear systems, see: Subspace confinement for
switched linear systems, also see in [24,25].
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Theorem 2. Let qm be a sequence in (0, 1), such that qm → 1 as m → ∞. Then for each function f ∈ C∗φ[0, ∞)

we have
lim

m→∞
‖ Lρ

m,qm( f )− f ‖φ= 0.

Proof. By Lemma 1 (i) and (ii), it is clear that

‖ Lρ
m,qm(1; u)− 1 ‖φ= 0.

‖ Lρ
m,qm(ρ; u)− ρ ‖φ= 0.

and by Lemma 1 (iii), we have

‖ Lρ
m,qm(ρ

2; u)− ρ2 ‖φ= sup
u∈[0,∞)

(1 + q)ρ(u)
[m]q(1 + ρ2(u))

≤ 1 + q
[m]q

. (5)

Then from Lemma 1 and (5) we get lim
m→∞

‖ Lρ
m,qm(ρ

i)− ρi ‖φ= 0, i = 0, 1, 2. Hence, the proof

is completed.

3. Rate of Convergence or Order of Approximation

In this section, we determine the rate of convergence for Lρ
m,q by weighted modulus of continuity

ωρ( f ; δ) which was recently considered by Holhoş [11] as follows:

ωρ( f ; δ) = sup
u,z∈[0,∞),|ρ(z)−ρ(u)|≤δ

| f (z)− f (u)|
φ(z) + φ(u)

, δ > 0, (6)

where f ∈ Cφ[0, ∞), with the following properties:

(i) ωρ( f ; 0) = 0,

(ii) ωρ( f ; δ) ≥ 0, δ ≥ 0 for f ∈ Cφ[0, ∞),

(iii) limδ→0 ωρ( f ; δ) = 0, for each f ∈ Uφ[0, ∞).

Theorem 3 ([11]). Let Am : Cφ[0, ∞)→ Bφ[0, ∞) be a sequence of positive linear operators with

‖ Am(ρ
0)− ρ0 ‖φ0 = am, (7)

‖ Am(ρ)− ρ ‖
φ

1
2

= bm, (8)

‖ Am(ρ
2)− ρ2 ‖φ = cm, (9)

‖ Am(ρ
3)− ρ3 ‖

φ
3
2

= dm, (10)

where the sequences am, bm, cm, and dm converge to zero as m → ∞. Then

‖ Am( f )− f ‖
φ

3
2
≤ (7 + 4am + 2cm)ωρ( f ; δm)+ ‖ f ‖φ am, (11)

for all f ∈ Cφ[0, ∞), where

δm = 2
√
(am + 2bm + cm)(1 + am) + am + 3bm + 3cm + dm.

Theorem 4. Let for each f ∈ Cφ[0, ∞) with 0 < q < 1. Then we have

‖ Lρ
m,q( f )− f ‖

φ
3
2

≤
(

7 +
2(1 + q)
[m]q

)
ωρ( f ; δm,q),
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where ωρ is the weighted modulus of continuity defined in (6) and

δm,q = 2

√
(1 + q)
[m]q

+
3(1 + q)
[m]q

+

(
(q3 − 1) +

(3q3 + q2 + 2q)
[m]q

+
(2q3 + q2 + 2q + 1)

[m]2q

)
.

Proof. By using Lemma 1, we have

‖ Lρ
m,q(ρ

0)− ρ0 ‖φ0= am,q = 0,

‖ Lρ
m,q(ρ)− ρ ‖

φ
1
2
= bm,q = 0,

and

‖ Lρ
m,q(ρ

2)− ρ2 ‖φ≤
(1 + q)
[m]q

= cm,q.

Finally,

‖ Lρ
m,q(ρ

3)− ρ3 ‖
φ

3
2

≤ (q3 − 1) +
(3q3 + q2 + 2q)

[m]q
+

(2q3 + q2 + 2q + 1)
[m]2q

= dm,q.

Thus, the sequences am,q, bm,q, cm,q, and dm,q are calculated. The sequences am, bm, cm, and dm

converge to zero as m → ∞. Then

‖ Lρ
m,q( f )− f ‖

φ
3
2
≤ (7 + 4am,q + 2cm,q)ωρ( f ; δm,q)+ ‖ f ‖φ am,q, (12)

for all f ∈ Cφ[0, ∞), where

δm,q = 2
√
(am,q + 2bm,q + cm,q)(1 + am,q) + am,q + 3bm,q + 3cm,q + dm,q.

Hence, by substituting the values of am,q, bm,q, cm,q and dm,q we obtain the desired result.

Remark 3. For lim
δ→0

ωρ( f ; δ) = 0 in Theorem 4, we find

lim
m→∞

‖ Lρ
m,q( f )− f ‖

φ
3
2
= 0, for f ∈ Uφ[0, ∞).

4. Voronovskaya-Type Theorem

In this section, using a technique developed in [5] by Cardenas-Morales, Garrancho and Raşa, we
prove pointwise convergence of Lρ

m,q by obtaining Voronovskaya-type theorems.

Theorem 5. Let f ∈ Cφ[0, ∞), u ∈ [0, ∞) with 0 < qm < 1, qm → 1 as m → ∞. Suppose that
(

f oρ−1)′ and(
f oρ−1)′′ exist at ρ(u). If

(
f oρ−1)′′ is bounded on [0, ∞), then we have

lim
m→∞

[m]qm

[
Lρ

m,qm( f ; u)− f (u)
]
= ρ(u)

(
f oρ−1

)′′
(ρ(u)).

Proof. By using the q-Taylor expansion of
(

f oρ−1) at ρ(u) ∈ [0, ∞), there exist a point w lying between
u and z, then we have

f (w) =
(

f oρ−1
)
(ρ(w)) =

(
f oρ−1

)
(ρ(u)) +

(
f oρ−1

)′
(ρ(u)) (ρ(w)− ρ(u)) (13)

+

(
f oρ−1)′′ (ρ(u)) (ρ(w)− ρ(u))2

[2]q
+ λ

q
u(w) (ρ(w)− ρ(u))2 ,
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where

λ
q
u(w) =

(
f oρ−1)′′ (ρ(w))−

(
f oρ−1)′′ (ρ(u))

[2]q
. (14)

Therefore, by (14) together with the assumption on f ensures that

|λq
u(w)| ≤ K, for all w ∈ [0, ∞)

and is convergent to zero as w → u. Now applying the operators (4) to the equality (13), we obtain[
Lρ

m,qm( f ; u)− f (u)
]

=
(

f oρ−1
)′

(ρ(u))Lρ
m,qm ((ρ(w)− ρ(u)); u)

+

(
f oρ−1)′′ (ρ(u))Lρ

m,qm

(
(ρ(w)− ρ(y))2; u

)
[2]q

(15)

+ Lρ
m,qm

(
λ

q
u(w) ((ρ(w)− ρ(u))2 ; u)

)
.

By Lemma 1 and Corollary 1, we get

lim
m→∞

[m]qmL
ρ
m,qm ((ρ(w)− ρ(u)); u) = 0, (16)

and
lim

m→∞
[m]qmL

ρ
m,qm

(
(ρ(w)− ρ(u))2; u

)
= [2]qρ(u). (17)

By estimating the last term on the right hand side of equality (15), we will get the proof.
Since from (14), for every ε > 0, lim

w→u
λ

qm
u (w) = 0. Let δ > 0 such that |λqm

u (w)| < ε for every

w ≥ 0. Using a Cauchy-Schwartz inequality, we have

lim
m→∞

[m]qmL
ρ
m,qm

(
|λqm

u (w)| (ρ(w)− ρ(u))2 ; u
)

≤ ε lim
m→∞

[m]qmL
ρ
m,qm

(
(ρ(w)− ρ(u))2

qm ; u
)

+
K
δ2 lim

m→∞
[m]qmL

ρ
m,qm

(
(ρ(w)− ρ(u))4

qm ; u
)

.

Since
lim

m→∞
[m]qmL

ρ
m,qm

(
(ρ(w)− ρ(u))4

qm ; u
)
= 0, (18)

we obtain
lim

m→∞
[m]qmL

ρ
m,qm

(
|λqm

u (w)| (ρ(w)− ρ(y))2
qm

; y
)
= 0. (19)

Thus, by using Equations (16), (17) and (19) to Equation (15) the proof is completed.

5. Local Approximation

In this section, we present local approximation theorems for the operators Lρ
m,q. By CB[0, ∞),

we denote the space of real-valued continuous and bounded functions f defined on the interval [0, ∞).
The norm ‖ · ‖ on the space CB[0, ∞) is given by

‖ f ‖= sup
0≤u<∞

| f (x) | .

For δ > 0 and W2 = {s ∈ CB[0, ∞) : s
′
, s

′′ ∈ CB[0, ∞)}. The K-functional is defined as

K2( f , δ) = inf
s∈W2

{‖ f − s ‖ +δ ‖ g
′′ ‖},
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By Devore and Lorentz ([26], p. 177, Theorem 2.4), there exists an absolute constant C > 0 such
that

K( f , δ) ≤ Cω2( f ,
√

δ). (20)

The second order modulus of smoothness is as follows,

ω2( f ,
√

δ) = sup
0<h≤

√
δ

sup
u∈[0,∞)

| f (u + 2h)− 2 f (u + h) + f (u) |

where f ∈ CB[0, ∞). The usual modulus of continuity of f ∈ CB[0, ∞) is defined by

ω( f , δ) = sup
0<h≤δ

sup
u∈[0,∞)

| f (u + h)− f (u) | .

Theorem 6. Let f ∈ CB[0, ∞) with 0 < q < 1. Let ρ be a function satisfying the conditions (ρ1), (ρ2), and
||ρ′′|| is finite. Then, there exists an absolute constant C > 0 such that

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤ CK
(

f ,
(1 + q)
[m]q

ρ(u)
)

.

Proof. Let s ∈ W2 and u, z ∈ [0, ∞). Using Taylor’s formula we have

s(z) = s(u) +
(

soρ−1
)′

(ρ(u))(ρ(z)− ρ(u)) +
∫ ρ(z)

ρ(u)
(ρ(z)− v)

(
soρ−1

)′′
(v)dv. (21)

Using the equality (
soρ−1

)′′
(ρ(u)) =

s′′(u)

(ρ′(u))2 − s′′(u)
ρ′′(u)

(ρ′(u))3 . (22)

Now, put v = ρ(y) in the last term in equality (21), we get

∫ ρ(z)

ρ(u)
(ρ(z)− v)

(
soρ−1

)′′
(v)dv =

∫ z

u
(ρ(z)− ρ(y))

[
s′′(y)ρ′(y)− s′(y)ρ′′(v)

(ρ′(y))2

]
dy

=
∫ ρ(z)

ρ(u)
(ρ(z)− v)

s′′(ρ−1(v))
(ρ′(ρ−1(v))2 dv (23)

−
∫ ρ(z)

ρ(u)
(ρ(z)− v)

s′(ρ−1(v))ρ′′(ρ−1(v))
(ρ′(ρ−1(v))3 dv.

By using Lemma 1 and (23) and applying the operator (4) to the both sides of equality (21), we
deduce

Lρ
m,q(s; u) = s(u) + Lρ

m,q

( ∫ ρ(z)

ρ(u)
(ρ(z)− v)

s′′(ρ−1(v))
(ρ′(ρ−1(v))2 dv; u

)
− Lρ

m,q

( ∫ ρ(z)

ρ(u)
(ρ(z)− v)

s′(ρ−1(v))ρ′′(ρ−1(v))
(ρ′(ρ−1(v))3 dv; u

)
.

As we know ρ is strictly increasing on [0, ∞) and with condition (ρ2), we have∣∣Lρ
m,q(s; u)− s(u)

∣∣≤Mρ
m,2(u)

(
‖s′′‖+ ‖s′‖‖ρ′′‖

)
,

where
Mρ

m,2(u) = Lρ
m,q((ρ(t)− ρ(u))2; u).
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For f ∈ CB[0, ∞), we have

∣∣Lρ
m,q(s; u)

∣∣ ≤ ‖ f oρ−1‖2−[m]qρ(u)
∞

∑
l=0

([m]qρ(u))l

2l [l]q!

≤ ‖ f ‖Lρ
m,q(1; u) = ‖ f ‖. (24)

Hence we have∣∣Lρ
m,q( f ; u)− f (u)

∣∣ ≤
∣∣Lρ

m,q( f − s; u)
∣∣+∣∣Lρ

m,q(s; u)− s(u)
∣∣+∣∣s(u)− f (u)

∣∣
≤ 2‖ f − g‖+ (1 + q)

[m]q
ρ(u)

(
‖s′′‖+ ‖s′‖‖ρ′′‖

)
.

If we choose C = max{2, ‖ρ′′‖}, then

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤ C
(

2‖ f − g‖+ (1 + q)
[m]q

ρ(u)‖s′′‖W2

)
.

Taking infimum over all s ∈ W2 we obtain

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤ CK
(

f ,
(1 + q)
[m]q

ρ(u)
)

.

Now, we recall local approximation in terms of α order Lipschitz-type maximal functions given
in [27]. Let ρ be a function satisfying the conditions (ρ1), (ρ2), 0 < α ≤ 1 and LipM(ρ(u); α), M≥ 0 is
the set of functions f satisfying the inequality∣∣ f (z)− f (u)

∣∣≤M
∣∣ρ(z)− ρ(u)

∣∣α, u, z ≥ 0.

Moreover, for a bounded subset E ⊂ [0, ∞), we say that the function f ∈ CB[0, ∞) belongs to
LipM(ρ(u); α), 0 < α ≤ 1 on E if

∣∣ f (z)− f (u)
∣∣≤Mα, f

∣∣ρ(z)− ρ(u)
∣∣α, u ∈ E and z ≥ 0,

where Mα, f is a constant depending on α and f .

Theorem 7. Let ρ be a function satisfying the conditions (ρ1), (ρ2.) Then for any f ∈ LipM(ρ(u); α),
0 < α ≤ 1 with 0 < q < 1 and for every u ∈ (0, ∞), m ∈ N, we have

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤M
(
(1 + q)
[m]q

ρ(u)
) α

2
, (25)

Proof. Assume that α = 1. Then, for f ∈ LipM(α; 1) and u ∈ (0, ∞), we have

|Lρ
m,q( f ; u)− f (u)| ≤ Lρ

m,q(| f (z)− f (u)|; u)

≤ MLρ
m,q(|ρ(z)− f (u)|; u).
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By applying the Cauchy–Schwartz inequality, we find

|Lρ
m,q( f ; u)− f (u)| ≤ M

[
Lρ

m,q((ρ(t)− ρ(u))2; u)
] 1

2

≤ M
√

(1 + q)ρ(u)
[m]q

.

Let us assume that α ∈ (0, 1). Then, for f ∈ LipM(α; 1) and u ∈ (0, ∞), we have

|Lρ
m,q( f ; u)− f (u)| ≤ Lρ

m,q(| f (z)− f (u)|; u)

≤ MLρ
m,q(|ρ(z)− f (u)|α; u).

From Hölder’s inequality with p = 1
α and q = 1

1−α , for f ∈ LipM(ρ(u); α), we have

|Lρ
m,q( f ; u)− f (u)| ≤ M

[
Lρ

m,q(|(ρ(t)− ρ(u)|; u)
]α.

Finally by the Cauchy–Schwartz inequality, we get

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤M
(
(1 + q)
[m]q

ρ(u)
) α

2
.

A relationship between local smoothness of functions and the local approximation was given by
Agratini in [28]. Here we will prove the similar result for operators Lρ

m,q (m ∈ N) for functions from
LipM(ρ(u)) on a bounded subset.

Theorem 8. Let E be a bounded subset of [0, ∞) and ρ be a function satisfying the conditions (ρ1), (ρ2). Then for
any f ∈ LipM(ρ(u); α), 0 < α ≤ 1 on E α ∈ (0, 1], we have

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤Mα, f

{[
(1 + q)ρ(u)

[m]q

] α
2

+ 2[ρ′(u)]αdα(u, E)
}

, u ∈ [0, ∞), m ∈ N,

where d(u, E) = in f {‖u− y‖ : y ∈ E} and Mα, f is a constant depending on α and f .

Proof. Let E be the closure of E in [0, ∞). Then, there exists a point u0 ∈ E such that d(u, E) = |u− u0|.
Using the monotonicity of Lρ

m,q and the hypothesis of f , we obtain

|Lρ
m,q( f ; u)− f (u)| ≤ Lρ

m,q (| f (z)− f (u0)|; u) + Lρ
m,q (| f (u)− f (u0)|; u)

≤ Mα, f

{
Lρ

m,q (|ρ(z)− ρ(u0)|α; u) + |ρ(u)− ρ(u0)|α
}

≤ Mα, f

{
Lρ

m,q (|ρ(z)− ρ(u)|α; u) + 2|ρ(u)− ρ(u0)|α
}

.

By choosing p = 2
α and q = 2

2−α , as well as the fact |ρ(u)− ρ(u0)| = ρ′(u)|ρ(u)− ρ(u0)| in the
last inequality. Then by using Hölder’s inequality we easily conclude

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤Mα, f

{[
Lρ

m,q((ρ(z)− ρ(u))2; u)
] 1

2 + 2[ρ′(u)|ρ(u)− ρ(u0)|]α
}

.

Hence, by Corollary 1 we get the proof.
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Now, for f ∈ CB[0, ∞), we recall local approximation in terms of α order generalized Lipschitz-
type maximal function given by Lenze [29] as

ω̃
ρ
α( f ; u) = sup

z �=u,z∈(0,∞)

| f (z)− f (u)|
|z− u|α , u ∈ [0, ∞) and α ∈ (0, 1]. (26)

Then we get the next result

Theorem 9. Let f ∈ CB[0, ∞) and α ∈ (0, 1] with 0 < q < 1. Then, for all u ∈ [0, ∞), we have

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤ ω̃
ρ
α( f ; u)

(
(1 + q)
[m]q

ρ(u)
) α

2
.

Proof. We know that

|Lρ
m,q( f ; u)− f (u)| ≤ Lρ

m,q(| f (t)− f (u)|; u).

From Equation (26), we have

|Lρ
m,q( f ; u)− f (u)| ≤ ω̃

ρ
α( f ; u)Lρ

m,q(|ρ(z)− ρ(u)|α; u).

From Hölder’s inequality with p = 2
α and q = 2

2−α , we have

|Lρ
m,q( f ; u)− f (u)| ≤ ω̃

ρ
α( f ; u)

[
Lρ

m,q((ρ(t)− ρ(u))2; u)
] α

2

≤ ω̃
ρ
α( f ; u)

(
(1 + q)
[m]q

ρ(u)
) α

2
.

which proves the desired result.

6. Conclusions

Here, the q-analogue of the generalized Lupaş operators are constructed. We have investigated
convergence properties, order of approximation, Voronovskaja-type results and also quantitative estimates
for the local approximation. The constructed operators provide better flexibility in approximating functions
and rate of convergence which are dependent on the selection of the function ρ and extra parameter q.
These operators also possess interesting properties and depending on the selection of q, can obtain
better approximation while q �= 1. The basis of these operators can be used to draw curves and surfaces
in Computer Aided Geometric Design (CAGD).
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Abstract: This paper introduces a new integral operator in q-analog for multivalent functions.
Using as an application of this operator, we study a novel class of multivalent functions and define
them. Furthermore, we present many new properties of these functions. These include distortion
bounds, sufficiency criteria, extreme points, radius of both starlikness and convexity, weighted mean
and partial sum for this newly defined subclass of multivalent functions are discussed. Various
integral operators are obtained by putting particular values to the parameters used in the newly
defined operator.

Keywords: p-valent analytic function; Hadamard product; q-integral operator

MSC: Primary 30C45; Secondary 30C50

1. Introduction

The study of q-extension of calculus or q-analysis motivated the researchers due to its recent use in
different applications. In [1,2], Jackson introduced the theory of q-calculus. We have seen applications
of q-analysis in Geometric Function Theory (GFT). They were introduced and applied systematically to
the generalized q-hypergeometric functions in [3]. Later, Ismail et al. [4] used the q-differential operator
to examine the geometry of starlike function in q-analog. This theory was later extended to the family
of q-starlike function with some order by Agrawal and Sahoo [5]. Due to this development in function
theory, many researchers were motivated, as we have seen by Srivastava in [6]. They added significant
contributions, which has slowly made this research area more attractive to forthcoming researchers.
We direct the attention of our readers to [7–12] for more information. Moreover, Kanas et al. [13] used
Hadamad product to define the q-extension of the Ruscheweyh operator. They also discussed in detail
some intricate applications of this operator.

Mohammad and Darus [14] conducted an elaborate study of this operator. We have also seen
similar work by Mahmood and Sokół [15] and Ahmad et al. [16]. Recently, new thoughts by Maslina
in [17] were used to create a novel differential operator called generalized q-differential operator with
the help of q-hypergeometric functions where the authors conducted an in-depth study of applications
of this operator. For further information on the extensions of different operators in q-analog, we direct

Mathematics 2019, 7, 1178; doi:10.3390/mat7121178 www.mdpi.com/journal/mathematics59
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the readers to [18–22]. The aim of the present article is to introduce a new integral operator in q-analog
for multivalent functions using Hadamard product and then study some of its useful applications.

Let Ap (p ∈ N = {1, 2, . . .}) contain multivalent functions of all forms f that can be defined as
holomorphic and/or analytic in any given subset D = {z : |z| < 1} that is part of a complex plane C

which also has the series form shown as:

f (z) = zp +
∞

∑
n=1

an+pzn+p, (z ∈ D) . (1)

For any two given functions that are analytic in form f and g in D, then we can clearly state that
f is subordinate to g, mostly symbolically if it is presented clearly as f ≺ g or f (z) ≺ g (z) , if and
only if there exists an analytic function w with the given properties as w (0) = 0 and |w (z)| < 1 such
that f (z) = g(w(z)) (z ∈ D) . Moreover, if and only if g can be seen as univalent in D, then we can
clearly have:

f (z) ≺ g(z) (z ∈ D) ⇐⇒ f (0) = g(0) and f (D) ⊂ g(D).

For analytic functions f of the form Equation (1) and g of the form

g(z) = zp +
∞

∑
n=1

bn+pzn+p, (z ∈ D) , (2)

the convolution or Hadamard product is defined by

( f ∗ g)(z) = zp +
∞

∑
n=1

an+pbn+pzn+p, (z ∈ D) .

For given q ∈ (0, 1), the derivative in q-analog of f is given by

Dq f (z) =
f (z)− f (qz)

z (1− q)
, (z �= 0, q �= 1) . (3)

Making use of Equations (1) and (3), we can easily obtain for n ∈ N and z ∈ D

Dq

{
∞

∑
n=1

an+pzn+p

}
=

∞

∑
n=1

[n + p]q an+pzn+p−1, (4)

where

[n]q =
1− qn

1− q
= 1 +

n−1

∑
k=1

qk, [0]q = 0. (5)

For n ∈ Z+ := Z\ {−1,−2, . . .} , the q-factorial is given as:

[n]q! =

{
1, n = 0,
[1]q [2]q . . . [n]q , n ∈ N.

In addition, with t > 0, the q-Pochhammer symbol has the form:

[t]q,n =
(
[t]q

)
n =

{
1, n = 0,
[t]q[t + 1]q · · · [t + n− 1]q, n ∈ N,

where [t]q is given by Equation (5).

60



Mathematics 2019, 7, 1178

For t > 0, the gamma function in q-analog is presented as

Γq (t + 1) = [t]q Γq (t) and Γq (1) = 1.

We now consider a function

F−1
q,λ+p(z) = zp +

∞

∑
n=1

Ψn−pan+pzn+p, (λ > −p, z ∈ D), (6)

with

Ψn−p =
[λ + p]q,n+1−p

[n + 1− p]q!
. (7)

We can see that the series given in Equation (6) is absolutely convergent in D. Now, we introduce
the integral operator J λ+p−1

q : Ap → Ap by

J λ+p−1
q f (z) = (F−1

q,λ+p ∗ f )(z) = zp +
∞

∑
n=1

Ψn−pan+pzn+p (z ∈ D) , (8)

where λ > −p. We note that

lim
q→1−

F−1
q,λ+p (z) =

zp

(1− z)λ+1 and lim
q→1−

J λ+p−1
q f (z) = f (z) ∗ zp

(1− z)λ+1 .

Various integral operators were obtained by putting particular values to the parameters used in
the newly defined operator as given by Equation (7):

(i). Making p = 1 in our newly defined operator J λ+p−1
q f , we obtain the operator J λ

q f which
was introduced by Arif et al. [20] and is given by

J λ
q f (z) = (F−1

q,λ+1 ∗ f )(z) = z +
∞

∑
n=1

Ψn−1an+1zn+1 (z ∈ D) .

(ii). When q → 1−, the operator defined in Equation (7) leads to the following well-known Noor
integral operator for multivalent functions introduced in [23].

J λ+p−1 f (z) = (F−1
λ+p ∗ f )(z) = zp +

∞

∑
n=1

Ψn−pan+pzn+p, (z ∈ D) .

(iii). If we set p = 1 along with q → 1− in Equation (7), then the operator J λ+p−1 f reduced to the
following familiar Noor integral operator studied in [24,25].

Iλ f (z) = (F−1
λ+1 ∗ f )(z) = z +

∞

∑
n=1

Ψn−1an+1zn+1, (z ∈ D) .

For more details on the q-analog of differential and integral operators, see [17,26,27].
Motivated from the work in [28–35], we now introduce a subfamily Hλ

p,q (α, μ, β) of Ap by using

J λ+p−1
q as follows:

Definition 1. Let f ∈ Ap. Then, f ∈ Hλ
p,q (α, μ, β) , if it satisfies the relation∣∣∣∣∣∣ z1−pDqJ λ+p−1

q f (z)− [p]q

2β
[
z1−pDqJ λ+p−1

q f (z)− α[p]q
]
−

[
z1−pDqJ λ+p−1

q f (z)− [p]q
]
∣∣∣∣∣∣ < μ, (9)

where 1
2 � β < 1, 0 � α < 1

2 , 0 < μ � 1 and 0 < q < 1.
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By varying the parameters values in the class Hλ
p,q (α, μ, β), we get many new classes; we list

some of them.
(i). For p = 1, we have Hλ

1,q (α, μ, β) ≡ Hλ
q (α, μ, β) .

(ii). Taking the limit q → 1−, we get the class Hλ
p (α, μ, β) .

(iii). Putting β = 1
2 , μ = 1 and α = 0, we obtain Hλ

p,q

(
0, 1, 1

2

)
.

(iv). Further, if we put p = 1 and q → 1− in Hλ
p,q

(
0, 1, 1

2

)
, we have the class Hλ

1

(
0, 1, 1

2

)
.

Note that we assume throughout our discussion, unless otherwise stated,

1
2
≤ β ≤ 1, 0 ≤ α < 1, 0 < μ ≤ 1, λ > −p, 0 < q < 1

and all coefficients ak are positive.

2. The Main Results and Their Consequences

Theorem 1. If f ∈ Ap has the form of Equation (1) and satisfies the inequality

∞

∑
n=1

Ψn−p [n + p]q (1 + μ (2β− 1)) |an+p| ≤ 2μβ [p]q (1− α) , (10)

then f ∈ Hλ
p,q (α, μ, β) .

Proof. To show that f ∈ Hλ
p,q (α, μ, β) , we just need to prove Equation (9). For this, consider

L =

∣∣∣∣∣∣
1

[p]q
z1−pDqJ λ+p−1

q f (z)− 1

2β
[

1
[p]q

z1−pDqJ λ+p−1
q f (z)− α

]
−

[
1

[p]q
z1−pDqJ λ+p−1

q f (z)− 1
]
∣∣∣∣∣∣

=

∣∣∣∣∣∣ z1−pDqJ λ+p−1
q f (z)− [p]q

2β
[
z1−pDqJ λ+p−1

q f (z)− α[p]q
]
−

[
z1−pDqJ λ+p−1

q f (z)− [p]q
]
∣∣∣∣∣∣ .

Using Equation (8) with the help of Equations (3) and (4), we can easily obtain

L =

∣∣∣∣∣∣∣∣
∞
∑

n=1
Ψn−p [n + p]q an+pzn

2β [p]q (1− α) + 2β
∞
∑

n=1
Ψn−p [n + p]q an+pzn −

∞
∑

n=1
Ψn−p [n + p]q an+pzn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞
∑

n=1
Ψn−p [n + p]q an+pzn

2β [p]q (1− α) + (2β− 1)
∞
∑

n=1
Ψn−p [n + p]q an+pzn

∣∣∣∣∣∣∣∣
≤

∞
∑

n=1
Ψn−p [n + p]q |an+P|

2β [p]q (1− α)− (2β− 1)
∞
∑

n=1
Ψn−p [n + p]q |an+P|

< μ,

where we have used the inequality in Equation (10) and this completes the proof.

Making β = 1
2 , p = 1 along with q → 1−, we get the following result.
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Corollary 1. If f ∈ A and satisfies the inequality

∞

∑
n=1

Ψn−1 (n + 1) |an+1| ≤ μ (1− α) ,

then f ∈ Hλ
(

α, μ, 1
2

)
.

Theorem 2. If f ∈ Hλ
p,q (α, μ, β) has the form of Equation (1), then

rp − ξr ≤ | f (z)| ≤ rp + ξr, |z| = r < 1,

where

ξ =
2μβ [p]q (1− α)

(1 + μ (2β− 1))Ψ1−p [1 + p]q
.

Proof. Consider

| f (z)| =

∣∣∣∣∣zp +
∞

∑
n=1

an+pzn+p

∣∣∣∣∣
≤ |z|p +

∞

∑
n=1

∣∣an+p
∣∣ |z|n+p

= rp +
∞

∑
n=1

∣∣an+p
∣∣ rn+p.

Since 0 < r < 1 and rn+p < r,

| f (z)| ≤ rp + r
∞

∑
n=1

∣∣an+p
∣∣ . (11)

Similarly,

| f (z)| ≥ rp − r
∞

∑
n=1

∣∣an+p
∣∣ . (12)

It can easily be seen that

Ψ1−p (1 + μ (2β− 1)) [1 + p]q
∞

∑
n=1

∣∣an+p
∣∣ ≤ ∞

∑
n=1

Ψn−p (1 + μ (2β− 1)) [n + p]q
∣∣an+p

∣∣ .

By using the relation in Equation (10), we obtain

Ψ1−p (1 + μ (2β− 1)) [1 + p]q
∞
∑

n=1

∣∣an+p
∣∣ ≤ 2μβ [p]q (1− α) ,

which gives
∞
∑

n=1

∣∣an+p
∣∣ ≤ 2μβ[p]q(1−α)

Ψ1−p(1+μ(2β−1))[1+p]q
.

Now, by using the above relation in Equations (11) and (12), we obtain the result.

Setting β = 1
2 , p = 1 along with q → 1− in the last theorem, we have
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Corollary 2. If f ∈ Hλ
(

α, μ, 1
2

)
, then for |z| = r < 1

(
1− μ (1− α)

2 (λ + 1)

)
r ≤ | f (z)| ≤

(
1 +

μ (1− α)

2 (λ + 1)

)
r.

Theorem 3. If f ∈ Hλ
p,q (α, μ, β) has the form of Equation (1), then

[p]q rp−1 − ϑr ≤
∣∣Dq f (z)

∣∣ ≤ [p]q rp−1 + ϑr, |z| = r < 1,

where ϑ =
2μβ[p]q(1−α)

(1+μ(2β−1))Ψ1−p
.

Proof. By using Equations (3) and (4), we can have

Dq f (z) = [p]q zp−1 +
∞

∑
n=1

[n + p]qan+pzn+p−1.

Since |z|p−1 = rp−1 < 1, rn+p−1 ≤ r and

∣∣Dq f (z)
∣∣ ≤ [p]q rp−1 + r

∞

∑
n=1

[n + p]q
∣∣an+p

∣∣ . (13)

Similarly, ∣∣Dq f (z)
∣∣ ≥ [p]q rp−1 − r

∞

∑
n=1

[n + p]q
∣∣an+p

∣∣ . (14)

Now, by using Equation (10), we get

Ψ1−p (1 + μ (2β− 1))
∞
∑

n=1
[n + p]q

∣∣an+p
∣∣ ≤

∞
∑

n=1
Ψn−p [n + p]q (1 + μ (2β− 1)) |an+p|.

This implies that
∞
∑

n=1
[n + p]q

∣∣an+p
∣∣ ≤ 2μβ[p]q(1−α)

(1+μ(2β−1))Ψ1−p
.

Finally, by using above relation in Equations (13) and (14), we have the result.

For q → 1−, we have the following corollary.

Corollary 3. If f ∈ Hλ
p (α, μ, β) , then for |z| = r < 1

prp−1 − ϑr ≤
∣∣ f ′(z)

∣∣ ≤ prp−1 + ϑr,

where

ϑ =
2μβ (1− α) p

(1 + μ (2β− 1))Ψ1−p
.

Theorem 4. If f ∈ Hλ
p,q (α, μ, β) , then f ∈ S∗p (δ) for |z| < r1, where

r1 =

(
(p− δ) (1 + μ (2β− 1))Ψn−p [n + p]q

2μβ (1− α) (δ− p) [p]q

) 1
n

.
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Proof. Let f ∈ Hλ
p,q (α, μ, β). To show that f ∈ S∗p (δ) , we have to prove that∣∣∣∣ z f ′(z)− p f (z)

z f ′(z) + (p− 2δ) f (z)

∣∣∣∣ < 1.

Using Equation (1), we conclude that

∞

∑
n=1

(
δ− p
p− δ

) ∣∣an+p
∣∣ |z|n < 1. (15)

From Equation (10), it can easily be obtained that

∞
∑

n=1

(
Ψn−p [n+p]q(1+μ(2β−1))|

[p]q2μβ(1−α)

) ∣∣an+p
∣∣ < 1.

The relation in Equation (15) is true, if the following holds

∞
∑

n=1

(
δ−p
p−δ

) ∣∣an+p
∣∣ |z|n <

∞
∑

n=1

(
Ψn−p [n+p]q(1+μ(2β−1))|

[p]q2μβ(1−α)

) ∣∣an+p
∣∣ ,

which implies that

|z|n <
(p− δ) (1 + μ (2β− 1))Ψn−p [n + p]q

2μβ (1− α) (δ− p) [p]q
.

Therefore,

|z| <
(
(p− δ) (1 + μ (2β− 1))Ψn−p [n + p]q

2μβ (1− α) (δ− p) [p]q

) 1
n

= r1.

Hence, we get the required result.

Letting p = 1 and q → 1− in the last theorem, we get the result below.

Corollary 4. If f ∈ Hλ (α, μ, β) , then f ∈ S∗ (δ) for |z| < r1, where

r1 =

(
(1− δ) (1 + μ (2β− 1)) [(n + 1)Ψn−1

2μβ (1− α) (δ− 1)

) 1
n

.

Theorem 5. If f ∈ Hλ
p,q (α, μ, β) , then f ∈ Cp (δ) for |z| < r2, where

r2 =

(
p (p− δ) (1 + μ (2β− 1))Ψn−p [n + p]q

2μβ (1− α) [p]q (δ− p) (n + p)

) 1
n

.

Proof. Since f ∈ Cp (δ) , ∣∣∣∣ z f ′′(z)− (p− 1) f ′(z)
z f ′′(z) + (1− 2δ + p) f ′(z)

∣∣∣∣ < 1.

By using Equation (1) and after some simplifications, we get

∞

∑
n=1

(
(δ− p) (n + p)

p (p− δ)

) ∣∣an+p
∣∣ |z|n < 1. (16)

Now, from Equation (10), we can easily obtain that

∞
∑

n=1

(
(1+μ(2β−1))Ψn−p [n+p]q

2μβ(1−α)[p]q

) ∣∣an+p
∣∣ < 1.
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The relation in Equation (16) is true if

∞
∑

n=1

(
(δ−p)(n+p)

p(p−δ)

) ∣∣an+p
∣∣ |z|n <

∞
∑

n=1

(
(1+μ(2β−1))Ψn−p [n+p]q

2μβ(1−α)[p]q

) ∣∣an+p
∣∣ ,

which gives

|z|n <

(
p (p− δ) (1 + μ (2β− 1))Ψn−p [n + p]q

2μβ (1− α) [p]q (δ− p) (n + p)

)
.

Hence,

|z| <
(

p (p− δ) (1 + μ (2β− 1))Ψn−p [n + p]q
2μβ (1− α) [p]q (δ− p) (n + p)

) 1
n

= r2.

Thus, we obtain the required result.

Substituting p = 1 and taking q → 1− in the last theorem, we get the corollary below.

Corollary 5. If f ∈ Hλ (α, μ, β) , then f ∈ C (δ) for |z| < r2, where

r2 =

(
(1− δ) (1 + μ (2β− 1))Ψn−1

2μβ (1− α) (δ− 1)

) 1
n

.

Theorem 6. Let fp (z) = zp and

fk (z) = zp +
2μβ (1− α) [p]q

(1 + μ (2β− 1))Ψk−2p [k]q ak
zk, (k ≥ n + p) . (17)

Then, f ∈ Hλ
p,q (α, μ, β) , if and only if it can be expressed in the form

f (z) = λpzp +
∞

∑
k=n+p

λk fk (z) , (18)

where λp ≥ 0, λk ≥ 0, k ≥ n + p and λp +
∞
∑

k=n+p
λk = 1.

Proof. We suppose that f can be written of the form of Equation (18), thus

f (z) = λpzp +
∞

∑
k=n+p

λk fk (z) ,

= λpzp +
∞

∑
k=n+p

λk

(
zp +

2μβ (1− α) [p]q
(1 + μ (2β− 1))Ψk−2p [k]q ak

zk

)

= zp +
∞

∑
k=n+p

2μβ (1− α) [p]q λk

(1 + μ (2β− 1))Ψk−2p [k]q ak
zk.

This implies that

∞
∑

k=n+p

(1+μ(2β−1))Ψk−2p [k]qak
2μβ(1−α)[p]q

× 2μβ(1−α)[p]q
(1+μ(2β−1))Ψk−2p [k]qak

λk

=
∞
∑

k=n+p
λk,

= 1− λp ≤ 1.
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Conversely, we suppose that fn ∈ Hλ
p,q (α, μ, β) . Then, by using Equation (10), we have

|ak| ≤
2μβ (1− α) [p]q

(1 + μ (2β− 1))Ψk−2p [k]q
, k ≥ p + n.

By setting

λk =
(1 + μ (2β− 1))Ψk−2p [k]q

2μβ (1− α) [p]q
ak,

then

f (z) = zp +
∞

∑
k=n+p

akzk

= zp +
∞

∑
k=n+p

2μβ (1− α) [p]q
(1 + μ (2β− 1))Ψk−2p [k]q ak

λkzk

= zp +
∞

∑
k=n+p

[zp − fk (z)] λk

=

(
1−

∞

∑
k=n+p

λk

)
zp +

∞

∑
k=n+p

λk fk (z)

= λpzp +
∞

∑
k=n+p

λk fk (z) .

This complete the result.

Putting p = 1, β = 1
2 and q → 1− in the above theorem, we obtain the upcoming corollary.

Corollary 6. Let f (z) = z and

fk (z) = z +
μ (1− α)

kΨk−2ak
zk, (k ≥ n + 1) . (19)

Then, f ∈ H∗
p

(
α, μ, 1

2

)
, if and only if it can be expressed in the form

f (z) = λz +
∞

∑
k=n+1

λk fk (z) , (20)

where λ ≥ 0, λk ≥ 0, k ≥ n + 1 and λ+
∞
∑

k=n+1
λk = 1.

Theorem 7. If f , g ∈ Hλ
p,q (α, μ, β) , then ( f ∗ g) ∈ Hλ

p,q (α, μ, β) , where

l ≥ μ

(
2lβ (1− α) [p]q
Ψn−p [n + p]q

− l (2β− 1)

)
. (21)

Proof. We have to find largest μ such that

∞

∑
n=1

(1 + μ (2β− 1))Ψn−p [n + p]q
2μβ (1− α) [p]q

an+pbn+p ≤ 1.
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Let f , g ∈ Hλ
p,q (α, μ, β) . Then, using Equation (10), we obtain

∞

∑
n=1

(1 + l (2β− 1))Ψn−p [n + p]q
2lβ (1− α) [p]q

an+p ≤ 1 (22)

and
∞

∑
n=1

(1 + l (2β− 1))Ψn−p [n + p]q
2lβ (1− α) [p]q

bn+p ≤ 1. (23)

By using Cauchy–Schwarz inequality, we have

∞

∑
n=1

(1 + l (2β− 1))Ψn−p [n + p]q
2lβ (1− α) [p]q

√
an+pbn+p ≤ 1. (24)

Thus, we have to show that

(1 + l (2β− 1))Ψn−p [n + p]q
2lβ (1− α) [p]q

an+pbn+p

≤
(1 + μ (2β− 1))Ψn−p [n + p]q

2μβ (1− α) [p]q

√
an+pbn+p,

that is √
an+pbn+p ≤

l (1 + μ (2β− 1))
μ (1 + l (2β− 1))

. (25)

In addition, from Equation (24), we can write

√
an+pbn+p ≤

2lβ (1− α) [p]q
(1 + l (2β− 1))Ψn−p [n + p]q

. (26)

Consequently, we have to show that

2lβ (1− α) [p]q
(1 + l (2β− 1))Ψn−p [n + p]q

≤ l (1 + μ (2β− 1))
μ (1 + l (2β− 1))

.

By simple calculation, we get

l ≥ μ

(
2lβ (1− α) [p]q
Ψn−p [n + p]q

− l (2β− 1)

)
,

which completes the required result.

Theorem 8. Let f1 and f2 be in the class Hλ
p,q (α, μ, β) . Then, the weighted mean wq of f1 and f2 is also in the

class Hλ
p,q (α, μ, β) .

Proof. From the definition of weighted mean, we have

wq =
1
2
[(1− q) f1 (z) + (1 + q) f2 (z)]

=

[
(1− q)

(
zp +

∞

∑
n=1

an+pzn+p

)
+ (1 + q)

(
zp +

∞

∑
n=1

bn+pzn+p

)]

= zp +
∞

∑
n=1

1
2

[
(1− q) an+p + (1 + q) bn+p

]
zn+p.
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Now, using Equation (10), we have

n

∑
n=1

Ψn−p [n + p]q (1 + μ (2β− 1)) an+p ≤ 2μβ [p]q (1− α)

and
n

∑
n=1

Ψn−p [n + p]q (1 + μ (1− 2β)) bn+p ≤ 2μβ [p]q (1− α) .

Consider [
∞

∑
n=1

Ψn−p [n + p]q (1 + μ (2β− 1))

] [
1
2

[
(1− q) an+p + (1 + q) bn+p

]]
=

1
2
(1− q)

∞

∑
n=1

Ψn−p [n + p]q (1 + μ (2β− 1)) an+p

+
1
2
(1 + q)

∞

∑
n=1

Ψn−p [n + p]q (1 + μ (2β− 1)) bn+p

≤ 1
2
(1− q) 2μβ [p]q (1− α) +

1
2
(1 + q) 2μβ [p]q (1− α) .

This shows that wq ∈ Hλ
p,q (α, μ, β) .

3. Applications

The q-calculus has played an important role in the study of almost every branch of mathematics
and physics, for example, in the theory of special functions, differential equations, combinatorics,
analytic number theory, quantum theory, quantum group, special polynomials, numerical analysis,
operator theory and other related theories. Quantum calculus is considered as one of the most active
research areas in mathematics and physics. For more details, please refer to [22,36–41].

4. Concluding Remarks and Observations

In this paper, we introduce a new integral operator J λ+p−1
q in q-analog and define the class

Hλ
p,q (α, μ, β) of multivalent functions by using this operator. Several useful properties such as

sufficiency criteria, distortion bounds, radius of starlikness and radius of convexity, extreme points,
weighted mean and partial sum for this newly defined subclass of multivalent functions are
investigated. In addition, we observe that, if we take some suitable parameters p, q, α, μ, β in the
results involved, we get the corresponding properties for q-analog of differential and integral operators
mentioned in the Introduction.
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Vesnik 2013, 65, 454–465.

18. Arif, M.; Ahmad, B. New subfamily of meromorphic starlike functions in circular domain involving
q-differential operator. Math. Slovaca 2018, 68, 1049–1056. [CrossRef]

19. Arif, M.; Dziok, J.; Raza, M.; Sokół, J. On products of multivalent close-to-star functions. J. Inequal. Appl.
2015, 2015, 5. [CrossRef]

20. Arif, M.; Haq, M.; Liu, J.-L. A subfamily of univalent functions associated with q-analogue of Noor integral
operator. J. Funct. Spaces 2018, 2018, 3818915. [CrossRef]

21. Arif, M.; Srivastava, H.M.; Umar, S. Some applications of a q-analogue of the Ruscheweyh type operator for
multivalent functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas
2019, 113, 1211–1221. [CrossRef]

22. Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.-L.; Arif, M. A study of multivalent q-starlike functions connected
with circular domain. Mathematics 2019, 7, 670. [CrossRef]

23. Liu, J.-L.; Inayat Noor, K. Some properties of Noor integral operator. J. Nat. Geom. 2002, 21, 81–90.
24. Noor, K.I. On new classes of integral operators. J. Natur. Geom. 1999, 16, 71–80.
25. Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [CrossRef]
26. Aldawish, I.; Darus, M. Starlikness of q-differential operator involving quantum calculus. Korean J. Math.

2014, 22, 699–709. [CrossRef]
27. Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of

Dziok-Srivastava operator. ISRN Math. Anal. 2013, 2013, 382312. [CrossRef]
28. Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex

order. J. Math. Inequal. 2016, 10, 135–145. [CrossRef]

70



Mathematics 2019, 7, 1178

29. Dziok, J.; Murugusundaramoorthy, G.; Sokoł, J. On certain class of meromorphic functions with positive
coefcients. Acta Math. Sci. 2012, 32, 1–16.

30. Huda, A.; Darus, M. Integral operator defined by q-analogue of Liu-Srivastava operator. Studia Univ.
Babes-Bolyai Ser. Math. 2013, 58, 529–537.

31. Pommerenke, C. On meromorphic starlike functions. Pacific J. Math. 1963, 13, 221–235. [CrossRef]
32. Uralegaddi, B.A.; Somanatha, C. Certain diferential operators for meromorphic functions. Houston J. Math.

1991, 17, 279–284.
33. Srivastava, H.M.; Khan, N.; Darus, M.; Rahim, M.T.; Ahmad, Q.Z.; Zeb, Y. Properties of spiral-like

close-to-convex functions associated with conic domains. Mathematics 2019, 7, 706. [CrossRef]
34. Mahmood, S.; Khan, I.; Srivastava, H.M.; Malik, S.N. Inclusion relations for certain families of integral

operators associated with conic regions. J. Inequal. Appl. 2019, 2019, 59. [CrossRef]
35. Srivastava, H.M.; Rafiullah, M.; Arif, M. Some subclasses of close-to-convex mappings associated with conic

regions. Appl. Math. Comput. 2016, 285, 94–102. [CrossRef]
36. Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science+Business

Media: New York, NY, USA, 2013.
37. Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Berlin, Germany, 2012.
38. Ernst, T. The History of q-Calculus and a New Method; U.U.D.M. Report 2000; Department of Mathematics,

Upsala University, Springer: Berlin, Germany, 2000; Volume 16.
39. Srivastava, G. Gauging ecliptic sentiment. In Proceedings of the 2018 41st International Conference on

Telecommunications and Signal Processing (TSP), Athens, Greece, 4 July 2018; pp. 1–5.
40. Sene, N.; Srivastava, G. Generalized Mittag-Leffler Input Stability of the Fractional Differential Equations.

Symmetry 2019, 11, 608. [CrossRef]
41. Mahmood, S.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric Properties

of Certain Classes of Analytic Functions Associated with a q-Integral Operator. Symmetry 2019, 11, 719.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

71





mathematics

Article

A New Extension of the τ-Gauss Hypergeometric
Function and Its Associated Properties

Hari Mohan Srivastava 1,2,3, Asifa Tassaddiq 4,*, Gauhar Rahman 5, Kottakkaran Sooppy Nisar 6

and Ilyas Khan 7

1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada;
harimsri@math.uvic.ca

2 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

3 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,
AZ1007 Baku, Azerbaijan

4 College of Computer and Information Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
5 Department of Mathematics, Shaheed Benazir Bhutto University, Sheringal 18000, Upper Dir, Pakistan;

gauhar55uom@gmail.com
6 Department of Mathematics, College of Arts and Science, Prince Sattam bin Abdulaziz University,

Wadi Aldawaser 11991, Saudi Arabia; ksnisar1@gmail.com or n.sooppy@psau.edu.sa
7 Department of Mathematics, College of Science Al-Zulfi, Majmaah University,

Al Majmaah 11952, Saudi Arabia; i.said@mu.edu.sa
* Correspondence: a.tassaddiq@mu.edu.sa

Received: 29 June 2019; Accepted: 16 October 2019; Published: 20 October 2019

Abstract: In this article, we define an extended version of the Pochhammer symbol and then introduce
the corresponding extension of the τ-Gauss hypergeometric function. The basic properties of the
extended τ-Gauss hypergeometric function, including integral and derivative formulas involving the
Mellin transform and the operators of fractional calculus, are derived. We also consider some new and
known results as consequences of our proposed extension of the τ-Gauss hypergeometric function.
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1. Introduction

Throughout this article, we denote the sets of positive integers, negative integers, and complex
numbers by N, Z−, and C, respectively. We also set

N0 = N∪ {0} and Z
−
0 = Z

− ∪ {0}.

During the past few decades, various extensions and generalizations of well-known special
functions have been studied by various researchers (see, for example, [1–6]). For example,
a two-parameter extension of the gamma function Γ(ξ) with the parameters p and v) was defined
in [2] by

Γv(ξ; p) =

⎧⎪⎪⎨⎪⎪⎩
√

2p
π

∫ ∞

0
tξ− 3

2 e−t Kv+ 1
2

( p
t

)
dt

(
min{
(p),
(v)} > 0; ξ ∈ C

)
,

Γp(ξ)
(
v = 0; 
(ξ) > 0

)
,

(1)
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where Kv(z) is the modified Bessel function (or the Macdonald function) of order v and Γp(ξ) was
studied in [2,7]. Indeed, if we set v = 0 in (1) and make use of the following relationship:

K 1
2
(z) =

√
π

2z
e−z,

then this extended gamma function Γp(ξ) is given by (see [2,7])

Γp(ξ) =
∫ ∞

0
tξ−1 e−t− p

t dt
(

(p) > 0; 
(ξ) > 0

)
. (2)

In the year 2012, Srivastava et al. [8] (see also [9]) defined the incomplete Pochhammar symbols
in terms of the incomplete gamma functions. Another generalization of the Pochhammer symbol was
defined in [10] by

(ξ; p)μ =

⎧⎪⎪⎨⎪⎪⎩
Γp(ξ + μ)

Γ(ξ)
(

(p) > 0; ξ, μ ∈ C

)
,

(ξ)μ (p = 0; ξ, μ ∈ C \ {0}).
(3)

Here, in our present investigation, we first introduce a new extension (ξ; p, v)μ of the Pochhammer
symbol (ξ; p)μ in (3), which is defined by

(ξ; p, v)μ =

⎧⎪⎪⎨⎪⎪⎩
Γv(ξ + μ; p)

Γ(ξ)
(

min{
(p),
(v)} > 0; ξ, μ ∈ C
)
,

(ξ; p)μ

(
v = 0; ξ, μ ∈ C \ {0}

)
,

(4)

where, as we mentioned above in connection with (3), the generalized Pochhmmer symbol (ξ; p)μ was
studied by Srivastava et al. [10]. The integral representation of the extended Pochhammer symbol
(ξ; p, v)μ is given by

(ξ; p, v)μ =

√
2p
π

1
Γ(ξ)

∫ ∞

0
tξ+μ− 3

2 e−t Kv+ 1
2

( p
t

)
dt, (5)

which, in the special case when v = 0, yields the following result due to Srivastava et al. [10]):

(ξ; p, 0)μ = (ξ; p)μ =
1

Γ(ξ)

∫ ∞

0
tξ+μ−1 e−t− p

t dt (6)

(

(p) > 0; 
(ξ + μ) > 0 when p = 0

)
.

By using the definition (4), we now define an extension of the generalized hypergeometric function
pFq (with p numerator parameters and q denominator parameters) as follows:

pFq

⎡⎢⎣ (ρ1; p, v), ρ2, · · · , ρp;

σ1, · · · , σq;
z

⎤⎥⎦ =
∞

∑
n=0

(ρ1; p, v)n (ρ2)n · · · (ρp)n

(σ1)n · · · (σq)n

zn

n!
, (7)

where
ρj ∈ C (j = 1, · · · , p) and σj ∈ C \Z−0 (j = 1, · · · , q).

Another interesting extension of the Pochhammer symbol and the associated hypergeometric
functions was recently given by Srivastava et al. in [11].
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We next recall that Virchenko et al. [12] studied the following τ-Gauss hypergeometric function
2Rτ

1(z) defined by (see also [13,14])

2Rτ
1(z) = 2R1(δ1, δ2; δ3; τ; z) =

Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
(8)

(
τ > 0; |z| < 1; 
(δ3) > 
(δ2) > 0 when |z| = 1

)
,

for which they derived an integral representation in the form

2R1(δ1, δ2; δ3; τ; z) =
1

B(δ2; δ3 − δ2)

∫ ∞

0
tδ2−1 (1− t)δ3−δ2−1 (1− ztτ)−δ1 dt (9)

(
τ > 0; | arg(1− z)| < π; 
(δ3) > 
(δ2) > 0

)
in terms of the classical beta function B(α, β) defined by

B(α, β) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ 1

0
tα−1 (1− t)β=a dt

(
min{
(α),
(β)} > 0

)
,

Γ(α)Γ(β)

Γ(α + β)

(
α, β ∈ C \Z−0

)
.

(10)

Remark 1. For τ = 1, (8) and (9) would immediately yield the definition of the Gauss hypergeoemtric function
2F1(δ1, δ2; δ3; z) and its Eulerian integral representation (see, for details, [15]).

Remark 2. The so-called τ-Gauss hypergeometric function in (8) is, in fact, a rather specialized case of the
widely-studied Fox-Wright extension pΨq of the generalized hypergeometric function pFq in (7) involving p

numerator and q denominator parameters (see, for example, [16]).

2. An Extension of the τ-Gauss Hypergeometric Function

In this section, we first introduce the following extension of the τ-Gauss hypergeometric function
2Rτ

1(z) in terms of the Pochhammer symbol (ξ; p, v)μ defined by (4) for δ1, δ2 ∈ C and δ3 ∈ C \Z−0 :

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
=

Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p, v)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
(11)

(
p � 0; v > 0; τ > 0; |z| < 1; 
(δ3) > 
(δ2) > 0 when |z| = 1 and p = 0

)
.

Remark 3. The following are some of the special cases of τ-Gauss hypergeometric functions defined by (11).
(i) When v = 0, (11) reduces to the following extended τ-Gauss hypergeometric function (see [17]):

2R1
[
(δ1; p), δ2; δ3; τ; z

]
=

Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
(12)

(
p � 0; τ > 0; |z| < 1; 
(δ3) > 
(δ2) > 0 when |z| = 1 and p = 0

)
.

(ii) When τ = 1, (11) will yield the following extended Gauss hypergeometric function:

2F1
[
(δ1; p, v); δ2; δ3; z

]
=

∞

∑
n=0

(δ1; p, v)n (δ2)n

(δ3)n

zn

n!
.
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(iii) When v = 0 and τ = 1, (11) will reduce to the following extended Gauss hypergeometric function (see [10]):

2F1
[
(δ1; p); δ2; δ3; z

]
=

∞

∑
n=0

(δ1; p)n (δ2)n

(δ3)n

zn

n!
.

3. Integral Representations and Derivative Formulas

In this section, we obtain the Eulerian and Laplace-type integral representations and some
derivative formulas of the extended τ-Gauss hypergeometric function defined by (11).

Theorem 1. The following Eulerian representation holds true for (11):

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2−1 (1− t)δ3−δ2−1

1F0[(δ1; p, v); ; ztτ ] dt (13)

(

(p) > 0; v > 0; τ > 0; |z| < 1; 
(δ3) > 
(δ2) > 0

)
,

where B(α, β) denotes the classical beta function defined by (10).

Proof. Using the following well-known identity involving the beta function B(α, β):

(δ2)τn

(δ3)τn
=

B(δ2 + τn, δ3 − δ2)

B(δ2; δ3 − δ2)
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2+τn−1 (1− t)δ3−δ2−1 dt

(

(δ3) > 
(δ2) > 0

)
in (11) and using the definition (7), we get the desired assertion (13) of Theorem 1.

Theorem 2. The following Laplace-type representation holds true for (11):

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
=

√
2p
π

Γ(δ1)

∫ ∞

0
tδ1− 3

2 e−t Kv+ 1
2

( p
t

)
1Φτ

1
[
δ2; δ3; zt

]
dt (14)

(

(p) > 0; v > 0; τ > 0; 
(z) < 1; 
(δ1) > 0

)
,

where 1Φτ
1
[
δ2; δ3; zt

]
is the τ-Kummer hypergeometric function defined by

1Φτ
1(z) = 1Φτ

1 [δ2; δ3; zt] =
Γ(δ3)

Γ(δ2)

∞

∑
n=0

Γ(δ2 + τn)
Γ(δ3 + τn)

zn

n!
(15)

(τ > 0; δ2 ∈ C; δ3 ∈ C \Z−0 ).

Proof. By first utilizing (5) in (11) and then applying (15), we obtain the assertion (14) of Theorem 2.

Remark 4. When τ = 1, (13) and (14) yield the following special cases:

2F1
[
(δ1; p, v); δ2; δ3; z

]
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2−1 (1− t)δ3−δ2−1

1F0
[
(δ1; p, v); ; zt

]
dt (16)
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and

2F1
[
(δ1; p, v); δ2; δ3; z

]
=

√
2p
π

Γ(δ1)

∫ ∞

0
tδ1− 3

2 e−tKv+ 1
2

( p
t

)
1F1[δ2; δ3; zt] dt, (17)

respectively. Similarly, when v = 0, our integral representations (13) and (14) reduce to the following known
results (see [17]):

2R1
[
(δ1; p), δ2; δ3; τ; z

]
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2−1(1− t)δ3−δ2−1

1F0
[
(δ1; p); ; ztτ

]
dt

and

2R1
[
(δ1; p), δ2; δ3; τ; z

]
=

1
Γ(δ1)

∫ ∞

0
tδ1−1 e−t− p

t 1Φτ
1 [δ2; δ3; zt] dt,

respectively. Moreover, when τ = 1 and v = 0, (13) and (14) yield the following known results (see [10]):

2F1
[
(δ1; p), δ2; δ3; z

]
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2−1 (1− t)δ3−δ2−1

1F0[(δ1; p); ; zt] dt

and

2F1
[
(δ1; p, v), δ2; δ3; z

]
=

1
Γ(δ1)

∫ ∞

0
tδ1−1 e−t− p

t 1F1
[
δ2; δ3; zt

]
dt,

respectively.

Theorem 3. Each of the following derivative formulas holds true for the extended τ-Gauss hypergeometric
function defined by (11):

dn

dzn

{
2R1[(δ1; p, v), δ2; δ3; τ; z]

}
=

(δ1)n Γ(δ2 + nτ)Γ(δ3)

Γ(δ3 + nτ)Γ(δ2)
2R1

[
(δ1 + n; p, v), δ2 + nτ; δ3 + nτ; τ; z

]
(18)

and

dn

dzn

{
zδ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ωzτ

]}
=

zδ3−n−1Γ(δ3)

Γ(δ3 − n) 2R1
[
(δ1; p, v), δ2; δ3 − n; τ; ωzτ

]
. (19)

Proof. Upon differentiating both sides of (11) with respect to z, we get

d
dz

{
2R1

[
(δ1; p, v), δ2; δ3; τ; z

]}
=

Γ(δ3)

Γ(δ2)

∞

∑
n=1

(δ1; p, v)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn−1

(n− 1)!
. (20)

Replacing n by n + 1 in (20), we have

d
dz

{
2R1

[
(δ1; p, v), δ2; δ3; τ; z

]}
=

Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p, v)n+1 Γ
(
δ2 + (n + 1)τ

)
Γ
(
δ3 + (n + 1)τ

) zn

n!
,
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which, after simplification, yields

d
dz

{
2R1

[
(δ1; p, v), δ2; δ3; τ; z

]}
=

δ1Γ(δ3)Γ(δ2 + τ)

Γ(δ3 + τ)Γ(δ2)

∞

∑
n=0

(δ1 + 1; p, v)n Γ(δ2 + τ + nτ)

Γ(δ3 + τ + nτ)

zn

n!

=
δ1 Γ(δ3)Γ(δ2 + τ)

Γ(δ3 + τ)Γ(δ2)
2R1[(δ1 + 1; p, v), δ2 + τ; δ3 + τ; τ; z].

By iterating this differentiation process n times, we are led to the desired assertion (18) of
Theorem 3.

Similarly, in order to prove the assertion (19) of Theorem 3, we observe that

dn

dzn

{
zδ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ωzτ

]}
=

Γ(δ3)

Γ(δ2)

∞

∑
m=0

(δ1; p, v)m Γ(δ2 + mτ)

Γ(δ3 + mτ)

ωm

m!
dn

dzn

{
zδ3+τm−1

}
=

Γ(δ3)

Γ(δ2)

∞

∑
m=0

(δ1; p, v)m Γ(δ2 + mτ)

Γ(δ3 + mτ)

ωm

m!

·
[
(δ3 + τm− 1)(δ3 + τm− 2) · · · (δ3 + τm− n− 1)

]
zδ3+τm−n−1

=
zδ3−n−1 Γ(δ3)

Γ(δ2)

∞

∑
m=0

(δ1; p, v)m Γ(δ2 + mτ)

Γ(δ3 + mτ)

(ωzτ)m

m!
Γ(δ3 + mτ)

Γ(δ3 + τm− n)

=
zδ3−n−1Γ(δ3)Γ(δ3 − n)

Γ(δ3 − n)Γ(δ2)

∞

∑
m=0

(δ1; p, v)m Γ(δ2 + mτ)

Γ(δ3 + τm− n)
(ωzτ)m

m!
,

which, in view of (11), gives the derivative formula (19) asserted by Theorem 3.

4. Application of the Mellin Transform

The well-known Mellin transform of a given integrable function f (t) is defined by

M{ f (t) : t → s} =
∫ ∞

0
ts−1 f (t) dt, (21)

provided that the improper integral in (21) exists.

Theorem 4. The Mellin transform of the extended τ-Gauss hypergeometric function,

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
,

is given by

M
{

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
: p → s

}
=

2s−1
√

π
(δ1)s Γ

(
s− v

2

)
Γ

(
s + v + 1

2

)
2R1(δ1 + s; δ2, δ3; τ; z) (22)

(

(s− v) > 0; 
(δ1 + s) > −1

)
.

Proof. Applying the definition (21) of the Mellin transform on both sides of (11), we get

M
{

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
: p → s

}
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=
∫ ∞

0
ps−1

(
Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p, v)nΓ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!

)
dp

=
Γ(δ3)

Γ(δ2)

∞

∑
n=0

Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
1

Γ(δ1)

∫ ∞

0
ps−1 Γv(δ1 + n; p) dp. (23)

Using the following result given by Chaudhry and Zubair ([2], Eq. 4.105),

∫ ∞

0
ps−1 Γv(δ1 + n; p)dp =

2s−1
√

π
Γ

(
s− v

2

)
Γ

(
s + v + 1

2

)
Γ(δ1 + n + s), (24)

in (23), we find that

M
{

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
: p → s

}
=

2s−1
√

π
Γ

(
s− v

2

)
Γ

(
s + v + 1

2

)
Γ(δ3)Γ(δ1 + s)

Γ(δ1 + s)Γ(δ1)Γ(δ2)

·
∞

∑
n=0

Γ(δ1 + n + s)Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!

=
2s−1
√

π
(δ1)s Γ

(
s− v

2

)
Γ

(
s + v + 1

2

)
Γ(δ3)

Γ(δ2)

·
∞

∑
n=0

(δ1 + s)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
, (25)

which, in view of (8), yields the Mellin transform formula (22) asserted by Theorem 4.

5. Use of the Operators of Fractional Calculus

In this section, we recall the operators Iρ+ and Dρ+ of the fractional integral and fractional
derivatives of order μ ∈ C

(

(μ) > 0

)
, which are defined by (see [18,19])

(
I

μ
ρ+ f

)
(x) =

1
Γ(μ)

∫ x

0

f (t)
(x− t)1−μ

dt
(
μ ∈ C; 
(μ) > 0

)
(26)

and (
D

μ
ρ+ f

)
(x) =

dn

dxn

{(
I

n−μ
ρ+ f

)
(x)

} (
μ ∈ C; 
(μ) > 0; n = [
(μ)] + 1

)
, (27)

respectively.
We now prove the following fractional integral and fractional derivative formulas associated with

the extended τ-Gauss hypergeometric function:

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
.

Theorem 5. Let ρ ∈ R+ = [0, ∞), δ1, δ2, δ3, ω ∈ C, and min{
(mu),
(δ3),
(τ) > 0}. Then the
following formulas hold true for x > ρ:(

I
μ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

=
(x− ρ)δ3+μ−1 Γ(δ3)

Γ(δ3 + μ) 2R1
[
(δ1; p, v), δ2; δ3 + μ; τ; ω(x− ρ)τ

]
(28)
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and (
D

μ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

=
(x− ρ)δ3−μ−1 Γ(δ3)

Γ(δ3 − μ) 2R1
[
(δ1; p, v), δ2; δ3 − μ; τ; ω(x− ρ)τ

]
. (29)

Proof. Using the following well-known relation (see [18,19]),

(
I

μ
ρ+

[
(t− ρ)δ3−1])(x) =

Γ(δ3)

Γ(δ3 + μ)
(x− ρ)δ3+μ−1 (x > ρ), (30)

we have (
I

μ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

=
(
I

μ
ρ+

[Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p, v)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

ωn

n!
(t− ρ)δ3+τn−1

])
=

(x− ρ)δ3+μ−1Γ(δ3)

Γ(δ3 + μ) 2R1
[
(δ1; p, v), δ2; δ3 + μ; τ; ω(x− ρ)τ

]
,

which proves the assertion (28) of Theorem 5.
Next, in view of (27) and (11), we have(

D
μ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

=
dn

dxn

{(
I

n−μ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

}
=

dn

dxn

{
(x− ρ)δ3+n−μ−1 Γ(δ3)

Γ(δ3 − μ + n) 2R1
[
(δ1; p, v), δ2; δ3 + n− μ; τ; ω(x− ρ)τ

]}
. (31)

Finally, by applying (19) to the equation (31), we are led to the assertion (29) of Theorem 5.

6. Concluding Remarks

In our present investigation, we have first introduced an extension of the τ-Gauss hypergeometric
function in terms of a certain extended Pochhammer symbol. We have then derived its various
properties, including (for example) integral representations, derivative formulas, Mellin transform
formulas, as well as the fractional integral and fractional derivative formulas. We have observed that
by letting v = 0, the various results derived in this paper will reduce to the corresponding results
proved earlier in [17]. Moreover, if we set τ = 1, then we get several interesting new or known
formulas for the extended Gauss hypergeometric function. Finally, we have observed that, if v = 0
and τ = 1, then we get some new or known results for the extended Gauss hypergeometric function
defined and studied by Srivastava et al. [10].
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1. Introduction

Let A be a class of analytic functions in the open unit disk D = {z ∈ C : |z| < 1}, of the form

f (z) = z +
∞

∑
n=2

anzn (z ∈ D) . (1)

Let S be the class of functions f ∈ A which are univalent in D. A function f ∈ A is said to be
starlike, if it satisfies the inequality

Re
(

z f ′(z)
f (z)

)
> 0 (z ∈ D) . (2)

We denote by S∗ the class which consists of all functions f ∈ A that are starlike. A function f ∈ A
is said to be close-to-convex if there exits a function g ∈ S∗ such that it satisfies the inequality

Re
(

z f ′(z)
g(z)

)
> 0 (z ∈ D) . (3)

We denote by C the class which consists of all functions f ∈ A that are close-to-convex. We note
that S∗ ⊂ C ⊂ S and that |an| ≤ n for f ∈ S∗.

For two functions f and g which are analytic in D, we say that the function f is subordinate to g,
and write f (z) ≺ g(z), if there exists a Schwarz function w, that is a function w analytic in D with
w(0) = 0 and |w(z)| < 1 in D, such that f (z) = g(w(z)) for all z ∈ D. In particular, if the function g is
univalent in D, then f ≺ g if and only if f (0) = g(0) and f (D) ⊆ g(D) [1].
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In 1976, Noonan and Thomas [2] defined the q-th Hankel determinant for integers n ≥ 1 and
q ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
...

...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣
(a1 = 1) .

In general, one of the important tools in the theory of univalent functions is the Hankel determinant.
It is used, for example, in showing that a function of bounded characteristic in D, that is, a function
which is a ratio of two bounded analytic functions with its Laurent series around the origin having
integral coefficients, is rational [3]. For the use of Hankel determinant in the study of meromorphic
functions, see [4]. For detailed information, the readers are encouraged [5,6]. Various properties of these
determinants can be found in [7] (Chapter 4). The investigations of Hankel determinants for different
classes of analytic functions started in the 1960s. Pommerenke [8] proved that the Hankel determinants
of univalent functions satisfy

∣∣Hq(n)
∣∣ ≤ Kn−( 1

2+β)q+ 3
2 where n, q ∈ N, q ≥ 2, β > 1/4000 and K

depends only on q. Later, Hayman [9] proved that
∣∣Hq(n)

∣∣ ≤ An
1
2 where n ∈ N and A is an absolute

constant for areally mean univalent functions. Pommerenke [10] investigated the Hankel determinant
of areally mean p-valent functions, univalent functions as well as of starlike functions. For results
related to these determinants, see also [11,12].

Note that

H2(1) =

∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣ and H2(2) =

∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣ ,

where the Hankel determinants H2(1) = a3 − a2
2 and H2(2) = a2a4 − a2

3 are well-known as Fekete-Szegö
and second Hankel determinant functionals, respectively. Further, Fekete and Szegö [13] introduced
the generalized functional a3 − λa2

2, where λ is some real number. In recent years, the research
on Hankel determinants has focused on the estimation of |H2(2)|. Problems in this field has also been
argued by several authors for various classes of univalent functions [14–24].

The Koebe one-quarter theorem [1] ensures that the image of D under every univalent function
f ∈ S contains a disk of radius 1/4. Thus every function f ∈ S has an inverse f−1, such that

f−1 ( f (z)) = z (z ∈ D) , and f
(

f−1(w)
)
= w

(
|w| < r0( f ); r0( f ) ≥ 1

4

)
,

where the inverse f−1 has the power series expansion (see [25])

f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (4)

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent in D, in the sense
that f−1 has a univalent analytic continuation to D. Let Σ denote the class of bi-univalent functions
in D. For a brief history of functions in the class Σ and also other different characteristics of these
functions and the coefficient problems, see [25–32] and the references therein.

In 2014, Hamidi and Jahangiri [33] defined the class of bi-close-to-convex functions of order
α (0 ≤ α < 1) that this class is denoted by CΣ(α) and in particular, CΣ(0) = CΣ.

Definition 1. A function f ∈ Σ is in the class of bi-close-to-convex functions of order α if the following
conditions are satisfied:

Re
(

z f ′(z)
g(z)

)
> α (z ∈ D) (5)

and

Re
(

wF′(w)

G(w)

)
> α (w ∈ D) , (6)
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where the function F(w) = f−1(w) is defined by (4), g(z) = z +
∞
∑

n=2
bnzn ∈ S∗ and

G(w) = w +
∞

∑
n=2

Bnzn ∈ S∗. (7)

Recently, Güney et al. [34] obtained the bound for the second Hankel determinant H2(2) for
the class CΣ of bi-close-to-convex functions as follows:

Theorem 1. Let the function f given by (1) be in the class CΣ and G(w) = g−1(w). Then

|H2(2)| :=
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 353
36

.

Remark 1. By means of the subordination, the conditions (5) and (6) are, respectively, equivalent to

z f ′(z)
g(z)

≺ 1 + z
1− z

and
wF′(z)
G(w)

≺ 1 + w
1− w

.

The main purpose of this paper is to determine bounds for the functional H2(2) = a2a4 − a2
3 for

functions belonging to the subclass CΣ of bi-close-to-convex functions, which is a much improved
estimation than the previous result given by Güney et al. [34]. We note that our proof method is by
means of the subordination and more direct than those used by others and so we get a smaller upper
bound and more accurate estimation for the functional |H2(2)| for functions in the class CΣ.

2. Main Results

Theorem 2. Let the function f given by (1) be in the class CΣ and G(w) = g−1(w). Then

|H2(2)| :=
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 227
36

.

In order to prove our main result, we need the following lemmas.

Lemma 1. [1] (p. 190) Let u be analytic function in the unit disk D, with u(0) = 0, and |u(z)| < 1 for all
z ∈ D, with the power series expansion

u(z) =
∞

∑
n=1

cnzn.

Then, |cn| ≤ 1 for all n ∈ N. Furthermore, |cn| = 1 for some n ∈ N if and only if u(z) = eiθzn, θ ∈ R.

Lemma 2. [20] If ψ(z) =
∞
∑

n=1
ψnzn, z ∈ D, is a Schwarz function with ψ1 ∈ R, then

ψ2 = x
(

1− ψ2
1

)
,

ψ3 =
(

1− ψ2
1

) (
1− |x|2

)
s− ψ1

(
1− ψ2

1

)
x2,

for some x, s, with |x| ≤ 1 and |s| ≤ 1.
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Lemma 3. [35] Let the function f ∈ S∗ be given by (1). Then, for any real number μ,

∣∣∣a3 − μa2
2

∣∣∣
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3− 4μ if μ ≤ 1
2

1 if 1
2 ≤ μ ≤ 1

4μ− 3 if μ ≥ 1.

Lemma 4. [19] Let the function f ∈ S∗ be given by (1). Then

|H2(2)| :=
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 1.

Equality holds true for the Koebe function k(z) =
z

(1− z)2 .

Lemma 5. [36] Let the function f ∈ S∗ be given by (1). Then

|a2a3 − a4| ≤ 2.

Equality holds true for the Koebe function k(z) =
z

(1− z)2 .

Proof of Theorem 2. As noted in Remark 1, if f ∈ CΣ, then by definition of subordination, there

exist two Schwarz functions u and v, of the form u(z) =
∞
∑

n=1
cnzn and v(z) =

∞
∑

n=1
dnzn, z ∈ D that

we can write

z f ′(z)
g(z)

=
1 + u(z)
1− u(z)

= 1 + 2c1z + (2c2 + 2c2
1)z

2 + (2c3 + 4c1c2 + 2c3
1)z

3 + · · ·

and
zF′(z)
G(z)

=
1 + v(w)

1− v(w)
= 1 + 2d1w + (2d2 + 2d2

1)w
2 + (2d3 + 4d1d2 + 2d3

1)w
3 + · · · .

Equating coefficients in two above relations then gives

2a2 − b2 = 2c1, (8)

3a3 − b3 − 2a2b2 + b2
2 = 2c2 + 2c2

1, (9)

4a4 − b4 − 2a2b3 + 2b2b3 − 3a3b2 + 2a2b2
2 − b3

2 = 2c3 + 4c1c2 + 2c3
1, (10)

and

− 2a2 + b2 = 2d1, (11)

− 3a3 + b3 − 2a2b2 − b2
2 + 6a2

2 = 2d2 + 2d2
1, (12)

− 4a4 + b4 − 2a2b3 − 3b2b3 − 3a3b2 + 2a2b2
2 + 2b3

2 − 20a3
2

+ 20a2a3 + 6a2
2b2 = 2d3 + 4d1d2 + 2d3

1, (13)

respectively. From (8) and (11), we get that

c1 = −d1, (14)
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Also, according to the proof of [34] (Theorem), it is enough that we set 2c1, 2c2 + 2c2
1, 2c3 +

4c1c2 + 2c3
1 instead of c1, c2, c3, and 2d1, 2d2 + 2d2

1, 2d3 + 4d1d2 + 2d3
1 instead of d1, d2, d3 in relations

(2.5)–(2.10) in [34], respectively. Thus we can write (2.20) in [34], as given below:

∣∣a2a4 − a2
3

∣∣ = ∣∣∣∣ 1
8 (b2b4 − b2

3) +
1
72 b2

3 +
2
8 (b4 − b2b3)c1 − 10

48 b2b3c1

+ 4
24

(
b3 − 13

4 b2
2

)
c2

1

− 7
144

(
b3 − 19

14 b2
2

)
b2

2 − 2
9

(
b3 − 19

16 b2
2

)
(c2 − d2)

− 10
32 b2c1

[
4c2

1 − 8
15 (c2 − d2)− 13

15 b2
2

]
− 2

16 c1

[
8c3

1 − 4
3 c1(c2 − d2)− 2(c3 − d3)− 4c3

1 − 4c1(c2 + d2)

]
+ 1

16 b2

[
2(c3 − d3) + 4c3

1 + 4c1(c2 + d2)

]
− 4

36 (c2 − d2)
2
∣∣∣∣.

(15)

According to Lemma 2 and (14), we find that

c2 − d2 =
(

1− c2
1

)
(x− y) and c2 + d2 =

(
1− c2

1

)
(x + y) (16)

and

c3 =
(

1− c2
1

) (
1− |x|2

)
s− c1

(
1− c2

1

)
x2 and d3 =

(
1− d2

1

) (
1− |y|2

)
t− d1

(
1− d2

1

)
y2,

where
c3 − d3 = (1− c2

1)
[
(1− |x|2)s− (1− |y|2)t

]
− c1(1− c2

1)(x2 + y2) (17)

for some x, y, s, t with |x| ≤ 1, |y| ≤ 1, |s| ≤ 1 and |t| ≤ 1. Applying (16) and (17) in (15),
it follows that∣∣∣a2a4 − a2

3

∣∣∣ =∣∣∣∣1
8
(b2b4 − b2

3) +
1

72
b2

3 +
2
8
(b4 − b2b3)c1 −

10
48

b2b3c1

+
4

24

(
b3 −

13
4

b2
2

)
c2

1 −
7

144

(
b3 −

19
14

b2
2

)
b2

2

− 40
32

b2c3
1 +

26
96

b3
2c1 −

16
16

c4
1 +

8
16

c4
1 +

4
16

b2c3
1

+ 2
(

1− c2
1

)
(x− y)

[
− 1

9

(
b3 −

19
16

b2
2

)
+

8
96

b2c1 +
4
48

c2
1

]
+ 2c1

(
1− c2

1

)
(x + y)

[
4

16
c1 +

2
16

b2

]
+ 2(1− c2

1)
[
(1− |x|2)s− (1− |y|2)t

] [
2

16
c1 +

1
16

b2

]
− 2c1(1− c2

1)(x2 + y2)

[
2

16
c1 +

1
16

b2

]
− 4

36

(
1− c2

1

)2
(x− y)2

∣∣∣∣.
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Since by Lemma 1, |c1| ≤ 1, we assume that c1 = c ∈ [0, 1]. So by utilizing the triangle inequality
we have ∣∣∣a2a4 − a2

3

∣∣∣
≤1

8

∣∣∣b2b4 − b2
3

∣∣∣ + 1
72

∣∣∣b2
3

∣∣∣ + 2
8
|b4 − b2b3| c +

10
48

∣∣∣∣b3 −
13
10

b2
2

∣∣∣∣ c |b2|

+
4

24

∣∣∣∣b3 −
13
4

b2
2

∣∣∣∣ c2 +
7

144

∣∣∣∣b3 −
19
14

b2
2

∣∣∣∣ ∣∣∣b2
2

∣∣∣
+

∣∣∣∣−40
32

+
4
16

∣∣∣∣ |b2| c3 +

∣∣∣∣−16
16

+
8

16

∣∣∣∣ c4

+ 2
(

1− c2
) [

1
9

∣∣∣∣b3 −
19
16

b2
2

∣∣∣∣ + 8
96
|b2|c +

4
48

c2
]
(|x|+ |y|)

+ 2c
(

1− c2
) [

4
16

c +
2

16
|b2|

]
(|x|+ |y|)

+ 2(1− c2)

[
2

16
c +

1
16
|b2|

] [
(1− |x|2) + (1− |y|2)

]
+ 2c(1− c2)

[
2
16

c +
1

16
|b2|

] (
|x|2 + |y|2

)
+

4
36

(
1− c2

)2
((|x|+ |y|)2

=
1
8

∣∣∣b2b4 − b2
3

∣∣∣ + 1
72

∣∣∣b2
3

∣∣∣ + 2
8
|b4 − b2b3| c +

10
48

∣∣∣∣b3 −
13
10

b2
2

∣∣∣∣ c |b2|

+
4

24

∣∣∣∣b3 −
13
4

b2
2

∣∣∣∣ c2 +
7

144

∣∣∣∣b3 −
19
14

b2
2

∣∣∣∣ ∣∣∣b2
2

∣∣∣ + |b2| c3 +
1
2

c4

+ 4(1− c2)

[
2

16
c +

1
16
|b2|

]
+

(
2
[

1
9

∣∣∣∣b3 −
19
16

b2
2

∣∣∣∣ + 8
96
|b2|c +

4
48

c2
]
+ 2c

[
4

16
c +

2
16
|b2|

]) (
1− c2

)
(|x|+ |y|)

+ 2
(

2
16

c +
1
16
|b2|

)
(c− 1) (1− c2)

(
|x|2 + |y|2

)
+

4
36

(
1− c2

)2
(|x|+ |y|)2 .

We now apply Lemmas 3–5 in order to deduce that∣∣∣a2a4 − a2
3

∣∣∣
≤1

8
+

1
8
+

2
4

c +
22
24

c +
40
24

c2 +
17
36

+ 2c3 +
1
2

c4 +
8
16

(1− c2)(c + 1)

+

(
2
[

7
36

+
16
96

c +
4
48

c2
]
+ 2c

[
4

16
c +

4
16

]) (
1− c2

)
(|x|+ |y|)

+
4

16

(
c + 1

)
(c− 1) (1− c2)

(
|x|2 + |y|2

)
+

4
36

(
1− c2

)2
(|x|+ |y|)2 .

Now, for λ = |x| ≤ 1 and μ = |y| ≤ 1, we obtain∣∣∣a2a4 − a2
3

∣∣∣ ≤ J1 + (λ + μ)J2 + (λ2 + μ2)J3 + (λ + μ)2 J4 = L(λ, μ),
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where

J1 = J1(c) =
26
36

+
34
24

c +
40
24

c2 + 2c3 +
1
2

c4 +
8

16
(1− c2)(c + 1) ≥ 0

J2 = J2(c) =
(

7
18

+
5
6

c +
4
6

c2
) (

1− c2
)
≥ 0

J3 = J3(c) = −1
4
(1− c2)2 ≤ 0

J4 = J4(c) =
1
9

(
1− c2

)2
≥ 0.

We now need to maximize the function L(λ, μ) on the closed square [0, 1]× [0, 1] for c ∈ [0, 1].
With regards to L(λ, μ) = L(μ, λ), it is sufficient to show that there exists the maximum of

H(λ) = L(λ, λ) = J1 + 2λJ2 + 2λ2(J3 + 2J4), (18)

on λ ∈ [0, 1] according to c ∈ [0, 1]. We let c ∈ [0, 1]. Considering Equation (18) for 0 < λ < 1 and
J3 + 2J4 < 0, we consider for critical point

λ0 =
−J2

2(J3 + 2J4)
=

J2

2k
=

18
(

7
18 + 5

6 c + 4
6 c2

) (
1− c2)

(1− c2)
2 =

18
(

7
18 + 5

6 c + 4
6 c2

)
(1− c2)

> 1

for any fixed c ∈ [0, 1], where k = −(J3 + 2J4) > 0. Therefore, for λ0 =
J2

2k
> 1, it follows that

k <
J2

2
≤ J2, and so J2 + J3 + 2J4 ≥ 0. So,

H(0) = J1 ≤ J1 + 2(J2 + J3 + 2J4) = H(1).

Therefore, it follows that

max {H(λ) : λ ∈ [0, 1]} = H(1) = J1 + 2J2 + 2J3 + 4J4.

Therefore, max L(λ, μ) = L(1, 1) on the boundary of the square.
We define the real function W on (0, 1) by

W(c) = L(1, 1) = J1 + 2J2 + 2J3 + 4J4.

Now putting J1, J2, J3 and J4 in the function W, we have

W(c) = −8
9

c4 − 1
6

c3 +
11
6

c2 +
43
12

c +
70
36

.

By elementary calculations, we get that W(c) is an increasing function of c. Therefore, we obtain
the maximum of W(c) on c = 1 and

max W(c) = W(1) =
227
36

.

This completes the proof.

Example 1. If we choose the functions

f (z) = z +
z3

2
, g(z) = z− z3

3
,
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then will have

F(w) = f−1(w) = w− w3

2
, G(w) = g−1(w) = w +

w3

3
and so these functions satisfy in Definition 1. Thus function f ∈ Σ is bi-close-to-convex, that is, f ∈ CΣ (see for

more details, [33]). Therefore, Theorem 2 holds for f (z) = z +
z3

2
.

Remark 2. The obtained bound for
∣∣a2a4 − a2

3

∣∣ in Theorem 2 is smaller than and more accurate the estimation
given in Theorem 1.

3. Conclusions

In the present paper, we find a smaller upper bound and more accurate estimation for
the functional |H2(2)| for functions in the class CΣ with G(w) = g−1(w) which is an improvement
of the result obtained by Guney et al. [34]. Obtaining a sharp estimate for |H2(2)| of the class CΣ with
G(w) = g−1(w) is still an open problem.
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1. Introduction

Toeplitz matrices often arise in statistics, econometrics, psychometrics, structural engineering,
multichannel filtering, reflection seismology, etc. (see [1,2] and references therein). Furthermore, they
have been employed in quite wide fields of applications, especially in the elliptic Dirichlet-periodic
boundary value problems [3], solving fractional diffusion equations [4–6], numerical analysis [7], signal
processing [7], and system theory [7], etc. Citations of a large number of results have been made in a
series of papers and in the monographs of Iohvidov [8] and Heining and Rost [9].

It seems to be an ideal research area and current topic of interest to specify inverses of Toeplitz
matrices as well as the special Toeplitz matrices involving famous numbers as entries. Some scholars
showed the explicit determinant and inverse of the special matrices involving famous numbers. The
authors [10] proposed the invertibility of generalized Lucas skew circulant matrices and provided
the determinant and the inverse matrix. Furthermore, the invertibility of generalized Lucas skew
left circulant matrices was also discussed. The determinant and the inverse matrix of generalized
Lucas skew left circulant matrices were obtained respectively. The determinants and inverses of
Tribonacci skew circulant type matrices were discussed in [11]. The authors provided determinants
and inverses of circulant matrices with Jacobsthal and Jacobsthal–Lucas numbers in [12]. The explicit
determinants of circulant and left circulant matrices including Tribonacci numbers and generalized
Lucas numbers were shown based on Tribonacci numbers and generalized Lucas numbers only in [13].
Moreover, four kinds of norms and bounds for the spread of these matrices were discussed respectively.
In [14], circulant type matrices with the k-Fibonacci and k-Lucas numbers were considered and the
explicit determinant and inverse matrix were presented by constructing the transformation matrices.
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Jiang et al. [15] gave the invertibility of circulant type matrices with the sum and product of Fibonacci
and Lucas numbers and provided the determinants and the inverses of the these matrices. Jiang and
Hong [16] studied exact form determinants of the RSFPLR circulant matrices and the RSLPFL circulant
matrices involving Padovan, Perrin, Tribonacci, and the generalized Lucas number by the inverse
factorization of a polynomial. It is worthwhile to note that Akbulak and Bozkurt gave the upper and
lower bounds for the spectral norms of the Fibonacci and Lucas Toeplitz matrices [17].

In this paper, we will show the explicit determinants and inverses of the Foeplitz matrix and
Fankel matrix both involving Fibonacci numbers (see Definitions 1 and 2 below), and the Loeplitz
matrix and Lankel matrix both involving Lucas numbers (see Definitions 3 and 4). The main results are
obtained by factoring the considered matrices into structured factors, whose determinant and inverse are
computed exactly, and then reassembling the factorization. This paper provides a novel characterization
of Fibonacci or Lucas numbers as the determinant of Toeplitz matrices containing numbers from the same
sequence. In fact, the main contribution of this paper is that Toeplitz matrix, tridiagonal Toeplitz matrices
with perturbed corner entries, the Fibonacci number, and the Golden Ratio are connected together.

Here the Fibonacci and Lucas sequences (see, e.g., [18]) are defined by the following recurrence
relations, respectively:

Fn+1 = Fn + Fn−1(n � 1), where F0 = 0, F1 = 1,

Ln+1 = Ln + Ln−1(n � 1), where L0 = 2, L1 = 1,

F−(n+1) = −F−n + F−(n−1)(n � 1), where F0 = 0, F−1 = 1,

L−(n+1) = −L−n + L−(n−1)(n � 1), where L0 = 2, L−1 = −1.

The following identities are easily attainable

F−n = (−1)n+1Fn, L−n = (−1)nLn, (1)
n−2

∑
i=2

aiLk+i =
−a3Lk+1 − a2Lk+2 + an−1Ln−1+k + anLn−2+k

a2 + a− 1
, a �= −1±

√
5

2
, (2)

n−2

∑
i=2

aiLk−i =
−a2Lk−2 − a3Lk−1 + an−1Lk−(n−4) + anLk−(n−2)

a2 − a− 1
, a �= 1±

√
5

2
. (3)

Definition 1. An n× n Foeplitz matrix is defined as a Toeplitz matrix of the form

TF,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 F2 · · · Fn−1 Fn

F−2 F1
. . . . . . Fn−1

...
. . . . . . . . .

...

F−n+1
. . . . . . F1 F2

F−n F−n+1 · · · F−2 F1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (4)

where F1, F±2, · · · , F±n are the Fibonacci numbers.

Definition 2. An n× n Fankel matrix is defined as a Hankel matrix of the form

HF,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fn Fn−1 · · · F2 F1

Fn−1

... ... F1 F−2
...

... ... ...

...

F2 F1

... ... F−n+1

F1 F−2 · · · F−n+1 F−n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (5)
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where F1, F±2, · · · , F±n are the Fibonacci numbers.

Definition 3. An n× n Loeplitz matrix is defined as a Toeplitz matrix of the form

TL,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 L2 · · · Ln−1 Ln

L−2 L1
. . . . . . Ln−1

...
. . . . . . . . .

...

L−n+1
. . . . . . L1 L2

L−n L−n+1 · · · L−2 L1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (6)

where L1, L±2, · · · , L±n are the Lucas numbers.

Definition 4. An n× n Lankel matrix is defined as a Hankel matrix of the form

HL,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ln Ln−1 · · · L2 L1

Ln−1

... ... L1 L−2
...

... ... ...

...

L2 L1

... ... L−n+1

L1 L−2 · · · L−n+1 L−n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (7)

where L1, L±2, · · · , L±n are the Lucas numbers.

It is easy to check that

HF,n = TF,n În , (8)

HL,n = TL,n În , (9)

where În is the counteridentity matrix, the square matrix whose elements are all equal to zero except
those on the counter-diagonal, which are all equal to 1, which provide us with basic relations between
TF,n and HF,n, and TL,n and HL,n, respectively.

Lemma 1. ([19], Lemma 2.5) Define an n× n bi-band-Toeplitz matrix by

Fn(α, β) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 0 · · · · · · · · · 0

β α
. . .

...

0 β α
. . .

...
...

. . . . . . . . . . . .
...

...
. . . β α 0

0 · · · · · · 0 β α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,
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the inverse of Fn(α, β) can be expressed as

Fn(α, β)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1 0 · · · · · · · · · · · · 0

Δ2 Δ1
. . .

...

Δ3 Δ2 Δ1
. . .

...
...

. . . . . . . . . . . .
...

Δn−2
. . . . . . . . . . . . . . .

...

Δn−1 Δn−2
. . . . . . Δ2 Δ1 0

Δn Δn−1 Δn−2 · · · Δ3 Δ2 Δ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where

Δi =
(−β)i−1

αi , i ≥ 1.

Remark 1. This Lemma is a special case of ([19], Lemma 2.5).

2. The Determinant and Inverse Matrix of Foeplitz, Fankel, Loeplitz, and Lankel Matrices

In this section, we study the determinant and the inverse of Foeplitz, Fankel, Loeplitz, and Lankel
matrices by factoring the considered matrices into structured factors, whose determinant and inverse
are computed exactly, and then reassembling the factorization. We establish the relationship between
the determinant of these matrices and Fibonacci or Lucas numbers.

2.1. Determinant and Inverse Matrix of a Foeplitz Matrix

In this subsection, the determinant and the inverse of the Foeplitz matrix TF,n are studied.

Theorem 1. Let TF,n be an n× n Foeplitz matrix defined as in (4). Then TF,n is invertible and

det TF,n = Fn+1, (10)

where Fn+1 is the (n + 1)th Fibonacci number.

Proof. For n ≤ 3, it is easy to check that det TF,1 = 1 = F2, det TF,2 = 2 = F3 and det TF,3 = 3 =

F4. Therefore, Equation (10) is satisfied. Now, we consider the case n > 3. Define two additional
nonsingular matrices,

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−F−n 1
−F−n−1 1 −1

0 1 −1 −1
...

... ... ...

0 1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0

0

... 1
...

... 1 0
...

... ... ...

...
0 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.
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Multiplying TF,n by A1 from the left, we obtain

A1TF,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 F2 F3 · · · Fn−1 Fn

0 α2 α3 · · · αn−1 αn
... β2 β3 · · · βn−1 βn
... 0 · · · 0 1 0
...

...

... ... ...

...
0 0 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where

αi = −F−nFi + F−n+i−1, (i = 2, 3, · · · , n), (11)

βi = −F−n−1Fi + F−n+i−2, (i = 2, 3, · · · , n− 1),

βn = −F−n−1Fn. (12)

Then, multiplying A1TF,n by B1 from the right, we have

A1TF,nB1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 Fn Fn−1 · · · F3 F2

0 αn αn−1 · · · α3 α2

0 βn βn−1 · · · β3 β2

0 0 1 0 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (13)

and

det(A1TF,nB1) =det(A1)det(TF,n)det(B1)

=F1[(−1)n−1β2αn − (−1)n−1α2βn]

=(−1)n−1F1[(−F−nFn + F1)(−F−n−1F2 + F−n) + F−n−1Fn(−F−nF2 + F−n+1)].

From the definition of A1 and B1, we get

det A1 = det B1 = (−1)
(n−1)(n−2)

2 .

Therefore, we have

det TF,n =(−1)n−1F1[(−F−nFn + F1)(−F−n−1F2 + F−n)

+ F−n−1Fn(−F−nF2 + F−n+1)]

=Fn+1.

Since Fn+1 �= 0, the n× n Foeplitz matrix is invertible. Thus, the proof is completed.

Remark 2. Theorem 1 gives the relationship between the Foeplitz matrix and the Fibonacci number. From the
perspective of number theory, the (n + 1)th Fibonacci number can be represented by the determinant of an n× n
Foeplitz matrix.
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Theorem 2. Let TF,n be an n× n Foeplitz matrix defined as in (4). The inverse matrix of TF,n is

T−1
F,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fn
Fn+1

−1 0 0 0 · · · · · · · · · 0 (−1)n

Fn+1

1 −1 −1 0 0 · · · · · · · · · 0 0
0 1 −1 −1 0 0
...

. . . 1 −1 −1
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . 1 −1 −1 0

0 · · · · · · · · · · · · · · · 0 1 −1 −1
− 1

Fn+1
0 · · · · · · · · · · · · · · · 0 1 Fn

Fn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (14)

where Fn and Fn+1 are the nth and (n + 1)th Fibonacci numbers, respectively.

Proof. For n = 1, it is easy to check that

TF,1 = 1 and T−1
F,1 =

F1

F2
.

For n = 2, we have

TF,2 =

(
1 1
−1 1

)
and T−1

F,2 =

(
1
2 − 1

2
1
2

1
2

)
,

and for n = 3, we have

TF,3 =

⎛⎜⎝ 1 1 2
−1 1 1
2 −1 1

⎞⎟⎠ and T−1
F,3 =

⎛⎜⎝ 2
3 −1 − 1

3
1 −1 −1
− 1

3 1 2
3

⎞⎟⎠ ,

which are in agreement with Equation (14). Now, we consider the case n ≥ 4. The explicit expression
of the inverse of the Foeplitz matrix can be obtained by use of Equation (14). Define addtionally two
nonsigular matrices

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0

0 1
. . .

...

0 − βn
αn

1
. . .

...
...

. . . 0
. . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . 1 0

0 · · · · · · · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n
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and

B2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − Fn
F1

Fnαn−1
αn

− Fn−1 · · · Fnα3
αn

− F3
Fnα2
αn

− F2

0 1 − αn−1
αn

· · · − α3
αn

− α2
αn

...
. . . 1 0 · · · 0

...
. . . . . . . . .

...
...

. . . 1 0
0 · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where αi and βn are defined as in (11) and (12), respectively.
Multiplying A1TF,nB1 by A2 from the left and by B2 from the right, we obtain

ATF,nB = A2 A1TF,nB1B2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 0 0 0 · · · 0 0
0 αn 0 0 · · · 0 0
0 0 βn−1 − βnαn−1

αn
βn−2 − βnαn−2

αn
· · · β3 − βnα3

αn
β2 − βnα2

αn
...

. . . 1 0 · · · · · · 0
...

. . . 1
. . .

...
...

. . . . . . . . .
...

0 · · · · · · · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where

A = A2 A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
−Fn 1

βn F−n
αn

− F−n−1 1 − βn
αn
− 1

0 1 −1 −1
...

... ... ...

0 1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

B = B1B2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − Fn
F1

Fnαn−1
αn

− Fn−1 · · · Fnα3
αn

− F3
Fnα2
αn

− F2

0 · · · · · · · · · 0 1
...

... 1 0
...

... ... ...

...
...

... 1 0 · · · 0
0 1 − αn−1

αn
· · · − α3

αn
− α2

αn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

with αi and βn are defined as in (11) and (12), respectively. In addition, the matrix ATF,nB admits a
block partition of the form

ATF,nB = N ⊕ M, (15)
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where N ⊕ M denotes the direct sum of the matrices N and M, N = diag(F1, αn) is a nonsingular
diagonal matrix, and

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− βnαn−1
αn

+ βn−1 − βnαn−2
αn

+ βn−2 · · · − βnα3
αn

+ β3 − βnα2
αn

+ β2

1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(n−2)×(n−2)

.

From (15), we obtain
T−1

F,n = B(N−1 ⊕ M−1)A.

Based on the defintions of N and M, we have N−1 = diag(F−1
1 , α−1

n ) and

M−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
αn

β2αn−βnα2
− βn−1αn−βnαn−1

β2αn−βnα2
· · · − β4αn−βnα4

β2αn−βnα2
− β3αn−βnα3

β2αn−βnα2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(n−2)×(n−2)

.

By direct computation, we have

T−1
F,n = B(N−1 ⊕ M−1)A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fn
Fn+1

−1 0 0 0 · · · · · · · · · 0 (−1)n

Fn+1

1 −1 −1 0 0 · · · · · · · · · 0 0
0 1 −1 −1 0 0
...

. . . 1 −1 −1
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . 1 −1 −1 0

0 · · · · · · · · · · · · · · · 0 1 −1 −1
− 1

Fn+1
0 · · · · · · · · · · · · · · · 0 1 Fn

Fn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.

Remark 3. It is well known that if you divide Fn by Fn+1, then these ratios get closer and closer to about
0.618, which is known to many people as the Golden Ratio, a number which has fascinated mathematicians,
scientists and artists for centuries. Equation (14) can be appreciated in many different ways, and it is easy to see
that top-left and bottom-right corner entries of T−1

F,n get closer and closer to the Golden Ratio. In fact, Toeplitz
matrices, tridiagonal Toeplitz matrices with perturbed corner entries, the Fibonacci number, and the Golden
Ratio are all connected by Equation (14).

2.2. Determinant and Inverse Matrix of a Fankel Matrix

In this subsection, the determinant and the inverse of the Fankel matrix HF,n are studied.
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Theorem 3. Let HF,n be an n× n Fankel matrix defined as in (5). Then HF,n is invertible and

det HF,n =(−1)
(n−1)n

2 Fn+1,

where Fn+1 is the (n + 1)th Fibonacci number.

Proof. From (8), it follows that det HF,n = det În det TF,n. We obtain this conclusion by the fact that

det În = (−1)
n(n−1)

2 and Theorem 1.

Remark 4. This Theorem gives the relationship between the Fankel matrix and the Fibonacci number. From the
standpoint of number theory, the (n + 1)th Fibonacci number can be expressed as the product of the determinant
of an n× n Fankel matrix and a sign function.

Theorem 4. Let HF,n be an n× n Fankel matrix defined as in (5). Then inverse matrix of HF,n is

H−1
F,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
Fn+1

0 0 0 0 · · · 0 0 1 Fn
Fn+1

0 · · · · · · · · · · · · · · · 0 1 −1 −1
...

... 1 −1 −1 0
...

... ... ... ... ...

...
...

... ... ... ... ...
...

...

... ... ... ... ...

...
...

... ... ... ... ...

...

0 1 −1 −1

...

...
1 −1 −1 0 · · · · · · · · · · · · · · · 0
Fn

Fn+1
−1 0 0 0 · · · 0 0 0 (−1)n

Fn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (16)

where Fn and Fn+1 are the nth and (n + 1)th Fibonacci numbers, respectively.

Proof. We obtain this conclusion by formula (8) and Theorem 2.

Remark 5. Equation (16) can be appreciated in many different ways, and it is easy to see that bottom-left and
top-right corner entries of H−1

F,n get closer and closer to the Golden Ratio. In fact, Hankel matrices, sub-tridiagonal
Hankel matrices with perturbed corner entries, the Fibonacci number, and the Golden Ratio are all connected by
Equation (16).

2.3. Determinant and Inverse Matrix of a Loeplitz Matrix

In this subsection, the determinant and the inverse of the Loeplitz matrix TL,n are studied.

Theorem 5. Let TL,n be an n× n Loeplitz matrix defined as in (6). Then TL,n is invertible and

det TL,n = (−1)n+1Ln+1 − 2n, f or n ≥ 1, (17)

where Ln+1 is the (n + 1)th Lucas number.

Proof. For n ≤ 3, it is easy to check that

det TL,1 = 1, det TL,2 = −8 and det TL,3 = −1.
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Therefore, Equation (17) is satisfied. Now, we consider the case n > 3. Define additional nonsingular
matrices,

Δ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−L−n 1
−L−n−1 1 −1

0 1 −1 −1
...

... ... ...

0 1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.

Multiplying TL,n by Δ1 from the left, we obtain

Δ1TL,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 L2 L3 · · · Ln−2 Ln−1 Ln

0 a2 a3 · · · an−2 an−1 an

0 b2 b3 · · · bn−2 bn−1 bn

0 · · · · · · 0 2 −1 0
...

... ... ... ...

...
...

... 2 −1

...
...

0 2 −1 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ai = −L−nLi + L−n+i−1, (i = 2, 3, · · · , n− 1),
an = −L−nLn + L1,
bi = −L−n−1Li + L−n+i−2, (i = 2, 3, · · · , n− 2),
bn−1 = −L−n−1Ln−1 + L1 − L−2,
bn = −L−n−1Ln + L2 − L1.

(18)

Then, multiplying Δ1TL,n by B1 from the right, we have

Δ1TL,nB1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 Ln Ln−1 Ln−2 · · · L3 L2

0 an an−1 an−2 · · · a3 a2
... bn bn−1 bn−2 · · · b3 b2
... 0 −1 2 0 · · · 0
...

...
. . . . . . . . . . . .

...
...

...
. . . −1 2 0

0 0 · · · · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (19)

and

det(Δ1TL,nB1) =det(Δ1)det(TL,n)det(B1)

=L1(an

n−2

∑
i=1

2n−2−ibn−i − bn

n−2

∑
i=1

2n−2−ian−i)

=2n−3[(−L−n−1Ln−1 + L1 − L−2)(−L−nLn + L1)− (−L−nLn−1 + L−2)

· (−L−n−1Ln + L0)] +
n−2

∑
i=2

2n−2−i[(−L−n−1Ln−i + L−i−2)(−L−nLn + L1)

− (−L−nLn−i + L−i−1)(−L−n−1Ln + L0)].
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From the definition of Δ1 and B1, we get

det Δ1 = det B1 = (−1)
(n−1)(n−2)

2 .

By formulas (2) and (3), we obtain

det TL,n = (−1)n+1Ln+1 − 2n,

which completes the proof.

Remark 6. This Theorem gives the relationship between the Loeplitz matrix and the Lucas number. From the
perspective of number theory, the (n + 1)th Lucas number can be expressed as the sum of the determinant of
n× n Loeplitz matrix and scalar matrix.

Theorem 6. Let TL,n be an n× n Loeplitz matrix defined as in (6). Then

T−1
L,1 = 1, T−1

L,2 =

(
− 1

8
3
8

3
8 − 1

8

)
, T−1

L,3 =

⎛⎜⎝ 8 −9 −5
15 −17 −9
−13 15 8

⎞⎟⎠ ,

and for n > 3, T−1
L,n is

T−1
L,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q3 Q2 2n−3Q1 · · · 22Q1 2Q1 Q1

Q4 Q5 Q2
. . . . . . 22Q1 2Q1

2Q4 Q6 Q5
. . . . . . . . . 22Q1

... 2Q6
. . . . . . . . . . . .

...

2n−4Q4
...

. . . . . . Q5 Q2 2n−3Q1

2n−3Q4 2n−4Q6 · · · 2Q6 Q6 Q5 Q2

Q7 2n−3Q4 2n−4Q4 · · · 2Q4 Q4 Q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (20)

where

Q1 =
5

det TL,n
,

Q2 = 1 + 2n−2Q1,

Q3 =
det TL,n−1

det TL,n
,

Q4 =
(−1)n(Ln + Ln+2)

det TL,n
,

Q5 = 3 + 2n−1Q1,

Q6 = 5 + 2nQ1,

Q7 =
2n−2[Ln + (−1)n+1Ln−1] + (−1)n

det TL,n
,

det TL,n = (−1)n+1Ln+1 − 2n,

and Lj (j = 1, ± 2, · · · , ± n) is the jth Lucas number.
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Proof. For n ≤ 3, it is easy to check that

T−1
L,1 = 1, T−1

L,2 =

(
− 1

8
3
8

3
8 − 1

8

)
, T−1

L,3 =

⎛⎜⎝ 8 −9 −5
15 −17 −9
−13 15 8

⎞⎟⎠ .

Now, we consider the case n ≥ 4. The explicit expression of the inverse of the Loeplitz matrix can be
found by use of Equation (20). Define additionally two nonsigular matrices.

Δ2 =

⎛⎜⎜⎜⎜⎜⎜⎝
1

1
− bn

an
1

. . .
1

⎞⎟⎟⎟⎟⎟⎟⎠
n×n

and

∇2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − Ln
L1

τn−1 · · · τ3 τ2

0 1 − an−1
an

· · · − a3
an

− a2
an

... 0 1 0 · · · 0

...
...

. . . . . . . . .
...

...
...

. . . . . . 0
0 0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where

τi =
Lnai
L1an

− Li
L1

, (i = 2, 3, · · · , n− 1), (21)

with ai and bi are defined as in (18).
Multiplying Δ1TL,nB1 by Δ2 from the left and by ∇2 from the right, we get

ΔTL,n∇ = Δ2Δ1TL,nB1∇2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 0 0 0 · · · 0 0
0 an 0 0 · · · 0 0
... 0 γn−1 γn−2 · · · γ3 γ2
... 0 −1 2 0 · · · 0
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . 0

0 0 · · · · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,
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where

Δ = Δ2Δ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
−L−n 1

bn L−n
an

− L−n−1 1 −bn
an
− 1

0 1 −1 −1
...

... ... ...

0 1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

∇ = B1∇2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − Ln
L1

τn−1 · · · τ3 τ2

0 · · · · · · · · · 0 1
...

... 1 0
...

... ... ...

...
...

... 1 0 · · · 0
0 1 − an−1

an
· · · − a3

an
− a2

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

γi = − bnai
an

+ bi, (i = 2, 3, · · · , n− 1),

with ai, bi and τi are defined as in (18) and (21), respectively. In addition, the matrix ΔTL,n∇ admits a
block partition of the form

ΔTL,n∇ = N ⊕M, (22)

where N ⊕M denotes the direct sum of the matrices N and N . N = diag(L1, an) is a nonsingular
diagonal matrix,

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γn−1 γn−2 γn−3 · · · γ3 γ2

−1 2 0 · · · · · · 0

0 −1 2
. . .

...
...

. . . . . . . . . . . .
...

...
. . . −1 2 0

0 · · · · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n−2)×(n−2)

.

Denote � = γn−1 −VC−1U �= 0, where V = (γn−2 γn−3 · · · γ3 γ2)1×(n−3),

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 · · · · · · 0

−1 2
. . .

...

0
. . . . . . . . .

...
...

. . . −1 2 0
0 · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n−3)×(n−3)

and U = (−1 0 · · · 0)T
1×(n−3). From (22), we obtain

T−1
L,n = ∇(N−1 ⊕M−1)Δ.

105



Mathematics 2019, 7, 939

Based on the definitions of N and M, we have N−1 = diag(L−1
1 , a−1

n ). By Lemma 1, we get

C−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 0 · · · · · · · · · · · · 0

�2 �1
. . .

...

�3 �2 �1
. . .

...
...

. . . . . . . . . . . .
...

�n−5
. . . . . . . . . . . . . . .

...

�n−4 �n−5
. . . . . . �2 �1 0

�n−3 �n−4 �n−5 · · · �3 �2 �1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n−3)×(n−3)

,

where

�i =
1
2i , 1 ≤ i ≤ n− 3.

From Lemma 5 in [20], we have

M−1 =

(
1
� − 1

�VC−1

− 1
�C−1U C−1 + 1

�C−1UVC−1

)
(n−2)×(n−2)

where

VC−1 = (η̂1, η̂2, · · · , η̂n−3),

C−1 +
1
�

C−1UVC−1 = [m′
i,j]

n−3
i,j=1,

η̂i =
n−2−i

∑
j=1

γn−1−j�i, 1 ≤ i ≤ n− 3,

m′
i,j = �i−j+1 −

η̂j

�
, 1 ≤ j ≤ i ≤ n− 3,

m′
i,j = −

η̂j

�
, 1 ≤ i < j ≤ n− 3.

Therefore, we get

N−1 ⊕M−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · · · · · · · 0

0 1
an

0 · · · · · · · · · 0

0 0 1
� − η̂1

� − η̂2
� · · · − η̂n−3

�

...
... �1

� m′
1,1 m′

1,2 · · · m′
1,n−3

...
... �2

� m′
2,1 m′

2,2 · · · m′
2,n−3

...
...

...
...

...
. . .

...

0 0 �n−3
� m′

n−3,1 m′
n−3,2 · · · m′

n−3,n−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.

106



Mathematics 2019, 7, 939

Multiplying N−1 ⊕M−1 by Δ from the right, we obtain

(N−1 ⊕M−1)Δ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0

−L−n
an

0 · · · · · · · · · 0 1
an

c1,1 c1,2 c1,3 c1,4 c1,5 · · · c1,n

c2,1 c2,2 c2,3 c2,4 c2,5 · · · c2,n

c3,1 c3,2 c3,3 c3,4 c3,5 · · · c3,n

...
...

...
...

...
. . .

...

cn−2,1 cn−2,2 cn−2,3 cn−2,4 cn−2,5 · · · cn−2,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where

c1,1 =
1
�
(

bnL−n

an
− L−(n+1)), ci,1 =

�i−1

�
(

bnL−n

an
− L−(n+1)), 2 ≤ i ≤ n− 2,

c1,2 = − η̂n−3

�
, ci,2 = m′

i−1,n−3, 2 ≤ i ≤ n− 2,

c1,3 = − η̂n−4

�
+

η̂n−3

�
, ci,3 = m′

i−1,n−4 −m′
i−1,n−3, 2 ≤ i ≤ n− 2,

c1,j = −
η̂n−1−j

�
+

η̂n−j

�
+

η̂n+1−j

�
, 4 ≤ j ≤ n− 1,

ci,j = m′
i−1,n−1−j −m′

i−1,n−j −m′
i−1,n+1−j, 2 ≤ i ≤ n− 2, 4 ≤ i ≤ n− 1,

c1,n =
1
�
(
−bn

an
− 1) +

η̂1

�
, ci,n =

�i−1

�
(
−bn

an
− 1)−m′

i−1,1, 2 ≤ i ≤ n− 2.

By formulas (2) and (3), we have

T−1
L,n = ∇(N−1 ⊕M−1)Δ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q3 Q2 2n−3Q1 · · · 22Q1 2Q1 Q1

Q4 Q5 Q2
. . . . . . 22Q1 2Q1

2Q4 Q6 Q5
. . . . . . . . . 22Q1

... 2Q6
. . . . . . . . . . . .

...

2n−4Q4
...

. . . . . . Q5 Q2 2n−3Q1

2n−3Q4 2n−4Q6 · · · 2Q6 Q6 Q5 Q2

Q7 2n−3Q4 2n−4Q4 · · · 2Q4 Q4 Q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where Qi(i = 1, 2, · · · , 7) is the same as in Theorem 6.

2.4. Determinant and Inverse Matrix of a Lankel Matrix

In this subsection, the determinant and the inverse of the Lankel matrix HL,n are studied.

Theorem 7. Let HL,n be an n× n Lankel matrix defined as in (7). Then HL,n is invertible and

det HL,n =(−1)
n(n−1)

2
[
(−1)n+1Ln+1 − 2n]

,

where Ln+1 is the (n + 1)th Lucas number.
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Proof. From formula (9), it follows that det HL,n = det În det TL,n. We obtain the desired conclusion by

using det În = (−1)
n(n−1)

2 and Theorem 5.

Remark 7. This Theorem gives the relationship between the Lankel matrix and the Lucas number. In terms of
number theory, the (n + 1)th Lucas number can be expressed as the sum of the determinant of n× n Lankel
matrix and scalar matrix.

Theorem 8. Let HL,n be an n× n Lankel matrix defined as in (7). Then

H−1
L,1 = 1, H−1

L,2 =

(
3
8 − 1

8
− 1

8
3
8

)
, H−1

L,3 =

⎛⎜⎝ −13 15 8
15 −17 −9
8 −9 −5

⎞⎟⎠ ,

and for n > 3, H−1
L,n is

H−1
L,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q7 2n−3Q4 2n−4Q4 · · · 2Q4 Q4 Q3

2n−3Q4 2n−4Q6 · · · 2Q6 Q6 Q5 Q2

2n−4Q4
...

... ... Q5 Q2 2n−3Q1
... 2Q6

... ... ... ...

...

2Q4 Q6 Q5

... ... ... 22Q1

Q4 Q5 Q2

... ... 22Q1 2Q1

Q3 Q2 2n−3Q1 · · · 22Q1 2Q1 Q1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where Qi(i = 1, 2, · · · , 7) is the same as in Theorem 6.

Proof. By formula (9), we have H−1
L,n = ÎnT−1

L,n . Thus we get the desired conclusion from Theorem 6.

3. Example

In this section, an example demonstrates the method which was introduced above for the
calculation of the determinant and inverse of the Foeplitz matrix and the Loeplitz matrix.

Example 1. Here we consider an 8× 8 Foeplitz matrix:

TF,8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 3 5 8 13 21
−1 1 1 2 3 5 8 13
2 −1 1 1 2 3 5 8
−3 2 −1 1 1 2 3 5
5 −3 2 −1 1 1 2 3
−8 5 −3 2 −1 1 1 2
13 −8 5 −3 2 −1 1 1
−21 13 −8 5 −3 2 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
8×8

.

From formula (10), we obtain

det TF,8 =F9 = 34.
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As the inverse calculation, if we use the corresponding formulas in Theorems 2, we have F8 = 21, F9 = 34.
So we get

T−1
F,8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

21
34 −1 0 0 0 0 0 1

34
1 −1 −1 0 0 0 0 0
0 1 −1 1 0 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 1 −1 −1 0 0
0 0 0 0 1 −1 −1 0
0 0 0 0 0 1 −1 −1
− 1

34 0 0 0 0 0 1 21
34

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
8×8

.

Example 2. Here we consider a 5× 5 Loeplitz matrix:

TL,5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 4 7 11

3 1 3 4 7

−4 3 1 3 4

7 − 4 3 1 3

−11 7 − 4 3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
5×5

.

From formula (18), we obtain

det TL,5 =− (2L7 − L9)− 25 = −14.

As the inverse calculation, if we use the corresponding formulas in Theorem 6, we have Q1 = − 5
14 , Q2 =

− 13
7 , Q3 = 27

14 , Q4 = 20
7 , Q5 = − 19

7 , Q6 = − 45
7 , Q7 = − 143

14 . So we get

T−1
L,5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

27
14 − 13

7 − 10
7 − 5

7 − 5
14

20
7 − 19

7 − 13
7 − 10

7 − 5
7

40
7 − 45

7 − 19
7 − 13

7 − 10
7

80
7 − 90

7 − 45
7 − 19

7 − 13
7

− 143
14

80
7

40
7

20
7

27
14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
5×5

.
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Abstract: In this paper, we study periodic tridiagonal Toeplitz matrices with perturbed corners.
By using some matrix transformations, the Schur complement and matrix decompositions techniques,
as well as the Sherman-Morrison-Woodbury formula, we derive explicit determinants and inverses of
these matrices. One feature of these formulas is the connection with the famous Mersenne numbers.
We also propose two algorithms to illustrate our formulas.

Keywords: determinant; inverse; Mersenne number; periodic tridiagonal Toeplitz matrix;
Sherman-Morrison-Woodbury formula

1. Introduction

Mersenne numbers are ubiquitous in combinatorics, group theory, chaos, geometry, physics,
etc. [1]. They are generated by the following recurrence [2]:

Mn+1 = 3Mn − 2Mn−1 where M0 = 0, M1 = 1, n ≥ 1; (1)

M−(n+1) =
3
2

M−n −
1
2

M−(n−1) where M0 = 0, M−1 = −1
2

, n ≥ 1. (2)

The Binet formula says that the nth Mersenne number Mn = 2n − 1 [3]. One application we
would like to mention is that Nussbaumer [4] applied number theoretical transform closely related to
Mersenne number to deal with problems of digital filtering and convolution of discrete signals.

In this paper, we study some basic quantities (determinants and inverses) associated with the
periodic tridiagonal Toeplitz matrix with perturbed corners of type 1, which is defined as follows

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 2h̄ 0 · · · 0 γ1

0 −3h̄
. . . . . . 0

0 h̄
. . . . . . . . .

...
...

. . . . . . . . . 2h̄ 0

0
. . . . . . − 3h̄ 2h̄

αn 0 · · · 0 h̄ γn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

, (3)

where α1, αn, γ1, γn, h̄ are complex numbers with h̄ �= 0. Let În be the n × n “reverse unit matrix”,
which has ones along the secondary diagonal and zeros elsewhere. A matrix of the form B := ÎnA În is

Mathematics 2019, 7, 893; doi:10.3390/math7100893 www.mdpi.com/journal/mathematics111
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called a periodic tridiagonal Toeplitz matrix with perturbed corners of type 2, we say that B is induced
by A. It is readily seen that A is a periodic tridiagonal Toeplitz matrix with perturbed corners of type
1 if and only if its transpose AT is a periodic tridiagonal Toeplitz matrix with perturbed corners of
type 2.

Tridiagonal matrices appear not only in pure linear algebra, but also in many practical applications,
such as, parallel computing [5], computer graphics [6], fluid mechanics [7,8], chemistry [9], and partial
differential equations [10–15]. Taking linear hyperbolic equation as an example, some scholars have
studied some matrices in discretized partial differential equations. Chan and Jin [16] discussed a linear
hyperbolic equation considered by Holmgren and Otto [17] in one-dimensional and two-dimensional
cases. Here we restate the linear hyperbolic equation in the two-dimensional case,

∂u(x1, x2, t)
∂t

+ v1
∂u(x1, x2, t)

∂x1
+ v2

∂u(x1, x2, t)
∂x2

= g,

where 0 < x1, x2 ≤ 1, t > 0, u(x1, 0, t) = f (x1 − at), , u(0, x1, t) = f (x2 − at), u(x1, x2, t) =

f (x1 + x2), g = (v1 + v2 − a) f ′. Here v1, v2, and a are positive constants and f is a scalar function with
derivative f ′. Denote s1, s2, k as the two spatial steps and time step respectively. For simplicity, assume
that v1 = v2 = v and s1 = s2 = s. The linear hyperbolic equation discretized based on trapezoidal rule
in time and center difference in two spaces, respectively. It’s coefficient matrix is a tridiagonal matrix
with perturbed last row:

℘ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 � 0 · · · · · · · · · 0

−� . . . . . . . . .
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . −� 2 �

0 · · · · · · · · · 0 −2� 2 + 2�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

,

where � = vk/s. On the other hand, some parallel computing algorithms are also designed for solving
tridiagonal systems on graphics processing unit (GPU), which are parallel cyclic reduction [18] and
partition methods [19]. Recently, Yang et al. [20] presented a parallel solving method which mixes
direct and iterative methods for block-tridiagonal equations on CPU-GPU heterogeneous computing
systems, while Myllykoski et al. [21] proposed a generalized graphics processing unit implementation
of partial solution variant of the cyclic reduction (PSCR) method to solve certain types of separable
block tridiagonal linear systems. Compared to an equivalent CPU implementation that utilizes a single
CPU core, PSCR method indicated up to 24-fold speedups.

On the other hand, many studies have been conducted for tridiagonal matrices or periodic
tridiagonal matrices, especially for their determinants and inverses [22–30]. Two decades ago,
Wittenburg [31] studied the inverse of tridiagonal toeplitz and periodic matrices and applied them to
elastostatics and vibration theory. Recently, El-Mikkawy and Atlan [32] proposed a symbolic algorithm
based on the Doolittle LU factorization and Jia et al. put forward some algorithms [33–35] based on
block diagonalization technique for k-tridiagonal matrix. In 2018, Tim and Emrah [36] used backward
continued fractions to derive the LU factorization of periodic tridiagonal matrix and then derived
an explicit formula for its inverse. Furthermore, some scholars were attracted by the fact that one
could view periodic tridiagonal Toeplitz matrices as a special case of periodic tridiagonal matrices.
Shehawey [37] generalized Huang and McColl’s [38] work and put forward the inverse formula for
periodic tridiagonal Toeplitz matrices.
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The rest of the paper is organized as follows: Section 2 describes the detailed derivations
of the determinants and inverses of periodic tridiagonal Toeplitz matrices with perturbed
corners through matrix transformations, Schur complement and matrix decomposition with the
Sherman-Morrison-Woodbury formula [39]. Specifically, the formulas on representation of the
determinants and inverses of these typies matrices in the form of products of Mersenne numbers and
some initial values. Furthermore, the properties of the periodic tridiagonal Toeplitz matrices with
perturbed corners of type 2 can also be obtained. Section 3 presents the numerical results to test the
effectiveness of our theoretical results. The final conclusions are given in Section 4.

2. Determinants and Inverses

In this section, we derive explicit formulas for the determinants and inverses of a periodic
tridiagonal Toeplitz matrix with perturbed corners. Main effort is made to work out those for periodic
tridiagonal Toeplitz matrix with perturbed corners of type 1, since the results for type 2 matrices would
follow immediately.

Theorem 1. Let A = (ai,j)
n
i,j=1 (n ≥ 3) be an n × n periodic tridiagonal Toeplitz matrix with perturbed

corners of type 1. Then

detA = (−h̄)n−2{[
2Mn−2α1 − 4(Mn−3 + 1)αn

]
h̄ + Mn−1(α1γn − αnγ1)

}
, (4)

where Mi (i = n− 3, n− 2, n− 1) is the ith Mersenne number.

Proof. Define the circulant matrix

ε = (εi,j)
n
i,j=1, (5)

where

εi,j =

⎧⎪⎪⎨⎪⎪⎩
1, i = n, j = 1,

1, j = i + 1,

0, otherwise.

Clearly, ε is invertible, and

det ε = (−1)n−3. (6)

Multiply A by ε from right and then partition Aε into four blocks:

Aε =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 α1 2h̄ 0 · · · · · · · · · 0

0 0 −3h̄ 2h̄ 0
...

0 0 h̄ −3h̄ 2h̄ 0
...

...
... 0 h̄ −3h̄ 2h̄

. . .
...

...
...

... 0
. . . . . . . . . 0

0
...

...
...

. . . . . . 2h̄

2h̄ 0
...

...
. . . . . . . . . −3h̄

γn αn 0 0 · · · · · · 0 h̄

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
A11 A12

A21 A22

)
. (7)
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Since A22 is upper triangular, its determinant is clear which is

detA22 = h̄n−2. (8)

As we assume h̄ �= 0, so A22 is invertible. It is known (see, e.g., ([29], Lemma 2.5)) that A−1
22 =

(äi,j)
n
i,j=1 where

äi,j =

{ Mj−i+1
h̄ , i ≤ j,

0, i > j,

and Mi is the ith Mersenne number.
Next, taking the determinants for both sides of (7) and by (see, e.g., ([40], p. 10)), we get

det(Aε) = detA22 det(A11 −A12A
−1
22 A21). (9)

Therefore

detA =
detA22 det(A11 −A12A

−1
22 A21)

det ε
. (10)

To find detA, we need to evaluate the determinant of (A11 −A12A
−1
22 A21). From (7) we have

A11 −A12A
−1
22 A21 =

(
γ1 − 2Mn−2γn − 4Mn−3h̄ α1 − 2Mn−2αn

Mn−1γn + 2Mn−2h̄ Mn−1αn

)
,

and so

det
(
A11 −A12A

−1
22 A21

)
=[4(Mn−3 + 1)αn − 2Mn−2α1

]
h̄− Mn−1(α1γn − αnγ1). (11)

Finally, applying (6), (8), and (11) to (10), we get the determinant of A, which completes
the proof.

Theorem 2. Let A = (ai,j)
n
i,j=1(n ≥ 3) be a nonsingular periodic tridiagonal Toeplitz matrix with perturbed

corners of type 1. Then A−1 = (ăi,j)
n
i,j=1, where

ăi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Mn−2 h̄+Mn−1γn
ψ , i = 1, j = 1,

4Mn−3 h̄−γ1+2Mn−2γn
ψ , i = 1, j = 2,

(Mn−2+1)αn
−ψ , i = 2, j = 1,

2Mn−3α1 h̄+Mn−2(α1γn−αnγ1)
−ψh̄ , i = 2, j = 2,

3(Mn−3+1)αn
−ψ , i = 3, j = 1,

(Mn−3−1)α1 h̄+(Mn−2+1)αnh̄+Mn−3(α1γn−αnγ1)
−ψh̄ , i = 3, j = 2,

3ăi,j−1 − 2ăi,j−2 +
1
h̄ , i ∈ {2, 3}, j = i + 1,

3ăi,j−1 − 2ăi,j−2,

{
i ∈ {1, 2, 3}, i + 2 ≤ j ≤ n;

3 ≤ j ≤ i ≤ n,

3
2 ăi−1,j − 1

2 ăi−2,j,

{
j ∈ {1, 2}, 4 ≤ i ≤ n;

4 ≤ i < j ≤ n,

(12)

ψ = 2Mn−2α1h̄− (Mn−1 + 1)αnh̄ + Mn−1(α1γn − αnγ1), (13)

and Mi (i = n− 3, n− 2, n− 1) is the ith Mersenne number.
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Proof. Let A−1 = (ăi,j)
n
i,j=1 and the identity matrix In = (ei,j)

n
i,j=1, where

ei,j =

{
1, i = j,

0, otherwise.
(14)

For a nonsingular A,
A
−1

A = AA
−1 = In. (15)

According to (15), we get

ei,j = 2ăi,j−1h̄− 3ăi,j h̄ + ăi,j+1h̄, 1 ≤ i ≤ n, 2 ≤ j ≤ n− 1, (16)

ei,j = ăi−1,j h̄− 3ăi,j h̄ + 2ăi+1,j h̄, 3 ≤ i ≤ n− 1, 1 ≤ j ≤ n. (17)

Based on (14),we get from (16) that

ăi,j = 3ăi,j−1 − 2ăi,j−2,

{
i ∈ {1, 2, 3}, i + 2 ≤ j ≤ n;

3 ≤ j ≤ i ≤ n,
(18)

and ăi,i+1 = 3ăi,i − 2ăi,i−1 +
1
h̄ for i = 2, 3.

Similarly, from (17), we get that

ăi,j =
3ăi−1,j

2
−

ăi−2,j

2
,

{
j ∈ {1, 2}, 4 ≤ i ≤ n;

4 ≤ i < j ≤ n.
(19)

Therefore, based on the above analysis, we need to determine six initial values, that is, ăi,j (i ∈
{1, 2, 3}, j ∈ {1, 2}), for the recurrence relations (18) and (19) in order to compute the inverse of A.
The rest of the proof is devoted to evaluating these particular entries of A−1.

We decompose A as follows:

A = h̄Δ + FG, (20)

where Δ = 3T−1
M,n, F =

(
f T
1 , f T

2
)

, G =

(
g1

g2

)
with

f1 =
(
α1 +

2Mnh̄
Mn+1

,−h̄, 0, · · · , 0, αn −
2h̄

Mn+1

)
1×n,

f2 =
(
γ1 −

(Mn + 1)h̄
Mn+1

, 0, · · · , 0, γn +
2Mnh̄
Mn+1

)
1×n,

g1 =
(
1, 0, · · · , 0

)
1×n,

g2 =
(
0, · · · , 0, 1

)
1×n,

and Mi the ith Mersenne number as before.
It could be verified that Δ−1 = 1

3 (tij)
n
i,j=1, where

tij =

{
Mj−i+1, 1 ≤ i ≤ j ≤ n,

−2Mj−i−1, 1 ≤ j < i ≤ n,

and M−m is given in (2) for m = 1, 2, . . ..
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Applying the Sherman-Morrison-Woodbury formula (see, e.g., ([39] p. 50)) to (20) gives

A
−1 = (h̄Δ + FG)−1 =

1
h̄

Δ−1 − 1
h̄2 Δ−1F(In +

1
h̄

GΔ−1F)−1GΔ−1. (21)

Now we compute each component on the right side of (21).
Multiplying respectively Δ−1 by G and F from left and right,

GΔ−1 =
1
3

(
η1

η2

)
, (22)

Δ−1F =
1
3

(
ξ1 ξ2

)
, (23)

where η1 and η2 are row vectors, ξ1 and ξ2 are column vectors,

η1 = (Mj)
n
j=1,

η2 = (−2Mj−n−1)
n
j=1,

ξT
1 =

(
ξ1,1 − 3h̄, ξ2,1, ξ3,1, · · · , ξn,1

)
,

ξi,1 = Mn−i+1αn − 2M−iα1, i = 1, 2, · · · , n,

ξ2 =
(

Mn−i+1γn − 2M−iγ1 + 2Mn−i h̄
)n

i=1.

Then multiplying (23) by G
h̄ from the left, further adding In and computing the inverse of

the matrix

(
In +

G
h̄

Δ−1F
)−1

=
3h̄
h

(
−2M−nγ1 + γn + 3h̄ −(γ1 + Mnγn + 2Mn−1h̄)

2M−nα1 − αn α1 + Mnαn

)
,

where h = Mn+1
[
M1−n(α1γn − αnγ1) + M2−nα1h̄ − αnh̄

]
. Multiplying the pervious formula(

In +
G
h̄ Δ−1F

)−1 by Δ−1F from the left and by GΔ−1 from the right, respectively, yields

Δ−1F
(

In +
1
h̄

GΔ−1F
)−1GΔ−1 = (kij)

n
i,j=1, (24)

where

k1j =
θ′j h̄

3 + (θ′′j γ1 + θ′′′j γn)h̄2

Mn+1ψ
+

Mjh̄
3

, 1 ≤ j ≤ n,

kij =
(α1η′ij + αnη′′ij)h̄

2 + (α1γn − αnγ1)η
′′′
ij h̄

3Mn+1ψ
, 2 ≤ i ≤ n, 1 ≤ j ≤ n,

ψ = 2Mn−2α1h̄− (Mn−1 + 1)αnh̄ + Mn−1(α1γn − αnγ1),

θ′j = 3Mj(Mn−1 + 1)− Mn−1Mn−j+1(Mj + 1), 1 ≤ j ≤ n,

θ′′j = Mn Mj − Mn−j+1(Mj−1 + 1), 1 ≤ j ≤ n,

θ′′′j = Mj(Mn−1 + 1)− Mn Mn−j+1(Mj−1 + 1), 1 ≤ j ≤ n,

η′ij = 2Mn Mn−i Mj − 3Mi Mj(Mn−i + 1) + Mn Mi−1Mn−j+1(Mj−i+1 + 1), 2 ≤ i ≤ n, 1 ≤ j ≤ n,

η′′ij = Mi−1Mn+j−1(Mn+j−1 + 1)− Mn−i+2Mj(Mn−1 + 1), 2 ≤ i ≤ n, 1 ≤ j ≤ n,

η′′′ij = Mn+1[Mn−i Mj + Mi−1Mn−j+1(Mj−i + 1)], 2 ≤ i ≤ n, 1 ≤ j ≤ n.
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From (21) and (24), we have

(ăi,j)
n
i,j=1 =

1
h̄

Δ−1 − 1
h̄2 (kij)

n
i,j=1, (25)

where

ăi,j =
Mj−i+1

3h̄
−

ki,j

h̄2 , 1 ≤ i ≤ j ≤ n, (26)

ăi,j =−
2Mj−i−1

3h̄
−

ki,j

h̄2 , 1 ≤ j < i ≤ n. (27)

By (26) we compute,

ă1,1 =
2Mn−2h̄ + Mn−1γn

ψ
,

ă1,2 =
4Mn−3h̄− γ1 + 2Mn−2γn

ψ
,

ă2,2 =
2Mn−3α1h̄ + Mn−2(α1γn − αnγ1)

−ψh̄
.

By (27) we compute,

ă2,1 =
(Mn−2 + 1)αn

−ψ
,

ă3,1 =
3(Mn−3 + 1)αn

−ψ
,

ă3,2 =
(Mn−3 − 1)α1h̄ + (Mn−2 + 1)αnh̄ + Mn−3(α1γn − αnγ1)

−ψh̄
.

This completes the proof.

Remark 1. Formulas (26) and (27) would give an analytic formula for A−1. However, there is a big advantage
of (12) from computational consideration as we shall see from Section 3.

The next two theorems are parallel results for type 1 matrices.

Theorem 3. Let A be a periodic tridiagonal Toeplitz matrix with perturbed corners of type 1 and B be a periodic
tridiagonal Toeplitz matrix with perturbed corners of type 2, which is induced by A. Then

detB = (−h̄)n−2{[
2Mn−2α1 − 4(Mn−3 + 1)αn

]
h̄ + Mn−1(α1γn − αnγ1)

}
.

Proof. Since detB = det În detAdet În, we obtain this conclusion by using Theorem 1 and det În =

(−1)
n(n−1)

2 .

Theorem 4. Let A be a periodic tridiagonal Toeplitz matrix with perturbed corners of type 1 and B be a periodic
tridiagonal Toeplitz matrix with perturbed corners of type 2, which is induced by A. Then

B
−1 = (ăn+1−i,n+1−j)

n
i,j=1,

where ăi,j is the same as (12).

Proof. It follows immediately from B−1 = Î−1
n A−1 Î−1

n = ÎnA
−1 În and Theorem 2.
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3. Algorithms

In this section, we give two algorithms for finding the determinant and inverse of a periodic
tridiagonal Toeplitz matrix with perturbed corners of type 1, which is called A. Besides, we analyze
these algorithms to illustrate our theoretical results.

Firstly, based on Theorem 1, we give an algorithm for computing determinant of A as following:
Based on Algorithm 1, we make a comparison of the total number operations for determinant of

A between LU decomposition and Algorithm 1 in Table 1. Specifically, we get that the total number
operation for the determinant of A is 2n + 11, which can be reduced to O(logn) (see, [41] pp. 226–227).

Table 1. Comparison of the total number operations for determinant of A.

Algorithms Number Operations

LU decomposition algorithm 13n− 15
Algorithm 1 2n + 11

Algorithm 1: The determinant of a periodic tridiagonal Toeplitz matrix with perturbed corners
of type 1

Step 1: Input α1, αn, γ1, γn, h̄, order n and generate Mersenne numbers
Mi (i = n− 3, n− 2, n− 1) by (1).
Step 2: Calculate and output the determinant of A by (4).

Next, based on Theorem 2, we give an algorithm for computing inverse of A as following:

Algorithm 2: The inverse of a periodic tridiagonal Toeplitz matrix with perturbed corners of
type 1

Step 1: Input α1, αn, γ1, γn, h̄, order n and generate Mersenne numbers
Mi (i = n− 3, n− 2, n− 1) by (1).
Step 2: Calculate ψ by (13) and six initial values ă1,1, ă1,2, ă2,1, ă2,2, ă3,1, ă3,2 by (12).
Step 3: Calculate the remaining elements of the inverse:

ă2,3 = 3ă2,2 − 2ă2,1 +
1
h̄

,

ă3,4 = 3ă3,2 − 2ă3,1 +
1
h̄

,

ăi,j = 3ăi,j−1 − 2ăi,j−2, i ∈ {1, 2, 3}, i + 2 ≤ j ≤ n,

ăi,j = 3ăi,j−1 − 2ăi,j−2, i ∈ {1, 2, 3}, 3 ≤ j ≤ i ≤ n,

ăi,j =
3
2

ăi−1,j −
1
2

ăi−2,j, j ∈ {1, 2}, 4 ≤ i ≤ n,

ăi,j =
3
2

ăi−1,j −
1
2

ăi−2,j, 4 ≤ i < j ≤ n.

Step 4: Output the inverse A−1 = (ăi,j)
n
i,j=1.

To test the effectiveness of Algorithm 2, we compare the total number of operations for the inverse
of A between LU decomposition and Algorithm 2 in Table 2. The total number operation of LU
decomposition is 5n3

6 + 3n2 + 91n
6 − 21, whereas that of Algorithm 2 is 7n2

2 − 3n
2 + 30.
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Table 2. Comparison of the total number operations for inverse of A.

Algorithms Number Operations

LU decomposition algorithm 5n3

6 + 3n2 + 91n
6 − 21

Algorithm 2 7n2

2 − 3n
2 + 30

4. Discussion

In this paper, explicit determinants and inverses of periodic tridiagonal Toeplitz matrices with
perturbed corners are represented by the famous Mersenne numbers. This helps to reduce the total
number of operations during the calculation process. Some recent research related to our present
work can be found in [42–48]. Among them, Qi et al. presented some closed formulas for the
Horadam polynomials in terms of a tridiagonal determinant and derived closed formulas for the
generalized Fibonacci polynomials, the Lucas polynomials, the Pell-Lucas polynomials, and the
Chebyshev polynomials of the first kind in terms of tridiagonal determinants.

5. Conclusions

Mersenne numbers are remarkably wide-spread in many diverse areas of the mathematical,
biological, physical, chemical, engineering, and statistical sciences. In this paper, we present explicit
formulas for the determinants and inverses of periodic tridiagonal Toeplitz matrices with perturbed
corners. The representation of the determinant in the form of products of the Mersenne numbers and
some initial values from matrix transformations and Schur complement. For the inverse, our main
approaches include the use of matrix decomposition with the Sherman-Morrison-Woodbury formula.
Especially, the inverse is just determined by six initial values. To test our method’s effectiveness,
we propose two algorithms for finding the determinant and inverse of periodic tridiagonal Toeplitz
matrices with perturbed corners and compare the total number of operations for the two basic
quantities between different algorithms. After comparison, we draw a conclusion that our algorithms
are superior to LU decomposition to some extent.
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1. Introduction

By H (U) we denote the class of functions which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} ,

where C is the set of complex numbers. We also let A be the class of analytic functions having the
following form:

f (z) = z +
∞

∑
n=2

anzn (∀ z ∈ U) , (1)

and which are normalized by the following conditions:

f (0) = 0 and f ′ (0) = 1.

We denote by S the class of functions in A, which are univalent in U.
A function f ∈ A is called starlike in U if it satisfies the following inequality:



(

z f ′ (z)
f (z)

)
> 0 (∀ z ∈ U) .
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The class of all such functions is denoted by S∗. For f ∈ S∗, one can find that (see [1]):

|an| � n for n = 2, 3, ... (2)

Next, by K, we denote the class of close-to-convex functions in U that satisfy the following
inequality:



(

z f ′ (z)
g (z)

)
> 0 (∀ z ∈ U) ,

for some g ∈ S∗.
An example of a function, which is close-to-convex in U, is given by:

F (z) =
z− e2iα cos αz2(

1− eiαz
)2 (0 < α < π)

which maps U onto the complex z-plane excluding a vertical slit (see [2] where some interesting
properties of this function are obtained).

Moreover, by SL∗, we denote the class of functions f ∈ A that satisfy the following inequality:∣∣∣∣∣
(

z f ′ (z)
f (z)

)2

− 1

∣∣∣∣∣ < 1 (∀ z ∈ U) .

Thus a function f ∈ SL∗ is such that z f ′(z)
f (z) lies in the region bounded by the right half of the

lemniscate of Bernoulli given by the following relation:∣∣∣w2 − 1
∣∣∣ < 1,

where

w =
z f ′ (z)

f (z)
.

The above defined class was introduced by Sokół et al. (see [3]) and studied by the many authors
(see, for example, [4–6]).

Next, if two functions f and g are analytic in U, we say that the function f is subordinate to the
function g and write:

f ≺ g or f (z) ≺ g (z) ,

if there exists a Schwarz function w(z) that is analytic in U with:

w (0) = 0 and |w (z)| < 1,

such that:
f (z) = g

(
w (z)

)
.

Furthermore, if the function g is univalent in U, then we have the following equivalence
(see, for example, [7]; see also [8]):

f (z) ≺ g(z) (z ∈ U) � f (0) = g(0) and f (U) ⊂ g(U).

We next denote by P the class of analytic functions p which are normalized by p(0) = 1 and have
the following form:

p (z) = 1 +
∞

∑
n=1

pnzn, (3)
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such that:

 (p (z)) > 0 (∀ z ∈ U) .

In recent years, several interesting subclasses of analytic and multivalent functions have been
introduced and investigated (see, for example, [9–16]). Motivated and inspired by recent and ongoing
research, we introduce and investigate here a new subclass of close-to-convex functions in U which are
associated with the lemniscate of Bernoulli by using some techniques similar to those that were used
earlier by Sokół and Stankiewicz (see [3]).

Definition 1. A function f of the form of Equation (1) is said to be in the class KL∗ if and only if:∣∣∣∣∣
(

z f ′ (z)
g (z)

)2

− 1

∣∣∣∣∣ < 1 (4)

for some g ∈ S∗. Equivalently, we have:

z f ′ (z)
g (z)

≺
√

1 + z (∀ z ∈ U)

for some g ∈ S∗.

Thus, clearly, a function f ∈ KL∗ is such that z f ′(z)
g(z) lies in the region bounded by the right half of

the lemniscate of Bernoulli given by the following relation:∣∣∣w2 − 1
∣∣∣ < 1.

A closer look at the above series development of f suggests that many properties of the
function f may be affected (or implied) by the size of its coefficients. The coefficient problem has been
reformulated in the more special manner of estimating |an|, that is, the modulus of the nth coefficient.
In 1916, Bieberbach conjectured that the nth coefficient of a univalent function is less or equal to that of
the Koebe function.

Closely related to the Bieberbach conjecture is the problem of finding sharp estimates for
the coefficients of odd univalent functions, which has the most general form of the square-root
transformation of a function f ∈ S :

l (z) =
√

f (z2) = z + c3z3 + c5z5...

For odd univalent functions, Littlewood and Parley in 1932 proved that, for each postive integer n,
the modulus |c2n+1| is less than an absolute constant M. For M = 1, the bound becomes the
Littlewood–Parley conjecture.

Let n � 0 and q � 1. Then the qth Hankel determinant is defined as follows:

Hq (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1
an+1 . .
. . .
. . .
. . .
an+q−1 . . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
The Hankel determinant plays a vital role in the theory of singularities [17] and is useful in the

study of power series with integer coefficients (see [18–20]). Noteworthy, several authors obtained
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the sharp upper bounds on H2 (2) (see, for example, [5,21–29]) for various classes of functions. It is
a well-known fact for the Fekete-Szegö functional that:∣∣∣a3 − a2

2

∣∣∣ = H2 (1) .

This functional is further generalized as follows:∣∣∣a3 − μa2
2

∣∣∣
for some real or complex number μ. Fekete and Szegö gave sharp estimates of

∣∣a3 − μa2
2

∣∣ for μ real and
f ∈ S , the class of normalized univalent functions in N. It is also known that the functional

∣∣a2a4 − a2
3

∣∣
is equivalent to H2 (2). Babalola [30] studied the Hankel determinant H3 (1) for some subclasses of
analytic functions. In the present investigation, our focus is on the Hankel determinant H3 (1) for the
above-defined function class KL∗.

2. A Set of Lemmas

Lemma 1. (see [31]) Let:
p(z) = 1 + p1z + p2z2 + · · ·

be in the class P of functions with positive real part in U. Then, for any number υ:

∣∣∣p2 − υp2
1

∣∣∣
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−4υ + 2 (υ0)

2 (0υ1)

4υ− 2 (υ1) .

(5)

When υ < 0 or υ > 1, the equality holds true in Equation (5) if and only if:

p(z) =
1 + z
1− z

or one of its rotations. If 0 < υ < 1, then the equality holds true in Equation (5) if and only if:

p(z) =
1 + z2

1− z2

or one of its rotations. If υ = 0, the equality holds true in Equation (5) if and only if:

p(z) =
(

1 + ρ

2

)
1 + z
1− z

+

(
1− ρ

2

)
1− z
1 + z

(0ρ1)

or one of its rotations. If υ = 1, then the equality in Equation (5) holds true if p(z) is a reciprocal of one of the
functions such that the equality holds true in the case when υ = 0.

Lemma 2. [32,33] Let:
p(z) = 1 + p1z + p2z2 + · · ·

be in the class P of functions with positive real part in U. Then:

2p2 = p2
1 + x

(
4− p2

1

)
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for some x (|x| � 1) and:

4p3 = p3
1 + 2

(
4− p2

1

)
p1x−

(
4− p2

1

)
p1x2 + 2

(
4− p2

1

) (
1− |x|2

)
z

for some z (|z| � 1).

Lemma 3. [1] Let:
p(z) = 1 + p1z + p2z2 + · · ·

be in the class P of functions with positive real part in U. Then:

|pk| � 2 (k ∈ N) .

The inequality is sharp.

3. Main Results and Their Demonstrations

In this section, we will prove our main results.

Theorem 1. Let f ∈ KL∗ and be of the form of Equation (1). Then:

∣∣∣a3 − μa2
2

∣∣∣ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
48 (62− 75μ)

(
μ < 38

75
)

1
2

( 38
75 � μ � 86

75
)

1
48 (75μ− 62)

(
μ > 86

75
)

.

It is asserted also that: ∣∣∣a3 − μa2
2

∣∣∣ + 1
3

(
3μ− 38

25

)
|a2|2 � 1

2

(
38
75

< μ � 62
75

)
and: ∣∣∣a3 − μa2

2

∣∣∣ + 1
3

(
86
25
− 3μ

)
|a2|2 � 1

2

(
62
75

< μ � 86
75

)
.

Proof. If f ∈ KL∗, then it follows from definition that:

z f ′ (z)
g (z)

≺ φ (z) (for some g ∈ S∗) , (6)

where:
φ (z) = (1 + z)

1
2 .

Define a function p(z) by:

p (z) =
1 + w (z)
1− w (z)

= 1 + p1z + p2z2 + · · · .

It is clear that p (z) ∈ P . This implies that:

w (z) =
p (z)− 1
p (z) + 1

.
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In addition, from Equation (6), we have:

z f ′ (z)
g (z)

≺ φ (z)

with:

φ (w (z)) =
(

2p (z)
p (z) + 1

) 1
2

.

We now have:(
2p (z)

p (z) + 1

) 1
2
= 1 +

1
4

p1z +
[

1
4

p2 −
5
32

p2
1

]
z2 +

[
1
4

p3 −
5
16

p1 p2 +
13
128

p3
1

]
z3

+

[
1
4

p4 −
5
16

p1 p3 +
39
128

p2 p2
1 −

5
32

p2
2 −

141
2048

p4
1

]
z4 + · · · .

Similarly, we get:

z f ′ (z)
g (z)

= 1 + [2a2 − b2] z +
[
3a3 − 2a2b2 − b3 + b2

2

]
z2

+
[
4a4 − 2a2b3 − 3a3b2 + 2b2b3 + 2a2b2

2 − b4 − b3
2

]
z3 + · · · .

Therefore, upon comparing the corresponding coefficients and by using Equation (2) , we find
that:

a2 =
5
8

p1, (7)

a3 =
1
4

p2 +
19
96

p2
1 (8)

a4 =
7
48

p3 +
9

64
p1 p2 +

91
1536

p3
1. (9)

We thus obtain: ∣∣∣a3 − μa2
2

∣∣∣ = 1
4

∣∣∣∣p2 −
1
48

(75μ− 38) p2
1

∣∣∣∣ . (10)

Finally, by applying Lemma 1 in conjunction with Equation (10), we obtain the result asserted by
Theorem 1.

Theorem 2. Let f ∈ KL∗ and be of the form of Equation (1). Then:∣∣∣a2a4 − a2
3

∣∣∣ � 9105
36416

. (11)

Proof. Making use of Equations (7)–(9), we have:

a2a4 − a2
3 =

(
35
384

p1 p3 +
45
512

p2
1 p2 +

455
12288

p4
1

)
−

(
1
4

p2 +
19
96

p2
1

)2

=
35

384
p1 p3 −

1
16

p2
2 −

17
1536

p2
1 p2 −

79
36864

p4
1

=
1

36864

(
3360p1 p3 − 2304p2

2 − 408p2
1 p2 − 79p4

1

)
.
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With the value of p2 and p3 from Lemma 2, using triangular inequality and replacing |x| < 1 by ρ

and p1 by p, we have:∣∣∣a2a4 − a2
3

∣∣∣ = 1
36864

[
19p4 + 1680p

(
4− p2

)
+ 324

(
4− p2

)
p2ρ

+ρ2
(

4− p2
) (

264p2 − 1680p + 2304
)]

= F (p, ρ) . (12)

Differentiating Equation (12) with respect to ρ, we have:

∂F
∂ρ

=
1

36864

[
324

(
4− p2

)
p2 + 2ρ

(
4− p2

) (
264p2 − 1680p + 2304

)]
.

It is clear that:
∂F(p, ρ)

∂ρ
> 0,

which shows that F(p, ρ) is an increasing function on the closed interval [0, 1] . This implies that the
maximum value occurs at ρ = 1, that is:

max{F(p, ρ)} = F(p, 1) = G(p).

We now have:
G (p) =

1
36864

[
−569p4 + 48p2 + 9216

]
. (13)

Differentiating Equation (13) with respect to p, we have:

G′(p) =
1

36864

[
−2276p3 + 96p

]
Differentiating the above equation again with respect to p, we have:

G′′(p) =
1

36864

[
−6828p2 + 96

]
< 0.

For p = 0, this shows that the maximum value of G(p) occurs at p = 0. Hence we obtain:∣∣∣a2a4 − a2
3

∣∣∣ � 9105
36416

,

which completes the proof of Theorem 2.

Theorem 3. Let f ∈ KL∗ and of the form of Equation (1). Then:

|a2a3 − a4| �
7

24
.

Proof. We make use of Equations (7)–(9), along with Lemma 2. Since p1 � 2, by Lemma 3, let p1 = p
and assume without restriction that p ∈ [0, 2] . Then, taking the absolute value and applying the
triangle inequality with ρ = |x|, we obtain:

|a2a3 − a4| �
1

1536

{
55p3 + 100pρ

(
4− p2

)
+ 112

(
4− p2

)
+56ρ2 (p− 2)

(
4− p2

)}
=: F(ρ).
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Differentiating F(ρ) with respect to ρ, we have:

F′(ρ) =
1

1536

{
100p

(
4− p2

)
+ 112ρ (p− 2)

(
4− p2

)}
.

For 0 < ρ < 1 and fixed p ∈ (0, 2) , it can easily be seen that:

∂F
∂ρ

< 0.

This shows that F1 (p, ρ) is a decreasing function of ρ, which contradicts our assumption.
Therefore, we have:

max F (p, ρ) = F (p, 0) = G (p) .

This implies that:

G′ (p) =
1

1536

{
165p2 − 224p

}
and:

G′′ (p) =
1

1536
{330p− 224} < 0

for p = 0. Thus, clearly, p = 0 is the point of maximum. Hence we get the required result asserted by
Theorem 3.

To prove Theorem 4, we need Lemma 4.

Lemma 4. If a function f of the form of Equation (1) is in the class KL∗, then:

|a2| �
5
4

, |a3| �
31
24

, |a4| �
85
64

and |a5| �
859
640

.

These estimates are sharp.

Proof. The proof of Lemma 4 is similar to that of a known result which was proved by Sokół (see [6]).
Therefore, we here choose to omit the details involved in the proof of Lemma 4.

Theorem 4. Let f ∈ KL∗ and be of the form of Equation (1). Then:

|H3(1)| �
1509169
1092480

.

Proof. Since:

|H3(1)| � |a3|
∣∣∣(a2a4 − a2

3

)∣∣∣ + |a4| |(a2a3 − a4)|+ |a5|
∣∣∣(a1a3 − a2

2

)∣∣∣ . (14)

By Theorem 2, we have: ∣∣∣a2a4 − a2
3

∣∣∣ � 9105
36416

. (15)

In addition, by Theorem 3, we get:

|a2a3 − a4| �
7
24

. (16)

Now, using the fact that a1 = 1, as well as Theorem 1 with μ = 1, Lemma 4, Equations (15) and
(16) in conjunction with Equation (14), we have the required result asserted by Theorem 4.
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4. Conclusions

Using the concept of the principle of subordination, we have introduced a new subclass of
close-to-convex functions in U, associated with the limniscate of Bernoulli. We have then derived the
upper bound on H3 (1) for this subclass of close-to-convex functions in U, which is associated with the
limniscate of Bernoulli. Our main results are stated and proved as Theorems 1–4. These general results
are motivated essentially by the earlier works which are pointed out in this presentation.
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1. Introduction

For s ∈ C, let σs(n) = ∑d|n ds be the sum of positive divisors function. For τ in the upper half
plane H, consider

A(τ, s) =
∞

∑
n=1

σs−1(n)e2πinτ =
∞

∑
n=1

ns−1 e2πinτ

1− e2πinτ
. (1)

A(τ, s) is an entire function of s for every τ ∈ H and a Lambert series in q = e2πiτ for every s ∈ C.
The study of transformation of A(τ, s) under the action of the modular group

τ �→ aτ + b
cτ + d

((
a b
c d

)
∈ SL(2,Z)

)
(2)

has been a classical subject. Since A(τ, s) is manifestly invariant under translation τ �→ τ + b for
b ∈ Z, one only needs to consider transformations (2) with c > 0. The main result of this article is the
following transformation formula of A(τ, s). For τ ∈ H, s ∈ C and

(
a b
c d

)
∈ SL(2,Z) with c > 0,

(cτ + d)−s A
(

aτ + b
cτ + d

, s
)
= A(τ, s) +

1
2

(
1− (cτ + d)−s) ζ(1− s)

+
cs−1 sec πs

2
8(cτ + d)s/2

∫
C
(−z)s−1

(
c +

c−1

∑
j=0

cot π

(
i
√

cτ + d z− jd
c

)
cot π

(
iz√

cτ + d
− j

c

))
dz

(3)

where C is the Hankel contour that encloses the nonnegative real axis in the clockwise direction but
not any other poles of the integrand (see Definition 1 and Theorem 1).

Many previously known transformation formulas can be derived as special cases of (3) by
considering some particular values of s (see Corollary 1). When s is an even positive integer, A(τ, s)
appears in the Fourier series of the holomorphic Eisenstein series of weight s and satisfies a simple
transformation law [1,2] (Corollary 1 (i) and (ii)). The case s = 0 is closely related to the Dedekind
eta-function

η(τ) = eπiτ/12
∞

∏
n=1

(
1− e2πinτ

)
(τ ∈ H)
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as a branch of log η on H is given by

log η(τ) =
πiτ
12

− A(τ, 0). (4)

We can thus derive the transformation law of log η(τ) by setting s = 0 in (3) (Corollary 1 (iii)). Among
many other proofs of the eta-transformation formula, we mention the work of Siegel [3], who gave a
simple proof of it under τ �→ − 1

τ by considering a certain contour integral of a product of cotangent
functions. This method was generalized by Rademacher to the full modular group in [4].

The transformation property of A(τ, 0) also has many applications; for example, it is used in
Rademacher’s derivation of an analytic formula of the partition function [5], which improved the result
of Hardy and Ramanujan [6]. The formula also brings out the notion of the Dedekind sum, which has
interesting arithmetic properties [7]. In Corollary 1 (iii), we obtain the cotangent sum representation of
the Dedekind sum directly from (3).

The transformation formula of A(τ, s) when s is an even negative integer, which led to the idea of
generalized Dedekind sums, was found by Apostol [8]. A computational error in [8] was corrected
by Mikolás [9] and Iseki [10]. We obtain this formula in Corollary 1 (iv), also with cotangent sum
expressions for the generalized Dedekind sums.

The general transformation property of A(τ, s) for complex s was first studied by Lewittes [11] in
connection with certain generalized Eisenstein series. Berndt derived a transformation formula
involving an integral expression in [12], which is further generalized in [13]. We note that the
formula (3) involves an integral expression different from the formula in [12]. Studying the behavior
of an integral of a more general cotangent sum may be an interesting topic for further investigation.

Throughout this work, logarithms and powers are taken with the principal argument.

2. Transformation Formula

Definition 1. Let c, d ∈ Z with (c, d) = 1 and c > 0. For τ ∈ H and s ∈ C, we denote ρ =
√

cτ + d
and define

Ic,d(τ, s) =
cs−1

8ρs

∫
C
(−z)s−1

(
c +

c−1

∑
j=0

cot π

(
iρz− jd

c

)
cot π

(
iz
ρ
− j

c

))
dz (5)

where C is the Hankel contour that encloses the nonnegative real axis [0, ∞) in the clockwise direction excluding
any other poles of the integrand.

Consider the integrand in (5). Since

cot πz = −i
(

1 + 2
e2πiz

1− e2πiz

)
, (6)

cot πz → −i exponentially as Im z → ∞. Since both iρ and i/ρ are in the upper half plane, the integrand
in (5) decays exponentially as Re z → ∞ and thus (5) is an entire function in s.

We also note that for s ∈ Z, the integral (5) along C reduces to the integral around the origin, and
Ic,d(τ, s) = 0 whenever s is an odd integer as the integrand becomes even.

We write the following standard argument as a lemma.

Lemma 1. For Re s < 0,

Ic,d(τ, s) =
πics−1

4ρs ∑ Res
z∈C\[0,∞)

(
(−z)s−1

c−1

∑
j=0

cot π

(
iρz− jd

c

)
cot π

(
iz
ρ
− j

c

))
(7)

where the sum denotes the sum of all residues in C\[0, ∞).

134



Mathematics 2019, 7, 840

Proof. Let KN = CN + SN be the keyhole contour in C\[0, ∞), where CN is the part of C in Definition 1
in the region |z| ≤ N, and SN traverses along the circle |z| = N.

We can choose a sequence N → ∞ such that each KN stays well away from the poles of the
integrand of (5). The integral over CN is 2πi times the sum of the residues inside KN minus the integral
along SN .

The lemma follows since the integral along SN vanishes as N → ∞ for Re s < 0. Under this
assumption, the sum of the residues in C\[0, ∞) is absolutely convergent, and the term (−z)s−1c of
the integrand can be ignored as it is holomorphic in the slit plane.

We now restate and prove (3) using the notation introduced above.

Theorem 1. For τ ∈ H and s ∈ C, let A(τ, s) be the series given by (1). For γ =
(

a b
c d

)
∈ SL(2,Z) with

c > 0, we have

(cτ + d)−s A (γτ, s) = A(τ, s) +
1
2

(
1− (cτ + d)−s) ζ(1− s) +

(
sec

πs
2

)
Ic,d(τ, s) (8)

where γτ = aτ+b
cτ+d , Ic,d(τ, s) is given by (5) and ζ(s) is the Riemann zeta-function.

Proof. Since both sides of (8) are entire in s, it suffices to prove the equality for Re s < 0. We use
Lemma 1 to compute Ic,d(τ, s).

For each 0 ≤ j < c, the factor cot π(iρz − jd/c) of (7) has poles at z = (k + jd/c)/(iρ) for
k ∈ Z with residue 1/(πiρ). Hence the contribution to Ic,d(τ, s) from the residues of (7) at these poles,
excluding z = 0, is given by

ics−1

4ρs ∑′

k∈Z, 0≤j<c

1
iρ

(
−

(
k +

jd
c

)
1
iρ

)s−1
cot π

((
k +

jd
c

)
1
ρ2 −

j
c

)
(9)

where the prime in the sum indicates that the term with (k, j) = (0, 0) is omitted.
Since (c, d) = 1, every integer can be uniquely written in the form kc + jd for k ∈ Z and 0 ≤ j < c.

Let −n = kc + jd. Since ad ≡ 1 mod c, we have na ≡ −j mod c, and (9) equals

ics−1

4ρs ∑
n �=0

1
iρ

(
n

iρc

)s−1
cot π

(
− n

ρ2c
+

na
c

)
. (10)

We now use the fact that cot z is odd. For n positive,

1
iρ

(
n

iρc

)s−1
− 1

iρ

(
− n

iρc

)s−1
=

(n
c

)s−1 (
e−

πis
2 + e

πis
2

)
ρ−s = 2

(
cos

πs
2

) (n
c

)s−1
ρ−s,

and by (6), (10) becomes

1
2ρ2s cos

πs
2

⎛⎜⎜⎝ζ(1− s) + 2 ∑
n>0

ns−1 e
2πi

(
− n

ρ2c
+ na

c

)

1− e
2πi

(
− n

ρ2c
+ na

c

)
⎞⎟⎟⎠ . (11)

Furthermore, since

− n
ρ2c

+
na
c

=
n(aτ + ad−1

c )

cτ + d
= n

aτ + b
cτ + d

,

the sum in (11) is in fact

∑
n>0

ns−1 e2πin aτ+b
cτ+d

1− e2πin aτ+b
cτ+d

= A
(

aτ + b
cτ + d

, s
)

.
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We now treat the other poles in a similar fashion. For 0 ≤ j < c, the factor cot π(iz/ρ− j/c) of
(7) has poles at z = (k + j/c)(ρ/i) for k ∈ Z with residue ρ/(πi). Summing over the residues of (7) at
these poles, excluding z = 0, we obtain

ics−1

4ρs ∑′

k∈Z, 0≤j<c

ρ

i

(
−

(
k +

j
c

)
ρ

i

)s−1
cot π

((
k +

j
c

)
ρ2 − jd

c

)
. (12)

Let n = kc + j, and (12) equals

ics−1

4ρs ∑
n �=0

ρ

i

(
−nρ

ic

)s−1
cot π

(
nρ2

c
− nd

c

)
. (13)

For n positive,

ρ

i

(
−nρ

ic

)s−1
− ρ

i

(nρ

ic

)s−1
= −2

(
cos

πs
2

) (n
c

)s−1
ρs,

and thus (13) is

− 1
2

cos
πs
2

⎛⎜⎜⎝ζ(1− s) + 2 ∑
n>0

ns−1 e
2πi

(
nρ2

c − nd
c

)

1− e
2πi

(
nρ2

c − nd
c

)
⎞⎟⎟⎠ , (14)

and since nρ2/c− nd/c = n(cτ + d)/c− nd/c = nτ, the sum in (14) is

∑
n>0

ns−1 e2πinτ

1− e2πinτ
= A(τ, s).

Finally, adding (11) with (14), we obtain

Ic,d(τ, s) =
1

2ρ2s cos
πs
2

(ζ(1− s) + 2A (γτ, s)) − 1
2

cos
πs
2

(ζ(1− s) + 2A(τ, s))

and the theorem follows by dividing both sides by cos πs
2 .

3. Discussion of Some Special Cases

Corollary 1. For τ ∈ H and γ =
(

a b
c d

)
∈ SL(2,Z) with c > 0, we have the following transformation formulas

for A(τ, s) for s an even integer.

(i) For any integer m ≥ 2,

(cτ + d)−2m A(γτ, 2m) = A(τ, 2m) +
1
2

(
1− (cτ + d)−2m

)
ζ(1− 2m)

and thus, if we define G2m(τ) =
1
2 ζ(1− 2m) + A(τ, 2m), it is a modular form of weight 2m.

(ii)

(cτ + d)−2 A(γτ, 2) = A(τ, 2)− 1
24

(
1− (cτ + d)−2

)
+

ic
4π(cτ + d)

,

and thus, if we let G2(τ) = − 1
24 + A(τ, 2), then

G2(γτ) = (cτ + d)2
G2(τ) +

ic
4π

(cτ + d).
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(iii)

A (γτ, 0) = A(τ, 0)− 1
2

log(cτ + d) +
πi
4
− πi

12c

(
1

cτ + d
+ cτ + d

)
+ πi s(d, c)

where the Dedekind sum s(d, c) satisfies

s(d, c) =
1
4c

c−1

∑
j=1

cot π

(
jd
c

)
cot π

(
j
c

)
,

and

log η(τ + b) =
πib
12

+ log η(τ) (b ∈ Z)

log η(γτ) = log η(τ) +
1
2

log(cτ + d)− πi
4

+
πi(a + d)

12c
− πi s(d, c).

(iv) For any integer m > 0,

(cτ + d)2m A(γτ,−2m) = A(τ,−2m) +
1
2

(
1− (cτ + d)2m

)
ζ(1 + 2m)

+
i

πc2m+1

m+1

∑
k=0

ζ(2k)ζ(2m + 2− 2k)(cτ + d)2k−1

+
π2m+1i
4c2m+1

2m

∑
k=0

c−1

∑
j=1

cot(k) π

(
jd
c

)
cot(2m−k) π

(
j
c

)
(cτ + d)k

where cot(n) z = 1
n!

(
d
dz

)n
cot z.

Proof. (i) and (ii) follow from (8) since

(−1)m Ic,d(τ, 2m) = 0 (m ≥ 2)

−Ic,d(τ, 2) = −πic
4ρ2 Res

z=0

(
z cot π (iρz) cot π

(
iz
ρ

))
=

ic
4πρ2 .

Let us show (iii). Since lims→0
1
2 (1− (cτ + d)−s) ζ(1− s) = − 1

2 log(cτ + d), we have

A (γτ, 0) = A(τ, 0)− 1
2

log(cτ + d) + Ic,d(τ, 0)

where

Ic,d(τ, 0) =
1
8c

∫
C
(−z)−1

(
c +

c−1

∑
j=0

cot π

(
iρz− jd

c

)
cot π

(
iz
ρ
− j

c

))
dz

=
πi
4

+
πi
4c

Res
z=0

(
1
z

c−1

∑
j=0

cot π

(
iρz− jd

c

)
cot π

(
iz
ρ
− j

c

))
. (15)

The j = 0 term in (15) gives

πi
4c

Res
z=0

(
1
z

cot π (iρz) cot π

(
iz
ρ

))
= − πi

12c

(
1

cτ + d
+ cτ + d

)
,
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and the sum over 0 < j < c in (15) becomes

πi
4c

c−1

∑
j=1

cot π

(
jd
c

)
cot π

(
j
c

)
= πi s(d, c),

proving the claim for A(τ, 0) in (iii). The transformation formula for log η(τ) now follows from (4)
and the equality

πi
12

(
aτ + b
cτ + d

− τ

)
+

πi
12c

(
1

cτ + d
+ cτ + d

)
=

πi(a + d)
12c

.

For (iv), let s = −2m in (8) for a positive integer m. Then,

(cτ + d)2m A(γτ,−2m) = A(τ,−2m) +
1
2

(
1− (cτ + d)2m

)
ζ(1 + 2m) + (−1)m Ic,d(τ,−2m)

where

(−1)m Ic,d(τ,−2m) =
πiρ2m(−1)m

4c2m+1 Res
z=0

(
1

z2m+1

c−1

∑
j=0

cot π

(
iρz− jd

c

)
cot π

(
iz
ρ
− j

c

))
. (16)

From the Laurent expansions

cot π(iρz) = − 2
π ∑

k≥0
ζ(2k)(iρz)2k−1

cot π

(
iz
ρ

)
= − 2

π ∑
k≥0

ζ(2k)
(

iz
ρ

)2k−1
,

the j = 0 term in (16) is

πiρ2m(−1)m

4c2m+1
4

π2 ∑
k1+k2=m+1

ζ(2k1)ζ(2k2)(iρ)2k1−1
(

i
ρ

)2k2−1

=
i

πc2m+1 ∑
k1+k2=m+1

ζ(2k1)ζ(2k2)ρ
2(m+k1−k2)

=
i

πc2m+1

m+1

∑
k=0

ζ(2k)ζ(2m + 2− 2k)(cτ + d)2k−1,

and from the Taylor expansions for 0 < j < c,

cot π

(
iρz− jd

c

)
= − ∑

k≥0
(−πiρz)k cot(k) π

(
jd
c

)

cot π

(
iz
ρ
− j

c

)
= − ∑

k≥0

(
−πiz

ρ

)k
cot(k) π

(
j
c

)
,
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the sum over 0 < j < c in (16) is

πiρ2m(−1)m

4c2m+1 ∑
k1+k2=2m

c−1

∑
j=1

cot(k1) π

(
jd
c

)
cot(k2) π

(
j
c

)
(−πiρ)k1

(
−πi

ρ

)k2

=
π2m+1i
4c2m+1 ∑

k1+k2=2m

c−1

∑
j=1

cot(k1) π

(
jd
c

)
cot(k2) π

(
j
c

)
ρ2m+k1−k2

=
π2m+1i
4c2m+1

2m

∑
k=0

c−1

∑
j=1

cot(k) π

(
jd
c

)
cot(2m−k) π

(
j
c

)
(cτ + d)k,

as claimed.

For x ∈ R, we define the periodic Bernoulli functions B̃n(x), n ≥ 0, by the following identity as
formal power series in t:

∞

∑
n=0

B̃n(x)
tn

n!
=

{
te{x}t

et−1 if x ∈ R\Z
t

et−1 + t
2 if x ∈ Z ,

(17)

where {x} = x − �x� is the fractional part of x. Under the condition of Corollary 1 (iv), the series
A(τ,−2m) for any integer m > 0 is known to satisfy the formula ([8–10,12])

(cτ + d)2m A(γτ,−2m) = A(τ,−2m) +
1
2

(
1− (cτ + d)2m

)
ζ(1 + 2m)

+
(2πi)2m+1

2(2m + 2)!

2m+2

∑
k=0

(
2m + 2

k

) c−1

∑
j=0

B̃k(j/c)B̃2m+2−k(jd/c)(−(cτ + d))k−1,
(18)

while the sums
c−1

∑
j=0

B̃k(j/c)B̃2m+2−k(jd/c)

which appear in (18) are regarded as generalized Dedekind sums.

Remark 1. The notation Bn(x) is often used for B̃n(x) in (17), but it is also used for

Bn(x) = Bn({x}) (n ≥ 0) (19)

where Bn(x) denotes the Bernoulli polynomials. With (19), B̃n(x) and Bn(x) only differ by 1
2 when n = 1 and

x ∈ Z. For m > 0 and 0 ≤ k ≤ 2m + 2, one can see that the equality

c−1

∑
j=0

Bk(jα/c)B2m+2−k(jβ/c) =
c−1

∑
j=0

B̃k(jα/c)B̃2m+2−k(jβ/c) (α, β, c ∈ Z; c > 0) (20)

holds as B2m+1(x) = B̃2m+1(x) is a periodic odd function, vanishing at 0 and 1
2 . Therefore, (18) can be stated

in the same way in either notation.

In Corollary 1, we have already obtained the cotangent sum representations for the Dedekind sum
and its generalizations in (18). On the other hand, we should also be able to obtain Corollary 1 (iv) by
assuming (18) and expanding it in discrete Fourier series. We now present this alternative derivation
of Corollary 1 (iv).

We first give a proof of the following lemma (cf. [14]), using the generating function (17).
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Lemma 2. For j, c ∈ Z with c > 0 and n ≥ 0,

B̃n(j/c) =
(

Bn

cn

)
n �=1

+

(
n!

(
i

2c

)n c−1

∑
k=1

cot(n−1) π

(
k
c

)
e2πijk/c

)
n≥1

where the first term is not present for n = 1 (so that it is only present for even n) and the second term only for

n ≥ 1, and cot(n) z = 1
n!

(
d
dz

)n
cot z.

Proof. Let Fx(t) denote the right-hand side of (17). For μ = e2πi/c, we let

Fj/c(t) =
c−1

∑
k=0

ak(t)μjk (j ∈ Z). (21)

By multiplying both sides of (21) by μ−jl and summing over j mod c,

cal(t) =
c−1

∑
j=0

Fj/c(t)μ−jl =
c−1

∑
j=0

te(j/c)t

et − 1
μ−jl +

t
2

(0 ≤ l < c). (22)

Now, as formal power series in t and x,

c−1

∑
j=0

te(j/c)t

et − 1
xj =

t
et − 1

c−1

∑
j=0

(et/cx)j =
t

et − 1
1− etxc

1− et/cx
. (23)

By putting x = μ−l in (23), we obtain from (22)

al(t) =
t/c

et/cμ−l − 1
+

t
2c

=
(t/c)e2πil/c−t/c

1− e2πil/c−t/c +
t

2c
.

For l = 0, we have

a0(t) =
t/c

et/c − 1
+

t
2c

= ∑
n≥0, n �=1

Bn

cn
tn

n!
.

For l �= 0,

al(t) =
(t/c)e2πil/c−t/c

1− e2πil/c−t/c +
t

2c
=

it
2c

cot
(

πl
c

+
it
2c

)
= ∑

n≥0
tn+1

(
i

2c

)n+1
cot(n) π

(
l
c

)
.

The lemma follows by taking the coefficient of tn

n! in (21).

Proof of Corollary 1 (iv). We consider the following sum in (18),

(2πi)2m+1

2(2m + 2)!

2m+2

∑
k=0

(
2m + 2

k

) c−1

∑
j=0

B̃k(j/c)B̃2m+2−k(jd/c)(−(cτ + d))k−1. (24)

We expand B̃k(j/c) and B̃2m+2−k(jd/c) in (24) by Lemma 2 and sum over j. The first cross terms give,
for k = 2l,

(2πi)2m+1

2(2m + 2)!

m+1

∑
l=0

(
2m + 2

2l

) c−1

∑
j=0

B2l

c2l
B2m+2−2l

c2m+2−2l (−(cτ + d))2l−1. (25)
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Since ζ(2n) = (−1)n+1 (2π)2n

2(2n)! B2n and as the identical sum over j gives a factor of c, (25) simplifies to

i
πc2m+1

m+1

∑
l=0

ζ(2l)ζ(2m + 2− 2l)(cτ + d)2l−1. (26)

The rest of surviving cross terms give

(2πi)2m+1

2

2m+1

∑
k=1

c−1

∑
j=0

((
i

2c

)k c−1

∑
α=1

cot(k−1) π
(α

c

)
e2πijα/c

)

×
((

i
2c

)2m+2−k c−1

∑
β=1

cot(2m+1−k) π

(
β

c

)
e2πijdβ/c

)
(−(cτ + d))k−1

which, since
c−1

∑
j=0

e2πijα/ce2πijdβ/c =

{
c if α + dβ ≡ 0 mod c

0 otherwise,

equals
π2m+1i
4c2m+1

2m+1

∑
k=1

c−1

∑
β=1

cot(k−1) π

(
dβ

c

)
cot(2m+1−k) π

(
β

c

)
(cτ + d)k−1. (27)

Hence (24) equals to the sum of (26) and (27), which proves equivalence of (18) and Corollary 1 (iv).
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Abstract: In this paper, we present some Euler-like sums involving partial sums of the harmonic
and odd harmonic series. First, we give a brief historical account of Euler’s work on the subject
followed by notations used in the body of the paper. After discussing some alternating Euler sums,
we investigate the connection of integrals of inverse trigonometric and hyperbolic type functions to
generate many new Euler sum identities. We also give some new identities for Catalan’s constant,
Apery’s constant and a fast converging identity for the famous ζ(2) constant.

Keywords: Euler sums; Catalan’s constant; Trigamma function; integral representation; closed form;
ArcTan and ArcTanh functions; partial fractions

1. Historical Background and Preliminaries

1.1. Euler’s Work

We begin by touching on the historical background of Euler sums. The 20th century British
mathematician G. H. Hardy remarked in A Mathematician’s Apology (1940): “ ‘Immortality’ may be a
silly word, but probably a mathematician has the best chance of whatever it may mean.” Leonhard
Euler (1707–1783), the versatile and prolific Swiss mathematician, achieved immortality through his
pioneering work on infinite series and products which began when he was 22. He gained instant
fame in youth by solving the Basel problem (suggested to him by Johann Bernoulli who had tried and
failed) which asked for the exact sum of the series of reciprocals of squares of natural numbers. He

generalized the problem and introduced the famous Euler zeta function:
∞

∑
n=1

1
nm , m ≥ 2. Euler extended

the concept of factorial to positive rational numbers. His investigation (motivated by Christian
Goldbach, the secretary of the Petersburg Academy where Euler worked) laid the foundation for
another famous function, the gamma function, the digamma function (the logarithmic derivative of
the gamma function) and the polygamma functions formed by repeated differentiation of the digamma

function. Nicholas Oresme (1323–1382) had showed that the sum
∞

∑
k=1

1
k

diverges. Euler investigated

its partial sums (called harmonic numbers),
n

∑
k=1

1
k

, detected their link with logarithms, and introduced

his ubiquitous constant γ in the process: γ = lim
n→∞

{Hn − log(n)} , where n is any positive integer.

He also gave the formula: Hn =
∫ 1

0

1− xn

1− x
dx which can be established by writing the integrand as a

geometric progression and then integrating it term by term.

Mathematics 2019, 7, 833; doi:10.3390/mat7090833 www.mdpi.com/journal/mathematics143
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Euler sums have their origin in the correspondence between Goldbach and Euler after Euler’s
departure from Russia in 1741. In his letter of 6 December 1742, Goldbach informed Euler that he had
calculated the sums of the following series ([1] p. 741):

1− 1
2

(
1∓ 1

2

)
+

1
3

(
1∓ 1

2
+

1
3

)
− 1

4

(
1∓ 1

2
+

1
3
∓ 1

4

)
+ . . . ,

1− 1
2

(
1− 1

22

)
+

1
3

(
1− 1

22 +
1
32

)
− 1

4

(
1− 1

22 +
1
32 −

1
42

)
+ . . . ,

1
22 (1)−

1
32

(
1− 1

2

)
+

1
42

(
1− 1

2
+

1
3

)
− 1

52

(
1− 1

2
+

1
3
− 1

4

)
+ . . .

However, in his next letter (24th December), he modified his claims stating that they arose out of
an error which led to serendipitous discovery of Euler sums:

when I recently reconsidered the supposed sums of the two series mentioned at the end of
my last letter, I perceived at once that they had arisen by a mere writing mistake. However,
of this indeed the proverb says “If he had not erred, he should have achieved less”; for on
that occasion I came upon the summations of some other series which otherwise I should
hardly have looked for, much less discovered.

Goldbach then ([1] p. 747) proposed to compute the sum:

1 +
1
2n

(
1 +

1
2m

)
+

1
3n

(
1 +

1
2m +

1
3m

)
+ . . .

where m, n are not equal even integers. He further gave the sum π4

72 for series with m = 1, n = 3. This
led Euler to investigate this sum. In his reply of 5 January 1743 to Goldbach, he recorded various sums
including ([1] p. 752, G, I):

1− 1
2

(
1 +

1
2

)
+

1
3

(
1 +

1
2
+

1
3

)
− 1

4

(
1 +

1
2
+

1
3
+

1
4

)
+ · · · = π2

12
− log2(2)

2
,

and

1− 1
2

(
1− 1

2

)
+

1
3

(
1− 1

2
+

1
3

)
− 1

4

(
1− 1

2
+

1
3
− 1

4

)
+ · · · = π2

12
+

log2(2)
2

,

which appeared in §108 (page 509) of his Continuatio Fragmentorum ex Adversariis mathematicis
depormtorum (Opera Postuma 1, 1862, 487–518) now numbered E819.

Their correspondence culminated in a 47-page paper [2] by Euler (1776) using a
cumbersome notation:∫ 1

zm

(
1
yn

)
= 1 +

1
2m

(
1 +

1
2n

)
+

1
3m

(
1 +

1
2n +

1
3n

)
+ . . .

In the paper mentioned, he employed three methods (which he called Prima Methodus,
Secunda Methodus and Tertia Methodus) to discover formulas representing these sums in terms of
zeta values. First, he multiplied the involved series to obtain this formula (§4, p.144):

∫ 1
zm

(
1
yn

)
+

∫ 1
zn

(
1

ym

)
=

∫ 1
zm

∫ 1
zn +

∫ 1
zm+n .
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After investigating cases with combined exponents of z, y = 2, 3, . . . , 10, he considered the
sum with n = 1 in the notation given earlier. He recorded a general formula (§22, p. 165) which,
for m = 2, 3, 4, . . . , can be written as:

EU (m) =
∞

∑
n=1

Hn

nm =
m + 2

2
ζ(m + 1)− 1

2

m−2

∑
k=1

ζ(m− k) ζ(k + 1). (1)

1.2. Post-Euler Development

Nielsen (1906) built on and supplemented Euler’s work by supplying proof of the general
Formula (1) using the method of partial fractions in ([3] pp. 47–49). Ramanujan noted a few Euler
sums in his notebooks sometime in the 1910s. Sitaramachandrarao, an Indian mathematician,
obtained identities for various alternating Euler sums in 1987 while discussing a formula of
Ramanujan [4].

Georghiou and Philippou [5] established Euler’s formula as well as:

∞

∑
n=1

Hn

n2s+1 =
1
2

2s

∑
r=2

(−1)r ζ(r) ζ(2s + 2− r), s ≥ 1.

They also gave this formula:

∞

∑
n=1

H(2)
n

n2s+1 = ζ(2)ζ(2s + 1)− (s + 2)(2s + 1)
2

ζ(2s + 3)

+ 2
s+1

∑
r=2

(r− 1)ζ(2r− 1)ζ(2s + 4− 2r), s ≥ 1,

where H(m)
n = ∑n

�=1 �−m, m ≥ 1, n ≥ 1. They remarked at the end that it was still an open question

to give a closed form of ∑∞
n=1

H(p)
n

nq for any integers p ≥ 1 and q ≥ 2 in terms of the zeta function.
Surprisingly, they did not mention Euler or his work even once.

The publication of De Doelder’s paper [6] in 1991 and three papers submitted during July,
August and October 1993 by the Borweins and their co-researchers [7–9] produced a revival of
interest in these sums among a number of mathematicians. Crandall and Buhler [10] established

various series expansions of
∞

∑
n=2

1
ns

n−1

∑
m=1

1
mr . Various approaches have been employed to get such sums.

De Doelder summed some series by evaluating integrals and using the digamma function. A quadratic

sum ∑∞
k=1

{ψ(k)−ψ(1)}2

k2 = ∑∞
n=1

(
Hn

n+1

)2
= 11π4

360 was derived by De Doelder and an associated sum
conjectured by Enrico Au-Yeung (an under-graduate student at Waterloo, ([7] p. 17) and ([8] p. 1191))
on the basis of his computations was established by means of generating functions and Parseval’s

identity for Fourier series by the Borweins. In fact, the associated sum ∑∞
n=1

(
Hn
n

)2
= 17π4

360 had been
computed by Sandham [11] in 1948, but it remained generally unknown. Chu [12] made use of the
hypergeometric method for deriving some Euler sums. Jung, Cho and Choi [13] use integrals from
Lewin’s book to evaluate different Euler sums. In particular, they show that ∑∞

n=1
Hn

(n+1)3 = ζ(4)
4 can

be obtained from the integral (7.65) recorded in ([14] p. 204). Flajolet and Salvy [15] used contour
integration. Freitas [16] transformed De Doelder’s sum into a double integral and then evaluated the
integral directly. Experimental evaluation of Euler sums involving heavy use of Maple and Mathematica
led to the discovery of many new sums; some of these were established later. Euler sums have been a
popular topic for engaging many mathematicians for last many years.

145



Mathematics 2019, 7, 833

1.3. Notations and Representations of Harmonic Numbers

We use the following notations throughout our paper:

1. Hn =
n

∑
k=1

1
k

; H′
n =

n

∑
k=1

(−1)k+1

k
.

2. Hp
n =

(
n

∑
k=1

1
k

)p

; H(p)
n =

n

∑
k=1

1
kp .

3. hn =
n

∑
k=1

1
2k− 1

= H2n −
1
2

Hn; h′n =
n

∑
k=1

(−1)k+1

2k− 1
.

H(p)
n , the generalized harmonic number of order p, is sometime denoted by ζn(p) (Louis

Comtet’s Advanced Combinatorics, 1974, p. 217, [7b]). The alternating harmonic numbers, H′
n,

have been termed skew-harmonic numbers. We call hn the odd harmonic numbers and follow Berndt’s
notation ([17] p. 249, (8.2)) in preference to the symbol On used by Borweins [8].

Taking the log of the two sides and then differentiating this product representation

1
Γ(x)

= xeγx
∞

∏
n=1

(
1 +

x
n

)
e−x/n

yields

ψ(x) = −γ− 1
x
+

∞

∑
n=1

(
1
n
− 1

x + n

)
= −γ +

∞

∑
n=1

(
1
n
− 1

x + n− 1

)
,

leading to the telescoping sum:

ψ(1 + x)− ψ(x) =
∞

∑
n=1

(
1

x + n− 1
− 1

x + n

)
=

1
x

and for integral arguments n ≥ 1, ψ(n + 1)− ψ(1) = Hn with ψ(1) = −γ.
We also have:

hn =
1
2

[
ψ

(
n +

1
2

)
− ψ

(
1
2

)]
.

Choi ([18] Equation (3.7)) defined the harmonic numbers in terms of log-sine functions

Hn = −4n
∫ π

2

0
log (sin x) sin x (cos x)2n−1 dx (2)

= −4n
∫ π

2

0
log (cos x) cos x (sin x)2n−1 dx.

An unusual, but intriguing representation has recently been given by Ciaurri et al. ([19]
Equation (10)) as follows:

Hn = π
∫ 1

0

(
x− 1

2

) ⎛⎝cos
(
(4n+1)πx

2

)
− cos

(
πx
2

)
sin

(
πx
2

)
⎞⎠ dx. (3)

We may introduce here the Lerch transcendent,

Φ (z, t, a) =
∞

∑
m=0

zm

(m + a)t ,
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which is defined for |z| < 1 and 
 (a) > 0 and satisfies the recurrence

Φ (z, t, a) = z Φ (z, t, a + 1) + a−t.

The Lerch transcendent generalizes the Hurwitz zeta function at z = 1,

Φ (1, t, a) =
∞

∑
m=0

1

(m + a)t

and the polylogarithm, (see [14]), or de-Jonquière’s function, when a = 1,

Lit(z) :=
∞

∑
m=1

zm

mt , t ∈ C when |z| < 1; 
 (t) > 1 when |z| = 1.

The polylogarithm of negative integer order arises in the sums of the form

∑
j≥1

jnzj = Li−n(z) =
1

(1− z)n+1

n−1

∑
i =0

〈
n
i

〉
zn−i,

where the Eulerian number

〈
n
i

〉
= ∑i+1

j=0 (−1)j

(
n + 1

j

)
(i− j + 1)n, see [20]. The polygamma

function of order k for z �= −1,−2, . . .

ψ(k)(z) =
dk

dzk {ψ(z)} = (−1)k+1 k!
∞

∑
r=0

1

(r + z)k+1

and has the recurrence

ψ(k)(z + 1) = ψ(k)(z) +
(−1)k k!

zk+1 .

The connection between the polygamma function and harmonic numbers is given by

H(α+1)
z = ζ (α + 1) +

(−1)α

α!
ψ(α) (z + 1) , z �= −1,−2,−3, . . . (4)

and the multiplication formula for a positive integer m is (Abramowitz and Stegun, Handbook of
Mathematical Functions, p. 260, 6.4.8)

ψ(k)(mz) = δk,0 log(m) +
1

mk+1

m−1

∑
j=0

ψ(k)
(

z +
j

m

)
, (5)

where δk,r is the Kronecker delta.
We define the alternating zeta function (or Dirichlet eta function) η (z) as

η (z) :=
∞

∑
n=1

(−1)n+1

nz =
(

1− 21−z
)

ζ (z) , (6)

where η (1) = log 2. If we put

S (p, q) :=
∞

∑
n=1

(−1)n+1 H(p)
n

nq ,
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in the case where p and q are both positive integers and weight (p + q) is an odd integer, Flajolet and
Salvy [15] gave the identity:

2S(p, q) =
{

1− (−1)p} ζ (p) η (q) + η (p + q)

+ 2 (−1)p ∑
i+2k=q

(
p + i− 1

p− 1

)
ζ (p + i) η (2k)

− 2 ∑
j+2k=p

(
q + j− 1

q− 1

)
(−1)j η (q + j) η (2k) , (7)

where η (0) = 1
2 , η (1) = log 2, ζ (1) = 0, and ζ (0) = − 1

2 in accordance with the analytic continuation
of the Riemann zeta function. For odd weight (p + q), we have from [9] and ([15] Th.3.1):

BW(p, q) =
∞

∑
n=1

H(p)
n

nq = (−1)p
[

q
2 ]

∑
j=1

(
p + q− 2j− 1

p− 1

)
ζ(p + q− 2j) ζ(2j)

+
1− (−1)p

2
ζ(p) ζ(q) + (−1)p

[
p
2 ]

∑
j=1

(
p + q− 2j− 1

q− 1

)
ζ(p + q− 2j) ζ(2j)

+
(−1)p

2

{
(−1)p −

(
p + q− 1

p

)
−

(
p + q− 1

q

)}
ζ(p + q), (8)

where [x] is the largest integer contained in x. It appears that some isolated cases of BW (p, q) , for even
weight (p + q) , can be expressed in zeta terms, but, in general, almost certainly, for even weight
(p + q) , and p ≥ 2, no general closed form expression exists for BW (p, q) . Some examples with even
weight are

∞

∑
n=1

H(2)
n

n4 = ζ2 (3)− 1
3

ζ (6) ,
∞

∑
n=1

H(4)
n

n4 =
13
12

ζ (8) .

There are also the two general forms of identities,

2
∞

∑
n=1

H(2p+1)
n

n2p+1 = ζ2 (2p + 1) + ζ (4p + 2) ,

and

2
∞

∑
n=1

H(2p)
n

n2p =

(
1−

(4p)!B2
2p

2 ((2p)!)2 B4p

)
ζ (4p)

for p ∈ N and where Bp are the signed Bernoulli numbers of the first kind.
Sofo [21], furthermore, developed the half integer Euler sums. For positive integers m, p and odd

weight m + p,

W (m, p) =
∞

∑
n=1

H(m)
n
2

np = (−1)p
m

∑
r=1

2m−1
(

m + p− 1− r
m− r

)
×

[BW(r, m + p− r) − S(r, m + p− r)]

+ (−1)p+1
m

∑
r=2

1
2p−r

(
m + p− 1− r

m− r

)
ζ(r)ζ(m + p− r)

+ (−1)p+1
p−1

∑
k=2

(−1)k

2p−k

(
m + p− 1− k

p− k

)
ζ(k)ζ(m + p− k). (9)
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In addition,

∑
n≥1

H(m)
n
np = 2p−1

∞

∑
n=1

H(m)
n
2

np

{
1− (−1)n+1

}
.

We obtain the alternating Euler identity at half integer value,

∑
n≥1

(−1)n+1 H(m)
n
2

np = W (m, p)− 21−pBW (m, p) . (10)

Some other Euler identities are given in [22–37].

1.4. Cauchy Product and Relevant Generating Functions

The multiplication of series by Cauchy’s rule (Ch.VI of A. L. Cauchy’s Cours d’Analyse de l’École
Royale Polytechnique, 1821) is given by:(

∞

∑
k=0

ak xk

) (
∞

∑
k=0

bk xk

)
=

∞

∑
k=0

ck xk

with ck = ∑k
j=0 ajbk−j. Cauchy showed (pp. 147-8, Th.6) that if the two convergent series on LHS

are composed only of positive terms, i.e., they are absolutely convergent, then so is their product.
Abel’s theorem (1826) states that if all three series (including conditionally convergent) converge to
sums, say sa, sb, sc respectively, then sa · sb = sc necessarily.

A function G(x) represented by the power series: G(x) :=
∞

∑
n=0

an xn is known as ordinary generating

function for the sequence {an}.
The Cauchy product of (1− x)−1 and log(1− x) yields the generating function ([38] p. 54, 1.514.6):

− log(1− x)
1− x

=
∞

∑
n=1

Hn xn, (11)

while the Cauchy product of (1− x)−1 and log(1 + x) yields:

log(1 + x)
1− x

=
∞

∑
n=1

H′
n xn, (12)

both series converging for |x| < 1.

1.5. Few Sums for Further Use

The Cauchy product of the numerical series
∞

∑
k=0

(−1)k+1

k + 1
with itself gives:

2
∞

∑
n=1

(−1)n+1

n + 1

(
1 +

1
2
+ · · ·+ 1

n

)
= 2

∞

∑
n=1

(−1)n+1 Hn+1

n + 1
− 2

∞

∑
n=1

(−1)n+1

(n + 1)2 .

Furthermore, if u1, u2, u3, . . . is a decreasing sequence of positive numbers with limit 0, then the
series u1 − 1

2 (u1 + u2) +
1
3 (u1 + u2 + u3)− . . . is convergent. Hence, the series on LHS converges (with

sum = 2(− log 2)2) and so does the first series on RHS because the second series too is convergent
with sum = −2(1− π2

12 ). We thus get:

∞

∑
n=1

(−1)n+1 Hn

n + 1
=

log2(2)
2

.
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From this, we deduce by a shift of the index:

∞

∑
n=1

(−1)n+1 Hn

n
=

π2

12
− log2(2)

2
,

leading to
∞

∑
n=1

(−1)n+1 Hn

n(n + 1)
=

π2

12
− log2(2).

The Cauchy product of arctan x =
∞

∑
n=0

(−1)n

2n + 1
xn with itself is the series ([39] p. 162, Ex. 13):

(arctan x)2 =
∞

∑
n=1

(−1)n+1 hn

n
x2n. (13)

The series are absolutely convergent when |x| < 1 and convergent when x = 1. ([40]
p. 81, Ex. 2) Therefore,

∞

∑
n=1

(−1)n+1 hn

n
=

π2

16
. (14)

It occurs in ([41] pp. 322–323).
The software WolframAlpha gives:

∫ 1

0
(arctan x)2 dx =

π

16
(π + 4 log 2)− G,

where G is Catalan’s constant defined by G =
∞

∑
n=1

(−1)n−1

(2n− 1)2 = 0.9159655 . . .

Thus, we have:

∞

∑
n=1

(−1)n+1 hn

n (2n + 1)
=

∞

∑
n=1

(−1)n+1
[

hn

n
− 2hn

2n + 1

]
=

π2

16
+

π log 2
4

− G. (15)

Putting the value from Equation (14) in Equation (15) leads to:

∞

∑
n=1

(−1)n+1 hn

2n + 1
=

G
2
− π log 2

8
. (16)

WolframAlpha gives: ∫ 1

0

(arctan x)2

x
dx =

1
8
[4 π G− 7 ζ(3)]

yielding ([4] p.14, (4.16)):
∞

∑
n=1

(−1)n+1 hn

n2 = πG− 7ζ(3)
4

. (17)

2. Euler-Like Alternating Sums

2.1. A New Sum

It is easy to see that

H2
2n =

(
1
2

Hn + hn

)2
=

1
4

H2
n + Hnhn + h2

n.
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Therefore,

∞

∑
n=1

(−1)n+1 H2
2n

n
=

∞

∑
n=1

(−1)n+1H2
n

4n
+

∞

∑
n=1

(−1)n+1Hnhn

n
+

∞

∑
n=1

(−1)n+1h2
n

n
. (18)

We discovered this sum independently:

∞

∑
n=1

(−1)n+1H2
n

n
=

3ζ(3)
4

− π2 log 2
12

+
log3(2)

3
, (19)

which on shifting the index yields

∞

∑
n=1

(−1)n+1H2
n

n + 1
= − ζ(3)

4
+

π2 log 2
12

− log3(2)
3

so that
∞

∑
n=1

(−1)n+1H2
n

n(n + 1)
= ζ(3)− π2 log 2

6
+

2 log3(2)
3

,

and we have an identity for Apery’s constant,

∞

∑
n=1

(−1)n+1(2n + 1)H2
n

n(n + 1)
=

ζ(3)
2

.

Later on, we found the first two formulas recorded in ([12] Equations (4.4b) and (4.4c)), borrowed
from De Doelder ([6] Equation (12)) who recorded the first sum with a typographical error.

We may also record here a related sum

∞

∑
n=1

(−1)n+1H(2)
n

n
= ζ(3)− π2 log 2

12
, (20)

obtained via the formula of Flajolet and Salvy noted above.
We find this sum in ([6], Equation (21)):

∞

∑
n=1

(−1)n+1h2
n

n
=

7ζ(3)
16

. (21)

This sum occurs in ([12], Equation (4.3b)):

∞

∑
n=1

(−1)n+1 Hn−1 + Hn

n
hn =

7ζ(3)
8

− π2 log 2
8

,

that is,
∞

∑
n=1

(−1)n+1 2Hnhn

n
−

∞

∑
n=1

(−1)n+1 hn

n2 =
7ζ(3)

8
− π2 log 2

8
.

We thus obtain using Equation (17):

∞

∑
n=1

(−1)n+1Hnhn

n
= −7ζ(3)

16
− π2 log 2

16
+

πG
2

. (22)

Using the values from Equations (19)–(22) in Equation (18), we deduce this new sum:

∞

∑
n=1

(−1)n+1 H2
2n

2n
=

3ζ(3)
32

− π2 log 2
24

+
log3(2)

24
+

πG
4

. (23)
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2.2. Double Sums for Catalan’s Constant

We discovered this nice sum:

(1)1−
(

1− 1
3

)
1
2
+

(
1− 1

3
+

1
5

)
1
3
− · · · =

∞

∑
n=1

(−1)n+1 h′n
n

= G. (24)

∞

∑
n=1

(−1)n+1 h′n
n

=
∞

∑
n=1

(−1)n+1 1
n

∫ 1

0

1− (−1)n x2n

1 + x2 dx

=
∞

∑
n=1

(−1)n+1 1
n

∫ 1

0

1
1 + x2 dx

−
∫ 1

0

(
∞

∑
n=1

(−1)2n+1 x2n

n

)
1

1 + x2 dx

= log(2)
π

4
−

∫ 1

0

log(1− x2)

1 + x2 dx

=
π

4
log 2−

[π

4
log(2)− G

]
= G,

as ∫ 1

0

log(1− x2)

1 + x2 dx =
∫ 1

0

log(1 + x)
1 + x2 dx +

∫ 1

0

log(1− x)
1 + x2 dx

and ([38] p. 556, (4.291.8), (4.291.10)):

∫ 1

0

log(1 + x)
1 + x2 dx =

π

8
log 2;

∫ 1

0

log(1− x)
1 + x2 dx =

π

8
log 2− G.�

We also found this sum by shifting the index in Equation (16):

∞

∑
n=1

(−1)n+1 hn

2n− 1
=

G
2
+

π

8
log 2, (25)

for which Chu derives a wrong value
π2

24
+

π log(2)
8

in ([12] Equation (4.5c)).
The combination of Equations (16) and (25) yields:

∞

∑
n=1

(−1)n+1hn

4n2 − 1
=

π log 2
8

, (26)

and a new double sum for Catalan’s constant:

∞

∑
n=1

(−1)n+1n hn

4n2 − 1
=

G
4

. (27)

We discovered this related sum:

∞

∑
n=1

(−1)n+1 h′n
2n− 1

=
3 π2

32
, (28)

152



Mathematics 2019, 7, 833

∞

∑
n=1

(−1)n+1 h′n
2n− 1

=
∞

∑
n=1

(−1)n+1 1
2n− 1

∫ 1

0

1− (−1)nx2n

1 + x2 dx

=
∞

∑
n=1

(−1)n+1 1
2n− 1

∫ 1

0

1
1 + x2 dx

−
∫ 1

0

(
∞

∑
n=1

(−1)2n+1 x2n

2n− 1

)
1

1 + x2 dx

=
(π

4

)2
+

∫ 1

0

x arctan h(x)
1 + x2 dx

=
π2

16
+

π2

32
=

3π2

32
.

3. More Alternating Sums

3.1. Miscellaneous Double Sums

We derived these sums earlier:

∞

∑
n=1

(−1)n+1 Hn

n + 1
=

log2 2
2

;
∞

∑
n=1

(−1)n+1 Hn

n
=

π2

12
− log2 (2)

2
.

Furthermore,

∞

∑
n=1

(−1)n+1 Hn

(n + 1)2 =
ζ(3)

8
;

∞

∑
n=1

(−1)n+1 Hn

n2 =
5ζ(3)

8
.

Since H2n = hn +
Hn

2
, we deduce:

∞

∑
n=1

(−1)n+1 hn

n + 1
=

π

16
(8− π)− log 2;

∞

∑
n=1

(−1)n+1 hn

n
=

π2

16

and
∞

∑
n=1

(−1)n+1 hn

(n + 1)2 =
7ζ(3)

4
− π2

12
− πG + π − 2 log 2.

We also have these:

∞

∑
n=1

(−1)n+1 H2n

n3 = −5 Li4

(
1
2

)
+

13π4

192
− 35ζ(3) log 2

8
+

5π2 log2 (2)
24

− 5 log4 (2)
24

.

∞

∑
n=1

(−1)n+1 Hn

n3 = −2 Li4

(
1
2

)
+

11π4

360
− 7ζ(3) log 2

4
+

π2 log2 (2)
12

− log4 (2)
12

.

Its terms (except the one with π4) are 2/5 times of the previous one. See the next sum with the
same terms (except the one with π4):

∞

∑
n=1

(−1)n+1 H2
n

n2 = −2Li4

(
1
2

)
+

41π4

1440
− 7ζ(3) log 2

4
+

π2 log2(2)
12

− log4(2)
4

.

This sum is simpler:

∞

∑
n=1

(−1)n H(3)
n
n

=
∫ 1

0

Li3(−x)
x(1 + x)

dx = −19π4

1440
+

3ζ(3) log 2
4

,
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∞

∑
n=1

(−1)n+1 hn

n3 = −4 Li4

(
1
2

)
+

151π4

2880
− 7ζ(3) log 2

2
+

π2 log2 (2)
6

− log4 (2)
6

,

∞

∑
n=1

(−1)n+1 H2n

(n + 1)3 = 5 Li4

(
1
2

)
− 181π4

2880
+

35ζ(3) log 2
8

− 5π2 log2 (2)
24

+
5 log4 2

24
− 3ζ(3)

4
− π2

6
+ 2π − 4 log 2,

∞

∑
n=1

(−1)n+1 Hn

(n + 1)3 = 2 Li4

(
1
2

)
− 15π4

720
+

7ζ(3) log 2
4

− π2 log2 (2)
12

+
log4 (2)

12
,

∞

∑
n=1

(−1)n+1 hn

(n + 1)3 = 4 Li4

(
1
2

)
− 151π4

2880
+

7ζ(3) log 2
2

− π2 log2 (2)
6

+
log4 (2)

6
− 3ζ(3)

4
− π2

6
+ 2π − 4 log 2.

3.2. Sums Involving Harmonic Numbers with Multiple Arguments

For multiple arguments, we know that, for p ∈ N, hpn = H2pn − 1
2 Hpn. From [42], we obtain

∑
n≥1

(−1)n+1Hpn

n
=

1 + p2

4p
ζ (2)− 1

2

p−1

∑
j=0

log2
(

2 sin
(
(2j + 1)π

2p

))
,

∑
n≥1

(−1)n+1Hpn

n (n + 1)
= ∑

n≥1

(−1)n+1Hpn

n
− ∑

n≥1

(−1)n+1Hpn

n + 1
=

p
2

ζ (2)

+Hp−1 ln 2−
p−1

∑
j=0

log2
(

2 sin
(
(2j + 1)π

2p

))
− 1

2

p−1

∑
j=1

1
j

(
H− j

2p
− H−

(
p+j
2p

))
,

from which we ascertain

∑
n≥1

(−1)n+1hpn

n (n + 1)
=

3p
4

ζ (2) +
1
2

(
H2p−1 − Hp−1

)
log 2

+
1
2

p−1

∑
j=0

log2
(

2 sin
(
(2j + 1)π

2p

))
−

2p−1

∑
j=0

log2
(

2 sin
(
(2j + 1)π

4p

))

+
1
4

p−1

∑
j=1

1
j

(
H− j

2p
− H−

(
p+j
2p

))
− 1

2

2p−1

∑
j=1

1
j

(
H− j

4p
− H−

(
p+j
4p

))
.

For the non-alternating case, we have, from [43],

∑
n≥1

Hpn

n (n + 1)
=

1
p

ζ (2)−
p−1

∑
j=1

1
j

H− j
p

and, therefore, after some simplification

∑
n≥1

hpn

n (n + 1)
=

1
2

p−1

∑
j=1

1
j

H− j
p
−

2p−1

∑
j=1

1
j

H− j
2p

= −
p

∑
j=1

1
(2j− 1)

H− (2j−1)
2p

.
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A simple calculation gives us

∑
n≥1

h2n

n (2n + 1)
= log(2) +

1
2

π − 3
4

ζ (2) .

3.3. Few Relations between Pairs of Sums

We discovered these relations:

∞

∑
n=1

(−1)n+1h2
n

2n− 1
+

∞

∑
n=1

(−1)n+1hn

(2n + 1)2 =
π3

48
+

π log2(2)
16

,

and
∞

∑
n=1

(−1)n+1h2
n

2n + 1
+

∞

∑
n=1

(−1)n+1hn

(2n + 1)2 =
π3

96
− π log2(2)

16
.

Thus,
∞

∑
n=1

(−1)n+1h2
n

2n− 1
−

∞

∑
n=1

(−1)n+1h2
n

2n + 1
=

π3

96
+

π log2(2)
8

,

leading to the sum:
∞

∑
n=1

(−1)n+1h2
n

4n2 − 1
=

π3

192
+

π log2(2)
16

.

This relation was deduced from ([12] Equation (4.6c)):

∞

∑
n=1

(−1)n+1h2
n

2n− 1
−

∞

∑
n=1

(−1)n+1hn

(2n− 1)2 = −π3

96
+

π log2(2)
16

.

We thus have:
∞

∑
n=1

(−1)n+1h2
n

2n− 1
+

∞

∑
n=1

(−1)n+1hn

(2n + 1)2 =
π3

48
+

π log2(2)
16

,

∞

∑
n=1

(−1)n+1hn

(2n− 1)2 +
∞

∑
n=1

(−1)n+1hn

(2n + 1)2 =
π3

32
=

∞

∑
n=1

(−1)n+1

(2n− 1)3 ,

∞

∑
n=1

(−1)n+1 hn

n (n + 1)
=

π2

8
− π

2
+ log 2,

∞

∑
n=1

(−1)n+1 hn

n2(n + 1)2 = −π2

3
+ 2π − 4 log 2.

The two preceding sums have similar terms yielding a nice sum for ζ(2) :

∞

∑
n=1

(−1)n+1
(

2n + 1
n(n + 1)

)2
hn =

π2

6
, (29)

∞

∑
n=1

(−1)n+1 hn

n3(n + 1)3 =
151π4

1440
− 7ζ(3) log 2 +

π2 log2(2)
3

− log4 2
3

+
3ζ(3)

4
+

7π2

6
− 8π + 16 log 2− 8Li4

(
1
2

)
.
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4. Integrals and Euler Sums

In this section, we will explore the connection of integrals involving inverse trigonometric and
hyperbolic functions with Euler sums, thereby producing a number of interesting and new identities.

Theorem 1. Let a ∈ R+ ∪ {0} , δ ∈ R+\ {0} , p ∈ N∪ {0} and q ∈ R+; then,

I (a, δ, p, q) =

1∫
0

xa (tanh−1 (δxq))2 logp (x) dx

= (−1)p p! ∑
n≥1

δ2nhn

n (2qn + a + 1)p+1 ,

where
hn = H2n −

1
2

Hn = log(2) +
1
2

Hn− 1
2

and Hn, H2n are harmonic numbers with unitary argument and double argument.

Proof. We have that

(tanh−1 (δxq))2 = ∑
n≥1

δ2nhnx2qn

n
,

therefore

I (a, δ, p, q) = ∑
n≥1

δ2nhn

n

1∫
0

x2qn+a logp (x) dx,

and, integrating by parts, yields

I (a, δ, p, q) = (−1)p p! ∑
n≥1

δ2nhn

n (2qn + a + 1)p+1 .

Certain particular interesting cases can be explicitly represented and we detail some cases in the
next few corollaries.

Corollary 1. Let a = −1, δ = ±1, p ∈ N∪ {0} and q ∈ R+; then,

I (−1,±1, p, q) =

1∫
0

1
x
(tanh−1 (±xq))2 logp (x) dx

=
(−1)p p!

(2q)p+1 ∑
n≥1

hn

np+2 .

For p = 0,

I (−1,±1, 0, q) =

1∫
0

1
x
(tanh−1 (±xq))2 dx

=
1

(2q)1 ∑
n≥1

hn

n2 =
7
8q

ζ (3) .

156



Mathematics 2019, 7, 833

For p = 1,

I (−1,±1, 1, q) =

1∫
0

1
x
(tanh−1 (±xq))2 log (x) dx

= − 1

(2q)2 ∑
n≥1

hn

n3 =
1

4q2

(
4L (3)− 35

8
ζ (4)

)
,

where

L (3) =
11
4

ζ (4)− 7
4

ζ (3) log 2 +
1
2

ζ (2) log2 (2)− 1
12

log4 (2)− 2Li4

(
1
2

)
. (30)

For p even, let p = 2 (m− 1) , m ∈ N

I (−1,±1, 2 (m− 1) , q) =

1∫
0

1
x
(tanh−1 (±xq))2 log2m−2 (x) dx

= − (2m− 2)!

(2q)2m+1 ∑
n≥1

hn

n2m =
(2m− 2)!

(2q)2m+1 Q (m) ,

where, from paper [44],

Q (m) = ∑
n≥1

hn

n2m =
22m+1 − 1

4
ζ (2m + 1) (31)

−1
2

m−1

∑
j=1

(
22m−2j+1 − 1

)
ζ (2j) ζ (2m− 2j + 1) .

For

I
(
−1,±1

3
, 0, 1

)
=

1∫
0

1
x
(tanh−1

(
±1

3
x
)
)2 dx

=
1
2 ∑

n≥1

hn

32nn2

=
1
8

Li3

(
1
4

)
+

1
4

Li2

(
1
4

)
log 2− 1

12
log

(
27
16

)
log2 (2) ,

where we have the identity

∑
n≥1

Hn

32nn2 = Li3

(
1
9

)
+ ζ (3)− Li3

(
8
9

)
log(2)− Li2

(
8
9

)
log

(
9
8

)
− log2

(
9
8

)
log 3.

Corollary 2. Let a = 2q− 1, δ = ±1, p ∈ N∪ {0} and q ∈ R+; then,

I (2q− 1,±1, p, q) =

1∫
0

1
x
(tanh−1 (±xq))2 logp (x) dx

=
(−1)p p!

(2q)p+1 ∑
n≥1

hn

n (n + 1)p+1

=
(−1)p p!

(2q)p+1 ∑
n≥1

hn

(
1

n (n + 1)
−

p+1

∑
j=2

1

(n + 1)j

)
.
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For p = 2, q = 1

I (1,±1, 2, 1) =

1∫
0

x (tanh−1 (±x))2 log2 (x) dx

=
1
4 ∑

n≥1

hn

n (n + 1)3

=
1
4 ∑

n≥1
hn

(
1

n (n + 1)
−

3

∑
j=2

1

(n + 1)j

)

= L (3) +
7
2

log(2)− 3
4

ζ (2)− 11
16

ζ (3)− 35
32

ζ (4) ,

where we have evaluated

∑
n≥1

hn

n (n + 1)
= 2 log 2, ∑

n≥1

hn

(n + 1)2 = ζ (2)− 4 log(2) +
7
4

ζ (3) ,

∑
n≥1

hn

(n + 1)3 = 2ζ (2)− 4L (3)− 8 log 2 + ζ (3) +
35
8

ζ (4) .

For δ = ± 1
3 ,

I
(

1,±1
3

, 0, 1
)

=

1∫
0

x
{

tanh−1
(
±1

3
x
)}2

dx =
1
2 ∑

n≥1

hn

9n n(n + 1)

= 15 log 2− 9 log 3− log2(2),

where

∑
n≥1

Hn

9n n(n + 1)
= Li2

(
1
9

)
− 4 log2

(
9
8

)
.

We can decompose the two sums into:

∞

∑
n=1

hn

9n n
=

1
4

log2(2);
∞

∑
n=1

hn

9n+1 (n + 1)
=

1
4

log2(2)− 10
3

log 2 + 2 log 3,

and
∞

∑
n=1

Hn

9n n
= Li2

(
1
9

)
+

1
2

log2
(

9
8

)
;

∞

∑
n=1

Hn

9n+1 (n + 1)
=

1
2

log2
(

9
8

)
.

Moreover,

∞

∑
n=1

H2n

92n+1 (2n + 1)
=

1
4

[
log2

(
9
8

)
− log2

(
10
9

)]
=

1
4

log
(

81
80

)
log

(
5
4

)
.

An interesting connection with these given four sums is the alternating identity

∞

∑
n=1

(−1)n+1 Hn

3n (n + 1)
=

3
2

log2
(

4
3

)
,

from which, by extrapolation, we are able to obtain the very fast converging alternating identity

ζ (2) = 2
∞

∑
n=1

(−1)n+1 hn

3n−1 n
.
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Corollary 3. For a = −1− q

I (−q− 1,±1, p, q) =

1∫
0

x−1−q (tanh−1 (±xq))2 logp (x) dx

=
(−1)p p!

(2q)p+1 ∑
n≥1

hn

n (2n− 1)p+1

=
(−1)p p!

qp+1 ∑
n≥1

hn

(
(−1)p

n (2n− 1)
+ 2

p+1

∑
j=2

(−1)p+1+j

(2n− 1)j

)

=
p!

qp+1

(
ζ (2) + 2

p+1

∑
j=2

(−1)1+j V (j)

)
,

where, from paper [44], we have evaluated, for j even,

V (j) = ∑
n≥1

hn

(2n− 1)j =
1
4
(ζ (j + 1) + η (j + 1)) +

1
2
(ζ (j) + η (j)) log 2

− 1
2j+1

j
2−1

∑
k=1

(
22k − 1

)
ζ (2k) ζ (j− 2k + 1) . (32)

For the case

I (−2,±1, 2, 1) =

1∫
0

x−2 (tanh−1 (±x))2 log2 (x) dx = 2L (3)− 5
16

ζ (4)

+
7
2

ζ (3) log 2− 7
4

ζ (3)− 3ζ (2) log 2 + 2ζ (2) ,

where we have the results

∑
n≥1

hn

n (2n− 1)
= ζ (2) , ∑

n≥1

hn

(2n− 1)2 =
3
4

ζ (2) log 2 +
7
16

ζ (3) ,

∑
n≥1

hn

(2n− 1)3 =
21
2

L (3) +
7
8

ζ (3) log 2− 5
64

ζ (4) .

For

I
(
−2,±1

2
, 0, 1

)
=

1∫
0

x−2
{

tanh−1
(
±1

2
x
)}2

dx = ∑
n≥1

hn

22nn (2n− 1)

=
1
2

ζ (2)− 1
2

Li2

(
1
3

)
− 1

8
log

(
243
16

)
log 3,

where we have the identity

∑
n≥1

H2n

22nn (2n− 1)
=

5
4

ζ (2) +
3
2

log
(

3
2

)
− 1

2
log 2− 3

2
Li2

(
2
3

)
− 3

2
log

(
3
2

)
log 3.

Higher powers of the tanh−1 (x) function yield more Euler sum identities, and we have the
following corollary.
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Corollary 4.

1∫
0

xa (tanh−1 (x))3 dx = ∑
n≥1

hn

n ∑
j≥1

1
(2j− 1)

1∫
0

x2n+2j+a−1dx

= ∑
n≥1

∑
j≥1

hn

n (2j− 1) (2n + 2j + a)

= ∑
n≥1

hn

(
2 log(2) + Hn+ a

2

)
n (2n + a + 1)

.

Various cases follow, for a = −1,

1∫
0

1
x
(tanh−1 (x))3 dx = ∑

n≥1

hn

(
2 log(2) + Hn− 1

2

)
4n2 = ∑

n≥1

h2
n

4n2 =
45
32

ζ (4) .

For a = 1,

1∫
0

x (tanh−1 (x))3 dx =
1
4 ∑

n≥1

hn

(
2 log(2) + Hn+ 1

2

)
n (n + 1)

=
1
4 ∑

n≥1

(
2hn

n (n + 1) (2n + 1)
+

h2
n

n (n + 1)

)
=

3
4

ζ (2) .

From here, we have the identities

∑
n≥1

hn

n (n + 1) (2n + 1)
= ζ (2)− 2 log 2, ∑

n≥1

h2
n

n (n + 1)
=

1
2

ζ (2) + 2 log 2,

and we have the new identities

ζ (2) =
2
3 ∑

n≥1

hn

n (n + 1)

(
hn +

1
2n + 1

)
,

∑
n≥1

hnH n
2

n (n + 1)
=

21
16

ζ (3)− 9
2

log2(2) + 2G +
1
2

ζ (2) .

For a = −2,

1∫
0

1
x2 (tanh−1 (x))3 dx =

1
2 ∑

n≥1

hn (2 log(2) + Hn−1)

n (2n− 1)

= ∑
n≥1

(
hn log 2

n (2n− 1)
+

hn Hn

2n (2n− 1)
− hn

2n2 (2n− 1)

)
=

3
2

ζ (3) .

From here, we have the identities

∑
n≥1

hn

n (2n− 1)
= ζ (2) , ∑

n≥1

hn

n2 =
7
4

ζ (3) ,

∑
n≥1

hn Hn

n (2n− 1)
=

5
4

ζ (3)− 2ζ (2) log 2 + 2ζ (2) .
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Consider the quartic,

1∫
0

1
x
(tanh−1 (x))4 dx =

1
2 ∑

n≥1
∑
j≥1

hnhj

nj (n + j)
=

93
32

ζ (5) .

1∫
0

1√
x
(tanh−1

(
1
2

x
1
4

)
)4 dx =

1
2 ∑

n≥1
∑
j≥1

hnhj

22n+2j−1nj (n + j + 1)

= 36ζ(3) + 22 log3(3)− 3
8

log4(3)− 48 log(2) log2(3) + 48 log(3)Li2

(
−1

3

)
+ 48Li3

(
−1

3

)
.

For powers of the arctan x function, we shall find some further alternating harmonic Euler sums.

Theorem 2. Let a ∈ R+ ∪ {0} , δ ∈ R+\ {0} , p ∈ N∪ {0} and q ∈ R+; then,

J (a, δ, p, q) =

1∫
0

xa arctan2 (δxq) logp (x) dx

= (−1)p p! ∑
n≥1

(−1)n+1 δ2nhn

n (2qn + a + 1)p+1 ,

where
hn = H2n −

1
2

Hn = log 2 +
1
2

Hn− 1
2

and Hn, H2n are harmonic numbers with unitary argument and double argument.

Proof. We have that

arctan2 (δxq) = ∑
n≥1

(−1)n+1 δ2nhnx2qn

n
;

therefore,

J (a, δ, p, q) = ∑
n≥1

(−1)n+1 δ2nhn

n

1∫
0

x2qn+a logp (x) dx

= (−1)p p! ∑
n≥1

(−1)n+1 δ2nhn

n (2qn + a + 1)p+1 .

Certain particular interesting cases can be explicitly represented and we detail some cases in the
next few corollaries.

Corollary 5. Let a = −1, δ = ±1, p ∈ N∪ {0} and q ∈ R+; then,

J (−1,±1, p, q) =

1∫
0

1
x

arctan2 (±xq) logp (x) dx

=
(−1)p p!

(2q)p+1 ∑
n≥1

(−1)n+1 hn

np+2 .
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For p = 1, and using the results of the previous sections,

J (−1,±1, 1, q) =
1∫

0

1
x

arctan2 (±xq) log (x) dx =
1

(2q)2 ∑
n≥1

(−1)n+1 hn

n3

=
1

(2q)2

{
151
32

ζ (4)− 7
2

ζ (3) log 2 + ζ (2) log2(2)− 1
6

log4 (2)− 4Li4

(
1
2

)}
.

Corollary 6. Let a = 2q− 1, δ = ±1, p ∈ N∪ {0} and q ∈ R+; then,

J (2q− 1,±1, p, q) =

1∫
0

x2q−1 arctan2 (±xq) logp (x) dx

=
(−1)p p!

(2q)p+1 ∑
n≥1

(−1)n+1 hn

n (n + 1)p+1 .

=
(−1)p p!

(2q)p+1 ∑
n≥1

(−1)n+1 hn

(
1
n
−

p+1

∑
j=1

1

(n + 1)j

)
.

For p = 2, and using the results of the previous sections,

J (2q− 1,±1, 2, q) =

1∫
0

x2q−1 arctan2 (±xq) log2 (x) dx

=
2

(2q)p+1 ∑
n≥1

(−1)n+1 hn

(
1
n
−

3

∑
j=1

1

(n + 1)j

)

=
1

(2q)2

⎛⎜⎝ πG + 151
32 ζ (4)− 7

2 ζ (3) log 2 + ζ (2) log2(2)− 1
6 log4 (2)

−4Li4( 1
2 )− 3π

2 + 9
4 ζ (2) + 7 log 2− ζ (3)

⎞⎟⎠ .

Corollary 7. Let a = −q− 1, δ = ±1, p ∈ N∪ {0} and q ∈ R+; then,

J (−q− 1,±1, p, q) =

1∫
0

x−q−1 arctan2 (±xq) logp (x) dx

=
(−1)p p!

qp+1 ∑
n≥1

(−1)n+1 hn

n (2n− 1)p+1 .

=
(−1)p p!

qp+1 ∑
n≥1

(−1)n+1 hn

(
(−1)p+1

n
+ 2

p+1

∑
j=1

(−1) j+p+1

(2n− 1)j

)
.

For p = 0,

J (2q− 1,±1, 0, q) =

1∫
0

x−q−1 arctan2 (±xq) dx

=
1
q ∑

n≥1
(−1)n+1 hn

(
− 1

n
+

2
(2n− 1)

)
=

1
q

(
π

4
log 2 + G− 3

8
ζ (2)

)
.
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Higher powers of the arctan (x) function yield more Euler sum identities, and we have the
following corollary.

Corollary 8.

1∫
0

xa arctan3 (x) dx = ∑
n≥1

(−1)n+1 hn

n

1∫
0

x2n+a arctan (x) dx

= ∑
n≥1

(−1)n+1 hn

4n

(
π + H 2n+a−2

4
− H 2n+a

4

(2n + a + 1)

)
.

Various cases follow, for a = 0, and using the double argument of the polygamma function

1∫
0

arctan3 (x) dx = ∑
n≥1

(−1)n+1 hn

4n

(
π + H 2n−2

4
− H 2n

4

2n + 1

)

= ∑
n≥1

(−1)n+1 hn

4n (2n + 1)

(
π − 2 log(2) + 2Hn − 2H n

2

)

=
63
64

ζ (3)− 3
4

πG +
π3

64
+

18
32

ζ (2) log 2.

Manipulating this integral identity gives us the new Euler sums,

∑
n≥1

(−1)n+1 hn H n
2

n
= πG− 35

32
ζ (3)− 9

8
ζ (2) log 2,

∑
n≥1

(−1)n+1 hn

(
H n

2
− Hn

)
2n + 1

=
21
32

ζ (3)− 1
4

πG +
3
4

π log2(2)− 1
2

G log 2,

∑
n≥1

h2n

n (2n + 1)
= log 2 +

π

2
− 3

4
ζ (2) .

For a = −1,

1∫
0

1
x

arctan3 (x) dx = ∑
n≥1

(−1)n+1 hn

8n2

(
π + H n

2− 3
4
− H n

2− 1
4

)
=

9
8

ζ (2) G +
1

1024

(
ψ(3)

(
3
4

)
− ψ(3)

(
1
4

))
=

9
8

ζ (2) G− 3
2

β (4) ,

where the Dirichlet function β (4) = ∑
j≥1

(−1)j+1

(2j−1)4 . Here, we note that

ψ(3)
(

3
4

)
− ψ(3)

(
1
4

)
= 8π4 − 768β (4)−

(
8π4 + 768β (4)

)
= −1536β (4) ;
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moreover, using the integral identity, we obtain the new Euler sum

∑
n≥1

(−1)n+1 hn

n2

(
H n

2 +
1
4
− H n

2− 1
4

)
= 3ζ (2) G− 12β (4) +

7
4

πζ (3) + 4π G

−7ζ (3) + 8G− 3ζ (2)− 2π log 2.

For the quartic

1∫
0

1
x

arctan4 (x) dx = ∑
n≥1

∑
j≥1

(−1)n+j hnhj

jn (j + n)

=
1

16
π3G +

93
32

ζ (5) +
3
2

πβ (4) ,

and

1∫
0

x arctan6 (x) dx = ∑
n≥1

∑
j≥1

∑
k≥1

(−1)n+j+k+1 hnhjhk

2jkn (j + k + n + 1)

=
15
32

π3G +
20925
1024

ζ (5)− 45
4

πβ (4)− 3
1024

π5

+
945
4096

ζ (6)− 675
256

ζ (4) log 2 +
405
256

ζ (2) ζ (3) .

5. Conclusions

In the first three sections of the paper, we treated miscellaneous Euler sums, particularly,
the alternating sums. We developed many new Euler type identities. In particular, we have developed
some new identities for the Catalan constant, Apery’s constant and Euler’s famous ζ (2) constant.
In the fourth section of this paper, we have demonstrated and explored the connection of integrals
involving trigonometric and hyperbolic functions with Euler sums. We have evaluated particular
integrals related to Euler sums, many of which are not amenable to a mathematical software package.
Integrals dealing with powers of arctangent and hyperbolic functions will be further developed in a
forthcoming paper.
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1. Introduction

In a recent article [1] we noted that the first and second type Chebyshev polynomials can be used
to separate the real from the imaginary part of the Appell polynomials. This is just one of the countless
applications of these classic polynomials in Function theory. The purpose of this article is to highlight
another of their applications, which is, in some way, analogous to the previous one. In fact everybody
knows that the even and the odd part of a function F(x) are derived, in a trivial form, by the equations
1
2 [F(x) + F(−x)] and 1

2 [F(x)− F(−x)].
However, in the case of more complicated expressions of the F function, for example in relation to

the Appell-type functions, the result is not so obvious, and it will be shown here that it can be obtained
using another property of the first and second kind Chebyshev polynomials.

The article is organized as follows. In the first section we use a formula, similar to that of Euler,
to separate the even part from the odd part of a binomial power containing hyperbolic functions,
showing a connection with the Chebyshev polynomials considered outside their orthogonality interval.
Then the results are applied to the case of the Appell polynomials and, in the following sections, to the
case of the first kind Bessel functions and to the recently introduced Appell–Bessel functions [2].

It is noteworthy that the study of Appell’s polynomials, and of their various extensions,
has been considered in both earlier [3] and recent times [4–6]. In these articles have been shown
applications to difference equations, expansions in polynomial series and has been analyzed the
relative internal structure.

2. Recalling the Chebyshev Polynomials

It is well known that the first kind Chebyshev polynomias Tn(x) can be defined outside the
interval [−1, 1], by using their expression in terms of hyperbolic functions [7].

Mathematics 2019, 7, 679; doi:10.3390/mat7080679 www.mdpi.com/journal/mathematics167
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Putting x = cosh θ, and f (θ) = cosh θ + sinh θ, we can write:

[ f (θ)]n = (cosh θ + sinh θ)n =
[n/2]

∑
h=0

(
n
2h

)
[cosh θ]n−2h([cosh θ]2 − 1)h+

+ sinh θ
[(n−1)/2]

∑
h=0

(
n

2h + 1

)
[cosh θ]n−2h−1([cosh θ]2 − 1)h =

= E [ f (θ)]n +O[ f (θ)]n ,

(1)

where E [ f (θ)]n and O[ f (θ)]n denote the even and odd part of the [ f (θ)]n function.
Therefore, using the explicit expression of Chebyshev polynomias, we find

[ f (θ)]n = (cosh θ + sinh θ)n = Tn(cosh θ) + sinh θ Un−1(cosh θ) , (2)

and

E [ f (θ)]n = Tn(cosh θ) , O[ f (θ)]n = sinh θ Un−1(cosh θ) . (3)

Equations (2) and (3) can be interpreted as an Euler-type formula, owing the analogy with the
classical one:

[exp(i θ)]n = (cos θ + i sin θ)n =
[n/2]

∑
h=0

(
n
2h

)
[cos θ]n−2h([cos θ]2 − 1)h+

+ i sin θ
[(n−1)/2]

∑
h=0

(
n

2h + 1

)
[cos θ]n−2h−1([cos θ]2 − 1)h =

= 
[(exp(i θ))n] + i�[(exp(i θ))n] .

(4)

Consequences of the Euler-Type Formula

Using the expansions proven in [8] (but in the case of hyperbolic functions), we find:

Theorem 1. The Taylor expansions hold:

ex τ cosh(y τ) =
∞

∑
n=0

C̃n(x, y)
τn

n!
,

ex τ sinh(y τ) =
∞

∑
n=0

S̃n(x, y)
τn

n!
,

(5)

where

C̃n(x, y) =
[n/2]

∑
j=0

(
h
2j

)
xn−2j y2j

S̃n(x, y) =
[(n−1)/2]

∑
j=0

(
h

2j + 1

)
xn−2j−1 y2j+1 .

(6)
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Proof. The result follows by using the product of series:
I. Cauchy product involving an even function.

∞

∑
k=0

ck
τk

k!

∞

∑
k=0

dk
τ2k

(2k)!
=

∞

∑
k=0

⎡⎣ [ k
2 ]

∑
h=0

(
k

2h

)
ck−2h dh

⎤⎦ τk

k!
. (7)

II. Cauchy product involving an odd function.

∞

∑
k=0

ak
τk

k!

∞

∑
k=0

bk
τ2k+1

(2k + 1)!
=

∞

∑
k=0

⎡⎣[ k−1
2 ]

∑
h=0

(
k

2h + 1

)
ak−2h−1 bh

⎤⎦ τk

k!
. (8)

As a consequence of Equations (5) and (6) we find:

ex τ [cosh(y τ) + sinh(y τ)] = e(x+y) τ =
∞

∑
n=0

[
C̃n(x, y) + S̃n(x, y)

] τn

n!
, (9)

and putting x = cosh θ, y = sinh θ

exp[(cosh θ + sinh θ) τ] =
∞

∑
n=0

(cosh θ + sinh θ)n τn

n!
=

=
∞

∑
n=0

[
C̃n(cosh θ, sinh θ) + S̃n(cosh θ, sinh θ)

] τn

n!
.

(10)

Therefore, we conclude that

C̃n(cosh θ, sinh θ) = Tn(cosh θ)

S̃n(cosh θ, sinh θ) = sinh θ Un−1(cosh θ) ,
(11)

and furthermore:

C̃n(x,
√

x2 − 1) = Tn(x) , S̃n(x,
√

x2 − 1) =
√

x2 − 1 Un−1(x) . (12)

3. The Even and Odd Part of Appell Polynomials

In this section we show how to represent the even and odd part of Appell polynomials.
Consider the Appell polynomials [9–11], defined by the generating function [12]

A(t) ex t =
∞

∑
n=0

αn(x)
tn

n!
, (13)

where

A(t) =
∞

∑
n=0

ak
tk

k!
. (14)

Putting y :=
√

x2 − 1, we have

A(t) e(x+y) t =
∞

∑
n=0

An(x, y)
tn

n!
, (15)
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where

An(x, y) = An(x,
√

x2 − 1) = αn(x +
√

x2 − 1) . (16)

By using the Cauchy product we find:

An(x, y) =
n

∑
k=0

(
n
k

)
an−k (x + y)k = E [An(x, y)] +O[An(x, y)] , (17)

and putting x = cosh θ, y =
√

x2 − 1 = sinh θ,

An(x, y) =
n

∑
k=0

(
n
k

)
an−k (cosh θ + sinh θ)k =

n

∑
k=0

(
n
k

)
an−k

[
C̃k(x, y) + S̃k(x, y)

]
=

=
n

∑
k=0

(
n
k

)
an−k [Tk(x) + y Uk−1(x)] .

Therefore, by recalling (2) and (3), we conclude that

E [An(x,
√

x2 − 1)] =
n

∑
k=0

(
n
k

)
an−k Tk(x) ,

O[An(x,
√

x2 − 1)] =
√

x2 − 1
n

∑
k=0

(
n
k

)
an−k Uk−1(x) .

(18)

Remark 1. Note that Equation (18) can be applied in general, since, when |x| > 1, the position x +
√

x2 − 1 =

u is equivalent to x = u2−1
2u , and

√
x2 − 1 = u2−1

2u , so that Equation (13) becomes:

A(t) eu t =
∞

∑
n=0

αn(u)
tn

n!
. (19)

Therefore, we can conclude with the theorem.

Theorem 2. The even and odd part of the Appell polynomials αn(u) defined by the generating function (19)
can be represented, in terms of the first and second kind Chebyshev polynomials, by the equations:

E [αn(u)] =
n

∑
k=0

(
n
k

)
an−k Tk

(
u2+1

2u

)
,

O[αn(u)] = u2−1
2u

n

∑
k=0

(
n
k

)
an−k Uk−1

(
u2+1

2u

)
.

(20)

4. 1st Kind Bessel Functions

We consider here the first kind of Bessel functions with integer order [13], defined by the
generating function [12]:

e
x
2 (t− 1

t ) =
∞

∑
n=−∞

Jn(x) tn . (21)

Putting, for shortness:

J̃0(x) := 1
2 J0(x) , J̃k(x) := Jk(x) , (k ≥ 1) . (22)
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Equation (21) writes:

e
x
2 (t− 1

t ) =
∞

∑
n=0

J̃n(x) tn +
∞

∑
n=0

(−1)n J̃n(x) t−n . (23)

Note that, using the notation

e
x
2 (t− 1

t ) = E
[
e

x
2 (t− 1

t )
]
+O

[
e

x
2 (t− 1

t )
]

, (24)

the even and odd part must be understood with respect to both t and x, and we find:

E
[
e

x
2 (t− 1

t )
]
=

∞

∑
n=0

J̃2n(x)
(

t2n + t−2n
)

,

O
[
e

x
2 (t− 1

t )
]
=

∞

∑
n=0

J2n+1(x)
(

t2n+1 − t−(2n+1)
)

.

(25)

Representation by Chebyshev Polynomials

Inverting the equation τ = 1
2

(
t− 1

t

)
, we have:

t = τ +
√

τ2 + 1 . (26)

Theorem 3. The generating function (21) can be represented in terms of Chebyshev polynomials by:

ex τ = 2
∞

∑
n=0

J̃2n(x) T2n(τ) + 2
√

τ2 + 1
∞

∑
n=0

J2n+1(x)U2n(τ) , (27)

so that the even and odd part of the Bessel functions defined by Equation (21) are given by

E
[

∞

∑
k=−∞

Jk(x) tk

]
= 2

∞

∑
k=0

J̃2k(x) T2k(τ) ,

O
[

∞

∑
k=−∞

Jk(x) tk

]
= 2

√
τ2 + 1

∞

∑
k=0

J2k+1 U2k(τ) .

(28)

Proof. Equation (21) writes:

ex τ =
∞

∑
n=0

J̃2n(x)
(

t2n + t−2n
)
+

∞

∑
n=0

J2n+1(x)
(

t2n+1 − t−(2n+1)
)

, (29)

so that (
t2n + t−2n)

= 2 T2n(τ) ,
(

t2n+1 − t−(2n+1)
)
= 2

√
τ2 + 1 U2n(τ) , (30)

and the result is proven.

5. Appel–Bessel Functions

Several mixed-type (or hybrid) functions have been recently considered. The starting point of
these type of special functions can be found in [14,15]. In this section we consider the Appel–Bessel
functions introduced in [2].
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Definition 1. The Appel–Bessel functions [2] are defined by generating function:

G(x, t) = A
[

x
2 (t− 1

t )
]

exp
[

x
2 (t− 1

t )
]
=

∞

∑
k=−∞

[A Jk(x)] tk , (31)

where

A(τ) =
∞

∑
k=0

ak
τk

k!
, (a0 �= 0) . (32)

Since

G(x, t) =
∞

∑
k=−∞

[A Jk(x)] tk =
∞

∑
k=−∞

[A J−k(x)] t−k , (33)

we find

[A J−k(x)] = (−1)k [A Jk(x)] . (34)

Furthermore, from

G(x,−t) = G(−x, t) =
∞

∑
k=−∞

[A Jk(x)] (−1)k tk =
∞

∑
k=−∞

[A Jk(−x)] tk , (35)

we find

[A Jk(−x)] = (−1)k [A Jk(x)] . (36)

That is, the same symmetry properties of the ordinary 1st kind Bessel functions still hold for the
Appell–Bessel functions.

5.1. Representation of the Appell–Bessel Functions

Even in this case we put, for shortness:

[A J̃0(x)] := 1
2 [A J0(x)] , [A J̃k(x)] := [A Jk(x)] , (k ≥ 1) . (37)

Theorem 4. The generating function (31) can be represented in terms of Chebyshev polynomials by:

A(x τ) ex τ = 2
∞

∑
n=0

[A J̃2n(x)] T2n(τ) + 2
√

τ2 + 1
∞

∑
n=0

[A J2n+1(x)]U2n(τ) , (38)

so that the even and odd part of the Appell-Bessel functions are given by

E
[

∞

∑
k=−∞

[A Jk(x)] tk

]
= 2

∞

∑
k=0

[A J̃2k(x)] T2k(τ) ,

O
[

∞

∑
k=−∞

[A Jk(x)] tk

]
= 2

√
τ2 + 1

∞

∑
k=0

[A J2k+1]U2k(τ) .

(39)

Proof. Using the symmetry properties (34) and (36), the same technique applied in Section 3 gives the
result in the present case.
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5.2. Connection with the Appel–Bessel Functions

Theorem 5. The following equation holds:

∞

∑
k=0

k

∑
h=0

(
k
h

)
ak−h

(x τ)k

k!
=

= 2
∞

∑
n=0

[A J̃2n(x)] T2n(τ) + 2
√

τ2 + 1
∞

∑
n=0

[A J2n+1(x)]U2n(τ) .

(40)

Proof. By using the Cauchy product we find:

A(x τ) ex τ =
∞

∑
k=0

ak
(x τ)k

k!

∞

∑
k=0

(x τ)k

k!
=

∞

∑
k=0

k

∑
h=0

(
k
h

)
ak−h

(x τ)k

k!
. (41)

Therefore, the result follows by comparing Equations (38) and (41).

6. Conclusions

It has been shown that the first and second kind Chebyshev polynomials play an important role in
separating the even part from the odd part of several polynomials and special functions, which include
the Appell polynomials, the first kind Bessel functions and the recently introduced Appell–Bessel
functions [2]. This is another remarkable property of Chebyshev’s classic polynomials within Function
theory, which seems to be the counterpart of another, highlighted in [1], which showed its role in
separating the real from the imaginary part of Appell’s polynomials.
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Abstract: Starlike functions have gained popularity both in literature and in usage over the past
decade. In this paper, our aim is to examine some useful problems dealing with q-starlike functions.
These include the convolution problem, sufficiency criteria, coefficient estimates, and Fekete–Szegö
type inequalities for a new subfamily of analytic and multivalent functions associated with circular
domain. In addition, we also define and study a Bernardi integral operator in its q-extension for
multivalent functions. Furthermore, we will show that the class defined in this paper, along with the
obtained results, generalizes many known works available in the literature.

Keywords: multivalent functions; q-Ruschweyh differential operator; q-starlike functions;
circular domain; q-Bernardi integral operator

1. Introduction

The study of q-extension of calculus and q-analysis has attracted and motivated many researchers
because of its applications in different parts of mathematical sciences. Jackson was one of the main
contributors among all mathematicians who initiated and established the theory of q-calculus [1,2]. As
an interesting sequel to [3], in which the q-derivative operator was used for the first time for studying
the geometry of q-starlike functions, a firm footing of the usage of the q-calculus in the context of
Geometric Function Theory was provided and the basic (or q-) hypergeometric functions were first used
in Geometric Function Theory in a book chapter by Srivastava (see, for details, [4] (pp. 347 et seq.)). The
theory of q-starlike functions was later extended to various families of q-starlike functions by Agrawal
and Sahoo in [5] (see also the recent investigations on this subject by Srivastava et al. [6–11]). Motivated
by these q-developments in Geometric Function Theory, many authors added their contributions in
this direction which has made this research area much more attractive in works like [4,12].

In 2014, Kanas and Răducanu [13] used the familiar Hadamad products to define a q-extension of
the Ruscheweyh operator and discussed important applications of this operator in detail. Moreover,
the extensive study of this q-Ruscheweyh operator was further made by Mohammad and Darus [14]
and Mahmood and Sokół in [15]. Recently, a new idea was presented by Darus [16] that introduced a
new differential operator called a generalized q-differential operator, with the help of q-hypergeometric
functions where they studied some useful applications of this operator. For the recent extensions of
different operators in q-analogue, see the work in [17–19]. The operator defined in [13] was extended
further for multivalent functions by Arif et al. in [20] where they investigated its important applications.

Mathematics 2019, 7, 670; doi:10.3390/mat7080670 www.mdpi.com/journal/mathematics175
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The aim of this paper is to define a family of multivalent q-starlike functions associated with circular
domains and to study some of its useful properties.

Background

Let Ap (p ∈ N = {0, 1, 2, . . .}) contain all multivalent functions say f that are holomorphic or
analytic in a subset D = {z : |z| < 1} of a complex plane C and having the series form:

f (z) = zp +
∞

∑
l=1

al+pzl+p, (z ∈ D) . (1)

For two analytic functions f and g in D, then f is subordinate to g, symbolically presented as
f ≺ g or f (z) ≺ g (z) , if we can find an analytic function w with the properties w (0) = 0 & |w (z)| < 1
such that f (z) = g(w(z)). Also, if g is univalent in D, then we have

f (z) ≺ g(z)⇐⇒ f (0) = g(0) and f (D) ⊂ g(D).

For given q ∈ (0, 1), the derivative in q-analogue of f is given by

Dq f (z) =
f (z)− f (qz)

z (1− q)
, (z �= 0, q �= 1) . (2)

Making (1) and (2), we easily get that for n ∈ N and z ∈ D:

Dq

{
∞

∑
n=1

an+pzn+p

}
=

∞

∑
n=1

[n + p]q an+pzn+p−1, (3)

where

[n]q =
1− qn

1− q
= 1 +

n−1

∑
l=1

ql , [0, q] = 0.

For n ∈ Z∗ := Z\ {−1,−2, . . .} , the q-number shift factorial is given as

[n]q! =

{
1, n = 0,
[1]q [2]q . . . [n]q , n ∈ N.

Also, with x > 0, the q-analogue of the Pochhammer symbol has the form

[x, q]qn =

{
1, n = 0,
[x, q][x + 1, q] · · · [x + n− 1, q], n ∈ N,

and, for x > 0, the Gamma function in q-analogue is presented as

Γq (x + 1) = [x, q] Γq (t) and Γq (1) = 1.

We now consider a function

Φp (q, μ + 1; z) = zp +
∞

∑
n=2

Λn+p zn+p, (μ > −1, z ∈ D), (4)

with

Λn+p =
[μ + 1, q]n+p

[n + p]q!
. (5)
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The series defined in (4) converges absolutely in D. Using Φp (q, μ; z) with μ > −1 and idea of

convolution, Arif et al. [20] established a differential operator Lμ+p−1
q : Ap → Ap by

Lμ+p−1
q f (z) = Φp (q, μ; z) ∗ f (z) = zp +

∞

∑
n=2

Λn+p an+pzn+p, (z ∈ D) . (6)

We also note that

lim
q→1−

Φp (q, μ; z) =
zp

(1− z)μ+1 and lim
q→1−

Lμ+p−1
q f (z) = f (z) ∗ zp

(1− z)μ+1 .

Now, when q → 1−, the operator defined in (6) becomes the familiar differential operator
investigated in [21] and further, setting p = 1, we get the most familiar operator known as
Ruscheweyh operator [12] (see also [22,23]). Also, for different types of operators in q-analogue,
see the works [16,17,19,24–26].

Motivated from the work studied in [3,18,27–29], we establish a family S∗p (q, μ, A, B) using the

operator Lμ+p−1
q as follows:

Definition 1. Suppose that q ∈ (0, 1) and −1 � B < A � 1. Then, f ∈ Ap belongs to the set S∗p (q, μ, A, B) ,
if it satisfies

zDqLμ+p−1
q f (z)

[p, q]Lμ+p−1
q f (z)

≺ 1 + Az
1 + Bz

, (7)

where the function 1+Az
1+Bz is known as Janowski function studied in [30].

Alternatively,

f ∈ S∗p (q, μ, A, B)⇔

∣∣∣∣∣∣∣∣
zDqLμ+p−1

q f (z)

[p,q]Lμ+p−1
q f (z)

− 1

A− B
zDqLμ+p−1

q f (z)

[p,q]Lμ+p−1
q f (z)

∣∣∣∣∣∣∣∣ < 1. (8)

Note: We will assume throughout our discussion, unless otherwise stated,

−1 � B < A � 1, q ∈ (0, 1) , p ∈ N, and μ > −1.

2. A Set of Lemmas

Lemma 1. [31] Let h (z) = 1 +
∞
∑

n=1
dnzn ≺ K (z) = 1 +

∞
∑

n=1
knzn in D. If K (z) is convex univalent in D,

then,
|dn| � |k1| , for n � 1.

Lemma 2. Let W contain all functions w that are analytic in D, which satisfies w (0) = 0 & |w(z)| < 1 if the
function w ∈ W , given by

w(z) =
∞

∑
k=1

wkzk (z ∈ D) .

Then, for λ ∈ C, we have ∣∣∣w2 − λw2
1

∣∣∣ � max {1; |λ|} , (9)

and ∣∣∣∣w3 +
1
4

w1w2 +
1
16

w3
1

∣∣∣∣ � 1. (10)
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These results are the best possible.

For the first and second part, see references [32,33], respectively.

3. Main Results and Their Consequences

Theorem 1. Let f ∈ Ap have the series form (1) and satisfy the inequality given by

∞

∑
n=1

∧n+p ([n + p, q] (1− B)− [p, q] (1− A))
∣∣an+p

∣∣ � [p, q] (A− B) . (11)

Then, f ∈ S∗p (q, μ, A, B) .

Proof. To show f ∈ S∗p (q, μ, A, B) , we just need to show the relation (8). For this, we consider

∣∣∣∣∣∣∣∣
zDqLμ+p−1

q f (z)

[p,q]Lμ+p−1
q f (z)

− 1

A− B
zDqLμ+p−1

q f (z)

[p,q]Lμ+p−1
q f (z)

∣∣∣∣∣∣∣∣ = .

∣∣∣∣∣ zDqLμ+p−1
q f (z)− [p, q]Lμ+p−1

q f (z)

A [p, q]Lμ+p−1
q f (z)− BzDqLμ+p−1

q f (z)

∣∣∣∣∣ .

Using (6), and with the help of (11) and (3), we have

=

∣∣∣∣ [p,q]zp+∑∞
n=1 ∧n+pan+p [n+p,q]zn+p−[p,q](zp+∑∞

n=1 ∧n+pan+pzn+p)
A[p,q](zp+∑∞

n=1 ∧n+pan+pzn+p)−B([p,q]zp+∑∞
n=1 ∧n+pan+p [n+p,q]zn+p)

∣∣∣∣
=

∣∣∣ ∑∞
n=1 ∧n+pan+P([n+p,q]−[p,q])zn+p

(A−B)[p,q]zp+∑∞
n=1 ∧n+pan+p(A[p,q]−B[n+p,q])zn+p

∣∣∣
� ∑∞

n=1 ∧n+p |an+P |([n+p,q]−[p,q])|z|n+p

(A−B)[p,q]|z|p−∑∞
n=1 ∧n+p|an+p|(A[p,q]−B[n+p,q])|z|n+p

� ∑∞
n=1 ∧n+p |an+P |([n+p,q]−[p,q])

(A−B)[p,q]−∑∞
n=1 ∧n+p|an+p|(A[p,q]−B[n+p,q])

< 1,

where we have used the inequality (11) and this completes the proof.

Varying the parameters μ, b, A, and B in the last Theorem, we get the following known results
discussed earlier in [34].

Corollary 1. Let f ∈ A be given by (1) and satisfy the inequality

∞

∑
n=2

([n, q] (1− B)− 1 + A) |an| � A− B.

Then, the function f ∈ S∗q [A, B].

By choosing q → 1− in the last corollary, we get the known result proved by Ahuja [22] and,
furthermore, for A = 1− α and B = −1, we obtain the result for the family S∗ (ξ) which was proved
by Silverman [35].

Theorem 2. Let f ∈ S∗p (q, μ, A, B) be of the form (1) . Then,

∣∣ap+1
∣∣ � ψ1 (A− B)

∧1+p
, (12)

and for n � 2, ∣∣an+p
∣∣ � (A− B)ψn

∧n+p

n−1

∏
t=1

(
1 +

[p, q] (A− B)
([p + t, q]− [p, q])

)
, (13)
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where

ψn := ψn(p, q) =
[p, q]

([n + p, q]− [p, q])
. (14)

Proof. If f ∈ S∗p (q, μ, A, B) , then by definition we have

zDqLμ+p−1
q f (z)

[p, q]Lμ+p−1
q f (z)

=
1 + Aw(z)
1 + Bw(z)

. (15)

Let us put

p(z) = 1 +
∞

∑
n=1

dnzn =
1 + Aw(z)
1 + Bw(z)

.

Then, by Lemma 1, we get
|dn| � A− B. (16)

Now, from (15) and (6), we can write

zp +
∞
∑

n=1

[n+p,q]
[p,q] Λn+p an+pzn+p =

(
1 +

∞
∑

n=1
dnzn

) (
zp +

∞
∑

n=1
Λn+p an+pzn+p

)
. (17)

Equating coefficients of zn+p on both sides,

∧n+p ([n + p, q]− [p, q]) an+p = [p, q] ∧n+p−1 an+p−1d1 + · · ·+ [p, q] ∧1+p a1+pdn−1.

Taking absolute on both sides and then using (16) , we have

∧n+p ([n + p, q]− [p, q])
∣∣an+p

∣∣ � [p, q] (A− B)

(
1 +

n−1

∑
k=1

∧k+p

∣∣∣ak+p

∣∣∣) ,

and this further implies

∣∣an+p
∣∣ � (A− B)ψn

∧n+p

(
1 +

n−1

∑
k=1

∧k+p

∣∣∣ak+p

∣∣∣) , (18)

where ψn is given by (14) . So, for n = 1, we have from (18)

∣∣ap+1
∣∣ � (A− B)ψ1

∧1+p
,

and this shows that (12) holds for n = 1. To prove (13), we apply mathematical induction.
Therefore, for n = 2, we have from (12):

∣∣ap+2
∣∣ � (A− B)ψ2

∧2+p

(
1 + ∧1+p

∣∣a1+p
∣∣) ,

using (12), we have ∣∣ap+2
∣∣ � (A− B)ψ2

∧2+p
(1 + (A− B)ψ1) ,

which clearly shows that (13) holds for n = 2. Let us assume that (13) is true for n � m− 1, that is,

∣∣am−1+p
∣∣ � (A− B)ψm−1

∧m+p−1

m−2

∏
t=1

(1 + (A− B)ψt) .
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Consider

∣∣am+p
∣∣ � (A− B)ψm

∧m+p

(
1 +

m−1

∑
k=1

∧k+p

∣∣∣ak+p

∣∣∣)

=
(A− B)ψm

∧m+p

{
1 + (A− B)ψ1 + . . . + (A− B)ψm−1

m−2

∏
t=1

(1 + (A− B)ψt)

}

=
(A− B)ψm

∧m+p

m−1

∏
t=1

(
1 +

[p, q] (A− B)
([p + t, q]− [p, q])

)
,

this implies that the given result is true for n = m. Hence, using mathematical induction, we achieve
the inequality (13) .

Theorem 3. Let f ∈ S∗p (q, μ, A, B), and be given by (1) . Then, for λ ∈ C

∣∣∣ap+2 − λa2
p+1

∣∣∣ � (A− B)ψ2

Λp+2
{1; |υ|} ,

where υ is given by

υ = (B− (A− B)ψ1) +
Λp+2ψ2

1

Λ2
p+1ψ2

(A− B)λ. (19)

Proof. Let f ∈ S∗p (q, μ, A, B), and consider the right-hand side of (15), we have

1 + Aw(z)
1 + Bw(z)

=

(
1 + A

∞

∑
k=1

wkzk

) (
1 + B

∞

∑
k=1

wkzk

)−1

,

where

w(z) =
∞

∑
k=1

wkzk,

and after simple computations, we can rewrite

1 + Aw(z)
1 + Bw(z)

= 1 + (A− B)w1z + (A− B)
{

w2 − Bw2
1

}
z2 + . . . . (20)

Now, for the left hand side of (15), we have

zDqLμ+p−1
q f (z)

[p, q]Lμ+p−1
q f (z)

=

(
1 +

∞

∑
n=1

[n + p, q]
[p, q]

Λn+p an+pzn

) (
1 +

∞

∑
n=1

Λn+p an+pzn

)−1

= 1 +
Λ1+p

ψ1
a1+pz +

(
Λ2+pa2+p

ψ2
−

Λ2
1+p a2

1+p

ψ1

)
z2 + . . . . (21)

From (20) and (21) , we have

ap+1 =
ψ1

Λp+1
(A− B)w1, (22)

ap+2 =
(A− B)ψ2

Λp+2

{
w2 + ((A− B)ψ1 − B)w2

1

}
. (23)
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Now, consider

∣∣∣ap+2 − λa2
p+1

∣∣∣ =

∣∣∣∣∣ (A− B)ψ2

Λp+2

{
w2 + ((A− B)ψ1 − B)w2

1

}
− λ

ψ2
1

Λ2
p+1

(A− B)2w2
1

∣∣∣∣∣
=

(A− B)ψ2

Λp+2

∣∣∣∣∣w2 −
{
(B− (A− B)ψ1) +

Λp+2ψ2
1

Λ2
p+1ψ2

(A− B)λ

}
w2

1

∣∣∣∣∣ ,

using Lemma 2, we have ∣∣∣ap+2 − λa2
p+1

∣∣∣ � (A− B)ψ2

Λp+2
{1; |υ|} ,

where υ is given by

υ = (B− (A− B)ψ1) +
Λp+2ψ2

1

Λ2
p+1ψ2

(A− B)λ.

This completes the proof.

Theorem 4. Let f ∈ S∗p (q, μ, A, B) and be given by (1) . Then,∣∣∣∣∣ap+3 −
q + 2

q2 + q + 1
Λ1+pΛ2+p

Λ3+p
ap+2ap+1 +

1
[3, q]

Λ3
1+p

Λ3+p
a3

p+1

∣∣∣∣∣ � (A− B)

{
4 (2B− 1)2 + 1

8Λ3+p

}
ψ3,

where ψn and ∧n+p are defined by (14) and (5), respectively.

Proof. From the relations (20) and (21) , we have(
ap+3 −

q + 2
q2 + q + 1

Λ1+pΛ2+p

Λ3+p
ap+2ap+1 +

1
[3, q]

Λ3
1+p

Λ3+p
a3

p+1

)
=

(A− B)ψ3

Λ3+p

{
w3 − 2Bw1w2 + B2w3

1

}
,

equivalently, we have∣∣∣∣∣
(

ap+3 −
q + 2

q2 + q + 1
Λ1+pΛ2+p

Λ3+p
ap+2ap+1 +

1
[3, q]

Λ3
1+p

Λ3+p
a3

p+1

)∣∣∣∣∣
=

(A− B)ψ3

Λ3+p

∣∣∣∣(w3 +
1
4

w1w2 +
1
16

w3
1

)
− 16B2 − 1

16

(
w2 − w2

1

)
+

16B2 − 32B− 5
16

w2

∣∣∣∣
� (A− B)ψ3

Λ3+p

{
1 +

16B2 − 1
16

+
16B2 − 32B− 5

16

}
� (A− B)ψ3

Λ3+p

{
16B2 − 16B + 5

8

}
,

where we have used (9) and (10) . This completes the proof.

Theorem 5. Let f ∈ Ap be given by (1) . Then, the function f is in the class S∗p (q, μ, A, B) , if and only if

eiθ (B− [p, q] A)

z

[
Lμ+p−1

q f (z) ∗
(
(N + 1) zp − qLzp+1

(1− z) (1− qz)

)]
�= 0, (24)
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for all

N = Nθ =
([p, q]− 1) e−iθ

([p, q] A− B)
,

(25)

L = Lθ =

(
e−iθ + [p, q] A

)
([p, q] A− B)

,

and also for N = 0, L = 1.

Proof. Since the function f ∈ S∗p (q, μ, A, B) is analytic in D, it implies that Lμ+p−1
q f (z) �= 0 for all

z ∈ D∗ = D\{0}—that is

eiθ (B− [p, q] A)

z
Lμ+p−1

q f (z) �= 0 (z ∈ D) ,

and this is equivalent to (24) for N = 0 and L = 1. From (7) , according to the definition of the
subordination, there exists an analytic function w with the property that w (0) = 0 and |w(z)| < 1
such that

zDqLμ+p−1
q f (z)

[p, q]Lμ+p−1
q f (z)

=
1 + Aω (z)
1 + Bω (z)

(z ∈ D) ,

which is equivalent for z ∈ D, 0 � θ < 2π

zDqLμ+p−1
q f (z)

[p, q]Lμ+p−1
q f (z)

�= 1 + Aeiθ

1 + Beiθ , (26)

and further written in a more simplified form(
1 + Beiθ

)
zDqLμ+p−1

q f (z)− [p, q]
(

1 + Aeiθ
)
Lμ+p−1

q f (z) �= 0. (27)

Now, using the following convolution properties in (27)

Lμ+p−1
q f (z) ∗ zp

(1−z) = Lμ+p−1
q f (z) and Lμ+p−1

q f (z) ∗ zp

(1−z)(1−qz) = zDqLμ+p−1
q f (z) ,

then, simple computation gives

1
z

[
Lμ+p−1

q f (z) ∗
( (

1 + Beiθ) zp

(1− z) (1− qz)
− [p, q]

(
1 + Aeiθ) zp

(1− z)

)]
�= 0,

or equivalently

(B− [p, q] A) eiθ

z

[
Lμ+p−1

q f (z) ∗
(
(N + 1) zp − Lqzp+1

(1− z) (1− qz)

)]
�= 0,

which is the required direct part.

Assume that (11) holds true for Lθ − 1 = Nθ = 0, it follows that

eiθ (B− [p, q] A)

z
Lμ+p−1

q f (z) �= 0, for all z ∈ D.
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Thus, the function h (z) =
zDqLμ+p−1

q f (z)

[p,q]Lμ+p−1
q f (z)

is analytic in D and h (0) = 1. Since we have shown that (27)

and (11) are equivalent, therefore we have

zDqLμ+p−1
q f (z)

[p, q]Lμ+p−1
q f (z)

�= 1 + Aeiθ

1 + Beiθ (z ∈ D) . (28)

Suppose that

H (z) =
1 + Az
1 + Bz

, z ∈ D.

Now, from relation (28) it is clear that H (∂D) ∩ h (D) = φ. Therefore, the simply connected domain
h (D) is contained in a connected component of C\H (∂D) . The univalence of the function h, together
with the fact that H (0) = h (0) = 1, shows that h ≺ H, which shows that f ∈ S∗p (q, μ, A, B) .

We now define an integral operator for the function f ∈ Ap as follows:

Definition 2. Let f ∈ Ap. Then, L : Ap → Ap is called the q-analogue of Benardi integral operator for
multivalent functions defined by L ( f ) = Fη,p with η > −p, where Fη,p is given by

Fη,p (z) =
[η + p, q]

zη

z∫
0

tη−1 f (t)dqt, (29)

= zp +
∞

∑
n=1

[η + p, q]
[η + p + n, q]

an+pzn+p, (z ∈ D) . (30)

We easily obtain that the series defined in (30) converges absolutely in D. Now, if q → 1, then the
operator Fη,p reduces to the integral operator studied in [29] and further by taking p = 1, we obtain
the q-Bernardi integral operator introduced in [36]. If q → 1 and p = 1, we obtain the familiar Bernardi
integral operator [37].

Theorem 6. If f is of the form (1), it belongs to the family S∗p (q, μ, A, B) and

Fη,p (z) = zp +
∞

∑
n=1

bn+pzn+p, (31)

where Fη,p is the integral operator given by (29) , then

∣∣bp+1
∣∣ � [η + p, q]

[η + p + 1, q]
ψ1 (A− B)
∧1+p

,

and for n � 2 ∣∣bp+n
∣∣ � [η + p, q]

[η + p + n, q]
(A− B)ψn

∧n+p

n−1

∏
t=1

(
1 +

[p, q] (A− B)
([p + t, q]− [p, q])

)
,

where ψn and ∧n+p are defined by (14) and (5), respectively.

Proof. The proof follows easily by using (30) and Theorem 2.

Theorem 7. Let f ∈ S∗p (q, μ, A, B) and be given by (1) . In addition, if Fη,p is the integral operator is defined
by (29) and is of the form (31) , then for σ ∈ C∣∣∣bp+2 − σb2

p+1

∣∣∣ � [η + p, q]
[η + p + 2, q]

(A− B)ψ2

Λp+2
{1; |υ|} ,
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where

υ = (B− (A− B)ψ1) +
Λp+2ψ2

1

Λ2
p+1ψ2

(A− B)
[η + p, q][η + p + 2, q]

[η + p + 1, q]2
σ. (32)

Proof. From (30) and (31) , we easily have

bp+1 =
[η + p, q]

[η + p + 1, q]
ap+1,

bp+2 =
[η + p, q]

[η + p + 2, q]
ap+2.

Now, ∣∣∣bp+2 − σb2
p+1

∣∣∣ = [η + p, q]
[η + p + 2, q]

∣∣∣∣∣ap+2 − σ
[η + p, q] [η + p + 2, q]

([η + p + 1, q])2 a2
p+1

∣∣∣∣∣ .

By using (22) and (23) , we have∣∣∣bp+2 − σb2
p+1

∣∣∣ = [η + p, q]
[η + p + 2, q]

(A− B)
Λp+2

∣∣∣w2 − υw2
1

∣∣∣ ,

where υ is given by (32) . Applying (9) , we get∣∣∣bp+2 − σb2
p+1

∣∣∣ ≤ [η + p, q]
[η + p + 2, q]

(A− B)
Λp+2

{1, |υ|} .

Hence, we have the required result.

4. Future Work

The idea presented in this paper can easily be implemented to define some more subfamilies of
analytic and univalent functions connected with different image domains [38–40].

5. Conclusions

In this article, we have defined a new class of multivalent q-starlike functions by using multivalent
q-Ruscheweyh differential operator. We studied some interesting problems, which are helpful to study
the geometry of the image domain, and also used some of the achieved results to find the growth of
Hankel determinant. The idea of this determinant is applied in the theory of singularities [39] and in the
study of power series with integral coefficients. For deep insight, the reader is invited to read [38–44].
Further, we have generalized the Bernardi integral operator and defined the multivalent q-Bernardi
integral operator. Some useful properties of this class of multivalent functions have been studied.
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Abstract: Based on the new approach to Lindelöf hypothesis recently introduced by one of the
authors, we first derive a novel integral equation for the square of the absolute value of the Riemann
zeta function. Then, we introduce the machinery needed to obtain an estimate for the solution of
this equation. This approach suggests a substantial improvement of the current large t-asymptotics
estimate for ζ

(
1
2 + it

)
.

Keywords: riemann zeta function; asymptotics; exponential sums

1. Introduction

It is well known that the leading asymptotics for large t of ζ(s) can be expressed in terms of a
transcendental sum,

ζ(s) ∼
[t]

∑
m=1

1
ms , s = σ + it, 0 < σ < 1, t → ∞, (1)

where throughout this paper [A] denotes the integer part of the positive number A. Lindelöf’s
hypothesis, one of the most important open problems in the history of mathematics, states that
for σ = 1/2, this sum is of order O(tε) for any ε > 0.

The sum of the rhs of (1) is a particular case of an exponential sum. Pioneering results for the
estimation of such sums were obtained in 1916 using methods developed by Weyl [1], and Hardy
and Littlewood [2], when it was shown that ζ(1/2 + it) = O(t1/6+ε). In the last 100 years some slight
progress was made using the ingenious techniques of Vinogradov [3]. Currently, the best result is due
to Bourgain [4] who has been able to reduce the exponent factor to 13/84 ≈ 0.155.

It is interesting that, in contrast to the usual situation in asymptotics where higher order terms in
an asymptotic expansion are more complicated, the higher order terms of the asymptotic expansion of
ζ(s) can be computed explicitly. Siegel, in his classical paper [5] presented the asymptotic expansion
of ζ(s) to all orders in the important case of x = y =

√
t/2π. In [6], analogous results are presented

for any x and y valid to all orders. A similar result for the Hurwitz zeta function is presented in [7].
Some of the results of [6] are used in [8] and the latter results are useful for the estimates presented in
this paper.

A major obstacle in trying to prove Lindelöf’s hypothesis via the estimation of relevant exponential
sums is that in estimates one “loses” something (the more powerful the technique, the less the loss).
Here we follow the new formalism for analysing the large t-asymptotics of the Riemann zeta function,
introduced in [9]. For the sake of clarity of presentation we restrict our attention to the case σ = 1/2.
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We start with the following integral equation derived in Equation (1.6) of [9]:

t
π

∮ 1+tδ4−1

−tδ1−1



{
Γ(it− iτt)
Γ(1/2 + it)

Γ(1/2 + iτt)
}
|ζ(1/2 + iτt)|2 dτ + G(1/2, t)

+O
(

e−πtδ14
)
= 0, t → ∞,

δ1 > 0, δ4 > 0, δ14 = min(δ1, δ4),

(2)

where Γ(z) denotes the usual gamma function, the principal value integral is defined with respect to
τ = 1 and G(1/2, t) satisfies the estimate

G(1/2, t) = ln t + O(1), t → ∞. (3)

In [9] the computation of the large t asymptotics of (2) is obtained by first splitting the interval
[−tδ1−1, 1 + tδ4−1] into the following four subintervals:

L1 = [−tδ1−1, t−1], L2 = [t−1, tδ2−1],

L3 = [tδ2−1, 1− tδ3−1], L4 = [1− tδ3−1, 1 + tδ4−1], (4)

with δj ∈ (0, 1), j = 1, 2, 3, 4. We employ the same splitting in (2) and hence the asymptotic evaluation
of (2) reduces to the analysis of the four integrals,

Ij(t) =
t
π

∮
Lj



{

Γ(it− iτt)
Γ(1/2 + it)

Γ(1/2 + iτt)
}
|ζ(1/2 + iτt)|2 dτ, t > 0, (5)

where I1, I2, I3, I4 also depend on δ1, δ2, (δ2, δ3), (δ3, δ4), respectively, L1, L2, L3, L4 are defined in (4),
and the principal value integral is needed only for I4.

Organisation of the Paper

In Section 2 we derive a linear integral equation for |ζ(s)|2. This equation is given by (23) where
SP

4 and SSD
4 are defined by (18) and (19), respectively.

In Section 3 we present the methodology for deriving the main result of this paper, namely the
linear Volterra-type integral equation for |ζ(s)|2 given by Equation (8) below. In this connection,
we first estimate the double sum SP

4 appearing in the linear integral Equation (23):



{

SP
4 (t, δ3)

}
= O

(
t

δ3
2 ln t

)
, t → ∞. (6)

Then, we present heuristic arguments regarding the estimation of SSD
4 , which suggest that

SSD
4 = O

(
t

1
3−

δ3
2 (ln t)2

)
+ O

(
t

δ3
2 ln t

)
, t → ∞. (7)

Replacing in (23) SP
4 and SSD

4 by (6) and (7), for 0 < δ2 < 1/2 and δ3 = 1/3, we find the main
result of the paper:∣∣∣∣ζ (

1
2
+ it

)∣∣∣∣2
=

1
π

∫ t−t1/3

tδ2
K(ρ, t)

∣∣∣∣ζ (
1
2
+ iρ

)∣∣∣∣2
dρ + O

(
t

1
6 (ln t)2

)
, t → ∞, (8)

where the kernel K(ρ, t) is given by

K(ρ, t) = 

{

Γ(it− iρ)
Γ(1/2 + it)

Γ(1/2 + iρ)
}

. (9)
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For the rigorous derivation of (7) we make crucial use of some of the results of [10].
For completeness of presentation, the relevant results of [10] are reviewed in Section 3.

In Section 4 we derive (7). This derivation is based on the following: first, on a lemma for partial
summation in two dimensions, which is crucial for the analysis of some parts of the sum SSD

4 . Second,
on the asymptotic estimates of the function ESD

4 (t, δ) appearing in the definition of SSD
4 which are

given in [11]. Third, on the splitting of SSD
4 into three cases involving certain sums denoted by S(i),

S(ii), S(iii). Relatively straightforward estimates yield that both S(ii) and S(iii) are O
(

t
δ
2 ln t

)
, t → ∞.

The estimation of S(i) is quite complicated; details are given in Section 4.3.
Section 5 summarizes the basic results in this paper and discusses future directions.

2. Derivation of a Linear Integral Equation for |ζ(s)|2

The main result of this section is the linear integral Equation (23) which is obtained from (2)
by computing the contribution of the integrals {Ij}4

1. In this direction, we first recall the estimates
for I1 and I2, and then we introduce a methodology that computes explicitly the leading asymptotic
behaviour of I4. In addition, this methodology avoids the need to compute the asymptotics of I3.

2.1. The Contribution of I1 and I2

Using Lemma 4.1 of [9], it can be shown that for δ1 sufficiently small, I1 satisfies the estimate

I1(t, δ1) = O
(

t−1/2+ 4
3 δ1

)
, t → ∞. (10)

Furthermore, by employing the classical estimates of Atkinson, and following the steps of
Lemma 4.2 of [9], it can be shown that that I2 satisfies the estimate

I2(t, δ2) = O
(

t−
1
2+δ2 ln t

)
, 0 < δ2 < 1, t → ∞. (11)

Thus, for sufficiently small δ1 and δ2 Equations (10) and (11) yield

I1 = o(1) and I2 = o(1), t → ∞. (12)

2.2. The Contribution of the Leading Order Term of I4

Let Ĩ4 denote the contribution of the leading order term of I4. This term is defined by replacing
ζ(s) with the leading term of its large t-asymptotics in (5) for j = 4. Using the change of variables
τ = 1− x

t , Ĩ4 becomes

Ĩ4(t, δ3, δ4) =
1
π

∮ tδ3

−tδ4



{
Γ(ix)

Γ(1/2 + it− ix)
Γ(1/2 + it)

} ∣∣ζ̃(1/2 + it− ix)
∣∣2 dx, (13)

where the principal value integral is with respect to x = 0, and

|ζ̃(1/2 + it− ix)|2 =
[t]

∑
m1=1

[t]

∑
m2=1

1
ms

1ms̄
2

(
m1

m2

)ix
, s =

1
2
+ it. (14)

Thus, we obtain the following expression for the leading behaviour of I4:

Ĩ4(t, δ3, δ4) = 

{

[t]

∑
m1=1

[t]

∑
m2=1

1
ms

1

1
ms̄

2
J4

(
σ, t, δ2, δ3,

m1

m2

)}
, s =

1
2
+ it, (15)
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where J4 is defined by

J4

(
t, δ3, δ4,

m1

m2

)
=

1
π

∮ tδ3

−tδ4
Γ(ix)

Γ(1/2 + it− ix)
Γ(1/2 + it)

(
m1

m2

)ix
dx,

t > 0, 0 < δ3 < 1, 0 < δ4 < 1, mj = 1, 2, . . . , [t], (16)

with the principal value integral defined with respect to x = 0.
Theorem 6.1 of [9] gives the estimate

Ĩ4(t, δ3, δ4) =

{
−

[t]

∑
m1=1

[t]

∑
m2=1

1
ms

1ms̄
2
+ 2


{
SP

4

}
+


{
SSD

4

}} [
1 + O(t2δ34−1)

]
, t → ∞

s =
1
2
+ it, 0 < δ3 <

1
2

, 0 < δ4 <
1
2

, δ34 = max{δ3, δ4},

(17)

where SP
4 and SSD

4 are defined as follows:

SP
4 (t, δ3) = ∑ ∑

m1,m2∈M4

1
ms

1ms̄
2

e−
im2
m1

t (18)

with
M4 := M4(δ3, t) =

{
mj = 1, . . . , [t], j = 1, 2,

m1

m2
∈ (t1−δ3 , t)

}
,

and

SSD
4 (t, δ3) =

[t]

∑
m1=1

[t]

∑
m2=1

1
ms

1ms̄
2

ESD
4 (t, δ3); (19)

ESD
4 satisfies the asymptotic estimate

ESD
4 ∼ −

√
2
π

e
iπ
4 t−

δ3
2 e−itδ3 ti(δ3−1)tδ3 1

ln
(

m2
m1

t1−δ3

) (
m1

m2

)itδ3

, t → ∞, (20)

when m2
m1

t1−δ3 �= 1.

Remark 1. According to the analysis of [9], the derivation of (17) involves the computation of the contribution
of an integral along the so-called Hankel contour. The function SP

4 is related with the contribution of the pole
wP = −i m2

m1
t1−δ3 and SSD

4 is related with the contribution of the Hankel contour after deforming it so that it
passes through the point of steepest descent wSD = −i. Hence, we call SP

4 and SSD
4 as the Pole and Steepest

Descent contribution, respectively.

2.3. The Contribution of I3

Let I3 be defined by (5), with j = 3. By making the change of variables ρ = tτ, we obtain

I3(t, δ2, δ3) =
1
π

∫ t−tδ3

tδ2



{
Γ(it− iρ)

Γ(1/2 + it)
Γ(1/2 + iρ)

}
|ζ(1/2 + iρ)|2 dρ. (21)

2.4. A Volterra-Type Integral Equation

It is shown in Appendix A that the first term of the rhs of (17) is the leading asymptotic term of
|ζ|2. Hence, (17) becomes

Ĩ4(t, δ3, δ4) ∼ −|ζ(s)|2 + 2

{

SP
4

}
+


{
SSD

4

}
, s =

1
2
+ it, t → ∞. (22)
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By replacing in (2), I1 and I2 by (12), I3 by (21) and I4 by (22) we obtain the following Volterra-type
integral equation:

|ζ(1/2 + it)|2 =
1
π

∫ t−tδ3

tδ2



{
Γ(it− iρ)

Γ(1/2 + it)
Γ(1/2 + iρ)

}
|ζ(1/2 + iρ)|2 dρ

+ 2

{

SP
4

}
+


{
SSD

4

}
+ ln t + O(1), t → ∞,

(23)

where SP
4 and SSD

4 are given in (18) and (19), respectively.

3. The Methodology for Deriving the Integral Equation (8)

In this section we derive Equation (6) and we also provide heuristic arguments for supporting
the validity of Equation (7). The employment of the estimates (6) and (7), evaluated at δ3 = 1/3,
in Equation (23) yields (8).

3.1. An Estimate for SP
4

In order to estimate the sum SP
4 , we use (1.30) of [9], namely (See Appendix B)

S3(t, δ3) = SP
4 (t, δ3)

[
1 + O

(
t2δ3−1

)]
, t → ∞, (24)

with
S3(t, δ3) = ∑ ∑

(m1,m2)∈M3

1
ms̄

2(m1 + m2)s , s =
1
2
+ it, (25)

and M3 is defined by

M3 := M3(δ3, t) =
{

mj = 1, . . . , [t], j = 1, 2,
m2

m1
<

1
t1−δ3 − 1

}
. (26)

Using results of [6], it is shown in Theorem 5.1 of [8] that

S3(t, δ3) = O
(

t
δ3
2 ln t

)
, t → ∞. (27)

Thus, (6) follows.

3.2. An Estimate for SSD
4

The definition of SSD
4 , given in (19), implies

SSD
4 = O

⎛⎝ 1

t
δ3
2

∣∣∣∣∣∣
[t]

∑
m1=1

[t]

∑
m2=1

1

m
1
2+i(t−tδ3 )
1 m

1
2−i(t−tδ3 )
2

1

ln
(

m2
m1

t1−δ3

)
∣∣∣∣∣∣
⎞⎠ . (28)

In order to estimate the sum SSD
4 , we employ the classical techniques of [10,12–14]. These

techniques can be used for the estimation of the sums of the form

∑ ∑
1<m<n<[t]

1

m
1
2+itn

1
2−it

.

In this connection we recall the following well known result (see, for example, Theorem 5.12
of [13]):

[t]

∑
n=1

1

n
1
2+it

= O
(

t
1
6 ln t

)
, t → ∞. (29)
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The above result can be further improved, see, for example, Theorem 5.18 of [13]:

∣∣∣∣∣ [t]

∑
n=1

1

n
1
2+it

∣∣∣∣∣
2

= O
(

t
1
3

)
, t → ∞. (30)

Using similar arguments, it is straightforward to show that

∣∣∣∣∣ [t]

∑
n=1

1

n
1
2+i(t−tδ3 )

∣∣∣∣∣
2

= O
(

t
1
3

)
, t → ∞. (31)

It turns out that the techniques of [10] can be directly applied to estimating sums involving the
lhs of (31). In this way it can be shown that

[t]

∑
m1=1

[t]

∑
m2=1

1

m
1
2+i(t−tδ3 )
1 m

1
2−i(t−tδ3 )
2

= O
(

t
1
3 (ln t)2

)
, t → ∞.

The sum in the rhs of (28), in comparison to the above sum contains the extra term 1
ln

(
m2
m1

t1−δ3
) .

Fortunately, this term satisfies the properties needed for the partial summation procedure. Actually,
a slight modification of the partial summation technique used in [10] suggests the estimate (7).

We note that the second term of the rhs of (7) is identical with the estimate of (6). This is due to
the fact that the estimation of SSD

4 involves the splitting of the relevant set of the summation of in three
parts, and in one of these parts the summand has the form of the summand of (18).

3.3. Review of Techniques for Estimating Euler-Zagier Double Sums

We summarise some of the techniques used in [10] that will be needed in the estimation of the
sum SSD

4 . In what follows we use the terminology of [10].
In [10] estimates of the Euler-Zagier double sums are obtained by employing techniques

from [12,14]. Indeed, letting sj = σj + itj, with 0 ≤ σj < 1, j = 1, 2 and |tj| ∼ cjt, for some
positive constants cj, estimates as t → ∞ are derived for sums of the form

∑
1≤m<n

1
ms1

1
ns2

.

A special case of Theorem 1.1 in [10] yields

∑
1≤m<n

1

m
1
2+it

1

n
1
2+it

= O
(

t
1
3 (ln t)2

)
.

The above result, as well as the estimates of Theorem 1.1 therein, provide a ‘sharp’ generalisation
for double sums of the classical result for the single sum of Theorem 5.12 in [13]. In this sense,
the results of [10] improve significantly the analogous results of [15].

Here we are interested only on the part of the analysis of [10] concerning the sums of the form

S1 = ∑
1≤m<n<t

1
ms1

1
ns2

,

and in particular for the case that σ1 = σ2 = 1/2. The above sum is estimated by splitting it into two
classes of sums:

S1 =
[ ln 2t

ln 2 ]

∑
j=1

[
T

(
2−jt

)
+ U

(
2−jt

)]
,

192



Mathematics 2019, 7, 650

where
T(M) = ∑

M<m<n≤2M

1
ms1

1
ns2

and U(M) = ∑
1≤m≤M

1
ms1 ∑

M<n≤2M

1
ns2

.

The estimation of the sum U(M) is straightforward since it can be reduced to the estimation of a
single sum; this is given by employing the Theorem 5.12 of [13], namely

∑
1≤m≤M

1
m1/2+it = O

(
t

1
6 ln t

)
and ∑

M<m≤2M

1
n1/2+it = O

(
t

1
6

)
.

Thus,
[ ln 2t

ln 2 ]

∑
j=1

U
(

2−jt
)
= O

(
t

1
3 (ln t)2

)
, t → ∞.

The estimation of the sum T(M) is more elaborate and is based on Lemmas 3.1–3.5, therein.
Lemma 3.1 appears in [14], Lemmas 3.2–3.4 appear in [12], and Lemma 3.5 is a variation of the classical
and widely used partial summation technique (see for example [13,14]).

Since the latter Lemma plays an important role in our analysis we find it helpful to restate it:

Lemma 1 (Lemma 3.5 in [10]). Let M and N be positive integers such that M < N, f (x, y) be a C2-function
on [M, N]× [M, N], g(m, n) be an arithmetical function on the same domain, and

G(x, y) = ∑ ∑
x<m≤n≤y

g(m, n).

Suppose that
|G(x, y)| ≤ G, | fx(x, y)| ≤ κ1, | fy(x, y)| ≤ κ2, | fxy(x, y)| ≤ κ3,

for some positive constants G, κ1, κ2, κ3, and for any M ≤ x, y ≤ N. Then, we have∣∣∣∣∣ ∑ ∑
M<m≤n≤N

f (m, n)g(m, n)

∣∣∣∣∣ ≤ G
[

f (M, N) + (κ1 + κ2)(N − M) + κ3(N − M)2
]
. (32)

In order to estimate the sum T(M) the set of summation is divided in three regions corresponding
to the following three cases:

(a) M < t
1
3

(b) t
1
3 < M < t

2
3

(c) t
2
3 < M < t.

For case (a) it is sufficient to observe that T(M) = O (M), which yields

[ ln 2t
ln 2 ]

∑
j=[ 2

3
ln t
ln 2 ]

T
(

2−jt
)
= O

(
t

1
3 ln t

)
, t → ∞.

For case (c) Lemma 3.4 is used to treat the oscillatory part of the sum, i.e., it is shown that

∑
M<m<n≤2M

1
mit1

1
nit2

= O(t ln t). Then, applying partial summation using Lemma 3.5 which shows

that T(M) = O
(

1
M t ln t

)
, it follows that

[ 1
3

ln t
ln 2 ]

∑
j=1

T
(

2−jt
)
= O

(
t

1
3 (ln t)2

)
, t → ∞.
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Case (b) is conceptually the same with case (c) but involves more technicalities: Lemmas 3.1–3.3 are

used to treat the oscillatory part of the sum, i.e., to show that ∑
M<m<n≤2M

1
mit1

1
nit2

= O
(

Mt
1
3 (ln t)

1
2

)
.

Then, applying partial summation by using Lemma 3.5 in order to obtain that T(M) = O
(

t
1
3 (ln t)

1
2

)
,

it follows that
[ 2

3
ln t
ln 2 ]

∑
j=[ 1

3
ln t
ln 2 ]

T
(

2−jt
)
= O

(
t

1
3 (ln t)

3
2

)
, t → ∞.

Summarising the above results it follows that

S1 = ∑
1≤m<n<t

1
ms1

1
ns2

= O
(

t
1
3 (ln t)2

)
, t → ∞. (33)

Remark 2. From the above analysis it follows that it is much more complicated to estimate the sums of the form
T(M) in comparison to those of the form U(M); the latter ones correspond to set of summations which can
be decoupled, whereas the set of summations corresponding to the former ones cannot be decoupled. The latter
observation necessitates the use of the Lemma 3.5 in [10], which is related with the partial summation technique.
The sets of summation in our work are more complicated, requiring more general forms of that Lemma. In this
connection, in Section 4.1 we state a general form of Abel’s summation formula for double sums; its proof is
presented in [11].

4. Derivation of the Estimate (7)

In what follows we let δ3 = δ, and throughout the rest of the paper we have s = 1/2 + it.
In order to derive (7), we split the sum SSD

4 in three different sums S(i), S(ii), S(iii), in accordance
with the analysis of Section 4.2, below. We analyse these three sums in Section 4.3:

• The estimation of S(iii) is straightforward.
• The estimation of S(ii) involves the use of partial summation technique described in [14].
• The estimation of S(i) is based on the the analysis of [10], but some of the parts of the sum require

the use of a partial summation which is more general than the one derived in [10]. In this direction,
we will use a lemma on Abel’s summation in two dimensions stated below.

4.1. A Lemma for Partial Summation in Two Dimensions

Lemma 3.5 of [10] is a two-dimensional form of the so-called Abel’s summation formula,
see Appendix C. The difficulty appearing in the proof of Lemma 3.5 of [10] is due to the fact that the
set of summation is given by an expression which does not allow the double sum to be decoupled in
two single sums. In the separable case the simple form of the Abel’s summation formula for double
sums is given in Lemma A1, and is straightforward to derive it by applying twice (A1). However,
for our analysis we need to generalise Lemma 3.5 of [10]. This generalisation is given by Lemma 2
below, whose proof is given in [11]. It is this form of Abel’s summation formula for double sums that
is needed for the analysis of the sums (3b) and (4b) appearing in the sum S(i)

2 , which is analysed in
Section 4.3.

Lemma 2. Let θ(·) be a linear function and φ(·) be its inverse. Particular such functions are θ(x) = tδ−1x,
φ(x) = t1−δx. Let M < N be positive integers and f (x, y) be a C2-function on [θ(M), θ(N)] × [M, N],
g(m, n) be an arithmetical function on the same domain, and

G(x, y) = ∑ ∑
x<φ(m)<n≤y

g(m, n).
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Suppose that
|G(x, y)| ≤ G, | fx(x, y)| ≤ κ1, | fy(x, y)| ≤ κ2, | fxy(x, y)| ≤ κ3,

for some positive constants G, κ1, κ2, κ3, and for any (x, y) ∈ [θ(M), θ(N)]× [M, N].
Then, we have∣∣∣∣∣∣ ∑ ∑

M<φ(m)<n≤N
f (m, n)g(m, n)

∣∣∣∣∣∣
≤G

[
f
(
θ(M), N

)
+ κ1

(
θ(N)− θ(M)

)
+ κ2(N − M) + κ3

(
θ(N)− θ(M)

)
(N − M)

]
. (34)

Remark 3. The above formulation is adapted to the subregion (4b) of the splitting presented in Section 4.3,
but the choice of function θ (respectively φ) is wider than the particular forms chosen in Lemma 2. The result and
the proof is the same if we substitute in the above formulation ∑ ∑

x<φ(m)<n≤y
with ∑ ∑

x<n<φ(m)≤y
, thus this result

can be adapted to the subregion (3b).

4.2. The Different forms of ESD
4

Equation (19) with δ3 = δ becomes

SSD
4 (t, δ) =

[t]

∑
m1=1

[t]

∑
m2=1

1
ms

1ms̄
2

ESD
4 (t, δ). (35)

Let α = m2
m1

t1−δ. It is shown in [11] that the term ESD
4 is given by the expression below.

(i) |α− 1| > c > 0, with the constant c independent of t:

ESD
4 ∼ −

√
2
π

e
iπ
4 e−itδ 1

t
δ
2

1
ln α

αitδ
, t → ∞. (36)

The condition |α− 1| > c > 0 yields that 1
ln α = O

(
1
c

)
is bounded.

(ii) 1 # |α− 1| ≥ Γt−
δ
2 , for some constant Γ > 0 independent of t:

ESD
4 ∼ −

√
2
π

e
iπ
4 e−itδ 1

t
δ
2

1
ln α

αitδ
, t → ∞. (37)

The condition 1 # |α − 1| ≥ Γt−
δ
2 , yields that 1

ln α = O(1)t
δ
2 , thus the term 1

t
δ
2

1
ln α is bounded.

Furthermore, this condition restricts the set of summation in a sufficiently small set, so that we
will use a different technique to estimate the relevant sum compared to the case (i).

(iii) α = 1 + γt−Δ, Δ ≥ δ
2 , γ ∈ R, for any constant γ independent of t:

The leading contribution is equal to the pole contribution multiplied by some constant c depending
only on γ, with |c(γ)| < 2 and c(0±) = ±1.

If Δ = δ
2 , then, using the analysis in [11], we obtain

ESD
4 ∼ c(γ)e−i m2

m1
te−i γ2

2 +
1√
2π

e
iπ
4 e−itδ 1

t
δ
2

, t → ∞. (38)

If Δ > δ
2 , then, similarly to the above derivation and using the Plemelj’s formulae we obtain

ESD
4 ∼ sign(γ) e−i m2

m1
te−i γ2

2 tδ−2Δ
(

1 + O
(

t
δ
2−Δ

))
, t → ∞. (39)
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The sets of summation corresponding to cases (ii) and (iii) are bounded by the two red lines in
Figure 1.

Figure 1. The subregions of the set of summation.

Remark 4. In Equation (39) one observes that for Δ > δ
2 the dominant contribution of ESD

4 is given by “plus"
or “minus" half of the pole contribution (depending on the sign of γ), where the pole contribution is given in (18).
Noting that γ < 0 ⇔ m1, m2 ∈ M4, with M4 defined in (18), one observes that the dominant contribution of
the expression 2SP

4 + SSD
4 appearing in (17), is equal to SP

4 for all γ ∈ R and Δ > δ
2 .

The analysis of the case Δ = δ
2 is included in (ii). Equation (38) elucidates the mechanism responsible for

switching the contribution of ESD
4 from the form (37) to the form (39).

4.3. The Estimation of the Three Parts of SSD
4

In what follows we will estimate the three sums corresponding to the above three forms of the SSD
4 .

4.3.1. The Estimate of Case (iii)

Recalling Remark 4, we treat the sum associated with the case (iii) similarly to the derivation
of (6), but for a smaller set of summation; hence, it yields the estimate O

(
t

δ
2 ln t

)
.

4.3.2. The Estimate of Case (ii)

We treat the sum associated with the case (ii) similarly to Lemma 5.1 in [8], but for a smaller set of
summation. Hence, it also yields the estimate O

(
t

δ
2 ln t

)
.
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It is sufficient to estimate the following sum

S(ii) =
1

t
δ
2

tδ

∑
m2=1

c2m2t1−δ

∑
m1=c1m2t1−δ

1

ms+itδ

1

1

ms̄−itδ

2

1

ln
(

m2
m1

t1−δ
) , (40)

where c1 and c2 are two positive constants with c2 ≤ 2c1.

Remark 5. The constraint c2 ≤ 2c1 is satisfied by taking a sufficiently small positive constant c in case (i).
Indeed, if c < 1

3 then the condition |α− 1| < 1
3 , yields

3
4

m2t1−δ < m1 <
3
2

m2t1−δ.

Thus, the condition 1 # |α− 1| ≥ Γt−
δ
2 gives rise to two sums of the form (40) with 3

4 < c1 < c2 < 3
2 , thus

c2 ≤ 2c1. In particular, we obtain 3
4 < c1 < c2 < 1 for the first sum and 1 < c1 < c2 < 3

2 for the second sum.

Recalling that 1

t
δ
2

1
ln

(
m2
m1

t1−δ
) = O(1), we will first estimate the sum

SA =
tδ

∑
m2=1

c2m2t1−δ

∑
m1=c1m2t1−δ

1
ms

1

1
ms̄

2
,

where c1 and c2 are two positive constants with c2 ≤ 2c1. Thus, by using partial summation we will
estimate the sum S(ii).

Observing that m2 takes relatively “small" values in the set of summation of SA, we use the
following inequality without losing crucial information:

|SA| <
[tδ]

∑
m2=1

1

m1/2
2

∣∣∣∣∣∣
c2m2t1−δ

∑
m1=c1m2t1−δ

1
ms

1

∣∣∣∣∣∣ .

Then, we estimate the m1-sum using Theorem 5.9 of [13], namely

∑
a<n≤b≤2a

nit = O
(

t
1
2

)
+ O

(
at−

1
2

)
.

Following the partial summation technique appearing in the proof of Theorem 5.12 of [13] and
using the fact that a > c1m2t1−δ, we obtain

c2m2t1−δ

∑
m1=c1m2t1−δ

1
ms

1
= O

(
t

1
2 t−

1
2 (1−δ)m− 1

2
2

)
, t → ∞.

Thus,

SA =
[tδ]

∑
m2=1

1
m2

O
(

t
δ
2

)
= O

(
t

δ
2 ln t

)
, t → ∞. (41)

Using the estimate (41), the monotonicity properties of the term 1
ln

(
m2
m1

t1−δ
) appearing in (40),

and the fact that 1

t
δ
2

1
ln

(
m2
m1

t1−δ
) = O(1), the partial summation technique, as described in [14] and the

Appendix B of [8], yields
S(ii) = O

(
t

δ
2 ln t

)
, t → ∞.
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Remark 6. The above approaches do not fully exploit the smallness of the set of summation, thus we expect that
the above estimates can be sharpened (we recall that the sets of summation corresponding to cases (ii) and (iii)
are bounded by the two red lines in Figure 1). In order to exploit the smallness of the set of summation one could
follow the techniques presented in [8], which make use of the results of [6]. However, the estimates provided here
for S(ii) and S(iii)are sufficient for the purpose of this paper, since they are the same as (and not weaker than) (6).

4.3.3. The Estimate of Case (i)

In order to estimate this sum we will use techniques similar to the ones used in [10] for the
estimation of the double zeta function, but with two main differences: first, we will split the set of
summation in more regions, and second, for some of these regions, we will use Lemma 2 needed for
the partial summation for double sums, which is a more general form of the Lemma 3.5 in [10].

The term involved in the partial summation is now of the form

f (m1, m2) =
1

m1/2
1

1

m1/2
2

1

ln
(

m2
m1

t1−δ
) ,

instead of the term
f̃ (m1, m2) =

1
mσ

1

1
mσ

2
, 0 < σ < 1,

appearing in [10]. However, f shares the same properties with f̃ needed for the application of the
partial summation technique, provided that the quantity m2

m1
t1−δ is not arbitrarily close to 1; this is

ensured by the condition |α− 1| > c > 0, with the constant c independent of t. Furthermore, {κj}3
1

remain the same as in the [10], with the exception of the occasional appearance of a logarithmic term,
due to 1

ln
(

m2
m1

t1−δ
) . However, this term does not affect the relevant estimates; in fact it is slightly helpful

since now {κj}3
1 are divided by ln t.

The term involving the exponential sum now has the form

g(m1, m2) =
1

mi(t−tδ)
1

1

m−i(t−tδ)
2

,

instead of the corresponding term of [10]

g̃(m1, m2) =
1

mit1
1

1

mit2
2

, t1 $ t2.

Remark 7. The formalism t1 $ t2 in [10] means that t1 = O(t2) and t2 = O(t1). This is compatible with the
selection of our t1 and t2. Furthermore, the fact that t− tδ ∼ t implies that all relevant estimates are the same.
It should be noted that the condition |t1 + t2| # 1 in [10] is imposed because the double Riemann zeta function
considered in [10] gives rise to sums which for t1 = −t2 are not defined. In our work we deal only with sums
where the set of summation is [1, t]× [1, t]. In analogy, the single Riemann zeta function ζ(s) and the relevant

single sum are not defined at s = 1, however, the sum
t

∑
m=1

1
m

can be estimated to be O(ln t).

In summary, the analysis in [10] can be applied to the sums appearing to our work.

The Estimate of S(i)
1

First, we treat the part of the sum where m2 > m1: in this case, it is sufficient to estimate the sum

S(i)
1 =

1

t
δ
2

t

∑
m2=1

m2

∑
m1=1

1

ms+itδ

1

1

ms̄−itδ

2

1

ln
(

m2
m1

t1−δ
) . (42)
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First observe that since t > m2 > m1 > 1, we obtain that t1−δ < m2
m1

t1−δ < t2−δ, thus the quantity
1

ln
(

m2
m1

t1−δ
) is bounded both from above and below by 1

ln t multiplied by some positive constant that

depends only on δ. For our purpose it is sufficient to work for 0 < δ < 1/2, thus we obtain that
1
2

1
ln t <

1
ln

(
m2
m1

t1−δ
) < 2

ln t .

The sum S(i)
1 is estimated through the analysis provided in [10] with m1 = m, m2 = n. Indeed, we

follow the methodology presented in Section 3.3 above by splitting the set of summation in subsets
corresponding to the forms U(M) and T(M). For the former case we follow step-by-step the analysis
of [10]. Then, we incorporate the contribution of the term 1

ln( n
m t1−δ)

through the analysis used for the

sum S(ii) above. This involves the use of partial summation as described in [14] and the Appendix B
of [8]. For the latter case we use f (m, n) = 1

m1/2
1

n1/2
1

ln( n
m t1−δ)

and apply the analysis appearing in [10]

and described in Section 3.3 above, with the only difference occurring in the application of Lemma 3.5
of [10], where now the bounds will be multiplied by the term 1

ln t . Thus, we obtain the estimate

t

∑
m2=1

m2

∑
m1=1

1

ms+itδ

1

1

ms̄−itδ

2

1

ln
(

m2
m1

t1−δ
) = O

(
t

1
3 ln t

)
, t → ∞, (43)

which yields
S(i)

1 = O
(

t
1
3− δ

2 ln t
)

, t → ∞. (44)

Furthermore, the part of the sum where m2 = m1 becomes the following single sum

O
(

1

t
δ
2

) t

∑
m=1

1
m

1
ln t1−δ

= O
(

t−
δ
2

)
.

The Estimate of S(i)
2

Next, we will treat the sum in the domain m2 < m1; this sum presents more difficulties. We first
have to split this domain in several subdomains. In each of these subdomains we use the techniques
of [10]. Furthermore, in some cases the partial summation requires more general forms of the Lemma
involving the partial summation in double sums; for this reason we employ Lemma 2.

Our splitting is motivated by the following observation in the analogue approach of [10]: if the
double sum can be decoupled, namely if the domain of summation (in two dimensions) is a rectangle,
then estimating this double sum can be reduced to estimating two single sums; this occurs for sums
of the form U(M) appearing in [10] (see Section 3.3 above). If the double sum cannot be decoupled,
namely if the domain of summation (in two dimensions) is bounded by at least one curve which
depends on both the horizontal and the vertical coordinates, then a more sophisticated approach is
required, both for the treatment of the double exponential sum and the partial summation technique;
this occurs for sums of the form T(M) appearing in [10] (see Section 3.3 above).

Let us use the notation m1 = n, m2 = m. Furthermore, let us denote by Dr the remaining set of
summation, i.e., for (n, m) ∈ [1, t]× [1, t], let (n, m) ∈ Dr iff

m < n and n < mt1−δ(1− c),

or (45)

m < n and mt1−δ(1 + c) < n,

for some sufficiently small constant c > 0 (independent of t); these restrictions are induced by the
condition |α− 1| > c > 0, with α = m

n t1−δ.
In Dr there are two types of regions that correspond to sums of the form T(M) in [10]. The first

type is bounded by the line n = m and the second type is bounded by the lines n = (1± c)mt1−δ,
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for some sufficiently small c > 0. For both cases the treatment of the exponential sum follows the
arguments presented in [10] (which first appeared in [12,14]). Considering the partial summation,
the Lemma 3.5 in [10] is sufficient for the treatment of the first case, however, Lemma 2 is required for
the second case.

Thus, in order to estimate the sum

S(i)
2 =

1

t
δ
2

∑ ∑
(n,m)∈Dr

1
ns+itδ

1
ms̄−itδ

1
ln

( m
n t1−δ

) , (46)

we split Dr into four different regions, where, in addition to conditions (45), the following
conditions hold:

1. For 1 < M < 1
2 t1−δ, two subregions:

(1a) m < M and M < n < 2M.
(1b) M < m < n < 2M.

2. For 1
2 t1−δ < M < 1

2 t, two subregions:

(2a) tδ < m < M and M < n < 2M.
(2b) M < m < n < 2M.

3. For t1−δ < M < t, two subregions:

(3a) M < mt1−δ < 2M and t1−δ < n < M.
(3b) M < n < mt1−δ < 2M.

4. For t1−δ < M < t, two subregions:

(4a) M < mt1−δ < 2M and 2M < n < t.
(4b) M < mt1−δ < n < 2M.

The first subregion of each of the above regions, namely (1a), (2a), (3a) and (4a), are of rectangular
shape, see Figure 1. The corresponding sums are treated similarly to the U(M) sums in [10]. It is
straightforward to modify the relevant techniques therein according to the discussion of the case S(i)

1
and obtain the essential bound of the rhs of (44). In fact, observing that in these regions 1

ln(m
n t1−δ)

=

O(1), one obtains the estimate O
(

t
1
3− δ

2 (ln t)2
)

, t → ∞.
The subregions (1b) and (2b) are of triangular shape, see Figure 1, thus the corresponding sums

are treated similarly to the T(M) sums in [10]. The sums in these regions are treated in [10], via Lemma
3.5. It is straightforward to modify accordingly this approach and obtain the same bound as the rhs
of (44).

The subregions (3b) and (4b) are also of triangular shape, see Figure 1. In order to analyse these
sums we have to modify the approach of estimating the sums T(M) in [10]. It is straightforward to
modify the analysis of the oscillatory part of the sum, namely the part which uses the Lemmas 3.1–3.3
therein. For the analogue of the partial summation we need to use Lemma 2 instead of Lemma 3.5
in [10]. Then, we obtain the essential bound of the rhs of (44). In fact, observing that in these regions

1
ln(m

n t1−δ)
= O(1), one obtains the estimate O

(
t

1
3− δ

2 (ln t)2
)

, t → ∞.
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4.4. An Alternative Way to Estimate S(i)
2

It is possible to estimate S(i)
2 using a different and less technical approach. Let us use the notation

D2 =
{
(n, m) ∈ [1, t]× [1, t], m < n

}
. Then, we rewrite

S(i)
2 =

1

t
δ
2

∑ ∑
(n,m)∈Dr

1
ns+itδ

1
ms̄−itδ

1
ln

( m
n t1−δ

) , (47)

as
S(i)

2 =
1

t
δ
2

∑ ∑
(n,m)∈D2

1
ns+itδ

1
ms̄−itδ

F(n, m)− 1

t
δ
2

∑ ∑
(n,m)∈D2\Dr

1
ns+itδ

1
ms̄−itδ

H(n, m), (48)

where the functions F and H are C2 and are defined as follows

F(x, y) =

⎧⎨⎩
1

ln( y
x t1−δ)

, (x, y) ∈ Dr,

H(x, y), (x, y) ∈ D2 \ Dr,
(49)

with Dr defined by the conditions (45). Furthermore, the function P(x, y) : D2 → R, which is defined

by P(x, y) :=
F(x, y)

x1/2y1/2 , belongs to C2 and has the following properties:

P(x, y) = O
(

1
x1/2y1/2

)
, Px(x, y) = O

(
1

x3/2y1/2

)
,

Py(x, y) = O
(

1
x1/2y3/2

)
, Pxy(x, y) = O

(
1

x3/2y3/2

)
.

(50)

From (49) the set where we have to assure that P(x, y) ∈ C2(D2) is given by the constraint
y
x t1−δ = 1± c, for some sufficiently small positive constant c. Hence, it is sufficient to determine the
function H(x, y) = d

( y
x t1−δ

)
, with the following six properties:

d(1± c) =
1

ln(1± c)
, d′(1± c) =

1[
ln(1± c)

]2
(1± c)

,

d′′(1± c) =
2 + ln(1± c)[

ln(1± c)
]3
(1± c)2

,
(51)

for some fixed and sufficiently small c > 0.
Furthermore, the conditions (50) are satisfied if the functions d(r), d′(r), d′′(r) are bounded in the

interval r ∈ (1− c, 1 + c).
Thus, it is sufficient for d(r) to be a fifth order polynomial which satisfies the conditions (51).
Now, the sum S(i)

2 has the appropriate form, so it can be analysed through the following
two arguments:

• The first term of the rhs of (48) can be analysed in the same way as the sum S(i)
1 , with the only

difference that in the current analysis we find it more convenient to employ the simpler version of
partial summation technique described in Lemma A1.

• The second term of the rhs of (48) can be embedded in the analysis of the sum S(ii). In this case it is
more convenient to employ a combination of partial summation techniques, as they are described
in Lemmas 2 and A1, respectively.

The resulting estimate remains invariant.
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5. Conclusions

The main result of this paper is the derivation of the Volterra-type linear integral Equation (8).
In order to derive this equation starting from (1.6) of [9] it is necessary to:

(i) replace I4 by Ĩ4 defined by (22).
(ii) replace SP

4 by (6).
(iii) replace SSD

4 by (7).

The derivation of (i) is based on replacing in the definition of I4, the term|ζ(s)|2 by its leading
asymptotics. The proof that the error term is indeed small is presented in [11].

The derivation of (ii) is given in Section 3.
The derivation of (iii) is given in Section 4 under the assumption that the function ESD

4 appearing
in SSD

4 is given by Equations (36)–(38); the latter proof is given in [11].
The importance of the derivation of (8) is a consequence of the following considerations: taking

into account that the variable ρ appearing in the Γ functions in the integral of (8) satisfies ρ ≥ tδ2 and
t− ρ ≥ t1/3, it follows that these Γ functions can be simplified as t → ∞. Indeed, Equations (4.4), (5.7)
and (5.8) on [9] yield

Γ(it− iρ)
Γ(1/2 + it)

Γ(1/2 + iρ) =

√
2π

t
e−

iπ
4

1(
1− ρ

t
)1/2 eit[(1− ρ

t ) ln (1− ρ
t )+

ρ
t ln ( ρ

t )]

×
[
1 + O(t−δ23)

]
, t → ∞,

with δ23 = min{δ2, δ3}.
Hence, for the specific choice of δ2 = δ3 = 1

3 , replacing in Equation (8) the combination of the
Gamma functions by the rhs of the above equation, we find∣∣∣∣ζ (

1
2
+ it

)∣∣∣∣2
=

√
2
π

∫ t−t1/3

t1/3



{
e−

iπ
4

(t− ρ)1/2 eit[(1− ρ
t ) ln (1− ρ

t )+
ρ
t ln ( ρ

t )]

} ∣∣∣∣ζ (
1
2
+ iρ

)∣∣∣∣2
dρ

×
[
1 + O

(
t−1/3

)]
+ O

(
t

1
6 (ln t)2

)
, t → ∞,

(52)

It is straightforward to show that the ansatz |ζ (1/2 + it)|2 = O
(

t1/6(ln t)2
)

provides a solution
of (52). The rigorous proof that the above ansatz provides the unique solution of the linear Volterra
integral equation will be presented in [11]. This estimate implies that ζ (1/2 + it) = O

(
t1/12 ln t

)
,

which is a dramatic improvement of the current best estimate of the large t behaviour of ζ (1/2 + it).
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Appendix A. Asymptotics of |ζ(s)|2

Equation (1.3) of [6] for s = 1
2 + it and η = 2πt, yields

ζ(s) =
[t]

∑
n=1

1
ns + O

(
t−

1
2

)
.
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Multiplying the above equation with its complex conjugate and using the classical estimate from
Theorem 5.12 of [13], which states that

ζ(s) = O
(

t
1
6 ln t

)
,

we obtain

|ζ(s)|2 =
[t]

∑
m1=1

[t]

∑
m2=1

1
ms

1ms̄
2
+ O

(
t−

1
3 ln t

)
.

Appendix B. Derivation of (24)

Using the constraint m2
m1

< tδ3−1 % 1, we rewrite S3 as follows:

S3 = ∑ ∑
(m1,m2)∈M3

1
ms̄

2(m1 + m2)s = ∑ ∑
(m1,m2)∈M3

1

ms̄
2ms

1

(
1 + m2

m1

)s

= ∑ ∑
(m1,m2)∈M3

1
ms̄

2ms
1

1(
1 + m2

m1

)1/2 e−it ln
(

1+ m2
m1

)

= ∑ ∑
(m1,m2)∈M3

1
ms̄

2ms
1

(
1 + O

(
tδ3−1

))
e−it

[
m2
m1

+O(t2δ3−2)
]

= ∑ ∑
(m1,m2)∈M3

1
ms̄

2ms
1

e−it m2
m1

(
1 + O

(
t2δ3−1

))
= SP

4

[
1 + O

(
t2δ3−1

)]
, t → ∞.

Appendix C. Abel’s Summation

The so-called Abel’s summation formula for a single sum is given as follows: let (an)∞
n=0 be a

sequence of real or complex numbers. Define the partial sum function

A(y) = ∑
0≤n≤y

an, for any real number y.

Fix a real number x, and let ρ be a continuously differentiable function on [0, x]. Then,

∑
0≤n≤x

anρ(n) = A(x)ρ(x)−
∫ x

0
A(u)ρ′(u) du. (A1)

The simple form of the Abel’s summation formula for double sums is given in Lemma A1 below,
and is straightforward to derive it by applying twice (A1).

Lemma A1. Let A, B, C, D be positive integers such that A < B, C < D and f (x, y) be a C2-function on
[A, B]× [C, D], g(m, n) be an arithmetical function on the same domain, and

G(x, y) =
x

∑
m=A

y

∑
n=C

g(m, n).

Suppose that
|G(x, y)| ≤ G, | fx(x, y)| ≤ κ1, | fy(x, y)| ≤ κ2, | fxy(x, y)| ≤ κ3,

for some positive constants G, κ1, κ2, κ3, and for any (x, y) ∈ [A, B]× [C, D].
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Then, we have∣∣∣∣∣ B

∑
m=A

D

∑
n=C

f (m, n)g(m, n)

∣∣∣∣∣
≤ G

[
f (B, D)+κ1(B− A) + κ2(D− C) + κ3(B− A)(D− C)

]
.

(A2)
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1. Introduction and Motivation

Let A(a, k) denote the class of functions of the form

f (z) = az +
∞

∑
n=k

anzn (a > 0, k ∈ N\{1} = {2, 3, · · · }), (1)

which are analytic in the unit disk U = {z : |z| < 1}. Obviously, A(1, 2) = A denotes the class of
functions f (z) normalized by f (0) = f ′(0)− 1 = 0 which are analytic in U.

Set T (a, k) be the class of functions of the form

f (z) = az−
∞

∑
n=k

|an|zn (a > 0, k ∈ N\{1} = {2, 3, · · · }).

which are analytic in U. It is easy to see that T (a, k) ⊂ A(a, k).
Let fi(z) ∈ T (a, k)(i = 1, 2) be given by

fi(z) = az−
∞

∑
n=k

|an,i|zn(i = 1, 2), (2)

then the quasi-Hadamard product (or convolution ) f1 ∗ f2 is defined by

( f1 ∗ f2)(a; z) = a2z−
∞

∑
n=k

|an,1||an,2|zn.

For any real numbers p and q, we define the generalized quasi-Hadamard product f1 & f2 by

( f1 & f2)(p, q; a, z) = a2z−
∞

∑
n=k

|an,1|p|an,2|qzn = ( f2 & f1)(p, q; a, z). (3)

Mathematics 2019, 7, 620; doi:10.3390/mat7070620 www.mdpi.com/journal/mathematics205
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Clearly, for p = q = 1, ( f1 & f2)(1, 1; a, z) reduces to the above quasi-Hadamard product ( f1 ∗
f2)(a; z); for a = 1, ( f1 & f2)(p, q; 1, z) reduces to the generalized Hadamard product ( f1 & f2)(p, q; z)
defined by Jae Ho Choi and Yong Chan Kim [1]; and for p = q = 1, a = 1, ( f1 & f2)(1, 1; 1, z) reduces
to the quasi-Hadamard product ( f1 ∗ f2)(z). For a = 1, p, q ∈ N\{1}, ( f1 & f2)(p, q; 1, z) reduces to the
quasi-Hadamard product ( f1 ∗ · · · f1︸ ︷︷ ︸

p

∗ f2 ∗ · · · f2︸ ︷︷ ︸
q

)(z) (see [2], also see [3,4]).

In 1975, Schild and Silverman [5] studied closure properties of the quasi-Hadamard product
( f1 ∗ f2)(z) for a starlike function of order α and convex function of order α with negative coefficients
in A. In 1983, Owa [2] obtained closure properties of quasi-Hadamard product ( f1 ∗ f2 ∗ · · · ∗ fm)(z)
and ( f1 ∗ f2 ∗ · · · ∗ fm ∗ g1 ∗ g2 · · · ∗ gl)(z) for the same function classes in A. Later Kumar [4] improved
some results in 1987. In 1992, Srivastava and Owa [6] studied closure properties of quasi-Hadamard
product ( f1 ∗ f2 ∗ · · · ∗ fm)(z) for p-valent starlike function of order α and p-valent convex function of
order α class with negative coefficients in A. In 1996, Jae Ho Choi and Yong Chan Kim [1] introduced
the generalized Hadamard product ( f1 & f2)(p, q; z), and obtained the closure properties of ( f1 &
f2)(p, q; z) for a starlike function of order α and convex function of order α with negative coefficients
in A. Since then, a lot of authors considered and studied closure properties and characteristics of
the quasi-Hadamard product ( f ∗ g)(z), ( f1 ∗ f2 ∗ · · · fm)(z) or ( f1 ∗ f2 ∗ · · · fm ∗ g1 ∗ g2 ∗ · · · gl)(z) for
some classes of normalized analytic functions and normalized meromorphic analytic functions, see,
for example, [7–15].

Although the closure properties of Hadamard product or quasi-Hadamard product have already
been studied in A, our focus is to introduce generalized quasi-Hadamard product, generalized
differential operators, and generalized function classes on non-normalized analytic functions, and to
discuss the closure properties on generalized analytic function classes.

Now by using the generalized quasi-Hadamard product ( f1 & f2)(p, q; a, z), we introduce the
following differential operator Dm(m ∈ N) as follows:

D0( f1 & f2) = ( f1 & f2),

D1( f1 & f2) = D( f1 & f2) = z( f1 & f2)
′,

Dm( f1 & f2) = D(Dm−1( f1 & f2)).

We define the generalized differential operator Dm
μ (μ ≥ 0) as follows:

Dm
μ ( f1 & f2) = (1− μ)Dm( f1 & f2) + μDm+1( f1 & f2).

If f1 & f2 is given by (3), then we can obtain that

Dm( f1 & f2)(p, q; a, z) = a2z−
∞

∑
n=k

nm|an,1|p|an,2|qzn

and

Dm
μ ( f1 & f2)(p, q; a, z) = a2z−

∞

∑
n=k

[1 + (n− 1)μ]nm|an,1|p|an,2|qzn.

Clearly, Dm
0 ( f1 & f2)(p, q; a, z) = Dm( f1 & f2), D0

0( f1 & f2)(p, q; a, z) = ( f1 & f2)(p, q; a, z).
For a = p = q = 1, f1(z) = z−∑∞

n=k |an|zn, f2(z) = z−z2−zk

1−z , Dm( f1 & f2)(1, 1; 1, z) becomes Sǎlǎgean
operator (see [16]). Also, by specializing the parameters μ, p, q, we obtain the following new operators:

Dm
μ ( f1 & f2)(1, 1; a, z) =: Dm

μ ( f1 ∗ f2)(a; z) = a2z−
∞

∑
n=k

[1 + (n− 1)μ]nm|an,1||an,2|zn
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and

Dm
0 ( f1 & f2)(1, 1; a, z) =: Dm( f1 ∗ f2)(a; z) = a2z−

∞

∑
n=k

nm|an,1||an,2|zn.

For two analytic functions f and g, the function f is subordinate to g in U (see [17]),
written as follows

f (z) ≺ g(z), z ∈ U,

if there exists an analytic function ω, with ω(0) = 0 and |ω(z)| < 1 such that

f (z) = g(ω(z)).

In particular, if the function g is univalent in U, then f (z) ≺ g(z) is equivalent to f (0) = g(0) and
f (U) ⊂ g(U).

We define two generalization classes satisfying the following subordination condition.

Definition 1. λ ≥ 0, a > 0, A, B ∈ R, |A| ≤ 1, |B| ≤ 1, A �= B. A function f (z) ∈ A(a, k) is in the class
Qλ(a, k, A, B) if and only if

(1− λ)
f (z)

z
+ λ f ′(z) ≺ a(1 + Az)

1 + Bz
.

For suitable choices λ, a, k, A, B, the class Qλ(a, k, A, B) reduces the following subclasses.

(1) Qλ(a, k, 1− 2β,−1) =: Qλ(a, k, β) = { f (z) ∈ A(a, k) : (1− λ) f (z)
z + λ f ′(z) ≺ a[1+(1−2β)z]

1−z , β < 1}.
Obviously, Qλ(1, 2, β) =: Qλ(β) (see [18]);

(2) Qλ(1, 2, A, B) =: Qλ(A, B) = { f (z) ∈ A : (1− λ) f (z)
z + λ f ′(z) ≺ 1+Az

1+Bz };

(3) Q0(a, k, A, B) =: R(a, k, A, B) = { f (z) ∈ A(a, k) : f (z)
z ≺ a(1+Az)

1+Bz };

(4) Q1(a, k, A, B) =: H(a, k, A, B) = { f (z) ∈ A(a, k) : f ′(z) ≺ a(1+Az)
1+Bz }. Obviously, H(1, k, A, B) =:

Pk(A, B) = { f (z) ∈ A(1, k) : f ′(z) ≺ 1+Az
1+Bz ,−1 ≤ B < A ≤ 1}(see [19]).

Definition 2. Let λ ≥ 0, a > 0, A, B ∈ R, |A| ≤ 1, |B| ≤ 1, A �= B. A function f (z) ∈ A(a, k) is in the
class Jλ(a, k, A, B) if and only if

f ′(z) + λz f ′′(z) ≺ a(1 + Az)
1 + Bz

.

Clearly, we have the following equivalence:

f (z) ∈ Jλ(a, k, A, B)⇐⇒ z f ′(z) ∈ Qλ(a, k, A, B). (4)

Let
T Qλ(a, k, A, B) = T (a, k)

⋂
Qλ(a, k, A, B),

T J λ(a, k, A, B) = T (a, k)
⋂
Jλ(a, k, A, B).

Our object of this paper is to the closure properties of the generalized quasi-Hadamard
products, the generalized differential operators for the above generalized classes T Qλ(a, k, A, B)
and T J λ(a, k, A, B). Our results are new in this direction and they give birth to many corollaries.

2. Preliminary Results

Due to derive our main result, we need to talk about the following lemmas.
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Lemma 1. λ ≥ 0, a > 0, A, B ∈ R, |A| ≤ 1, |B| ≤ 1, A �= B. If the function f (z) = az + ∑∞
n=k anzn ∈

A(a, k) satisfies
∞

∑
n=k

[1 + (n− 1)λ](1 + |B|)|an| ≤ a|A− B|, (5)

then f (z) ∈ Qλ(a, k, A, B).

Proof. We assume that the inequality (5) holds true. According to Definition 1, the function f (z) ∈
Qλ(a, k, A, B) if and only if there exists an analytic function ω(z), ω(0) = 0, |ω(z)| < 1(z ∈ U)

such that

F(z) =
a(1 + Aω(z))

1 + Bω(z)
(z ∈ U),

where

F(z) = (1− λ)
f (z)

z
+ λ f ′(z),

or equivalently ∣∣∣∣ F(z)− a
aA− BF(z)

∣∣∣∣< 1 (z ∈ U), (6)

it suffices to show that
|F(z)− a| − |aA− BF(z)| < 0.

Therefore, if we let z ∈ ∂U = {z : z is complex number and |z| = 1}, we find from (6) that

|F(z)− a| − |aA− BF(z)|

=

∣∣∣∣ ∞

∑
n=k

[1 + (n− 1)λ]anzn
∣∣∣∣−∣∣∣∣a(A− B)−

∞

∑
n=k

a(A− B)−
∞

∑
n=k

[1 + (n− 1)λ]Banzn
∣∣∣∣

≤
∞

∑
n=k

[1 + (n− 1)λ]|an||z|n − a|A− B|+
∞

∑
n=k

[1 + (n− 1)λ]|B||an||z|n

≤
∞

∑
n=k

[1 + (n− 1)λ](1 + |B|)|an| − a|A− B| ≤ 0.

Hence, by the maximum modulus theorem, we have f (z) ∈ Qλ(a, k, A, B). Thus we complete the
proof of Lemma 1.

Lemma 2. Let λ ≥ 0, a > 0, and the function f (z) = az−∑∞
n=k |an|zn ∈ T (a, k).

(1) If −1 ≤ B < A ≤ 1, B ≤ 0, then f (z) ∈ T Qλ(a, k, A, B) if and only if

∞

∑
n=k

[1 + (n− 1)λ](1− B)|an| ≤ a(A− B). (7)

(2) If −1 ≤ A < B ≤ 1, B ≥ 0, then f (z) ∈ T Qλ(a, k, A, B) if and only if

∞

∑
n=k

[1 + (n− 1)λ](1 + B)|an| ≤ a(B− A).

The result is sharp for the function f (z) given by

f (z) = az− a|A− B|
[1 + (k− 1)λ](1 + |B|) zk (k ∈ N\{1} = {2, 3, · · · }).

Proof. Since T Qλ(a, k, A, B) ⊂ Qλ(a, k, A, B), according to Lemma 1 we only need to prove the ‘only if’
part of this Lemma.
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Now let us prove the necessity of case (1).
Let f (z) ∈ T Qλ(a, k, A, B),−1 ≤ B < A ≤ 1, B ≤ 0. Then it satisfies (6) or equivalently∣∣∣∣ ∑∞

n=k[1 + (n− 1)λ]|an|zn−1

a(A− B) + ∑∞
n=k[1 + (n− 1)λ]B|an|zn−1

∣∣∣∣< 1, z ∈ U.

Since |
(z)| ≤ |z|, z ∈ U, we have



{

∑∞
n=k[1 + (n− 1)λ]|an|zn−1

a(A− B) + ∑∞
n=k[1 + (n− 1)λ]B|an|zn−1

}
< 1, z ∈ U. (8)

Choose values of z on the real axis so that (1 − λ) f (z)
z + λ f ′(z) is real. Upon clearing the

denominator in (8) and letting z → 1− through real values, we obtain (7).
Similar to the above proof for case (1), we can prove that case (2) is true. Thus we complete the

proof of Lemma 2.

Using arguments similar to those in the proof of Lemmas 1 and 2, we can prove the following
Lemmas 3 and 4.

Lemma 3. Let λ ≥ 0, a > 0, A, B ∈ R, |A| ≤ 1, |B| ≤ 1, A �= B. If the function f (z) = az + ∑∞
n=k anzn ∈

A(a, k) satisfies
∞

∑
n=k

[1 + (n− 1)λ](1 + |B|)|n|an| ≤ a|A− B|,

then f (z) ∈ Jλ(a, k, A, B).

Lemma 4. Let λ ≥ 0, a > 0, and the function f (z) = az−∑∞
n=k |an|zn ∈ T (a, k).

(1) If −1 ≤ B < A ≤ 1, B ≤ 0, then f (z) ∈ T J λ(a, k, A, B) if and only if

∞

∑
n=k

[1 + (n− 1)λ](1− B)n|an| ≤ a(A− B).

(2) If −1 ≤ A < B ≤ 1, B ≥ 0, then f (z) ∈ T J λ(a, k, A, B) if and only if

∞

∑
n=k

[1 + (n− 1)λ](1 + B)n|an| ≤ a(B− A).

The result is sharp for the function f (z) given by

f (z) = az− a|A− B|
k[1 + (k− 1)λ](1 + |B|) zk (k ∈ N\{1} = {2, 3, · · · }).

3. Main Results

Theorem 1. p > 1 and the functions fi(z)(i = 1, 2) defined by (2) belong to T Qλ(a, k, A, B).

(1) If −1 ≤ B < A ≤ 1, B ≤ 0, 0 < a < [1+(k−1)μ](A−B)km

1−B , then 1
a Dm

μ ( f1 & f2)(
1
p , p−1

p ; a, z) ∈
T Qλ(a, k, A, B̂), where

a(1− B)A− [1 + (k− 1)μ](A− B)km

a(1− B)− [1 + (k− 1)]μ(A− B)km ≤ B̂ < min{A, 0}.
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(2) If −1 ≤ A < B ≤ 1, B ≥ 0, 0 < a < [1+(k−1)μ](B−A)km

1+B , then 1
a Dm

μ ( f1 & f2)(
1
p , p−1

p ; a, z) ∈
T Qλ(a, k, A, B̂), where

max{A, 0} < B̂ ≤ a(1 + B)A + [1 + (k− 1)μ](B− A)km

a(1 + B)− [1 + (k− 1)μ](B− A)km .

Proof. (1) Suppose that −1 ≤ B < A ≤ 1, B ≤ 0. According to Lemma 2, we need to prove

∞

∑
n=k

[1 + (n− 1)λ](1− B̂)[1 + (n− 1)μ]
a(A− B̂)

nm

a
|an,1|

1
p |an,2|

p−1
p ≤ 1. (9)

Since fi(z) ∈ T Qλ(a, k, A, B), by Lemma 2 we have

(
∞

∑
n=k

[1 + (n− 1)λ](1− B)
a(A− B)

|an,1|
) 1

p

≤ 1

and (
∞

∑
n=k

[1 + (n− 1)λ](1− B)
a(A− B)

|an,2|
) p−1

p

≤ 1.

By the Hölder inequality we get

∞

∑
n=k

[1 + (n− 1)λ](1− B)
a(A− B)

|an,1|
1
p |an,2|

p−1
p ≤ 1.

Hence the inequality (9) will be satisfied if

[1 + (n− 1)μ](1− B̂)nm

a(A− B̂)
≤ 1− B

A− B
(m, n ∈ N, n ≥ k)

or if

[a(1− B)− [1 + (n− 1)μ](A− B)nm]B̂ ≤ a(1− B)A− [1 + (n− 1)μ](A− B)nm (m, n ∈ N, n ≥ k). (10)

Now define the functions F1(n) and G1(n) by

F1(n) = a(1− B)− [1 + (n− 1)μ](A− B)nm

and
G1(n) = a(1− B)A− [1 + (n− 1)μ](A− B)nm.

When 0 < a < [1+(n−1)μ](A−B)km

1−B , we obtain that F1(n) is a decreasing function of n(n ∈ N, n ≥ k)
and F1(n) < F1(k) < 0. Thus the inequality (10) will be satisfied if

B̂ ≥ G1(n)
F1(n)

=
a(1− B)A− [1 + (n− 1)μ](A− B)nm

a(1− B)− [1 + (n− 1)μ](A− B)nm (m, n ∈ N, n ≥ k). (11)

We see that the right hand side of (11) is a decreasing function of n(n ∈ N, n ≥ k). Therefore the
inequality (10) is satisfied for all n(n ∈ N, n ≥ k) if

B̂ ≥ G1(k)
F1(k)

=
a(1− B)A− [1 + (k− 1)μ](A− B)km

a(1− B)− [1 + (k− 1)μ](A− B)km (m ∈ N),

which evidently completes the proof of the case (1).
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(2) Suppose that −1 ≤ A < B ≤ 1, B ≥ 0. According to Lemma 2, we need to prove

∞

∑
n=k

[1 + (n− 1)λ](1 + B̂)[1 + (n− 1)μ]
a(B̂− A)

nm

a
|an,1|

1
p |an,2|

p−1
p ≤ 1. (12)

Similar to case (1), the inequality (12) will be satisfied if

[1 + (n− 1)μ](1 + B̂)nm

a(B̂− A)
≤ 1 + B

B− A
(m, n ∈ N, n ≥ k)

or if

[a(1 + B)− [1 + (n− 1)μ](B− A)nm]B̂ ≥ a(1 + B)A + [1 + (n− 1)μ](B− A)nm (m, n ∈ N, n ≥ k). (13)

Now define the functions F2(n) and G2(n) by

F2(n) = a(1 + B)− [1 + (n− 1)μ](B− A)nm

and
G2(n) = a(1 + B)A + [1 + (n− 1)μ](B− A)nm.

When 0 < a < [1+(n−1)μ](B−A)km

1+B , we obtain that F2(n) is a decreasing function of n(n ∈ N, n ≥ k)
and F2(n) < F2(k) < 0. Thus the inequality (13) will be satisfied if

B̂ ≤ G2(n)
F2(n)

=
a(1 + B)A + [1 + (n− 1)μ](B− A)nm

a(1 + B)− [1 + (n− 1)μ](B− A)nm (m, n ∈ N, n ≥ k). (14)

We see that the right hand side of (14) is an increasing function of n(n ∈ N, n ≥ k). Therefore the
inequality (13) is satisfied for all n(n ∈ N, n ≥ k) if

B̂ ≤ G2(k)
F2(k)

=
a(1 + B)A + [1 + (n− 1)μ](B− A)km

a(1 + B)− [1 + (n− 1)μ](B− A)km (m ∈ N),

which evidently completes the proof of the case (2). Thus we complete the proof of Theorem 1.

Theorem 2. Let [1+ (n− 1)μ]|A− B|nm ≤ [1+ (n− 1)λ](1+ |B|). If the functions fi(z)(i = 1, 2) defined
by (2) belong to T Qλ(a, k, A, B), then 1

a Dm
μ ( f1 ∗ f2)(a; z) ∈ T Qλ(a, k, A, B).

Proof. Suppose that −1 ≤ B < A ≤ 1, B ≤ 0. According to Lemma 2, we need to prove

∞

∑
n=k

[1 + (n− 1)λ](1− B)[1 + (n− 1)μ]
nm

a
|an,1||an,2| ≤ a(A− B). (15)

Since fi(z) ∈ T Qλ(a, k, A, B) (i = 1, 2), by using Lemma 2 we get

∞

∑
n=k

[1 + (n− 1)λ](1− B)|an,1| ≤ a(A− B) (16)

and
∞

∑
n=k

[1 + (n− 1)λ](1− B)|an,2| ≤ a(A− B). (17)
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Therefore, by the Cauchy–Schwarz inequality, we obtain

∞

∑
n=k

[1 + (n− 1)λ](1− B)
√
|an,1||an,2| ≤ a(A− B). (18)

This implies that we only need to show that

[1 + (n− 1)λ](1− B)[1 + (n− 1)μ]
nm

a
|an,1||an,2| ≤ [1 + (n− 1)λ](1− B)

√
|an,1||an,2| (n ≥ k)

or, equivalently, that √
|an,1||an,2| ≤

a
[1 + (n− 1)μ]nm (n ≥ k). (19)

From (18), the inequality (19) is satisfied for all n(n ∈ N, n ≥ k) if

[1 + (n− 1)μ](A− B)nm ≤ [1 + (n− 1)λ](1− B) (n ≥ k).

Based on the given condition, we get (15).
Also applying Lemma 2 we can prove 1

a Dm
μ ( f1 ∗ f2)(a; z) ∈ T Qλ(a, k, A, B) for −1 ≤ A < B ≤ 1,

B ≥ 0. Thus we complete the proof of Theorem 2.

Remark 1. (1) Setting μ = 0 in Theorem 1, we can obtain the closure properties of 1
a D̃m( f1 ∗ f2)(

1
p , p−1

p ; a, z)

for T Qλ(a, k, A, B); (2) Setting μ = 0 in Theorem 2, we can obtain the closure properties of 1
a D̃m

μ ( f1 ∗ f2)(a; z)
for T Qλ(a, k, A, B).

Example 1. Let p > 1,−1 ≤ B < A ≤ 1, B ≤ 0, 0 < a < A−B
1−B . If the functions fi(z)(i = 1, 2) defined

by (2) belong to T Qλ(a, k, A, B), then 1
a ( f1 & f2)(

1
p , p−1

p ; a, z) ∈ T Qλ(a, k, A, B̂), where

a(1− B)A− (A− B)
a(1− B)− (A− B)

≤ B̂ < min{A, 0}.

4. Corollaries and Consequences

On the one hand, by taking special values of parameters A, B, λ, a, k we easily obtain the following
closure properties for some important subclasses in A(a, k).

Putting A = 1− 2β (0 ≤ β < 1), B = −1, we obtain the closure properties for the subclass

T Qλ(a, k, β) = T (a, k)
⋂
Qλ(a, k, β) = { f (z) ∈ T (a, k) : (1− λ)

f (z)
z

+ λ f ′(z) ≺ a[1 + (1− 2β)z]
1− z

}.

Corollary 1. p > 1, 0 < β < 1 and the functions fi(z)(i = 1, 2) defined by (2) belong to T Qλ(a, k, β).
If 0 < a < [1 + (k− 1)μ](1− β)km, then 1

a Dm
μ ( f1 & f2)(

1
p , p−1

p ; a, z) ∈ T Qλ(a, k, 1− 2β, B̂), where

a(1− β)− [1 + (k− 1)μ](1− β)km

a− [1 + (k− 1)μ](1− β)km ≤ B̂ < min{1− 2β, 0}.

Corollary 2. Let 0 < β < 1, [1 + (n− 1)μ](1− β)nm ≤ [1 + (n− 1)λ]. If the functions fi(z)(i = 1, 2)
defined by (2) belong to T Qλ(a, k, β), then 1

a Dm
μ ( f1 ∗ f2)(a; z) ∈ T Qλ(a, k, β). Putting λ = 0 and λ = 1,

we obtain the closure properties for the subclasses

T R(a, k, A, B) = T (a, k)
⋂
H(a, k, A, B) = { f (z) ∈ T (a, k) :

f (z)
z

≺ a(1 + Az)
1 + Bz

}
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and

T H(a, k, A, B) = T (a, k)
⋂
H(a, k, A, B) = { f (z) ∈ T (a, k) : f ′(z) ≺ a(1 + Az)

1 + Bz
}.

Corollary 3. Let [1 + (n− 1)μ]|A− B|nm ≤ (1 + |B|). If the functions fi(z)(i = 1, 2) defined by (2) belong
to T R(a, k, A, B), then 1

a Dm
μ ( f1 ∗ f2)(a; z) ∈ T R(a, k, A, B).

Corollary 4. Let [1 + (n − 1)μ]|A − B|nm ≤ n(1 + |B|). If the functions fi(z)(i = 1, 2) defined by (2)
belong to T H(a, k, A, B), then 1

a Dm
μ ( f1 ∗ f2)(a; z) ∈ T H(a, k, A, B). Putting a = 1, k = 2, we obtain the

closure properties for the subclass

T Qλ(A, B) = T (1, 2)
⋂
Qλ(A, B) = { f (z) ∈ T (1, 2) : (1− λ)

f (z)
z

+ λ f ′(z) ≺ a(1 + Az)
1 + Bz

}.

Corollary 5. Let p > 1 and the functions fi(z)(i = 1, 2) defined by (2) belong to T Qλ(A, B). If −1 ≤ B <

A ≤ 1, B ≤ 0, (1 + μ)(A− B)2m − (1− B) > 0, then Dm
μ ( f1 & f2)(

1
p , p−1

p ; 1, z) ∈ T Qλ(A, B̂), where

a(1− B)A− (1 + μ)(A− B)2m

a(1− B)− (1 + μ)(A− B)2m ≤ B̂ < min{A, 0}.

Corollary 6. Let [1 + (n − 1)μ]|A − B|2m ≤ [1 + (n − 1)λ](1 + |B|). If the functions fi(z)(i = 1, 2)
defined by (2) belong to T Qλ(A, B), then 1

a Dm
μ ( f1 ∗ f2)(a; z) ∈ T Qλ(A, B).

Example 2. Let p > 1, 0 < β < 1. If fi(z) = z − ∑∞
n=2 |an,i|zn ∈ T Qλ(1 − 2β,−1), i = 1, 2,

then ( f1 & f2)(
1
p , p−1

p ; 1, z) ∈ T Qλ(1− 2β, B̂), where −1 ≤ B̂ < min{1− 2β, 0}.

On the other hand, we can obtain the following closure properties for T J (a, k, A, B) according
to (4) and Lemma 4.

Corollary 7. Let p > 1 and the functions fi(z)(i = 1, 2) defined by (2) belong to T J λ(a, k, A, B).

(1) If −1 ≤ B < A ≤ 1, B ≤ 0, 0 < a < [1+(k−1)μ](A−B)km

1−B , then 1
a Dm

μ ( f1 & f2)(
1
p , p−1

p ; a, z) ∈
T J λ(a, k, A, B̂), where

a(1− B)A− [1 + (k− 1)μ](A− B)km

a(1− B)− [1 + (k− 1)]μ(A− B)km ≤ B̂ < min{A, 0}.

(2) If −1 ≤ A < B ≤ 1, B ≥ 0, 0 < a < [1+(k−1)μ](B−A)km

1+B , then 1
a Dm

μ ( f1 & f2)(
1
p , p−1

p ; a, z) ∈
T J λ(a, k, A, B̂), where

max{A, 0} < B̂ ≤ a(1 + B)A + [1 + (k− 1)μ](B− A)km

a(1 + B)− [1 + (k− 1)μ](B− A)km .

Corollary 8. Let [1 + (n− 1)μ]|A− B|nm−1 ≤ [1 + (n− 1)λ](1 + |B|). If the functions fi(z)(i = 1, 2)
defined by (2) belong to T J λ(a, k, A, B), then 1

a Dm
μ ( f1 ∗ f2)(a; z) ∈ T J λ(a, k, A, B).

5. Conclusions

In this paper, we mainly study the closure properties of the generalized quasi-Hadamard
products, the generalized differential operator and its related special operators for T Qλ(a, k, A, B)
and T J λ(a, k, A, B) of analytic functions with negative and missing coefficients. Also, we give two
examples and six corollaries to illustrate our results obtained. In the future, we can consider to
extend some classical analytic function classes (such as starlike, convex, close-to-convex) in A(a, k),
and discuss the closure properties of the generalized quasi-Hadamard products.
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1. Introduction

The properties of many families of special numbers have been profitably studied by the use
of methods tracing back to the umbral calculus [1]. Within this context, the definition of the
associated polynomials naturally emerges as umbral Newton binomial convolutions (see “The
Bernoulli Polynomials §4.2.2” in Reference [1]). The formalism is extremely powerful, and has allowed
for the extension of the method to generalized forms of special numbers ([2,3]). The use of umbral
techniques has been recently employed in the study of harmonic numbers, whose relationship to
Bernoulli numbers has been pointed out in Reference [4]. In this paper, we will extend the use of
umbral methods to the case of higher-order harmonic numbers.

In a number of previous papers ([5–7]), different problems concerning harmonic numbers and
the relevant generating functions have been touched. The already mentioned use of the umbral-like
formalism has allowed for the framing of the theory of harmonic numbers within an algebraic context.
Some of the points raised in ([5–7]) have been reconsidered, made rigorous, and generalized by means
of different technical frameworks in successive research ([8–15]).

The present investigation concerns the application of the method foreseen in ([5–7]) to generalized
forms of harmonic numbers, such as (We use the notation mhn instead of H(m)

n recommended in
Reference [4] for continuity with previous papers, where it has been adopted to avoid confusion with
higher-order Hermite polynomials):

mhn =
n

∑
r=1

1
rm , n ≥ 1,

mh0 = 0,

(1)
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namely, “higher-order harmonic numbers” satisfying the property:

mhn+1 = mhn +
1

(n + 1)m , (2)

whose associated series is provided by the limit lim
n→∞ mhn, m > 1 is, unlike the ordinary harmonic

numbers (m = 1), not diverging.
It can be argued that for negative m values, the Harmonic numbers reduce to a finite sum of

integers, expressible in terms of Bernoulli numbers, as discussed in the concluding part of the paper
(Remark 3). In the following, we will derive a number of apparently new properties and the relevant
consequences.

As an introductory example, we provide the following:

Example 1. We consider the second-order harmonic numbers (m = 2) and write

2hn =
∫ 1

0

1− xn

x− 1
ln(x) dx, ∀n ∈ N, (3)

which is obtained after setting

1
r2 =

∫ ∞

0
e−srs ds (4)

by noting that

2hn =
∫ ∞

0

e−s(n+1) − e−s

e−s − 1
s ds, (5)

and then by changing the variable of integration.
It is worth stressing that the integral representation allows for the extension of harmonic numbers to

non-integer values of the index. The second-order harmonic numbers interpolates between the integer and real
values of the index, as shown in the plot given in Figure 1, where it is pointed out that the asymptotic limit of the

second-order harmonic numbers is
π2

6
.

Figure 1. 2hx vs x and lim
x→∞ 2hx =

π2

6
.

The relevant extension to negative real indices will be considered later in the article.
Let us first consider the generating function associated with the second-order harmonic numbers,

which can be cast in the form of an umbral exponential series, as follows.
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Definition 1. We introduce

2 he(t) := 1 +
∞

∑
n=1

tn

n!
(2hn) = e2 ĥtξ0, (6)

where 2ĥ is an umbral-like operator acting on the vaccum ξ0, such that (see [10] for a complete treatment of the
umbral method):

2ĥnξ0 := ξn = 2hn, n > 0,

2ĥ0ξ0 = 1 �= 2h0 = 0
(7)

and
2ĥν

2ĥμξ0 = 2ĥν+μξ0, ∀ν, μ ∈ R. (8)

(The action of the operator 2ĥ should be defined as explained in Reference [10]—namely, as the action
of a shift operator on its vacuum, such as here ξ0, in the following more rigorous way):

2ĥ := e∂z ,

2ĥμ ξ0 = eμ∂z ξz

∣∣∣
z=0

= ξz+μ

∣∣
z=0 =

∫ 1

0

1− xz+μ

x− 1
ln(x) dx

∣∣∣∣
z=0

=
∫ 1

0

1− xμ

x− 1
ln(x) dx.)

Proposition 1. ∀m ∈ N,

2 he(t, m) := ∂m
t 2 he(t) = 2hm +

∞

∑
n=1

tn

n!
(2hn+m) . (9)

Proof. From Equations (6) and (7) it follows that, ∀m ∈ N,

2 he(t, m) = ∂m
t 2 he(t) = ∂m

t e2 ĥtξ0 = 2ĥme2 ĥtξ0 = 2hm +
∞

∑
n=1

tn

n!
(2hn+m) .

Corollary 1. Limiting ourselves to the first derivative only, it appears evident that the generating function (6)
satisfies the identity {

∂t 2 he(t) = 2 he(t) + f2(t),

2 he(0) = 1
, (10)

where

f2(t) =
∞

∑
n=1

tn

(n + 1)(n + 1)!
=

1
t

∫ t

0

es − s− 1
s

ds = −Ein(−t) + t
t

,

Ein(z) =
∫ z

0

1− e−ζ

ζ
dζ.

(11)

Observation 1. The problem of specifying the generating function of second-order harmonic numbers is reduced
to the solution of the first-order differential Equation (10). The solution writes

2 he(t) = et

(
1 +

∞

∑
n=1

1
(n + 1)2

(
1− e−ten(t)

))
, (12)

where

en(x) =
n

∑
r=0

xr

r!
(13)
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are the truncated exponential polynomials [16]. They belong to the family of Appél type polynomials [13] and
are defined through the operational identity [17,18]:

en(x) =
1

1− ∂x

xn

n!
. (14)

Corollary 2. We can further elaborate on the previous identities (Equations (13) and (14)), and set

∞

∑
n=1

en(t)
(n + 1)2 = Q2(t),

Q2(t) =
1

1− ∂t
f2(t).

(15)

Furthermore, since
∞

∑
n=1

1
(n + 1)2 =

π2

6
− 1, (16)

we end up with

2 he(t) = et Σ2(t),

Σ2(t) =
π2

6
−Q2(t) e−t.

(17)

This new result can be viewed as an extension of the generating function for the first-order harmonic
numbers derived by Gosper (see below) [19].

It is furthermore evident that the formalism allows the straightforward derivation of other
identities, such as

Lemma 1. ∀t ∈ R
∞

∑
n=1

tn

n!
(2hn+m) = et

m

∑
s=0

(
m
s

)
Σ(s)

2 (t)− 2hm, (18)

where the upper index (s) denotes a s-order derivative and is a direct consequence of the identity in Equation (9).

The extension to higher-order harmonic numbers with m > 2 follows the same logical
steps—namely, the derivation of the associated Cauchy problem.

Corollary 3. Let ∀t ∈ R, ∀p ∈ N : p > 1,

fp(t) =
∞

∑
n=1

tn

(n + 1)p−1 (n + 1)!
(19)

and ⎧⎨⎩ ∂t

(
p he(t)

)
= p he(t) + fp(t)

p he(0) = 1
, (20)

a Cauchy problem. Then, we can write the solution as:

p he(t) = et

(
1 +

∞

∑
n=1

1
(n + 1)p

(
1− e−ten(t)

))
(21)

or

p he(t) = et Σp(t), (22)
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with

Σp(t) = ζ (p)−Qp(t)e−t,

ζ (p) =
∞

∑
n=1

1
np ,

Qp(t) =
∞

∑
n=1

1
(n + 1)p en(t) =

1
1− ∂t

fp(t).

(23)

The case p = 1 should be treated separately, because the sum on the right-hand side of Equation (21)
apparently diverges.

Observation 2. It is accordingly worth noting that, since

f1(t) =
∞

∑
n=1

tn

(n + 1)!
=

1
t
(et − t− 1), (24)

we find

1 he(t) = et
(

1 +
∫ t

0

1− (τ + 1) e−τ

τ
dτ

)
= et Σ1(t),

Σ1(t) = e−t + Ein(t),
(25)

which is a restatement of the Gosper derivation of the generating function of first-order harmonic numbers.

Further comments on the role played by the functions Σp(t) will be provided in the final section
of the paper.

We conclude this introductory section with the inclusion of a further identity.

Definition 2. Here, we introduce higher-order harmonic number umbral polynomials (for m = 1, see Definition
5 in Reference [7]):

mhn(x) := (x + mĥ)nξ0 = xn +
n

∑
s=1

(
n
s

)
xn−s

mhs,

mh0(x) = 1.

(26)

The mhn(x) are introduced in umbral form in complete analogy with those associated with the
Bernoulli polynomials. They belong to the Sheffer family, and the relevant properties can be studied
by means of the techniques discussed in Reference [17].

It has already been noted that (see Equation (31) in Reference [7])

1hn(−1) = (−1)n
(

1− 1
n

)
, (27)

which coincides with an analogous identity derived with Mathematica in Reference [20] and, within
the present framework from the recurrence

1hn+1(x) = (x + 1) 1hn(x) +
n

∑
s=1

(
n
s

)
1

(s + 1)
xn−s = (x + 1) 1hn(x) + n

∫ 1

0
dy

∫ y

0
(x + z)n−1dz. (28)

Analogous results can be derived for the higher-order case, as in

2hn(−1) = (−1)n
(

1− 1hn

n

)
, (29)

219



Mathematics 2019, 7, 577

and can be further generalized.

2. Harmonic Numbers and Integral Transforms

The identities we have dealt with in the previous section can be further generalized if the umbral
procedure is merged with other techniques, involving things such as methods of an operational nature.

Proposition 2. We note that an extension of identities of the type reported in Equation (9) is provided by
the sum

∞

∑
n=0

tn

n!
nm

phn = et
m

∑
k=0

{
m
k

}
tk

k

∑
s=0

(
k
s

)
Σ(k)

p (t), (30)

where

{
n
k

}
are Stirling numbers of the second kind, namely

{
n
k

}
=

1
k!

k

∑
j=0

(−1)k−j jn
(

k
j

)
. (31)

Proof. The result in Equation (30) was obtained by merging the umbral formalism with identities of
an operational nature. By noting that (see, e.g., Equation (18) in Reference [21] and Equation (1) in [22],
and for a more general use of these numbers, see [23–25])

(x∂x)
n =

n

∑
k=0

{
n
k

}
xk∂k

x, (32)

and that if the following sum
∞

∑
n=0

(tnan) = σ(t) (33)

does exist, then the following relation holds true

∞

∑
n=0

nm (tnan) = (t∂t)
m

∞

∑
n=0

(tnan) = (t∂t)
m σ(t) =

m

∑
k=0

{
m
k

}
tkσ(k)(t). (34)

The result contained in Equation (30) is, therefore, a consequence of Equations (9) and (34).

Furthermore, we noticed that by combining the umbral, Laplace transform, and integral
representation methods, we could make further progress.

Example 2. Let us therefore note that (see Corollary 1 in [7])

1
1− 1ĥ t

ξ0 =
∞

∑
r=1

1hr tr + 1, | t |< 1. (35)

The use of the Laplace transform allowed us to write the left-hand side of Equation (35) in the form of

1
1− 1ĥ t

ξ0 =
∫ ∞

0
e−ses 1 ĥ tds ξ0, (36)

which, on account of Equation (25), allows the conclusion controlla se l’eq e’ la 25
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1 +
∞

∑
n=1

tn (1hn) = 1− ln(1− t)
1− t

= 1 +
Li1(t)
1− t

, |t| < 1,

Lim(x) =
∞

∑
r=1

xr

rm ≡ Polylogarithm.
(37)

The same procedure applied to higher-order harmonic numbers yields the generating functions:

∞

∑
r=1

mhrtr + 1 = 1 +
Lim(t)
1− t

, | t |< 1, (38)

already known for the case m = 2.

The following example further underscores the versatility of the procedure we have proposed.
We will indeed show that the use of the Gaussian identity

eb2
=

1√
π

∫ ∞

−∞
e−ξ2+2bξ dξ (39)

can be exploited to infer further identities on the properties of harmonic numbers.

Example 3. Now, we consider the following generating function

2 he2(t) := 1 +
∞

∑
n=1

tn

n!
(2h2 n) . (40)

According to our formalism, the corresponding r.h.s. can be written as

2 he2(t) = e(2 ĥ2)tξ0, (41)

which, on account of the identity (39), can be written as

2 he2(t) =
1√
π

∫ +∞

−∞
e−s2+2 s

√
t 2 ĥds ξ0. (42)

The derivation of the sum in Equation (40) is therefore reduced to the evaluation of the following integral

2 he2(t) =
1√
π

∫ +∞

−∞
e−s2

(
π2

6
e2 s

√
t −Q2(2 s

√
t)

)
ds =

π2

6
et − q2(t), (43)

with

q2(t) =
1√
π

∞

∑
n=1

1
(n + 1)2

∫ +∞

−∞
e−s2

en

(
2 s
√

t
)

ds. (44)

3. Final Comments

Before concluding this paper, we show that the umbral formalism we have employed can be
pushed even further to infer new properties of the harmonic numbers. To emphasise this point, we
start from certain identities established in Reference [20] by the use of the Mathematica code, SIGMA.
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Among the examples discussed in Equation (18) in Reference [20], we pick out the following two:

1)
n

∑
r=1

(
n
r

)
(−1)r

r
= −1hn,

2)
n

∑
r=1

(
n
r

)
(−1)r

r 1hr = −2hn

. (45)

We can transform the left-hand side of Equations (45) in a Newton binomial by an appropriate
definition of umbra.

Case 1

Regarding the first, we define the operator [7]:

κ̂rψ0 =
1
r

, r > 0,

κ̂0ψ0 = 1,
(46)

thus casting the first of Equation (45) in the form (see Equation (32) in Reference [7]):

1hn = 1− (1− κ̂)nψ0, (47)

which can be exploited to once more derive the Gosper generating function. By multiplying both sides
of Equation (47) by tn

n! , and then by summing up on the index n, we obtain:

∞

∑
n=0

tn

n! 1hn = et
(

1− e−κ̂t
)

. (48)

Keeping the m-th derivative with respect to both sides of Equation (48) yields:

∞

∑
n=0

tn

n! 1hn+m = et
m

∑
r=0

(
m
r

)
∂r

t φ(t), (49)

where

φ(t) = 1− e−κ̂tψ0,

∂r
t φ(t) = − (−κ̂)r e−κ̂tψ0 = −

∞

∑
s=0

(−1)s+rκ̂s+r

s!
tsψ0 =

⎧⎪⎪⎨⎪⎪⎩
−∑∞

s=0
(−1)s+r

s!(s + r)
ts, r > 0,

−∑∞
r=1

−tr

r!r
, r = 0.

(50)

Case 2

An analogous procedure can be exploited to handle the second:

μ̂rη0 = 1hr

r
(51)

which allows for the derivation of the following identity

∞

∑
n=0

tn

n! 2hn+m = et
m

∑
r=0

(
m
r

)
∂r

t 2φ(t), (52)
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with

2φ(t) = 1− e−μ̂ tη0,

∂r
t 2φ(t) =

⎧⎪⎪⎨⎪⎪⎩
−∑∞

s=0
(−1)s+r

s!(s + r) 1hs+r ts, r > 0,

−∑∞
r=1

(−t)r
1hr

r!r
, r = 0.

(53)

Remark 1. Let us now use the obvious identity (which holds for all operators):

1n = [(1− μ̂) + μ̂]n η0. (54)

Expanding the Newton binomial, we find

[(1− μ̂) + μ̂]n η0 =
n

∑
r=0

(
n
r

)
μ̂n−r

r

∑
s=0

(
r
s

)
(−1)sμ̂sη0 =

=

(
n−1

∑
r=0

(
n
r

) r

∑
s=1

(
r
s

)
(−1)sμ̂n+s−r +

n−1

∑
r=0

(
n
r

)
μ̂n−r +

n

∑
s=1

(
n
s

)
(−1)sμ̂s + 1

)
η0.

(55)

Remark 2. Choosing, for example, the first operator (46) and the property κ̂rκ̂sψ0 = κ̂s+rψ0 =
1

s + r
, we can

finally elaborate (54) to get (see [24]):

n

∑
r=1

(
n
r

)
1
r
= −

n

∑
k=1

(
n
k

) k

∑
r=1

(
k
r

)
(−1)r 1

n + r− k
, (56)

while when repeating the procedure with the realization (51), we end up with

n

∑
r=1

(
n
r

)
1hr

r
= −

n

∑
k=1

(
n
k

) k

∑
r=1

(−1)r
(

k
r

)
1hn+r−k
n + r− k

. (57)

According to Reference [6] (see Equation (2)), it might also beconvenient to use the following
umbral definition for the inverse of an integer.

Definition 3. We introduce the umbral operator

ânγ0 :=
1

n + 1
, ∀n ∈ N. (58)

Proposition 3. ∀n ∈ N (see Equation 1 in [6])

1
n + 1

=
n

∑
s=0

(
n
s

)
(−1)s 1

s + 1
. (59)

Proof. It can be proved by induction that from (For n = 2 we find â2γ0 =
(
1− 2â + â2) γ0, according

to the prescription in Equation (58), we get

1
2 + 1

= 1− 2
1

1 + 1
+

1
2 + 1

;

for n = 3, â3γ0 =
(
1− 3â + 3â2 − â3) γ0, we get

1
4
= 1− 3

1
1 + 1

+ 3
1

2 + 1
− 1

3 + 1
.)
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ânγ0 = (1− â)n γ0. (60)

Furthermore, by using the obvious relation

ânγ0 = [1− (1− â)]n γ0 =
n

∑
s=0

(
n
s

)
(−1)s (1− â)s , (61)

we end up with Equation (59).

We consider now the square of harmonic numbers, [1hn]
2.

Definition 4. We introduce the umbral operator

1ĥn
(2) (2)ξ0 := h̃n ξ̃0 = [1hn]

2 , ∀n ∈ N. (62)

Definition 5. The umbral operator (62) can be exploited to define the formal series:

1h(2) e(t) := ẽ(t) = 1 +
∞

∑
n=1

tn

n!
h̃n ξ̃0 = eh̃ t ξ̃0, (63)

specifying the associated generating function.

The derivation of Equation (63), according to the previously foreseen method, reduces to the solution
of a first-order differential Equation, as it has been shown in the following example.

Example 4. By noting that

h̃n+1ξ̃0 = [1hn]
2 + 2 1hn

n + 1
+

1
(n + 1)2 , (64)

and that
∂t ẽ(t) = h̃ eh̃ t ξ̃0, (65)

we easily find

∂t ẽ(t) = ẽ(t)− 1 +
2
t

∞

∑
n=0

tn+1

(n + 1)!

(
1hn+1 −

1
n + 1

)
+

∞

∑
n=0

tn

(n + 1) (n + 1)!
(66)

or

∂t ẽ(t) = ẽ(t) +
2
t
(1he(t)− t− 1)− 1

t

∫ t

0

es − s− 1
s

ds (67)

which can be solved by the use of the same technique as before, made only slightly more complicated
by the non-homogeneous term. The Equation can be straightforwardly solved, and the relevant solution,
for ẽ(0) = 1, reads

ẽ(t) = et (1 + χ(t)) , (68)

where

χ(t) =
∫ t

0
e−sβ(s) ds,

β(t) =
2
t
(1he(t)− t− 1)− f2(t).

(69)

Remark 3. In the introductory section we mentioned the link between harmonic and Bernoulli numbers, and
they have been paradigmatic examples of applications of umbral methods. Regarding the finite sum of power of
integers, we find, for example (according to Chapter 6 in Reference [4]),
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n

∑
r=0

rm = (−m)hn =
1

m + 1

[
(b̂ + n + 1)m+1 − b̂m+1

]
θ0, (70)

where
b̂rθ0 = Br (71)

is the umbral operator which provides Bernoulli numbers Br.

Proposition 4. The use of Equation (70) yields the generating function:

∞

∑
m=0

(−m)hn zm+1

m!
=

z
ez − 1

(e(n+1)z − 1), ∀z ∈ R :| z |< 2π. (72)

Proof. ∀z ∈ R :| z |< 2π

∞

∑
m=0

(−m)hn zm+1

m!
=

∞

∑
m=0

[
(b̂ + n + 1)m+1 − b̂m+1

]
zm+1

(m + 1)!
θ0 =

(
e(b̂+n+1)z − eb̂z

)
θ0 =

=
(

e(n+1)z − 1
)

eb̂zθ0 =
(

e(n+1)z − 1
) ∞

∑
r=0

zr

r!
b̂rθ0 =

=
(

e(n+1)z − 1
)

eb̂zθ0 =
(

e(n+1)z − 1
) ∞

∑
r=0

zr

r!
Br

which, by taking into account that the generating function of Bernoulli numbers is

∞

∑
r=0

zr

r!
Br =

z
ez − 1

(73)

yields the statement in Equation (72).

In this paper, we have provided a hint of the possible interplay between the theory of harmonic
numbers and operational methods (be they of umbral ordinary nature). Further progress will be
presented in future investigations.
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Abstract: In the paper, we introduce some subclasses of harmonic mapping, the analytic part
of which is related to general starlike (or convex) functions with a symmetric conjecture point
defined by subordination. Using the conditions satisfied by the analytic part, we obtain the
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the co-analytic part g, and Jacobian estimates, the growth estimates and covering theorem of the
harmonic function f . Through the above research, the geometric properties of the classes are obtained.
In particular, we draw figures of extremum functions to better reflect the geometric properties of the
classes. For the first time, we introduce and obtain the properties of harmonic univalent functions
with respect to symmetric conjugate points. The conclusion of this paper extends the original research.
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1. Introduction and Preliminaries

Let A denote the class of functions in the following form

h(z) = z +
∞

∑
n=2

anzn, (1)

where h(z) is analytic in the open unit disk U = {z ∈ C : |z| < 1}.
S ,S∗,K are denoted respectively by the subclasses of A consisting of univalent, starlike,

convex functions (for details, see [1,2]).
Let P denote the class of functions p satisfying p(0) = 1 and Rep(z) > 0, where z ∈ U.
The function s is subordinate to t in U, written by s(z) ≺ t(z), if there exists a Schwarz function

σ, analytic in U with σ(0) = 0 and |σ(z)| < 1, satisfying s(z) = t(σ(z))(see [1]). If the function t is
univalent in U and s(z) ≺ t(z), we have the equivalent results as follows,

s(0) = t(0) and s(U) ⊂ t(U).

In 1994, Ma and Minda [3] introduce a class S∗(φ) of starlike functions defined by subordination,
h(z) ∈ S∗(φ) if and only if zh′(z)

h(z) ≺ φ(z), where h ∈ A, φ ∈ P . The corresponding convex class K(φ)

was defined in a similar way.
For φ(z) = 1+Az

1+Bz and −1 ≤ B < A ≤ 1, we denote respectively the subclasses of A by S∗(A, B)
and K(A, B) satisfying (see [4]):

Mathematics 2019, 7, 548; doi:10.3390/mat7060548 www.mdpi.com/journal/mathematics227
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h ∈ S∗(A, B)⇐⇒ zh′(z)
h(z)

≺ 1 + Az
1 + Bz

(h ∈ A, z ∈ U)

and

h ∈ K(A, B)⇐⇒ (zh′(z))′

h′(z)
≺ 1 + Az

1 + Bz
(h ∈ A, z ∈ U).

It is easy to see that h ∈ K(A, B)⇐⇒ zh′(z) ∈ S∗(A, B) and

K(A, B) ⊂ S∗(A, B), K(A, B) ⊂ K ⊂ S , S∗(A, B) ⊂ S∗ ⊂ S .

Obviously, S∗(1 − 2β,−1) = S∗(β) (0 ≤ β < 1) is a starlike function of order β and
K(1− 2β,−1) = K(β) is a convex function of order β [5]. Especially, S∗(1,−1) = S∗ and K(1,−1) = K
are well-known starlike functions and convex functions respectively.

In 1959, Sakaguchi [6] introduced the class S∗s of starlike functions with respect to symmetric
points, f ∈ S∗s if and only if

Re
z f ′(z)

f (z)− f (−z)
> 0.

In 1987, El-Ashwa and Thomas [7] introduced some classes of starlike functions with respect to
conjugate points and symmetric conjugate points satisfying the following conditions

Re
z f ′(z)

f (z) + f (z)
> 0 and Re

z f ′(z)
f (z)− f (−z)

> 0.

In 1933, Fekete and Szegö [8] introduced a classical Fekete-Szegö problem for f (z) = z +
∞
∑

n=2
anzn ∈ S as follows,

|a3 − μa2
2| ≤

⎧⎪⎨⎪⎩
3− 4μ, μ ≤ 0,
1 + 2 exp(−2μ

1−μ ), 0 ≤ μ ≤ 1,
4μ− 3, μ ≥ 1.

The result is sharp.
In 1994, Ma and Minda [3] studied the Fekete-Szegö problem of the classes of S∗(φ) and K(φ).

Many authors studied the problem of Fekete-Szegö and obtained many results (see [9–11]).
A harmonic mapping in U is a complex valued harmonic function, which maps U onto the domain

f (U). The mapping f has a canonical decomposition f (z) = h(z) + g(z) and h and g are analytic in U.
h is called the analytic part and g is called the co-analytic part of f . Let SH denote the class of harmonic
mappings with the following form (see [12,13])

f = h + g, z ∈ U, (2)

where

h(z) = z +
∞

∑
k=2

akzk and g(z) =
∞

∑
k=1

bkzk, |b1| = α ∈ [0, 1). (3)

In 1936, Lewy [14] proved that f is univalent and sense-preserving in U if and only if J f (z) > 0,
that is, the second complex dilatation ω(z) = g′(z)/h′(z) of f (z) satisfying |ω(z)| < 1 in U (see [12,13]).

Many authors further investigated various subclasses of SH and obtained some important results.
In [15], the authors studied the subclass of SH with h ∈ K. Also, Hotta and Michalski [16] studied
the properties of a subclass of SH with h is starlike and obtained the coefficient estimates, distortion
estimates and growth estimates of g, and Jacobian estimates of f . Zhu and Huang [17] studied

228



Mathematics 2019, 7, 548

some subclasses of SH with h is convex, or starlike functions of order β and some sharp estimates of
coefficients, distortion, and growth are obtained.

According to the principle of subordination, we introduce the following general subclasses of SH
of harmonic univalent starlike and convex functions with a symmetric conjecture point.

Definition 1. Let A, B ∈ R,−1 ≤ B < A ≤ 1. We denote the function f be in the class HS∗,α
sc (A, B) of

harmonic univalent starlike functions with a symmetric conjecture point if and only if f ∈ SH and h ∈ S∗cs(A, B),
that is

2zh′(z)
h(z)− h(−z)

≺ 1 + Az
1 + Bz

. (4)

Also, we denote the function f be in the class HKα
sc(A, B) of harmonic univalent generalized convex functions

with a symmetric conjecture point if and only if f ∈ SH and h ∈ Ksc(A, B), that is

2(zh′(z))′

(h(z)− h(−z))′
≺ 1 + Az

1 + Bz
, (5)

we know that h ∈ Kcs(A, B)⇐⇒ zh′ ∈ S∗cs(A, B). Additionally, we define the classes

HS∗sc(A, B) =
⋃

α∈[0,1)

HS∗,α
sc (A, B) and HKsc(A, B) =

⋃
α∈[0,1)

HKα
sc(A, B). (6)

It is clear HKα
sc(A, B) ⊂ HS∗,α

sc (A, B) and HKsc(A, B) ⊂ HS∗sc(A, B). Especially, let S∗cs(1,−1) =
S∗cs, Kcs(1,−1) = Kcs, HS∗,α

sc (1,−1) = HS∗,α
sc , HKα

sc(1,−1) = HKα
sc, S∗cs(1, 1− 2β) = S∗cs(β), Kcs(1, 1−

2β) = Kcs(β), HS∗,α
sc (1, 1− 2β) = HS∗,α

sc (β), HKα
sc(1, 1− 2β) = HKα

sc(β), β ∈ [0, 1).
In order to prove our results, we need the following Lemmas.

Lemma 1. [18] If the function ω(z) = c0 + c1z + . . . + cnzn + . . . is analytic with |ω(z)| ≤ 1 in U, then

|cn| ≤ 1− |c0|2, n = 1, 2, . . . , (7)

and
|c2 − γc2

1| ≤ max{1, |γ|}. (8)

Lemma 2. Let − 1 ≤ B < A ≤ 1 , n = 2, 3, · · · . (1) If h(z) = z +
∞
∑

n=2
anzn ∈ S∗sc(A, B), then

|a2n| ≤ Fn(A, B) and |a2n+1| ≤ Fn(A, B), (9)

where

Fn(A, B) =

n−1
∏

k=0
(A− B + 2k)

(2n)!!
. (10)

Specially, F1(A, B) = A−B
2 , Fn(1,−1) = 1. The estimate is sharp if

h(z) =
∫ z

0

1 + (A− B− 1)t
(1− t)(1− t2) A−B

2
dt.

(2) If h(z) = z +
∞
∑

n=2
anzn ∈ Ksc(A, B), then

|a2n| ≤
Fn(A, B)

2n
and |a2n+1| ≤

Fn(A, B)
2n + 1

, (11)
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where Fn(A, B) is defined by (10). The estimate is sharp if

h(z) =
∫ z

0

1
η

∫ η

0

1 + (A− B− 1)t
(1− t)(1− t2) A−B

2
dtdη.

Especially, if A = 1, B = −1, we have the following results. (i) If h(z) = z +
∞
∑

n=2
anzn ∈ S∗sc, then

|a2n| ≤ 1 and |a2n+1| ≤ 1. (12)

The estimate is sharp if h(z) = z
1−z . (ii) If h(z) = z +

∞
∑

n=2
anzn ∈ Ksc, then

|a2n| ≤
1

2n
and |a2n+1| ≤

1
2n + 1

. (13)

The estimate is sharp if h(z) = − log(1− z).

Proof. Let h(z) = z+
∞
∑

n=2
anzn ∈ S∗sc(A, B), there exists a positive real function p(z) = 1+

∞
∑

k=1
pkzk ∈ P

with |pk| ≤ A− B, satisfying
2zh′(z)

h(z)− h(−z)
= p(z). (14)

Comparing the coefficients of the both sides of the equation (14), we have

2na2n = p2n−1 + a3 p2n−3 + · · ·+ a2n−1 p1, (15)

and
2na2n+1 = p2n + a3 p2n−2 + · · ·+ a2n−1 p2. (16)

It is easy to verify that

|a2n| ≤
(A− B)

2n
(1 + |a3|+ · · ·+ |a2n−1|) (17)

and

|a2n+1| ≤
(A− B)

2n
(1 + |a3|+ · · ·+ |a2n−1|). (18)

Let φ(n) = 1 + |a3|+ · · ·+ |a2n−1|, from (18), we have

φ(n + 1) ≤

n
∏

k=1
(A− B + 2k)

(2n)!!
. (19)

According to (17)–(19), we can obtain (9).

If h(z) = z +
∞
∑

n=2
anzn ∈ Ksc(A, B), then zh′(z) ∈ S∗sc(A, B). Using the results in (1), we can obtain

(11) easily.

Lemma 3. Let A, B ∈ R,−1 ≤ B < A ≤ 1. (1) If h(z) = z +
∞
∑

n=2
anzn ∈ S∗sc(A, B), μ ∈ C, then

|a3 − μa2
2| ≤

A− B
2

max
{

1,
∣∣∣∣B +

μ(A− B)
2

∣∣∣∣} . (20)
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(2) If h(z) = z +
∞
∑

n=2
anzn ∈ Ksc(A, B), μ ∈ C, then

|a3 − μa2
2| ≤

A− B
6

max
{

1,
∣∣∣∣B +

3μ(A− B)
8

∣∣∣∣} . (21)

Proof. Let h(z) = z +
∞
∑

n=2
anzn ∈ S∗sc(A, B). By definition 1 and the relationship of subordination,

we have
2zh′(z)

h(z)− h(−z)
=

1 + Aν(z)
1 + Bν(z)

, (22)

where ν(z) = c1z + c2z2 + · · · is analytic in U satisfying ν(0) = 0 and |ν(z)| < 1.
Comparing the coefficients of the both sides of (22), we obtain

a2 =
A− B

2
c1 and a3 =

A− B
2

c2 −
(A− B)B

2
c2

1.

Therefore, we have

a3 − μa2
2 =

A− B
2

{
c2 −

(
B +

μ(A− B)
2

)
c2

1

}
.

By an application of (8) in Lemma 1, we obtain (20).
The bound is sharp as follows,

h(z) =
∫ z

0
(1 + Aξ)(1− Bξ)

A−B
2B (1 + Bξ)

A−3B
2B dξ

or
h(z) =

∫ z

0
(1 + Aξ2)(1 + Bξ2)

A−3B
2B dξ.

If h(z) = z +
∞
∑

n=2
anzn ∈ Ksc(A, B), then zh′(z) ∈ S∗sc(A, B). It is easy to obtain (21) and the bound

is sharp as follows,

h(z) =
∫ z

0

1
η

∫ η

0
(1 + Aξ)(1− Bξ)

A−B
2B (1 + Bξ)

A−3B
2B dξdη

or
h(z) =

∫ z

0

1
η

∫ η

0
(1 + Aξ2)(1 + Bξ2)

A−3B
2B dξdη.

Lemma 4. Let h(z) ∈ A, 0 ≤ β < 1, |z| = r ∈ [0, 1). (1) If h(z) ∈ S∗(β), then

(1− (1− 2β)r)(1 + r)2β−3 ≤ |h′(z)| ≤ (1 + (1− 2β)r)(1− r)2β−3, (23)

and ([4], Theorem 4 with A = 1 − 2β, B = −1)

r(1 + r)2β−2 ≤ |h(z)| ≤ r(1− r)2β−2, (24)

(2) If h(z) ∈ K(β), then ([19], Theorem 1 with b = 1, A = 1 − 2β, B = −1)

(1 + r)2β−2 ≤ |h′(z)| ≤ (1− r)2β−2, (25)

and ([19], Theorem 2 with b = 1, A = 1 − 2β, B = −1)
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r(1 + r)β−1 ≤ |h(z)| ≤ r(1− r)β−1. (26)

Proof. It suffices to establish the estimate of (23). If h(z) ∈ S∗(β), then

1− (1− 2β)r
1 + r

≤
∣∣∣∣ zh′(z)

h(z)

∣∣∣∣ ≤ 1 + (1− 2β)r
1− r

,

that is,
1− (1− 2β)r

1 + r
|h(z)| ≤ |zh′(z)| ≤ 1 + (1− 2β)r

1− r
|h(z)|.

According to (24), it is not difficult to verify the estimate of (23).
Using the same argument as in the proof of Lemma 2 in [20], we obtain immediately a Lemma

as follows.

Lemma 5. If h(z) ∈ S∗sc(β), 0 ≤ β < 1, then h(z)−h(−z)
2 ∈ S∗(β). Especially for β = 0, we get the results of

Lemma 2 in [20].

Lemma 6. If h(z) ∈ Ksc(β), 0 ≤ β < 1, then h(z)−h(−z)
2 ∈ K(β).

Lemma 7. Let h(z) ∈ A, 0 ≤ β < 1, |z| = r ∈ [0, 1). (1) If h ∈ S∗sc(β), then

1− (1− 2β)r
(1 + r)3−2β

≤ |h′(z)| ≤ 1 + (1− 2β)r
(1− r)3−2β

. (27)

(2) If h ∈ Ksc(β), then
1

(1 + r)2−2β
≤ |h′(z)| ≤ 1

(1− r)2−2β
. (28)

Proof. Suppose h(z) ∈ S∗sc(β), we have

1− (1− 2β)r
1 + r

∣∣∣∣∣ h(z)− h(−z)
2

∣∣∣∣∣ ≤ |zh′(z)| ≤ 1 + (1− 2β)r
1− r

∣∣∣∣∣ h(z)− h(−z)
2

∣∣∣∣∣ . (29)

According to Lemmas 4 and 5, we have

r
(1 + r)2−2β

≤
∣∣∣∣∣ h(z)− h(−z)

2

∣∣∣∣∣ ≤ r
(1− r)2−2β

. (30)

By (29) and (30), we can obtain (27).
If h(z) ∈ Ksc(β), then

1− (1− 2β)r
1 + r

∣∣∣∣∣ (h(z)− h(−z))′

2

∣∣∣∣∣ ≤ |(zh′(z))′| ≤ 1 + (1− 2β)r
1− r

∣∣∣∣∣ (h(z)− h(−z))′

2

∣∣∣∣∣ . (31)

According to Lemmas 4 and 6, we have

(1 + r)2β−2 ≤
∣∣∣∣∣ (h(z)− h(−z))′

2

∣∣∣∣∣ ≤ (1− r)2β−2. (32)

By (31) and (32), we get

[1− (1− 2β)r](1 + r)2β−3 ≤ |(zh′(z))′| ≤ [1 + (1− 2β)r](1− r)2β−3. (33)
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By (33), integrating along a radial line ξ = teiθ , we obtained immediately,

|zh′(z)| ≤
∫ r

0
[1 + (1− 2β)t](1− t)2β−3dt =

r
(1− r)2−2β

For the left-hand side of (28), we note first that zh′(z) is univalent. Let H(z) := zh′(z), Γ = H({z :
|z| = r}) and let ξ1 ∈ Γ be the nearest point to the origin. By a rotation we suppose that ξ1 > 0. Let γ

be the line segment 0 ≤ ξ ≤ ξ1 and assume that z1 = H−1(ξ1) and L = H−1(γ). If ς is the variable of
integration on L, we have that dξ = H′(ς)dς on L. Hence

ξ1 =
∫ ξ1

0
dξ =

∫ z1

0
H′(ς)dξ =

∫ z1

0
|H′(ς)||dξ| ≥

∫ r

0
|H′(teiθ)|dt

≥
∫ r

0
[1− (1− 2β)t](1 + t)2β−3dr =

r
(1 + r)2−2β

.

So we complete the proof of Lemma 7.

2. Main Results

Theorem 1. If f = h + g ∈ HS∗,α
sc (A, B), then F = H + G ∈ HKα

sc(A, B), where H(z) and G(z) satisfy the
conditions zH′(z) = h(z) and zG′(z) = g(z), z ∈ U.

Proof. Let f ∈ HS∗,α
sc (A, B). According to Definition 1 and Alexander’s Theorem ([1], p. 43),

the function H(z) ∈ Ksc(A, B). Also, H(0) = 0, H′(0) = lim
z→0

h(z)
z = h′(0) = 1, and |G′(0)| =

| lim
z→0

g(z)
z | = |g′(0)| = α. Let Γ := [0, h(z)] ⊂ h(U), z ∈ U− {0}, then

|g(z)| =
∣∣∣∣∫Γ

d(g ◦ h−1(ω))

∣∣∣∣ ≤ ∫
Γ

∣∣∣∣d(g ◦ h−1(ω))

dω

∣∣∣∣ |dω| <
∫

Γ
|dω| = |h(z)|.

Hence,

|G′(z)| = lim
t→z

∣∣∣∣ g(t)
t

∣∣∣∣ < lim
t→z

∣∣∣∣ h(t)
t

∣∣∣∣ = |H′(z)|.

It shows that F is a locally univalent and sense-preserving harmonic function in U.
Finally, appealing to ([15], Corollary 2.3), we conclude that F = H + G ∈ HKα

sc(A, B).

Corollary 1. If f = h + g ∈ HS∗sc(A, B), then F = H + G ∈ HKsc(A, B), where H(z) and G(z) satisfy the
conditions zH′(z) = h(z) and zG′(z) = g(z), z ∈ U.

Next, we give the integral expressions for functions of these classes.

Theorem 2. If f = h + g ∈ HS∗,α
sc (A, B), then we have

f (z) =
∫ z

0
ϕ(ξ)dξ +

∫ z

0
ω(ξ)ϕ(ξ)dξ, (34)

where

ϕ(ξ) =
1 + Aν(ξ)

1 + Bν(ξ)
exp

∫ ξ

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dt, (35)

and ω and ν are analytic in U satisfying |ω(0)| = α, ν(0) = 0, |ω(z)| < 1, |ν(z)| < 1.
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Proof. Let f = h + g ∈ HS∗,α
sc (A, B). According to Definition 1 and the relationship of subordination,

we have
g′(z) = ω(z)h′(z), (36)

and
2zh′(z)

h(z)− h(−z)
=

1 + Aν(z)
1 + Bν(z)

, (37)

where ω and ν are analytic in U satisfying ω(0) = b1, ν(0) = 0, |ω(z)| < 1, |ν(z)| < 1. Substituting z
by −z in (37), we get

−2zh′(−z)
h(−z)− h(z)

=
1 + Aν(−z)
1 + Bν(−z)

. (38)

It follows from (37) and (38) that

2z(h(z)− h(−z))′

h(z)− h(−z)
=

1 + Aν(z)
1 + Bν(z)

+
1 + Aν(−z)
1 + Bν(−z)

. (39)

After integrating the both sides of the equality (39) and calculating it simply, we have

h(z)− h(−z)
2

= z exp
∫ z

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dt. (40)

From (37) and (40), we have

h′(z) =
1 + Aν(z)
1 + Bν(z)

exp
∫ z

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dt. (41)

Integrating the both sides of the equality (41), we have

h(z) =
∫ z

0

1 + Aν(ξ)

1 + Bν(ξ)
exp

∫ ξ

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dtdξ. (42)

By (36) and (41), we can obtain

g(z) =
∫ z

0
ω(ξ)

(
1 + Aν(ξ)

1 + Bν(ξ)

)
exp

∫ ξ

0

(A− B)
2t

{
ν(t)

1 + Bν(t)
+

ν(−t)
1 + Bν(−t)

}
dtdξ.

So, we complete the proof of Theorem 2.

According to Theorem 2 and h ∈ Ksc(A, B) if and only if zh′(z) ∈ S∗sc(A, B), we obtain easily the
following result.

Theorem 3. Let f ∈ HKα
sc(A, B), then we have

f (z) =
∫ z

0

1
η

∫ η

0
ϕ(ξ)dξdη +

∫ z

0

ω(η)

η

∫ η

0
ϕ(ξ)dξdη. (43)

where φ(ξ) defined by (35), ω and ν are analytic in U satisfying |ω(0)| = α, ν(0) = 0, |ω(z)| < 1, |ν(z)| < 1.

In the following, we will get the coefficient estimates of the classes.

Theorem 4. Let f = h+ g, where h and g are given by (3) and Fk(A, B) is defined by (10). If f ∈ HS∗,α
sc (A, B),

then

|b2n| ≤

⎧⎪⎨⎪⎩
1−α2

2 + (A−B)α
2 , n = 1,

(1−α2)
2n

{
1 +

n−1
∑

k=1
(4k + 1)Fk(A, B)

}
+ αFn(A, B), n ≥ 2,

(44)
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and

|b2n+1| ≤

⎧⎪⎨⎪⎩
1−α2

3 (1 + A− B) + (A−B)α
2 , n = 1,

(1−α2)
2n+1

{
1 +

n−1
∑

k=1
(4k + 1)Fk(A, B) + 2nFn(A, B)

}
+ αFn(A, B), n ≥ 2.

(45)

The estimate is sharp and the extremal function is

f α
0 (z) =

∫ z

0

1 + (A− B− 1)t

(1− t)(1− t2)
A−B

2
dt +

∫ z

0

(α + (1− α2 − α)t)(1 + (A− B− 1)t)

(1− t)2(1− t2)
A−B

2
dt. (46)

Specially, if f ∈ HS∗,α
sc , then

|bn| ≤
(n− 1)(1− α2)

2
+ α. (47)

The estimate is sharp and the extremal function is

f α
1 (z) =

z
1− z

+
αz + 1

2 (1− α2 − 2α)z2

(1− z)2 = z +
∞

∑
n=2

zn +
∞

∑
n=1

(
(n− 1)(1− α2)

2
+ α

)
zn. (48)

Especially, let α = 0 and α = 1
2 in (48) respectively, we have (i) If f ∈ HS∗,0

sc , then

|bn| ≤
n− 1

2
.

The estimate is sharp and the extremal function is

f 0
1 (z) =

z
1− z

+
z2

2(1− z)2 = z +
∞

∑
n=2

zn +
∞

∑
n=1

n− 1
2

zn.

(ii) If f ∈ HS∗, 1
2

sc , then

|bn| ≤
3n + 1

8
.

The estimate is sharp and the extremal function is

f
1
2

1 (z) =
z

1− z
+

4z− z2

8(1− z)2 = z +
∞

∑
n=2

zn +
∞

∑
n=1

3n + 1
8

zn.

In the following Figure 1, we draw the graph of f 0
1 (z) and f

1
2

1 (z) respectively.
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(a) (b)

Figure 1. Three dimensional coordinates plus color, the z-axis represents the real part of the function,
and the color represents the imaginary part of the function. (a) The graph of f 0

1 (z); (b) The graph

of f
1
2

1 (z).

Proof. By using the relation g′ = ωh′, where h and g are given by (3) and ω(z) = c0 + c1z + c2z2 + · · ·
is analytic in U, we obtain

2nb2n =
2n

∑
p=1

papc2n−p (a1 = 1, n ≥ 1) (49)

and

(2n + 1)b2n+1 =
2n+1

∑
p=1

papc2n+1−p (a1 = 1, n ≥ 1). (50)

It is easy to show that

2n|b2n| ≤ |c2n−1|+ 2|a2||c2n−2|+ . . . + (2n− 1)|a2n−1||c1|+ 2n|a2n||c0| (51)

and
(2n + 1)|b2n+1| ≤ |c2n|+ 2|a2||c2n−1|+ . . . + (2n)|a2n||c1|+ (2n + 1)|a2n+1||c0|. (52)

Since g′ = ωh′, it follows that c0 = b1. By (7), it can easily be verified that |ck| ≤ 1− α2, k =

1, 2, · · · , 2n. Therefore,

|b2n| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−α2

2 + |a2|α, n = 1,

(1−α2)
2n (1 +

2n−1
∑

k=2
k|ak|) + α|a2n|, n ≥ 2,

(53)

and

|b2n+1| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−α2

3 (1 + 2|a2|) + |a3|α, n = 1,

(1−α2)
2n+1 (1 +

2n
∑

k=2
k|ak|) + α|a2n+1|, n ≥ 2.

(54)

According to Lemma 2, (53) and (54), by simple calculation, we can obtain (44), (45) and (47). We
also obtain the extreme function. Thus, the proof is completed.

Using the same methods in Theorem 4, we have the following results.

236



Mathematics 2019, 7, 548

Theorem 5. Let −1 ≤ B < A ≤ 1, f = h + g, where h and g are given by (3) and Fk(A, B) is defined by
(10). If f ∈ HKα

sc(A, B), then

|b2n| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−α2

2 + α(A−B)
4 , n = 1,

(1−α2)
2n

(
1 + 2

n−1
∑

k=1
Fk(A, B)

)
+ α

2n Fn(A, B), n ≥ 2,

and

|b2n+1| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1−α2)

3 (1 + A−B
2 ) + α(A−B)

6 , n = 1,

(1−α2)
2n+1

(
1 + 2

n−1
∑

k=1
Fk(A, B) + Fn(A, B)

)
+ α

2n+1 Fn(A, B), n ≥ 2.

Specially, if f ∈ HKα
sc, n = 3, 4, · · · , then

|bn| ≤
(n− 1)(1− α2)

n
+

α

n
.

The estimate is sharp and the extremal function is

f α
2 (z) = − log(1− z) + (1− α2)

z
1− z

− (α2 + α− 1) log(1− z)

= z +
∞

∑
n=2

1
n

zn +
∞

∑
n=1

(
(n− 1)(1− α2)

n
+

α

n

)
zn.

Especially, let α = 0 and α = 1
2 respectively, we have (i) If f ∈ HK0

sc, then

|bn| ≤
n− 1

n

and the estimate is sharp and the extremal function is

f 0
2 (z) = − log(1− z) +

z
1− z

+ log(1− z) = z +
∞

∑
n=2

1
n

zn +
∞

∑
n=1

n− 1
n

zn.

(ii) If f ∈ HK
1
2
sc, then

|bn| ≤
3n− 1

4n
and the estimate is sharp and the extremal function is

f
1
2

2 (z) = − log(1− z) +
3z

4(1− z)
+

1
4

log(1− z) = z +
∞

∑
n=2

1
n

zn +
∞

∑
n=1

3n− 1
4n

zn.

In the following Figure 2, we draw the graph of f 0
2 (z) and f

1
2

2 (z) respectively.
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(a ) (b)

Figure 2. Three dimensional coordinates plus color, the z-axis represents the real part of the function,
and the color represents the imaginary part of the function. (a) The graph of f 0

1 (z); (b) The graph of

f
1
2

1 (z).
From Theorems 4 and 5, we have

Corollary 2. Let f = h + g, where h and g are given by (3) and Fk(A, B) is defined by (10). (1) If f ∈
HS∗sc(A, B), then

|b2n| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 + (A−B)2

8 , n = 1,

(1+
n−1
∑

k=1
(4k+1)Fk(A,B))2+n2F2

n (A,B)

2n(1+
n−1
∑

k=1
(4k+1)Fk(A,B))

, n ≥ 2,

and

|b2n+1| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16+32(A−B)+25(A−B)2

48(1+A−B) , n = 1,

4(1+
n−1
∑

k=1
(4k+1)Fk(A,B)+2nFn(A,B))2+(2n+1)2F2

n (A,B)

4(2n+1)(1+
n−1
∑

k=1
(4k+1)Fk(A,B)+2nFn(A,B))

, n ≥ 2.

Especially, if f ∈ HS∗sc, then |bn| ≤ (n−1)2+1
2(n−1) . (2) If f ∈ HKsc(A, B), then

|b2n| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 + (A−B)2

32 , n = 1,

4(1+2
n−1
∑

k=1
Fk(A,B))2+F2

n (A,B)

8n(1+2
n−1
∑

k=1
Fk(A,B))

, n ≥ 2,

and

|b2n+1| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16+16(A−B)+5(A−B)2

24(2+A−B) , n = 1,

4(1+2
n−1
∑

k=1
Fk(A,B)+Fn(A,B))2+F2

n (A,B)

4(2n+1)(1+2
n−1
∑

k=1
Fk(A,B)+Fn(A,B))

, n ≥ 2.

Especially, if f ∈ HKsc, then |bn| ≤ 4(n−1)2+1
4n(n−1) .

Also, we give the Fekete-Szegö inequality for functions of these classes.
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Theorem 6. Let f = h + g, where h and g are given by (3), for μ ∈ C,−1 ≤ B < A ≤ 1, Fn(A, B) is defined
by (10). (1) If f ∈ HS∗,α

sc (A, B) , then

|b3 − μb2
2| ≤

(1−α2)
3

{
1+ 3|μ|(1−α2)

4 + (A−B)
2 |2− 3μb1|

}
+ (A−B)α

2 max
{

1, |B + μb1
2 (A− B)|

}
, (55)

|b2n − b2n−1| ≤

⎧⎪⎪⎨⎪⎪⎩
1
2(1− α2) + (1+ A−B

2 )α, n = 1,

(1− α2)

{
( 1

2n + 1
2n−1)(1+

n−1
∑

k=1
(4k + 1)Fk(A, B))− Fn−1(A, B)

}
+

α(Fn(A, B) + Fn−1(A, B)), n ≥ 2,

(56)

and

|b2n+1 − b2n| ≤ (1− α2)

{
( 1

2n+1 + 1
2n )(1 +

n−1
∑

k=1
(4k + 1)Fk(A, B)) + 2n

2n+1 Fn(A, B)
}

+2αFn(A, B), n ≥ 1.
(57)

(2) If f ∈ HKα
sc(A, B), then

|b3 − μb2
2| ≤

(1−α2)
3

{
1 + 3|μ|(1−α2)

4 + (A−B)
4 |2− 3μb1|

}
+ (A−B)α

6 max
{

1, |B + 3(A−B)b1μ
8 |

}
, (58)

|b2n − b2n−1| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (1− α2) + (1 + A−B

4 )α, n = 1,

(1− α2)

{
( 1

2n + 1
2n−1 )(1 + 2

n−1
∑

k=1
Fk(A, B))− Fn−1(A,B)

2n−1

}
+

α( Fn(A,B)
2n + Fn−1(A,B)

2n−1 ), n ≥ 2,

(59)

and

|b2n+1 − b2n| ≤ (1− α2)

{
( 1

2n+1 + 1
2n )(1 + 2

n−1
∑

k=1
Fk(A, B)) + 1

2n+1 Fn(A, B)
}
+

αFn(A, B)( 1
2n+1 + 1

2n ), n ≥ 1.
(60)

Proof. From the relation (49) and (50), we have

2b2 = c1 + 2a2c0, 3b3 = c2 + 2a2c1 + 3a3c0,

and

2nb2n =
2n

∑
p=1

papc2n−p, (2n + 1)b2n+1 =
2n+1

∑
p=1

papc2n+1−p (a1 = 1, n ≥ 1).

By (7), we have

|b3 − μb2
2| ≤

1− α2

3

{
1 +

3|μ|(1− α2)

4
+ |a2||2− 3μb1|

}
+ α

∣∣∣a3 − μb1a2
2

∣∣∣ ,

|b2n − b2n−1| ≤

⎧⎪⎨⎪⎩
1
2 (1− α2) + α(1 + |a2|), n = 1,

(1− α2)

(
1

2n

2n−1
∑

p=1
p|ap|+ 1

2n−1

2n−2
∑

p=1
p|ap|

)
+ α(|a2n|+ |a2n−1|), n ≥ 2,

and

|b2n+1 − b2n| ≤ (1− α2)

(
1

2n + 1

2n

∑
p=1

p|ap|+
1

2n

2n−1

∑
p=1

p|ap|
)
+ α(|a2n+1|+ |a2n|), n ≥ 1.

According to Lemmas 2 and 3, we can compete the proof of Theorem 6.

Especially, we let A = 1, B = −1, we obtain the following results.
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Corollary 3. Let f = h + g, where h and g are given by (3), for μ ∈ R. (1) If f ∈ HS∗,α
sc , then

|b3 − μb2
2| ≤

(1− α2)

3

{
1 +

3|μ|(1− α2)

4
+ |2− 3μb1|

}
+ α max {1, |b1μ− 1|} , (61)

and

|bn+1 − bn| ≤
(2n− 1)

2
(1− α2) + 2α, n ≥ 1. (62)

Especially, for f 0
1 (z) ∈ HS∗,0

sc given by Theorem 4, we have |bn+1 − bn| ≤ 1
2 . And for f

1
2

1 (z) ∈ HS∗, 1
2

sc given by
Theorem 4, we have |bn+1 − bn| ≤ 3

8 . (2) If f ∈ HKα
sc, then

|b3 − μb2
2| ≤

(1− α2)

3

{
1 +

3|μ|(1− α2)

4
+

1
2
|2− 3μb1|

}
+

α

3
max

{
1, |3b1μ

4
− 1|

}
, (63)

|bn+1 − bn| ≤ (1− α2)(
n

n + 1
+

n− 1
n

) + α(
1

n + 1
+

1
n
), n ≥ 1. (64)

Especially, for f 0
2 (z) ∈ HK0

sc given by Theorem 5, we have |bn+1 − bn| ≤ 1
n(n+1) . And for f

1
2

2 (z) ∈ HK
1
2
sc

given by Theorem 5, we have |bn+1 − bn| ≤ 1
4n(n+1) .

From Corollary 3, it is easy to obtain the following results.

Corollary 4. Let f = h + g, where h and g are given by (3). (1) If f ∈ HS∗sc, then

|bn+1 − bn| ≤
{

2, n = 1,
4n2−4n+5

4n−2 , n ≥ 2.
(65)

(2) If f ∈ HKsc, then

|bn+1 − bn| ≤
{

3
2 , n = 1,
16n4−12n2+4n+5
4n(n+1)(2n2−1) , n ≥ 2.

(66)

Inspired by Zhu et al. [17], we obtain the distortion estimates and growth estimate of the
co-analytic part g, Jacobian estimates, growth estimate and covering theorems of the classes of harmonic
mapping with symmetric conjecture point defined by subordination as follows.

Theorem 7. Let f = h + g ∈ SH, |z| = r ∈ [0, 1). (1) If f ∈ HS∗,α
sc (β), then

max{α− r, 0}[1− (1− 2β)r]
(1− αr)(1 + r)3−2β

≤ |g′(z)| ≤ (α + r)[1 + (1− 2β)r]
(1 + αr)(1− r)3−2β

. (67)

Especially, let β = 0, for f 0
1 (z) ∈ HS∗,0

sc given by Theorem 4, we have

|g′(z)| ≤ r
(1− r)3 .

(2) If f ∈ HKα
sc(β), then

max{α− r, 0}
(1− αr)(1 + r)2−2β

≤ |g′(z)| ≤ (α + r)
(1 + αr)(1− r)2−2β

. (68)

Especially, let β = 0, for f 0
2 (z) ∈ HK0

sc given by Theorem 5, we have

|g′(z)| ≤ r
(1− r)2 .
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Proof. According to the relation g′ = ωh′, |ω(0)| = |g′(0)| = |b1| = α, it is easy to see ω(z) such
that (see [21]): ∣∣∣∣ ω(z)−ω(0)

1−ω(0)ω(z)

∣∣∣∣ ≤ |z|, (69)

that is, ∣∣∣∣ω(z)− ω(0)(1− r2)

1− |ω(0)|2r2

∣∣∣∣ ≤ r(1− |ω(0)|2)
1− |ω(0)|2r2 . (70)

From (70), we get
max{α− r, 0}

1− αr
≤ |ω(z)| ≤ α + r

1 + αr
, z ∈ U. (71)

Applying (71) and (27), we get (67). Similarly, applying (71) and (28), we get (68). So the proof is
completed.

By using the same method in proof of Lemma 7, it is easy to obtain the following results.

Theorem 8. Let f = h + g ∈ SH, |z| = r ∈ [0, 1). (1) If f ∈ HS∗,α
sc (β), then

∫ r

0

max{α− t, 0}[1− (1− 2β)t]
(1− at)(1 + t)3−2β

dt ≤ |g(z)| ≤
∫ r

0

(α + t)[1 + (1− 2β)t]
(1 + αt)(1− t)3−2β

dt. (72)

Especially, let β = 0, for f 0
1 (z) ∈ HS∗,0

sc given by Theorem 4, we have

|g(z)| ≤ r2

2(1− r)2 .

(2) If f ∈ HKα
sc(β), then

∫ r

0

max{α− t, 0}
(1− αt)(1 + t)2−2β

dt ≤ |g(z)| ≤
∫ r

0

(α + t)
(1 + αt)(1− t)2−2β

dt. (73)

Especially, let β = 0, for f 0
2 (z) ∈ HK0

sc given by Theorem 5, we have

|g(z)| ≤ r
(1− r)

+ log(1− r).

In the following, we can obtain the Jacobian estimates and growth estimates of f .

Theorem 9. Let f = h + g ∈ SH, |z| = r ∈ [0, 1). (1) If f ∈ HS∗,α
sc (β), then

[1− (1− 2β)r]2(1− α2)(1− r2)

(1 + r)6−4β(1 + αr)2 ≤ J f (z) ≤

⎧⎨⎩
[1+(1−2β)r]2(1−α2)(1−r2)

(1−r)6−4β(1−αr)2 , r < α,
[1+(1−2β)r]2

(1−r)6−4β , r ≥ α.

(2) If f ∈ HKα
sc(β), then

(1− α2)(1− r2)

(1 + r)4−4β(1 + αr)2 ≤ J f (z) ≤

⎧⎨⎩
(1−α2)(1−r2)

(1−r)4−4β(1−αr)2 , r < α,
1

(1−r)4−4β , r ≥ α.

Proof. We know that the Jacobian of f = h + g is in the following form

J f (z) = |h′(z)|2 − |g′(z)|2 = |h′(z)|2(1− |ω(z)|2), (74)

where ω(z) is the dilatation of f (z).
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Let f ∈ HS∗,α
sc (β), applying (27) and (71) to (74), we obtain

J f (z) ≥
[1− (1− 2β)r]2

(1 + r)6−4β
· (1− α2)(1− r2)

(1 + αr)2 ,

and

J f (z) ≤
[1 + (1− 2β)r]2

(1− r)6−4β

(
1− (max{(α− r), 0})2

(1− αr)2

)
=

⎧⎨⎩
[1+(1−2β)r]2

(1−r)6−4β · (1−α2)(1−r2)
(1−αr)2 , r < α,

[1+(1−2β)r]2

(1−r)6−4β , r ≥ α.

Therefore, we complete the proof of (1). Applying (28) and (71) to (74), (2) of Theorem 9 can be
proved by the same method in the same way as shown before.

Theorem 10. Let f = h + g ∈ SH , |z| = r, 0 ≤ r < 1. (1) If f ∈ HS∗,α
sc (β), then

∫ r

0

(1− α)(1− ξ)[1− (1− 2β)ξ]

(1 + αξ)(1 + ξ)3−2β
dξ ≤ | f (z)| ≤

∫ r

0

(1 + α)(1 + ξ)[1 + (1− 2β)ξ]

(1 + αξ)(1− ξ)3−2β
dξ. (75)

(2) If f ∈ HKα
sc(β), then

∫ r

0

(1− α)(1− ξ)

(1 + αξ)(1 + ξ)2−2β
dξ ≤ | f (z)| ≤

∫ r

0

(1 + α)(1 + ξ)

(1 + αξ)(1− ξ)2−2β
dξ. (76)

Proof. For any point z = reiθ ∈ U, let Ur = U(0, r) = {z ∈ U : |z| < r} and denote

d = min
z∈Ur

| f (Ur)|, (77)

and then U(0, d) ⊆ f (Ur) ⊆ f (U). Hence, there exists zr ∈ ∂Ur such that d = | f (zr)|. Let L(t) =

t f (zr), t ∈ [0, 1], then �(t) = f−1(L(t)), t ∈ [0, 1] is a well-defined Jordan arc. For f = h + g ∈
HS∗,α

sc (β), using (27) and (71), we have

d = | f (zr)| =
∫

L
|dω| =

∫
�
|d f | =

∫
�
|h′(η)dη + g′(η)dη̄|

≥
∫
�
|h′(η)|(1− |ω(η)|)|dη|

≥
∫
�

(1− α)(1− |η|)
1 + α|η| · [1− (1− 2β)|η|]

(1 + |η|)3−2β
|dη|,

=
∫ 1

0

(1− α)(1− |�(t)|)
1 + α|�(t)| · [1− (1− 2β)|�(t)|]

(1 + |�(t)|)3−2β
dt,

≥
∫ r

0

(1− α)(1− ξ)

1 + αξ
· [1− (1− 2β)ξ]

(1 + ξ)3−2β
dξ

Applying (27) and (71) with a simple calculation, we can obtain the right side of (75).
The remainder of the argument is analogous to that in (76) and so is omitted.

According to (75) and (76), we have the following covering theorems of f .

Corollary 5. Let f = h + g ∈ SH. (1) If f ∈ HS∗,α
sc (β), then U(0, R1) ⊂ f (U), where

R1 =
∫ 1

0

(1− α)(1− ξ)[1− (1− 2β)ξ]

(1 + αξ)(1 + ξ)3−2β
dξ.

(2) If f ∈ HKα
sc(β), then U(0, R2) ⊂ f (U), where
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R2 =
∫ 1

0

(1− α)(1− ξ)

(1 + αξ)(1 + ξ)2−2β
dξ.

Note: In this paper, the geometric properties of the co-analytic part g is obtained by using the analytic part h
satisfying certain conditions. Furthermore, the geometric properties of harmonic functions are obtained (see
Figures 1 and 2). Using the concepts dealt with in the paper, we can study the geometric properties of the
co-analytic part and harmonic function when the analytic part satisfies other conditions. So as to enrich the
research field of univalent harmonic mapping.
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Abstract: In the present article, we consider certain subfamilies of analytic functions connected with
the cardioid domain in the region of the unit disk. The purpose of this article is to investigate the
estimates of the third Hankel determinant for these families. Further, the same bounds have been
investigated for two-fold and three-fold symmetric functions.
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1. Introduction and Definitions

Let A be the family of all functions that are holomorphic (or analytic) in the open unit disc
Δ = {z ∈ C : |z| < 1} and having the following Taylor–Maclaurin series form:

f (z) = z +
∞

∑
k=2

ak zk (z ∈ Δ) . (1)

Further, let S represent a subfamily of A, which contains functions that are univalent in Δ. The familiar
coefficient conjecture for the function f ∈ S of the form (1) was first presented by Bieberbach [1] in
1916 and proven by de-Branges [2] in 1985. In between the years 1916 and 1985, many researchers tried
to prove or disprove this conjecture. Consequently, they defined several subfamilies of S connected
with different image domains. Among these, the families S∗, C, and K of starlike functions, convex
functions, and close-to-convex functions, respectively, are the most fundamental subfamilies of S and
have a nice geometric interpretation. These families are defined as:

S∗ =

{
f ∈ S :

z f ′ (z)
f (z)

≺ 1 + z
1− z

, (z ∈ Δ)
}

,

C =

{
f ∈ S :

(z f ′ (z))′

f ′ (z)
≺ 1 + z

1− z
, (z ∈ Δ)

}
,

K =

{
f ∈ S :

z f ′ (z)
g (z)

≺ 1 + z
1− z

, for g (z) ∈ S∗, (z ∈ Δ)
}

,

where the symbol “≺” denotes the familiar subordinations between analytic functions and is defined
as: the function h1 is subordinate to a function h2, symbolically written as h1 ≺ h2 or h1 (z) ≺ h2 (z) , if
we can find a function w, called the Schwarz function, that is holomorphic in Δ with w (0) = 0 and
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|w(z)| < 1 such that h1 (z) = h2 (w (z)) (z ∈ Δ) . In the case of the univalency of h2 in Δ, then the
following relation holds:

h1(z) ≺ h2(z) (z ∈ Δ) ⇐⇒ h1(0) = h2(0) and h1(Δ) ⊂ h2(Δ).

In [3], Padmanabhan and Parvatham in 1985 defined a unified family of starlike and convex functions
using familiar convolution with the function z/ (1− z)a, for a ∈ R. Later on, Shanmugam [4]
generalized this idea by introducing the family:

S∗h (φ) =

{
f ∈ A :

z ( f ∗ h)′

( f ∗ h)
≺ φ (z) , (z ∈ Δ)

}
,

where “∗” stands for the familiar convolution, φ is a convex, and h is a fixed function inA. Furthermore,
if we replace h in S∗h (φ) by z/ (1− z) and z/ (1− z)2 , we obtain the families S∗ (φ) and C (φ)
respectively. In 1992, Ma and Minda [5] reduced the restriction to a weaker supposition that φ

is a function, with Re φ(z) > 0 in Δ, whose image domain is symmetric about the real axis and
starlike with respect to φ(0) = 1 with φ′(0) > 0 and discussed some properties including distortion,
growth, and covering theorems. The family S∗ (φ) generalizes various subfamilies of the family A,
for example;

(i). If φ(z) = 1+Az
1+Bz with −1 ≤ B < A ≤ 1, then S∗[A, B] := S∗

(
1+Az
1+Bz

)
is the family of Janowski

starlike functions; see [6]. Further, if A = 1− 2α and B = −1 with 0 ≤ α < 1, then we get the
family S∗(α) of starlike functions of order α.

(ii). The family S∗L := S∗(
√

1 + z) was introduced by Sokól and Stankiewicz [7], consisting of
functions f ∈ A such that z f ′(z)/ f (z) lies in the region bounded by the right-half of the
lemniscate of Bernoulli given by |w2 − 1| < 1.

(iii). For φ(z) = 1 + sin z, the family S∗(φ) leads to the family S∗sin, introduced in [8].
(iv). When we take φ(z) = ez, then we have S∗e := S∗ (ez) [9].
(v). The family S∗R := S∗ (φ(z)) with φ(z) = 1 + z

k
k+z
k−z , k =

√
2 + 1 was studied in [10].

(vi). By setting φ(z) = 1 + 4
3 z + 2

3 z2, the family S∗(φ) reduces to S∗car, introduced by Sharma and his
coauthors [11], consisting of functions f ∈ A such that z f ′(z)/ f (z) lies in the region bounded
by the cardioid given by:

(9x2 + 9y2 − 18x + 5)2 − 16(9x2 + 9y2 − 6x + 1) = 0,

and also by the Alexandar-type relation, the authors in [11] defined the family Ccar by:

Ccar =
{

f ∈ A : z f ′ (z) ∈ S∗C (z ∈ Δ)
}

; (2)

see also [12,13]. For more special cases of the family S∗(φ), see [14,15]. We now consider the
following family connected with the cardioid domain:

Rcar =

{
f ∈ A : f ′ (z) ≺ 1 +

4
3

z +
2
3

z2, (z ∈ Δ)
}

. (3)
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For given parameters q, n ∈ N = {1, 2, . . .}, the Hankel determinant Hq,n ( f ) was defined by
Pommerenke [16,17] for a function f ∈ S of the form (1) given by:

Hq,n ( f ) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣
. (4)

The growth of Hq,n ( f ) has been investigated for different subfamilies of univalent functions.
Specifically, the absolute sharp bounds of the functional H2,2 ( f ) = a2a4 − a2

3 were found in [18,19]
for each of the families C, S∗ and R, where the family R contains functions of bounded turning.
However, the exact estimate of this determinant for the family of close-to-convex functions is still
undetermined [20]. Recently, Srivastava and his coauthors [21] found the estimate of the second
Hankel determinant for bi-univalent functions involving the symmetric q-derivative operator, while
in [22], the authors studied Hankel and Toeplitz determinants for subfamilies of q-starlike functions
connected with the conic domain. For more literature, see [23–30].

The Hankel determinant of third order is given as:

H3,1 ( f ) =

∣∣∣∣∣∣∣
1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣ = −a5a2
2 + 2a2a3a4 − a3

3 + a5a3 − a2
4. (5)

The estimation of the determinant |H3,1 ( f )| is very hard as compared to deriving the bound of
|H2,2 ( f )|. The very first paper on H3,1 ( f ) was given in 2010 by Babalola [31], in which he obtained the
upper bound of H3,1 ( f ) for the families of S∗, C, and R. Later on, many authors published their work
regarding |H3,1 ( f )| for different subfamilies of univalent functions; see [32–36]. In 2017, Zaprawa [37]
improved the results of Babalola as under:

|H3,1 ( f )| ≤

⎧⎪⎨⎪⎩
1, for f ∈ S∗,
49

540 , for f ∈ C,
41
60 , for f ∈ R.

.

and claimed that these bounds are still not the best possible. Further, for the sharpness, he examined
the subfamilies of S∗, C, and R consisting of functions with m-fold symmetry and obtained the sharp
bounds. Moreover, in 2018, Kwon et al. [38] improved the bound of Zaprawa for f ∈ S∗ and proved
that |H3,1 ( f )| ≤ 8/9, but it is not yet the best possible. The authors in [39–41] contributed in a similar
direction by generalizing different families of univalent functions with respect to symmetric points. In
2018, Kowalczyk et al. [42] and Lecko et al. [43] obtained the sharp inequalities:

|H3,1 ( f )| ≤ 4/135 and |H3,1 ( f )| ≤ 1/9,

for the recognizable families K and S∗ (1/2), respectively, where the symbol S∗ (1/2) stands for
the family of starlike functions of order 1/2. Furthermore, we would like to cite the work done by
Mahmood et al. [44] in which they studied the third Hankel determinant for a subfamily of starlike
functions in the q-analogue. Additionally, Zhang et al. [45] studied this determinant for the family S∗e
and obtained the bound |H3,1 ( f )| ≤ 0.565.

In the present article, our aim is to investigate the estimate of |H3,1 ( f )| for the subfamilies S∗car,
Ccar, and Rcar of analytic functions connected with the cardioid domain. Moreover, we also study this
problem for families of m-fold symmetric functions connected with the cardioid domain.
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2. A LEMMA

Let P denote the family of all functions p that are analytic in Δ with 
 (p(z)) > 0 and having the
following series representation:

p (z) = 1 +
∞
∑

n=1
cn zn (z ∈ Δ) . (6)

Lemma 1. If p ∈ P and it has the form (6), then:

|cn| ≤ 2 for n ≥ 1, (7)

|cmcn − ckcl | ≤ 4 for m + n = k + l, (8)∣∣∣cn+2k − μcnc2
k

∣∣∣ ≤ 2(1 + 2μ); for μ ∈ R, (9)∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣ ≤ 2− |c1|2
2

, (10)

|cn+k − μcnck| ≤
{

2, 0 ≤ μ ≤ 1;
2 |2μ− 1| , elsewhere.

(11)

where the inequalities (7), (10), (11), and (9) are taken from [46].

3. Bound of |H3,1 ( f )| for the Family S∗car

Theorem 1. If f (z) of the form (1) belongs to S∗car, then:

|a2| ≤ 4
3 , |a3| ≤ 11

9 and |a4| ≤ 68
81 .

These bounds are the best possible.

Proof. Let f ∈ S∗car. Then, in the form of the Schwarz function, we have:

z f ′ (z)
f (z)

= 1 +
4
3

w (z) +
2
3
(w (z))2 (z ∈ Δ) .

Furthermore, we easily get:

z f ′ (z)
f (z)

= 1 + a2z +
(

2a3 − a2
2

)
z2 +

(
3a4 − 3a2a3 + a3

2

)
z3

+
(

4a5 − 2a2
3 − 4a2a4 + 4a2

2a3 − a4
2

)
z4 + · · · . (12)

and from series expansion of w with simple calculations, we can write:

1 +
4
3

w (z) +
2
3
(w (z))2 = 1 +

2
3

c1z +

(
2
3

c2 −
c2

1
6

)
z2 +

(
2
3

c3 −
1
3

c1c2

)
z3

+

(
2
3

c4 +
c4

1
24
− c2

2
6
− c1c3

3

)
z4 + · · · . (13)
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By comparing (12) and (13), we get:

a2 =
2
3

c1, (14)

a3 =
1
2

(
5

18
c2

1 +
2
3

c2

)
, (15)

a4 =
1
3

(
c1c2

3
+

2
3

c3 −
c3

1
54

)
, (16)

a5 =
1
4

(
2
3

c4 +
c2

2
18

+
7

27
c1c3 +

7
486

c4
1 −

c2
1c2

9

)
. (17)

Applying (7) in (14) and (15), we have:

|a2| ≤
4
3

and |a3| ≤
11
9

.

Now, reshuffling (16), we get:

a4 =
1
3

{
2
3

c3 +
8
27

c1c2 +
c1

27

(
c2 −

c2
1

2

)}
.

If we insert |c1| = x ∈ [0, 2], then we have:

|a4| ≤
1
3

{
4
3
+

16
27

x +
x

27

(
2− x2

2

)}
.

The above function has its maximum value at x = 2. Therefore:

|a4| ≤
68
81

.

Equalities are obtained if we take:

f (z) = exp
(

4
3

z + ln z +
1
3

z2
)

= z +
4
3

z2 +
11
9

z3 +
68
81

z4 +
235
486

z5 + · · · . (18)

Theorem 2. If f ∈ S∗car and it has the series form (1) , then:

|H3,1 ( f )| ≤ 874
729

.

Proof. From (5), the third Hankel determinant can be written as:

H3 (1) = −a2
2a5 + 2a2a3a4 − a3

3 + a3a5 − a2
4.

Inserting (14)–(17), we get:

H3,1 ( f ) =
7

729
c4

1c2 +
281

11664
c3

1c3 +
c2c4

18
+

23
324

c1c2c3 −
2083

419904
c6

1 −
7

216
c3

2 −
11

216
c2

1c4

− 59
2592

c2
1c2

2 −
4
81

c2
3.
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Now, rearranging, it yields:

H3,1 ( f ) =
2083

209952
c4

1

(
c2 −

c2
1

2

)
+

c4

18

(
c2 −

c2
1

2

)
+

281
23328

c3
1

(
c3 −

67
2559

c1c2

)
+

5
216

c1 (c2c3 − c1c4)

− c1c3

648

(
c2 −

c2
1

2

)
+

263
23328

c2
1

(
c1c3 − c2

2

)
− 4

81
c3 (c3 − c1c2)−

67
5832

c2
1c2

2 −
7

216
c3

2.

Applying the triangle inequality:

|H3,1 ( f )| ≤ 2083
209952

|c1|4
∣∣∣∣∣c2 −

c2
1
2

∣∣∣∣∣ + |c4|
18

∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣ + 281
23328

|c1|3
∣∣∣∣c3 −

67
2559

c1c2

∣∣∣∣ + 5
216

|c1| |c2c3 − c1c4|

+
|c1| |c3|

648

∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣ + 263
23328

|c1|2
∣∣∣c1c3 − c2

2

∣∣∣ + 4
81
|c3| |c3 − c1c2|+

67
5832

|c1|2 |c2|2 +
7

216
|c2|3 ;

besides, (7), (10), (11) and (8) lead us to:

|H3,1 ( f )| ≤ 2083
209952

|c1|4
(

2− |c1|2
2

)
+

1
9

(
2− |c1|2

2

)
+

281
11664

|c1|3 +
5
54
|c1|+

|c1|
324

(
2− |c1|2

2

)

+
263

5832
|c1|2 +

16
81

+
67

1458
|c1|2 +

7
27

.

If we insert |c1| = x ∈ [0, 2], then we have:

|H3 ( f )| ≤ 2083
209952

x4
(

2− x2

2

)
+

1
9

(
2− x2

2

)
+

281
11664

x3 +
5

54
x +

x
324

(
2− x2

2

)
+

263
5832

x2 +
16
81

+
67

1458
x2 +

7
27

= Φ (x) , say.

Then, the function Φ (x) is increasing. Therefore, we get its maximum value by putting x = 2,

|H3,1 ( f )| ≤ 874
729

.

Thus, the proof follows.

From the function given by (18), we conclude the following conjecture.

Conjecture 3.1. Let f ∈ S∗car and in the form (1). Then, the sharp bound is:

|H3,1 ( f )| ≤ 827
13122

.

4. Bound of |H3,1 ( f )| for the Family Ccar

Theorem 3. If f ∈ Ccar and has the series form (1), then:

|a2| ≤ 2
3 , |a3| ≤ 11

27 and |a4| ≤ 17
81 .

These bounds are the best possible.

Proof. Let the function f ∈ Ccar. Then, by the Alexandar-type relation, we say that z f ′ ∈ S∗car, and
hence, using the coefficient bounds of the family S∗car, which was proven in the last Theorem, we get
the needed bounds.
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Theorem 4. Let f have the form (1) and belong to Ccar. Then:

|H3,1 ( f )| ≤ 319
4374

.

Proof. From (5), the third Hankel determinant can be obtained as:

H3,1 ( f ) = −a2
2a5 + 2a2a3a4 − a3

3 + a3a5 − a2
4.

Utilizing the definition of the family Ccar, we easily have:

H3,1 ( f ) =
97

174960
c4

1c2 +
61

58320
c3

1c3 +
1

270
c2c4 +

1
405

c1c2c3 −
617

3149280
c6

1 −
31

29160
c3

2

− 7
3240

c2
1c4 −

143
116640

c2
1c2

2 −
1

324
c2

3.

After reordering, it yields:

H3,1 ( f ) =
97

349920
c4

1(c2 −
617
873

c2
1)−

143
116640

c2
1c2(c2 −

97
429

c2
1)−

7
3240

c2
1(c4 −

61
126

c1c3)

+
c2

270
(c4 −

31
108

c2
2)−

c3

324
(c3 −

324
405

c1c2).

Using the triangle inequality, we get:

|H3,1 ( f )| ≤ 97
349920

|c1|4
∣∣∣∣c2 −

617
873

c2
1

∣∣∣∣ + 143
116640

|c1|2 |c2|
∣∣∣∣c2 −

97
429

c2
1

∣∣∣∣ + 7
3240

|c1|2
∣∣∣∣c4 −

61
126

c1c3

∣∣∣∣
+
|c2|
270

∣∣∣∣c4 −
31

108
c2

2

∣∣∣∣ + |c3|
324

∣∣∣∣c3 −
324
405

c1c2

∣∣∣∣ .

The application of (7) and (11) leads us to:

|H3,1 ( f )| ≤ 97
10935

+
143
7290

+
7

405
+

4
270

+
4

324

=
319

4374
.

Thus, the proof is completed.

5. Bound of |H3,1 ( f )| for the Family Rcar

Theorem 5. Let f ∈ Rcar and be given in the form (1). Then:

|a2| ≤ 2
3 , |a3| ≤ 4

9 , |a4| ≤ 1
3 .

These results are the best possible.

Proof. Let f ∈ Rcar. Then, we can write (3), in the form of the Schwarz function, as:

f ′ (z) = 1 +
4
3

w (z) +
2
3
(w (z))2 , (z ∈ Δ) .

Since:
f ′ (z) = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4 + · · · , (19)
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by comparing (19) and (13), we may get:

a2 =
c1

3
, (20)

a3 =
2
9

(
c2 −

c2
1

4

)
, (21)

a4 =
1
6

(
c3 −

c1c2

2

)
, (22)

a5 =
1
15

(
2c4 +

c4
1

8
− c2

2
2
− c1c3

)
. (23)

Using (7) in (20), we get:

|a2| ≤
2
3

.

Applying (11) in (21) and (22), we obtain:

|a3| ≤
4
9

and |a4| ≤
1
3

.

Thus, the proof is completed.
Equalities in each coefficient |a2| , |a3|, and |a4| are obtained respectively by taking:

f1 (z) = z +
2
3

z2 +
2
9

z3,

f2 (z) = z +
4
9

z3 +
2

15
z5,

f3 (z) = z +
1
3

z4 +
2

21
z7.

Theorem 6. Let f ∈ Rcar and be given in the form (1). Then:

|H3,1 ( f )| ≤ 754
1215

.

Proof. From (5), the third Hankel determinant can be written as:

H3 (1) = −a2
2a5 + 2a2a3a4 − a3

3 + a3a5 − a2
4.

Utilizing (20)–(23), we have:

H3,1 ( f ) =
7

2430
c4

1c2 +
2

405
c3

1c3 +
4

135
c2c4 +

61
1620

c1c2c3 −
71

58320
c6

1 −
67

1620
c3

2

− c2
1c4

45
− 107

19440
c2

1c2
2 −

c2
3

36
.

By rearranging, it yields:

H3,1 ( f ) =
7

4860
c4

1

(
c2 −

71
84

c2
1

)
− 107

19440
c2

1c2

(
c2 −

28
107

c2
1

)
− c2

1
45

(
c4 −

2
9

c1c3

)
− c3

36

(
c3 −

61
45

c1c2

)
+

4
135

c2

(
c4 −

67
108

c2
2

)
.
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Implementing the triangle inequality, we have:

|H3,1 ( f )| ≤ 7
4860

|c1|4
∣∣∣∣c2 −

71
84

c2
1

∣∣∣∣ + 107
19440

|c1|2 |c2|
∣∣∣∣c2 −

28
107

c2
1

∣∣∣∣ + |c1|2
45

∣∣∣∣c4 −
2
9

c1c3

∣∣∣∣
+
|c3|
36

∣∣∣∣c3 −
61
45

c1c2

∣∣∣∣ + 4
135

|c2|
∣∣∣∣c4 −

67
108

c2
2

∣∣∣∣ .

(7) and (11) lead us to:

|H3,1 ( f )| ≤ 224
4860

+
1712

19440
+

8
45

+
77
405

+
16
135

.

=
754
1215

.

Thus, the proof of this result is completed.

6. BOUNDS OF |H3,1 ( f )| FOR TWO-FOLD AND THREE-FOLD FUNCTIONS

Let m ∈ N = {1, 2, . . .} . If a rotation Ω about the origin through an angle 2π/m carries Ω on
itself, then such a domain Ω is called m-fold symmetric. An analytic function f is m-fold symmetric in
Δ, if:

f
(

e2πi/mz
)
= e2πi/m f (z) (z ∈ Δ) .

By S (m), we define the family of m-fold univalent functions having the following Taylor series form:

f (z) = z +
∞

∑
k=1

amk+1zmk+1 (z ∈ Δ) . (24)

The subfamilies S∗(m)
car , C(m)

car , and R(m)
car of S (m) are the families of the m-fold symmetric starlike, convex,

and bounded turning functions, respectively, associated with the cardioid functions. More intuitively,
an analytic function f of the form (24) belongs to the families S∗(m)

car , C(m)
car , and R(m)

car if and only if:

z f ′(z)
f (z)

= 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
, p ∈ P (m), (25)

1 +
z f ′′ (z)
f ′ (z)

= 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
, p ∈ P (m), (26)

f ′ (z) = 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
, p ∈ P (m), (27)

where the family P (m) is defined by:

P (m) =

{
p ∈ P : p (z) = 1 +

∞

∑
k=1

cmkzmk, (z ∈ D)

}
. (28)

Now, we prove some theorems concerned with two-fold and three-fold symmetric functions.

Theorem 7. If f ∈ S∗(2)car and it has the form given in (24), then:

|H3,1 ( f )| ≤ 2
9

.
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Proof. Let f ∈ S∗(2)car . Then, there exists a function p ∈ P (2) such that:

z f ′(z)
f (z)

= 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
.

Using the series form (24) and (28), when m = 2 in the above relation, we can get:

a3 =
c2

3
, (29)

a5 =
1
4

(
c2

2
18

+
2
3

c4

)
. (30)

Now:
H3 ( f ) = a3a5 − a3

3.

Utilizing (29) and (30), we get:

H3,1 ( f ) = − 7
216

c3
2 +

c2c4

18
.

By reordering, it yields:

H3,1 ( f ) =
c2

18

(
c4 −

7
12

c2
2

)
.

Using the triangle inequality long with (11) and (7), we have:

|H3,1 ( f )| ≤ 2
9

.

Hence, the proof is done.

Theorem 8. If f ∈ S∗(3)car and it has the form (24), then:

|H3,1 ( f )| ≤ 16
81

.

The result is sharp for the function:

f (z) = exp
(

ln z +
4
9

z3 +
1
9

z6
)
= z +

4
9

z4 +
17
81

z7 + · · · . (31)

Proof. Let f ∈ S∗(3)car . Then, there exists a function p ∈ P (3) such that:

z f ′(z)
f (z)

= 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
.

Utilizing the series form (24) and (28), when m = 3 in the above relation, we can obtain:

a4 =
2
9

c3.

Then,

H3,1 ( f ) = −a2
4 = − 4

81
c2

3.

Utilizing (7) along with triangle inequality, we have:

|H3,1 ( f )| ≤ 16
81

.
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Thus, the proof is completed.

Theorem 9. Let f ∈ C(2)car , and it has the form (24), then:

|H3,1 ( f )| ≤ 2
135

.

Proof. Let f ∈ C(2)car . Then, there exists a function p ∈ P (2) such that:

1 +
z f ′′(z)
f ′(z)

= 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
.

Utilizing the series form (24) and (28), when m = 2 in the above relation, we can obtain:

a3 =
c2

9
, (32)

a5 =
1
20

(
c2

2
18

+
2
3

c4

)
. (33)

H3,1 ( f ) = a3a5 − a3
3.

Using (32) and (33), we have:

H3,1 ( f ) = − 31
29160

c3
2 +

c2c4

270
.

Now, reordering the above equation, we obtain:

H3 ( f ) =
c2

270

(
c4 −

31
108

c2
2

)
.

Application of (7), (11), and the triangle inequality leads us to:

|H3,1 ( f )| ≤ 2
135

.

Thus, the required result is completed.

Theorem 10. If f ∈ C(3)car and it has the form given in (24), then:

|H3,1 ( f )| ≤ 1
81

.

The result is sharp for the function:

f (z) =
∫ z

0

exp
(

ln x + 4
9 x3 + 1

9 x6
)

x
dx = z +

1
9

z4 +
17
657

z7 + · · · .

Proof. Let f ∈ C(3)car . Then, there exists a function p ∈ P (3) such that:

1 +
z f ′′(z)
f ′(z)

= 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
.

Utilizing the series form (24) and (28), when m = 3 in the above relation, we obtain:

a4 =
c3

18
.
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Then:

H3,1 ( f ) = −a2
4 = − c2

3
324

.

Implementing (7) and the triangle inequality, we have:

|H3,1 ( f )| ≤ 1
81

.

Hence, the proof is done.

Theorem 11. Let f ∈ R(2)
car be of the form (24). Then:

|H3,1 ( f )| ≤ 16
135

.

Proof. Since f ∈ R(2)
car , therefore there exists a function p ∈ P (2) such that:

f ′(z) = 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
.

For f ∈ R(2)
car , using the series form (24) and (28), when m = 2 in the above relation, we can write:

a3 =
2
6

c2, (34)

a5 =
1
5

(
2
3

c4 −
c2

2
6

)
. (35)

It is clear that for f ∈ R(2)
car ,

H3,1 ( f ) := a3a5 − a3
3.

Applying (34) and (35), we have:

H3,1 ( f ) =
4

135
c2c4 −

67
3645

c3
2.

By rearrangement, we have:

H3,1 ( f ) =
4

135
c2(c4 −

67
108

c2
2).

Using Lemma (7), (10), and triangle inequality, we get:

|H3,1 ( f )| ≤ 16
135

.

Hence, the proof is completed.

Theorem 12. If f ∈ R(3)
car and it is of the form (24), then:

|H3,1 ( f )| ≤ 1
9

.

This result is sharp for the function:

f (z) =
∫ z

0

(
1 +

4
3

x3 +
2
3

x6
)

dx = z +
1
3

z4 +
2
21

z7.
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Proof. Since f ∈ R(3)
car , there exists a function p ∈ P (3) such that:

f ′(z) = 1 +
4
3

(
p (z)− 1
p (z) + 1

)
+

2
3

(
p (z)− 1
p (z) + 1

)2
.

For f ∈ R(3)
car , using the series form (24) and (28), when m = 2 in the above relation, we can write:

a4 =
c3

6
.

Then:

H3,1 ( f ) := −a2
4 = − c2

3
36

.

Implementing (7), we have:

|H3,1 ( f )| ≤ 1
9

.

Hence, the proof is completed.

7. Conclusions

In this article, we studied the Hankel determinant H3,1 ( f ) for the subfamilies S∗car, Ccar, and Rcar

of the analytic function using a very simple technique. Further, these bounds were also discussed for
two-fold symmetric and three-fold symmetric functions.
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Abstract: The fractional Laplacian, also known as the Riesz fractional derivative operator, describes
an unusual diffusion process due to random displacements executed by jumpers that are able to
walk to neighbouring or nearby sites, as well as perform excursions to remote sites by way of Lévy
flights. The fractional Laplacian has many applications in the boundary behaviours of solutions
to differential equations. The goal of this paper is to investigate the half-order Laplacian operator
(−Δ)

1
2 in the distributional sense, based on the generalized convolution and Temple’s delta sequence.

Several interesting examples related to the fractional Laplacian operator of order 1/2 are presented
with applications to differential equations, some of which cannot be obtained in the classical sense by
the standard definition of the fractional Laplacian via Fourier transform.

Keywords: distribution; fractional Laplacian; Riesz fractional derivative; delta sequence; convolution

MSC: 46F10; 26A33

In recent years, the fractional Laplacian operator has gained considerable attention due to its
applications in many disciplines, such as partial differential equations, long-range interactions,
anomalous diffusions and non-local quantum theories. There is also the physical meaning of
the fractional Laplacian operator in bounded domains through its associated stochastic processes.
However, the half-order Laplacian operator (−Δ)

1
2 , often appearing in various literature works and

applications, needs to be studied carefully as the first-order Riesz derivative is undefined in the
classical sense. The goal of this work is to use a new distributional approach to defining operator
(−Δ)

1
2 in the generalized sense by Temple’s delta sequence, as well as present fresh techniques in

computing examples of the fractional Laplacian operator of order 1/2 and applications to solving
partial differential equations related to this operator.

1. Introduction

Let s ∈ (0, 1) and Δ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n. The fractional Laplacian of a function u: Rn → R is
defined as:

(−Δ)su(x) = Cn,sP.V.
∫

Rn

u(x)− u(ζ)
|x− ζ|n+2s dζ, (1)

where P.V. stands for the Cauchy principal value, and the constant Cn,s is given by:

Cn,s =

(∫
Rn

1− cos y1

|y|n+2sdy

)−1
= π−n/222s Γ( n+2s

2 )

Γ(1− s)
s,

and y = (y1, y2, · · · , yn) ∈ Rn.

Mathematics 2019, 7, 320; doi:10.3390/mat7040320 www.mdpi.com/journal/mathematics261
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On the other hand, the fractional Laplacian in Rn can be written by the Fourier transform:

(−Δ)su(x) =
1

(2π)n

∫
Rn
|ζ|2s(u, e−iζx)L2 eiζxdζ = F−1{|ζ|2sF (u)(ζ)}(x)

where:

(u, e−iζx)L2 =
∫

Rn
u(x)e−iζxdx, û(ζ) = F{u}(ζ) = 1

(2π)n/2

∫
Rn

u(x)e−iζxdx,

F−1{û}(x) =
1

(2π)n/2

∫
Rn

û(ζ)eiζxdζ.

Hence, the fractional Laplacian is really a pseudo-differential operator with symbol |ζ|2s.
Let Lp be the Lebesgue space with p ∈ [1, ∞), B0 be the space of continuous functions vanishing

at infinity, and Bbu be the space of bounded uniformly-continuous functions. M.Kwaśnicki recently
presented ten equivalent definitions in [1] for defining (−Δ)s over these three spaces, including the
above Fourier definition.

There have been many studies, including numerical analysis approaches, on the fractional
Laplacian with applications in solving certain differential equations on bounded domains and in
the theory of stochastic processes and anomalous diffusion [2–10]. For example, the work in [11]
used the fractional Laplacian for linear and nonlinear lossy media, as well as studying a linear
integro-differential equation wave model. The work in [12] studied a finite difference method of
solving parabolic partial integro-differential equations, with possibly singular kernels. These arise
in option pricing theory when the random evolution of the underlying asset is driven by a Lévy
process related to the fractional Laplacian or, more generally, a time-inhomogeneous jump-diffusion
process. Using the fractional Laplacian operator, Araci et al. [13] investigated the following q-difference
boundary value problem:

Dγ
q (φp(Dδ

qy(t))) + f (t, y(t)) = 0, (0 < t < 1; 3 < δ < 4)

with the boundary conditions:

y(0) = (Dqy)(0) = (D2
qy)(0),

a1(Dqy)(1) + a2(D2
qy)(1) = 0, and Dγ

0+y(t)|t=0 = 0.

They proved the existence and uniqueness of a positive and nondecreasing solution for this
problem by means of a fixed point theorem involving partially-ordered sets.

Let Ω ⊂ Rn denote a bounded, open domain. For u(x): Ω → R, D’Elia and Gunzburger [14]
investigated the action of the nonlocal diffusion operator L on the function u(x) as:

Lu(x) = 2
∫

Rn
(u(y)− u(x))γ(x, y)dy ∀x ∈ Ω ⊆ Rn,

where the volume of Ω is non-zero and the kernel γ(x, y): Ω×Ω → R is a non-negative symmetric
mapping, as well as the nonlocal, steady-state diffusion equation:

−Lu = f on Ω,

u = 0 on Rn \Ω.

An example of γ(x, y) is given by:

γ(x, y) =
σ(x, y)

|y− x|n+2s
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with σ(x, y) bounded from above and below by positive constants. This nonlocal diffusion operator
has, as special cases, the fractional Laplacian and fractional differential operators that arise in several
applications. The corresponding evolution model was further studied in [15]. Recently, Hu et al. [16]
studied the following high-dimensional Caputo-type parabolic equation with the fractional Laplacian
by using the finite difference method:

CDα
0,tu = −(−Δ)su + f , x ∈ Ω, t > 0,

u(x, 0) = u0(x),

u(x, t) = 0 on x ∈ Rn \Ω,

where α ∈ (0, 1), s ∈ (0, 1) and Ω ⊂ Rn. In particular, this involves the half-order Laplacian operator
(−Δ)

1
2 when s = 1/2. The convergence and error estimate of the established finite difference scheme

are shown with several examples.
On the other hand, the Riesz fractional derivative is generally given as:

RZDα
xu(x) = − (RLDα

−∞, x + RLDα
∞, x)u(x)

2 cos(απ/2)
(2)

where 0 < α < 2 and α �= 1, and:

RLDα
−∞, xu(x) =

1
Γ(n− α)

dn

dxn

∫ x

−∞
(x− ζ)n−α−1u(ζ)dζ,

RLDα
∞, xu(x) =

1
Γ(n− α)

dn

dxn

∫ x

∞
(x− ζ)n−α−1u(ζ)dζ

for n− 1 < α < n ∈ Z+.
Note that in space fractional quantum mechanics, the α = 2 case corresponds to the Schrödinger

equation for a massive non-relativistic particle, while the α = 1 case needs to be examined carefully,
both on physical and mathematical grounds, since Equation (2) is undefined for α = 1.

It follows from [10,17–22] that:

RLDα
−∞, xu(x) =

d2

dx2 [I
2−α
−∞, xu(x)], 1 < α < 2

and:

RLDα
−∞, xu(x) = I−α

−∞, xu(x) =
1

Γ(2− α)

d2

dx2

∫ x

−∞

u(t)
(x− t)α−1 dt

=
1

Γ(2− α)

d2

dx2

∫ ∞

0
ζ−α+1u(x− ζ)dζ

by making the variable change ζ = x− t.
Applying two identities:

ζ−α+1 = (α− 1)
∫ ∞

ζ

dη

ηα
,

∂2u(x− ζ)

∂x2 =
∂2u(x− ζ)

∂ζ2
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we get:

RLDα
−∞, xu(x) =

α− 1
Γ(2− α)

∫ ∞

0

∂2u(x− ζ)

∂ζ2

[∫ ∞

ζ

dη

ηα

]
dζ

=
1− α

Γ(2− α)

∫ ∞

0

[∫ ∞

ζ

dη

ηα

]
d

∂u(x− ζ)

∂ζ

=
1

Γ(1− α)

∂u(x− ζ)

∂ζ

∫ ∞

ζ

dη

ηα

∣∣∣∣∞

ζ=0
+

1
Γ(1− α)

∫ ∞

0

∂u(x− ζ)

∂ζ

1
ζα

dζ

= − 1
Γ(1− α)

∫ ∞

0

1
ζα

du(x− ζ)

= − 1
Γ(1− α)

u(x− ζ)

ζα

∣∣∣∣∞

ζ=0
− α

Γ(1− α)

∫ ∞

0

u(x− ζ)

ζα+1 dζ

=
α

Γ(1− α)

∫ ∞

0

u(x)
ζα+1 dζ − α

Γ(1− α)

∫ ∞

0

u(x− ζ)

ζα+1 dζ

= − α

Γ(1− α)

∫ ∞

0

u(x− ζ)− u(x)
ζα+1 dζ, 1 < α < 2

by removing the term: ∫ ∞

0

dη

ηα
,

due to the meaning of the finite part integral as the integral is divergent and the finite part:

η−α+1

−α + 1

∣∣∣∣
η=∞

= 0.

With the same argument, we come to:

RLDα
∞, xu(x) = − α

Γ(1− α)

∫ ∞

0

u(x + ζ)− u(x)
ζα+1 dζ, 1 < α < 2.

Hence, we have another representation of the Riesz fractional derivative from Equation (2):

RZDα
xu(x) =

Γ(1 + α) sin απ/2
π

∫ ∞

0

u(x + ζ)− 2u(x) + u(x− ζ)

ζ1+α
dζ, 1 < α < 2.

Similarly, we can claim that this representation still holds for the entire range 0 < α ≤ 2 [23].
In particular,

RZD1
xu(x) =

1
π

∫ ∞

0

u(x + ζ)− 2u(x) + u(x− ζ)

ζ2 dζ =
1
π
(P.V.

1
ζ2 , u(x + ζ))

based on the formula:

(P.V.
1
x2 , φ(x)) =

∫ ∞

0

φ(x)− 2φ(0) + φ(−x)
x2 dx.
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Clearly, Equation (1) becomes:

(−Δ)1/2u(x) = C1,1/2 P.V.
∫

R

u(x)− u(ζ)
|x− ζ|2 dζ

=
1
π

P.V.
∫

R

u(x)− u(ζ)
(x− ζ)2 dζ

= − 1
π

∫ ∞

0

u(x + ζ)− 2u(x) + u(x− ζ)

ζ2 dζ (3)

= − RZD1
xu(x) (4)

for s = 1/2 and n = 1.
Therefore, investigations of the half-order Laplacian operator (−Δ)

1
2 on R are equivalent to

studies of the first-order Riesz derivative. We can define −(−Δ)
1
2 u as the Riesz derivative RZDα

xu(x)
in the case of α = 1, which is undefined in Equation (2) in the classical sense. The aim of this work
is to study the operator (−Δ)

1
2 on R in distribution explicitly and implicitly, using a particular delta

sequence and the generalized convolution. We also present several interesting examples, such as
(−Δ)

1
2 δ(x) and (−Δ)

1
2 θ(x), which are undefined in the classical sense. At the end of this work,

we describe applications of such studies to solving the differential equations involving the half-order
Laplacian operator.

2. The Explicit Approach to (−Δ)1/2u

In order to extend the fractional Laplacian (−Δ)1/2 distributionally, we briefly introduce
the following basic concepts of distributions. Let D(R) be the Schwartz space (testing function
space) [24,25] of infinitely-differentiable functions with compact support in R and D′(R) the (dual)
space of distributions defined on D(R). A sequence φ1, φ2, · · · , φn, · · · goes to zero in D(R) if and only
if these functions vanish outside a certain fixed bounded set and converge to zero uniformly together
with their derivatives of any order.

The functional δ(n)(x− x0) is defined as:

(δ(n)(x− x0), φ(x)) = (−1)nφ(n)(x0)

where φ ∈ D(R). Clearly, δ(n)(x − x0) is a linear and continuous functional on D(R), and hence,
δ(n)(x− x0) ∈ D′(R).

Define the unit step function θ(x) as:

θ(x) =

{
1 if x > 0,
0 if x < 0.

Then,

(θ(x), φ(x)) =
∫ ∞

0
φ(x)dx for φ ∈ D(R),

which implies θ(x) ∈ D′(R).
Let f ∈ D′(R). The distributional derivative of f , denoted by f ′ or d f /dx, is defined as:

( f ′, φ) = −( f , φ′)

for φ ∈ D(R).
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Clearly, f ′ ∈ D′(R) and every distribution has a derivative. As an example, we are going to show
that θ′(x) = δ(x) distributionally, although θ(x) is not defined at x = 0 in the classical sense. Indeed,

(θ′(x), φ(x)) = −(θ(x), φ′(x)) = −
∫ ∞

0
φ′(x)dx = φ(0) = (δ(x), φ(x)),

which claims:
θ′(x) = δ(x).

It can be shown that the ordinary rules of differentiation also apply to distributions. For instance,
the derivative of a sum is the sum of the derivatives, and a constant can be commuted with the
derivative operator.

Definition 1. Let f and g be distributions in D′(R) satisfying either of the following conditions:

(a) either f or g has bounded support (set of all essential points).
(b) the supports of f and g are bounded on the same side (either on the left or right).

Then, the convolution f ∗ g is defined by the equation:

(( f ∗ g)(x), φ(x)) = (g(x), ( f (y), φ(x + y)))

for φ ∈ D. Clearly, we have:
f ∗ g = g ∗ f

from Definition 1.
It follows from the definition above that:

δ(n)(x− x0) ∗ f (x) = f (n)(x− x0)

for any distribution f ∈ D′(R).
Let δn(x) = nρ(nx) be Temple’s δ-sequence for n = 1, 2, · · · , where ρ(x) is a fixed,

infinitely-differentiable function on R, having the following properties [26,27]:

(i) ρ(x) ≥ 0,
(ii) ρ(x) = 0 for |x| ≥ 1,
(iii) ρ(x) = ρ(−x),
(iv)

∫ ∞
−∞ ρ(x)dx = 1.

An example of such a ρ(x) function is given as:

ρ(x) =

{
ce−

1
1−x2 if |x| < 1,

0 otherwise

where:

c−1 =
∫ 1

−1
e−

1
1−x2 dx.

This delta-sequence plays an important role in defining products of distributions [28,29]. Let f be
a continuous function on R. Then,

( f ∗ δn)(x) =
∫ ∞

−∞
f (x− t)δn(t)dt =

∫ ∞

−∞
f (t)δn(x− t)dt
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uniformly converges to f on any compact subset of R. Indeed, we assume that f is continuous on R,
and L is any compact subset of R. Then, f is uniformly continuous on L, and for all ε > 0, there exists
δ1 > 0 such that:

| f (x− t)− f (x)| < ε

for all x ∈ L and |t| < δ1. This implies that:

|( f ∗ δn)(x)− f (x)| ≤
∫ ∞

−∞
| f (x− t)− f (x)|δn(t)dt < ε

for all x ∈ L and 1/n < δ1 by noting that: ∫ ∞

−∞
δn(t)dt = 1.

Furthermore, if f ∈ D′(R), then ( f ∗ δn)(x) converges to f in D′(R). Indeed,

lim
n→∞

(( f ∗ δn)(x), φ(x)) = lim
n→∞

( f (x), (δn(y), φ(x + y))) = ( f (x), φ(x))

by noting that:
lim

n→∞
(δn(y), φ(x + y)) = φ(x)

in D(R).
In order to study the half-order Laplacian operator in the distribution, we introduce an

infinitely-differentiable function τ(x) satisfying the following conditions:

(i) τ(x) = τ(−x),
(ii) 0 ≤ τ(x) ≤ 1,
(iii) τ(x) = 1 if |x| ≤ 1/2,
(iv) τ(x) = 0 if |x| ≥ 1.

Define:

φm(x) =

⎧⎪⎨⎪⎩
1 if |x| ≤ m,
τ(mmx−mm+1) if x > m,
τ(mmx + mm+1) if x < −m,

for m = 1, 2, · · · . Then, φm(x) ∈ D(R) with the support [−m−m−m, m + m−m].
From Equation (3), we have:

(−Δ)1/2u(x) = − 1
π
(P.V.

1
t2 , u(x + t)) = − 1

π
(P.V.

1
t

, u′(x + t))

if u ∈ D(R) as:

(P.V.
1
t2 , φ(t)) =

∫ ∞

0

φ(t)− 2φ(0) + φ(−t)
t2 dt,

d
dt

P.V.
1
t
= −P.V.

1
t2 .

This suggests the following explicit definition for defining (−Δ)
1
2 u(x). This explicit definition

directly evaluates the half-order fractional Laplacian of u(x) as a function of x, without relating to any
testing function in the Schwartz space.

267



Mathematics 2019, 7, 320

Definition 2. Let u ∈ D′(R) and u′n = u′ ∗ δn = (u′(t), δn(x − t)) for n = 1, 2, · · · . We define the
half-order Laplacian operator (−Δ)

1
2 on D′(R) as:

(−Δ)
1
2 u(x) = − 1

π
lim

m→∞
lim

n→∞

(
P.V.

1
t

, φm(t)u′n(x + t)
)

= − 1
π

lim
m→∞

lim
n→∞

∫ ∞

0
φm(t)

u′n(x + t)− u′n(x− t)
t

dt (5)

if it exists.

Clearly, the integral: ∫ ∞

0
φm(t)

u′n(x + t)− u′n(x− t)
t

dt

is well defined as φm(t) has a bounded support and:

lim
t→0+

u′n(x + t)− u′n(x− t)
t

= u′′n(x).

Theorem 1.

(−Δ)
1
2 δ(x) = − 1

π
P.V.

1
x2 .

Proof. Assuming x > 0, we choose a large n such that 1/n < x. This infers that δ′n(x + t) = 0, and:

(−Δ)
1
2 δ(x) = lim

m→∞
lim

n→∞
− 1

π

∫ ∞

0
φm(t)

δ′n(x + t)− δ′n(x− t)
t

dt

= lim
m→∞

lim
n→∞

1
π

∫ ∞

0
φm(t)

δ′n(x− t)
t

dt

from Definition 2. Making the substitution w = x− t, we get:

(−Δ)
1
2 δ(x) = lim

m→∞
lim

n→∞

1
π

∫ x

−∞
δ′n(w)

φm(x− w)

x− w
dw

= lim
m→∞

lim
n→∞

1
π

∫ ∞

−∞
δ′n(w)

φm(x− w)

x− w
dw

= lim
m→∞

− 1
π

∂

∂w

[
φm(x− w)

x− w

]∣∣∣∣
w=0

= lim
m→∞

φ′m(x)x− φm(x)
πx2

by noting that δn(w) is a delta sequence, and:

φm(x− w)

x− w

is a testing function of w if w < x, and:

δ′n(w)
φm(x− w)

x− w

is identical to zero if w ≥ x as δ′n(w) = 0. Choosing m such that x < m, we derive that:

φ′m(x) = 0 and φm(x) = 1
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as φm(x) = 1 if |x| < m. Hence,

(−Δ)
1
2 δ(x) = − 1

π
P.V.

1
x2 .

If x < 0, we set y = −x and:

− 1
π

∫ ∞

0
φm(t)

δ′n(x + t)− δ′n(x− t)
t

dt = − 1
π

∫ ∞

0
φm(t)

δ′n(−y + t)− δ′n(−y− t)
t

dt

= − 1
π

∫ ∞

0
φm(t)

δ′n(y + t)− δ′n(y− t)
t

dt,

which implies that:

(−Δ)
1
2 δ(x) = lim

m→∞

φ′m(y)y− φm(y)
πy2 = − 1

π
P.V.

1
x2 .

Finally, we have for x = 0 by making the variable change u = nt:

∫ ∞

0
φm(t)

δ′n(t)− δ′n(−t)
t

dt = 2
∫ ∞

0
φm(t)

δ′n(t)
t

dt

= 2n2
∫ ∞

0
φm(t)

ρ′(nt)
t

dt

= 2n2
∫ 1

0
φm(u/n)

ρ′(u)
u

du = 2n2
∫ 1

0

ρ′(u)
u

du

= O(n2)

by noting that the term φm(u/n) = 1, and:

∫ 1

0

ρ′(u)
u

du =
∫ 1

0

ρ′(u)− ρ′(0)
u

du

is well defined as ρ(u) is an even function. This completes the proof of Theorem 1.

From [24], we have the distributions P.V.x−2m for m = 1, 2, · · · and P.V.x−2m−1 for m = 0, 1, · · ·
given as:

(P.V.x−2m, φ) =
∫ ∞

0
x−2m{φ(x) + φ(−x)

−2
[

φ(0) +
x2

2!
+ · · ·+ x2m−2

(2m− 2)!
φ(2m−2)(0)

]
}dx,

(P.V.x−2m−1, φ) =
∫ ∞

0
x−2m−1{φ(x)− φ(−x)

−2
[

xφ′(0) +
x3

3!
+ · · ·+ x2m−1

(2m− 1)!
φ(2m−1)(0)

]
}dx.

Theorem 2.

(−Δ)
1
2 δ(m)(x) =

(−1)m+1(m + 1)!
π

P.V.
1

xm+2

for m = −1, 0, 1, . . . . In particular, we have for m = −1 that:

(−Δ)
1
2 θ(x) =

1
π

P.V.
1
x

.
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Proof. We start with the case m = −1. Then, by Definition 2,

(−Δ)
1
2 θ(x) = lim

m→∞
lim

n→∞
− 1

π

∫ ∞

0
φm(t)

δn(x + t)− δn(x− t)
t

dt

= lim
m→∞

lim
n→∞

1
π

∫ ∞

0
φm(t)

δn(x− t)
t

dt

for x > 0 and a large n such that 1/n < x. Following the proof of Theorem 1, we come to:

(−Δ)
1
2 θ(x) = lim

m→∞
lim

n→∞

1
π

∫ x

−∞
δn(w)

φm(x− w)

x− w
dw

= lim
m→∞

lim
n→∞

1
π

∫ ∞

−∞
δn(w)

φm(x− w)

x− w
dw

= lim
m→∞

φm(x)
πx

=
1
π

P.V.
1
x

.

The case x < 0 follows similarly. To compute (−Δ)
1
2 δ(m)(x), we note that for a large n:

(−Δ)
1
2 δ(m)(x) = lim

m→∞
lim

n→∞

1
π

∫ ∞

−∞
δ
(m+1)
n (w)

φm(x− w)

x− w
dw

from the proof of Theorem 1 and:

lim
m→∞

(−1)m+1

π

∂m+1

∂wm+1

[
φm(x− w)

x− w

]∣∣∣∣
w=0

= lim
m→∞

(−1)m+1

π

m+1

∑
k=0

(
m + 1

k

)
(−1)kφ

(k)
m (x− w)

(
1

x− w

)(m+1−k)
∣∣∣∣∣
w=0

= lim
m→∞

(−1)m+1

π

(
m + 1

0

)
φm(x− w)

(
1

x− w

)(m+1)
∣∣∣∣∣
w=0

=
(−1)m+1(m + 1)!

π
P.V.

1
xm+2

since lim
m→∞

φm(x) = 1 and:

lim
m→∞

(−1)m+1

π

m+1

∑
k=1

(
m + 1

k

)
(−1)kφ

(k)
m (x− w)

(
1

x− w

)(m+1−k)
∣∣∣∣∣
w=0

= 0

from the definition of φm(x). This completes the proof of Theorem 2.

We should note that Theorem 2 cannot be derived by the standard definition of the fractional
Laplacian via Fourier transform, and:

(−Δ)
1
2 θ(x) =

1
π

P.V.
1
x

holds in the distributional sense and:
d

dx
θ(x) = δ(x),

although θ(x) is discontinuous at x = 0 in the classical sense.
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Theorem 3.

(−Δ)
1
2 sin x = sin x, (6)

(−Δ)
1
2 cos x = cos x, (7)

(−Δ)
1
2 (ax + b) = 0. (8)

where a and b are arbitrary constants.

Proof. Clearly, sin x is an infinitely-differentiable function on R. This claims that:

(sin x)′ ∗ δn = cos x ∗ δn

uniformly converges to cos x on any compact subset of R. Therefore,

(−Δ)
1
2 sin x = lim

m→∞
− 1

π

∫ ∞

0
φm(t)

cos(x + t)− cos(x− t)
t

dt

= lim
m→∞

− 1
π

∫ ∞

0
φm(t)

−2 sin x sin t
t

dt

=
2 sin x

π

∫ ∞

0

sin t
t

dt = sin x

by using: ∫ ∞

0

sin t
t

dt = π/2.

Similarly,

(−Δ)
1
2 cos x = lim

m→∞
− 1

π

∫ ∞

0
φm(t)

− sin(x + t) + sin(x− t)
t

dt

= lim
m→∞

− 1
π

∫ ∞

0
φm(t)

−2 cos x sin t
t

dt

=
2 cos x

π

∫ ∞

0

sin t
t

dt = cos x.

Finally,

(−Δ)
1
2 (ax + b) = lim

m→∞
lim

n→∞
− 1

π

∫ ∞

0
φm(t)

(b ∗ δn)(x + t)− (b ∗ δn)(x− t)
t

dt

= lim
m→∞

− 1
π

∫ ∞

0
φm(t)

b− b
t

dt = 0.

This completes the proof of Theorem 3.

We would like to mention that Theorem 3 extends several classical results obtained in [30] to
distributions by Definition 2 with a new approach.

Theorem 4.

(−Δ)
1
2 arctan x =

x
1 + x2 .

Proof. Clearly, (arctan x)′ =
1

1 + x2 is continuous on R, and

(arctan x)′ ∗ δn =

(
1

1 + t2 , δn(x− t)
)
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uniformly converges to 1/(1 + x2) on any compact subset of R. Therefore,

(−Δ)
1
2 arctan x = lim

m→∞
− 1

π

∫ ∞

0
φm(t)

1
1 + (x + t)2 −

1
1 + (x− t)2

t
dt

=
4x
π

lim
m→∞

∫ ∞

0
φm(t)

dt
(1 + (x− t)2)(1 + (x + t)2)

=
4x
π

∫ ∞

0

dt
(1 + (x− t)2)(1 + (x + t)2)

by noting that the integral: ∫ ∞

0

dt
(1 + (x− t)2)(1 + (x + t)2)

is well defined for every point x ∈ R. It remains to show that:

∫ ∞

0

dt
(1 + (x− t)2)(1 + (x + t)2)

=
π

4 + 4x2

for all x ∈ R. First, we note that:

R(z) =
1

(1 + (x− z)2)(1 + (x + z)2)

is even with respect to z and has two singular points z1 = x + i and z2 = i− x in the upper half-plane.
Clearly, we have for x �= 0 that:

Res{R(z), x + i} = lim
z→x+i

z− x− i
(1 + (x− z)2)(1 + (x + z)2)

=
1

2i (1 + (2x + i)2)
,

Res{R(z), i− x} = lim
z→i−x

z + x− i
(1 + (x− z)2)(1 + (x + z)2)

=
1

2i (1 + (2x− i)2)
.

By Cauchy’s residue theorem, we get:

∫ ∞

−∞

dt
(1 + (x− t)2)(1 + (x + t)2)

= 2πi[Res{R(z), x + i}+ Res{R(z), i− x}]

=
2πi

2i (1 + (2x + i)2)
+

2πi
2i (1 + (2x− i)2)

= π
8x2

(1 + (2x + i)2) (1 + (2x− i)2)

=
π

2 + 2x2

using: (
1 + (2x + i)2

) (
1 + (2x− i)2

)
= 16x2 + 16x4.

This implies that: ∫ ∞

0

dt
(1 + (x− t)2)(1 + (x + t)2)

=
π

4 + 4x2

for all nonzero x. Furthermore, we derive for x = 0 that:∫ ∞

0

dt
(1 + t2)2 =

π

4
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by using the identity [31]:

∫ ∞

−∞

dt
(1 + t2)n =

(2n− 3)(2n− 5) · · · 1
(2n− 2)(2n− 4) · · · 2 π.

This completes the proof of Theorem 4.

3. The Implicit Approach to (−Δ)
1
2 u

It seems infeasible to calculate directly the fractional Laplacian operator of some functions or
distributions by Definition 2. For example,

(−Δ)
1
2 ex = lim

m→∞
lim

n→∞
− 1

π

∫ ∞

0
φm(t)

u′n(x + t)− u′n(x− t)
t

dt

= lim
m→∞

− 1
π

∫ ∞

0
φm(t)

ex+t − ex−t

t
dt

= − ex

π
lim

m→∞

∫ ∞

0
φm(t)

et − e−t

t
dt

where:
un(x) = (et, δn(x− t))

uniformly converges to ex as it is continuous on R. Clearly, the right-hand side of the above integral is
divergent as:

lim
t→∞

et − e−t

t
= ∞.

In this section, we are going to provide another definition for dealing with (−Δ)
1
2 u(x) efficiently,

based on a testing function with compact support. This definition is implicit and only used to define
the meaning of:

((−Δ)
1
2 u(x), φ(x)),

rather than finding an explicit function of x. It clearly makes sense in the distribution as we regard
(−Δ)

1
2 u(x) as a functional (not a function) on the Schwartz testing space D(R). We must point out that

this implicit-definition, using a different generalization, is independent of the explicit one provided in
Section 2.

Definition 3. Let u ∈ D′(R) and u′n = u′ ∗ δn = (u′(t), δn(x− t)) for n = 1, 2, · · · . We define the half-order

Laplacian operator (−Δ)
1
2
i on D′(R) (adding the index i to distinguish from (−Δ)

1
2 ) for φ ∈ D(R) as:

((−Δ)
1
2
i u(x), φ(x)) = − 1

π
lim

n→∞

(
P.V.

1
t

, φ(t)u′n(x + t)
)

= − 1
π

lim
n→∞

∫ ∞

0

u′n(x + t)φ(t)− u′n(x− t)φ(−t)
t

dt (9)

if it exists.

Clearly, the integral: ∫ ∞

0

u′n(x + t)φ(t)− u′n(x− t)φ(−t)
t

dt

is well defined, as φ(t) has a bounded support and:

lim
t→0+

u′n(x + t)φ(t)− u′n(x− t)φ(−t)
t

= 2u′′n(x)φ(0) + 2u′n(x)φ′(0).
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It follows from Definition 3 that:

((−Δ)
1
2
i ex, φ(x)) = − ex

π
(P.V.

1
x

, exφ(x))

by noting that:

(P.V.
1
x

, exφ(x)) =
∫ ∞

0

exφ(x)− e−xφ(−x)
x

dx

is well defined and is a number for each φ, since exφ(x) is also a testing function in the Schwartz space.
Furthermore,

((−Δ)
1
2
i cosh x, φ(x)) = − ex

2π
(P.V.

1
x

, exφ(x)) +
e−x

2π
(P.V.

1
x

, e−xφ(x)).

Theorem 5. Let u(x) be an infinitely-differentiable function satisfying:

u(x) =
∞

∑
k=0

u(k)(0)
k!

xk.

Then,

((−Δ)
1
2
i u(x), φ(x)) = −u′(x)

π
(P.V.

1
x

, φ(x))− 1
π

(
u′(x + t)− u′(x)

t
, φ(t)

)
. (10)

Proof. Clearly,

u(x + t) =
∞

∑
k=0

u(k)(x)
k!

tk,

u′(x + t) =
∞

∑
k=0

u(k+1)(x)
k!

tk

and:
u′n(x) = (u′ ∗ δn)(x) = (u′(t), δn(x− t))

uniformly converges to u(x) on any compact subset of R. By Definition 3,

((−Δ)
1
2
i u(x), φ(x)) = lim

n→∞
− 1

π

∫ ∞

0

u′n(x + t)φ(t)− u′n(x− t)φ(−t)
t

dt

= − 1
π

∫ ∞

0

u′(x + t)φ(t)− u′(x− t)φ(−t)
t

dt

= − 1
π

∫ ∞

0

∞

∑
k=0

u(k+1)(x)
k!

tkφ(t)−
∞

∑
k=0

u(k+1)(x)
k!

(−t)kφ(−t)

t
dt

= − 1
π

∫ ∞

0

φ(t)u′(x)− φ(−t)u′(x)
t

dt

− 1
π

∫ ∞

0

∞

∑
k=1

u(k+1)(x)
k!

tkφ(t)−
∞

∑
k=1

u(k+1)(x)
k!

(−t)kφ(−t)

t
dt

= −u′(x)
π

(P.V.
1
x

, φ(x))− 1
π

(
u′(x + t)− u′(x)

t
, φ(t)

)
since

∞

∑
k=1

u(k+1)(x)
k!

tk = u′(x + t)− u′(x).
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We should note that the term: (
u′(x + t)− u′(x)

t
, φ(t)

)
is well defined for every point x ∈ R, and it is indeed not Cauchy’s principal value as:

lim
t→0

u′(x + t)− u′(x)
t

= u′′(x).

This completes the proof of Theorem 5.

It follows from Theorem 5 that:

((−Δ)
1
2
i (ax + b), φ(x)) = − a

π
(P.V.

1
x

, φ(x))

which implies that:

(−Δ)
1
2
i (ax + b) = − a

π
P.V.

1
x
�= (−Δ)

1
2 (ax + b) = 0.

Furthermore,

((−Δ)
1
2
i sin x, φ(x)) = −cos x

π

(
P.V.

cos t
t

, φ(t)
)
+

sin x
π

(
sin t

t
, φ(t)

)
.

Remark 1. To end this section, we must point out that if we replace φ(t) by φm(t) used in Section 2 and add

the limit, then the two operators (−Δ)
1
2
i and (−Δ)

1
2 are identical for some functions. For instance,

lim
m→∞

((−Δ)
1
2
i sin x, φm(x)) =

sin x
π

∫ ∞

−∞

sin t
t

dt = sin x

as: (
P.V.

cos t
t

, φm(t)
)
= 0.

4. Conclusions

This paper introduced two independent definitions for defining the fractional Laplacian of
the half-order (−Δ)

1
2 in the distribution, both explicitly and implicitly. We demonstrate several

examples, such as (−Δ)
1
2 δ(m)(x) and (−Δ)

1
2 arctan x, some of which are undefined in the classical

sense. The results obtained have potential applications in solving the differential equations involving
the half-order Laplacian operator. For example, the differential equation:

(−Δ)
1
2 u(x) =

x
1 + x2

has a solution:
u(x) = arctan x + ax + b

on any non-empty subset of R, and the differential equation:

(−Δ)
1
2 u(x) = P.V.

1
x

has a solution:
u(x) = πθ(x) + ax + b

where a and b are arbitrary constants.
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1. Introduction

Let H denote the class of functions that are analytic in U = {z : |z| < 1}, and A denote the class of
functions f that are analytic in U having the Taylor series form

f (z) = z +
∞

∑
n=2

anzn, z ∈ U . (1)

The class S of univalent functions f is the class of those functions in A that are one-to-one in U .
Let S∗ denote the class of all functions f such that f (U ) is star-shaped domain with respect to origin
while C denotes the class of functions f such that f maps U onto a domain which is convex. A function f
in A belongs to the class S∗ (α) of starlike functions of order α if and only if Re (z f ′ (z) / f (z)) > α, α ∈
[0, 1) . For α ∈ [0, 1), a function f ∈ A is convex of order α if and only if Re (1 + z f ′′ (z) / f ′ (z)) > α

in U̇ . This class of functions is dented by C (α) . It is clear that S∗ (0) = S∗ and C (0) = C are the usual
classes of starlike and convex functions respectively. A function f in A is said to be close-to-convex
function in U̇ , if f (U ) is close-to-convex. That is, the complement of f (U ) can be expressed as the union of
non-intersecting half-lines. In other words a function f in A is said to be close-to-convex if and only if
Re (z f ′ (z) /g (z)) > 0 for some starlike function g. In particular if g (z) = z, then Re ( f ′ (z)) > 0. The class

Mathematics 2019, 7, 316; doi:10.3390/math7040316 www.mdpi.com/journal/mathematics
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of close-to-convex functions is denoted by K. The functions in class K are univalent in U . For some details
about these classes of functions one can refer to [1]. Consider the class Pδ (α) of functions p such that
p (0) = 1 and

Re
{

eiδ p (z)
}
> α, z ∈ U , α ∈ [0, 1) , δ ∈ R.

Also consider the class Rδ (α) of functions f ∈ A such that

Re
{

eiδ f ′ (z)
}
> α, z ∈ U , α ∈ [0, 1) , δ ∈ R.

These classes were introduced and investigated by Baricz [2]. For δ = 0, we have the classes P0 (α)

and R0 (α). Also for δ = 0 and α = 0, we have the classes P and R.
Special functions have great importance in pure and applied mathematics. The wide use of these

functions have attracted many researchers to work on the different directions. Geometric properties of
special functions such as Hypergeometric functions, Bessel functions, Struve functions, Mittag-Lefller
functions, Wright functions and some other related functions is an ongoing part of research in geometric
function theory. We refer for some geometric properties of these functions [2–6] and references therein.

We consider the hyper-Bessel function in the form of the hypergeometric functions defined as

Jγc(z) =

( z
c+1

)γ1+γ2+...+γc

c
∏
i=1

Γ (γi + 1)
0Fc

(
−

(γc + 1);−
(

z
c + 1

)c+1
)

, (2)

where the notation

mFn

((
(η)m
(δ)n

)
; x

)
=

∞

∑
k=0

(η1)k (η2)k ... (ηm)k
(δ1)k (δ2)k ... (δn)k

xk

k!
, (3)

represents the generalized Hypergeometric functions and γc represents the array of c parameters
γ1, γ2, ..., γc. By combining Equations (2) and (3), we get the following infinite representation of the
hyper-Bessel functions

Jγc(z) =
∞

∑
n=0

(−1)n

n!
c

∏
i=1

Γ (γi + n + 1)

(
z

c + 1

)n(c+1)+γ1+γ2+...+γc

, (4)

since Jγc is not in class A. Therefore, consider the hyper-Bessel function Jγc which is defined by

Jγc(z) = 1 +
∞

∑
n=2

(−1)n−1

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(αi + 1)n−1

z(n−1)(c+1). (5)

It is observed that the function Jγc defined in (5) is not in the class A. Here, we consider the following
normalized form of the hyper-Bessel function for our own convenience.

Hγc(z) = zJγc(z) = z +
∞

∑
n=2

(−1)n−1

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(γi + 1)n−1

z(n−1)(c+1)+1. (6)

For some details about the hyper-Bessel functions one can refer to [7–9]. Recently Aktas et al. [8]
studied some geometric properties of hyper-Bessel function. In particular, they studied radii of starlikeness,
convexity, and uniform convexity of hyper-Bessel functions. Motivated by the above works, we study
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the geometric properties of hyper-Bessel function Hγc given by the power series (6). We determine
the conditions on parameters that ensure the hyper-Bessel function to be starlike of order α, convex of
order α, close-to-convex of order ( 1+α

2 ). We also study the convexity and starlikeness in the domain

U1/2 =
{

z : |z| < 1
2

}
. Sufficient conditions on univalency of an integral operator defined by hyper-Bessel

function is also studied. We find the conditions on normalized hyper-Bessel function to belong to the
Hardy space Hp.

To prove our results, we require the following.

Lemma 1. If f ∈ A satisfy | f ′(z)− 1| < 1 for each z ∈ U , then f is convex in U1/2 =
{

z : |z| < 1
2

}
[10].

Lemma 2. If f ∈ A satisfy
∣∣∣ f (z)

z − 1
∣∣∣ < 1 for each z ∈ U , then f is starlike in U1/2 =

{
z : |z| < 1

2

}
[11].

Lemma 3. Let β ∈ C with Re(β) > 0, c ∈ C with |c| ≤ 1, c �= −1 [12]. If h ∈ A satisfies∣∣∣∣c |z|2β +

(
1− |z|2β zh′′(z)

βh′(z)

)∣∣∣∣ ≤ 1, z ∈ U ,

then the integral operator

Cβ(z) =

⎧⎨⎩β

z∫
0

tβ−1h′(t)dt

⎫⎬⎭
1/β

, z ∈ U ,

is analytic and univalent in U .

Lemma 4. If f ∈ A [13] satisfies the inequality

∣∣z f ′′(z)
∣∣ < 1− α

4
, (z ∈ U , 0 ≤ α < 1),

then
Re f ′(z) >

1 + α

4
, (z ∈ U , 0 ≤ α < 1).

Lemma 5. If f ∈ A satisfies
∣∣∣ z f ′′(z)

f ′(z)

∣∣∣ < 1
2 [14], then f ∈ UCV .

2. Geometric Properties of Normalized Hyper-Bessel Function

Theorem 1. Let i ∈ {1, 2, 3, ..., c}, γi > −1 with α ∈ [0, 1) and z ∈ U . Then the following results are true:

(i) If
c

∏
i=1

(γi + 1) > (2c+7−5α)+
√

(2c+7−5α)2−8(1−α)(c+4−3α)
4ς(1−α)

, then Hγc ∈ S∗(α).

(ii) If
c

∏
i=1

(γi + 1) > {(2c+7)(1−α)−(2c2+5c+3)}+Ψ
2ς{2(1−α)−(4c2+10c+6)} , where

Ψ =

√
{(2c + 7) (1− α)− (2c2 + 5c + 3)}2 − 4 {2 (1− α)− (4c2 + 10c + 6)} (c + 4) (1− α),

then Hγc ∈ C(α).
(iii) If

c
∏
i=1

(γi + 1) > 1−α
ς(1−α)−4(c+1)(2c+3) , then Hγc ∈ K( 1+α

2 ).

(iv) If
c

∏
i=1

(γi + 1) > 3−α
2ς(1−α)

, then Hγc
z ∈ P(α).
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Proof. (i) By using the inequalities

n! ≥ n, (γi + 1)n ≥ (γi + 1)n , ∀ n ∈ N,

we obtain ∣∣∣∣H′
γc (z)−

Hγc (z)
z

∣∣∣∣ ≤ (c + 1)
ζη ∑

n≥1

(
1

ζη

)n−1
,

where

ζ = (c + 1)c+1 and η =
c

∏
i=1

(γi + 1) .

This implies that ∣∣∣∣H′
γc (z)−

Hγc (z)
z

∣∣∣∣ ≤ c + 1
ζη − 1

. (7)

Furthermore, if we use the inequality

n! ≥ 2n−1, (γi + 1)n ≥ (γi + 1)n , ∀ n ∈ N,

then

∣∣∣∣Hγc (z)
z

∣∣∣∣ =

∣∣∣∣∣∣∣∣1 + ∑
n≥1

(−1)n−1

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(γi + 1)n−1

z(n−1)(c+1)

∣∣∣∣∣∣∣∣
≥ 1− 1

ζη ∑
n≥1

(
1

2ζη

)n−1

=
2ζη − 3
2ζη − 1

. (8)

By combining Equations (7) and (8), we obtain∣∣∣∣∣ zH′
γc (z)

Hγc (z)
− 1

∣∣∣∣∣ ≤ (c + 1) (2ζη − 1)
(ζη − 1) (2ζη − 3)

. (9)

For Hγc ∈ S∗ (α) , we must have

(c + 1) (2ζη − 1)
(ζη − 1) (2ζη − 3)

< 1− α.

So, Hγc ∈ S∗ (α) , where 0 ≤ α < 1− (c+1)(2ζη−1)
(ζη−1)(2ζη−3) .
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(ii) To prove that the function Hγc ∈ C (α) , we have to show that
∣∣∣∣ zH′′

γc (z)

H′
γc (z)

∣∣∣∣ < 1− α. Consider

Hγc(z) = ∑
n≥0

(−1)n

n!(c + 1)n(c+1)
c

∏
i=1

(γi + 1)n

zn(c+1)+1,

zH′′
γc(z) = ∑

n≥0

{
n2(c + 1)2 + n(c + 1)

}
(−1)n

n!(c + 1)n(c+1)
c

∏
i=1

(γi + 1)n

zn(c+1),

= ∑
n≥1

(n− 1)2 (c + 1)2

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(γi + 1)n−1

zn(c+1)

+ ∑
n≥1

(n− 1) (c + 1)

(n− 1)!(c + 1)(n−1)(c+1)
c

∏
i=1

(γi + 1)n−1

zn(c+1).

By using the inequalities

(n− 1)! ≥ (n− 1)2

2
, (n− 1)! ≥ n− 1, (αi + 1)n ≥ (αi + 1)n , ∀ n ∈ N,

we have

∣∣zH′′
αc(z)

∣∣ =

∣∣∣∣∣∣∣∣∣
∑

n≥1

(n−1)2(c+1)2

(n−1)!(c+1)(n−1)(c+1)
c

∏
i=1

(αi+1)n−1

zn(c+1)

+ ∑
n≥1

(n−1)(c+1)

(n−1)!(c+1)(n−1)(c+1)
c

∏
i=1

(αi+1)n−1

zn(c+1)

∣∣∣∣∣∣∣∣∣
≤ 2(c + 1)2 ∑

n≥1

(
1

ζη

)n−1
+ (c + 1) ∑

n≥1

(
1

ζη

)n−1
,

where

ζ = (c + 1)c+1 and η =
c

∏
i=1

(γi + 1) .

This implies that ∣∣∣zH′′
γc(z)

∣∣∣ ≤ ζη (c + 1) (2c + 3)
(ζη − 1)

(10)

Furthermore, if we use the inequalities

n! ≥ n, n! ≥ 2n−1, (γi + 1)n ≥ (γi + 1)n , ∀ n ∈ N,
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then we get ∣∣∣H′
γc (z)

∣∣∣ ≥ 1− ∑
n≥1

n(c + 1) + 1
n!ζnηn

≥ 1− c + 1
ζη ∑

n≥1

(
1

ζη

)n−1
+

1
ζη ∑

n≥1

(
1

2ζη

)n−1

=
(ζη − 1) (2ζη − 3)− (2ζη − 1) (c + 1)

(ζη − 1) (2ζη − 1)
. (11)

By combining Equations (10) and (11) , we get∣∣∣∣∣ zH′′
γc (z)

H′
γc (z)

∣∣∣∣∣ ≤ ζη (2ζη − 1) (c + 1) (2c + 3)
(ζη − 1) (2ζη − 3)− (2ζη − 1) (c + 1)

< 1− α.

This implies that Hγc ∈ C (α) , where 0 ≤ α < 1− ζη(2ζη−1)(c+1)(2c+3)
(ζη−1)(2ζη−3)−(2ζη−1)(c+1) .

(iii) Using the inequality (10) and Lemma 4, we have∣∣∣zH′′
γc(z)

∣∣∣ ≤ ζη (c + 1) (2c + 3)
(ζη − 1)

<
1− α

4
,

where 0 ≤ α < 1− 4 ζη(c+1)(2c+3)
(ζη−1) . This shows that Hγc ∈ K( 1+α

2 ). Therefore Re
(
H′

γc(z)
)
> 1+α

2 .

(iv) To prove that Hγc
z ∈ P(α) , we have to show that |h(z)− 1| < 1 , where h(z) =

Hγc (z)/z−α
1−α .

By using the inequality
2n−1 ≤ n!, n ∈ N,

we have

|h(z)− 1| =

∣∣∣∣∣∣∣∣
1

1− α

∞

∑
n=1

(−1)n

n! (c + 1)n(c+1) c
∏
i=1

(γi + 1)n

zn(c+1)+1

∣∣∣∣∣∣∣∣
≤ 1

(1− α)

1
ςη

∞

∑
n=1

(
1

2ςη

)n−1

=
1

(1− α)

2
2ςη − 1

.

Therefore, Hγc
z ∈ P(α) for 0 < α < 1− 2

2(c+1)n(c+1) c
∏

i=1
(γi+1)n−1

.

Putting α = 0 in Theorem 1, we have the following results.

Corollary 1. Let i ∈ {1, 2, 3, ..., c}, γi > −1 and z ∈ U . Then the followings are true:

(i) If
c

∏
i=1

(γi + 1) >, (2c+7)+
√

(2c+7)2−8(c+4)
4ς , then Hγc ∈ S∗.

(ii) If
c

∏
i=1

(γi + 1) >
{(2c+7)−(2c2+5c+3)}+

√
{(2c+7)−(2c2+5c+3)}2−4(c+4){2−(4c2+10c+6)}

2ς{2−(4c2+10c+6)} ,

then Hγc ∈ C.
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(iii) If
c

∏
i=1

(γi + 1) > 1
ς{1−4(c+1)(2c+3)} , then Hγc ∈ K( 1

2 ).

(iv) If
c

∏
i=1

(γi + 1) > 3
2ς , then Hγc

z ∈ P .

3. Starlikeness and Convexity in U1/2

Theorem 2. Let i ∈ {1, 2, 3, ..., c}, γi > −1 and z ∈ U . Then the following assertions are true:

(i) If
c

∏
i=1

(γi + 1) > 3
2ς , then Hγc is starlike in U1/2.

(ii) If
c

∏
i=1

(γi + 1) > (c+3)+
√

c2+4c+2
2ς , then Hγc is convex in U1/2.

Proof. (i) By using the inequality 2n−1 ≤ n!, n ∈ N, we obtain

∣∣∣∣Hγc(z)
z

− 1
∣∣∣∣ ≤

∣∣∣∣∣∣∣∣
∞

∑
n=1

(−1)n

n! (c + 1)n(c+1) c
∏
i=1

(γi + 1)n

zn(c+1)

∣∣∣∣∣∣∣∣
≤

∞

∑
n=1

⎛⎜⎜⎜⎝ 1

n!
{
(c + 1)(c+1)

}n
{

c
∏
i=1

(γi + 1)
}n

⎞⎟⎟⎟⎠
≤ 1

ςη

∞

∑
n=1

(
1

2ςη

)n−1
=

2
2ςη − 1

.

In view of Lemma 2, Hγc is starlike in U1/2, if 2
2ςη−1 < 1, which is true under the given hypothesis.

(ii) Consider, ∣∣∣H′
γc(z)− 1

∣∣∣ ≤ ∞

∑
n=1

n(c + 1) + 1

n! (c + 1)n(c+1) c
∏
i=1

(γi + 1)n

≤
∞

∑
n=1

n(c + 1)
n!ζnηn +

∞

∑
n=1

1
n!ζnηn .

Since, n! ≥ n, for all n ∈ N and n! ≥ 2n−1, for all n ∈ N. Therefore

∣∣∣H′
γc(z)− 1

∣∣∣ ≤ c + 1
ζη

∞

∑
n=1

(
1

ζη

)n−1
+

1
ζη

∞

∑
n=1

(
1

2ζη

)n−1

=
(c + 1)(2ζη − 1) + 2 (ζη − 1)

(ζη − 1) (2ζη − 1)
.

In view of Lemma 1, Hγc is convex in U1/2, if (c+1)(2ζη−1)+2(ζη−1)
(ζη−1)(2ζη−1) < 1, but this is true under the

hypothesis.
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Consider the integral operator Fβ : U → C, where β ∈ C, β �= 0,

Fβ(z) =

⎧⎨⎩β

z∫
0

tβ−2Hγc (t) d (t)

⎫⎬⎭
1
β

, z ∈ U .

Here Fβ ∈ A. In the next theorem, we obtain the conditions so that Fβ is univalent in U .

Theorem 3. Let i ∈ {1, 2, 3, ..., c}, γi > −1 and z ∈ U . Let
c

∏
i=1

(γi + 1) > (2c+7)+
√

(7+2c)2−8(2c+3)
4ς and suppose

that M ∈ R+ such that |Hγc (z)| ≤ M in the open unit disc. If

|β− 1|+ (c + 1) (2ζη − 1)
(ζη − 1) (2ζη − 3)

+
M
|β| ≤ 1,

then Fβ is univalent in U .

Proof. A calculations gives us

zF′′
β (z)

F′
β(z)

=
zH′

γc (z)
Hγc (z)

+
zβ−1

β
Hγc (z) + β− 2, z ∈ U .

Since Hγc ∈ A, then by the Schwarz Lemma, triangle inequality and Equation (9) , we obtain

(
1− |z|2

) ∣∣∣∣∣ zF′′
β (z)

F′
β(z)

∣∣∣∣∣ ≤
(

1− |z|2
) {

|β− 1|+
∣∣∣∣∣ zH′

γc (z)
Hγc (z)

− 1

∣∣∣∣∣ + |z|R(β)

|β|

∣∣∣∣Hγc (z)
z

∣∣∣∣
}

≤
(

1− |z|2
) {

|β− 1|+ (c + 1) (2ζη − 1)
(ζη − 1) (2ζη − 3)

+
M
|β|

}
≤ 1.

This shows that the given integral operator satisfying the Becker’s criterion for univalence [12], hence
Fβ is univalent in U .

4. Uniformly Convexity of Hyper-Bessel Functions

Theorem 4. If i ∈ {1, 2, 3, ..., c}, γi > −1 and z ∈ U . If
c

∏
i=1

(γi + 1) >

(4c2+8c−1)+
√
(4c2+8c−1)2−4(c+4)(8c2+20c+10)

2(8c2+20c+10)ς , then Hγc ∈ UCV .

Proof. Since ∣∣∣∣∣ zH′′
γc (z)

H′
γc (z)

∣∣∣∣∣ ≤ ζη (2ζη − 1) (c + 1) (2c + 3)
(ζη − 1) (2ζη − 3)− (2ζη − 1) (c + 1)

.

By using Lemma 5, we have ∣∣∣∣∣ zH′′
γc (z)

H′
γc (z)

∣∣∣∣∣ < 1
2

,

if
ζη (2ζη − 1) (c + 1) (2c + 3)

(ζη − 1) (2ζη − 3)− (2ζη − 1) (c + 1)
<

1
2

.
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This implies that

c

∏
i=1

(γi + 1) >

(
4c2 + 8c− 1

)
+

√
(4c2 + 8c− 1)2 − 4(c + 4)(8c2 + 20c + 10)

2(8c2 + 20c + 10)ς
.

Hence, we obtain the required result.

5. Hardy Spaces Of Hyper-Bessel Functions

Let H∞ denote the space of all bounded functions on H. Let f ∈ H, set

Mp (r, f ) =

⎧⎪⎨⎪⎩
(

1
2π

2π∫
0

∣∣ f
(
reiθ)∣∣p dθ

)1/p

, 0 < p < ∞,

sup {| f (z)| : |z| ≤ r} , p = ∞.

Then the function f ∈ Hp if Mp (r, f ) is bounded for all r ∈ [0, 1) . It is clear that

H∞ ⊂ Hq ⊂ Hp, 0 < q < p < ∞.

For some details, see [15] (page 2) . It is also known [16] (page 64, Section 4.5) (see also [15]) that for
Re ( f ′ (z)) > 0 in U , then {

f ′ ∈ Hq, q < 1,
f ∈ Hq/(1−q), 0 < q < 1.

We require the following results to prove our results.

Lemma 6. P0(α) ∗ P0(β) ⊂ P0(γ), where γ = 1− 2(1− α)(1− β) with α, β < 1 and the value of γ is best
possible [17].

Lemma 7. For α, β < 1 and γ = 1 − 2(1 − α)(1 − β), we have R0(α) ∗ R0(β) ⊂ R0(γ) or equivalently
P0(α) ∗ P0(β) ⊂ P0(γ) [18].

Lemma 8. If the function f ∈ C (α)[19] , where α ∈ [0, 1) is not of the form

f (z) =

{
θ + η(1− zeiγ)2α−1 , α �= 1

2 ,
θ + η log(1− zeiγ) , α �= 1

2 ,

for ζ, η ∈ C and γ ∈ R, then the following statements hold:

(i) There exists δ = δ( f ) > 0, such that f ′ ∈ Hδ+ 1
2(1−α) .

(ii) If α ∈ [1, 1/2), then there exists τ = τ ( f ) > 0, such that f ∈ Hτ+1/(1−2α).
(iii) If α ≥ 1/2, then f ∈ H∞.

Theorem 5. Let i ∈ {1, 2, 3, ..., c}, γi > −1 with α ∈ [0, 1) and z ∈ U . Let

c

∏
i=1

(γi + 1) >

{
(2c + 7) (1− α)−

(
2c2 + 5c + 3

)}
+ Φ

2ς {2 (1− α)− (4c2 + 10c + 6)} ,
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where

Φ =

√
{(2c + 7) (1− α)− (2c2 + 5c + 3)}2 − 4 {2 (1− α)− (4c2 + 10c + 6)} (c + 4) (1− α).

Then

(i) Hγc ∈ H1/1−2α for α ∈ [0, 1/2) .
(ii) Hγc ∈ H∞ for α ≥ 1/2.

Proof. By using the definition of Hypergeometric function

2F1(a, b, c; z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
,

we have

θ +
ϑz

(1− zeiψ)1−α
= θ + ϑz 2F1(1, 1− 2α, 1; zeiψ)

= θ + ϑ
∞

∑
n=0

(1− 2α)n
n!

eiψnzn+1,

for θ, ϑ ∈ C, α �= 1/2 and for ψ ∈ R. On the other hand

θ + ϑ log(1− zeiψ) = θ − ϑz 2F1(1, 1, 2; zeiψ)

= θ − ϑ
∞

∑
n=0

1
n + 1

eiψnzn+1.

This implies that Hγc is not of the form θ + ϑz(1− zeiψ)2α−1 for α �= 1/2 and θ + ϑ log(1− zeiψ) for
α = 1/2 respectively. Also from part (ii) of Theorem 1, Hγc is convex of order α. Hence by using Lemma 8,
we have required result.

Theorem 6. Let i ∈ {1, 2, 3, ..., c}, γi > −1 with α ∈ [0, 1) and z ∈ U . If
c

∏
i=1

(γi + 1) > 3−α
2ς(1−α)

, then Hγc
z ∈

P(α). If f ∈ R(�), with � < 1, then Hγc ∗ f ∈ R(τ), where τ = 1− 2(1− α)(1− �).

Proof. Let h(z) = Hγc(z) ∗ f (z), then h′(z) =
Hγc (z)

z ∗ f ′(z). Now from Theorem 1 of part (iv), we

have Hγc
z ∈ P(α). By using Lemma 6 and the fact that f ′ ∈ P(�), we have h′(z) ∈ P (τ), where

τ = 1− 2(1− α)(1− �). Consequently, we have h ∈ R(τ).

Corollary 2. Let i ∈ {1, 2, 3, ..., c}, γi > −1 with α ∈ [0, 1) and z ∈ U . If
c

∏
i=1

(γi + 1) > 3−α
2ς(1−α)

, then

Hγc
z ∈ P(α). If f ∈ R(�), � = (1− 2α)(2− 2α), then Hγc ∗ f ∈ R(0).
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1. Introduction

We denote by A the class of analytic functions on the unit disc U = {z ∈ C : |z| < 1} having the
following taylor series representation:

f (z) = z +
∞

∑
n=2

anzn. (1)

The analytic function f will be subordinate to an analytic function g, if there exists an analytic
function w, known as a Schwarz function, with w (0) = 0 and |w(z)| < |z|, such that f (z) = g(w(z)).
Moreover, if the function g is univalent in U, then we have the following (see [1,2]):

f (z) ≺ g(z), z ∈ U ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

Uralegaddi et al. [3] introduced the reciprocal classes M (γ) of starlike and N (γ) of convex

functions for 1 ≤ γ ≤ 4
3

, which were further studied by Owa et al. [4–6] for the values γ ≥ 1.
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The classes M (γ) of starlike functions and N (γ) of reciprocal order convex functions γ, (γ > 1) are
defined as follows:

M (γ) =

{
f ∈ A : Re

z f ′(z)
f (z)

< γ, z ∈ U

}
,

N (γ) =

{
f ∈ A : Re

{
1 +

z f ′′(z)
f ′(z)

}
< γ, z ∈ U

}
.

Using the same concept, together with the idea of k-uniformly starlike and γ ordered convex
functions, Nishiwaki and Owa [7] defined the reciprocal classes of uniformly starlike MD (k, γ) and
convex functions ND (k, γ). The class MD (k, γ) denotes the subclass of A consisting of functions f
satisfying the inequality

Re
z f ′(z)

f (z)
< k

∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ + γ, (z ∈ U) ,

for some γ (γ > 1) and k (k ≤ 0) and the class ND (k, γ) denotes the subclass of A consisting of
functions f (z) satisfying the inequality

Re
(z f ′(z))′

f ′(z)
< γ + k

∣∣∣∣∣ (z f ′(z))′

f ′(z)
− 1

∣∣∣∣∣ , (z ∈ U) ,

for some γ (γ > 1) and k (k ≤ 0). They also proved that the well-known Alexander relation holds
between MD (k, γ) and ND (k, γ) . This means that

f ∈ ND (k, γ) ⇔ z f ′ ∈ MD (k, γ) .

For a more detailed and recent study on uniformly convex and starlike functions,
we refer the reader to [8–12].

Considering the above defined classes, we introduce the following classes.

Definition 1. Let f belong to A. Then, it will belong to the class KD (β, γ) if there exists g ∈ MD (γ)

such that
Re

{
z f ′(z)
g(z)

}
< β, (z ∈ U), (2)

for some β, γ > 1.

Definition 2. Let f belong to A. Then, it will belong to the class QD (β, γ) if there exists g ∈ ND (γ)

such that

Re

{
(z f ′(z))′

g′(z)

}
< β, (z ∈ U), (3)

for some β, γ > 1.

It is clear, from (2) and (3), that

f (z) ∈ QD (β, γ) ⇔ z f ′ (z) ∈ KD (β, γ) .

Definition 3. Let f belong to A. Then, it will belong to the class KD (k, β, γ) if there exists g ∈ MD (k, γ)

such that
Re

{
z f ′(z)
g(z)

}
< k

∣∣∣∣ z f ′(z)
g(z)

− 1
∣∣∣∣ + β, (z ∈ U), (4)

for some k ≤ 0 and β, γ > 1.
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Definition 4. Let f belong to A. Then, it is said to be in the class QD (k, β, γ) if there exists g ∈ ND (k, γ)

such that

Re

{
(z f ′(z))′

g′(z)

}
< k

∣∣∣∣∣ (z f ′(z))′

g′(z)
− 1

∣∣∣∣∣ + β, (z ∈ U), (5)

for some k ≤ 0 and β, γ > 1.

We can see, from (4) and (5), that the well-known relation of Alexander type holds between the
classes KD (k, β, γ) and QD (k, β, γ), which means that

f (z) ∈ QD (k, β, γ) ⇔ z f ′ (z) ∈ KD (k, β, γ) .

2. Preliminary Lemmas

Lemma 1. For positive integers t and σ, we have

σ
t

∑
j=1

(σ)j−1

(j− 1)!
=

(σ)t

(t− 1)!
, (6)

where (σ)t is the Pochhammer symbol, defined by

(σ)t =
Γ (σ + t)

Γ (σ)
= σ(σ + 1)(σ + 2)(σ + 3) · · · (σ + t− 1).

Proof. Consider

σ
t

∑
j=1

(σ)j−1

(j− 1)!

= σ

(
1 +

σ

1
+

(σ)2

2!
+

(σ)3

3!
+

(σ)4

4!
+ · · ·+ (σ)t−1

(t− 1)!

)
= σ(1 + σ)

(
1 +

σ

2
+

σ(σ + 2)
2× 3

+ · · ·+ σ(σ + 2) · · · (σ + t− 2)
2× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)
2

(
1 +

σ

3
+ · · ·+ σ(σ + 3) · · · (σ + t− 2)

3× 4× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)
2

(σ + 3)
3

(
1 +

σ

4
+ · · ·+ σ(σ + 4) · · · (σ + t− 2)

4× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)
2

(σ + 3)
3

(σ + 4)
4

(
1 +

σ

5
+ · · ·+ σ · · · (σ + t− 2)

5× 6× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)
2

(σ + 3)
3

(σ + 4)
4

· · ·
(

1 +
σ

t− 1

)
= σ(1 + σ)

(σ + 2)
2

(σ + 3)
3

(σ + 4)
4

· · ·
(

σ + (t− 1)
t− 1

)
=

(σ)t

(t− 1)!
.

Lemma 2. If f (z) ∈ MD (k, γ), then

f (z) ∈ MD
(

γ− k
1− k

)
.
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Proof. Using the definition , we write

Re
z f ′(z)

f (z)
< k

∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ + γ

≤ kRe
z f ′(z)

f (z)
+ γ− k,

which implies that

(1− k)Re
z f ′(z)

f (z)
< γ− k.

After simplification, we obtain

Re
z f ′(z)

f (z)
<

γ− k
1− k

, (k ≤ 0, γ > 1) .

As
γ− k
1− k

> 1, we have f (z) ∈ MD
(

γ− k
1− k

)
. With this, we obtain the required result.

Lemma 3. If f belongs to the class MD (k, γ), then

|an| ≤
(
δk,γ

)
n−1

(n− 1)!
, (7)

where

δk,γ =
2(γ− 1)

1− k
. (8)

Proof. Let us define a function

p(z) =
(γ− k)− (1− k)

(
z f ′(z)

f (z)

)
γ− 1

, (9)

where p ∈ P , the class of Caratheodory functions (see [1]). One may write

z f ′(z)
f (z)

=
(γ− k)− (γ− 1) p(z)

1− k
, (10)

or

z f ′(z) =
(

γ− k
1− k

− γ− 1
1− k

p(z)
)

f (z). (11)

Let us write p(z) as p(z) = 1 +
∞
∑

n=1
pnzn and let f have the series form, as in (1). Then, (11) can be

written as
∞

∑
n=1

nanzn =

(
∞

∑
n=1

anzn

) (
γ− k
1− k

− γ− 1
1− k

(
1 +

∞

∑
n=1

pnzn

))
, a1 = 1

which reduces to

∞

∑
n=1

nanzn =

(
∞

∑
n=1

anzn

) (
1− γ− 1

1− k

∞

∑
n=1

pnzn

)

=
∞

∑
n=1

anzn − γ− 1
1− k

(
∞

∑
n=1

anzn

) (
∞

∑
n=1

pnzn

)
.
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This implies that
∞

∑
n=1

(n− 1) anzn = −γ− 1
1− k

∞

∑
n=1

(
n−1

∑
j=0

aj pn−j

)
zn.

After comparing the nth term’s coefficients, appearing on both sides, combined with the fact that
a0 = 0, we obtain

an =
− (γ− 1)

(n− 1) (1− k)

n−1

∑
j=1

aj pn−j.

Now, we take the absolute value and then apply the triangle inequality to get

|an| ≤
γ− 1

(n− 1) (1− k)

n−1

∑
j=1

∣∣aj
∣∣ ∣∣pn−j

∣∣ .

Applying the coefficient estimates, such that |pn| ≤ 2 (n ≥ 1) for Caratheodory functions [1],
we obtain

|an| ≤
2(γ− 1)

(n− 1) (1− k)

n−1

∑
j=1

∣∣aj
∣∣ .

|an| ≤
δk,γ

n− 1

n−1

∑
j=1

∣∣aj
∣∣ , (12)

where δk,γ =
2(γ− 1)

1− k
. We prove (7) by induction on n. Thus, first for n = 2, we obtain the following

from (12):

|a2| ≤
δk,γ

1
=

(
δk,γ

)
2−1

(2− 1)!
. (13)

This proves that, for n = 2, (7) is true. For n = 3, we obtain

|a3| ≤
δk,γ

2
(1 + |a2|) =

δk,γ
(
1 + δk,γ

)
2

=

(
δk,γ

)
3−1

(3− 1)!
.

This proves that when n = 3, (7) holds true. Now, we assume that for t ≤ n, (7) is true, that means

|at| ≤
(
δk,γ

)
t−1

(t− 1)!
t = 1, 2, . . . , n. (14)

Using (12) and (14), we have

|at+1| ≤
δk,γ

t

t

∑
j=1

∣∣aj
∣∣ ≤ δk,γ

t

t

∑
j=1

(
δk,γ

)
j−1

(j− 1)!
.

After applying (6), we obtain

|at+1| ≤
1
t
(δk,γ)t

(t− 1)!
=

(δk,γ)t

t!
.

As a result of mathematical induction, it is shown that (7) is true for all n ≥ 2. Hence, the required
bound is obtained.

Lemma 4 ([13]). Let w be analytic in U with w(0) = 0. If there exists z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| ,
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then
z0w′(z0) = cw(z0),

where c is real and c ≥ 1.

3. Main Results

Theorem 1. If f (z) ∈ KD (k, β, γ), then

f (z) ∈ KD
(

β− k
1− k

, γ

)
.

Proof. If f (z) ∈ KD (k, β, γ), then k ≤ 0, β > 1, and so we obtain

Re

{
z f ′(z)
g(z)

}
< k

∣∣∣∣ z f ′(z)
g(z)

− 1
∣∣∣∣ + β

≤ β + kRe

{
z f ′(z)
g(z)

− 1
}

,

which leads to

Re

{
z f ′(z)
g(z)

}
− kRe

{
z f ′(z)
g(z)

}
< −k + β.

After simplification, we obtain

Re

{
z f ′(z)
g(z)

}
<

β− k
1− k

, (k ≤ 0, β > 1) . (15)

This completes the proof.

In a similar way, one can easily prove the following important result.

Theorem 2. If f ∈ QD (k, β, γ), then

f ∈ QD
(

β− k
1− k

, γ

)
.

Theorem 3. If f (z) ∈ KD (k, β, γ), then

|an| ≤
(
δk,γ

)
n−1

n!
+

∣∣∣δk,β

∣∣∣
n

n−1

∑
j=1

(
δk,γ

)
j−1

(j− 1)!
,

where δk,γ is given by (8) and

δk,β =
2 (β− 1)

1− k
. (16)

Proof. If f is in the class KD(k, β, γ), then there exists g(z) ∈ MD (k, γ) such that the function

p(z) =
(β− k)− (1− k)

(
z f ′(z)
g(z)

)
β− 1

(17)

belongs to P . Therefore, we write

z f ′(z) =
β− k
1− k

g(z)− β− 1
1− k

g(z)p(z). (18)

296



Mathematics 2019, 7, 309

Let us write p(z) as p(z) = 1 + ∑∞
n=1 pnzn, g(z) as g(z) = z + ∑∞

n=2 bnzn, and let f (z) have the
series form as in (1). Then, (18) can be written as

z +
∞

∑
n=2

nanzn =
β− k
1− k

(
z +

∞

∑
n=2

bnzn

)
− β− 1

1− k

(
1 +

∞

∑
n=1

pnzn

) (
z +

∞

∑
n=2

bnzn

)
.

Comparing the nth term’s coefficients on both sides, we obtain

nan = bn −
β− 1
1− k

[pn−1 + pn−2b2 + pn−3b3 + . . . + p1bn−1] .

By taking the absolute value, we get

n|an| =

∣∣∣∣bn −
β− 1
1− k

[pn−1 + pn−2b2 + pn−3b3 + . . . + p1bn−1]

∣∣∣∣
≤ |bn|+

β− 1
1− k

|pn−1 + pn−2b2 + pn−3b3 + . . . + p1bn−1| .

Applying the triangle inequality, we obtain

n|an| ≤ |bn|+
β− 1
1− k

{|pn−1|+ |pn−2b2|+ |pn−3b3|+ . . . + |p1bn−1|} . (19)

As Re {p(z)} > 0 in U, we have |pn| ≤ 2 (n ≥ 1) (see [1]). Then, from (19), we have

n|an| ≤ |bn|+
2 (β− 1)

1− k

n−1

∑
j=1

∣∣bj
∣∣ ,

where b1 = 1. Using Lemma (3), we obtain

n|an| ≤
(
δk,γ

)
n−1

(n− 1)!
+ δk,β

n−1

∑
j=1

(
δk,γ

)
j−1

(j− 1)!
,

where δk,β =
2 (β− 1)

1− k
and δk,γ is defined by (8). This can be written as

|an| ≤
(
δk,γ

)
n−1

n!
+

δk,β

n

n−1

∑
j=1

(
δk,γ

)
j−1

(j− 1)!
.

This completes the proof.

From Definition 4 and Theorem 2, we immediately get the following corollary.

Corollary 1. If f (z) ∈ QD(k, β, γ), then

|an| ≤
1
n

[(
δk,γ

)
n−1

n!
+

δk,β

n

n−1

∑
j=1

(
δk,γ

)
j−1

(j− 1)!

]
,

where δk,β and δk,γ are given by (16) and (8), respectively.

By taking k = 0 in the above results, we obtain the coefficient inequality for the classes KD(β, γ)

and QD(β, γ).
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Theorem 4. If a function f ∈ KD(k, β, γ), then there exists g ∈ MD(k, γ) such that

z f ′(z)
g(z)

≺ 1 + 2 (β1 − 1)− 2 (β1 − 1)
1− z

, (z ∈ U), (20)

where
β1 =

β− k
1− k

. (21)

Proof. Let f (z) ∈ KD(k, β, γ). Then, there exists g(z) in MD(k, γ) and a Schwarz function w(z)
such that

β1 −
(

z f ′(z)
g(z)

)
β1 − 1

=
1 + w(z)
1− w(z)

, (22)

as w(z) is analytic U with w(0) = 0 and


e
(

1 + w(z)
1− w(z)

)
> 0, (z ∈ U).

So, from (22), we obtain

z f ′(z)
g(z)

= β1 − (β1 − 1)
(

1 + w(z)
1− w(z)

)
=

β1 (1− w(z))− (β1 − 1) (1 + w(z))
1− w(z)

=
1 + w(z)− 2β1w(z)

1− w(z)

=
1− w(z)− 2 (β1 − 1)w(z)

1− w(z)

=
1− w(z) + 2 (β1 − 1)− 2 (β1 − 1)w(z)− 2 (β1 − 1)

1− w(z)

=
1− w(z) + 2 (β1 − 1) (1− w(z))− 2 (β1 − 1)

1− w(z)
.

This implies that
z f ′(z)
g(z)

= 1 + 2 (β1 − 1)− 2 (β1 − 1)
1− w(z)

,

and hence
z f ′(z)
g(z)

≺ 1 + 2 (β1 − 1)− 2 (β1 − 1)
1− z

, (z ∈ U),

which is as required in (20).

Corollary 2. If f ∈ QD(k, β, γ), then there exists g ∈ ND (k, γ) such that

(z f ′(z))′

g′(z)
≺ 1 + 2 (β1 − 1)− 2 (β1 − 1)

(1− z)
, (z ∈ U), (23)

where β1 is given by (21).

Theorem 5. If f ∈ KD(k, β, γ), then there exists a function g ∈ MD (k, γ) such that

1− (2β1 − 1)r
1− r

≤ Re
z f ′(z)
g(z)

≤ 1 + (2β1 − 1)r
1 + r

, (24)
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where |z| = r < 1 and β1 is given by (21).

Proof. Using Theorem 4, we define the function φ as follows

φ(z) = 1 + 2 (β1 − 1) +
2 (1− β1)

1− z
, (z ∈ U) .

Letting z = reiθ(0 ≤ r < 1), we observe that

Reφ(z) = 1 + 2 (β1 − 1) +
2 (1− β1) (1− r cos θ)

1 + r2 − 2r cos θ
.

Let us define
ψ(t) =

1− rt
1 + r2 − 2rt

, (t = cos θ) .

As ψ′(t) =
r
(
1− r2)

(1 + r2 − 2rt)2 ≥ 0 (since r < 1), we get

1 + 2 (β1 − 1) +
2 (1− β1)

1− r
≤ Reφ(z) ≤ 1 + 2 (β1 − 1) +

2 (1− β1)

1 + r
.

After simplification, we have

1− (2β1 − 1)r
1− r

≤ Reφ(z) ≤ 1 + (2β1 − 1)r
1 + r

.

With the fact that
z f ′(z)
g(z)

≺ φ(z), (z ∈ U) and as φ is univalent in U, by using (22), we get the

required result.

Corollary 3. If f ∈ QD(k, β, γ), then there exists g ∈ ND (k, γ) such that

1− (2β1 − 1)r
1− r

≤ Re
(z f ′(z))′

g′(z)
≤ 1 + (2β1 − 1)r

1 + r
, (25)

where |z| = r < 1 and β1 is given by (21).

Theorem 6. Assume that a function f ∈ A satisfies

Re

(
zg′(z)
g(z)

− z f
′′
(z)

f ′(z)

)
>

β1 + 1
2β1

, (z ∈ U), (26)

for some g(z) ∈ MD (k, γ) and for real β1 given by (21). If

φ(z) =
z f ′(z)
g(z)

is analytic in U and φ(z) �= 0 and φ(z) �= 2β1 − 1 in U, then f ∈ KD(k, β1).

Proof. Let us define a function w(z) by

w(z) =
φ(z)− 1

φ(z) + (1− 2β1)
, z ∈ U.
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Then, w(z) is analytic in U as φ(z) �= 2β1 − 1 and

φ(z) =
z f ′(z)
g(z)

=
1 + (1− 2β1)w(z)

1− w(z)
. (27)

Because φ(z) �= 0, we use logarithmic differentiation to get

1
z
+

f ′′(z)
f ′(z)

− g′(z)
g(z)

=
(1− 2β1)w′(z)

1 + (1− 2β1)w(z)
+

w′(z)
1− w(z)

,

which further yields

zg′(z)
g(z)

− z f ′′(z)
f ′(z)

= 1− (1− 2β1) zw′(z)
1 + (1− 2β1)w(z)

− zw′(z)
1− w(z)

. (28)

Then, we note that w is analytic in open unit disk and w(0) = 0. Therefore, from (28), we obtain

Re

(
zg′(z)
g(z)

− z f ′′(z)
f ′(z)

)
= Re

(
1− (1− 2β1) zw′(z)

1 + (1− 2β1)w(z)
− zw′(z)

1− w(z)

)
>

β1 + 1
2β1

.

Suppose there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

then, by Lemma 4, we can write w(z0) = eiθ and z0w′(z0) = ceiθ for a point z0, and we have

Re

(
z0g′(z0)

g(z0)
− z0 f ′′(z0)

f ′(z0)

)
= Re

(
1− (1− 2β1) ceiθ

1 + (1− 2β1) eiθ −
ceiθ

1− eiθ

)
= Re

(
1− c (1− 2β1)

(
eiθ + (1− 2β1)

)
1 + (1− 2β1)

2 + 2 (1− 2β1) cos θ
+

c
(
1− eiθ)

2 (1− cos θ)

)

= 1 +
c (2β1 − 1) [cos θ + (1− 2β1)]

1 + (1− 2β1)
2 + 2 (1− 2β1) cos θ

+
c
2

≤ 1− c (2β1 − 1)
2β1

+
c
2

= 1− c (β1 − 1)
2β1

≤ 1− β1 − 1
2β1

, as c < 1

=
β1 + 1

2β1
,

which gives that

Re

{
z0g′(z0)

g(z0)
− z0 f ′′(z0)

f ′(z0)

}
≤ β1 + 1

2β1
,
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which is the contradiction to the supposed condition (26). Hence, there is no z0 ∈ U such that
|w(z0)| = 1. This implies that |w(z)| < 1, (z ∈ U) and, therefore, by (27), we have

z f ′(z)
g(z)

≺ 1− (2β1 − 1)z
1− z

or

Re

{
z f ′(z)
g(z)

}
< β1, z ∈ U.

Hence, we conclude that f (z) ∈ KD(k, β1).

Theorem 7. Assume that k ≤ 0 and β > 1. If f ∈ A and if there exists g ∈ MD (k, γ) such that∣∣∣∣ z f ′(z)
g(z)

− 1
∣∣∣∣ < β− 1

1− k
z ∈ U, (29)

then f ∈ KD(k, β, γ).

Proof. We have ∣∣∣∣ z f ′(z)
g(z)

− 1
∣∣∣∣ < β− 1

1− k

⇒ (1− k)
∣∣∣∣ z f ′(z)

g(z)
− 1

∣∣∣∣ + 1 < β

⇒
∣∣∣∣ z f ′(z)

g(z)
− 1

∣∣∣∣ + 1 < k
∣∣∣∣ z f ′(z)

g(z)
− 1

∣∣∣∣ + β

⇒ Re
z f ′(z)
g(z)

< k
∣∣∣∣ z f ′(z)

g(z)
− 1

∣∣∣∣ + β

⇒ f ∈ KD(k, β, γ).

Corollary 4. Let f ∈ A have the form (1). Assume that g = z + b2z2 + · · · belongs to the class MD (k, γ)

and satisfies ∣∣∣∣∑∞
n=2(nan − bn)zn−1

1 + ∑∞
n=2 bnzn−1

∣∣∣∣ < β− 1
1− k

z ∈ U, (30)

for some k (k ≤ 0), β (β > 1).
Then, f (z) ∈ KD(k, β, γ).

Proof. We have ∣∣∣∣ z f ′(z)
g(z)

− 1
∣∣∣∣

=

∣∣∣∣∣∣∣∣
z +

∞
∑

n=2
nanzn

z +
∞
∑

n=2
bnzn

− 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∑∞
n=2(nan − bn)zn−1

1 + ∑∞
n=2 bnzn−1

∣∣∣∣
<

β− 1
1− k

,

and hence (29) follows immediately from (30).
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Theorem 8. Let f ∈ A have the form (1) and let g = z+∑∞
n=2 bnzn, belonging to the classMD (k, γ), satisfy

1 +
∞

∑
n=2

(n |an|+ y |bn|) < y z ∈ U, (31)

for some k (k ≤ 0), β (β > 1) and where

y =
(β− 1)
(1− k)

> 0.

Then, f (z) ∈ KD(k, β, γ).

Proof. Consider

1 +
∞

∑
n=2

(n |an|+ y |bn|) < y (32)

⇒ 1 +
∞

∑
n=2

n |an| < y− y
∞

∑
n=2

|bn|

⇒ 0 < y− y
∞

∑
n=2

|bn|

⇒ 0 < y− y
∞

∑
n=2

|bn||zn−1|

⇒ 0 < y

∣∣∣∣∣1 + ∞

∑
n=2

bnzn−1

∣∣∣∣∣ . (33)

We have

1 +
∞

∑
n=2

(n |an|+ y |bn|) < y

⇒ 1 +
∞

∑
n=2

n |an| < y− y
∞

∑
n=2

|bn|

⇒ 1 +
∞

∑
n=2

n |an| |zn−1| < y− y
∞

∑
n=2

|bn||zn−1|

⇒
∣∣∣∣∣1 + ∞

∑
n=2

nanzn−1

∣∣∣∣∣ < y

∣∣∣∣∣1 + ∞

∑
n=2

bnzn−1

∣∣∣∣∣
⇒

∣∣∣∣1 + ∑∞
n=2 nanzn−1

1 + ∑∞
n=2 bnzn−1

∣∣∣∣ < y,

from (33). By (30), it follows that f ∈ KD(k, β, γ).
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