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Preface to ”Deep Learning for Facial Informatics”

Deep learning has been revolutionizing many fields in computer vision, and facial informatics 
is one of the major fields. Novel approaches and performance breakthroughs are often reported on 
existing benchmarks. As the performances on existing benchmarks are close to saturation, larger 
and more challenging databases are being made and considered as new benchmarks, further pushing 
the advancement of the technologies. Considering face recognition, for example, the VGG-Face2 
and Dual-Agent GAN report nearly perfect and better-than-human performances on the IARPA 
Janus Benchmark A (IJB-A) benchmark. More challenging benchmarks, e.g., the IARPA Janus 
Benchmark C (IJB-C), QMUL-SurvFace and MegaFace, are accepted as new standards for evaluating 
the performance of a new approach. Such an evolution is also seen in other branches of face 
informatics. In this Special Issue, we have selected papers that report the latest progresses made 
in the following topics:

1. Face Liveness Detection

2. Emotion Classification

3. Facial Age Estimation

4. Facial Landmark Detection

We would like to thank all of the authors who have submitted their work to this Special Issue,
and the reviewers who have contributed their time for the review. We wish the readers to be able to

gain some new perspectives of this interesting field. We would also like to thank MDPI for publishing

this Special Issue.

Gee-Sern Jison Hsu, Radu Timofte

Editors
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Abstract: Face liveness detection is important for ensuring security. However, because faces are
shown in photographs or on a display, it is difficult to detect the real face using the features of the face
shape. In this paper, we propose a thermal face-convolutional neural network (Thermal Face-CNN)
that knows the external knowledge regarding the fact that the real face temperature of the real person
is 36~37 degrees on average. First, we compared the red, green, and blue (RGB) image with the
thermal image to identify the data suitable for face liveness detection using a multi-layer neural
network (MLP), convolutional neural network (CNN), and C-support vector machine (C-SVM).
Next, we compared the performance of the algorithms and the newly proposed Thermal Face-CNN
in a thermal image dataset. The experiment results show that the thermal image is more suitable
than the RGB image for face liveness detection. Further, we also found that Thermal Face-CNN
performs better than CNN, MLP, and C-SVM when the precision is slightly more crucial than recall
through F-measure.

Keywords: face liveness detection; convolutional neural network; thermal image; external knowledge

1. Introduction

Face liveness detection in indoor residential environments is an important technique for delivering
security information, such as in the case of unlocking a mobile device using a face recognition system.
For example, in order to allow access to only one specific person, that person’s unique information,
such as their face, can be used to unlock security measures. However, because the printed face
photograph and face from the display can sufficiently generate the unique information of the face,
the reliability of the security is reduced. Therefore, there is a need to provide more secure security by
using face liveness detection, in which thermal images are distinguishable between the real face and
the fake face through the heat distribution existing in the face of the real person.

In this paper, we first quantitatively identify a more suitable image for face liveness detection
using both the RGB image and the thermal image. The same algorithms were applied to the RGB and
thermal image datasets for the comparison. A multi-layer neural network (MLP) [1], convolutional
neural network (CNN) [2], and C-support vector machine (C-SVM) [3] with a smooth hyperplane were
used for the comparison. In addition, we compared the performance of the existing algorithms with
thermal face-convolutional neural network (Thermal Face-CNN) proposed in this paper. Thermal
Face-CNN is an algorithm with external knowledge about the temperature values that are found in a
real face.

We have collected thermal images because there are many RGB image datasets for face liveness
detection but few or no thermal image datasets available. We obtained RGB and thermal images
of the same scene in order to evaluate how these thermal images improve performance over RGB

Symmetry 2019, 11, 360; doi:10.3390/sym11030360 www.mdpi.com/journal/symmetry1
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images. Accuracy [4], recall [4], and precision [4] were mainly obtained on both the RGB and thermal
image datasets.

The experimental results show that the best-performing CNN performance has an accuracy of
0.6898, a recall of 0.5752, and a precision of 0.7342 on the RGB image dataset, while it has an accuracy
of 0.8367, a recall of 0.7876, and a precision of 0.8476 on the thermal image dataset. Therefore, it has
been shown that the thermal image is more effective in face liveness detection than the RGB image.
In addition, we show that the average recall value is improved by 13.72% over CNN by using the
Thermal Face-CNN proposed in this paper for the thermal image dataset. It is also shown that we
found that Thermal Face-CNN performs better than CNN, MLP, and C-SVM when the precision is
slightly more crucial than recall through F-measure.

2. Background and Related Work

Face detection is a field involving the detection of a face in an image. Algorithms for face detection
judge whether or not the object in the picture is the face [5]. However, face liveness detection is a
field in which the face presented is judged to be the real face or the fake face or no face. Therefore,
face detection is a very different field from face liveness detection. For this reason, a paper related
to face detection could not be compared with a paper related to face liveness detection. In the field
of face liveness detection, there are three ways to imitate a real face: using a picture with that face,
replaying a video with that face, and using a 3D face mask [6]. The method using the picture with
the face involves printing the face on paper or displaying the face on a display. In order to solve this
problem, studies have been carried out to explore ways to detect the real face using a photo-based
dataset [6–9]. In addition, there have been studies into the use of video-based datasets to distinguish
the real face from the fake face [7,10]. Further studies into ways to distinguish between the real face
and the 3D face mask have also been conducted [11,12].

Many datasets can be used for face liveness detection: NUAA [8], ZJU Eyeblink [13], Idiap
Print-attack [14], Idiap Replay-attack [10], CASIA FASD [15], MSU-MFSD [16], MSU RAFS [17],
UVAD [18,19], MSU USSA [6], and so on. However, these datasets include data composed of RGB
images. There are not enough datasets composed of thermal images. Therefore, research on face
liveness detection with thermal images has been insufficient to date. Thermal images have already
been used in research for face detection and pedestrian detection [20–23]. Thermal images can be
obtained through the distribution of infrared rays, even at night when there is no visible light. Because
RGB images have the disadvantage of being affected by the intensity of visible light, while thermal
images have the advantage of being usable in places where there is no visible light, thermal images
have been successfully applied in various fields. Therefore, it is necessary to compare the RGB image
and the thermal image with regard to how much performance improvement is offered by the use of
the thermal image in face liveness detection. For comparison, using an existing dataset would be ideal,
but none of these contain information about temperature. Thus, a new dataset is needed.

Face liveness detection involves detecting the real face by analyzing the information obtained
from the image. Therefore, previous studies on face liveness detection have been carried out using
image processing methods. The support vector machine (SVM) is a classification algorithm that has
been used to distinguish between the real and fake faces in face liveness detection [7,11]. As shown in
these studies, SVM performs well in the area of classification. Of the SVM algorithms, the linear SVM
finds the linear hyperplane with the largest margin [24]. The linear SVM assumes that classification
can be performed by a line. However, there are cases where the data to be classified cannot be simply
classified as a line. In order to solve this problem, research was carried out on nonlinear SVM using
kernel functions [24]. The classification was proceeded using SVM on the abstraction information
combining static features and dynamic features for face liveness detection in [7]. In addition, SVM
learned the multispectral reflectance distribution information that can distinguish real human skin
from images or objects meant to look like skin for face liveness detection in [11]. Previously, SVM
used in face liveness detection learned to perfectly classify training data without error. However,
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there is another way to find a soft margin hyperplane that has the largest margins while allowing
exceptional misclassification of the small amount of data in the learning data [3]. By using a soft
margin hyperplane, we can find a hyperplane that is more generalizable without having an overfitting
hyperplane on the learning data. Therefore, C-SVM, which is a nonlinear SVM using a soft margin
hyperplane and more generalizable than the SVMs used in previous studies, was used in Section 4 to
evaluate the performance of algorithms on the thermal image dataset.

The artificial neural network imitates human neurons [1]. In particular, MLP is one of the artificial
neural networks used in image processing [25]. Image processing can be done through MLP, in which
the information of pixels is inserted into the input layer, and the output layer outputs 0 and 1 with
one node for binary classification. CNN [2], which is designed for effective image processing, is an
algorithm that modifies MLP in a way that reduces weights and shares weights. There are studies that
have effectively performed face liveness detection using CNN on the RGB image [7,26,27]. In addition,
it is known that CNN is a more powerful algorithm for face liveness detection on the RGB image than
SVM [26]. Furthermore, CNN can achieve 98.99% accuracy on the relatively easy RGB image dataset
called NUAA [8], which means that CNN is superior to previous methods [26] and is state-of-the-art.
An accuracy of 98.99% does not mean that this field is entirely conquered. There is a need to study
more difficult face liveness detection by allowing multiple objects to be included simultaneously in
an image and increasing a lot of computation with more pixels in an image. The thermal image can
be used to do this because there have also been studies showing that CNN has been successfully
used on the thermal image [20–22]. For these reasons, and because there is a need to properly process
the thermal image used for face liveness detection with CNN, we used this algorithm in Section 4.
Nevertheless, it is necessary to investigate an algorithm superior to CNN for face liveness detection
based on the thermal image. The CNN algorithm and Thermal Face-CNN for face liveness detection
are concretely described in Section 3 of this paper.

In addition to the support vector machine and the artificial neural network, the algorithms used
for face liveness detection are diverse. A logistic regression model [8,28] was used to classify the
real face and the fake face. In addition, as methods to identify the features of the image, local binary
pattern [9,29] and Lambertian model [8] were used for face liveness detection. The local binary pattern
is a method of extracting the feature of the image considering the difference of value relative to
neighboring pixels on the basis of a pixel. By this method, the feature vector representing the feature
of the image was extracted for face liveness detection [9]. Similarly, the Lambertian model is a method
that has been studied for extracting information about the difference between the real face and fake
face. Therefore, we can know that there has been a lot of research on how to extract image feature
information in the related studies.

3. The Proposed Method

The proposed Thermal Face-CNN is an algorithm for face liveness detection based on CNN.
In this algorithm, external knowledge for face liveness detection is inserted first, followed by CNN.
In the proposed method, the artificial neural network part is the same as the existing CNN. CNN
combines the convolutional layer, the pooling layer, and the fully connected layer. The number of
convolutional layers, pooling layers, and fully connected layers vary depending on the number and
type of pixels in the image. For visual convenience, an example of Thermal Face-CNN with two
convolutional layers, two pooling layers, and one hidden layer is shown in Figure 1. The numbers of
layers used are explained in Section 4.

3



Symmetry 2019, 11, 360

Figure 1. Thermal face-convolutional neural network (Thermal Face-CNN).

First, knowledge is inserted for face liveness detection. After that, the data with external
knowledge is calculated in the convolutional layer and transferred to the pooling layer. This can
be repeated several times in order to process the complex image. Next, CNN passes the previously
obtained information to the fully connected layer. Finally, CNN classifies the image in the output
layer. The process of inserting external knowledge, the convolutional layer, the pooling layer, and fully
connected layer are explained as the paper continues. The process of inserting external knowledge
for face liveness detection can be accomplished by the process of inserting knowledge about the
temperature that a human face can have. This can be represented as Equation (1).

h =

{
knowledge value × g if down limit ≤ g ≤ up limit

g Otherwise
(1)

In Equation (1), g is the measured temperature value, and h is the input value to CNN. Equation (1) is
a formula that multiplies the value between up limit and down limit by knowledge value so as to make use
of the physiological knowledge of the mean body temperature of a person, which is between 36 and 37
degrees [30]. A pixel measuring a part of a real face must have a temperature value in this vicinity.
The fact that there is a high probability that a pixel with a value close to 36 or 37 degrees in a measured
thermal image is likely to represent a part of a real face can only be obtained from external knowledge,
not from the data. In order to insert this knowledge into the artificial neural network, we make a
remarkably different value than the measured value using Equation (1). In this case, the artificial
neural network recognizes the temperature of this pixel as very different from the temperature
measured at other pixels. If the knowledge value is 10, it is about ten times larger than the values of other
pixels. Figure 2 shows an example of selecting 34 and 39 values near the human body temperature of
36 and 37 degrees, taking into account the errors that may occur during measurement. In Section 4,
we conducted experiments setting various values of knowledge value, up limit, and down limit.

In the graph shown in the upper left of Figure 2, the vertical axis represents the temperature
values. In the graph shown in the upper right of Figure 2, the external knowledge about the possibility
that a part of an object measured by each pixel is a part of a real face and the possibility that it is
not is expressed. Note that there are no quantitative values in the vertical axis shown in the upper
right graph in Figure 2. All of the graphs of the horizontal axes shown in Figure 2 represent the pixel
index. In the upper left graph in Figure 2, pixels 2 and 3 are data with different meanings from the
graph on the upper right, but there is almost no quantitative difference. In order to emphasize this
content, input data must be re-expressed so that there are distinct differences between the two different
data: one might measure a part of a real face, and the other might not. To do so, knowledge value in
Equation (1) is used. As shown in the graph in Figure 2, below, information is forced to be distributed
in a specific region through a considerable difference between real values, and thermal information
about the temperature value of the pixels measured is also expressed showing a minute difference.
The differences in measured temperatures can be seen by comparing pixel 1 to pixel 3 and pixel 2 to
pixel 4. The optimal knowledge value can be empirically found through experimentation.
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Figure 2. Example of the process of inserting external knowledge.

The convolutional layer serves to extract the complex features of the two-dimensional image [31].
The parameters of the convolutional layer are kernel_size, filters, and stride. kernel_size indicates the
width and height of a kernel composed of learnable weights. filters represent the number of kernels,
and stride is a parameter for extracting the characteristics of an image based on a certain interval.
From the convolutional layer, we can extract the spatial information while sharing the weights [2].
Formal equations related to the convolutional layer are presented in [31]. The information calculated
in the convolutional layer is transferred to the pooling layer.

Among the layers that make up CNN, the pooling layer induces spatial invariance by reducing the
size of the feature map [32]. The parameters of the pooling layer are pooling_size and stride. pooling_size
represents the size of the zone to be examined, such as kernel_size, a parameter of the convolutional
layer discussed above. stride in the pooling layer serves the same purpose as the stride parameter of the
convolutional layer. The max pooling layer has a function to find the maximum value in each region
and to transfer it to the next layer [32]. Finally, the information is transferred to the fully connected
layer through the convolutional layer and the pooling layer.

The fully connected layer is a type of layer used in MLP consisting of nodes completely connected
to the nodes in each of the previous and subsequent layers [1].
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4. Experiments

4.1. Data Collection and Experimental Environment Construction

The Flir C3 was used as the camera for collecting data. The camera has two lenses on the front:
an RGB lens to obtain RGB images of 640 × 480 pixels and an infrared lens to obtain thermal images
of 80 × 60 pixels. The information on the Flir C3 can be found at a website listed in Supplementary
Materials at the end of this paper. We collected one RGB image and one thermal image in each scene to
find suitable data for face liveness detection. Since a thermal image is better than an RGB image at
night, we took images in indoor residential environments with visible light for accurate performance
comparison. There were no conditions for the distance of the object. The faces in the dataset were
used with and without a variety of accessories, such as glasses. No matter what, the face is covered by
any object, which can cover anything except the eyes, nose, and mouth. We used the function of the
Flir C3 that allows for the simultaneous operation of the two lenses. A total of 844 scenes were taken.
The actual data used were 844 Excel files with temperature information collected from infrared lens
and 2532 Excel files with R, G, and B information collected from RGB lens. In Figure 3, the images in
the top row are RGB images, while the images in the bottom row are thermal images.

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3. Data examples: (a) a real face taken by RGB lens; (b) a face on a display taken by RGB lens;
(c) a ceiling air conditioner taken by RGB lens; (d) a real face taken by infrared lens; (e) a face on a
display taken by infrared lens; (f) a ceiling air conditioner taken by infrared lens.

Figure 3a,d are RGB and thermal images with a real face present, respectively. Figure 3b,e are RGB
and thermal images with a face on a display, respectively. Figure 3c,f shows images taken of a ceiling
air conditioner with no face. In the thermal images, the color is obtained by the software in the thermal
camera itself so that the measured temperature can be intuitively grasped visually. In Figure 3a,b,d,e,
it can be seen that the outline of the heat distribution and the heat on the face from the display differ
from those of the real face. The RGB face liveness detection dataset jongwoo (RFLDDJ) we created
and the thermal face liveness detection dataset jongwoo (TFLDDJ) we created are available on the
internet. In NUAA [8], the whole picture is completely filled with faces. However, in the RGB dataset
we created, people and objects were shot in indoor living environments in order to increase the level of
difficulty. In other words, multiple objects coexist in a single image in the datasets we made. The data

6



Symmetry 2019, 11, 360

are more difficult because a more general situation is assumed. The information of the datasets can be
found at websites listed in the Supplementary Materials at the end of this paper.

The numbers of pixels differ between the two lenses. The RGB lens has 640 pixels horizontally
and 480 pixels vertically, for a total of 307,200 pixels on an image. By contrast, the infrared lens has
80 pixels horizontally and 60 pixels vertically, for a total of 4800 pixels on an image. The numbers
of pixels in images obtained by the two lenses differ by 64 times. However, the range of actually
measured scenes is not much different. Figure 4 shows its example.

 

Figure 4. Comparison of the ranges of lenses.

As shown in Figure 4, the number of pixels has a difference of 64 times, but there is not much
difference in the area to be taken. In addition, because the RGB lens and the infrared lens have different
pixel sizes, and because there is a slight difference in the position of each lens on the camera, it is not
clear how many pixels from the horizontal, vertical, top, and bottom sides should be cut for the same
range of the scene. Therefore, it is impossible to capture the same extent of the range of the scene.
For the correct experiment, if the real face is in a scene that the infrared lens cannot capture as an
image, this image was removed from the experiment.

We use Adam [33], Dropout [34], and ReLu [35] to improve learning abilities when learning CNN
and Thermal Face-CNN. The Adam algorithm reduces error by learning the weights existing in the
artificial neural network. It is easier to execute than the back-propagation algorithm [36]. It is also
more efficient and requires less memory [33]. Dropout prevents overfitting by allowing each node not
to participate in the calculation randomly during the learning process [34]. Sigmoid [37] was used
as an activation function in the output layer of all artificial neural networks used in the experiments
except for C-SVM, and ReLu was used as an activation function of the hidden layer. As the pooling
layer, the max pooling layer [32] is used. In addition, the probability of dropping each node is 10%.
An intel core i7-7820X CPU was used as the hardware in the experiment, and the memory was DDR4
32G. The experiment was carried out using the Tensorflow [38] library, which has artificial neural
network code. In the case of C-SVM, the sklearn.svm.svc library was used to carry out the experiment.
The information of the library can be found at a website listed in the Supplementary Materials at the
end of this paper.

Accuracy [4], recall [4], and precision [4] were mainly used as evaluation indices in the experiment.
In this study, accuracy refers to how the actual value and predicted value are matched, regardless of
the presence or absence of a real face. Recall is an index of how many images having the real face are
judged to have the real face. Precision is also an index of how many images have the real face among
those predicted to have the real face.

4.2. The Comparison of Face Liveness Detection between the RGB Image and Thermal Image

Before examining the performance of the proposed Thermal Face-CNN, we obtained accuracy,
recall, and precision for each RGB image and thermal image dataset in order to identify the appropriate
dataset for face liveness detection. For the comparison, we used CNN, MLP, and C-SVM. The left
side of Table 1 shows the parameters of CNN applied to the RGB image dataset, and the right side of
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Table 1 shows the parameters of CNN applied to the thermal image dataset. We empirically sought the
values of the parameters that would make the error of the artificial neural network converge to zero.

Table 1. Convolutional neural network (CNN) parameters used in the RGB image dataset and the
thermal image dataset.

Parameter Kernel_ Size Filters Pool_ Size
Stride/
Nodes

Parameter Kernel_ Size Filters Pool_ Size
Stride/
Nodes

1st con_ (15, 15) 150 N/A (3, 3) 1st con_ (20, 20) 50 N/A (3, 3)
1st pool_ N/A N/A (5, 5) (1, 1) 1st pool_ N/A N/A (3, 3) (2, 2)
2nd con_ (15, 15) 130 N/A (3, 3) 2nd con_ (5, 5) 30 N/A (1, 1)
2nd pool_ N/A N/A (5, 5) (1, 1) 2nd pool_ N/A N/A (2, 2) (1, 1)
3rd con_ (15, 15) 100 N/A (2, 2) input_ N/A N/A N/A 1920
3rd pool_ N/A N/A (3, 3) (1, 1) hidden_ N/A N/A N/A 120
4th con_ (5, 5) 80 N/A (2, 2) output_ N/A N/A N/A 1
4th pool_ N/A N/A (2, 2) (1, 1) N/A N/A N/A N/A N/A

input_ N/A N/A N/A 1920 N/A N/A N/A N/A N/A
1st hidden_ N/A N/A N/A 1536 N/A N/A N/A N/A N/A
2nd hidden_ N/A N/A N/A 1200 N/A N/A N/A N/A N/A
3rd hidden_ N/A N/A N/A 1000 N/A N/A N/A N/A N/A

output_ N/A N/A N/A 1 N/A N/A N/A N/A N/A

In Table 1, nodes refers to the number of nodes in the corresponding layer. Further, con_ means
convolutional layer and pool_ means pooling layer. input_, hidden_, and output_ mean input layer,
hidden layer, and output layer, respectively. The rest of the parameters are the same as those described
in Section 3. In Table 1, the values in parentheses represent two values for the width and length of the
kernel and pooling sequentially.

The parameter values for C-SVM used in the thermal image dataset are shown in Table 2.

Table 2. C-support vector machine (C-SVM) parameters used in the thermal image dataset.

Parameter Error Penalty Kernel Gamma Tolerance Degree

Value c RBF or POLY 1/n_Features 0.001 3

In Table 2, c is an error penalty parameter, and we changed c when we experimented. RBF [39]
or polynomial (POLY) [39] is used as kernel. gamma is the coefficient of kernel. In addition, n_features
means the number of features and tolerance means stopping criterion. degree means the degree of the
polynomial kernel function.

The parameters of the MLP used to learn the thermal images are shown in Table 3.

Table 3. Multi-layer neural network (MLP) parameters in the thermal image dataset.

Parameter Input_ 1st Hidden_ 2nd Hidden_ 3rd Hidden_ 4th Hidden_ Output_

Nodes 4800 3000 2000 1500 1000 1

A total of 599 images in the RGB image dataset and thermal image dataset from image 1 to image
599 were used as training data, and the remaining 245 images were used for test data. There are
338 images of 844 images with the real face, and 506 images without the real face. In the training set are
225 images with the real face, and 113 images with the real face are in test set. In the training set were
374 images without the real face, and 132 images without the real face are in the test set. Table 4 shows
the experimental results of CNN in the RGB image dataset and the thermal image dataset. Tables 5
and 6 show the experimental results of MLP and C-SVM in the thermal image dataset. The figures in
the following tables, including Tables 4–6, were rounded to the fourth decimal place. Figures expressed
as percentages in the following tables were rounded to the second decimal place.
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Table 4. CNN’s performance in the RGB image dataset and the thermal image dataset.

Index
In the RGB Image Dataset

Index
In the Thermal Image Dataset

Accuracy Recall Precision Accuracy Recall Precision

Average 0.658 0.4779 0.6871 Average 0.7816 0.6996 0.8022
The best 0.6898 0.5752 0.7342 The best 0.8367 0.7876 0.8476

Table 5. MLP’s performance in the thermal image dataset.

Index
MLP

Accuracy Recall Precision

Average 0.7551 0.4991 0.9431
The best 0.7837 0.5664 0.9524

Table 6. C-SVM’s performance in the thermal image dataset.

kernel c Accuracy Recall Precision Kernel c Accuracy Recall Precision

RBF

0.7 0.5429 0.0088 1

POLY

0.06 0.7388 0.6195 0.7692
0.8 0.8163 0.9381 0.7361 0.07 0.7388 0.6195 0.7692
0.81 0.8082 0.9381 0.726 0.07 0.7388 0.6195 0.7692
0.82 0.8204 0.9646 0.7315 0.08 0.7388 0.6195 0.7692
0.83 0.8204 0.9646 0.7315 0.08 0.7388 0.6195 0.7692
0.84 0.8122 0.9646 0.7219 0.09 0.7388 0.6195 0.7692
0.85 0.8082 0.9646 0.7171 0.1 0.7388 0.6195 0.7692
0.86 0.8082 0.9646 0.7171 0.11 0.7388 0.6195 0.7692
0.87 0.8082 0.9646 0.7171 0.13 0.7388 0.6195 0.7692
0.88 0.8082 0.9646 0.7171 0.14 0.7388 0.6195 0.7692
0.89 0.8122 0.9646 0.7219 0.17 0.7388 0.6195 0.7692
0.9 0.8122 0.9646 0.7219 0.2 0.7388 0.6195 0.7692
0.91 0.8163 0.9646 0.7267 0.25 0.7388 0.6195 0.7692
0.92 0.8204 0.9646 0.7315 0.3 0.7388 0.6195 0.7692
0.93 0.8204 0.9646 0.7315 0.33 0.7388 0.6195 0.7692
0.94 0.8204 0.9646 0.7315 0.4 0.7388 0.6195 0.7692
0.95 0.8122 0.9469 0.7279 0.5 0.7388 0.6195 0.7692
0.96 0.8122 0.9381 0.731 0.6 0.7388 0.6195 0.7692
0.97 0.8163 0.9381 0.7361 0.7 0.7388 0.6195 0.7692
0.98 0.8163 0.9381 0.7361 0.8 0.7388 0.6195 0.7692
0.99 0.8204 0.9381 0.7413 0.9 0.7388 0.6195 0.7692

1 0.8245 0.9381 0.7465 1 0.7388 0.6195 0.7692
1.5 0.8204 0.9292 0.7447 1.5 0.7388 0.6195 0.7692
2 0.8204 0.9292 0.7447 2 0.7388 0.6195 0.7692

2.5 0.8204 0.9292 0.7447 2.5 0.7388 0.6195 0.7692

In Tables 4 and 5, “The best” refers to the highest values. “Average” means the average value.
In order to obtain the information shown in Table 4, five CNNs in the RGB image dataset and 20 CNNs
in the thermal image dataset were implemented with the same parameters. Because the combinations
of weights obtained when the neural network is learned with the same parameters are always different
and show different performances, we repeated the experiment 20 times in order to obtain the average
performance of the general accuracy, recall, and precision values. However, in the RGB image dataset,
the number of pixels contained in each image was 907,200, which required a substantial amount of
computation. Therefore, 20 CNNs were learned in the thermal image dataset, but only five CNNs were
learned in the RGB image dataset. To obtain Table 5, five MLPs were learned because MLP requires a
large amount of computation. To evaluate C-SVM’s performance in Table 6, we obtained one C-SVM
on each parameter setting. The values of accuracy, recall, and precision shown in Table 4, which were
obtained using the thermal image dataset, are higher than those of the RGB image dataset. It can be
seen from the above that, on CNN, the thermal image is more suitable than the RGB image.

In the case of MLP, since there is 907,200-pixel information per RGB image, the number of nodes
in the input layer should also be 907,200. We tried to implement an MLP with about 900,000 nodes
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in the input layer, but the hardware limitations made it impossible to calculate. Further, the C-SVM
was learned using the parameters shown in Table 2, but it was determined that there was no real face
for all the test data, because it was not learned properly. However, as shown in Tables 5 and 6, MLP
and C-SVM can be learned because of the small number of pixels in a thermal image data. Through
comparing Tables 4–6, it can be seen that good performance can be obtained by the thermal image data.

4.3. Performance Comparison of CNN, C-SVM, and Thermal Face-CNN

Section 4.2 showed that the thermal image is better than the RGB image. In Section 4.3, we applied
the Thermal Face-CNN proposed in this paper to the thermal image with superior performance for
face liveness detection than the RGB image, and we compared its performance with those of the
other algorithms. We used the same parameters of CNN on the thermal image dataset for Thermal
Face-CNN. We also constructed 20 Thermal Face-CNNs with the same parameter setting as used in
the experiment on 20 CNNs, shown in Table 4. The accuracy, recall, and precision values of Thermal
Face-CNNs are shown in Tables 7–12. Parenthetical values in these tables indicate knowledge value,
up limit, and down limit values, sequentially.

Table 7. Thermal Face-CNN accuracy, recall, and precision values 1.

Index
(10, 39, 34)

Index
(10, 40, 34)

Accuracy Recall Precision Accuracy Recall Precision

Average 0.7967 0.7726 0.784 Average 0.7957 0.7602 0.7901
The best 0.8245 0.8584 0.8173 The best 0.8204 0.8407 0.8235

A_im (%) 1.93 10.44 −2.27 A_im (%) 1.77 7.97 −1.53
M_im (%) −1.46 8.99 −3.58 M_im (%) −1.99 6.32 −2.93

Table 8. Thermal Face-CNN accuracy, recall, and precision values 2.

Index
(10, 41, 34)

Index
(10, 39, 35)

Accuracy Recall Precision Accuracy Recall Precision

Average 0.7894 0.7491 0.7851 Average 0.7929 0.7385 0.7986
The best 0.8286 0.8142 0.8286 The best 0.8327 0.8142 0.8391

A_im (%) 0.99 6.61 −2.18 A_im (%) 1.43 5.27 −0.45
M_im (%) −0.98 3.27 −2.29 M_im (%) −0.48 3.27 −1.01

Table 9. Thermal Face-CNN accuracy, recall, and precision values 3.

Index
(10, 39, 33)

Index
(100, 39, 34)

Accuracy Recall Precision Accuracy Recall Precision

Average 0.7845 0.7863 0.758 Average 0.7843 0.7535 0.7731
The best 0.8245 0.8938 0.8218 The best 0.8327 0.8319 0.8103

A_im (%) 0.37 12.39 −5.51 A_im (%) 0.34 7.15 −3.76
M_im (%) −1.46 13.48 −3.05 M_im (%) −0.48 5.33 −4.6

Table 10. Thermal Face-CNN accuracy, recall, and precision values 4.

Index
(−5, 39, 34)

Index
(−10, 39, 34)

Accuracy Recall Precision Accuracy Recall Precision

Average 0.8151 0.7956 0.8027 Average 0.8033 0.7903 0.7853
The best 0.8367 0.8407 0.8515 The best 0.8367 0.8673 0.8214

A_im (%) 4.29 13.72 0.06 A_im (%) 2.7 11.47 −2.16
M_im (%) 0 6.74 0.46 M_im (%) 0 9.18 −3.19
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Table 11. Thermal Face-CNN accuracy, recall, and precision values 5.

Index
(−100, 39, 34)

Index
(5, 39, 34)

Accuracy Recall Precision Accuracy Recall Precision

Average 0.7912 0.7726 0.7755 Average 0.7939 0.7429 0.7972
The best 0.8163 0.8761 0.8367 The best 0.8367 0.8496 0.8349

A_im (%) 1.23 10.43 −3.33 A_im (%) 1.57 6.19 −0.63
M_im (%) −2.43 11.24 −1.28 M_im (%) 0 7.87 −1.5

Table 12. Thermal Face-CNN accuracy, recall, and precision values 6.

Index
(1000, 39, 34)

Accuracy Recall Precision

Average 0.7294 0.6372 0.7399
The best 0.7918 0.7434 0.8298

A_im (%) −7.16 −9.79 −8.42
M_im (%) −5.67 −5.95 −2.15

“The best” and “Average” in Tables 7–12 mean the highest value and average value, respectively.
In Tables 7–12, A_im (%) means how much the average value is improved in comparison with CNN,
and M_im (%) means how much the maximum value is improved in comparison with CNN. For
example, A_im (%) and M_im (%) are obtained by average and the best values in the right side of
Tables 4 and 7, Tables 8–12. The information on all the experimental results can be found at websites
listed in the Supplementary Materials found at the end of this paper.

When the knowledge value is 10 in the Thermal Face-CNNs described in Tables 7 and 8 and the left
side of Table 9, the values of accuracy, recall, and precision are obtained as changes occur to the values
of the up limit and down limit. When the up limit and down limit are 39 and 33, respectively, the average
recall value has the greatest increase, by 12.39%. When the up limit and down limit values are 39 and 34,
respectively, the average recall value is increased by 10.44%. When the up limit and down limit are 40
and 34, respectively, the average recall value is increased by 7.97%, and the average precision value is
decreased slightly by −1.53%. In addition, when the up limit and down limit are 41 and 34, respectively,
the average recall is increased by 6.61%, and the precision is decreased by −2.18%. When the values of
the up limit and down limit are 39 and 35, respectively, the amount of the increment of recall is reduced
the best.

The Thermal Face-CNNs described on the left side of Table 7 and the right side of Tables 9 and 10,
Tables 11 and 12 show the amount by which the performance changed when the up limit and down
limit are 39 and 34, respectively, and when the knowledge value is changed. Table 12 shows that much
lower performance can be achieved with Thermal Face-CNN than with CNN. The Thermal Face-CNN
used to obtain the data in Table 12 has the same parameters as the Thermal Face-CNNs used to obtain
the data in the left side of Table 7, except for the fact that the knowledge value is 1,000. Therefore, a huge
knowledge value shows that performance can be rather reduced. The best performance was obtained by
increasing the average recall value by 13.72% when the knowledge value was −5, and the second-best
average recall value was increased by 11.47% when the knowledge value was −10. In addition, when the
knowledge value was 10, the third-best performance was obtained by increasing the average recall value
by 10.44%. When the knowledge value was −100, the average recall value was increased by 10.43%,
which was the fourth-best performance.

Except for Table 12, the average recall values of the Thermal Face-CNN having external knowledge
about the temperature of the real face in Tables 7–11 show that the average recall value and the best
recall value are better than the CNN shown in the right side of Table 4. An increase of the recall value
means that the Thermal Face-CNN has detected more data having the real face than CNN. It can
be seen that CNN and Thermal Face-CNN are not significantly different in terms of accuracy and
precision when we compare the values in the right sides of Tables 4 and 7, Tables 8–11. Looking at
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the performance of Thermal Face-CNN that obtained the best performance, in the left side of Table 10,
we can see that Thermal Face-CNN was not reduced at all. Therefore, Thermal Face-CNN is superior
to CNN in all indices.

The performance obtained by Thermal Face-CNN must be compared with the accuracy, recall,
and precision values recorded in Tables 5 and 6 quantitatively. Table 10 shows that the method with
the highest accuracy is 0.8367 on Thermal Face-CNN. In addition, the results in Table 6 show that
C-SVM is the method with the highest recall. Further, Table 5 shows that MLP is the method with the
highest precision. However, MLP is a relatively bad way to detect the real face because the recall value
is too small. Thermal Face-CNN has the best accuracy and more balance between recall and precision
than MLP and C-SVM. For accurate performance evaluation, F-measure [40] is used. F-measure is a
widely used index that quantitatively evaluates performance by simultaneously considering recall and
precision. F-measure is shown in Equation (2).

F-measure =
(β 2 + 1)× precision × recall

β2×precision + recall
(2)

β is a positive real number or zero. Also precision, recall, and F-measure are the values of precision,
recall, and F-measure, respectively. A larger F_measure value means a better algorithm. When β is
one, the most frequently used F-measure formula appears in Equation (3).

F-measure_1 =
2 × precision × recall

precision + recall
(3)

F-measure_1 in Equation (3) means the value of F-measure when β is one. As shown in Equation (4),
difference denotes the difference value of F-measures of the Thermal Face-CNN and C-SVM; Thermal
Face-CNN obtained 0.8327 accuracy, 0.8407 recall, 0.8051 precision, and C-SVM obtained 0.8245
accuracy, 0.9381 recall, 0.7465 precision corresponding to Table 6.

difference =
(β 2 +1)× 0.8051×0.8407

β2×0.8051 + 0.8407
− (β 2 +1)× 0.7465 × 0.9381

β2×0.7465 + 0.9381
(4)

When the difference is zero, the β value is 0.8885, meaning that the two f-measure values are the
same. When β is greater than or equal to 0 and less than 0.8885, then Thermal Face-CNN is better. By
contrast, when β is greater than 0.8885, C-SVM is better. You can find the corresponding conditions
by obtaining equations in the same way for several Thermal Face-CNNs. It is trivial to find β that
makes difference zero when the parameters are different. Nevertheless, it is important to show that the
Thermal Face-CNN is superior by listing the F-measures obtained at commonly used β values of 0.5
and 2. Table 13 shows it.

In Table 13, “Average F-measure” means the F-measure using average recall and average precision
in the left side of Table 10. When β is 2, F-measure means that F-measure weighs recall higher than
precision. When β is 0.5, F-measure means that F-measure weighs recall lower than precision. Therefore,
we can see that Thermal Face-CNN is best when precision has more weight than recall. Precision is
more important than recall when the reliability of the algorithm is important. Therefore, Thermal
Face-CNN is good for this situation.

In addition to the comparison based on accuracy, recall, precision, and F-measure, it is shown that
the CNN-based proposed algorithm is superior to CNN and has similar performance with the others
on receiver operating characteristic (ROC) graph [41] in Figure 5. Parenthetical values in Figure 5
indicate knowledge value, up limit, and down limit values, sequentially.
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Table 13. C-SVM’s and Thermal Face-CNN’s F-measure comparison.

Which algorithm is superior?

c
F-measure on

C-SVM with RBF
and β = 0.5

F-measure on
C-SVM with RBF

and β = 2

When Thermal Face-CNN
has (−5, 39, 34) and β = 0.5,
Average F-measure = 0.8013

When Thermal Face-CNN has
(−5, 39, 34) and β = 2, Average

F-measure = 0.797

0.7 0.0425 0.011 Thermal Face-CNN Thermal Face-CNN
0.8 0.7692 0.8893 Thermal Face-CNN C-SVM
0.81 0.7604 0.8863 Thermal Face-CNN C-SVM
0.82 0.7686 0.9068 Thermal Face-CNN C-SVM
0.83 0.7686 0.9068 Thermal Face-CNN C-SVM
0.84 0.7602 0.9038 Thermal Face-CNN C-SVM
0.85 0.7559 0.9023 Thermal Face-CNN C-SVM
0.86 0.7559 0.9023 Thermal Face-CNN C-SVM
0.87 0.7559 0.9023 Thermal Face-CNN C-SVM
0.88 0.7559 0.9023 Thermal Face-CNN C-SVM
0.89 0.7602 0.9038 Thermal Face-CNN C-SVM
0.9 0.7602 0.9038 Thermal Face-CNN C-SVM

0.91 0.7644 0.9053 Thermal Face-CNN C-SVM
0.92 0.7686 0.9068 Thermal Face-CNN C-SVM
0.93 0.7686 0.9068 Thermal Face-CNN C-SVM
0.94 0.7686 0.9068 Thermal Face-CNN C-SVM
0.95 0.7632 0.8932 Thermal Face-CNN C-SVM
0.96 0.7648 0.8878 Thermal Face-CNN C-SVM
0.97 0.7692 0.8893 Thermal Face-CNN C-SVM
0.98 0.7692 0.8893 Thermal Face-CNN C-SVM
0.99 0.7738 0.8908 Thermal Face-CNN C-SVM

1 0.7783 0.8923 Thermal Face-CNN C-SVM
1.5 0.7755 0.8853 Thermal Face-CNN C-SVM

  
Figure 5. Receiver operating characteristic (ROC) graph.
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‘A’ line is better than ‘B’ line if ‘A’ line is closer to the northwest than ‘B’ line in ROC graph.
The blue line in Figure 5 shows the performance of C-SVM, the green and black lines show the
performance of Thermal Face-CNN, the red line shows the performance of MLP, and the orange
line shows the performance of CNN. To obtain Figure 5, we used the parameters having the best
performance: MLP which has an accuracy of 0.7837, a recall of 0.5664, and a precision of 0.9412 and
the CNN which has an accuracy of 0.8367, a recall of 0.7876, and a precision of 0.8476 and the best
performance among a up limit value of 39, and a down limit value of 34 in Thermal Face-CNN which
has an accuracy of 0.8327, a recall of 0.8407, a precision of 0.8051, a knowledge value value of−5, a up
limit value of 39, and a down limit value of 34 and the best performance among a knowledge value of 10 in
Thermal Face-CNN which has an accuracy of 0.8245, a recall of 0.8496, a precision of 0.7869, a knowledge
value value of 10, a up limit value of 39, and a down limit value of 33 and C-SVM which has a c value of
1 are used. As shown in Figure 5, Thermal Face-CNN has the dramatic performance improvement
compared to CNN, and the Thermal Face-CNN’s performance is close to that of MLP and C-SVM.
In this paper, we argue that Thermal Face-CNN is better when precision is more important than recall.
However, ROC graph does not directly consider precision because it uses true positive rate and false
positive rate, which are not precision. Nonetheless, the ROC graph shows that Thermal Face-CNN is
superior to CNN.

5. Conclusions and Future Works

Face liveness detection is an important field that allows for information about a real person to be
communicated when communicating security. In this paper, face liveness detection was performed
in indoor residential environment using the fact that thermal patterns on a face in a display and a
photograph differ from those on the real face. First, we quantitatively compared the performance of
the thermal image with the RGB image. It has been shown that the thermal image is more suitable for
face liveness detection because CNN has the best performance, with an accuracy of 0.6898, a recall of
0.5752, a precision of 0.7342 on the RGB image dataset, and an accuracy of 0.8367, a recall of 0.7876,
and a precision of 0.8476 on the thermal image dataset. We also propose Thermal Face-CNN, which
has external knowledge about the real face temperature in the existing CNN algorithm and compares
it with CNN. The performance of the best-performing Thermal Face-CNN is equal to or better than
CNN. Furthermore, we used the F-measure to identify the condition in which the Thermal Face-CNN
performs better than the C-SVM.

Based on the results in this paper, we hope that Thermal Face-CNN with the thermal image is
used to detect malicious tricks to imitate the face. This paper shows that it is possible to insert external
knowledge by adjusting the value of a particular real number range. Therefore, it is expected that the
application algorithms that have knowledge in various fields will emerge.

In this study, the experiment was conducted using 844 scenes. Nevertheless, as the number of data
increases, it becomes more feasible to use face liveness detection in more general situations. Therefore,
there is a need to collect thermal images in the future. Moreover, due to the difference between the
RGB lens and the infrared lens, the images measured differ in terms of pixel size, the number of pixels,
and the range of the scene. Therefore, there is a need to construct datasets with fewer differences
between the RGB and thermal image. Because the experiments of all the possible combinations of
the parameters in the algorithms were not done, the comparisons are not conclusive. Therefore, it is
necessary to accurately identify the optimal parameters combination that obtains the highest accuracy,
recall, precision, F-measure value through additional experimentation.

Supplementary Materials: The information about Flir C3 is available online at https://www.flir.com/products/c3/.
The RGB image dataset is available online at https://www.researchgate.net/publication/328297217_RGB_Face_
Liveness_Detection_Dataset_JongwooRFLDDJ. The thermal image dataset is available online at https://www.
researchgate.net/publication/327716173_Thermal_Face_Liveness_Detection_Dataset_JongwooTFLDDJ. SVC is
available online at https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html. All the experimental
results are available online at https://www.researchgate.net/publication/330359019_symmetry_experiments.
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The raw images are available online at https://www.researchgate.net/publication/330382261_Raw_images_for_
Face_Liveness_Detection_Using_Thermal_Face-CNN_with_External_Knowledge.
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Abstract: The detection of human emotions has applicability in various domains such as assisted living,
health monitoring, domestic appliance control, crowd behavior tracking real time, and emotional
security. The paper proposes a new system for emotion classification based on a generative adversarial
network (GAN) classifier. The generative adversarial networks have been widely used for generating
realistic images, but the classification capabilities have been vaguely exploited. One of the main
advantages is that by using the generator, we can extend our testing dataset and add more variety
to each of the seven emotion classes we try to identify. Thus, the novelty of our study consists in
increasing the number of classes from N to 2N (in the learning phase) by considering real and fake
emotions. Facial key points are obtained from real and generated facial images, and vectors connecting
them with the facial center of gravity are used by the discriminator to classify the image as one of the
14 classes of interest (real and fake for seven emotions). As another contribution, real images from
different emotional classes are used in the generation process unlike the classical GAN approach which
generates images from simple noise arrays. By using the proposed method, our system can classify
emotions in facial images regardless of gender, race, ethnicity, age and face rotation. An accuracy of
75.2% was obtained on 7000 real images (14,000, also considering the generated images) from multiple
combined facial datasets.

Keywords: generative adversarial network; emotion classification; facial key point detection; facial
images processing; convolutional neural networks

1. Introduction

Face detection and recognition has been an on-going research area for the last 50 years, with
concluding results being obtained starting with the late 90s [1]. The fast development of facial
recognition technology allowed it to be used in a variety of areas like assisted living, health monitoring,
access control, authentication, ID/passport control and fraud prevention, security/law enforcement (to
identify lawbreakers or terrorists), surveillance systems, attendance tracking and counting and many
others. According to a report published by MarketsandMarkets in 2017 [2], the global facial recognition
market was estimated at 3.37 billion USD in 2016 and it is expected to grow up to 7.76 billion USD by
2022, with an annual growth rate of 13.9%.

Various methods have been used for facial detection and localization, and reviews of those
methods are presented in References [3–5]. Different methods vary from template matching and
knowledge-based methods to support vector machines, hidden Markov models and principal
component analysis. The reviews concluded that the obtained accuracies for detection kept improving
with each new method, but the selected samples for research were limited and had little variety, with
good accuracies being obtained only on specific datasets. Neural networks-based face recognition
improved the results of all previous methods and also brought an increase in efficiency and execution
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time. A variety of reviews [6–14] compare the advantages, disadvantages and results of multiple
different neural network methods. The reviews mark the importance of CNNs (convolutional
neural networks) and deep learning in the area of facial recognition, deep learning specifically being
considered a huge step in the evolution of facial recognition algorithms. Most of the presented
researches have accuracies over 90% on public available datasets, but different challenges are
still acknowledged regarding real-world facial recognition, training the algorithms to replicate
human behavior and large scale adoption in the industry. Different approaches are presented in
References [15,16], where fuzzy algorithms perform a rotation invariant face recognition based on
symmetrical facial characteristics. The main advantage is that the algorithms can be used on smart
TVs (Television sets) with low processing power to recognize the viewer and offer proper content
and services accordingly. The algorithm presented in Reference [16] is an enhanced version of the
one in Reference [15], with an increase in accuracy. The presence of cosmetics and contact lenses
adds challenges to face recognition for biometric purposes. Color, shape and texture features of
the face and iris are extracted in Reference [17] to be used in a SVM (support vector machine)
classifier for face recognition regardless of the makeup. The research shows improvement over
several other face recognition methodologies. Another method was also developed in Reference [18],
for makeup-invariant face verification, making use of the generative adversarial network (GAN)
architecture first introduced in Reference [19]. The algorithm synthesizes non-makeup images from
makeup images so that they can be used for face verification. The algorithm outperforms competing
algorithms in terms of accuracy, speed, and size of the training dataset.

The introduction of GAN in Reference [19] opened new possibilities for image generation
algorithms [20], including facial images. In this case, the generator (G) component is used to synthesize
new images, while the discriminator (D) should detect the fake generated images. The G and D learn
to improve by playing a minimax game which each of the components tries to win. There are two
possible outcomes when using and training GANs. If more focus is put on the generator, then an
image synthesis system is obtained. Otherwise, if the generator is used only to create images for the
discriminator to assess, the D component can be used as a classifier. In Reference [21], a conditional
GAN is used to generate facial images from simple noise and conditional data. This extension of
the basic GAN is the first GAN model used strictly for facial generation. GANs can also be used to
synthesize an aged version of the input image, as seen in Reference [22]. Although the results can’t
be validated, the obtained images are highly realistic. Other use cases for GAN include generating
front-faced images from rotated images [23], altering images (closing/opening eyes/mouth) while
preserving identity of the person illustrated in the images [24], and also removing extra lighting
from facial images to ensure proper conditions for face identification [25]. The last three techniques
prove the utility of GANs in image processing. The generator is trained in [26] to reconstruct 2.5-D
images from 2-D images, and the output is used in two other CNNs (convolutional neural networks)
for feature extraction and face recognition. Different training techniques for GANs are presented
in References [27–31], covering unsupervised, semi-supervised, and supervised learning and also
providing different outputs for classifiers:

• Class conditional models: condition the G to produce an image in a specific class and use the D to
assert whether the image is fake or real (two output classes)

• N-output classes [27]: Use the D to classify the input image in various classes; ideally, the generated
images should have a low level of confidence for the output class. The semi-supervised learning
approach almost leads to the best performance in classifying images containing numbers or
different objects. Unfortunately, the unsupervised approach has proven a weak accuracy in
multiple-class classification.

• N+1-output classes [29–31]: Use the N-classes approach but also have a distinct class for generated
images. The semi-supervised trained classifier in Reference [29] is a more data-efficient version of
the regular GAN, delivering higher quality and requiring less training time. The research has been
conducted on the MNIST database (Modified National Institute of Standards and Technology
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database). The same conclusion was also reached in References [30] and [31] by the creators of
the original GAN, but with an expanded dataset containing images of different objects, animals
and plants.

2. Related Work

Emotion recognition is a new sub-area of facial recognition with high potential. Applications
that perform emotion recognition can be used in various areas, like marketing (products/services
evaluation and feedback based on customer emotions), psychology (identifying criminal profiles or
terrorists before committing an attack), security (replace the panic button with fear detection during
a robbery or an assault), and even medicine [32–35] (effects of positive and negative emotions on the
patients’ health using current technology). Although performed before the development of modern
emotion recognition techniques, the presented medical studies show the importance of emotion
monitoring as a step in detecting depression and other diseases. Most progress in using GANs in
the domain of emotion is represented by the possibility of altering an emotion in an image based
on labeled information about the target emotion [36–41]. The obtained images are highly realistic
and hard to distinguish as fake by human observers. The method in Reference [36] and its improved
version [41] generate a sketch image of the emotion from an image, its emotion label and random
noise. The sketch is assessed by the discriminator for correctness and then used as input in another
GAN which generates an image of another person with the same facial emotion. The generated facial
expressions are compared with real valid facial expressions, having the distances between the two
classes reported as small.

A starting point in emotion recognition is represented by the identification of facial regions of
interest, which can be done by localizing a series of facial key points. These features describe the
position, shape, and size of the corresponding regions of interest. In Reference [42], a lip contour
detection and tracking system is presented. The system uses a multi-state mouth model that represents
different mouth states, a series of lip templates, and shape, color and motion information. The facial
points associated with the lip are tracked in the image sequence and the lip contour is obtained from the
template parameters, with the color and shape information being used to distinguish different lip states.
A neural network for the detection of 15 facial key points is described in Reference [43]. The proposed
deep convolutional neural network uses a learning model for each facial key point with the result
outperforming other similar approaches. A total of 194 facial landmarks are estimated for each facial
image in Reference [44] by using an ensemble of regression trees. The obtained predictions are of high
quality, with the algorithm also performing in real-time. The paper also includes optimizations for
improving feature selection, a comparison of different regularization strategies, and a study on the
evolution of predictions based on the quantity of training data. Facial micro-expressions are analyzed
in Reference [45] using 31 facial points out of the 121 obtained using the Kinect face tracking API
(Application Programming Interface). The micro expressions are analyzed based on different visual
and auditory stimuli, as well as the gender of the subjects. The authors also studied the possibility to
distinguish emotions based on the results.

Two different neural networks for emotion recognition are trained and compared in Reference [46].
The first approach is to use representational autoencoder units. Four autoencoders were developed and
tested on the JAFFE (Japanese Female Facial Expression) [47] and LFW (Labeled Faces in the Wild) [48]
facial images datasets with accuracies of 60% and 49% respectively. The other selected implementation
is an eight-layer convolutional neural network, created and trained from scratch. The network includes
convolutional, max pooling, and fully connected layers. Using the same datasets [47,48], the accuracy
increased to 86% and 67%, respectively, after 20 epochs and 420 iterations. In Reference [49] a CNN
classifier is developed and trained on the FER2013 dataset [50]. Due to differences in the number of
images for each emotion class, two cycle-GANs are trained to generate disgust and sadness images
starting from neutral face images. Therefore, the training dataset is expanded for an equal distribution
of images. Using the generated images, the overall accuracy of the CNN classifier improved. Further
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testing with good results is performed on other datasets [47,48,50]. A fear estimation system is
developed in Reference [51], using two images captured by a dual camera system: a near infrared
(NIR) camera (Logitech, CA, USA) and a thermal camera (FLIR, OR, USA). Seven different features are
extracted from the two images (two from thermal images and five from NIR images) and the last feature
is represented by the direct input of the study subjects via a real time questionnaire. The algorithm
proposed in [44] is used to extract 68 facial feature points for the NIR images. The extracted feature
points are further used to compute the five features based on facial point movement between successive
images of the subject who switches from neutral to scared (fear). The top four discriminatory features
are selected and their values are normalized (0–1) and used as input in a fuzzy inference system, which
evaluates the value of the fear emotion from low to high.

The authors in Reference [52] develop and train two convolutional neural networks with different
scale invariant features. The feature descriptors are represented by image gradients computed using
key points neighboring pixels of the given image, on 4 × 4 patches (16 patches for each image).
K-means clustering is used to group the feature descriptors in clusters for each emotion. The proposed
models are trained on FER [50] and CK+ [53] datasets and tested on an additional dataset, SFEW [54].
The reported results have a good accuracy on the training dataset, but a decreased one for the third
dataset. In Reference [55], two methods for emotion recognition are proposed: SVM and CNN.
The different SVM models (one-vs-one, principal component analysis, one-vs-all, histogram of oriented
gradients) presented issues during training and obtained lower accuracies on all the tested datasets.
Several other CNN implementations with additional preprocessing techniques were tested. The best
obtained accuracy on a small subset of FER [50] was 66.67%. The algorithm is further used for
real-time image classification in video feeds. Five existing CNN approaches for deep learning are
proposed, adjusted, and compared in [56], with the scope of emotion recognition. The input images are
preprocessed using the Viola-Jones algorithm. Then, existing models are adjusted (adding new layers),
trained and tested for accuracy. A CNN with two similar sequences of two convolutional layers and
a sub-sampling layer, followed by a dense layer with 3072 filters and an output layer, obtained the best
accuracy (63%).

The current paper proposes a new system for emotion classification based on a GAN classifier.
The facial emotions are classified within seven emotions–anger, disgust, fear, happiness, neutral,
sadness, and surprise. To this end, 14 classes are used to train the GAN–a real class and a fake
one of each emotion. The novelty of the proposed method is brought by using the new 2N-classes
approach for training the GAN classifier which normally operates with N-classes. As a consequence,
the detection accuracy increased. Another contribution is the expansion of the test images dataset
by generating images using the GAN. Real images of a different class are used in the generation
process, which is different from the standard GAN approach to generate images from a simple noise
array. By only using the rotation-invariant facial points as input for the classifier, we also reduce the
amount of data that is analyzed. The facial-points vectors are processed to be rotation insensitive,
so that tilted facial images can also be classified, as opposed to similar presented algorithms, which can
classify only front faced facial images. The remainder of the paper is organized as follows: In Section 3,
the methodology and architecture of the proposed system are described. In Section 4, the experimental
results are presented, along with a performance analysis. The paper concludes with the discussions in
Sections 5 and 6.

3. Materials and Methods

3.1. Training and Evaluation Phase

3.1.1. System Architecture

Robert Plutchik [57] developed a wheel of emotions, stating that there are eight primary emotions:
happiness (joy), sadness, anger, fear, trust, disgust, surprise, and anticipation, which can have a variety
of intensities. The primary emotions are located on the first ring. Moreover, complex emotions can be
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obtained from a mix of primary emotions (with a distance of 1, 2 or 3 on the wheel), thus obtaining the
full spectrum of human emotions.

We propose a system for the classification of six primary emotions (happiness, sadness, anger, fear,
disgust, and surprise) in facial images, adding another class of neutral emotion (lack of a dominant
emotion). Five emotions are negative, with happiness being the only positive. The system is based on
a modified conditional GAN. The first proposed implementation of a GAN [19] had a simple structure.
The discriminator D would receive either a real image or a fake (generated) image and would have to
assess it as real or fake. The generator G was responsible with generating a fake image similar to the
real one, starting from simple noise and a latent space vector. Based on the correctness of the decision,
the discriminator and generator would adjust their weights. The discriminator and generator play
a minimax two-player game with the value function in Equation (1):

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

The first term of the equation is represented by the entropy (E) passed by the distribution of the
real data (pdata(x)) through the discriminator (D(x)) and it can have a maximum value of 1. The second
term is represented by the entropy passed by the distribution of the random noise input (p(z)) through
the generator (G(z)) that produces a fake data sample which is further passed to the discriminator for
assessment. The second term can have a maximum value of 0. The discriminator tries to maximize
the value function V(D,G) (meaning that the fake data is always labeled as fake), while the generator
tries to minimize the value function (in this case the difference between the real and the fake data
is minimum)

Starting from the original network structure, several varieties of GAN architectures were proposed,
as seen in Figure 1.

(a) (b) (c)

Figure 1. Different GAN (generative adversarial network) implementations: (a) Conditional GAN [19];
(b) Semi-Supervised GAN [29]; (c) Info-GAN [58].

Our proposed architecture combines elements from the previous described implementations.
The novelty is brought by using a real image not part of the desired class to generate the fake
images, instead of using a noise vector, adding an image processing block for facial points extraction
and constructing rotation invariant facial vectors, and splitting the real/fake assessment and class
identification into a single 2N type classification (a real and a fake class for each emotion). The proposed
architecture can be seen in Figure 2.
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Each training cycle of the network is split into three phases. During the first phase (flow I—the left
side of Figure 2), the generator is switched off and the discriminator receives only real class-labelled
images. The discriminator adjusts its weights based on the feedback loop FD. For the first phase of
the first training cycle, the discriminator will only use the N real classes as possible outputs for an
image. For any other phase or cycle, all the 2N classes are used. During the second phase (flow II– the
right side of Figure 2), the discriminator remains unmodified and the generator is trained to deliver
fake images of given classes which the discriminator has to classify. The generator uses the feedback
loop FG to adjust weights. In the third phase (also flow II), the roles switch and the generator is kept
unmodified, while the discriminator is trained with both real and fake images. The feedback loop FD
is used for weights adjusting. The three main components (image processing block, discriminator and
generator) are described in Section 3.1.2, Section 3.1.3, and Section 3.1.4, respectively.

Figure 2. Proposed GAN architecture.

3.1.2. Image Processing Block

The image processing block acts as an intermediate between the input images (either real or
generated) and the discriminator. We designed this block so that the discriminator can receive more
meaningful information based on which it can classify the images. This block performs two main
operations, namely the detection of facial-key points (detailed in Section A) and finding the correlation
between these points (Section B). The image processing block is used to minimize the variations
brought by gender, age, race, and head posture, while using a large range of test images. Similar works
try to limit these variations by limiting the image dataset on which the algorithms are validated.

A. Facial Points Detection

Facial landmarks are regions of interest that can uniquely identify different components of the
face, such as eyes, eyebrows, lips and nose. These landmarks can be described by a series of facial key
points. In order to extract the facial feature points, we used the real-time face estimation open source
code from dlib C++ library [59]. The code implements the method described in Reference [44]. The dlib
library contains a pre-trained detector that estimates the coordinates of 68 points that are mapped on
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facial regions of interest. The implemented detector uses an ensemble of regression trees for facial
feature tracking. The 68 labeled points output of the detector can be seen in Figure 3a, while Figure 3b,c
show the result of applying the detection algorithm on a test image. Because most of the test images
only contain a cropped image of the face, we will not use the full set of 68 points, but a smaller one of
51 (removing the 17 points associated with the jaw line).

(a) (b) (c)

Figure 3. Images resulted from dlib detector (a) 68 points; (b) Initial image with facial key points;
(c) 51 extracted facial key points.

The facial regions of interest can be described as follows (using the points from Figure 3a):

• Right eyebrow—points 18, 19, 20, 21 and 22;
• Left eyebrow—points 23, 24, 25, 26 and 27;
• Right eye—points 37, 38, 39, 40, 41 and 42;
• Left eye—points 43, 44, 45,46, 47 and 48;
• Nose—points 28, 29, 30, 31, 32, 33, 34, 35 and 36;
• Mouth:

� Upper outer lip—points 49, 50, 51, 52, 53, 54, and 55;
� Upper inner lip—points 61, 62, 63, 64, and 65;
� Lower inner lip—points 61, 65, 66, 67, and 68;
� Lower outer lip—points 49, 55, 56, 57, 58, 59, and 60.

B. Post Processing

In this module, we computed the relative position of the facial points relative to each other.
In order to achieve this, we first computed the position of the facial center of gravity as the average
position of all the other extracted points from Section A, using the Equation (2), where xi represents the
distance on the OX axis and yi represents the distance on OY axis, from the center of origin O located
in the lower left corner of the image.

xmean =
∑68

i=18 xi

51
ymean =

∑68
i=18 yi

51
(2)

After determining the center of gravity, we computed the vectors that join the center of gravity
and the other facial key points. Each of the vectors has a direction (angle relative to the horizontal axis)
and a magnitude (distance from the center of gravity). In Figure 4, the center of gravity (blue dot),
the facial key points (red dots) and the vectors connecting them (green lines) can be observed. Also,
symmetry between vectors corresponding to the same points on the left and right sides of the face can
be observed.
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The center of gravity was selected as reference over any of the points because of the variance
the different points bring depending on the face morphology. This method did not completely solve
the variance brought by the rotation of the face relative to the camera around the vertical (OY) or
horizontal axes (OX). For the scope of this paper, only the rotation along the third axis (OZ, head
tilt) will be corrected. During the initial pre-research that was performed to study the feasibility
of the proposed method, we identified that other similar works used only front-faced non-rotated
facial images. The possibility of classifying tilted facial images was investigated. By using the initial
obtained facial vectors of the tilted images, the resulting classification accuracy of these images was low.
By reducing the distance between the front-faced posed vectors and the tilted vectors, we managed
to match the accuracy between the two situations. For this purpose, the angular offset β between
the line obtained by joining points (28, 29, 30, 31 and 34) and the vertical axis (parallel with OY)
starting from point 34 was computed. The angle β showed the tilt that should be corrected. Using this
offset, the obtained vectors could be rotated so that the faces have a uniform (front-facing) pose, while
keeping the same expression. For each vector, the new direction angle γ and new positions x’ and y’
are computed as in Equation (3), with α being the original angle formed by the vector with the OX axis
in the tilted image and x and y the original positions:

α = tan−1
(

y−ymean
x−xmean

)
× 180

π

β = tan−1 ( x28−x34
y28−y34

)× 180
π

γ = α + β

x′ = xmean + cos(γ)
√
(x − xmean)

2 + (y − ymean)
2

y′ = ymean + sin(γ)
√
(x − xmean)

2 + (y − ymean)
2

(3)

Figure 4. Center of gravity and connections with facial key points.

The visual interpretation of the above described procedure can be seen in Figure 5:

Figure 5. Computing the offset to correct face tilt.
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3.1.3. Discriminator

The proposed CNN structure for the discriminator consists of three convolutional layers, three
pooling layers (two max-pooling and one average-pooling), two fully-connected layers and an output
Softmax layer. The architecture is presented in Figure 6.

The input is represented by a 48 × 48 pixels grayscale image. Each of the three convolutional layers
use 3 × 3 filter functions, with a stride of 1 and a padding of 1. The 0-padding was used to maintain
the size of the output feature maps. The number of convolution filters increases from 32 (convolution
layer 1) to 64 (convolution layer 2), and 128 (convolution layer 3), respectively. Each convolution layer
is followed by a pooling layer. All three pooling layers which are used (one average-pooling and two
max-pooling) have a stride size of 2 × 2 and dropouts of 0.1. The final two fully connected layers use
256 and 128 neurons, respectively, with dropouts of 0.4 and 0.5. The final layer of the proposed CNN is
a Softmax layer with 14 possible outputs (7 emotion classes and real/fake classification).

The discriminator neural network was developed using Python and the machine learning
framework, Tensorflow. It uses a new 2N output classes approach, by having a real and a fake
class for each emotion. This approach helped improve the overall emotion classification by having
the discriminator also trying to associate fake images with emotion classes of interest, instead of just
rejecting the images as fake (N+1-classes approach).

Figure 6. Discriminator architecture.

3.1.4. Generator

The generator performs realistic facial expression synthesis. It receives a facial image that has to be
modified, the target expression, and a sample facial image of the target expression, and then generates
an image of the initial person with the expression of the second person, defined by the target emotion.
The initial and generated images are 48 × 48 pixels grayscale images (R48 × 48). Both the initial (I) and
the label image (IL) are processed by a four convolutional-layer network (encoder Enci), the initial image
being mapped to a latent vector and the label image to a label vector, respectively. The concatenation
result of the two vectors is used by a four deconvolutional-layer network (decoder-Dec) to generate
the target image (Ĩ). The fully connected layer of the decoder learns the differences between the two
vectors (latent-initial image and label-target/label image). The feedforward loop (FFL) is used to
provide the raw features of the initial image (a down sampled version of the initial image), on which
the differences identified by the first six layers of the decoder is applied. The formula for the obtained
image is presented in Equation (4):

Ĩ = Dec(Enc1(I), Enc2(IL), FFL) (4)

The description of the used layers is:

• Convolutional layers (1a–4a, 1b–4b)

� 5 × 5 filter functions, stride 1, padding 2 (0-padding)
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� Layers 1 and 2–128 neurons, Layers 3 and 4–256 neurons

• Max pooling layers (1a–4a, 1b–4b) with stride 2 × 2
• Fully connected layers

� 256 neurons for the encoders, 512 for the decoder

• Deconvolutional (transposed convolution) layers (1–4)

� 5 × 5 filter functions, stride 1, padding 2 (0-padding)
� Layers 1 and 2–128 neurons, Layers 3 and 4–256 neurons

• Upsampling layers (1–4) with stride 2 × 2
• Leaky ReLU as activation function—gradient 0.15

In most GAN implementation, a continuous noise vector is used to generate the images. The noise
vector has no actual relevant information, but it is a source of randomness. By processing an initial
image that has to be converted to a different facial expression, along with another image that has the
desired facial expression, we construct a meaningful vector that is further used in the emotion-guided
image generation process.

The generator neural network system was developed using Python and the machine learning
framework, Tensorflow. The architecture is presented in Figure 7.

Figure 7. Generator architecture.
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3.2. Operational Phase

After the proposed implementation in Figure 2 is trained and validated, several changes are
made for the system to run independently. The classification part is the main component of the new
system. There are three major changes from the proposed implementation in Figure 2. Firstly, the input
image is provided by the user. The input image has to be a facial 48 × 48 pixels grayscale image.
For the scope of this paper this is a mandatory requirement, but, for a future implementation, we
consider adding another processing block so that the user can input a different size image and it will
be converted to 48 × 48 pixels grayscale facial image. The second change is that the real and fake
classes for each emotion are merged into a single class for each emotion. Both real and fake classes
of the same emotions are considered to be the same class in this phase. This division was originally
done during the training phase to increase the accuracy of the system. Thus only seven output classes
remain. Finally, the feedback loop that was used to adjust the discriminator weights during supervised
learning is removed, due to the fact that the images in this phase are not labeled. The new architecture
for the classification system can be seen in Figure 8a. In order to reuse the generator, an additional
system is proposed. The user can input a 48 × 48 pixels grayscale facial image and a target emotion
for it, and the selected emotion will be transferred to the input image, changing the facial expression
accordingly. The generator uses a random image belonging to the selected emotion class from the
initial labeled dataset that was used for training. The proposed architecture for the generator system
can be seen in Figure 8b.

(a)

(b)

Figure 8. Discriminator and generator adapted for the operational phase: (a) Discriminator;
(b) Generator.

4. Experimental Results

In order to train the proposed classification system we selected 7000 images (1000 images for each
emotion class) from multiple datasets: LFW [48], FER 2013 [50], CK+ [53] and SFEW [54], FER+ [55].
Around 85% of the 7000 images used in this phase were selected from the FER 2013 dataset, which has
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the greatest diversity of the mentioned datasets, also being one of the largest open-source datasets
for emotion recognition (almost 30,000 labeled images). The FER 2013 dataset consists of pre-cropped
grayscale images of size 48 × 48, so all other selected images from different smaller datasets were
manually cropped to have the same face pose and converted from RGB to grayscale. By using images
from different datasets, we added an additional variety that the system had to handle. A selection of
images for each emotion class can be seen in Figure 9.

The proposed system was implemented using Python and the Tensorflow machine learning
framework. The algorithm was tested on system with 32GB DDR4 and a NVIDIA GeForce GTX 950M
GPU with 4GB dedicated GDDR5 memory (NVIDIA Corporation, Santa Clara, CA, USA). For this setup
we made use of the Tensorflow-CUDA (Compute Unified Device Architecture) toolkit integration,
to enable parallel computing and obtain better execution times and performance. The system was
trained for 200 epochs, when it was observed that the accuracy did not significantly improve anymore.
Each epoch consisted of two sub-epochs. During the first sub-epoch, all 7000 test images are passed
to the discriminator for classification (left side in Figure 2-I.). The image dataset was randomly split
into two equal parts in sub-epoch 2 (right side in Figure 2-II). The first 3500 images were used to
train the generator with the discriminator kept unchanged, while the next 3500 were used to test the
discriminator with the generator unmodified. The batch size was 100 images in all scenarios, thus
having 70 iterations for each sub-epoch and 140 iterations per epoch. The execution time averaged out
at 6 hours per epoch (2 h for the first sub-epoch and 4 h for the second one).

Happiness

Sadness

Anger

Fear

Disgust

Surprise

Neutral

Figure 9. Sample images from the selected datasets.
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In Figure 10, original, labeled and generated labeled images can be observed. These images are
obtained using the right path in Figure 2-II (right side of Figure 2). After the training phase (200
epochs), a different set of 7000 images was selected from the FER 2013 dataset.

Figure 10. Generator results.
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The proposed classification system was retested for another epoch using the new dataset.
In Table 1, the confusion matrix obtained during the last epoch can be seen. For each emotion
there were 2000 images, half real(R) and half generated (fake, F), like in each of the training epochs.
The true positive entities were highlighted with gray.

In order to assess the performance of the proposed system we considered as a starting point the
well-known statistical terminology:

• TP–Number of true positives, positive correctly classified as positive
• TN–Number of true negatives, negative correctly classified as negative
• FP–Number of false positives, negative classified as positive
• FN–Number of false negatives, positive classified as negative

We further compute statistical measures using the values described above. The measures and
their formulas can be observed in Table 2:

Table 1. Confusion matrix of the proposed system.

Happiness
(H)

Sadness
(SA)

Anger
(A)

Fear
(FE)

Disgust
(D)

Surprise
(SU)

Neutral
(N)

R F R F R F R F R F R F R F

H
R 911 37 0 0 0 0 0 0 0 0 19 7 21 5
F 27 923 0 0 0 0 0 0 0 0 2 18 7 23

SA
R 6 0 704 62 19 3 9 0 55 9 3 0 97 33
F 0 3 57 705 2 11 0 4 7 63 0 1 37 110

A
R 2 0 5 0 765 65 23 6 54 14 39 15 12 0
F 0 1 0 2 92 771 5 17 12 50 14 25 2 9

FE
R 3 0 14 3 21 5 715 83 13 4 62 21 44 12
F 0 0 4 10 5 10 89 719 2 7 19 61 13 51

D
R 2 0 15 4 67 20 15 4 753 82 9 3 21 5
F 0 0 1 14 19 65 3 18 78 767 3 11 3 18

SU
R 78 28 0 0 3 0 58 15 13 3 712 85 5 0
F 22 77 0 0 0 7 18 61 2 17 88 705 1 2

N
R 74 22 63 15 14 1 17 3 22 3 22 1 683 60
F 12 76 10 52 0 12 1 18 4 21 2 32 64 696

Table 2. Statistical measures of performance.

True positive rate (TPR)/sensitivity TP
TP+FN False positive rate (FPR) FP

FP+TN

True negative rate (TNR)/specificity TN
TN+FP False negative rate (FNR) FN

TP+FN

Positive prediction value
(PPV)/precision

TP
TP+FP False discovery rate (FDR) FP

TP+FP

Negative prediction value (NPV) TN
TN+FN Accuracy (ACC) TP+TN

TP+FP+TN+FN

For each emotion class, we compute the statistical measures in each of the following cases:

• Only real images of the class considered as positive (R)
• Only fake images of the class considered as positives (F)
• All images of the class (both real and fake) considered as positive (R + F)
• Real/fake differentiation (real images are positive, fake images are negative, regardless of the

class) (R/F)

The results can be seen in Table 3, with the same notation for each emotion class as in Table 1.
The overall accuracy of the proposed system was 75.2%, while the accuracy of distinguishing

between true and generated images was 82.9% (highlighted with gray). This final test was repeated,
but this time without the generator module and the seven fake output classes, which were disabled.
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By doing this, we wanted to determine the improvement in accuracy brought by using the generator
and the fake emotion classes. Only 7000 real images were used, and the obtained accuracy was 73.2%.
Therefore, it was determined that adding the fake images in the classifications process contribute to
a 2% increase in accuracy and variation of the tested images. There is no significant difference in
accuracy between the tilted images and the front-faced images due to using the adjusting method
presented in Section 3.1.2.

Table 3. Performance results.

TPR TNR PPV NPV FPR FNR FDR ACC

H

R 0.911 0.982 0.801 0.993 0.018 0.089 0.199 0.977
F 0.923 0.981 0.791 0.994 0.019 0.077 0.209 0.977

R + F 0.917 0.982 0.796 0.985 0.018 0.083 0.204 0.954
R/F 0.951 0.964 0.963 0.951 0.036 0.049 0.037 0.9575

SA

R 0.704 0.987 0.806 0.977 0.013 0.296 0.194 0.966
F 0.705 0.987 0.813 0.977 0.013 0.295 0.187 0.967

R + F 0.704 0.987 0.809 0.951 0.013 0.296 0.191 0.934
R/F 0.893 0.897 0.896 0.893 0.103 0.107 0.104 0.895

A

R 0.765 0.981 0.759 0.982 0.019 0.235 0.241 0.965
F 0.771 0.984 0.794 0.982 0.016 0.229 0.206 0.969

R + F 0.768 0.983 0.776 0.961 0.017 0.232 0.224 0.933
R/F 0.900 0.875 0.878 0.897 0.125 0.100 0.122 0.887

FE

R 0.715 0.982 0.750 0.978 0.018 0.285 0.250 0.962
F 0.719 0.982 0.758 0.978 0.018 0.281 0.242 0.963

R + F 0.717 0.982 0.754 0.953 0.018 0.283 0.246 0.926
R/F 0.872 0.869 0.868 0.87 0.131 0.128 0.132 0.865

D

R 0.753 0.980 0.741 0.980 0.020 0.247 0.259 0.963
F 0.767 0.979 0.737 0.982 0.021 0.233 0.263 0.963

R + F 0.760 0.979 0.739 0.958 0.021 0.240 0.261 0.927
R/F 0.882 0.893 0.891 0.883 0.107 0.118 0.109 0.887

SU

R 0.712 0.978 0.716 0.977 0.022 0.288 0.284 0.959
F 0.705 0.979 0.715 0.977 0.021 0.295 0.285 0.958

R + F 0.709 0.978 0.716 0.951 0.022 0.291 0.284 0.918
R/F 0.869 0.869 0.869 0.869 0.131 0.131 0.131 0.869

N

R 0.683 0.975 0.676 0.975 0.025 0.317 0.324 0.954
F 0.696 0.975 0.679 0.976 0.025 0.304 0.321 0.954

R + F 0.690 0.975 0.678 0.948 0.025 0.310 0.322 0.908
R/F 0.895 0.907 0.905 0.896 0.093 0.105 0.095 0.901

Total

R 0.749 0.981 0.750 0.980 0.019 0.251 0.250 0.749
F 0.755 0.981 0.754 0.981 0.019 0.245 0.246 0.755

R + F 0.752 0.981 0.752 0.958 0.019 0.248 0.248 0.752
R/F 0.894 0.896 0.895 0.894 0.104 0.106 0.105 0.829

5. Discussion

A great variety of images (more than 14,000) from five different datasets (FER, FER+, LFW, CK+,
SFEW) was used to test and validate the proposed system. The differences brought by gender, race,
ethnicity, or age are minimized by computing the facial key points and the facial vectors from the
center of gravity. By using this approach, we also handled the errors brought by tilted facial images,
by adjusting the direction and magnitude of the facial vectors based on the face rotation. During the
learning phase, the proposed CNN for emotion classification was tested both with real and generated
images (thus increasing the variety to 28,000 images). Using the GAN approach to also generate images
helps extend the available dataset and also introduces a greater variety of images. During each training
epoch, the weights of the discriminator and generator are adjusted accordingly. This implementation
increased the overall individual accuracy for each emotion class (R + F as opposed to R only), as can be
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seen in Table 3. It can be noted that the individual accuracy (class vs non-class) was quite high for each
of the seven classes, ranging from 90% (neutral) to 97% (happiness). This variation can be explained
by the fact that happiness was the only positive emotion we tested and can be easily distinguishable
from the negative emotions. The lack of any emotion (neutral) was the closest to any emotion class
and therefore more difficult to distinguish. Statistical comparison with similar works validated the
proposed system, as observed in Table 4. In order to properly compare the results, we retested the
algorithm for each distinct dataset (as opposed to the learning phase, where we used a selection of
images from multiple datasets).

Table 4. Accuracy (%) comparison for emotion classification.

Dataset [46] [49] [50] [52] [55] [56] Our Method

FER 2013 - 94.7 71 73.4 63 66.7 75.2
CK+ - - - 99.1 - 98.4 98.3

SFEW - 39 - 52 - - 60.8
LFW 67.7 - - - - - 75.7

JAFFE 86.4 95.8 - - - - 94.8

It can be observed that the accuracy of our system is among the highest for the FER 2013 dataset.
The most notable accuracy obtained on FER 2013 dataset was 94.7, but it was obtained on a small
subset of images (the authors from Reference [49] reported using 7% and 14% of the images in the FER
2013 dataset, while in the current research, we used almost 50% of the available images. The reported
results were slightly better when comparing the 7% case, with an overall accuracy and accuracy for
five emotions being better, with the 14% case, where accuracy for two emotion classes was better).
Although the FER 2013 images represented a great percent of the images used in the learning phase,
the system was able to properly classify images from the other used datasets, as shown by the obtained
accuracies in each of the respective cases. Finally, we tested the system on a new dataset, JAFFE [47],
which was not used at all during the learning phase. Due to using the image processing block (facial
points detection and post-processing) to minimize image variations, the system was able to correctly
classify the new images with a high accuracy (94.8%).

6. Conclusions and Further Work

The proposed method, based on a Generative Adversarial Network, for emotion detection
improved the classification accuracy for five combined facial dataset (75.2%—the overall accuracy,
and 82.9%—the accuracy of identification true/generated images). The obtained system (operational
phase) was flexible, allowing the use of images with great differences (gender, age, and race) as inputs.
Moreover, the generator could be used as a standalone component for emotion change in any image.
In order to reduce the calculus volume, the rotation-invariant facial points were used as inputs for the
classifier of seven emotions.

One future research direction is represented by trying to identify a correlation between the
emotions expressed by different individuals over a period of time and the evolution of their health
state. This kind of study implies monitoring the persons at random intervals in their natural state using
their smartphone, laptop, or smart TV camera and finding their predominant emotion in different
situations throughout the day. The study is guided by the idea that a negative emotion can have impact
on the overall health state, leading to stress and ultimately to diseases like cancer [32–35]. A strong
collaboration with a medical institute is planned.

Another research direction is represented by the possibility to monitor and evaluate the emotion
caused by different advertising campaigns (photos or videos) using the smartphone camera. In this
way we can assess how well the campaign is received by the public.
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Abstract: Recently, there have been many studies on the automatic extraction of facial information
using machine learning. Age estimation from frontal face images is becoming important, with various
applications. Our proposed work is based on a binary classifier that only determines whether two
input images are clustered in a similar class and trains a convolutional neural network (CNN) model
using the deep metric learning method based on the Siamese network. To converge the results of the
training Siamese network, two classes, for which age differences are below a certain level of distance,
are considered as the same class, so the ratio of positive database images is increased. The deep
metric learning method trains the CNN model to measure similarity based only on age data, but we
found that the accumulated gender data can also be used to compare ages. Thus, we adopted a
multi-task learning approach to consider the gender data for more accurate age estimation. In the
experiment, we evaluated our approach using MORPH and MegaAge-Asian datasets, and compared
gender classification accuracy only using age data from the training images. In addition, using
gender classification, our proposed architecture, which is trained with only age data, performs
age comparison using the self-generated gender feature. The accuracy enhancement by multi-task
learning, i.e. simultaneously considering age and gender data, is discussed. Our approach results in
the best accuracy among the methods based on deep metric learning on MORPH dataset. Additionally,
our method has better results than the state of the art in terms of age estimation on MegaAge-Asian
and MORPH datasets.

Keywords: convolutional neural network (CNN); deep metric learning; multi-task learning;
image classification; age estimation

1. Introduction

Machine learning-based age estimation from face images is becoming more and more important
because it is widely used for individual authentication [1], forensic research [2], security control [3],
human–computer interaction [3] and social media [4]. Recently, there have been many studies using
deep learning based on CNNs [3], such as AlexNet [5], VggNet [6], and Inception [7], with wide use for
image classification and image detection. CNN-based learning, as one of the machine learning-based
approaches, enables automatic and accurate feature extraction and classification for sample sets that
are too large for humans to describe all cases of matching patterns. AlexNet, VggNet, and Inception
have recently been used for multi-class classification, and they are widely used as the base models
of CNN.

Deep expectation (DEX) [4] is an age estimation approach based on CNN models. It uses VggNet
to resolve multi-class classification problems for age estimation and adopts a method to estimate the
appropriate age through expectation value calculation, for which the trained results in the softmax layer
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are considered the probability in the corresponding class. Instead of considering the age estimation
problem from the perspective of multi-class classification, this approach applies multi-task CNN by
considering the age classification problem as a regression-based problem by estimating continuous
variables [8].

As another approach, a binary classifier with shallow layers is applied for all classes of age
instead of using a CNN model with deep layers. The final age estimation is deducted through the
ranking-based comprehensive combination of all results by each binary classifier [9]. This ranking
CNN is one of the existing machine learning methods using the cascaded-based combination of the
results of binary classifiers.

1.1. Motivation

The above approaches aim to estimate absolute age from the input face images directly, but it is not
easy to estimate absolute age accurately without any reference data [10]. To overcome this limitation,
Abousaleh et al. [11] introduced a new approach, called comparative region convolutional neural
network (CRCNN). Input face images are compared with reference images to determine whether they
are older or younger for age estimation. Our study was also inspired by this CRCNN, comparing the
age relatively instead of directly estimating absolute age, so we adopted the deep metric learning
method to train the logic of comparing age in the CNN model. Deep metric learning reduces the
complex classification task to the nearest neighbor problem [10]. In addition, this approach has the
advantage that it makes use of relationships using more data.

A Siamese network [12] is widely used as a deep metric learning-based approach. Two input
images are applied to two CNN models, and then each input image is mapped to a point
in multi-dimensional space, where the similarity of the two input images is described as the
corresponding distance. These CNN models are trained using the loss function, by which the points
are closely clustered in the case of higher similarity. A well-trained Siamese network generates
well-clustered data for the training images. The input image can be accurately labeled by selecting
the nearest clustered data compared to the features extracted from input images. Here, the nearest
neighbor selection process corresponds to our approach of estimating the labels by comparing the
input images with the training images.

However, Siamese network-based deep metric learning has the drawback of difficulty in
converging the results. When this learning method is applied for age estimation, all remaining
classes except the correct class are negative so divergence often occurs in the learning process.
Related to this issue, CRCNN trains a Siamese network using loss function to determine whether the
age is younger using two images instead of comparing the similarities. Additionally, CRCNN proposes
a selection approach for specific images compared with the input images. This avoids the side effect of
continuously learning with negative reference images.

1.2. Contribution

With these motivations, by applying a Siamese network-based deep metric learning for exact age
estimation, we propose a method to converge the process of Siamese network learning. Our proposed
approach allows a certain level of error tolerance to increase the ratio of positive data, so that it can
perform comparisons for all images in the database, while decreasing the possibility of divergence in
the training process.

Additionally, the deep metric learning method trains the CNN model to measure similarity based
only on age data, but we found that the accumulated gender data can also be used to compare the age.
Thus, we adopted a multi-task learning approach to consider the gender data for more accurate age
estimation. Multi-task learning is a method to train CNN models simultaneously with multiple tasks to
effectively assist in the training. This method enables the CNN models to be trained to simultaneously
perform the age estimation tasks and separate tasks to classify the gender, so that more relationship
data can be involved, which is helpful to increase the performance in terms of accuracy.
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The whole process is as follows. We use Inception V3 for CNN model [13], which is pre-trained
with ImageNet [14], and perform the feature-embedding by considering the value of the fully
connected layer. The loss function is designed to train our architecture to decrease the distance
between feature vectors when two images in batch are in the same class, as well as to increase the
distance between feature vectors in the case of differences in class for two images. In this step, we allow
a certain level of error tolerance for determining whether two images are in the same class. We define
the two feature vectors for measuring age similarity and for measuring gender similarity, respectively.
Two feature vectors are simultaneously trained to perform the multi-task learning method.

After training step with these conditions, the feature vectors for all training databases are extracted
and the distribution of the clustered data with respect to age similarity can be obtained.

In the test step, the featured vector of an input image is selected with the nearest one in the feature
space to compare the relative location in the clustered data distribution.

This paper is organized as follows. Section 2 explains in detail our architecture to perform the
learning for age estimation. Section 3 shows the experimental results using the proposed approach,
and discusses the performance of the proposed models. Section 4 provides the conclusion of this study.

2. Proposed Architecture

The structure of the neural network in our proposed architecture, which is a Siamese network,
is described in Figure 1 [12]. As shown in Figure 1, the structure and weights in these two networks
are completely equivalent. The outputs of two CNN models for input Images A and B are used in
loss function and the relationship is determined according to the design of loss function. These two
networks are used to apply the loss function for the inference as a result of two input Images A and B.

Same
weights

Same
structureCNN

model
CNN

model

Output

Contrastive Loss

Input image A Input image B

Figure 1. Structure of the Siamese network.

In this paper, instead of using two Siamese network-based CNN models for age comparison
from two input images, we apply the contrastive loss function using the inference results for the
corresponding images by selecting two images from a batch of training models in a single network.

Figure 2 shows an illustration of the overall algorithm. Inception V3 is used for the
construction of the CNN model, but with a fully connected layer, not using a softmax layer. To apply
the multi-task learning to estimate age and gender simultaneously, one more fully connected layer is
constructed. The first fully connected layer performs age comparison and the second fully connected
layer assists age comparison by performing the gender comparison task.
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Figure 2. Illustration of the proposed algorithm.

As shown in Figure 2a, two input images are selected from the batch, by considering all selectable
combinations. The selected A and B images are mapped to the feature vector which is a final output of
the fully connected layers in Figure 2d. In the proposed loss function, the gradient value is propagated
into the network to decrease the distance between feature vectors when two images in batch are in
same class, as well as to increase the distance between feature vectors then the two images are in
different classes, as shown in Figure 2b. Our architecture is trained using the proposed algorithm to
determine the similarity between two input images.

In the test step, feature vector of test image is compared to feature vectors of the entire training
database to perform age estimation by selecting the most similar age class, as shown in Figure 2c.
The detailed process of the proposed algorithm is as follows.

2.1. Inception V3

The proposed algorithm in this paper adopted Inception V3 [13], which is an enhanced version
with batch normalization and filter size reduction.

Figure 3 compares module of the Inception model and module of the Inception V3 model.
In the Inception model, the filter sizes are 5 × 5 and 1 × 1, but the Inception V3 model uses
1 × 1 and N × 1 filters continuously; as a result, the calculation cost and the number of parameter
coefficients are reduced. In this paper, we adopt the Inception V3 model and configure the (N = 3)× 1
filter. To perform Siamese network-based deep metric learning using this Inception V3 model, the final
output of fully connected layers is used as the feature vector instead of using the softmax layer,
as shown in Figure 2b.

42



Symmetry 2018, 10, 385

1x1 1x1 3x3

1x1

5x5 3x3 1x1

Next Layer 

Previous layer
1x1 1x1 3x3

1x1
1xn 1xn 1x1

nx1

1xn

nx1

nx1

Previous layer

Next Layer 

: Convolution layer
: Pooling layer

Concatenation 
of each filter’s output: Concatenation 

of each filter’s output:

(a) Module of the Inception model

: Convolution layer
: Pooling layer

(b) Module of the Inception V3 model

Figure 3. Inception module.

2.2. Selection of Two Images and the Feature-Embedding Process

To implement the Siamese network using a single network, two images are selected from the batch,
as shown in Figure 4, and they are used to measure the similarity. The comparison repeats the number
of available combinations by selecting two images from the batch. Unlike in the previous CRCNN,
this approach performs the comparisons and trains the model between all images in the batch instead
of selecting only specific images [11].

. .
.

. . .

Figure 4. Image selection for comparison in batch.

The two selected images Xi, Xj in the batch, as shown in Figure 5, are mapped and shrunk to the
final fully connected layer in Na dimensions, which is described using Inception V3. The shrunk
data are represented with the corresponding features FV(Xi), FV(Xj), in which integers i and j are
indices in the batch.

43



Symmetry 2018, 10, 385

Inception V3

Feature space
( Dimension)

Fully connected layer
( Dimension)

Feature
embedding
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2.3. Distance as Similarity between Two Images

The feature vectors are extracted by the Inception V3-based feature-embedding method,
as shown in Figure 5.

The proposed algorithm aims to effectively train the model by mapping the feature vectors
into feature space so that similar images are clustered with smaller distance. Therefore, similarity
between two images and distance between feature vectors of two images have a reciprocal proportion
relationship. The distance between the feature vectors is calculated using L1 − norm, which calculates
the absolute distance of the corresponding value in each dimension with the following equation in
terms of the distance D between two feature vectors.

D = ||FV(Xi)− FV(Xj)||L1 (1)

Some previous approaches [11,13] use the Euclidean distance calculation method called norm2,
but the preferred approach in previous studies has been to use norm1 instead of norm2 for Siamese
networks [12].

In this paper, we define the distance using L1 − norm and we can successfully converge the
training result, as evaluated in the experiment.

2.4. Loss Function for the Training Comparison Task

Feature vector comparison, as a representative descriptor for a given image, is equivalent to
comparing the image itself. Our proposed approach defines the loss function and trains the comparison
task of the CNN model so that the extracted features are relatively positioned in the feature space in
terms of the similarity of two feature vectors.

The loss function used in this paper is described as follows. The loss function corresponds to the
contractive loss function in the Siamese network, which is introduced as a contrastive loss function [12].

loss = (1 − Z)L−(D) + (Z)L+(D) (2)

Z is a Boolean function that outputs 1 in the case of two similar images; otherwise, it outputs 0.
L− has to satisfy the condition in the manner of a decreasing function, and L+ of an increasing function,
as shown in the following equation.

Z =

{
1, if two images are considered as same class
0, otherwise

(3)
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L−(x) = 2 × Qe−
2.77
Q x, L+(x) =

2
Q

× x2 (4)

Q is a constant to determine the upper limit of dissimilarity, which is 100 in this paper. Figure 6
is a graph to describe the loss function in terms of the distance between feature vectors. Z is 1 in the
case of two similar images in the same class, and the L+ term remains. The gradient is propagated
into the network so that the distance is reduced to minimize the loss in the designed loss function.
Z is 0 in the case of two images that are considered to be in different classes, and the L− term remains.
The gradient is propagated into the network so that the distance is increased for the decreased loss
function. With these operations in the network, the weights for feature vector extraction is updated.

Figure 6. A designed loss function for the proposed algorithm.

Because this designed loss function is used to train the network to determine the distance
between feature vectors, there is no inefficiency limiting the basis of the mapping plane.
However, unlike the trained database, the proposed method has to search and determine a nearest
neighbor from feature vectors. In addition, an approach using this loss function enables the multi-class
classification for age estimation of various bands to be simplified as a binary classification problem
which only measures the similarity. It mitigates imbalance of the accuracy over all classes, which is
caused by the biased training database. However, if this loss function is applied to the binary
classifier as it is, the images in the same age class are considered positive, and all other classes are
negative; as a result, the trained database becomes imbalanced due to the large number of classes,
which is why Siamese networks do not easily converge the training results.

To resolve this issue, CRCNN adopts a technique to select the comparison images in advance to
prevent the network from being continuously trained with the negative database. Instead of comparing
the similarities in age, it redesigns the loss function to only determine whether the age is younger or
older; as a result, it can converge the training results of the Siamese network.

Our approach succeeds in converging the training result by adopting a method to increase the
ratio of the positive data, for which the Boolean function Z determining age class allows for error
tolerance. For example, if three years is allowed as a margin, the loss function considers classes between
N − 3 and N + 3 years old to be the same class. The proposed technique is helpful to increase the ratio
of positive data, so the entire process of training the CNN model is not negatively influenced by the
error tolerance.

In fact, while our approach loses discrimination by class in the CNN model with the
margin-allowed error, it results in more accurate age estimation by enabling all comparisons for
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all age ranges. Even though a specific feature vector is involved with the class within a certain range
of marginal error tolerance, clustering can be processed further with accuracy of the margin value,
by comparing with the feature vector within (margin+1) and −(margin+1) compared to the currently
clustered age. The entire clustering procedure using the proposed approach is described in Figure 7.
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Figure 7. Clustering process allowing marginal error tolerance.

Figure 7 assumes that the margin is defined as 3; the feature vectors of the images are compared
and clustered using the proposed loss function. For example, as shown in Figure 7a, if only the
feature vectors of the images that are 20–22 years old are compared, then all images are considered
similar because the margin is defined as 3, so only the distance decreases, but the clustering does
not proceed further. This means that the estimation accuracy is three years. However, as shown in
Figure 7b, if the feature vector for an image classified as 24 years old is compared to one classified as
20 years old, the network is trained to increase the distance, so the feature vector of age 24 is clustered
to be positioned far away. As shown in Figure 7c, the network is trained so that the feature vector
for 21–22 age is clustered to be closely positioned, because ages 20–21 and 24 are within the margin,
which can be considered the same class. When a feature vector with 25 is compared, 22 and 25 are
considered the same class through the same process, so the network is trained to have a close distance
between 22 and 25. As a result, the feature vectors of 20, 21, 22, 24, and 25 are separately clustered,
so we can distinguish the age of the images with an accuracy of one year.

2.5. Age Estimation

In the test step using the database trained by the proposed approach, the age estimation process
initially involves calculating the feature vectors in Na dimensions to search for similar images
compared to the trained database. Because the CNN model has already been trained to determine the
age similarity, the test model comparing the input image is prepared with the clustered feature vectors.
The feature vector for the input image is extracted using the same CNN model, and then compared
with the clustered data in the test model. The test process involves age estimation performed by
calculating mean age of among Mth nearest neighborhoods. The distance-based nearest neighborhood
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search method is also based on L1 − norm which is used in the training process. The entire test process
is described in Figure 8.

.

.

.

Training DB

44

32

50

Compare
with L1-norm

= 50

Precomputation

. . .
1st nearest

data

Test

Test DB

Nearest 

1st

nearest
2nd

nearest

Mth

nearest

50
Mean
age

Figure 8. Age estimation process selecting the nearest neighborhood in the feature space.

2.6. Multi-Task Learning for Age and Gender Estimation

The loss function for the proposed method is designed to train the CNN model with age
similarity as the relation of classes. Even though the CNN model is trained to determine a similar
level using the age data, it can be further trained by clustering the classes closely with similar images
using detailed conditions, such as face angle, hair length, and beard. An algorithm that determines age
using various conditions, in addition to the absolute age data, is more appropriate. That is why the
detailed conditions are automatically configured and applied to the training model by only defining
the age-based similarity.

With this concept, we first tried gender classification using the model trained with only the age
data, and then we measured the accuracy of the gender-matching result. We found that our approach
using only age-based estimation could classify the gender with 81.23% accuracy compared to the result
of gender-based classification. The result is summarized in Table 2. The result gave us the following
two insights. First, our approach internally uses gender-based conditions to perform the age estimation.
Second, the gender data can be an important clue to estimate age. In fact, the 81.23% accuracy of
gender classification based on age data means that the age estimation is tightly coupled with gender.

Based on this speculation, our approach adopts the multi-task learning approach so that it
additionally provides gender data to the trained model when comparing age. The multi-task learning
simultaneously trains the model to increase the performance in terms of accuracy of age estimation.
If the individual tasks have a cross-coupled relationship, the multi-task learning approach enables
the model to be trained by selecting commonly important variables in the multiple tasks. Utilizing
the ability to train the model considering the relationships between tasks, we could assist the age
estimation with gender data, thus training the model to consider age and gender simultaneously.

The multi-task learning technique applied in this paper is described in Figure 9. A fully connected
layer in Ng dimensions is added for the gender comparison used to compare age in Inception V3.
We also designed a loss function to train the logic of the gender comparison so that the weights in the
layer are updated in a similar way as in the age comparison algorithm. The margin of comparison in the
loss function is 0, and it divides the positive and negative data on the basis of gender. This additional
task for gender comparison is temporarily used to assist the data in training the age estimation logic.
The finally calculated loss is the sum of the loss by the age estimation and gender classification.
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Figure 9. Multi-task learning for the age algorithm considering age and gender simultaneously.

3. Experimental Results and Discussion

The purpose of this experiment was to verify the age estimation accuracy performance based on
our architecture in an open image database. We implemented our algorithm using TensorFlow [15],
an open source deep learning framework based on Python. We used Inception V3 for CNN model [13],
which was pre-trained with ImageNet [14]. The batch size was 128, the image size was 227 and
dropout was performed with a probability of 50%. The first fully connected layer’s dimension, Na,
tasked with measuring age similarity, was 70, and Ng, i.e. the dimension of the second fully-connected
layer for measuring gender similarity, was 10. Each dimension was experimentally selected. In the
gradient descent procedure to optimize network weights, the Adadelta [16] method was used.
The margin-allowed error, newly defined in our proposed method, was set to 4. This means that,
if the difference between age was less than 4, the two ages were considered to be in the same class.
In the test step, mean age of the nearest 20 (M = 20) was calculated for prediction. The age estimation
performance was evaluated by mean absolute error (MAE), which is generally used in previous
research as defined in the following equation. MAE indicates how close a prediction is to the true age.

MAE =
∑n

i=1|Ai − Ãi|
n

(5)

Ãi and Ai are the estimate and true age of the sample image j, and n is the total number of samples.
We also calculated the cumulative score (CS) [17–19]. CS indicates the percentage of samples correctly
estimated in the range of [Ai − T, Ai + T], a neighbor range of the true age where T is the parameter
representing the tolerance. CS is calculated using the following equation.

CS(T) = 100 × ∑n
i=1[|Ai − Ãi| <= T]

n
(6)

Here, [.] is the truth-test operator. A higher value of CS(T) means a better performance of the
architecture. We experimented with two public datasets. The first was the MORPH database [20].
There are 55,132 face images from more than 13,000 subjects in this database. The ages of the face
images range from 16 to 77. The frontal face images are from different races, among which African faces
account for about 77%, European faces account for about 19% and the remaining 4% include Hispanic,
Asian, Indian, and other races [11]. The second was MegaAge-Asian [21]. It contains 40,000 face
images of Asians with ages from 0 to 70. Table 1 shows the size of each dataset and the corresponding
splits for training and testing. We first selected test images randomly and the remaining images were
used as training images. Therefore, there is no intersection between training and test sets.
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Table 1. The proposed method was evaluated using two datasets.

DB Name The Number of Training Images The Number of Test Images

MegaAge-Asian 40,000 4000
MORPH 45,132 10,000

The proposed architecture was trained with each dataset in Table 1. We experimented to verify
the performance of our method, as described in the following sections.

3.1. Toy Example: Visualization of Feature Embedding Computed by Our Method Using a Subset of the
MORPH Dataset

To verify that the clustering process improves the accuracy of the margin value, feature
vectors were visualized using a small subset of the MORPH dataset. For visualization on
two-dimensional space and to facilitate convergence, we collected face images with ages from 16
to 63 (only 48 classes) and each class had 1–3 images randomly. Hyper parameters for the toy example
are as follows. The batch size was 48, and the dimension of the feature vector was 2 for visualization
on two-dimensional space. In the case of the toy example, the margin value was set as 2. After the
training step with these conditions, extracted feature vectors were clustered, as shown in Figure 10.
The vertical axis is the true age of each feature vector and the others are axes of feature space. Most
of the feature vectors were well-clustered, as shown in the zoomed graph (red box). The clustering
process had an accuracy of one year but our CNN model had an accuracy of two years, thus putting
those images that were two years younger or two years older in the same class.
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Figure 10. Visualization of feature embedding with the toy example.

3.2. Multi-Task Learning for Age and Gender Estimation

The first row of Table 2 is the result of the gender classification rate on the MORPH dataset using
only age data. Even though gender data were not used, the gender classification rate was quite high.
The classification rate was much lower than in the other CNN model using gender data. Even AlexNet,
which is a relatively simple model, had a better classification rate. However, 80% accuracy means that
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the age estimation is tightly coupled with the gender. Therefore, we tried using gender data in the CNN
model by applying multi-task learning for age and gender estimation simultaneously. The results of the
experiment before and after applying the multi-task learning method are shown in Figure 11.
The MAE of our method with multi-task learning slightly decreased from 2.24 to 2.28, but CS(T)
values were improved. In particular, the CS(5) value increased by about 2%. Therefore, performance
was improved by using gender data to estimate age through multi-task learning.

Table 2. Gender classification rates on the MORPH dataset.

Method Accuracy (%)

Our method without gender data 81.23
Alexnet [5] with gender data 97.38

Inception V3 [7] with gender data 99.1
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: w/o multi-task
: w multi-task

Figure 11. Comparison of our method with and without multi-task learning.

3.3. Comparison with Deep Metric Learning-Based Approaches on the MORPH Dataset

Table 3 shows the age estimation result of the dataset and a comparison with traditional methods
based on deep metric learning. The MAE of our method was 2.24, indicating better accuracy than
the MAE of the CRCNN [11], which is 3.74. This means that applying our method of deep metric
learning based on a Siamese network is suitable for age estimation. Moreover, M-LSDML [22], the latest
age estimation method based on deep metric learning, has a slightly lower MAE than our method.
Additionally, the MAE of the ResNet with each loss function for deep metric learning is shown.

Table 3. Age estimation results on test images of the dataset and a comparison with traditional deep
metric learning methods.

Method Kinds of Loss Function MORPH(MAE)

Our method Revised contrastive loss function 2.24
Our method with multi-task learning Revised contrastive loss function 2.28

CRCNN [11] Contrastive loss function 3.74
M-LSDML [22] Custom-defined loss function 2.89

ResNet (contrastive loss) [22] Contrastive loss function 3.72
ResNet (triplet hinge loss) [22] Triplet hinge loss function 3.59

ResNet (lifted structural loss) [22] Lifted structural loss function 3.24

3.4. Comparison with State-of-Art Method on Each Dataset

In addition, we compared the state-of-the-art methods. Most techniques using the MegaAge-Asian
dataset evaluate age estimation performance by CS(T), as shown in Table 4. Our method achieved a
slightly higher score than the other methods on the MegaAge-Asian dataset. In the case of techniques
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using the MORPH dataset, the MAE is widely used to evaluate the age estimation performance.
In Table 5, the MAE of each technique is shown. In the experiment on MORPH dataset, our method
achieved the best MAE (2.24).

Table 4. Comparison of CS(T) with state-of-the-art methods on the MegaAge-Asian dataset (* face
alignment method is applied, ** additional labels are used).

Method CS(3) CS(5)

Our method 69.70 84.64
MobileNet [23] 44.0 60.6
DenseNet [24] 51.7 69.4

Zhang et al. [25] ** 64.08 82.43
SSR-Net [26] * 54.9 74.1

Table 5. Comparison of MAE with state-of-the-art methods on the MORPH dataset (* face alignment
method is applied, ** additional labels are used).

Method MAE

Our method 2.24
Our method with multi-task ** 2.28

Ranking-CNN [9] 2.96
DEX [4] * 3.25

DEX w IMDB [4] * 2.68
Zhang et al. [25] ** 2.87

Zhang et al. w IMDB-WIKI [25] ** 2.52
SSR-Net [26] * 2.52

In terms of age estimation, the accuracy of our method is improved with respect to CS value and
MAE by using more data from relationship between images. However, to deal with bigger datasets,
comparing all images may not be an efficient strategy because of the increased computation and
clustered data. Our architecture has the disadvantage of longer training time: in the case of applying
our multi-task method in MORPH datasets, our architecture needs 275 epochs to converge. In future
work, to reduce the training time, we will consider a strategy of automatically selecting images which
can be references to compare with training dataset and used for a gallery. This strategy is more
appropriate to apply for bigger and more varied datasets (e.g., FG-net and IMDB-WIKI). Additionally,
for optimizing our method, more analysis on dimension of feature vector, the consideration of simpler
networks with statistical significance according to random initialization and more efficient loss function
are needed, which will be researched in future work.

4. Conclusions

This study was motivated by the fact that training a CNN model based on age comparison is
easier than directly estimating the absolute age. The proposed approach trains a CNN model for
age comparison using a Siamese network-based deep metric learning method. We designed a binary
classifier, which is applied to train a Siamese network to cluster the classes within the margin of
tolerance as the same class, allowing us to successfully train the Siamese network by adopting
L1 − norm instead of L2 − norm. The experimental test indicated that the proposed approach itself
performs the gender classification in processing the age estimation, thus we tried training the
CNN model by comparing age and gender simultaneously using the multi-task learning technique.
The proposed method was evaluated using the MORPH dataset. Although our architecture needs many
epochs to converge, it results in better performance. There was also an additional enhancement using
multi-task learning for age and gender compared to CRCNN, the original Siamese network-based
deep metric learning, and the latest M-LSDML. Additionally, our method also has better results than
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the state of the art on MegaAge-Asian and MORPH datasets. In future work, more analysis is needed
to reduce the training time by selecting reference images to compare rather than comparing all images.
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Abstract: Facial landmarking locates the key facial feature points on facial data, which provides
not only information on semantic facial structures, but also prior knowledge for other kinds of
facial analysis. However, most of the existing works still focus on the 2D facial image which may
suffer from lighting condition variations. In order to address this limitation, this paper presents a
coarse-to-fine approach to accurately and automatically locate the facial landmarks by using deep
feature fusion on 3D facial geometry data. Specifically, the 3D data is converted to 2D attribute
maps firstly. Then, the global estimation network is trained to predict facial landmarks roughly by
feeding the fused CNN (Convolutional Neural Network) features extracted from facial attribute
maps. After that, input the local fused CNN features extracted from the local patch around each
landmark estimated previously, and other local models are trained separately to refine the locations.
Tested on the Bosphorus and BU-3DFE datasets, the experimental results demonstrated effectiveness
and accuracy of the proposed method for locating facial landmarks. Compared with existed methods,
our results have achieved state-of-the-art performance.

Keywords: facial landmarking; 3D geometry data; 2D attribute maps; fused CNN feature;
coarse-to-fine

1. Introduction

Accurate and automatic facial landmark detection or face alignment is critical in face verification,
face recognition, facial animation, facial expression recognition and other research. Therefore, it attracts
increasing research interests worldwide.

Recently, most studies on face alignment are still primarily conducted on texture images [1–10].
As known, 2D face images are rather sensitive to some condition changes such as arbitrary pose
and illumination variations. To address the pose limitation, some researchers proposed that using
the reconstructed 3D shape can assist facial landmarking performance under arbitrary poses [11,12].
However, the reconstructed 3D face shape based on corresponding 2D face texture is still sensitive to
illumination changes. Motivated by this challenge, the emergence of 3D facial data has provided an
alternative to enhance the accuracy and efficiency of facial landmarks’ estimation.

With the progress of 3D technology, locating facial landmarks on the 3D facial data has been
widely studied [13–21]. Unlike 2D images, both facial geometry information and texture information is
contained in each piece of 3D facial data. During the past decade, more studies about facial landmarks’
estimation on 3D facial data have been presented. Most of the approaches [20–22] applied both texture
data and geometry data to detect landmarks jointly, which can enhance the performance effectively.
In fact, not all 3D scanners provide texture and the texture information is not invariant to viewpoint
and lighting conditions, so it is necessary to locate landmarks accurately only from 3D geometry data.
However, most studies only take range data into account and don’t make the best of features extracted
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from 3D geometry data. In contrast, Li [23] employs feature fusion to recognize facial expression and
make great progress. Motivated by this, our proposed method would take five facial attribute maps
extracted from 3D geometry data, instead of only applying the range data.

In this paper, we proposed a general framework based on coarse-to-fine for face landmarking
only taking 3D facial geometry data. As Figure 1 illustrates, we firstly proposed five feature maps
computed from pre-processed 3D geometry data, including a range map, three surface normal maps
and a curvature map, which are insensitive to lighting conditions. To locate landmarks accurately,
a cascade regression network was designed to update landmarks location iteratively. For this purpose,
the global CNN feature extracted by a pre-trained deep neural network from five feature maps
was used to estimate landmarks roughly. According to learning the mapping functions from the
fused local CNN feature around the landmark estimated previously to corresponding residual
distance, local refinement nets are trained independently. By adopting the coarse-to-fine strategy,
the performance of landmarking would be improved iteratively.
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Figure 1. Flowchart of our algorithm for landmarks’ detection on 3D facial geometry.

In summary, our learning-based framework is a novel coarse-to-fine approach to estimate
landmarks on 3D geometry data by fusing the deep CNN features. The main contributions of this
work are the following:

• We propose using the deep CNN feature extracted from five kinds of facial attribute maps to
estimate 3D landmarks jointly, instead of using any handcrafted features.

• We propose a global estimation stage and a local refinement stage for 3D landmarks’ prediction
based on coarse-to-fine strategy and feature fusion.

• Tested in the public 3D face datasets named Bosphrous and BU-3DFE databases, the performances
have been state-of-the-art.

The rest of this paper is organized as follows: Section 2 briefly reviews related works about
2D and 3D landmarks’ localization. Section 3 describes our proposed method in detail. In this
section, the architecture of proposed model, global estimation and local refinement will be introduced.
Experimental results are evaluated and compared in Section 4. The weakness of the proposed approach
will be discussed in Section 5. Section 6 includes the conclusions and future research derived from
this work.
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2. Related Work

2.1. Facial Landmarking on 2D Images

Various 3D based methods are the extension of 2D-based. The 2D facial landmarking can
generally be divided into two main categories: model-based [1–3] and regression-based [4,6,7]
methods. In the former category, it mainly builds face templates to fit the input images, such as
Active Appearance Model (AAM) [1], Active Shape Model (ASM) [2], and Constrained Local Model
(CLM) [3]. However, model-based methods do not perform not very well in the wild, mainly because
the linear model can’t handle the complex nonlinear model well. Thus, the regression-based method
was proposed to estimate landmark locations explicitly by regression models. It also has been the
most widely employed and has made great progress. Supervised Descent Regression (SDR) [6],
Cascade Fern Regression (CFR) [7], and Random Forest Regression (RFR) [4] have been established to
deal with face alignment on 2D face images. However, most regression-based methods [5,8–10] refine
an initial landmark location iteratively, and the performance under some challenging conditions such
as illumination changes are not very satisfactory.

Recently, research on deep learning has become a popular field of study with the development of
computer hardware and the theory of neural networks. Face recognition [24,25], face verification [26]
and facial expression recognition [27] have achieved better performance than the traditional approaches.
Compared with the traditional methods, deep learning-based methods have been emerging as
an innovative branch in facial landmarking studies recently. Cascade CNN [28], coarse-to-fine
Auto-encoder Networks (CFAN) [29] and deep multi-task [30] learning methods are proposed to locate
landmarks accurately. Stacked hourglass networks [31] are proposed to estimate landmarks end-to-end.
In essence, deep-learning based methods are still regression-based methods which adopt deeper
neural networks to estimate the nonlinear correlation between facial image and estimated landmarks.
However, it is a great challenge to acquire a huge amount of face data and corresponding labels.
Some methods are built on three-dimensional assistance. In Zhu [11], Jourabloo [12] and Kumar [32],
they all adopt a 3D solution in a novel alignment framework, which shows that the character of 3D data
can help to conquer the limitation of arbitrary pose and other challenges. In Bulat [33], they created a
large dataset and estimated 2D and 3D landmarks by adopting hourglass networks. However, all of
these methods obtain corresponding 3D shape by adopting 3DMM or 2D texture images that is also
sensitive to the changeable lighting conditions.

2.2. Facial Landmarking on 3D Facial Data

Many studies on face landmarking based on 3D geometry and texture data jointly have been
proposed recently.

In most of the existing works on 3D facial landmarking, 3D facial landmarks are estimated
by computing the 3D shape-related feature, including shape index [14,15,34], effective energy [16],
Gabor filter [17,18], local gradient [35] and curvature feature [36]. However, the accuracy on these
prominent landmarks decreases drastically, including nose tip and the corner of eyes.

Among these methods on 3D facial landmarking, many approaches utilize registered range data
and texture images jointly to estimate landmarks straightforwardly, which can take full advantage
of the information from range and texture data. In Boehnen and Russ [37], the eye and mouth maps
are computed by adopting both range and texture information. In Wang et al. [38], a point signature
representation and the Gabor jets from 2D texture images are used to represent the 3D face mesh.
Salah and Jahanbin et al. [22,39] proposed the Gabor wavelet coefficient so that the local appearance in
2D texture image and local patch in the range data around each landmark can be modeled well. As the
same thought, in Lu and Jain [40], the local shape index feature and cornerness texture feature around
seven landmarks were computed and fused to detect landmarks jointly.

Unlike the above approaches which estimate each landmark independently, the combination
of candidate landmarks is quite essential to improve the performance. To make use of the structure
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between each landmark, the heuristic model [21], 3D geometry-based model [37] and elastic bunch
graph-based model [22] were proposed. Most of the works constructed the average 3D position
of landmarks as the initialization shape and then updated the position iteratively. However, all of
these approaches didn’t consider the relationship between the 3D position of landmarks and the feature
around each landmark, including the range feature and texture feature. In addition, the 3D point
distribution model (PDM) was proposed to estimate eyes, nose and mouth corner. Nair and
Cavallaro [21] study 3D facial landmarking by building a statistical model to estimate landmarks
coarsely, and then heuristics are applied to refine the locations. Perakis et al. [14,15] study landmarking
on 3D facial data under much more challenging conditions, such as the missing data caused by self
occlusion. Zhao et al. [20] proposed another method based on statistical models, who presented a
model which take the both the relationship between each landmark and the local properties around
each landmark into account. However, the main problem of this approach is that the solution is not
global, which was caused by the inappropriate initialization.

3. Methodology

3.1. Overview

Given a 3D facial geometry data G, 3D facial landmarks’ detection is the task to locate N
pre-defined fiducial points, including eye corners, nose tip, mouth corners and so on. We denote the
homogeneous coordinate of 3D facial landmarks as S:

S =

⎛
⎜⎝x1 x2 ... xN

y1 y2 ... yN
z1 z2 ... zN

⎞
⎟⎠ , (1)

where N is the pre-defined number of landmarks. The function is also equal to the following function:

S =

⎛
⎜⎝x(u1, v1), x(u2, v2), ... x(uN , vN)

y(u1, v1), y(u2, v2), ... y(uN , vN)

z(u1, v1), z(u2, v2), ... z(uN , vN)

⎞
⎟⎠ , (2)

where x,y and z represent the x,y,z coordinate map for each pair (u, v). Given 3D facial data, our goal
is to simultaneously estimate the (u, v) accurately.

For this purpose, we propose transforming the 3D face landmarks’ estimation to detect the
landmarks on five types of 2D facial attribute maps, including shape index map, normal maps and
original range map that calculated on 3D geometry data. Then, a novel framework as Figure 1
was presented to achieve our goal accurately and efficiently. Based on the coarse-to-fine strategy,
the framework comprises two main parts: one is for global estimation and the other is for local
refinement. Specifically, the global estimation phase is intended to locate the landmarks roughly
by feeding into the fused global feature that extracted from these attribute maps. Then, the local
refinement stage is to learn the nonlinear mapping function from the fused local feature that extracted
from a local patch around estimated global landmarks to residual distance.

In the global estimation phase, the goal is to locate landmarks roughly, but it is still more robust
and accurate than the mean shape. To train this model, instead of applying the handcrafted feature,
we use the pre-trained deep network to extract features from each facial attribute map as a global
feature and then concatenate them as the fused feature. Feeding into the fused feature, the target
of the regression model is to estimate global landmarks directly. According to the trained model,
the global landmarks would be obtained roughly but robustly, which can lay the foundation for the
local refinement.

After global optimization by inputting the fused global feature, we can get the initialization
shape. The initialization shape is more robust and accurate than the mean shape; however, it is still
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not satisfied. To refine the global estimation, the refinement stage is designed to refine the results.
We extract the local CNN feature from the cropped local patches around the global landmarks and
then learn the mapping function from the fused local feature to the residual distance between previous
landmarks and ground truth.

3.2. Facial Attribute Maps

To comprehensively describe the geometric information of 3D data, five types of facial attribute
maps were constructed, including three surface normal maps Nx, Ny, Nz, curvature feature SI,
and range data R. Among these maps, surface curvature and normal maps are the most significant
feature in 3D object detection, recognition and other 3D tasks. Figure 2 shows the five types of facial
attribute maps computed from original 3D facial geometry data.

Figure 2. These five facial attribute maps, denoted as three surface normal map Nx, Ny, Nz, curvature
feature map SI and range map R.

3.2.1. Surface Curvature Feature

The surface curvature features have been adopted for 3D face landmarks’ estimation in many
types of research. Actually, surface curvature is the most significant feature in 3D object detection,
recognition and other 3D tasks. Thus, this paper chooses the shape index feature map as the first facial
attribute.

The Shape index is a continuous mapping of principal curvature values (kmax, kmin) of a 3D object
point p. Once we have two principal curvature (kmax, kmin), the shape index values, which describe
different shapes classed as single numbers ranging from 0 to 1, are calculated as:

SI(p) =
1
2
− 1

π
arctan(

kmax + kmin
kmax − kmin

). (3)

3.2.2. Surface Normal Maps

Considering a normalized 3D facial geometry data G, denoted as a m × n × 3 matrix:

G = [Puv(x, y, z)]m×n = [puvx, puvy, puvz]1≤u≤m,1≤v≤n, (4)

where [Puv(x, y, z)] denotes the corresponding 3D point coordinate of facial geometry data.
The corresponding surface normal maps are represented as:

N(Ig) = N[Puv(x, y, z)]m×n

= [N(puvx), N(puvy), N(puvz)]1≤u≤m,1≤v≤n.
(5)

In this paper, a local plane fitting method is applied to compute N(Ig), which consists of a three
M × n matrix. In other words, for each point in 3D facial geometry data, the surface normal vector can
be computed by the following function:

Suv : Nuvxquvx + Nuvyquvy + Nuvzquvz = d, (6)
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where (quvx, quvy, quvz) represents any point within the local neighbourhood of point puv and∥∥∥(Nuvx, Nuvy, Nuvz
)T

∥∥∥
2
= 1. In this paper, a neighbourhood of 5 × 5 window is adopted and three

normal maps would be obtained, denoted as Nx, Ny, NZ.

3.3. Global Estimation

As the proposed method illustrates, these five types of attribute maps as Figure 2 would be
fed into the neural network to estimate landmarks roughly. Considered the calculated feature maps,
denoted as shape index SI, Nx, Ny, Nz and original range map R, Sg (x) ∈ R2N×1 represents the
ground truth of N landmarks. The goal of our global model is to learn the mapping function F from
our fused feature map to the ground truth coordinate:

Sg (x) ← F
(
SI, Nx, Ny, Nz, R

)
. (7)

Limited to the amount of training data, training a global CNN model directly is always over-fitting.
To overcome this limitation, fine-tuning based on a pre-trained deep model was employed to learn
F. To achieve this goal, the parameters of pre-trained model were fixed except training the last layer.
Then, the SI, Nx, Ny, Nz, R are fed into the pre-trained model (e.g., VGG (Visual Geometry Group)-net
in this paper) separately. Generally, the pre-trained deep CNN model can be regarded as a special
feature extractor, which can be regarded as v = DNN (Map), where DNN represents the fixed part
of the pre-trained model, Map denotes the resized facial attribute map, and v is the extracted feature
vector of each attribute map. Consider adopting shape index maps and convolution neural networks
to detect a coarse S0 as the result of the first step. In particular, the deep models are all comprised of
three main parts including convolutional layers, pooling layers and fully connected layers.

• Convolutional Layer and ReLU Non-linearity.

Through a set of designed and learnable filters, the convolutional layer transforms the input
images or activation maps to another. Specifically, given a set of activation maps from the previous
layer yl−1 ∈ R

Wl−1×Hl−1×Dl−1 , and Kl convolutional filters, each with size Wf × Hf × Dl−1, a list
of activation maps yl ∈ R

Wl×Hl×Dl at the layer L will be computed and output. Let this stride be
S; then, the Wl = (Wl−1 − Wf + 2P)/S + 1 and Hl = (Hl−1 − Hf + 2P)/S + 1. Then, we add an
activation function ϕ to adjust the result to a nonlinear function. In this paper, rectified linear units
(ReLU), denoted as ϕ (x) = max (0, x) , is used. Thus, the result of l layer is denoted as:

yl = ϕ(Wl ∗ yl−1 + bl), (8)

where bl denotes the bias term, and ∗ denotes the convolution operator.

• Fully Connected layers.

This layer is used to reshape these feature maps into a vector feature. The hidden layers are
fully connected, which means that each unit in a previous layer is connected with each unit in the
next layer. Suppose the global network has L convolutional layers in total and so the feature maps
in the last convolutional layers are represented as yl ∈ R

WL×HL×DL . Let the (L + 1)-th layer be the
fully connected layer, and the output of layer L be the input of layer L + 1, with size yL+1 ∈ R

K,
where K = WL × HL × DL. Thus, this layer is equal to:

yL+1 = reshape(yL). (9)

Then, the next fully connected layer will be:

yL+2 = ϕ(wL+1 × yL+1 + bL+1), (10)
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where WL+1 is the weight value in the L + 1-th layer and bL+1 is the bias term value. ϕ denotes the
tanh activation function. C. Objective function. After feature extraction for each facial attribute map is
done separately, the feature vectors are concatenated as V =

[
vSI , vNx , vNy , vNz , vR

]
to train the global

model F. Specifically, by training a designed neural networks, our target has been formulated as
solving the objective function:

argmin
∥∥Sg − F (V)

∥∥2
2 , (11)

where F is the nonlinear regression function from V to the landmarks Sg, denoted as F = σ
(
WTV + b

)
,

where σ represents the nonlinear activation function such as sigmoid, tanh and Relu. In this paper,
sigmoid function is employed by the final output layer to learn the parameters [W, b]. However,
the range of final output is [0, 1], while the range of regression is inconsistent. Therefore, Sg would be
normalized to range [0, 1], so that the objective function can be formulated as minimizing the function:

argmin
∥∥Sg − F (V)

∥∥2
2 + λ ‖W‖2

F , (12)

where ‖W‖2
F denotes the regularization term, added to prevent the over-fitting. λ is the set to 0.00005.

After the optimization with Equation (12), the learned parameters [W, b] are obtained and S0

would be calculated via S0 = F(V).

3.4. Local Refinement

The global estimation phase describes the mapping function from the fused facial attribute maps
to the target landmarks’ location. Unlike other methods, the estimated shape is global and more
accurate than the mean shape. However, it is still rough and there is room for improvement. To achieve
more accurate locations, a coarse-to-fine based approach is proposed to improve the performance.
Similar to many cascade regression methods for 2D face alignment, a local model as Figure 3 is
employed to estimate the residual distance ΔS, representing the distance between global estimated
shape S0 and ground truth Sg.

Figure 3. Five different local attribute maps for 22 landmarks. (a): depth feature map; (b): curvature
feature; (c): surface normal feature along the x-axis; (d): surface normal feature along the y-axis;
(e): surface normal feature along the z-axis.
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Similar to the global estimation, we employed the pre-trained CNN model to extract local
features from the local patches around the estimated shape S0. Each local patch around S0 is cut
out within 30 mm, and then transformed to attribute maps. After the calculation of local attribute
maps, they would be resized to 224 × 224 and are fed into the pre-trained deep neural network to
extract local CNN features. Actually, we once considered concatenating the fused local feature of all
landmarks to estimate the ΔS jointly. However, limited to the huge number of trained parameters
(e.g., 4096 × 5 × 22 × 44 = 19,824,640), we propose refining each local patch around a landmark
independently. For this purpose, deep feature fusion is also applied for training local model, denoted as
φi = [φi

SI , φi
Nx, φi

Ny, φi
Nz, φi

R]i=1,2,...N , where i represents the i-th landmark and N is the number of
located landmarks.

Getting the local feature vectors, the local refinement model is to learn a nonlinearity function Hi
from fused local feature φi to the ΔSi for each landmark, denoted as ΔSi = Sg(i)− S0(i). The objective
function of each model can be formulated as follows:

argmin ‖ΔSi − Hi (φi)‖2
2 + β ‖Wk‖2

F , (13)

where Hi is a regression function the same as F, represented as Hi = σ (Wiφi + bi). Different from
the global estimation, the activation function σ is the tanh function, so that all the outputs are in
range [−1, 1]. After optimization, we can compute ΔSi according to ΔSi = Hi (φi), and then we obtain
ΔS = [ΔS1, ΔS2, ..., ΔSN ]. Therefore, normalized results S f inal can be computed as the following:

S f inal = ΔS + S0. (14)

4. Experiments

We firstly introduce the datasets used in this paper and then will describe data pre-processing,
data augmentation and the parameters’ setting briefly in this section. Finally, we will evaluate the
performance in these datasets and compare their performances with other methods.

4.1. Datasets

To evaluate the proposed approach, we employ two public 3D facial data, namely the Bosphorus
database [41] and the BU-3DFE (Binghamton University 3D Facial Expression) database [42].

The Bosphorus database contains 4666 pairs facial scans from 105 subjects. It also contains
3D facial geometry data under various occlusions (e.g., glass, hands and hair) and several facial
expressions. In our experiments, all of the nearly frontal facial data are selected regardless of the
occlusion and expressions, resulting in 3632 3D facial geometry data in total. However, the number
of landmarks in these data is inconsistent, so we manually selected and labelled 22 landmarks in the
Bosphorus dataset for training the models.

The BU-3DFE database includes data from 100 subjects which contain 56 female and 44 male.
Each subject contains not only a neutral expression but also the six universal expressions. In our
experiments, we have selected all near frontal facial data from all the subjects, regardless of the
expression variance, getting 2500 facial scans totally. In this dataset, among the labelled 83 landmarks,
we manually selected 68 landmarks and abandoned the other 15 landmarks located on the facial
edge. Actually, some common landmarks are labelled in the two datasets, such as eye corners and
mouth corners.

4.2. Data Pre-Processing

To learn the global and local attribute maps, the size of global and local patches needed to be
resized to the same size, meaning that the number of 3D clouds for each piece of 3D facial geometry
data is uniform. However, it is hard to be normalized because of the different face scales. Therefore,
uniform grids are applied to remesh the global facial scans or local regions around landmarks. To get
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local regions, we select all of the points around the landmark with a specific size of 30 mm × 30 mm,
and then remesh a uniform grid with the same number of points by using the interpolation. At the
same time, the z-values on this grid would be processed by using this normalization. Based on the
uniform grids, the facial attribute maps and local patches would be constructed easily and efficiently.

4.3. Data Augmentation

In fact, the number of training data in these datasets is not enough to avoid over-fitting.
To overcome over-fitting and improve the performance, increasing the number of training data
by utilizing data augmentation is necessary and useful. For this purpose, randomly rotation and
symmetry transformation were chosen to augment the variety of facial data. Firstly, we randomly
rotate facial data in the horizontal direction and ensure that the face is nearly frontal. Secondly, we also
transform the symmetry data for each piece of training data. After data augmentation, more artificially
generated facial data would be obtained, so that the over-fitting can be addressed effectively. Of course,
the corresponding ground truth would be changed by the same rules.

4.4. Experimental Setting

In our paper, the pre-trained deep CNN model, namely VGG16 [43], is selected for extracting
deep CNN features. In the pre-trained networks, all layers and parameters are kept unchanged in
the network except the final fully connected layer. As known, the size of the input map is 224 × 224
and the dimension of features is 4096. Since we have five types of facial, the dimension of fused
feature is 4096 × 5, while the number of output units is 2 × N. The weight matrix W with size
(4096 × 5) × (2 × N) would be randomly initialized, and corresponding bias vector b would be
initialized by a 2 × N-dimensional zero vector. Each local refinement network is almost similar to
the global estimation network, and the number of output units is 2. The weight matrix Wi with size
(4096 × 5)× 2 would be also randomly initialized, and the corresponding bias vector bi would be
initialized by a two-dimensional zero vector.

4.5. Convergence and Model Selection

To train these models appropriately, we trained the global estimation model and local refinement
models for 2000 iterations, so that these models can converge. Actually, these models have been in
convergence when the models were trained about for 1600 iterations. However, to avoid over-fitting in
these testing data, the models which trained for about 1400 iterations would be chosen, which may be
closed to convergence and more suitable in the testing dataset. The experiments also show that these
models perform much better in the testing data.

4.6. Evaluation

To evaluate our proposed approach, three comparison experiments are designed in this section.
First, it is necessary to confirm the efficiency of coarse-to-fine strategy. Second, the performance
by using mean shape as initialization shape is evaluated. Furthermore, the third is to show the
performances under different feature combination. In all experiments, distance error calculated as
Euclidean distance between estimated landmarks location and corresponding ground truth were used
to evaluate the performance. To evaluate and compare these methods, these three main experiments
are carried out on the Bosphorus dataset. Among these 3632 data, 2800 data are randomly selected as
training data, and the other 832 are regarded as testing data. The number of training data is increased
to 2800 × 6 = 16,800 after augmentation. In this section, all models are trained and tested by using the
same training and testing data.

To confirm the effective of global estimation, we compare our method with the method by taking
mean shape as initialization shape. Different from taking the global estimation as initialization,
mean shape is computed as the initialization shape for local refinement. Instead of global estimation,
the local patches around mean shape are taken to extract local features. Then, we will update the
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locations the same as the local refinement phase in our method. Figure 4a shows the average distance
error after global estimation and mean shape calculation, and Figure 4b illustrates the average distance
error via two different initialization ways after local refinement. As can be seen, the results of our
proposed method outperforms after the local refinement.

Figure 4. The comparison results between mean shape and our proposed method. (a) denotes the
results after global estimation and the (b) represents the results after refinement.

Furthermore, to verify the coarse-to-fine strategy, we compare the results after global estimation
and local refinement. In Figure 5, the blue bars show the average distance error of 22 landmarks in the
testing dataset after global estimation, while the other bars show the results after refinement. It can be
easily observed that the results are enhanced effectively from coarse to fine. Note that the mean error
has achieved 4.11 mm after global estimation, while 98.23% landmarks are located automatically with
20 mm and 93.31% landmarks are with 10 mm. After local refinement, the 100% landmarks are located
automatically with 20 mm precision and 96.43% are with 10 mm. Furthermore, the average error of all
landmarks in the testing data can also be improved to 3.37 mm, which has achieved the state-of-the-art.

Figure 5. The comparison results after global estimation and local refinement.

To show the performance under different feature combinations, the experiment is carried on
the same training and testing data, and independent models are trained under different feature
combinations. For this purpose, we selected maps from five facial attribute maps randomly and
30 = (25 − 2) kinds of feature combinations are generated to train and test models separately. In the
case of each condition, the number of inputs would be modified to adjust the different network
architecture, and other parameters in the networks are invariable. Figure 6 shows the global estimation
results under different feature combinations. In this figure, the blue bars represent the mean error
when different feature sets are fed into the network, while the red bar denotes our result. It can be
observed that our global estimation result is the best, especially when we fuse all of these five facial
attribute maps.
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Figure 6. The global estimation results under different feature fusion.

4.7. Comparison with Other Methods

4.7.1. Comparison with Handcrafted Features

To compare the performance of deep fusion feature with the results obtained by applying
handcrafted features, their handcrafted features were tested. Instead of the deep fusion feature,
three classical features including HOG (Histogram of Oriented Gradient), SIFT (Scale Invariant Feature
Transform) and LBP (Local Binary Pattern), which have been proved to be efficient for image analysis,
were employed to locate landmarks iteratively. For this purpose, these features around mean shape
are firstly extracted and then respectively fused and fed into the designed networks to estimate
landmarks coarse-to-fine with default parameters. Table 1 shows the average location error across all
of the 22 landmarks on the Bosphporus database. We can easily draw the conclusion that the deep
feature fusion marked with the bold fonts based on the pre-trained model is more accurate than the
handcrafted features for all of these 22 landmarks. Furthermore, among these handcrafted features,
the SIFT feature achieves the best performance, and outperforms HOG and LBP. These results also
indicate that the location performance would obviously be affected by different features.

Table 1. Comparison with hand-crafted features on the Boshporus database.

Landmarks SIFT LBP HOG Deep Features

Outer left eyebrow 6.13 ± 3.97 6.45 ± 4.11 6.38 ± 4.37 4.76 ± 3.15
Middle left eyebrow 5.37 ± 2.15 4.95 ± 2.07 5.68 ± 3.62 3.43 ± 2.38
Inner left eyebrow 5.14 ± 3.23 5.28 ± 3.45 5.48 ± 2.08 2.96 ± 2.14

Inner right eyebrow 5.04 ± 2.78 5.18 ± 2.96 5.34 ± 3.05 2.93 ± 1.79
Middle right eyebrow 4.88 ± 2.86 5.03 ± 2.54 5.08 ± 2.86 3.41 ± 2.06
Outer right eyebrow 6.02 ± 3.50 5.97 ± 3.45 6.17 ± 3.74 4.83 ± 4.07
Outer left eye corner 4.16 ± 2.05 4.83 ± 2.36 4.97 ± 2.60 3.14 ± 2.17
Inner left eye corner 4.53 ± 2.53 4.12 ± 2.27 5.02 ± 3.10 2.62 ± 1.73

Inner right eye corner 3.71 ± 2.19 4.03 ± 2.30 4.34 ± 2.62 2.74 ± 1.24
Outer right eye corner 4.09 ± 2.51 3.89 ± 2.84 4.13 ± 2.74 2.82 ± 1.85

Nose saddle left 7.85 ± 4.03 7.71 ± 3.96 7.91 ± 4.07 4.13 ± 2.75
Nose saddle right 8.23 ± 4.29 8.35 ± 4.02 8.41 ± 4.72 4.69 ± 3.18

Left nose peak 3.54 ± 2.06 3.67 ± 2.17 3.97 ± 2.37 2.96 ± 2.24
Nose tip 3.84 ± 2.43 3.91 ± 2.59 4.01 ± 2.77 2.69 ± 1.95

Right nose peak 3.53 ± 2.34 3.81 ± 2.61 3.48 ± 2.22 2.74 ± 2.27
Left mouth corner 4.39 ± 2.82 4.13 ± 2.58 4.47 ± 3.01 2.93 ± 3.24

Upper lip outer middle 4.73 ± 3.12 4.99 ± 3.19 4.45 ± 3.08 2.66 ± 2.63
Right mouth corner 6.32 ± 3.83 6.41 ± 3.95 7.04 ± 4.37 3.18 ± 2.93

Upper lip inner middle 4.86 ± 2.75 4.64 ± 2.67 4.93 ± 3.15 2.92 ± 2.65
Lower lip inner middle 5.15 ± 5.02 5.61 ± 4.96 5.89 ± 5.12 3.07 ± 3.17
Lower lip outer middle 6.19 ± 4.19 6.20 ± 3.95 6.07 ± 4.12 3.51 ± 3.15

Chin middle 7.69 ± 5.39 7.93 ± 5.62 8.01 ± 5.70 4.99 ± 4.16
Mean error 5.25 ± 3.18 5.32 ± 3.21 5.51 ± 3.43 3.37 ± 2.72
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4.7.2. Comparison with Pre-Trained Models

This section compares the performance of deep fused features based on three different pre-trained
models on the ImageNet dataset [43–45]. As aforementioned, different features extracted by using
different pre-trained models were fed into the coarse-to-fine networks separately. In this paper,
the same as the other handcrafted features, we use these pre-trained models to extract features
from these facial attribute maps independently and fuse these features to train the designed model.
Limited to numbers of the data, we keep all parameters fixed except the last fully connected layer.
We only tested three classical deep models, including AlexNet [44], VGG-net [43] and Google
Inception [45]. Table 2 shows the average location errors across all of the 22 landmarks on the
Bosphorus database. The best performance is marked by bold fonts. From it, we can conclude that:
(1) all of the deep features achieve better performance than the handcrafted features; (2) Deep fusion
features all can achieve satisfied performance; and the (3) Google Inception network and AlexNet
outperform the VGG-net for a few landmarks. However, comparing with VGG-net, Inception net takes
too much time to extract features because of the complex architecture, and AlexNex is unsatisfactory
among most of landmarks. Considering the computation accuracy and time complexity, the VGG-net
has been chosen as the pre-trained deep model.

Table 2. Comparison with pre-trained deep models on BoshporusDB.

landmarks AlexNet Google Inception VGG-Net

Outer left eyebrow 4.93 ± 2.54 4.47 ± 2.31 4.76 ± 3.15
Middle left eyebrow 4.19 ± 3.18 3.62 ± 2.47 3.43 ± 2.38
Inner left eyebrow 3.05 ± 2.43 2.88 ± 2.04 2.96 ± 2.14

Inner right eyebrow 3.16 ± 2.17 3.04 ± 1.92 2.93 ± 1.79
Middle right eyebrow 3.61 ± 2.58 3.55 ± 1.99 3.41 ± 2.06
Outer right eyebrow 4.02 ± 4.16 4.23 ± 4.35 4.83 ± 4.07
Outer left eye corner 3.16 ± 2.00 3.46 ± 2.10 3.14 ± 2.17
Inner left eye corner 2.39 ± 1.60 2.30 ± 1.40 2.62 ± 1.73

Inner right eye corner 3.10 ± 2.49 2.87 ± 1.54 2.74 ± 1.24
Outer right eye corner 3.01 ± 2.05 2.77 ± 1.94 2.82 ± 1.85

Nose saddle left 4.61 ± 3.56 4.88 ± 3.67 4.13 ± 2.75
Nose saddle right 5.71 ± 4.13 5.30 ± 3.71 4.69 ± 3.18

Left nose peak 3.51±2.99 3.11 ± 2.69 2.96 ± 2.24
Nose tip 3.31 ± 2.21 3.01 ± 2.07 2.69 ± 1.95

Right nose peak 2.56 ± 2.04 2.88 ± 2.50 2.74 ± 2.27
Left mouth corner 4.10 ± 3.74 3.43 ± 3.34 2.93 ± 3.24

Upper lip outer middle 3.29 ± 3.01 2.97 ± 2.85 2.66 ± 2.63
Right mouth corner 4.19 ± 3.45 3.57 ± 3.22 3.18 ± 2.93

Upper lip inner middle 3.61 ± 3.42 2.87 ± 3.15 2.92 ± 2.65
Lower lip inner middle 4.15 ± 5.04 3.59 ± 4.13 3.07 ± 3.17
Lower lip outer middle 4.19 ± 3.89 3.81 ± 3.77 3.51 ± 3.15

Chin middle 5.05 ± 5.04 5.13 ± 5.13 4.99 ± 4.16
Mean error 3.77 ± 3.08 3.53 ± 2.83 3.37 ± 2.72

4.7.3. Comparison on the Bosphorus Dataset

Furthermore, we compared our proposed approach with other existing methods on the Bosphorus
dataset. Figure 7 depicts the mean distance error and standard deviation of 22 detected landmarks.
From this figure, the mean distance error of all landmarks in the testing data is 3.37 mm, which has
achieved the state-of-the-art, especially in some landmarks such as middle left/right eyebrow and
so on. Compared with some other existing methods in these common landmarks, the comparison
results are shown in Table 3. The best performance is marked by bold fonts. From it, we can see that
our approach outperforms in outer eye corners, chin and mouth corners, which are difficult to locate.
Figure 8 illustrates some examples of facial landmarking by the proposed approach on this dataset.
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In this figure, 3D facial geometry data are rotated through several directions, so that the performance
of landmarking can be observed more clearly.

Figure 7. Mean distance error and standard deviation of 22 landmarks on the Bosphorus dataset.

Table 3. Comparison with other methods on BoshporusDB.

Inner Eye
Corners

Outer Eye
Corners

Nose Tip Nose
Corners

Mouth
Corners

Chin

Manual [46] 2.51 - 2.96 1.75 - -
Alyuz [46] 3.70 - 3.05 3.10 - -
Creusot [47] 4.14 ± 2.63 6.27 ± 3.98 4.33 ± 2.62 4.16 ± 2.35 7.95 ± 5.44 15.38 ± 10.49
Sukno [48] 2.85 ± 2.02 5.06 ± 3.67 2.33 ± 1.78 3.02 ± 1.91 6.08 ± 5.13 7.58 ± 6.72
Camgoz (SIFT) [49] 2.26 ± 1.79 4.23 ± 2.94 2.72 ± 2.19 4.57 ± 3.62 3.14 ± 2.71 5.72 ± 4.31
Camgoz (HOG) [49] 2.33 ± 1.92 4.11 ± 3.01 2.69 ± 2.20 4.49 ± 3.62 3.16 ± 2.70 5.87 ± 4.19
Ours 2.66 ± 1.49 3.64 ± 2.01 2.69 ± 1.95 4.40 ± 2.61 3.06 ± 3.09 4.99 ± 4.16

Figure 8. Samples of facial landmarking on 3D facial geometry data on the Bosphorus Dataset.
To observe the performance more clearly, we rotate the facial data and estimated landmarks through
several directions.

4.7.4. Comparison on the BU-3DFE Dataset

The second experiment is carried out on the BU-3DFE dataset. Among the 2500 facial geometry
data, 2000 facial scans from the 100 subjects were selected as the training data. The other 500 facial
geometry data were used as testing data. After data argumentation, 12,000 facial scans can be obtained
that contain neural expressions and six universal facial expressions. Figure 9 illustrates average distance
error and standard deviation of 68 landmarks in the testing dataset of the 68 landmarks. Meanwhile,
98.88% of the landmarks are located with a 20 mm precision, and 93.20% are with the 10 mm precision.
The mean distance error of all 68 landmarks has been improved to 4.03 mm. Compared with some other
methods in the common landmarks on BU-3DFE dataset, Table 4 depicts the comparison results of 14
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common landmarks. The best performance is marked by bold fonts. We can see that the average error
of these points has been achieved 3.96 mm and the results in several points outperform, including the
outer corner of the left eye, center of the upper lip, and center of the lower lip.

Figure 9. Mean distance error and standard deviation of 68 landmarks on the BU3DFE dataset.

Table 4. Comparison results with existing methods on BU3DFE.

Landmark Fanelli [50] Zhao [20] Nair [21] Sun [51] Our Method

Inner corner of left eye 2.60 ± 1.80 2.93 ± 1.40 11.89 3.35 ± 5.67 2.79 ± 1.63
Outer corner of left eye 3.60 ± 2.40 4.11 ± 1.89 19.38 3.89 ± 6.38 3.58 ± 2.27

Inner corner of right eye 2.80 ± 2.00 2.90 ± 1.36 12.11 3.27 ± 5.51 3.11 ± 2.24
Outer corner of right eye 4.00 ± 2.80 4.07 ± 2.00 20.46 3.73 ± 6.14 4.20 ± 2.18

Left corner of nose 3.90 ± 2.00 3.32 ± 1.94 - 3.60 ± 4.01 3.77 ± 1.87
Right corner of nose 4.10 ± 2.20 3.62 ± 1.91 - 3.43 ± 3.74 4.98 ± 2.63
Left corner of mouth 4.70 ± 3.50 7.15 ± 4.64 - 3.95 ± 4.17 3.88 ± 2.86
center of upper lip 3.50 ± 2.50 4.19 ± 2.34 - 3.09 ± 3.06 2.94 ± 1.35

Right corner of mouth 4.90 ± 3.60 7.52 ± 4.57 - 3.76 ± 4.05 3.94 ± 2.96
Center of lower lip 5.20 ± 5.20 8.82 ± 7.12 - 4.36 ± 6.03 3.73 ± 2.97

Outer corner of left brow 5.80 ± 3.80 6.26 ± 3.72 - 5.29 ± 6.93 4.92 ± 2.69
Inner corner of left brow 3.80 ± 2.70 4.87 ± 2.99 - 4.62 ± 5.92 3.81 ± 2.75

Inner corner of right brow 4.00 ± 3.00 4.88 ± 2.97 - 4.59 ± 5.76 3.85 ± 2.63
Outer corner of right brow 6.20 ± 4.30 6.07 ± 3.35 - 5.29 ± 7.04 5.98 ± 4.63

Mean results 4.22 ± 2.99 5.05 ± 3.01 - 4.02 ± 5.32 3.96 ± 2.55

5. Discussion

With the development of deep learning, more and more data is needed to train a robust and
accurate model. Unlike 2D images that can be easily obtained from the web, the 3D geometry data
can’t be constructed easily without professional equipment. Nowadays, the existing 3D geometry
databases are all collected from labs and under the controlled conditions. Furthermore, the number of
data is far from enough to train an appropriate deep model, so we need to fine-tune the pre-trained
model. In this paper, using the pre-trained deep model to extract features from the different attribute
maps is essential in the proposed approach. In most of the cases, fine-tuning these deep models means
that most of the parameters in the pre-trained models remain unchanged and only a few are updated
for specific tasks. For this purpose, we can update the parameters in the last layer or other layers
based on the amount of training data. Thus, in our paper, limited to the number of 3D geometry data,
we only updated the last layer and didn’t test the other choices at all.

In addition, feature fusion is the key step in the proposed approach. Applying the fused feature
extracted from deep model can take more useful information into account for locating landmarks.
For 3D data, more useful information can be obtained including surface normal, curvature and other
attribute maps. In this paper, we only select these five types of attribute maps to train the model. In fact,
for each attribute map, the features can be extracted based on different pre-trained models. It is another
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way to improve the location performance, but it is too complex to be applied in the other testing
data satisfied. On the other hand, a classical pre-trained model named ResNet was not considered
because of the computational complexity and our computer performance. Although the model would
achieve the best performance for our task perhaps, it still cost more than 3 min to extract the features
without updating any parameters. For this reason, ResNet was not selected in our approach.

As other research about deep learning, the main weakness is also the computation complexity.
Compared with other effective approaches, the computation complexity of our proposed method
is higher than the others. In addition, this paper is the first time to utilize the deep-learning based
approach to estimate 3D landmarks, while the other effective methods are all based on traditional
ways such as hand-crafted features. Actually, to improve the accuracy, higher computation complexity
is needed. Benefiting from more and more powerful computing power, the execution time is still
satisfied. Of course, a lot of works will be done to reduce the computation complexity and to ensure
the accuracy improvement synchronously in future works.

Although our algorithm has achieved state-of-the-art performance, there are a few other works
to study. Firstly, we didn’t take the profile face into account because there are only a few 3D profile
data and fewer landmarks to train a unified location architecture. In addition, data missing caused by
posing is the most challenging issue and the main weakness of our algorithm.

6. Conclusions

In this paper, we propose a novel approach to estimate landmarks on 3D geometry data.
By transforming the 3D data to 2D attribute maps, the goal of our approach is to predict the landmarks
based on the attribute maps. Different from using the handcrafted feature, we feed the global and
the local attribute maps into the deep CNN model to extract global and local feature. Based on
coarse-to-fine strategy, a global model is trained to estimate landmarks roughly and local models
are trained to refine the landmarks’ location. Evaluated on the Bosphorus dataset, the proposed
method performs more effectively than handcrafted features and other pre-trained models. Compared
with other existing methods, the results on the Bosphorus dataset and BU-3DFE dataset have also
demonstrated comparable performance, especially in some common landmarks.

In the future, some other issues of improving the robustness under other challenging conditions
such as self-occlusion and data missing will be studied. In addition, using decision fusion of simple
classifiers to balance the computation complexity and the accuracy may be another effective method
for this problem.

Author Contributions: K.W. designed the algorithm, conceived of, designed and performed the experiments,
analyzed the data and wrote this paper. X.Z. provided the most important comments and suggestions, and also
revised the paper. W.G. and J.Z. provided some suggestions and comments for the performance improvement of
the algorithm.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Natural Science Foundation of China (Grant No. 91746111,
Grant No. 71702143), the Ministry of Education and China Mobile Joint Research Fund Program (No.
MCM20160302), the Shaanxi Provincial Development and Reform Commission (No. SFG2016789), and the
Xi’an Science and Technology Bureau (No. 2017111SF/RK005-(7)).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cootes, T.F.; Edwards, G.J.; Taylor, C.J. Active Appearance Models. IEEE Trans. Pattern Anal. Mach. Intell.
2001, 23, 681–685. [CrossRef]

2. Cootes, T.F.; Taylor, C.J.; Cooper, D.H.; Graham, J. Active shape models—Their training and application.
Comput. Vis. Image Underst. 1995, 61, 38–59. [CrossRef]

3. Cristinacce, D.; Cootes, T.F. Feature Detection and Tracking with Constrained Local Models. In Proceedings
of the British Machine Vision Conference 2006, Edinburgh, UK, 4–7 September 2006; pp. 929–938.

69



Symmetry 2018, 10, 308

4. Kazemi, V.; Sullivan, J. One Millisecond Face Alignment with an Ensemble of Regression Trees.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 1867–1874.

5. Ren, S.; Cao, X.; Wei, Y.; Sun, J. Face Alignment at 3000 FPS via Regressing Local Binary Features.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 1685–1692.

6. Xiong, X.; Torre, F.D.L. Supervised Descent Method and Its Applications to Face Alignment. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 532–539.

7. Dollar, P.; Welinder, P.; Perona, P. Cascaded pose regression. In Proceedings of the Computer Vision and
Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1078–1085.

8. Savran, A.; Sankur, B.; Bilge, M.T. Regression-based intensity estimation of facial action units. Image Vis. Comput.
2012, 30, 774–784. [CrossRef]

9. Feng, Z.H.; Huber, P.; Kittler, J.; Christmas, W.; Wu, X.J. Random Cascaded-Regression Copse for Robust
Facial Landmark Detection. IEEE Signal Process. Lett. 2014, 22, 76–80. [CrossRef]

10. Zhu, S.; Li, C.; Chen, C.L.; Tang, X. Face alignment by coarse-to-fine shape searching. In Proceedings of the
Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4998–5006.

11. Zhu, X.; Lei, Z.; Liu, X.; Shi, H.; Li, S.Z. Face Alignment Across Large Poses: A 3D Solution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 146–155.

12. Jourabloo, A.; Liu, X. Pose-Invariant 3D Face Alignment. In Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 11–18 December 2016; pp. 3694–3702.

13. Kakadiaris, I.A.; Passalis, G.; Toderici, G.; Murtuza, M.N.; Lu, Y.; Karampatziakis, N.; Theoharis, T.
Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model
approach. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 640. [CrossRef] [PubMed]

14. Perakis, P.; Theoharis, T.; Passalis, G.; Kakadiaris, I.A. Automatic 3D facial region retrieval from multi-pose
facial datasets. In Proceedings of the Eurographics Conference on 3D Object Retrieval, Munich, Germany,
29 March 2009; pp. 37–44.

15. Perakis, P.; Passalis, G.; Theoharis, T.; Toderici, G.; Kakadiaris, I.A. Partial matching of interpose 3D facial
data for face recognition. In Proceedings of the IEEE International Conference on Biometrics: Theory,
Applications, and Systems, Washington, DC, USA, 28–30 September 2009; pp. 1–8.

16. Xu, C.; Tan, T.; Wang, Y.; Quan, L. Combining local features for robust nose location in 3D facial data.
Pattern Recognit. Lett. 2006, 27, 1487–1494. [CrossRef]

17. D’Hose, J.; Colineau, J.; Bichon, C.; Dorizzi, B. Precise Localization of Landmarks on 3D Faces using
Gabor Wavelets. In Proceedings of the IEEE International Conference on Biometrics: Theory, Applications,
and Systems, Crystal City, VA, USA, 27–29 September 2007; pp. 1–6.

18. Colbry, D.; Stockman, G.; Jain, A. Detection of Anchor Points for 3D Face Veri.cation. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–25 June 2005.

19. Bevilacqua, V.; Casorio, P.; Mastronardi, G. Extending Hough Transform to a Points’ Cloud for 3D-Face
Nose-Tip Detection. In Proceedings of the International Conference on Intelligent Computing: Advanced
Intelligent Computing Theories and Applications—With Aspects of Artificial Intelligence, Shanghai, China,
15–18 September 2008; pp. 1200–1209.

20. Zhao, X.; Dellandréa, E.; Chen, L.; Kakadiaris, I.A. Accurate landmarking of three-dimensional facial data in
the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.
IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 41, 1417–1428. [CrossRef] [PubMed]

21. Nair, P.; Cavallaro, A. 3-D Face Detection, Landmark Localization, and Registration Using a Point
Distribution Model. IEEE Trans. Multimedia 2009, 11, 611–623. [CrossRef]

22. Jahanbin, S.; Choi, H.; Jahanbin, R.; Bovik, A.C. Automated facial feature detection and face recognition
using Gabor features on range and portrait images. In Proceedings of the IEEE International Conference on
Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 2768–2771.

23. Huibin, L.I.; Sun, J.; Zongben, X.U.; Chen, L. Multimodal 2D+3D Facial Expression Recognition with Deep
Fusion Convolutional Neural Network. IEEE Trans. Multimedia 2017, 19, 2816–2831.

70



Symmetry 2018, 10, 308

24. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 815–823.

25. Sun, Y.; Liang, D.; Wang, X.; Tang, X. DeepID3: Face Recognition with Very Deep Neural Networks.
arXiv 2015, arXiv:1502.00873.

26. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in
Face Verification. In Proceedings of the Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 1701–1708.

27. Chang, F.J.; Tran, A.T.; Hassner, T.; Masi, I.; Nevatia, R.; Medioni, G. ExpNet: Landmark-Free, Deep,
3D Facial Expressions. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018.

28. Sun, Y.; Wang, X.; Tang, X. Deep Convolutional Network Cascade for Facial Point Detection. In Proceedings
of the Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3476–3483.

29. Zhang, J.; Shan, S.; Kan, M.; Chen, X. Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face
Alignment. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 1–16.

30. Zhang, Z.; Luo, P.; Chen, C.L.; Tang, X. Facial Landmark Detection by Deep Multi-task Learning.
In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
pp. 94–108.

31. Yang, J.; Liu, Q.; Zhang, K. Stacked Hourglass Network for Robust Facial Landmark Localisation.
In Proceedings of the Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA,
21–26 July 2017; pp. 2025–2033.

32. Kumar, A.; Chellappa, R. Disentangling 3D Pose in A Dendritic CNN for Unconstrained 2D Face Alignment.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018.

33. Bulat, A.; Tzimiropoulos, G. How Far are We from Solving the 2D and 3D Face Alignment Problem? (and a
Dataset of 230,000 3D Facial Landmarks). In Proceedings of the International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 1021–1030.

34. Lu, X.; Jain, A.K.; Colbry, D. Matching 2.5D Face Scans to 3D Models. IEEE Trans. Pattern Anal. Mach. Intell.
2006, 28, 31–43. [PubMed]

35. Dibeklioglu, H.; Salah, A.A.; Akarun, L. 3D Facial Landmarking under Expression, Pose, and Occlusion
Variations. In Proceedings of the IEEE International Conference on Biometrics: Theory, Applications and
Systems, Arlington, VA, USA, 29 September–1 October 2008; pp. 1–6.

36. Colombo, A.; Cusano, C.; Schettini, R. 3D face detection using curvature analysis. Pattern Recognit.
2006, 39, 444–455. [CrossRef]

37. Boehnen, C.; Russ, T. A Fast Multi-Modal Approach to Facial Feature Detection. In Proceedings of the
Seventh IEEE Workshops on Application of Computer Vision, Breckenridge, CO, USA, 5–7 January 2005;
pp. 135–142.

38. Wang, Y.; Chua, C.S.; Ho, Y.K. Facial feature detection and face recognition from 2D and 3D images.
Pattern Recognit. Lett. 2002, 23, 1191–1202. [CrossRef]

39. Salah, A.A.; Çinar, H.; Akarun, L.; Sankur, B. Robust facial landmarking for registration. Ann. Télécommun.
2007, 62, 83–108.

40. Lu, X.; Jain, A.K. Automatic Feature Extraction for Multiview 3D Face Recognition. In Proceedings of the
International Conference on Automatic Face and Gesture Recognition, Southampton, UK, 10–12 April 2006;
pp. 585–590.

41. Savran, A.; Akarun, L. Bosphorus Database for 3D Face Analysis. In Biometrics and Identity Management;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 47–56.

42. Yin, L.; Wei, X.; Sun, Y.; Wang, J.; Rosato, M.J. A 3D facial expression database for facial behavior
research. In Proceedings of the FGR’06 International Conference on Automatic Face and Gesture Recognition,
Southampton, UK, 10–12 April 2006; pp. 211–216.

43. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv 2014, arXiv:1409.1556.

71



Symmetry 2018, 10, 308

44. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the International Conference on Neural Information Processing Systems, Doha, Qatar,
26–29 November 2012; pp. 1097–1105.

45. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. arXiv 2015, arXiv:1502.03167.

46. Alyüz, N.; Gökberk, B.; Akarun, L. Regional registration for expression resistant 3-D face recognition.
IEEE Trans. Inf. Forensics Secur. 2010, 5, 425–440. [CrossRef]

47. Creusot, C.; Pears, N.; Austin, J. A Machine-Learning Approach to Keypoint Detection and Landmarking on
3D Meshes. Int. J. Comput. Vis. 2013, 102, 146–179. [CrossRef]

48. Sukno, F.M.; Waddington, J.L.; Whelan, P.F. 3-D Facial Landmark Localization With Asymmetry Patterns
and Shape Regression from Incomplete Local Features. IEEE Trans. Cybern. 2017, 45, 1717–1730. [CrossRef]
[PubMed]

49. Camgöz, N.C.; Gökberk, B.; Akarun, L. Facial landmark localization in depth images using Supervised
Descent Method. In Proceedings of the Signal Processing and Communications Applications Conference,
Malatya, Turkey, 16–19 May 2015; pp. 378–383.

50. Fanelli, G.; Dantone, M.; Gool, L.V. Real time 3D face alignment with Random Forests-based Active
Appearance Models. In Proceedings of the IEEE International Conference and Workshops on Automatic
Face and Gesture Recognition, Shanghai, China, 22–26 April 2013; pp. 1–8.

51. Sun, J.; Huang, D.; Wang, Y.; Chen, L. A coarse-to-fine approach to robust 3D facial landmarking via
curvature analysis and Active Normal Model. In Proceedings of the IEEE International Joint Conference on
Biometrics, Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–7.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

72



symmetryS S
Article

Towards Real-Time Facial Landmark Detection in
Depth Data Using Auxiliary Information

Connah Kendrick 1,*, Kevin Tan 1, Kevin Walker 2 and Moi Hoon Yap 1

1 Visual Computing Lab, School of Computing, Mathematics and Digital Technology, Manchester
Metropolitan University, Chester Street, Manchester M1 5GD, UK; K.Tan@mmu.ac.uk (K.T.);
M.Yap@mmu.ac.uk (M.H.Y.)

2 Image Metrics Ltd., Manchester M1 3HZ, UK; Kevin.Walker@image-metrics.com
* Correspondence: C.Kendrick@mmu.ac.uk

Received: 15 May 2018; Accepted: 14 June 2018; Published: 17 June 2018

Abstract: Modern facial motion capture systems employ a two-pronged approach for capturing and
rendering facial motion. Visual data (2D) is used for tracking the facial features and predicting facial
expression, whereas Depth (3D) data is used to build a series of expressions on 3D face models.
An issue with modern research approaches is the use of a single data stream that provides little
indication of the 3D facial structure. We compare and analyse the performance of Convolutional
Neural Networks (CNN) using visual, Depth and merged data to identify facial features in real-time
using a Depth sensor. First, we review the facial landmarking algorithms and its datasets for Depth
data. We address the limitation of the current datasets by introducing the Kinect One Expression
Dataset (KOED). Then, we propose the use of CNNs for the single data stream and merged data
streams for facial landmark detection. We contribute to existing work by performing a full evaluation
on which streams are the most effective for the field of facial landmarking. Furthermore, we improve
upon the existing work by extending neural networks to predict into 3D landmarks in real-time with
additional observations on the impact of using 2D landmarks as auxiliary information. We evaluate
the performance by using Mean Square Error (MSE) and Mean Average Error (MAE). We observe that
the single data stream predicts accurate facial landmarks on Depth data when auxiliary information
is used to train the network. The codes and dataset used in this paper will be made available.

Keywords: deep learning; RGB; depth; facial landmarking; merging networks

1. Introduction

Motion capture using visual cameras is a common practice in high-end facial animation
production. Commercial companies have a preference towards optical marker based systems, such as
Vicon [1] as they allow for a large quantity of tracked landmarks with high accuracy. Additionally, with
optical markers the addition of multiple cameras allows Depth information to be predicted. However,
the set up time of the tracking markers is lengthy and prone to human error. A solution to this is to
implement marker-less tracking, which uses visual cameras, computer vision techniques and machine
learning to label facial features [2,3]. Marker-less tracking, currently, cannot track as accurately or as
many points as optical marker systems. Similarly, to optical markers, additional cameras allow capture
of Depth information. However, with technology advancements, the prices of Depth sensors have
decreased, while they have significant performance improvements, making them suitable for consumer
based production. Additionally, with the availability of RGB with Depth (RGBD) sensors, the potential
to increase accuracy is possible by merging the data streams within a neural network. Merging RGB
and Depth allows a marker-less system to predict Depth without the requirement of multiple cameras
with high accuracy. The Depth information assists greatly in identifying facial feature movement
and synthesising to 3D models. Furthermore, in object recognition Greyscale (Gs) outperforms RGB
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data significantly [4]. Thus we also compare against Gs image and merged Greyscale with Depth
(GsD). This study improves upon current work, as the literature is split between networks that use full
RGB [2,3] and networks that run Gs [5,6] without justification, and focuses solely on 2D landmarks
prediction. 3D landmarks are important for face recognition in the presence of expressions [7] and
real-time facial animation [8]. To do this, we extend the existing work to predict 3D landmarks and
investigate the impact on 2D and 3D data if they are used as auxiliary information.

As with many fields of research, the implementation of deep learning has shown significant
improvements in facial landmarking [9], when compared to traditional machine learning [10]. In this
work, we focus on the use of CNNs, like the literature in this area. To perform the experimentation, we
develop near identical networks to reduce the deviation between results. Our main contributions are:

• We introduce a new Kinect One [11] dataset, namely KOED to overcome data deficiency in
this domain.

• We propose a novel and automated real-time 3D facial landmarks detection method.
• We conduct a complete investigation on the effect of different data streams, such as Gs, RGB, GsD,

RGBD in 2D and 3D facial landmarks detection.

By performing this investigation, we can determine the best solution for automated real-time 3D
landmarks detection.

2. Related Work

The related work is divided into three sections. Firstly, we give an overview of the current
state-of-the-art deep learning to predict facial landmarks. We demonstrate the key aspects of the
networks functionality and the features used to localise landmark regions. The second section evaluates
merging Gs/RGB and Depth information in a neural network and the current implementation methods.
Lastly, we present a review of existing 3D datasets and their limitations.

2.1. Facial Landmarking with Neural Networks

Facial landmarking in deep learning is well established, with state of the art showing both
real-time and high accuracy results. Neural networks have solved a wide range of problems, such as
facial landmarking, age identification and gender classification. Due to the adaptability of neural
networks, previous literature has evolved to use multi-output networks [12,13]. Multi-output networks
perform an array of predictions simultaneously, such as age and gender. For our review, we focus
on both single and multi-output networks, such as landmark and gender [3] and landmarking only
networks. We discuss multiple output networks as they can outperform landmarking only networks
as research shows that auxiliary features have a positive effect on network performance [14]. Auxiliary
features boost network performance by adding key pieces of information. For example, in age
prediction, if gender is used as an auxiliary feature, it aids the network as it learns how the make-up
and facial hair affect age prediction. Auxiliary information is predicted by the network in addition to
other outputs; the input to the networks is still a single or merged stream of data. Our experiment seeks
to observe the effect of different streams of data on a neural network; the area of facial landmarking
using auxiliary features, such as age and gender, would be an aspect of future work.

We first evaluate networks that focus solely on the prediction of landmarks. In 2013, Sun et al. [15]
proposed an end-to-end network that takes a facial image through a series of convolutions,
max-pooling, and fully connected layers, to predict five facial landmarks with reasonable accuracy.
Zhou et al. [5] expanded on the work, by proposing a series of detectors to identify facial regions
and process them by small neural networks. They also use a refinement approach that aligns the
facial features before landmark prediction. Lia et al. [16] proposed a complex network for landmark
detection where they implemented a two-stage network, the first stage is a series of convolution
and deconvolution layers to process the image given into a high-value feature set. The features
were then processed by a series of LSTM [17] layers to identify and refine the landmark position.
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Recently, Liu et al. [18] used a multitude of facial feature detectors to identify regions, such as eyes,
nose, and mouth. The authors processed these regions with small sized neural networks that identify
the landmarks on each of the features. This method achieves high accuracy results, as the network
and detectors specialise in different aspects of the face, instead of trying to generalise to all the unique
features. However, unlike Zhou et al. [5], they did not align the features.

We now review the work that uses multiple output networks. Zhang et al. [12] experimented
in the use of auxiliary features to increase a network understanding of facial structure and features.
They created multiple networks with the structure remaining the same except for the outputs changing
by adding key pieces of information such as facial direction, age, and gender. By incorporating auxiliary
features, networks learned facial features in more Depth. The authors observed a significant increase in
accuracy when asking the network to determine these extra features, even when training the network
to perform normally difficult tasks, such as facial direction. More recently, Zhang et al. [14] extended
their work on facial alignment. Jourabloo et al. [6] used a similar method to predict landmarks by
having a series of networks refine the positions. However, they focused on using the landmarks to
refine the appearance of a 3D model. Even though Zhang et al. [14] and Jourabloo et al. [6] provide
high accuracy networks, the networks require pre-processing to crop faces out of the image.

Finally, we review all-in-one networks, where no pre-processing is required before network
prediction. The most recent research for facial landmarking focused on end-to-end networks based
upon Recurrent Neural Networks (RNN) [19]. Zhang et al. [2] presented an all-in-one neural network
to identify and landmark faces in an image. They used three interlinked networks to refine the
landmarking approach. The result of the network is five facial landmarks and bounding box for every
face in an image. On the other hand, Ranjan et al. [3] produced their all-in-one network to retrieve the
face bounding box, landmark, facial direction and gender with high accuracy. The network included a
separate classifier to check if the first section of the network returned a true face.

The networks, when trained on the separate streams of data, give high-end accuracy results
starting from the small-scale one output networks to complex multi-model methods. However,
the work is limited as it only considers single RGB or Gs images to predict 2D landmarks. Whereas state
of art uses multiple cameras or Depth data to estimate the desired 3D landmarks. Additionally,
the literature does not give justification for the use of either RGB or Gs. As neural networks are
adaptable, we want to investigate how the different streams of data affect a neural network’s ability to
predict both 2D and 3D landmarks. Furthermore, we extend this by analysing the effect of merging
multiple data streams for accurate facial landmark prediction, such as integrating both RGB or Gs
with Depth. We also extend on Zhou et al.’s [5] work by analysing the effect of using UV and XYZ
as auxiliary features, compared to using UV or XYZ only to train a model that understands facial
structure in detail.

Investigation of the use of Depth information to predict facial landmarking has been
performed [20]. However, much of the focus is on using surface curvature analysis. Curvature
analysis does give reasonable results on low noise models, but it is a slow process and can only track a
few points in areas of high curvature change. Another method of predicting 3D facial landmarks is
shown by Nair et al. [21], who impressively have predicted a total of 49 landmarks on the face, but
they avoid the mouth area. However, this method required a generated 3D model, as point distributed
model is used to deform a template face with landmarks assigned to the new mesh. This is an intense
and computationally expensive task. Both methods required pre-generated models that are difficult at
real-time on a consumer base; our focus is the sole use of images to accurately infer the landmarks.

2.2. Merging Visual and Depth

A multi-model network [22] for the merging of data, such as Gs and Depth, usually implements
three separate networks that work together. The first two networks take input from the separate
streams of data; then they can be processed the same way as a traditional CNNs. The network uses
these convolutions to extract the unique features in each of the data streams. After the processing,
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the inputs for unique features the outputs are fed into the third neural network and the data merged
using basic matrix operations. The third network, similar to the first two networks, functions as a
traditional convolution network.

Merging separate streams of data is, in some areas, a common practice, such as in action
recognition [23]. Park et al. [23] showed by merging an RGB stream with its optical flow counterpart
in a neural network, significantly improves the networks accuracy, by segmenting out the motion in
action recognition.

Merging different data streams has also shown increased accuracy in object recognition [25].
Socher et al. [24] use a single layer convolutional neural network to retrieve RGB and Depth images to
extract low-level features. The output of these networks is fed into separate RNNs. The results of both
RNNs is fed into a softmax classifier. By combing the data, they showed significant improvement in
object recognition. The research in this field are inspired by [23,24] on merging data streams to increase
the accuracy of detection and recognition systems.

For our experiment, we solve a different type of problem where the detection and recognition
system use classification; landmarking is a regression-based problem. Applying classification to a
landmarking problem would mean assigning a true or false value for every pixel in an image, which
would be too processor intense for real-time performance. Whereas regression allows a single output
to be a wide range of values, significantly reducing the processing requirements.

2.3. Existing Datasets

As the experiment required visual and Depth data from the same synchronous capture for both the
merging networks and to prevent bias between the RGB only, Gs and Depth only networks, a review
of the available datasets was performed. As the result of the neural network is to predict landmark
locations in 2D and 3D, the Depth data should be captured from a similar position and angle to the
RGB, for near identical recording. As a result of requiring the features to match, datasets that use
devices like the Kinect are required, as they use forward facing sensors that are only a few millimetres
apart, resulting in similar data view outputs. The available datasets are summarised as follows:

• Face Warehouse [26]: is a large-scale dataset containing 150 participants with an age range of
7–80. The dataset contains RGB images (640 × 480), Depth maps (320 × 240) and 3D models
with 74 UV landmarks. The dataset focuses solely on posed expressions giving one model and
image when the participant displays the expression. Furthermore, for capture they use the Kinect
version 1 [27]. The dataset is captured under different lighting and in different places. As only the
expressions peak is captured, there is not a significant amount of data for training deep learning
and it is at a low resolution compared to modern cameras. Overall, the Face Warehouse is a good
3D face dataset providing a wide assortment of expressions with landmark annotations, but with
no onset or offset of the expression.

• Biwi Kinect Head Pose [28]: is a small-scale Kinect version 1 dataset containing 20 participants,
four of the participants were recorded twice. During the recording, keeping a neutral face,
the participants would look around the room only moving their heads. The recordings are
different lengths. The Depth data has been pre-processed to remove the background of all no face
sections. The recording contains no facial landmarks, but the centre of the head and rotation is
noted per frame. Although the recording was done in the same environment, the participants can
be positioned in different sections of the room changing the background; the lighting remains
consistent. Overall, the Biwi Kinect dataset was not suitable for the experiment as it contained no
facial expressions and was recorded using the Kinect version 1.

• Eurocom Kinect [29]: is a medium-sized dataset containing 52 participants, each participant
was recorded twice with around two weeks in between. Participants were recorded by having
single images of them performing nine different expressions. The images were taken using the
Kinect version 1 and images were pre-processed to segment the heads. The coordinates for the
cropping are given as well as six facial landmarks. The Eurocom dataset contains few images
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for a deep learning network and is recorded with the Kinect version 1, making it unsuitable for
the experiment.

• VAP face database [30]: is a small size dataset containing 31 participants. The dataset was
recorded using an updated Kinect version 1 for Windows, this version gives a bigger RGB
image (1280 × 1024) and larger Depth map (640 × 480), but at the cost of reduced frame rates.
The recording was also done using the Kinects ‘near-mode’ which allows for the increased
resolution described. Each participant has 51 images of the face taken at different head angles
performing a neutral face and some frontal face with expressions. The recordings were done in the
same place with consistent lighting. As the dataset contains single images and few participants
performing facial expressions, it is unsuitable for the experiment, but for head pose estimation it
would be appropriate.

• 3D Mask Attack [31]: is a small to medium scale dataset containing 17 participants, but a large
collection of recordings. The participant is recorded in three different sessions; in each session
the participant is recorded five times for 300 frames per recording, holding a neutral expression.
The recording uses the Kinect version 1. The eyes are annotated every 60 frames with interpolation
for the other frames. The recordings were done under consistent lighting and background. The 3D
Mask Attack dataset contains a vast number of frames, but all use the neutral expression, face the
camera and use the older Kinect making it unsuitable for the experiment.

The existing datasets do not meet the following requirements:

• Deep learning requires large-scale datasets containing many thousands of training examples.
• Facial expression is key for robust landmarking systems, including the onset and offset

of expressions.
• Facial Landmarks, in both 2D and 3D.
• As facial movement can be subtle, high-resolution images are required, which is why Kinect

version 2 with both higher accuracy and resolution is needed.
• Real-time frame rates, as most systems target 30 Frames Per Second (FPS).

3. Proposed Method

3.1. Kinect One Expression Dataset (KOED)

As currently available datasets did not meet the requirements of the project, we created an
in-house dataset. All networks were trained using the in-house dataset.

3.1.1. Experimental Protocol

The experiment comprised of replicating seven universal expressions. Participants were instructed
to begin with a neutral face, perform the expression and then return to the neutral face. We also record
a full clip of the participant performing a neutral expression. The expressions performed are as follow:

• Happy
• Sad
• Surprise
• Anger
• Fear
• Contempt
• Disgust

All participants volunteered for the experiment with no monetary reward. To obtain a wide range
of diversity, anyone over the age of 18 was able to join the experiment. The dataset has 35 participants,
with a wide range of ages. The majority of the clips are female with a majority of white British, but it
does include participants from Saudi Arabia, India and Malaysia.
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3.1.2. Emotional Replication Training

During each recording, a trained individual was present to advise the participants on facial
expressions, providing some prior training. However, during the recording the trainer would not give
any advice to prevent distraction.

3.1.3. Ethics

Ethics was reviewed and approved by the Manchester Metropolitan University ethics committee
(SE151621).

3.1.4. Equipment and Experimental Set up

The experiment was set up in the same room for each participant to ensure each recording was
done similarly. We used a green screen recording room for each of the recordings; this allowed a
consistent background and lighting. The participant sat in the centre of the room, where the lights
could be placed at even distances to ensure consistent coverage. The studio has six lights that were
evenly spaced around the participant, in a backward C shape; we used a series of back-lights to ensure
the background was also lit up. The Kinect was placed one meter away from the participants, at their
head height while they sat down. Steps were taken to ensure consistent lighting, but to ensure ground
truth colour was available we use a colour checker placed to the left of the participants. The participant
was required to remain still during the recording. As recording both RGB and Depth requires a large
quantity of data to be stored, we used a SSD fitted laptop. An example of the experimental set up is
shown in Figure 1.

Figure 1. An example of the data capture set up.

3.1.5. Camera

The camera used was the Kinect for Xbox One, which gives synchronous streams of both RGB
and Depth data at 30 fps. As the Kinect performs better after reaching working temperature, we turn
the sensor on 25 min prior to any recording to ensure high quality data capture.
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3.1.6. Lighting

We use six ARRI L5-c LED directional lights focusing on the individual participant. The lights are
set to emit white light only to prevent any discoloring of the participants faces. The backlighting is
done with a series of photo beard tungsten fluorescent tubes.

3.1.7. Frame Rate and Storage

We record at the Kinect’s maximum capabilities, RGB (1920 × 1080) and Depth (512 × 424) at
30 fps, for speed we save both files in binary format. The images stored are unmodified from the ones
received from the Kinect, no lossy compression is implemented. As the data is stored in raw binary
format the dataset requires, at the time of writing, over 675 GB of storage for the full dataset.

3.2. Methodology

We implement multiple near-identical networks that function by pre-processing the image with
convolutions with Rectified Linear Unit (ReLU) activations and then a series of fully connected layers
to determine the final output. We illustrate the base networks in Figure 2. The base networks take a
single stream of data, Gs, RGB or Depth and process through a series of convolutions to extract facial
features. We use max-pooling to focus on high level features, and decrease processing requirements,
but take into consideration that this can negatively impact accuracy [32]. The network utilises ReLU as
an activation function after each convolutional layer as it does not normalise data. The resulting feature
maps are then processed by fully connected layers to predict the facial landmarks. For the second
stage, we examine the effectiveness of merging data streams, RGBD and GsD, we have a multiple
input model, shown in Figure 3. The merge network used two CNNs: one to take the RGB/ Gs image;
and another to take the Depth image. The two networks then use a series of convolutions to extract
unique features from each of the inputs. The results of the two CNNs are combined and used as input
to a third network. The third network further convolutes over the images giving a high value feature
set for the fully connected layer.

Figure 2. A visualisation of the basic network used for this experiment.
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Figure 3. A visualisation of the merged network used for this experiment.

As auxiliary features do affect how the network learns and XYZ points are desired, but not
commonly predicted, we repeat the experiments not just with different data streams, but alternative
outputs. The different outputs aid in showing how the networks can understand and learn both the
features and facial structure, in different spaces. The three types of outputs and their metrics that we
train the networks to predict are:

• The UV coordinates, in pixels
• The XYZ coordinates, in meters
• The UVXYZ coordinates

Where the UV points are the 2D image landmark coordinates and the XYZ points are the 3D
location of the landmarks in camera space. As the outputs are in non-compatible metrics, they cannot
be predicted in the same fully connect layer. To overcome this, we propose a multi-model output,
where the final convolutional outputs are fed into different output models. This means, for UV
and XYZ, there will be one model of fully connected layers for the convolution to be passed into.
However, the UVXYZ network will have the convolutions output into two different models, one for
UV calculation and one for XYZ. Traditionally with the Kinect, we require the 2D landmarks and use
them to reconstruct the 3D points with a Depth map. Furthermore, by asking a network to infer UV
and XYZ points, it could adopt the similar methodology, thus improving performance.

The networks are trained with a batch size of 240 using a stride of one over 100 epochs, using
tensor-flow [33] with the Keras [34] API. We used the KOED dataset with 10-fold cross-validation; this
ensures the network is trained, validated and tested on multiple participants, illustrating reliability.
The cross-validation split was performed semi-randomly, with 70% training, 20% validation and 10%
testing, ensuring no participant existed in multiple sets. We use MSE as our loss function, shown in
Equation (??), using Adam [35] as the optimiser. MSE has more emphasises on large numbers allowing
for large outliers to be resolved during training. However, we also calculate the MAE, as shown in
Equation (??). MAE gives equal weight to all the errors illustrating the overall error. By using these
error functions, we can determine the number of errors the networks produce and the size of errors.
We use MSE for training as it is traditional in regression-based deep learning.

MSE =
n

∑
i=0

(
yi − y′i

)
n

(1)

where:

• n is the number of samples in the training batches.
• yi is the ground truth for the training image.
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• y′i is the predicted output for the training image.

MAE =
n

∑
i=0

|yi − y′i|
n

(2)

where:

• n is the number of samples in the training batches.
• yi is the ground truth for the training image.
• y′i is the predicted output for the training image.

4. Results

To compare the networks, we first show the validation during training and examine the
performance of each stream. For each of the results we start with the UV (2D), then XYZ (3D)
and finally, the UV XYZ (All) results. After this, we show an evaluation of the networks on testing
data and the feature maps produced by the networks. Finally, we examine the results of the testing set
with both MSE and MAE scores.

Figure 4 illustrates that for the prediction of UV landmarks, both RGB and Gs converge at similar
epochs, 40. In addition, they both share many similar traits, such as that they both start with a
significantly lower loss and have more stable learning than input streams that incorporate Depth.
Overall, RGB performs the best in both MSE and MAE. The networks that merge visual and Depth
data converge much later than RGB and Gs, but their results of MSE are close to the RGB and Gs
scores. RGBD and GsD have unstable learning curves and encounter hidden gradients that cause loss
to increase rapidly. The single channel GsD converges earlier than RGBD, indicating that a single clean
frame learns faster on how to smooth a noisy Depth map than a three channel RGB image. The single
channel Depth encounters the most unstable learning and converges at a much later stage, showing
without a visual stream to assist the Depth data cannot easily locate UV landmarks. Furthermore, this
is illustrated by Depth performing the worst when evaluated on MSE and MAE.

Figure 4. The MSE of the UV Only networks validation over 100 epochs.

Figure 5 illustrates the MSE of the XYZ only network, like UV, RGB and Gs start with a low loss
and converge the quickest at around epoch 30. However, the learning is unstable, indicating retrieving
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accurate 3D landmarks from visual images is a difficult task, although in the final epoch RGB has the
lowest MSE. The input streams that incorporate Depth converge sooner than in the UV prediction
networks. Furthermore, their learning rate is more stable than the RGB and Gs stream, but hidden
gradients are still an issue. In addition, they converge at a similar location slightly higher than RGB
and Gs, although at some point they score lower loss than the RGB and Gs networks. This convergence
also occurs after a hidden gradient, indicating there is a shared local minimum caused by the inclusion
of Depth data, the most prominent of these is GsD, which consistently has the lowest loss over epochs
until it reaches a hidden gradient, to which it then becomes the worst performing stream.

Figure 6 illustrates the MSE of the UVXYZ networks, where RGB and Gs begin with the lowest
loss, but RGB has a significantly lower loss than Gs. The learning rates of RGB and Gs are stable and
converge quickly around epoch 43, with Gs performing the best. The input streams that incorporate
Depth data also converge quickly, with Depth and GsD having stable learning rates, unlike RGBD.
Furthermore, hidden gradients are still an issue. However, unlike in UV and XYZ only networks,
the UVXYZ quickly recovers. This demonstrates how auxiliary information is benefiting the networks
ability to learn from the different data streams by overcoming issues, such as the local minimum seen
in Figure 5.

Figure 5. The MSE of the XYZ Only networks validation over 100 epochs.
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Figure 6. The MSE of the UVXYZ networks validation over 100 epochs.

Figure 7 visually compares the results in both 2D and 3D. We summarise the observations:

• In the UV only prediction, the results are visually similar, but there is some deviation between
each of the networks. When using Depth as the input stream, the predictions of both the right
eye and lip corners are predicted less precise than the other input streams; this could be directly
affected by the noise in the Depth maps, as when merged with a visual stream, performance
is improved.

• For UVXYZ, there is no noticeable difference between the UV results.
• For the XYZ only predictions we see much larger discriminations in the predicted facial landmarks.

Some of the major changes are:

- From the frontal view there is a variation in the mouth width, with Gs being the smallest
and Depth being the widest.

- Nose landmarks shifts in GsD were the nose tip and right nostril are predicted close to
each other.

- Eye shape changes between networks, Gs and RGBD produce round smooth eyes. Whereas
others are more jagged and uneven.

- From the side view, we see the profile of the face change with the forehead and nose shape
varying greatly between networks.

• In contrast to the UV results in the UVXYZ network, with the addition of auxiliary information
the resulting geometric landmarks on the mouth, nose, eye and eyebrows, become more precise
and consistent. In most of the cases the eyes are smoother, the eyebrows are more evenly spaced,
the nose irregularity in GsD no longer occurs and the mouth width consistency has improved
greatly. These results show that, as UV is easier for the networks to learn as all streams manage
similar results, when used as auxiliary information, they aid to standardise the 3D locations as
well. However, there are still some variations in the profile of the nose and in RGB the right eye is
predicted to be shut.
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Figure 7. A visual comparison of the results from the trained networks.

As shown in Table 1, for UV landmarks RGB has the lowest MSE, with Gs not far behind. It also
shows that for predicting landmarks in 3D only, that having both a visual and Depth data allows for
the highest precision results, with RGBD and GsD scoring the lowest with marginal differences in score.
For the MAE and MSE of the UVXYZ networks, we show the separate stages of the loss calculation:

• Combined loss, which is the sum of UV and XYZ layers loss.
• UV loss, the loss of the UV layers alone.
• XYZ loss, the loss of the XYZ layers alone.

The combined loss shows the overall network performance, but the UV and XYZ alone show the
networks’ performance on the individual outputs. By comparing the loss of the UV and XYZ alone,
we illustrate how the auxiliary information is affecting network performance, compared to networks
predicting UV only or XYZ only landmarks. When trying to predict UVXYZ data, Gs performs the
best overall. We show that by introducing the 3D landmarks, we reduce the overall loss significantly
to UV alone in both RGB, Gs and GsD networks. Furthermore, the prediction of XYZ is improved in
the same networks. We see similar results in the MAE, shown in Table 2, where networks reduce the
loss below the UV alone networks. However, RGB sees the least MAE for UV. For overall combined
loss and XYZ loss, Gs scores the lowest in MSE and MAE.

Table 1. Table of the testing set evaluation on MSE. Bold highlights the lowest error.

Input Data UV MSE XYZ MSE UVXYZ MSE (Combined) UVXYZ MSE (UV) UVXYZ MSE (XYZ)

Gs 1.8192 0.0023 1.3695 1.3676 0.0019
Depth 6.4672 0.0023 6.6509 6.6482 0.0027

Gs Depth 2.1845 0.0022 1.8933 1.8911 0.0022
RGB Depth 2.1561 0.0022 2.8744 2.8752 0.0022

RGB 1.7488 0.0023 1.5612 1.5592 0.0019
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Table 2. Table of the testing set evaluation on MAE. Bold highlights the lowest error.

Input Data UV MAE XYZ MAE UVXYZ MAE (Combined) UVXYZ MAE (UV) UVXYZ MAE (XYZ)

Gs 1.0052 0.0341 0.9127 0.8797 0.0330
Depth 1.9150 0.0361 1.9705 1.9322 0.0382

Gs Depth 1.1210 0.0379 1.0617 1.0246 0.0371
RGB Depth 1.0848 0.0367 1.3056 1.2685 0.0371

RGB 0.9553 0.0346 0.9685 0.9388 0.0297

The key differences in single task networks and multi-task networks in predicting facial landmarks
were observed in the feature maps of the networks, illustrated in Figure 8. The network kernels learned
the spatial information from UV prediction. Therefore, the feature maps shown in the UV prediction
demonstrate the activation of appearance-based facial features. On the other hand, when predicting
the geometry coordinate of XYZ, we observed that the feature maps of the convolutional layers had
point-based (facial landmarks) activation. This is due to the Z component which makes the facial
landmarks more separable. The UVXYZ column depicts the features maps in UVXYZ prediction.
We observed it has better pattern representation with both appearance based and point/landmarks
information. The Gs network performs the best with the feature maps demonstrating the networks
can process the input stream to focus on the specific landmark regions of the face. Further advantages
occur when auxiliary information is added: the kernels become refined and are able to detect features
with high intensity, as the network is forced to learn how the structure appears in both 2D and 3D.
It also means the network can process the data more efficiently as the input is a single stream. However,
a disadvantage of this system is that the image must be pre-processed from RGB to Gs.

To demonstrate the effectiveness of the network, we visualise the predicted landmarks of the Gs
network on a 3D model, shown in Figure 9 (see Supplementary Materials). With Gs as input data
stream, our proposed method predicts accurate 3D facial landmarks on raw Depth data using auxiliary
information. Furthermore, this illustrates the accuracy of the network, even with raw Depth data, our
proposed method manages to estimate accurate 3D facial landmarks after pre-processing to crop and
resize Depth images for the network, where a human would be incapable of without full-size Depth
images [36]. However, due to the noise from the raw data, the limitation of our proposed method is
not able to locate the Z position precisely in some cases.
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Figure 8. A comparison of the output of the final convolutional filter for each type of network prediction
on the RGB Images. The third column illustrates the feature maps for UVXYZ prediction, the best
performance with auxiliary information.

Figure 9. The result of the Gs UVXYZ trained network and the appropriate model from the same input
Depth map. The model is transparent to show geometry coordinates of the facial landmarks.

5. Discussion and Conclusions

In this work we have shown and illustrated the effect of different data streams within neural
networks, to identify which streams are ideal for current research topics, as current literature uses a
mixture. We also extended the work by the prediction of points in the camera (XYZ) space as this is
a valuable resource in facial expression recognition and animation synthesis, but current literature
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focuses on image (UV) space coordinate systems. Unique insights into each stream of data were
obtained, demonstrating the pros and cons of each stream. To prevent bias, an in-house dataset was
used, showing that each network could reliably track facial features and expressions in both 2D and 3D.
The networks showed that the existing data-streams could accurately predict 2D and 3D landmarks.

Comparing the results and feature maps of the networks demonstrates the ability of the networks
to process and understand the different forms of data and if they are beneficial to the network.
Full RGB performed the most effectively on UV with the least amount of errors and the lowest scale
of errors. While Depth shows its effectiveness at predicting landmarks, the noise it presents requires
additional streams, such as RGB to smooth out and retrieve reliable results. In the final experiment,
for predicting UVXYZ, we show that although for UV alone RGB is the most efficient, Gs outperformed
it, illustrating that more generalizable single frames are more effective when predicting a wide range
of values. While Depth has shown to be difficult for the networks to learn from, with limitations such
as exploding gradients, even after merging with cleaner streams it has been shown to be effective even
when cropped and resized for the prediction of landmarks, where traditional methods require full-size
Depth images.

This work focused exclusively on the use of neural networks to predict facial landmarks without
the aid of physical markers, sensors, or reference points placed on the individuals. There have been
many incremental studies into the use of neural networks to predict the image (UV) space landmarks
successfully. However, the results all use different streams of data with little consensus on why the
stream is used, except for dataset or memory limitations. In addition, XYZ coordinates are not being
predicted by neural networks in current systems. For networks, many industries desire the use of 3D
landmarks in real-time.

There are several limitations in this study, mostly related to the data used to train the network and
the difficulty of 3D landmarks. Firstly, due to the context issue of cropping, a Depth map recording
was done in a controlled environment, so the network must only learn a manageable part of the 3D
viewing frustum. This, regarding animation, has an advantage as it normalises the facial position,
while still tracking 3D facial movement. However, for full 3D prediction full Depth maps would still
be required. Future work should seek out new technologies, such as the Intel real-sense [37], which
could resolve the noise issue of the Kinect as it provides both higher resolution and cleaner Depth
maps as shown by Carfagni et al. [38], which would aid the networks’ ability to learn from the data.
Other aspects would be to further the work with a larger dataset to test the reliability of no Depth
streams with a wider demographic of faces.

We have shown and analysed how the input data stream can affect a deep neural network
framework, for the analysis of facial features, which can have an impact on facial recognition,
reconstruction, animation, and security, by providing how the networks interact with the different data
streams. The stream shows different levels of accuracy and reliability which can positively affect future
work. Future work will include increasing the number of participants and increasing the amount of
reliably tracked landmarks without marker 3D reference points on the face, as current literature is
limited in this area.

6. Materials and Methods

We provide access to all codes used to build and train models on GitHub. We also provide
demo codes to enable the real-time use of the trained models, with the use of a Kinect. All scripts are
provided in python. The in-house KOED dataset will be made publicly available. However, in its raw
form, the dataset requires over 675 GB to store at the time of writing, without any annotations.

Supplementary Materials: We provide multiple videos representing our results. Firstly, we provide a video of
the model and points shown in Figure 9, rotating between ±90 degrees, as it is a raw Depth map model there is
no back, thus 360 provides no additional information. Finally, we provide videos demonstrating the feature maps
of the networks to illustrate which features in the images the network deems most valuable to the prediction.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
RGB Red Blue Green
RGBD Red Blue Green Depth
Gs Greyscale
GsD Greyscale Depth
D Depth
2D Two Dimensional
3D Three Dimensional
KOED Kinect One Expressional Dataset
HD High Definition
MSE Mean Squared Error
MAE Mean Absolute Error
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