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Preface to ”Inequalities in Geometry and

Applications”

Geometric inequalities have fascinated the mathematical world and not only since ancient times,

as this field of research is in fact as old as mathematics itself. Over time, such inequalities have proven

to be an excellent tool in investigating and solving basic problems in pure and applied sciences,

including some that were apparently unrelated to geometric inequalities.

The aim of this book was to present recent developments in the field of geometric inequalities

and their applications. The volume covers a vast range of topics, such as isoperimetric problem,

Erdös–Mordell inequality, Barrow’s inequality, Simpson inequality, Chen inequalities, q-integral

inequalities, complex geometry, contact geometry, statistical manifolds, Riemannian submanifolds,

optimization theory, topology of manifolds, log-concave functions, Obata differential equation,

o-invariants, Einstein spaces, warped products, and solitons. By exposing new concepts, techniques

and ideas, this book will certainly stimulate further research in this field.

Reviewed by leading experts, the chapters in this book were written by scientists from 13

different countries, most of them being outstanding researchers in the field. I am thankful to all the

contributors and also to the journal Mathematics for giving me the opportunity to publish this book.

Gabriel-Eduard Vı̂lcu

Editor
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Abstract: The Maslov form is a closed form for a Lagrangian submanifold of Cm, and it is a conformal
form if and only if M satisfies the equality case of a natural inequality between the norm of the
mean curvature and the scalar curvature, and it happens if and only if the second fundamental form
satisfies a certain relation. In a previous paper we presented a natural inequality between the norm
of the mean curvature and the scalar curvature of slant submanifolds of generalized Sasakian space
forms, characterizing the equality case by certain expression of the second fundamental form. In this
paper, first, we present an adapted form for slant submanifolds of a generalized Sasakian space form,
similar to the Maslov form, that is always closed. And, in the equality case, we studied under which
circumstances the given closed form is also conformal.

Keywords: slant submanifolds; generalized Sasakian space forms; closed form; conformal form;
Maslov form

1. Introduction

It was proven by V. Borrelli, B.-Y. Chen and J. M. Morvan [1], and independently by A. Ros and F.
Urbano [2], that if M is a Lagrangian submanifold, with dim(M) = m, of Cm, with mean curvature

vector H and scalar curvature τ, then ‖H‖2 ≥ 2(m + 2)
m2(m − 1)

τ, with equality if and only if M is either

totally geodesic or a (piece of a) Whitney sphere. Moreover, they proved that M satisfies the equality
case at every point if and only if its second fundamental form σ is given by

σ(X, Y) =
m

m + 2
{g(X, Y)H + g(JX, H)JY + g(JY, H)JX}, (1)

for any tangent vector fields X and Y. Thus, they found a simple relationship between one of the main
intrinsic invariants, τ, and the main extrinsic invariant H.

It was also proven in [2], that the Maslov form, which is a closed form for a Lagrangian
submanifold of Cm, is a conformal form if and only if M satisfies (1).

Later, D. E. Blair and A. Carriazo [3] established an analogue inequality for anti-invariant
submanifolds in R2m+1 with its standard Sasakian structure and characterized the equality case with a
specific expression of the second fundamental form, similar to Equation (1). In a previous paper [4],
we studied the corresponding inequality for slant submanifolds of generalized Sasakian space forms;
we also characterized the equality case with an specific expression of the second fundamental form;
and finally, we presented some examples satisfying the equality case.

Mathematics 2019, 7, 1238; doi:10.3390/math7121238 www.mdpi.com/journal/mathematics1
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Both B.-Y. Chen, [5] and A. Carriazo, [6], have studied the existence of closed forms for slant
submanifolds in different environments. The existence of closed forms is particularly interesting, as
they provide conditions about submanifolds admitting an immersion in a certain environment.

The purpose of this paper was to obtain some results similar to those of [2] for slant submanifolds
of a generalized Sasakian space form. After a section with the main preliminaries, we show that
for a slant submanifold of a generalized Sasakian manifold, the Maslov form is not always closed.
Therefore, in the following section, we present a form that is always closed for a slant submanifold,
so it really plays the role of the Maslov form in the cited papers. Later, if the submanifold satisfies the
equality case in the corresponding inequality, that is, if the second fundamental form takes a particular
expression [4], we study if the vector field associated with the given form is a conformal vector field.

2. Preliminaries

Given a Riemannian manifold (M̃, g), a tangent vector field X on M̃ is called closed if its dual
1-form is closed. That is equivalent to

g(Y, ∇̃ZX) = g(Z, ∇̃YX), (2)

for all Y and Z on M̃, where ∇̃ is the Levi–Civita connection.
Moreover, X is called conformal if LX g = ρg, for ρ a function on M̃, where L is the Lie derivative.

A closed vector field X is conformal in and only if

∇̃YX = f Y, (3)

for any tangent vector field Y on M̃ and for certain function f on M̃.
In such a case, considering an orthonormal basis {e1, . . . , em} on M̃, it holds that ∇̃ei X = f ei,

for i = 1, . . . , m.
Now, we will recall some notions about almost-contact Riemannian geometry. For more details

about this subject, we recommend the book [7].
An odd-dimensional Riemannian manifold (M̃, g) is said to be an almost contact metric manifold if

there exists on M̃, a (1, 1) tensor field φ, a unit vector field ξ (called the structure or Reeb vector field) and
a 1-form η, such that

η(ξ) = 1, φ2(X) = −X + η(X)ξ

and
g(φX, φY) = g(X, Y)− η(X)η(Y),

for any vector fields X and Y on M̃. In particular, in an almost contact metric manifold we also have

φξ = 0, η ◦ φ = 0 and η(X) = g(X, ξ).

Such a manifold is said to be a contact metric manifold if dη = Φ, where Φ(X, Y) = g(X, φY) is
called the fundamental 2-form of M̃. The almost contact metric structure of M is said to be normal if
[φ, φ](X, Y) = −2dη(X, Y)ξ, for any X and Y. A normal contact metric manifold is called a Sasakian
manifold. It can be proven that an almost contact metric manifold is Sasakian if an only if

(∇̃Xφ)Y = g(X, Y)ξ − η(Y)X,

for any X and Y on M.
In [8], J.A. Oubiña introduced the notion of a trans-Sasakian manifold. An almost contact metric

manifold M̃ is a trans-Sasakian manifold if there exists two functions α and β on M̃ such that

(∇̃Xφ)Y = α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX), (4)

2
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for any X and Y on M̃. If β = 0, M̃ is said to be an α-Sasakian manifold. Sasakian manifolds appear
as examples of α-Sasakian manifolds, with α = 1. If α = 0, M̃ is said to be a β-Kenmotsu manifold.
Kenmotsu manifolds are particular examples with β = 1. If both α and β vanish, then M̃ is a
cosymplectic manifold. In particular, from (4) it is easy to see that the following equation holds for a
trans-Sasakian manifold:

∇̃Xξ = −αφX + β(X − η(X)ξ). (5)

It was proven by J.C. Marrero that, for dimensions greater or equal than 5, the only existing
trans-Sasakian manifolds are α-Sasakian and β-Kenmotsu ones [9].

In [10], P. Alegre, D.E. Blair and A. Carriazo introduced the notion of a generalized Sasakian space
form as an almost contact metric manifold (M̃, φ, ξ, η, g) whose curvature tensor is given by

R̃(X, Y)Z = f1 {g(Y, Z)X − g(X, Z)Y}
+ f2 {g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY)φZ}
+ f3 {η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ} ,

(6)

where f1, f2 and f3 are differential functions on M̃. These manifolds are denoted by
M̃( f1, f2, f3); generalize the notion of Sasakian space form, M̃(c), whose curvature tensor satisfies
the expression (6), with

f1 =
c + 3

4
, f2 = f3 =

c − 1
4

,

where c is the constant φ-sectional curvature.
Now we recall some general definitions and facts about submanifolds. Let M be a submanifold

isometrically immersed in a Riemannian manifold (M̃,g). We denote by ∇ the induced Levi–Civita
connection on M. Thus, the Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + σ(X, Y),

∇̃XV = −AV X + DXV,

for vector fields X and Y tangent to M and a vector field V normal to M, where σ denotes the
second fundamental form, AV the shape operator in the direction of V and D the normal connection.
The second fundamental form and the shape operator are related by

g(AV X, Y) = g(σ(X, Y), V). (7)

M is called a totally geodesic submanifold if σ vanishes identically.
We denote by R and R̃, the curvature tensors of M and M̃, respectively. They are related by Gauss

and Codazzi’s equations

R̃(X, Y; Z, W) = R(X, Y; Z, W)

+ g(σ(X, Z), σ(Y, W))− g(σ(X, W), σ(Y, Z)),
(8)

(R̃(X, Y)Z)⊥ = (∇̃Xσ)(Y, Z)− (∇̃Yσ)(X, Z), (9)

where (R̃(X, Y)Z)⊥ denotes the normal component of R̃(X, Y)Z and

(∇̃Xσ)(Y, Z) = DX(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ),

is the derivative of Van der Waerden-Bortolotti.
On the other hand, the mean curvature vector H is defined by

H = (1/dimM) trace σ, (10)

3
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and M is said to be minimal if H vanishes identically.
The scalar curvature τ of M at p ∈ M is defined by

τ = ∑
1≤i<j≤dimM

K(ei, ej), (11)

where K(ei, ej) denotes the sectional curvature of M associated with the plane section spanned by ei
and ej, for any tangent vector fields ei and ej in a local orthonormal frame of M.

For a submanifold of an almost contact manifold, we denote

φX = TX + NX and φV = tV + nV

the tangent and normal part of φX and φV for any X tangent vector field and V normal vector field.
If the ambient space is trans-Sasakian, taking the tangent and normal part at (4) we obtain:

(∇XT)Y − tσ(X, Y)− ANYX =α(g(X, Y)ξ − η(Y)X)

+β(g(TX, Y)ξ − η(Y)TX),
(12)

(∇X N)Y + σ(X, TY)− nσ(X, Y) = −βη(Y)NX, (13)

(∇Xt)V − AnV X + TAV X = βg(NX, V)ξ, (14)

(∇Xn)V + σ(X, tV) + NAV X = 0. (15)

And from (5):
∇Xξ = −αTX + β(X − η(X)ξ), (16)

σ(X, ξ) = −αNX. (17)

Now, we recall the definition of slant submanifolds. These submanifolds were defined by B.-Y.
Chen in [5] on almost Hermitian geometry. Later, A. Lotta defined slant submanifolds on the almost
contact metric setting in [11]: given a submanifold M tangent to ξ, for each nonzero vector X tangent
to M at p, such that X is not proportional to ξp, we denote by θ(X) as the angle between φX and Tp M.
Then, M is said to be slant if the angle θ(X) is a constant, which is independent of the choice of p ∈ M
and X ∈ Tp M− < ξp >. The angle θ of a slant immersion is called the slant angle of the immersion.
Invariant and anti-invariant immersions are slant immersions with slant angles θ = 0 and θ = π/2,
respectively. A slant immersion, which is neither invariant nor anti-invariant, is called a proper slant
immersion. Slant submanifolds of Sasakian manifolds were studied by J.L. Cabrerizo, A. Carriazo,
L.M. Fernández and M. Fernández in [12,13].

From now on, we denote by m + 1 = 2n + 1 the dimension of M and 2m + 1 = 4n + 1 the
dimension of M̃. We assume m ≥ 2. Then, for a slant submanifold holds:

T2X = cos2 θ(−X + η(X)ξ), (18)

tNX = sin2 θ(−X + η(X)ξ), (19)

NTX + nNX = 0, (20)

and because of the dimensions,

n2V = − cos2 θV, NtV = − sin2 θV and TtV + tnV = 0,

for any X, Y tangent vector fields and V normal vector field.

4
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Given a proper slant submanifold M2n+1, with slant angle θ, immersed in an almost contact
manifold M̃4n+1, we considered an adapted slant reference, [6]; it was built as follows. Given e1 a unit
tangent vector field, orthogonal to ξ, we took:

e2 = (sec θ)Te1, e1∗ = (csc θ)Ne1, e2∗ = (csc θ)Ne2.

For k > 1, then proceeding by induction, for each l = 1, . . . , n − 1, we chose a unit tangent vector
field e2l+1 of M, such as e2l+1, which is orthogonal to e1, e2, . . . , e2l−1, e2l , ξ and took:

e2l+2 = (sec θ)Te2l+1, e(2l+1)∗ = (csc θ)Ne2l+1, e(2l+2)∗ = (csc θ)Ne2l+2.

In this way
{e1, . . . , em, ξ, e1∗, . . . , em∗} (21)

is an orthonormal reference such that e1, . . . , em belong to the contact distribution, D and e1∗, . . . , em∗
are normal to M. Moreover, it can be directly computed that:

Te2j−1 = (cos θ)e2j, Te2j = −(cos θ)e2j−1, j = 1, . . . , k;
Nei = (sin θ)ei∗, tei∗ = −(sin θ)ei, i = 1, . . . , m;
ne(2j−1)∗ = −(cos θ)e(2j)∗, ne(2j)∗ = (cos θ)e(2j−1)∗, j = 1, . . . , k.

Finally, a slant submanifold of an (α, β) trans-Sasakian generalized Sasakian space form
M̃2m+1( f1, f2, f3), is called ∗-slant submanifold, [4], if its second fundamental form σ is given by the
following expression:

σ(X, Y) =
m + 1
m + 2

{
(g(X, Y)− η(X)η(Y)) H

+

(
1

sin2 θ
g(φX, H)− α

m + 2
m + 1

η(X)

)
NY

+

(
1

sin2 θ
g(φY, H)− α

m + 2
m + 1

η(Y)
)

NX
}

.

(22)

They are specially interesting because it was proven in [4] that this expression of the second
fundamental form characterizes the equality case of the following inequality involving the squared
mean curvature ‖H‖2 and the scalar curvature τ:

(m + 1)2‖H‖2 − 2
m + 2
m − 1

τ ≥ −m(m + 2)
m − 1

((m + 1) f1 + 3 f2 cos2 θ − 2 f3 − 2α sin2 θ). (23)

3. The Maslov Form

For any submanifold of any almost contact manifold, we consider the Maslov form ωH as the
dual form of φH; that is

ωH(X) = g(X, φH),

for any X tangent vector field in the submanifold. We can also define a canonical 1-form on M by

Θ =
m

∑
1=1

ωi∗
i ,

where ωi∗
i are the connection forms given by Cartan’s structure equations.

5
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We can relate these two forms for certain slant submanifolds. In [12], proper slant submanifolds
such as for any tangent vector fields X and Y were studied with:

(∇XT)Y = cos2 θ(g(X, Y)ξ − η(Y)X). (24)

They were called slant Sasakian submanifolds in [6]; however, we can point that they are α-Sasakian
manifolds with the induced structure φ = sec θT. That aims us to defined slant trans-Sasakian
submanifolds as those verifying:

(∇Xφ)Y = α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX). (25)

For a slant trans-Sasakian submanifold of a trans-Sasakian manifold the relation between the
structure functions is given by

sec θα = α and β = β. (26)

From (25) and (12) it is deduced that

ANYX = ANXY + α sin2 θ(η(Y)X − η(X)Y), (27)

for any X, Y tangent vector fields.

Then, for such a submanifold, the relation between Θ and the Maslov form is given in the
following theorem.

Theorem 1. Let Mm+1 be a slant trans-Sasakian submanifold of a generalized Sasakian space form
M̃2m+1( f1, f2, f3) endowed with an (α, β) trans-Sasakian structure. Then:

ωH = − sin θ

m + 1
(Θ + mα sin θη). (28)

Proof. Considering an adapted slant basis, it holds

ωH(ei) = g(ei, φH) = −g(Nei, H) = − sin θg(ei∗ , H), (29)

for i = 1, . . . , m. Moreover,

Θ =
2n

∑
l=1

2n

∑
i=1

σl∗
li ωi +

2n

∑
l=1

σl∗
lξ η. (30)

But,
σl∗

lξ = g(σ(el , ξ), el∗) = − csc θg(Nel , Nel) = − sin θ, (31)

and

σl∗
li =g(σ(el , ei), el∗) = csc θg(σ(el , ei), Nel)

= csc θg(ANel ei, el) = csc θg(ANei el , el)

=g(σ(el , el), ei∗) = σi∗
ll ,

(32)

where we have used (27); that is, M is a slant trans-Sasakian submanifold.
And therefore, from (30)–(32),

Θ + mα sin θη = ∑
i=1

2n(trσi∗)ωi.

6
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As σ(ξ, ξ) = 0:

H =
1

m + 1

m

∑
j=1

σ(ej, ej). (33)

Now, from (29) and (33), it holds that

ωH(ei) = − sin θ

m + 1

2k

∑
j=1

σi∗
jj = − sin θ

m + 1
(Θ + mα sin θη)(ei),

for i = 1, . . . , m. Finally, as ωH(ξ) = g(tH, ξ) = 0, the proof is finished.

Following the same steps that [5] did for slant submanifolds of an almost Hermitian manifold or
[6] for an almost contact manifold, and after a long computation, the differentials of θ and η can be
proven. The proof is straightforward so we have omitted it.

Lemma 1. Let Mm+1, a proper slant submanifold of a generalized Sasakian space, form M̃2m+1 endowed with
an (α, β) trans-Sasakian structure, with M tangent to ξ and m ≥ 2. Then, the 1-forms Θ and η satisfy:

dΘ =− 2 sin θ cos θ(α2 + f2(m + 1))

(
k

∑
j=1

ω2j−1 ∧ ω2j −
k

∑
j=1

ω(2j−1)∗ ∧ ω(2j)∗
)

+(−2 sin2 θ(α2 + f2(m + 1))+α2 + f2 − f1 − β2)(
k

∑
j=1

ω2j−1 ∧ ω(2j−1)∗ +
k

∑
j=1

ω2j ∧ ω(2j)∗
)

,

(34)

and

dη =− 2α cos θ
k

∑
j=1

ω2j−1 ∧ ω2j − 2α sin θ
k

∑
j=1

ω2j−1 ∧ ω(2j−1)∗−

− 2α sin θ
k

∑
j=1

ω2j ∧ ω(2j)∗ + 2α cos θ
k

∑
j=1

ω(2j−1)∗ ∧ ω(2j)∗ ,

(35)

where θ is the slant angle of M.

As we are considering a trans-Sasakian manifold with a dimension greater or equal than 5,
from [9], it must be an α-Sasakian or a β-Kenmotsu manifold. So we distinguish both two cases in the
following theorems.

Theorem 2. Let Mm+1 be a proper slant trans-Sasakian submanifold of a connected generalized Sasakian space
form M̃2m+1( f1, f2, f3) endowed with an α-Sasakian structure. Then, the Maslov form is closed if and only if
f1 = 0. In such a case, it holds f2 = f3 = −α2.

Proof. As M̃2m+1 is α-Sasakian, from Proposition 4.1 of [14], α is constant. From (28),

dωH = − sin θ

m + 1
(dΘ + mα sin θdη).

Then, from (34) and (35), it is deduced that dωH = 0 if and only if it holds α2 + f2 = 0 and f1 = 0.
Moreover, Theorem 4.2 of [14] establishes that both conditions are equivalent, as f1 − α2 = f2 = f3.

Remark 1. If the ambient space is a Sasakian space form M̃2m+1(c), the Maslov form is closed if and only if
c = −3, as it was proved in [6].
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Theorem 3. Let Mm+1 be a proper slant trans-Sasakian submanifold of a generalized Sasakian space form
M̃2m+1( f1, f2, f3) endowed with a β-Kenmotsu structure. Then, the Maslov form is closed if and only if

f1 = −β2 and f2 = 0.

In such a case, it holds f3 = ξ(β).

Proof. Again from (28), (34) and (35), dωH = 0 if and only if f2 = 0 and f1 + β2 = 0. The last condition
is obtained from Proposition 4.3 in [14], where it was proven that f1 − f3 + ξ(β) + β2 = 0.

Remark 2. We note that on the opposite that for Lagrangian submanifold of Cn, [2], or totally real submanifolds
of R2m+1, [3], the Maslov is not always closed. That aims us to look for an adapted form that is closed in
more cases.

4. An Adapted Closed Form

As the Maslov form is not always closed for slant submanifolds it is necessary to find a new form
related with this Maslov form but including the special slant character of the submanifold.

Both the Maslov form and Θ can be considered forms at M̃ or M. As both η and Θ vanish at
TM⊥, it is the same defining them on M̃ or M; however, it is not the same considering dη or dη�M and
dΘ or dΘ�M. Although both B.-Y. Chen and A. Carriazo, [5] and [6], studied conditions for dωH and
dΘ vanishing at the manifold; their real interest was finding a closed form at the submanifold, not at
the manifold.

Therefore, we consider the restrictions of Θ and η at the submanifold. From (34) and (35) it
is deduced:

dη�M = −2α cos θ
m

∑
j=1

ω2j−1 ∧ ω2j (36)

and

dΘ�M = −2 sin θ cos θ(α2 + f2(m + 1))
m

∑
j=1

ω2j−1 ∧ ω2j. (37)

So we find that, for obtaining a closed form, the relation between Θ and η is not the given by the
Maslov form at (28).

Again, we particularize to α-Sasakian or a β-Kenmotsu manifolds. Firstly, we consider an
α-Sasakian manifold. It was proven in [14], that if α �= 0 and M̃( f1, f2, f3) is connected, then α is
constant, and the functions are constant and related by f1 − α2 = f2 = f3. We can write:

f1 =
c + 3α2

4
, f2 = f3 =

c − α2

4
.

From now on, we suppose M̃ is connected.

Lemma 2. Let Mm+1 be a slant submanifold of an α-Sasakian generalized Sasakian space form

M̃2m+1( f1, f2, f3), with α �= 0. Then, the form Θ − sin θ
α2 + f2(m + 1)

α
η is closed at M.

Proof. It is directly deduced from (36) and (37) that αdΘ − sin θ(α2 + f2(m + 1))dη = 0, and as α is
constant, the result is proven.

Moreover, the field associated to the closed form is

− m + 1
sin θ

tH − sin θ

(
m +

α2 + f2(m + 1)
α

)
ξ, (38)

8
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so we already have the following theorem.

Theorem 4. Let Mm+1 be a slant submanifold of an α-Sasakian generalized Sasakian space form

M̃2m+1( f1, f2, f3), with α �= 0. Then, the field tH +
sin2 θ

m + 1
mα + α2 + f2(m + 1)

α
ξ is closed.

Corollary 1. Let Mm+1 a slant submanifold of a Sasakian space form M̃2m+1(c); the field tH + sin2 θ
c + 3

4
ξ

is closed.

Note that this result improves the one obtained by A. Carriazo in [6] giving a closed form for a
slant submanifold of any Sasakian space form.

Corollary 2. Let M2m+1 be a compact and simply connected manifold. Then, M can not be immersed in a
generalized Sasakian space form, M̃4m+1(0,−α2,−α2), endowed with an α-Sasakian structure, α �= 0, like a
slant submanifold.

Proof. If Mm+1 is a slant submanifold of M̃4m+1(0,−α2,−α2), with an α-Sasakian structure.
By Theorem 4 the vector field

tH +
sin2 θ

m + 1
mα + α2 + f2(m + 1)

α
ξ �= 0,

is closed, and the corresponding form is also closed. Therefore it represents a cohomology class in
H1(M;R). But, as M is compact, it can not be an exact form. So H1(M;R) is a nontrivial cohomology
class and M could not be simply connected what is a contradiction.

On the other hand, for a β-Kenmotsu manifold dη = 0 and from Theorem 1, ωH = − sin θ

m + 1
Θ.

The following lemma studies when it is a closed form.

Lemma 3. Let Mm+1 be a proper slant submanifold of a β-Kenmotsu generalized Sasakian space form M̃2m+1,
with M tangent to ξ and m ≥ 2. Then, the Maslov form at M is closed if and only if f2 = 0.

Proof. For a β-Kenmotsu manifold ωH = − sin θ

m + 1
Θ. And writing (37) for α = 0,

dΘ�M = −2 sin θ cos θ f2(m + 1)
m

∑
j=1

ω2j−1 ∧ ω2j. (39)

Therefore, the Maslov form is closed in M if and only f2 = 0.

Note, that in such a case f1 − f3 + ξ(β) + β2 = 0 ([14], Proposition 4.3). Moreover, we observe that,
on the opposite that for α-Sasakian manifolds, we cannot find a closed form for a slant submanifold of
any generalized Sasakian space form with a β-Kenmotsu structure.

However, for f2 = 0, we have obtained a closed vector field as follows.

Theorem 5. Let Mm+1 be a slant submanifold of an β-Kenmotsu generalized Sasakian space form
M̃2m+1( f1, 0, f3). Then, the field tH + sin2 θ

m
m + 1

ξ is closed.

Again, we can present a topological obstruction for slant immersions:

9
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Corollary 3. Let M2m+1 be a compact and simply connected manifold. Then, M cannot be immersed in
a generalized Sasakian space form, M̃4m+1( f1, 0, f3), endowed with an β-Kenmotsu structure, as a slant
submanifold.

From now on, we will write tH + aξ and tH + bξ, with

a =
sin2 θ

m + 1
mα + α2 + f2(m + 1)

α
and b = sin2 θ

m
m + 1

,

for the correspondent closed vector fields.

5. About Conformal Forms for α-Sasakian Space Forms

As we said in the Introduction, for those Lagrangian submanifolds of Cm verifying the equality
case, the Maslov form, that is closed, is also conformal. Now we study if the closed form presented in
the previous section is conformal for those slant submanifolds verifying the equality case at (23).

We are considering a connected manifold, so α, f1, f2 and f3 are constant functions.
We want to compute ∇X(tH + aξ), for any X tangent vector field. It is a long computation.

Firstly, we compute ∇N for later use. Using the expression of the second fundamental form of a *-slant
submanifold, (22), and (20) in (13):

(∇X N)Y =
m + 1
m + 2

{
(g(X, Y)− η(X)η(Y))nH − g(X, TY)H

+ 2
(

1
sin2 θ

g(φX, H)− m + 2
m + 1

η(X)

)
nNY

+

(
1

sin2 θ
g(φY, H)− m + 2

m + 1
η(Y)

)
nNX

− 1
sin2 θ

g(φTY, H)NX
}

.

(40)

Lemma 4. Let M be *-slant submanifold of an generalized Sasakian space form M̃( f1, f2, f3) endowed with an
α-Sasakian structure. For every X tangent vector field belonging to the contact distribution it holds:

∇X(tH + aξ) =− g(DX H, NX)X +

(
1

sin2 θ

m + 1
m + 2

g2(H, NX)− a
)

TX

− 3
sin2 θ

m + 1
m + 2

g(H, NX)tnH

+
1

sin2 θ

m + 1
m + 2

g(H, nNX)tH + g(H, nNX)ξ.

(41)

Proof. Firstly, from Codazzi’s equation we will compute DX H, and after, ∇X(tH + aξ).
Writing Codazzi’s equation, (9), for a generalized Sasakian space form, for any unit orthogonal
X, Y tangent vector fields in the contact distribution, using (3) (6), R(X, Y)Y)⊥ gives:

3
m + 2
m + 1

f2g(X, TY)NY = DX H + 3
m + 2
m + 1

g(Y, TX)NY

+
2

sin2 θ
{g((∇X N)Y, H)NY + g(NY, DX H)NY + g(NY, H)(∇X N)Y}

+
1

sin2 θ
{−g((∇Y N)X, H)NY − g((∇Y N)Y, H)NX − g(NX, H)(∇Y N)Y

−g(NX, DY H)NY − g(NY, DY H)NX − g(NY, H)(∇Y N)X} .

(42)

10
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Then, using (40), we obtain:

3
m + 2
m + 1

( f2 + 1)g(X, TY)NY = DX H

+
1

sin2 θ
{2g(NY, DX H)NY − g(NX, DY H)NY − g(NY, DY H)NX}

+
1

sin2 θ

m + 1
m + 2

{
−g(NX, H)nH − 2

sin2 θ
g(NY, H)g(nNY, H)NX − 3g(NY, H)g(X, TY)H(

−3g(X, TY)‖H‖2 +
4

sin2 θ
g(NX, H)g(nNY, H)− 2

sin2 θ
g(NY, H)g(nNX, H)

)
NY

}
.

(43)

At this point, we use that, taking into account Corollary 1, tH + aξ is a closed vector field.

g(∇X(tH + aξ), Y) = g(∇Y(tH + aξ), X).

Then, using (16)
g(∇XtH, Y) = g(∇YtH, X)− 2ag(TY, X),

and therefore, (14) gives

g(NX, DY H) = −g(X, tDY H) = −g(X,∇YtH − AnHY + TAHY)

= g(NY, DX H) + 2ag(TX, Y)− g(σ(TY, X), H) + g(σ(Y, TX), H).
(44)

Now, using (22) carries to

g(NX, DY H) =g(NY, DX H) + 2ag(TX, Y) +
m + 1
m + 2

2g(Y, TX)‖H‖2

+
m + 1
m + 2

2
sin2 θ

(g(NY, H)g(NTX, H)− g(NX, H)g(NTY, H)).
(45)

So (43) gives

3
m + 2
m + 1

( f2 + 1)g(X, TY)NY = DX H +
1

sin2 θ
{g(NY, DX H)NY − g(NY, DY H)NX}

+
1

sin2 θ

m + 1
m + 2

{(
−2a

m + 2
m + 1

g(TX, Y) + g(Y, TX)‖H‖2 +
2

sin2 θ
g(NX, H)g(nNY, H)

)
NY

−g(NX, H)nH − 2
sin2 θ

g(NY, H)g(nNY, H)NX + 3g(NY, H)g(Y, TX)H
}

.

(46)

Now, for dimensions over or equal than 5, we can consider X orthogonal to Y and TY. Multiplying
by NX,

0 = g(DX H, NX)− g(NY, DY H)

+
1

sin2 θ

m + 1
m + 2

{−g(NX, H)g(nNX, H)− 2g(NY, H)g(nNY, H)}.
(47)

Interchanging X and Y at (47), and adding it to the previous equation:

g(NX, H)g(nNX, H) = −g(NY, H)g(nNY, H). (48)

For TY, that is also orthogonal to X, TX,

g(NX, H)g(nNX, H) = −g(NTY, H)g(nNTY, H) = cos2 θg(NY, H)g(nNY, H). (49)

11
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From (48) and (51), we get g(NX, H)g(nNX, H) = 0 for every X unit vector field in the contact
distribution. Moreover, developing 0 = g(N(X + Y), H)g(nN(X + Y), H), we obtain

g(NX, H)g(nNY, H) = −g(NY, H)g(nNX, H). (50)

Also, at (47), we get
g(DX H, NX) = g(NY, DY H), (51)

so g(DX H, NX) is independent of X unit vector field in the contact distribution.
Now, multiplying (46) by NY,

0 = 2g(DX H, NY) +
3

sin2 θ

m + 1
m + 2

g(NX, H)g(nNY, H). (52)

But (44) for any X, a unitary vector field orthogonal to Y, TY, in the contact distribution it states:

g(NX, DY H)− g(σ(TX, Y), H) = g(NY, DX H)− g(σ(TY, X), H). (53)

Using (52) and (22) at (53)

−7
2 sin2 θ

m + 1
m + 2

g(NX, H)g(nNY, H) =
−7

2 sin2 θ

m + 1
m + 2

g(NY, H)g(nNX, H), (54)

where X, Y can be interchanged. Comparing (50) with (54) it is proven that

g(NX, H)g(nNY, H) = 0, (55)

and consequently, by (52),
g(DX H, NY) = 0, (56)

for each X orthogonal to Y and TY at the contact distribution.
It only rests on us to compute g(DX H, NTX) in order to know DX H. Multiplying (46) by NTX

we obtain:

g(DX H, NTX) = −cos2 θ

sin2 θ

m + 1
m + 2

g(H, NX)2. (57)

Therefore, taking an orthogonal basis {e∗1, ..., e∗n} at T⊥M,

DX H = ∑ g(DX H, e∗j )e
∗
j =

=
1

sin2 θ
g(DX H, NX)NX − 1

sin4 θ

m + 1
m + 2

g(H, NX)2NTX,
(58)

for any X unit tangent field orthogonal to ξ.
Finally, for any X at the contact distribution, and any Z tangent vector field,

g(∇X(tH + aξ), Z) = g(∇XtH, Z)− ag(TX, Z)

= g(t∇X H + AnHX − TAHX, Z)− ag(TX, Z)

= −g(DX H, NZ) + g(nH, h(X, Z)) + g(H, h(X, TZ))− ag(TX, Z)

= −g
(

g(DX H, NX)NX − 1
sin4 θ

m + 1
m + 2

g(H, NX)2NTX, NZ
)

+
m + 1
m + 2

(
1

sin2 θ
g(NX, H)g(NZ, nH) +

(
1

sin2 θ
g(NZ, H)− m + 2

m + 1
η(Y)

)
g(NX, nH)

)

12
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+
m + 1
m + 2

(
1

sin2 θ
g(NX, H)g(NTZ, H) +

1
sin2 θ

g(NTZ, H)g(NX, H)

)
− ag(TX, Z), (59)

where we used (22). This last equation, using (19), direct gives the desired expression of ∇XtH +
c − 1

4
cos2 θξ.

The quid point of the above proof is to deduce, from Codazzi’s equation and the expression of the
second fundamental form, that g(DX H, NX) is independent of X and also that g(DX H, NY) = 0 for Y
orthogonal to X, TX. This is the same sketch than A. Ros and F. Urbano did in [2].

Now, we repeat the same steps in order to obtain ∇ξ(tH + aξ).

Lemma 5. Let M be *-slant submanifold of a Sasakian space form M̃(c); it holds:

∇ξ(tH + aξ) = −TtH. (60)

Proof. Using that, from Corollary 1, tH + aξ is a closed vector field,

g(∇ξ(tH + aξ), Y) = g(∇Y(tH + aξ), ξ),

so using (16),

g(∇ξ tH, X) = g(∇XtH, ξ) = −g(tH,∇Xξ) = g(tH, TX) = −g(TtH, X),

for any X tangent vector field, which finishes the proof.

Theorem 6. Let M be *-slant submanifold of a generalized Sasakian space form M̃( f1, f2, f3), endowed with
an α-Sasakian structure. Then, for every X tangent vector field it holds:

∇X(tH + aξ) = (−g(DX H, NX) + η(X)g(H, nNX)) (X − η(X)ξ)

+

(
1

sin2 θ

m + 1
m + 2

g(H, NX)2 − a
)

TX

+

( −3
sin2 θ

m + 1
m + 2

g(H, NX) + η(X)

)
tnH

+
1

sin2 θ

m + 1
m + 2

g(H, nNX)tH + g(H, nNX)ξ.

Proof. It is a direct consequence of Lemmas 4 and 5.

So, in general, for a *-slant submanifold of a generalized Sasakian space form, the closed form is
not conformal. However, for the corresponding vector field, the covariant derivative with respect to X
is in the direction of X, TX, tnH and ξ.

6. About Conformal Forms for β-Kenmotsu Space Forms

At Section 4 we obtained that, for a β-Kenmotsu generalized Sasakian space form M̃( f1, 0, f3),

the vector field tH + sin2 θ
m

m + 1
ξ = tH + bξ is always closed. So, the associated form plays the role

of the Maslov form for Lagrangian submanifolds of Kaehler manifolds. In this section we study if it is
conformal for a *-slant submanifold.

The study is similar to the one made at Section 5, so we omit the proofs.
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Lemma 6. Let M be *-slant submanifold of a β-Kenmotsu generalized Sasakian space form M̃( f1, 0, f3).
Then, for every X tangent vector field belonging to the contact distribution it holds:

∇X(tH + bξ) =

(
−g(DX H, NX) + β sin2 θ

m
m + 1

)
X

+
m + 1
m + 2

(
1

sin2 θ
g(H, NX)2 − ‖H‖2

)
TX

− 3
sin2 θ

m + 1
m + 2

g(H, NX)tnH

+
1

sin2 θ

m + 1
m + 2

g(H, nNX)tH + βg(NX, H)ξ.

(61)

Again, the quid point of the proof is to deduce, from Codazzi’s equation and the expression of
the second fundamental form, that g(DX H, NX) is independent of X and that g(DX H, NY) = 0 for X
orthogonal to Y.

Now, we repeat the same steps in order to obtain ∇ξ(tH + bξ).

Lemma 7. Let M be *-slant submanifold of a β-Kenmotsu space form M̃( f1, 0, f3); it holds:

∇ξ tH = −βtH. (62)

Finally, we get:

Theorem 7. Let M be *-slant submanifold of a β Kenmotsu space form M̃( f1, 0, f3). Then, for every X tangent
vector field it holds:

∇X(tH + bξ) =

=

(
−g(DX H, NX) + βη(X)g(H, nNX) + β sin2 θ

m
m + 1

)
(X − η(X)ξ)

+
m + 1
m + 2

(
1

sin2 θ
g(H, NX)2 − ‖H‖2

)
TX − 3

sin2 θ

m + 1
m + 2

g(H, NX)tnH

+
1

sin2 θ

m + 1
m + 2

g(H, nNX)tH − βη(X)tH + βg(NX, H)ξ.

Proof. It is a direct consequence from Lemmas 6 and 7.

Again, for a *-slant submanifold of a β-Kenmotsu generalized Sasakian space form, the closed
form is not conformal. However, for the corresponding vector field, the covariant derivative with
respect to X is in the direction of X, TX, tH, tnH and ξ.
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Abstract: In this paper, we give an estimate of the first eigenvalue of the Laplace operator on
minimally immersed Legendrian submanifold Nn in Sasakian space forms Ñ2n+1(ε). We prove that a
minimal Legendrian submanifolds in a Sasakian space form is isometric to a standard sphere Sn if the
Ricci curvature satisfies an extrinsic condition which includes a gradient of a function, the constant
holomorphic sectional curvature of the ambient space and a dimension of Nn. We also obtain a
Simons-type inequality for the same ambient space forms Ñ2n+1(ε).

Keywords: legendrian submanifolds; sasakian space forms; obata differential equation;
isometric immersion

MSC: 58C40; 53C42; 35P15

1. Introduction and Motivations

In 1959, Yano and Nagano [1] proved that if a complete Einstein space of dimension strictly greater
than 2 admits a 1-parameter group of non-homothetic conformal transformations, then it is isometric
to a sphere. Later, Obata [2] gave a simplified proof of the result of Yano and Nagano by analyzing a
differential equation, nowadays known as Obata equation. Recall that a complete manifold (Nn, g)
admits a non-constant function ψ satisfying the Obata differential equation

Hess(ψ) + ψg = 0, (1)

if and only if (Nn, g) is isometric to the standard sphere Sn. Such characterizations of complete
spaces are of great interest and they were investigated by many geometers (see [3–12]). For example,
Tashiro [13] has shown that the Euclidean spaces Rn are characterized by a differential equation
∇2ψ = cg, where c is a positive constant. Utilizing Obata Equation (1), Barros et al. [14] have shown
that a compact gradient almost Ricci soliton (Nn, g,∇ψ, λ) with the Codazzi Ricci tensor and constant
sectional curvature is isometric to the Euclidean sphere, and then ψ is a height function in this case.
For more terminologies related to the Obata equation, see [8]. In [15], Lichnerowicz proved that, if
the first non-zero eigenvalue μ1 of the Laplacian on a compact manifold (Mn, g) with Ric ≥ n − 1, is
not less than n, while μ1 = n, then (Mn, g) is isometric to the sphere Sn. This means that the Obata’s
rigidity theorem could be used to analyze the equality case of Lichnerowicz’s eigenvalue estimates

Mathematics 2020, 8, 150; doi:10.3390/math8020150 www.mdpi.com/journal/mathematics17
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in [15]. In the sequel, inspired by ideas developed in [16–18], we derive some rigidity theorems in the
present paper.

On the other hand, by considering Nn as a compact submanifold immersed in Euclidean space
Rn+p or the standard Euclidean sphere Sn+p, Jiancheng Zhang [17] derived the Simons-type [18]
inequalities of the first eigenvalue μ1 and the squared norm of the second fundamental form S without
need of minimallty. In addition, a lower bound of S can be provided if it is constant. Similar results
can be found in [14,16]. As a generalization in the case of an odd-dimensional sphere, a minimally
immersed Legendrian submanifold into a Sasakian space form of constant holomorphic sectional
curvature ε should be considered in order to obtain Simon’s-like inequality theorem.

2. Preliminaries and Notations

An odd-dimensional C∞-manifold (Ñ, g) is said to be an almost contact metric manifold if it is
equipped with almost contact structure (φ, η, ζ) satisfying following properties:

φ2 = −I + ζ ⊗ η, η(ζ) = 1, φ(ζ) = 0, η ◦ φ = 0, (2)

g(φV1, φV2) = g(V1, V2)− η(V1)η(V2), & η(V1) = g(V1, ζ), (3)

∀ V1, V2 ∈ Γ(TÑ), where φ, ζ and η are a tensor field of type (1, 1), a structure vector field and a dual
1-form, respectively. Moreover, an almost contact metric manifold Ñ2m+1 is referred to as a Sasakian
manifold if it fulfills the following relation

(∇̃V1 φ)V2 = g(V1, V2)ζ − η(V2)V1. (4)

It follows that

∇̃V1 ζ = −φV1, (5)

for any V1, V2 ∈ Γ(TÑ), where ∇̃ stands for the Riemannian connection in regard to g. A Sasakian
manifold Ñ2m+1 equipped with constant φ-sectional curvature ε is referred to as Sasakian space form
and denoted by Ñ2m+1(ε). Then, the following formula for the curvature tensor R̃ of Ñ2m+1(ε) can be
expressed as:

R̃(V1, V2, V3, V4) =
ε + 3

4

{
g(V2, V3)g(V1, V4)− g(V1, V3)g(V2, V4)

}

+
ε − 1

4

{
η(V1)η(V3)g(V2, V4) + η(V4)η(V2)g(V1, V3)

− η(V2)η(V3)g(V1, V4)− η(V1)g(V2, V3)η(V4)

+ g(φV2, V3)g(φV1, V4)− g(φV1, V3)g(φV2, V4)

+ 2g(V1, φV2)g(φV3, V4)

}
, (6)

∀ V1, V2, V3, V4 ∈ Γ(TÑ). Moreover, R2m+1 and S2m+1 with standard Sasakian structures can be given
as typical examples of Sasakian space forms. An n-dimensional Riemannian submanifold Nn of
Ñ2m+1(ε) is referred to as totally real if the standard almost contact structure φ of Ñ2m+1(ε) maps
any tangent space of Nn into its corresponding normal space (see [4,19–21]). Now, let Nn be an
isometric immersed submanifold of dimension n in Ñ2m+1(ε). Then Nn is referred to as a Legendrian
submanifold if ζ is a normal vector field on Nn, i.e., Nn is a C- totally real submanifold, and m =

n [22]. Legendrian submanifolds play a substantial role in contact geometry. From Riemannian
geometric perspective, studying Legendrian submanifolds of Sasakian manifolds was initiated in
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1970’s. Many geometers have drawn significant attention to minimal Legendrian submanifolds in
particular. In order to proceed let us recall the definition of the curvature tensor R̃ for Legendrian
submanifold in Ñ2n+1(ε) which is given by

R̃(V1, V2, V3, V4) =
( ε + 3

4

){
g(V2, V3)g(V1, V4)− g(V1, V3)g(V2, V4)

}
. (7)

Let {e1, · · · , en} be an adapted orthogonal frame to Nn. Then, the second fundamental from h
associated to Nn is defined as

h(ei, ej) =
n

∑
γ=1

σ
γ
ij eγ,

where σ
γ
ij = 〈Aγei, ej〉 and Aγ is the shape operator in the direction of eγ. Hence, the Gauss formula

for Legendrian submanifold Nn in Ñ2n+1(ε) in the local coordinates has the form

Ri
jkl =

(
δiiδjj − δijδji

)( ε + 3
4

)
+

n

∑
γ=1

(σγ
ikσ

γ
jl − σ

γ
il σ

γ
jk).

Therefore, we have

Ri
jij =

(
δiiδjj − δijδji

)( ε + 3
4

)
+

n

∑
γ=1

(σγ
ii σ

γ
jj − σ

γ
ij σ

γ
ji ). (8)

We should note that Ψ is a C-totally real minimal immersion. Then, (8) yields

Ric(ei, ej) = (n − 1)
( ε + 3

4

)
δij −

n

∑
γ=1

σ
γ
irσ

γ
jr. (9)

Now, we recall that Bochner formula [4] as follows: if ψ : Nn → R is a function defined on a
Riemannian manifold Nn, then we have

1
2

Δ|∇ψ|2 = |Hess(ψ)|2 + RicNn(∇ψ,∇ψ) + g
(∇ψ,∇(Δψ)

)
, (10)

where, Ric denotes the Ricci tensor of Nn and |A| stands for the norm of an operator A which is given
by |A|2 = tr(AA∗);A∗ is the transpose of A.

3. The Main Results

Now, we give a proof of the following essential proposition that we need later to prove our main
Theorems 1 and 2.

Proposition 1. Let Ψ : Nn → Ñ2n+1(ε) be a minimal immersion of a compact Legendrian submanifold into
the Sasakian space form Ñ2n+1(ε) and ψ be a first eigenfunction associated to the Laplacian of Nn. Then if
{e1, · · · , en} is an orthonormal tangent basis on Nn, we have{

(n − 1)
( ε + 3

4

)
− μ1

} ∫
N
|∇ψ|2dV +

∫
N
|Hess(ψ)|2dV =

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV, (11)
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and particularly, we get

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV =
∫

N

∣∣∣Hess(ψ) +
μ1

n
ψI
∣∣∣2 dV

+

{
(n − 1)

( ε + 3
4

)
− μ1

n

}∫
N
|∇ψ|2dV, (12)

where I denotes the identity operator on TN, μ1 is an eigenvalue of the eigenfunction ψ such that Δψ+ μ1ψ = 0,
and Hess(ψ) is the squared norm of the Hessian of ψ

Proof. Let I be the identity operator on TN. Then we have∣∣∣Hess(ψ)− tψI
∣∣∣2 = |Hess(ψ)|2 − 2tψg(I, Hess(ψ)) + |I|2t2ψ2. (13)

It should be noted that |I|2 = trace(I I∗) = n, and

g(Hess(ψ), I) = trace(Hess(ψ)I∗) = trace(Hess(ψ)) = Δψ.

Therefore, if Δψ + μ1ψ = 0, we derive it for any t ∈ R. Integrating Equation (13), and using the
above equation and Stokes theorem, we get

∫
N

∣∣∣Hess(ψ)− tψI
∣∣∣2dV =

∫
N
|Hess(ψ)|2dV +

(
2t +

n
μ1

t2
) ∫

N
|∇ψ|2dV. (14)

Setting t = − μ1
n in (14), we get

∫
N
|Hess(ψ)|2dV =

∫
N

∣∣∣Hess(ψ) +
μ1

n
ψI
∣∣∣2 dV +

μ1

n

∫
N
|∇ψ|2dV. (15)

On other hand, Equation (9) yields

Ric(ψiei, ψjej) = (n − 1)
( ε + 3

4

)
δijψiψj −

2n+1

∑
γ=1

n

∑
r=1

σ
γ
irσ

γ
jrψiψj.

Tracing the above equation, we obtain

Ric(∇ψ,∇ψ) =
( ε + 3

4

)
(n − 1)|∇ψ|2 −

n

∑
i=1

|h(∇ψ, ei)|2. (16)

As we consider that Δψ = −μ1ψ, combining the integration of Bochner formula with utilizing
Stokes theorem, one arrives∫

N
|Hess(ψ)|2dV +

∫
N

RicNn(∇ψ,∇ψ)dV = μ1

∫
N
|∇ψ|2dV. (17)

From (16) and (17), we conclude{( ε + 3
4

)
n − μ1

} ∫
N
|∇ψ|2dV =

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV

+
( ε + 3

4

) ∫
N
|∇ψ|2 −

∫
N
|Hess(ψ)|2dV.
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This is the first result (11) of proposition. On the other hand, using (15) in the last equality,
we obtain{( ε + 3

4

)
n − μ1

} ∫
N
|∇ψ|2dV =

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV +
( ε + 3

4

) ∫
N
|∇ψ|2dV

−
∫

N

∣∣∣Hess(ψ) +
μ1

n
ψI
∣∣∣2 dV − μ1

n

∫
N
|∇ψ|2dV.

The above formula can written as{( ε + 3
4

)
n −

( ε + 3
4

)
− μ1 +

μ1

n

} ∫
N
|∇ψ|2dV =

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV

−
∫

N

∣∣∣Hess(ψ) +
μ1

n
ψI
∣∣∣2 dV

After some computation, we get

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV =
∫

N

∣∣∣Hess(ψ) +
μ1

n
ψI
∣∣∣2 dV

+

{
(n − 1)

n

(( ε + 3
4

)
n − μ1

)} ∫
N
|∇ψ|2dV,

which completes the proof of the proposition.

The first result of our study can be given as follows.

Theorem 1. Suppose that Ψ : Nn → Ñ2n+1(ε) is a minimal immersion of a compact Legedrian submanifold
into Sasakian space form Ñ2n+1(ε) and ψ is a first eigenfunction of the Laplacian of Nn associated to the first
eigenvalue μ1. Then, we have

(i) The second fundamental form satisfies the following

∫
N
|Hess(ψ)|2dV ≤

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV +
( ε + 3

4

) ∫
N
|∇ψ|2dV, (18)

provided that the inequality n
(

ε+3
4

)
≥ μ1 holds, where Hess(ψ) denotes the squared norm of the Hessian

of ψ and {e1, · · · , en} is an orthonormal frame tangent to Nn. Moreover, the equality holds if and only if

μ1 =
( ε + 3

4

)
n. (19)

(ii) Furthermore, if the inequality

∫
N
|Hess(ψ)|2dV ≥

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV (20)

holds, then we have lower bound for eigenvalue μ1, that is,

μ1 ≥
( ε + 3

4

)
(n − 1).

(iii) In particular, if the following inequality

μ1

n

∫
N
|∇ψ|2dV ≥

( ε + 3
4

) ∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV (21)
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holds, then the eigenvalue μ1 satisfies the following inequality

μ1 ≥
( ε + 3

4

)
(n − 1).

Proof. We proceed as follows. Let

n
( ε + 3

4

)
≥ μ1.

We point out that (11) of Proposition 1 is non-negative. Therefore, we can write

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV +
( ε + 3

4

) ∫
N
|∇ψ|2dV ≥

∫
N
|Hess(ψ)|2dV.

Furthermore, the equality sign of the above inequality holds if and only if

μ1 = n
( ε + 3

4

)
.

Moreover, the first equation of Proposition 1 can take the form

∫
N
|Hess(ψ)|2dV =

∫
N

n

∑
i=1

|h(∇ψ, li)|2dV

+

{
μ1 −

( ε + 3
4

)
(n − 1)

}∫
N
|∇ψ|2dV. (22)

Now, if we consider the following inequality

∫
N
|Hess(ψ)|2dV ≥

∫
N

n

∑
i=1

|h(∇ψ, li)|2dV,

then Equation (22) yields that {
μ1 −

( ε + 3
4

)
(n − 1)

}
≥ 0.

Finally, we note that

∫
N
|∇ψ|2dV ≥ n

μ1

( ε + 3
4

) ∫
N

n

∑
i=1

|h(∇ψ, li)|2dV.

This implies that

∫
N
|Hess(ψ)|2dV ≥

∫
N

n

∑
i=1

|h(∇ψ, li)|2dV,

which completes the proof of the theorem.

Now, we recall the following lemma which would help us to prove the next Theorem.
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Lemma 1 ([16]). Let T : U → U be a trace-less non-null symmetric linear operator defined over a finite
dimensional vector space U. Let {e1, · · · , en} be an orthonormal frame diagonalizing T, i.e., Tei = μiei.
If dim KerT = q, then we get

μ2
j ≤

(n − q − 1)|T|2
(n − q)

, ∀j.

Now, we give the second result of the study as follows.

Theorem 2. Let Ψ : Nn → Ñ2n+1(ε) be a minimal immersion of a compact Legendrian submanifold into a
Sasakian space form Ñ2n+1(ε)), μ1 be the first eigenvalue of the Laplacian of Nn and dim Ker(h) = q. Then,
we have

∫
N

S|Hess(ψ)|2dV ≥
{
(n − q)(nβ − 1)(nβ − μ1)

(n − q − 1)nβ

} ∫
N
|∇ψ|2dV,

where β = ε+3
4 and S is the squared norm of the second fundamental form h. Moreover, if S is constant, we get

S ≥ (n − q)(nβ − 1)
nβ(n − q − 1))(nβ − μ1)

,

where Δψ + μ1ψ = 0.

Proof. Let {e1, · · · , en} be an orthogonal referential diagonalizing T, i.e., Tei = kiei and let θi be the
angle between ∇ψ and ei. Then, we have

|h(∇ψ, ei)|2 = g(T∇ψ, ei)
2 = g(∇ψ, Tei〉2 = k2

i cos2 θi|∇ψ|2.

By virtue of (11) in Proposition 1, we obtain

∫
N

(
n

∑
i=1

k2
i cos2 θi

)
|∇ψ|2dV =

∫
N
|Hess(ψ)|2dV

+

{( ε + 3
4

)
(n − 1)− μ1

}∫
N
|∇ψ|2dV.

Utilizing Lemma 1, the above equation gives(
n − q − 1

n − q

) ∫
N

S|∇ψ|2dV ≥
∫

N
|Hess(ψ)|2dV

+

{( ε + 3
4

)
(n − 1)− μ1

}∫
N
|∇ψ|2dV. (23)

Let us assume the following inequality

∫
N
|Hess(ψ)|2dV ≥

(
4μ1

ε + 3

) ∫
N
|∇ψ|2dV,

holds. Using this assumption with fixing β = ε+3
4 , then (23) becomes(

n − q − 1
n − q

) ∫
N

S|∇ψ|2dV ≥
(

n2β2 − nβμ1 − nβ2 + μ1

nβ

) ∫
N
|∇ψ|2dV.
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After some computations, we get

∫
N

S|Hess(ψ)|2dV ≥
{
(n − q)(nβ − 1)(nβ − μ1)

(n − q − 1)nβ

} ∫
N
|∇ψ|2dV.

This completes the proof.

The following theorem gives the characterization Theorem as follows.

Theorem 3. Let Ψ : Nn → Ñ2n+1(ε) be a minimal immersion of a compact Legendrian submanifold into
Sasakian space form Ñ2n+1(ε) and ψ be a first eigenfunction associated to the Laplacian of Nn. Then, we have

(i) If ∇ψ ∈ Ker(h), then Ψ(Nn) is isometric to the standard sphere Sn with μ1 > 0 and n = 1.
(ii) If following Ricci inequality holds

RicNn(∇ψ,∇ψ) ≥ (n − 1)
( ε + 3

4

)
|∇ψ|2,

then Ψ(Nn) is isometric to a sphere Sn with ε > −3 and n ≥ 2.

Proof. At first, we provide the state of Obata Theorem [2] as follows: a Riemannian manifold Mn is
isometric to a unit sphere Sn if and only if it is equipped with a differentiable function ψ such that
Hess(ψ) = −ψ, where Hess(ψ) is the Hessian form. Now, we assume that ∇ψ ∈ ker(h), i.e.,

h(∇ψ, ei) = 0, ∀ei.

Then by using Equation (12), we attain

∫
N

∣∣∣Hess(ψ) +
μ1

n
ψ
∣∣∣2 dV =

(n − 1)(μ1 − nβ)

n

∫
N
|∇ψ|2dV.

Using the fact that the right-hand side of the above equation is non-positive leads to

0 < μ1 = n
( ε + 3

4

)
.

Therefore, Hess(ψ) = −μ1ψ, as μ1 > 0 and n = 1. Now, utilizing Obata Theorem [2], we conclude
that Φ(Nn) is isometric to Sn with μ1 = n. Thus, we have gotten the first part of Theorem 3. To prove
the second statement of the theorem, let us consider that

RicNn(∇ψ,∇ψ) ≥
( ε + 3

4

)
(n − 1)|∇ψ|2.

According to Equation (16), we find that

∫
N
(n − 1)

( ε + 3
4

)
|∇ψ|2dV ≥

n

∑
i=1

|h(∇ψ, ei)|2dV +
( ε + 3

4

)
(n − 1)

∫
N
|∇ψ|2dV.

This leads to

n

∑
i=1

|h(∇ψ, ei)|2dV ≤ 0. (24)

Hence, we conclude that h(∇ψ, ei) = 0, i.e., ∇ψ ∈ ker(h). The proof is now complete.

Tashiro [13] has proved more general results than of Obata and Kanai. The following theorem is
of interest in characterizing the Euclidean space in terms of a certain differential equation. Therefore,
we are able to prove the following result.
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Theorem 4. Let Ψ : Nn → Ñ2n+1(ε) be a minimal immersion of a compact Legendrian submanifold into
Sasakian space form Ñ2n+1(ε). Then Nn is isometric to Eculidean space Rn if and only if the following equation
is satisfied

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV +
∫

N

μ2
1

n
dV =

{
μ1 −

( ε + 3
4

)
(n − 1)

}∫
N
|∇ψ|2dV, (25)

where ψ is a first eigenfunction associated to the Laplacian of Nn with first non-zero eigenvalue μ1.

Proof. Let us consider the equation∣∣Hess(ψ) + tI
∣∣2 = |Hess(ψ)|2 + t2|I|2 + 2tg(Hess(ψ), I),

which implies that ∣∣Hess(ψ) + tI
∣∣2 = |Hess(ψ)|2 + t2n − 2tΔψ.

Putting t = − μ1
n and integrating the above equation along volume element dV, we obtain

∫
N

∣∣∣Hess(ψ)− μ1

n
I
∣∣∣2dV =

∫
N

(
|Hess(ψ)|2 + μ2

1
n

)
dV.

Using (16) and (17), we get

∫
N

∣∣∣Hess(ψ)− μ1

n
I
∣∣∣2dV =

∫
N

n

∑
i=1

|h(∇ψ, ei)|2dV −
{

μ1 −
( ε + 3

4

)
(n − 1)

}∫
N
|∇ψ|2dV

+
∫

N

μ2
1

n
dV. (26)

If (25) is satisfied, then (26) implies that∣∣∣Hess(ψ)− μ1

n
I
∣∣∣2 = 0.

Hence, we get

Hess(ψ)(X, X) =
μ1

n
g(X, X), (27)

for any X ∈ Γ(N). Therefore, by applying Tashiro Theorem [13], we conclude that Nn is isometric
to the Euclidean space Rn. The converse part can be proved easily from (26) if Nn is isometric to
Euclidean space Rn.

We provide an interesting application of Theorem 3 in the following corollary by choosing ε = 1
(see [19]).

Corollary 1. Let Ψ : Nn → S2n+1 be a minimal immersion of a compact Legendrian submanifold into the
sphere S2n+1 and ψ be a first eigenfunction associated to the Laplacian of Nn. Then, we get the following

(i) If ∇ψ ∈ Ker(h), then Ψ(Nn) is isometric to standard sphere Sn.
(ii) If RicNn(∇ψ,∇ψ) ≥ (n − 1)|∇ψ|2, then Ψ(Nn) is isometric to the sphere Sn.
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Abstract: In the present paper, we prove that if Laplacian for the warping function of complete warped
product submanifold Mm = Bp ×h F

q in a unit sphere Sm+k satisfies some extrinsic inequalities
depending on the dimensions of the base Bp and fiber Fq such that the base Bp is minimal, then Mm

must be diffeomorphic to a unit sphere Sm. Moreover, we give some geometrical classification in
terms of Euler–Lagrange equation and Hamiltonian of the warped function. We also discuss some
related results.

Keywords: warped product; sphere theorem; Laplacian; inequalities; diffeomorphic

1. Introduction and Main Results

We will use the following acronyms throughout the paper: ‘WP’ for Warped product, ‘WF’ for
warping function, ‘RM’ for Riemannian manifold, and ‘SFF’ for second fundamental form. The idea of
the warped product was initiated by Bishop and O’Neil [1] when they gave an example of complete
Riemannian manifold with negative curvature. If (B, gB) and (F, gF) are two Riemannian manifolds
(RMs), and h is a positive differentiable function defined on the base manifold B, then we define the
metric g = π∗gB + h2σ∗gF on the product manifold B× F, where π and σ are the projection maps on
B and F, respectively. Under such stipulations, the product manifold is referred to as warped product
(WP) of B and F, and written as M = B×h F. Here, h is referred to as warping function (WF).

We observe that M is a Riemannian product, or trivial warped product, when h is constant.
Notice that there has been a great interest in the study of warped products over the recent years.
For example, S. Nolker [2] derived the decompositions of the standard spaces of an isometric immersion
of warped products and D.K. Kim and Y.H. Kim in [3] proved that if the scalar is non-constant then
there is no non-trivial compact Einstein warped product. Recently, an interesting fundamental result
proved by Djaczer in [4] showed that an isometric immersion of warped products into space forms
must be product of isometric immersions under extrinsic conditions. Moreover, by using DDVV
conjecture, Roth [5] obtained an inequality for submanifold of WP I ×h M

m(c) where I is an interval
and Mm(c) is a real space form and also provided some rigidity results based on submanifolds of
R×eλt Hm(c), where λ is a real constant. Salavessa in [6] obtained that the Heinz mean curvature
m‖H‖2 ≤ AΨ(∂D)

VΨ(D)
holds in WP spaces of type M ×eΨ N in case that a graph of submanifold (x, h(x)) of

Riemannian WP M ×eΨ N is immersed with parallel mean curvature, where AΨ(∂D) and VΨ(D) are
Ψ−weighted area and volume, respectively.

Mathematics 2020, 8, 759; doi:10.3390/math8050759 www.mdpi.com/journal/mathematics27
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On the other hand, the investigation of the relations between curvature invariants and topology is
an important problem in Riemannian geometry as well as in global differential geometry. For instance,
a beautiful and classical theorem established by Myers [7] states that “if M is a complete Riemannian
manifold with Ricci curvature Ric(M) > 1, then the diameter d(M) of M is not greater than π,
and, therefore, M is compact and its fundamental group π1((M) is finite”. Due to the distinctive work
of Rauch [8], Berger [9] proved the rigidity theorem for a simply connected and complete manifold
M of even dimension and the sectional curvature satisfying 1

4 ≤ KM ≤ 1. Furthermore, Grove and
Shiohama in [10] has generalized the sphere theorem. There are lots of interesting and well-known
results regarding the topology of complete manifolds of positive Ricci curvature. The curvature and
topology of manifolds play a substantial role in global differential geometry. Later on, a splitting
theorem, resulting from the work of Cheeger and Gromoll in [11], states that “if M is a complete
non-compact manifold of non-negative Ricci curvature and if M contains a straight line, then M is
isometric to the Riemannian product M×R”. In the sequel, Schoen and Yau [12] proved that a complete
non-compact M of dimension 3 and positive Ricci curvature is diffeomorphic to R3. Using the first
eigenvalue of the Laplacian operator, the result stating that “if M is complete such that if Ric(M) > 1
and if d(M) = π, then M is isometric to the standard unit sphere” has been proven by Cheng in [13].

The non-existence of a compact stable minimal submanifold or stable currents is sharply associated
with the topology and geometric function theory on Riemannian structure of the whole manifold.
Recently, it has been shown in [14] that if the sectional curvature of a compact oriented minimal
submanifold M of dimension m in the unit sphere Sm+k with codimension p satisfies some pinching
condition KM ≥ p.sign(p−1)

2(p+1) , then M is either a totally geodesic sphere, one of the Clifford minimal

hypersurface Sk( k
m )× Sm−k(m−k

m ) in Sm+1 for k = 1, . . . , m − 1, or the Veronese surface in S4. Later on,
some new results for the non-existence of the stable currents, vanishing homology groups, topological
and differential theorems are well known (see [15–23] and references therein). Therefore, it was
an objective for mathematicians to understand geometric function theory and topological invariant of
Riemannian submanifolds as well as in Riemannian space forms. Surely, this is a fruitful problem in
Riemannian geometry. Using the result of Lawson and Simon [24] and following Leung [20] homotopic
sphere theorem for compact oriented submanifolds in a sphere, also motivated by the idea of complete
Riemannian manifold and without assumption that Mm is simply connected, Xu and Zao (Theorem 1.2
in [21]) concluded the following result:

Theorem 1. [21] Let Mm be an oriented complete submanifold of dimension m in the unit sphere Sm+k

satisfying the following inequality

‖B(X,X)‖2 <
1
3

, ∀X ∈ Γ(TM), (1)

where X is a unit vector at any point of Mm and B is SFF, the second fundamental form. Then Mm is
diffeomorphic to the sphere Sm.

This is one of the motivations to study—the differential and topological manifolds, and their
direct relations with warped product submanifolds theory. In this way, a natural question arises: Is it
possible to extend Theorem 1 to the warped product submanifolds to the cases with base manifold is
minimal in a sphere? What is the best pinching constant for the differentiable rigidity sphere theorem
of complete minimal warped product submanifold in a unite sphere under pinching conditions using
the Laplace operator for the warping function?

The main goal of this note is to extend the rigidity Theorem 1 to a complete warped product
submanifolds and find the solution for our proposed problem where motivation comes from the Nash
embedding theorem [25] which states that “every Riemannian manifold has an isometric immersion
into Euclidean space of sufficient high codimension”. To prove our findings we shall use the technique
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of Chen [26] for an isometric minimal immersion from warped products to the ambient manifold,
where he proved the following relation as:

p

∑
α=1

q

∑
β=1

K(eα ∧ eβ) =
qΔh

h
. (2)

Therefore, using Theorem 1 and formula (2), we announce our main finding of this study
as follows:

Theorem 2. Let � : Mp+q = Bp ×h F
q −→ Sp+q+k be an isometric immersion from a WP submanifold Mp+q

of dimension (p + q) into a unit sphere Sp+q+k of dimension (p + q + k) such that the base manifold Bp is
minimal. Assume that Mp+q is an oriented complete WP submanifold satisfying the following inequality

Δh
h

>

(
2(3pq − 1)

3q

)
, (3)

where Δh is the Laplace operator for the warping function h defined on base manifold Bp. Then Mp+q is
diffeomorphic to a sphere Sp+q.

In particular, if we follows the statement of Theorem D in [21], then we give another topological
sphere theorem which is a consequence of Theorem 2, i.e.,

Theorem 3. Let � : Mp+q = Bp ×h F
q −→ Sp+q+k be an isometric immersion from an (p + q)-dimensional

oriented complete WP submanifold Mp+q into a (p + q + k)-dimensional unit sphere Sp+q+k such that the base
manifold Bp is minimal. If the following inequality holds

Δh
h

>

(
2(3pq − 1)

3q

)
,

where Δ f is the Laplace of f defined on base manifold Bp, then Mp+q is homeomorphic to the sphere Sp+q.

Hence, we noticed that Theorems 2 and 3 are differentiable sphere theorems for complete warped
product submanifolds without assumption that Mn is simply connected.

2. Preliminaries and Notations

Let Sm+k denote the sphere with constant sectional curvature c = 1 > 0 and dimension (m + k).
We use the fact that Sm+k admits a canonical isometric embedding in Rm+k+1 as

Sm+k = {X ∈ Rm+k+1 : ||X||2 = 1}.

Thus, the Riemannian curvature tensor R̃ of a sphere Sm+k fulfils

R̃(Z1, Z2, Z3, Z4) = g(Z1, Z4)g(Z2, Z3)− g(Z2, Z4)g(Z1, Z4), (4)

∀ Z1, Z2, Z3, Z4 ∈ Γ(TM̃), where TM̃ is a tangent bundle of Sm+k. Hence, Sm+k is a manifold with
constant sectional curvature 1 and codimension k.

Let ∇⊥ and ∇ be the induced connections on normal bundle T⊥M and the tangent bundle TM of
M, respectively, where M is a m-dimensional RM in a Riemannian M̃n of dimension n with induced
metric g. The Weingarten and Gauss formulae are defined as

∇̃Z1 ξ = −Aξ Z1 +∇⊥
Z1

ξ,

29



Mathematics 2020, 8, 759

and
∇̃Z1 Z2 = ∇Z1 Z2 + B(Z1, Z2),

∀ Z1, Z2 ∈ Γ(TM) and ξ ∈ Γ(T⊥M), where Aξ and B are, respectively, shape operator (corresponding
to ξ) and the second fundamental form as Mm immersed into M̃, and they verify the relation

g(B(Z1, Z2), ξ) = g(Aξ Z1, Z2).

If the curvature tensors of M̃n and Mm are denoted by R̃ and R, then the Gauss equation is
given by

R(Z1, Z2, Z3, Z4) = R̃(Z1, Z2, Z3, Z4) + g
(
B(Z1, Z4), B(Z2, Z3)

)− g
(
B(Z1, Z3), B(Z2, Z4)

)
, (5)

∀ Z1, Z2, Z3, Z4 ∈ Γ(TM̃).
Let {e1, · · · em} be an orthonormal basis of TxM and es = (em+1, · · · em+k) belongs to

an orthonormal basis of T⊥M, then the squared norm of B is

Bs
αβ = g(B(eα, eβ), es), (6)

and

||B(eα, eβ)||2 =
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(
Bs

αβ

)2. (7)

The squared norm of the mean curvature vector H of a Riemannian submanifold Mm is defined by

||H||2 =
1

m2

m+k

∑
s=m+1

( m

∑
α=1

Bs
αα

)2

. (8)

A submanifold Mm of a RM, M̃m+k, is referred to as totally geodesic and totally umbilical if

B(Z1, Z2) = 0 and B(Z1, Z2) = g(Z1, Z2)H,

∀ Z1, Z2 ∈ Γ(TM), respectively, where H is the mean curvature vector of Mm. Moreover, if H = 0,
then Mm is minimal in M̃m+k.

Now, we give a definition of the scalar curvature of Riemannian submanifold Mm, which is
denoted by τ(TxM

m), at some x in Mm, as

τ(Tx Mm) = ∑
1≤α<β≤m

Kαβ, (9)

where Kαβ = K
(
eα ∧ eβ

)
. The first equality (9) is equal to the following equation:

2τ(Tx Mm) = ∑
1≤α<β≤m

Kαβ, 1 ≤ α, β ≤ m.

The above equation will be considerably used in subsequent proofs throughout the paper.
In similar way, the scalar curvature τ(Lx) of an L−plane is defined as

τ(Lx) = ∑
1≤α<β≤m

Kαβ.

If the plane section spanned by eα and eβ at x, then the sectional curvatures of the submanifold
Mm and Riemannian manifold M̃m+k are denoted by Kαβ and K̃αβ, respectively. Thus, K̃αβ and Kαβ are
considered to be the extrinsic and intrinsic sectional curvature of the span {eα, eβ} at x. Using Gauss
Equation (5), and using (9), we conclude that
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∑
1≤α<β≤m+k

Kαβ = ∑
1≤α<β≤m+k

K̃αβ +
n+k

∑
r=m+1

(
Br

ααBr
ββ − (Br

αβ)
2
)

. (10)

Now, we provide the proofs of the main findings of the study.

3. Proof of Main Findings

3.1. Proof of Theorem 2

Assume that Mm = Bp ×h F
q → Sm+k is a warped product in which the base Bp is minimal.

Let {e1 . . . ep, ep+1 . . . em} be a local orthonormal frame fields of Mm such that {e1 . . . ep} are tangents
to Bp and {ep+1 . . . em} are tangents to Fq. First, we define the two unit vectors X and Y to estimate
the upper bound of the terms ||B(eα, eβ)||2. We can define these two unit vectors as follows:

X =
1√
2

(
eα + eβ

)
, and Y =

1√
2

(
eα − eβ

)
, 1 ≤ α ≤ p & 1 ≤ β ≤ q.

Eliminating eα and eβ from the above equation, one obtains:

eα =
1√
2

(
X+Y

)
, and eβ =

1√
2

(
X−Y

)
, 1 ≤ α ≤ p & 1 ≤ β ≤ q.

Then we derive

||B(eα, eβ)||2 =‖B
(X+Y√

2
,
X−Y√

2

)‖2

=
1
4
‖B(X,X)− B(Y,Y)‖2

=
1
4

{
‖B(X,X)‖2 + ‖B(Y,Y)‖2 − 2g

(
B(X,X), B(Y,Y)

)}
.

Using the Cauchy–Schwartz inequality for orthonormal vector fields, we conclude that

‖B(eα, eβ)‖2 ≤ 1
4

{
‖B(X,X)‖2 + ‖B(Y,Y)‖2 + 2||B(X,X)‖‖B(Y,Y)‖

}
.

In virtue of (1), the above equation implies that

||B(eα, eβ)||2 <
1
4

(
1
3
+

2
3
+

1
3

)
=

1
3

. (11)

Next, from curvature tensor Equation (4) of the sphere Sm+k and the Gauss Equation (5),
we find that

m2||H||2 + m(m − 1) = ||B||2 + ∑
1≤A<B≤m

K(eA ∧ eB).

The above equation can be written for warped product manifold Mn and from the viewpoint
of (8) and (6) as:
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m+k

∑
s=m+1

(
m

∑
A=1

Bs
AA

)2

+ m(m − 1) =
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
p

∑
α=1

q

∑
β=1

K(eα ∧ eβ)

+ ∑
1≤i<j≤p

K(ei ∧ ej) + ∑
1≤a<b≤q

K(ea ∧ eb).

Using (10) and (2) in the above equation, we derive

m+k

∑
s=m+1

(
m

∑
A=1

Bs
AA

)2

+ m(m − 1) =
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
qΔ f

f

+ ∑
1≤i<j≤p

K̃(ei ∧ ej) + ∑
1≤a<b≤q

K̃(ea ∧ eb)

+
m+k

∑
s=m+1

∑
1≤i<j≤p

(
Bs

iiB
s
jj − (Bs

ij)
2
)

+
m+k

∑
s=m+1

∑
1≤a<b≤q

(
Bs

aaBs
bb − (Bs

ab)
2
)

.

Thus, from (4) and some rearrangements in the last equation, one obtains:

m+k

∑
s=m+1

(
m

∑
A=1

Bs
AA

)2

=
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2 − 2pq

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
qΔh

h
−

m+k

∑
s=m+1

∑
1≤i<j≤p

(Bs
ij)

2

+
m+k

∑
s=m+1

∑
1≤i<j≤p

Bs
iiB

s
jj +

m+k

∑
s=m+1

(
(Bs

11)
2 + · · ·+ (Bs

pp)
2
)

−
m+k

∑
s=m+1

(
(Bs

11)
2 + · · ·+ (Bs

pp)
2
)
+

m+k

∑
s=m+1

∑
1≤a<b≤q

Bs
aahs

bb

−
m+k

∑
s=m+1

∑
1≤a<b≤q

(Bs
ab)

2 +
m+k

∑
s=m+1

(
(Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2
)

−
m+k

∑
s=m+1

(
(Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2
)

.
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This can take the form

m+k

∑
s=m+1

(
m

∑
A=1

Bs
AA

)2

=
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2 − 2pq

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
qΔh

h

+
m+k

∑
s=m+1

{
∑

1≤i<j≤p
Bs

iiB
s
jj + (Bs

11)
2 + · · ·+ (Bs

pp)
2

}

−
m+k

∑
s=m+1

{
∑

1≤i<j≤p
(Bs

ij)
2 + (Bs

11)
2 + · · ·+ (Bs

pp)
2

}

+
m+k

∑
s=m+1

{
∑

1≤a<b≤q
Bs

aaBs
bb + (Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2

}

−
m+k

∑
s=m+1

{
∑

1≤a<b≤q
(Bs

ab)
2 + (Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2

}

Using the binomial theorem and the fact that the base manifold Bp is minimal, then it not hard to
check that

m+k

∑
s=m+1

(
m

∑
A=p+1

Bs
AA

)2

=
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2 − 2pq

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
qΔh

h

+
m+k

∑
s=m+1

(
(Bs

11)
2 + · · ·+ (Bs

pp)
2
)
−

m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2

+
m+k

∑
s=m+1

(
(Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2
)
−

m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2. (12)

From the hypothesis of the theorem, we know that Bp is minimal and using this, we get that the
fifth term of the right hand side in Equation (12) is equal to zero and seventh the term is equal to the
first term of left hand side. Thus, we have:

2pq = 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
qΔh

h
.

From (7), it implies that

||B(eα, eβ)||2 =
q
2

(
− Δh

h

)
+ pq. (13)

From assumption(3), we find that

−Δh
h

<
(2 − 6pq

3q

)
(14)
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Combining (13) with (14), one obtains:

||B(eα, eβ)||2 <
q
2

(2 − 6pq
3q

)
+ pq =

1
3
− 3pq

3
+ pq

<
1
3

. (15)

Therefore, the proof follows from Theorem 1 and pinching condition (1) together with (15).

Remark 1. The proofs of Theorems 2 and 3 follow easily using the same technique.

3.2. Some Applications

Assume that {e1, . . . , em} is a local orthonormal basis of vector field Mm. Then the gradient of
function ϕ and its squared norm is defined as:

∇ϕ =
m

∑
i=1

ei(ϕ)ei,

and

‖∇ϕ‖2 =
m

∑
i=1

(
ei(ϕ)

)2. (16)

Let ϕ be a differentiable function defined on Mm such that ϕ ∈ F (Mm), then the Lagrangian of
the function ϕ is given in (p. 44, [27]).

Lϕ =
1
2
||∇ϕ||2. (17)

The Euler–Lagrange formula of the Lagrangian (17) satisfies

Δϕ = 0. (18)

At point x ∈ Mn in a local orthonormal basis, the Hamiltonian would take the form (see [27] for
more details):

H(p, x) =
1
2

m

∑
i=1

p(ei)
2.

Put p = dϕ, where d is a differential operator, and using (16), we get:

H(dϕ, x) =
1
2

m

∑
i=1

dϕ(ei)
2 =

1
2

m

∑
i=1

ei(ϕ)2 =
1
2
||∇ϕ||2. (19)

Assuming that Mm = Bp × f F
q is a warped product, then ∀ Z1 ∈ Γ(TB) and Z2 ∈ Γ(TF),

we have

∇Z2 Z1 = ∇Z1 Z2 = (Z1 ln h)Z2.

Using the unit vector fields X and Z which are tangents to Γ(TB) and Γ(TF), resp.;
then one obtains:

K(Z1 ∧ Z2) =g(R(Z1, Z2)Z1, Z2) = (∇Z1 Z1) ln hg(Z2, Z2)− g
(∇Z1((Z1 ln h)Z2), Z2

)
=(∇Z1 Z1) ln hg(Z2, Z2)− g

(∇Z1(Z1 ln h)Z2 + (Z1 ln h)∇Z1 Z2, Z2
)

=(∇Z1 Z1) ln hg(Z2, Z2)− (Z1 ln h)2 − Z1(Z1 ln h).
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If {e1, · · · em} is an orthonormal basis for Mm, then we can take a sum over the vector fields
as follows

p

∑
α=1

q

∑
β=1

K(eα ∧ eβ) =
p

∑
α=1

q

∑
β=1

((∇eα eα

)
ln h − eα

(
eβ ln h

)− (
eα ln f

)2
)

= q
(

Δ(ln h)− ||∇(ln h)||2
)

. (20)

Thus, from (20) and (2), it follows that

Δh
h

= Δ(ln h)− ||∇(ln h)||2. (21)

Here, motivated by the historical development on the study of Lagrangian and Hamiltonian,
we will give the following theorems as

Theorem 4. Let � : Mm = Bp ×h F
q −→ Sm+k be an isometric immersion from an oriented complete WP

submanifold Mm of dimension m into a sphere Sm+k of dimension (m + k) such that the base manifold Bp is
minimal and the function h satisfies the Euler–Lagrange equation with following inequality

Lh <

(
1 − 3pq

3q

)
2h2, (22)

where Lh is the Lagrangian of h. Then Mm is diffeomorphic to Sm.

Proof. Using the fact that the warping function ln h satisfies the Euler–Lagrange equation, from the
hypothesis of the theorem, and using (18), we have

Δ ln h = 0. (23)

From (21) and (15), we derive

Δ ln h − ‖∇h‖2

h2 > 2p − 2
3q

. (24)

It follows from (23) and (24) that

‖∇h‖2 < 2ph2 − 2h2

3q
.

Using (17), we get desired result (22) which ends the proof.

Theorem 5. Suppose that � : Mm = Bp ×h F
q −→ Sm+k is an isometric immersion from an oriented complete

WP submanifold Mm of dimension m into a sphere Sm+k of dimension (m + k) such that the base manifold Bp

is minimal and satisfies the relation

H(dh, x) <
{

Δ(lnh)
2

+

(
1
3q

− p
)}

h2. (25)

Then Mm is diffeomorphic to Sm.

Proof. Using Equation (19) in (24), we get required pinching condition (25).
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4. Conclusion Remark

We provide the characterization of a complete warped manifold to be diffeomorphically a unit
sphere and some geometric classifications using Euler Lagrange formula along with Hamiltonian of
the warping function. The topology of warped products and main extrinsic and intrinsic curvature
invariants are emphatically related. Hence, our results may be seen as topological and differential
sphere theorems from the viewpoint of warped product submanifolds theory. This paper shows
the relation between the notion of warped product manifold and homotopy-homology theory.
Therefore, we hope that this paper will be of great interest with respect to the topology of Riemannian
geometry [28–35] which may find possible applications in physics.
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1. Introduction

The classical Wintgen inequality is a sharp geometric inequality established in [1], according to which
the Gaussian curvature K of any surface N 2 in the Euclidean space E4, the normal curvature K⊥, and also
the squared mean curvature ‖H‖2 of N 2, satisfy

‖H‖2 ≥ K+ |K⊥|

and the equality is attained only in the case when the ellipse of curvature of N 2 in E4 is a circle. Later, this
inequality was extended independently by Rouxel [2] and Gaudalupe and Rodriguez [3] for surfaces of
arbitrary codimension m in real space forms Nm+2

(c) with constant sectional curvature c as

‖H‖2 + c ≥ K+ |K⊥|.

The generalized Wintgen inequality, also known as the DDVV-inequality or the DDVV-conjecture, is
a natural extension of the above inequalities that was conjectured in 1999 by De Smet, Dillen, Verstraelen
and Vrancken [4] and settled in the general case independently by Ge and Tang [5] and Lu [6]. The

Mathematics 2019, 7, 1151; doi:10.3390/math7121151 www.mdpi.com/journal/mathematics
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DDVV-conjecture generalizes the classical Wintgen inequality to the case of an isometric immersion
f : Mn → Nn+p(c) from an n-dimensional Riemannian submanifold Mn into a real space form Nn+p(c) of
dimension (n + p) and of constant sectional curvature c, stating that such an isometric immersion satisfies

ρ + ρ⊥ ≤ ‖H‖2 + c,

where ρ is the normalized scalar curvature, while ρ⊥ denotes the normalized normal scalar curvature.
Notice that there are many examples of submanifolds satisfying the equality case of the above inequality
and these submanifolds are known as Wintgen ideal submanifolds [7].

Recently, the generalized Wintgen inequality was extended for several kinds of submanifolds in many
ambient spaces, e.g., complex space forms [8], Sasakian space forms [9], quaternionic space forms [10],
warped products [11], and Kenmotsu statistical manifolds [12]. In the first part of the present paper,
we obtain generalized Wintgen-type inequalities for different types of submanifolds in generalized complex
space forms and also in generalized Sasakian space forms, generalizing the main results in [8,9], and also
discuss some applications. The last part of the paper is devoted to the investigation of the Hessian equation
on both generalized complex space forms and generalized Sasakian space-forms. In particular, some
obstructions to the existence of these spaces are established. Recall that the notion of generalized complex
space form was introduced in differential geometry by Tricerri and Vanhecke [13], the authors proving
that, if n ≥ 3, a 2n-dimensional generalized complex space form is either a real space form or a complex
space form, a result partially extendable to four-dimensional manifolds. However, the existence of proper
generalized complex space form in dimension 4 was obtained by Olszak [14], using some conformal
deformations of four-dimensional flat Bochner–Kähler manifolds of non-constant scalar curvature. It is
important to note that the generalized complex space forms are a particular kind of almost Hermitian
manifolds with constant holomorphic sectional curvature and constant type in the sense of Gray [15].

On the other hand, Alegre, Blair and Carriazo [16] generalized the notions of Sasakian space form,
Kenmotsu space form and cosymplectic space form, by introducing the concept of generalized Sasakian
space form. Notice that several examples of non-trivial generalized Sasakian space-forms are given
in [16] using different geometric constructions, such as Riemannian submersions, warped products, and
D-conformal deformations. Afterwards, many interesting results have been proved in these ambient spaces
(see, e.g., [17–27]). We only recall that, very recently, Bejan and Güler [28] obtained an unexpected link
between the class of generalized Sasakian space-forms and the class of Kähler manifolds of quasi-constant
holomorphic sectional curvature, providing conditions under which each of these structures induces the
other one.

2. Preliminaries

An almost Hermitian manifold consists in a smooth manifold N endowed with an almost complex
structure J and a Riemannian metric g that is compatible with the structure J. Such a manifold is called
Kähler if ∇J = 0, where ∇ is the Levi–Civita connection of the metric g.

On the other hand, an almost Hermitian manifold N is called a generalized complex space form [13],
denoted by N ( f1, f2), if the Riemannian curvature tensor R satisfies

R(X, Y)Z = f1{g(Y, Z)X − g(X, Z)Y}+ f2{g(X, JZ)JY

−g(Y, JZ)JX + 2g(X, JY)JZ} (1)

for all vector fields X, Y and Z on N , where f1 and f2 are smooth functions on N . This name is motivated
by the fact that, in the case of a complex space form, viz. a Kähler manifold with constant holomorphic
sectional curvature 4c, the curvature tensor field of the manifold satisfies Equation (1) with f1 = f2 = c.
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Let N be a submanifold of real dimension n in a generalized complex space form N ( f1, f2) of complex
dimension m. If ∇ and ∇ are the Levi–Civita connections on N and N ( f1, f2), respectively, then the
fundamental formulas of Gauss and Weingarten are [29]

∇XY = ∇XY + h(X, Y),

∇Xξ = −Sξ X +∇⊥
XY,

where X, Y are vector fields tangent to N , ξ is a vector field normal to N , and ∇⊥ represents the normal
connection. Recall that, in the above basic formulas, h denotes the second fundamental form and S is the
shape operator, they being connected by

g(h(X, Y), ξ) = g(Sξ X, Y).

On the other hand, the Gauss’ equation is expressed by [30]

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))

−g(h(X, W), h(Y, Z)) (2)

for all vector fields X, Y, Z, W tangent to N , where R denotes the curvature tensor of N ( f1, f2), while
R represents the curvature tensors of N . Let us point out now that the Ricci equation in our setting is
expressed as

R⊥(X, Y, ξ, η) = f2[g(X, Jξ)g(JY, η)− g(JX, η)g(Y, Jξ)]

−g([Sξ , Sη ]X, Y), (3)

for all vector fields X, Y tangent to N and ξ, η normal to N .
If N is a submanifold of real dimension n in a generalized complex space form N ( f1, f2) of complex

dimension m, then, for any X ∈ TN , we have the decomposition JX = PX + QX, where P and Q denote
the tangential component and the normal component of JX, respectively. We recall that, in the case
P = 0, the submanifold N is called anti-invariant, while, in the case f Q = 0, the submanifold N is called
invariant.

Now, let {e1, . . . , en} be a tangent orthonormal frame on N and let {ξ1, . . . , ξ2m−n} be a normal
orthonormal frame on N . Then, the squared norm of P at p ∈ N is defined as

‖P‖2 =
n

∑
i,j=1

g2(Pei, ej), (4)

while the mean curvature vector field is given by

H =
1
n

n

∑
i=1

h(ei, ei). (5)

We also set

hr
ij = g(h(ei, ej), ξr), i, j = 1, . . . , n, r = 1, . . . , 2m − n. (6)
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and

‖h‖2 =
n

∑
i,j=1

g(h(ei, ej), h(ei, ej)). (7)

3. Generalized Wintgen Inequality for Lagrangian Submanifolds in Generalized Complex
Space Form

Let N be a submanifold of real dimension n in a generalized complex space form N ( f1, f2) of complex
dimension m. In the following, let {e1, . . . , en} and {ξ1, . . . , ξ2m−n} be tangent orthonormal frame and
normal orthonormal frame on N , respectively. If we denote by K the sectional curvature function and by τ

the scalar curvature, then the normalized scalar curvature ρ of N can be expressed as [8]

ρ =
2τ

n(n − 1)
=

2
n(n − 1) ∑

1≤i<j≤n
K(ei ∧ ej). (8)

On the other hand, the normalized normal scalar curvature of N is given by [8]

ρ⊥ =
2τ⊥

n(n − 1)
=

2
n(n − 1)

√
∑

1≤i<j≤n
∑

1≤r<s≤2m−n
(R⊥(ei, ej, ξr, ξs))2, (9)

where R⊥ denotes the normal curvature tensor on N .
The scalar normal curvature of N can be defined following [31] as

KN =
1
4

2m−n

∑
r,s=1

(Trace[Sr, Ss])
2. (10)

Now, the normalized scalar normal curvature can be defined with the help of KN by [8]

ρN =
2

n(n − 1)

√
KN .

Obviously

KN =
1
2 ∑

1≤r<s≤2m−n
(Trace[Sr, Ss])

2

= ∑
1≤r<s≤2m−n

∑
1≤i<j≤n

(g([Sr, Ss]ei, ej))
2. (11)

It is easy to verify now that KN can be expressed by

KN = ∑
1≤r<s≤2m−n

∑
1≤i<j≤n

( n

∑
k=1

hr
jkhs

ik − hs
jkhr

ik
)2. (12)

Among the classes of submanifolds in complex geometry, we can distinguish two fundamental
families depending on the behavior of J: holomorphic and totally real submanifolds. A submanifold N of
a generalized complex space form N ( f1, f2) is said to be a holomorphic submanifold if each tangent space
of N is carried into itself by J, i.e., J(TpN ) ⊂ TpN , for all p ∈ N . Similarly, the submanifold N is called a
totally real submanifold if J maps each tangent space of N into the normal space, i.e., J(TpN ) ⊂ T⊥

p N ,
for all p ∈ N . In particular, if n = m, then N is said to be a Lagrangian submanifold.
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Next, we prove the following lemma, which is required in the proof of the main result of this section.

Lemma 1. Let N be a totally real submanifold of dimension n in a generalized complex space form N ( f1, f2) of
complex dimension m. Then, we have

ρN ≤ ‖H‖2 − ρ + f1, (13)

and the equality holds at a point p ∈ N if and only if the shape operator S of N in N ( f1, f2) with respect to some
suitable orthonormal bases {e1, . . . , en} of TpN and {ξ1, . . . , ξ2m−n} of T⊥

p N takes the following forms

Sξ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 ν 0 . . . 0
ν γ1 0 . . . 0
0 0 γ1 . . . 0
...

...
... . . . ...

0 0 0 . . . γ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Sξ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ2 + ν 0 0 . . . 0
0 γ2 − ν 0 . . . 0
0 0 γ2 . . . 0
...

...
... . . . ...

0 0 0 . . . γ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Sξ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ3 0 0 . . . 0
0 γ3 0 . . . 0
0 0 γ3 . . . 0
...

...
... . . . ...

0 0 0 . . . γ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Sξ4 = · · · = Sξ2m−n = 0,

where γ1, γ2, γ3, and ν are real functions on N .

Proof. We know that

n2‖H‖2 =
2m−n

∑
r=1

( n

∑
i=1

hr
ii
)2

=
1

n − 1

2m−n

∑
r=1

∑
1≤i<j≤n

(hr
ii − hr

jj)
2

+
2n

n − 1

2m−n

∑
r=1

∑
1≤i<j≤n

hr
iih

r
jj. (14)
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Further, from [6], we have

2m−n

∑
r=1

∑
1≤i<j≤n

(hr
ii − hr

jj)
2 + 2n

2m−n

∑
r=1

∑
1≤i<j≤n

(hr
ij)

2

≥ 2n

[
∑

1≤r<s≤2m−n
∑

1≤i<j≤n

( n

∑
k=1

(hr
jkhs

ik − hr
ikhs

jk)
)2
] 1

2

. (15)

Now, combining Equations (12), (14) and (15), we find

n2‖H‖2 − n2ρN ≥ 2n
n − 1

2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (16)

In addition, due to the fact that N is a totally real submanifold, we get from Equation (2):

τ =
n(n − 1)

2
f1 +

2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (17)

Next, using Equations (8) and (17) in Equation (16), we obtain the inequality in Equation (13).
Moreover, it follows easily that the equality case holds in Equation (13) if and only if the shape operator
takes the above stated forms.

Now, we prove the following.

Theorem 1. Let N be a Lagrangian submanifold of a generalized complex space form N ( f1, f2) of complex
dimension n. Then,

(ρ⊥)2 ≤ (‖H‖2 − ρ + f1
)2

+
2

n(n − 1)
f 2
2 +

4 f2

n(n − 1)
(
ρ − f1

)
(18)

and the equality in Equation (18) holds at a point p ∈ N if and only if the shape operator takes similar forms as in
Lemma 1 with respect to some suitable tangent and normal orthonormal bases.

Proof. Let N be a Lagrangian submanifold of a generalized complex space form N ( f1, f2). We choose
{e1, . . . , en} and {ξ1 = Je1, . . . , ξn = Jen} as orthonormal frame and orthonormal normal frame on N ,
respectively. Putting X = W = ei, Y = Z = ej, i �= j in Equation (1), we obtain

R(ei, ej, ej, ei) = f1{g(ej, ej)g(ei, ei)− g(ei, ej)g(ej, ei)}. (19)

Combining Equations (2) and (19), we derive

R(ei, ej, ej, ei) = f1{δiiδjj − δ2
ij} − g(h(ei, ej), h(ej, ei))

+g(h(ei, ei), h(ej, ej)). (20)

By taking summation for 1 ≤ i, j ≤ n in Equation (20) and making use of Equations (5) and (7),
we obtain

2τ = n(n − 1) f1 + n2‖H‖2 − ‖h‖2. (21)
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Using Equation (8) in Equation (21), we get

ρ = f1 +
n

n − 1
‖H‖2 − 1

n(n − 1)
‖h‖2, (22)

which implies

n2‖H‖2 − ‖h‖2 = n(n − 1)(ρ − f1). (23)

Further, Equation (3) gives

R⊥(ei, ej, ξr, ξs) = f2{−(δirδjs − δjrδis)} − g([Sξr , Sξs ]ei, ej), (24)

for any indices i, j, r, s ∈ {1, . . . , n}.
Next, by taking summation for 1 ≤ r < s ≤ n and 1 ≤ i < j ≤ n in Equation (24), we derive easily the

following relation:

(τ⊥)2 =
n(n − 1)

2
f 2
2 +

n2(n − 1)2

4
ρ2

N − f2‖h‖2 + f2n2‖H‖2. (25)

However, the above Equation (25) can be rewritten as

(ρ⊥)2 =
2

n(n − 1)
f 2
2 + ρ2

N − 4 f2

n2(n − 1)2 ‖h‖2 +
4 f2

(n − 1)2 ‖H‖2.

(26)

Now, from Equations (23) and (26), we have

(ρ⊥)2 =
2

n(n − 1)
f 2
2 + ρ2

N +
4 f2

n(n − 1)
(ρ − f1). (27)

Combining now Equations (13) and (27), we obtain the required inequality and the equality case of
the inequality is also clear from Lemma 1.

Remark 1. Theorem 2 generalizes the main result of [8], namely the generalized Wintgen inequality for the class of
Lagrangian submanifolds in a complex space form. Indeed, if in the statement of Theorem 2 one particularizes the
generalized complex space form by putting f1 = f2 = c, then N reduces to a complex space form and one arrives
at ([8] Theorem 2.3).

4. Generalized Wintgen Inequality for bi-Slant Submanifolds in Generalized Complex Space Form

A submanifold N of an almost Hermitian manifold (N , J, g) is said to be a slant submanifold if for
any point p ∈ N and any non-zero vector X ∈ TpN , the angle θ between the vector JX and the tangent
space TpN is constant, i.e., this angle does not depend on the choice of p ∈ N and X ∈ TpN . Moreover,
θ ∈ [0, π

2 ] is called the slant angle of N in N . Recall that both invariant and anti-invariant submanifolds
are particular examples of slant submanifolds with slant angle θ = 0 and θ = π

2 , respectively. Moreover,
if 0 < θ < π

2 , then N is said to be a θ-slant submanifold or a proper slant submanifold. It is known that
any proper slant submanifold has even dimension. The concept of slant submanifold originally introduced
by Chen [32,33] was later generalized as follows.
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Definition 1. ([34]) A submanifold N of an almost Hermitian manifold N is said to be a bi-slant submanifold,
if there exist two orthogonal distributions D1 and D2, such that:

(i) TN admits the orthogonal direct decomposition:

TN = D1 ⊕ D2.

(ii) JD1 ⊥ D2 and JD2 ⊥ D1.

(iii) For i = 1, 2, the distribution Di is slant with slant angle θi.

It is easy to see that the class of bi-slant submanifolds of almost Hermitian manifolds naturally
englobes not only the class of slant submanifolds, but also the classes of semi-slant submanifolds [35],
hemi-slant submanifolds [36], and CR-submanifolds [37], as synthesized in ([38] Table 1).

In the following, let us denote d1 = dimD1 and d2 = dimD2. We say that a bi-slant submanifold N of
an almost Hermitian manifold N with slant angles θ1 and θ2, respectively, is a proper bi-slant submanifold
if d1d2 �= 0 and 0 < θi <

π
2 , for i = 1, 2. If N is a proper bi-slant submanifold in a generalized complex

space form N ( f1, f2), then one can check that

n

∑
i,j=1

g2(Jei, ej) = (d1cos2θ1 + d2cos2θ2). (28)

Now, we state and prove the generalized Wintgen inequality for proper bi-slant submanifolds in
generalized complex space forms.

Theorem 2. Let N be a proper bi-slant submanifold of dimension n in a generalized complex space form N ( f1, f2)

of complex dimension m, with slant angles θ1, θ2 and di = dimDi, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ + f1

+
3 f2

n(n − 1)
(d1cos2θ1 + d2cos2θ2). (29)

Proof. Let {e1, . . . , en−1, en} be an orthonormal frame on N and {ξ1, . . . , ξ2m−n} be a normal orthonormal
frame on N .

Equation (2) can be re-written in view of Equation (1) as

R(X, Y, Z, W) = f1{g(Y, Z)g(X, W)− g(X, Z)g(Y, W)}
+ f2{g(X, JZ)g(JY, W)− g(Y, JZ)g(JX, W)

+2g(X, JY)g(JZ, W)}
−g(h(X, Z), h(Y, W)) + g(h(X, W), h(Y, Z)) (30)
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and this implies

τ = ∑
1≤i<j≤n

R(ei, ej, ej, ei)

=
n(n − 1)

2
f1 +

3
2

f2 ∑
1≤i<j≤n

g2(Jej, ei)

+
2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]

=
n(n − 1)

2
f1 +

3
2

f2(d1cos2θ1 + d2cos2θ2)

+
2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (31)

However, we know from the proof of Lemma 1 that

n2‖H‖2 − n2ρN ≥ 2n
n − 1

2m−n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (32)

Combining Equations (31) and (32), we find

ρN ≤ ‖H‖2 − (ρ − f1)

+
3 f2

n(n − 1)
(d1cos2θ1 + d2cos2θ2) (33)

and the proof is now complete.

Remark 2. If in the statement of the above theorem one takes f1 = f2 = c, then N reduces to a complex space form
and we can immediately see that Theorem 2 generalizes the generalized Wintgen inequality for the class of proper
slant submanifolds in a complex space form, namely ([8] Theorem 3.1).

5. Generalized Wintgen Inequalities for Submanifolds in Generalized Sasakian Space Form

Let N be an almost contact metric manifold of dimension (2m + 1), equipped with the almost contact
structure (φ, ξ, η, g). Then, it is known that the (1, 1) tensor field φ, the structure vector field ξ, the 1-form
η, and the Riemannian metric g on N verify the compatibility relations

φ2 = −I + η ⊗ ξ, η(ξ) = 1,

g(φX, φY) = g(X, Y)− η(X)η(Y).

These conditions also imply that [39]

φξ = 0, η(φX) = 0, η(X) = g(X, ξ)

and

g(φX, Y) + g(X, φY) = 0,

for all vector fields X, Y on N .
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Let (N , φ, ξ, η, g) be an almost contact metric manifold whose curvature tensor satisfies

R(X, Y)Z = f1{g(Y, Z)X − g(X, Z)Y}
+ f2{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY)φZ}
+ f3{η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ

−g(Y, Z)η(X)ξ}, (34)

for all vector fields X, Y, Z on N , where f1, f2, f3 are differentiable functions on N . Then, N ( f1, f2, f3) is
said to be a generalized Sasakian space form. It is important to outline that the generalized Sasakian space
forms are an umbrella of the following well known spaces:

i. Sasakian space forms, i.e., Sasakian manifolds with constant φ-sectional curvature c. In this case,
f1 = c+3

4 , f2 = f3 = c−1
4 .

ii. Kenmotsu space forms, i.e., Kenmotsu manifolds of constant φ-sectional curvature c. In this case,
f1 = c−3

4 and f2 = f3 = c+1
4 ).

iii. cosymplectic space forms, i.e., cosymplectic manifolds of constant φ-sectional curvature c. In this case,
f1 = f2 = f3 = c

4 .

For definitions, basic results, and examples of such spaces, the readers are referred to the
monographs [39,40].

A Riemannian manifold N isometrically immersed in an almost contact metric manifold (N , φ, ξ, η, g))
is called a C-totally real submanifold of N if the structure vector field ξ is a normal vector field on N . As
an immediate consequence of the definition of a C-totally real submanifold, we deduce that φ maps any
tangent space of N into the normal space. We recall that, if the dimension of the C-totally real submanifold
N is n = dimN−1

2 , then N is said to be a Legendrian submanifold. Notice that Legendrian submanifolds
are the counterpart in odd dimension of Lagrangian submanifolds investigated in Section 3.

The first aim of this section is to obtain the generalized Wintgen inequality for Legendrian
submanifolds in generalized Sasakian space forms. Similar to the case of Lemma 1, we can prove
the following.

Lemma 2. Let N be a C-totally real submanifold of dimension n in a generalized Sasakian space form N ( f1, f2, f3)

of dimension (2m + 1). Then, we have

ρN ≤ ‖H‖2 − ρ + f1, (35)

with the equality case holding at p ∈ N if and only if the shape operator S of N in N ( f1, f2, f3) with respect to
some suitable orthonormal bases {e1, . . . , en} of TpN and {ξ1, . . . , ξ2m−n+1} of T⊥

p N takes the following forms

Sξ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 ν 0 . . . 0
ν γ1 0 . . . 0
0 0 γ1 . . . 0
...

...
... . . . ...

0 0 0 . . . γ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Sξ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ2 + ν 0 0 . . . 0
0 γ2 − ν 0 . . . 0
0 0 γ2 . . . 0
...

...
... . . . ...

0 0 0 . . . γ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Sξ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ3 0 0 . . . 0
0 γ3 0 . . . 0
0 0 γ3 . . . 0
...

...
... . . . ...

0 0 0 . . . γ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Sξ4 = · · · = Sξ2m−n+1 = 0,

where γ1, γ2, γ3, and ν are real functions on N .

Next, we can state a generalized Wintgen-type inequality for Legendrian submanifolds in a
generalized Sasakian ambient.

Theorem 3. If N is a Legendrian submanifold of a (2n + 1)-dimensional generalized Sasakian space form
N ( f1, f2, f3), then

(ρ⊥)2 ≤ (‖H‖2 − ρ + f1
)2

+
2

n(n − 1)
f 2
2

+
4 f2

n(n − 1)
(
ρ − f1

)
(36)

and the equality holds at a point p ∈ N if and only if the shape operator takes the forms as in Lemma 2 with respect
to some suitable tangent and normal orthonormal bases.

Proof. Let {e1, . . . , en} be an orthonormal frame on N . Due to the fact that N is a Legendrian submanifold
of N , it follows that {ξ1 = φe1, . . . , ξn = φen, ξn+1 = ξ} is an orthonormal frame in the normal bundle of
N . Next, the proof is similar to the one of Theorem 2, being based on Lemma 2 instead of Lemma 1, so we
omit it.

Remark 3. We note that function f3 does not appear in the generalized Wintgen inequality in Equation (36) for a
Legendrian submanifold N in a generalized Sasakian space form N ( f1, f2, f3). This is a consequence of the fact that
ξ is normal to N . However, for a submanifold tangent to the structure vector field ξ, the corresponding generalized
Wintgen inequality will depend on f3, as we can see in the second part of this section.

Remark 4. Theorem 3 generalizes the main result of [9], namely the generalized Wintgen inequality for the class
of Legendrian submanifolds in a Sasakian space form. Actually, if in the statement of Theorem 3, one considers
f1 = c+3

4 and f2 = f3 = c−1
4 , then N reduces to a Sasakian space form and Theorem 3 becomes nothing but ([9]

Theorem 3.2).
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Corollary 1. Let N be a Legendrian submanifold of a (2n + 1)-dimensional Kenmotsu space form N (c). Then

(ρ⊥)2 ≤
(
‖H‖2 − ρ +

c − 3
4

)2
+

(c + 1)2

8n(n − 1)

+
c + 1

n(n − 1)

(
ρ − c − 3

4

)
(37)

and the equality holds at a point p ∈ N if and only if the shape operator takes the forms as in Lemma 2 with respect
to some suitable tangent and normal orthonormal bases.

Proof. The proof follows immediately from Theorem 3 by replacing f1 = c−3
4 and f2 = f3 = c+1

4 .

Corollary 2. Let N be a Legendrian submanifold of a (2n + 1)-dimensional cosymplectic space form N (c). Then,

(ρ⊥)2 ≤
(
‖H‖2 − ρ +

c
4

)2
+

c2

8n(n − 1)

+
c

n(n − 1)

(
ρ − c

4

)
(38)

and the equality holds at a point p ∈ N if and only if the shape operator takes the forms as in Lemma 2 with respect
to some suitable tangent and normal orthonormal bases.

Proof. The proof follows immediately from Theorem 3 by putting f1 = f2 = f3 = c
4 .

Remark 5. We note that the proof of Theorem 3.3 of [41] contains an error. Consequently, Theorem 3.3 of [41] must
be replaced by Corollary 1 of the present article.

In 1996, Lotta [42] introduced the notion of slant submanifold in almost contact geometry as follows.
A submanifold N of an almost contact metric manifold (N , φ, ξ, η, g) tangent to the structure vector field
ξ is said to be a contact slant submanifold if, for any point p ∈ N and any vector X ∈ TpN linearly
independent on ξp, the angle between the vector φX and the tangent space TpN is constant. This constant,
usually denoted by θ, is said to be the slant angle of N . We recall that invariant and anti-invariant
submanifolds are particular examples of slant submanifolds with slant angle θ = 0 and θ = π

2 , respectively.
A contact slant submanifold is said to be θ-slant or proper if 0 < θ < π

2 . Notice that ([42] Theorem 3.3)
implies the dimension of a contact slant submanifold tangent to the structure vector field ξ and with slant
angle θ �= π

2 is odd. The concept of contact slant submanifold is further generalized as follows.

Definition 2. [43] A submanifold N of an almost contact metric manifold N is said to be a bi-slant submanifold, if
there exist two orthogonal distributions D1 and D2 on N , such that:

(i) TN admits the orthogonal direct decomposition TN = D1 ⊕ D2 ⊕ ξ.
(ii) JD1 ⊥ D2 and JD2 ⊥ D1.
(iii) For i=1,2, the distribution Di is slant with slant angle θi.

In the following, we denote by di the dimension of the distribution Di, i = 1, 2. It is easy to check
that, similar to in the case of complex geometry, the class of bi-slant submanifolds of almost contact metric
manifolds naturally includes not only the class of slant submanifolds, but also the classes of semi-slant
submanifolds [44], hemi-slant submanifolds (also named pseudo-slant submanifolds) [45], and contact
CR-submanifolds (also known as semi-invariant submanifolds) [46]. For definitions and basic properties
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of the above classes of submanifolds, see also [47]. We only recall here that a bi-slant submanifold is called
proper if d1d2 �= 0 and the slant angles θ1, θ2 �= 0, π

2 . Notice that various examples of proper bi-slant
submanifolds in almost contact metric manifolds can be found in [43,44,48].

Next, we focus on the second aim of this section, that is to derive a generalized Wintgen-type
inequality for bi-slant submanifolds in generalized Sasakian space form.

Theorem 4. Let N be a proper bi-slant submanifold of dimension n in a generalized Sasakian space form
N ( f1, f2, f3) of dimension (2m + 1), with slant angles θ1, θ2 and dimDi = di, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ + f1

+
3 f2

n(n − 1)
(d1cos2θ1 + d2cos2θ2)− 2

n
f3. (39)

Proof. First, we remark that the definition of a bi-slant submanifold implies that d1 + d2 + 1 = n. Next, let
{e1, . . . , ed1 , ed1+1, . . . , ed1+d2 , en = ξ} be an orthonormal frame on N and {ξ1, . . . , ξ2m−n+1} be a normal
orthonormal frame on N .

Using Equations (2) and (34), we obtain

τ = ∑
1≤i<j≤n

R(ei, ej, ej, ei)

=
n(n − 1)

2
f1 +

3
2

f2(d1cos2θ1 + d2cos2θ2)

+(1 − n) f3 +
2m−n+1

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (40)

However, as in the proof of Lemma 1, we get

n2‖H‖2 − n2ρN ≥ 2n
n − 1

2m−n+1

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (41)

Combining now Equations (40) and (41), we obtain Equation (44) and the conclusion follows.

As immediate consequences of Theorem 4, we derive the following results.

Corollary 3. Let N be a proper bi-slant submanifold of dimension n in a Sasakian space form N (c) of dimension
(2m + 1), with slant angles θ1, θ2 and dimDi = di, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ +
c + 3

4

+
3(c − 1)

4n(n − 1)
(d1cos2θ1 + d2cos2θ2)− c − 1

2n
. (42)

Corollary 4. Let N be a proper bi-slant submanifold of dimension n in a Kenmotsu space form N (c) of dimension
(2m + 1), with slant angles θ1, θ2 and dimDi = di, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ +
c − 3

4

+
3(c + 1)

4n(n − 1)
(d1cos2θ1 + d2cos2θ2)− c + 1

2n
. (43)
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Corollary 5. Let N be a proper bi-slant submanifold of dimension n in a cosymplectic space form N (c) of dimension
(2m + 1), with slant angles θ1, θ2 and dimDi = di, i = 1, 2. Then,

ρN ≤ ‖H‖2 − ρ +
c
4

+
3c

4n(n − 1)
(d1cos2θ1 + d2cos2θ2)− c

2n
. (44)

Remark 6. Corollary 3 generalizes Theorem 4.1 of [9].

Remark 7. We note that the authors of [8,9] provided non-trivial examples of Lagrangian and Legendrian
submanifolds satisfying the equality case of the corresponding Wintgen-type inequalities stated in this paper, because
the shape operators have the appropriate form (see also [49]).

6. The First Fundamental Equation of Generalized Space Forms

For a given Riemannian manifold (N , g), let us denote by ∇ the Levi–Civita connection of the metric
g and by R the curvature tensor of ∇. We consider the differential operator D∇ defined in the tangent
vector bundle TN with values belonging to the vector bundle hom(⊗2TN , TN ). Hence, for a given vector
field X on N , we have that D∇(X) is a section of the vector bundle TN ⊗ T∗⊗2N defined by

D∇(X) = ∇2X.

Obviously, the complete expression is

D∇(X)(Y, Z) = ∇Y∇ZX −∇∇Y ZX, ∀Y, Z ∈ X (M).

We recall now that the first fundamental equation of (N ,∇) is the second-order differential
equation [50]

D∇(X) = 0. (45)

In the following, we denote by J∇ the sheaf of germs of solutions to Equation (45) and by J∇ the
vector space of sections of J∇.

We would like to investigate next the consequences of the condition dimJ∇ > 0, i.e., the first
fundamental in Equation (45) admits non-null solutions, on the geometry and topology of generalized
complex space forms and generalized Sasakian space forms. Before answering the above question, we
need the following.

Proposition 1. Let ∇ be the Levi–Civita connection of a Riemannian metric g on a manifold N . If Z is a solution
to the first fundamental equation of (N ,∇), then one has

(i) R(X, Y)Z = 0,
(ii) R(X, Z)Y = 0,

for all vector fields X, Y on M.

Proof. (i) If Z is a solution to the first fundamental equation of (N ,∇), then

D∇(Z)(X, Y) = ∇X∇YZ −∇∇XYZ = 0, (46)

for all vector fields X, Y on M.
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However, since the connection ∇ is torsion-free, we can express its Riemann curvature tensor R by

R(X, Y)Z = D∇(Z)(X, Y)− D∇(Z)(Y, X). (47)

Consequently, from Equations (46) and (47), we derive R(X, Y)Z = 0.
(ii) Using (i) and the Bianchi identity, one has

R(Z, X)Y = R(Z, Y)X. (48)

Then, we have

g(R(Z, X)Y, W) = −g(Y, R(Z, X)W)

= −g(Y, R(Z, W)X)

= g(R(Z, W)Y, X)

= g(R(Z, Y)W, X)

= −g(W, R(Z, Y)X)

= −g(W, R(Z, X)Y)

= −g(R(Z, X)Y, W), (49)

which implies
g(R(Z, X)Y, W) = 0

and the conclusion is now clear.

Theorem 5. Let N ( f1, f2) be a generalized complex space form of real dimension 2m > 2. If dimJ∇ > 0, then
N is flat. Moreover, N admits a normal Riemannian covering by a flat 2m-dimensional torus, provided that the
manifold is compact and connected.

Proof. Let Z be a non-null solution of the first fundamental equation of (N ( f1, f2),∇), where ∇ is the
Levi–Civita connection on N ( f1, f2). Then, using Equation (1) and Proposition 1 (i), we get

f1{g(Z, Y)X − g(Z, X)Y}
+ f2{g(JZ, X)JY − g(JZ, Y)JX} = −2 f2g(X, JY)JZ, (50)

for all vector fields X, Y on N .
In addition, using Equation (1) and Proposition 1 (ii), we obtain

f1g(Z, Y)X + f2{2g(X, JZ)JY − g(Z, JY)JX}
= f1g(X, Y)Z − f2g(X, JY)JZ. (51)

Replacing now X = Z and Y = JZ in Equation (50), we derive:

( f1 + 3 f2)g(Z, Z)JZ = 0

and therefore we obtain

3 f2 + f1 = 0. (52)
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Combining Equations (51) and (52), we get

f2{−3g(X, Y)Z − g(X, JY)JZ}
+ f2{3g(Z, Y)X − 2g(X, JZ)JY + g(Z, JY)JX} = 0 (53)

and choosing Y = X in Equation (53) we derive

f2{−3g(X, X)Z + 3g(Z, X)X − 3g(X, JZ)JX} = 0. (54)

Now, because m > 1, we can choose a vector field X on N subjected to

1. g(X, JZ) = 0,
2. g(X, Z) = 0,

and therefore Equation (54) yields

3 f2g(X, X)Z = 0. (55)

Thereby,
f2 = 0

and, from Equation (52), we also derive
f1 = 0.

Thus, Equation (1) implies that N is flat and the conclusion follows immediately (see ([51] Theorem
3.3.1)).

Theorem 6. Let N ( f1, f2, f3) be a generalized Sasakian space form of dimension 2m + 1 > 3. If the first
fundamental equation admits solutions linearly independent on the structure vector field ξ, then N is flat. Moreover,
N admits a normal Riemannian covering by a flat (2m + 1)-dimensional torus, provided that the manifold is
compact and connected.

Proof. Let Z be a solution to the first fundamental equation of (N ( f1, f2, f3),∇) linearly independent
on the structure vector field ξ, where ∇ is the Levi–Civita connection on N ( f1, f2, f3). Then, using
Equation (34) and Proposition 1, we get the following identities:

f1{g(Y, Z)X − g(X, Z)Y}+ f2{g(X, φZ)φY − g(Y, φZ)φX}
+ f3{η(X)η(Z)Y − η(Y)η(Z)X}
= −2 f2g(X, φY)φZ − f3{g(X, Z)η(Y)− g(Y, Z)η(X)}ξ, (56)

f1g(Z, Y)X + f2{2g(X, φZ)φY − g(Z, φY)φX}
− f3η(Z)η(Y)X = f1g(X, Y)Z − f2g(X, φY)φZ

− f3{η(X)η(Y)Z + g(X, Y)η(Z)ξ − g(Z, Y)η(X)ξ} (57)

for all vector fields X, Y on N .
Choosing now in Equation (56) the vector field X to be orthogonal to Z, φZ, and ξ, we derive

{ f1g(Y, Z)− f3η(Y)η(Z)}X − f2g(Y, φZ)φX + 2 f2g(X, φY)φZ = 0 (58)
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and, particularizing Y = φZ in Equation (58), one immediately gets

f2 = 0. (59)

Therefore, Equations (56) and (57) become

f1{g(Y, Z)X − g(X, Z)Y}+ f3{η(X)η(Z)Y − η(Y)η(Z)X}
= − f3{g(X, Z)η(Y)− g(Y, Z)η(X)}ξ, (60)

f1g(Z, Y)X − f3η(Z)η(Y)X = f1g(X, Y)Z

− f3{η(X)η(Y)Z + g(X, Y)η(Z)ξ − g(Z, Y)η(X)ξ}, (61)

for all vector fields X, Y on N .
Similarly, considering in Equation (61) the vector field X to be orthogonal to Z, φZ, and ξ, we deduce

f1g(Z, Y)X + f3η(Z)η(Y)X = f1g(X, Y)Z − f3g(X, Y)η(Z)ξ (62)

and, particularizing Y = X in Equation (58), one obtains

f1g(X, X)Z − f3g(X, X)η(Z)ξ = 0. (63)

As Z and ξ are linearly independent, Equation (63) implies

f1 = 0 (64)

and
f3η(Z) = 0. (65)

Now, we have to distinguish two cases.
Case I: η(Z) �= 0. Then, it follows from Equation (65) that

f3 = 0 (66)

and replacing Equations (59), (64), and (66) in Equation (1), we conclude that N is flat.
Case II: η(Z) = 0. Then, taking account of Equation (64), we obtain from Equation (60) that

f3{g(X, Z)η(Y)− g(Y, Z)η(X)}ξ = 0. (67)

Particularizing now X = Z and Y = ξ in Equation (67), one obtains also Equation (66) and therefore
we reach again the required conclusion.

Remark 8. Theorems 5 and 6 provide obstructions to the existence of non-flat generalized space forms. Therefore,
the existence of non-null solutions for the first fundamental equation of a generalized complex space form N ( f1, f2)

implies the flatness of this space. On the other hand, the existence of solutions linearly independent on the structure
vector field for the first fundamental equation of a generalized Sasakian space form N ( f1, f2, f3) also implies that its
Riemannian curvature tensor vanishes identically.
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allowing for new global results for such manifolds.
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1. Introduction

On a Kähler manifold (M, J, ω), the most fundamental local identity is perhaps the commutation
relation between the exterior differential d and the adjoint Λ to the Lefschetz operator,

[Λ, d] = � I−1 d I �, (1)

where � denotes the Hodge star operator and I denotes the extension of J to all forms.
This identity, due to A. Weil [1], strongly depends on the Kähler condition, dω = 0, and in fact

is true when removing the integrability condition NJ ≡ 0. So, it is valid for almost Kähler and also
symplectic manifolds as well [2–4]. On the other hand, there is also a generalization of the Kähler
identities in the Hermitian setting (see [5,6]), which strongly uses integrability.

When the manifold is only almost Hermitian, then the above local identity does not hold in general,
as noticed implicitly in [7]. The purpose of this short note is to show precisely how the above Kähler
identity (1) becomes modified when the form ω is not closed.

The main result is given in Theorem 1 below, which has several applications including the
uniqueness of the Dirichlet problem

∂∂̄u = g with u|∂Ω = φ,

on any compact domain Ω in an almost complex manifold. This in turn implies that the Dolbeault
cohomology introduced in [8], for all almost complex manifolds, satisfies H0,0

Dol(M) ∼= C for a compact
connected almost complex manifold.

Another application of the almost Hermitian identities of Theorem 1 appears in forthcoming
work by Feehan and Leness [9]. There the fundamental relation of Proposition 1 is used to show
that the moduli spaces of unitary anti-self-dual connections over any almost Hermitian 4-manifold is
almost Hermitian, whenever the Nijenhuis tensor has sufficiently small C0-norm. This generalizes a
well known result for Kähler manifolds that was exploited in Donaldson’s work in the 1980s, and is
expected to have consequences for the topology of almost complex 4-manifolds which are of so-called
Seiberg–Witten simple type.

Mathematics 2020, 8, 1357; doi:10.3390/math8081357 www.mdpi.com/journal/mathematics59
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When M is compact, local identities lead to consequences in cohomology, often governed by
geometric-topological inequalities. Indeed, the exterior differential inherits a bidegree decomposition
into four components d = μ̄ + ∂ + ∂ + μ and the Hermitian metric allows one to consider the Laplacian
operators associated to each of these components. In the compact case, the numbers

�p,q := dim Ker (Δ∂̄ + Δμ)|(p,q)

given by the kernel of Δ∂̄ + Δμ in bidegree (p, q) are finite by elliptic operator theory. When J is
integrable (and so M is a complex manifold) the operator Δμ vanishes and these are just the Hodge
numbers �p,q = hp,q. In this case, the Hodge-to-de Rham spectral sequence gives inequalities

∑
p+q=k

�p,q ≥ bk,

where bk denotes the k-th Betti number. On the other hand, as shown in [4], one main consequence of
the local identity (1) in the almost Kähler case dω = 0 is the converse inequality

∑
p+q=k

�p,q ≤ bk.

Of course, in the integrable Kähler case both inequalities are true and so one recovers the
well-known consequence of the Hodge decomposition

∑
p+q=k

�p,q = bk.

The local identities of [5,6] for complex non-Kähler manifolds include other algebra terms which
lead to further Laplacian operators, leading also to various inequalities relating the geometry with the
topology of the manifold.

With this note, we aim to further understand the origin of these inequalities by means of the
correct version of (1) for almost Hermitian manifolds for which, a priori, the only geometric-topological
inequality in the compact case is given by

∑
p+q=k

dim Ker (Δμ̄ + Δ∂̄ + Δ∂ + Δμ)|(p,q) ≤ bk.

2. Preliminaries

Let (A, d) denote the complex valued differential forms of an almost complex manifold (M, J).
For any Hermitian metric, define the associated Hodge-star operator

� : Ap,q
x → An−q,n−p

x by ω ∧ �η̄ = 〈ω, η〉vol,

where ω is the fundamental (1, 1)-form, and vol = 1
n! ω

n ∈ An,n is the volume form determined by the
Hermitian metric. Note �2 = (−1)k on Ak.

Define d∗ = − � d�, so that d∗� = (−1)k+1 � d on Ak. Similarly, consider the bidegree
decomposition of the exterior differential

d = μ̄ + ∂̄ + ∂ + μ,

where the bidegree of each component is given by

|μ̄| = (−1, 2), |∂̄| = (0, 1), |∂| = (1, 0) and |μ| = (2,−1).
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We then let δ̄∗ = − � δ� for δ = μ̄, ∂̄, ∂, μ and we have the bidegree decomposition

d∗ = μ̄∗ + ∂̄∗ + ∂∗ + μ∗.

where
|μ̄∗| = (1,−2), |∂̄∗| = (0,−1), |∂∗| = (−1, 0) and |μ∗| = (−2, 1).

Let L : Ap,q → Ap+1,q+1 be the real (1, 1)-operator given by L(η) = ω ∧ η. Let Λ = L∗ = �−1L�.
Then �Λ = L� and �L = Λ�. Let Pk = Ker Λ ∩Ak denote the primitive forms of total degree k.

It is well known that {L, Λ, [L, Λ]} defines a representation of sl(2,C) and induces the Lefschetz
decomposition on forms:

Lemma 1. We have

Ak =
k/2⊕
r=0

LrPk−2r,

and this direct sum decomposition respects the (p, q) bigrading.

Let [A, B] = AB − (−1)|A||B|BA be the graded commutator, where |A| denotes the total degree
of A. This defines a graded Poisson algebra

[A, BC] = [A, B]C + (−1)|A||B|B[A, C]

The following is well known (e.g., [10] Corollary 1.2.28):

Lemma 2. For all j ≥ 0 and α ∈ Ak

[Lj, Λ]α = j(k − n + j − 1)Lj−1α.

By induction, and the fact that [d, L] and L commute, we have:

Lemma 3. For all n ≥ 1
[d, Ln] = n[d, L]Ln−1,

and
�[d, L]α = (−1)k+1[d∗, Λ] � α for α ∈ Ak.

Let I be the extension of J to all forms as an algebra map with respect to wedge product, so that
Ip,q acts on Ap,q by multiplication by ip−q. Then I2

p,q = (−1)p+q so that I−1
p,q = (−1)p+qIp,q. Note that I

and � commute, and I and Ln commute for all n ≥ 0. The following is a direct calculation.

Lemma 4. If an operator Tr,s : Ap,q → Ap+r,q+s has bidegree (r, s), then

I−1
r+p,s+q ◦ Tr,s ◦ Ip,q = (−i)r−sTr,s.

The above result readily implies that

I−1 ◦ d ◦ I = −i(μ̄ − ∂̄ + ∂ − μ).

Finally, the following is well known (e.g., [10] Proposition 1.2.31):

Lemma 5. If M is an almost Hermitian manifold of dimension 2n, then for all j ≥ 0 and all α ∈ Pk,

�Ljα = (−1)
k(k+1)

2
j!

(n − k − j)!
Ln−k−j Iα.
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3. Almost Hermitian Identities

By the previous section, any differential form η can be written as η = Ljα for unique j, k ≥ 0 and
α ∈ Pk. We now state the main result:

Theorem 1. For any almost Hermitian manifold of dimension 2n, let α ∈ Pk, with dα written as

dα = α0 + Lα1 + L2α2 + · · · , (2)

for unique αr ∈ Pk+1−2r. Then, for all j ≥ 0,

[Λ, d]Ljα − � I−1 d I � Ljα =
1

j + 1
I−1 [d∗, Λ] I Lj+1α

+ jΛ[d, L]Lj−1α + j(j − 1)(k − n + j − 1)[d, L]Lj−2α

+
∞

∑
r=2

fn,j,k(r)Lj+r−1αr,

where

fn,k,j(r) = (r(n − k + r)− j) + (−1)r j!(n − k − j + r)!
(j + r − 1)!(n − k − j)!

.

Remark 1. In the almost Kähler case we have [d∗, Λ] = [d, L] = 0, and dα = α0 + Lα1, so we recover
the identity

[Λ, d] = � I−1 d I �,

as expected.

Proof. The proof consists of several calculations using the lemmas in the previous section.
Using [I, L] = 0, and I2 = (−1)k on Ak, we have

� I−1 d I � η = � I−1 d I
(
(−1)

k(k+1)
2

j!
(n − k − j)!

Ln−k−j Iα

)
= (−1)

k(k+1)
2 +k j!

(n − k − j)!
� I−1 dLn−k−jα.

By Lemma 3 this is equal to

(−1)
k(k+1)

2 +k j!
(n − k − j)!

� I−1 Ln−k−jdα + (−1)
k(k+1)

2 +k j!
(n − k − j − 1)!

� I−1 [d, L]Ln−k−j−1α. (3)

We first simplify each of these last two summands. By Equation (2), the fact that � commutes
with I, and Lemma 5 applied to αr ∈ Pk+1−2r, the first summand of Equation (3) is equal to:

(−1)
k(k+1)

2 +k j!
(n − k − j)!

� I−1

(
∞

∑
r=0

Ln−k−j+rαr

)

= (−1)
k(k+1)

2 +k j!
(n − k − j)!

I−1

(
∞

∑
r=0

(−1)
(k+1−2r)(k−2r+2)

2
(n − k − j + r)!
(j + r − 1)!

Lj+r−1 Iαr

)

=
∞

∑
r=0

(−1)r+1 j!(n − k − j + r)!
(j + r − 1)!(n − k − j)!

Lj+r−1 αr.

For the second summand, we use the fact that for all m ≥ 0 and β ∈ Ak,

�Lm[d, L]β = �[d, L]Lmβ = (−1)k+1[d∗, Λ] � Lmβ.
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So, the second summand in Equation (3) is equal to

(−1)
k(k+1)

2 +k j!
(n − k − j − 1)!

� I−1 [d, L]Ln−k−j−1α

= (−1)
k(k+1)

2 +1 j!
(n − k − j − 1)!

I−1 [d∗, Λ] � Ln−k−j−1α

= (−1)
k(k+1)

2 +1 j!
(n − k − j − 1)!

I−1 [d∗, Λ](−1)
k(k+1)

2
(n − k − j − 1)!

(j + 1)!
Lj+1 Iα

=
−1

j + 1
I−1 [d∗, Λ] I Lj+1α,

where in the second to last step we used Lemma 5.
In summary, we have

� I−1 d I � η =
∞

∑
r=0

(−1)r+1 j!(n − k − j + r)!
(j + r − 1)!(n − k − j)!

Lj+r−1 αr − 1
j + 1

I−1 [d∗, Λ] I Lj+1α. (4)

We now compute [Λ, d]η, by first computing ΛdLjα, using that all αr are primitive. By Equation (2),
Lemma 2, and Lemma 3, we have:

ΛdLjα = ΛLjdα + Λ[d, Lj]α

= ΛLj

(
∞

∑
r=0

Lrαr

)
+ jΛ[d, L]Lj−1α

=
∞

∑
r=0

ΛLj+rαr + jΛ[d, L]Lj−1α

= −
∞

∑
r=0

(j + r)(k + 1 − 2r − n + j + r − 1)Lj+r−1αr + jΛ[d, L]Lj−1α.

Next using, α is primitive, and Lemma 2 again, we have

dΛLjα = −j(k − n + j − 1)dLj−1α

= −j(k − n + j − 1)Lj−1dα − j(k − n + j − 1)(j − 1)[d, L]Lj−2α

= −j(k − n + j − 1)

(
∞

∑
r=0

Lj+r−1αr

)
− j(k − n + j − 1)(j − 1)[d, L]Lj−2α.

So,

[Λ, d]η =
∞

∑
r=0

(r(n − k + r)− j)Lj+r−1αr + jΛ[d, L]Lj−1α + j(j − 1)(k − n + j − 1)[d, L]Lj−2α.

Using this last equation and combining with Equation (4) we obtain the desired result:

[Λ, d]η − � I−1 d I � η =
1

j + 1
I−1 [d∗, Λ] I Lj+1α

+ jΛ[d, L]Lj−1α + j(j − 1)(k − n + j − 1)[d, L]Lj−2α

+
∞

∑
r=0

fn,k,j(r)Lj+r−1αr,

where

fn,k,j(r) = (r(n − k + r)− j) + (−1)r j!(n − k − j + r)!
(j + r − 1)!(n − k − j)!

.
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It is a curious fact that f (0) = f (1) = 0, whereas for r ≥ 2, f (r) is in general non-zero.

4. Applications

On an almost Kähler manifold, using the bidegree decompositions of d and d∗, one may derive
from (1) the relation

[Λ, ∂] = i∂̄∗,

involving Λ, ∂ and the adjoint of ∂̄. For a non-Kähler Hermitian manifold there is an additional term

[Λ, ∂] = i(∂̄∗ + τ̄∗)

where τ̄ = [Λ, [∂̄, L]] is the zero-order torsion operator (see [5,6]). In the case of (0, q)-forms this gives

Λ∂α = i∂̄∗α + i[Λ, ∂̄∗]Lα.

Next we use Theorem 1 to derive this local identity also in the non-integrable case.

Proposition 1. For all α ∈ A0,q in an almost Hermitian manifold we have

Λ∂α = i∂̄∗α + i[Λ, ∂̄∗]Lα.

Proof. By bidegree reasons α is a primitive form and we have dα = α0 + Lα1 + L2α2 where αi
are primitive. By expanding each term in the equality of Theorem 1 with respect to the bidegree
decomposition d = μ̄ + ∂̄ + ∂ + μ, in the case j = 0, we obtain:

[Λ, d]α = Λdα = Λ(∂ + μ)α,

� I−1 d I � α = i(∂̄∗ − μ̄∗)α,

and
I−1 [d∗, Λ] I Lα = i[Λ, ∂̄∗ − μ̄∗]Lα.

In particular, all terms decompose into sums of pure bidegrees (0, q − 1) and (1, q − 2). Note as
well that the remaining term

fn,q,0(2)Lα2

given in Theorem 1 has pure bidegree (1, q − 2), since α2 must have bidegree (0, q − 3). By putting
together all terms of bidegree (0, q − 1) we obtain the desired identity.

Remark 2. The proof of Proposition 1 gives a second identity relating the operators Λ, μ and μ̄ and their adjoints,
which also contains the term fn,q,0(2)Lα2. For forms in A0,2, this extra term vanishes by bidegree reasons,
since α2 = 0. Then the second identity reads

Λμα = −iμ̄∗α − i[Λ, μ̄∗]Lα.

This corrects the identity
[Λ, μ] = −iμ̄∗

known in the almost Kähler case for arbitrary forms (see [4]).

The previous proposition can be used to give a uniqueness result for the Dirichlet problem on
compact domains with a boundary.
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Corollary 1. Let Ω be a compact domain in an almost complex manifold (M, J), with smooth boundary, and let
g : Ω → C, and φ : ∂Ω → C be smooth. Then the Dirichlet problem,

∂∂̄u = g with u|∂Ω = φ,

has at most one solution u : Ω → C.
In particular, if (M, J) is a compact connected almost complex manifold, and f : M → C is a smooth map

of almost complex manifolds, then f is constant.

Proof. It suffices to show the only solution to the homogenous equation with g = 0 is a
constant function.

In any coordinate chart ψ : V → R2n containing any maximum point, we pullback J to ψ(V) and
consider the J-preserving map u ◦ ψ−1 : ψ(V) → C. The components of d are natural with respect to
this J-preserving map and we use a compatible metric on ψ(V) to define Λ and ∂̄∗. Then by Proposition
1 with q = 1 we obtain

−iΛ∂∂̄u = ∂̄∗∂̄u + [Λ, ∂̄∗]L∂̄u

on ψ(V). Note ∂̄∗∂̄ is quadratic, self-adjoint, and positive, and [Λ, ∂̄∗]L∂̄ is first order since [Λ, ∂̄∗] =
[d, L]∗ is zeroth order, because [d, L]η = dω ∧ η. Then the right hand side is zero, so the maximum
principle due to E. Hopf applies [11], showing u is constant in a neighborhood of the maximum point
and therefore, by connectedness, u is constant.

The final claim follows taking Ω = M, with empty boundary, g = 0, and noting the condition
that f is a map of almost complex manifolds implies ∂̄ f = 0.

Remark 3. In [8], we introduce a Dolbeault cohomology theory that is valid for all almost complex manifolds.
The above corollary is key in showing that, for a compact connected almost complex manifold, this cohomology is
well-behaved in lowest bidegree, in the sense that H0,0

Dol(M) ∼= C.

Finally, we refer the reader to the work of Feehan and Leness [9], where the relation of
Proposition 1, for q = 1, is used to show that the moduli spaces of unitary anti-self-dual connections
over any almost Hermitian 4-manifold is almost Hermitian, whenever the Nijenhuis tensor has
sufficiently small C0-norm.
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Abstract: In this paper, we prove some inequalities in terms of the normalized δ-Casorati curvatures
(extrinsic invariants) and the scalar curvature (intrinsic invariant) of statistical submanifolds in
holomorphic statistical manifolds with constant holomorphic sectional curvature. Moreover, we study
the equality cases of such inequalities. An example on these submanifolds is presented.
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1. Introduction

The problem of discovering simple relationships between the main intrinsic invariants and the
main extrinsic invariants of submanifolds is a basic problem in submanifold theory [1]. In this respect,
beautiful results focus on certain types of geometric inequalities. Moreover, another basic problem
in this field is to study the ideal submanifolds in a space form, namely to investigate the submanifolds
which satisfy the equality case of such inequalities [2].

The method of looking for Chen invariants answers the problems posed above. First, Chen demonstrated
in [3] an optimal inequality for a submanifold on a real space form between the intrinsically defined
δ-curvature and the extrinsically defined squared mean curvature. This approach initiated a new line
of research and was extended to various types of submanifolds in several types of ambient spaces,
e.g., submanifolds in complex space forms of constant holomorphic sectional curvature (see [4–7]).
The submanifolds attaining the equality of these inequalities (called Chen ideal submanifolds) were
also investigated. Recently, Chen et al. classified δ(2, n − 2)-ideal Lagrangian submanifolds in complex
space forms in [8].

Moreover, new solutions to the above problems are given by the inequalities involving δ-Casorati
curvatures, initiated in [9,10]. In the search for a true measure of curvature, Casorati in 1890 proposed
the curvature which nowadays bears his name because it better corresponds with our common
intuition of curvature than Gauss and mean curvature [11]. However, this notion of curvature was
soon forgotten and was rediscovered by Koenderink working in the field of computer vision [12].
Verstraelen developed some geometrical models for early vision, presenting perception via the Casorati
curvature of sensation [13]. A geometrical interpretation of this type of curvature for submanifolds in
Riemannian spaces was given in [14]. In [15], the isotropical Casorati curvature of production surfaces

Mathematics 2020, 8, 251; doi:10.3390/math8020251 www.mdpi.com/journal/mathematics67
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was studied. The Casorati curvature was used to obtain optimal inequalities between intrinsic and
extrinsic curvatures of submanifolds in real space forms in [9,10]. Later, this knowledge was extended
(e.g., see [16–21]). Submanifolds which satisfy these equalities are named Casorati ideal submanifolds.
Recently, Vîlcu established an optimal inequality for Lagrangian submanifolds in complex space forms
involving Casorati curvature [22]. Aquib et al. obtained a classification of Casorati ideal Lagrangian
submanifolds in complex space forms [23]. Very recently, Suceavă and Vajiac studied inequalities
involving some Chen invariants, mean curvature, and Casorati curvature for strictly convex Euclidean
hypersurfaces [24]. Brubaker and Suceavă investigated a geometric interpretation of Cauchy–Schwarz
inequality in terms of Casorati curvature [25].

The concept of statistical manifold was defined by Amari in 1985, in the basic study on information
geometry [26]. Currently, interest in the field of statistical manifolds is increasing, being focused on
applications in differential geometry, information geometry, statistics, machine learning, etc. (see,
e.g., [27–29]). Cuingnet et al. introduced a continuous framework to spatially regularize support vector
machines (SVM) for brain image analysis, considering the images as elements of a statistical manifold,
in order to classify patients with Alzheimer’s disease [30]. The study of curvature invariants of
submanifolds in statistical manifolds gives other solutions to the above research problems. Aydin et al.
established some inequalities (Chen–Ricci and Wintgen) for submanifolds in statistical manifolds
of constant curvature in [31,32]. Lee et al. obtained inequalities on Sasakian statistical manifolds
in terms of Casorati curvatures [33]. Aquib and Shahid [34] proved some inequalities involving
Casorati curvatures on statistical submanifolds in quaternion Kähler-like statistical space forms.
The quaternionic theory of statistical manifolds is investigated in [35]. Very recently, new results
have been published. Aytimur et al. established some Chen inequalities for submanifolds in
Kähler-like statistical manifolds [36]. Aquib et al. achieved generalized Wintgen-type inequalities
for submanifolds in generalized space forms [37]. Chen et al. established a Chen first inequality
for statistical submanifolds in Hessian manifolds of constant Hessian curvature [38]. Moreover,
Siddiqui et al. studied a Chen inequality for statistical warped products statistically immersed in a
statistical manifold of constant curvature [39].

Recently, Furuhata et al. [40] defined the notion of a holomorphic statistical manifold, which can
be considered as a generalization of a special Kähler manifold. The authors establish the basics for
statistical submanifolds in holomorphic statistical manifolds.

In order to find out new solutions for the problems under debate, we obtain inequalities
for statistical submanifolds in holomorphic statistical manifolds. The invariants involved in such
inequalities are the extrinsic normalized δ-Casorati curvatures and the intrinsic scalar curvature.
The method is focused on a constrained extremum problem. Moreover, the equality cases are
investigated. This study revealed that the equality at all points characterizes submanifolds that
are totally geodesic with respect to the Levi–Civita connection.

2. Preliminaries

Let (M̃, g̃) be a 2n-dimensional manifold, ∇̃ an affine connection on M̃, and g̃ a Riemannian
metric on M̃. Consider T̃ ∈ Γ(TM̃(1,2)) the torsion tensor field of ∇̃.

A pair (∇̃, g̃) is called a statistical structure on M̃ if the torsion tensor field T̃ vanishes and
∇̃g̃ ∈ Γ(TM̃(0,3)) is symmetric.

A Riemannian manifold (M̃, g̃) is called a statistical manifold if it is endowed with a pair of
torsion-free affine connections ∇̃ and ∇̃∗ satisfying

Z g̃(X, Y) = g̃(∇̃ZX, Y) + g̃(X, ∇̃∗
ZY),

for any X, Y, Z ∈ Γ(TM̃). Denote (M̃, g̃, ∇̃) as the statistical manifold. The connections ∇̃ and ∇̃∗ are
named dual connections or conjugate connections.

Remark 1. If (M̃, g̃, ∇̃) is a statistical manifold, then we remark that
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1. (∇̃∗)∗ = ∇̃;
2. (M̃, g̃, ∇̃∗) is also a statistical manifold;
3. ∇̃ always has a dual connection ∇̃∗ satisfying

∇̃+ ∇̃∗ = 2∇̃0, (1)

where ∇̃0 is the Levi–Civita connection on M̃.

Let M be an m-dimensional submanifold of a 2n-dimensional statistical manifold (M̃, g̃) and g
the induced metric on M. The Gauss formulas are given by

∇̃XY = ∇XY + h(X, Y),

∇̃∗
XY = ∇∗

XY + h∗(X, Y),

for any X, Y ∈ Γ(TM), where h and h∗ are symmetric and bilinear (0, 2)-tensors, called the imbedding
curvature tensor of M in M̃ for ∇̃ and ∇̃∗, respectively.

Denote the curvature tensor fields of ∇ and ∇̃ by R and R̃, respectively. Then, the Gauss equation
concerning the connection ∇̃ is ([41])

g̃(R̃(X, Y)Z, W) = g(R(X, Y)Z, W) + g̃(h(X, Z), h∗(Y, W))− g̃(h∗(X, W), h(Y, Z)), (2)

for any X, Y, Z, W ∈ Γ(TM).
In addition, denote the curvature tensor fields of the connections ∇∗ and ∇̃∗ by R∗ and R̃∗,

respectively. Then the Gauss equation concerning the connection ∇̃∗ is ([41])

g̃(R̃∗(X, Y)Z, W) = g(R∗(X, Y)Z, W) + g̃(h∗(X, Z), h(Y, W))− g̃(h(X, W), h∗(Y, Z)), (3)

for any X, Y, Z, W ∈ Γ(TM).
If M is a submanifold of a statistical manifold (M̃, g̃, ∇̃), then (M, g,∇) is also a statistical

manifold with the induced metric g and the induced connection ∇.
Let S be the statistical curvature tensor field of a statistical manifold (M, g,∇), where S ∈ Γ(TM(1,3))

is defined by [40]

S(X, Y)Z =
1
2
{R(X, Y)Z + R∗(X, Y)Z}, (4)

for X, Y, Z ∈ Γ(TM).
If π = spanR{u1, u2} is a 2-dimensional subspace of Tp M, for p ∈ M, then the sectional curvature

of M is defined by [40]:

σ(π) =
g(S(u1, u2)u2, u1)

g(u1, u1)g(u2, u2)− g2(u1, u2)
. (5)

Let {e1, ..., em} be an orthonormal basis of the tangent space Tp M, for p ∈ M, and let {em+1, ..., e2n}
be an orthonormal basis of the normal space T⊥

p M. The scalar curvature τ at p is given by

τ(p) = ∑
1≤i<j≤m

σ(ei ∧ ej) = ∑
1≤i<j≤m

g(S(ei, ej)ej, ei), (6)

and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

m(m − 1)
. (7)

The mean curvature vector fields of M, denoted by H and H∗, are given by
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H =
1
m

m

∑
i=1

h(ei, ei), H∗ = 1
m

m

∑
i=1

h∗(ei, ei).

From Equation (1), we get 2h0 = h + h∗ and 2H0 = H + H∗, where h0 and H0 are the second
fundamental form and the mean curvature field of M, respectively, with respect to the Levi–Civita
connection ∇0 on M.

The squared mean curvatures of the submanifold M in M̃ have the expressions

‖H‖2 =
1

m2

2n

∑
α=m+1

(
m

∑
i=1

hα
ii

)2

, ‖H∗‖2 =
1

m2

2n

∑
α=m+1

(
m

∑
i=1

h∗α
ii

)2

,

where hα
ij = g̃(h(ei, ej), eα) and h∗α

ij = g̃(h∗(ei, ej), eα), for i, j ∈ {1, ..., m}, α ∈ {m + 1, ..., 2n}.
Denote by C and C∗ the Casorati curvatures of the submanifold M, defined by the squared norms

of h and h∗, respectively, over the dimension m, as follows:

C =
1
m
‖h‖2 =

1
m

2n

∑
α=m+1

m

∑
i,j=1

(
hα

ij

)2
,

C∗ = 1
m
‖h∗‖2 =

1
m

2n

∑
α=m+1

m

∑
i,j=1

(
h∗α

ij

)2
.

Let L be an s-dimensional subspace of Tp M, s ≥ 2 and let {e1, . . . , es} be an orthonormal basis of
L. Hence, the Casorati curvatures C(L) and C∗(L) of L are given by

C(L) =
1
s

2n

∑
α=m+1

s

∑
i,j=1

(
hα

ij

)2
, C∗(L) =

1
s

2n

∑
α=m+1

s

∑
i,j=1

(
h∗α

ij

)2
.

The normalized δ-Casorati curvatures δC(m − 1) and δ̂C(m − 1) of the submanifold Mn are given by

δC(m − 1)|p =
1
2
C |p +

m + 1
2m

inf{C(L)|L a hyperplane of Tp M}

and
δ̂C(m − 1)|p = 2C |p −2m − 1

2m
sup{C(L)|L a hyperplane of Tp M}.

Moreover, the dual normalized δ∗-Casorati curvatures δ∗C(m − 1) and δ̂∗C(m − 1) of the submanifold
M in M̃ are defined as

δ∗C(m − 1)|p =
1
2
C∗ |p +

m + 1
2m

inf{C∗(L)|L a hyperplane of Tp M}

and
δ̂∗C(m − 1)|p = 2C∗ |p −2m − 1

2m
sup{C∗(L)|L a hyperplane of Tp M}.

Denote by δC(r; m − 1) and δ̂C(r; m − 1), the generalized normalized δ-Casorati curvatures of M,
defined in [10] as

δC(r; m − 1)|p = r C |p +a(r) inf{C(L) | L a hyperplane of Tp M},

if 0 < r < m(m − 1), and

δ̂C(r; m − 1)|p = r C |p +a(r) sup{C(L) | L a hyperplane of Tp M},
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if r > m(m − 1), for a(r) set as

a(r) =
(m − 1)(r + m)(m2 − m − r)

mr
,

where r ∈ R+ and r �= m(m − 1).
Furthermore, denote by δ∗C(r; m − 1) and δ̂∗C(r; m − 1) the dual generalized normalized δ∗-Casorati

curvatures of the submanifold M, defined as follows:

δ∗C(r; m − 1)|p = r C∗ |p +a(r) inf{C∗(L) | L a hyperplane of Tp M},

if 0 < r < m(m − 1), and

δ̂∗C(r; m − 1)|p = r C∗ |p +a(r) sup{C∗(L) | L a hyperplane of Tp M},

if r > m(m − 1), for a(r) set above.
A statistical submanifold (M, g,∇) of (M̃, g̃, ∇̃) is called totally geodesic with respect to the

connection ∇̃ if the second fundamental form h of M for ∇̃ vanishes identically [40].

Let M̃ be an almost complex manifold with almost complex structure J ∈ Γ(TM̃(1,1)).
A quadruplet (M̃, ∇̃, g̃, J) is called a holomorphic statistical manifold if

1. (∇̃, g̃) is a statistical structure on M̃; and
2. ω is a ∇̃-parallel 2-form on M̃,

where ω is defined by ω(X, Y) = g̃(X, JY), for any X, Y ∈ Γ(TM̃).
For a holomorphic statistical manifold, the following formula holds:

g̃(S̃(Z, W)JY, JX) = g̃(S̃(JZ, JW)Y, X) = g̃(S̃(Z, W)Y, X), (8)

for any X, Y, Z, W ∈ Γ(TM̃).
A holomorphic statistical manifold (M̃, ∇̃, g̃, J) is said to be of constant holomorphic sectional

curvature c ∈ R if the following formula holds [42]:

S̃(X, Y)Z =
c
4
{g̃(Y, Z)X − g̃(X, Z)Y + g̃(JY, Z)JX − g̃(JX, Z)JY + 2g̃(X, JY)JZ}, (9)

for any X, Y, Z ∈ Γ(TM̃), where S̃ is the statistical curvature tensor field of M̃.

Remark 2 ([43]). Let (M̃, g̃, J) be a Kähler manifold. If we define a connection ∇̃ as ∇̃ = ∇g̃ + K, where K ∈
Γ(TM̃(1,2)) satisfying the conditions

K(X, Y) = K(Y, X), (10)

g̃(K(X, Y), Z) = g̃(Y, K(X, Z)), (11)

K(X, JY) = −JK(X, Y), (12)

for any X, Y, Z ∈ Γ(TM̃), then (M̃, ∇̃, g̃, J) is a holomorphic statistical manifold.

Let M be an m-dimensional statistical submanifold of a holomorphic statistical manifold
(M̃, ∇̃, g̃, J). For any vector field X tangent to M we can decompose

JX = PX + FX, (13)
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where PX and FX are the tangent component and the normal component, respectively, of JX. Given a
local orthonormal frame {e1, e2, · · · , em} of M, then the squared norm of P is expressed by

‖P‖2 =
m

∑
i,j=1

g2(Pei, ej).

Next, we consider the constrained extremum problem

min
x∈M

f (x), (14)

where M is a Riemannian submanifold of a Riemannian manifold (M̃, g̃), and f : M̃ → R is a function
of differentiability class C2.

Theorem 1 ([44]). If M is complete and connected, (grad f )(p) ∈ T⊥
p M for a point p ∈ M, and the bilinear

form A : Tp M × Tp M → R defined by

A(X, Y) = Hess( f )(X, Y) + g̃(h0(X, Y), grad f ), (15)

is positive definite in p, then p is the optimal solution of the Problem (14).

Remark 3 ([44]). If the bilinear form A defined by Equation (15) is positive semi-definite on the submanifold
M, then the critical points of f |M are global optimal solutions of the Problem (14).

3. Main Inequalities

Theorem 2. Let M be an m-dimensional statistical submanifold of a 2n-dimensional holomorphic statistical
manifold (M̃, ∇̃, g̃, J) of constant holomorphic sectional curvature c. Then we have

(i)

2τ ≤ δ0
C(r; m − 1) + mC0 − 2m2‖H0‖2 (16)

+ m2 g̃(H, H∗) + 3c
4
‖P‖2 +

c
4

m(m − 1),

for any real number r such that 0 < r < m(m − 1), where δ0
C(r; m − 1) =

δC (r;m−1)+δ∗C (r;m−1)
2 and

C0 = C+C∗
2 ; and

(ii)

2τ ≤ δ̂0
C(r; m − 1) + mC0 − 2m2‖H0‖2 (17)

+ m2 g̃(H, H∗) + 3c
4
‖P‖2 +

c
4

m(m − 1),

for any real number r such that r > m(m − 1), where δ̂0
C(r; m − 1) = δ̂C (r;m−1)+δ̂∗C (r;m−1)

2 .

Moreover, the equality cases of Inequalities (16) and (17) hold identically at all points p ∈ M if and only if
the following condition is satisfied:

h + h∗ = 0, (18)

where h and h∗ are the imbedding curvature tensors of the submanifold associated to the dual connections ∇̃ and
∇̃∗, respectively.

Proof. The relations (Equations (2)–(4)) imply

2g̃(S̃(X, Y)Z, W) = 2g(S(X, Y)Z, W)− g̃(h(Y, Z), h∗(X, W)) + g̃(h(X, Z), h∗(Y, W))

−g̃(h∗(Y, Z), h(X, W)) + g̃(h∗(X, Z), h(Y, W)), (19)
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where X, Y, Z, W ∈ Γ(TM).
For p ∈ M, we choose {e1, ..., em} and {em+1, ..., e2n} orthonormal bases of Tp M and T⊥

p M,
respectively. For X = Z = ei and Y = W = ej with i, j ∈ {1, ..., m}, from the Equation (19),
it follows that

2τ(p) = m2 g̃(H, H∗)− ∑
1≤i,j≤m

g̃(h∗(ei, ej), h(ei, ej)) (20)

+
c
4
(m2 − m + 3‖P‖2).

Denoting 2H0 = H + H∗ and 2C0 = C + C∗, Equation (20) becomes

2τ(p) = 2m2‖H0‖2 − m2

2
‖H‖2 − m2

2
‖H∗‖2

−2mC0 +
m
2
(C + C∗) + c

4
(m2 − m + 3‖P‖2). (21)

Let P be the quadratic polynomial defined by

P = rC0 + a(r) C0(L) +
m
2
(C + C∗)− m2

2
(‖H‖2 + ‖H∗‖2)

−2τ(p) +
c
4
(m2 − m + 3‖P‖2), (22)

where L is a hyperplane of Tp M.
We consider that the hyperplane L is spanned by the tangent vectors e1, ..., em−1, without loss of

generality. Therefore, we get

P =
2n

∑
α=m+1

⎡⎣2m + r
m

m

∑
i,j=1

(h0α
ij )

2 + a(r)
1

m − 1

m−1

∑
i,j=1

(h0α
ij )

2 − 2

(
m

∑
i=1

h0α
ii

)2
⎤⎦ . (23)

Then, Equation (23) yields

P =
2n

∑
α=m+1

{ [2(2m + r)
m

+
2a(r)
m − 1

]
∑

1≤i<j≤m−1
(h0α

ij )
2 +

[
2(2m + r)

m
+

2a(r)
m − 1

] m−1

∑
i=1

(h0α
i m)

2

+

(
2m + r

m
+

a(r)
m − 1

− 2
) m−1

∑
i=1

(h0α
ii )

2

−4 ∑
1≤i<j≤m

h0α
ii h0α

jj +

(
2m + r

m
− 2

)
(h0α

mm)
2
}

≥
2n

∑
α=m+1

[
r(m − 1) + a(r)m

m(m − 1)

m−1

∑
i=1

(h0α
ii )

2 +
( r

m

)
(h0α

mm)
2 − 4 ∑

1≤i<j≤m
h0α

ii h0α
jj

]
.

Let fα be a quadratic form defined by fα : Rm → R for any α ∈ {m + 1, ..., 2n},

fα(h0α
11, h0α

22, ..., h0α
mm) =

m−1

∑
i=1

r(m − 1) + a(r)m
m(m − 1)

(h0α
ii )

2

+
r
m
(h0α

mm)
2 − 4 ∑

1≤i<j≤m
h0α

ii h0α
jj .

We investigate the constrained extremum problem

min fα
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with the constraint
Q : h0α

11 + h0α
22 + ... + h0α

mm = kα,

where kα is a real constant.
We obtain the system of first-order partial derivatives:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ fα

∂h0α
ii

= 2
r(m − 1) + a(r)m

m(m − 1)
h0α

ii − 4

(
m

∑
k=1

h0α
kk − h0α

ii

)
= 0

∂ fα

∂h0α
mm

=
2r
m

h0α
mm − 4

m−1

∑
k=1

h0α
kk = 0,

for every i ∈ {1, ..., m − 1}, α ∈ {m + 1, ..., 2n}.
It follows that the constrained critical point is

h0α
ii =

2m(m − 1)
(m − 1)(2m + r) + ma(r)

kα

h0α
mm =

2m
2m + r

kα,

for any i ∈ {1, ..., m − 1}, α ∈ {m + 1, ..., 2n}.
For p ∈ Q, let A be a 2-form, A : TpQ × TpQ → R defined by

A(X, Y) = Hess( fα)(X, Y) + 〈h′
(X, Y), (grad fα)(p)〉,

where h′ is the second fundamental form of Q in Rm+1 and 〈·,·〉 is the standard inner product on Rm.
The Hessian matrix of fα is given by

Hess( fα) =

⎛⎜⎜⎜⎜⎜⎜⎝
λ −4 . . . −4 −4
−4 λ . . . −4 −4

...
...

. . .
...

...
−4 −4 . . . λ −4
−4 −4 . . . −4 2r

m

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where λ = 2 (m−1)(r+2m)+ma(r)
m(m−1) is a real constant.

The condition ∑m
i=1 Xi = 0 is satisfied, for a vector field X ∈ TpQ, as the hyperplane Q is totally

geodesic in Rm. Then, we achieve

A(X, X) = λ
m−1

∑
i=1

X2
i +

2r
m

X2
m − 8

m

∑
i,j=1(i �=j)

XiXj

= λ
m−1

∑
i=1

X2
i +

2r
m

X2
m + 4

(
m

∑
i=1

Xi

)2

− 8
m

∑
i,j=1(i �=j)

XiXj

= λ
m−1

∑
i=1

X2
i +

2r
m

X2
m + 4

m

∑
i=1

X2
i

≥ 0.

Applying Remark 3, the critical point (h0α
11, ..., h0α

mm) of fα is the global minimum point of the
problem. Since fα(h0α

11, ..., h0α
mm) = 0, we get P ≥ 0.

We have then proved Inequalities (16) and (17), considering infimum and supremum, respectively,
over all tangent hyperplanes L of Tp M.
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In addition, we study the equality cases of Inequalities (16) and (17). First, we find out the critical
points of P

hc = (h0 m+1
11 , h0 m+1

12 , . . . , h0 m+1
m m , . . . , h0 2n

11 , . . . , h0 2n
m m)

as the solutions of following system of linear homogeneous equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P
∂h0α

ii
= 2

[
2m + r

m
+

a(r)
m − 1

− 2
]

h0α
ii − 4

m

∑
k �=i,k=1

h0α
kk = 0,

∂P
∂h0α

mm
= 2

r
m

h0α
mm − 4

m−1

∑
k=1

h0α
kk = 0,

∂P
∂h0α

ij
= 4

[
2m + r

m
+

a(r)
m − 1

]
h0α

ij = 0, i �= j,

∂P
∂h0α

im
= 4

[
2m + r

m
+

a(r)
m − 1

]
h0α

im = 0.

The critical points satisfy h0α
ij = 0, with i, j ∈ {1, ..., m} and α ∈ {m + 1, ..., 2n}. On the other hand,

we know that P ≥ 0 and P(hc) = 0, then the critical point hc is a minimum point of P . Consequently,
the cases of equality hold in both Inequalities (16) and (17) if and only if hα

ij = −h∗α
ij , for i, j ∈ {1, ..., m},

α ∈ {m + 1, ..., 2n}.

Remark 4. Under Equation (18), the submanifold M is totally geodesic with respect to the Levi–Civita
connection ∇̃0. Then, the equality cases of Inequalities (16) and (17) hold for all unit tangent vectors at p if and
only if p is a totally geodesic point with respect to the Levi–Civita connection.

By virtue of Theorem 2, the generalized normalized δ-Casorati curvatures satisfy Inequalities (16)
and (17). If the normalized δ-Casorati curvatures δC(m − 1) and δ∗C(m − 1), respectively, δ̂C(m − 1) and
δ̂∗C(m − 1) are involved, then we can state the following result.

Corollary 1. Let M be an m-dimensional statistical submanifold of a 2n-dimensional holomorphic statistical
manifold (M̃, ∇̃, g̃, J) of constant holomorphic sectional curvature c. Then, we have

(i)

ρ ≤ δ0
C(m − 1) +

1
m − 1

C0 − 2m
m − 1

‖H0‖2 (24)

+
m

m − 1
g̃(H, H∗) + 3c

4m(m − 1)
‖P‖2 +

c
4

,

where 2δ0
C(m − 1) = δC(m − 1) + δ∗C(m − 1) and 2C0 = C + C∗, and

(ii)

ρ ≤ δ̂0
C(m − 1) +

1
m − 1

C0 − 2m
m − 1

‖H0‖2 (25)

+
m

m − 1
g̃(H, H∗) + 3c

4m(m − 1)
‖P‖2 +

c
4

,

where 2δ̂0
C(m − 1) = δ̂C(m − 1) + δ̂∗C(m − 1).

Moreover, the equality cases of Inequalities (24) and (25) hold identically at all points if and only if h and
h∗ satisfy the condition in Equation (18), which implies that M is a totally geodesic submanifold with respect to
the Levi–Civita connection.
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4. An Example

Example 1. Let (x1, x2, y1, y2) be a standard system on R4, g the Euclidean metric. Define t = (y2
1 + y2

2)/2
(t ≥ 0) and the functions u, v on R4 as

u(x1, x2, y1, y2) = a(t), v(x1, x2, y1, y2) = b(t),

where a is a function a : [0, ∞) → (0, ∞), and b(t) = −a(t)a′(t)(2ta′(t)− a(t))−1, assuming that a(t) +
2tb(t) > 0 for t ≥ 0.

Let G be a g-natural metric on R4 and J a complex structure defined by Oproiu ([45]) such that R4 is
Kählerian, as follows:

G = (u + vy2
1)dx1dx1 + 2vy1y2dx1dx2 + (u + vy2

2)dx2dx2 +
u + vy2

2
u(u + 2tv)

dy1dy1 (26)

− 2
vy1y2

u(u + 2tv)
dy1dy2 +

u + vy2
1

u(u + 2tv)
dy2dy2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J
∂

∂x1
= (u + vy2

1)
∂

∂y1
+ vy1y2

∂

∂y2
,

J
∂

∂x2
= vy1y2

∂

∂y1
+ (u + vy2

2)
∂

∂y2
,

J
∂

∂y1
= − u + vy2

2
u(u + 2tv)

∂

∂x1
+

vy1y2

u(u + 2tv)
∂

∂x2
,

J
∂

∂y2
=

vy1y2

u(u + 2tv)
∂

∂x1
− u + vy2

1
u(u + 2tv)

∂

∂x2
.

(27)

Let the function u be defined as u(x1, x2, y1, y2) = 1+
√

1+4t
2 . Therefore, the function v becomes

v(x1, x2, y1, y2) = 1. Then, for the metric G and the complex structure J, there exists a tensor field K
such that (R4, ∇̃ := ∇G + K, g̃ := G, J) is a special Kähler manifold [46]. Notice that a holomorphic statistical
structure of holomorphic curvature 0 is nothing but a special Kähler manifold [43].

In this respect, define a (1, 2)-tensor field K on R4:

K =
4

∑
i,j,l=1

kl
ij

∂

∂xl ⊗ dxi ⊗ dxj. (28)

Let α1, ..., α7 be functions on R4 and denote p := u + vy2
1, q := u + vy2

2, r := u + 2tv, s := vy1y2. Suppose
that α2 has the expression

α2 =
1
2

s(uy1 + 2y1) +
1
2

quy2 . (29)

Moreover, α1 and α3 satisfy the equation(
α2

q
sur

− α3
1
ur

− α1
q
s

)
pur
q

+ α1
sur
q

+ α2
s
q
=

1
2

p(uy1 + 2y1) +
1
2

suy2 , (30)

where uy1 := ∂u
∂y1

and uy2 := ∂u
∂y2

.
If K performs the conditions in Equations (10)–(12) and also the conditions in Equations (29), (30), then

we get (R4, ∇̃ := ∇G + K, g̃ := G, J) a special Kähler manifold [46] with K constructed as follows:

k1
14 = k1

41 = k2
13 = k2

31 = −k3
34 = −k3

43 = α1, k4
11 = k3

12 = k3
21 = α2, k4

12 = k4
21 = k3

22 = α3,

k1
24 = k1

42 = k2
23 = k2

32 = −k4
34 = −k4

43 = α4, k2
22 = −k4

24 = −k4
42 = α5,
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k1
11 = k1

12 = k1
21 = −k3

23 = −k3
32 = 0, k2

12 = k2
21 = −k3

24 = −k3
42 = α7

q
s

,

k1
33 = α6, k2

11 = k3
14 = k3

41 = 0, k2
14 = k2

41 = −α2
s

urq
+ α3

p
urq

− α1
s
q

,

k1
23 = k1

32 = α2
q

urp
− α4

s
p
− α3

s
urp

, k3
11 = α1

2s4 − u2r2

sq
+ α2

ur + 2s2

sq
− α3

p
q

,

k4
22 = −α2

q
p
− α4

u2r2

sp
+ α3

ur + 2s2

sp
, k1

13 = k1
31 = α2

q
sur

− α3
1
ur

− α1
q
s

,

k1
33 = −α2

q
urp

+ α3
s

urp
+ α4

s
p

, k1
44 = −k2

24 = −k2
42 = α2

1
ur

− α3
p

sur
+ α4

p
s

,

k3
44 = α2

s
qur

− α3
p

qur
+ α1

s
q

, k3
33 = −α2

q
sur

+ α3
1
ur

+ α1
q
s

,

k1
22 = −k4

23 = −k4
32 = −α5

s
p

,

k1
34 = k1

43 = −α6
s
q
− α5

s2

urpq
,

k1
44 = α6

s2

q2 + α5
s(2s2 + ur)

urpq2 ,

k3
13 = k3

31 = k4
14 = k4

41 = 0,

k4
13 = k4

31 = 0, k2
33 = −α6

p
s

,

k2
34 = k2

43 = α6
p
q
+ α5

s
urq

,

k2
44 = −α5

pq + s2

urq2 − α6
sp
q2 .

Then, M̃ = (R4, ∇̃ := ∇G + K, G, J) is a holomorphic statistical manifold of holomorphic curvature 0.
Next, let M be any m-dimensional submanifold (m < 4) of M̃. Then, Inequalities (16) and (17) are

satisfied. Moreover, the statistical submanifold M of M̃ attains equality in both these inequalities, provided that
M is totally geodesic.

5. Conclusions

In this research study, we provided new solutions to the fundamental problem of finding simple
relationships between various invariants (intrinsic and extrinsic) of the submanifolds. In this respect,
we obtained inequalities involving the normalized δ-Casorati curvatures (extrinsic invariants) and the
scalar curvature (intrinsic invariant) of statistical submanifolds in holomorphic statistical manifolds
with constant holomorphic sectional curvature. In addition, we characterized the equality cases.
These results may stimulate new research aimed at obtaining similar relationships in terms of various
invariants, for statistical submanifolds in other ambient spaces.
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1. Introduction

Quantum calculus or q-calculus is often known as “calculus without limits” and was first
developed by Jackson in the early twentieth century, but the history of quantum calculus can be
traced back to some much earlier work done by Euler and Jacobi et al. (see [1]). Over the recent decade,
the investigation of q-calculus has attracted the interest of many researchers, because it has been found
to have a lot of applications in mathematics and physics. As is known to us, q-calculus can be treated
as a bridge between mathematics and physics, it is a significant tool for researchers working in analytic
number theory, noncommutative geometry, or theoretical physics. In quantum calculus, we obtain
the q-analogues of mathematical objects which can be recaptured as q → 1−. It has been noticed that
quantum calculus is a subfield of timescale calculus. Timescale calculus provides a unified framework
for studying dynamic equations on both the discrete and continuous domains. In quantum calculus,
we are concerned with a specific timescale, called the q-timescale (see [1–4]).

The concept of convexity has been extended in several directions, since these generalized versions
have significant applications in different fields of pure and applied sciences. We only point out that
convexity was recently used in differential geometry to completely classify ideal Casorati submanifolds
in complex space forms (see [5–8]). One of the convincing examples on extensions of convexity is
the introduction of invex function, which was introduced by Hanson [9]. This concept is particularly
interesting from an optimization viewpoint, since it provides a broader setting to study the optimization
and mathematical programming problems. Such optimization problems have recently been considered
in Riemannian geometry by an original choice of a set of quadratic programming problems. Since then,
some classes of generalized convex functions, such as the preinvex function, strongly α-invex function,
and strongly α-preinvex function, were put forward successively, see [10–16].

In this paper, the quantum calculus and the strongly preinvex function are subtly linked together
via integral inequalities. It is well known that the theory of inequality plays a fundamental role in pure
and applied mathematics and has extensive applications. Apart from the larger number of research
results of inequalities in classical analysis, there are considerable works on the study of inequalities
for q-calculus, particularly the study of inequalities related to quantum integral (q-integral), for
example, q-Hermite–Hadamard integral inequality, q-Cauchy–Schwarz integral inequality, q-Hölder

Mathematics 2019, 7, 751; doi:10.3390/math7080751 www.mdpi.com/journal/mathematics81



Mathematics 2019, 7, 751

integral inequality, q-Ostrowski integral inequality, etc. For more details, we refer the interested reader
to [17–23] and the references cited therein.

The purpose of this paper is to establish several q-integral inequalities of Simpson-type via
strongly preinvex functions. The classical Simpson inequality is described as follows:∣∣∣∣∣16

[
φ(α) + 4φ

(
α + β

2

)
+ φ(β)

]
− 1

β − α

∫ β

α
φ(ν)dν

∣∣∣∣∣ ≤ 1
1280

∥∥∥φ(4)
∥∥∥

∞
(β − α)4, (1)

where the mapping φ : [α, β] → R is four times continuously differentiable, and
‖φ(4)‖∞ = supν∈(α,β) |φ(4)(ν)| < ∞ (see [24]).

The paper is organized as follows: In Sections 2 and 3, we shall introduce some notions and
properties on strongly preinvex functions and q-calculus. As an auxiliary result, we present an identity
associated with q-integral. In Section 4, with the help of the auxiliary result, we will establish our
main results. At the end of the paper, some examples are provided to illustrate the applications of our
main results.

2. Preliminaries

Let us recall some preliminary concepts and results.

Definition 1 ([15]). A set Kη ⊂ Rn is said to be invex with respect to bifunction η(., .) : Rn ×Rn → Rn, if

u + λη(v, u) ∈ Kη , ∀ u, v ∈ Kη , λ ∈ [0, 1].

Definition 2 ([15]). A function φ on the invex set Kη ⊂ Rn is said to be preinvex with respect to bifunction
η(., .) : Rn ×Rn → Rn, if

φ(u + λη(v, u)) ≤ (1 − λ)φ(u) + λφ(v), ∀u, v ∈ Kη , λ ∈ [0, 1].

Definition 3 ([16]). A function φ on the invex set Kη ⊂ Rn is said to be strongly preinvex with respect to
bifunction η(., .) : Rn ×Rn → Rn, and modulus μ > 0, if

φ(u + λη(v, u)) ≤ (1 − λ)φ(u) + λφ(v)− μλ(1 − λ)η2(v, u), ∀u, v ∈ Kη , λ ∈ [0, 1].

Here, we introduce a new definition which combines the preinvex functions and the strongly
preinvex functions given above.

Definition 4. A function φ on the invex set Kη ⊂ Rn is said to be generalized strongly preinvex with respect
to bifunction η(., .) : Rn ×Rn → Rn and modulus μ ≥ 0, if

φ(u + λη(v, u)) ≤ (1 − λ)φ(u) + λφ(v)− μλ(1 − λ)η2(v, u), ∀u, v ∈ Kη , λ ∈ [0, 1].

Clearly, if μ = 0, then the class of generalized strongly preinvex functions reduces to the class of
preinvex functions as defined in Definition 2.

In the following, we recall some basic properties of q-calculus.
Let J = [a, b] ⊆ R be an interval and 0 < q < 1 be a constant. The q-derivative of a function

φ : J → R at a point u ∈ J on [a, b] is defined as follows:

Definition 5 ([25]). Let φ : J = [a, b] → R be a continuous function and let u ∈ J. Then, the q-derivative of
φ on J at u is defined as

aDqφ(u) =
φ(u)− φ(qu + (1 − q)a)

(1 − q)(u − a)
, u �= a. (2)
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Definition 6 ([25]). Let φ : J = [a, b] → R is a continuous function. A second-order q-derivative on J, which
is denoted as aD2

qφ, provided that aDqφ is q-differentiable on J with aD2
qφ =a Dq(aDqφ) : J → R. Similarly

higher order q-derivative on J is defined by aDn
q φ : J → R.

In [25], Tariboon and Ntouyas defined the q-integral as follows:

Definition 7 ([25]). Let φ : J = [a, b] → R be a continuous function. Then, the q-integral on J is defined as:

∫ u

a
φ(ν) adqν = (1 − q)(u − a)

∞

∑
n=0

qnφ(qnu + (1 − qn)a), (3)

for u ∈ J.

The following results are useful in the computation of q-integral in subsequent section.

Proposition 1 ([25]). Let f , g : J = [a, b] → R be continuous functions, c ∈ R. Then, for x ∈ J,∫ x

a
( f (ν) + g(ν)) adqν =

∫ x

a
f (ν) adqν +

∫ x

a
f (ν) adqν,∫ x

a
c f (ν) adqν = c

∫ x

a
f (ν) adqν,

∫ x

ξ
f (ν) adqν =

∫ x

a
f (ν) adqν −

∫ ξ

a
f (ν) adqν, ξ ∈ (a, x).

Proposition 2 ([25]). For q-integral, we have the following identities∫ u

a
1 adqν = u − a,∫ u

a
ν adqν =

(u − a)(u + qa)
1 + q

,∫ u

a
(ν − a)τ

adqν =
( 1 − q

1 − qτ+1

)
(u − a)τ+1, τ �= −1,

∫ u

ξ
(ν − ξ) adqν =

u2 − (1 + q)uξ + qξ2

1 + q
− a(1 − q)(u − ξ)

1 + q
, ξ ∈ (a, u).

3. A Key Lemma

In this section, we present an identity associated with q-integral, which plays an important role
in establishing our main results.

Lemma 1. Let f : I = [a, a + η(b, a)] → R be a q-differentiable function on I with η(b, a) > 0. If aDq f is
integrable on I and 0 < q < 1, then

1
6

[
f (a) + 4 f

(
2a + η(b, a)

2

)
+ f (a + η(b, a))

]
− 1

η(b, a)

∫ a+η(b,a)

a
f (t) adqt

= η(b, a)
∫ 1

0
Ψ(t, q) aDq f (a + tη(b, a)) 0dqt, (4)

where

Ψ(t, q) =

⎧⎪⎨⎪⎩
qt − 1

6
, if 0 ≤ t <

1
2

,

qt − 5
6

, if
1
2
≤ t ≤ 1.
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Proof. Let

Q1 =
∫ 1

2

0

(
qt − 1

6

)
aDq f (a + tη(b, a)) 0dqt,

Q2 =
∫ 1

1
2

(
qt − 5

6

)
aDq f (a + tη(b, a)) 0dqt,

then ∫ 1

0
Ψ(t, q) aDq f (a + tη(b, a)) 0dqt = Q1 + Q2.

Utilizing the Definitions 5 and 7, and the properties of q-derivative and q-integral described in
Propositions 1, a direct computation gives

Q1 =
∫ 1

2

0
qt aDq f (a + tη(b, a)) 0dqt −

∫ 1
2

0

1
6 aDq f (a + tη(b, a)) 0dqt

=
∫ 1

2

0
q

f (a + tη(b, a))− f (a + qtη(b, a))
(1 − q)η(b, a) 0dqt

−1
6

∫ 1
2

0

f (a + tη(b, a))− f (a + qtη(b, a))
(1 − q)tη(b, a) 0dqt

=
1
2

∞

∑
n=0

qn+1
f
(

2a+qnη(b,a)
2

)
− f

(
2a+qn+1η(b,a)

2

)
η(b, a)

−1
6

∞

∑
n=0

f
(

2a+qnη(b,a)
2

)
− f

(
2a+qn+1η(b,a)

2

)
η(b, a)

=
1
2

[
f
(

2a+η(b,a)
2

)
η(b, a)

−
∞

∑
n=0

(1 − q)qn
f
(

2a+qnη(b,a)
2

)
η(b, a)

]
− 1

6
·

f
(

2a+η(b,a)
2

)
− f (a)

η(b, a)

=
1
3
·

f
(

2a+η(b,a)
2

)
η(b, a)

+
1
6
· f (a)

η(b, a)
− 1

2

∞

∑
n=0

(1 − q)qn
f
(

2a+qnη(b,a)
2

)
η(b, a)

=
1
3
·

f
(

2a+η(b,a)
2

)
η(b, a)

+
1
6
· f (a)

η(b, a)
− 1

η(b, a)

∫ 1
2

0
f (a + tη(b, a)) 0dqt.

On the other hand, one has

Q2 =
∫ 1

1
2

qt aDq f (a + tη(b, a)) 0dqt −
∫ 1

1
2

5
6 aDq f (a + tη(b, a)) 0dqt

=
∫ 1

0
qt aDq f (a + tη(b, a)) 0dqt −

∫ 1

0

5
6 aDq f (a + tη(b, a)) 0dqt

−
(∫ 1

2

0
qt aDq f (a + tη(b, a)) 0dqt −

∫ 1
2

0

5
6 aDq f (a + tη(b, a)) 0dqt

)
.

Since

∫ 1

0
qt aDq f (a + tη(b, a)) 0dqt −

∫ 1

0

5
6 aDq f (a + tη(b, a)) 0dqt

=
∫ 1

0
q

f (a + tη(b, a))− f (a + qtη(b, a))
(1 − q)η(b, a) 0dqt
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−5
6

∫ 1

0

f (a + tη(b, a))− f (a + qtη(b, a))
(1 − q)tη(b, a) 0dqt

=
∞

∑
n=0

qn+1 f (a + qnη(b, a))− f
(
a + qn+1η(b, a)

)
η(b, a)

−5
6

∞

∑
n=0

f (a + qnη(b, a))− f
(
a + qn+1η(b, a)

)
η(b, a)

=
f (a + η(b, a))

η(b, a)
−

∞

∑
n=0

(1 − q)qn f (a + qnη(b, a))
η(b, a)

− 5
6
· f (a + η(b, a))− f (a)

η(b, a)

=
1
6
· f (a + η(b, a))

η(b, a)
+

5
6
· f (a)

η(b, a)
−

∞

∑
n=0

(1 − q)qn f (a + qnη(b, a))
η(b, a)

=
1
6
· f (a + η(b, a))

η(b, a)
+

5
6
· f (a)

η(b, a)
− 1

η(b, a)

∫ 1

0
f (a + tη(b, a)) 0dqt

and

∫ 1
2

0
qt aDq f (a + tη(b, a)) 0dqt −

∫ 1
2

0

5
6 aDq f (a + tη(b, a)) 0dqt

=
1
2

[
f
(

2a+η(b,a)
2

)
η(b, a)

−
∞

∑
n=0

(1 − q)qn
f
(

2a+qnη(b,a)
2

)
η(b, a)

]
− 5

6
·

f
(

2a+η(b,a)
2

)
− f (a)

η(b, a)

= −1
3
·

f
(

2a+η(b,a)
2

)
η(b, a)

+
5
6
· f (a)

η(b, a)
− 1

η(b, a)

∫ 1
2

0
f (a + tη(b, a)) 0dqt,

we obtain

Q2 =
1
6
· f (a + η(b, a))

η(b, a)
+

1
3
·

f
(

2a+η(b,a)
2

)
η(b, a)

− 1
η(b, a)

∫ 1

0
f (a + tη(b, a)) 0dqt

+
1

η(b, a)

∫ 1
2

0
f (a + tη(b, a)) 0dqt.

Thus,

∫ 1

0
Ψ(t, q) aDq f (a + tη(b, a)) 0dqt = Q1 + Q2

=
1
6
· f (a + η(b, a)) + f (a)

η(b, a)
+

2
3
·

f
(

2a+η(b,a)
2

)
η(b, a)

− 1
η(b, a)

∫ 1

0
f (a + tη(b, a)) 0dqt

=
1
6
· f (a + η(b, a)) + f (a)

η(b, a)
+

2
3
·

f
(

2a+η(b,a)
2

)
η(b, a)

− 1
η2(b, a)

∫ a+η(b,a)

a
f (t) adqt,

which leads to the desired identity (4). The proof of Lemma 1 is complete.

4. Main Results

We are in a position to establish the q-integral inequalities of Simpson-type for strongly
preinvex functions.
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Theorem 1. Let f : I = [a, a + η(b, a)] → R be a q-differentiable function on I with η(b, a) > 0. If | aDq f | is
an integrable and a generalized strongly preinvex function with modulus μ ≥ 0 and 0 < q < 1, then∣∣∣∣16

[
f (a) + 4 f

(
2a + η(b, a)

2

)
+ f (a + η(b, a))

]
− 1

η(b, a)

∫ a+η(b,a)

a
f (t) adqt

∣∣∣∣ (5)

≤ η(b, a)
[
(A1(q) + A4(q))| aDq f (a)|+ (A2(q) + A5(q))| aDq f (b)| − μ(A3(q) + A6(q))η2(b, a)

]
,

where A1(q), A2(q), A3(q), A4(q), A5(q), and A6(q) are given by

A1(q) =

⎧⎪⎪⎨⎪⎪⎩
1−4q3

24(1+q)(1+q+q2)
, 0 < q < 1

3 ,

1+12q+12q2+36q3

216(1+q)(1+q+q2)
, 1

3 ≤ q < 1,

A2(q) =

⎧⎪⎪⎨⎪⎪⎩
1−2q−2q2

24(1+q)(1+q+q2)
, 0 < q < 1

3 ,

18q2+18q−7
216(1+q)(1+q+q2)

, 1
3 ≤ q < 1,

A3(q) =

⎧⎪⎪⎨⎪⎪⎩
1−2q−2q3−4q4

48(1+q)(1+q2)(1+q+q2)
, 0 < q < 1

3 ,

108q4+54q3+12q2+54q−17
1296(1+q)(1+q2)(1+q+q2)

, 1
3 ≤ q < 1,

A4(q) =

⎧⎪⎪⎨⎪⎪⎩
−5+8q+8q2−8q3

24(1+q)(1+q+q2)
, 0 < q < 5

6 ,

12q2+12q+5
216(1+q)(1+q+q2)

, 5
6 ≤ q < 1,

A5(q) =

⎧⎪⎪⎨⎪⎪⎩
5−2q−2q2

8(1+q)(1+q+q2)
, 0 < q < 5

6 ,

18q2+18q+25
216(1+q)(1+q+q2)

, 5
6 ≤ q < 1,

A6(q) =

⎧⎪⎪⎨⎪⎪⎩
5−2q+28q2−2q3−12q4

48(1+q)(1+q2)(1+q+q2)
, 0 < q < 5

6 ,

108q4−54q3+96q2−54q+115
1296(1+q)(1+q2)(1+q+q2)

, 5
6 ≤ q < 1.

Proof. Using Lemma 1 and the assumption condition that | aDq f | is a generalized strongly preinvex
function, we have∣∣∣∣16

[
f (a) + 4 f

(
2a + η(b, a)

2

)
+ f (a + η(b, a))

]
− 1

η(b, a)

∫ a+η(b,a)

a
f (t) adqt

∣∣∣∣
=

∣∣∣∣η(b, a)
∫ 1

0
Ψ(t, q) aDq f (a + tη(b, a)) 0dqt

∣∣∣∣
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= η(b, a)

∣∣∣∣∣
∫ 1

2

0

(
qt − 1

6

)
aDq f (a + tη(b, a)) 0dqt

+
∫ 1

1
2

(
qt − 5

6

)
aDq f (a + tη(b, a)) 0dqt

∣∣∣∣
≤ η(b, a)

[ ∫ 1
2

0

∣∣∣∣qt − 1
6

∣∣∣∣ | aDq f (a + tη(b, a))| 0dqt

+
∫ 1

1
2

∣∣∣∣qt − 5
6

∣∣∣∣ | aDq f (a + tη(b, a))| 0dqt

]

≤ η(b, a)

[ ∫ 1
2

0

∣∣∣∣qt − 1
6

∣∣∣∣
(
(1 − t)| aDq f (a)|+ t| aDq f (b)| − μt(1 − t)η2(b, a)

)
0dqt

+
∫ 1

1
2

∣∣∣∣qt − 5
6

∣∣∣∣
(
(1 − t)| aDq f (a)|+ t| aDq f (b)| − μt(1 − t)η2(b, a)

)
0dqt

]

= η(b, a)

[
| aDq f (a)|

(∫ 1
2

0
(1 − t)

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt +
∫ 1

1
2

(1 − t)
∣∣∣∣qt − 5

6

∣∣∣∣ 0dqt

)

+| aDq f (b)|
(∫ 1

2

0
t
∣∣∣∣qt − 1

6

∣∣∣∣ 0dqt +
∫ 1

1
2

t
∣∣∣∣qt − 5

6

∣∣∣∣ 0dqt

)

−μη2(b, a)

(∫ 1
2

0
t(1 − t)

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt +
∫ 1

1
2

t(1 − t)
∣∣∣∣qt − 5

6

∣∣∣∣ 0dqt

)]
.

In view of the Definitions 5 and 7, and Propositions 1 and 2, a direct calculation gives

A1(q) =
∫ 1

2

0
(1 − t)

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt =

⎧⎪⎪⎨⎪⎪⎩
1−4q3

24(1+q)(1+q+q2)
, 0 < q < 1

3 ,

1+12q+12q2+36q3

216(1+q)(1+q+q2)
, 1

3 ≤ q < 1,

A2(q) =
∫ 1

2

0
t
∣∣∣∣qt − 1

6

∣∣∣∣ 0dqt =

⎧⎪⎪⎨⎪⎪⎩
1−2q−2q2

24(1+q)(1+q+q2)
, 0 < q < 1

3 ,

18q2+18q−7
216(1+q)(1+q+q2)

, 1
3 ≤ q < 1,

A3(q) =
∫ 1

2

0
t(1 − t)

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt =

⎧⎪⎪⎨⎪⎪⎩
1−2q−2q3−4q4

48(1+q)(1+q2)(1+q+q2)
, 0 < q < 1

3 ,

108q4+54q3+12q2+54q−17
1296(1+q)(1+q2)(1+q+q2)

, 1
3 ≤ q < 1,

A4(q) =
∫ 1

1
2

(1 − t)
∣∣∣∣qt − 5

6

∣∣∣∣ 0dqt =

⎧⎪⎪⎨⎪⎪⎩
−5+8q+8q2−8q3

24(1+q)(1+q+q2)
, 0 < q < 5

6 ,

12q2+12q+5
216(1+q)(1+q+q2)

, 5
6 ≤ q < 1,
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A5(q) =
∫ 1

1
2

t
∣∣∣∣qt − 5

6

∣∣∣∣ 0dqt =

⎧⎪⎪⎨⎪⎪⎩
5−2q−2q2

8(1+q)(1+q+q2)
, 0 < q < 5

6 ,

18q2+18q+25
216(1+q)(1+q+q2)

, 5
6 ≤ q < 1,

A6(q) =
∫ 1

1
2

t(1 − t)
∣∣∣∣qt − 5

6

∣∣∣∣ 0dqt =

⎧⎪⎪⎨⎪⎪⎩
5−2q+28q2−2q3−12q4

48(1+q)(1+q2)(1+q+q2)
, 0 < q < 5

6 ,

108q4−54q3+96q2−54q+115
1296(1+q)(1+q2)(1+q+q2)

, 5
6 ≤ q < 1.

Hence, we deduce the required inequality (5). This completes the proof of Theorem 1.

Theorem 2. Let f : I = [a, a + η(b, a)] → R be a q-differentiable function on I with η(b, a) > 0. If | aDq|r is
an integrable and a generalized strongly preinvex function with modulus μ ≥ 0, r > 1 and 0 < q < 1, then

∣∣∣∣16
[

f (a) + 4 f
(

2a + η(b, a)
2

)
+ f (a + η(b, a))

]
− 1

η(b, a)

∫ a+η(b,a)

a
f (t) adqt

∣∣∣∣ (6)

≤ η(b, a)

[
(B1(q))

1− 1
r

(
A1(q)| aDq f (a)|r + A2(q)| aDq f (b)|r − μA3(q)η2(b, a)

) 1
r

+ (B2(q))
1− 1

r

(
A4(q)| aDq f (a)|r + A5(q)| aDq f (b)|r − μA6(q)η2(b, a)

) 1
r
]

,

where

B1(q) =

⎧⎪⎪⎨⎪⎪⎩
1−2q

12(1+q) , 0 < q < 1
3 ,

6q−1
36(1+q) , 1

3 ≤ q < 1,

B2(q) =

⎧⎪⎪⎨⎪⎪⎩
5−4q

12(1+q) , 0 < q < 5
6 ,

4q−5
12(1+q) , 5

6 ≤ q < 1,

A1(q), A2(q), A3(q), A4(q), A5(q), and A6(q) are given by the same expressions as described in Theorem 1.

Proof. Using Lemma 1 and the Hölder inequality, one has∣∣∣∣16
[

f (a) + 4 f
(

2a + η(b, a)
2

)
+ f (a + η(b, a))

]
− 1

η(b, a)

∫ a+η(b,a)

a
f (x) adqx

∣∣∣∣
=

∣∣∣∣η(b, a)
∫ 1

0
Ψ(t, q) aDq f (a + tη(b, a)) 0dqt

∣∣∣∣
= η(b, a)

∣∣∣∣∣
∫ 1

2

0

(
qt − 1

6

)
aDq f (a + tη(b, a)) 0dqt

+
∫ 1

1
2

(
qt − 5

6

)
aDq f (a + tη(b, a)) 0dqt

∣∣∣∣
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≤ η(b, a)

[ ∫ 1
2

0

∣∣∣∣qt − 1
6

∣∣∣∣ | aDq f (a + tη(b, a))| 0dqt

+
∫ 1

1
2

∣∣∣∣qt − 5
6

∣∣∣∣ | aDq f (a + tη(b, a))| 0dqt

]

≤ η(b, a)

[(∫ 1
2

0

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt

)1− 1
r
(∫ 1

2

0

∣∣∣∣qt − 1
6

∣∣∣∣ | aDq f (a + tη(b, a))|r 0dqt

) 1
r

+

(∫ 1

1
2

∣∣∣∣qt − 5
6

∣∣∣∣ 0dqt
)1− 1

r
(∫ 1

1
2

∣∣∣∣qt − 5
6

∣∣∣∣ | aDq f (a + tη(b, a))|r 0dqt
) 1

r
]

≤ η(b, a)

[(∫ 1
2

0

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt

)1− 1
r

×
(∫ 1

2

0

∣∣∣∣qt − 1
6

∣∣∣∣ [(1 − t)| aDq f (a)|r + t| aDq f (b)|r − μt(1 − t)η2(b, a)
]

0dqt

) 1
r

+

(∫ 1

1
2

∣∣∣∣qt − 5
6

∣∣∣∣ 0dqt
)1− 1

r

×
(∫ 1

1
2

∣∣∣∣qt − 5
6

∣∣∣∣ [(1 − t)| aDq f (a)|r + t| aDq f (b)|r − μt(1 − t)η2(b, a)
]

0dqt
) 1

r
]

By direct computation, we find

B1(q) =
∫ 1

2

0

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt =

⎧⎪⎪⎨⎪⎪⎩
1−2q

12(1+q) , 0 < q < 1
3 ,

6q−1
36(1+q) , 1

3 ≤ q < 1,

B2(q) =
∫ 1

1
2

∣∣∣∣qt − 5
6

∣∣∣∣ 0dqt =

⎧⎪⎪⎨⎪⎪⎩
5−4q

12(1+q) , 0 < q < 5
6 ,

4q−5
12(1+q) , 5

6 ≤ q < 1,

and obtain the integral expressions of A1(q), A2(q), A3(q), A4(q), A5(q), and A6(q), which have the
same formulas as those given in Theorem 1. This completes the proof of Theorem 2.

5. Applications

It is worth noting that in Definition 4 for μ = 0, the generalized strongly preinvex functions
reduce to the preinvex functions. Moreover, if we put η = v − u in Definition 2, then the preinvex
functions reduce to the classical convex functions. Besides, the quantum integral inequalities would
lead to the corresponding Riemann integral inequalities by taking the limit q → 1−. Thus, several
new and previously known results can be derived from Theorems 1 and 2 as special cases. Here, we
illustrate the applications of our main results by three examples.

Example 1. Recently, Zhang and Du et al. [26] investigated the quantum integral inequalities for convex
functions, they established the following inequality:
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∣∣∣∣13
[

q f (a) + f (b)
1 + q

+ 2 f
(

qa + b
1 + q

)]
− 1

b − a

∫ b

a
f (t) adqt

∣∣∣∣ (7)

≤ min
{
H1

(1
3

,
1

1 + q
, 1, 1

)
,H2

(1
3

,
1

1 + q
, 1, 1

)}
,

where f : [a, b] → R is a q-differentiable function and | aDq f | is an integrable and convex function with
0 < q < 1, the expressions of H1 and H2 are given by [26] (Theorem 3.2).

Further, in [26], the authors derived a remarkable inequality from (7), as follows:

∣∣∣∣13
[

f (a) + f (b)
2

+ 2 f
(

a + b
2

)]
− 1

b − a

∫ b

a
f (t) dt

∣∣∣∣ ≤ 5(b − a)
72

[| f ′(a)|+ | f ′(b)|], (8)

where f : [a, b] → R is a differentiable function, and | f ′| is an integrable and convex function on [a, b].

In the following, we show a new result analogous to the inequality (7), which can be obtained
directly by taking μ = 0 in Theorem 1.

Corollary 1. Let f : I = [a, a + η(b, a)] → R be a q-differentiable function on I with η(b, a) > 0. If | aDq f |
is an integrable and preinvex function, 0 < q < 1, then∣∣∣∣13

[
f (a) + f (a + η(b, a))

2
+ 2 f

(
2a + η(b, a)

2

)]
− 1

η(b, a)

∫ a+η(b,a)

a
f (t) adqt

∣∣∣∣ (9)

≤ η(b, a)
[
(A1(q) + A4(q))| aDq f (a)|+ (A2(q) + A5(q))| aDq f (b)|] ,

where A1(q), A2(q), A4(q), and A5(q) are the coefficients as described in Theorem 1.

Putting η(b, a) = b − a in Corollary 1, it follows that

Corollary 2. Let f : [a, b] → R be a q-differentiable function. If | aDq f | is an integrable and convex function,
0 < q < 1, then ∣∣∣∣13

[
f (a) + f (b)

2
+ 2 f

(
a + b

2

)]
− 1

b − a

∫ b

a
f (t) adqt

∣∣∣∣ (10)

≤ (b − a)
[
(A1(q) + A4(q))| aDq f (a)|+ (A2(q) + A5(q))| aDq f (b)|] ,

where A1(q), A2(q), A4(q), and A5(q) are the coefficients as described in Theorem 1.

Remark 1. In Corollary 2, if we take the limit q → 1− in (10) and use the basic properties of q-derivative and
q-integral ([25], see also [1])

lim
q→1−

aDq f (t) = f ′(t), lim
q→1−

∫ b

a
f (t) adqt =

∫ b

a
f (t)dt,

along with the equalities

lim
q→1−

(A1(q) + A4(q)) = lim
q→1−

(
1 + 12q + 12q2 + 36q3

216(1 + q)(1 + q + q2)
+

12q2 + 12q + 5
216(1 + q)(1 + q + q2)

)
=

5
72

,
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lim
q→1−

(A2(q) + A5(q)) = lim
q→1−

(
18q2 + 18q − 7

216(1 + q)(1 + q + q2)
+

18q2 + 18q + 25
216(1 + q)(1 + q + q2)

)
=

5
72

,

then we obtain the inequality∣∣∣∣13
[

f (a) + f (b)
2

+ 2 f
(

a + b
2

)]
− 1

b − a

∫ b

a
f (t) dt

∣∣∣∣ ≤ 5(b − a)
72

[| f ′(a)|+ | f ′(b)|]. (11)

This is exactly the above-mentioned inequality (8) due to Zhang and Du et al. [26].

Example 2. In a recent paper [27], Tunç, Göv, and Balgeçti established a Simpson-type quantum integral
inequality for convex functions ([27] Theorem 1), as follows:∣∣∣∣16

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
− 1

b − a

∫ b

a
f (t) adqt

∣∣∣∣
≤ (b − a)

12

[
2q2 + 2q + 1

q3 + 2q2 + 2q + 1
| aDq f (b)|+ 1

3
· 6q3 + 4q2 + 4q + 1

q3 + 2q2 + 2q + 1
| aDq f (a)|

]
, (12)

where f : [a, b] → R is a continuous function, | aDq f | is a convex and integrable function with 0 < q < 1.

Remark 2. Before we describe the related result of inequality (12), we should point out that in (12) there is
an error occurring in the coefficients of |aDq f (b)| and |aDq f (a)|. The mistakes arise from the calculations of
quantum integrals in [27] (Lemmas 4 and 5), the details are as follows:

As an auxiliary for establishing the inequality (12), in [27] (Lemmas 4 and 5) , the authors gave the
following results involving q-integrals (0 < q < 1):

∫ 1
2

0
(1 − t)

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt =
36q3 + 12q2 + 12q + 1
216(q3 + 2q2 + 2q + 1)

, (13)

∫ 1

1
2

(1 − t)
∣∣∣∣qt − 5

6

∣∣∣∣ 0dqt =
12q2 + 12q + 5

216(q3 + 2q2 + 2q + 1)
. (14)

However, the equality (13) is incorrect for the case of 0 < q < 1
3 ; and the equality (14) is incorrect for the

case of 0 < q < 5
6 , which can be observed by direct computation of q-integrals. In fact, by the formulas and

algorithms for q-integrals stated in Propositions 1 and 2, when 0 < q < 1
3 , we have

∫ 1
2

0
(1 − t)

∣∣∣∣qt − 1
6

∣∣∣∣ 0dqt

=
∫ 1

2

0
(1 − t)(

1
6
− qt) 0dqt

=
∫ 1

2

0
(qt2 − 1

6
t − qt +

1
6
) 0dqt

= q
∫ 1

2

0
t2

0dqt − (
1
6
+ q)

∫ 1
2

0
t 0dqt +

1
6

∫ 1
2

0
1 0dqt

= q
1

8(q + q2 + 1)
− (

1
6
+ q)

1
4(1 + q)

+
1
12

=
1 − 4q3

24(q3 + 2q2 + 2q + 1)
.
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When 0 < q < 5
6 , we have

∫ 1

1
2

(1 − t)
∣∣∣∣qt − 5

6

∣∣∣∣ 0dqt

=
∫ 1

1
2

(1 − t)(
5
6
− qt) 0dqt

=
∫ 1

1
2

(qt2 − 1
6

t − qt +
1
6
) 0dqt

= q
∫ 1

1
2

t2
0dqt − (

5
6
+ q)

∫ 1

1
2

t 0dqt +
5
6

∫ 1

1
2

1 0dqt

= q(
∫ 1

0
t2

0dqt −
∫ 1

2

0
t2

0dqt)− (
5
6
+ q)(

∫ 1

0
t 0dqt −

∫ 1
2

0
t 0dqt) +

5
12

= q(
1

q + q2 + 1
− 1

8(q + q2 + 1)
)− (

5
6
+ q)(

1
1 + q

− 1
4(1 + q)

) +
5
12

=
−5 + 8q + 8q2 − 8q3

24(q3 + 2q2 + 2q + 1)
.

In the same way, one can verify that the equality (13) is valid for 1
3 ≤ q < 1, the equality (14) is

valid for 5
6 ≤ q < 1.

In the following we provide a modified version of inequality (12).

Corollary 3. Let f : [a, b] → R be a q-differentiable function. If | aDq f | is an integrable and convex function,
0 < q < 1, then ∣∣∣∣13

[
f (a) + f (b)

2
+ 2 f

(
a + b

2

)]
− 1

b − a

∫ b

a
f (t) adqt

∣∣∣∣ (15)

≤ (b − a)
[
C1(q)| aDq f (a)|+ C2(q)| aDq f (b)|] ,

where C1(q) and C2(q) are given by

C1(q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−3q3+2q2+2q−1
6(q3+2q2+2q+1) , 0 < q < 1

3 ,
−9q3+21q2+21q−11
54(q3+2q2+2q+1) , 1

3 ≤ q < 5
6 ,

6q3+4q2+4q+1
36(q3+2q2+2q+1) , 5

6 ≤ q < 1.

C2(q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−q2−q+2

3(q3+2q2+2q+1) , 0 < q < 1
3 ,

−9q2−9q+32
54(q3+2q2+2q+1) , 1

3 ≤ q < 5
6 ,

2q2+2q+1
12(q3+2q2+2q+1) , 5

6 ≤ q < 1.

Proof. Using Corollary 2 and performing a simple calculation in the expressions C1(q) = A1(q) +
A4(q) and C2(q) = A2(q) + A5(q), where A1(q), A2(q), A4(q), and A5(q) are the coefficients from
Theorem 1, we obtain the inequality (15).

Example 3. We provide an estimation of upper bound for the q-integral
∫ a+η(b,a)

a f (t) adqt.

Corollary 4. Let f : I = [a, a + η(b, a)] → R be a q-differentiable function on I with η(b, a) > 0. If | aDq f |
is an integrable and generalized strongly preinvex function with modulus μ ≥ 0 and 0 < q < 1, then
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∣∣∣∣∫ a+η(b,a)

a
f (t) adqt

∣∣∣∣ ≤ η(b, a)
∣∣∣∣16
[

f (a) + 4 f
(

2a + η(b, a)
2

)
+ f (a + η(b, a))

]∣∣∣∣ (16)

+ η2(b, a)
[
(A1(q) + A4(q))| aDq f (a)|+ (A2(q) + A5(q))| aDq f (b)| − μ(A3(q) + A6(q))η2(b, a)

]
,

where A1(q), A2(q), A3(q), A4(q), A5(q) and A6(q) are the coefficients as described in Theorem 1.

Proof. Note that∣∣∣∣ 1
η(b, a)

∫ a+η(b,a)

a
f (t) adqt

∣∣∣∣ ≤ ∣∣∣∣16
[

f (a) + 4 f
(

2a + η(b, a)
2

)
+ f (a + η(b, a))

]∣∣∣∣
+

∣∣∣∣ 1
η(b, a)

∫ a+η(b,a)

a
f (t) adqt − 1

6

[
f (a) + 4 f

(
2a + η(b, a)

2

)
+ f (a + η(b, a))

]∣∣∣∣ .

Utilizing Theorem 1, one has∣∣∣∣ 1
η(b, a)

∫ a+η(b,a)

a
f (t) adqt

∣∣∣∣ ≤ ∣∣∣∣16
[

f (a) + 4 f
(

2a + η(b, a)
2

)
+ f (a + η(b, a))

]∣∣∣∣
+η(b, a)

[
(A1(q) + A4(q))| aDq f (a)|+ (A2(q) + A5(q))| aDq f (b)| − μ(A3(q) + A6(q))η2(b, a)

]
.

Multiplying both sides of the above inequality by η(b, a) leads to the desired inequality (16).
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1. Introduction

Let M be a compact minimal hypersurface of the unit sphere Sn+1 with shape operator A. In his
pioneering work, Simons [1] has shown that on a compact minimal hypersurface M of the unit
sphere Sn+1 either A = 0 (totally geodesic), or ‖A‖2 = n, or ‖A‖2 (p) > n for some point p ∈ M,
where ‖A‖ is the length of the shape operator. This work was further extended in [2] and for compact
constant mean curvature hypersurfaces in [3]. If for every point p in M, the square of the length
of the second fundamental form of M is n, then it is known that M must be a subset of a Clifford
minimal hypersurface

Sl

(√
l
n

)
× Sm

(√
m
n

)
,

where l, m are positive integers, l +m = n (cf. Theorem 3 in [4]). Note that this result was independently
proven by Lawson [2] and Chern, do Carmo, and Kobayashi [5]. One of the interesting questions in
differential geometry of minimal hypersurfaces of the unit sphere Sn+1 is to characterize minimal
Clifford hypersurfaces. Minimal hypersurfaces have also been studied in (cf. [6–8]). In [2], bounds on
Ricci curvature are used to find a characterization of the minimal Clifford hypersurfaces in the unit
sphere S4. Similarly in [3,9–11], the authors have characterized minimal Clifford hypersurfaces in the
odd-dimensional unit spheres S3 and S5 using constant contact angle. Wang [12] studied compact
minimal hypersurfaces in the unit sphere Sn+1 with two distinct principal curvatures, one of them
being simple and obtained the following integral inequality,∫

M
‖A‖2 ≤ nVol(M),

Mathematics 2020, 8, 294; doi:10.3390/math8020294 www.mdpi.com/journal/mathematics95
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where Vol(M) is the volume of M. Moreover, he proved that equality in the above inequality holds if
and only if M is the Clifford hypersurface,

S1

(√
1
n

)
× Sm

(√
n − 1

n

)
.

In this paper, we are interested in studying compact minimal hypersurfaces of the unit sphere
S2n+1 using the Sasakian structure (ϕ, ξ, η, g) (cf. [13]) and finding characterizations of minimal
Clifford hypersurface of S2n+1. On a compact minimal hypersurface M of the unit sphere S2n+1, we
denote by N the unit normal vector field and define a smooth function f = g(ξ, N), which we call
the Reeb function of the minimal hypersurface M. Also, on the hypersurface M, we have a smooth
vector field v = ϕ(N), which we call the contact vector field of the hypersurface (v being orthogonal to ξ

belongs to contact distribution). Instead of demanding two distinct principal curvatures one being
simple, we ask the contact vector field v of the minimal hypersurface in S2n+1 to be conformal vector
field and obtain an inequality similar to Wang’s inequality and show that the equality holds if and
only if M is isometric to a Clifford hypersurface. Indeed we prove

Theorem 1. Let M be a compact minimal hypersurface of the unit sphere S2n+1 with Reeb function f and
contact vector field v a conformal vector field on M. Then,∫

M
(1 − f 2) ‖A‖2 ≤ 2n

∫
M

(
1 − f 2

)
and the equality holds if and only if M is isometric to the Clifford hypersurface Sl

(√
l

2n

)
× Sm

(√
m
2n

)
,

where l + m = 2n.

Also in [12], Wang studied embedded compact minimal non-totally geodesic hypersurfaces in
Sn+1 those are symmetric with respect to n + 2 pair-wise orthogonal hyperplanes of Rn+2. If M is such
a hypersurface, then it is proved that ∫

M
‖A‖2 ≥ nVol(M),

and the equality holds precisely if M is a Clifford hypersurface. Note that compact embedded
hypersurface has huge advantage over the compact immersed hypersurface, as it divides the ambient
unit sphere Sn into two connected components.

In our next result, we consider compact immersed minimal hypersurface M of the unit sphere
S2n+1 such that the Reeb function f is a constant along the integral curves of the contact vector field
v and show that above inequality of Wang holds, and we get another characterization of minimal
Clifford hypersurface in the unit sphere S2n+1. Precisely, we prove the following.

Theorem 2. Let M be a compact minimal hypersurface of the unit sphere S2n+1 with Reeb function f a
constant along the integral curves of the contact vector field v. Then,∫

M
‖A‖2 ≥ 2nVol(M)

and the equality holds if and only if M is isometric to the Clifford hypersurface Sl
(√

l
2n

)
× Sm

(√
m
2n

)
,

where l + m = 2n.
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2. Preliminaries

Recall that conformal vector fields play an important role in the geometry of a Riemannian
manifolds. A conformal vector field v on a Riemannian manifold (M, g) has local flow consisting of
conformal transformations, which is equivalent to

£vg = 2ρg. (1)

The smooth function ρ appearing in Equation (1) defined on M is called the potential function
of the conformal vector field v. We denote by (ϕ, ξ, η, g) the Sasakian structure on the unit sphere
S2n+1 as a totally umbilical real hypersurface of the complex space form (Cn+1, J, 〈, 〉), where J is the
complex structure and 〈, 〉 is the Euclidean Hermitian metric. The Sasakian structure (ϕ, ξ, η, g) on
S2n+1 consists of a (1, 1) skew symmetric tensor field ϕ, a smooth unit vector field ξ, a smooth 1-form
η dual to ξ, and the induced metric g on S2n+1 as real hypersurface of Cn+1 and they satisfy (cf. [13])

ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1, g(ϕX, ϕY) = g(X, Y)− η(X)η(Y), (2)

and (∇ϕ
)
(X, Y) = g(X, Y)ξ − η(Y)X, ∇Xξ = −ϕX, (3)

where X, Y are smooth vector fields, ∇ is Riemannian connection on S2n+1 and the covariant derivative(∇ϕ
)
(X, Y) = ∇X ϕY − ϕ

(∇XY
)

.

We dente by N and A the unit normal and the shape operator of the hypersurface M of the unit
sphere S2n+1. We denote the induced metric on the hypersurface M by the same letter g and denote
by ∇ the Riemannian connection on the hypersurface M with respect to the induced metric g. Then,
the fundamental equations of hypersurface are given by (cf. [14])

∇XY = ∇XY + g(AX, Y), ∇X N = −AX, X, Y ∈ X(M), (4)

R(X, Y)Z = g(Y, Z)X − g(X, Z)Y + g(AY, Z)AX − g(AX, Z)AY, (5)

(∇A) (X, Y) = (∇A) (Y, X), X, Y ∈ X(M), (6)

where X(M) is the Lie algebra of smooth vector fields and R(X, Y)Z is the curvature tensor field of the
hypersurface M. The Ricci tensor of the minimal hypersurface M of the unit sphere S2n+1 is given by

Ric(X, Y) = (2n − 1)g(X, Y)− g(AX, AY), X, Y ∈ X(M) (7)

and
2n

∑
i=1

(∇A) (ei, ei) = 0 (8)

holds for a local orthonormal frame {e1, . . . , e2n} on the minimal hypersurface M.
Using the Sasakian structure (ϕ, ξ, η, g) on the unit sphere S2n+1, we analyze the induced structure

on a hypersurface M of S2n+1. First, we have a smooth function f on the hypersurface M defined by
f = g(ξ, N), which we call the Reeb function of the hypersurface M, where N is the unit normal vector
field. As the operator ϕ is skew symmetric, we get a vector field v = ϕN defined on M, which we
call the contact vector field of the hypersurface M. Note that the vector field v is orthogonal to ξ, and
therefore lies in the contact distribution of the Sasakian manifold S2n+1. We denote by u = ξT the
tangential component of ξ to the hypersurface M and, consequently, we have ξ = u + f N. Let α and β

be smooth 1-forms on M dual to the vector fields u and v, respectively, that is, α(X) = g(X, u) and
β(X) = g(X, v), X ∈ X(M). For X ∈ X(M), we set JX = (ϕX)T the tangential component of ϕX to
the hypersurface, which gives a skew symmetric (1, 1) tensor field J on the hypersurface M. It follows

97



Mathematics 2020, 8, 294

that ϕX = JX − β(X)N. Thus, we get a structure (J, u, v, α, β, f , g) on the hypersurface M and using
properties in Equations (2) and (3) of the Sasakian structure (ϕ, ξ, η, g) on the unit sphere S2n+1 and
Equation (4), it is straightforward to see that the structure (J, u, v, α, β, f , g) on the hypersurface M has
the properties described in the following Lemma.

Lemma 1. Let M be a hypersurface of the unit sphere S2n+1. Then, M admits the structure
(J, u, v, α, β, f , g) satisfying

(i) J2 = −I + α ⊗ u + β ⊗ v,
(ii) Ju = − f v, Jv = f u,

(iii) g(JX, JY) = g(X, Y)− α(X)α(Y)− β(X)β(Y),
(iv) ∇Xu = −JX + f AX, ∇Xv = − f X − JAX,
(v) (∇J) (X, Y) = g(X, Y)u − α(Y)X + g(AX, Y)v − β(Y)AX,

(vi) ∇ f = −Au + v,
(vii) ‖u‖2 = ‖v‖2 = (1 − f 2), g(u, v) = 0,

where ∇ f is the gradient of the Reeb function f .

Let Δ f be the Laplacian of the Reeb function f of the minimal hypersurface M of the unit
sphere S2n+1 defined by Δ f = div∇ f . Then using Lemma 1 and 1

2 Δ f 2 = f Δ f + ‖∇ f ‖2 and
Equations (6) and (8), we get the following:

Lemma 2. Let M be a minimal hypersurface of the unit sphere S2n+1. Then, the Reeb function f satisfies

(i) Δ f = −
(

2n + ‖A‖2
)

f ,

(ii) 1
2 Δ f 2 = −

(
2n + ‖A‖2

)
f 2 + ‖∇ f ‖2.

On the hypersurface M of the unit sphere S2n+1, we define a (1, 1) tensor field Ψ = JA − AJ,
then it follows that g(ΨX, Y) = g(X, ΨY), X, Y ∈ X(M), that is, Ψ is symmetric and that trΨ = 0.
Next, we prove the following:

Lemma 3. Let M be a compact minimal hypersurface of the unit sphere S2n+1. Then,

∫
M

(
1 − f 2

)
‖A‖2 =

∫
M

(
2n − 2n(2n + 1) f 2 +

1
2
‖Ψ‖2

)
.

Proof. Using Equation (7), we have Ric(v, v) = (2n − 1) ‖v‖2 − ‖Av‖2. Now, using Lemma 1, we get

(£vg) (X, Y) = −2 f g(X, Y)− g(ΨX, Y),

which on using the fact that trΨ = 0, gives

|£vg|2 = 8n f 2 + ‖Ψ‖2 .

Also, using (iii) of Lemma 1, we have

‖JA‖2 = ‖A‖2 − ‖Au‖2 − ‖Av‖2 ,

which together with second equation in (iv) of Lemma 1 and the fact that trJA = 0, implies

‖∇v‖2 = 2n f 2 + ‖A‖2 − ‖Au‖2 − ‖Av‖2 .
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Note that second equation in (iv) of Lemma 1 also gives

divv = −2n f .

Now, inserting above values in the following Yano’s integral formula (cf. [15])

∫
M

(
Ric(v, v) +

1
2
|£vg|2 − ‖∇v‖2 − (divv)2

)
= 0,

we get ∫
M

(
(2n − 1) ‖v‖2 + 2n f 2 +

1
2
‖Ψ‖2 − ‖A‖2 + ‖Au‖2 − 4n2 f 2

)
= 0. (9)

Also, (vi) of Lemma 1, gives Au = v −∇ f , that is, ‖Au‖2 = ‖v‖2 + ‖∇ f ‖2 − 2v( f ), which on
using div( f v) = v( f ) + f divv = v( f )− 2n f 2, gives

‖Au‖2 = ‖v‖2 + ‖∇ f ‖2 − 2div( f v)− 4n f 2.

Inserting above value of ‖Au‖2 in Equation (9), yields

∫
M

(
2n ‖v‖2 − 2n f 2 +

1
2
‖Ψ‖2 − ‖A‖2 + ‖∇ f ‖2 − 4n2 f 2

)
= 0. (10)

Integrating (ii) of Lemma 2, we get∫
M
‖∇ f ‖2 =

∫
M

(
2n + ‖A‖2

)
f 2,

which together with ‖v‖2 = 1 − f 2 and Equation (10) proves the integral formula.

Lemma 4. Let M be a minimal hypersurface of the unit sphere S2n+1. Then, the contact vector field v is a
conformal vector field if and only if JA = AJ.

Proof. Suppose that AJ = JA. Then, using Lemma 1 and symmetry of shape operator A and skew
symmetry of the operator J, we have

(£vg) (X, Y) = g(∇Xv, Y) + g(∇Yv, X) = −2 f g(X, Y), X ∈ X(M),

which proves that v is a conformal vector field with potential function − f . Conversely, suppose v is
conformal vector field with potential function ρ. Then, using Equation (1), we have

(£vg) (X, Y) = g(∇Xv, Y) + g(∇Yv, X) = 2ρg(X, Y),

which on using Lemma 1, gives

g(−JAX − f X, Y) + g(−JAY − f Y, X) = 2ρg(X, Y),

that is,
g(AJX − JAX, Y) = 2(ρ + f )g(X, Y).

Choosing a local orthonormal frame {e1, . . . , e2n} on the minimal hypersurface M and taking
X = Y = ei in above equation and summing, we get ρ = − f . This gives g(AJX − JAX, Y) = 0,
X, Y ∈ X(M), that is, AJ = JA.
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Lemma 5. Let M be a minimal hypersurface of the unit sphere S2n+1. If the contact vector field v is a conformal
vector field on M, then

Au =
‖A‖2

2n
v.

Proof. Suppose v is a conformal vector field. Then, by Lemma 4, we have JA = AJ . Note that for the
Hessian operator A f of the Reeb function f using Lemma 1, we have

A f (X) = ∇X∇ f = ∇X(v − Au) = −JAX − f X −∇X Au, X ∈ X(M),

which on using (vi) of Lemma 1, gives

A f (X) = − f (X + A2X)− (∇A)(X, u).

Taking covariant derivative in above equation gives(
∇A f

)
(X, Y) = −X( f )((Y + A2Y)− f

(
∇A2

)
(X, Y)−

(
∇2 A

)
(X, Y, u)

+ (∇A) (Y, JX)− f (∇A) (Y, AX),

where we used (iv) of Lemma 1. Now, on taking a local orthonormal frame {e1, . . . , e2n} on the minimal
hypersurface M and taking X = Y = ei in above equation and summing, we get

2n

∑
i=1

(
∇A f

)
(ei, ei) = −∇ f − A2∇ f − f

2n

∑
i=1

(
∇A2

)
(ei, ei)−

2n

∑
i=1

(
∇2 A

)
(ei, ei, u)

+
2n

∑
i=1

(∇A) (ei, Jei)− f
2n

∑
i=1

(∇A) (ei, Aei).

Note that for the minimal hypersurface, we have

2n

∑
i=1

(∇A) (ei, Aei) =
2n

∑
i=1

(
∇ei A

2ei − A ((∇A)) (ei, ei) + A (∇ei ei)
)

=
2n

∑
i=1

(
∇A2

)
(ei, ei).

Thus, the previous equation takes the form

∑2n
i=1

(
∇A f

)
(ei, ei) = −∇ f − A2∇ f − 2 f ∑2n

i=1
(∇A2) (ei, ei) − ∑2n

i=1
(∇2 A

)
(ei, ei, u) + ∑2n

i=1 (∇A) (ei, Jei) . (11)

Now, using the definition of Hessian operator, we have

R(X, Y)∇ f =
(
∇A f

)
(X, Y)−

(
∇A f

)
(Y, X),

which gives

Ric(Y,∇ f ) = g

(
Y,

2n

∑
i=1

(
∇A f

)
(ei, ei)

)
− Y (Δ f )

and we conclude

Q(∇ f ) = −∇(Δ f ) +
2n

∑
i=1

(
∇A f

)
(ei, ei), (12)
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where Q is the Ricci operator defined by Ric(X, Y) = g(QX, Y), X, Y ∈ X(M). Using (i) of Lemma 2,
we have

∇ (Δ f ) = −2n∇ f − ‖A‖2 ∇ f − f∇‖A‖2

and, consequently, using Q(X) = (2n − 1)X − A2X (outcome of Equation (7)), the Equation (12) takes
the form

2n

∑
i=1

(
∇A f

)
(ei, ei) = (2n − 1)∇ f − A2 (∇ f )− 2n∇ f − ‖A‖2 ∇ f − f∇‖A‖2 ,

that is,
2n

∑
i=1

(
∇A f

)
(ei, ei) = −∇ f − A2 (∇ f )− ‖A‖2 ∇ f − f∇‖A‖2 . (13)

Also, note that

X
(
‖A‖2

)
= X

(
2n

∑
i=1

g (Aei, Aei)

)
= 2

2n

∑
i=1

g ((∇A) (X, ei), Aei)

= 2
2n

∑
i=1

g (X, (∇A) (ei, Aei)) ,

where we have used Equation (6) and symmetry of the shape operator A. Therefore, the gradient of
the function ‖A‖2 is

∇‖A‖2 = 2
2n

∑
i=1

(∇A) (ei, Aei),

and, consequently, Equation (13), takes the form

2n

∑
i=1

(
∇A f

)
(ei, ei) = −∇ f − A2 (∇ f )− ‖A‖2 ∇ f − 2 f

2n

∑
i=1

(∇A) (ei, Aei). (14)

Using Equations (11) and (14), we conclude

− ‖A‖2 ∇ f = −
2n

∑
i=1

(
∇2 A

)
(ei, ei, u) +

2n

∑
i=1

(∇A) (ei, Jei). (15)

Now, using Equations (6) and (8) and the Ricci identity, we have

2n

∑
i=1

(
∇2 A

)
(ei, ei, u) =

2n

∑
i=1

(
∇2 A

)
(ei, u, ei) =

2n

∑
i=1

(R(ei, u)Aei − AR(ei, u)ei) ,

which on using Equation (5) and trA = 0 gives

2n

∑
i=1

(
∇2 A

)
(ei, ei, u) = −‖A‖2 Au + 2nAu. (16)

Also, using JA = AJ, we have

2n

∑
i=1

(∇A) (ei, Jei) =
2n

∑
i=1

(∇ei JAei − A ((∇J) (ei, ei) + J (∇eo ei))

=
2n

∑
i=1

((∇J) (ei, Aei)− A ((∇J) (ei, ei)) ,
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which on using (v) of Lemma 1, yields

2n

∑
i=1

(∇A) (ei, Jei) = ‖A‖2 v − 2nAu. (17)

Finally, using (vi) of Lemma 1 and Equations (16) and (17) in Equation (15), we get

−‖A‖2 (−Au + v) = ‖A‖2 Au − 2nAu + ‖A‖2 v − 2nAu

and this proves the Lemma.

3. Proof of Theorem 1

As the contact vector field v is a conformal vector field by Lemma 4, we have JA = AJ, that is,
Ψ = 0. Then Lemma 3 implies∫

M

(
1 − f 2

)
‖A‖2 =

∫
M

(
2n − 2n(2n + 1) f 2

)
,

that is, ∫
M

(
1 − f 2

)
‖A‖2 =

∫
M

(
2n(1 − f 2)− 4n f 2

)
. (18)

Therefore, we get the inequality∫
M

(
1 − f 2

)
‖A‖2 ≤

∫
M

2n(1 − f 2).

Moreover, if the equality holds, then by Equation (18), we get f = 0, which in view of (vi), (vii) of
Lemma 1, we conclude that Au = v and that the contact vector field v is a unit vector field. As v is a
conformal vector field, combining Au = v with Lemma 5, we get ‖A‖2 v = 2nv, that is, ‖A‖2 = 2n.
Therefore, M is a Clifford hypersurface (cf. [5]).

The converse is trivial.

4. Proof of Theorem 2

As the Reeb function f is a constant along the integral curves of the contact vector field v,
we have v( f ) = 0. Note that div( f v) = v( f ) + f divv = −2n f 2, which on integration gives f = 0,
and consequently, the contact vector field v is a unit vector field. Then Lemma 3, implies

∫
M
‖A‖2 =

∫
M

(
2n +

1
2
‖Ψ‖2

)
, (19)

which proves the inequality ∫
M
‖A‖2 ≥ 2nVol(M).

If the equality holds, then by Equation (4.1), we get that Ψ = 0, that is, JA = AJ. Thus, by Lemma 4,
the contact vector field v is a conformal vector field. Using Lemma 5, we get ‖A‖2 = 2n. Therefore,
M is a Clifford hypersurface (cf. [5]).

The converse is trivial.
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Abstract: Inspired by the equivalence between isoperimetric inequality and Sobolev inequality,
we provide a new connection between geometry and analysis. We define the minimal perimeter of a
log-concave function and establish a characteristic theorem of this extremal problem for log-concave
functions analogous to convex bodies.

Keywords: isoperimetric problem; minimal perimeter; log-concave functions; isotropic measure

1. Introduction

The isoperimetric inequality is an important inequality in geometry which originated from
the well-known isoperimetric problem. The isoperimetric inequality has a profound influence on
each branches of mathematics. The breakthrough works of Federer and Fleming [1] and Mazya [2]
discovered independently the connection between the isoperimetric problem and the Sobolev
embedding problem. They established the sharp Sobolev inequality by using the isoperimetric
inequality. This exciting connection has motivated a number of studies in recent years about
interactions of geometric and analytic inequalities. In this paper, we further study the connection
between geometry and analysis.

Let us recall some facts about convex bodies. Let K be a convex body (i.e., compact, convex subset
with non-empty interior) in the n-dimensional Euclidean space Rn, the family {TK : T ∈ SL(n)} of its
positions are studied by many mathematicians. Introducing the right position of the unit ball KX of a
finite dimensional normed space X is one of the main problems in the asymptotic theory. There exist
many celebrated positions for different purposes, for example isotropic position, M-position, John’s
position, the �-position and so on, see [3,4].

Our purpose is to study the isotropic position of log-concave functions. Hence, we first recall
some geometric backgrounds and these are our motivations. Let K be a convex body in Rn with
centroid at the origin and volume equal to one. A convex body K is in isotropic position if∫

K
〈x, θ〉2dx = L2

K, ∀θ ∈ Sn−1,

where 〈·, ·〉 is the usual inner product in Rn and Sn−1 is the unit sphere in Rn. It’s worth noting that
every convex body K with volume one has an isotropic position, and this position is uniqueness
(up to an orthogonal transformation), see, e.g., [3]. Isotropic positions have been used to study
the classical convexity problems, for example, the minimal surface area of a convex body and its
extension [5,6], the minimal mean width of a convex body and its extension [7,8]. Other contributions
include e.g., [9–11] among others.

We recall two specific examples on isotropic positions. Let K be a convex body and denote by S(K)
its surface area. If S(K) ≤ S(TK) for every T ∈ SL(n), then K has minimal surface area (see, e.g., [5]).
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Petty [5] obtained the following characterization of the minimal surface area position: a convex body
K has minimal surface area if and only if its surface area measure σK is isotropic, i.e.,

∫
Sn−1

〈u, θ〉2dσK(u) =
S(K)

n
, ∀θ ∈ Sn−1.

As a second example, the minimal mean width will be recalled which was defined by
Giannopoulos and Milman [7]. Let K be a convex body in Rn, the mean width w(K) of K is define as

w(K) = 2
∫

Sn−1
hK(u)dσ(u),

where hK(u) := supy∈K〈u, y〉 is the support function of K and σ is the rotationally invariant probability
measure on Sn−1. For every T ∈ SL(n), if w(K) ≤ w(TK) then K has minimal mean width
(see, e.g., [7]). Giannopoulos and Milman [7] showed that if the support function of K is twice
continuously differentiable, then K has minimal mean width if and only if the measure dνK = hKdσ is
isotropic, i.e., ∫

Sn−1
hK(u)〈u, θ〉2dσ(u) =

w(K)
2n

, ∀θ ∈ Sn−1.

Within the last few years, many geometric results have been generalized to their corresponding
functional versions, including but not limited to the functional version Blaschke-Santaló inequality and
its reverse [12–16], the functional affine surface areas [17–19], Minkowski problem for functions [20–22],
and analytic inequalities with geometric background [23–28].

In this paper, we consider the log-concave functions in Rn. A function f : Rn → R is log-concave
if for any x, y ∈ Rn and λ ∈ [0, 1], it holds

f (λx + (1 − λ)y) ≥ f (x)λ f (y)1−λ. (1)

A typical example of log-concave functions is the characteristic function of convex bodies,
1K (which is defined as 1K(x) = 1 when x ∈ K and 1K(x) = 0 when x �∈ K). Let J( f ) denote
the total mass functional of f : Rn → R, namely

J( f ) =
∫
Rn

f (x)dx.

For any t > 0 and log-concave functions f , g : Rn → R, Colesanti and Fragalà [21] defined the
first variation of J at f along g as

δJ( f , g) = lim
t→0+

J( f ⊕ t · g)− J( f )
t

, (2)

where t · g(x) = gt(x/t) for t > 0 and x ∈ Rn, and f ⊕ g the Asplund sum of functions f and g, i.e.,

[ f ⊕ g](x) = sup
x=x1+x2

f (x1)g(x2), x ∈ Rn. (3)

It was proved that if f and g are restricted to a subclass of log-concave functions, then the first
variation δJ( f , g) precisely turns out to be Lp mixed volume of convex bodies (see Proposition 3.13
in [21]). In particular, the perimeter of f is defined as (see [21])

P( f ) = δJ( f , γn),

where γn(x) = e−
‖x‖2

2 is the Gaussian function and ‖x‖ is the Euclidean norm of x ∈ Rn.
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Motivated by the work of Giannopoulos and Milman [7], we consider the extremal problems
of log-concave functions instead of convex bodies, and our purpose is to discuss the possibility
of an isometric approach to these questions. We introduce the notion of minimal perimeters of
log-concave functions. Assume that f is a log-concave function, we call f has minimal perimeter if
P( f ) ≤ P( f ◦ T) for every T ∈ SL(n). Furthermore, we derive the following characteristic theorem of
the minimal perimeter.

Theorem 1. If f : Rn → [0, ∞) is a log-concave function, then f has minimal perimeter if and only if

tr(T)
n

P( f ) =
1
2

∫
Rn
〈x, Tx〉dμ f (x) (4)

for every T ∈ GL(n). Here tr(T) denotes the trace of T, and μ f = (∇u)�( fHn) is a Borel measure on Rn

(where Hn is the n-dimensional Hausdorff measure and u = − log f ).

Theorem 1 implies that the log-concave function f has minimal perimeter if and only if μ f (·) is
isotropic, and provides a further example of the connections between the theory of convex bodies and
that of functions.

We remark that our works belong to the asymptotic theory of log-concave functions which parallel
to that of convex bodies. From a geometric and analytic view of point to study convex bodies is the
asymptotic theory of convex bodies which emphasize the dependence of various parameters on the
dimension. Isotropic positions for convex bodies play important roles in the asymptotic theory of
convex bodies. We are not aware of the related results for log-concave functions. Hence, our work
in this paper presents a new connection between convex bodies and log-concave functions and it
also leads to a new topic in the study of geometry of log-concave functions. We hope that our work
provides some useful tools or ideas in the development of geometry of log-concave functions.

2. Preliminaries

In this section, we provide some preliminaries and notations required for functions. More details
can be found in [3,4].

A function u : Rn → R∪ {+∞} is convex if

u((1 − λ)x + λy) ≤ (1 − λ)u(x) + λu(y)

for any x, y ∈ Rn and λ ∈ [0, 1]. Let

dom(u) = {x ∈ Rn : u(x) ∈ R}.

Since the convexity of u, dom(u) is a convex set. If dom(u) �= ∅, then u is said proper.
The function u is called of class C2 if it is twice differentiable on int(dom(u)), with a positive definite
Hessian matrix. The Fenchel conjugate of u is the convex function defined by

u∗(y) = sup
x∈Rn

{〈x, y〉 − u(x)} , ∀y ∈ Rn.

Clearly, u(x) + u∗(y) ≥ 〈x, y〉 for all x, y ∈ Rn. The equality holds if and only if x ∈ dom(u) and
y is in the subdifferential of u at x. Hence, one can checked that

u∗(∇u(x)) + u(x) = 〈x,∇u(x)〉.
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From the definition of log-concave functions (1), we known that a log-concave function f : Rn → R

has the form f (x) = e−u(x) where u : Rn → R∪ {+∞} is convex. Writing

L =

{
u : Rn → R∪ {+∞}

∣∣∣u is proper and convex, lim
‖x‖→+∞

u(x) = +∞
}

,

A =
{

f : Rn → R
∣∣∣ f = e−u, u ∈ L

}
.

For u, v ∈ L, the inf-convolution of u, v is defined by

(u�v)(x) = inf
y∈Rn

[u(y) + v(y − x)], ∀x ∈ Rn, (5)

and the right scalar multiplication ut is defined by

(ut)(x) :=

{
tu
( x

t
)

, if t > 0

I{0}, if t = 0.

Note that these operations are convexity preserving, and I{0} acts as the identity element in (5).
It is proved that (us�vt)(x) ∈ L for u, v ∈ L and s, t ≥ 0 (see [21]). Let f = e−u, g = e−v ∈ A and
t > 0. Form (5), the Asplund sum (defined in (3)) can be rewritten as

f ⊕ g = e−[u�v], (6)

and t · g = e−vt. Let f = e−u ∈ A. The support function, h f , of f is defined as (see, e.g., [28])

h f (x) = u∗(x). (7)

We recall that a probability measure μ is called isotropic if it satisfies
∫
Rn xdμ(x) = 0 and

∫
Rn
〈x, θ〉2dμ(x) =

1
n

, ∀θ ∈ Sn−1. (8)

For a measure μ with
∫
Rn xdμ(x) = 0, the following claims are equivalent (see, e.g., [3]):

(a) μ is isotropic;
(b) For any T ∈ GL(n), one has

∫
Rn
〈x, Tx〉dμ(x) =

tr(T)
n

;

(c) ∫
Rn

xixjdμ(x) =
1
n

δij for all i, j = 1, · · · , n.

3. Minimal Perimeter of Log-Concave Functions

In this section, we consider the properties of the minimal perimeter of log-concave functions.
Let f = e−u ∈ A, the perimeter P( f ) has an integral expression (see [21,29]):

P( f ) =
1
2

∫
Rn

‖∇ f ‖2

f
dx. (9)
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We define that f has minimal perimeter if P( f ) ≤ P( f ◦ T) for every T ∈ SL(n). This is, if f has
minimal perimeter, then

∫
Rn

‖∇ f ‖2

f
dx ≤

∫
Rn

‖∇( f ◦ T)‖2

f ◦ T
dx,

for any T ∈ SL(n).
The Borel measure μ f on Rn of a log-concave function f = e−u is defined by (see [21])

μ f = (∇u)�( fHn).

Here Hn denotes the n-dimensional Hausdorff measure. For any continuous function g : Rn → R,
one has ∫

Rn
g(y)dμ f (y) =

∫
Rn

g(∇u(x)) f (x)dx. (10)

The Borel measure μ f plays the same role for f as the surface area measure for the convex body.

Proposition 1. If f ∈ A, then

P( f ) =
∫
Rn

hγn(x)dμ f (x).

Proof. From Eqautions (9), (10) and (7), we have

P( f ) =
1
2

∫
Rn

‖∇ f ‖2

f
dx

=
∫
Rn

f (x)
‖∇u(x)‖2

2
dx

=
∫
Rn

f (x)hγn(∇u(x))dx

=
∫
Rn

hγn(x)dμ f (x).

We recall that the gauge function of a convex body K is defined by

‖x‖K = min{α ≥ 0 : x ∈ αK}. (11)

It is clear that

‖x‖K = 1 whenever x ∈ ∂K, (12)

where ∂K is the boundary of K.
We note that the minimal perimeter of a log-concave function f is equivalent to considering the

minimization problem:

min
T∈SL(n)

P( f ◦ T). (13)

109



Mathematics 2020, 8, 759

For T ∈ SL(n), we write γT for γn ◦ T. From (9) and the fact that ∇x( f ◦ T) = Tt∇Tx f for
T ∈ SL(n) and x ∈ Rn, we have

P( f ◦ T) = δJ( f ◦ T, γn) =
1
2

∫
Rn

‖∇x f ◦ T‖2

f (Tx)
dx

=
1
2

∫
Rn

‖Tt∇Tx f (Tx)‖2

f (Tx)
dx

=
1
2

∫
Rn

‖Tt∇ f (x)‖2

f (x)
dx

= δJ( f , γT).

Therefore, we can reformulate problem (13) as follows:

min{δJ( f , γT) : T ∈ SL(n)}. (14)

Proposition 2. There exists a unique (un to an orthogonal matrix) T0 ∈ SL(n) such that it solves the
minimization problem (14).

Proof. We can limit our attention to T ∈ SL(n) when T is a positive definite symmetric matrix,
since any T ∈ SL(n) can be represented in the form T = PQ where P ∈ SL(n) is a positive
definite symmetric matrix and Q is an orthogonal matrix. In this case, we can write the function

γT(x) = γn(Tx) = e−
‖Tx‖2

2 as γT(x) = e−
‖x‖2

E◦
2 , where E = TtB is an origin-centered ellipsoid and E◦

is the polar body of E defined as E◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ E}. There exists a zE ∈ Sn−1

such that the diameter of E satisfies diam (E) |〈zE ,x〉|
2 ≤ ‖x‖E◦ . Let {Tk}k ∈ SL(n) be a minimizing

sequence for the problem (14), namely,

lim
k→∞

δJ( f , γTk ) = min{δJ( f , γT) : T ∈ SL(n), T is a positive definite symmetric matrix}. (15)

From (15) and the fact that min{δJ( f , γT) : T ∈ SL(n)} ≤ δJ( f , γn), we have

diam (E◦
k )

2

8
min

z∈Sn−1

∫
Rn

|〈z, x〉|2dμ f (x) ≤
∫
Rn

‖x‖2
Ek

2
dμ f (x)

= δJ( f , γTk )

≤ δJ( f , γn).

Since ‖x‖Ek < diam (E◦
k )‖x‖, therefore the upper bound of the convex function

( ‖Tkx‖2

2

)∗
is

depended only on f . According to Theorem 10.9 in [30], there exist a function γT0 such that the
Legendre conjugate of a minimizing sequence of functions for problem (14) converge to γT0 . Due to
Theorem 11.34 in [31], we known that a minimizing sequence of functions for problem (14) converge
to γ∗

T0
. According to the dominated convergence theorem, there exists a solution to problem (14).

Next, we prove the uniqueness of T0. Assume there are two different solutions T1, T2 ∈ SL(n)
to the considered problem which satisfy T1 �= aT2 for all a > 0. If there exists a a0 > 0 such that
T1 = a0T2, then

δJ( f , γT1) = δJ( f , γa0T2) = δJ( f , γT2) =⇒ a0 = 1.

This contradicts to T1 �= T2. The Minkowski inequality for symmetric positive definite matrices
shows that

det
(

T1 + T2

2

) 1
n
>

1
2

det (T1)
1
n +

1
2

det (T2)
1
n = 1.
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Let

T3 = det( T−1
1 +T−1

2
2 )

1
n

(
T−1

1 + T−1
2

2

)−1

.

Then T3 ∈ SL(n) and γT3 < γ
(

T−1
1 +T−1

2
2 )−1

, i.e., hγT3
< hγ

(
T−1

1 +T−1
2

2 )−1
. This deduces that

δJ( f , γT3) =
∫
Rn

hγT3
(x)dμ f (x)

<
∫
Rn

hγ
(

T−1
1 +T−1

2
2 )−1

(x)dμ f (x)

=
∫
Rn

‖ T−1
1 +T−1

2
2 x‖2

2
dμ f (x).

By the convexity of the square of the Euclidean normal, we have

δJ( f , γT3) <
∫
Rn

1
2‖T−1

1 x‖2 + 1
2‖T−1

2 x‖2

2
dμ f (x)

=
1
2

∫
Rn

hγT1
(x)dμ f (x) +

1
2

∫
Rn

hγT2
(x)dμ f (x)

=
1
2

δJ( f , γT1) +
1
2

δJ( f , γT2)

= δJ( f , γT1)

= δJ( f , γT2).

However, from the assumption on T1 and T2, we have

δJ( f , γT3) ≥ δJ( f , γT1) = δJ( f , γT2),

which is a contradiction.

Proposition 2 implies that the minimal perimeter of log-concave functions is well-defined. Namely,

Corollary 1. For a log-concave function f : Rn → R, there exists a unique (up to an orthogonal matrix)
T0 ∈ SL(n) such that f ◦ T0 has minimal perimeter.

Next we are in the position to consider the proof of Theorem 1.

Proof of Theorem 1. Let T ∈ GL(n), and ε > 0 be a suitably small real number. Then

Tε = [det(I + εT)]−
1
n (I + εT)t ∈ SL(n),

and this implies that P( f ) ≤ P( f ◦ Tε), i.e.,

∫
Rn

‖∇ f ‖2

f
dx ≤

∫
Rn

‖∇( f ◦ Tε)‖2

f ◦ Tε
dx.
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By the fact that ∇x(u ◦ T) = Tt∇Txu, then

∫
Rn

‖∇ f ‖2

f
dx ≤

∫
Rn

‖∇( f ◦ Tε)‖2

f ◦ Tε
dx

=
∫
Rn

‖Tt
ε∇Tεx( f (Tεx))‖2

f (Tεx)
dx

=
∫
Rn

‖Tt
ε∇ f ‖2

f
dx,

i.e.,

[det(I + εT)]
2
n

∫
Rn

‖∇ f ‖2

f
dx ≤

∫
Rn

‖(I + εT)∇ f ‖2

f
dx.

Because
‖(I + εT)∇ f ‖2 = ‖∇ f ‖2 + 2ε〈∇ f , T∇ f 〉+ o(ε2)

and

[det(I + εT)]
2
n = 1 + 2ε

tr(T)
n

+ o(ε2),

when letting ε → 0+, we obtain

tr(T)
n

∫
Rn

‖∇ f ‖2

f
dx ≤

∫
Rn

〈∇ f , T∇ f 〉
f

dx. (16)

Replacing T by −T in (16), we conclude that there must be equality in (4) for every T ∈ GL(n).
On the other hand, assume that (4) is satisfied and let T ∈ SL(n). Since trT

n ≥ 1 for symmetric
positive-definite metric, (9) and ∇x( f ◦ T) = Tt∇Tx f , we have

P( f ◦ T) =
1
2

∫
Rn

‖∇( f ◦ T)‖2

f ◦ T
dx

=
1
2

∫
Rn

‖Tt∇Tx f ‖2

f ◦ T
dx

=
1
2

∫
Rn

〈T∇ f , T∇ f 〉
f

dx

=
1
2

∫
Rn

〈∇ f , TtT∇ f 〉
f

dx (17)

=
1
2

tr(TtT)
n

∫
Rn

‖∇ f ‖2

f
dx

≥ 1
2

∫
Rn

‖∇ f ‖2

f
dx

= P( f ).

This shows that f has minimal perimeter. Moreover, the equality in (17) holds only if T is the
identity matrix. This prove that the uniqueness of the minimal perimeter position (up to U ∈ O(n)).

Corollary 2. From Theorem 1 and the definition of isotropic measure, the log-concave function f ∈ A has
minimal perimeter if and only if 1

J( f )μ f is an isotropic measure.

Next, we prove that Theorem 1 recovers the L2 surface area measure of K, dS2(K, ·) =

hK(·)−1dσK(·), is an isotropic measure on Sn−1.
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Corollary 3. Let K be a convex body in Rn containing the origin in its interior. If f (x) = e−‖x‖K for
x ∈ Rn, then

P( f ) =
1
2

Γ(n)S2(K),

and Theorem 1 includes the fact that L2 surface area measure of K, S2(K, ·), is an isotropic measure.

Proof. For a convex body K in R, let VK denote the normalized cone volume measure of K, which is
given by

dVK(z) =
〈z, νK(z)〉

nV(K)
dHn−1(z) for z ∈ ∂K.

Here νK(z) is the outer unit normal of K at the boundary point z, and Hn−1 is the (n − 1)
dimensional Hausdorff measure. For any x ∈ Rn, we write x = rz, with z ∈ ∂K and
dx = nV(K)rn−1drdVK(z). Since the map x �→ ∇‖x‖K is 0-homogeneous, and (12), we have

P( f ) =
1
2

∫
Rn

‖∇‖x‖K‖2e−‖x‖K dx

=
1
2

nV(K)
∫ ∞

0
rn−1

∫
∂K

‖∇‖z‖K‖2e−rdVK(z)dr

=
1
2

Γ(n)nV(K)
∫

∂K
‖∇‖z‖K‖2dVK(z),

where Γ(·) is the Gamma function. We need the fact that ∇‖z‖K = νK(z)
〈z,νK(z)〉 when z ∈ ∂K (see, e.g., [4]).

Therefore,

P( f ) =
1
2

Γ(n)nV(K)
∫

∂K
‖∇‖z‖K‖2dVK(z)

=
1
2

Γ(n)
∫

∂K
hK(νK(z))−1dHn−1(z)

=
1
2

Γ(n)S2(K).

From the fact that the map x �→ ∇‖x‖K is 0-homogeneous, (12) and (10), we have

1
2

∫
Rn
〈x, Tx〉dμ f (x) =

1
2

∫
Rn
〈∇‖x‖K, T∇‖x‖K〉e−‖x‖K dx

=
1
2

nV(K)
∫ ∞

0
rn−1

∫
∂K
〈∇‖z‖K, T∇‖z‖K〉e−rdVK(z)dr

=
1
2

Γ(n)
∫

∂K
〈νK(z), TνK(z)〉hK(νK(z))−1dHn−1(z)

=
1
2

Γ(n)
∫

Sn−1
〈u, Tu〉dS2(K, u).

Hence, (4) implies that

tr(T)
n

S2(K) =
∫

Sn−1
〈u, Tu〉dS2(K, u)

for every T ∈ GL(n). This means that the L2 surface area measure of K, S2(K, ·), is an isotropic measure
on Sn−1.

4. Conclusions

Many outstanding works showed that the log-concave function is closely linked to the convex
body. This paper presents a new connection between the theory of convex bodies and that of
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log-concave functions. We study the minimal perimeter of a log-concave function which can be viewed
as a functional version of the minimal L2 surface area measure of a convex body. A characteristic
theorem (Theorem 1) shows that a log-concave function f has minimal perimeter if and only if the
Borel measure 1

J( f )μ f (·) is isotropic. The work done in this paper is mainly to propose a special
position for log-concave functions and provides a new idea for the study of optimal problems for
log-concave functions.
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Abstract: The fundamental goal of this study was to achieve the Ricci curvature inequalities for
a skew CR-warped product (SCR W-P) submanifold isometrically immersed in a complex space
form (CSF) in the expressions of the squared norm of mean curvature vector and warping functions
(W-F). The equality cases were likewise examined. In particular, we also derived Ricci curvature
inequalities for CR-warped product (CR W-P) submanifolds. To sustain this study, an example of
these submanifolds is provided.

Keywords: Ricci curvature; skew CR-warped product submanifolds; complex space form;
CR-warped product submanifolds; semi slant warped product submanifolds

1. Introduction

There have been several studies in the past to demonstrate the geometries of submanifolds in the
settings of almost Hermitian (A-H) and almost contact metric (A-C M) manifolds. By the operation of
the almost complex structure J, the tangent space of a submanifold of an almost Hermitian manifold
can be classified into holomorphic and totally real submanifolds. The notion of CR-submanifolds was
introduced and studied by A. Bejancu [1] in 1981 as a generalization of holomorphic and totally real
submanifolds. Thus, as to have a more profound knowledge of the geometry of CR-submanifolds
of almost Hermitian "AH" manifolds, Chen [2] further explored these submanifolds and provided
many fundamental results. In 1990 Chen [3] instigated a generalized class of submanifolds, namely,
slant submanifolds. Moreover, advances in the geometry of CR-submanifolds and slant submanifolds
stimulated various authors to search for the class of submanifolds which unifies the properties of
all previously discussed submanifolds. In this context, N. Papaghuic [4] introduced the notion
of semi-slant submanifolds in the framework of almost-Hermitian manifolds and showed that
submanifolds belonging to this class enjoy many of the desired properties. Later, the contact variant of
semi-slant submanifolds was studied by Cabrerizo et al. [5]. Recently, B. Sahin [6] investigated another
class of submanifolds in the setting of almost Hermitian manifolds and he called these submanifolds
Hemi-slant submanifolds. This class includes the CR-submanifolds and slant submanifolds.

In 1990, Ronsse [7] started the study of skew CR-submanifolds in the setting of almost Hermitian
manifolds. Skew CR-submanifolds contain the classes of CR-submanifolds, semi-slant submanifolds
and Hemi-slant submanifolds.

The acknowledgment of warped product manifolds appeared after the methodology of Bishop
and O’Neill [8] on the manifolds of non positive curvature. By analyzing the way that a Riemannian
product of manifolds cannot have non positive curvature, they represented warped product (W-P)
manifolds for the class of manifolds of non-positive curvature which is characterized as follows:

Let (S1, 〈, 〉1) and (S2, 〈, 〉2) be two Riemannian manifolds with Riemannian metrics 〈, 〉1 and 〈, 〉2

respectively and g be a smooth positive function on S1. If π : S1 × S2 → S1 and η : S1 × S2 → S2 are
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the projection maps given by π(x, y) = x and η(x, y) = y for every (x, y) ∈ S1 × S2, then the W-P
manifold is the product manifold S1 × S2 holding the Riemannian structure such that

〈U1, U2〉 = 〈π∗U1, π∗U2〉1 + (g ◦ π)2〈η∗U1, η∗U2〉2,

for all U1, U2 ∈ TS. The function g is called the warping function (W-F) of the warped product (W-P)
manifold. If the W-F is constant, then the W-P is a trivial, i.e., simply Riemannian product. Further,
if U1 ∈ TS1 and U2 ∈ TS2, then from Lemma 7.3 of [8], we have the following well-known result

DU1U2 = DU2U1 = (
U1g

g
)U2, (1)

where D is the Levi-Civita connection on S. In the light of the fact that W-P manifolds have various
uses in physics and the theory of relativity [9], this has been a subject of broad interest. The idea
of displaying the space-time close to black holes admits the W-P manifolds [10]. Schwartzschild
space-time T ×k S2, is a model of W-P, wherein the base T = R × R+ is a half plane k > 0 and the
fiber S2 is the unit sphere. A cosmological model to show the universe as space-time, known as the
Robertson–Walker model, is a W-P manifold [11].

Some common properties of W-P manifolds were concentrated on in [8]. B.-Y. Chen [12] played
out an outward investigation of W-P submanifolds in a Kaehler manifold. From that point forward,
numerous geometers have investigated W-P manifolds in various settings such as almost complex
and almost contact manifolds, and different existence results have been researched (see the survey
article [13–16]). Recently, B. Sahin [17] contemplated SCR W-P submanifolds in Kaehler manifolds and
got some essential outcomes. Further, these submanifolds were explored by Haidar and Thakur in the
context of cosymplectic manifolds [18].

In 1999, Chen [19] discovered a relationship between Ricci curvature and a squared mean curvature
vector for a discretionary Riemannian manifold. More precisely, Chen proved the following theorem

Theorem 1. Let φ : St → S̄m(c) be an isometric immersion of a t− dimensional Riemannian manifold into a
Riemannian space form S̄m(c).

1. For each unit tangent vector χ ∈ TpSt, we have

‖Π‖2(p) ≥ 4
t2 {RS(χ)− (t − 1)c}

where ‖Π‖2(p) is the squared mean curvature and RS(χ) the Ricci curvature of St at χ.
2. If Π(p) = 0, then the unit tangent vector χ at p satisfies the equality case of (1) if and only if χ lies in the

relative null space Np at p.
3. The equality case holds identically for all unit tangent vectors at x if and only if either p is a totally geodesic

point or t = 2 and p is a totally umbilical point.

Theorem 1 was generalized for semi-slant submanifolds in Sasakian space form by Cioroboiu and
Chen [20]. Further, D. W. Yoon [21] studied Chen Ricci inequality for slant submanifols in the framework
of cosymplectic space forms. Motivated by Chen [19], Mihai and Oz̈gur [22] studied Chen Ricci
inequality for real space forms with semi-symmetric connections. In [23] M. M. Tripathi formulated
an improved relationship between Ricci curvature and squared mean curvature. More recently,
Ali et al. [24] generalized Chen Ricci inequality for warped product submanifolds in spheres and

provided some applications in mechanics and mathematical physics.
The class of SCR W-P submanifolds is rich in its geometric behavior; it contains classes of

CR-warped product submanifolds, semi-slant warped product submanifolds and hemi-slant warped
product submanifolds. In the literature it was found that Ricci curvature for these warped product
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submanifolds in complex space forms has not been studied. In other words, we can say that Theorem 1
is an open problem for skew CR-warped product submanifolds in the setting of complex space forms.

In this study our point is to establish a connection between Ricci curvature and squared mean
curvature for SCR W-P submanifolds in the setting of complex space forms.

2. Preliminaries

Let S̄ be an A-H manifold with an almost complex structure J and a Hermitian metric 〈, 〉, i.e.,
J2 = −I and 〈JU1, JU2〉 = 〈U1, U2〉, for all vector fields U1, U2 on S̄. If J is parallel with respect to the
Levi-Civita connection D̄ on S̄, that is

(D̄U1 J)U2 = 0, (2)

for all U1, U2 ∈ TS̄, then (S̄, J, 〈, 〉, D̄) is called a Kaehler manifold (K-M).
A K-M S̄ is called a CSF if it has constant holomorphic sectional curvature c denoted by S̄(c).

The curvature tensor of the CSF S̄(c) is given by

R̄(U1, U2, U3, U4) =
c
4
[〈U2, U3〉〈U1, U4〉 − 〈U1, U3〉〈U2, U4〉+ 〈U1, JU3〉〈JU2, U4〉

− 〈U2, JU3〉〈JU1, U4〉+ 2〈U1, JU2〉〈JU3, U4〉],
(3)

for any U1, U2, U3, U4 ∈ TS̄.
Let S be a n−dimensional Riemannian manifold isometrically immersed in a m− dimensional

Riemannian manifold S̄. Then, the Gauss and Weingarten formulas are D̄U1U2 = DU1U2 + Γ(U1, U2)

and D̄U1 ξ = −AξU1 + D⊥
U1

ξ respectively, for all U1, U2 ∈ TS and ξ ∈ T⊥S, where D is the induced
Levi-Civita connection on S, ξ is a vector field normal to S, Γ is the second fundamental form of
S, D⊥ is the normal connection in the normal bundle T⊥S and Aξ is the shape operator of the
second fundamental form. The second fundamental form Γ and the shape operator are related by the
following formula

〈Γ(U1, U2), ξ〉 = 〈AξU1, U2〉. (4)

The Gauss equation is given by

R(U1, U2, U3, U4) = R̄(U1, U2, U3, U4) + 〈Γ(U1, U4), Γ(U2, U3)〉 − 〈Γ(U1, U3), Γ(U2, U4)〉, (5)

for all U1, U2, U3, U4 ∈ TS, where R̄ and R are the curvature tensors of S̄ and S respectively.
For any U1 ∈ TS and ξ ∈ T⊥S, JU1 and Jξ can be decomposed as follows.

JU1 = PU1 + FU1 (6)

and
Jξ = tξ + f ξ, (7)

where PU1 (resp. tξ) is the tangential and FU1 (resp. f ξ) is the normal component of JU1 ( resp. Jξ).
It is evident that 〈JU1, U2〉 = 〈PU1, U2〉 for any U1, U2 ∈ TxS; this implies that 〈PU1, Y2〉 +

〈U1, PU2〉 = 0. Thus, P2 is a symmetric operator on the tangent space TxS, for any x ∈ S. The
eigenvalues of P2 are real and diagonalizable. Moreover, for each x ∈ S, one can observe

Lλ
x = Ker{P2 + λ2(x)I}x,

where I denotes the identity transformation on TxS, and λ(x) ∈ [0, 1] such that −λ2(x) is an eigenvalue
of P2(x). Further, it is easy to observe that KerF = L1

x and KerP = L0
x, where L1

x is the maximal
holomorphic sub space of TxS and L0

x is the maximal totally real subspace of TxS; these distributions
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are denoted by L and L⊥ respectively. If −λ2
1(x), . . . ,−λ2

k(x) are the eigenvalues of P2 at x, then TxS
can be decomposed as

TxS = Lλ1
x ⊕ Lλ2

x ⊕ . . . Lλk
x .

Every Lλi
x , 1 ≤ i ≤ k is a P−invariant subspace of TxS. Moreover, if λi �= 0, then Lλi

x is even
dimensional the submanifold S of a Kaehler manifold S̄ is a generic submanifold if there exists an
integer k and functions λi 1 ≤ i ≤ k defined on S with λi ∈ (0, 1) such that

(i) Each −λ2
i (x), 1 ≤ i ≤ k, is a distinct eigenvalue of P2 with

TxS = LT
x ⊕ L⊥

x ⊕ Lλ1
x ⊕ . . . ,⊕Lλk

x

for any x ∈ S.
(ii) The distributions of LT

x , L⊥
x and Lλi

x , 1 ≤ i ≤ k are independent of x ∈ S.

If in addition, each λi is constant on S, then S is called a skew CR-submanifold [7]. It is
significant to recount that CR-submanifolds are a particular class of skew CR-submanifold for which
k = 1, LT = {0}, L⊥ = {0} and λ1 is constant. If L⊥ = {0}, L1 �= {0} and k = 1, then S is a semi-slant
submanifold, whereas if L = {0}, L⊥ �= {0} and k = 1, then S is a hemi-slant submanifold.

Definition 1. A submanifold S of an A-H manifold S̄ is said to be a "skew CR-submanifold of order 1" if S is a
skew CR-submanifold with k = 1 and λ1 is constant.

We have the following characterization

Theorem 2. Reference [3] let S be a submanifold of an A-H manifold S̄. Then S is a slant if and only if there
exists a constant λ ∈ [0, 1] such that

P2 = −λI.

Furthermore, if θ is a slant angle, then λ = cos2 θ.

For any orthonormal basis {e1, e2, . . . , et} of the tangent space TxS, the mean curvature vector
Π(x) and its squared norm are defined as follows.

Π(x) =
1
t

t

∑
i=1

Γ(ei, ei), ‖Π‖2 =
1
t2

t

∑
i,j=1

〈Γ(ei, ei), Γ(ej, ej)〉, (8)

where t is the dimension of S. If Γ = 0 then the submanifold is said to be totally geodesic and minimal
if Π = 0. If Γ(U1, U2) = 〈U1, U2〉Π for all U1, U2 ∈ TS, then S is called totally umbilical (T-U).

The scalar curvature of S̄ is denoted by τ̄(S̄) and is defined as

τ̄(S̄) = ∑
1≤p<q≤m

κ̄pq, (9)

where κ̄pq = κ̄(ep ∧ eq) and m is the dimension of the Riemannian manifold S̄. Throughout this study,
we shall use the equivalent version of the above equation, which is given by

2τ̄(S̄) = ∑
1≤p<q≤m

κ̄pq. (10)

In a similar way, the scalar curvature τ̄(Lx) of a L−plane is given by

τ̄(Lx) = ∑
1≤p<q≤m

κ̄pq. (11)
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Let {e1, . . . , et} be an orthonormal basis of the tangent space TxS and if er belongs to the
orthonormal basis {en+1, . . . em} of the normal space T⊥S, then we have

Γr
pq = 〈Γ(ep, eq), er〉 (12)

and

‖Γ‖2 =
t

∑
p,q=1

〈Γ(ep, eq), Γ(ep, eq)〉. (13)

Let κpq and κ̄pq be the sectional curvatures of the plane sections spanned by ep and eq at x in
the submanifold S and in the Riemannian space form S̄m(c), respectively. Thus by Gauss equation,
we have

κpq = κ̄pq +
m

∑
r=t+1

(Γr
ppΓr

qq − (Γr
pq)

2). (14)

The global tensor field for orthonormal frame of vector field {e1, . . . , et} on S is defined as

M̄(U1, U2) =
t

∑
i=1

{〈R̄(ei, U1)U2, ei〉}, (15)

for all U1, U2 ∈ TxS. The above tensor is called the Ricci tensor. If we fix a distinct vector en from
{e1, . . . , et} on S, which is governed by χ, then the Ricci curvature is defined by

RS(χ) =
t

∑
p=1
p �=n

κ(ep ∧ en). (16)

For a smooth function g on a Riemannian manifold S with Riemannian metric 〈, 〉, the gradient of
g is denoted by ∇g and is defined as

〈∇g, U1〉 = U1g, (17)

for all U1 ∈ TS.
Let the dimension of S be t and {e1, e2, . . . , et} be a basis of TS. Then as a result of (17), we get

‖∇g‖2 =
t

∑
i=1

(ei(g))2. (18)

The Laplacian of g is defined by

Δg =
t

∑
i=1

{(∇ei ei)g − eieiψ}. (19)

For a W-P submanifold St1
1 ×g St2

2 isometrically immersed in a Riemannian manifold S̄, we observe
the well known result, which can be described as follows [25]:

t1

∑
p=1

t2

∑
q=1

κ(ep ∧ eq) =
t2Δg

g
= t2(Δlng − ‖∇lng‖2), (20)

where t1 and t2 are the dimensions of the submanifolds St1
1 and St2

2 respectively.

3. Skew CR-Warped Product Submanifolds

Recently, B. Sahin [17] demonstrated the existence of SCR W-P of the type S = S1 × f S⊥,
where S1 is a semi-slant submanifold as defined by N. Papaghuic [4] and S⊥ is a totally real
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submanifold. Throughout this section we consider the SCR W-P S = S1 × f S⊥ in a Kaehler manifold S̄.
Then it is evident that S is a proper SCR W-P of order 1. Moreover, the tangent space TS of S can be
decomposed as follows.

TS = Lθ ⊕ LT ⊕ L⊥, (21)

where Lθ
x = Lλ1

x . If Lθ = {0}, then S becomes a CR-warped product submanifold defined in [26].
If LT = {0}, then S is reduced to a warped product hemi-slant submanifold [6]. Thus, skew CR-warped
product submanifold presents a single platform to study the CR W-P submanifolds and W-P
hemi-slant submanifold.

Now, we have an example of SCR W-P submanifold in an A-H manifold

Example 1. Let S be a submanifold in R12 defined by x1 = u, x2 = v sechα, x3 = k tanhβ, x4 = k sechβ, x5 =

u sechβ, x6 = u tanhβ, y1 = −v, y2 = v tanhα, y3 = −r tanhβ, y4 = −r sechβ, y5 = 0, y6 = 0.
Then, we have the following basis of TS

U1 = sechβ
∂

∂x5
+ tanhβ

∂

∂x6
+

∂

∂x1
, U2 = sechα

∂

∂x2
− ∂

∂y1
+ tanhα

∂

∂y2
,

U3 = tanhβ
∂

∂x3
+ sechβ

∂

∂x4
, U4 = −tanhβ

∂

∂y3
− sechβ

∂

∂y4
,

U5 = −k sechβ
∂

∂x3
+ k tanhβ

∂

∂x4
+ u tanhβ

∂

∂x5
− u sechβ

∂

∂x6
+r sechβ

∂

∂y3
− r tanhβ

∂

∂y4
.

It is straightforward to identify that Lθ = span{U1, U2} is a slant distribution with slant angle 60◦,
L = span{U3, U4} is a holomorphic distribution and JU5 is orthogonal to S. Thus L⊥ = span{U5} is a
totally real distribution. Moreover, it is easy to observe that Lθ , L and L⊥ are integrable. If Sθ , ST and S⊥ are
the integral manifolds of the distributions Lθ , L and L⊥ respectively. Then the induced metric tensor of S is
given by

ds2 = 〈, 〉Sθ
+ 〈, 〉ST + (k2 + u2 + r2)〈, 〉S⊥

or
ds2 = 〈, 〉S1 + (k2 + u2 + r2)〈, 〉S⊥ .

Definition 2. The warped product S1 × f S2 isometrically immersed in a Riemannian manifold S̄ is called Si
totally geodesic if the partial second fundamental form Γi is zero identically. It is called Si-minimal if the partial
mean curvature vector Πi becomes zero for i = 1, 2.

Let {e1, . . . , ep, ep+1 = Je1, . . . , et1=2p = Jep, e1, . . . , eq, eq+1 = sec θPe1, . . . , e(t2=2q) =

sec θPeq, et2+1, . . . , et3} be a local orthonormal frame of vector fields such that {e1, . . . , ep, ep+1 =

Je1, . . . , et1=2p = Jep} is an orthonormal basis of L, {e1, . . . , eq, eq+1 = sec θPe1, . . . , e(t2=2q) = sec θPeq}
is an orthonormal basis of Lθ and {et2+1, . . . , et3} is an orthonormal basis of L⊥.

Throughout this paper we consider that the SCR W-P submanifold S1 × f S⊥ is L−minimal.
Presently we have the following outcome for further applications

Lemma 1. Let St = St1+t2
1 × f St3

⊥ be a L−minimal SCR W-P submanifold isometrically immersed in a Kaehler
manifold; then

‖Π‖2 =
1
t2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

t2t2
+ · · ·+ Γr

tt)
2, (22)

where ‖Π‖2 represents squared mean curvature.
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4. Ricci Curvature for Skew CR-Warped Product Submanifold

In this section, we investigate Ricci curvature in terms of the squared norm of mean curvature
and the warping functions as follows:

Theorem 3. Let St = St1+t2
1 × f Ss3

⊥ be a L−minimal SCR W-P submanifold isometrically immersed in a
Complex space form S̄m(c). If the holomorphic and slant distributions L and Lθ are integrable with integral
submanifolds St1

T and St2
θ respectively, then for each orthogonal unit vector field χ ∈ TxS, the tangent to St1

T , St2
θ

or St3
⊥, we have that

(1) The Ricci curvature satisfies the following expressions:

(i) If χ ∈ TSt1
T , then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3Δ f

f
+

c
4
(t − t1t2 − t2t3 − t1t3 − 1

2
). (23)

(ii) χ ∈ TSt2
θ , then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3Δ f

f
+

c
4
(t − t1t2 − t2t3 − t1t3 + 1 − 3

2
cos2 θ). (24)

(iii) If χ ∈ TSt2
⊥, then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3Δ f

f
+

c
4
(t − t1t2 − t2t3 − t1t3 + 1). (25)

(2) If Γ(x) = 0 for each point x ∈ St, then there is a unit vector field χ which satisfies the equality of (1) iff St

is mixed totally geodesic and χ ∈ Nx at x.
(3) For the equality case we have

(a) The equality of (23) holds identically for all unit vector fields tangential to St1
T at each x ∈ St iff St

is mixed TG and L−totally geodesic SCR W-P submanifold in S̄m(c).
(b) The equality of (24) holds identically for all unit vector fields tangential to Sθ at each x ∈ St iff S

is mixed totally geodesic and either St is Lθ- totally geodesic SCR W-P submanifold or St is a Lθ

totally umbilical in S̄m(c) with dim Lθ = 2.
(c) The equality of (25) holds identically for all unit vector fields tangential to St2

⊥ at each x ∈ St iff
S is mixed totally geodesic and either St is L⊥- totally geodesic SCR W-P or St is a L⊥ totally
umbilical in S̄m(c) with dim L⊥ = 2.

(d) The equality case of (1) holds identically for all unit tangent vectors to St at each x ∈ St iff either
St is totally geodesic submanifold or Mt is a mixed totally geodesic totally umbilical and L totally
geodesic submanifold with dim St2

θ = 2 and dim St3
⊥ = 2.

where t1, t2 and t3 are the dimensions of St1
T , St2

θ and St3
⊥ respectively.

Proof. Suppose that St = St1+t2
1 × f St3

⊥ be a SCR W-P submanifold of a CSF. From Gauss equation,
we have

t2‖Π‖2 = 2τ(St) + ‖Γ‖2 − 2τ̄(St). (26)
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Let {e1, . . . , et1 , et1+1, . . . , et2 , . . . et} be a local orthonormal frame of vector fields on St such that
{e1, . . . , et1} is tangential to St1

T , {et1+1, . . . , et2} is tangential to St2
θ and {et2+1, . . . , et} is the tangent to

St3
⊥. Thus, the unit tangent vector χ = eA ∈ {e1, . . . , et} can be expanded (26) as follows.

t2‖Π‖2 = 2τ(St) + 1
2 ∑m

r=t+1{(Γr
11 + . . . Γr

t2t2
+ · · ·+ Γr

tt − Γr
AA)

2 + (Γr
AA)

2}
−∑m

r=t+1 ∑1≤i �=j≤t Γr
iiΓ

r
jj − 2τ̄(St).

(27)

The above expression can be represented as

t2‖Π‖2 = 2τ(St) +
1
2

m

∑
r=t+1

{(Γr
11 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+ (2Γr
AA − (Γr

11 + · · ·+ Γr
tt))

2}+ 2
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2

− 2
m

∑
r=t+1

∑
1≤i<j≤t

Γr
iiΓ

r
jj − 2τ̄(St).

In view of the assumption that SCR W-P submanifold S1 × f S⊥ is L−minimal submanifold, the
preceding expression takes the form

t2‖Π‖2 = 2τ(St) +
1
2

m

∑
r=t+1

{(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
1
2

m

∑
r=t+1

(2Γr
AA − (Γr

t1+1t1+1 + . . . Γr
t2t2

+ · · ·+ Γr
tt))

2

+
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2 −
m

∑
r=t+1

∑
1≤i<j≤t

i,j �=A

Γr
iiΓ

r
jj − 2τ̄(St)

+
m

∑
r=t+1

t

∑
a=1
a �=A

(Γr
aA)

2 +
m

∑
r=t+1

∑
1≤i<j≤t

i,j �=A

(Γr
ij)

2 −
m

∑
r=t+1

∑
1≤i<j≤t

i,j �=A

Γr
iiΓ

r
jj.

(28)

Equation (14) can be written as

∑
1≤p<q≤t

p,q �=A

κ̄pq − ∑
1≤p<q≤t

p,q �=A

κpq =
m

∑
r=t+1

∑
1≤p<q≤t

p,q �=A

(Γpq
r )2 −

m

∑
r=t+1

∑
1≤p<q≤t

p,q �=A

Γr
ppΓr

qq.

Substituting this value in (28), we derive

t2‖Π‖2 = 2τ(St) +
1
2

m

∑
r=t+1

{(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
1
2

m

∑
r=t+1

(2Γr
AA − (Γr

t1+1t1+1 + . . . Γr
t2t2

+ · · ·+ Γr
tt))

2

+
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2 −
m

∑
r=t+1

∑
1≤i<j≤t

i,j �=A

Γr
iiΓ

r
jj − 2τ̄(St)

+
m

∑
r=t+1

t

∑
a=1
a �=A

(Γr
aA)

2 + ∑
1≤i<j≤t

i,j �=A

κ̄ij − ∑
1≤i<j≤t

i,j �=A

κij.

(29)
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On the other hand, from (9) we have

τ(St) = ∑
1≤i<j≤t

κ(ei ∧ ej) =
t1+t2

∑
α=1

t

∑
β=t1+t2+1

κ(eα ∧ eβ) + ∑
1≤α<γ≤t1

κ(eα ∧ eγ)

+ ∑
t1+1≤l<0≤t2

κ(el ∧ e0) + ∑
t2+1≤u<v≤t

κ(eu ∧ ev).
(30)

Using (9) and (20), we derive

τ(St) =
t3Δ f

f
+ τ̄(St1

T ) + τ̄(St2
θ ) + τ̄(St3

⊥).

Using this in (29), we get

t2‖Π‖2 =
t3Δ f

f
+

1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
1
2

m

∑
r=t+1

(2Γr
AA − (Γr

t1+1t1+1 + . . . Γr
t2t2

+ · · ·+ Γr
tt))

2

+
m

∑
r=t+1

∑
1≤α<β≤t1

(Γr
ααΓr

ββ − (Γr
αβ)

2)

+
m

∑
r=t+1

∑
t1+1≤p<q≤t2

(Γr
ppΓr

qq − (Γr
pq)

2)

+
m

∑
r=t+1

∑
t2+1≤s<n≤t

(Γr
ssΓr

nn − (Γr
sn)

2)

+
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2 −
m

∑
r=t+1

∑
1≤i<j≤t

i,j �=A

(Γr
iiΓ

r
jj)

− 2τ̄(St) + ∑
1≤i<j≤t

i,j �=A

κ̄ij + τ̄(St1
T ) + τ̄(St2

θ ) + τ̄(St3
⊥).

(31)

Considering unit tangent vector χ = eA, we have three choices: χ is the tangent to the base
manifold St1

T or St2
θ , or to the fiber St3

⊥ .
Case 1: If χ ∈ St1

T , then we need to choose a unit vector field from {e1, . . . , et1}. Let χ = e1; then by (15)
and the assumption that the submanifolds is L−minimal, we have

t2‖Π‖2 ≥RS(χ) +
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
t3Δ f

f
+

1
2

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + . . . Γr
t2t2

+ · · ·+ Γr
tt))

2

+
m

∑
r=t+1

∑
1≤α<β≤t1

(Γr
ααΓr

ββ − (Γr
αβ)

2)

+
m

∑
r=t+1

∑
t1+1≤p<q≤t2

(Γr
ppΓr

qq − (Γr
pq)

2)

+
m

∑
r=t+1

∑
t2+1≤s<n≤t

(Γr
ssΓr

nn − (Γr
sn)

2)

+
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2 −
m

∑
r=t+1

∑
2≤i<j≤t

(Γr
iiΓ

r
jj)

− 2τ̄(St) + ∑
2≤i<j≤t

κ̄(ei, ej) + τ̄(St1
T ) + τ̄(St2

θ ) + τ̄(St3
⊥).

(32)
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Putting U1, U3 = ei, U2, U4 = ej in the formula (3), we have

2τ̄(S) =
c
4
[t(t − 1) + 3t1 + 3t2 cos2 θ] (33)

∑
2≤i<j≤t

κ̄(ei, ej) =
c
8
[(t − 1)(t − 2) + 3(t1 − 1) + 3t2 cos2 θ]

τ̄(St1
T ) =

c
8
[t1(t1 − 1) + 3t1]

τ̄(St2
θ ) =

c
8
[t2(t2 − 1) + 3t2 cos2 θ]

τ̄(St3
⊥) =

c
8
[t3(t3 − 1)].

Using these values in (32), we get

t2‖Π‖2 ≥RS(χ) +
1
2

t2‖Π‖2 +
1
2

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + · · ·+ Γr
tt))

2

+
t3Δ f

f
+

m

∑
r=t+1

t1

∑
i=1

t2

∑
j=t1+1

(Γr
ij)

2

+
m

∑
r=t+1

t1

∑
i=1

t

∑
k=t2+1

(Γr
ik)

2 +
m

∑
r=t+1

t1

∑
β=2

Γr
11Γr

ββ

−
m

∑
r=t+1

t1

∑
i=2

t2

∑
j=t1+1

Γr
iiΓ

r
jj −

m

∑
r=t+1

t1

∑
i=2

t

∑
k=t2+1

Γr
iiΓ

r
kk

+
c
4
(t − t1t2 − t2t3 − t3t1 − 1

2
).

(34)

In view of the assumption that the submanifold is L−minimal, then

m

∑
r=t+1

t1

∑
β=2

Γr
11Γr

ββ =
m

∑
r=t+1

(Γr
11)

2

−
m

∑
r=t+1

t1

∑
i=2

[ t2

∑
j=t1+1

Γr
iiΓ

r
jj +

t

∑
k=t2+1

Γr
iiΓ

r
kk
]
=

m

∑
r=t+1

t

∑
j=t1+1

Γr
11Γr

jj.

Utilizing that in (34), we have

t2‖Π‖2 ≥RS(χ) +
1
2

t2‖Π‖2 +
1
2

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + · · ·+ Γr
nn))

2

+
t3Δ f

f
+

m

∑
r=t+1

t1

∑
i=1

t2

∑
j=t1+1

(Γr
ij)

2

+
m

∑
r=t+1

t1

∑
i=1

t

∑
k=t2+1

(Γr
ik)

2 −
m

∑
r=t+1

(Γr
11)

2 +
t1

∑
i=1

t

∑
j=t1+1

Γr
iiΓ

r
jj

+
c
4
(t − t1t2 − t2t3 − t3t1 − 1

2
).

(35)
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The third term on the right hand side can be written as

1
2

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + · · ·+ Γr
t2t2

+ · · ·+ Γr
nn))

2

= 2
m

∑
r=t+1

(Γr
11)

2 +
1
2

t2‖Π‖2 − 2
m

∑
r=t+1

[ t2

∑
j=t1+1

Γr
11Γr

jj

+
t

∑
k=t2+1

Γr
11Γr

kk
]
.

(36)

Combining above two expressions, we have

1
2

t2‖Π‖2 ≥RS(χ) +
m

∑
r=t+1

(Γr
11)

2 −
m

∑
r=t+1

t

∑
j=t1+1

Γr
11Γr

jj

+
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

t2t2
+ · · ·+ Γr

nn)
2

+
m

∑
r=t+1

t1

∑
i=1

t

∑
j=t1+1

(Γr
ij)

2 +
t3Δ f

f

+
c
4
(t − t1t2 − t2t3 − t3t1 − 1

2
),

(37)

or equivalently

1
4

t2‖Π‖2 ≥RS(χ) +
1
4

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + · · ·+ Γr
t2t2

+ · · ·+ Γr
nn))

2

+
m

∑
r=t+1

t1

∑
i=1

t

∑
j=t1+1

(Γr
ij)

2 +
t3Δ f

f

+
c
4
(t − t1t2 − t2t3 − t3t1 − 1

2
),

(38)

which proves the inequality (i) of (1).

Case 2. If χ is tangential to St2
θ , we choose the unit vector from {et1+1, . . . , et2}. Suppose χ = et2 ;

then from (28), we deduce

t2‖Π‖2 ≥RS(χ) +
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
t3Δ f

f
+

1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
t2t2

)2

+
m

∑
r=t+1

∑
1≤α<β≤t1

(Γr
ααΓr

ββ − (Γr
αβ)

2) +
m

∑
r=t+1

∑
t1+1≤s<n≤t2

(Γr
ssΓr

nn − (Γr
sn)

2)

+
m

∑
r=t+1

∑
t2+1≤p<q≤t

(Γr
ppΓr

qq − (Γr
pq)

2) +
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2

−
m

∑
r=t+1

∑
1≤i<j≤n

i,j �=t2

(Γr
iiΓ

r
jj)− 2τ̄(St) + ∑

1≤i<j≤t
i,j �=t2

κ̄(ei, ej)

+ τ̄(St1
T ) + τ̄(St2

θ + τ̄(St3
⊥)).

(39)
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From (3) by putting U1, U3 = ei, U2, U3 = ej, one can compute

∑
1≤i<j≤t

i,j �=t2

κ̄(ei, ej) =
c
8
[(t − 1)(t − 2) + 3t1 + 3t2 cos2 θ]

τ̄(St1
T ) =

c
8
[t1(t1 − 1) + 3t1]

τ̄(St3
θ ) =

c
8
[t2(t2 − 1) + 3t2 cos2 θ]

τ̄(St3
⊥) =

c
8
[t3(t3 − 1)].

Using these values together with (33) in (39) and applying similar techniques as in Case 1,
we obtain

t2‖Π‖2 ≥RS(χ) +
1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
t2t2

))2

+
1
2

t2‖Π‖2 +
t3Δ f

f
+

m

∑
r=t+1

∑
1≤i<j≤n

(Γr
ij)

2

+
m

∑
r=t+1

[ t2−1

∑
n=t1+1

Γr
t2t2

Γr
nn +

t

∑
l=t2+1

Γr
t2t2

Γr
ll
]

m

∑
r=1

t1

∑
i=1

[ t2−1

∑
j=t1+1

Γr
iiΓ

r
jj +

t

∑
k=t2+1

Γr
iiΓ

r
kk
]

+
c
4
(t − t1t2 − t2t3 − t3t1 + 1).

(40)

By the assumption that the submanifold St is L−minimal, one can conclude

m

∑
r=1

t1

∑
i=1

[ t2−1

∑
j=t1+1

Γr
iiΓ

r
jj +

t

∑
k=t2+1

Γr
iiΓ

r
kk
]
= 0.

The second and seventh terms on right hand side of (40) can be solved as follows:

1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + · · ·+ Γr

tt)− 2Γr
t2t2

))2 +
m

∑
r=t+1

[ t2−1

∑
n=t1+1

Γr
t2t2

Γr
nn +

t

∑
l=t2+1

Γr
t2t2

Γr
ll
]

=
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

nn)
2 + 2

m

∑
r=t+1

(Γr
t2t2

)2

− 2
m

∑
r=t+1

t

∑
j=t1+1

Γr
t2t2

Γr
jj +

m

∑
r=t+1

t

∑
n=t1+1

Γr
t2t2

Γr
nn −

m

∑
r=t+1

(Γr
t2t2

)2

=
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

nn)
2 +

m

∑
r=t+1

(Γr
t2t2

)2

−
m

∑
r=t+1

t

∑
j=t1+1

Γr
nnΓr

jj.

(41)
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By utilizing those two values in (40), we arrive at

1
2

t2‖Π‖2 ≥RS(χ) +
m

∑
r=t+1

(Γr
t2t2

)2 −
m

∑
r=t+1

t

∑
i=t1+1

Γr
nnΓr

jj

+
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

nn)2 +
1
2

t2‖Π‖2 +
t3Δ f

f

+
m

∑
r=t+1

t1

∑
i=1

t

∑
j=t1+1

(Γr
ij)

2 +
c
4
(t − t1t2 − t2t3 − t3t1 + 1).

(42)

By using similar steps as in Case 1, the above inequality can be written as

1
4

t2‖Π‖2 ≥RS(χ) +
1
4

m

∑
r=t+1

(2Γr
t2t2

− (Γr
t1+1t1+1 + · · ·+ Γr

nn))
2

+
t3Δ f

f
+

c
4
(t − t1t2 − t2t3 − t1t3 + 1).

(43)

The last inequality leads to inequality (ii) of (1).

Case 3. If χ is tangential to St3
⊥, then we choose the unit vector field from {et2+1, . . . , en}. Suppose the

vector χ is en. Then from (28)

t2‖Π‖2 ≥RS(χ) +
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
t3Δ f

f
+

1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
tt)

2

+
m

∑
r=t+1

∑
1≤α<β≤t1

(Γr
ααΓr

ββ − (Γr
αβ)

2) +
m

∑
r=t+1

∑
t1+1≤s<n≤t2

(Γr
ssΓr

nn − (Γr
sn)

2)

+
m

∑
r=t+1

∑
t2+1≤p<q≤t

(Γr
ppΓr

qq − (Γr
pq)

2) +
m

∑
r=t+1

∑
1≤i<j≤n

(Γr
ij)

2

−
m

∑
r=t+1

∑
1≤i<j≤t−1

Γr
iiΓ

r
jj − 2τ̄(St) + ∑

1≤i<j≤t−1
κ̄(ei, ej)

+ τ̄(St1
T ) + τ̄(St2

θ ) + τ̄(St3
⊥).

(44)

From (3), one can compute

∑
1≤i<j≤t−1

κ̄(ei, ej) =
c
8
[(t − 1)(t − 2) + 3t1 + 3(t2 − 1) cos2 θ]

τ̄(St1
T ) =

c
8
[t1(t1 − 1) + 3t1]

τ̄(St2
θ ) =

c
8
[t2(t2 − 1) + 3t2 cos2 θ]

τ̄(tt3
⊥) =

c
8
[t3(t3 − 1)].

By usage of those values together with (33) in (44), and analogously to Case 1 and Case 2, we obtain
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t2‖Π‖2 ≥RS(χ) +
1
2

t2‖Π‖2 +
1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
tt)

2

+
t3Δ f

f
+

m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2

+
m

∑
r=t+1

t−1

∑
q=t1+1

Γr
ttΓ

r
qq −

m

∑
r=t+1

t1

∑
i=1

t−1

∑
j=t1+1

Γr
iiΓ

r
jj

+
c
4
(t − t1t2 − t2t3 − t1t3 + 1 − 3

2
cos2 θ).

(45)

Again, using the assumption that St is L − minimal, it is easy to verify

m

∑
r=t+1

t1

∑
i=1

t−1

∑
j=t1+1

Γr
iiΓ

r
jj = 0. (46)

Using in (45), we obtain

t2‖Π‖2 ≥RS(χ) +
1
2

t2‖Π‖2 +
1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
tt)

2

+
t3Δ f

f
+

m

∑
r=t+1

∑
1≤i<j≤n

(Γr
ij)

2 +
m

∑
r=t+1

t−1

∑
q=t1+1

Γr
ttΓ

r
qq

+
c
4
(t − t1t2 − t2t3 − t1t3 + 1 − 3

2
cos2 θ).

(47)

The third and sixth terms on the right hand side of (47) in a similar way as in Case 1 and Case 2
can be simplified as

1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
tt)

2 +
m

∑
r=t+1

t−1

∑
q=t1+1

Γr
ttΓ

r
qq

=
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2 +

m

∑
r=t+1

(Γr
tt)

2

−
m

∑
r=t+1

t

∑
j=t1+1

Γr
ttΓ

r
jj.

(48)

By combining (47) and (48) and using similar techniques as used in Case 1 and Case 2,
we can derive

1
4

t2‖Π‖2 ≥ RS(χ) +
1
4

m

∑
r=t+1

(2Γr
tt − (Γr

t1+1t1+1 + · · ·+ Γr
tt))

2

+
t3Δ f

f
+

c
4
(t − t1t2 − t2t3 − t1t3 + 1 − 3

2
cos2 θ).

(49)

The last inequality leads to inequality (iii) in (1).
Next, we explore the equality cases of (1). First, we redefine the notion of the relative null space

Nx of the submanifold St in the CSF S̄m(c) at any point x ∈ St; the relative null space was defined by
B.-Y. Chen [19], as follows:

Nx = {U1 ∈ TxSt : Γ(U1, U2) = 0, ∀U2 ∈ TxSt}.

For A ∈ {1, . . . , t} a unit vector field eA tangential to St at x satisfies the equality sign of (23)
identically iff
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(i)
t1

∑
p=1

t

∑
q=t1+1

Γr
pq = 0 (ii)

t

∑
b=1

t

∑
A=1
b �=A

Γr
bA = 0 (iii) 2Γr

AA =
t

∑
q=t1+1

Γr
qq, (50)

such that r ∈ {t + 1, . . . m} the condition (i) implies that St is mixed totally geodesic SCR W-P
submanifold. Combining statements (ii) and (iii) with the fact that St is L−minimal, we get that the
unit vector field χ = eA ∈ Nx. The converse is trivial; this proves statement (2).

For a SCR W-P submanifold, the equality sign of (23) holds identically for all unit tangent vector
belong to St1

T at x iff

(i)
t1

∑
p=1

t

∑
q=t1+1

Γr
pq = 0 (ii)

t

∑
b=1

t1

∑
A=1
b �=A

Γr
bA = 0 (iii) 2Γr

pp =
t

∑
q=t1+1

Γr
qq, (51)

where p ∈ {1, . . . , t1} and r ∈ {t + 1, . . . , m}. Since St is L−minimal SCR W-P submanifold, the third
condition implies that Γr

pp = 0, p ∈ {1, . . . , t1}. Using this in the condition (ii), we conclude that St is
L−totally geodesic SCR W-P submanifold in S̄m(c) and totally mixed geodesicness follows from the
condition (i), which proves (a) in the statement (3).

For a SCR W-P submanifold, the equality sign of (24) holds identically for all unit tangent vector
fields tangential to St2

θ at x if and only if

(i)
t1

∑
p=1

t

∑
q=t1+1

Γr
pq = 0 (ii)

t

∑
b=1

t2

∑
A=t1+1

b �=A

Γr
bA = 0 (iii) 2Γr

KK =
t

∑
q=t1+1

Γr
qq, (52)

such that K ∈ {t1 + 1, . . . , t2} and r ∈ {t + 1, . . . , m}. From the condition (iii) two cases emerge; that is,

Γr
KK = 0, ∀K ∈ {t1 + 1, . . . , t2} and r ∈ {t + 1, . . . , m} or dim St2

θ = 2. (53)

If the first case of (52) is satisfied, then by virtue of condition (ii), it is easy to conclude that St is a
Dθ− totally geodesic SCR W-P submanifold in S̄m(c). This is the first case of part (b) of statement (3).

For a SCR W-P submanifold, the equality sign of (25) holds identically for all unit tangent vector
fields tangent to St3

⊥ at x if and only if

(i)
t1

∑
p=1

t

∑
q=t1+1

Γr
pq = 0 (ii)

t

∑
b=1

t3

∑
A=t2+1

b �=A

Γr
bA = 0 (iii) 2Γr

LL =
t

∑
q=t1+1

Γr
qq, (54)

such that L ∈ {t2 + 1, . . . , t} and r ∈ {t + 1, . . . , m}. From the condition (iii) two cases arise; that is,

Γr
LL = 0, ∀L ∈ {t2 + 1, . . . , t} and r ∈ {t + 1, . . . , m} or dim St3

⊥ = 2. (55)

If the first case of (54) is satisfied, then by virtue of condition (ii), it is easy to conclude that St is a
L⊥− totally geodesic SCR W-P submanifold in S̄m(c). This is the first case of part (c) of statement (3).

For the other case, assume that St is not L⊥−totally geodesic SCR W-P submanifold and dim
St3
⊥ = 2. Then condition (ii) of (54) implies that St is L⊥− totally umbilical SCR W-P submanifold in

S̄(c), which is second case of this part. This verifies part (c) of (3).
To prove (d) using parts (a), (b) and (c) of (3), we combine (51), (52) and (54). For the first case

of this part, assume that dimSt2
θ �= 2 and dimSt3

⊥ �= 2. From parts (a), (b) and (c) of statement (3)
we concluded that Mt is L−totally geodesic, Lθ− is totally geodesic and D⊥− is a totally geodesic
submanifold in S̄m(c). Hence St is a totally geodesic submanifold in S̄m(c).
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For another case, suppose that first case is not satisfied. Then parts (a), (b) and (c) provide
that St is mixed totally geodesic and L− totally geodesic submanifold of S̄m(c) with dimSt2

θ = 2 and
dimSt3

⊥ = 2. From the conditions (b) and (c) it follows that St is Lθ− and L⊥−totally umbilical SCR
W-P submanifolds and from (a) it is L−totally geodesic, which is part (d). This proves the theorem.

If, St2
θ = {0} then the SCR W-P submanifold becomes the CR W-P submanifold. In this case we

have the following corollary

Corollary 1. Let St = St1
T × f St3

⊥ be a CR W-P submanifold isometrically immersed in a CSF S̄m(c). Then for
each orthogonal unit vector field χ ∈ TxSt, either tangent to St1

T or St3
⊥ , we have

(1) The Ricci curvature satisfy the following inequalities

(i) If χ ∈ St1
T , then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3Δ f

f
+

c
4
(t − t1t3 − 1

2
). (56)

(ii) If χ ∈ St3
⊥, then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3Δ f

f
+

c
4
(t − t1t3 + 1). (57)

(2) If H(x) = 0, then each point x ∈ St there is a unit vector field χ which satisfies the equality case of (1) if
and only if St is mixed totally geodesic and χ lies in the relative null space Nx at x.

(3) For the equality case we have

(a) The equality case of (56) holds identically for all unit vector fields tangent to St1
T at each x ∈ St iff

St is mixed totally geodesic and L−totally geodesic CR W-P submanifold in S̄m(c).
(b) The equality case of (57) holds identically for all unit vector fields tangent to St3

⊥ at each x ∈ Mt iff
St is mixed totally geodesic and either St is L⊥- totally geodesic CR-warped product or St is a L⊥
totally umbilical in S̄m(c) with dim L⊥ = 2.

(c) The equality case of (1) holds identically for all unit tangent vectors to St at each x ∈ St if and only
if either St is totally geodesic submanifold or St is a mixed totally geodesic totally umbilical and
L− totally geodesic submanifold with dim St3

⊥ = 2

where t1 and t3 are the dimensions of St1
T and St3

⊥ respectively.

In view of (20) we have the another version of the Theorem 2 as follows:

Theorem 4. Let St = St1+t2
1 × f St3

⊥ be a L−minimal SCR W-P submanifold isometrically immersed in a CSF
M̄(c). If the holomorphic and slant distributions L and Lθ are integrable with integral submanifolds St1

T and St2
θ

respectively. Then for each orthogonal unit vector field χ ∈ TxS, either tangent to St1
T , St2

θ or St3
⊥, we have

(1) The Ricci curvature satisfy the following inequalities

(i) If χ ∈ TSt1
T , then

1
4

t2‖Π‖2 ≥ RS(χ) + t3(Δln f − ‖∇ln f ‖2) +
c
4
(t − t1t2 − t2t3

− t1t3 − 1
2
).

(58)
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(ii) χ ∈ TSt2
θ , then

1
4

t2‖Π‖2 ≥ RS(χ) + t3(Δln f − ‖∇ln f ‖2) +
c
4
(t − t1t2 − t2t3

− t1t3 + 1 − 3
2

cos2 θ).
(59)

(iii) If χ ∈ TSt2
⊥, then

1
4

t2‖Π‖2 ≥ RS(χ) + t3(Δln f − ‖∇ln f ‖2) +
c
4
(t − t1t2 − t2t3 − t1t3 + 1). (60)

(2) If Γ(x) = 0 for each point x ∈ St, then there is a unit vector field χ which satisfies the equality of (1) iff St

is mixed totally geodesic and χ ∈ Nx at x.
(3) For the equality case we have

(a) The equality of (58) holds identically for all unit vector fields tangent to St1
T at each x ∈ St iff St is

mixed TG and L−totally geodesic SCR W-P submanifold in S̄m(c).
(b) The equality of (59) holds identically for all unit vector fields tangent to Sθ at each x ∈ St iff S is

mixed totally geodesic and either St is Lθ- totally geodesic SCR W-P submanifold or St is a Lθ

totally umbilical in S̄m(c) with dim Lθ = 2.
(c) The equality of (60) holds identically for all unit vector fields tangent to St2

⊥ at each x ∈ St iff S is
mixed totally geodesic and either St is L⊥- totally geodesic SCR W-P or St is a L⊥ totally umbilical
in S̄m(c) with dim L⊥ = 2.

(d) The equality case of (1) holds identically for all unit tangent vectors to St at each x ∈ St iff either
St is totally geodesic submanifold or Mt is a mixed totally geodesic totally umbilical and L totally
geodesic submanifold with dim St2

θ = 2 and dim St3
⊥ = 2.

Where t1, t2 and t3 are the dimensions of St1
T , St2

θ and St3
⊥ respectively.

5. Conclusions

In the present study we obtained some fundamental results for skew CR-warped product
submanifolds in the frame of complex space forms. Further, some inequalities in terms of Ricci
curvature and squared norm of mean curvature vector were derived. In particular, a Ricci curvature
for CR-warped product submanifolds was also discussed. Recently, we also studied warped product
submanifolds in complex space forms (see [15,16]) and obtained some inequalities in terms of squared
norm of second fundamental form, slant function and the warping functions, but the results obtained
in the present study are dissimilar from the previous works of the authors and were proved by using
different techniques.
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Abbreviations

W-P Warped product
W-F Warping function
CSF Complex Space form
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1. Introduction

In 1935, Erdös [1] proposed the following geometric inequality:
For any interior point P of the triangle ABC, let R1, R2, R3 be the distances from P to the vertices

A, B, C, respectively, and let r1, r2, r3 be the distances from P to the sides BC, CA, AB, respectively. Then

∑ R1 ≥ 2 ∑ r1, (1)

where ∑ denotes the cyclic sums (we shall use this symbol in the sequel). Equality in (1) holds if and
only if the triangle ABC is equilateral and P is its center.

Two years later, Mordell and Barrow [2] first proved the inequality (1), and the latter actually
obtained the following sharpness:

∑ R1 ≥ 2 ∑ w1, (2)

where w1, w2, w3 are the lengths of the bisectors of ∠BPC,∠CPA,∠APB, respectively.
The above two inequalities have long been famous results in the field of geometric inequalities.

The former is called the Erdös–Mordell inequality, which has attracted the interest of many authors
and motivated a large number of research papers (see [2–28] and the references cited therein).

In 1957, Ozeki [22] first obtained the following generalization of Barrow’s inequality (2) for convex
polygons: For any interior point P of the convex polygon A1 A2 · · · An, it holds that

n

∑
i=1

Ri ≥ sec
π

n

n

∑
i=1

wi, (3)

where Ri = PAi and wi denote the lengths of the bisectors of ∠AiPAi+1(i = 1, 2, · · · , n and An+1 = A1).
Some other discussions about Barrow’s inequality and (3) can be found in [4,14,19,21,23,27].
In 2012, when the author considered Oppenheim’s inequality (see [24])

∑ R2R3 ≥ 2 ∑(r3 + r1)(r1 + r2), (4)

the following sharpened version of the Erdös–Mordell inequality was found:

R2 + R3 ≥ 2r1 +
(r2 + r3)

2

R1
, (5)
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with equality if and only if �ABC is an isosceles right triangle and P is its circumcenter. Furthermore,
by using inequalities (4), (5), and other results, the author obtained a series of refinements for the
Erdös–Mordell inequality in [14,16].

In this paper, we shall give two new refinements of the Erdös–Mordell inequality and three new
refinements of Barrow’s inequality. In addition, we shall present several interesting related conjectures
in the last section.

2. Refinements of the Erdös–Mordell Inequality

In [11], the author proved the following refinement of the Erdös–Mordell inequality:

∑ R1 ≥ 2
√

∑ har1 ≥ 2 ∑ r1 (6)

where ha, hb, hc are the corresponding altitudes of the sides BC, CA, AB of the triangle ABC.
Here, we further give the following result:

Theorem 1. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥ 2
√

∑ haw1 ≥ 2
√

∑ har1 ≥ 2 ∑ r1. (7)

Equalities in (7) all hold if and only if �ABC is equilateral and P is its center.

To prove Theorem 1, we first give several lemmas.

Lemma 1. For any triangle ABC with sides a, b, c and real numbers x, y, z, it holds that(
∑ xa

)2 ≥
(

2 ∑ bc − ∑ a2
)

∑ yz, (8)

with equality if and only if x : y : z = (b + c − a) : (c + a − b) : (a + b − c).

For any triangle ABC with sides a, b, c, we have
√

b +
√

c >
√

b + c >
√

a. Thus,
√

a,
√

b,
√

c can
be viewed sides of a triangle, and we see that inequality (8) can be obtained by using the following
weighted Oppenheim inequality (see [19], p. 681):(

∑ xa2
)2 ≥ 16S2 ∑ yz (9)

(where S is the area of �ABC) and the following equivalent form of the Heron formula:

16S2 = 2 ∑ b2c2 − ∑ a4. (10)

Remark 1. In the sixth chapter of the monograph [17], the author proved that inequality (8) is equivalent
with (9) and the Wolstenholme inequality (52) below.

In the Appendix A of my monograph [17], Theorem A3 gives an equivalent theorem for the
geometric transformations, which includes the following conclusion: An inequality involving any
interior point P of the triangle ABC,

f (a, b, c, R1, R2, R3, r1, r2, r3) ≥ 0, (11)

is equivalent to

f
(

aR1

2R
,

bR2

2R
,

cR3

2R
, r1, r2, r3,

r2r3

R1
,

r3r1

R2
,

r1r2

R3

)
≥ 0. (12)

138



Mathematics 2019, 7, 726

In fact, this conclusion can be extended to the following:

Lemma 2. With above notations, the inequality

f (a, b, c, R1, R2, R3, r1, r2, r3, w1, w2, w3) ≥ 0 (13)

is equivalent to

f
(

aR1

2R
,

bR2

2R
,

cR3

2R
, r1, r2, r3,

r2r3

R1
,

r3r1

R2
,

r1r2

R3
,

2r2r3

r2 + r3
sin

A
2

,
2r3r1

r3 + r1
sin

B
2

,
2r1r2

r1 + r2
sin

C
2

)
≥ 0. (14)

Proof. Let DEF be the pedal triangle of P with respect to the triangle ABC (see Figure 1), and let
EF = ap, FD = bp, DE = cp, then it is easy to get

ap =
aR1

2R
, bp =

bR2

2R
, cp =

cR3

2R
. (15)

Let h1, h2, h3 be the distances from P to the side lines EF, FD, DE, respectively, we also easily obtain

h1 =
r2r3

R1
, h2 =

r3r1

R2
, h3 =

r1r2

R3
. (16)

In addition, by means of the known formula in the triangle ABC

wa =
2bc

b + c
cos

A
2

(17)

(where wa is the bisector of ∠BAC) and the fact that ∠EPF = π − A, we get

w′
1 =

2r2r3

r2 + r3
sin

A
2

, (18)

where w′
1 is the bisector of ∠EPF. Two similar relations hold for the bisectors w′

2, w′
3 of

∠FPD,∠DPE, respectively.
If we apply inequality (13) to triangle DEF and point P, then

f (ap, bp, cp, r1, r2, r3, h1, h2, h3, w′
1, w′

2, w′
3) ≥ 0.

Substituting (15), (16), and (18) into this inequality, (14) follows immediately. Conversely, we can
obtain (13) from (14) by using the method of proving Theorem A3 in Appendix A of the monograph [17].
Thus, inequality (13) is equivalent with (14). The proof of Lemma 2 is completed.

Figure 1. An inequality involving any point P inside triangle ABC is equivalent to the one involving
the point P and its pedal triangle DEF with respect to ABC.
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Lemma 3. For any interior point P of the triangle ABC, it holds that

r2 + r3 ≤ 2R1 sin
A
2

, (19)

with equality if and only if r2 = r3.

Inequality (19) is well-known and is easily proved (see [29], p. 111).
Next, we prove Theorem 1.

Proof. Since w1 ≥ r1 etc., the second inequality in (7) is evidently valid. In addition, the third
inequality of (7) is easily obtained (see [11]).

We now prove the first inequality in (7), i.e.,(
∑ R1

)2 ≥ 4 ∑ haw1. (20)

By the area formula ha = 2S/a and the identity

∑ ar1 = 2S, (21)

we see that (20) is equivalent to (
∑ R1

)2 ≥ 4 ∑ ar1 ∑
w1

a
. (22)

According to Lemma 2 and the relations (15) and (16), we further know that inequality (22) is
equivalent to (

∑ r1
)2 ≥ 4 ∑

aR1

2R
· r2r3

R1
∑

2R
aR1

· 2r2r3

r2 + r3
sin

A
2

,

i.e., (
∑ r1

)2 ≥ 8 ∑ ar2r3 ∑
r2r3

a(r2 + r3)R1
sin

A
2

. (23)

But using r2r3 ≤ (r2 + r3)
2/4, Lemma 3, and the known formula

sin
A
2

=

√
(s − b)(s − c)

bc
(24)

(where s = (a + b + c)/2), we have

∑
r2r3

a(r2 + r3)R1
sin

A
2

≤ 1
4 ∑

r2 + r3

aR1
sin

A
2

≤ 1
2 ∑

1
a

sin2 A
2

=
1

2abc ∑(s − b)(s − c).

Thus, in order to prove inequality (23), we only need to prove that

(
∑ r1

)2 ≥ 4 ∑
r2r3

bc ∑(s − b)(s − c). (25)

Putting x = r1/a, y = r2/b, z = r3/c in inequality (8) of Lemma 1 and noting the fact that

2 ∑ bc − ∑ a2 = 4 ∑(s − b)(s − c), (26)
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we get inequality (25) immediately. Thus, inequality (20) is proved. It is easily known that the equality
in (20) holds if and only if �ABC is equilateral and P is its center. This completes the proof of
Theorem 1.

Now we state and prove the second refinement of the Erdös–Mordell inequality.

Theorem 2. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥
√

1
2 ∑ a2 + ∑ R2R3 + 2 ∑ r2

1

≥
√

1
2 ∑ a2 +

3
2 ∑(r2 + r3)2 ≥ 2 ∑ r1. (27)

The first equality in (27) holds if and only if P is the circumcenter of the triangle ABC. The second and
third equalities in (27) hold if and only if the triangle ABC is equilateral and P is its center.

Proof. In triangle ABC, we have the following known angle bisector formula:

wa =
2

b + c

√
sbc(s − a). (28)

Noting that
√

bc ≤ (b + c)/2 and s = (a + b + c)/2, we have

wa ≤ 1
2

√
[(b + c)2 − a2], (29)

with equality if and only if b = c. Applying this inequality to �BPC, we get√
(R2 + R3)2 − a2 ≥ 2w1. (30)

Hence, we have

∑(R2 + R3)
2 ≥ ∑ a2 + 4 ∑ w2

1, (31)

that is,

∑ R2
1 + ∑ R2R3 ≥ 1

2 ∑ a2 + 2 ∑ w2
1.

Adding ∑ R2R3 to both sides of the above inequality and then squaring root, we obtain

∑ R1 ≥
√

1
2 ∑ a2 + ∑ R2R3 + 2 ∑ w2

1. (32)

Sine w1 ≥ r1 etc., the first inequality in (27) obviously holds. Note that the equality in (30) holds
if and only if R2 = R3, thus the equality in (31) holds if and only if R1 = R2 = R3, which means that P
is the circumcenter of the triangle ABC. Furthermore, we can conclude that the first equality in (27)
holds if and only if P is the circumcenter of the triangle ABC.

Clearly, the second inequality in (27) is equivalent to

∑ R2R3 + 2 ∑ r2
1 ≥ 3

2 ∑(r2 + r3)
2.

Removing 2 ∑ r2
1 to the right and arranging gives the previous Oppenheim inequality (4),

which has been proved by the author in different ways (see [12,14]).
For the third inequality in (27), by squaring both sides and arranging, we know that it is

equivalent to
2 ∑ r2

1 + 10 ∑ r2r3 ≤ ∑ a2, (33)
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which was first established by Chu in [30] and proved by the author in another way in [15]. In addition,
we have known that both equalities in (4) and (33) hold if and only if �ABC is equilateral and P is its
center. This completes the proof of Theorem 2.

From Theorem 2, we have

Corollary 1. For any interior point P of the triangle ABC, it holds that

2
(
∑ R1

)2 − 3 ∑(r2 + r3)
2 ≥ ∑ a2. (34)

Furthermore, we can easily obtain the following inequality:

Corollary 2. For any interior point P of the triangle ABC, it holds that

(
∑ R1

)2 − 2
(
∑ r1

)2 ≥ 1
2 ∑ a2. (35)

3. Refinements of Barrow’s Inequality

In [14], Theorem 4.3 gives the following refinement of the Erdös–Mordell inequality:

∑ R1 ≥
√

∑
[
R2

1 + 2r1R1 + (r2 + r3)2
] ≥ 2 ∑ r1, (36)

which is actually equivalent to

∑ R1 ≥
√

∑(R1 + r1)2 +
(
∑ r1

)2 ≥ 2 ∑ r1. (37)

Now, we point out that for Barrow’s inequality (2), the following similar result holds:

Theorem 3. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥
√

∑(R1 + w1)2 +
(
∑ w1

)2 ≥ 2 ∑ w1. (38)

Equalities in (38) hold if and only if �ABC is equilateral and P is its center.

Clearly, the first inequality in (38) is also equivalent to the following interesting form:(
∑ R1

)2 − (
∑ w1

)2 ≥ ∑(R1 + w1)
2. (39)

To prove this inequality, we first prove a strengthening of the previous inequality (5), which is
posed by the author in [12] as a conjecture.

Lemma 4. For any interior point P of the triangle ABC, it holds that

R2 + R3 ≥ 2w1 +
(w2 + w3)

2

R1
, (40)

with equality if and only if CA = AB and P is the circumcenter of the triangle ABC.

Proof. We let ∠BPC = 2δ1,∠CPA = 2δ2,∠APB = 2δ3. By the previous formula (17), we know that
inequality (40) is equivalent to

R2 + R3 ≥ 4R2R3

R2 + R3
cos δ1 +

1
R1

(
2R3R1

R3 + R1
cos δ2 +

2R1R2

R1 + R2
cos δ3

)2
.
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Since R3 + R1 ≥ 2
√

R3R1 and R1 + R2 ≥ 2
√

R1R2, to prove the above inequality we only need to
prove that

R2 + R3 ≥ 4R2R3

R2 + R3
cos δ1 +

(√
R3 cos δ2 +

√
R2 cos δ3

)2
. (41)

Letting
√

R2 = y and
√

R3 = z, (41) then becomes

y2 + z2 ≥ 4y2z2

y2 + z2 cos δ1 + (z cos δ2 + y cos δ3)
2 . (42)

Note that δ1, δ2, δ3 can be viewed angles of a non-obtuse triangle. To prove inequality (42), we only
need to prove that the following inequality holds for non-obtuse triangles ABC and real numbers y, z:

y2 + z2 ≥ 4y2z2

y2 + z2 cos A + (z cos B + y cos C)2 , (43)

that is,
(y2 + z2)2 − 4y2z2 cos A − (y2 + z2) (z cos B + y cos C)2 ≥ 0. (44)

Multiplying both sides by 4(abc)2 and using the law of cosines, we can transform the proof to the
following weighted inequality:

4(abc)2(y2 + z2)2 − 8bca2y2z2(b2 + c2 − a2)

−(y2 + z2)
[
zb(c2 + a2 − b2) + yc(a2 + b2 − c2)

]2 ≥ 0. (45)

If we denote by Q0 the value of the left-hand side of (45), then it is easy to check the
following identity:

Q0 = (y2 + z2)(yc − zb)2(c2 + a2 − b2)(a2 + b2 − c2)

+2a2(b2 + c2 − a2)[(y2c − z2b)2 + y2z2(b − c)2], (46)

which shows that inequality Q0 ≥ 0 holds clearly. Moreover, from (46) we can obtain the following
conclusions: (i) if A = π/2, then the equality in (43) holds if and only if yc = zb; (ii) if A < π/2,
then the equality in (43) holds if and only if y = z and b = c. According to this conclusion, we can
further determine the equality condition of (40), just as mentioned in Lemma 4. This completes the
proof of Lemma 4.

Remark 2. Adding R1 to both sides of (40) and noting that

R1 +
(w2 + w3)

2

R1
≥ 2(w2 + w3),

we obtain Barrow’s inequality (2). Therefore, inequality (43) is actually stronger than Barrow’s inequality (2).

We now prove Theorem 3.

Proof. As the proof of the first inequality (36) given in [14], we can easily prove the first inequality
of (38) by using Lemma 4 (we omit the details here). By the power means inequality and Barrow’s
inequality (2), we have

∑(R1 + w1)
2 ≥ 1

3
[
∑(R1 + w1)

]2
=

1
3
(
∑ R1 + ∑ w1

)2

≥ 3
(
∑ w1

)2 .
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Hence, the second inequality of (38) follows immediately. Moreover, it is easily known that both
equalities in (38) hold if and only if �ABC is equilateral and P is its center. The proof of Theorem 3
is completed.

Next, we state and prove the second new refinement of Barrow’s inequality (2).

Theorem 4. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥ ∑
√
(R2 + R3)2 − a2 ≥ 2 ∑ w1. (47)

The second equality in (47) holds if and only if P is the circumcenter of the triangle ABC.

Proof. Firstly, we prove the first of (47):

∑ R1 ≥ ∑
√
(R2 + R3)2 − a2. (48)

According to Lemma 2, we only need to prove that

∑ r1 ≥ ∑
√
(r2 + r3)2 − a2

p. (49)

Using the law of cosines in triangle EPF and the fact that ∠EPF = π − A (see Figure 1), we have

a2
p = r2

2 + r2
3 − 2r2r3 cos∠EPF = r2

2 + r2
3 + 2r2r3 cos A,

and then
(r2 + r3)

2 − a2
p = 4r2r3 sin2 A

2
. (50)

Thus, we see that inequality (49) is equivalent to

∑ r1 ≥ 2 ∑
√

r2r3 sin
A
2

. (51)

But, for any real numbers x, y, z and �ABC, we have the following Wolstenholme inequality
(see [19]):

∑ x2 ≥ 2 ∑ yz cos A, (52)

with equality if and only if x : y : z = sin A : sin B : sin C. Putting x =
√

r1, y =
√

r2, z =
√

r3 in (52)
and substituting A → (π − A)/2 etc., we get inequality (51) at once. Thus, inequality (48) is proved.

The second inequality in (47) follows immediately by adding the previous inequality (30) and its
two analogues. Note that the equality in (30) holds if and only if R2 = R3. We conclude that the second
equality in (47) holds if and only if R1 = R2 = R3, which means that the point P is the circumcenter of
�ABC. The proof of Theorem 4 is completed.

Remark 3. The author knows that the triangle ABC need not be equilateral when the first equality in (47) holds
but does not know what are the barycentric coordinates of P with respect to the triangle ABC.

Now we give an application of Theorem 4.
Squaring both sides of the first inequality of (47), we have(

∑ R1
)2

≥ ∑
[
(R2 + R3)

2 − a2
]
+ 2 ∑

√
(R3 + R1)2 − b2 ·

√
(R1 + R2)2 − c2.
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Then, applying inequality (30), we further get(
∑ R1

)2 ≥ ∑(R2 + R3)
2 − ∑ a2 + 8 ∑ w2w3.

Expanding gives the following:

Corollary 3. For any interior point P of the triangle ABC, it holds that

∑ R2
1 + 8 ∑ w2w3 ≤ ∑ a2. (53)

In fact, by using the previous inequality (30), we have the following extension:

∑ R2
1 + 8 ∑ w2w3 ≤ ∑ a2 ≤ ∑(R2 + R3)

2 − 4 ∑ w2
1, (54)

which implies Barrow’s inequality (2).
Finally, we give the third new refinement of Barrow’s inequality:

Theorem 5. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥
√

1
2 ∑ a2 + ∑ R2R3 + 2 ∑ w2

1 ≥ 2 ∑ w1 (55)

The first equality in (55) holds if and only if P is the circumcenter of �ABC. The second equality in (55)
holds if and only if �ABC is equilateral and P is its center.

Proof. In the proof of Theorem 2, we have proved the first inequality in (55). The second inequality
in (55) is easily obtained as follows: By (53), we have

1
2 ∑ a2 + ∑ R2R3 + 2 ∑ w2

1

≥ 1
2 ∑ R2

1 + 4 ∑ w2w3 + ∑ R2R3 + 2 ∑ w2
1

=
1
2
(
∑ R1

)2
+ 2

(
∑ w1

)2

≥ (
∑ w1

)2 ,

where the last step used Barrow’s inequality (2). It is not difficult to know the equality conditions of
inequality chain (55). The proof of Theorem 5 is completed.

4. Some Open Problems

In this section, we present some interesting conjectures as open problems.
For the second inequality in (27), the author guesses that the following refinement is valid.

Conjecture 1. For any interior point P of the triangle ABC, it holds that√
1
2 ∑ a2 + ∑ R2R3 + 2 ∑ r2

1 ≥ 1
2 ∑

√
a2 + 4r2

1

≥
√

1
2 ∑ a2 +

3
2 ∑(r2 + r3)2. (56)

A similar conjecture is as follows.
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Conjecture 2. For any interior point P of the triangle ABC, it holds that√
1
2 ∑ a2 + ∑ R2R3 + 2 ∑ w2

1 ≥ 1
2 ∑

√
a2 + 4w2

1

≥
√

1
2 ∑ a2 +

3
2 ∑(w2 + w3)2 ≥ 2 ∑ w1. (57)

Remark 4. The last inequality of (57) is actually equivalent to

2 ∑ w2
1 + 10 ∑ w2w3 ≤ ∑ a2, (58)

which is Conjecture 2 posed by the author in [15].

Next, we give a reversed inequality similar to the previous inequality (34).

Conjecture 3. For any interior point P of the triangle ABC, it holds that(
∑ R1

)2
+ 12 ∑ r2r3 ≤ 2 ∑ a2. (59)

Considering generalizations of the first inequality of (47), the author presents the following conjecture:

Conjecture 4. Let P be an interior point of a convex polygon A1 A2 · · · An(n > 3) and PAi = Ri(i =

1, 2, · · · , n), Rn+1 = R1, Ai Ai+1 = ai(i = 1, 2, · · · , n, and An+1 = A1). Then

2 cos
π

n

n

∑
i=1

Ri ≥
n

∑
i=1

√
(Ri + Ri+1)2 − a2

i . (60)

Remark 5. By the previous inequality, (30) we know that the above inequality is stronger than inequality (3).

We have the following refinement of the Erdös–Mordell inequality (see [10]):

∑ R1 ≥ 1
2 ∑

√
a2 + 4r2

1 ≥ 2 ∑ r1, (61)

in which the first inequality can easily be generalized to polygons by applying inequality (30) and
w1 ≥ r1. The author believes that the second inequality can also be generalized to polygons as follows:

Conjecture 5. Let P be an interior point of convex polygon A1 A2 · · · An(n > 3), and let ri denote the distances
from P to the side lines Ai Ai+1(i = 1, 2, · · · , n and An+1 = A1). Then

n

∑
i=1

√
a2

i + 4r2
i ≥ 2 sec

π

n

n

∑
i=1

ri. (62)

Similarly, we put forward the following conjecture:

Conjecture 6. Let P be an interior point of convex polygon A1 A2 · · · An(n > 3), and let wi denote the angle
bisectors of ∠AiPAi+1(i = 1, 2, · · · , n and An+1 = A1). Then

n

∑
i=1

√
a2

i + 4w2
i ≥ 2 sec

π

n

n

∑
i=1

wi. (63)
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If the above inequality holds, then we can obtain the following refinement of inequality (3):

n

∑
i=1

Ri ≥ 1
2

n

∑
i=1

√
a2

i + 4w2
i ≥ sec

π

n

n

∑
i=1

wi, (64)

where Ri = PAi(i = 1, 2, · · · , n).
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1. Preliminaries

In submanifold theory, Lagrangian submanifolds are studied not only for their special geometric
properties, but also for their important roles in supersymmetric field theory and string theory. For these
submanifolds in quaternionic space forms, we give an answer to one problem in submanifold theory,
most precisely to find relationships between the main extrinsic invariants and intrinsic invariants.

The intrinsic characteristics of a Riemannian manifold are given by its curvature invariants. In the
second section of this article, we recall the definition of δ-invariants (also known as Chen invariants)
(see [1]). This theory was initiated by Chen in [2].

In Section 3 we derive an improved inequality for the Chen invariant δ(2, 2) in the case of a
Lagrangian submanifold in a quaternionic space form, regarded as a problem of constrained maxima,
and recall the inequality which has been improved.

Let M̃m be a complex m-dimensional Kaehler manifold endowed with an almost complex structure
J and a Hermitian metric g̃ and f : Mn → M̃m an isometric immersion of an n-dimensional manifold
Mn into M̃m. The submanifold Mn is called a totally real submanifold if J(Tp Mn) ⊂ T⊥

p Mn, ∀p ∈ Mn.
A totally real submanifold of maximum dimension, i.e., dimR Mn = dimC M̃n = n, is called a
Lagrangian submanifold.

If M̃m has holomorphic constant sectional curvature 4c, then it is called a complex space form and it
is denoted by M̃m(4c). Its Riemannian curvature tensor is given by

R̃(X, Y)Z = c[g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY + 2g(X, JY)JZ],

for any vector fields X, Y, Z tangent to M̃m(4c).
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Let Mn be a Lagrangian submanifold of M̃n(4c). One denotes by ∇ and ∇̃ the Levi-Civita
connections of Mn and M̃n(4c), respectively. The Gauss and Weingarten formulae are given
respectively by

∇̃XY = ∇XY + h(X, Y), (1)

∇̃Xξ = −Aξ X + DXξ, (2)

where X and Y are tangent vector fields, ξ is a normal vector field and D is the normal connection.
The second fundamental form h and shape operator Aξ are related by

g(h(X, Y), ξ) = g(Aξ X, Y). (3)

The mean curvature vector H of Mn is defined by

H =
1
n

trace h.

In the case of a Lagrangian submanifold in a complex space form, we have the following relations

DX JY = J∇XY, (4)

AJXY = −Jh(X, Y) = AJYX, (5)

and we point out that g(h(X, Y), Z) is totally symmetric.
One denotes by K(π) the sectional curvature of Mn associated with a plane section π ⊂ Tp Mn,

p ∈ Mn and by R the Riemannian curvature tensor of Mn. Then the Gauss equation is given by

R̃(X, Y, Z, W) = R(X, Y, Z, W)− g(h(X, Z), h(Y, W))+ (6)

g(h(X, W), h(Y, Z)),

for any vectors X, Y, Z, W tangent to Mn, where R̃(X, Y, Z, W) = g(R̃(X, Y)W, Z) and R(X, Y, Z, W) =

g(R(X, Y)W, Z).
For an orthonormal basis {e1, e2, . . . , en} of Tp Mn at a point p ∈ Mn, we put

hC
AB = g(h(eA, eB), JeC), A, B, C = 1, . . . , n.

Because g(h(X, Y), Z) is totally symmetric, it follows that

hA
BC = hB

AC = hC
AB. (7)

On the other hand, we recall the following result for a Riemannian submanifold (Mn, g) of a
Riemannian manifold (M̃m, g̃) (of an arbitrary codimension); let consider f ∈ C∞(M̃). We attach the
optimum problem:

min
x∈M

f (x). (8)

Then the following result holds (see [3]).

Theorem 1. If x0 ∈ Mn is a solution of the problem (8), then

(a) (grad)(x0) ∈ T⊥
x0

Mn;
(b) the bilinear form α : Tx0 Mn × Tx0 Mn → R,

α(X, Y) = Hess f (X, Y) + g̃(h(X, Y), (grad)(x0))

is semipositive definite, where h is the second fundamental form of the submanifold Mn in M̃m.
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2. Chen Invariants

Let Mn be an n-dimensional Riemannian manifold and K(π) the sectional curvature of Mn

associated with a 2-plane section π ⊂ Tp Mn, p ∈ Mn.
For any orthonormal basis {e1, ..., en} of the tangent space Tp Mn, the scalar curvature τ at p is

defined by
τ(p) = ∑

1≤i<j≤n
K(ei ∧ ej).

One denotes by
(inf K)(p) = inf{K(π)|π ⊂ Tp Mn, dim π = 2}.

The Chen first invariant is given by δM(p) = τ(p)− (inf K)(p).
If L is a subspace of Tp Mn of dimension r ≥ 2 and {e1, ..., er} an orthonormal basis of L, the scalar

curvature τ(L) of the r-plane section L is given by

τ(L) = ∑
1≤α<β≤r

K(eα ∧ eβ).

For given integers n ≥ 3 and k ≥ 1, one denotes by S(n, k) the finite set of all k-tuples (n1, ..., nk)

of integers satisfying 2 ≤ n1, ..., nk < n, n1 + ... + nk ≤ n. Let S(n) =
⋃

k≥1 S(n, k).
For each (n1, ..., nk) ∈ S(n) and each point p ∈ Mn, B.-Y. Chen introduced a Riemannian invariant

defined by
δ(n1, ..., nk)(p) = τ(p)− inf{τ(L1) + ... + τ(Lk)},

where L1, ..., Lk run over all k mutually orthogonal subspaces of Tp Mn such that dim Lj = nj, j = 1, ..., k.
We recall the most important Chen inequalities for submanifolds in real space forms.

Theorem 2 ([2]). Let Mn be an n-dimensional (n ≥ 3) submanifold of a real space form M̃m(c) of constant
sectional curvature c. Then

δM ≤ n − 2
2

{
n2

n − 1
‖H‖2 + (n + 1)c

}
. (9)

The equality case was characterized in terms of the shape operator.

The same inequality holds for totally real submanifolds in complex space forms. A corresponding
inequality for slant submanifolds in complex space forms was obtained in [4].

However, for Lagrangian submanifolds in complex space forms the above inequality, known as
Chen first inequality, was improved by Bolton et al. [5]. Moreover, one of the present authors improved
the Chen first inequality for Kaehlerian slant submanifolds in complex space forms (see [6]).

For each (n1, ..., nk) ∈ S(n), one denotes by:

d(n1, ..., nk) =

n2(n + k − 1 −
k

∑
j=1

nj)

2(n + k −
k

∑
j=1

nj)

,

b(n1, ..., nk) =
1
2
[n(n − 1)−

k

∑
j=1

nj(nj − 1)].

The following sharp inequality involving the Chen invariants and the squared mean curvature
obtained in [7] plays a very important role in this topic.
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Theorem 3. For each (n1, ..., nk) ∈ S(n) and each n-dimensional submanifold Mn in a Riemannian space form
M̃m(4c) of constant sectional curvature 4c, the inequality

δ(n1, ..., nk) ≤ d(n1, ..., nk) ‖H‖2 + b(n1, ..., nk)c (10)

is fulfilled.

Chen also pointed-out that a similar inequality holds for totally real (in particular Lagrangian)
submanifolds in a complex space form.

3. Lagrangian Submanifolds in Quaternionic Space Forms

Chen et al. established the following inequalities for Chen invariants of Lagrangian submanifolds
in complex space forms, which improve the inequality (10).

Theorem 4 ([8]). Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c). For a given k-tuple
(n1, n2, . . . , nk) ∈ S(n), we put N = n1 + n2 + . . . + nk. If N < n, then the inequality

δ(n1, n2, . . . , nk) ≤
n2{n − N + 3k − 1 − 6 ∑k

i=1(2 + ni)
−1}

2{n − N + 3k + 2 − 6 ∑k
i=1(2 + ni)−1} ‖H‖2+ (11)

1
2

{
n(n − 1)−

k

∑
i=1

ni(ni − 1)

}
c

is satisfied.

In particular, one has (see also [9]).

Theorem 5. Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c), n ≥ 4. Then the following
inequality holds.

δ(2, 2) ≤ n2

2
· n − 2

n + 1
‖H‖2 +

1
2
[n(n − 1)− 4]c. (12)

The equality sign holds at a point p ∈ Mn if and only if there is an orthonormal basis {e1, e2, . . . , en} at p
such that with respect to this basis the second fundamental form h satisfies the following conditions

hC
iA = 0, A, C ∈ {1, . . . , n}�{i}, A < C, i = 1, 3,

hA
BC = 0, A = 1, n, 4 ≤ B < C ≤ n, A /∈ {B, C}.

Next, we recall some basic notions about quaternionic space forms.
Let M̃4m be a differentiable manifold and we assume that there is a rank 3 subbundle σ of

End(TM̃4m) such that a local basis {J1, J2, J3} exists on sections of σ satisfying for all α ∈ {1, 2, 3}

J2
α = − Id, Jα Jα+1 = −Jα+1 Jα = Jα+2, (13)

where Id denotes the identity field of type (1, 1) on M̃4m and the indices are taken from {1, 2, 3}
modulo 3. The bundle σ is called an almost quaternionic structure on M̃4m and {J1, J2, J3} is called a
canonical basis of σ. (M̃4m, σ) is said to be an almost quaternionic manifold. It is easy to see that any
almost quaternionic manifold is of dimension 4m, m ≥ 1.

A Riemannian metric g̃ on M̃4m is said to be adapted to the almost quaternionic structure σ if it satisfies

g̃(JαX, JαY) = g̃(X, Y), ∀α ∈ {1, 2, 3}, (14)
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for all vector fields X, Y on M̃4m and any canonical basis {J1, J2, J3} on σ. (M̃4m, σ, g̃) is said to be an
almost quaternionic Hermitian manifold.

(M̃4m, σ, g̃) is said to be a quaternionic Kaehler manifold if the bundle σ is parallel with respect to
the Levi-Civita connection ∇̃ of g̃, i.e., locally defined 1-forms ω1, ω2, ω3 exist such that we have

∇̃X Jα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2, (15)

for all α ∈ {1, 2, 3} and for any vector field X on M̃4m, where the indices are taken from {1, 2, 3}
modulo 3.

Let (M̃4m, σ, g̃) be a quaternionic Kaehler manifold and let X be a non-null vector on M̃4m.
The 4-plane spanned by {X, J1X, J2X, J3X} is called a quaternionic 4-plane and is denoted by Q(X).
Any 2-plane in Q(X) is called a quaternionic plane. The sectional curvature of a quaternionic plane is
called a quaternionic sectional curvature. A quaternionic Kaehler manifold is a quaternionic space form if
its quaternionic sectional curvature are equal to a constant, say 4c, i.e., its curvature tensor is given by

R̃(X, Y)Z = c{g̃(Z, Y)X − g̃(X, Z)Y +
3

∑
α=1

[g̃(Z, JαY)JαX− (16)

g̃(Z, JαX)JαY + 2g̃(X, Jαy)JαZ]},

for all vector fields X, Y, Z on M̃4m and any local basis {J1, J2, J3} on σ.
A submanifold Mn of a quaternionic space form M̃4n(4c) is said to be Lagrangian if Jα(Tp M) ⊂

T⊥
p M, for any p ∈ M and α = 1, 2, 3.

On a Lagrangian submanifold Mn we can choose an orthonormal frame field in M̃4n(4c)

{e1, e2, . . . , en; eφ1(1) = J1(e1), . . . , eφ1(n) = J1(en);

eφ2(1) = J2(e1), . . . , eφ2(n) = J2(en); eφ3(1) = J3(e1), . . . , eφ3(n) = J3(en)},

such that, restricted to M, e1, e2, . . . , en are tangent to M.
We set

hξ
ij = g(h(ei, ej), eξ), ξ ∈ {φ1(1), . . . , φ1(n), φ2(1), . . . , φ2(n), φ3(1), . . . , φ3(n)}

and then, for any α = 1, 2, 3, we have (see (2.9) in [10])

hφα(k)
ij = hφα(j)

ki = hφα(i)
jk . (17)

We denote by Hr = g(H, eφ1(er)), for r = 1, ..., n.

By using the method of constrained maxima, we prove the following improved Chen inequality
for the invariant δ(2, 2) of Lagrangian submanifolds in quaternionic space forms, the main result of
this paper.

Theorem 6. Let Mn be a Lagrangian submanifold of a quaternionic space form M̃4n(4c), n ≥ 4.
Then the inequality

δ(2, 2) ≤ n2

2
· n − 2

n + 1
‖H‖2 +

1
2
[n(n − 1)− 4]c (18)

is fulfilled.
The equality sign holds at a point p ∈ Mn if and only if there is an orthonormal basis {e1, e2, . . . , en} at p

such that with respect to this basis the second fundamental form h satisfies the following conditions:

hφα(C)
iA = 0 , A, C ∈ {1, . . . , n}�{i}, A < C, i = 1, 3, α = 1, 3,
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hφα(A)
BC = 0, A = 1, n, 4 ≤ B < C ≤ n, A /∈ {B, C}, α = 1, 3.

Proof. Let Mn be a Lagrangian submanifold of the quaternionic space form M̃4n(4c), p ∈ Mn and L1

and L2 two mutual orthogonal plane sections at p. We denote {e1, e2} ⊂ L1, {e3, e4} ⊂ L2 orthonormal
bases, complete to an orthonormal basis {e1, ..., en} ⊂ Tp Mn and extend it to Tp M̃4n(4c) as above.

Gauss equation implies

τ =
3

∑
α=1

n

∑
A=1

∑
B<C

[
hφα(A)

BB hφα(A)
CC −

(
hφα(A)

BC

)2
]
+

n(n − 1)
2

c,

τ(L1) =
3

∑
α=1

n

∑
A=1

[
hφα(A)

11 hφα(A)
22 −

(
hφα(A)

12

)2
]
+ c,

τ(L2) =
3

∑
α=1

n

∑
A=1

[
hφα(A)

33 hφα(A)
44 −

(
hφα(A)

34

)2
]
+ c.

Then
τ − τ(L1)− τ(L2)− [n(n − 1)− 4]

c
2
=

3

∑
α=1

n

∑
A=1

∑
B<C

[
hφα(A)

BB hφα(A)
CC −

(
hφα(A)

BC

)2
]
−

3

∑
α=1

n

∑
A=1

[
hφα(A)

11 hφα(A)
22 + hφα(A)

33 hφα(A)
44 −

(
hφα(A)

12

)2 −
(

hφα(A)
34

)2
]
=

3

∑
α=1

n

∑
A=1

[
∑

1≤B<C≤n
hφα(A)

BB hφα(A)
CC − hφα(A)

11 hφα(A)
22 − hφα(A)

33 hφα(A)
44

]
−

3

∑
α=1

n

∑
A=1

[
∑

1≤B<C≤n

(
hφα(A)

BC

)2 −
(

hφα(A)
12

)2 −
(

hφα(A)
34

)2
]

.

Thus, we get

τ − τ(L1)− τ(L2)− [n(n − 1)− 4]
c
2
≤

3

∑
α=1

n

∑
A=1

[(
hφα(A)

11 + hφα(A)
22

) n

∑
B=3

hφα(A)
BB +

(
hφα(A)

33 + hφα(A)
44

) n

∑
B=5

hφα(A)
BB + ∑

5≤B<C≤n
hφα(A)

BB hφα(A)
CC

]
−

3

∑
α=1

n

∑
B=3

[(
hφα(1)

1B

)2
+
(

hφα(B)
1B

)2
+
(

hφα(2)
2B

)2
+
(

hφα(B)
2B

)2
]
−

3

∑
α=1

n

∑
B=5

[(
hφα(3)

3B

)2
+
(

hφα(B)
3B

)2
]
−

3

∑
α=1

∑
4≤B<C≤n

[(
hφα(B)

BC

)2
+
(

hφα(C)
BC

)2
]

.

It follows that
τ − τ(L1)− τ(L2)− [n(n − 1)− 4]

c
2
≤ (19)

3

∑
α=1

n

∑
A=1

[(
hφα(A)

11 + hφα(A)
22

) n

∑
B=3

hφα(A)
BB +

(
hφα(A)

33 + hφα(A)
44

) n

∑
B=5

hφα(A)
BB + ∑

5≤B<C≤n
hφα(A)

BB hφα(A)
CC

]
−
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3

∑
α=1

n

∑
B=3

[(
hφα(B)

11

)2
+
(

hφα(1)
BB

)2
+
(

hφα(B)
22

)2
+
(

hφα(2)
BB

)2
]
−

3

∑
α=1

n

∑
B=5

[(
hφα(B)

33

)2
+
(

hφα(3)
BB

)2
]
−

3

∑
α=1

∑
4≤B<C≤n

[(
hφα(C)

BB

)2
+
(

hφα(B)
CC

)2
]

.

For each α ∈ {1, 2, 3}, let us consider certain quadratic forms.
For example, for α = 1, we will define the quadratic forms

f1, f2, . . . , fn : Rn → R

by

fr

(
hφ1(r)

11 , hφ1(r)
22 , . . . , hφ1(r)

nn

)
=
(

hφ1(r)
11 + hφ1(r)

22

) n

∑
B=3

hφ1(r)
BB +

(
hφ1(r)

33 + hφ1(r)
44

) n

∑
B=5

hφ1(r)
BB +

∑
5≤B<C≤n

hφ1(r)
BB hφ1(r)

CC −
n

∑
B=3

(
hφ1(r)

BB

)2
,

for r = 1, 2,

fs

(
hφ1(s)

11 , hφ1(s)
22 , . . . , hφ1(s)

nn

)
=
(

hφ1(s)
11 + hφ1(s)

22

) n

∑
B=3

hφ1(s)
BB +

(
hφ1(s)

33 + hφ1(s)
44

) n

∑
B=5

hφ1(s)
BB +

∑
5≤B<C≤n

hφ1(s)
BB hφ1(s)

CC −
(

hφ1(s)
11

)2 −
(

hφ1(s)
22

)2 −
n

∑
B=5

(
hφ1(s)

BB

)2
,

for s = 3, 4,

ft

(
hφ1(t)

11 , hφ1(t)
22 , . . . , hφ1(t)

nn

)
=
(

hφ1(t)
11 + hφ1(t)

22

) n

∑
B=3

hφ1(t)
BB +

(
hφ1(t)

33 + hφ1(t)
44

) n

∑
B=5

hφ1(t)
BB +

∑
5≤B<C≤n

hφ1(t)
BB hφ1(t)

CC −
n

∑
B=1;B �=t

(
hφ1(t)

BB

)2
,

for 5 ≤ t ≤ n.
We shall find an upper bound for f1, subject to

P : hφ1(1)
11 + hφ1(1)

22 + . . . + hφ1(1)
nn = k1, (20)

where k1 is a real number.
Let q ∈ P an arbitrary point. The bilinear form γ : TqP × TqP → R has the expression

γ(X, Y) = Hess( fr)(X, Y) + 〈h′(X, Y), grad fr(q)〉,

where h′ is the second fundamental form of P in Rn and 〈 , 〉 is the standard inner-product on Rn.
The partial derivatives of the function f1 are

∂ f1

∂hφ1(1)
11

=
n

∑
B=3

hφ1(1)
BB ,
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∂ f1

∂hφ1(1)
22

=
n

∑
B=3

hφ1(1)
BB ,

∂ f1

∂hφ1(1)
rr

= hφ1(1)
11 + hφ1(1)

22 +
n

∑
B=5

hφ1(1)
BB − 2hφ1(1)

rr , r = 3, 4,

∂ f1

∂hφ1(1)
tt

=
n

∑
B=1

hφ1(1)
BB − 3hφ1(1)

tt , 5 ≤ t ≤ n.

In the standard frame of Rn, the Hessian of f1 has the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1 . . . 1
0 0 1 1 1 1 . . . 1
1 1 −2 0 1 1 . . . 1
1 1 0 −2 1 1 . . . 1
1 1 1 1 −2 1 . . . 1
1 1 1 1 1 −2 . . . 1

. . . . . . . . . . .
1 1 1 1 1 1 . . . −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As P is totally geodesic in Rn, we obtain

γ(X, X) = 2(X1 + X2)
n

∑
i=3

Xi + 2(X3 + X4)
n

∑
i=5

Xi + 2 ∑
5≤i<j≤n

XiXj − 2
n

∑
i=3

(Xi)
2 =

(
n

∑
i=1

Xi

)2

− (X1)
2 − (X2)

2 − 3
n

∑
i=3

(Xi)
2 − 2X1X2 − 2X3X4 =

−(X1 + X2)
2 − (X3 + X4)

2 − 2(X3)
2 − 2(X4)

2 − 3
n

∑
i=5

(Xi)
2 < 0;

then the Hessian of f1 is negative semidefinite.
Searching for the critical point hφ1(1)

11 , hφ1(1)
22 , . . . , hφ1(1)

nn of f1, we denote by

hφ1(1)
33 = hφ1(1)

44 = a1.

Then,

4hφ1(1)
33 = 3hφ1(1)

rr , r = 5, n =⇒ hφ1(1)
rr =

4a1

3
, 5 ≤ r ≤ n,

hφ1(1)
11 + hφ1(1)

22 = 3hφ1(1)
tt , t = 5, n =⇒ hφ1(1)

11 + hφ1(1)
22 = 4a1.

From (20) it follows that

4a1 + 2a1 +
4a1

3
(n − 4) = k1 =⇒ a1 =

3k1

2(2n + 1)
.

This implies

hφ1(1)
11 + hφ1(1)

22 =
6k1

2n + 1
,

hφ1(1)
33 = hφ1(1)

44 =
3k1

2(2n + 1)
,

hφ1(1)
rr =

2k1

2n + 1
, 5 ≤ r ≤ n.
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Thus

f1 ≤ 6k1

2n + 1

[
6k1

4n + 2
+ (n − 4)

2k1

2n + 1

]
+

3k1

2n + 1
(n − 4)

2k1

2n + 1
+

C2
n−4

(
2k1

2n + 1

)2

− 2
(

3k1

4n + 2

)2

− (n − 4)
(

2k1

2n + 1

)2

=

6k1

2n + 1
·
[

3k1

2n + 1
+ (n − 4)

2k1

2n + 1

]
+

3k1

2(2n + 1)
(n − 4)

2k1

2n + 1
+

3k1

2(2n + 1)
(n − 4)

2k1

2n + 1
+ C2

n−4

(
2k1

2n + 1

)2

− 2
(3k1)2

4(2n + 1)2 − (n − 4)
(2k1)2

(2n + 1)2 =

6k1

2n + 1
· 3k1 + 2(n − 4)k1

2n + 1
+

3(n − 4)(k1)2

(2n + 1)2 +
3(n − 4)(k1)2

(2n + 1)2 +

(n − 4)(n − 5)
2

· 4(k1)2

(2n + 1)2 − 9(k1)2

2(2n + 1)2 − 4(n − 4)(k1)2

(2n + 1)2 =

6k1

2n + 1
· (2n − 5)k1

(2n + 1)
+

6(n − 4)(k1)2

(2n + 1)2 +
2(n − 4)(n − 5)(k1)2

(2n + 1)2 −

9(k1)2

2(2n + 1)2 − 4(n − 4)(k1)2

(2n + 1)2 =

(k1)2

(2n + 1)2 ·
[

6(2n − 5) + 6(n − 4) + 2(n − 4)(n − 5)− 9
2
− 4(n − 4)

]
=

(k1)2

(2n + 1)2 ·
[

12n − 30 + 6n − 24 + (2n − 8)(n − 5)− 9
2
− 4n + 16

]
=

(k1)2

2(2n + 1)2 · (24n − 60 + 12n − 48 + 4n2 − 20n − 16n + 80 − 9 − 8n + 32) =

(k1)2

2(2n + 1)2 · (4n2 − 8n − 5) =
(k1)2

2(2n + 1)2 · (2n − 5)(2n + 1),

which implies

f1 ≤ (2n − 5)(k1)2

2(2n + 1)
,

i.e.,

f1 ≤ n2

2
· 2n − 5

2n + 1
(H1)2.

In a similar manner, we obtain for f2

f2 ≤ n2

2
· 2n − 5

2n + 1
(H2)2.

Let’s consider now f3, as:

f3

(
hφ1(3)

11 , hφ1(3)
22 , . . . , hφ1(3)

nn

)
=
(

hφ1(3)
11 + hφ1(3)

22

) n

∑
B=3

hφ1(3)
BB +

(
hφ1(3)

33 + hφ1(3)
44

) n

∑
B=5

hφ1(3)
BB +

∑
5≤B<C≤n

hφ1(3)
BB hφ1(3)

CC −
(

hφ1(3)
11

)2 −
(

hφ1(3)
22

)2 −
n

∑
B=5

(
hφ1(3)

BB

)2
.
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The partial derivatives of the function f3 are

∂ f3

∂hφ1(3)
rr

=
n

∑
B=3

hφ1(3)
BB − 2hφ1(3)

rr , r = 1, 2,

∂ f3

∂hφ1(3)
ss

= hφ1(3)
11 + hφ1(3)

22 +
n

∑
B=5

hφ1(3)
BB , s = 3, 4,

∂ f3

∂hφ1(3)
tt

=
n

∑
B=1

hφ1(3)
BB − 3hφ1(3)

tt , 5 ≤ t ≤ n.

In the standard frame of Rn, the Hessian of f3 has the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 1 1 1 1 . . . 1
0 −2 1 1 1 1 . . . 1
1 1 0 0 1 1 . . . 1
1 1 0 0 1 1 . . . 1
1 1 1 1 −2 1 . . . 1
1 1 1 1 1 −2 . . . 1

. . . . . . . . . . .
1 1 1 1 1 1 . . . −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As P is totally geodesic in Rn, we have

γ(X, X) = −2

[
(X1)

2 + (X2)
2 +

n

∑
i=5

(Xi)
2

]
+

2(X1 + X2)
n

∑
i=3

Xi + 2(X3 + X4)
n

∑
i=5

Xi + 2 ∑
5≤i<j≤n

XiXj =

(
n

∑
i=1

Xi

)2

− 2X1X2 − 2X3X4 −
n

∑
i=1

(Xi)
2 − 2(X1)

2 − 2(X2)
2 − 2

n

∑
i=5

(Xi)
2 =

(
n

∑
i=1

Xi

)2

− (X1 + X2)
2 − (X3 + X4)

2 − 2(X1)
2 − 2(X2)

2 − 3
n

∑
i=5

(Xi)
2 < 0 ,

and hence the Hessian of f3 is negative semidefinite.
If we denote by q =

(
hφ1(3)

11 , hφ1(3)
22 , . . . , hφ1(3)

nn

)
a solution of the extremum problem in question,

then we have
hφ1(3)

11 = hφ1(3)
22 ,

hφ1(3)
55 = hφ1(3)

66 = . . . = hφ1(3)
nn ,

4hφ1(3)
11 = 3hφ1(3)

55 ,

hφ1(3)
33 + hφ1(3)

44 = 3hφ1(3)
55 .

Thus
hφ1(3)

33 + hφ1(3)
44 = 4hφ1(3)

11 .

Considering
hφ1(3)

55 = hφ1(3)
66 = . . . = hφ1(3)

nn = a3,
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we obtain

hφ1(3)
11 = hφ1(3)

22 =
3a3

4
,

hφ1(3)
33 + hφ1(3)

44 = 3a3.

Since hφ1(3)
11 + hφ1(3)

22 + . . . + hφ1(3)
nn = k3, then a3 =

2k3

2n + 1
, which implies

hφ1(3)
11 = hφ1(3)

22 =
3k3

2(2n + 1)
,

hφ1(3)
33 + hφ1(3)

44 =
6k3

2n + 1
,

hφ1(3)
55 = hφ1(3)

66 = . . . = hφ1(3)
nn =

2k3

2n + 1
.

It follows that

f3 ≤ 2 · 3k3

2(2n + 1)
·
[

6k3

2n + 1
+ (n − 4)

2k3

2n + 1

]
+

6k3

2n + 1
(n − 4)

2k3

2n + 1
+

C2
n−4 ·

(2k3)2

(2n + 1)2 − 2
(3k3)2

4(2n + 1)2 − (n − 4)
(

2k3

2n + 1

)2

=

3k3

(2n + 1)
· 6k3 + 2(n − 4)k3

(2n + 1)
+

12(n − 4)(k3)2

(2n + 1)2 +

(n − 4)(n − 5)
2

· 4(k3)2

(2n + 1)2 − 9(k3)2

2(2n + 1)2 − 4(n − 4)(k3)2

(2n + 1)2 =

(k3)2

(2n + 1)2 ·
[

3(2n − 2) + 12(n − 4) + 2(n − 4)(n − 5)− 9
2
− 4(n − 4)

]
=

(k3)2

(2n + 1)2 ·
(

6n − 6 + 12n − 48 + 2n2 − 10n − 8n + 40 − 9
2
− 4n + 16

)
=

(k3)2

2(2n + 1)2 · (12n − 12 + 24n − 96 + 4n2 − 20n − 16n + 80 − 9 − 8n + 32),

or, equivalently,

f3 ≤ (k3)2(4n2 − 8n − 5)
2(2n + 1)2 =

(k3)2(2n − 5)(2n + 1)
2(2n + 1)2 .

Therefore,

f3 ≤ n2

2
· 2n − 5

2n + 1
(H3)2.

In a similar manner, we prove for f4:

f4 ≤ n2

2
· 2n − 5

2n + 1
(H4)2.
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Using the same procedure for

f5

(
hφ1(5)

11 , hφ1(5)
22 , . . . , hφ1(5)

nn

)
=
(

hφ1(5)
11 + hφ1(5)

22

) n

∑
B=3

hφ1(5)
BB +

(
hφ1(5)

33 + hφ1(5)
44

) n

∑
B=5

hφ1(5)
BB +

∑
5≤B<C≤n

hφ1(5)
BB hφ1(5)

CC −
n

∑
B=1;B �=5

(
hφ1(5)

BB

)2
,

we find the partial derivatives of f5

∂ f5

∂hφ1(5)
rr

=
n

∑
B=3

hφ1(5)
BB − 2hφ1(5)

rr , r = 1, 2,

∂ f5

∂hφ1(5)
ss

= hφ1(5)
11 + hφ1(5)

22 +
n

∑
B=5

hφ1(5)
BB − 2hφ1(5)

ss , s = 3, 4,

∂ f5

∂hφ1(5)
55

=
n

∑
B=1

hφ1(5)
BB − hφ1(5)

55 ,

∂ f5

∂hφ1(5)
tt

=
n

∑
B=1

hφ1(5)
BB − 3hφ1(5)

tt , 6 ≤ t ≤ n.

In the standard frame of Rn, the Hessian of f5 has the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 1 1 1 1 . . . 1
0 −2 1 1 1 1 . . . 1
1 1 −2 0 1 1 . . . 1
1 1 0 −2 1 1 . . . 1
1 1 1 1 0 1 . . . 1
1 1 1 1 1 −2 . . . 1

. . . . . . . . . . . .
1 1 1 1 1 1 . . . −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As P is totally geodesic in Rn, we have

γ(X, X) = −2
n

∑
i=1;i �=5

(Xi)
2 +

2(X1 + X2)
n

∑
i=3

Xi + 2(X3 + X4)
n

∑
i=5

Xi + 2 ∑
5≤i<j≤n

XiXj =

(
n

∑
i=1

Xi

)2

− 2X1X2 − 2X3X4 −
n

∑
i=1

(Xi)
2 − 2

n

∑
i=1;i �=5

(Xi)
2 =

(
n

∑
i=1

Xi

)2

− (X1 + X2)
2 − (X3 + X4)

2 − (X5)
2 − 2

4

∑
i=1

(Xi)
2 − 3

n

∑
i=6

(Xi)
2 < 0 ,

and hence the Hessian of f5 is negative semidefinite.
Using similar arguments to those in the previous problem we obtain that the solution of the

associated extremum problem is

hφ1(5)
11 = hφ1(5)

22 = hφ1(5)
33 = hφ1(5)

44 = 3a5,
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hφ1(5)
55 = 12a5,

hφ1(5)
66 = . . . = hφ1(5)

nn = 4a5,

where a5 is a real number.

Since hφ1(5)
11 + hφ1(5)

22 + . . . + hφ1(5)
nn = k5, then a5 =

k5

4(n + 1)
and

hφ1(5)
1 = hφ1(5)

22 = hφ1(5)
33 = hφ1(5)

44 =
3k5

4(n + 1)
,

hφ1(5)
55 =

3k5

n + 1
,

hφ1(5)
66 = . . . = hφ1(5)

nn =
k5

n + 1
.

We have

f5 ≤ 6k5

4(n + 1)
·
[

6k5

4(n + 1)
+

3k5

n + 1
+ (n − 5)

k5

n + 1

]
+

2 · 3k5

4(n + 1)

[
3k5

n + 1
+ (n − 5)

k5

n + 1

]
+

3k5

n + 1
(n − 5)

k5

n + 1
+ C2

n−5
(k5)2

(n + 1)2 − 4 · (3k5)2

16(n + 1)2 − (n − 5)
(k5)2

(n + 1)2 =

3k5

2(n + 1)
·
[

3k5

2(n + 1)
+

3k5

n + 1
+

(n − 5)k5

n + 1

]
+

3k5

2(n + 1)
·
[

3k5 + (n − 5)k5

n + 1

]
+

3(n − 5)(k5)2

(n + 1)2 +
(n − 5)(n − 6)

2
· (k5)2

(n + 1)2 − 9(k5)2

4(n + 1)2 − (n − 5)(k5)2

(n + 1)2 =

(k5)2

4(n + 1)2 · 3(9 + 2n − 10) +
(k5)2

2(n + 1)2 · 3(3 + n − 5) +
3(n − 5)(k5)2

(n + 1)2 +

(n − 5)(n − 6)(k5)2

2(n + 1)2 − 9(k5)2

4(n + 1)2 − (n − 5)(k5)2

(n + 1)2 =

(k5)2

(n + 1)2

[
3(2n − 1)

4
+

3(n − 2)
2

+ 3(n − 5) +
(n − 5)(n − 6)

2
− 9

4
− (n − 5)

]
=

(k5)2

4(n + 1)2 [3(2n − 1) + 6(n − 2) + 12(n − 5) + (2n − 10)(n − 6)− 9 − 4(n − 5)] =

(k5)2

4(n + 1)2 (6n − 3 + 6n − 12 + 12n − 60 + 2n2 − 12n − 10n + 60 − 9 − 4n + 20) =

(k5)2

4(n + 1)2 (2n2 − 2n − 4) =
(k5)2

2(n + 1)2 (n
2 − n − 2) =

(k5)2

2(n + 1)2 (n + 1)(n − 2).

From this we get

f5 ≤ (k5)2

2
· n − 2

n + 1
,

or, equivalently,

f5 ≤ n2

2
·
(

n − 2
n + 1

)
(H5)2.
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In the same manner we prove for fr, with 5 ≤ r ≤ n,

fr ≤ n2

2
·
(

n − 2
n + 1

)
(Hr)2.

Applying this procedure for each α ∈ {1, 2, 3} and taking into account that

2n − 5
2n + 1

<
n − 2
n + 1

,

we find

δ(2, 2) ≤ n2

2
· n − 2

n + 1
‖H‖2 + [n(n − 1)− 4]

c
2

,

which is the inequality to prove.

Remark 1. In [11], the first author obtained certain Chen inequalities for Lagrangian submanifolds Mn in
quaternionic space forms M̃4n(4c). In particular, for the Chen invariant δ(2, 2) one derives the inequality

δ(2, 2) ≤ n2(n − 1)
2(n + 2)

‖H‖2 +
1
2
[n(n − 1)− 4]c. (21)

We want to point-out that the inequality from Theorem 6 improves the inequality (21) because
n − 2
n + 1

<

n − 1
n + 2

, for n > 4.
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Abstract: From the basic geometry of submanifolds will be recalled what are the extrinsic principal
tangential directions, (first studied by Camille Jordan in the 18seventies), and what are the principal
first normal directions, (first studied by Kostadin Trenc̆evski in the 19nineties), and what are their
corresponding Casorati curvatures. For reasons of simplicity of exposition only, hereafter this will merely
be done explicitly in the case of arbitrary submanifolds in Euclidean spaces. Then, for the special case of
Lagrangian submanifolds in complex Euclidean spaces, the natural relationships between these distinguished
tangential and normal directions and their corresponding curvatures will be established.

Keywords: extrinsic principal tangential directions; principal first normal directions; Lagrangian
submanifolds

1. The Extrinsic Tangential Principal Directions of Submanifolds

For general submanifolds Mn of dimension n (≥ 2) and of co-dimension m (≥ 1) in Euclidean
spaces En+m, Jordan [1] studied the extrinsic curvatures cT

u (p) at arbitrary points p ∈ M in arbitrary
tangential directions determined by vectors u ∈ Tp M, ‖u‖ = 1. These are the curvatures cT

u (p) =

(dϕu/ds)2(0), whereby ϕu(s) ∈ [0, Π/2] denotes the angle in En+m between the tangent spaces Tp M at p
and Tq M at a nearby point q ∈ M in the direction u of M at p, s being an arclength parameter of a curve γ

on M from p = γ(0) in the direction u = γ′(0) to q = γ(s). He defined the tangential principal curvatures
cT

1 (p) ≥ cT
2 (p) ≥ . . . ≥ cT

n (p) ≥ 0 of a submanifold Mn in En+m at p as the critical values of the tangential
Casorati curvature function at p, that is of the function cT(p) : Sn−1

p (1) = {u ∈ Tp M|‖u‖ = 1} → R+ :
u �→ cT

u (p), and, he defined the tangential principal directions of a submanifold Mn in En+m at p as the
directions in which these critical values of the curvatures cT

u (p) are attained and proved these directions
to be mutually orthogonal, say to be determined by orthonormal vectors f1, f2, . . . , fn ∈ Tp M.

In the first step of his original fundamental studies of the geometry of submanifolds,
Trenc̆evski [2–5] re-considered this work of Jordan, and, later, Stefan Haesen and Daniel Kowalczyk
and one of the authors [6] basically re-did this. In the latter paper were followed the 1890
Casorati’s views on the intuitively most natural scalar valued curvatures “as such” of surfaces M2 in E3

(and in [6,7], some tangential and normal kinds of curvature of Riemannian submanifolds were
named after Casorati). Accordingly, in [6], the above tangential Casorati curvatures rather came
up as cT

u (p) = (dψu/ds)2(0), whereby ψu(s) denotes the angle in En+m between the normal spaces
T⊥

p M at p and T⊥
q M at a nearby point q in the direction of u (as was already known by Jordan,

ψu = ϕu). As shown by Trenc̆evski, the extrinsic principal unit tangential vector fields F1, F2, . . . , Fn

of a submanifold Mn in En+m, and their corresponding tangential Casorati principal curvature functions
cT

1 , cT
2 , . . . , cT

n : M → R+ : p �→ cT
1 (p), cT

2 (p), . . . , cT
n (p) are essentially the orthonormal eigen vector fields,

and the corresponding eigen functions of the symmetric linear Casorati operator AC = ∑
α

A2
α, whereby Aα = Aξα

Mathematics 2020, 8, 1533; doi:10.3390/math8091533 www.mdpi.com/journal/mathematics165
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are the shape operators of Mn in En+m for arbitrary orthonormal normal frame fields ξ1, ξ2, . . . , ξm on Mn

in En+m, such that ACFi = cT
i Fi, i ∈ {1, 2, . . . , n}, α ∈ {1, 2 . . . , m}; (the intrinsic principal tangential

directions and their corresponding curvatures of a submanifold Mn in En+m, of course, being its Ricci
principal directions and curvatures).

From the above, in particular, one may notice that for hypersurfaces Mn in En+1, the extrinsic principal
tangential directions are “the classical” principal directions of these hypersurfaces, whereas {cT

1 , cT
2 , . . . , cT

n} =

{k2
1, k2

2, . . . , k2
n}, k1, k2, . . . , kn, being the classical principal curvatures of these hypersurfaces, correspond to

Kronecker’s extension of Euler’s theory of the curvature of surfaces M2 in E3 to hypersurfaces Mn in
En+1 for all dimensions n ≥ 2.

2. Felice Casorati’s Study of Surfaces M2 in E3

Casorati [8] defined his extrinsic scalar-valued curvature C(p) of a surface M2 in E3 at one of its points
p as follows. On M2, consider a small geodesic circle γΔρ

centered at p with radius Δρ. Let q be any
point on γΔρ

, and consider the geodesic δ from p to q parametrised by arclength, such that p = δ(0)
and q = δ(Δρ); at p, this geodesic points in the tangential direction δ′(0) = u to M2 at p. Let η(p) and
η(q) be the unit normal vectors on the surfaces M2 in E3 at p and at q, respectively, corresponding to a
choice of unit normal vector field η around p on M2 in E3. Then, in Casorati’s words, and according to our
common sense, the angle Δψu between η(p) and η(q) measures well how much the surface M2 at p curves in
the direction u; the more the surface curves in the direction u, the larger this angle. Then, joining all the points
δ(Δψu) that thus correspond to all the points q on the geodesic circle γΔρ

around p, associated with
γΔρ

, one obtains on M2 a closed curve ΓΔρ
(which actually passes through p whenever, at p, the surface

is not curved at all in some tangential directions u). Hence, according to our common sense, the bigger
or the smaller the area’s A(ΓΔρ

) enclosed on M2 by the curves ΓΔρ
as compared to the area’s A(γΔρ

)

of the geodesic discs on M2 bounded by the geodesics γΔρ
, the more or the less the surface M2 “as

such” in E3 is curved at p. It was along this line of thought that Casorati defined his curvature of a surface
M in E3 at p as C(p) = lim

Δρ→0
(A(ΓΔρ

)/A(γΔρ
)), and he proved that C(p) = 1

2 trA2(p) = 1
2 (k

2
1 + k2

2)(p)

= 1
2‖h‖2(p), whereby k1 and k2 are Euler’s principal curvatures, A is the shape operator of M2 corresponding

to η and h is the second fundamental form of M2 in E3.
At this stage, it might be not amiss to add the following comment. In the definition of his curvature

C, Casorati followed the common basic, i.e., from the original geometrical definitions of the curvature K of
Gauss and the mean curvature H of Germain via ratios of well-chosen areas related to the surfaces M2 in E3.
For K(p), these ratios concern regions on M2 around p and their corresponding spherical images, and,
for H(p), these ratios are for discs centered at p in Tp M and for the portions of the corresponding
circular cylinders perpendicular to Tp M in between Tp M and the surface M2 in E3 itself. While
for the curvatures of Germain and Gauss, this lead to the first two elementary symmetric functions of
k1 and k2, H = 1

2 trA = 1
2 (k1 + k2) and K = detA = k1k2, Casorati’s geometrical definition of his

curvature yielding that C = 1
2 trA2 = 1

2 (k
2
1 + k2

2) lead to the third elementary symmetric function of Euler’s
principal curvatures.

3. The First Normal Principal Directions of Submanifolds

Trenc̆evski determined the maximal possible dimensions of the osculating spaces of all orders for
submanifolds Mn in En+m and, moreover, in the related succesive normal spaces, of all orders, and determined
appropriate orthonormal frames of principal normal vector fields and corresponding principal normal curvatures.
For our present purpose, it may suffice here to restrict within this grand theory to what is stated in
Theorem 1 of [7]: “The first principal normal directions of a submanifold Mn in En+m are the normal directions
of Mn in En+m in which the normal Casorati curvatures of Mn attain their m1 (=dimension of the first normal
space N1) non-zero critical values.” The first normal space N1 of Mn in En+m is the subspace of the total
normal space T⊥M of Mn in En+m given by N1 = Im h = {h(X, Y)|X, Y ∈ TM}, whereby h is the
second fundamental form of the submanifold M, or, N1 is the orthogonal complement in T⊥M of the
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subspace consisting of all normals ξ with vanishing shape operators Aξ , or, equivalently, with vanishing
normal Casorati curvature c⊥ξ ; N1 = {ξ ∈ T⊥M|Aξ = 0}⊥ = {ξ ∈ T⊥M|c⊥ξ = 0}⊥, such that the first
osculating space of Mn in En+m is given by TM ⊕ N1.

The considerations of Casorati on surfaces M2 in E3 that were recalled above can straightforwardly
be taken over to general submanifolds Mn in En+m (and to general submanifolds Mn in ambient
general Riemannian spaces M̃n+m, for that matter) cfr. [6]. In [6], a.o. one may find that the Casorati
curvature (as such) of a submanifold Mn in En+m equals the arithmetic mean of its tangential principal
Casorati curvatures: C = 1

n‖h‖2 = 1
n trAC = 1

n ∑
α

trA2
α = 1

n ∑
i

cT
i . Moreover, it seems not without

interest to observe that Cξ(p) = 1
n trA2

ξ(p) is the Casorati curvature (as such) at p of the projection Mn
ξ p

of the submanifold Mn in En+m onto the (n+ 1)D subspace En+1 of En+m, which is spanned by Tp M =

Rn together with the normal line [ξ(p)], ξ being any unit normal vector field on Mn in En+m, and,
hence, that Cξ(p) = 1

n ∑
i

cT
ξi(p), i.e., Cξ(p) is the arithmetic mean of the tangential Casorati curvatures

cT
ξi of this projected hypersurface Mn

ξ at p (for some general considerations relating the contemplation
and the theory of submanifolds, see [9]). The functions c⊥ξ : Sm−1(1) = {ξ ∈ T⊥M | ‖ξ‖ = 1} → R+ :

ξ �→ c⊥ξ = 1
n trA2

ξ are called the normal Casorati curvatures of Mn in En+m; more precisely, the normal
Casorati curvature of Mn in En+m in the direction determined by a unit normal vector field ξ is defined as
c⊥ξ = 1

n trA2
ξ .

In the total, mD normal space T⊥M of Mn in En+m, consider the following symmetric linear
operator a : T⊥M → T⊥M : ξ �→ a(ζ) = 1

n‖ζ‖∑
α
(trAζ Aα)ξα; (in [10], Bang-Yen Chen basically

introduced this operator in the study of the submanifolds for which a(�H) = �0, �H being the mean
curvature vector field of Mn in En+m, submanifolds which later were called Chen submanifolds; in this
respect, see also [11,12]). And, by the principal axes theorem, there exists an orthonormal frame
η1, η2, . . . , ηm1 , ηm1+1, . . . , ηm of eigen vector fields for this operator a : T⊥M → T⊥M (m1 = dimN1),
with corresponding eigen functions c⊥1 = 1

n trA2
η1

≥ c⊥2 = 1
n trA2

η2
≥ . . . ≥ c⊥m1

= 1
n trA2

ηm1
> c⊥m1+1 =

trA2
ηm1+1

= . . . = c⊥m = trA2
ηm = 0. The normal vector fields η1, η2, . . . , ηm1 span the first normal

space N1 of Mn in En+m and, following Trenc̆evski, are called the first principal normal vector fields of the
submanifold Mn in En+m with corresponding first-principal normal curvatures c⊥1 ≥ c⊥2 ≥ . . . ≥ c⊥m1

> 0.
So, with indices α1 ∈ {1, 2, . . . , m1}, {ηα1} is an orthonormal frame field of the first normal space N1 for which
a(ηα1) = c⊥α1

ηα1 , whereby c⊥α1
= 1

n trA2
α1
(> 0) are the principal normal Casorati curvatures of Mn in En+m.

4. The Principal Tangent and the First Principal Normal Directions of Lagrangian Submanifolds

From Section 16: Totally real and Lagrangian submanifolds of Kähler manifolds of Chen’s contribution
on Riemannian submanifolds in [11], is taken the following: “The study of totally real submanifolds
of a Kähler manifold from differential geometric points of views was initiated in the early 1970’s
(by Bang-Yen Chen and Koichi Ogiue [13]—the authors). A totally real submanifold M of a Kähler
manifold M̃ is a submanifold such that the almost complex structure J of the ambient manifold M̃
carries each tangent space of M into the corresponding normal space of M, that is, J(Tp M) ⊂ T⊥

p M
for any point p ∈ M. (. . .) A totally real submanifold M of a Kähler manifold M̃ is called Lagrangian if
dimRM = dimCM̃. 1-dimensional submanifolds, that is, real curves in a Kähler manifold are always
totally real. For this reason, we only consider totally real submanifolds of dimension ≥2.(. . .) For a
Lagrangian submanifold M of a Kähler manifold (M̃, g, J) the tangent bundle TM and the normal bundle T⊥M
are isomorphic via the almost complex structure J of the ambient manifold. In particular, this implies that the
Lagrangian submanifold has flat normal connection if and only if the submanifold is a flat Riemannian manifold”.

To continue in our aim to aim for simplicity and concreteness of presentation, (although, clearly,
the following matters do hold more generally), we next restrict our attention to the real n dimensional
totally real submanifolds Mn of the complex n dimensional complex Euclidean spaces M̃n = Cn = (E2n, J̃),
that is, to the Lagrangian submanifolds Mn in Cn, thus having J̃(TM) = T⊥M and J̃(T⊥M) = TM,
J̃ being the complex structure of the Kaehler manifold M̃n. On M in M̃, tangential vector fields will be
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denoted by X, Y, Z, . . . and normal vector fields by ξ, η, ζ, . . . . Further, let g̃ and ∇̃, respectively, g and ∇,
be the metrics and the corresponding Riemannian connections on M̃ and M, respectively. The equations of
Gauss and of Weingarten are given by

∇̃XY = ∇XY + h(X, Y), (1)

∇̃Xξ = −Aξ(X) +∇⊥
X ξ, (2)

whereby ∇⊥ is the normal connection and h the second fundamental form and Aξ the shape operator with
respect to ξ of the submanifold M in M̃, so that

g̃(h(X, Y), ξ) = g(Aξ(X), Y). (3)

Applying the complex structure J̃ to (1), it follows that

J̃(∇̃XY) = J̃(∇XY) + J̃(h(X, Y)), (4)

while writing (2) out for ξ = J̃Y, it follows that

∇̃X( J̃Y) = −AJ̃Y(X) +∇⊥
X ( J̃Y). (5)

By the parallelity of J̃, ∇̃ J̃ = 0, or, still, J̃(∇̃XY) = ∇̃X( J̃Y), the left-hand sides in (4) and (5) are equal,
and, hence, in particular, the tangential components of the right-hand sides in (4) and (5) are also equal:

J̃(h(X, Y)) = −AJ̃Y(X). (6)

Writing out (3) for ξ = J̃Z, it follows that

g̃(h(X, Y), J̃Z) = g(AJ̃Z(X), Y), (7)

which, by (6), leads to
g̃(h(X, Y), J̃Z) = g(− J̃(h(X, Z)), Y). (8)

Since J̃ is almost complex, J̃2 = −I, and since g̃ is Hermitian, so that g̃( J̃Ṽ, J̃W̃) = g̃(Ṽ, W̃) for all vector
fields Ṽ and W̃, and, hence, in particular, for Ṽ = − J̃(h(X, Z)) and W̃ = Y, (8) becomes

g̃(h(X, Y), J̃Z) =g(− J̃2(h(X, Z)), J̃Y)

=g(h(X, Z), J̃Y).
(9)

In view of its crucial importance in what comes next, we have worked out in detail this property
from [13], as obtained in (9), which may be stated as follows. For all tangential vector fields X, Y, Z on a
Lagrangian submanifold Mn ⊂ Cn (M̃n):

g̃(h(X, Y), J̃Z) = g̃(h(X, Z), J̃Y) = g̃(h(Y, Z), J̃X). (10)

For any tangential orthonormal frame field F = {E1, E2, . . . , En} on a Lagrangian submanifold Mn, F̃ =

{E1, E2, . . . , En, ξ1 = J̃E1, ξ2 = J̃E2, . . . , ξn = J̃En} = {Ei, ξi = J̃Ei}, (i, j, k, α, β ∈ {1, 2, . . . , n}) is a
corresponding adapted orthonormal frame field of Cn(M̃n) along Mn. The local coordinates of the operator
AC : TM → TM of Casorati and of the operator a : T⊥M → T⊥M of Trenc̆evski with respect to such frame
fields F̃ are given by
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AC
ik =(∑

α

A2
α)ik = ∑

α

(A2
α)ik

=∑
α

∑
j

hα
ijh

α
jk

(11)

and

aαβ =tr(Aα Aβ)

=∑
i

∑
j

hα
ijh

β
ji,

(12)

whereby hβ
ij are the local coordinates of the symmetric second fundamental form h : TM× TM → T⊥M.

Therefore, Ei determines a Casorati principal tangential vector field on Mn in Cn with corresponding principal
tangential Casorati curvature cT

i if and only if

∀k �= i : AC
ik = ∑

α
∑

j
hα

ijh
α
jk = 0, (13)

whereby
cT

i = AC
ii = ∑

α
∑

j
(hα

ij)
2, (14)

and, ξα = J̃Eα determines a first principal normal vector field, or, first Casorati principal normal vector
field (as these vector fields later on also might be termed), on Mn in Cn with corresponding principal
normal Casorati curvature cT

α if and only if

∀β �= α : aαβ = ∑
i

∑
j

hα
ijh

β
ji = 0, (15)

whereby then
c⊥α = aαα = ∑

i
∑

j
(hα

ij)
2. (16)

Written in local coordinates, the above property (10) amounts to

∀i, j, k : hk
ij = hj

ik = hi
jk, (17)

so that, from (13) and (15), and, from (14) and (16), in particular, we may conclude the following.

Theorem 1. Let Mn be a Lagrangian submanifold of the complex Euclidean space Cn (or of any Kaehler
manifold M̃n). Then, a tangential vector field T is a tangential principal Casorati vector field with corresponding
tangential Casorati principal curvature cT(> 0) if and only if N = J̃T is a normal principal Casorati vector
field—whereby J̃ is the complex structure of Cn (or, of the ambient Kaehler space, M̃n)—with corresponding
normal Casorati principal curvature c⊥ = cT(> 0).

Theorem 2. Let Mn be a Lagrangian submanifold of the complex Euclidean space Cn (or, of any ambient
Kaehler manifold M̃n) with first normal space of maximal dimension (m1 = dimN1 = n = co − dimM).
Then, Mn admits an adapted orthonormal frame field F̃ = {F1, F2, . . . , Fn, η1 = J̃F1, η2 = J̃F2, . . . , ηn = J̃Fn}
in Cn (M̃n), of which the n tangential vector fields are the principal Casorati tangential vector fields and of
which the n normal vector fields are the principal Casorati normal vector fields of Mn in Cn (M̃n), and the
corresponding tangential and normal principal curvatures are equal, (∀i : cT

i = c⊥i ).
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Abstract: Throughout the history of the study of Einstein manifolds, researchers have sought
relationships between the curvature and topology of such manifolds. In this paper, first, we prove
that a compact Einstein manifold (M, g) with an Einstein constant α > 0 is a homological sphere
when the minimum of its sectional curvatures > α/(n + 2); in particular, (M, g) is a spherical space
form when the minimum of its sectional curvatures > α/n. Second, we prove two propositions
(similar to the above ones) for Tachibana numbers of a compact Einstein manifold with α < 0.

Keywords: Einstein manifold; sectional curvature; Betti number; Tachibana number; spherical
space form

MSC: 53C20; 53C43; 53C44

1. Introduction

The study of Einstein manifolds has a long history in Riemannian geometry. Throughout the
history of the study of Einstein manifolds, researchers have sought relationships between curvature
and topology of such manifolds. A. Besse [1] summarized the results. We present here some interesting
facts related to the classification of all compact Einstein manifolds satisfying a suitable curvature
inequality, which is one of the subjects of our research.

Recall that an n-dimensional (n ≥ 2) connected manifold M with a Riemannian metric g is
said to be an Einstein manifold with Einstein constant α if its Ricci tensor satisfies Ric = α g; moreover,
we have α = s/n for its scalar curvature s. Therefore, any Einstein manifold of dimensions two and
three is a space form (i.e., has constant sectional curvature). The study of Einstein manifolds is more
complicated in dimension four and higher (see [1] (p. 44)).

An important problem in differential geometry is to determine whether a smooth manifold admits
an Einstein metric. When α > 0, the example are symmetric spaces, which include the sphere Sn(1)
with α = n − 1 and the sectional curvature sec = 1, the product of two spheres Sn(1)× Sn(1) with
α = n − 1 and 0 ≤ sec ≤ 1, and the complex projective space CPm = S2m+1/ S1 with the Fubini–Study
metric, α = 2m + 2 and 1 ≤ sec ≤ 4 (see [2] (pp. 86, 118, 149–150)). Recall that if (M, g) is a compact
Einstein manifold with curvature bounds of the type 3n/(7n − 4) < sec ≤ 1, then (M, g) is isometric
to a spherical space form. This might be not the best estimate: for n = 4 the sharp bound is 1/4
(see [1] (p. 6)). In both these cases, the manifolds are real homology spheres (see [3] (p. XVI)). Therefore,
any such manifold has the homology groups of an n-sphere; in particular, its Betti numbers are
b1(M) = . . . = bn−1(M) = 0.

Mathematics 2019, 7, 1210; doi:10.3390/math7121210 www.mdpi.com/journal/mathematics171
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One of the basic problems in Riemannian geometry was to classify Einstein four-manifolds with
positive or nonnegative sectional curvature in the categories of either topology, diffeomorphism,
or isometry (see, for example, [4–7]). It was conjectured that an Einstein four-manifold with α > 0 and
non-negative sectional curvature must be either S4, CP2, S2(1)× S2(1) or a quotient. For example,
if the maximum of the sectional curvatures of a compact Einstein four-manifold is bounded above by
(2/3) α, or if α = 1 and the minimum of the sectional curvatures ≥ (1/6)(2 −√

2), then the manifold
is isometric to S4, RP4 or CP2 (see [6]). Classification of four-dimensional complete Einstein manifolds
with α > 0 and pinched sectional curvature was obtained in [7].

Here, we consider this problem from another side. Given a Riemannian manifold (M, g),
the notion of symmetric curvature operator R̄, acting on the space Λ2M of 2-forms, is an important
invariant of a Riemannian metric (see [2] (p. 83); [8,9]). The Tachibana Theorem (see [10]) asserts that
a compact Einstein manifold (M, g) with R̄ > 0 is a spherical space form. Later on, it was proved that
compact manifolds with R̄ > 0 are spherical space forms (see [11]).

Denote by
◦
R the symmetric curvature operator of the second kind, acting on the space S2

0 M of traceless
symmetric two-tensors (see [1] (p. 52); [9,12]). Kashiwada (see [9]) proved that a compact Einstein

manifold with
◦
R > 0 is a spherical space form. This statement is an analogue of the theorem of

Tachibana in [10]. In contrast, if a complete Riemannian manifold (M, g) satisfies sec ≥ δ > 0, then M
is compact with diam(M, g) ≤ π/

√
δ (see [2] (p. 251)).

Remark 1 (By [2] (Theorem 10.3.7)). There are manifolds with metrics of positive or nonnegative sectional
curvature but not admitting any metric with R̄ ≥ 0 (see also [2] (p. 352)). In particular, for three-dimensional
manifolds the inequality sec > 0 is equivalent to the inequality R̄ > 0 (see [9]).

Using Kashiwada’s theorem from [9] we can prove the following.

Theorem 1. Let (M, g) be a compact Einstein manifold with Einstein constant α > 0, and let δ be the minimum
of its positive sectional curvature. If δ > α/n, then (M, g) is a spherical space form.

We can present a generalization of above result in the following form.

Theorem 2. Let (M, g) be a compact Einstein manifold with Einstein constant α > 0 and let δ be the minimum
of its positive sectional curvature. If δ > α/(n + 2), then (M, g) is a homological sphere.

Obviously, Sn(1)× Sn(1) is not an example for Theorem 1 because the minimum of its sectional
curvature is zero and α = n − 1. On the other hand, the complex projective space CPm is an Einstein
manifold with α = 2m + 2 and sectional curvature bounded below by δ = 1. Then the inequality
α < (n + 2) δ can be rewritten in the form δ > 1 because n = 2m. Therefore, CPm is not an example for
Theorem 1. Moreover, all even dimensional Riemannian manifolds with positive sectional curvature
have vanishing odd-dimensional homology groups. Thus, Theorem 1 complements this statement
(see [2] (p. 328)).

Let (M, g) be an n-dimensional compact connected Riemannian manifold. Denote by Δ(p) the
Hodge Laplacian acting on differential p-forms on M for p = 1, . . . , n − 1. The spectrum of Δ(p) consists
of an unbounded sequence of nonnegative eigenvalues which starts from zero if and only if the p-th
Betti number bp(M) of (M, g) does not vanish (see [13]). The sequence of positive eigenvalues of Δ(p)

is denoted by
0 < λ

(p)
1 < . . . < λ

(p)
m < . . . → ∞.

In addition, if Fp(ω) ≥ σ > 0 (see Equation (4) of Fp) at every point of M, then λ
(p)
1 ≥ σ (see [13]

(p. 342)). Using this and Theorem 1, we get the following.
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Corollary 1. Let (M, g) be a compact Einstein manifold with positive Einstein constant α and sectional
curvature bounded below by a constant δ > 0 such that δ > α/(n + 2). Then the first eigenvalue λ

(p)
1 of the

Hodge Laplacian Δ(p) satisfies the inequality λ
(p)
1 ≥ (1/3) ((n + 2) δ − α) (n − p).

Remark 2. In particular, if (M, g) is a Riemannian manifold with curvature operator of the second kind bounded
below by a positive constant ρ > 0, then using the main theorem from [14], we conclude that λ

(p)
1 ≥ ρ (n − p).

Conformal Killing p-forms (p = 1, . . . , n − 1) were defined on Riemannian manifolds more than
fifty years ago by S. Tachibana and T. Kashiwada (see [15,16]) as a natural generalization of conformal
Killing vector fields.

The vector space of conformal Killing p-forms on a compact Riemannian manifold (M, g)
has finite dimension tp(M) named the Tachibana number (see e.g., [17–19]). Tachibana numbers
t1(M), . . . , tn−1(M) are conformal scalar invariants of (M, g) satisfying the duality condition tp(M) =

tn−p(M). The condition is an analog of the Poincaré duality for Betti numbers. Moreover, Tachibana
numbers t1(M), . . . , tn−1(M) are equal to zero on a compact Riemannian manifold with negative
curvature operator or negative curvature operator of the second kind (see [18,19]).

We obtain the following theorem, which is an analog of Theorem 1.

Theorem 3. Let (M, g) be an Einstein manifold with sectional curvature bounded above by a negative constant
−δ such that δ > −α/(n + 2) for the Einstein constant α. Then Tachibana numbers t1(M), . . . , tn−1(M)

are zero.

2. Proof of Results

Let (M, g) be an n-dimensional (n ≥ 2) Riemannian manifold and let Rijkl and Rij be, respectively,
the components of the Riemannian curvature tensor and the Ricci tensor in orthonormal basis
{e1, . . . , en} of Tx M at any point x ∈ M. We consider an arbitrary symmetric two-tensor ϕ on (M, g).
At any point x ∈ M, we can diagonalize ϕ with respect to g, using orthonormal basis {e1, . . . , en}
of Tx M. In this case, the components of ϕ have the form ϕij = λi δij. Let sec (ei, ej) be the sectional
curvature of the plane of Tx M generated by ei and ej. We can express sec (ei, ej) in the following form
(see [1] (p. 436); [20]):

1
2 ∑ i �=j sec (ei, ej) (λi − λj)

2 = Rijlk ϕik ϕjl + Rij ϕ
ik ϕ

j
k (1)

If (M, g) is an Einstein manifold and its sectional curvature satisfies the inequality sec ≥ δ for
a positive constant δ, then from Equation (1) we obtain the inequality

Rijlk ϕik ϕjl +
s
n

ϕik ϕik ≥ (δ/2)∑ i �=j (λi − λj)
2. (2)

If traceg ϕ = ∑i λi = 0, then the identity holds ∑i(λi)
2 = −2 ∑i<j λi λj . In this case, the following

identities are true:

1
2 ∑

i �=j
(λi − λj)

2 = (n − 1)∑
i
(λi)

2 − 2 ∑
i<j

λi λj = n ∑
i
(λi )

2 = n‖ ϕ ‖2.

Then the inequality in Equation (2) can be rewritten in the form

Rijlk ϕik ϕjl +
s
n

ϕik ϕik ≥ n δ‖ϕ‖2. (3)

From Equation (3) we obtain the inequality

Rijlk ϕik ϕjl ≥ (n δ − α)‖ϕ ‖2.
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Then
◦
R > 0 for the case when α < n δ, where α = s/n is the Einstein constant of (M, g). If (M, g)

is compact then it is a spherical space form (see [9]). Theorem 1 is proven.
Define the quadratic form

Fp(ω) = Rij ωi i2... ip ω
j
i2... ip

− p − 1
2

Rijkl ωij i3... ip ωkl
i2... ip

(4)

for the components ωi1...ip = ω(ei1 , . . . , eip) of an arbitrary differential p-form ω. If the quadratic form
Fp(ω) is positive definite on a compact Riemannian manifold (M, g), then the p-th Betti number of the
manifold vanishes (see [21] (p. 61); [3] (p. 88)). At the same time, in [22] the following inequality

Fp(ω) ≥ p (n − p) ε ‖ω‖2 > 0

was proved for any nonzero p-form ω on a Riemannian manifold with R̄ ≥ ε > 0. On the other hand,
in [14] the inequality

Fp(ω) ≥ p(n − p) δ‖ω‖2 > 0

was proved for any nonzero p-form ω on a Riemannian manifold with
◦
R ≥ δ > 0. In these cases,

b1(M), . . . , bn−1(M) are zero (see [21]). We can improve these results for the case of Einstein manifolds.
First, we will prove the following.

Lemma 1. Let (M, g) be an Einstein manifold with Einstein constant α and sectional curvature bounded below
by a constant δ > 0. If α < (n + 2)δ then

Fp(ω) ≥ (1/3)((n + 2) δ − α)(n − p) ‖ω‖2 > 0

for any nonzero p-form ω and an arbitrary 1 ≤ p ≤ n − 1.

Proof. Let p ≤ [n/2], then we can define the symmetric traceless two-tensor ϕ(i1i2...ip) with
components (see [14])

ϕ
(i1i2...ip)
jk =

p

∑
a=1

(
ωi1...ia−1 jia+1...ip gkia + ωi1...ia−1kia+1...ip gjia

)− 2p
n

gjk ωi1...ip

for each set of values of indices
(
i1 i2 . . . ip

)
such that 1 ≤ i1 < i2 < . . . < ip ≤ n. After long but simple

calculations we obtain the identities (see also [14]),

Rijkl ϕil (i1...ip)ϕ
jk
(i1...ip)

= p
(2(n + 4p)

n
Rij ωi i2...ip ω

j
i2...ip

−3 (p − 1) Rijkl ωij i3...ip ωkl
i3...ip

− 4p
n2 s ‖ω‖2

)
; (5)

‖ ϕ̄ ‖2 =
2p(n + 2)(n − p)

n
‖ω‖2, (6)

where

‖ ϕ̄ ‖2 = gikgjl gi1 j1 . . . gip jp ϕ
(i1...ip)

ij ϕ
(j1...jp)
kl ,

‖ω‖2 = ωi1i2...ip ω i1i2...ip
= gi1 j1 . . . gip jp ω i1...ip

ω j1...jp

for gij = (g−1)ij. If (M, g) is an Einstein manifold, then Equations (4) and (5) can be rewritten in the
form

Fp(ω) =
s
n
‖ω‖2 − p − 1

2
Rijkl ωij i3...ip ωkl

i3...ip
,
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Rijkl ϕil(i1...ip)ϕ
jk
(i1...ip)

= p
(2n + 4p

n2 s ‖ω‖2 − 3(p − 1)Rijkl ωij i3...ip ωkl
i3...ip

)
. (7)

On the other hand, for a fixed set of values of indices (i1, i2, . . . , ip) such that 1 ≤ i1 < i2 < . . . < ip ≤ n,
the equality in Equation (3) can be rewritten in the form

Rijkl ϕil (i1...ip)ϕjk(i1...ip) +
s
n

ϕik (i1...ip)ϕ
(i1...ip)
ik ≥ n δ ϕ kl (i1...ip) ϕ

(i1...ip)
kl . (8)

Then from Equation (8) we obtain the inequality

Rijkl ϕil (i1...ip)ϕ
jk
(i1...ip)

≥
(

nδ − s
n

)
‖ ϕ̄ ‖2 . (9)

Using Equation (9) we deduce from Equation (7) the following inequality:

6p Fp(ω) ≥
(

n δ − s
n + 2

)
‖ ϕ̄ ‖2 . (10)

Thus, using Equation (6) we can rewrite Equation (10) in the following form:

Fp(ω) ≥ (1/3)((n + 2) δ − α) (n − p)‖ω‖2. (11)

It is obvious that if the sectional curvature of an Einstein manifold (M, g) satisfies the inequality
sec ≥ δ for a positive constant δ, then the scalar curvature of (M, g) satisfies the inequality s ≥
n(n − 1) δ > 0. In this case, if (n − 1) δ ≤ α < (n + 2) δ, then from Equation (11) we deduce that the
quadratic form Fp(ω) is positive definite for any p ≤ [n/2]. It is known [23] that Fp(ω) = Fn−p(∗ω)

and ‖ω‖2 = ‖ ∗ ω‖2 for any p-form ω with 1 ≤ p ≤ n − 1 and the Hodge star operator ∗ : Λp M →
Λn−p M acting on the space of p-forms Λp M. Therefore, the inequality in Equation (11) holds for any
p = 1, . . . , n − 1.

Recall that if on an n-dimensional compact Riemannian manifold (M, g) the quadratic form
Fp(ω) is positive definite for any smooth p-form ω with p = 1, . . . , n − 1, then the Betti numbers
b1(M), . . . , bn−1(M) vanish (see [3] (p. 88); [13] (pp. 336–337)). In this case, Theorem 2 directly follows
from Lemma 1.

If the curvature of an Einstein manifold (M, g) satisfies sec ≤ −δ < 0 for a positive constant δ,
then the Einstein constant of (M, g) satisfies the the obvious inequality α ≤ −(n − 1) δ < 0. On the
other hand, from Equation (1) we deduce the inequality Rijlk ϕik ϕjl ≤ − (n δ + α) ‖ϕ ‖2. Therefore,

if δ > −α/n, then
◦
R < 0. In this case, the Tachibana numbers t1(M), . . . , tn−1(M) are equal to zero

(see [19]). We proved the following.

Proposition 1. Let (Mn, g) be an Einstein manifold with sectional curvature bounded above by a negative
constant −δ such that δ > −α/n for the Einstein constant α. Then the Tachibana numbers t1(M), . . . , tn−1(M)

are zero.

We can complete this result. If an Einstein manifold (Mn, g) satisfies the curvature inequality
sec ≤ −δ < 0 for a positive constant δ, then from Equations (3) and (7) we deduce the inequality
Fp(ω) ≤ − 1

3 ((n + 2) δ + α)(n − p)‖ω‖2 for any p = 1, . . . , n − 1. Therefore, the Tachibana numbers
t1(M), . . . , tn−1(M) of a compact Einstein manifold with sectional curvature bounded above by
a negative constant −δ such that δ ≥ −α/(n + 2) are zero.
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Abstract: Warped products play crucial roles in differential geometry, as well as in mathematical
physics, especially in general relativity. In this article, first we define and study statistical solitons
on Ricci-symmetric statistical warped products R×f N2 and N1 ×f R. Second, we study statistical
warped products as submanifolds of statistical manifolds. For statistical warped products statistically
immersed in a statistical manifold of constant curvature, we prove Chen’s inequality involving scalar
curvature, the squared mean curvature, and the Laplacian of warping function (with respect to the
Levi–Civita connection). At the end, we establish a relationship between the scalar curvature and the
Casorati curvatures in terms of the Laplacian of the warping function for statistical warped product
submanifolds in the same ambient space.

Keywords: statistical warped product submanifold; statistical manifold; B.Y.Chen inequality;
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1. Introduction

Statistical manifolds were introduced in 1985 by S. Amari [1] in terms of information geometry,
and they were applied by Lauritzen in [2]. Such manifolds have an important role in statistics as the
statistical model often forms a geometrical manifold.

Let ∇̃ be an affine connection on a (pseudo-)Riemannian manifold (Ñ, g̃). The affine connection
∇̃∗ on Ñ satisfying:

Eg̃(F, G) = g̃(∇̃EF, G) + g̃(F, ∇̃∗
EG), ∀E, F, G ∈ Γ(TÑ),

is called a dual connection of ∇̃ with respect to g̃.
The triplet (Ñ, ∇̃, g̃) is called a statistical manifold if:

(a) the Codazzi equation (∇̃Eg̃)(F, G) = (∇̃F g̃)(E, G) holds, for any E, F, G ∈ Γ(TÑ);
(b) the torsion tensor field of ∇̃ vanishes.

If (∇̃, g̃) is a statistical structure on Ñ, then (∇̃∗, g̃) is also a statistical structure. The connections
∇̃ and ∇̃∗ satisfy (∇̃∗)∗ = ∇̃. On the other hand, we have ∇̃0 = 1

2 (∇̃ + ∇̃∗), where ∇̃0 is the
Levi–Civita connection of Ñ.

One of the most fruitful generalizations of Riemannian products is the warped product defined
in [3]. The notion of warped products plays very important roles in differential geometry and in

Mathematics 2019, 7, 797; doi:10.3390/math7090797 www.mdpi.com/journal/mathematics177
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mathematical physics, especially in general relativity. For instance, space-time models in general
relativity are usually expressed in terms of warped products (cf., e.g., [4,5]).

In 2006, L. Todjihounde [6] defined a suitable dualistic structure on warped product manifolds.
Furthermore, Furuhata et al. [7] defined Kenmotsu statistical manifolds and studied how to construct
such structures on the warped product of a holomorphic statistical manifold [8] and a line. In [9],
H. Aytimur and C. Ozgur studied Einstein statistical warped product manifolds. Further, C. Murathan
and B. Sahin [10] studied and obtained the Wintgen-like inequality for statistical submanifolds of
statistical warped product manifolds.

The Ricci solitons are special solutions of the Ricci flow of the Hamilton. In Section 4, we define
statistical solitons and study the problem under what conditions the base manifold or fiber manifold
of a statistical warped product manifold is a statistical soliton.

Curvature invariants play the most fundamental and natural roles in Riemannian geometry.
A fundamental problem in the theory of Riemannian submanifolds is (cf. [11]):

Problem A.“Establish simple optimal relationships between the main intrinsic invariants and the main extrinsic
invariants of a submanifold.”

The first solutions of this problem for warped product submanifolds were given in [11,12].
In Section 5, we study this fundamental problem for statistical warped product submanifolds in any
statistical manifolds of constant curvature. Our solution to this problem given in this section is derived
via the fundamental equations of statistical submanifolds.

An extrinsic curvature of a Riemannian submanifold was defined by Casorati in [13], as the
normalized square of the length of the second fundamental form. Casorati curvature has nice
applications in computer vision. It was preferred by Casorati over the traditional curvature since it
corresponds better to the common intuition of curvature.

Several sharp inequalities between extrinsic and intrinsic curvatures for different submanifolds in
real, complex, and quaternionic space forms endowed with various connections have been obtained
(e.g., [14–21]). Such inequalities with a pair of conjugate affine connections involving the normalized
scalar curvature of statistical submanifolds in different ambient spaces were obtained in [22–26].

Inspired by historical development on the classifications of Casorati curvatures and Ricci
curvatures, we establish in Section 6 an inequality for statistical warped product submanifolds in a
statistical manifold of constant curvature. In the last section, we provide two examples of statistical
warped product submanifolds in the same environment.

2. Preliminaries

Let (Ñ, ∇̃, g̃) be a statistical manifold and N be a submanifold of Ñ. Then, (N,∇, g) is also a
statistical manifold with the statistical structure (∇, g) on N induced from (∇̃, g̃), and we call (N,∇, g)
a statistical submanifold.

The fundamental equations in the geometry of Riemannian submanifolds are the Gauss and
Weingarten formulae and the equations of Gauss, Codazzi, and Ricci (cf. [4,5,27]). In the statistical
setting, the Gauss and Weingarten formulae are defined respectively by [28]:

∇̃EF = ∇EF + h(E, F), ∇̃∗
EF = ∇∗

EF + h∗(E, F),

∇̃Eξ = −Aξ(E) +∇⊥
E ξ, ∇̃∗

Eξ = − A∗
ξ (E) +∇⊥∗

E ξ,

}
(1)

for any E, F ∈ Γ(TN) and ξ ∈ Γ(T⊥N), where ∇̃ and ∇̃∗ (resp., ∇ and ∇∗) are the dual connections
on Ñ (resp., on N).
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The symmetric and bilinear imbedding curvature tensor of N in Ñ with respect to ∇̃ and ∇̃∗

is denoted as h and h∗, respectively. The relation between h (resp. h∗) and Aξ (resp. A∗
ξ ) is defined

by [28]:

g̃(h(E, F), ξ) = g(A∗
ξ E, F),

g̃(h∗(E, F), ξ) = g(Aξ E, F),

}
(2)

for any E, F ∈ Γ(TN) and ξ ∈ Γ(T⊥N).
Let R̃ and R be the curvature tensor fields of ∇̃ and ∇, respectively. The corresponding Gauss,

Codazzi, and Ricci equations are given by [28]:

g̃(R̃(E, F)G, H) = g(R(E, F)G, H) + g̃(h(E, G), h∗(F, H))

− g̃(h∗(E, H), h(F, G)), (3)

(R̃(E, F)G)⊥ = ∇⊥
E h(F, G)− h(∇EF, G)− h(F,∇EG)

− {∇⊥
F h(E, G)− h(∇FE, G)− h(E,∇FG)}, (4)

g̃(R̃⊥(E, F)ξ, η) = g̃(R(E, F)ξ, η) + g([A∗
ξ , Aη ]E, F), (5)

for any E, F, G, H ∈ Γ(TN) and ξ, η ∈ Γ(T⊥N), where R⊥ is the Riemannian curvature tensor on T⊥N.
Similarly, R̃∗ and R∗ are respectively the curvature tensor fields with respect to ∇̃∗ and ∇∗.

We can obtain the duals of all Equations (3)–(5) with respect to ∇̃∗ and ∇∗. Furthermore,

S̃ =
1
2
(R̃ + R̃∗) and S =

1
2
(R + R∗) (6)

are respectively the curvature tensor fields of Ñ and N given by [7]. Thus, the sectional curvature
K∇,∇∗

on N of Ñ is defined by [29,30]:

K∇,∇∗
(E ∧ F) = g(S(E, F)F, E)

=
1
2
(g(R(E, F)F, E) + g(R∗(E, F)F, E)), (7)

for any orthonormal vectors E, F ∈ TpN, p ∈ N.
Suppose that dim(N) = m and dim(Ñ) = n. Let {e1, . . . , em} and {em+1, . . . , en} be respectively

the orthonormal basis of TpN and T⊥
p N for p ∈ N. Then, the scalar curvature σ∇,∇∗

of N is given by:

σ∇,∇∗
= ∑

1≤i<j≤m
K∇,∇∗

(ei ∧ ej). (8)

The normalized scalar curvature ρ of N is defined as:

ρ∇,∇∗
=

2σ∇,∇∗

m(m − 1)
.

The mean curvature vectors H and H∗ of N in Ñ are:

H =
1
m

m

∑
i = 1

h(ei, ei), H∗ =
1
m

m

∑
i = 1

h∗(ei, ei).
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Furthermore, we set:

ha
ij = g̃(h(ei, ej), ea), h∗a

ij = g̃(h∗(ei, ej), ea),

for i, j ∈ {1, . . . , m}, a ∈ {m + 1, . . . , n}.
A statistical manifold (Ñ, ∇̃, g̃) is said to be of constant curvature c̃ ∈ R, denoted by Ñ(c̃), if the

following curvature equation holds:

S̃(E, F)G = c̃(g(F, G)E − g(E, G)F), ∀E, F, G ∈ Γ(TÑ). (9)

3. Basics on Statistical Warped Product Manifolds

Definition 1. [3] Let (N1, g1) and (N2, g2) be two (pseudo)-Riemannian manifolds and f > 0 be a differentiable
function on N1. Consider the natural projections π : N1 × N2 → N1 and π

′
: N1 × N2 → N2. Then, the

warped product N = N1 ×f N2 with warping function f is the product manifold N1 × N2 equipped with the
Riemannian structure such that:

g̃(E, F) = g1(π∗E, π∗F) + f2(u)g2(π
′
∗E, π

′
∗F), (10)

for E, F ∈ Γ(T(u,v)N), u ∈ N1, and v ∈ N2, where ∗ denotes the tangent map.

Let χ(N1) and χ(N2) be the set of all vector fields on N1 × N2, which is the horizontal
lift of a vector field on N1 and the vertical lift of a vector field on N2, respectively. We have
T(N1 × N2) = χ(N1)⊕ χ(N2). Thus, it can be seen that π∗(χ(N1)) = Γ(TN1) and
π

′
∗(χ(N2)) = Γ(TN2). Therefore, π∗(X) = E1 ∈ Γ(TN1), π∗(Y) = F1 ∈ Γ(TN1), π

′
∗(U) = E2 ∈

Γ(TN2) and π
′
∗(V) = F2 ∈ Γ(TN2), for any X, Y ∈ χ(N1) and U, V ∈ χ(N2).

Recall the following general result from [6] for a dualistic structure on the warped product
manifold N1 ×f N2.

Proposition 1. Let (g1,∇N1 ,∇N1∗) and (g2,∇N2 ,∇N2∗) be dualistic structures on N1 and N2, respectively.
For X, Y ∈ χ(N1) and U, V ∈ χ(N2), D, D∗ on N1 × N2 satisfy:

(a) DXY = ∇N1
E1

F1,

(b) DXU = DUX = E1f
f E2,

(c) DUV = ∇N2
E2

F2 − g̃(U,V)
f grad f,

(d) D∗
XY = ∇N1∗

E1
F1,

(e) D∗
XU = D∗

UX = E1f
f E2,

(f) D∗
UV = ∇N2∗

E2
F2 − g̃(U,V)

f grad f,

where ∇N1
E1

F1 = π∗(DXY), ∇N1∗
E1

F1 = π∗(D∗
XY), ∇N2

E2
F2 = π

′
∗(DUV), and ∇N2∗

E2
F2 = π

′
∗(D∗

UV).
Then, (g̃, D, D∗) is a dualistic structure on N1 × N2.

Furthermore, Todjihounde [6] derived the curvature of the statistical warped product Ñ = N1 ×f

N2 in terms of the curvature tensors R1 and R2 of N1 and N2, respectively, and its warping function f.

Lemma 1. Let (Ñ = N1 ×f N2, D, D∗, g̃) be a statistical warped product manifold. For X, Y, Z ∈ χ(N1)

and U, V, W ∈ χ(N2), we have:

(a) R̃(X, Y)Z = R1(E1, F1)G1,
(b) R̃(U, Y)Z = − f−1Hessf(Y, Z)U,
(c) R̃(X, Y)W = 0,
(d) R̃(U, V)Z = 0,
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(e) R̃(X, V)W = − f−1 g̃(V, W)DX(grad f),
(f) R̃(U, V)W = R2(E2, F2)G2 + ||grad f||2[g2(U, W)V − g2(V, W)U],

where R̃ denotes the curvature tensor field of (Ñ = N1 ×f N2, D, D∗, g̃) and
Hessf(X, Y) = X(Yf)− (∇N1

X Y)f is the Hessian function of f with respect to ∇N1 .

The next result from [9] provides the Ricci tensor R̃ic of the statistical warped product manifold.

Lemma 2. Let (Ñ = N1 ×f N2, D, D∗, g̃) be a statistical warped product manifold. For X, Y ∈ χ(N1) and
U, V ∈ χ(N2), we have:

(a) R̃ic(X, Y) = Ric1(X, Y)− dim(N2)f
−1Hessf(X, Y),

(b) R̃ic(X, V) = 0,
(c) R̃ic(U, V) = Ric2(U, V)− [f(Δf) + (dim(N2)− 1)||grad f||2]g2(U, V),

where Ric1 and Ric2 are the Ricci tensors of N1 and N2, respectively, and Δf = div(grad f) is the Laplacian of
f with respect to D.

We recall the following result from [31]. This result is useful in some Riemannian problems like
the study of the distance between two manifolds, of the extremes of sectional curvature and is applied
successfully in the demonstration of the Chen inequality.

Let (N, g) be a Riemannian submanifold of a Riemannian manifold (Ñ, g̃), and let f : Ñ → R be
a differentiable function. Let:

min
x0∈N

f (x0) (11)

be the constrained extremum problem.

Theorem 1. If x ∈ N is the solution of the problem (11), then:

(a) (grad f )(x) ∈ T⊥
x N,

(b) the bilinear form Θ : Tx N × Tx N → R,

Θ(E, F) = Hess f (E, F) + g̃(h′(E, F), (grad f )(x))

is positive semi-definite, where h′ is the second fundamental form of N in Ñ and grad f denotes the gradient
of f .

4. Statistical Solitons on Statistical Warped Product Manifolds

The Ricci solitons model the formation of singularities in the Ricci flow, and they correspond to
self-similar solutions. R. Hamilton [32] introduced the study of Ricci solitons as fixed or stationary
points of the Ricci flow in the space of the metrics on Riemannian manifolds modulo diffeomorphisms
and scaling. Since then, many researchers studied Ricci solitons for different reasons and in different
ambient spaces (for example [33–35]). A complete Riemannian manifold (Ñ, g̃) is called a Ricci soliton
(Ñ, g̃, ζ, λ) if there exists a smooth vector field ζ and a constant λ ∈ R such that:

2R̃ic = 2λg̃ −Lζ g̃,

where Lζ denotes the Lie derivative along ζ and R̃ic is the Ricci tensor of g̃.
A generalization of Ricci solitons in the framework of manifolds endowed with an arbitrary linear

connection ∇̃, different from the Levi–Civita connection of g̃, is defined in [36] as follows:
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Let (Ñ, ∇̃) be a manifold and ζ ∈ χ(Ñ). A triple (g̃, ζ, λ) is called a ∇̃-Ricci soliton if
∇̃ζ + Q̃+ λI = 0 holds, where Q̃ is the Ricci operator of Ñ defined by g̃(Q̃E, F) = R̃ic(E, F),
for vector fields E, F on Ñ.

The statistical manifold (Ñ, ∇̃, g̃) is called Ricci-symmetric if the Ricci operator Q̃ with respect to
∇̃ (equivalently, the dual operator Q̃∗ with respect to ∇̃∗) is symmetric (cf. [36,37]).

Based on these, we have the following.

Definition 2. A pair (ζ, λ) is called a statistical soliton on a Ricci-symmetric statistical manifold (Ñ, ∇̃, g̃) if
the triple (g̃, ζ, λ) is ∇̃-Ricci and ∇̃∗-Ricci solitons, i.e., we have:

∇̃ζ + Q̃+ λI = 0, (12)

and:

∇̃∗ζ + Q̃∗ + λI = 0, (13)

where g̃(Q̃E, F) = R̃ic(E, F) and g̃(Q̃∗E, F) = R̃ic∗(E, F), for all vector fields on Ñ, and R̃ic and R̃ic∗

denote the Ricci tensor fields with respect to ∇̃ and ∇̃∗, respectively.

The main purpose of this section is to study the problem: under what conditions does the base
manifold or fiber manifold of the statistical warped product manifold become a statistical soliton?

Let (N1,∇N1 ,∇N1∗, g1) and (N2,∇N2 ,∇N2∗, g2) be the Ricci-symmetric statistical
manifolds. Denote the Ricci-symmetric statistical warped product manifold by
(Ñ = N1 ×f N2, D, D∗, g̃ = g1 + f2g2). Let ζ = (ζ1, ζ2) ∈ χ(Ñ) be a vector field on Ñ. Then, the pair
(ζ, λ) on (Ñ, ∇̃, g̃) is called a statistical soliton if the triple (g̃, ζ, λ) is both D-Ricci and D∗-Ricci solitons,
given by (12) and (13).

It follows from Lemma 2 that the Ricci tensor of Ñ is given as below:

R̃ic = Ric1 − f−1 dim(N2)Hessf + Ric2

− [f(Δf) + (dim(N2)− 1)||grad f||2]g2. (14)

Thus, (12) and (13) can be rewritten as:

∇N1 ζ1 +∇N2 ζ2 + Ric1 − f−1 dim(N2)Hessf + Ric2

− [f(Δf) + (dim(N2)− 1)||grad f||2]g2 + λg1 + λf2g2 = 0, (15)

and:

∇N1∗ζ1 +∇N2∗ζ2 + Ric∗1 − f−1 dim(N2)HessD∗
f + Ric∗2

− [f(ΔD∗
f) + (dim(N2)− 1)||grad f||2]g2 + λg1 + λf2g2 = 0, (16)

respectively.
Throughout this section, we use the statistical warped products as Ricci-symmetric.
We give the following results by applying Lemma 2:

Lemma 3. Let (Ñ = R×f N2, D, D∗, g̃) be a statistical warped product manifold, where (R,∇R, dz2) is a
trivial statistical manifold of dimension one and dim(N2) = k. Then, for U, V ∈ χ(N2), we have:

(a) R̃ic(∂z, ∂z) = − kf−1 f̈,
(b) R̃ic(∂z, V) = 0,
(c) R̃ic(U, V) = Ric2(U, V)− [ff̈+ (k − 1)ḟ2]g2(U, V).
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Proposition 2. Let (ζ, λ) be a statistical soliton on statistical warped product manifold
(Ñ = R×f N2, D, D∗, g̃ = dz2 + f2g2) with dim(R) = 1 and dim(N2) = k. Then:

Hessf =
fλ

k
.

Proof. Since Ñ is a statistical soliton, then from (6), we have:

g̃(∇̃∂zζ, ∂z) + R̃ic(∂z, ∂z) + λg̃(∂z, ∂z) = 0.

By taking into account Lemma 3 and Ric1(∂z, ∂z) = 0, we get:

−g̃(ζ, ∇̃∗
∂z∂z)− kf−1Hessf(∂z, ∂z) + λg̃(∂z, ∂z) = 0,

which gives Hessf(∂z, ∂z) = ( fλk )g̃(∂z, ∂z).

Theorem 2. Let ζ = (∂z, ζ2) ∈ χ(Ñ) be a vector field on statistical warped product manifold
(Ñ = R×f N2, D, D∗, g̃ = dz2 + f2g2) with dim(R) = 1 and dim(N2) = k. If (ζ, λ) is a statistical soliton
on Ñ, then:

(a) (N2, g2, ζ2, λ2) is a statistical soliton on (N2,∇N2 ,∇N2∗, g2), where λ2 = (k − 1)[ff̈− ḟ2],
(b) f(z) = az + b if λ = 0,
(c) f(z) = cosh(az + b) if λ �= 0,

where a, b ∈ R.

Proof. From Equation (15) and Lemma 3, we have:

∇N1 ∂z +∇N2 ζ2 + Ric1 − kf−1 f̈+ Ric2

−(ff̈+ (k − 1)ḟ2)g2 + λg1 + λf2g2 = 0.

Note g1(∇N1
∂z ∂z, ∂z) = 0 and Ric1(∂z, ∂z) = 0. Thus, the above equation becomes:

∇N2 ζ2 − kf−1 f̈+ Ric2 − (ff̈+ (k − 1)ḟ2)g2 + λg1 + λf2g2 = 0,

from which we get:

λ = kf−1 f̈, (17)

∇N2 ζ2 + Ric2 + [λf2 − (ff̈+ (k − 1)ḟ2)]g2 = 0. (18)

Putting (17) into the Equation (18), we arrive at:

∇N2 ζ2 + Ric2 + (k − 1)[ff̈− ḟ2]g2 = 0.

Similarly, by using (16), we derive:

∇N2∗ζ2 + Ric∗2 + (k − 1)[ff̈− ḟ2]g2 = 0.

Thus, (N2, g2, ζ2, (k − 1)[ff̈− ḟ2]) is a statistical soliton provided that (k − 1)[ff̈− ḟ2] is constant.
On the other hand, by using (17), we have the following cases:

(a) if λ = 0, then f(z) = az + b, and
(b) if λ �= 0, then f(z) = cosh(az + b) [9],
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where a, b are real constants.

Before proving the next result, we state the following:

Lemma 4. Let (Ñ = N1 ×f R, D, D∗, g̃) be a statistical warped product manifold, where (R,∇R, dz2) is a
trivial statistical manifold of dimension one and dim(N1) = k. For X, Y ∈ χ(N1), we have:

(a) R̃ic(X, Y) = Ric1(X, Y)− f−1Hessf(X, Y),
(b) R̃ic(X, ∂z) = 0,
(c) R̃ic(∂z, ∂z) = − f(Δf)g2(∂z, ∂z).

Theorem 3. Let ζ = (ζ1, ∂z) ∈ χ(Ñ) be a vector field on statistical warped product manifold
(Ñ = N1 ×f R, D, D∗, g̃ = g1 + f2dz2) with dim(R) = 1 and dim(N1) = k. Suppose that Hessf = 0.
Then, (ζ, λ) is a statistical soliton on Ñ if and only if (ζ1, λ = f−1(Δf)) is a statistical soliton on N1.

Proof. Since g2(∇N1
∂z ∂z, ∂z) = 0 and Ric2(∂z, ∂z) = 0, then by using Equation (15) and Lemma 4,

we get:

∇N1 ζ1 + Ric1 − f(Δf)g2 + λg1 + λf2g2 = 0.

Therefore, we have:

∇N1 ζ1 + Ric1 + λg1 = 0. (19)

Furthermore, f−1(Δf) = λ = constant. Putting this into (19), we get:

∇N1 ζ1 + Ric1 + f−1(Δf)g1 = 0.

Similarly, by using (16), we obtain:

∇N1∗ζ1 + Ric∗1 + f−1(Δ∗f)g1 = 0.

Since f−1(Δf) is constant, (N1, g1, ζ1, λ = f−1(Δf)) is a statistical soliton.
Conversely, if (ζ1, λ = f−1(Δf)) is a statistical soliton on N1, then:

∇N1 ζ1 +∇N2 ∂z + Ric1 − f−1k2Hessf + Ric2

− [f(Δf) + (k2 − 1)||grad f||2]g2

= ∇N1 ζ1 + Ric1 + f−1(Δf)g1 − f−1(Δf)g1 − f(Δf)g2

= −f−1(Δf)g1 − f(Δf)g2 = −f−1(Δf)(g1 + g2)

= −λg̃.

Thus, Dζ + Q̃+ λI = 0. Similarly, D∗ζ + Q̃∗ + λI = 0. Hence, (ζ, λ) is a statistical soliton
on Ñ.

An immediate consequence of Theorem 3 is as follows:

Corollary 1. Let (Ñ, g̃, ζ, λ) be a Statistical soliton on statistical manifold (Ñ = N1 ×f R, D, D∗, g̃ = g1 +

f2dz2) with dim(R) = 1 and dim(N1) = k. If Hessf = �g1, � ∈ C∞(N1), then (N1, g1, ζ1, f−1(Δf)− f−1�)

is a statistical soliton.

5. B.Y. Chen Inequality

A universal sharp inequality for submanifolds in a Riemannian manifold of constant sectional
curvature was established in [38], known as the first Chen inequality. The main purpose of this section
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is to establish the corresponding inequality for statistical warped product manifolds statistically
immersed in a statistical manifold of constant curvature.

Let ϕ : N = N1 ×f N2 → Ñ(c̃) be an isometric statistical immersion of a warped product
N1 ×f N2 into a statistical manifold of constant sectional curvature c̃. We denote by r, k, and m = r + k
the dimensions of N1, N2, and N1 × N2, respectively. Since N1 ×f N2 is a statistical warped product,
we have:

∇E1 E2 = ∇E2 E1 = (E1 ln f)E2,

for unit vector fields E1 and E2 tangent to N1 and N2, respectively. Hence, we derive:

K(E1 ∧ E2) =
1
f
{(∇E1 E1)f− E2

1f}. (20)

If we choose a local orthonormal frame {e1, . . . , em} such that {e1, . . . , er} are tangent to N1 and
{er+1, . . . , er+k = em} are tangent to N2, then we have:

Δf

f
=

r

∑
i = 1

K(ei ∧ ej), (21)

for each j = r + 1, . . . , m.
On the other hand, let E1 and E2 be two unit local vector fields tangent to N1 and N2, respectively,

such that e1 = E1 and er+1 = E2. By taking into account Equations (3), (6), and (9), we derive (7)
as follows:

K∇,∇∗
(e1 ∧ er+1) =

c̃
2
{2g(er+1, er+1)g(e1, e1)− 2g(e1, er+1)g(er+1, e1)}

+
1
2
{g(h∗(e1, e1), h(er+1, er+1))

+ g(h(e1, e1), h∗(er+1, er+1))− 2g(h(e1, er+1), h∗(e1, er+1))}

= c̃ +
1
2

n

∑
a = m+1

{h∗a
11ha

r+1,r+1 + ha
11h∗a

r+1,r+1 − 2ha
1,r+1h∗a

1,r+1}.

We rewrite the terms of the RHS of the previous equation as:

K∇,∇∗
(e1 ∧ er+1) = c̃ +

1
2

n

∑
a = m+1

{(ha
11 + h∗a

11)(h
a
r+1,r+1 + h∗a

r+1,r+1)

− (ha
1,r+1 + h∗a

1,r+1)
2 + (ha

1,r+1)
2 + (h∗a

1,r+1)
2

− ha
11ha

r+1,r+1 − h∗a
11h∗a

r+1,r+1}.

Since, 2h0 = h + h∗, we get:

K∇,∇∗
(e1 ∧ er+1) = c̃ +

1
2

n

∑
a = m+1

{4h0a
11h0a

r+1,r+1

− (ha
11ha

r+1,r+1 − (ha
1,r+1)

2)

− (h∗a
11h∗a

r+1,r+1 − (h∗a
1,r+1)

2)− 4(h0a
1,r+1)

2}.
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Thus, we have:

K∇,∇∗
(e1 ∧ er+1) = c̃ +

n

∑
a = m+1

{2(h0a
11h0a

r+1,r+1 − (h0a
1,r+1)

2)

− 1
2
(ha

11ha
r+1,r+1 − (ha

1,r+1)
2)− 1

2
(h∗a

11h∗a
r+1,r+1 − (h∗a

1,r+1)
2)}. (22)

Using the Gauss equation for the Levi–Civita connection, we arrive at:

K0(e1 ∧ er+1) = c̃ −
n

∑
a = m+1

{(h0a
1,r+1)

2 − h0a
11h0a

r+1,r+1},

which can be rewritten as:

n

∑
a = m+1

{(h0a
1,r+1)

2 − h0a
11h0a

r+1,r+1} = K0(e1 ∧ er+1)− c̃. (23)

Substituting (23) into (22), we get:

K∇,∇∗
(e1 ∧ er+1) = 2K0(e1 ∧ er+1)− c̃ − 1

2

n

∑
a = m+1

{ha
11ha

r+1,r+1

− (ha
1,r+1)

2 + h∗a
11h∗a

r+1,r+1 − (h∗a
1,r+1)

2}. (24)

Furthermore, we derive (8) as:

σ∇,∇∗
=

m(m − 1)c̃
2

+
1
2

n

∑
a = m+1

∑
i<j

{h∗a
ii ha

jj + ha
iih

∗a
jj − 2ha

ijh
∗a
ij }

=
m(m − 1)c̃

2
+

1
2

n

∑
a = m+1

∑
i<j

{(ha
ii + h∗a

ii )(h
a
jj + h∗a

jj )

− ha
iih

a
jj − h∗a

ii h∗a
jj − (ha

ij + h∗a
ij )

2 + (ha
ij)

2 + (h∗a
ij )

2}.

By a similar argument as above, we deduce that:

σ∇,∇∗
=

m(m − 1)c̃
2

+
1
2

n

∑
a = m+1

∑
i<j

{2(h0a
ii h0a

jj − (h0a
ij )

2)

− 1
2
(ha

iih
a
jj − (ha

ij)
2)− 1

2
(h∗a

ii h∗a
jj − (h∗a

ij )
2)}. (25)

Again by the Gauss equation for the Levi–Civita connection, we find that:

σ0 =
m(m − 1)c̃

2
+

n

∑
a = m+1

∑
i<j

{h0a
ii h0a

jj − (h0a
ij )

2},

or:

n

∑
a = m+1

∑
i<j

{h0a
ii h0a

jj − (h0a
ij )

2} = σ0 − m(m − 1)c̃
2

. (26)
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Inserting (26) into (25), we have:

σ∇,∇∗
= 2σ0 − m(m − 1)c̃

2
− 1

2

n

∑
a = m+1

∑
i<j

{ha
iih

a
jj − (ha

ij)
2

+h∗a
ii h∗a

jj − (h∗a
ij )

2}. (27)

By subtracting (24) from (27), we can state the following result:

Lemma 5. Let N = N1 ×f N2 be an m-dimensional statistical warped product submanifold immersed into an
n-dimensional statistical manifold of constant sectional curvature c̃. Then:

σ∇,∇∗ −K∇,∇∗
(e1 ∧ er+1) = 2(σ0 −K0(e1 ∧ er+1))− (m − 2)(m + 1)c̃

2

− 1
2

n

∑
a = m+1

∑
i<j

{ha
iih

a
jj − (ha

ij)
2 + h∗a

ii h∗a
jj

− (h∗a
ij )

2}+ 1
2

n

∑
a = m+1

{ha
11ha

r+1,r+1 − (ha
1,r+1)

2

+ h∗a
11h∗a

r+1,r+1 − (h∗a
1,r+1)

2}.

Further, we have:

σ∇,∇∗ −K∇,∇∗
(e1 ∧ er+1) ≥ 2(σ0 −K0(e1 ∧ er+1))− (m − 2)(m + 1)c̃

2

− 1
2

n

∑
a = m+1

∑
i<j

{ha
iih

a
jj + h∗a

ii h∗a
jj }

+
1
2

n

∑
a = m+1

{ha
11ha

r+1,r+1 + h∗a
11h∗a

r+1,r+1},

or we write it as:

2(σ0 −K0(e1 ∧ er+1)) ≤ σ∇,∇∗ −K∇,∇∗
(e1 ∧ er+1) +

(m − 2)(m + 1)c̃
2

+
1
2

n

∑
a = m+1

{∑
i<j

{ha
iih

a
jj} − ha

11ha
r+1,r+1}

+
1
2

n

∑
a = m+1

{∑
i<j

{h∗a
ii h∗a

jj } − h∗a
11h∗a

r+1,r+1}. (28)

We use an optimization technique: For a ∈ [m + 1, n], we consider the quadratic forms:

φa : Rm → R, φ∗
a : Rm → R

given by:

φa(ha
11, . . . , ha

mm) = ∑
i<j

{ha
iih

a
jj} − ha

11ha
r+1,r+1, (29)

and:

φ∗
a (h

∗a
11, . . . , h∗a

mm) = ∑
i<j

{h∗a
ii h∗a

jj } − h∗a
11h∗a

r+1,r+1. (30)
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The constrained extremum problem is max φa subject to:

Q : ha
11 + · · ·+ ha

mm = ta, (ta is any constant).

The partial derivatives of φa are:

∂φa

∂ha
11

=
m

∑
i=2

ha
ii − ha

r+1,r+1,

∂φa

∂ha
r+1,r+1

= ∑
i∈1,m r+1

ha
ii − ha

11,

∂φa

∂ha
ll

= ∑
i∈1,m {l}

ha
ii, l ∈ [r + 2, m].

For an optimal solution (ha
11, . . . , ha

mm) of the above problem and grad (φa) normal at Q, we obtain:

(ha
11, ha

22, . . . , ha
mm) = (0, αa, . . . , αa). (31)

As ta = ∑m
i=1 ha

ii = (m − 1)αa, then we have:

αa =
ta

m − 1
. (32)

As φa is obtained from the similar function studied in [39] by subtracting some square terms,
φa|Q will have the Hessian semi-negative definite. Consequently, the point in (31), together with (32)
is a global maximum point, and hence, we calculate:

φa ≤ (m − 1)(m − 2)(αa)2

2

=
(m − 2)(ta)2

2(m − 1)
=

m2(m − 2)
2(m − 1)

(Ha)2.

Similarly, one gets:

φ∗
a ≤ m2(m − 2)

2(m − 1)
(H∗a)2,

by considering (30) and the constrained extremum problem max φ∗
a subject to:

Q∗ : h∗a
11 + · · ·+ h∗a

mm = t∗a, (t∗a is any constant).

Thus, (28) becomes:

2(σ0 −K0(e1 ∧ er+1)) ≤ σ∇,∇∗ −K∇,∇∗
(e1 ∧ er+1) +

(m − 2)(m + 1)c̃
2

+
m2(m − 2)
4(m − 1)

(||H||2 + ||H∗||2).

By summarizing, we state the following:
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Theorem 4. Let N = N1 ×f N2 be an m-dimensional statistical warped product submanifold immersed into
an n-dimensional statistical manifold of constant sectional curvature c̃. Then:

σ∇,∇∗−K∇,∇∗
(e1 ∧ er+1) ≥ 2(σ0 −K0(e1 ∧ er+1))− (m − 2)(m + 1)c̃

2

− m2(m − 2)
4(m − 1)

(||H||2 + ||H∗||2).

By using (20), we obtain:

K∇,∇∗
(e1 ∧ er+1) =

1
2
(K(e1 ∧ er+1) +K∗(e1 ∧ er+1))

=
1
2f
{(∇e1 e1)f− e2

1f+ (∇∗
e1

e1)f− e2
1f}.

For b = 1, 2, . . . , r, we also have:

K∇,∇∗
(eb ∧ er+1) =

1
2f
{(∇eb eb)f− e2

bf+ (∇∗
eb

eb)f− e2
bf}.

By summing up b from one to r, we find that:

r

∑
b=1

1
2f
{(∇eb eb)f− e2

bf+ (∇∗
eb

eb)f− e2
bf} =

1
2
(

ΔN1 f

f
+

ΔN1∗f
f

) =
ΔN10f

f
,

where ΔN1 and ΔN1∗ are dual Laplacians of N1 and ΔN10 denotes the Laplacian operator of N1 for the
Levi–Civita connection [37]. Thus, we have:

Theorem 5. Let N = N1 ×f N2 be an m-dimensional statistical warped product submanifold immersed into
an n-dimensional statistical manifold of constant sectional curvature c̃. Then, the scalar curvature σ∇,∇∗

of
N satisfies:

σ∇,∇∗ ≥ 2σ0 − ΔN10f

rf
− (m − 2)(m + 1)c̃

2

− m2(m − 2)
4(m − 1)

(||H||2 + ||H∗||2).

6. Optimal Casorati Inequality

Let {e1, . . . , em} and {em+1, . . . , en} be respectively the orthonormal basis of TpN and T⊥
p N, p ∈ N.

Then, the squared norm of second fundamental forms h and h∗ is denoted by C and C∗, respectively,
called the Casorati curvatures of N in Ñ. Therefore, we have:

C =
1
m
||h||2, C∗ =

1
m
||h∗||2, (33)

where:

||h||2 =
n

∑
a = m+1

m

∑
i,j = 1

(ha
ij)

2, ||h∗||2 =
n

∑
a = m+1

m

∑
i,j = 1

(h∗a
ij )

2.

If W is a q-dimensional subspace of TN, q ≥ 2, and {e1, . . . , eq} an orthonormal basis of W. Then,
the scalar curvature of the q-plane section W is:

σ∇,∇∗
(W) = ∑

1≤i<j≤q
S(ei, ej, ej, ei),
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and the Casorati curvatures of the subspace W are as follows:

C(W) =
1
q

n

∑
a = m+1

q

∑
i,j = 1

(ha
ij)

2, C∗(W) =
1
q

n

∑
a = m+1

q

∑
i,j = 1

(h∗a
ij )

2.

(1) The normalized Casorati curvatures δC(m − 1) and δ∗C(m − 1) are defined as:

[δC(m − 1)]p =
1
2
Cp + (

m + 1
2m

)inf{C(W)|W : a hyperplane of TpN},

and [δ∗C(m − 1)]p =
1
2
C∗

p + (
m + 1

2m
)inf{C∗(W)|W : a hyperplane of TpN}.

(2) The normalized Casorati curvatures δ̂C(m − 1) and δ̂∗C(m − 1) are defined as:

[δ̂C(m − 1)]p = 2Cp − (
2m − 1

2m
)sup{C(W)|W : a hyperplane of TpN},

and [δ̂∗C(m − 1)]p = 2C∗
p − (

2m − 1
2m

)sup{C∗(W)|W : a hyperplane of TpN}.

Let ϕ : N = N1 ×f N2 → Ñ(c̃) be an isometric statistical immersion of a warped product
N1 ×f N2 into a statistical manifold of constant sectional curvature c̃. If we chose a local orthonormal
frame {e1, . . . , em} such that {e1, . . . , er} are tangent to N1 and {er+1, . . . , er+k = em} are tangent to
N2, then the two partial mean curvature vectors H1 (resp. H∗

1) and H2 (resp. H∗
2) of N are given by:

H1 =
1
r

r

∑
i=1

h(ei, ei), H∗
1 =

1
r

r

∑
i=1

h∗(ei, ei),

and:

H2 =
1
k

k

∑
j=1

h(er+j, er+j), H∗
2 =

1
k

k

∑
j=1

h∗(er+j, er+j).

Furthermore, the Casorati curvatures are:

C1 =
1
r

n

∑
a = m+1

r

∑
i,j = 1

(ha
ij)

2, C∗
1 =

1
r

n

∑
a = m+1

r

∑
i,j = 1

(h∗a
ij )

2, (34)

and:

C2 =
1
k

n

∑
a = m+1

k

∑
i,j = 1

(ha
r+ir+j)

2, C∗
2 =

1
k

n

∑
a = m+1

k

∑
i,j = 1

(h∗a
r+ir+j)

2. (35)

Equation (21) implies:

kΔN10f

f
= σ∇,∇∗ − ∑

1≤i≤j≤r
K∇,∇∗

(ei ∧ ej)− ∑
r+1≤l≤s≤m

K∇,∇∗
(el ∧ es).
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By using (8), the previous equation becomes:

2σ∇,∇∗
=

kΔN10f

f
+ r(r − 1)c̃ + k(k − 1)c̃ + 2r2||H0

1||2

− r2

2
(||H1||2 + ||H∗

1 ||2)−
k2

2
(||H2||2 + ||H∗

2 ||2)
+ 2k2||H0

2||2 − 2rC0
1 +

r
2
(C1 + C∗

1 )

− 2kC0
2 +

k
2
(C2 + C∗

2 ). (36)

We define a polynomial P in terms of the components of the second fundamental form h0

(with respect to the Levi–Civita connection) of N.

P = 2r(r − 1)C0
1 + (r2 − 1)C0

1 (W1) +
r
2
(C1 + C∗

1 )

+ 2k(k − 1)C0
2 + (k2 − 1)C0

2 (W2) +
k
2
(C2 + C∗

2 )

+
kΔN10f

f
+ r(r − 1)c̃ + k(k − 1)c̃ − r2

2
(||H1||2 + ||H∗

1 ||2)

− k2

2
(||H2||2 + ||H∗

2 ||2)− 2σ∇,∇∗
. (37)

Without loss of generality, we assume that W1 and W2 are respectively spanned by {e1, . . . , er−1}
and {er+1, . . . , er+k−1}. Then, by (36) and (37), we derive:

P =
n

∑
a = m+1

{
r

∑
i,j = 1

r + 3
2

(h0a
ij )

2 +
r + 1

2

r−1

∑
i,j=1

(h0a
ij )

2 − 2( ∑
i = 1

h0a
ii )

2

}

+
n

∑
a = m+1

{
k

∑
l,s = 1

k + 3
2

(h0a
ls )

2 +
k + 1

2

k−1

∑
l,s=1

(h0a
ls )

2 − 2( ∑
l = 1

h0a
ll )

2

}

=
n

∑
a = m+1

{
2(r + 2) ∑

1≤i<j≤r−1
(h0a

ij )
2 + (r + 3)

r−1

∑
i=1

(h0a
ir )

2

+ r
r−1

∑
i=1

(h0a
ii )

2 − 4 ∑
1≤i<j≤r

(h0a
ii h0a

jj ) +
r − 1

2
(h0a

rr )
2}

+
n

∑
a = m+1

{2(k + 2) ∑
1≤l<s≤k−1

(h0a
ls )

2 + (k + 3)
k−1

∑
l=1

(h0a
lk )

2

+ k
k−1

∑
l=1

(h0a
ll )

2 − 4 ∑
1≤l<s≤k

(h0a
ll h0a

ss ) +
k − 1

2
(h0a

kk)
2

}

≥
n

∑
a = m+1

{
r−1

∑
i = 1

r(h0a
ii )

2 +
r − 1

2
(h0a

rr )
2 − 4 ∑

1≤i<j≤r
h0a

ii h0a
jj

}

+
n

∑
a = m+1

{
k−1

∑
l = 1

k(h0a
ll )

2 +
k − 1

2
(h0a

kk)
2 − 4 ∑

1≤l<s≤k
h0a

ll h0a
ss

}
.
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For any a ∈ {m + 1, . . . , n}, we define two quadratic forms φa : Rr → R and ϕa : Rk → R by:

φa(h0a
11, h0a

22, . . . , h0a
r−1,r−1, h0a

rr )

=
r−1

∑
i = 1

r(h0a
ii )

2 +
r − 1

2
(h0a

rr )
2 − 4 ∑

1≤i<j≤r
h0a

ii h0a
jj , (38)

and:

ϕa(h0a
11, h0a

22, . . . , h0a
k−1,k−1, h0a

kk)

=
k−1

∑
l = 1

k(h0a
ll )

2 +
k − 1

2
(h0a

kk)
2 − 4 ∑

1≤l<s≤k
h0a

ll h0a
ss . (39)

First, we consider the constrained extremum problem min φa subject to:

Q : h0a
11 + · · ·+ h0a

rr = ta, (ta is any constant).

From (38), we find that the critical points

h0c = (h0a
11, h0a

22, . . . , h0a
r−1,r−1, h0a

rr )

of Q are the solutions of the following system of linear homogeneous equations.

∂φa

∂h0a
ii

= 2(r + 2)(h0a
ii )− 4 ∑r

j = 1 h0a
jj = 0,

∂φa

∂h0a
rr

= (r − 1)h0a
rr − 4 ∑r−1

j = 1 h0a
jj = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (40)

for i ∈ {1, 2, . . . , r − 1} and a ∈ {m + 1, . . . , n}. Hence, every solution h0c has:

h0a
ii =

1
r + 1

ta, h0a
rr =

4
r + 3

ta,

for i ∈ {1, 2, . . . , r − 1} and a ∈ {m + 1, . . . , n}.
Now, we fix x ∈ Q. The bilinear form Θ : TxQ × TxQ → R has the following expression

(cf. Theorem 1):

Θ(E, F) = Hessφa(E, F) + 〈h′(E, F), grad(φa)(x)〉,

where h′ denotes the second fundamental form of Q in Rr and < ·, · > denotes the standard inner
product on Rr. The Hessian matrix of φa is given by:

Hessφa =

⎛⎜⎜⎜⎜⎜⎜⎝
2(r + 2) −4 . . . −4 −4

−4 2(r + 2) . . . −4 −4
...

...
. . .

...
...

−4 −4 . . . 2(r + 2) −4
−4 −4 . . . −4 (r − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Take a vector E ∈ TxQ, which satisfies a relation ∑r
i=1 Ei = 0. As the hyperplane is totally

geodesic, i.e., h′ = 0 in Rr, we get:

Θ(E, E) = Hessφa(E, E)

= 2(r + 2)
r−1

∑
i=1

E2
i + (r − 1)E2

r − 8
r

∑
i �=j=1

EiEj

= 2(r + 2)
r−1

∑
i=1

E2
i + (r − 1)E2

r − 4

{
(

r

∑
i = 1

Ei)
2 −

r

∑
i = 1

E2
i

}

= 2(r + 4)
r−1

∑
i=1

E2
i + (r + 3)E2

r

≥ 0.

However, the point h0c is the only optimal solution, i.e., the global minimum point of problem,
and reaches a minimum Q(h0c) = 0 by considering (39) and the constrained extremum problem
min ϕa subject to:

Q
′

: h0a
11 + · · ·+ h0a

kk = αa, (αa is any constant).

Thus, we have:

2σ∇,∇∗ ≤ r(r − 1)C0
1 + (r2 − 1)C0

1 (W1) +
r
2
(C1 + C∗

1 )

+ k(k − 1)C0
2 + (k2 − 1)C0

2 (W2) +
k
2
(C2 + C∗

2 )

+
kΔN10f

f
+ r(r − 1)c̃ + k(k − 1)c̃

− r2

2
(||H1||2 + ||H∗

1 ||2)−
k2

2
(||H2||2 + ||H∗

2 ||2).

Consequently, we get immediately the following theorem from the above relation:

Theorem 6. Let N = N1 ×f N2 be an m-dimensional statistical warped product submanifold immersed into
an n-dimensional statistical manifold of constant sectional curvature c̃. Then, the Casorati curvatures satisfy:

2σ∇,∇∗ ≤ r(r − 1)C0
1 + (r2 − 1)C0

1 (W1) + rC0
1

+ k(k − 1)C0
2 + (k2 − 1)C0

2 (W2) + kC0
2

+
kΔN10f

f
+ r(r − 1)c̃ + k(k − 1)c̃

− r2

2
(||H1||2 + ||H∗

1 ||2)−
k2

2
(||H2||2 + ||H∗

2 ||2),

where W1 and W2 are respectively the hyperplanes of TpN1 and TpN2, C0
1 = 1

2 (C1 + C∗
1 ), and C0

2 = 1
2 (C2 + C∗

2 ).

7. Examples

We provide examples of statistical warped product submanifolds as follows:

Example 1. By generalizing Example 2.7 of [10] to higher dimensions, we see that:(
R×ez Rn, g̃ = dz2 + e2z(dx2

1 + · · ·+ dx2
n),∇,∇∗

)
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is a statistical warped product manifold. Furthermore, the hyperbolic space:

Hn+1(−1) =

({
(x0, . . . , xn+1) ∈ Rn+1|x0 > 0

}
, g̃ =

dx2
0 + · · ·+ dx2

n+1

x2
0

, ∇̃, ∇̃∗
)

is the statistical manifold of constant sectional curvature −1. Thus, with respect to the Levi–Civita connection,
R×ez Rn−1 admits an isometric minimal immersion into Hn+1(−1).

Example 2. (R×z R
n, g̃ = dt2 + t2(dx2

1 + · · ·+ dx2
n),∇,∇∗) is a statistical warped product manifold, and

it is isometric to the Euclidean (n + 1)-space En+1. Let N be a minimal submanifold of the unit hypersphere
Sn(1) ⊂ En+1 center at the origin o ∈ En+1, and let C(N) be the cone over N with the vertex at o.

The metric of C(N) is the warped product metric gC(N) = dt2 + t2gN, where gN denotes the metric of N.
Any open submanifold M of C(N) is a warped product manifold, which admits an isometric minimal immersion
into the statistical manifold En+1 of constant sectional curvature zero.
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