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Preface to ”“Nonlinear Differential Equations and
Dynamical Systems”

Nonlinear differential equations, dynamical systems, and related topics are particularly trendy
topics currently, as they have had wide and significant applications in many fields of Physics,
Chemistry, Engineering, Biology, or even Economics, in general, and Mathematics in particular.

They can be approached using several different methods and techniques. As examples, we can
refer to variational and topological methods, fractional derivatives, fixed point theory, initial and
boundary value problems, qualitative theory, stability theory, existence and control of chaos, the
existence of attractors and periodic orbits, among others.

This Special Issue contains original results and recent developments in some of the above fields,
such as fractional differential and integral equations and applications, non-local optimal control,
inverse, and higher-order nonlinear boundary value problems, distributional solutions in the form of
a finite series of the Dirac delta function and its derivatives, asymptotic properties oscillatory theory
for neutral nonlinear differential equations, the existence of extremal solutions via monotone iterative
techniques, and predator—prey interaction via fractional-order models, among others.

These recent results, and the diversity of methods and themes, involving new trends in several
areas of mathematical research, allow the reader a glance at the related state-of-the-art, and may

provide interested researchers with ideas and techniques that lead to new research and new results.

Feliz Manuel Minhés, Joao Fialho
Editors
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Abstract: In this paper, we present the distributional solutions of the modified spherical Bessel
differential equations #2y” (t) + 2ty (t) — [t + v(v + 1)]y(t) = 0 and the linear differential equations
of the forms £2y” (t) + 3ty' (t) — (> +v> — 1)y(t) = 0, where v € NU {0} and t € R. We find that the
distributional solutions, in the form of a finite series of the Dirac delta function and its derivatives,
depend on the values of v. The results of several examples are also presented.

Keywords: Dirac delta function; distributional solution; Laplace transform; power series solution

1. Introduction

It is well known that the linear differential equation of the form
g
Y an(y™ () =0, an(t) #0, (1)
n=0

where a,(t) is an infinitely smooth coefficient for each n, and has no distributional solutions other
than the classical ones. However, if the leading coefficient a,,(t) has a zero, the classical solution of (1)
may cease to exist in a neighborhood of that zero. In that case, (1) may have a distributional solution.
It was not until 1982 that Wiener [1] proposed necessary and sufficient conditions for the existence
of an Nth-order distributional solution to the differential equation (1). The Nth-order distributional
solution that Wiener proposed is a finite sum of Dirac delta function and its derivatives:

N
y(t) = Z b;1(5<n)(t), bn 7& 0. (2)
n=0

It can be easily verified by (10) that 6(¢) is a zero order distributional solution of the equation
(1) + 2y (1) +ty(t) = 0;

the Bessel equation
By () +ty' (1) + (2 = Dy(t) =0;

the confluent hypergeometric equation

ty" () + 2=y (1) —y(t) =0;

Axioms 2020, 9, 116; d0i:10.3390/axioms9040116 1 www.mdpi.com/journal /axioms



Axioms 2020, 9,116

and the second order Cauchy-Euler equation
2y () + 3ty (t) + y(t) = 0.

The distributional solutions with higher order of Cauchy—Euler equations were studied by many
researchers; see [2-8] for more details.
The infinite order distributional solution of the form

y(t) = Y badt(t) ®)

to various differential equations in a normal form with singular coefficients was studied by many
researchers [9-13]. Furthermore, a brief introduction to these concepts is presented by Kanwal [14].

In 1984, Cooke and Wiener [15] presented the existence theorems for distributional and analytic
solutions of functional differential equations. In 1987, Littlejohn and Kanwal [16] studied the
distributional solutions of the hypergeometric differential equation, whose solutions are in the form
of (3). In 1990, Wiener and Cooke [17] presented the necessary and sufficient conditions for the
simultaneous existence of solutions to linear ordinary differential equations in the forms of rational
functions and (2).

As mentioned in abstract, we propose the distributional solutions of the modified spherical Bessel
differential equations

2y (1) 42ty (1) = [P+ v(v +1)]y(t) =0

and the linear differential equations of the forms
2y (1) + 3ty () — (P +v> = Dy(t) =0,

where v € NU {0} and t € R. The modified spherical Bessel differential equation is just the spherical
Bessel equation with a negative separation constant. The spherical Bessel equation occurs when
dealing with the Helmholtz equation in spherical coordinates of various problems in physics such as a
scattering problem [18].

We use the simple method, consisting of Laplace transforms of right-sided distributions and
power series solution, for searching the distributional solutions of these equations. We find that the
solutions are in the forms of finite linear combinations of the Dirac delta function and its derivatives
depending on the values of v.

2. Preliminaries
In this section, we introduce the basic knowledge and concepts, which are essential for this work.
Definition 1. Let D be the space consisting of all real-valued functions ¢(t) with continuous derivatives of

all orders and compact support. The support of ¢(t) is the closure of the set of all elements t € R such that
@(t) # 0. Then ¢(t) is called a test function.

Definition 2. A distribution T is a continuous linear functional on the space D. The space of all such
distributions is denoted by D'.

Forevery T € D' and ¢(t) € D, the value that T acts on ¢(t) is denoted by (T, ¢(t)). Note that
(T, @(t)) € R.

Example 1.

(i) The locally integrable function f(t) is a distribution generated by the locally integrable function f(t).
Then we define (f(t), ¢(t)) = [ f(t)@(t)dt, where Q) is the support of ¢(t) and ¢(t) € D.
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(ii)  The Dirac delta function is a distribution defined by (6(t), ¢(t)) = ¢(0) and the support of 5(t) is {0}.

A distribution T generated by a locally integrable function is called a regular distribution;
otherwise, it is called a singular distribution.

Definition 3. The kth-order derivative of a distribution T, denoted by T®, is defined by <T(k), (p(t)> =
(1) <T, (p(k)(t)>for all g(t) € D.

Example 2.
M (&), @) = — (6(),¢' (1)) = —¢'(0);
) (801, 9(t)) = (~1F(8(5),9W (1)) = (~1)*¢ (0).

Definition 4. Let «(t) be an infinitely differentiable function. We define the product of a(t) with any
distribution T in D" by (a(t)T, (t)) = (T, a(t)@(t)) forall ¢(t) € D.

Definition 5. Ify(t) is a singular distribution and satisfies the equation
n
Y an(0y" (1) = £(0), )
m=0

where ay, (t) is an infinitely differentiable function and f (t) is an arbitrary known distribution, in the sense of
distribution, and is called a distributional solution of (4).

Definition 6. Let M € R and f(t) be a locally integrable function satisfying the following conditions:

(i) f(t)=0forall t < M;
(i) There exists a real number c such that e~ f(t) is absolutely integrable over R.

The Laplace transform of f(t) is defined by

Fs) = L) = [ Feat ®
where s is a complex variable.

It is well known that if f(t) is continuous, then F(s) is an analytic function on the half-plane
R(s) > o, where 0y is an abscissa of absolute convergence for £ {f(t)}.

Recall that the Laplace transform G(s) of a locally integrable function g(t) satisfying the conditions
of definition 6, that is,

Gls) = £{g() = [ g()ea, ©

where R(s) > 0, can be written in the form G(s) = (g(t),e~*').

Definition 7. Let S be the space of test functions of rapid decay containing the complex-valued functions ¢(t)
having the following properties:

(i) @(t) is infinitely differentiable—i.e., p(t) € C*(R);
(it)  ¢(t), as well as its derivatives of all orders, vanish at infinity faster than the reciprocal of any polynomial

which is expressed by the inequality
#P® (1)] < Cp,

where Cpy is a constant depending on p, k, and ¢(t). Then ¢(t) is called a test function in the space S.
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Definition 8. A distribution of slow growth or tempered distribution T is a continuous linear functional over
the space S of test function of rapid decay and contains the complex-valued functions—i.e., there is assigned a
complex number (T, ¢(t)) with properties:

(i) A(T,c1p1(t) + capa(t)) = c1 (T, p1(t)) + 2 (T, pa(t)) for p1(t), ¢2(t) € S and constants cy, ca;
(i1)  limy—eo (T, P (t)) = O for every null sequence {¢m(t)} € S.

We shall let S denote the set of all distributions of slow growth.

Definition 9. Let f(t) be a distribution satisfying the following properties:

(i) f(t) is a right-sided distribution, that is, f(t) € D'.
(i)  There exists a real number c such that e~ f (t) is a tempered distribution.

The Laplace transform of a right-sided distribution f(t) satisfying (ii) is defined by

F(s) = L{F()} = (e f(1), X(B)e™ "), )

where X(t) is an infinitely differentiable function with support bounded on the left, which equals 1 over a
neighbourhood of the support of f(t).

For R(s) > ¢, the function X(t)e~~9)" is a testing function in the space S and e~ f(t) is in the
space S’. Equation (7) can be reduced to

F(s) = L{f(t)} = (f(t),e”™"). ®)

Now F(s) is a function of s defined over the right half-plane R(s) > c¢. Zemanian [19] proved
that F(s) is an analytic function in the region of convergence R(s) > ¢y, where 07 is the abscissa of
convergence and e~ f(t) € S’ for some real number ¢ > 03.

Example 3. Let §(t) be the Dirac delta function, H(t) be the Heaviside function, and f(t) be a

Laplace-transformable distribution in D'g. If k is a positive integer, then the following holds:

(i) L{FTH®)/(k=1)1} =1/s5, R(s) > 0;
(i) L {o(t )}:1 —oo<§R()<00,

(iii) E{ } —oo<§R()<00;

(i) L£{tf(1)} = ( (5), R(s) > o1
0 L {f<k>(t)} = skF(s), R(s) > 7.

The proof of following lemma 1 is given in [14].
Lemma 1. Let (t) be an infinitely differentiable function. Then

PO (1) = (<1 ©)0(8) + (-1 "D (0)8' (1)
(-2 2L ) )57 (1) -+ p(0)8) (1), ©)

A useful formula that follows from (9), for any monomial 9(t) = #", is that

0 ifm <mn;
my =14 '
t15m (1) = { (—1)" m! J(mfn)(t), if m > n.

(m—n)!

(10)
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3. Main Results

In this section, we will state our main results and give their proofs.
Theorem 1. Consider the differential equation of the form
2y (1) + 2ty (1) — [P +v(v+ D]y(t) =0, (1)
where v € NU {0} and t € R. The distributional solutions of (11) are given by
y(t) = Pu(D)é(t), (12)
where

1 k2 (2v — 2k)!

)=y L e o T TR

P,(D
is a Legendre polynomial of distributional derivative operator D = d/dt.

Proof. Applying the Laplace transform to both sides of (11) with £{y(¢)} = F(s), and using
Example 3(iv), (v), we obtain

(1 —s2)F"(s) — 2sF'(s) + v(v +1)F(s) = 0. (13)

Suppose that a solution of (13) is of the form F(s) = Y ;7 a,s". Differentiating term by term,
we obtain

[ee]
F'(s) = Y nays" !
n=1
and
F'(s) = Z n(n —1)a,s"2.
n=2
Substituting these terms into (13), we have

[2a; +v(v+1)ag) + [(3-2)az — 2—v(v+1)m]s

+ Y [(n+2)(n+ 1V)ayp — n(n —1)a, — 2na, +v(v+1)a,]s" =0.
n=2

Since s # 0, it follows that

20y +v(v+1)ag=0, (3-2)az—(2—-v(v+1)a; =0,
(n+2)(n+1)ay1o —n(n—1)a, —2na, +v(iv+1)a, =0, n>2,

which leads to a recurrence relation

(v—n)(v+n+1)

(n+1)(n+2) - (14)

Apy2 = —
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Thus, we obtain

v(iv+1)

R TR

ay = (_1)21/(1/ — 2)(1/4-:— 1) (v+ 3)[10
Ay = (71)711/(1/ —2)---(v—2n +2)((1;:—)'1)(1/ +3)---(v+2n— 1)a0.

Similarly,
a3 = —%al
a5 = (—1)2 (v—-1)(v- 3)551/ +2)(v+ 4)a1
Gone1 = (_1)n(V— (v —3)--- (V—Z(rzz;li-_‘l—)l(;/!+2)(v+4) . (V+2”)a1.

Letting ag = a1 = 1, we get the two solutions of (13) in the forms

2w =2) - (v=2n+2)(v+1)(v+3)---(v+2n—-1) ,,
(=1) (2n)! s*

gk

F(s)=1+

n=1

and

E(s) = s+ il(_l)n (v-1v=3)---(v— 2&:1)1(;/!+ 2)(vt4) - (v+2n) o

If v is even, letting v = 2m, m € NU {0}, we note that
viv—=2)---(v—2n+2)=2m(2m—2)---(2m —2n+2) = Ik m>0,n<m;

and

W)W +3)-- (v 2n—1) = @m+1)(2m+3) - 24 2n — 1) = 22t

Then, in this case, F,(s) only becomes the finite series of the form

o0 e Gneag®
F(s) = (2m)! 2(71)k(m7k)!(m+k)!(2k)!‘

If vis odd, letting v = 2m + 1,m € NU {0}, we note that

T 2n2m)(m 4 n)!

(15)

0, m=0;
2"m!
v—-1Dw=3)---(v—2n+1)=2m2m—2)---(2m —2n+2) = m—ny m>0,n<m
0, n>m>0,
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and
v+2)(v+4)---(v+2n) = 2m+3)2m+5)---2m+2n+1) =

Then, in this case, F,(s) only becomes the finite series of the form

(2m+2n+1)!m!

(m!)? & (2m 4 2k +1)12K+1

2n(2m+ 1) (m +n)l

Fy(s) =

Forv =0,1,2,..., we have F,(s), as follows:

(2m+1)!k§(* )k( K)!(m+ k) (2k+ 1)1

(16)

Fo(s) =1=Py(s),

Fi(s) =s = Pi(s),

B(s) =1-3s* = —2Py(s),

E(s) =5 (5/3)s> = —(2/3)Ps(s),

Ey(s) = 1—10s 4 (35/3)s* = (8/3)Py(s),

F5(s) = s — (14/3)s° + (21/5)s® = (8/15)Ps5(s),

Fe(s) = 21s% + 63s* — (231/5)s® = (16/5)P(,( ),
Fr(s) =5 —95° + (99/5)s° — (429/35)s” = —(16/35)

and so on, where P, (s) is the Legendre polynomial of s forn =0,1,2,.. ..

Ps(s),

Since (13) is linear, P, is also

its solution for all non-negative integer v. Taking the inverse Laplace transform to P,(s), and using

Example 3(ii),(iii), we obtain the solutions of (11),

- WZJ(_ L (2v—2k)
T k(v — K)1(v — 2k)!

= Py (D)é(t),
which are the distributional solutions of the form (12). [

Example 4. Letting v =1, (11) becomes

2y (1) + 2ty (1) — (£ 4 2)y(t) = 0.

From Theorem 1, (18) has a solution
y(B) =4d'(t).
Letting v = 4, (11) becomes
2y (1) + 2ty (1) — (£ +20)y(t) = 0.

From Theorem 1, (20) has a solution

y(t) = 2o0(1) — 20" + 2600,

d
D' %*5(t), (D= 7 distribution derivative)

(17)

(18)

(19)

(20)

@1

By applying (10), it is not difficult to verify that (19) and (21) satisfy (18) and (20), respectively.

Theorem 2. Consider the equation of the form

2y (1) 43ty (1) — (2 +v* = 1)y(t) =0,

(22)
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where v € NU {0} and t € R. The distributional solutions of (22) are given by

y(t) = Tu(D)s(t), (23)
where )
vl 2V — k1),
T(P) =3 k;)(_l)k k!((v—Zk)! Y,

is a Chebyshev polynomial of the first kind of distributional derivative operator D = d/dt.
Proof. Applying the Laplace transform £{y(t)} = F(s) to (22) and using Example 3(iv), (v), we obtain
(1—=s2)F"(s) — sF'(s) +v*F(s) = 0. (24)

Suppose that a solution of (24) is of the form F(s) = Y 5~ a,s". Differentiating F(s) term by term,
we obtain

[ee]
F(s) = Y nays"!
n=1

and

n(n —1)a,s"2.

gk

F//(S) —

n=2

Substituting these terms into (24), we get
2a; + v2ag + (6113 —a +v2a1> s+ Y {(n +2)(n+Dago—[n(n—1)+n— vz]an} s" =0.
n=2

Since s # 0, it follows that

2a; + vzao =0,
6as —ay + v2a1 =0,

and forn =2,3,...,
(n+2)(n+1)ay2 — (n? —v¥)a, = 0.

Hence,

ay = — -4y,

as = ai,

and forn =2,3,...,

n-—v
Any2 = ( an. (25)

n+2)(n+1)

Thus, we obtain
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and so on. Similarly,

12
az = 31 ay,
2 2\ (1 — 12
!15—(3 V5),( V)lh,

and so on. A pattern clearly emerges:

_ [ =22 Alon 4P v (2P ) ()
fon = (2n)! a0

and

[(2n—1)> —v?][(2n - 3)* —v?]--- (3% —v*) (1 —v?)
(2n+1)! -

Hence, we get two solutions of (24) in the forms

Ap41 =

E(s) = ag + i [(2n—2)2_Vz][(zn—4)2_vz]...(22_Vz)(_vz)aoszn
n=1 (271)!
and
0 112 — 2121 —3)2 — 12] -+ (32 — 12)(1 — 12
Fy(s) = als+y§1 [(2n = 1)* = v][(2 (221—1—]1;!} @ -v)(d-v )alSZnH.

If v is even, letting v = 2m, m € NU {0}, then a,, 12 = 0, so that a,» = 0 for n > m. Hence,

E(s) =1+ il [(2n —2)% — (2m)?][(2n — 4)2(;71()2'7”)2] 22— (2m)?] [~ (2m)?] o

equivalently to

n

F(s) =1+ ’”1 Iy 4(n _k(‘z“n’;)(”—k—m) 2

If vis odd, letting v = 2m + 1, m € NU {0}, then ay,,13 = 0, so that ap,+3 = 0 for n > m. Hence,

n=

riy = §5 11 17 = ot =3P = e AP o ) = o AP,

equivalently to

T An—k+m+1)(n—k—m
Fy(s) = s + Zlﬂkq ( (2n+1)!)( ) 2n1
n=
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Forv=0,1,2,..., we have F,(s), as follows:

=5 —4s% + (16/5)s° = (1/5)T5(s),
§) =1—18s% 4+ 48s* — 32s° = —T(s),

and so on, where T,(s) is the Chebyshev polynomial of the first kind of s for n = 0,1,2,....
Since (24) is linear, T, (s) is also its solution. Taking the inverse Laplace transform to T;(s), and using
Example 3(ii),(iii), we obtain the solutions of (22),

v B2 v k= 1)
yn(t) = 5 kgo (=1) WD *5(t), 26)

which are the distributional solutions of the forms (23). [

Example 5. Letting v =1, (22) becomes

£2y" (t) + 3ty () — y(t) = 0. (27)
From Theorem 2, (27) has a solution
y(t) =3'(t). (28)
Letting v = 4, (22) becomes
£y () +2ty/ (1) — (£ + 18)y(t) = 0. 29)
From Theorem 2, (29) has a solution
y(t) = 8614 (£) — 85" (t) 4 6(¢). (30)

By applying (10), it is not difficult to verify that (28) and (30) satisfy (27) and (29), respectively.

4. Conclusions

In this paper, we seek the distributional solutions of the modified spherical Bessel differential
Equation (11) and the linear differential equation of the form (22) by using the Laplace transforms
of right-sided distributions and the power series solutions. The obtained solutions in the forms of
the finite linear combinations of the Dirac delta function and its derivatives depend on the value of v,
to which their coefficients regard the coefficients of Legendre and Chebyshev polynomials (see [20]
for more details). However, for solutions of (11) and (22) in the usual sense, not mentioned here,
they can be seen in many standard and technical textbooks (see, for example, Ross [21]) but, even more,
may appear in models related to equilibrium of membrane structures, steady states of evolutive
equations or nonlinear science (see studies [22-25]).
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1. Introduction

In this paper, we study the solvability of boundary value problems (BVPs) for the differential
equation
X" = f(t,x,x’,x”),t €(0,1), 1)

with some of the boundary conditions

x(0) = A,x¥'(1) =B,x"(1) =C, @)
x(0) = A,x'(0) = B,x"(1) =C, 3)
x(0) = A,x(1) = B,x"(1) =C, (@)
x(0) = A,x'(0) = B,x'(1) = C, 5)
x(1) = A,x'(0) = B,x'(1) = C, (6)

where f : [0,1] x Dy x Dy x Dy = R, Dy, Dy, Dy CR,and A, B,C € R.

The solvability of BVPs for third-order differential equations has been investigated by many
authors. Here, we will cite papers devoted to two-point BVPs which are mostly with some of the above
boundary conditions; in each of these works A, B, C = 0. Such problems for equations of the form

"= f(t,x),t €(0,1),

have been studied by H. Li et al. [1], S. Li [2] (the problem may be singular att = 0 and/or t = 1),
Z.Liuetal. [3,4], X. Lin and Z. Zhao [5], S. Smirnov [6], Q. Yao and Y. Feng [7]. Moreover, the boundary
conditions in References [2,3] are (3), in Reference [4] they are (4), in References [1,5,7] they are (5), and
in Reference [6] are

x(0) = x(1) = 0,x'(0) = C.
Y. Feng [8] and Y. Feng and S. Liu [9] have considered the equation

"= f(t,x,x'),t€(0,1),

Axioms 2020, 9, 62; doi:10.3390/axioms9020062 13 www.mdpi.com/journal /axioms
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with (6) and (5), respectively. Y. Feng [10] and R. Ma and Y. Lu [11] have studied the equations
f(t,x,x',x"") =0and " + Mx" + f(t,x) =0,t € (0,1).

with (5). BVPs for the equation
= f(t,x,x,x"),te(0,1),

have been investigated by A. Granas et al. [12], B. Hopkins and N. Kosmatov [13], Y. Li and Y. Li [14];
the boundary conditions in [12] are (5), these in Reference [13] are (2) and (3), and in Reference [14]—(2).

Results guaranteeing positive or non-negative solutions can be found in References [2—4,7-11,13,14],
and results that guarantee negative or non-positive ones in References [7,9,10]. The existence of
monotone solutions has been studied in References [3,7,9].

As a rule, the main nonlinearity is defined and continuous on a set such that each dependent
variable changes in a left- and/or a right-unbounded set; in Reference [13] it is a Carathéodory
function on an unbounded set. Besides, the main nonlinearity is monotone with respect to some of
the variables in References [1,5], does not change its sign in References [2—4,14] and satisfies Nagumo
type growth conditions in Reference [14]. Maximum principles have been used in References [8,10],
Green’s functions in References [1,2,4,5], and upper and lower solutions in References [1,7-11].

Here, we use a different tool—barrier strips which allow the right side of the equation to be
defined and continuous on a bounded subset of its domain and to change its sign.

To prove our existence results we apply a basic existence theorem whose formulation requires the
introduction of the BVP

X +a(t)x” +b(H)x +c(t)x = f(t,x, 2, x"),t € (0,1), (7)
Vi(x) =r;,i=1,2,3(i = 1,3 for short), (8)

wherea,b,c € C([0,1],R), f: [0,1] x Dy X Dy x Dy = R,

2
Vl(x) = Z[ul]xm (O) + bI]X(])(l)},l = 1,3,
j=0

with constants 4;; and bij such that 2]2:0(’112]‘ + blzj) >0,i=1,3,and r; € R, i = 1,3. Next, consider the
family of BVPs for

"+ at)x” +b(H)x +c(t)x = g(t,x, ¥/, x",A),t € (0,1),A € 0,1] (7)a

with boundary conditions (8), where g is a scalar function defined [0,1] x Dy x D, x Dy x [0, 1], and
a,b,c are as above. Finally, BC denotes the set of functions satisfying boundary conditions (8), and
BCy denotes the set of functions satisfying the homogeneous boundary conditions V;(x) = 0,i = 1,3.
Besides, let C3[0,1] = C?[0,1] N BC and Cj, [0,1] = C*[0,1] N BC,.

The proofs of our existence results are based on the following theorem. Itis a variant of Reference [12]
(Chapter I, Theorem 5.1 and Chapter V, Theorem 1.2). Its proof can be found in Reference [15]; see also
the similar result in Reference [16] (Theorem 4).

Lemma 1. Suppose:

(1) Problem (7)o, (8) has a unique solution xy € c3 [0,1].
(ii)  Problems (7), (8) and (7)1, (8) are equivalent.

(iii)  The map Ly, : C%CO [0,1] — C[0, 1] is one-to-one: here,

Lyx = x"" +a(t)x” + b(t)x" +c(t)x.

14
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(iv)  Each solution x € C3[0,1] to family (7)), (8) satisfies the bounds

mi < x0 < M fort €[0,1],i = 0,3,

where the constants —oco < m;, M; < o0,i = 0,3, are independent of A and x.
(v)  There is a sufficiently small o > 0 such that

[my — o, Mo+ ] C Dy, [my — 0, My + 0] C Dy, [my — 0, My + 0] C Dy,
and g(t,x, p,q, ) is continuous for (t,x,p,q,A) € [0,1] x | x [0,1] where | = [my — o, My + 0] x [my —

o, My + 0| x [my — 0, My + 0l; mj, M;, i = 0,3, are as in (iv).
Then boundary value problem (7), (8) has at least one solution in C3[0,1].

For us, the equation from (7), has the form
= Af(tx, X, 2. (1)x

Preparing the application of Lemma 1, we impose conditions which ensure the a priori bounds
from (iv) for the eventual C3 [0,1] - solutions of the families of BVPs for (7),, A € [0, 1], with one of the
boundary conditions (k), k = 2,6.

So, we will say that for some of the BVPs (1), (k), k = 2,6, the conditions (Hy) and (H3) hold for a
K € R (it will be specified later for each problem) if:

(H;) There are constants F/, L!,i = 1,2, such that

F <F <K<Lj<Ly|[F Ly C Dy,

f(t,x,p,q) > 0for (t,x,p,q) € [0,1] x Dy x Dy x (L}, L)), )
f(t,x,p,q) <0for (t,x,p,q9) € [0,1] x Dy x D, X [F3, F]. (10)

(Hz) There are constants F;, L;,i = 1,2, such that
F, <F <K< Ly <Ly [F L) C Dy,

f(t,x,p,q) <O0for (t,x,p,q) €[0,1] x Dy x Dp x [Ly, La],
f(t,x,p,q) > 0for (t,x,p,q) € [0,1] X Dy x Dy x [F, Fy].

Besides, we will say that for some of the BVPs (1), (k), k = 2,6, the condition (H3) holds for
constants m; < M;,i = 0,2, (they also will be specified later for each problem) if:

(H3) [TI’ZO — o0, My + U'] C Dy, [m1 — 0o, M +0'] - Dp/ [mz —0,Mp + 0'] - Dq and f(t,x,P,q) is
continuous on the set [0,1] x J, where ] is as in (v) of Lemma 1, and ¢ > 0 is sufficiently small.

In fact, the present paper supplements P. Kelevedjiev and T. Todorov [15] where only conditions
(Hz) and (H3) have been used for studying the solvability of various BVPs for (1) with other boundary
conditions. Here, (Hy) is also needed. Now, only (Hy) guarantees the a priori bounds for x”(t), x'(t)
and x(t), in this order, for each eventual solution x € C3[0,1] to the families (1), (k),k = 2,4, and (H;)
and (Hj) together guarantee these bounds for the families (1),, (k), k = 5, 6. As in Reference [15], (H3)
gives the bounds for x”(t).

The auxiliary results which guarantee a priori bounds are given in Section 2, and the existence
theorems are in Section 3. The ability to use (Hy) and (Hy) for studying the existence of solutions with
important properties is shown in Appendix A. Examples are given in Section 4.
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2. Auxiliary Results

This part ensures a priori bounds for the eventual C3[0, 1]-solutions of each family (1), (k), k =
2,6, that is, it ensures the constants m;, M;,i = 0,2, from (iv) of Lemma 1 and (H3).

Lemma 2. Let x € C3[a,b] be a solution to (1),. Suppose (Hy) holds with [0,1] replaced by [a,b] and
K = x"(b). Then
F <x"(t) < Ljon|a,b].
Proof. By contradiction, assume that x”/(t) > L) for some ¢ € [a,b). This means that the set
Sy={telab]: L] <x"(t) <LL}
is not empty because x” () is continuous on [, b] and x”(b) < L|. Besides, there is a y € S such that
() < 0.
As x(t) is a C?[a, b]—solution to (1),,
X(y) = Af (v, x(7), ¥ (7), %" (7))
But, (7, x(7), x'(7),x" (7)) € S+ x Dy x Dp x (L}, L4] and (9) imply
() 20,

a contradiction. Consequently,
x"(t) < Ljfort € [a,b].

Along similar lines, assuming on the contrary that the set
S_={teab]:FK<x"(t) < F}
is not empty and using (10), we achieve a contradiction which implies that
F <x"(t)fort € [a,b].
O

The proof of the next assertion is virtually the same as that of Lemma 2 and is omitted; it can be
found in [15].

Lemma 3. Let x € C3[a,b] be a solution to (1),. Suppose (Hp) holds with [0,1] replaced by [a,b] and
K =x"(a). Then
F <x"(t) < Lyon|a,b].

Let us recall, conditions of type (Hy) and (Hy) are called barrier strips, see P. Kelevedjiev [17].
As can we see from Lemmas 2 and 3 they control the behavior of x” (¢) on [, b], depending on the sign of
f(t,x,x',x"") the curve of x”'(t) on [a, b] crosses the strips [a,b] x [L}, L}], [a,b] x [L1, L], [a, b] x [F}, F{]
and [a,b] x [F,, Fi] not more than once. This property ensures the a priori bounds for x” ().

Lemma 4. Let (Hy) hold for K = C. Then every solution x € C3[0,1] to (1), (2) or (1),, (3) satisfies
the bounds
[x(t)] < |A] + |B| + max{|F{|,|L1|},t € [0,1],

|« (5)] < [B] + max{|F{],[L1]}, ¢ € [0,1],
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F <x'(t) <L, teo1] 11)

Proof. Let first x(t) be a solution to (1),, (2). Using Lemma 2 we conclude that (11) is true. Then,
according to the mean value theorem, for each t € [0,1) thereisa ¢ € (t,1) such that

K1) =¥ () =x"()(1 1),

which together with (11) gives the bound for |x'(#)|. Again from the mean value theorem for each
t € (0,1] there is an 57 € (0, t) with the property

x(t) = x(0) = ¥'(n)t,
which yields the bound for |x(t)|. The assertion follows similarly for (1), (3). O
Lemma 5. Let (Hy) hold for K = C. Then every solution x € C3[0,1] to (1),, (4) satisfies the bounds
[x(t)] < |A| +[B — Al + max{|F|, |L1]}, t € [0,1],
[x'()] < |B — Al +max{|F{], L]}, t € [0,1],
F <x'(t) <L, teo1].

Proof. By Lemma 2, F| < x”(t) < L} on [0, 1]. Clearly, there is a y € (0,1) for which x'(y) = B — A.
Further, for each t € [0, ) thereisa ¢ € (¢, u) such that

¥ () =2 (5) = x"(§) (p — 1),
from where, using the obtained bounds for x”(t), we get
¥ ()] < [B — Al +max{|F{|,|L1}, t € [0, ].

We can proceed analogously to see that the same bound is valid for ¢ € [y, 1]. Finally, for each
t € (0,1] thereis an 57 € (0, ) such that

x(t) = x(0) = x"(n)t,
which together with the obtained bound for|x'(#)| yields the bound for |x(¢)|. O

Lemma 6. Let (Hy) and (Hp) hold for K = C — B. Then every solution x € C3[0,1] to (1);, (5) or (1),, (6)
satisfies the bounds
x(t)] < [A] + [B| + max{|Fi|, |La|, |Fi|, |L1[}, t € [0,1],
| ()] < B + max{|F|, |L1|, [F1], [L1]}, t € [0,1],

min{Fy, F{} < x”(t) < max{Ly,L}},t €[0,1].

Proof. Let x(t) be a solution to (1),, (5); the proof is similar for (1),, (6). We know thereisav € (0,1)
for which x”(v) = C — B. Then, applying Lemmas 2 and 3 on the intervals [0, v] and [v, 1], respectively,
we get

F <x"(t)<Ljion[0,v]and F; < x"(t) < Ly on [v,1]

and so the bounds for x”(t) follow. Further, as in the proof of Lemma 4 we establish consecutively the
bounds for [x/(t)] and |x(¢)]. O
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3. Existence Results

Theorem 1. Let (Hq) hold for K = C and (H3) hold for
Mo = | Al + [B| + max{|F{ |, |'Ls [}, mo = — Mo,

M; = |B| + max{|F{|,|L}|},m = =My, my = F|, My = L}.
Then each of BVPs (1), (2) and (1), (3) has at least one solution in C3[0,1].

Proof. We will establish that the assertion is true for problem (1), (2) after checking that the hypotheses
of Lemma 1 are fulfilled; it follows similarly and for (1), (3). We easily check that (i) holds for (1), (2).
Clearly, BVP (1), (2) is equivalent to BVP (1);, (2) and so (ii) is satisfied. Since now L, = x', (iii) also
holds. Next, according to Lemma 4, for each solution x € c3 [0,1] to (1), (2) we have
m; < xO(t) < Mj,t€[0,1],i =0,1,2.
Now use that f is continuous on [0, 1] X ] to conclude that there are constants n3 and M3 such that
mz < Af(t,x,p,q) < Mzfor A €[0,1] and (t,x,p,q) € [0,1] x ],

which together with (x(t), x'(t),x”(t)) € J for t € [0,1] and Equation (1), implies

my < x"'(t) < Ms,t € [0,1].

These observations imply that (iv) holds, too. Finally, the continuity of f on the set | gives (v) and
so the assertion is true by Lemma 1. [J

Theorem 2. Let (Hy) hold for K = C and (H3) hold for
Mo = |A[ + [B — Al + max{|F], [L1|}, mo = —Mo,

My = |B— A| +max{|F{|,|L{|},m1 = =My, my = F|, M = L].
Then BVP (1), (4) has at least one solution in C3[0,1].

Proof. It follows the lines of the proof of Theorem 1. Now the bounds
m; < xD(t) < Myt €[0,1],i =0,1,2,
for each solution x € C3[0,1] to a (1), (4) follow from Lemma 5. []
Theorem 3. Let (Hy) and (Hy) hold for K = C — B and (H3) hold for
Mo = | Al +|B| + max{|Er], [Lal, [F{], IL§ 1}, mo = — My,

My = |B| +max{|R], |Li1|, [F{|, L]}, m1 = —M;,
my = min{Fy, F{}, My = max{Ly, L} }.
Then each of BVPs (1), (5) and (1), (6) has at least one solution in C3[0,1].

Proof. Arguments similar to those in the proof of Theorem 1 yield the assertion. Now the bounds

m; < xO(t) < M, t€[0,1],i =0,1,2,
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for each solution x € C3[0,1] to (1), (5) and (1),, (6) follow from Lemma 6. []

4. Examples

Through several examples we will illustrate the application of the obtained results.
Example 1. Consider the BVPs for the equation
x"(t) = exp(x” —3) +5x" (¥ +1) — tsinx, t € (0,1),
with boundary conditions (2) or (3).

For F} = —|C| -2, Ff = —|C| — 1, L] = max{|C|,3} +1, L} = max{|C|,3} +2and ¢ = 0.1,
for example, each of these problems has a solution in C3[0, 1] by Theorem 1.

Example 2. Consider the BVP
*"(8) = g(t,x, ) (1g((x" +50)(60 — x)) = 3), £ € (0,1),

x(0) = 5,%'(0) = 10,x'(1) = 40,

where ¢ : [0,1] x R? — R is continuous and does not change its sign.

If p(t,x,p) > 0on [0,1] x R2, the assumptions of Theorem 3 are satisfied for F, = —36, F; =
—35,F) = —46,F = —45,L) = 40,L), = 41,L; = 55,L, = 56 and ¢ = 0.01, for example, and
if (t,x,p) < 0on [0,1] x R?, they are satisfied for F; = —36,F] = —35,F, = —46,F] = —45,
L1 =40,L, =41, Lﬁ =55, L’2 = 56 and o = 0.01, for example; it is clear, K = 30. Thus, the considered
problem has at least one solution in C3[0, 1]. Let us note, here D, = (—50, 60).

Example 3. Consider the BVP

x4+ 8)(x" +3)v625 — x'2
V900 — x24/100 — x'2

x(0) =9,x(1) =1,x"(1) = —4.

oy = 1 te(0,1),

For F} = —6,F{ = —5,1] = —3,L, = —2and ¢ = 0.1, for example, this problem has a positive,
decreasing, concave solution in s [0,1] by Theorem AT; notice, here Dy, Dy and D, are bounded.
Author Contributions: All authors contributed equally. All authors have read and agreed to the published
version of the manuscript.
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Appendix A

In this part we show how the barrier strips can be used for studying the existence of positive
or non-negative, monotone, convex or concave 3 [0,1] - solutions. Here, we demonstrate this on
problem (1), (4) but it can be done for the rest of the BVPs considered in this paper. Similar results for
various other two-point boundary conditions can be found in R. Agarwal and P. Kelevedjiev [16] and
P. Kelevedjiev and T. Todorov [15].
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Lemma Al. Let A, B > 0,C < 0. Suppose (Hy) holds for K = C with L < 0. Then each solution x € c3 [0,1]
to (1)), (4) satisfies the bounds
min{A,B} < x(t) <A+ |B— A|+|F], t € [0,1],
B-—A+F <x(t)<B-—A-F, tel01].

Proof. From Lemma 2 we know that F| < x”(t) < L] for t € [0,1]. Besides, for some i € (0,1) we
have x' (i) = B — A. Then,

" M M
/ Fl/ds < / ¥ (s)ds < / Lids,t €0, pu),
t t t

gives
B-A<X(t)y<B—A—F,te0,u],
and , , .
/ Flds < / x(s)ds < / Lids, t € (u,1],
az s 2
implies

B—A+F <x'(t)y <B-Ateull.

As a result,
B—A+F <x(t)<B-A-F,te[01].

Using Lemma 5, conclude
|x(t)] < A+ |B— A|+|F| fort € [0,1].

From x”(t) < L} < 0fort € [0,1] it follows that x(t) is concave on [0,1] and so, in view of
A,B >0, x(t) > min{A, B} on [0,1], which completes the proof. [

Theorem Al. Let A > B > 0and C < 0(A > B > 0and C < 0). Suppose (Hy) holds for K = C with
B—A<F (B—A<F)andL| <0,and (Hg) holds for

mo:B,M0:2AfB+|F{|,

my=B—A+F,M =B—A—F,m=F,M,=L].

Then BVP (1), (4) has at least one non-negative, non-increasing (positive, decreasing), concave solution in
C3[0,1].

Proof. By Lemma 5, for every solution x € C3[0,1] to (1),, (4) we have F] < x”(t) < L} on [0,1], and
Lemma A1 yields
B—A+F <x'(t)y<B-A-F, te[01]

min{A,B} < x(t) < A+ |B—A|+|F], t€][0,1].

Because of A > B, the last inequality gets the form
B <x(t) <2A—B+|F|, t€0,1].
So, x(t) satusfies the bounds

mo < xB(t) < My, t € [0,1],i =0,1,2.
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Essentially the same reasoning as in the proof of Theorem 1 establishes that (1), (4) has a solution

in C3[0,1]. Since my = B > 0(my > 0), My = B— A — F] < 0(M; < 0) and M, = L} < 0, this solution
has the desired properties. [
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Abstract: The paper is devoted to solutions of the third order pseudo-elliptic type equations.
An energy estimates for solutions of the equations considering transformation’s character of the body
form were established by using of an analog of the Saint-Venant principle. In consequence of this

estimate, the uniqueness theorems were obtained for solutions of the first boundary value problem
for third order equations in unlimited domains. The energy estimates are illustrated on two examples.
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1. Introduction

In the 19th century, AJ.C. Barré de Saint-Venant studied the planar theory of elasticity.
His principle is expressed as a prior estimate for a solution of a biharmonic equation satisfying
homogeneous boundary conditions of the first boundary value problem in the part of the domain
boundary (c.f., [1,2]). Many recent recent results are inspired by Saint-Venant principle (c.f., [3-5] and
many others).

The energetic estimates were received first in [6,7]. These estimates do not take into account
character of transformation of the body form at moving off from those part of the bound where exterior
forces are applied. In the paper [8], a proof of the Saint-Venant principle in the planar theory of elasticity
was obtained by different way. The energetic estimate was gained in the connection considered character
of transformation of the body form. The uniqueness theorem for the first boundary value problem of
the planar theory of elasticity in unlimited domains and also Pharagmen-Lindelof type theorems were
obtained as a corollary of the energetic estimate. The proofs of the Pharagmen-Lindel6f type theorems
were done for equations of the theory of elasticity in [9] and for elliptic equations of higher order in the
papers [2,6,7,10-14]. The Saint-Venant principle for a cylindrical body was studied in [15].

Boundary value problems have applications in fluid dynamics, astrophysics, hydrodynamic,
hydromagnetic stability, astronomy, beam and long wave theory, induction motors, engineering,
and applied physics. Boundary value problems of higher order is studied in papers [16,17].
An overview of some results on the class of functions with subharmonic behaviour and their invariance
properties under conformal and quasiconformal mappings is presented in [18].

An analog of the Saint-Venant principle, uniqueness theorems in unlimited domains,
and Pharagmen-Lindelof type theorems in the theory of elasticity were derived for the system
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of equations in the case of space with boundary conditions of the first boundary value problem
(c.f., [19,20]). Similar results were obtained for the mixed problems in [21].
We shall note else work [12,22], which by means of principle Saint-Venant’s is studied asymptotic
characteristic of the solutions of the third order equations of the composite type and dynamic systems.
Boundary value problems have applications in fluid dynamics, astrophysics, hydrodynamic,
hydromagnetic stability, astronomy, beam and long wave theory, induction motors, engineering,
and applied physics.

2. Notations and Formulation of the Problem
Consider in the unlimited domain Q the equation

Lolu + Lyu + Mu = f(x,y,t) 1)

where _ _
lu=u + ak(x)uxk +ao(¥)u,  Liu = b7 (X)uyy, + b (X)uy,

Lou = up — aif(x)uxlxj + ai(x)uxi +ap(x)u,
Mu = cP9(x)uy,y, + cP (x)uy, + co(x)u.

We suppose here and later on that the summation is carried out by repeating indexes,
all coefficients in (1) and their derivatives are bounded and measurable in any finite subdomain
of the domain Q. Furthermore, we suppose that boundary of Q is smooth or piecewise-smooth.
We assume that the operators L,, M are uniformly elliptic, i.e.,

al =al', A|gf* <algig; < M|Ef, forall (x,y,t) €QUAQ, forall &eR™MH

=, polg)* <agiE; < mlE?, forall (x,y,t) € QUAQ, forall ¢eR™MTL (2)
Let G =D x Qand v(x) = (Vx,,..., Vx, Vyy,- - -, Vy,,, Vt) is a vector of the inner normal of Q in the
point (x,y,t).
We break up the bound of Q. Denote
o0 = {(x,y,1) €3G x (0,T) : a*v. = 0},

o1 = {(x,y,1) €3G x (0,T) : a* > 0},
oy = {(x,y,1) €3G x (0,T) : a*v < 0},

Consider in Q the boundary value problem
Lolu+ Lyu+ Mu = f(x,y,t),

u\aQ =0, akuxk\gz =0. 3)

Define the operator d:
du = (b + akaigk — woa'l + aij)u,{‘.x’. + (b + apa’ — aia];k +alag — ai)uxi + (ag, — apag)u =
difuxixj + diux, + du.
Assume that the condition
dl=dl, lg)* < dgE < g, forall (x,y,t) € QUAQ, forall eR™™ (4

holds.
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Let
Qr=0n{(xy,t):0<yy <7}, 9Gr=09GN{y:0<y <7},

0o = {(x.y.t) € 3Gy x (0,T) : kv = 0},
o1 = {(x,y,1) €3G x (0,T) : aFvy > 0},
020 = {(x,y,1) €3G, x (0,T) : avy < 0}.

For some h > 0, define

oo = {(x,Y,t) € oo p((x,,1),9007) > h}, 0y =02\ Oopyre

Let E(Qr) be a set of functions v € C? (Q,) such that v = 0 in 3G x (0, T) and afvy, = 0 on
00, Uoy,c U 0'5’/1. for some /i > 0.
We denote as H(Q-) the Hilbert space obtained by closing E(Q-) with respect to the norm

1
2
H””H(Qr) = {/ (dgjux,.ux, + 1y, Uy, + u% + uz) dxdydt — / akvkaijuxiuxlds} ,
Qr 02,
where 1 1 1
dllj = fiafal{] — Eal,] +adat 4 dV — mu’j,
dl =di, BolgP < dlg; < prleP, forall (x,yt) € QUAQ, forall &eRM™HL

Now consider bilinear form

3 y ; )
a(u,v) = / {aka’]uxivxjxk + a’]uxivx].t + (ocku?{]. - a’ak> Uy, Ux;+

Qr
dijuxiuxj + (di — dg/.) uvy, + (aﬁ{,. +a+ Dti> Uy, U + c’”quypvy[7 + (cp — cﬁj) uvy, +
uvr + (o + ag) uve + (cﬁp —co— C;qu +d+ d;i + dijlx].) uv dx dy dt.
Definition 1. If u(x,y,t) € H(Qx) for any T < +o0 and
a(u,v) = /fvdxdydt ®)
Qr

for an arbitrary function v € E(Q¢), v|s, = 0 where St = QN {(x,y,t) : y1 = T}, then the function
u(x,y, t) is said to be a generalized solution of the problem (1),(3) in the domain Q.

3. Energy Inequalities

Theorem 1. (Analog of the Saint-Venant principle)
ij i . = 14 1 i 1.19 1.p
Let =1 < ay +a +a < 0,60 = dy— jdxixj + 5d, — 2%y, T 2y, —C < 0y <
0, forall (x,y,t)€ QUOIQ.
If u(x,y, t)is generalized solution of the problem (1), (3) and f(x,y,t) = 0 at y; < T, then for any 7y
such that 0 < 7y < 1y, takes place

/E(u)dxdydtgdfl(‘rl,‘rz) /E(u)dxdydt (6)

51 Qrz

where E(u) = difu,(,uxj + cPluy, uy, + uf — Gu?.
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Here ®(1, 12) is a solution of the problem

P =—u(t)®, T <T<D

@)

@(Tz, Tz) =1,

w(T) is an arbitrary continuous function such that
-1

0<pu(t) < irl\llf /E(v)dxdy/ dt /P(v)dxdy’ dt , (8)

St St

]// = (y21y3/~ . ~/]/m)/
1 1

P(v) = —c”lvvyp + 5 (cl - cyZ) v?, 9)

N is the set of continuously differentiable functions in the neighborhood of St which are equal to zero in
SeN(9Ge x (0,T)).

Proof. Assumein (5) v = uy,(¥(y1) —1) where ¥(y1) = ©(11, ) if 0 < y1 < 1y, ¥(y1) = P(y1, @) if
7 <y1<m,and ¥(y1) =1if o < y.

um € E(Qr),  um — ullgg,) — 0, u€HQ).

Then
a(u — tty 4+, (¥ —1)) =0 in Qx,.
Therefore

a(ty, um (Y —1)) = 6y in Qn (10)

where 6y, = —a(u — iy, uy (¥ —1)).
It is obvious that ,, — 0 at m — +-o0. Integrating by parts (10), we have

/E(um)(‘f’fl)dxdydtg / P(ity ) ¥ dx dy dt + 61n.

Tz QTZ
Hence
/ E () (¥ — 1)dx dydt < / P(ity) ¥ ddx dy dt + 61, 1)
Ox, 05,\Qx

The estimation (6) follows from (8) and (11) at m — +oco. [

Now we will estimate u(y;) in case when S; can be included to the (n + m)-dimensional
parallelepiped which smallest edge is equal to A(T). Suppose that

1 1
n’éa:x { (ECl - Cyg) ,0} =7(7), n’éilxcpl = B(7).

Applying the Friedreich and Cauchy-Bunyakovsky inequalities, we have from (9)

< /cplvvypdxdy’dt +

T

/. % (cl — C;Z) vZdxdy' dt| <

T

/‘P(v)dxdy’dt
St
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1

2
+ (1) / v2dxdy’ dt <
St

B(7) L/ v2dx dy dt] L/ o2 dxdy dt

T T

(B0 1OLO) [y
Se

Y0 20

Therefore we can set
2 2 !
u(r) = 7o (RB(OAD) + A2 (1) (7))
If <c1 - ZC;'D < 0in S¢, then (1) = 0. Consequently
Y0
T)= 7 12
KT = s (12)

Example 1.

=

1. Letasy; > 1 > 0, the domain Q lies inside the rotation body |y'| < —(y1 + 1), ie, A(n) <

M(y1+1), M > 0. We have from (15)

2

Suppose that c¢(x1) = ¢ = const > 0.

In this case, from the inequality (6) we have

mte
/E(u)dxdydt <o N1, ) / E(u)dxdydt < <:111> /E(u)dxdydt.
2

Q T Q'rz QTZ

2. Consider an example of Q for which

k=117t
Ayr) < me [(yl +1) } L,k = const > 0.

It is clear that if k > 1, the domain Q is narrowing at x; — +oo. Ifk = 1, then A(x1) < 7tc and this case
includes domains lying in the band with the width rrc. If 0 < k < 1, then Q can be extended respectively
at x1 — +-o0. For this kind of domains, we can assume
iy <+
Then the estimate (6) is valid for considered domains if
@71 (T],Tz) = 2exp |:-(T2 + 1)k + (Tl + 1)k] .

As a corollary of the Saint-Venant principle, we have the uniqueness theorem for the problem (1),
(3) in unlimited domain Q for classes of functions increasing in infinity depending from A(7).
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Theorem 2. Let f(x,y,t) = 0in Q and conditions of theorem 1 hold. If u(x,y,t) is a generalized solution of
the problem (1), (3) in Q and for a sequence T, — 400 at m — +oco and some 1, = const > 0,

/ E(u)dxdydt < e(Ty)®(r«, Tn) (13)
QTm

where €(Ty) — 0at Ty — oo, then u = 0in Qy,.

Proof. We have from (6) considering (13)
/ E(u)dxdydt < &~ (r., T) / E(u)dxdydt < e(t,) — 0
QY* QTZ

at T; — +oo. Henceu = 0in Q) .
Further for any fixed r; > r,, we have

ij;t(s)ds }nﬂ(s)ds jly(s)ds
DO(re, T) = ' =" o = c®(ry, Tm)

Therefore

/ E(u)dxdydt < &1 (ry, ) / E(u)dxdydt < &7 (ry, T)e(tn) @(re, Tn) =
Qe Qi

cLe(ty) = 0 as T, — +oo.

Hence, u = 0in Qy,. Since r{ was chosen arbitrary, u = 0in Q. [

4. Conclusions

In the present paper, the analogy of the Saint-Venant principle is established for the generalized
solution of the third order pseudoelliptical type equation. Furthermore, uniqueness theorems are
obtained for solutions of the first boundary value problem in classes of functions increasing in infinity
depending on the geometric characteristics of the domain Q = D x Q) x (0,T), were D C R} = {y:
y1 > 0}, O is bounded domain. Boundary value problems for the third order pseudoelliptical type
equations in bounded domains were considered in [13].

The main goal of our research on these problems consists of the following parts:

(1) Establish energy estimates (analogous to the Saint-Venant’s principle) that allow us to determine
the widest class of uniqueness of solutions to the problem depending on the geometric
characteristics of the domain.

(2) Construction of the solution of the problem under study on an unbounded domain in classes of
functions growing at infinity.

(3) Establish estimates for solutions of the problem and its derivatives at infinitely remote
boundary points.

The first part of our research on these problems is given in this paper. The remaining two parts
will be studied in the future, which will be performed on the basis of this paper. Therefore, the results
of this article are necessary and relevant for further qualitative research to solve third-order equations
in the vicinity of irregular boundary points.

Author Contributions: Conceptualization, methodology, validation, formal analysis, investigation A.R.K.;
validation, formal analysis, D.S. All authors have read and agreed to the published version of the manuscript.
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Abstract: Some new sufficient conditions are established for the oscillation of fourth order
neutral differential equations with continuously distributed delay of the form (r () (N2’ (£))*)' +

fabq (t,8)xP (5 (t,0))dd = 0, where t > tg and Ny (t) := x(t) + p(t)x (¢ (t)). An example is
provided to show the importance of these results.

Keywords: fourth-order differential equations; neutral delay; oscillation

1. Introduction

The theory of differential equations is an adequate mathematical apparatus for the simulation of
processes and phenomena observed in biotechnology, neural networks, physics etc, see [1]. One area
of active research in recent times is to study the sufficient criterion for oscillation of delay differential
equations, see [1-28].

In this work, we establish the asymptotic behavior of fourth-order neutral differential equation of
the form

/ b
(ro e @)) + [ato)xf @ ods=o, M
where t > tg and Ny (t) := x (t) + p (t) x (¢ (t)). In this paper, we assume that:

Al: x and B are a quotient of odd positive integers and > «;

A2: 7,p € Clty,0),7(t) > 0,7 (t) > 0and [T r /% (s)ds = oo;

A3: g € C([to,00) x (a,b),R),g(t,8) > 0,0 < p(t) < po < o and g (t) is not identically zero for
large t;

Ad: ¢ € Cl[to,oo),é € p([to,0) X (a,b),R), ¢’ (t) >0, ¢ (t) <t im0 ¢ () = limy00 6 (£, 9) =
o0 and 4 (t, ¢) has nondecreasing.

Definition 1. The function x € C3[t,, ), t, > to, is called a solution of (1), if r () (N} (1))" €
Cl[ty, 00), and x (t) satisfies (1) on [t,, o0).

Definition 2. A solution of (1) is called oscillatory if it has arbitrarily large zeros on [ty, o), and otherwise is
called to be nonoscillatory.

Axioms 2020, 9, 39; doi:10.3390/axioms9020039 31 www.mdpi.com/journal /axioms
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Definition 3. The Equation (1) is called oscillatory if every its solutions are oscillatory.

In the following, we discuss some important papers:
Chatzarakis et al. [9] proved the equation (1) where & = B, is oscillatory, if

* Xy / a+1
7 (o0 2 () Yo

for some € (0,1) and

[ (o[ e )5

where @ (t) :=ko (£) Q () (1 —p (6 (t, a)))* (5 (t, a) \t)3"‘and 0,6 € C' ([vg,0),(0,00)).
Moaaz et al. in [19] extended the Riccati transformation to obtain new oscillatory criteria for (1) as

condition
I {9 ©1Q6) -~ 3y (%,((5))>2] do =

where A € (0,1) and a function 6 € C! ([vg, ), (0,0)).
Authors in [24] studied oscillatory behavior of equation

N (1) +q(6)x (6 (1) =0, @
where 7 is even, they proved it oscillatory by using the Riccati transformation if either

. t (n—1)!
lim tli}\fo " Q(s)ds > P 3)

or

where Q (1) := ¢" 1 (1) (1= p (¢ (1)) q (1)
Xing et al. [22] proved that the even-order differential equation

(r) (M2 0)") g0 0 (1) =0,

is oscillatory, if
!
(671() 2 00>0, ¢/ (1) 290> 0, 971 (5(1)) <t

and .
1 Po
't 7 w 5t
lim inf () <s"-1) ds > L‘”"”"L )
t=00 Jo1(6(0) 7 (5) e((n=1))
where 7 (t) :=min {q (671 (t)),q (67! (¢ (t))) } and n is even.
To prove this, we apply the previous results to the equation
(x (6) + px (p0) ™ +bx (31) =0, £ > 1, )

wheren =4, p=7/8, ¢ =1/e,0 = 1/e2and b = qo/v4,wefind:
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1. By applying condition (3) in (5), we find
qo > 3561.9.
2. By applying condition (4) in (5), we get

g0 > 3008.5.

Hence, [22] improved the results in [24].

Thus, the motivation in studying this paper is complement results in [9] and improve
results [22,24].

By using the Riccati transformations, we establish a new oscillation criterion for a class of
fourth-order neutral differential equations (1). An example is provided to illustrate the main results.

2. Some Auxiliary Lemmas

We shall employ the following lemmas

Lemma 1 ([3]). Let x € C" ([tg, 0), (0,00)) . Assumte that x(") (t) is of fixed sign and not identically zero on
[to, 00) and there exists a t > to such that x"*=1) (£) x) (£) < 0 for all t > t1. If lim;_e0 X (£) # O, then for
every p € (0,1) there exists t,, > t1 such that

x(t) > ﬁt”_l ‘x(”_l) (t)’ fort > t,.

Lemma 2 ([16]). Let the function x satisfies x(® (#)>0,i=0,1,...,n,and x(+1) (t) <0, then

x (t) N X' (t)

o/l = 1) (n— 1)

Lemma 3 ([4]). Assume that x,v > 0and « > 1 is a positive real number. Then
(x JrZJ)'x < 20(71 (xtX +va)

and
(x+0)P <xP 40, forp<1.

Lemma 4 ([9]). Assume that x is an eventually positive solution of (1). Then, there exist two possible cases:

(81) N (1) > 0 forx =0,1,2,3;
(S2) Ny (t) >0, Ny (t) >0, N/ (t) < 0and N}’ (t) >0,

fort > t, where t1 > ty is sufficiently large.
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Notation 1. We consider the following notations:

_ 1 (e e w))’ )
S TRI0) (1 (1)) p(o (9 (1)
_ 1 B (' (971 (1)

P = e Tm) (1 (rpl(t))p(rp](wu)»)
b

R(t) = /tm (r(lg)/: (/ﬂhq(s,w) (W)%&) ds)l/adg,

and

1) 00 . —1 B 1/a
o (1) = pi, (t)Mgﬂ*“)/“/t (rlg)/g (l/ubq(s,ﬂ) (M) d19> ds) do.

3. Main Results

In this part, we will discuss some oscillation criteria for Equation (1).

Lemma 5. Assume that x is an eventually positive solution of (1) and

(7 (07 0)) < (o7 ) p (o7 (97 1)) ©
Then
sy (% (07 0) ~ gy ™ (77 (071 9))) @

Proof. Let x be an eventually positive solution of (1) on [tp, o). From the definition of z (t), we see
that

x(t) >

p(1)x(p(H) = Nu(t) = x (1),
and so
p(o7®)xt) =N (971 () —x (971 (1)

Repeating the same process, we obtain

1 - Nx (! (97 (
0= gt (7 0) - (e

which yields

Toplet®)  plet (1) plet (97 (1)
Thus, (7) holds. This completes the proof. [J

s (71 (1)) 1 Ne(o ' (97" (1)
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Theorem 1. Let 6 (t) < ¢ (t) and (6) holds. If there exist positive functions 8,6, € C* ([ty,c0),R) such that

[l 2 (e (6 (s) @ ()" = @
' @+ D" (10 (s) (07 (0 (5,m))) (5 (5,2))' (97 (3 (5,0))%)
and ( )2
- 0, (5)
/to <<1> (s) — 4191 ® > ds = oo, )

for some 1y € (0,1) and every My, My > 0, then (1) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1) on [tg, 00). Without loss of generality, we can assume
that x is eventually positive. It follows from Lemma 4 that there exist two possible cases (S1) and (S3).

Let (S;1) holds. From Lemma 2, we obtain Ny () > %tN§ (t) and hence the function 3Ny (t)is
nonincreasing, which with the fact that ¢ () < ¢~ (¢! (t)) gives

(7 0) Ne (o (07 )) < (o7 (¢ ) Ne (07 (). (10)
From (7) and (10), we get that
e > Nlol0) (1_ (0 (9 ()" )
- (¢!

plo () )" ple (et (1)
PN (971 (). an

%

From (1) and (11), we obtain

(o0 @)+ [(gwo) s cwant (57 60,0))ds <0 1

Since d (¢, &) is nondecreasing with respect tos, we get 6 (t,8) > 6 (t,a) for ¢ € (a,b) and so

(e (v @)) +NE (97 @) [9(e,0)pf (01000 <0

Next, we define a function w by

> 0.

i (DN ()"
@():=00) N (0T (5 1,

Differentiating and using (12), we obtain

(1) = Gpe®-0ONT (o7 G (ka) / "6,0) 95 (5.(1,0)) 40

et T () (970 (4,0) @ (£0)) Ny (971 (0 (1,)
NETT (p1 (5 (t,m))) |

(13)
Recalling that r () (N2’ (t))" is decreasing, we get

(o7 @ a)) (N (971 @ (1a))) = r () (NY (1)
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This yields
(N (¢ 6 (1a))) " = SO BN (14)
It follows from Lemma 1 that
NG (o7 6 (6a) 2 B (o7 6 (6a) N (97 (). 15)

forall y1 € (0,1). Thus, by (13)—(15), we get

W) < Ge®—0@NT (97 o) [ Y () 0 (10)) a0

wlr OO (0 6 (a) (6 (La) (¢ (0(5a))?
a5 ) NET (971 (6 (1,0)))

Hence,

W' () <

(o )““<qu<5(t,a>>>’<5<t,a>>’(¢*<5<t,a>>>2 a1
2 \r(p T(¢(t,a)

Since N (t) > 0, there exista f, > t; and a constant M > 0 such that

Ny (t) > M, (16)

for all t > t,. Using the inequality

Ux — VP78 < g ur

a7, V>0
ST v T

with
_0m ,_m r(t) U (p71(5(ta))) (6 (t,0)) (97" (4 (t,0)))°
IO (r(¢‘1 (5(t,a)))> (r0)/* (1)
and x = w, we get
PP T T r(e”t (6(ta)) (¢ (/t))““ N

@+ D (10 (1) (971 (6 (1,0))) (5 (1,2)) (971 (6 (1,0)))°)

This implies that

t ® — / a+1
[re-—2 r("’l(‘s(t,’“”)w o)~ s <wm),
/ @+ D" (o (1) (971 (6 (a))) (5 (t,0))

which contradicts (8).

In the case where (S;) satisfies, by using Lemma 2, we find that

Ny (t) > tNL (t) 17)
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and hence (tile (t))/ < 0. Therefore,

e ON: (07 (971 1)) <97 (07 () Ne (071 1) (18)

From (7) and (18), we have

1 a (e (¢7' (1)) -
Wz ) <l <<o—1<t))p(<o-1<so—1<t>>>>N"("’ )
p2(ON: (971 (1)),

which with (1) gives

(r() (N3 (¢ —/ (£,8) pb (5 (,) NE (971 (5(1,9))) do.

Integrating this inequality from f to g, we obtain

(o) (N @) =0 (v ) < - [*( 0,0 P 560N NE (970 04,9)) at) ds. (19

From (17), we get that

Ny <q,71 Gt 19))) > wa (). 20)

Letting 0 — coin (19) and using (20), we obtain

oo b -1 B
r (1) (N;//(t))'x > Pg (6 (t,a))Nf (t) /t (/u q(s,09) (M) d19> ds.

Integrating this inequality again from f to co, we get

. . ) . B 1/«
N0 =N 0 [ (g [T (oo (D) we)w) ae e

forall u € (0,1).

Now, we define

w(t) =61 (1) z' Eg

Then w (t) > 0 for t > t;. By differentiating w and using (21), we find

/ 1 ! 2
W) = HFe a0yl -0 0 (FT)
) 1

<
Zl Eif"(” O

IN
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and so

Then, we get

t / 2
-/tl <¢‘ (s) — (ig((tg)) ) ds <w(ty),

which contradicts (9). This completes the proof. [

Theorem 2. Let -
(o' (o7 (®) <1 (22)
(@1 ()" plo (et (1) ~

Suppose that there exist positive functions 17, o € p* ([tg,00) , R) satisfying

nt) <5, n(t)<e(t), c(t) <o), oc(t) <¢(t), o' (t)>0and }Eﬂ,”(t): lim o (t) = oo. (23)

t—ro0
If the equations
YO+REOY (971 (1 (t,a))) =0 4

and p/e
¢ )+ (97" (0 (t,a))

are oscillatory, then (1) is oscillatory.

R(1)¢F* (971 (o (t,a))) =0 (25)

Proof. Let x be a non-oscillatory solution of (1) on [ty, o0). Without loss of generality, we suppose that
x > 0. From Lemma 4, we find there exist two possible cases (S1) and (Sy).

Assume that Case (S1) holds. From Theorem 1, we get that (12) holds. Since 1 (t) < J (¢) and
z' (t) > 0, we obtain

/ b
(rey e @)t) <= [Caor s e opNE (7 (r(1,0))) a0, (26)
Now, by using Lemma 1, we have

N () > %ﬁN,;” (t). 7)

for some p € (0,1). It follows from (26) and (27) that, forall u € (0,1),

B
(oo @y + [ ( 1(:0)° ) 70,978 (1 (6,9) (N (97 (1 0,9))) ) e <0

Thus, we choose
p (1) =r(t) (N (1)
So, we find that 1 is a positive solution of the inequality

YO +ROY (97 (n(La)) <0.

Using (see ([15] Theorem 1)), we see (24) also has a positive solution, a contradiction.
Suppose that Case (S;) holds. From Theorem 1, we get that (21) holds. Since o (t) < 4 (t) and
N (t) > 0, we have that
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- - ) B B 1/«
NY () < - NE* (97 (0 (1) | (,(1@/0 (/abus,ﬂ) (w) dw) ds) do. (28)

Using Lemma 2, we get that
Ny (£) > tNL (t). (29)

From (18) and (29), we obtain

N () < 5 (N (o7 (o (ta)) ) (o7 (o (ta) R 1.

Now, we choose ¢ (t) := N (t), thus, we find that ¢ is a positive solution of

B/a

¢ (1) +ph" (97 (0 (b)) RV (97 (0 (L)) <O. (30)

Using (see ([15] Theorem 1)), we see (25) also has a positive solution, a contradiction. The proof is
complete. [

Example 1. Consider the differential equation

1 N1\ g P—¢
<{x(t)+2x <§>} > +/0 (42) o (T) a9 =0, @1)
where qo > Oisaconstant. Leta = B=1,r(t) =1, p(t) =1/2, ¢ (t) =1/3, ¢~ (t) =3t, 5 (t, a) =
£2,9(t, ) = (q0\H) 6.
Thus, by using Theorem 1, then Equation (31) is oscillatory.

Remark 1. By applying our results in (5), we see that our results improve [22,24].

Remark 2. One can easily see that the results obtained in [24] cannot be applied to conditions in Theorem 1,
50 our results are new.

4. Conclusions

In this work, our method is based on using the Riccati transformations to get some oscillation
criteria of (1). There are numerous results concerning the oscillation criteria of fourth order equations,
which include various forms of criteria as Hille/Nehari, Philos, etc. This allows us to obtain also
various criteria for the oscillation of (1). Further, we can try to get some oscillation criteria of (1) if
Ny (t) :==x(t) — p (t) x (¢ (1)) in the future work.
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Abstract: The aim of this work is to study oscillatory behavior of solutions for even-order neutral
nonlinear differential equations. By using the Riccati substitution, a new oscillation conditions is
obtained which insures that all solutions to the studied equation are oscillatory. The obtained results
complement the well-known oscillation results present in the literature. Some example are illustrated
to show the applicability of the obtained results.
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1. Introduction

Neutral differential equations appear in models concerning biological, physical and chemical
phenomena, optimization, mathematics of networks, dynamical systems and their application in
concerning materials and energy as well as problems of deformation of structures, elasticity or
soil settlement, see [1].

Recently, there has been steady enthusiasm for acquiring adequate conditions for oscillatory and
nonoscillatory behavior of differential equations of different orders; see [2-13]. Particular emphasize
has been given to the study of oscillation and oscillatory behavior of these equations which have been
under investigation by using different methods an various techniques; we refer to the papers [14-26].
In this paper we study the oscillatory behavior of the even-order nonlinear differential equation

(r© (")) +a@x 6 =0, 0

where ¢ > ¢p, 7 is an even natural number and z(g) := x(¢) + p(c)x(7(g)). Throughout
this paper, we suppose that: r € Clgg, ), r(g) > 0,7 (g) > 0, p,g € C([g0,)), q(¢) > O,
0 < p(g) < po < oo, q is not identically zero for large ¢, T € Cl[gp,), § € Clgo, ), T (g) > 0,
T(¢) < ¢ ime oo T(g) = lim¢ 5006 (¢) = 00, & is a quotient of odd positive integers and

/Oo r % (s) ds = co. )
¢

0
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Definition 1. Let x be a real function defined for all ¢ in a real interval I := [gx, 0), ¢x > Go, and having an
(n— 1)”‘ derivative for all ¢ € 1. The function f is called a solution of the differential Equation (1) on I if it
fulfills the following two requirements:

(r© (O +p©xEEN" M ()") € (o)

and
x (¢) satisfies (1) on [y, 00).

Definition 2. A solution of (1) is called oscillatory if it has arbitrarily large zeros on [y, c0), and otherwise is
called to be nonoscillatory.

Definition 3. The Equation (1) is said to be oscillatory if all its solutions are oscillatory.

We collect some relevant facts and auxiliary results from the existing literature.
Bazighifan [2] using the Riccati transformation together with comparison method with second
order equations, focuses on the oscillation of equations of the form

(10 (" ©)") +a @ f @) =0, ®

where 7 is even.

Moaaz et al. [27] gives us some results providing informations on the asymptotic behavior of (1).
This time, the authors used comparison method with first-order equations.

In [28] (Theorem 2), the authors considered Equation (1) and proved that (1) is oscillatory if

[ T TR P

< a4 1) pts2p (s)

for some p € (0,1) and

where ¥ (¢) :== 90 (¢) Q(¢) (1~ p (g (¢, M) (g (6, ) /6)™.
Xing et al. [29] proved that (1) is oscillatory if

(5‘1 (g))/ >6>0,7(c)>1>07"'(6() <g

and

R q(s) (n-1\* 1) (n=1)n*
hmgg}go T*l(é(g)) T(S) (S ) ds - 50 + 50’1.’0 e !

where 7 (¢) == min {g (6" ()9 (67" (T (¢)) }
In this article, we establish some oscillation criteria for the Equation (1) which complements some
of the results obtained in the literature. Some examples are presented to illustrate our main results.
To prove our main results we need the following lemmas:

Lemma 1 ([28]). Let & > 1 be a ratio of two odd numbers. Then

w a+1
Dw — Cwetb/e < & D

@i a €70
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Lemma 2 ([30]). Let i (¢) € C" ([co,0), (0,00)). If "D (¢) k") (¢) < 0 for all ¢ > ¢y, then for every
6 € (0,1), there exists a constant M > 0 such that

i (0c) = M"*h"Y (c),
for all sufficient large g.

Lemma 3 ([31] Lemma 2.2.3). Let x € C" ([gg, ), (0,00)). Assume that x(") (¢) is of fixed sign and not
identically zero on [gg, 00) and that there exists a ¢1 > ¢o such that x("=1 (¢) x(") (¢) < 0 forall ¢ > ¢1.
Iflim; 00 X () # 0, then for every u € (0,1) there exists g, > ¢y such that

1) 2 gy Y @) fore 2

Lemma 4 ([32]). Let it € C" ([¢o, ), (0,00)) . If ") (¢) is eventually of one sign for all large ¢, then there
exists a ¢y > ¢1 for some g1 > ¢o and an integer m, 0 < m < n with n + m even for k™ (¢) > 0 or
1 -+ m odd for K" (¢) < 0 such that m > 0 implies that h®) (¢) > 0 for ¢ > ¢y, k = 0,1,...,m — 1 and
m < n — 1implies that (71)'"+kh(k) (¢) >0forg>c¢yr,k=mm+1,...,n—1.

2. One Condition Theorem
Notation 1. Here, we define the next notation:
8(s) &' (s) )““
Q = — ,
®) So(a + 1)2 1 (AM)" ((p (5)+ s)
— )N«
o - L2

ptdo(a +1)2

S
N
+
5
—~
N
~ —
=
it
=

and
Q(s) =min{q (671 (s)) 9 (671 (v (s))) } -
Following [33], we say that a function ® = ®(g,s,]) belongs to the function class Y if
® € (E,R) where E = {(g,s,1) : gp <1 <s < ¢} which satisfies ® (¢,5,1) =0, ®(g,[,1) = 0and
®(g,s,1) >0,for ] < s < ¢ and has the partial derivative 0®/0ds on E such that 0®/0s is locally

integrable with respect to s in E.

Definition 4. Define the operator B [-;1,¢| by
¢
B[h;z,g]:/Z ®(c,5,1)h(s)ds,

forgo <1<s<gandh € C([go,0),R). The function ¢ = ¢ (¢,s,1) is defined by

oD (¢, 8,1
%:fp(wl)ﬂb(gls,l)

Remark 1. It is easy to verify that B [-;1,c] is a linear operator and that it satisfies
B[W;1,¢] = =Bhe;1,c], forh e C' ([go,%0),R). )

Lemma 5. Assume that x is an eventually positive solution of (1) and

(570) 28>0, (t(e) =1 > 0. )
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Then

5 (@) (@)
L P (r(5 c@) (" (57 (e (00))") +2(9) 2 ) <. ©

)

Proof. Let x be an eventually positive solution of (1) on [gg, o). From (1), we see that

0= 2 (57 @) (7 (571@)) ) e (57 @) ¢ 00 o
Thus, for all sufficiently large ¢, we have
0 = Gy @) (@)

iy (@) (Y (@)
+q(671(6)) ** () + 7t (67 (7 (6))) x* (x (c)). ®)

From (8) and the definition of z, we get

7 (671 ©) x* () +pa (67 (T () ¥ (v (c))

(A
O
=
Nn)
o

N~
L
PAS
"
s
+
=
(=)
=
Piy
ﬂ
—
Ny
o
=
=

(). ©)

Thus, by using (8) and (9), we obtain

o (7 @) () (7 @)Y

oy (T E@) (@) ) re@e. a0

From (5), we get

0 > %(r (671 (@) (2 (o (g)))a>’

+ 2B (1 (571 (e (@) (200 (57 (e e))") + Q0= (@)

doT0
This completes the proof. [
Theorem 1. Let (2) hold. Assume that there exist positive functions 8 € C! ([go, ), R) such that for all
M>0

lim supB
G—00

r (671 (s S (071 (T (s

000 -0 | L) pr@TEE) o
(1) w(Et@E)™?)

for some A € (0,1), then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution in [go, o). Without loss of generality, we let x be

an eventually positive solution of (1). Then, there exists a ¢; > ¢o such that x (g) > 0, x (7 (g)) > 0
and x (6 (g)) > 0 for ¢ > g1. Thus, we have
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2(¢) > 0,2 (¢) >0, 2"V (g) >0, 2" (¢) <0.

By Lemma 2, we get
2 (Ag) = Mg" 22"V (g),

where M is positive constant. Now, we define a function ¢ by

r(E71(9) (271 (671 (0)))

¥(e)=28(c) 2 0A0)

Then we obtain ¢ (g) > 0 for ¢ > ¢1, and

(7)) (27V (671(0)))

¥ = ¥ (0 +8(c) =0
r(671(0)) (zV (671 () )" 2 (A)
—aAd (¢) ( 7 () ) .

Combining (13) and (14) in (15), we obtain

<r ((5—1 (g)) (Z(n—l) (571 (g))>tx>/
z* (Ag)
(¥ ()"
@ (e)r (a1 ()"

/ ¥ (c)
Yo = FHre+ok)

—aAM <(5*1 (g)) "

Similarly, define

P(6)=0(c)
Then we obtain § (¢) > 0 for ¢ > ¢, and

(- @) (" (57 (e (@) ")
z* (Ag)
N C1(5)
(@ (c)r (61 (T ()N

F'o) < 5

—aAM (571 (7 (¢))
Therefore, from (16) and (18), we obtain

1 Po 5
57)#’ (6) ﬁlp () < T 2 (A¢)
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From (16), we obtain

1, pac ~, 19,((;) P 19/()
GV OFGLT (6 < 000+ 5w+ 3L T P
1 (lp(g))ﬂ(+l/ﬂé

f(s—aAM (5*1 (g)) "

ot (57 @)

Applying B [;1, ¢] to (20), we obtain

B[E¢/ () + 4L (c)ile] < BI-0(s)Q(s) + iacy¥ () + 4L 5519

1AM (51 ()2 ()T
n& M (071 (s)) e @)

—aAMA (571 (7 ()" BTy

%010

(0(5)1’(6’1(7(5)))) farts

By (4) and the inequality above, we find

0000t < dli (p0+ 5 ) v+ L (v + 550

(s) 0T (s
N T (10)
R G M e = re e
P N (10) M
WM OO e e
Using Lemma 1, we set
1 (o)) o mMEE)"
P= % <q)(s)+ 19(5))’ €= (8 (s)r (61 (s))"" sy

we have

l & (s) B l n—2 ﬂ

55 (700 503 ) 0~ oo (5719) (@@t
& (s) >"‘+1 8 (g)r (671 (T (s))) .

06/ (ame ) )

< +

1
e (09

Hence, from (22) and (23), we have

& (s) atl 8 (s)r (671 (s))
B[® (s s);l, < B S X
Bl)QE):1e < [<¢( )+ 19(5)) (& +1)2+15, (AM (51 (s))”’z)

NLAC o peo () r (071 (v (9)))
*(‘P( )+ ﬂ(s>> (& + 1) 16070 (AM (671 (1 (5)))"?)

Easily, we find that
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/ a+1
BOGQWiLe < Bl (90 + 507 )
r(671(s)) N par (671 (t (s))) y
19 e 4 ’g]
(1)) w (et EE)™?)
That is,
B ﬂ(S)Q(S)—Q(g) 1’(5_1 (S)) + pg?’ (5_1 (T(S))) 4 ;l,g <.

(616 ?) w (e ?)

Taking the super limit in the inequality above, we obtain

. 671 (s)) phr (071 (x ()))
limsupB |9 (s) Q(s) — Q(s) r( 7+ m
g (@17 w(E e

;Lel <0, (24)

which is a contradiction. The proof is complete. [J

3. Tow Conditions Theorem

Lemma 6 ([22]). (Lemma 1.2) Assume that x is an eventually positive solution of (1). Then, there exists two
possible cases:
(L) z(¢)>0,2(c) >0,2"(¢) >0, 2"V (¢) >0, 2" () <0,
(L)  z(c)>0,20)(c) > 0,20 (¢) < 0 for all odd integer
jef{1,2,...,n=3}z0"D(c) >0,z (c) <0,

for ¢ > ¢y, where g1 > ¢ is sufficiently large.

Lemma 7 ([22]). (Lemma 1.2) Assume that x is an eventually positive solution of (1) and

I (‘F )= 2ol (s))[m) ds = oo, 25)
S0

a+1)zx+l yaSZa‘oa (S)

where
¥ (6)=8p(c)4(c) (1—p(3(c))" (6(c)\e)™,
where p € C' ([go, ), (0,00)), then it will be z does not satisfy case (I1) .
Lemma 8. Let (2) holds and assume that x is an eventually positive solution of (1). If there exists positive

functions © € C! ([go, o), R) such that for all M > 0

limsupB |9 -0 r ((571 () . Po” (571 (t(s))) .
g%oop (5) Q (5) (S) (((571 (S))n72> + o <(571 (T (S ))n72>

;Lel >0, (26)

for some p € (0,1), then z not satisfies case (I5) .

Proof. Assume to the contrary that (1) has a nonoscillatory solution in [gg,00). Without loss
of generality, we let x be an eventually positive solution of (1). From Lemma 3, we obtain

20 2 gy (6). (27)
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Now, we define a function w by

(671 (2 (0 (9)

w(g) =19(c) 0 (28)
Then we see that w (¢) > 0 for ¢ > ¢1, and
TS (@) (0 0 @))
(o) = gryw ) +o() =00
LB (e (w (o)
o OO G e .
Similarly, define
] P (v () (2 (6 (@)
@(¢)=9(c) 0 : (30)
Then we see that @ (¢) > 0 for ¢ > ¢1, and
. Vo) (re @) (2 e (r @)
@' (g) < 19((‘;)w(g)+l9(t;) =10
B (5 2 (@ ()M
oz O TO) G e
Thus, we get

limsupB
G—0

P o r(671(s)) par (671 (T (s))) " 0
(s)Q(s) (s) (((51 (s))"’zy + . ((571 - ))n72>¢x 6| <

which is a contradiction. The proof is complete. [
Theorem 2. Assume that (25) and (26) hold for some p € (0,1). Then every solution of (1) is oscillatory.
Example 1. Consider the equation

(x(6) +2¥ (¢ =5m))" +qox (¢ = 71) = 0. (31)

We note that r(¢) = 1, p(g) = 2, 1(g) = ¢—5m, 6(g) = ¢—m, 6 1(s) = ¢+ mand
q(¢) = Q(g) = qo- Thus, if we choose ® (¢) = (¢ —s) (s — 1), then it is easy to see that

_(g=s)—(s—1)
e IR
and
_ 9 (s)
Q6 = Larnom” (9”(5” 3(s)

1 (e=9)—(s=D)?
‘MM( (c=s)(s—1) ) '
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Thus,

. 671 (s)) pir (67 (7 ()
limsupB |9 (s) Q(s) — Q(s) l %+ g
G (C 1)) w(EtrE)™?)

— dimeunB a3 (E=9) = (=D
= limsuph {"0 4AM< c—s) (-1 ) ’l’g} -0

m ;g

Therefore, by Theorem 1, every solution of Equation (31) is oscillatory.
Example 2. Consider the equation
(x(€) + pox (¢ = 57) Y +qox (¢ = 1), (32)

where go > 0. Let r(g) = 1, p(¢) = po, T(¢) = ¢ —57, 8(5) = ¢ — 1, 5_1(5) — o+ and
q(g) = Q(g) = qo, then we have

/ V% (s) ds = co.

760

Next, if we choose ¢ (¢) = (¢ —s) (s — 1), then we conclude that the conditions (25) and (26) are satisfied.
Thus, using Theorem 2, Equation (32) is oscillatory.

4. Conclusions

In this work, by using the generalized Riccati transformations technique, we provided new
oscillation criteria for (1). Furthermore, in future work, by using the comparison method, we find
some new Hille and Nehari types and Philos type oscillation criteria of (1).
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Abstract: In this article, we discuss the existence and uniqueness of extremal solutions for
nonlinear initial value problems of fractional differential equations involving the 1-Caputo derivative.
Moreover, some uniqueness results are obtained. Our results rely on the standard tools of functional
analysis. More precisely we apply the monotone iterative technique combined with the method of
upper and lower solutions to establish sufficient conditions for existence as well as the uniqueness of
extremal solutions to the initial value problem. An illustrative example is presented to point out the
applicability of our main results.

Keywords: ip-Caputo fractional derivative; Cauchy problem extremal solutions; monotone iterative
technique; upper and lower solutions

1. Introduction

Fractional differential equations have been applied in many fields of engineering, physics, biology,
and chemistry see [1-4]. Moreover, to get a couple of developments about the theory of fractional
differential equations, one can allude to the monographs of Abbas et al. [5-7], Kilbas et al. [8],
Miller and Ross [9], Podlubny [10], and Zhou [11,12], as well as to the papers by Agarwal, et al. [13],
Benchohra, et al. [14-16], and the references therein. In the recent past, Almeida in [17] presented
a new fractional differentiation operator called by p-Caputo fractional operator. For more details
see [18-23], and the references given therein.

At the present day, different kinds of fixed point theorems are widely used as fundamental
tools in order to prove the existence and uniqueness of solutions for various classes of nonlinear
fractional differential equations for details, we refer the reader to a series of papers [24-30] and the
references therein, but here we focus on those using the monotone iterative technique, coupled with
the method of upper and lower solutions. This method is a very useful tool for proving the existence
and approximation of solutions to many applied problems of nonlinear differential equations and
integral equations (see [31-42]). However, as far as we know, there is no work yet reported on the
existence of extremal solutions for the Cauchy problem with y-Caputo fractional derivative. Motivated

Axioms 2020, 9, 57; d0i:10.3390/ axioms9020057 55 www.mdpi.com/journal /axioms
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by this fact, in this paper we deal with the existence and uniqueness of extremal solutions for the
following initial value problem of fractional differential equations involving the ¢-Caputo derivative:

{ ”Dzﬁpx t)

x(a) = a*,

ft,x(1), t€]:=[a,b], &

where CDS;+ is the ¢-Caputo fractional derivative of order « € (0,1], f: [2,b] x R — R is a given
continuous function and a* € R.

The rest of the paper is organized as follows: in Section 2, we give some necessary definitions
and lemmas. The main results are given in Section 3. Finally, an example is presented to illustrate the
applicability of the results developed.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional calculus and present
preliminary results needed in our proofs later.
We begin by defining y-Riemann-Liouville fractional integrals and derivatives. In what follows,

Definition 1 ([8,17]). For « > 0, the left-sided p-Riemann-Liouville fractional integral of order w for an
integrable function x: ] — R with respect to another function {: ] — R that is an increasing differentiable
function such that ' (t) # 0, for all t € ] is defined as follows

« 1 ae
BP0 = o [ OO -6 x)s @
where T is the classical Euler Gamma function.

Definition 2 ([17]). Let n € Nand let ,x € C"(]J,R) be two functions such that i is increasing and
Y'(t) # 0, for all t € J. The left-sided y-Riemann—Liouville fractional derivative of a function x of order  is
defined by

DWx(t) = (ﬁ%) I x(r)
~ o () [ YOO = s
where n = [a] + 1.

Definition 3 ([17]). Let n € Nand let p,x € C"(J,R) be two functions such that ¥ is increasing and
Y'(t) # 0, for all t € J. The left-sided p-Caputo fractional derivative of x of order « is defined by

e oy (1 AN\
D Px(t) = I (w’(t)ﬂ) x(t),

wheren = [a] +1fora ¢ N,n =wafora € N.
To simplify notation, we will use the abbreviated symbol

<(e) = (ﬁ%)nx(t).
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From the definition, it is clear that

FYOWOPE T e e N
DY x(t) = {f“ T(n—a) Xy (s)ds , faéN, o

xl[;l ] (t) , ifaeN.
We note that if x € C"(J,R) the ¢-Caputo fractional derivative of order « of x is determined as

n—1 (K]
w0 -5 2 (i) -yl

k=0

D x(t) = DY

(see, for instance, [17], Theorem 3).
Lemma 1 ([20]). Leta, B > 0,and x € L*(],R). Then
I:;wlffpx(t) = Ig:rﬁ"lpx(t), ae.t€].

In particular, if x € C(J,R), then Ijﬁplffpx(t) = I{ffﬁ;wx(t), tel.
Lemma 2 ([20]). Let & > 0, The following holds:

Ifx € C(J,R) then

DY I x(t) = x(t), t €],
Ifxe C"(J,R),n—1 < a < n. Then

GP ¢ wYP (S xl[;;](a) k
LD,y x(t) = x(t) — a WO —y@)], te]
k=0

Lemma 3 ([8,20]). Let t >a, « > 0,and B > 0. Then

Fpsy (#(H) = )P,
= B () — pla))Pe T,
=0, forallk € {0,...,n—1},n e N.

;S
~—
~—

™
L
I

o I t) - y(

—
> ™

Definition 4 ([43]). The one-parameter Mittag—Leffler function Ey(-), is defined as:

k

Eu(z) = Igm, (z€R, a>0).

Definition 5 ([43]). The Two-parameter Mittag—Leffler function By g(+), is defined as:

=) Zk
Ea,ﬁ(z) = Igm, Dé,ﬁ > 0andz € R. (4)

Theorem 1 (Weissinger’s fixed point theorem [44]). Assume (E,d) to be a non empty complete metric space
and let B; > 0 for every j € N such that 27;01 Bj converges. Furthermore, let the mapping T : E — E satisfy
the inequality

d(Tu, Tlv) < B;d(u,v),

for every j € Nand every u,v € E. Then, T has a unique fixed point u*. Moreover, for any vy € E, the sequence

{Tiwg };’il converges to this fixed point u*.
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3. Main Results

Let us recall the definition and lemma of a solution for problem (1). First of all, we define what
we mean by a solution for the boundary value problem (1).

Definition 6. A function x € C(J,R) is said to be a solution of Equation (1) if x satisfies the equation
”Df:’:px(t) = f(t,x(t)), for each t € J and the condition

x(a) = a*.

For the existence of solutions for problem (1) we need the following lemma for a general linear
equation of & > 0, that generalizes expression (3.1.34) in [8].

Lemma 4. Foragiven h € C(J,R) and « € (n —1,n], with n € N, the linear fractional initial value problem

DY x(t) +rx(t) = h(t), t€]:= [a,b],
oF ©®)
Xy (a)=ay, k=0,...,n—-1,
has a unique solution given by
-1
x(t) = 2 T — @) =L x(t) + ()
(S g k r o a—1 6
- 2 i 190~ 9@ — s [ WO @0 96 x(s)ds ©
1
T [ YOO =y s
Moreover, the explicit solution of the Volterra integral equation (6) can be represented by
n=1
x(t) = Z ai [9(t) = 9 (@) Enpn (—r(w(t) = (a))°)
@)

[0 ~ 96 Eaa (0 (0) — (@) (5)ds,
where By g(-) is the two-parametric Mittag—Leffer function defined in (4).

Proof. Since a € (n — 1, 1|, from Lemma 2 we know that the Cauchy problem (5) is equivalent to the
following Volterra integral equation

1

= a

x(t) =

B

[w(t) = p(@)]* = x(t) + T, n(t)

=~

k
n

Il
— o

H[VJ

L gl -yl -5 | YO0 — 9o x(s)ds
g [P OO0 9o s

Note that the above equation can be written in the following form

x(t) = Tx(t),
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where the operator 7 is defined by

Tx(t) = ¥ 2 () = p(@)]F =2 x(0) + 237 h(o).
k=0 ™*
Letn € Nand x,y € C(J,R). Then, we have

T O =T O] = =L (T () = Ty (1))
= |z (= (T2 - Ty () )|

(=" (x() - y(1)|

(r(p(b) — p(a))*)"
Wllxww

IN

Hence, we have

" M (p(b) — p(a))"™
17" (x) =T () < WHX -yl

It's well known that
i —jf)ﬂ = Eu(r(p(b) - 9())%),

it follows that the mapping 7" is a contraction. Hence, by Weissinger’s fixed point theorem, 7 has a
unique fixed point. That is (5) has a unique solution.

Now we apply the method of successive approximations to prove that the integral Equation (6)
can be expressed by

n—1

x(t) = k;)ﬂk [9(5) = (@) Bapesr (—r(9(t) — $())")

[0 ~ 96 Eaa(~r((0) — (@) ).

For this, we set

xolt) = ’f”—"wa)f (a)]k

o (t) = Jw () — P(5))* Va1 (5)ds ®)
Sa faw 4:( 5))* 1h(s)ds

It follows from Equation (8) and Lemma 3 that

x(t) =

R

ot) — 1Tt wxo()JrILph()
1L1

=

Il
I [\1

k—"[ P(t) — p(a)]* ‘ferkH) (6) = @) + I n(e). ©)
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Similarly, Equations (8) and (9) and Lemmas 1 and 3 yield
x(t) =xo(t) =1 i (1) + T, h(t)

n-1 n—1
-L B 0 @)~z (Z L) - y@)"

k=0 ™*

n—1 a N .
= m [p(6) =yl +Ia;‘”h<t>> + I, h(t)
2‘% - rZ Hkﬂ)[wo o))+
k; (20 + k Teatkrn - P(@) T () + T ()
2 n—1 ) latk t 1 l 1(1/J(t)—l,li(s))l“+”_1h( g
;; la+k+1)[lp( @) +/a1l] g T(la +«) s)ds.

Continuing this process, we derive the following relation

m n—1 m 1 -1 _ la+a—1
SO o = TR R ST TETS S

0

Taking the limit as n — co, we obtain the following explicit solution x(t) to the integral

Equation (6):
0o n— I ) I 1 o la+a—1
0= 5 e 0 e [ B e
_n—l o )Z I
f;m Eo ZH,(H) [9() — p(a)]
l 1 _ S la

Taking into account (4), we get

2 a [ () — (@) Eq 1 (—r(w(t) — p(a))®)

+ / yis P B (=r(p(8) = ()" (s)s.
Then the proof is completed. [J

Lemma 5 (Comparison result). Let « € (0,1] be fixed and r € R. If p € C(J,R) satisfies the
following inequalities

{(aﬁ(o) —rp(t), telab], 10)

then p(t) > 0 forall t €.
Proof. Using the integral representation (7) and the fact that, E,1(z) > 0 and Ey4(z) > 0 for all

a € (0,1] and z € R, (see [45]) it suffices to take h(t) = ¢ Da+ o(t) +rp(t) > 0 with initial conditions
p(a) =a*>0. O
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Definition 7. A function xo € C(J,R) is said to be a lower solution of the problem (1), if it satisfies

{CD;‘;"’xo(t) < f(t,x0), te(ab], a1

xo(a) < a*.

Definition 8. A function yy € C(J,R) is called an upper solution of problem (1), if it satisfies

{EDZI”ywt) > flbyo), € (ab], 12

Yo(a) = a”.
Theorem 2. Let the function f € C(J x R,R). In addition assume that:

(H1) There exist xg, yo € C(J,R) such that xq and y are lower and upper solutions of problem (1), respectively,
with X()(t) < yo(t),t cJ.
(Ha) There exists a constant r € R such that

flby) —f(tx) > —ry—x) forxg <x <y <.

Then there exist monotone iterative sequences {x, } and {y, }, which converge uniformly on the interval ]
to the extremal solutions of (1) in the sector [xo, yo|, where

[(xo,y0] = {z € C(J,R) : xo(t) < z(t) <yolt), teJ}

Proof. First, for any x((t),yo(t) € C(J,R), we consider the following linear initial value problems of
fractional order:

{CDZ;lpan(t) = f(t/ x”(t)) - r(errl (t) - xn(t)), te ], (13)
Xpi1(a) = a*,
and
{CDZL‘”ym(t) = f(Lyn(t) = r(yusr () = ya(t)), tE], "
Yns1(a) =a”.

By Lemma 4, we know that (13) and (14) have unique solutions in C(J,R) which are defined
as follows:

Xpg1(t) = a By (—r(y(t) — 9(a))") .
t 15
[ WS @) = ()" B (—r((t) = 9(s))*) (f(s, xu(s)) +rxu(s))ds, t €],

Ja

(16)
+ tl/"(s)(ll’(t) — ()" Euna (—r (1) — 9(5))*) (F(s,yu(5)) +ryn(s))ds, t €.

We will divide the proof into three steps.
Step 1: We show that the sequences x,(t), y,(t)(n > 1) are lower and upper solutions of problem (1),

respectively and the following relation holds

xo(t) < wp(f) <o <xu(f) <o Syn(B) < <yn(F) Syoll), teET 17)
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First, we prove that

xo(t) <x(t) <yit) <wol(t), tel. (18)
Set p(t) = x1(t) — xo(t). From (13) and Definition 7, we obtain
Dy p(t) = “DyFx (1) — Dl xo(t)
> f(txo(t)) = r(xa(t) = xo(t)) — f (£ x0(t))
= —rp(t).

Again, since
p(a) = x1(a) — x0(a) = a° — xoa) 0.
By Lemma 5, p(t) > 0, for t € J. Thatis, xo(t) < xq(f). Similarly, we can show that

yi(t) <wo(t), t€].
Now, let p(t) = y1(t) — x1(t). From (13), (14) and (H2), we get

DY p(t) = DIy (1) — CDW ()

( o(t) = r(ya(t) —yo(t)) — f(t,xo(t)) +7(x1(t) — x0(t))
= f(tyo(t)) — (t xo(t ) r(y1(t) —yo(t)) +r(x1(t) — x0(t))
> —r(yo(t) —x0(t)) —r(ya(t) —yo(t)) +r(x1(t) — xo(t))
= —rp(t).

Since, p(a) = x1(a) —y1(a) = a* —a* = 0. By Lemma 5, we get x1 () < y1(t), t €].
Secondly, we show that x1(t), y1(t) are lower and upper solutions of problem (1), respectively.
Since x and y are lower and upper solutions of problem (1), by (Hy), it follows that

DY xi(t) = (£ x0(1) —r(xa(t) = x0(1) < F(L (1),

also x1(a) = a*. Therefore, x1 (t) is a lower solution of problem (1). Similarly, it can be obtained that
y1(t) is an upper solution of problem (1).

By the above arguments and mathematical induction, we can show that the sequences
xu(t),yn(t), (n > 1) are lower and upper solutions of problem (1), respectively and the following
relation holds

Xo(t) Sxa(f) <o <x(t) < - <ynlt) <---<ya(l) <yolh), e

Step 2: The sequences {x,(t)}, {yn(t)} converge uniformly to their limit functions
x*(t),y* (t), respectively.

Note that the sequence {x,(t)} is monotone nondecreasing and is bounded from above by o (t).
Since the sequence {y, ()} is monotone nonincreasing and is bounded from below by x(t), therefore
the pointwise limits exist and these limits are denoted by x* and y*. Moreover, since {x,(t)}, {ya(t)}
are sequences of continuous functions defined on the compact set [a, b], hence by Dini’s theorem [46],
the convergence is uniform. This is

Jim (1) = () andJim (1) = (1),

uniformly on ¢ € J and the limit functions x*, y* satisfy problem (1). Furthermore, x* and y* satisfy
the relation

< << xSy <<y < - <y < o
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Step 3: We prove that x* and y* are extremal solutions of problem (1) in [xo, yo.
Let z € [xp, o] be any solution of (1). We assume that the following relation holds for some n € N:

xn(t) <z(t) <yalt), tel. (19)
Let p(t) = z(t) — x41(t). We have
D p(t) = “Dy¥z(t) — Dy xyia (1)
—f(t z(t)) — (t xn () 4 7 (xpp1(t) — xu(t))
) —

( z(t) — xn(t )) + ”(xn+1(t) - xn(t))
= —rp(t).

Furthermore, p(a) = z(a) — x,,41(a) = a* —a* = 0. By Lemma 5, we obtain p(t) > 0, t € J,
which means
xn+1(t) < Z(t)/ te].

Using the same method, we can show that

z(t) < yug1(t), tE€]J.

Hence, we have
Y1 (t) < z(t) <ynya(t), t €]

Therefore, (19) holds on J for all n € N. Taking the limit as n — co on both sides of (19), we get

<z <y

Therefore x*, y* are the extremal solutions of (1) in [xg, yo]. This completes the proof. [

Now, we shall prove the uniqueness of the solution of the system (1) by monotone
iterative technique.

Theorem 3. Suppose that (H1) and (H2) are satisfied. Furthermore, we impose that:

(H3) There exists a constant r* > —r such that
flby) = fltx) <r(y—x),
forevery xo < x <y <o, t €]. Then problem (1) has a unique solution between xq and y.
Proof. From the Theorem 2, we know that x*(¢) and y*(¢) are the extremal solutions of the IVP (1) and

x*(t) < y*(t),t €]. Itis sufficient to prove x*(t) > y*(t),t € J. In fact, let p(t) = x*(t) —y*(¢), t €],
in view of (H3), we have

DFp(t) = D (1) — Dy (1)
= f(tx" (1) = f(by* (1)
> ()~ y" (1)

r o(t).
Furthermore, p(a) = x*(a) — y*(a) = a* — a* = 0. From Lemma 5, it follows that p(t) > 0, t € J.
Hence, we obtain

() >yi(t), tel.

Therefore, x* = y* is the unique solution of the Cauchy problem (1) in [xo, yo]. This ends the
proof of Theorem 3. [
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As a direct consequence of the previous result, we arrive at the following one

Corollary 1. Suppose that (H1) is satisfied and that f € C(E,R), is differentiable with respect to x and
df /ox € C(E,R), with

E={(t,x) €R?, suchthat xo(t) <x <yo(t)}.
Then problem (1) has a unique solution between xy and yy.

Proof. The proof follows immediately from the fact that E is a compact set and, as a consequence,
df /oxisboundedin E. O

4. An Example
Example 1. Consider the following problem:

{CD§+x(t) =1-22(t)+2t, te]:=[0,1], (20)

x(0) =1

Note that, this problem is a particular case of IVP (1), where

and f: ] x R — R given by
f(t,x)=1—x242t, forteJ,xcR.

Tuaking xo(t) = 0 and yo(t) = 1+ t, it is not difficult to verify that xo,yo are lower and upper solutions
of (20), respectively, and xy < yo. So (Hy) of Theorem 2 holds
On the other hand, it is clear that the function f is continuous and satisfies

t
'f(a'xx) (t,x)‘ =|—-2x| <4 forallt €[0,1]and 0 < x <t+1.

Hence, by Corollary 1, the initial value problem (20) has a unique solution u* and there exist monotone
iterative sequences {x,} and {y,} converging uniformly to u*. Furthermore, we have the following
iterative sequences

(—4VE—=5) (1 —x2(s) + 25 +4x,(s))ds, t €],

’

xn+1(t) = E%,l(*‘l\/?) + /Ot(t — 5)*1/21[‘:

NI
[N

Y1 (t) = E%,1(74\/f) + /(:(t —5)" V2R 1 (—4vt—5) (1 —y2(s) + 25 +4yu(s))ds, t €].

NI

We notice that the sequences are obtained by solving a recurrence formula of the type v, 1 = A vy, with A
a suitable integral operator and vy given. So, by a simple numerical procedure, it is not difficult to represent
some iterates of the recurrence sequence. We plot in Figure 1 the four first iterates of each sequence. We point out
that the unique solution is lying within x3 and y3 which gives us a good approximation of such a solution.
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Figure 1. First four iterates for problem (20).
5. Conclusions

In previous sections, we have presented the existence and uniqueness of extremal solutions to a
Cauchy problem with ip-Caputo fractional derivative. Moreover, some uniqueness results are obtained.
The proof of the existence results is based on the monotone iterative technique combined with the
method of upper and lower solutions. Moreover, an example is presented to illustrate the validity of
our main results. Our results are not only new in the given configuration but also correspond to some
new situations associated with the specific values of the parameters involved in the given problem.
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Abstract: In this paper, we consider a boundary value problem for a nonlinear partial differential
equation of mixed type with Hilfer operator of fractional integro-differentiation in a positive
rectangular domain and with spectral parameter in a negative rectangular domain. With respect to
the first variable, this equation is a nonlinear fractional differential equation in the positive part of the
considering segment and is a second-order nonlinear differential equation with spectral parameter
in the negative part of this segment. Using the Fourier series method, the solutions of nonlinear
boundary value problems are constructed in the form of a Fourier series. Theorems on the existence
and uniqueness of the classical solution of the problem are proved for regular values of the spectral
parameter. For irregular values of the spectral parameter, an infinite number of solutions of the mixed
equation in the form of a Fourier series are constructed.

Keywords: mixed type nonlinear equation; boundary value problem; hilfer operator; mittag—leffler
function; spectral parameter; solvability

1. Introduction

One of the most striking areas of mathematical analysis is the invention of fractional-order
integro-differential operators. Today, the theory and application of operators of fractional
differentiation and integration have become a powerful industry of theoretical and applied research at
the highest levels of different science and technology. In particular, a concrete physical and engineering
interpretation of the generalized fractional operator is given in [1] (Volume 4-8), [2-6]. At present,
the operators of fractional differentiation and integration are also widely used in the study of problems
associated with the study of the coronavirus COVID-19 (see, for example [1,7]).

In this paper we use Hilfer operator:

DY = ]I dt](]ﬁ, 0<a<y<1,

where

t
Joro(t / i a, x>0
0
is a Riemann-Liouville integral operator.

For v = a and v = 1 we have D% = Dg, and pxl = cDg,. Therefore,
the generalized integro-differentiation operator D*7 is a continuous interpolation of the well-known
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fractional order differentiation operators of Riemann-Liouville and Caputo, which describe diffusion
processes [1] (Volume 1, pp. 47-85).

Now we consider in detail a review of some works. For the first time, the generalized
Riemann-Liouville operator (named as the Hilfer fractional derivative) was introduced by R. Hilfer on
the basis of fractional time evolutions that arise during the transition from the microscopic scale to
the macroscopic time scale [8]. Furthermore, R. Hilfer solved a Cauchy type problem for a fractional
order equation with the same operator, applying in this case the Laplace transforms. In addition,
using the integral Fourier, Laplace, and Mellin transforms, he investigated the Cauchy problem for the
generalized diffusion equation, the solution of which is presented in the form of the Fox H-function.

It is applied in [9,10], the generalized fractional integro-differentiation operator in studying the
dielectric relaxation in glass-forming liquids with different chemical compositions. For this, as usual,
a classical Debye-type model was used, which describes exponential relaxation. The Debye-type
model is determined by a first-order differential equation (see Equation (19) in [9]). But, as follows
from the experiments, the ubiquitous feature of the dynamics of supercooled liquids and amorphous
polymers is just non-exponential relaxation, which is the result of slow relaxation. To successfully
describe the relaxation dynamics of glassy materials, the author of this article proposed a new model of
dielectric relaxation containing derivatives and integrals of the non-integer order, which are a natural
generalization of the Debye equation.

In [11] boundary value problems for the fractional diffusion equation with the time-generalized
Riemann-Liouville fractional derivative (named as the Hilfer fractional derivative) in finite and infinite
domains are studied. In the finite domain, the method of separation of variables and the Laplace
transform method for solving the problem were used. In addition, the solution of the considered
problem was obtained in the form of an infinite series containing the Mittag—Leffler function, and the
asymptotic behavior of this solution at infinity was also found. In the infinite domain with respect
to the spatial variable by the Fourier-Laplace transform method, the Cauchy problem is solved.
In particular, a fundamental solution of the Cauchy problem is found and the fractional moments of
the fundamental solution of the fractional diffusion equation are calculated. It is also shown in [11] that
the corresponding solutions of the diffusion equations with fractional derivatives in the sense of Caputo
or Riemann-Liouville are particular cases of diffusion equations with a fractional derivative according
to Hilfer. The results obtained in this work are relevant in the study of the dielectric relaxation of glass
and problems of the aquifer.

In [12] the analytical and numerical solution of boundary value problems for the fractional
diffusion equation with the Hilfer fractional derivative was studied with respect to time and with
respect to the Riesz—Feller spatial fractional derivative. To solve the problem, the Laplace and Fourier
transform methods were used, and the solutions are presented by the Mittag—Leffler functions and
the Fox H-function. A numerical solution of the problem is also considered by aid of approximating
fractional derivatives with fractional derivatives of the Grunwald-Letnikov.

In [13], a new definition of the fractional derivative is introduced: The Hilfer-Prabhakar fractional
derivative, which generalizes the fractional derivatives of Riemann-Liouville and Caputo. The new
operator is constructed by replacing the Riemann-Liouville integrals of fractional order with more
general Prabhakar integrals of fractional order. In addition, some applications of these generalized
fractional derivatives in solving classical equations of mathematical physics are shown. Here we
can note the heat equations and differential-difference equations that determine the dynamics of
generalized random recovery processes, etc.

In [14] the properties of the Hilfer operator were investigated in a special functional space,
and an operational method was developed for solving fractional differential equations with this
operator. Developing the results of [14], the authors of [15] developed an operational method for
solving fractional differential equations containing a finite linear combination of Hilfer operators with
various parameters.
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More detailed information as well as a bibliography related to the Hilfer fractional derivative
can be found in the recently published monograph [16], where the theory of fractional
integro-differentiation, including the Hilfer fractional derivative, is systematically presented. Section 2
of this paper gives the basic properties of the Hilfer operators, and its generalization is the
Hilfer—Prabhakar fractional derivative, and Section 4 shows the applications of these fractional
derivatives in solving various applied problems of mathematical physics.

So, a large number of scientific papers have been devoted to the investigation of initial, boundary,
and inverse value problems for linear and nonlinear ordinary and partial differential equations (see
also [17-26]).

We note that in [27] the problem of source identification was studied for the generalized diffusion
equation with operator D® 7. In the work [28] the inverse problems are investigated for a generalized
fourth-order parabolic equation with the operator D* 7.

In nature and in physics, processes that occur over time are usually nonlinear. Therefore, the study
of nonlinear differential and functional-differential equations of fractional order is relevant.

2. Problem Statement

Inadomain Q = {—a <t < b, 0 < x y < I} we consider a nonlinear partial fractional
differential equation of mixed type:

(-0 (0 5) -+ ) v
bl
_gl( X, Y, fff (9 g Q:el 71,[(9, gr g)) dedgdg) (t, X, y) 601/
0= 000
92 92 92 2 o
<W7m<8x2 Iy? (8x2+ay )
0

) (@)
1
—82(t) f2 <x Yy fofofG)z (0,0,6, U0, ))d9d§d§> (t, x,y) € Qy,

Utx,

where O = {0<t<b 0<x,y<I},Qy={-a<t<0,0<uxy<I},wis positive spectral
parameter, and a, b are positive real numbers,

DM = g+“;t]§+“’,o<a57§1
is Hilfer operator, g1 (t) € C [0; b], g2 (t) € C[—a; 0],
file,y,u)eC([0;]2xR),i=1,2, 01t x,y, U) € C([0; b] x [0; ]2 xR),
Os(t, x,y, U) € C([—a; 0] x [0; I]® x R).

Problem 1 (T,). It is required to find a function U (t, x, y), which belongs to the class:

118 e c (@), t1*7%k7‘klec(ﬁl) U € C(Qy), LU eC(Qy),

ay* @
D% "YUG C(Qq), Ust, Uxy, Uyy € C(Q] UQy), k=0,1,2,
satisfies mixed differential Equation (1) in the domain (Y1 U Q)o, boundary value conditions:
U(,0,y)=U(t1ly)=U(tx 0 =U(x1)=0 t#0, 3)
U(-a,x,y)=U(bxy)+e(xy), 0<xy<] )
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gluing conditions:

. 1—7y T 04 i
tLHEO]O* Ut x,y) = tlirgo uit, x,y), hm ]OJr T ]OJr Ut x,y) = hr{\() T Ut x,y), (5

where ¢ (x, y) is given a sufficiently smooth function.

Note that boundary value conditions of type (3) take place in modeling problems of the flow
around a profile by a subsonic velocity stream with a supersonic zone. Nonlocal boundary value
problems for different type of equations were studied in the works of many authors, in particular,
in [29-36]. Nonlinear differential and integro-differential equations without mixing of the type of
equations were studied in [37-42] by the Fourier series method.

In our work, unlike mixed parabolic-hyperbolic equations, the problem of small denominators do
not arise. In this paper, we consider a boundary value problem for a mixed type nonlinear differential
equation with Hilfer operator of fractional integro-differentiation. The Fourier method of separation of
variables is used taking into account the features of the fractional integro-differentiation operator and
nonlinearity. We study the solvability of problem (1)-(5) for various values of the spectral parameter.
This work is a further development of the results of [35,38-40,42—45].

3. Nonhomogeneous Ordinary Differential Equation With Hilfer Operator

We consider the Cauchy problem for a nonhomogeneous differential equation of fractional order:

D% "Yu( )=ku(t)+f(t), te(0,t),

{ lim ]OJr u(t) =uo, (©)
t—+0

where f (t) is given continuous function, 1( = const.

Note that in [28], the Laplace method was applied to solve this problem. In [15], a solution
was found using operational calculus for a more general problem than (6) in a specially constructed
functional space. In our work, we use a more rational way to solve problem (6), which allows us to
obtain an explicit solution.

We prove that there holds the following lemma.

Lemma 1. Let be f (t) € C(0; t1] N L1 (0; t1). Then the solution of the problem (6) u (t) € C(0; t1] N
L+ (0; tq) is represented as follows:

t

w () = ot Eyy (k%) 4 [(E= )" Eq (k(t=T)") £ (1) d7, )
0
where o m
Eyq(z) = mZ::O m, z,a,v€C, Re(a) >0

is a Mittag—Leffler function (Volume 1, pp. 269-295) in [1].
Proof. We rewrite the differential equation of problem (6) in the form:

Jor "D u(t) =ku(t)+ £ (£).

Applying the operator ], to both sides of this equation, taking into account the linearity of this
operator and the following formula [15]:

1 _
I3, DYy (t) = (t) = s Jou T (Bl ot
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we obtain:
Uo

“ =0

Using the lemma from [44], we represent the solution of Equation (8) as follows:

A (N AGES IR}

Uo

v =0y

E T8 f()+

t

#h [0 0 B -9 |

0

Uo

T(7)

We rewrite the representation (9) as the sum of two expressions:

T ]3+f(r)] dt.

1 k t .~ ) .
rm*mb/(ffr) YEpu (kK(t—T)%)T7 1d7},

I (t) = ug {

t
Lo(t) = I, £ () +k [(t= )" Eq (k(t=7)")J5, f (7)dT.
0
We apply the following representations (Volume 1, pp. 269-295) in [1]:

1
Eyq(2z) = ) +2zEqy4a(z), «>0, v>0,

1
I'(7)

Then for the integral (10) we obtain:
I1(t) = ugt" " Eqq (kt%).
The integral in (11) we can transform as follows:
¢
JE=0"  Eaa (k(t=2)*) J6. F(©)dE
0
T

1 t a— 4 a—
:F(:x)o/(t_g) IE“'”‘(k(t_g))dg/(g—S) Lf(s)ds

0

t

t
1 . o )
:r(a)b/f(s)dss/(ffé) L@ =) T Ea (k(t—8)*) dE.

Taking (13) into account the second integral in the last equality of (15) can be written as:

t
/(t*é’)ﬁH (€ —=8)" TEan (k(t=0)") dE =T (a) (t=)** " Egn (k(t—0)").
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0
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Then, taking into account (12), we represent (11) in the following form:

t
t) = /(t — &)  VEga (k(t—0)%) f(&)dE. 16)
0

Substituting (14) and (16) into the sum u (t) = I;(t) 4+ I, (t), we obtain (7). The Lemma 1
is proved. [

4. Formal Expansion of the Solution of the Problem (1)—(5) into Fourier Series

The solution of the mixed differential Equation (1) in the domain () is sought in the form of a
Fourier series:

Ut x/ Z unm nm(x/y)/ 17)
n,m=1
where
I
Uy, m () = / /U(t, X Y) Onm (X, y)dxdy, (18)
00
2 . .
O (x, y) = 7 sin (pyx) sin (g x), pn = 2, Um = g, n, me N.
We suppose also that:
filx,y, ) Z Finm()Oum(x,y), i=1 2, (19)
n,m=1

where
1

]
fznm //fl x,y,-)l?nm(x,y)dxdy,l—12
00

Substituting series (17) and (19) into mixed Equation (1), we obtain a countable system of
differential equations:

Da'vun,m(t) +/\%1,m Un,m (t) =481 (t)fln,m(')r t>0, (20)

un m(t)+)‘n m wzun m ( ) :gZ(t)on,m ()r £ <0, (21)
where ) 5
2 Vn+]4m nrm

mrt
Mim =T pg g BT Em = e

Taking (18) into account from the conditions (5) we derive:

11
. 1— 2 00 1- . .
tlamloj(”wu”’m(t) =7 //tllnr+1010+7 Ut x,y)sin(pyx)-sin(pmy)dxdy
00

~I N

t——0

11

// lim U (¢ x, y) sin (4 x) sin(ymy)dxdy:tlimou,,,m(t), (22)
o

00

11
2 . .
t +0 ]0+ dt]O+ U, m( 70/0/ 0+ dt]o_;_'yu(t X, ]/) Sm(ﬂnx) Sln(]‘my)dx‘i]/
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1
_2 // lrn —U t,x,y) sin(upx) sin(pmy)dxdy = lim iun m (1) (23)
l t— t——0dt
00
Analogously we find from condition (4) that:
U, m (=) = n,m (D) + @u,m, (24)

where

L1
2 . .
Pum =7 / /q)(x, y)sin(pux) sin(pmy)dxdy, n,m=1,2,..
00
By applying Lemma 1, for (20) and (21) we obtain the general forms of solutions:
W (1) = At "™ Eay (=A% 1) + fram (Vhaa (1), £>0, (25)

Un,m (t) = A2n,m sin /\n,m wt+ A 3n,m COS )\n,m Wt+f211,m () th,m (t)r t <0, (26)

where A, ,, are arbitrary constants, i = 1,3, n,m=1,2, ..

t
B (1) = [(1=9)* " Eqa (-3, (t=9)") g1(5)ds,
0

h2n,m (t) -

t
/sin (Apmw (t—s)) g2(s)ds.

Ay, mw
0

Taking into account that fi1,, ,, (0) = hop,m (0) = 0 and satisfying functions (25) and (26) to
conditions (22) and (23), we obtain the following systems of algebraic equations:

A
AZn,mzf Z;m Aln,mr A3n,m:Aln,m~ (27)

Applying the condition (24) and representation (27) to (25) and (26), we derive:

Pn,m +f111 m( )hln,m (b) 7f2n,m (‘)hzn,m (7ﬂ) (28)

Atym = ,
1n,m — Amm(w)

if there holds the condition:
Apym(@) = Ay mw L sin (A mwa) +cos (Apmwa) — b7 Eq (fAZW b”‘) £0. (29)

Substituting (28) into (27), for (25) and (26) we obtain the system of countable systems of nonlinear
integral equations (SCSNIE):
Uy (6 w) =T (5 tn,m)

E(Pn,mﬂln,m(tr w)+f1n,m(')’72n,m(tr w)+f2n,m(')773n,m(tz w), t>0, (30)
Un,m (t/ W) =1 (t? un,m)
E(Pn,mgln,m (t/ W)+f1n,m(‘)§2n,m (tz w)""on,m(')gSn,m(t/ w)/ t <0, (31)

where
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Il bl -
From() ://fl (x, y,///®1 (9, Lo Y 0 u;(0)6;;(C, g)) dedgdg) O (X, y) dxdy,
00 000

i=1
1 011 -

on,m(‘) = //fZ (x/ yr/ /®2 (9/ [ Z ui,j(e) 19l',j (# Q)) deg’dg) On,m (x, y)dxdy,
00 a0 0 =1

-1

N1n,m (t/ w) = ) E o,y <_)‘2n,m iﬂ) s N2n,m (t/ w) = hln,m (t) +h1n,m (b) N1n,m (t/ w)/

Ay (W

773n,m(tr (U) = *hzn,m(*a) m n,m(tz w)r ¢ n,m(tr (U) = [Sin (/\n,mw t) + cos ()\n,mw t)] ,

Ap,m(w)
Conm (tr w) = hln,m (b) Cln,m (tr w)/ Canm (tr w) = th,m (t) + h2n,m (_a) gln,m (t/ w)'
5. Solvability of SCSNIE (30) and (31)

Now we consider the case, when condition (29) is violated. Let Ay (w) = 0be for all w. Then the
considering problem (¢ (x, y) = 0) has the nontrivial solution:

Vigs (6%, y) = vies() 05 (x, y), (8 X, ) €Q, (2

where
Vg (t): t’y_lE"‘/'Y (_/\%,s ta)+flk,s (')hlk,s (t)/ t>0/
- sin A swit4cos Apswit+ fors(-)hars(t), t<O.

From A, (w) = 0 we come to the trigonometric equation:

A2 .
1+ (Z’Zm sin (A, mwa+ pnm) — bv_lEIx,f\, (—)\,21,," blx) =0, (33)

where p,,, = arcsin (ﬁ) From this we obtain that the quantity A, (w) vanishes at

the values:

1

B 1Ey y (—A2,,, b®
w=-— [(—1)Zarcsin @ oy (FAnm b

Vw2 +AZ

The set of positive solutions $ of trigonometric Equation (33) with respect to spectral parameter
w is called a set of irregular values of the spectral parameter w. The set of the remaining values of the
spectral parameter X = (0; c0) \ ¥ is called a set of regular values of the spectral parameter w. For all
regular values of the spectral parameter w, the quantity A, , (w) is nonzero. So, for large 1, m the
values of A, (w) can not become quite small and there the problem of "small denominators” does
not arise. Therefore, for regular values of the spectral parameter w, the quantity A, ,, (w) is separated
from zero.

Indeed, from the relations:

+ 1z — , z€eN.
/\n,ma Pn,m

2 2
+ nr mrit
%,m: 1_7_’1#2:1_2*2/ ]’ln:T/ Vm:T, n,meN
n m
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we see that A2, — 1as n, m — oo. Therefore, for regular values of the spectral parameter w we have:
. 1 . -1 ®
n/ly}’rgooAn,m(w):;smwa—kcoswa—b Eqq (=0%) #0.
Lemma 2. Suppose that v € (0,1], a, b are arbitrary positive real numbers. Then for reqular values of the

spectral parameter w € W and for arbitrary n, m there exists a positive constant My such that there holds the
following estimate:

[Apm(w)| > My>0. (34)

Proof. From (33) for all n, m and a, b > 0 we derive:

AimW) e
|14 T By (A bY)

> [1-07 gy (—A% 0 b%) .

‘An,m (UJ, V) ‘ >

We use the following properties of the Mittag-Leffler function (Volume 1, pp. 269-295) in [1]:

(1) Forall k > 0, a, v € (0;1], «a < 7, t > 0 the function t'V’lEa,W(fkt”‘) is completely
monotonous and there holds:

(1) [ (k0] T 20, s =012, (35)

(2) Foralla € (0;2), v € Rand argz = 7 there takes place the following estimate:

My

E z)| < ,
| N,’Y()l—l_,’_'Z'

(36)

where 0 < M7 = const does not depend from z.

Then, from the inequalities (35) and (36) we derive that there exists a number M such that:
1-b"'E,, (—/\ﬁ,m b"‘) ‘ =My > 0.

Consequently, for regular values of the spectral parameter w there takes place (34): | Ay, m (w) | >
Mg > 0. Lemma 2 is proved. [

Condition A. Let the following be fulfilled:

¢ (x/ y) ec? [0/' l]zl @ xxxx (x/ y) €l [0} ” 2, P yyyy (X, y) el [0; l]z
Then by integrating in parts four times over the variable x the integral:

11

‘Pn,m://(P(xr Y)Ou,m(x,y)dxdy,
00

we derive that:

I\% 51[\;’)
(Pn,m:<*> P, ’ (37)

i3 nt
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where,
1
(v) _
Pn,m —//(Pxxxx X, Y)0n,m(x,y)dxdy, (38)
00
2 n Tm
Gn,m(x,y) = fsm I sin -V
Similarly, by integrating the integral (38) in parts four times with respect to the variable y yields:
4 (VIII)
(1vy)y _ I Pn,m
Pu,m = (;) mi (39)
where
I
(W” //‘P“”WW X, Y) 0, m(x, y)dxdy. (40)
00

Substituting (39) into (37), we obtain:

I\ o (VIID
Pn,m = (;) 32:14 . (41)

Applying the Bessel inequality for the integral (40), we obtain the estimate:

1 2
© 2
E {(Pgr‘,/rfzn)] = //Ggrxx*cyyyy(x y)ﬁn m(X ]/)dxdy
n,m=1 n,m=1 00
I. I.
S// [(Pxxxxyyyy(x,y)}zdxdy<oo. (42)
00

Condition B. Let the following be fulfilled:
file you) € CU30 (10: 12 X R), frowwe (.9, u) € Ly ([0:1)2 x R),

Frypy (X, y, 1) € Ly ([o; 12 x ]R), i=1,2,

where

Il
Lz([O;l]ZXR>: flx,yu //|f X, Y, u |dxdy<oo
00

Similarly to the case of condition A, we obtain:

INS Al ()
fin,m(') = <E> n4m4 ’ (43)
11
[ee) 2 N n
21 [fi(:,gzl)(')] S// [fixxxxyyyy(X ¥ ')]dedy<°°r (44)
1, m= 00

where

11
VIII 2 . nwn . wm
fi<n,m )() = T//fixxxxyyyy (x, v, ) s Tx sin Tydxdy'
00
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For all regular values of the spectral parameter w € X the SCSNIE (30) and (31) are true. In order to
prove the unique solvability of SCSNIE (30) and (31), we introduce the following well-knowing spaces.

Space B [—a; b] of sequences of continuous functions { uy,m(t) }; ,,—; on the segment [—a; b]
with the norm:

[ ()l By[—a;b] = [ ()l By[-a;0] T [ () || B, [0:8]
- ! * t < o0
I, Gy leon01) oy 2 (g team01) <

The space L5 [0; ]2 of square-summable functions on the domain [0; /]2 = [0; I] x [0; /] with the
norm:

L1
186 D a2 = | [ [ 16 Gw) Pdxdy < oo,
00

On the basis of lemma 2, Conditions A and B for regular spectral values from the sets X we prove
that it holds.

Theorem 1. Suppose that the following conditions and Conditions A, B are fulfilled:

(1) Xx11 = max max max |t Minm (L w)‘<oo X21 = max max max \;‘mm(t w) | < oo;
i=1,3n,meNte[0; b i=1,31, meNte[

(2) x30 = H ¢xxxxyyyy X, ) HLz[O;I]Z < 00; X3i = H flxxxxWW(x' v HLZ[O;I]Z -
@) | fixveryyyy (% ¥, 11) = Fizmeyyyy (% ¥, 72) | < Ki(x y) 71 =72,
Koj = [| Ki (x, y) | 1y 0,112 < o2
4) 10, x,y,u1)—0;(& x,y,uz)| <Oq(x,y)|us —usl,
O21 = 101 (5, 1) | g2 <, 1 =1,2
() p=72(71+73) 74 <1 74 =max {bKo1 Oz1; 1 K222}

Then SCSNIE (30) and (31) are uniquely solvable in the spaces B [—a; 0] and B [0; b], respectively for
all regular values of the spectral parameter w € N.

Proof. We use the method of compressing mappings in the Banach spaces B, [—a; 0] and B [0; b].
Successive approximations are defined as follows:

”(r)tm( ) (anrllnm( w)/ ﬁtrlz:]ll( 11m) k=0,1,2,..., t>0, (45)
u?l,m (tr ) q)”,mgln,m( ’ w)r k+1 = HZ( Uy, m) t<0, we N

When t > 0, by virtue of the first condition of the theorem and applying Cauchy-Schwarz
inequality and properties (41) and (42) to the approximations (45) for the zero approximation
u9 . (t, w) with the norm in B; [0; b] obtains the estimate:

oo

<

By [0;b] te[gb] Zl‘(Pﬂ )t "inm (£ w)‘
) I\® fPﬁ.Vr{zH)

< T t, — 4

< max fé}&’zﬁ]) Nnm w)‘n§:1 <n> oo

i 8 o o 1 o 2
< X11 <;> E "(P&Yrizll)§71,$n§lwi z ’fPS:‘,/r{zH)‘

H 17740, w) ‘

)

1
nim4

n,m=1 n,m=1
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11
2
<vive | [ [ 9rermppns(e )P dxdy = 1172730 < o, (46)
00
1\® & 1
where 71 = x11 (;) , Y2 = Zlnsms-
n,m=

Similarly, by virtue of the conditions of the theorem and applying Cauchy-Schwarz inequality
and properties (43) and (44) for the first difference of approximations (45), we derive:

H T (ul(t, w) —u(t, w)) ‘

B, [0;b] < tlel}g,);] n,g::l ’fln,m () ’ : ‘t 77’/2;1?11 (t/ W) ‘

1—
e 3 || s 0|

< max max ‘tlf"’iyz”m(t, w)‘ <i> i

D) ‘

n,meN te[0; b T n,m=1 4m4
(vIIr)
! 8 @ on m ( )
+ max_max ‘tl’”’ t, w ’ —
n,meN te[0;b] 7]3nm( ) T n,§: 47}14
<X11<l>8{ i 1 ‘f(vm)()‘-&- i ‘fvm ”
s - 1.4 |/ 1n, : 4,4 |/2
T n,m=1 nEm o n,m=1 nem

- = 1 v111 2 VIII 2
=T Z n8m8 flnm : f2n m \
n,m=1 n, n n, m 1

11
<7172 //[flxxxxyyyy(xr Y, ~)}2dxdy
00

11
+ //[foxxxyyyy(xr]// -)}zdxdy =172 (X31 +Xx32) <o, (47)
00

where

11 b 11
Fan®) = [ [ £ (x v [ ] ]e <e Lo Y 0k <>ﬂi,j<c,g>>dedm> O (v, ) dxdy,
00 000

i,j=1

0

L1 11 Oo
Han) = [ [ 2 ( v [ ] ]e (9 Lo Y w8 g)> dedz;dg> Oum (x, y) dxdy,
00 —a0 0 i

a j=1

k=0,1,2,...
We use the conditions of theorem, Cauchy-Schwarz inequality, and Bessel inequality for the
arbitrary difference u ’,‘,*,,11 (t, w)—u ’,; . (t, w) with the norm in B, [0; b]. Then we derive from (45) the

following estimate:

H = (ukH(t, w) — uk(t, a))) ‘

B, [0;b]
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< max 2 ‘f%nm() - {{;,lm(')’ ‘t177172nm(t, w)’

tE0:b] ), =1
k-1 ( = t
+ max 2 f2nm 2n,m ) 77371771( ,(/J)
te[0;b] ,,
00
VHI VHI VIH k—1(VIII)
S'Yl|: nt ‘flnm flnm ‘J'_ nt ‘onm f2nm ()‘:|
n,m=1 n,m=1

11
=) 1 2
=M E n8ms //‘f{(xxxxyyyy(x’ Y ) flxxxxyyy/(x Y )‘ dxdy
00

1
2
" .//‘f“x“ww(x'y' )= F ey (0 V) ')’ dxdy
00

11 b 11
<vivz || [ [1KiGw) Paxdy [ [ [|ef)-ef ()| deagde
00 000

0 1

" ./l./I“(Z("'V)|2d”ly///l)®’£(-)f®§*1(-)\ d0d7dc
00 0

—a 0
bl -
<172 [Kou [ [ [1@116 01| 1 01 [uh o)~k '0)] 0,2, )| d0dCds
500 i1
011
+Ko [ [ [1002@ 01| X [uly@ -l @] 5@ 0 dedgdg}
—a0 0 -
b
<7172 |Ko1|©11(x, y) ||L2[0;]]2/H91*'Y (uk(e, w)_uk—l(gl w)) ‘ Bz[O‘b]de
0
0
+Ko2 [|©12(x, v) ||L2[0;Z]2/Huk(9, w)—u Bz[a‘O]d6:|
—a
<7172 {me Oy H o (”k(f, w) —uf Nt w)) ’ B, [0;1]
+ﬂK02@22Huk(t, w) —uf(t, w)‘ } (48)
By [—a;0]

When t < 0, by virtue of the conditions of the theorem and applying the Cauchy-Schwarz
inequality and Bessel inequality to (45) we similarly obtain the following estimates:

0

0 < t,
Hu (t, w) HBZH;O],term?o]mmxﬂ\(ﬁﬂ [S1nm (t w)|
<7273 Hq)xxxxyyyy(xr y) HLZ[O;I]Z < oo, (49)
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where 73 = x21 (%)8;

H ul(t, w) —u'(t, ) )

Y | ()| 1220m(t, @) |

<
By [~a;0] te[ aO]nm 1

+ max ‘on m ‘ [Canm(t, )| <7273 [Hflxxxxyyyy(xl Y, ')HLZ[O;I]Z

te[-a n m=1
+ Hfoxxxyyyy(x/ Yv) H Ly 0;[]2} =7273 (X31 +x32) < oo (50)

H Wk, w) — uk(t, w) ‘

SR N D RO RS O] [T CE)

nml

k—
4+ max ‘on m 211,lm '))"‘:3nm(t, (U)'
te[—a; 0] n, =1

b 11
<7273 {HK] X,y HLzozz///‘@é(v)*@?‘lﬁ)‘ dodidcg
000

[
K29 o [ [ [ ]050) @“(-)\dedcdg}
0

—a 0
b
<7273 [Ko1[[®11(x, y) [ 1, 0,112 H91 W k6, w) —u*1(6, W)) ‘ 8080
0
0
+Ko2 | ©12(x, v) HLZOIZ/Huk —u*1(e, “J)‘ Bz[wo]de}
< bKoy @ || 177 (uk(t, w) — uk1(t, w)
S 7273 0121 ’ ’ B, [0;b]
2 '’
+aKpp ®22n H uk(t, cu) 7uk71(t, UJ) ‘ } . (1)
By [~a;0]
Adding inequalities (48) and (51), we obtain:
k+1 _ K < k -
Hu (t, w) —u™(t, w)‘ P <p Hu (t, w) —uk1(t, a))‘ Balab]’ (52)

where p =72 (71 +73) 74, 74 =max {bKg1021; 1Koz @22}.

According to the last condition of the theorem there is p = 5 (71 + ¥3) 74 < 1. Therefore from
the estimates (46), (47), (49), (50) and (52) implies that the operators on the right side of (30), and (31)
are compressive and there exists a unique fixed point for these operators. Therefore the SCSNIE (30)

and (31) are uniquely solvable in the space B,[—a; b] for regular spectral values of parameter w € .
Theorem 1 is thus proved. O

6. Convergence of Fourier Series

Substituting SCSNIE (30) and (31) into the Fourier series (17), we obtain:

U(t, X, Y, w) = Z 19n,m(x/ ]/) [qpn,mﬂln,m (tr w) +17271,m (t/ (U) fln,m(‘)

n,m=1
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F130,m (@) faum ()], (£ x,y) € Oy, (53)
u(tr X, Y, W): 2 19n,m(x/ y) [Qon,mgln,m(tr w)+§2n,m(tf w)fln,m(')
n,m=1
+§3n,m(tr w)on,m(')]/ (tr X, y) €0y, (54)
where
11 bl
finm()= [ [ 1 (x v [ e (9 Go Y 006, g)) d9d6d9> O (v, y) dxdy,
00 000 i,j=1
11 0 11 w
fonm()= [ [ £o (x, v [ [ ]e (9 G Y wj(0) 000 g)) dedwg) B (3, y) dxdy.
00 2400 i,j=1

Theorem 2. Let conditions of the Theorem 1 be fulfilled. Then for regular values of the spectral parameter
w € R the Fourier series (53) and (54) are convergent absolutely and uniformly in the domain Q1 and Q,,
respectively. The series (53) and (54) possess the Properties (2).

Proof. We prove the absolutely and uniformly convergence of series (53) and (54). Similarly to the
estimates (46), (47) and (49), (50), we obtain:

‘tk”u(t, x,y,w)‘g max ‘tl Yuym (L, w)‘ [Onm(x, )|
te[0~b]nm 1
2 [ee] _ (o) _
< 7 max { L 1omnOl [ man @) [+ 1 1 frumO)][£ 20 ()|
te[0; b] n,/m=1
+ 2 ‘f2nm ‘tl 7'73nm t ‘U :|
n,m=1
2 o 1 o vm vm
Su DY 9, Z 1 : }
| £ ot e £ ol £ ol
=7s [H Prxxxyyyy(¥ V) HLZ[O;Z]Z + Hflxxxxyyyy(xf vr) HL2[0;1]2
2
+ ||f2xxxxyyyy(xr Y, ) ||Lz[0;l]2] =75 (X30+X31 +)(32) <00, 5= T'}'l Y2 (55)
(Ut x,y,w)| < max Y [t @)| [Owm(x, y)]
te[fao]nmzl
2 [ee] (o)
7 max Z |(Pn,m(')"‘§lnm(t/w)|+ Z ‘fln,m(')"‘§2nm(t/w)|
te[—a;0] n,m=1 n,m=1
= 2 = 1 (V111
+ Z [ famm ()] 1G3nm(t, w)] §7’73 Z n 4‘4’n,m ‘
n,m=1 n,m:ln m
& 1 ion o vm ”
2
<96 (X30 +X31 T Xx32) <09, V6= 77273 (56)
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Similarly to case of (55) and (56), it is easy to prove that the following series are convergent
absolutely and uniformly in the domain ) and Q,, respectively:

tlfVD”WU(t,x, Y, w) = Z tl*WD""”un,m (t, w)Onm(x, y), (tx,y)€Qy, (57)

n,m=1

. ou (t, x,y, w)

Y (Y T (8, @) e (v y), K= 1,2, (6%, y) €01, (58)

n,m=1
tl_vaku (t, x, y, w)

By = (D)"Y Bt @) p (%, y), k=1,2, (t,x,y) € Q1 (59)

n,m=1
92U (t, x, Y, w) i d2u wm (t, @)
ot2 N dt?

nm=1

Gum(x,y), (L x,y)€ Qo (60)

Bku(t, X, Y, w)

. = (D" Y wpm (@) pk Oum (6 y), k=1,2, (t,x,y) €Qa  (61)

n,m=1
aku(t, X, Y, w)

oyt =D Y wpm (b @) pk O (x,y), k=1,2, (tx,y) €Qa  (62)

n,m=1

Theorem 2 is proved. [

7. Irregular Value of Spectral Parameter w

We note that A, ,, (w) = 0 for irregular values of the spectral parameter w € Sand n, m =k, s
(v # 1). Then, for the solvability of systems (25) and (26), it is necessary and sufficient that the
orthogonality conditions are satisfied:

L1
Pr,s = //(P(x, Y) b5 (x, y)dxdy = 0. (63)
00
In this case, by virtue of (32), the solutions of nonlocal problem are represented as:

Ut xy)= ¥ Crs [ Eay (<AE6 1) + fras () hags (0] s (xy), (6% y) € Q1 (64)
k,s=1

u (tr X, y) = Z Ck,s [Sin /\k,sw t+ cos )‘k,sw t +f2k,s(') th,s (t)] 19k,s (xr y)r (tr X, y) €y, (65)
k,s=1
where k, s = ky, ..., ks, Cy s are arbitrary constants.
The absolute and uniform convergence of the obtained series (64) and (65) is clear, since Cy, s are
arbitrary numbers. Them we can select that these series converge. We recall that the Fourier coefficient
functions f1y () and fo 5(-) in (64) and (65) satisfy the properties (43) and (44).

8. Conclusions

In this paper, we considered a nonlocal boundary value problem T, for a weak nonlinear partial
differential equation of mixed type with fractional Hilfer operator D*7 in a positive rectangular
domain 7 = {0 <t < b, 0 < x, y < I} and with spectral parameter w in a negative rectangular
domain Oy ={-a<t<0, 0<x y<I}.

The set of positive solutions < of trigonometric Equation (33) with respect to spectral parameter
w was called a set of irregular values of the spectral parameter w. The set of the remaining values of
the spectral parameter X = (0; o0) \ & was called a set of regular values of the spectral parameter w.
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For all regular values of the spectral parameter w the quantity A, ,, (w) was nonzero. So, for large n, m
the values of A, (w) could not become quite small and there the problem of "small denominators”
did not arise. Therefore, for regular values of the spectral parameter w the quantity A, , (w) was
separated from zero and we considered the questions of one value solvability of the considering
boundary value problems (1)—(5).

We studied the boundary value problem T, with following assumptions:

¢ (X, y) € C3[0; l]Z, Pxxxx (x, y) S LZ[O} l}%(ﬂyyyy (X, y) € Lz[O,‘ 1]2,'
filx, you) € €L (1012 X R), fixxan(x, v, u) € Lz (0 12 X R),

fiyyyy(x, y, u) € Lo <[O; 1% x R) ;

X11 = Max max_ max ‘t1’7171',1m (t, w) } < 00; X1 = max max max |Gy, (f w)| < oo;
i=1,3n,meN te[0;b) i=1,3n,meN te[—a;0]

x50 = || @ xxxxyyyy (x, y) HLZ[O;I]Z <09 X3 = || fixxvayywy (*, ¥, 7) ||L2[0;l]2 <09
| fixxrryyyy (X ¥ Y1) = fixeoyyyy (6 ¥, v2) | <Ki (%, 9) [v1 =721,
Koj = [ Ki (%, Y) || 1y o172 < o
1©i(C x, y,u1) =0 (& x, y, u2) | <O1;(x, y) |[ur —uzf,
Oy =[|O1i(x, ¥) 1,02 <00 i=1,2;

p=72(v1+73) 74 <1, v4=max {bKg1 O1; aKg2®22} .

If these conditions were fulfilled, then the boundary value problem T, was uniquely solvable
for regular values of the spectral parameter w € N with these solutions represented in the form of the
Fourier series (53) and (54) in the domains () and (), respectively. There the series (53), (54) and
(57)—(62) were convergent absolutely and uniformly in the corresponding domains Q2 or Q;.

For irregular values of the spectral parameter w € & and for some k, s = k1, ..., ks the problem
T, had an infinite number of solutions in the form of series (64) and (65), if there the condition (63)
was fulfilled.
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Abstract: The harvesting management is developed to protect the biological resources from
over-exploitation such as harvesting and trapping. In this article, we consider a predator-prey
interaction that follows the fractional-order Rosenzweig-MacArthur model where the predator is
harvested obeying a threshold harvesting policy (THP). The THP is applied to maintain the existence
of the population in the prey—predator mechanism. We first consider the Rosenzweig-MacArthur
model using the Caputo fractional-order derivative (that is, the operator with the power-law
kernel) and perform some dynamical analysis such as the existence and uniqueness, non-negativity,
boundedness, local stability, global stability, and the existence of Hopf bifurcation. We then reconsider
the same model involving the Atangana—Baleanu fractional derivative with the Mittag—Leffler kernel
in the Caputo sense (ABC). The existence and uniqueness of the solution of the model with ABC
operator are established. We also explore the dynamics of the model with both fractional derivative
operators numerically and confirm the theoretical findings. In particular, it is shown that models with
both Caputo operator and ABC operator undergo a Hopf bifurcation that can be controlled by the
conversion rate of consumed prey into the predator birth rate or by the order of fractional derivative.
However, the bifurcation point of the model with the Caputo operator is different from that of the
model with the ABC operator.

Keywords: Rosenzweig-MacArthur model; fractional derivatives; threshold harvesting

1. Introduction

More than 50 years after the model has been proposed, the Rosenzweig-MacArthur predator-prey
model [1] has been consistently developed by many scholars to approach the real world phenomena
with more realistic mathematical models. The commonsensical modified Rosenzweig—-MacArthur
models are accomplishable by considering the biological perspectives of ecosystem conditions,
for instance the stage structure [2,3], the refuge effect [4-8], the fear effect [9], the Allee effect [10,11],
the intraspecific competition [12,13], the cannibalism [14], the infectious disease [15-17], and so forth.

On the other hand, the modeling also contemplates the optimal management of bioeconomic
resources as in fishery and pest management. Some researchers put an intervention into the
predator—prey model such as the harvesting to one or more population [8,18-22]. To protect
the population from over-exploitation during the harvesting, some management techniques have
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been established. One of the famous technique is a continuous threshold harvesting policy (THP)
(see [23-29]). THP is regulated as follows: when the population density above the threshold level,
harvesting is permitted; when the population density drops below the threshold level, harvesting
is prohibited.

In 2013, Lv et al. [26] proposed the following Rosenzweig-MacArthur model with THP in predator

dx . (173) _ mxy

dat K a+x’
1)
dy _nxy
LI dy-H),
where
0 , ify<T,
H(y)={ hy—T) :
—L 2 if y>T.
cty-1) "=

We describe the biological interpretation of variables and parameters of model (1) in Table 1.
Model (1) represents an interaction between two populations with a prey—predator relationship,
where THP is only applied for the predator to preserving its populations. Some appealing examples of
the ecological model (1) are given by the interaction between Sycanus sp. and Setothosea asigna and
between Rhinocoris sp. and Spodoptera litura. Shepard [30] reported that Sycanus sp. and Rhinocoris
sp. are the natural predators of the pests such as Setothosea asigna and Spodoptera litura which exist in
agricultural lands and plantations. The worrying problem is: How if the density of insects such as
Sycanus sp. and Rhinocoris sp. uncontrolled? One solution is applying THP as in model (1).

Table 1. Description of variables and parameters of the model (1).

Variables and Parameters Description

=
—

~
=

The density of prey

The density of predator

The intrinsic growth rate of prey

The environmental carrying capacity of prey
The maximum uptake rate for prey

The conversion rate of consumed prey into predator birth
The environment protection for prey

The natural death rate of predator

The harvesting rate

The half saturation constant for harvesting
The threshold level of harvesting

<

—~
~

=

~No s 3 I R~

Lv et al. [26] successfully explored the dynamics of the model (1) including the local stability
and the existence of various phenomena (saddle-node, Hopf, cusp, and Bogdanov-Taken bifurcations).
Despite their success works, the model with the first-order derivative is limited to its capability of involving
all previous conditions to the growth rates of both predator and prey. The growth rates of both populations
in the model (1) depend only on the current state. Biologically, the growth rates must be dependent on all
of the previous conditions which are known as the memory effects. To account for such memory effects,
some researchers proposed to apply the fractional-order derivative instead of the first-order derivative
when expressing the growth rate of the population. The fractional-order models are naturally related
to systems with memory which exists in most biological models [7,31]. The fractional-order models
are also well-liked due to their capability in providing an exact description of different nonlinear
phenomena [32]. In recent years, the development of fractional-order models grows rapidly and
becomes popular in studying the dynamical behavior of predator-prey interaction [17,33-38]. It has
been shown that the order of the fractional derivate significantly affects the dynamical behavior of
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the models, which is in contrast to the first-order derivative models that depend only on the values
of parameters.

In this paper, we modify the model of Lv et al. [26] by applying the fractional-order derivative to the
left-hand sides of the first-order differential Equation (1). We use two types of fractional-order derivatives,
namely the Caputo operator (that is, the operator with the power law kernel) [39] and Atangana—-Baleanu
operator [40]. The basic difference between these two operators lies on their kernel. Atangana-Baleanu
operator has a non-singular and non-local (that is, Mittag-Leffler) kernel while the Caputo operator does
not [41,42]. From the biological meanings, a model with Atangana-Baleanu operator gives better results
in applying memory effects [43—-45]. Nevertheless, the Caputo operator has more complex analytical tools
in investigating the dynamics of the model such as the local stability [46-50], the global stability [51,52],
bifurcation theory [52-54], and so on. By considering the deficiencies and advantages, the model with
Caputo and Atangana—Baleanu operator are employed in our work. Based on our literature review,
the dynamics of the model (1) with Caputo and Atangana-Baleanu operator have never been studied.
For this reason, we are interested in investigating the dynamical behavior of model (1) using both
Caputo and Atangana-Baleanu fractional-order operators.

If the first-order derivatives % at the left hand sides of model (1) are replaced by the
fractional-order derivatives Df, then we obtain

) . X mxy
Diy = (1—f>— ,
Fx =fx X Py

: fx 5
Diy = fx —dy —H(y).

@

Note that the left hand sides of model (2) have the dimension of (time) ~*, while the parameters at
the right hand sides of model (2) such as 7, i1, 1, d, and /i have the dimension of (time) ~1; this shows the
inconsistency of physical dimensions in the model (2) (see [55,56]). To overcome such inconsistency,
we rescale the parameters in the model (2) to get the following model

o

g (1 XY _ Y

Dtxfrx(l K) a+x’ 3)

Dy =" vy h(y)

ok x !

where
{ 0 , ify<T,
H(y)=4q hy-T) .

— , ify>T.
c+(y-T) ny=

By applying new parameters r = #*,m = 1t

w. XN mxy

Dix =rx (1 K) o W

w, XY L

= - HQ),

where
{ 0 , ify<T,
Hy)=4q hy-T) :

—L 2, ify>T.
c+(@y-T) ny=

This paper is organized as follows. In Section 2, we investigate the dynamics of model (4) with the
Caputo operator. We identify the existence, uniqueness, non-negativity, and boundedness of solutions.
Furthermore, we explore the dynamics of the model by examining the existence of the equilibrium
points, their local and global stability, and the existence of Hopf bifurcation. In Section 3, the existence
and uniqueness of solutions of the model with Atangana-Baleanu operator are verified. In Section 4,

91



Axioms 2020, 9,122

we explore the dynamics of the model using both operators numerically. We demonstrate numerically
the stability of the equilibrium point, and the occurrence of forward and Hopf bifurcations. We end
our works with a brief conclusion in Section 5.

2. The Caputo Fractional-Order Rosenzweig-MacArthur Model with THP in Predator

2.1. Model Formulation

The operator of Caputo fractional-order derivative is defined as follows

Definition 1. [48] Leta € (0,1], f € C"([0,4c0),R), and I'(-) is the Gamma function. The Caputo fractional
derivative of order-a is defined by

1

CDYf(t) = Ti—a) /(:(t — )7 f!(s)ds,t > 0. (5)

The kernel of Caputo operator is known as the power law kernel. By applying Definition 1 to
model (4), we get the Caputo fractional order Rosenzweig-MacArthur model with THP in predator

“Dyx =rx (l — f) MY - h,

K a+x ®)
Dy = o dy —H(y) = F.
a+x
2.2. Existence and Uniqueness
In this part, we study the existence and uniqueness of model (6).
Lemma 1. [57] Consider a Caputo fractional-order system
CDEx(t) = f(t,x(t)),t > 0,x(0) > 0,a € (0,1], ?)

where f : (0,00) x ©® — R",® C R". A unique solution of Equation (7) on (0,00) x © exists if f(t,x(t))
satisfies the locally Lipschitz condition with respect to x.

Since the right hand-side of model (6) is a piecewise function which is switched when the number
of predators passes through the threshold level, we divide the existence and uniqueness of the solution
into two cases, namely y > T and y < T. We start from y > T. Consider the region © x [0, T;.] where
0 = {(r,y) € R :max(|x|,|y|]) < 7,y > T}, T+ < +oo, and a mapping F(A) = (F(A),B(A)).
Forany A = (xy) € ®and A = (%,77) € ©, we obtain
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[E(A) = E(A)]|

Il
gl
Z

|
g
>

+
3!
Z

|
37
2

n(2 - ) a9 - ) - H@)

Xy Xy

a+x a+x

- r - -
:r\x—x|+i|x+x||x—x|+(m+n)

Clhy-T)  hg-T)
dW‘y“wc+@—fo‘c+@—Tﬂ

v — %+ D ®l e — 3 ay(x — X) + (a% + xx)(y — )
=r|x x|+K|x+x||x Z| 4+ (m+n) R +
. ch(y —g) ‘
dly —
b=+ ey S T
2
gr\x7£|+%\xff|+m;n|uy(xff)+(a3?+fx)(yfy')\+
o h _
dly—gl+ Iy -7l
gr\x—ﬂ—i—ﬁ\x—ﬂ—i-wu—ﬂ—i—
K a
m+n)(ay + o2 B B h B
()lg—zywly—lerdly—ylﬂL;ly—yl
_ 2yr  (mAn)y\, _ ((m+n)(ay+97) A
—<r+ T |[x — %]+ I E— +d+c ly — 7l
SMlH/\—/_\ ,

2 2
where My = max [y 227 4 (050 (o )

Lipschitz condition for y > T. By using similar approaches, when y < T, it is easy to check that

2
|F(A) = F(A)|| £ M, ||A—Al, where M, = max {r+%+ (m—;n)ry, (m—i—n)é;ry—i—y ) +d

and hence the Lipschitz condition is also satisfied. According to Lemma 1, model (6) with
non-negative initial condition has a unique solution A(t) = (x(t),y(t)) € ©. Thus, we establish
the following theorem.

h
+d+ E} Hence, F(A) satisfies the

Theorem 1. For each non-negative initial condition (xo,y9) € ©, there exists a unique solution
(x(t),y(t)) € © of model (6), which is defined for all t > 0.

2.3. Non-Negativity and Boundedness

The solution of model (6) is required to be nonnegative and bounded to establish a biologically
well-behaved model. To determine the non-negativity and boundedness of the solution of model (6),
the following lemmas are needed.

Lemma 2. [58] Let 0 < a < 1. Suppose that f(t) € Cla,b] and Dif(t) € Cla,b].

If CDif(t) > OVt € (ab), then f(t) is a non-decreasing function for each t € [a,b].
IFCDEF(H) < 0,9t € (a,b), then f(t) is a non-increasing function for each t € [a,b].
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Lemma 3. (Standard comparison theorem for Caputo fractional-order derivative [31]). Let x(t) € C ([0, +o0)).

If x(t) satisfies CDx(t) + Ax(t) < p,x(0) = xo, where & € (0,1], (A, u) € RZ and A # 0, then x(t) <
CBYE A B

(xo A) Eo[-At] 4 E.

In the following theorem, we prove the non-negativity and boundedness of solutions using the
above lemmas.

Theorem 2. All solutions of model (6) with non-negative initial conditions are non-negative and
uniformly bounded.

Proof. We start by proving that, if the initial condition is non-negative, then x(t) > 0 for all t — co.
Suppose that it is incorrect; then, we can find #; > 0 such that

x(t) > 0,0<t<t,
x(th) =0, ®)
x(tf) < 0

By employing (8) and the first equation of model (6), we obtain

“Dx(t) vieo = ©)

Based on Lemma 2, we have x(#]") = 0, which contradicts the fact that x(t{") < 0. Thus, x(t) > 0
for all t > 0. Using a similar procedure, we conclude y(t) > 0 for all > 0.

Now, we adopt the similar manner as in [34] to show the boundedness of solutions. By setting up
a function V(t) = x + %, we get

CDRV(E) + dV (1) =“Dix + DRy + dx + T

=rx (171) -y +m ( nxy fdny(y)) +dx+d7:—y

K a+x  n\a+x
rx® mH(y)
7(d+r)x—?—7n
o xi(d—i—r)K 2+(d+r)2K7mH(y)
T K 2r 4r n
<(d+r)2K‘
- 4r

According to the standard comparison theorem for Caputo fractional-order derivative in Lemma 3,
we achieve the following inequality

(d+7)2K W (d+71)2K
< _ T _ L
V(t) < <V(0) o Eq [=d(t)*] + —F—
where E, is the one-parameter Mittag-Leffler function. Since E, [—d(t)*] — 0 as t — 0, we acquire

V(t) — M

for t — co. Hence, with non-negative initial condition, all solutions are restricted to
the region @)1 where

my _ (d+7)°K

— 2, my
@M.—{(x,y)eR+.x+ n &

+e,e>0}.

Consequently, all solutions of model (6) are uniformly bounded. [
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2.4. The Existence of Equilibrium Point

The first commonplace technique in studying the dynamical behavior of a fractional-order system
is investigating the existence of the equilibrium point. Due to the biological nature, we give the
following definition.

Definition 2. Consider a Caputo fractional-order system
CDix = f(X); %(0) = Fp;a € (0,1]. (10)

A point X* is called an equilibrium point of Equation (10) if it satisfies f(:?*) = 0. Particularly, it is called
the biological equilibrium point of Equation (10) if it satisfies ¥* > 0.

Based on Definition 2, the equilibrium point of model (6) is obtained by solving

_m_my =
{r K a+x}x 0

—dy — H(y) =0.

nxy 1)

a—+x

Thus, we get four feasible biological equilibrium points as follows.
(i)  The equilibrium points when y < T are

(i.a)  the origin point Eg = (0,0) which always exists;

(ib)  the predator extinction point E; = (K, 0) which always exists; and
R K—# ¢

(i.c)  the first co-existence point E = <3€, w) , with £ =

, which exists if
mK

TmK

-

e

n—d
ad . N

n> fﬂtdand(fo)(aer) <

(i) The equilibrium point when y > T is the second co-existence point E* = (x*,y*) where y* =

(K—x*) (a+x*)r

mK
where

and x* is the positive roots of polynomial f1x* + B2x> + B3x2 + fax + 5 = 0

pr=(n—d)r,

B2 = [(an + 2dK) — 2(ad + nK)] 12,

B3 =(nrK + 4adr + cdm + mnT + hm)rK
— ((drK + 2anr + cmn + dmT)K + a*dr)r,

Bs =((anr + cmn + dmT)K + (2adr + hm + cdm)a)rK
— ((2adr 4+ hm + cdm + mnT)K + admT)rK,

Bs = [(adr + hm)mT — (adr + hm + cdm)ar] K2

%

E* exists if 0 < x* < Kand (K — x*) (a + x*) >

2.5. Local Asymptotic Stability

In this part, we discuss the local stability of Ey, Ej, E, and E*. For this aim, we need the
following theorem.

Theorem 3. (Matignon condition [48,59]) The equilibrium point X* of system (10) is locally asymptotically
stable if all eigenvalues A; of the Jacobian matrix | = 9f /9% evaluated at ¥* satisfy |arg(A;)| > am/2.
If there exists at least one eigenvalue satisfying | arg(Ay)| > amr/2 and |arg(A))| < ar/2, k # 1, then ¥* is
a saddle-point.

95



Axioms 2020, 9,122

Now, we present Theorems 4-7 to show the local stability properties of Ey, Ey, E, and E*.
Theorem 4. The origin point Ey = (0,0) is always a saddle point.

r 0
0 —d
are Ay =r > 0and Ay = —d < 0. Itis clear that |arg(A1)| = 0 < arr/2 and |arg(Ay)| = 7T > /2.
Therefore, based on Theorem 3, Ey is always a saddle point. [J

Proof. When Ey = (0,0), the model (6) has Jacobian matrix J(Eg) = , where its eigenvalues

Theorem 5. The predator extinction point Ey = (K,0) is locally asymptotically stable if n < % +d.

Otherwise, if n > l;(—d +d, then E; = (K,0) is a saddle point.

_ _ mK
Proof. The Jacobian matrix of model (6) evaluated at Ey is J(Ey) = [ Or LI?:*_K } . The eigenvalues
a+
of J(Ey)are Ay = —r < 0and A, = a’:—iKK —d. Clearly, |arg(A1)| = 7@ > am/2 and |arg(Ap)| = m >

d d
ar/2ifn < % +dand |arg(Ay)| =0 < ar/2ifn > % + d. Hence, we have the theorem. [
Remark 1. It is noted that the existence condition for the first co-existence point E contradicts the stability

condition of Ey. Consequently, if Ey is locally asymptotically stable, then E does not exist. This condition also
indicates the existence of forward bifurcation, which is confirmed numerically in the next section.

Theorem 6. Let A =

4(K—%)anrt [(K—2% 2282 o2 VA@+3)K
@ik \agz 1Y) kb= e e g )
Suppose that one of the following statements is obeyed.

(i) £> K-a

;or
(i) %< %,A>O,anda<&.

(K—=2)(a+2)r

K ) is locally asymptotically stable.

Then, the first co-existence point £ = (J?,

Proof. We first observe that the Jacobian matrix of model (6) evaluated at E is

K*’?,1 rg m#
a+x K a+x

E) = 12
JE) (K—2%)anr 0 12
(a+ 2)mK
The eigenvalues of the Jacobian matrix (12) are the solutions of the characteristic equation
K—32 rx (K —%)anrz
A2 — 1) DA =
(a-i—y? >1< ek Y
namely
M= K_Jffl ﬁJrL/K,
a+3x 2K 2

(13)

N (K2 N ivA

27 \a+2 2 2
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K
When £ > J, the real parts of A;, are negative. Thus, the eigenvalues (13) always satisfy

2
K- K-z <
larg(A12)| > amr/2 for any A. If £ < ? and A < 0, then A\qA; = w > 0and A +
’ (a+%)2K
K—3% ? K-
Ay = S22 0, meaning that |arg(A2)| = 0 < am/2. If £ < Land A > 0,

a+ 2% K
then |arg(A12)| > arr/2 for & < &. Hence, we prove the theorem. [l

Theorem 7. Let

= (@i &)
nyt ; *_TV2 * I
9:(( y _7) ((y-—T1) CT)hx*+<] x >#

a+x*)2 K] y*(c+y*—T)? Catx) (atx)?

If one of the following statements is satisfied, then the second co-existence point E* = (x*,y*) is locally
asymptotically stable:

(i) 6>0andg <0;or
(i) % <460,&>0,and o < a*.

Proof. The Jacobian matrix of model (6) evaluated at E* is given by
My T _m
(a+x*)2 K a+ x*

L X\ (TR T
at+x*)at+x*  y(c+y —T)>?

J(E") = (14)

The eigenvalues of (14) are obtained by solving the characteristic equation A2 — A + 6 = 0. Thus,
/E2 —
we have Ay, = % + ﬂ If 6 > 0and ¢ < 0, then |arg(Aq0)| > arr/2. If & < 40 and & > 0,
then |arg(A12)| > amr/2 for & < a*. Using Theorem 3, the local stability of E* is completely proven. [l
2.6. Global Asymptotic stability

To study the global stability of equilibrium points, we need the following lemmas.

Lemma 4. [51] Let x(t) € C (Ry), x* € Ry, and its Caputo fractional derivative of order-a exists for any

o € (0,1]. Then, for any t > 0, we have “D¥ | x(t) — x* — x*In xg)} < (1 - %) D x(b).

Lemma 5. (Generalized Lasalle Invariance Principle [52]). Suppose Q) is a bounded closed set and every
solution of system

“Dix(t) = f(x(t)), (15)

which starts from a point in Q remains in Q) for all time. Let V(x) : Q — R be a continuously differentiable
function such that

“DfVs) < 0.
Let E := {x|°D¥V|(15) = 0} and M be the largest invariant set of E. Then, every solution x(t) originating
in Q) tends to M as t — co.

Since model (6) is basically a piecewise fractional-order differential equations that depends on
T, the analysis of the global stability is split into two regions defined by O := {(x,y) : x > 0,y < T}
and O, := {(x,y) : x > 0,y > T}. Therefore, the global stabilities of Ej, E, and E* are investigated
as follows.
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Theorem 8. Ifn < %, then the predator extinction point Ey = (K, 0) is globally asymptotically stable in the
region ().

Proof. By specifying a positive Lyapunov function Li(x,y) = (folen%) + %,

and conforming to Lemma 4, we obtain

K
“Ditalny) < (F35) o+ BoDpy

e ) o ()
2

:2rx—rK—% :1_1:‘1 mey

S T

S—%(x—K)Zerfy—dnﬂ

< (1K)

Owing to the fact that n < @, we have D¥L; (x,y) < 0. In consequence of Lemma 5, E; is
globally asymptotically stable in the region (). [

Remark 2. Notice E; is locally asymptotically stable if n < % + d and is globally asymptotically stable if

n < ﬂ. Hence, if the global stability condition is fulfilled, then the local stability is also achieved but not vice

versa. This fact reinforces that the global stability condition has a larger attracting region than that of the local
stability condition.

(K—2%)(a+2

Theorem 9. If (K — £) (a+ £) < a®, then the first co-existence point E = <J?, )r) is globally

mK
asymptotically stable in the region ().

Proof. Let £ = (%,7)) where § =

K- % .
Lw and ¢ is a positive constant. By considering a

Lyapunov function £;(x,y) = [x —%—2%In %] +¢ {y —J—9In %} ,and using Lemma 4, we get

at+x a+2% a+x a-+3%
_ N o (W=9)(a+2)+(2-x)7 (x=2)(y—19)
77(x7x)sz(x7x) (a+x)(a+2%) >m+((a+x)(a+9?)>’mq)
. (=Y —9(at+2) (x—2)%)
oo - (S (),
(a+x) ) (a+x)(a+2)
(x—=%)(y—9)
((a+x)(a+32)>amp
<teef (=) (i) o om
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By choosing ¢ = W

and substituting the value of §, we get
2 o o r
CDE Ly (x,y) < — (x — %) (az —(K—%)(a+ x)) -
Therefore, if (K — £) (a 4 £) < a2, then “D¥L,(x,y) < 0. Using Lemma 5, we conclude that E is
globally asymptotically stable in the region (). [

Based on Theorem 2, x(t) and y(t) are bounded. Let ¥ be the upper bound of y(t) such that
0 < T <y(t) < Y. The global stability of E* is stated in the following theorem.

alr T
mK'¥ T "
asymptotically stable in the region ().

Theorem 10. Ify* < min }, then the second co-existence point E* = (x*,y*) is globally

Proof. We consider a positive Lyapunov function L3(E*)

¢ ly—y*—y*In yl*} . According to Lemma 4, the fractional derivative of £3(E*) satisfies

{x—x*—x*ln;—*] —+

“DyLy(x,y) < <%> CDfx+ " (%) Dpy

B . rx my N N nx h(y—T)
_(xix)<rifia+x>+(p (yiy)<a+xid7 (c+y7T)y>

* * nx nx* h(y* 7T) h(yiT)
Hp(y*y)( - * T)y*f(chy*T)y)

—— (xmxPg - (- ) (LR B )

(a+x*)(a+x)

o s (x—x%)an Y-y )chT —(y—y )y —T)(y—T)h
009 (@S mets T
NN, (x =)y —y)a+x)m = (x—x*)my*

— (x—x%) i (a+x*)(a+x) (a+x*)(a+x)

(x=x")(y—y*)ang®  (cT—(y* =T)(y—T))(y —y*)*he"

(a+x*)(a+x) (c+y*—T)(c+y—Ty*y
R S e e L |
L =)y —yang” (T = (v —T)(y—T)(y —y*)*he*

(a+x*)(a+x) (c+y*—T)(c+y—T)y*y

*
By taking ¢* = W and remembering that y(t) < ¥, we obtain

. romyt\ (T =T)(¥ -T)(y—y")*@a+x*)mh
DILHET) < - (x - x")? <K a2 >_ (c+y*—T)(c+y—T)any*y ’

1121’ cT

K V=T + T} then “D¥L,y(x,y) < 0. Based on
Lemma 5, E is globally asymptotically stable in the region (). [

It is easily confirmed that, if y* < min {
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2.7. The Existence of Hopf Bifurcation

The Hopf bifurcation is a local phenomenon when a stable equilibrium point loses its stability
and all nearby solutions converge to a periodic solution namely limit-cycle if a parameter is
varied [54,60,61]. It is shown that many fractional-order models involving the Caputo operator
undergo a Hopf bifurcation which is driven by the order of the derivative (see [2,17,34,53,62]).
The difference between the Hopf bifurcation in the integer-order model and that in the fractional-order
model lies on the property of the limit-cycle. In the integer-order model, the limit-cycle is a
periodic orbit which does not exist in the fractional-order model [63]. In the fractional-order model,
the limit-cycle is not a periodic solution, but all nearby solutions converge to a limit-cycle [56,62].

Adapted from Theorem 3 in [62], for two dimensional Caputo fractional-order system, a Hopf
bifurcation occurs when the eigenvalues A4, of the Jacobian matrix evaluated at the equilibrium point
satisfy the following conditions:

(i) A2 =1+ wiwherey >0;
(i) m(a*) =a*m/2 —minj<i<; arg(A;)| = 0; and

(iif) L;i"‘) £0.

Now, consider the stability condition in Theorems 6 and 7. For y < T, the Jacobian matrix of
model (6) evaluated at E has a pair of complex eigenvalues if A > 0. We can easily confirm that,

a=n*

K
if £ < Ta, then the real part of the eigenvalues are positive. We also have that m(&) = 0 and
dTZi‘x) # 0. Therefore, E undergoes a Hopf bifurcation when a crosses &. A similar circumstance
a=&
also occurs when y > T. When &2 < 40, the Jacobian matrix of model (6) has a pair of complex
eigenvalues. The real part of the eigenvalues are also positive when ¢ > 0. We can also check that

d
m(a*) = 0and n;ia) # 0. This means the Hopf bifurcation also occurs when y > T. Therefore,
a=a*

we have the following theorem.

K- .
Theorem 11. (i) Let A > 0and % < Ta‘ The first co-existence point E undergoes a Hopf bifurcation

when « passes through & in the region ().
(i) Let ¢ < 460 and & > 0. The second co-existence point E* undergoes a Hopf bifurcation when a passes

through o* in the region ().
3. The Atangana-Baleanu Fractional-Order Rosenzweig-MacArthur Model with THP in Predator

3.1. Model Formulation

In this section, we consider a fractional-order Rosenzweig-MacArthur model with THP in
predator involving the Atangana—Baleanu operator. Specifically, we consider the Atangana-Baleanu
operator in Caputo sense of order-a which is defined as follows.

Definition 3. [40] Suppose 0 < & < 1. The Atangana—Baleanu fractional integral and derivative in Caputo
sense of order-a (ABC) is defined by

1—a « ¢
ABC7a _ _o\a—1
O =50 7O+ Fyma Jy 0O
. B(a) [t o
ABCya _ _ _S)|
DEF) =1 [ B |~ 9| s
ik
where t > 0, f € C"([0,400),R), Ex(t) = Y32p Tk 1) is the Mittag—Leffler function and B(a) is a
normalization function with B(0) = B(1) = 1. In this paper, we define B(a) =1 — a + &

()’
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By applying Definition 3 to model (4), we get the following fractional-order model with
ABC operator

ABC 1y X mxy _
Dix = - =) = =G
X =rx (1 ) PR 1,

ABC Xy o =
Dyfaﬂ dy — H(y) = Ga.

(16)

Due to the lack of analytical theory, model (16) is investigated numerically. However, we first
show the existence and uniqueness of the solution of the model (16).

3.2. Existence and Uniqueness

We start this work by representing the Lipschitz condition of the kernels of model (16). Since the
harvesting is performed by obeying threshold harvesting policy, we give the proof into two cases i.e.,
y<Tandy>T.

We start for y > T. Let x,%,y, and § be functions satisfying ||x|| < a1, ||%]| < ap, |ly|| < by,
and ||| < by. Suppose that

my

81 :T+(ﬂ1+ﬂ2)K+*

h
gzzn—i-d—&—z.

Therefore, we get

X mx X mx
613 = Gl = (1= 5) = 2L ) — (12 (1- %) - 221}
B rx? mxy oz mxy
B rx—?—u_i_x—rx—&-? a+Xx
= B v R N x X
=||r(x —x) K(x ) my(a+x a-&-f)H
. 17)

Mrm )= T vt () - A= D) (
=|[r(x — %) K(x+x)(x %) (11+x)(u+7?)’

r m
§7||x—JEH+(a1+az)iHx—)?||+7y||x—fu
:(r+(a1+a2)%+%)\|x7x||
=g1lx—x|,

and
nxy _ hy—T) >_<"xy’ _ _M>H
1G2() HfH@+x DY - (2 - 2T
Y g My=T)  mg e BE-T) H
a+x 4 c+y—T1) a+x+dy+c+(y‘_T)
=9 4oy ch(y —7) ‘
T oa+x 4y -7) (c+y T)(c+7—T) (18)

<nlly—gll+d|y - yH+ ly -7l

(n+d+ )uy 7l

= lly—7l-
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When y < T, by utilizing the similar manner, we achieve ||G2(y) — G2(¥)| < g3 ||y — 7|| where
83 = n +d. Accordingly, the kernel of (16) satisfies the Lipschitz condition. Furthermore, if 0 < g1 <1
and 0 < g3 < g2 < 1, then G and G; are contracted.

Now, by employing the fixed-point theorem, the solution of model (16) is investigated. By utilizing
the Atangana-Baleanu fractional integral operator, model (16) is transformed into the following
Volterra-type integral equation.

_ t
*(t) — (0) le(—al)XGl(t,x) + m /O (t = 5)*1Gy (s, x)ds, »
_ t
90 =3(0) = 55 Galty) + s [ (=9 Gas y)ds
In a recursive form, Equation (19) is written as
1—a o t a1
(1) =y Gt ) + g [ (=) Galo 1), "
1- o

yn(t) = B(al;ccz(tryn 1)+ B(a)T () /t(t—s)“flcz(srynfl)dﬂ

The associated initial conditions along with Equation (20) are xo(t) = x(0) and yo(t) = y(0).
By considering Equation (20), we have the difference expression of successive terms as follows.

D1 (1) =x(t) — x4-1(t)
:136;; (Gi1(t, xu-1) = Ga(t, x4-2) /( L(Gy(t, xp_1) — G (b, xp_2)) ds,

(PZ,n(t) :yﬂ<t> - y?l*l(t>
e (Calt 1)~ Galt )+ g [ =9 (Galt ) — Galt2))

21

According to Equation (21), we get x,(t) = Yi' 1 @1;(t) and y, () = L. Doi(t). By applying
Equations (17), (18) and (21), we have that

191a()] < gy 1 1910+ gyt 19010l ¢ =) s,

o
(22)
H‘Dz,n()||<B(a;‘32\|‘1’2,n—1\\+ OO L1216 6= 9 s,

Therefore, by using (22), the existence and uniqueness of model (16) is presented as follows.

Theorem 12. Model (16) has a unique solution if we can find to such that

(I—-a)g;
B(a)

to8i
B(a)T (w)

Proof. Let x(t) and y(t) be bounded functions, and hence the Lipschitz condition is satisfied.
Thus, according to Equation (22), we obtain the following inequalities.

1210001 < ol (S5 + g )
)
)

@2, (O] < lyoll <(1;(z £t B(f)ﬁa))n'

+ <1,i=1,2,3. (23)

(24)
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Therefore, the continuity and existence of solution are proved since || P;,(t)| — 0 and
[|@2,n(t)|| — 0as n — oo and t = ty. Now, suppose that

x(t) = x(0) =xu(t) = Y1a(t),

25
y(8) — y(0) =ynt) — Yau(t). @)

We confirm that -
Yan(B)l] < (% + W) gt (26)

It is clear that [|Y;,(t)] — O when n — oco. By using a similar manner, we acquire
Y2, (£)|| = 0,1 — co. Finally, the uniqueness of solution for the model is proven. Suppose that there
exists different set of solutions denote by %(t) and §(t); then, we have

(1) = () = o3 (Ga(t3) = Gilt,9) + o

Wl/{)t(Gl(S,X) — Gl(szf))(tfs)“*lds. @7)

Taking the norm for both sides and using a simplification as in (22) and (24), we obtain

lx(t) — (1) (1 _a B_(Z))gl - B(:;é?(@) <o. (28)

For t = ty, we have (23), thus ||x(t) — %(t)|| = 0 and hence x(t) = (). Applying the same
algebraic procedures, we can show that y(t) = 7(t). Therefore, the solution is unique. [

4. Numerical Simulations

In this section, the numerical simulations of Caputo model (6) and ABC model (16) are
performed to illustrate the previous theoretical results. In the literature, there exist many numerical
methods to solve a system of fractional differential equations, such as the Monte Carlo method [64],
the Griinwald-Letnikov method [65,66] and the predictor—corrector method [67-69]. We apply the
predictor—-corrector scheme proposed by Diethelm et al. [67] to solve the Caputo fractional-order model
and the predictor—corrector scheme proposed by Baleanu et al. [69] to solve the Atangana-Baleanu in
Caputo sense model (ABC). Due to the limitation of field data, we use hypothetical parameter values
that correspond to the theoretical results. The initial parameter values are given as follows.

r=05K=1m=03,a=02d=01,h=01T=09,c=0.1, and v = 0.9. (29)

In Figure 1, we plot a bifurcation diagram by varying the conversion rate of consumed prey
into predator birth # in interval [0.08,0.2]. We notice that the parameter values (29) and the interval
0.08 < n < 0.2 lead to the non-existence of equilibrium point in (). Therefore, the first numerical
simulations are focused on the dynamics in ().

For 0.08 < n < nj = 0.12, Theorem 5 states that the predator extinction point E; = (1,0) is the
only equilibrium point which is asymptotically stable. To see this behavior, we take n = 0.1 and plot
the phase portrait and the time series as in Figure 2. It is seen that all solutions with initial values in
both ); and (), are convergent to E;. When the initial value is in (), then the solution is oscillating
when it crosses the threshold harvesting level and eventually converges to E;.

When 1 passes through 1], the equilibrium point E; = (1,0) undergoes a forward bifurcation.
In this case, there appear two equilibrium points, namely the unstable E; and an asymptotically stable
E. Figure 1 shows that Eis asymptotically stable if 0.12 < n < n; = 0.1557. In Figure 3, we show
the phase portrait and time series for the case of n = 0.14. We see that Ey = (0,0) and E; = (1,0)
are saddle points, while £ = (0.5,0.5833) is asymptotically stable. This circumstance corresponds to
Theorems 46 and 9.
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Figure 1. Bifurcation diagram of Caputo model (6) and ABC model (16) driven by the conversion
rate of consumed prey into predator birth (1) with constant parameter values (29). There exists two
bifurcations namely a forward bifurcation which occurs when 1 passes through nj ~ 0.12, and a Hopf
bifurcation which occurs when # passes through n3 ~ 0.1557.
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Figure 2. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29)
and n = 0.1: Figure (a) phase portrait; and Figure (b) time series.

Furthermore, if we increase the value of 1 such that n > 13, then the equilibrium point £ loses its
stability, and all solutions converge to a limit-cycle. This situation confirms the occurrence of a Hopf
bifurcation driven by 1. For example, if we select 7 = 0.2 then all equilibrium points are unstable and
all solutions eventually converge to limit cycle (see Figure 4).

Now, we perform simulation using the same parameter values as in Figure 4, but with a lower
threshold value, namely T = 0.5. In this case, there is no equilibrium point £ in Q;, and E* =
(0.5954,0.5364) occurs in (). According to Theorem 7, E* is asymptotically stable. Such dynamics
can be clearly seen in Figure 5. This simulation shows that by applying the THP when the interior
equilibrium point is stable, we can choose a suitable constant of threshold so that the existence of both
prey and predator are maintained.



Axioms 2020, 9,122

1.2 T T
—— Caputo —— Caputo |
—— ABC — ABC
1.0 == THP
0.8
S 06
= P T T
;i 1.0 —— Caputo |
0.l ] — ABC
0.8
=
< 0.6
0.2F x
0.4
Eq
0.0®Eq ° . 0.2¢
0.00 0.25 050 0.75 1.00 1.25 1.50 0 100 200 300 400 500
x(t) t
(@ (b)

Figure 3. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29)
and n = 0.14: Figure (a) phase portrait; and Figure (b) time series.

Notice that, in Figures 2-5, we see that both model with Caputo operator (6) and
Atangana-Baleanu operator (16) have similar dynamical behavior. The noticeable difference between
them is the orbit of solutions and the diameter of the limit-cycle. In Figure 4, the diameter of the
limit-cycle of the model with ABC operator looks shorter than that of the Caputo operator, which may
give different dynamics when a Hopf bifurcation occurs. To get more detail view, we plot a bifurcation
diagram by varying the order of the fractional derivative («) (see Figure 6). In this simulation, we use
parameter values as in Figure 4 and vary the order-« in the interval [0.6,0.9]. It is clearly seen that,
besides the diameter of the limit-cycle, the bifurcation points of Caputo model and ABC model are also
different. The Caputo model has an earlier bifurcation point than that of the ABC model. To show this
situation, we show some numerical simulations using different values of « (see Figure 7). For « = 0.7,
the equilibrium point E of both model are asymptotically stable. For a = 0.772, the equilibrium point
E of the Caputo model loses its stability, while that of the ABC model remains asymtotically stable.
For & = 0.83, the equilibrium point £ of both models are unstable.

1.2
—— Caputo mm— |C-ABC
—— ABC == THP
1.0F LC-Caputo

—— Caputo
0.8F — ABC
—~ 0.6
> 0.4
0.2
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0'00 250 500 750 1000 1250 1500 1750 2000
x(t) t
(@ (b)

Figure 4. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29)
and n = 0.2: Figure (a) phase portrait; and Figure (b) time series.
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Figure 5. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29),

n=02and T = 0.5.
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Figure 6. Bifurcation diagram of Caputo model

(6) and ABC model (16) driven by the order of

the fractional-derivative (a) with constant parameter values (29) and n = 0.2. There exists a Hopf
bifurcation where the bifurcation points of the Caputo model and ABC model are different.
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Figure 7. Cont.
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Figure 7. Numerical simulations of Caputo model (6) and ABC model (16) with parameter values (29),
n =0.2,and « = {0.7,0.772,0.83}: Figure (a) phase portrait; and Figure (b) time series.

From the biological point of view, all previous numerical simulations show that the dynamical
properties of both Caputo model and ABC model are similar except when the eigenvalues of the
Jacobian matrix evaluated at the interior equilibrium point £ are a pair of complex conjugate with
positive real part. There is a biological condition such that the prey and predator densities are
eventually periodic for the Caputo model, while for ABC model, the densities of both predator and
prey are eventually constant.

5. Conclusions

The dynamics of a Rosenzweig-MacArthur model with continuous threshold harvesting in
predator involving the Caputo fractional-order derivative and ABC fractional-order derivative are
studied. We prove the existence and uniqueness of solutions of both Caputo and ABC models.
Particularly, we completely investigate the dynamics of the Caputo model including the non-negativity,
boundedness, local stability, global stability, and the existence of Hopf bifurcation. From the biological
meanings, the extinction of both populations never occurs since the origin point (E) is a saddle point.
Some of the situations that might occur are: (1) the predator goes extinct while the prey still survives,
which is indicated by the stability of E;; (2) both predator and prey co-exist and converge to a constant
population density, which happens if the interior point £ or E* are asymptotically stable; and (3) both
predator and prey co-exist where both population densities change periodically, namely when a Hopf
bifurcation occurs. We show numerically that our model may undergo a forward bifurcation or a
Hopf bifurcation. The Hopf bifurcation in models with both Caputo operator and ABC operator can
be driven by the conversion rate of consumed prey into the predator birth rate or by the order of
fractional derivative. Our numerical simulations show that the Hopf bifurcation point of both models
are different.
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Abstract: The questions of the one-value solvability of an inverse boundary value problem for a
mixed type integro-differential equation with Caputo operators of different fractional orders and
spectral parameters are considered. The mixed type integro-differential equation with respect to the
main unknown function is an inhomogeneous partial integro-differential equation of fractional order
in both positive and negative parts of the multidimensional rectangular domain under consideration.
This mixed type of equation, with respect to redefinition functions, is a nonlinear Fredholm type
integral equation. The fractional Caputo operators” orders are smaller in the positive part of the
domain than the orders of Caputo operators in the negative part of the domain under consideration.
Using the method of Fourier series, two systems of countable systems of ordinary fractional
integro-differential equations with degenerate kernels and different orders of integro-differentation
are obtained. Furthermore, a method of degenerate kernels is used. In order to determine arbitrary
integration constants, a linear system of functional algebraic equations is obtained. From the
solvability condition of this system are calculated the regular and irregular values of the spectral
parameters. The solution of the inverse problem under consideration is obtained in the form of Fourier
series. The unique solvability of the problem for regular values of spectral parameters is proved.
During the proof of the convergence of the Fourier series, certain properties of the Mittag—Leffler
function of two variables, the Cauchy-Schwarz inequality and Bessel inequality, are used. We also
studied the continuous dependence of the solution of the problem on small parameters for regular
values of spectral parameters. The existence and uniqueness of redefined functions have been justified
by solving the systems of two countable systems of nonlinear integral equations. The results are
formulated as a theorem.

Keywords: integro-differential equation; mixed type equation; small parameter; spectral parameters;
Caputo operators of different fractional orders; inverse problem; one value solvability

1. Introduction

Fractional calculus plays an important role in the mathematical modeling of many natural and
engineering processes (see [1]). We can gladly refer to many examples of applied research works,
where fractional integro-differential operators are successfully and widely used. For example, in [2]
some applications of basic problems in continuum and statistical mechanics are considered. In [3],
the mathematical problems of an Ebola epidemic model by fractional order equations are studied.
In [4,5], fractional models of the dynamics of tuberculosis infection and novel coronavirus (nCoV-2019)
are studied, respectively. The construction of various models for studying problems of theoretical
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physics by the aid of fractional calculus is described in [6] (vol. 4, 5), [7,8]. A specific physical
interpretation of the fractional derivatives, describing the random motion of a particle moving on the
real line at Poisson-paced times with finite velocity, is given in [9]. A detailed review of the applications
of fractional calculus in solving practical problems is given in [6] (vol. 6-8), [10]. More detailed
information, as well as a bibliography related to the theory of fractional integro-differentiation and
fractional derivatives, can also be found in [11-18].

We also note the special role of generalized special functions, such as polynomials, in solving
fractional differential equations. In [19], using Hermite polynomials of higher and fractional order,
some operational techniques to find general solutions of extended forms to d’Alembert and Fourier
equations. In [20], the solutions of various generalized forms of the Heat Equation, by means of
different tools ranging from the use of Hermite-Kampé de Fériet polynomials of higher and fractional
order to operational techniques, are discussed. In [21], the combined use of integral transforms and
special polynomials provides a powerful tool to deal with fractional derivatives and integrals. The real
need to know the properties of such special functions in solving direct and inverse problems for
fractional partial differential equations has been shown in [22].

Applications for equations of mixed type are studied in the works of many researchers.
For example, in [23], an example of gas motion in a channel surrounded by a porous medium was
studied, with the gas motion in a channel being described by a wave equation, while—outside the
channel—a diffusion equation was posed. In [24], a problem related to the propagation of electric
oscillations in compound lines, when the losses on a semi-infinite line were neglected and the rest
of the line was treated as a cable with no leaks, was investigated. This reduced the problem under
consideration to a mixed parabolic-hyperbolic type equation. In [25], a hyperbolic—parabolic system,
in relation to pulse combustion, is investigated. Mixed type fractional differential equations are studied
in many works by scientists—particularly in [26-35].

The theories of integral and integro-differential equations are important in studying the large
directions of the general theory of equations of mathematical physics. The presence of an integral
term in differential equations of the first and second order has an important role in the theory of
dynamical systems of automatic control [36,37]. Boundary value problems for integro-differential
equations with spectral parameters have singularities in studying the questions of one-value
solvability [38,39]. Mixed type integer order integro-differential equations with degenerate kernels
and spectral parameters are studied in [40,41].

To find the solutions of direct mixed and boundary value problems of mathematical physics, it is
required to set the coefficients of the equation, the boundary of the domain under consideration,
and the initial and boundary data. It usually happens that, in solving the applied problems
experimentally, the quantitative characteristics of the object under study are not available for direct
observation, or it is impossible to carry out the experiment itself for one reason or another. Then,
in practice, the researchers can obtain some indirect information and draw a conclusion about the
properties of the studied object. This information is determined by the nature of the object under study
and here requires mathematical processing and the interpretation of research results. Nonlocal integral
conditions often arise when the experiment gives averaged information about this object. When the
structure of the mathematical model of the studying process is known, the problem of redefining the
mathematical model is posed. Such problems belong to the class of inverse problems. By inverse
problems we mean problems whose solution consists of determining the parameters of a model
based on the available observation results and other experimental information. Inverse problems for
equations of mixed type are studied relatively rarely due to the complexity of the studying process.

In the present paper, we study the questions of the one-value solvability of an inverse boundary
value problem for a mixed type integro-differential equation with Caputo operators of different
fractional orders and spectral parameters in a multidimensional rectangular domain.

The rest of this paper is organized as follows. In Section 2, we state the problem, which we will
investigate in this work. Section 3 is devoted to formally expanding the solution of the direct problem
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into Fourier series. In Section 4, we formally determine the redefinition functions. Section 5 contains
the proof of existence and uniqueness of Fourier coefficients of redefinition functions from a countable
system of nonlinear integral equations. Section 6 is devoted to the justification of convergence and the
possibility of the term by term differentiation of the obtained Fourier series. Section 7 contains the
proof of the continuous dependence of the solution on the small parameter. In the last Section 8, as a
conclusion, we formulate the theorem, which we have proved in this paper.

2. Statement of the Problem

We recall that the Caputo differential operator of fractional order m — 1 < a < m has the form

t
eDIF 1) = gy [ ="M 0)ds

where I' (z) is Euler gamma function.
In the multidimensional domain QO = {-T < t < T, 0 < xy,...,Xx, < I}, a mixed type
integro-differential equation of the following form is considered:

vaKl(t, s)U(s, x)ds+Fq(t, x), t>0,
A(U) — By (U) = % (@)
v [ Ka(t,s)U(s, x)ds+Fp(t, x), t <0,
-T

where

Filt,x) =ki(0) |0+ fi | % [ @w)gimdy ||, i=12,

ar
Cdwsgn() [ e 9E g
AS(U)* 2 CDOt eg axiaxiCD‘” u(t/ X)
1—sgn(t) 2 LR B
+ > CD()t EgaxiaxiCDOt U(t, X),

Bw(u) = =1 m

T and | are given as positive real numbers, w is a positive spectral parameter, ¢ is a positive small
parameter, v is a real non-zero spectral parameter, 0 # K;(t, s) = a;(t) b;(s), a;(t) € C2[-T; T], bi(s) €
1 1
CI-T;T], fi € C(Q) xR), [ |0i(y)[dy < oo, [[Oi(y)|dy=[...[1Oi(y)][dy1-... dYm,
ay ary 0 0
i,j=1,2,ki(t) € C?[0; T], ko(t) € C2[~T; 0], while g1(x) and g2 (x) are redefinition functions,
R=(-00;00), xc Q" =[0;]]",0< 1< <1, 1< Pa<ap <2
Problem. Find in the domain Q) a triple of unknown function

U(t x) € C(Q)NCUH(Q)NCH2(Q) NC22(Q)NCY 2 (Q4) NCRTA(Q)

#4240+ ...+0 2 +240+ .40 a1 +0424+0+ .40
mct,xl,xz,...,xm (Q+) N Ct,xl,xz/...,xm (Q*) N Ct,xl,xz,X3,...,x,,, (Q+) (2)

ﬂC“2+0+2+0+“'+0(Q,) A, O CMH0+ 4042 Q)N 0+ +0+2 Q)

b X1, X2, X3, 0 X b X1, ey X1, X b X1, ey X1, X
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and redefinition functions g;(x) € C (Q"), i = 1,2, satisfying the mixed integro-differential
Equation (1) and the following boundary conditions

U(-T,x)=¢1(x), CD& U(=T, x) = ¢a(x), x€Qff, 3)
U(t0)=U(1)=0, -T<t<T )
and additional conditions

[eru 0 =px), xeap, ©)

0

0
/q?z(t) U(t, x) =1(x), xeQf, (6)

ey
where 0 < 0 < 1, ¢;(x), ¥;(x) are given smooth functions, ¢;(0) = ¢;(I) = 0, ¥;(0) =
gi(l) = 0, i=1,2, C"(Q) is a class of functions U (t, x1, ..., x;u) with continuous derivatives
aa)th[' g 'xll{, ., g;% in ), Ctri(ﬂ) is a class of functions U (t, x1, ..., X;;) with continuous derivatives
aay—},l, 3%51, ., 31%’ inQ, C {tqtg*;r”?(ﬂ) is a class of functions U (¢, x1, ..., xp) with continuous

oAt 902U 740+ .40+ - . -
derivative araxy N O,..., Ct/th/xuﬂ/xm(()) is a class of functions U (¢, xq, ..., ;) with

continuous derivative aatfi% in Q), r, s are positive real numbers, Q= {fT <t<T, x¢€ Q;”},
Q'=0QU{xy, ...,y =0}U{xy, ..., xm=1}, Q- = {-T <t < 0,0 < x1, ..., %5 < I},
Q. ={0<t<T, 0<xy, ..., xm <I}.

3. Expansion of the Solution of the Direct Problem (1)—(4) into Fourier Series

Our investigation is based on the application of sine Fourier series to the mixed type
integro-differential Equation (1) of the complicated form. Hence, the solution of the mixed
integro-differential Equation (1) in domain () is sought in the form of the following Fourier series

0

U(t, X) = Z unibm,nm(t) 19711,»»»/"m(x)/ (7)
Ny, e, =1
where
”:fl,...,nm(t) = [ Ut x)B,. 0, (x)dx, t>0,

+ _ ar
t) = 8
unpm,nm( ) ”;1,.../11", (t) _ f U(t, x) 19111,444,nm(x)dx/ F< 0/ ( )

Q;ﬂ

1 1
/Ll(t, x)ﬂ,,l,,,,,,,m(x)dx:/.../U(t, ) Oy (X)d e d i,
0 0

m
2 .TTm . TNy
ﬂnl,m,nm(x) = (\/? s Txl cee.cSIN Txmr ny, ..., mm=1,2,...

In this order, we also suppose that the redefinition functions and nonlinear functions on the
right-hand side of the integro-differential Equation (1) are representable as the following Fourier series

gi(x) = Z ginl,“.,11ml9n1,m,Vlm(x)/ fi(x/ Vt) = Z finl,m,nm(vi) 19n1,...,nm(x)/ (9)
Ny, e, =1 ny, .., =1
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where

Sing, oty = / 8i(X) Oy, (X)X, finy, o on, (Vi) = / Fiy, Vi) Oy, eon (y) Ay,
Qr Qr

v =filv [@@a@dz|, i=12

Substituting series (7) and (9) into mixed Equation (1), we obtain two fractional countable systems
of ordinary integro-differential equations

CDgltth““,ﬂ”; (t) +e V’%l,...,n,,,CDgiunJrl,m,nm (t) + V%l,...,nm un+1, wee iy (t)
T (10)

=v [a(t)bi(s) .. n, ()45 + Finy, . m, (£, £>0,
0

DSy () F €2 DY (DR Pl (1)

0 (11)

=v [ a(t)ba(s) thy,,  p, (8)ds+ Fauy, .o, (1), £ <0,
-T

where iy, . n, = F/03+ ...+ 0k,
Finl,...,m,,(t) = ki(t) [ginl,...,nm +finl,m,nm(Vi” ’ i= 1, 2. (12)

We use the method of degenerate kernels. In this order, by the aid of designations

T

Tnl, 1 _/ ”nl, S (8)ds, (13)
0

L / b2(5) i, ., (5) 5 (14)

we present the countable systems of ordinary integro-differential Equations (10) and (11) as follows

CDM u;Tl, N ( ) + s,unl, ,nmCDﬁ 111, A,nm(t) + V%l,m,nm”rt,m,n,,,(t) (15)

— Vﬂ](t) 1/,+1 T +F1n1,m,nm (t)/ t> O/

DRy () F e DR () 3 @ity () »
=vay(t) T, m, ,+F2nl,...,nm(t)/ < 0.

The solutions of the countable systems of differential Equations (15) and (16), satisfying conditions

d
+ + - — — —
unl,m,nm( ) C1 My, ey M ” unl,m,nm( ) C1 N, ey My’ E”nl/ ey My (O) - Cz N1, e My

have the following form:

u:rrl,...,nm (t) =v Trj;,444,;1,,,‘F11;11,...,nm (tr 8) + ‘Y12n1,...,nm (tr E) + C+

1nq,...,ny,

‘Yl?ml,.“,nm(trg)/ t>0, (17)
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MI;I,..., W,(t) = VT;l,M,nlezl Ny, e, My (tr % (U) +‘Y22711,M/Ylm(t' & w)
(18)

+CIn1,..4,nmlF23771,~-,11m(t’ & w)— anl,m,n,,,lyz‘l”lr»»»r”m(t’ g w), t<0,
(i =1, 2) are for unknown constants to be uniquely determined,

+ _
where Cl Ny, e M’ Cinl, ey

t
_ ap—1 2 ny— 2 o«
T]]nl’___’nm(t, S) = /u](tfs)s 1 E(“l*ﬁl:“l)""l (*Sﬂnl,___,nms 1 ﬁl, 7””17»-.,74,”5 1) ds/
0

¢
' -1 2 - 2 ‘
Yizm, . n, (8 &) = / Frng, oo (E=8) 8" By ), (75}‘n1,m,nmsal P, 7}47’1/«-~/”n1504) ds,
0

2 — 2
‘Y13nl,...,nm(tl 8) = E(le—ﬁl, ar),1 (78 an,.u,n,,,t‘xl /Slr Hn ,...,nmt’ll>

0
ot b @) = [ aa(s = 1) (=51 Wasi (1 6, w)ds,
t

0
‘Y22n1,m,nm(t/ g w) = /Fan,...,n,,l (5 - t) (75)0‘271‘1;25;11,.“,11,”0/ £, w)d S,
t

‘Y23n1,...,nm (t/ g w) = E(aczfﬁrz/ ay),1 (_S ‘u%ll/m/nm(_t)ﬂ’z*ﬁz, _Hil,AAA,nmwz(_t)M) ’

az)
’

‘F24H1,---,ﬂm(tf & w) = tE(az—/Sz, ay),2 (78 V%l,...,nm(ft)lxz_ﬁz/ 7?‘%1,.“,11,,, w2( t)
Y25n1,...,nm(tr & (‘)) = E(zxzfﬁz,az), ay (75 ‘u%l/m/nm(is)véz*ﬁz’ 774%11,“”1", (")2(75)“2) ’

The function E, g),, (21, 22) is a Mittag-Leffler function of two variables:

0 Z"llzmz
E (er ZZ) = #/
(e B)y ,,11,;2:0 T (y +amy +pmy)

wherez;, a, B, v € C, Re(a) >0, Re(B) >0.
From the statement of the problem (properties in (2)), it follows that the continuous conjugation

condition is fulfilled for the main unknown function: U (0 + 0, x) = U (0 — 0, x). Therefore, by taking
Formula (6) into account, we have the conditions for Fourier coefficients of the main unknown function

u;l,...,?lm (O + 0) = f u (O + O' x) ﬂ"l/m/"m (x) d X
a
19
= [U©O0,x) B, () dx =7, (0-0) 4
a
We put
Ping,....nm = / (Pi(x) 19711,..‘,71”, (x) dx, i=1,2.
ar

Then, taking (8) into account, from the conditions in (3), we obtain

@3 = [ Q1) by (A5 = 1y
ar

(20)

uﬁl,.u,n,,, (_T)
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Dty (=T) = [ cD§U(=T, x) 8y, ..n, (x) d x
Q;”
= f q)z(x) lgnl,m,nm(x)dx = P2ny, .., np-
Q;”

1)

By the aid of the continuous conjugation condition (19) from (17) and (18), we have the relation

that CTnl oty = CInl ot To find the unknown coefficients of the integration CInl ot and
Conyyoiy N (18), we use the conditions (20) and (21) and deduce the following system of linear

algebraic equations:

v Tn_l,m,nm‘{fﬂ nl,m,nm(_T/ & w) + 1i1221/11,444,1/t,,,(_T/ 19 w)+
+C1n],m,nm‘fr23n1,m,nm(*T/ g w)— C2n1,m,nm‘Y24nl,...,nm(*Tr g w) = Ping, ..., 0y

VT oD oty g (T, & @) DY ¥, (T, € )+ e
+Cogoo i D8, Yoz, (—T, 8, w) — Conprooim D8 Faany, (=T, & @) = @ony,. s
where by DY ¥ (—T) is denoted D%t‘l"(t)| i—_1 - We assume that
Ty, ey (@) = ¥2amy, .y (=T, & @) - DG ¥oay, i, (—T, & W) 2
Y231,y (=T, & @) - DG ¥4y, (=T, & @) #0.
If the condition (23) is fulfilled, then the system (22) with respect to C Tng, ot and C 20y,

is uniquely solvable. By solving this system (22), we arrive at the following presentations for these
unknown coefficients
o 3 1
1ng, . nm — Tyt ((U)

0
X |:§01 Ny, e, i DOtYZ4 n1,4..,nm(_Tl g UJ) + q’an,...,nm‘Y24n1,...,nm (_T/ g, w)_ VTn1,M,nm

X (‘1’24;11,...,%,(*7", &) D8 ¥o1ny,. i, (—T,6,0) = ¥o1n,. 0 (—T,6,0) Dg;‘l'zm,_.,nm(*T,S,w)>

c, =— -
201y, e, My Unl, ity (w)

0 _
X |:¢1n1,wn,,, DOtT23n1,444,;1m (_Tr g, W) + (PZn],...,nm‘FZSnl,...,nm (_T/ g W) — VT, i,

X (T23n1,...,nm (7T/ [ W) Dgt‘YZlm,...,nm (7 T,e, w) —Youuy,. (7 Te, w) Dgt‘YBnl,...,nm (7T/ £, w))

By substituting these results into (18) and taking into account Cfnl ot = Cny, oy 0 (17)
and designation (12), we obtain the following representations for the Fourier coefficients of the main

unknown functions in the positive and negative parts of the domain:

unJrl,,,,,n,,l(tr £ W, V) = [(Pl [y + (P2n1,...,nm} N1 nl,m,nm(tl g w)
+v TIl,m,n,,, N1z nl,.,,,n,,,(tr 8) - VTrTl,M/nm N13n1/m,nm (t/ g w) + [g1 et + fl 11, ey i (Vl)} (24)

XN]4n1/...,14,,l(tr E) + [San,“.,nm +f2n1,...,nm(vz)] N15141,...,71m(tr g, (‘J)/ t>0,

”nl,m,n,,,(t/ & W, V) =@ nl,m,nmNZI nl,m,nm(t/ & W) + (Pan,...,nmNZan,...,nm(t/ g, w)
(25)

+v Tnil,m,nmNZSnl,...,nm(tr £ w) + [anl,.“,nm +f2n1,...,nm(v2)] N24n1,wnm(t/ & ‘U)/ t <0,
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where

1
Nitng, ccyny (b & W) = ) Y130y, (£ €) ¥ouny, (=T, € w),

ity oy (W

Nizuy, i (b €) = F11ny, . nn ( €),
1

0
m [YZ‘I”I""'”"I(*T' g, w) Do Yorn,, . nn (=T, & w)

Nizny, . ny(t & W) =

—Yo1ny,en (=T, & W) Dgt‘l’za‘nl,...,nm(*T, g, w)] Y13y, (t €),

Nigny, ., n(t €) = F12ny, ., (1 €),
1

Oy, i (Oj)

—Youny,.on (=T, & W) Dgﬁzznlwnm(fT, g, w)] Y1z, o (t €),

Nisi, .ol & @) = [?22"1"“’""'(771’ £ w) D(G)fly24n1,-..,nm(*T, €, w)

1
Notny, .oyt & w) = m {T23Vl1/...,nm(t/ g, w) Dgt‘I’menm(_T, e w)
17+ m
~Youny, .. ny(t, & w) Dgt‘fzsnl,...,nm(—T, €, Q;)] ,
1
Nozny, ooy (t & W) = T (@) (Y230, (£ & @) ¥ouny, o (T, & @)
oo T

Y210y, (t & @) Y23y, (=T, & )], Nogiy,my, (E & @) = ¥o1y, . m,, (1 & W)
1

0
,m [‘Yzz;nl,...,nm(*T, & w) DGy Yoruy, .., n, (=T, & w)

71F21n1,m,”m(7T/ g, CU) D(G)t‘Y24n1,...,nm(*T, g, a])] ‘I[23n1,m,n,,,(t, g, w)

1

IR
I ()

[‘I’zam,--.,nm(*T, €, W) Dgt‘I’n gy (=T, &, @)

Y21y, (=T, & @) DG Y2301, (=T &, w)] Yoany,onu (b & @),

N24”lr~v”m(tf £ w) = W7.2711/...,n,,, (tr £, w)
1 __
+7(w) [‘Yzzm,...,nm(—T, €, W) Dgt‘I’M,,lwnm(_T, £ w)

Ony,..om,

1

4 -
Ty, iy (UJ)

[?221«1,“4,:1”,(—1 €, w) DgtYZ?)nl,m,nm(—T/ £, w)

Y23, n, (=T, & @) Dgf?ﬂnl,...,nm(*]’, g, w)] Youny,..,nn(t, & @),
t

?12n1,,,.,nm(t, ) = / ki(t—s) g1 E(a17ﬁ1la]>,a1 (—8 Vri,.,.,n,,,sal_/sl, _Vr%l,,,,,nmslh) ds,
0

0
o2y, (b €& @) = /k2(5 — 1) (=) " Wosp,, o (t & w)ds.
t
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According to the degenerate kernels method, we substitute these presentations, (24) and (25),
into designations (13) and (14):
TnJlr,...,nm [l —VX12nq,...,np (8r w)} +v Ty, vt X131, o0y (51 (U)
= [(Pl 1, eyt + P2 nl,,,.,n,,,} X11nq, ..., npy (81 ‘U) + [glnl,...,nm + fl N1, ey (Vl)] X14n1,.,.,nm(5/ w) (26)

+ [anl,m,nm +f2n1/m,n,,l(v2)] XlSnl,m,nm(E, ‘U),

Tars i 1= VX211, (& @)] = @1y, oomy X211, ooy (& @)+ @201, o1y X201, o1y (€5 W)

(27)
+ [San,m,nm +f2n1,m,nm(V2)] X24nq,...,ny (8/ w),
where
T
Xing, .. n (& W) = /hl(s) Niiny,..,n, (5, €& w)ds, i=1,5,
0
0
X2ing, . ny (& W) = / b2(s) Nojny, ... ny (5, € w)ds, i=1, 4.
T

We solve the linear algebraic Equations (26) and (27) as a system of algebraic equations with
respect to quantities 7,/ ‘and T, _ , .If the following conditions are fulfilled

VX120, (& @) F 1, VX2 0y, o (6 @) # 1, (28)

then, from (26) and (27), we derive

Tnt,,.,,n,,, =@ nl,.A.,anll Y, ey iy (Er W) + (P2111,.4.,n,,,M12n1,,“/ ™ (&, w) (29)
+ [glnl/m,nm + flugei (V)] Mizn,,...n, (& @) + [$20,.my T+ f21,0 1 (V2)] Mign,,...n,, (e, w),
Tn_l,m,n,,, =9 111,4“,an21 M1y ey i (5r w) + (P2n1,...,an22 N1y ey i (gz w)
(30)
+ (8201, e+ f2myy ey (V2)] Mz, oy (€ @),
where
1 X13n4,...,n (E,Ld) X2iny,...n (s,w)
My, (6, W) = ———— | X11ny,..n, (W) =V Lo Lo ,
Lin.e.n ( ) 171’?(]2}11,...,;1”,(8/“)) [ et ( ) 171/7(23141,,“/11",(5/“7)
. Xidny,.,n, (& W)
i=1,2, M13n1,...,nm (Sr w) = e oo o ’
1- VX12ny,...,nm (81 W)
1 X13ny,...,1n (glw) X24ny,...n (s,a})
Mign,,...n, (8, 0) = — [}(15 ity (8, ) — v Lo ,
et (€1 0) 1=vxim,.n, (& w) i (6160) 1—vxam,.m, (8 W)
X2iny,...,n, (Sr w) . X24ny,...,n (51 “7)
My; yw) = ———re————, i=1,2, M , W) = e
2t (s OJ) 1- VXZSnl,A.A,nm (er UJ) ! B <€ w) 1- VXZSnl,A,A,n,,, (5/ ‘U)
Substituting presentations (29) and (30) of Tnil,m,nm into (24) and (25), we derive
un+1,...,nm (tr g W, V) =@ Vll,m,fllel M1, ey M (t' & W, V) + 902?11/m,anlznll---,nm(t' & w, V)
+ [glnl,...,nm +f1 nl,...,nm(vl)] QlSnl,...,nm(tr £ w, V) (31)

+ [anl,...,n,,, +f2n1,m,11m(v2)} Q14n1,m,n”,(t: g W, V)/ t> O,
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Ui, oo (b & @0, V) = @1y, 1, Q2 ny, o (& @, V) + @20, Qo2 my (E € 0, V) )
32
+ [anl,m,nm +f2n1,wnm(v2)] Q23n1,m,nm(tr £ w, V)r < 0/

where

Qlinl,m,nm(tr g w, V) = Nn M1, ey i (t/ g ‘U) + VNlan,m,n,,,(t/ g w) Mlinl,...,nm (‘S/ w)
-V Nl?ynl,...,n,,,(tr g w) Moin,, ... i (6 w), i=1,2,
Q1311 (t & @, V) = Niguy, o0y (B & @) +V N2y, oy (B & @) M1z, . ny, (8, @),
Quany, ...yt & @, V) = Nisny, _u,(t, & )+ Nigu, ., (t & @) Mian,, ., n, (& w)
VN, i (b € @) Moz, oy (€ W),
Qaing, ooy (b €& W, V) = Nojyy o (E &, @) +V N3y, ., (b € @) Maig, o, (6, @), i=1,2,
Q23ny, .y (B & @, V) = Noguy, oy (t € @) +V N3y, iy (E & @) Moz, (8, @).
Now, we substitute presentations (31) and (32) into the Fourier series (7) and obtain the following
formal solution of the direct problem (1)—(4)

0

u (t/ X, & W, V) = r ﬂ”lr»w”m (x) [(Pl N, ey Qu MY ey i (t/ £ w, V)

ny, .., =1

+(P2nl,...,nmQlZm,,,,,nm(tr & w, V) + (glm,...,nm +f1n1,...,n,“ (Vl)) Q13n1,,,.,nm (tr & w, V) (33)

+ (ngxl,...,nm +f2nl,...,nm<v2)) Q14I’l1/.--/”m<t’ & w, 1/)} , E> 0’

o]
u (t/ X, & W, V) = T 19711,---, i (Y) [901 MY, ey i Qo1 MY, ey i (t/ g w, V) + P2ny, . iy
e =1 (34

XQZan,..,,nm(t/ £ w, V) + (82711,,,,,»1,,, +f2n1,,,,,n,,,(v2)) Q23n1,,,,,nm (t/ & w, V)] , t<0.

We suppose that the conditions of (23) were violated for some values of spectral parameter w. So,
we have to consider the algebraic equation with respect to spectral parameter w

7111,...,71,,,(0-7) = 1Fzzirn],m,n,,,(_Tr £, w) : D%tT23n1,444,n,,1(_Tr g, W)
(35)
Y23, ., n, (—T, & @) - D§¥oan,, . n, (=T, & w) = 0.

The set of positive solutions of this algebraic Equation (35) with respect to the spectral parameter
w, we denote by ;. We call these values w € S as irregular values and, for these values,
the condition (23) is violated. Another set A; = (0; o)\ J; is called the set of regular values of
the spectral parameter w and, for these regular values, the condition (23) is fulfilled.

Now, we assume that the conditions in (28) are violated
VX120, ...,nm (S, w) =1 vxas M1, o i (‘C-r w) = 1. Hence, we have

1 1
v =

= V) = .
X12n1,wnm (Sr (,())/ X23ny,..., 1y (E/ (4})

For regular values w € Ay there hold X121, ... n,, (& @) # 0, X23ny,...,ny (& @) # 0. So, we denote
the set {vy, 12} by §». Then aset A, = (—o0; 0) U (0; o0) \ I3 is called the set of regular values of
the spectral parameter v. Therefore, for all values of v € A5, condition (28) is satisfied. We use the
following notation X = {ny, ..., n,, € N; w € Ay; v € Ay}, where N is the set of natural numbers.
This is the set on which all values of the spectral parameters w and v are regular. Therefore, in this case,
we study the solution of the direct problem (1)—(4) in the domain () as Fourier series (33) and (34).
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4. Redefinition Functions
Suppose that the functions ¢;(x) expand in the Fourier series

lpi(x) = Z lpin],...,nmﬂnl,wnm (x), (36)

ny, .., npy=1

where
Pinsonn = [ 90 By (A, 1 =12, 11,y = 1,2,
Q}”

By virtue of series (33), (34) and (36), we apply conditions (5) and (6):

[ee] (o)
Z 1 ”114441”11119”1:---/”m(x) = Z Ory, ooy (x)
ny, e, =1 ny, .., np=1
T
X /q)l (t) [‘Pl nl,...,anll M1, e i (t/ g w, V) + (Pan,m,nmglznl,...,nm(tz £ W, V)
0

+ (glnl,m,nm + flugtn (W) Q131101 (te,w,v) + (82ny,..my + forsn, (V2)) Q14ny,.. iy, (t,e,w,v)]dt,

[ee] [e°)
E lPZnl,,“,n,,,ﬁnl,m,nn,(x) = Z 19nl,...,nm(x)
Ny, e, =1 ny, ..., =1
0
X / (DZ(t) [(Pl nl,...,anZI nl,...,nm(t/ g w, V) + Qony, . Q22n1,m,nm(t/ g w, V)
-T

+ (anl,m,nm +f2n1,...,nm(v2)) Q23n1,...,n,,,(t/ & W, V)] dt.

Hence, we obtain
Ylugym = Pligyeein Y11y (& W, V) + @211 i Y1201, 1 (€, 00, V)
F(S1ng, e+ F11, i (V1)) Y130y, (€ @, V) (37)
+ (82111, oo T L2111 (V2)) Y1any, .. (6, @, V),

[02) i, ety — P1 nl,m,n,,,Y21 11, ey i (Er w, V) + @2 nl,...,anZan,...,nm (S/ w, V)

(38)
+ (8201, eyt T S21, s (V2)) Y2301,y (€ 0, V),
where ,
Ylinl/...,nm (S/ w, V) = /q)l(t) Qlinl,...,n,,,(t/ g W, V) dt, i=1,4,
0

0
Yoing, ., (& w, v) = /<1>z(t) Qaing, . nn(t, & w,v)dt, i=1,3.
-T

The relations of (37) and (38) we consider as a system of functional algebraic equations with respect
to coefficients of redefinition functions. By solving this system, we obtain the following representations

81ny,im (ar w, V) + flnl,...,nm (V1) = lplnl,m,nmAllnl,.“,nm (S/ w, V) + lpZn],...,nmA]an/...,nm (E/ w, V) ( )
39

F Py, i D131y, oy (8 O, V) + P2y, Didiny, oy (6 @, V),
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g2"1/~~«/"nz(€’ w, V) + fz N1y i (VZ) = 11]2 nl,m,n,,,A21 Vll,m,nm(sl w, V)
(40)
F P11, 1 B2y, 1 (& W, V) A Q2111 D23y, (€ O, V),
where
—1
Ay MY, ey M (Sr w, V) = (Y13n1,m,nm (gr w, V)) ’
-1
A2y, (80, V) = =Yo30,, o (& @0, V) Y13y, ony (& @, V),
-1
A3y, i (3/ ‘UIV) = [_Yllm,...,nm (Er ‘U/V) + Y21n1,.4.,71m (8/ w, V) Y23n1,...,n,,, (3/ er)] (Y13m,...,nm (51 w, V)) ,
A14nl,.“ My (8/ u),V) = [_Y12n1w,ﬂm (Sr w, V) +You,,. (Sr w, V) Y230, 1 (5: w, V)] (Yli’ml/m,nm (Sr w, V))71 ’
-1
Aoty (8 0, V) = (Y03, oy (65 @0, 1)),
-1
Doy, (& @, V) = —Yorp, (&, w, V) (Yosny, nn (e w, v)) ",

-1
A23n1,m,nm (E/ w, V) = 7Y22n],m,n”x (sr w, V) (Y23n1,...,n,,, (51 w, V)) .

We rewrite Formulas (39) and (40) in the form of countable systems of nonlinear integral
equations (CSNIE)
ginl/m,nm(er w, V) =1 (ginl,m,nm) = Cing, ooyt (S/ w, V)

(41)

- f fi Y, f ®i(z) 2 ginl,m/nm (S/ w, V) ﬁ”lr-w”m (Z) dz ﬂnl:mrnm (]/) dy' i= l’ 2'
Q;n Q;n ny, .., =1

where
Clng,...,ny, (‘C—/ w, V) =1 n],...,n,,,All Ny, ey My (Sr w, V) + ¢ nl,.“,n,,,AIZn],.“,nm (5/ w, V)

+¢1 nl,...,nmA13 M1, ey i (8/ w, V) + (P2n1,m,nmA14 N1, ey M (€/ w, V),
2y, (& W, V) = Y20y, ny Bty .y (& W, V)
P11, B2211, (&, w,v) + Q211 . n D23 nl,...,n"[(sl w, V).

5. Unique Solvability of CSNIE (41)

We use the concepts of the following well-known Banach spaces, including a Hilbert coordinate

space (; of number sequences {bn,,...,n, },,, 1 with the norm

eoer M=

oo
2
1o, = Y bl ® <o

ny, e, =1

We also use the space L»(Q)f") of square-summable functions on the domain ()" with the norm

18 () | Lyeapry =

In the process of proofing the unique solvability of CSNIE (41), we need the following conditions.
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Smoothness conditions. Let functions

¢i(x), pi(x) € CHQP), fi | x, /®i(y)gi(y)dy €CHO"xR), i=1,2
O}?l

in the domain Q" have piecewise continuous third order derivatives.
Then, by integrating them in parts three times over all variables x1, x», ..., x;;, we obtain the
following formulas [41]

2
o (3m) 2< <%>m/ aSm(Pi(x) p n
I
d (3m) 2 2\ " a?;mwi(x) ’
< (= IS 0 S
) anl[l"’ml o] —(1) / ax3axd...0x5| 1V @)
17 s tm O.;"
(3m) (3m)
| , ‘7 i 3m (Pznl oo |7 i Sm’lpinr,l...,nm (44)
¢zn1,4..,nn, - - n?“.nm S | — - }’Z?A..Tl% ’
where
a3m
(pml m,nm /ax3ax2 axmﬂm,m,nm(x)dx,
(3m) 85m1,l71 .
l/]l?ll S s 1 /ax3ax 19”1:m:7”ltl(x)dx’ 121’ 2.
2
We obtain also that
(8m)
1 3m finl,,“,n,,,(x’ Vl)
; Viyl=1{— —_—L 45
im0 = () 7 )
= (3m) 2 2\" aSmfi(x Vl) ’
Z {finl,...,nm(vi)] < <7> / dx30x3 3 dx, (46)
11, oy =1 O X70x3 ... 9 x5
I
where

3m g, g
fl(nitn)n (Vl) = o fl(x, Vl) 197’1:---rnm(x)dx’ i=1,2

m i ox3ox3 ... 0x}
We use also the following well known properties of the Mittag-Leffler function:

(1) For all &k > 0, a0, Bo,70 € (02, a0 < PBo < 7, t > 0 the function
tPOYE o, go,vo (—k %, —ktP) is complete and monotonous and there holds

(=1 [tﬁOilE(zxo/ﬁo)/”m <_kta0r _ktﬁoﬂ v >0, s=0,1,2,... (47)

(2) Forall ag, Bo € (0,2), v € Rand argz; = 7, there hold the following estimates

Cq
<
’E(IXOrﬁO)r'YO (21, 22) ‘ =15 |Z1 ’ (48)
2
E (ay, o), 70 (€121, 22) = E (aq, pg), o (€271, 22) ‘ <ler—e| T‘er @
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where 0 < C; = const does not depend on z, ¢; € (0; €9), 0 < ey = const, i =1, 2.

According to the properties of the Mittag-Leffler function (Formulas (47) and (48)) the quantities
A, yny (& @, v) (j=T1,4)and Ay, . u, (¢, w, v) (j =1, 3) are uniformly bounded. So, for any
positive integers ny, ..., ny, there exist finite constant numbers Cy; (i = 1, 2), by which the following
estimates take place

max max ‘Al 111, eyt (&5 W, V) | <Co, j=14 (50)

ny, .., npeN j

A e, w, V)| <Cqp, j=1,3, 51
11, ooy M € /mathbbN ] ! 2/jm, - n,,,( ) ‘ stoy ) (1)
where 0 < Cp; = const, i =1, 2.
Lemma 1. Suppose that the smoothness conditions are fulfilled and

| filx, Vaii) — fi(x, Vai) | < Kqi(%) | Vi — Vaai |, p < 1,

3m
where p = Cos73 || ©i(x) || L) 13 = Cos (%) "

[ee]
1 93MK 4;(x .
Co3 = Z ——— < 00; max 71’() <Cpu<oo, i=1,2.
no ... .nb i |[ox%9x3...0x3
ny, .., ip=1"1 +"tm 1 2 m LZ(Q['")

Then, for regular values of spectral parameters w and v, CSNIE (41) is uniquely solvable in the space (5.
In this case, successive approximations are defined as follows:

gionl/...,nm (8, w, V) - C1n1, My gznt,l on m(E, w, V) = Iinl,.“,nm (gf), i= 1r 2. (52)
Proof. We apply the method of successive approximations and the method of compressive mappings.
We use Formulas (42)-(44) and estimates (50) and (51). By the aid of the Cauchy-Schwartz inequality
and the Bessel inequality for the zeroth approximation of the coefficients of the redefinition functions
from successive approximations (52), we obtain

[e°]
Hg?(e, w, V) ”[2 < x |Cln1,“,/nm(£r w, V) ‘
N1, e =
. m .
< > ‘ P nl,.,.,w,,,Allnl,,.,,nn, (5/ w, V) | + r ‘ oy, oy D120, 1 (5/ w, V) ‘
Ny, e, Myy=1 11,y My =1
(e°] [ee]
+ r | P1 nl,,A./nmA13111,.A.,n,,, (Sr w, V) ‘ + x ‘ 4)27“,-~-,nmA14n1,«»«,nm (Er w, V) |
A1y ey M =1 1, ey M=

[e°] [e°] [ee] oo
< Cn r |1/71n1,“./n",‘ + r |1p2n1,...,n,,,‘ + )y |(Pln1/ ,nm‘ + r ‘(P2n1,4.4,nm|

o= et =1 e =1 11, =1
(3 G
<ca (£)™ {le e imzl e -
Ny, e, My =1 1 m 11, ey =1 1M
cen ()" E e Uw Ao, o7, 1o,

H 037y (x) | +| 9" (x) |

9xJ9x3 ..9x3, Lz(Q}") 0x30x3..0x3, Lz(an)
2" g1 (%) R 2169)

+ | s soela) <o
0x30x3..0x3, LZ(Q]") 9x30x3...0x}, LZ(Q}") 4
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[}

3m
where 71 = Cg1Co3 (2)" (L,I) , Coz = r ﬁ <09

P R
0 oo oo
H ga(e w, v) ” 05 < r lean, ., (e w, V)| < r [ Y20, mu D210y, . my (& W, V) |
Ny, e, Ny =1 Ny, ey M=
[ee] [e*]
+ r | Plag, i D201, 1 (3/ w, V) ‘ + r | P21,y i D230, 1 (5/ w, V) ‘
M1, ey M= ny, e, Mp=1
@ (3m) (3m) 54
con(@)"] oMl g oldtel, § ol ©9
ny..nj, ny..nj, _,onp.ny,
ny, ., y=1 N1,y =1 11,y =1
" a(x) | %" g1 (x) 93" s (x)
B T Y [P R P
=72 |: 0x3023...0 X3, Ly (an) 0x3023...0 %3, Ly (QIn) 0x3023...0 %3, Ly (Qrz) 4

3m
where Y2 = C02C03 (%) " (i

T

By Formulas (45) and (46), using the Cauchy-Schwartz inequality and Bessel inequality for the
first difference of approximation (52), we obtain

s (e w,v) = giew v, < ¥

fﬁ( Jows y,ewvw) By () dx

ety =1 |
(55)
3m ) 3'”) ( ) ) ?3mf, (x VO)
< (i) nl Ylm < i < oo,
e m,...,zr:rmzl g, =T 9x70x3..9x, LZ(Q;")
I 3m o i
where 73 = Cg3 (;) (£, = [0;x)&x & w v)dx, i=1,2.

QYH
Analogously, by the condition of the lemma and expansion (9), using the Cauchy-Schwartz
inequality and Bessel inequality for an arbitrary difference of approximation (52), we obtain

H e, w,v) — g¥(e, w, v) H
3
aSlu k— 1
g H ax79x3.-0x], |ff(x' Vi) = filx, Vi || L)
<73 [ 10i(y)] "g-k(y,& wv)-gi Ny 6w, V)‘ dy H Skl (56)
hS a i i dxidx3...0x} Lao(Q")
<Cura [ 10:(v)] b @ =gl e @) |18 ) |dy
" n, n,,,
<p Hgf“(e, w, v) —glfl(s, w, V) H[Z, i=1,2,
where
33K yi(x)

SC04<OO, i=1,2.

L2(op)

By the condition of the lemma, p < 1. Therefore, it follows from estimate (56) that the operators
on the right-hand side of (41) are contracting. From the estimates (53)—(56), it is implied that there
exists a unique pair of fixed points {g1,,.n, (& @, V); $2ny,..,n, (€, @, v)}, which is a solution of
CSNIE (41) in the space £5. The Lemma 1 is proved. [

p=Corvs |0i(1) I, (qy - max

i |[ox30x3...0x}
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6. Convergence of Fourier Series (57)

Now, we determine the redefinition functions. In this order, we substitute representations (41)
into the Fourier series (9) and obtain

=)

gi(x/ & W, V) = x 19711,...,71"1 (x) [Cin1,...,nm (5/ w, V)
ny, ., Mp=1

) (57)
- f fi Y, f ®i(z) Y 8ing,im (81 w, V) ﬂnl,..mm (Z) dz 19111,‘“,14,,, (y) d]/ ,i=1,2.
Qp ar e tm=1

We prove that the following lemma holds.

Lemma 2. Assume that the conditions of Lemma 1 are satisfied. Then for reqular values of spectral parameters
w and v, the series (57) converge absolutely.

Proof. We use estimates (53)—(55). Using the Cauchy-Schwartz inequality and Bessel inequality for
series (57), we obtain the following estimates

(o)
S0 B (B ()] [|1 (e w, V)|

Ny, ey Mp=1
Qf A (y, f O4(z X 181 11, ey (& @, V) Oy, oy, (2) dz) B,y () dy H
m n P ——
B3 3 3
<Coup (7) (%) [Cm 1P1( ™) . +Cm H‘IJ( B 0
C (3m) (3m) (58)
+Con[[ o]+ canf| 8™+ 52 0]
2 2
a'imlp (') a'imlp (\, a?ww
S |:H 9x30x3..0x}, Lz(om H ax*ax: 0x3, Lz Qm H Bx*arzl 0x3, ‘ LZ(O;n)
33!"(’7 (Y) a?mf (Jf V
+H EFSCFS ) L.(ap) H EFSCr =) 81:( LZ(Q;NJ <o
5256001 < E (00 e2mm e 0, 0)
N1y ey M=
Qfm f (y, f O (z n Z;; 7132711,‘.‘,71"1 (& @, v) Oy, my (z)dz) B, enn () dy H
P (59)

a:im(P1 (x)

a3mlp2(x) H
<l R E
S745 Lo(ap) 37073 ..0x%

9x39x3 3
xX70X3...0 X3,

L2(y)

93Mgy(x)

_ 9" ¢galx) %" f(x, Va)
+ H 0x30x3..0x3,

eI
LZ(QIYH) 9x30x3..0x3,

’

o)

where

H 9" fi(x, V3) / { 2 V) 17,
_Y JiNb P2) — 7 i\ ) X,
Bxi'axg...ax%, Lz(OI’”) Q.;n axﬁax%...ax%

Vi= / ®i(y) Z 8ing, ...,y (51 w, V) 19/11,...,71", (Z) dz, i=1,2,
Qm 1y, ey =1
1
2 % 1 3m

74 = Co3Cos (7> (;) , Cos = max {Co1; Cop; 1}.

From (58) and (59) the convergence of series (57) is implied. Lemma 2 is proved. O
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So, we determined the redefinition functions as a Fourier series (57). Using representations (39)
and (40),we can present Fourier series (33) and (34) of the main unknown functions as

[e<]
U(t, X, €W, V) = r ﬂnl,...,n,,, (X) [lplm,m,nmW11n1,4..,n,,,(trgl w, V) + 1P2n1,,.,,n,,,W12n| ,,,,, n,,,(tr & w, V)
Ny ey =1 (60)
+¢1 nl,.,4,n,,,W13n1,4.4,n,,,(tr £ W, V) + P2ny, .0 W14n1,...,n,,,(tr & W, V)] , t>0,
[ee]
u (t, X, & W, V) = x ﬂm,.u,nm (x) [¢2r11,.“,n,,, Wo1 M1, ey My (tr g W, V)
Ny, ey Nyp=1 (61)

F @1 W22y, o (£ € 0, V) + @200 Wz, o (E €, w0, V)], 1 <0,
where
Wi nl,...,nm(tr & w, V) =Ajy nl,...,nm(‘c-r w, V) Qi3nl,...,nm(t/ g w, l/), i=1,2,
Wi, (t €@, V) = Moy, n,, (8@, V) Quany,..n,, (£ € @, V) + Botpy,. oy, (8,0, V) Quany,..m, (£ € @, V),
len1,4.4,n,,,(tr g w, V)= Qlj—Zm,...,n,,,(t/ g w, V) + Aljm,...,nm (&, w, v) Q13n1,,.,,n,,,(tr g w, V)
FA2 1y, (& @, V) Quany, ., (& w0, V), j=3,4,
Wzknl,...,n,,,(tr & wr‘/) = sz—lnl,...,nm(tl g,a),v) + AZk;zl,.n,nm (51 wrv) Q23n1,...,nm(tr 8,(4),1/), k=2,3.

To establish the uniqueness of the function U (t, x, ¢, w, V), we suppose that there are two
solutions U and U, to this problem. Then, their difference U = U; — Uj is a solution of Equation (1),
satisfying conditions (2)~(6) with functions ¢;(x) = 0, ¢;(x) = 0 (i = 1, 2). Then, for ¢;,,,  n, =
Ging,..,ny =0 (i =1, 2),it follows from Formulas (60) and (61) in the domain (2 that

/ Ut x, e w, V)0, .  ny(x)dx =0.
ar

Hence, by virtue of the completeness of the systems of eigenfunctions { %sin %xl},

%sin %xz} L. { %sin nfmxm} in L, (Q}"), we deduce that U (t, x, ¢, w, v) = 0 for all

xeQ=[0;]]"andt € [-T; T].
Therefore, for regular values of spectral parameters w and v, the function U (t, x, ¢, w, v) is a

unique solution tp the mixed type integro-differential Equation (1) with conditions (2)—(6), if this
function exists in the domain Q.

Lemma 3. Let smoothness conditions hold. Then, for regular values of spectral parameters w and v, series (60)
and (61) converge. At the same time, their term by term differentiation is possible.

Proof. According to the properties of the Mittag-Leffler function (Formulas (47) and (48)), the functions
Wiing, ony (£ & @, v) (i = 1,4) and Wajp,,.. n,(t, & w, v) (j = 1,3) are uniformly bounded on
the segment [—T; T]. So, for any positive integers ny, ..., ny,, there exist finite constant numbers
Cqx (k =1, 2); then, the following estimates take place

max_max | Wi, n, (& w,v) | <Ci1,  max  max |Wyjy,, ., (Lew,v) | <Cp,  (62)
1, M €N (=14 ny,e.. i €N =13

”

where Cq; = const, k=1, 2.
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Analogously to the estimates (58) and (59), by applying estimates (62), the Cauchy-Schwartz
inequality and Bessel inequality for series (60) and (61), we

[e<]
[u, x,ewv)] < ¥ 1 [0y, (& @, V) | [ Oy () ]
Ny, ey Nip=
m oo
- (\/? Cii X U rmyem | 1020, | @1y, | @200, ]
N1 ey M=
(63)
93mypy (x) 2 O ’
<7 [\/Qfm [W] dx+ f, [axsaxwz ax%,] dx
1
Prer(r) 12 93™ ) (x)
W, tom] 4x ) el dx} o
1
3m
5 5 / 3m
where 75 = \/; C1u1Cos <E> ’
(o]
Ut x, e, w,v)] < % g, an(b & @, v) || By, (%) ]
1, ey =1
- 93myy (x) Zd
_97 M) gy
<6 Q@ 5230%] .oxh (64)
- 2 2
337 (x) d 922 (x)
Mgy (x) X 2 | dx | < oo,
+ Qj;‘" _ax?ax;..axgl + Qf;n Bx%axg...axgz

where ¢ = <\/?> v C12Co3 (%)3”1.

It follows from estimates (63) and (64) that the series (60) and (61) are convergent absolutely and
uniformly in the domain Q) for the

(m, ..., np, w,v) €R={ny, ..., nu €N; we Ay; veAy}.

Therefore, for the (ny, ...
required number of times

, N, w, V) € X functions, (63) and (64) formally differentiate in Q the

)

r

ny, e, =1

cDgiu(t, x, ¢, w,v) = Oy (X)

X [lIJl 111,m,n,,,CDg1tW11 nl,,,,,nm(tr £ w, V) + lPan,..4,nmCDgltW12n1,m,nm(t/ g w, V) (65)
+¢1 111,m,n,,,CDg1tW13n1/m,n,,,(t/ £ W, V) + (P2n1,...,nmCDgl[WMnl,m,nm(t/ & W, V)] , t>0,
e ® e
DUt x, 6,0, v) = L Buy, (%) [Y204, Dt Wat g, oo (£ € 0, V)
Ny, e, =1 (66)
F@1my, . mm DY W2y, o (b & @, V) + @211y, D Was g, oy (B €, w0, V)], £ <0,
[ee]
2
Uyy(t x, 6w, v)=— ¥ : () " Oy, (%) (1111, o Wity o (1 € 0, V)
N, ey M=
‘H/)Zm,m,nm W12 Ny M (t, g w, V) + (Plnl,...,nm W13n1,...,nm (tr g w, V) (67)
+0 201w Widng,mn (£ €& w, V)], £>0,
[ee]
2
uxlxl(t/ X, € w, V) = - r (%) 19nl,...,n,,,(x) [lp2n1,...,an21 n],...,n,,,(tr £ w, V)
11, ey =1 (68)

+ P1ag, ey i Woz i, oy (b € @0, V) + @211y, i Wosiy, o (£ € w0, V)], £ <0,
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(o)
2
Uy, (t, %, 6, w, v) = — )y , (%) By, (X) [lpl 11wt W11 V’lr-»»:nm(t’ € w, V)
1 ey =
+W2uy,. 0 W12n1,.../nm (tr g w, V) + @1nq, Wis [y (t, & w, V) (69)

+(P2n1,m,nm W14n1,“.,nm (t/ & w, V)] , t>0,
> Ty 2
UXZJ(z(t/ X, 6w, V)= — r (TZ) ﬂ;il,...,n,,,(x) [1/]2711,...,an21n1,m,nm(f/ g, w, V)
1, eey =1 (70)
+ ¢1 n1,...,an22n1,...,nm(tr £ w, V) + (Pan,...,anZSnl,...,nm(tr £ w, V)] , t<0.
The expansions of the following functions into Fourier series are defined in the domain () in a
similar way

Usyxs (8 X, 6, w, V), ..., Uxyry (8 X, 6 w, V), ¢ DglUxx (t X, &, w, v),

cDG2Usyx (t x, & w, V), ¢ Dytliys, (X, € w, V), ..., c Dgily,x, (t, x, 6, w, V), ...,
CDgltuxmxm(t’ X, & w, V)’ CDS%Uxmxnl(t/ X, € W, V)'
The convergence of series (65) and (66) is proved similarly to the proof of the convergence of
series (60) and (61). So, it is enough to show the convergence of series (67) and (70). Taking into

account Formulas (42)—(44) and estimates (62) and applying the Cauchy-Schwartz inequality and
Bessel inequality, we obtain

> TNy 2
Unn(txew )< 8 (F52) 1, (t & @, v) [ 8y, ()
ny, .., ip=1

m
2 7T\ 2 &
< < 7) (T) Cn Z "% U1, | 10200, [ @1, |+ 920, ]

N1y eeey Mg =1

( 2)’" 1 3m—2 0 @m) ©

B D S B S P R

= 1ny, eyt 3 201, ey
! T N1, ey M =1 ”1”2 ! ey =1 111713 !

o 3m) > 1 (3m)
+ — 3 3 + P
ny,. gmfl 111112 ‘ qvlnl, " "1,---/21%:1 I’lli’lg o 'n;’n ‘ 2t ‘:|
By, (x) 93y (x) ?
1 2
< d d
- Q/ {axlaxz axm o axlax2 -9x ] '
1
a3m a3m 2
+ / 3# dx+ _ @) gy < oo,
9x30x3 ...0xy 0x3 .. axm
a
5 o 1\ 3m-2
where ;7 = <\/;> C11Cos6 (;) » Cos = L | 7S
N1, oo = "

TNy 2 _
Uit g 0[S 8 (F52) Tt & @,0) | By ()

ny, .., np=1
fee]

m
2 7T 2
< < l) <7) Ci Z n% H 1/12711,‘“/71”, } + | (%51 nl,...,n,,,| + | P2ny, .. H

ny, .., =1
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_ \/g mc i 3m—2 i 7‘ o
< i 2 w3 %nl, .

3 1 8™ |+ 5 1 o2
3 3 3 1ny,....n 3 3 3 21q,...,1
1y, gty =1 11712103 - i " ny, oy ig=1 11213 - . iy "

2
N

0x30x5 ...0x3

+

ar
2 2
a3mq)1(x) aSm(Pz(x)
) P L e
A [axi’axg ...0x3, A axi’Bxg L.0xX,
| 1
3m
2 3m—2 )
where g = (\/?) C12Co7 (%) ,Coy = . En » 77’?”%1_””%.

The convergence of series (68) and (69) is similar to the convergence of series (67) and (70).
The convergence of Fourier series for functions

o
Uy (8 X, 8, 0, V), ..., Uy, (8 X, 6 0, V), ¢ DUy (t, X, € w, v),

1§ & o
c Dyl xy(t X, €, w, v), ¢ DytUxyny(t, X, 8, w, V), ..., c Dyt (t X, 8, w, V), ...,
® e
CDOtlumem(t/ X, & w, V), CDO?umem(t’ X, € W, V)

is proved in a similar way in the domain Q). It follows from these last estimates that functions (60)
and (61) possess the properties of (2) for the regular values of spectral parameters w and v. O

7. Continuous Dependence of Solution on the Small Parameter

We consider the continuous dependence of the solution to the problem (1)-(4) on small-parameter
& > 0 for regular values of spectral parameters w and v. Let £1 and ¢; be two different values of small
positive parameter ¢. It is easy to check from (47)—(49) that the following estimates hold

mi?feN Eg)r( | Waing, i (€1, @0,V) = Whin, o (t60,w,v) | < Coy &1 —e2|, i=1,4,  (71)

X ten[ﬂa%(O] [ Wairey,.oot (£ €1,@0,V) = Wai, o (b €2,0,v) | < Cpp |1 —€2], i=1,3,  (72)

where 0 < Cp; = const, ¢; € (0; ¢9), 0 < gy =const, i =1, 2.
Then, taking estimates (63), (64), (71) and (72) into account and applying the Cauchy-Schwartz
inequality and Bessel inequality, from series (60) and (61), we obtain

[U(t, x, €1, w,v)—U(t x, €9 w, V|

oo
s X Lt (B 81 @, v) =l (22, @, v) [ B,y (2) ]
Moy M=

[eo]
< <\/?> Cales 7€2| Z U1, | 10200, | 1 P10y [ [ 9201,y ] 73)
nrn*

23myp, (x) . 231y, (x) 2
Svoler—ea |:\/j 8r38x31 9x} ] dx+ J [Bx?axgz...ax%l dx
Q;H L

93¢y (x) _Pmga(x) B B 4
Qf [BX‘BX EE) “ax f, axjoxn].. axs Cdx =le1—22] - Ca,
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3m
2 3m
where yg = (ﬁ) CynCo3 (%) ,0 < C3; = const < oo;

[U(t, x, €1, w,v)—U(t x, €2, w, V|

)

< L gy ten @) —ug (b er, @, v) | [ By, (2)]
ny, .., np=1

< 70ler— €2 0x30x3 .03,

2
aSmwz(x) :| dx+ (74)

m
Q 1

2
93y, (x)
| I [ x|
Jolm 0x70X5..0Xy an
3m
> A ! 3m
where y19 = \/; C2Co3 (E) ,0 < C3 = const < oo.

It follows from estimates (73) and (74) that |U(t, x, €1, w, v) — U (t, x, €2, w, v| is small
if |1 — £5 | is small in the domain Q for the (11, ..., 1y, w, v) € X.

2
83111 z(x)
Sfrsaxg | 9%| =lei—e2l-Ca

8. Conclusions and Statement of the Theorem

In the present paper, we study the questions of the one-value solvability of an inverse boundary
value problem (1)—(6) for a mixed type integro-differential equation with Caputo operators of
different fractional orders and spectral parameters in a multidimensional rectangular domain.
For (ny, ..., ny, w, v) € R, we proved four lemmas under the following conditions A: Let functions

i(x), i(x) € C2(QP), fi | x, / Oi(y)giy)dy | € CHOQ' xR), i=1,2
ar
in the domain QO]" have piecewise continuous third order derivatives.
We will formulate a theorem as generalizing the above four proved lemmas. Thus, the following
theorem is true.

Theorem 1. Let the conditions of A be fulfilled. Then, for the possible numbers ny, ..., ny and regular values
of spectral parameters w and v from the set X, the inverse boundary value problem (1)—(6) is uniquely solvable
in the domain Q) and the triple of solutions is represented in the form of series (57), (60) and (61). Moreover, it is
true that

lim U (t, x, ¢, w,v)=U(t x,0, w,v),
e—0

where U (t, x, 0, w, v) is the solution of the mixed type fractional integro-differential equation of the form

T
v [Kq(t s)U(s, x)ds+Fy(t, x), t>0,
Ao(U) = Bo(U) =1 %
v [ Ka(t, s)U(s, x)ds+ Fa(t, x), t <O,
-
v U 0
xi, b>
1+ sgn (t 1—sgn(t S TR ’
Aou) = |5 ") psr ¢ 5 W pslu, x), Bowy={ =

m
w2 Y Uyy, t<0
i=1
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with boundary value conditions (3)—(6) under consideration,

Rl x) =ki(t) |si) + fi | % [ @) giwdy ||, i=1,2
ar

As a conclusion, we say that the numerical methods for solving fractional differential equations
are important in the implementation of applied problems. In the future, we will also try to consider the
applications of the numerical solution to the problems that we are solving. There are many methods
for the numerical implementation of fractional differential equations. In this regard, we note the work
done in [42]. In this paper, a new class of (C, Gy)-invex functions is introduced and given nontrivial
numerical examples, which justify the existence of such functions. Moreover, we construct generalized
convexity definitions (such as, (F, Gy)-invexity, C-convex etc.).
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Abstract: Distributed-order fractional non-local operators were introduced and studied by Caputo at
the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that
such operators are defined by a weighted integral of different orders of differentiation over a certain
range. The subject of distributed-order non-local derivatives is currently under strong development
due to its applications in modeling some complex real world phenomena. Fractional optimal
control theory deals with the optimization of a performance index functional, subject to a fractional
control system. One of the most important results in classical and fractional optimal control is the
Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to
the optimization problem must verify. In our work, we extend the fractional optimal control theory
by considering dynamical system constraints depending on distributed-order fractional derivatives.
Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality
condition under appropriate convexity assumptions.

Keywords: distributed-order fractional calculus; basic optimal control problem; Pontryagin extremals

MSC: 26A33; 49K15

1. Introduction

Distributed-order fractional operators were introduced and studied by Caputo at the end
of the previous century [1,2]. They can be seen as a kind of generalization of fractional order
derivatives/integrals in the sense that these operators are defined by a weighted integral of different
orders of differentiation over a certain range. This subject gained more interest at the beginning of
the current century by researchers from different mathematical disciplines, through attempts to solve
differential equations with distributed-order derivatives [3-6]. Moreover, at the same time, in the
domain of applied mathematics, those distributed-order fractional operators have started to be used,
in a satisfactory way, to describe some complex phenomena modeling real world problems—see,
for instance, works in viscoelasticity [7,8] and in diffusion [9]. Today, the study of distributed-order
systems with fractional derivatives is a hot subject—see, e.g., [10-12] and references therein.

Fractional optimal control deals with optimization problems involving fractional differential
equations, as well as a performance index functional. One of the most important results is the
Pontryagin Maximum Principle, which gives a first-order necessary optimality condition that
every solution to the dynamic optimization problem must verify. By applying such a result, it
is possible to find and identify candidate solutions to the optimal control problem. For the state
of the art on fractional optimal control, we refer the readers to [13-15] and references therein.
Recently, distributed-order fractional problems of the calculus of variations were introduced and

Axioms 2020, 9, 124; d0i:10.3390/axioms9040124 135 www.mdpi.com/journal /axioms
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investigated in [16]. Here, our main aim is to extend the distributed-order fractional Euler-Lagrange
equation of [16] to the Pontryagin setting (see Remark 2).

Regarding optimal control for problems with distributed-order fractional operators, the results are
rare and reduce to the following two papers: [17,18]. Both works develop numerical methods while,
in contrast, here we are interested in analytical results (not in numerical approaches). Moreover,
our results are new and bring new insights. Indeed, in [17], the problem is considered with
Riemann-Liouville distributed derivatives, while in our case we consider optimal control problems
with Caputo distributed derivatives. We must also note an inconsistency in [17]: when one defines the
control system with a Riemann-Liouville derivative, then in the adjoint system it should appear as a
Caputo derivative—when one considers optimal control problems with a control system with Caputo
derivatives, the adjoint equation should involve a Riemann-Liouville operator—as a consequence
of integration by parts (cf. Lemma 1). This inconsistency has been corrected in [18], where optimal
control problems with Caputo distributed derivatives (as in this paper) are considered. Unfortunately,
there is still an inconsistency in the necessary optimality conditions of both [17,18]: the transversality
conditions are written there exactly as in the classical case, with the multiplier vanishing at the end of
the interval, while the correct condition, as we prove in our Theorem 1, should involve a distributed
integral operator—see condition (3).

The text is organized as follows. We begin by recalling definitions and necessary results of the
literature in Section 2 of preliminaries. Our original results are then given in Section 3. More precisely,
we consider fractional optimal control problems where the dynamical system constraints depend
on distributed-order fractional derivatives. We prove a weak version of Pontryagin’s maximum
principle for the considered distributed-order fractional problems (see Theorem 1) and investigate
a Mangasarian-type sufficient optimality condition (see Theorem 2). An example, illustrating the
usefulness of the obtained results, is given (see Examples 1 and 2). We end with Section 4 of conclusions,
mentioning also some possibilities of future research.

2. Preliminaries

In this section, we recall necessary results and fix notations. We assume the reader to be familiar
with the standard Riemann-Liouville and Caputo fractional calculi [19,20].

Let o be a real number in [0, 1] and let ¢ be a non-negative continuous function defined on [0, 1]
such that

/01 P(a)da > 0.

This function ¢ will act as a distribution of the order of differentiation.

Definition 1 (See [1]). The left and right-sided Riemann—Liouville distributed-order fractional derivatives of a
function x : [a,b] — R are defined, respectively, by

POy [ e vO) oy [ o
D) x(t) (a) - Dyex(t)da  and  Dp2 7 x(t) ¢(a) - Dy-x(t)da,
0 0
where Dy, and Dy are, respectively, the left and right-sided Riemann-Liouville fractional derivatives of order a.

Definition 2 (See [1]). The left and right-sided Caputo distributed-order fractional derivatives of a function
x : [a,b] — R are defined, respectively, by

C]D);pi')x(t) = /Ol ¥(a) -C D% x(t)da  and C]D)Z,(‘)x(t) = /(: P(a) - DE_x(t)da,

where CDZ‘+ and CD¥_ are, respectively, the left and right-sided Caputo fractional derivatives of order .
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As noted in [16], there is a relation between the Riemann-Liouville and the Caputo
distributed-order fractional derivatives:

C]D):fi')x(t) = D;”px(t) —x(a) /O.l r(lli(i),x) (t—a) “da

and

DfOx() =0 x(0) ~x) [ h -t

Along the text, we use the notation

1
1—¢(- —
I~ v )x(t) = /0 P(a) - I;, “x(t)dw,
where I;f * represents the right Riemann-Liouville fractional integral of order 1 — a.
The next result has an essential role in the proofs of our main results; that is, in the proofs of

Theorems 1 and 2.

Lemma 1 (Integration by parts formula [16]). Let x be a continuous function and y a continuously
differentiable function. Then,

/ab x(t) DIy (Bt = [y(t) H;j‘“')x(t)]z + /ﬂby(t) DYVx(t)dt.
Next, we recall the standard notion of concave function, which will be used in Section 3.3.
Definition 3 (See [21]). A function h : R" — R is concave if
h(Bo1 + (1 —B)62) = ph(61) + (1 — B)h(62)
forall B € [0,1] and for all 0y, 0, in R".

Lemma 2 (See [21]). Let h : R" — R be a continuously differentiable function. Then h is a concave function if
and only if it satisfies the so called gradient inequality:

h(61) — h(62) > Vh(61)(61 — 62)
forall 61,6, € R™.

Finally, we recall a fractional version of Gronwall’s inequality, which will be useful to prove the
continuity of solutions in Section 3.1.

Lemma 3 (See [22]). Let a be a positive real number and let a(-), b(-), and u(-) be non-negative continuous
functions on [0, T with b(-) monotonic increasing on [0, T). If

then

forallt € [0,T).

137



Axioms 2020, 9,124

3. Main Results

The basic problem of optimal control we consider in this work, denoted by (BP), consists in
finding a piecewise continuous control # € PC and the corresponding piecewise smooth state trajectory
x € PC! solution of the distributed-order non-local variational problem

b
T ()] = [ L 6x(e),u(e)) dt — max,

DYVx(t) = £ (£ x(t),u(t)), te€ [ab), (BP)
x(-) € PCY, u(-) € PC,
x(a) = xg,

where functions L and f, both defined on [a,b] x R x R, are assumed to be continuously differentiable
in all their three arguments: L € C!, f € C!. Our main contribution is to prove necessary (Section 3.2)
and sufficient (Section 3.3) optimality conditions.

3.1. Sensitivity Analysis

Before we can prove necessary optimality conditions to problem (BP), we need to establish
continuity and differentiability results on the state solutions for any control perturbation (Lemmas 4
and 5), which are then used in Section 3.2. The proof of Lemma 4 makes use of the following mean
value theorem for integration, that can be found in any textbook of calculus (see Lemma 1 of [23]): if
F :[0,1] — Ris a continuous function and # is an integrable function that does not change the sign on
the interval, then there exists a number &, such that

1 1
/ P(a)F(a)da = F(w) / P(a)da.
Jo 0

Lemma 4 (Continuity of solutions). Let u€ be a control perturbation around the optimal control u*, that is,

forall t € [a,b], u¢(t) = u*(t) + eh(t), where h(-) € PC is a variation and ¢ € R. Denote by x€ its
corresponding state trajectory, solution of

DI () = £ (42,15 (), 2(a) = xa.
Then, we have that x€ converges to the optimal state trajectory x* when e tends to zero.
Proof. Starting from the definition, we have, for all ¢ € [a, b], that
DY x (6) = DI (1) = 1 (66 (1), (1) = £ (" (1), 7 ()]
Then, by linearity,
D (1) —C DI x (1)) = [CDE (e (1) — (1)) = I (8 6 (1), 4 (1) = £ (1% (1), 0* (1)

and it follows, by definition of the distributed operator, that

[ 9@ ) 1) da] = 1 (120, 5(0) ~ f (63 ()" )]

Now, using the mean value theorem for integration, and denoting m := fol P(a)da, we obtain
that there exists an & such that

Lf (8, x<(8), uc () = f (&, x"(8),u” (1)) |

m

D5 (<€ (1) - 5 ()| <

138
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Clearly, one has

= ’

m

CD5+ (XE(t) _ X*(i‘)) < )CD§+ (xE(t) _ X*(i‘))‘ < |f (t,xe(t),ue(t)) 7f(t/x96(t)’u*(t))|

which leads to

m

X (8) — (1) < {'f(tx() wB) —f (b (f%u*(t))\]

Moreover, because f is Lipschitz-continuous, we have

SK] x€

‘f(t,xs, u) — f(t,x*,u")

By setting K = max{Kj, Ky}, it follows that
(1) —x'(1)] < % 5 (@ — )] + [entn))
[t o)+ o0
- % {|e|1§‘+ (‘h(t)D n ﬁ /ut(t — o)1y (s) — x*(s))ds]

for all t € [a,b]. Now, by applying Lemma 3 (the fractional Gronwall inequality), it follows that
{|e|l§+ (|rw]) + |e|/ <°° yaE, ([ D)ds}
—ﬁhwwwf@w;wﬂwohmﬁ
<t [ (o)« [ (£t (o)) o

The series in the last inequality is a Mittag-Leffler function and thus convergent. Hence, by taking
the limit when € tends to zero, we obtain the desired result: x* — x* forallt € [a,b]. [

X(t) — x*(t)’

IA

Lemma 5 (Differentiation of the perturbed trajectory). There exists a function 1 defined on [a, b] such that
x€(8) = x*(t) +en(t) +o(e).
Proof. Since f € C!, we have that

ft,x%u¢) = f(t,x*,u") + (x€ fx*)w + (u€ — M*)’aiu’ Fo(]x® —x*|, [u® —u]).

Observe that u¢ — u* = eh(t) and u® — u* when € — 0 and, by Lemma 4, we have x¢ — x*
when € — 0. Thus, the residue term can be expressed in terms of € only, that is, the residue is o(€).
Therefore, we have

. . of (t, x*, u* of (t,x*, u*
CDZJJE)xe(t) _C Dfpx*(t)—i—(xe—x*) f(’x S U )+€h(t) f(/x U )+0(€),

dx Ju
which leads to
C]D)lp(‘) € _ ok € _ % ok * ok
lim e (x x)_(x x*) of (t, x*,u )_h(t)af(t,x,u ) _o,
e—0 € € dx u
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meaning that

Crp() (1o XS =X\ L x€ —x*Of(t,x%,u¥) of (t,x*,u*)
Dy (?E(l) € ) 7?&(1) € ox +h(t) ou ’
x€ —x*
We want to prove the existence of the limit lim =: 1, that is, to prove that

e—0 €
x€(t) = x*(t) + en(t) +o(e). This is indeed the case, since 7 is solution of the distributed order

fractional differential equation

DYy () = Py 1) + LU ),

1(a) = 0.
The intended result is proven. [

3.2. Pontryagin’s Maximum Principle of Distributed-Order

The following result is a necessary condition of Pontryagin type [24] for the basic distributed-order
non-local optimal control problem (BP).

Theorem 1 (Pontryagin Maximum Principle for (BP)). If (x*(-),u*(-)) is an optimal pair for (BP),
then there exists A € PC, called the adjoint function variable, such that the following conditions hold for all t
in the interval [a, b):

e The optimality condition

aL . aof

g (X, (8) + A () 5 (87 (1), 0" (1)) = 0; 1
®  The adjoint equation
¥(-) _ ai * * ﬁ * * .
DYOA(E) = 2= (627 (1) 0 (6) + A S (8,27 (1), " (1) @
e The transversality condition
L, "YA@p) =o. 3)

Proof. Let (x*(-), u*(-)) be the solution to problem (BP), i(-) € PC be a variation, and € a real constant.
Define u€(t) = u*(t) + €h(t), so that u¢ € PC. Let x€ be the state corresponding to the control u*,
that is, the state solution of

DR () = £ (1,6°(0),5°(), 2(a) = %o @
Note that u¢(t) — u*(t) for all t € [a,b] whenever € — 0. Furthermore,

ouc(t)

= h(t). ®)

Something similar is also true for x¢. Because f € C1, it follows from Lemma 4 that, for each
oxe(t)

exists for each t.
de e=0

fixed t, x°(t) — x*(t) as € — 0. Moreover, by Lemma 5, the derivative

The objective functional at (x¢, 1) is

Jx€,u€] = /abL(t,xe(t),ue(t))dt.
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Next, we introduce the adjoint function A. Let A(-) be in PC!, to be determined. By the integration
by parts formula (see Lemma 1),

/b A € DI w0y = [(1) .ﬂ;j‘“‘u(t)]z + /b (1) - DY A (1)t

and one has
b b
/ A() €D xe (1)t — / 2 () - DYVt — x5 (0) - TV (b) + 2¥(a) - T\ (2) = 0.
Ja Ja

Adding this zero to the expression J[x€, u€] gives

ple) = J[x<,u] = /ab [L (k2 (8),u () + A(t) DI xe (1) — (1) - DIA()] at

—x°(0) - [, IA®) + x5(a) - T A (a),

which by (4) is equivalent to

b
ple) = I, = [ [L (L0, 0) + A0 £ (12,0 (1) = 2°(1) - DI A()]
—x¥(0) - L POAD) + %, - TP A ().

Since the process (x*,u*) = (x0,u’) is assumed to be a maximizer of problem (BP), the derivative
of ¢(e) with respect to € must vanish at e = 0; that is,

/ d € €
0=¢/(0) = L1 lecg
[P aLax(t) AL due (1) af ax<(t)
*/,, {ﬁ 3e leo T 3u e lemo Y (ﬁ 9
() ox€(t) 7axe(b)
D= ALE) de e 0} dt de

L),

where the partial derivatives of L and f, with respect to x and u, are evaluated at (t, x*(t), u*(t)).
Rearranging the term and using (5), we obtain that

/a {(BL A - Dgff‘u(t))a"e“) (au At )af)h(t)} ar— 2x(0)

ezon;j‘/’%(b) =0.

dx dx de d de

e=0

Setting H (¢, x,u,A) = L(t,x,u) + Af(t, x,u), it follows that

NCER0E=

where the partial derivatives of H are evaluated at (¢, x*(t), u*(t), A(t)). Now, choosing

2] -

e=0 du

ax€(b)

. I¥Orp) =0,

e=0 b

(t)——(tx(t) “(1),A8),  with T, *OA@p) =0,

that is, given the adjoint equation (2) and the transversality condition (3), it yields

[ 4,00 0,20 ) =0
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and, by the fundamental lemma of the calculus of variations [25], we have the optimality condition (1):

This concludes the proof. [

Remark 1. If we change the basic optimal control problem (BP) by changing the boundary condition given
on the state variable at initial time, x(a) = x,, to a terminal condition, then the optimality condition and the
adjoint equation of the Pontryagin Maximum Principle (Theorem 1) remain exactly the same. Changes appear
only on the transversality condition:

e A boundary condition at final/terminal time—that is, fixing the value x(b) = x, with x(a) remaining free,
leads to
I'¥YA@) =o;
e In the case when no boundary conditions is given (i.e., both x(a) and x(b) are free), then we have
LYOA®) =0 and TYYA(a) =o.
Remark 2. If f (t,x,u) = u, that is, C]D)fi)x(t) = u(t), then our problem (BP) gives a basic problem of the

calculus of variations, in the distributed-order fractional sense of [16]. In this very particular case, we obtain
from our Theorem 1 the Euler-Lagrange equation of [16] (cf. Theorem 2 of [16]).

Remark 3. Our distributed-order fractional optimal control problem (BP) can be easily extended to the vector
setting. Precisely, let x 1= (x1,...,xy) and u = (uy,...,uy) with (n,m) € N2, such that m < n,
and functions f : [a,b] x R" x R™ — R" and L : [a,b] x R" x R™ — R be continuously differentiable with
respect to all its components. If (x*,u*) is an optimal pair, then the following conditions hold for t € [a, b):

e The optimality conditions

%(t,x*(t),u*(t)) +A(t) - %:(t,x*(t),u*(t)) =0, i=1,...,m

e The adjoint equations

W)y gy 871‘ * * . i * * _
D2 Aj(t) = ax; (&, x* (), u™(t)) + A(t) axj(t,x (t),u*(t), j=1,...,m;
e The transversality conditions
L'ONG) =0, j=1,...,n ®)

Definition 4. The candidates to solutions of (BP), obtained by the application of our Theorem 1, will be called
(Pontryagin) extremals.

We now illustrate the usefulness of our Theorem 1 with an example.

Example 1. The triple (%, A) given by ¥(t) = t2, i(t) = %, and A(t) = 0, for t € [0,1], is an
extremal of the following distributed-order fractional optimal control problem:

el = [ = (x0—2) (1= DY e

Int

DY x(t) = u(t) 7

u(t), telo,1],
x(0) = 0.
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Indeed, by defining the Hamiltonian function as

H(t,x,u,A) = — [(xtz) + (uf

it follows:

oH
e From the optimality condition i 0,

e From the adjoint equation Doio‘)/\(t) = %—CI,

DYA() = —2(x - £);
. From the transversality condition,
L") =o0.
We easily see that (9), (10) and (11) are satisfied for

B =2 ult) = t(tln‘tl)

. A =0.

3.3. Sufficient Condition for Global Optimality

®)

)

(10)

(11

We now prove a Mangasarian type theorem for the distributed-order fractional optimal control

problem (BP).

Theorem 2. Consider the basic distributed-order fractional optimal control problem (BP). If (x,u) — L(t, x,u)

and (x,u) — f(t,x,u) are concave and (%, i, A) is a Pontryagin extremal with A(t) > 0, t € [a, b], then

JI%,d] > J[x, u]

for any admissible pair (x, ).

Proof. Because L is concave as a function of x and 1, we have from Lemma 2 that

oL oL

L(t,x(t),a(t)) — L (8, x(t),u(t)) = = (£ 2(8), (1)) - (2(t) = x(8)) + 5 (£, 2(8), () - (

for any control 1 and its associated trajectory x. This gives
b
JIECAC)] = J[x() u()] = /” (L (& x(8), a(8)) = L (£, x(t),u(t))] dt

dx

> /ub {ai (%), () - (£(t) — x(t)) + % (t,%(£), @(t)) - (ii(t) — u(t))} dt
= /ub {% (t,%(8),a(t)) - (R(t) — x(t)) — % (£, %(t),a(t)) - (a(t) — u(t))] dt.

From the adjoint equation (2), we have

9 (6 (0, a(1)) = DEOA) ~ A0 2L (1, 5(0), ).
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From the optimality condition (1), we know that

L, .o f 1
5, (L E(E),(1) = —A(t) 5 (8, %(1), a(t))-

It follows from (12) that

Tz a0] = T = [ (B840 - 20 6200, - (20— x(6)

Using the integration by parts formula of Lemma 1,

/bA(t) DI (2(t) — x(1)) di = [(x(1) 7x(t)).11;j"’(‘))\(t)]z + /b (#(t) — (1)) - DIOA(b)dt,

a

meaning that

—/ t)-C ¢ ()—x(t))dt—[(f(t)—x(t)).n};w(‘u(t)]: (14)

Substituting (14) into (13), we get

JIRC), ) = [x(), ()] > / (1) ()
~f (x(), () = & o0 ),a(t»-(f(t)—x(t))—%(m(w,a(m-(a(t)—um)] at.

Finally, taking into account that A(t) > 0 and f is concave in both x and u, we conclude that

JIEC),a()] = x(),u()] =0 O

Example 2. The extremal (%, i, A) given in Example 1 is a global minimizer for problem (7). This is easily
checked from Theorem 2 since the Hamiltonian defined in (8) is a concave function with respect to both variables
x and u and, furthermore, A(t) = 0. In Figure 1, we give the plots of the optimal solution to problem (7).

109 — x'(t)=t2
— u'(t)=t(t—1)/Int
0.8
0.6
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
time (t)

Figure 1. The optimal control #* and corresponding optimal state variable x*, solution of problem (7).
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4. Conclusions

In this paper we investigated fractional optimal control problems depending on distributed-order
fractional operators. We have proven a necessary optimality condition of Pontryagin’s type and a
Mangasarian-type sufficient optimality condition. The new results were illustrated with an example.
As for future work, it would be interesting to develop proper numerical approaches to solve problems
of optimal control with distributed-order fractional derivatives. In this direction, the approaches found
in [17,18] can be easily adapted.
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