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Abstract: Deep research and communicating new trends in the design, control and applications
of the real time control of intelligent sensors systems using advanced intelligent control methods
and techniques is the main purpose of this research. The innovative multi-sensor fusion techniques,
integrated through the Versatile Intelligent Portable (VIP) platforms are developed, combined
with computer vision, virtual and augmented reality (VR&AR) and intelligent communication,
including remote control, adaptive sensor networks, human-robot (H2R) interaction systems and
machine-to-machine (M2M) interfaces. Intelligent decision support systems (IDSS), including remote
sensing, and their integration with DSS, GA-based DSS, fuzzy sets DSS, rough sets-based DSS,
intelligent agent-assisted DSS, process mining integration into decision support, adaptive DSS,
computer vision based DSS, sensory and robotic DSS, are highlighted in the field of advanced
intelligent control.

Keywords: intelligent control; robot control intelligent sensor systems; intelligent decision support
systems; versatile intelligent portable platforms; new technologies; adaptive sensor networks; virtual
and augmented reality; intelligent remote control and communication

1. Introduction

Advanced intelligent control is a rapidly developing, complex and challenging field with great
practical importance and potential, which is addressed by the authors to foster the advance of
science and technology and provide the theoretical and practical considerations of intelligent control
techniques and their application using intelligent sensors, integrated through versatile intelligent
portable platforms.

Intelligent control is the control method which imitates human intelligence in learning,
decision-making and problem solving. Human characteristics consist of experience, learning, adapting
and changing methods of approach and solving problems. Intelligent control techniques allow for the
development of an environment which leads to recreating the advantages of natural intelligence with
artificial intelligence. Advances in sensors, actuators, computation technology and communication
networks help provide the necessary tools for the implementation of intelligent control hardware.
Practical applications using intelligent sensors for this control method, emerged from artificial
intelligence and computer-controlled systems as an interdisciplinary field, are aimed toward a variety
of relevant scientific research fields on machine learning, including deep learning, bio-inspired
algorithms, petri nets, recurrent neural networks, neuro-fuzzy control, bayesian control, genetic
control, intelligent agents (cognitive/conscious control), extensions to traditional techniques—such as
Neutrosophic logic—Extenics control, and artificial intelligence in general.

Creating new technologies using advanced intelligent control through versatile intelligent portable
platforms involves complex multidisciplinary research covering: enhanced IoT technologies and
applications in the 5G densification era; bio-inspired techniques in future manufacturing enterprise
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control; cyber-physical systems approach to cognitive enterprise; developing the IT Industry 4.0 concept;
industrial systems in the digital age; cloud computing; robotics and automation with applications
such as human aid mechatronics moving in unstructured and uneven environments; rescue robots;
firefighting robots; rehabilitation robots; robot-assisted surgery; domestic robots.

2. Review of the Contributions in This Special Issue

Advanced intelligent control is an inter-disciplinary field which combines and extends theories
and methods from control theory, computer science and operations research areas with the aim of
developing controllers which are highly adaptable to significant unanticipated changes.

Tllustrative wide palette approaches in advanced intelligent control through versatile intelligent
portable platforms are presented in this Special Issue.

“The Intelligent Cyber Enterprise” starts from new emerging paradigms, such as the Internet
of Things and Cyber-Physical Systems, focused on adopting new technologies in order to become
agile, safe and productive, and capable of interoperating with smart manufacturing applications [1].
The paper introduces the concept of the intelligent cyber-enterprise using information and knowledge
dynamics focusing on the importance of appropriately adapting external and internal perceptions of
an enterprise through a new generation of sensorial systems—the perceptive interfaces which led to
new concepts on intelligent interface instance registry, intelligent interface repository, semantic routing
systems and middleware ontology, etc.

The main characteristics of Intelligent Cyber Enterprise, in order to become agile, safe and
productive, are identified: Perception; Mobility of Systems; Human-Machine Interaction; Agility
of Industrial Systems; Embodied Al and Data Generation for Manufacturing; Collaboration; Safety
Performance. Utilizing these characteristics allow machines interoperate with smart manufacturing
applications and to better evolve. How data acquired from sensors or other system components can be
analyzed and used in determining interface behaviors are demonstrated in this paper.

The Intelligent Cyber Enterprise model integrates key functions, such as processing, perception,
communication, learning, pattern recognition, data mining facilitating the system adaptation to
a dynamic working environment and illustrating the advantages in relation to complex system
behavior modeling.

Object segmentation masks instance classification, together with YOLOv3 with improved design.
3D object reconstruction and prediction with an extended YOLOV3 network is addressed through
intelligent versatile applications using full 3D, depth-based two streams, especially in the scenarios of
intelligent remote control and communications, where virtual and augmented reality will soon become
outdated and are forecast to be replaced by point-cloud streams, providing explorable 3D environments
of communication and industrial data [2]. A hybrid artificial neural network for reconstructing
polygonal meshes using a single RGB D frame and prior knowledge is proposed. The method entails
the requirement of a priori information for the captured object reconstruction and a need for a large
well-labelled element dataset. The training data consist exclusively of synthetically generated datasets
which use ShapeNetCore, a subset of the ShapeNet dataset that provides 3D object models spanning
55 categories.

The real-life data acquired by the Intel Realsense ZR300 and Intel Realsense D435i (Intel Corp.,
Santa Clara, CA, USA) devices were used for visual validation, being impossible to measure objectively
without having a 3D artist recreating a 1:1 replica of said objects. The modified hybrid artificial neural
networks have improved the reconstruction results by 8.53%, which allows for the much more precise
filling of occluded object sides and a reduction in noise during the process.

The Special Issue continues with the presentation of six papers that deepen the scope and discuss
new trends in the design, control and applications of the real-time control of robots, mechatronic
systems, and human aid mechatronics or HAM (Human Adaptive Mechatronics) using advanced
intelligent control methods and techniques.
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In the field of the intelligent rehabilitation robots, two papers aim to help patients in achieving
complete active rehabilitation training.

New active rehabilitation training on lower limb robot motion measurement is approached, based
on the dynamic modeling of human-machine coordination, using the static torque sensors for detecting
the patient leg motion intention [3]. Using the dynamic relationship between the patient leg and
robot leg mechanism and the variation of the leg mechanism joint torques, an innovative modeling is
analyzed by which the robot completes the patient’s motion intention for active rehabilitation training.
The mechanism and the hardware control system design of the LLR-Ro, the patient’s lower limb
motion intention acquisition, the angular position and angular velocities of each rod centroid, each
joint torque and the contact force between the patient’s leg and the leg mechanism were identified,
modeled and determined. Based on the variations in the joint torques, the principle of detecting the
volunteer motion intention is clear and feasible.

The patient leg motion intention and the active rehabilitation training, which improve the patient’s
training initiative and accelerate the rehabilitation process, are detected based on the variation of torque
sensors installed on the leg mechanism joint axis, LLR-Ro, the active training control strategy, using the
joint static torque sensors and motion intension acquisition, correlated with biomechanics concepts.

An alternative to the process of rehabilitation training for stroke patients, compared to most of the
methods, which process EMG signals or oxygen consumption for patients’ participation measurements,
uses high cost and high complexity robotic devices, a multi-sensor system robot with torque and
six-dimensional force sensors integrated in advanced intelligent control, applying the support vector
machines [4]. The support vector classifiers and regression machines were used to predict the degree of
the patient’s task participation, taking into account the small sample and non-linear data of the patients’
training and questionnaire data. The C and o parameters, reported to the patients’ participation,
are optimized by the hybrid quantum particle swarm optimization and support vector machines
(Hybrid QPSO-SVM) algorithm. QPSO optimizes two key parameters, the C and o of the MLSSVM,
and the optimization goal is minimizing the fitness (o, v) function.

A further challenge is advancing intelligent control on improving upon such clinical trial data.
The task difficulty can be judged and predicted online, and the assistant force adjusted in real time,
for active and optimal training.

The intelligent haptic robot-glove (IHRG), for the monitoring or control of human behavior, is well
described by the fractional order model (FOM) operators for the rehabilitation of patients that have
a diagnosis of a cerebrovascular accident [5]. An exoskeleton architecture ensures the mechanical
compliance of human fingers. The modelling is based on Lyapunov techniques, the methods that
derive from Yakubovici-Kalman-Popov lemma, the frequency criteria that ensure asymptotic stability
of the closed loop system and an observer control for the complex models, exoskeleton and sensors.

The use of the dynamics of an exoskeleton hand through fractional order proposes intelligent
control solutions for a larger class of complex systems, such as hyper-redundant systems. An IHRG
versatile intelligent portable platform, attached to the exoskeleton, supports the human hand activities
by using the driving and skin sensor system, including an intelligent control for dexterous grasping and
manipulation, mimicking the mechanical compliance of human fingers and determining comfortable
and stable grasping functions.

Advanced intelligent control opens new approaches for high precision positioning, based on
the adaptive Kalman fusion algorithm for multiple cameras and fiducial markers using multiple
sensor data in complex infrastructures, in which the issue of proper information implies complex
considerations with respect to system dynamics, flexibility, efficiency, safety and in defining the
emergent interaction with a highly dynamic and sparsely defined environment [6]. The use of solid
target alignment, in which multiple optical diagnostics are positioned using motorized 3-6 DOF
manipulators, utilizes multiple instruments which need to be precisely positioned relative to each
other during the experiment. The method could achieve the relative and simultaneous positioning of
multiple fiducial markers in the development of advanced applications.
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The Connected Bike concept combines several technologies—both hardware and software—to
provide a modern alternative solution for the training and processing of training data via an internet
server, leading to smart connected bike for personalized training, using the interaction of future-oriented
mobility and state-of-the-art data technology [7]. Taking into account the multiple IoT specific
architectures, the most suitable one for this research proved to be a hybrid open architecture, including
sensors, microcontrollers, web applications, GPS module, wireless and infrared communications.

Developed as an IoT system, the Connected Bike system has a server for the management of
the MQTT broker, monitoring intermediation of messages between clients, and the Back-End web
application for holding the data transmitted from the bicycle and providing functionality to the
Front-End. The Connected Bike system uses a wide range of technologies, starting from the electronics
and hardware side, to the web and mobile applications.

A portable air scanning system was developed using a quadcopter, equipped with an air
scanning sensor to perform air quality measurements. Using the Computational Fluid Dynamic (CFD)
simulation, the vortex field generated by the propeller was analyzed to determine the best place for
sensor mounting in order to increase the response and the accuracy of the sensor-collected data [8].
The grid pattern, with a point source and non-point source, and a wind algorithm were integrated into
the gas measurement process. The DM+V kernel algorithm is used for the analysis of gas dispersion,
measured by the quadcopter using convolution with a two-dimensional Gaussian kernel.

A versatile intelligent portable platform permits the quadcopter to perform optimally, reaching
the target point set through the GPS coordinates. Quadcopter flight behavior, in the form of altitude,
speed and measurement pattern, includes an open source web application on the ground station,
which allows for remote controlling to force the quadcopter, in case of an emergency, to make a
crash-landing or to fly back to the home coordinate. The flight controller is required to maintain the
stability of the maneuvers and the sniffer system for performing air scanning, and also for saving data
on a memory card. The analysis using normal dispersion and ANOVA were essential to obtaining
increased accuracy in terms of the gas concentration and gas source position.

Among intelligent portable platforms, smartphones are some of the most ubiquitous [9].
They provide primary access to the internet and modern amenities, hold our private data and
are becoming one of the primary means of attack against the user, be it through power viruses (or other
means to consume resources) or more ordinary malware menaces (calling or texting tolled numbers,
installing unwanted software, sending the attacker private information about the device or its owner,
spying on the owner using the camera or microphone, etc.). The steps involved in obtaining a set of
relevant data sources and the accompanying method using software-based sensors to detect anomalous
behavior in modern smartphones, based on machine-learning classifiers, are described.

The purpose of this study was to assess if anomalous behavior could be detected through
machine-learning classifiers, based on input data sources from a variety of sensors within the device.
Three types of classifiers for the machine-learning application—logistic regression, a shallow neural
network for pattern recognition, and SVMs—are investigated. The three are evaluated on several
metrics, the most important of which being the F1 score on the test set. The full details of the
design, implementation, and evaluation of the learning algorithms are presented step by step in their
respective sections.

The results show that all the three investigated algorithms perform reasonably well, with SVMs
having a slight edge. The dataset split procedure, discussed at length throughout the paper, give the
model a good ability to generalize as yet unseen data.

The effectiveness of several deep learning models of facial expression recognition, such as SSD
and fast R-CNN for human-robot interaction is very interesting, deeply analysed and verified [10].
Based on an innovative end-to-end pipeline method that applies two optimized CNNSs, the face
recognition (FR) and the facial expression recognition (FER), using deep convolutional neural networks
(CNN) for the growth real-time inference speed of the entire process is achieved, leading to a high
level of advanced intelligent control in the interaction between humans and a NAO robot.
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The paper focuses on enhancing the performances of different types of convolutional neural
networks (CNN), in terms of accuracy, generalization and inference speed, using several optimization
methods (including rectified Adam), such as FER2013 database augmentation with images from other
databases and asynchronous threading at inference time. For emotion recognition, transfer learning and
the fine-tuning of three CNN models (VGG, Inception V3 and ResNet) have been used. The outcomes
prove improvements over 10% when using two serialized CNN, instead of when using only the FER
CNN, while the recent optimization model, called rectified adaptive moment optimization (RAdam),
lead to a better generalization and accuracy improvement of 3-4% on each emotion recognition CNN.
The innovative end-to-end pipeline uses deep convolutional neural networks for training real-time
accurate models, which can be applied to human-machine interactions on humanoids robots or other
intelligent portable platforms in order to obtain advanced intelligent control.

Advanced intelligent control in micro-nano technologies is addressed in the following papers.

The development of sensors that will lead to new trends in real-time intelligent sensor systems
through advanced intelligent control methods and techniques can be achieved through an innovative
approach in the growing of nanowires on silicon for ultraviolet photodetectors [11]. The effect of
silver catalysts to enhance the growing of Ga,O3; nanowires and the sensitivity of 3-Ga,O3 nanowires
for UV detection were investigated. Semiconductor nanowires exhibit improved material properties
compared to thin-film semiconductors, becoming an ideal candidate for visible-blind UV-light sensors,
such as power electronics, solar-blind UV detectors and devices for harsh environments.

The results led to highly-oriented, dense and long Ga,O3 nanowires that can be grown directly
onto the surface of silicon, forming a pn heterojunction with rectifying characteristics and excellent
UV photo-response.

The advanced intelligent control methods and techniques, which could lead to new concepts and
designs in the development of the real-time intelligent sensory control systems, is approached in a novel
PDMS-based sensor system for MPWM measurements of picoliter volumes in microfluidic devices [12].
An automatic microinjection system, by integrating a sensor based on image processing of the fluid
that flows through microchannels using the microwire molding technique realized with the technique
known as microwire-molding, was designing and achieved, validating the concept of the sensor that
measures fluid volumes at picolitric levels or lower. The microfluidic devices have wide applications
in biological and medical analysis and in the detection, control and manipulation of biological samples
and cell biology research, such as in the analysis of unpurified blood samples, analysis of complex
mixtures and molecules (especially DNA and proteins), DNA sequencing, single cell manipulation,
electrophoretic separations, drug screening, screens for protein crystallization conditions, cell culture
studies and reproductive cell selection.

A group of two papers focuses on advanced intelligent control in human health monitoring.

In total, 94 studies, summarize the state of research into the use of technology with a focus on
teaching people with Asperger’s syndrome, taking into account the 13 aspects of user experience,
usability and accessibility. An in-depth review shows how the use of technology in 12 educational
contexts helps people with autism spectrum disorder (ASD) to develop several skills [13].

The research methodology was based on systematic literature review using the Kitchenham’
process: planning, conducting and publicizing in terms of Research Questions, Data Sources and
Search Strategies, Search Strings, etc.

The use of technological advancements such as virtual agents, artificial intelligence, virtual reality
and augmented reality, allows for an environment of comfort and constant learning for people with
Asperger’s syndrome.

Smart offices, enhanced and developed through assistive technologies using Brain Computer
Interface (BCI) for the adaptive control of the lighting and temperature in working spaces, sensing the
environment’s temperature and lighting, can respond of the user’s comfort needs [14]. The BCI acquires
alpha, beta and theta powers extracted from the EEG signals, representing the worker’s comfort
level. Advanced intelligent control systems, considering many factors which influence EEG, such as
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emotional state, fatigue, sleepiness, age, body temperature, and blood oxygen saturation, will be able
to lead to the best comfort and engagement environment using artificial intelligence techniques.

A flexible automatic distortion rectification methodology, for the automatic distortion rectification
of wide-angle and fisheye lens camera models, with a comprehensive mathematical model that can
refine the outliers simultaneously, optimizing the best-fit parameters with minimum error possible,
is proposed [15]. An iterative optimization was used with the refinement of the outliers from the pool
of robust line-member set, the identification of the plumbline angular cumulative loss over refined
line-member set and an investigation into the significance through an ablation approach. The system
is congruent quantitative vs. accuracy, practical significance and qualitative vs. adaptability and
processing time, in relation to the real/synthetic, public and private datasets.

Relevant experiments for image quality, stretching and pixel-point error on various metrics,
such as PSNR, SSIM, S3 and LPC-SI, with greater precision regarding distortion compensation and
maintaining pixel consistency in the context of employing wide-angle lens models for applications
on advanced driver-assistance system (ADAS) and video surveillance, were extensively exploited to
validate the automatic distortion rectification of wide-angle images.
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Abstract: The rehabilitation robot is an application of robotic technology for people with limb
disabilities. This paper investigates a new applicable and effective sitting/lying lower limb
rehabilitation robot (the LLR-Ro). In order to improve the patient’s training initiative and accelerate
the rehabilitation process, a new motion intention acquisition method based on static torque sensors
is proposed. This motion intention acquisition method is established through the dynamics modeling
of human-machine coordination, which is built on the basis of Lagrangian equations. Combined with
the static torque sensors installed on the mechanism leg joint axis, the LLR-Ro can obtain the active
force from the patient’s leg. Based on the variation of the patient’s active force and the kinematic
functional relationship of the patient’s leg end point, the patient motion intention is obtained and
used in the proposed active rehabilitation training method. The simulation experiment demonstrates
the correctness of mechanism leg dynamics equations through ADAMS software and MATLAB
software. The calibration experiment of the joint torque sensors” combining limit range filter with an
average value filter provides the hardware support for active rehabilitation training. The consecutive
variation of the torque sensors from just the mechanism leg weight, as well as both the mechanism
leg and the patient leg weights, obtains the feasibility of lower limb motion intention acquisition.

Keywords: lower limb; rehabilitation robot; motion intention acquisition; static torque sensor

1. Introduction

Cerebral vascular disease, hemiplegic, and paraplegia may cause limb motor dysfunction. For
patients with limb dysfunction, the quality of life depends on the level of limb damage. Based on
nerve rehabilitation theory, patients can recover through specialized rehabilitation training [1-3]. The
lower limb rehabilitation robot is an application of robotic technology for people with lower limb
disabilities [4]. In recent years, research on the lower limb rehabilitation robots has become an active
topic [5,6]. Several kinds of lower limb rehabilitation robots have been developed [7]. These can be
divided into the single degree-of-freedom gait trainers [8], wearable gait trainers [9,10], suspended gait
trainers [11-14], and sitting/lying gait trainers [15,16]. Switzerland has developed a suspended gait
trainer, Lokomat, whose left and right mechanism legs can assist patients to simulate the walking gait
of normal people and restore the control ability of the nervous system to walk [17,18]. M. Bouri et al.
developed a new rehabilitation robot, Lambda. Based on two translational articulations and one
rotational for ankle mobilization, the patient’s hip, knee, and ankle can conveniently be mobilized in
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order to carry out rehabilitation, fitness, or high-level sport training [19]. Carleton University made a
virtual gait rehabilitation robot (VIGRR) for bed-ridden stroke patients. It can provide average gait
motion training as well as other targeted exercises, such as leg press, stair stepping, and motivational
gaming [20]. Yildiz University of Science and Technology in Turkey made a sitting/lying gait trainer,
Physiotherabot, helping patients to do passive training and active training [21]. A new applicable and
effective sitting/lying lower limb rehabilitation robot (the LLR-Ro) is proposed in this paper.

The outstanding feature of the intelligent rehabilitation robots is that they can help the
patient complete active rehabilitation training [22-25]. Active rehabilitation training is a high-level
rehabilitation training method. It can improve a patient’s training initiative and accelerate the
rehabilitation process, realizing patient-led training to replace traditional robot-led training. The
most important part of active rehabilitation training is the acquisition of patient lower limb motion
intention. There are many excellent achievements to recognize the limb motion intention. Zhang et al.
developed a sitting/lying lower limb rehabilitation robot, named iLeg [26]. It employs the surface
electromyography (EMG) signals from muscle groups to obtain the Cartesian torque/force. Based
on the Cartesian torque/force, iLeg can detect the patient’s motion intention and assist the patient to
achieve active rehabilitation training. Leonard et al. proposed a novel EMG-driven hand exoskeleton
for stroke patients’ bilateral rehabilitation through grasping motion [27]. Yepes et al. used the optimal
frame of the EMG signal to obtain the motion intention of knee joints, and adaptively derived the
necessary moment to follow the motion of the knee joint based on the patient’s random motion [28].
Khoshdel et al. collected electromyogram signals near the four muscles of the lateral femoral muscle,
rectus femoris, medial femoral muscle, and biceps femoris of the lower extremity through multiple
channels to identify the motion and state of the knee joint [29]. However, the EMG-driven robot
has its shortcomings. The EMG signal strength is changed with the patient’s leg rehabilitation and
it is difficult to build the relationship between EMG signals and patient leg motion intention to
realize continuing control. Present human motion intention detection is mainly designed based on
biomechanical signals [30,31]. Based on the Inertial Measurement Units, Wittmann et al. proposed
an arm tracking method which is used in the home environment [32]. Hwang et al. installed a
number of pressure sensors on the contact surface between the three-degrees-of-freedom standing
lower limb rehabilitation robot and human lower limbs, and collected human-computer interaction
force information as a quantitative active motion intention [33]. A tactile control method based on
plantar force signals was proposed by Berlin University of Technology, Germany, to meet the training
needs of patients with arbitrary trajectories in the daily activities of lower limbs [34]. Most researchers
could detect the patient motion intention based on relationships between the patient leg end forces
and patient leg joint torques. However, the joint torques of the patient leg are difficult to obtain and
most of them are estimated for use. This paper proposes the robot, the LLR-Ro, whose torque sensors
are installed on the joint axis. Based on the dynamics modeling of human-machine coordination and
the impact on the mechanism leg torques from the patient leg end force, the patient motion intention
can be obtained through the variation of torque sensors installed on the mechanism leg.

2. Materials and Methods

2.1. Mechanism and Hardware Control System Design of the LLR-Ro

For most of the sitting/lying gait trainers, their structures consist the left mechanism leg model,
right mechanism leg model, chair, and so on. The structure of this trainer is just like a ring, which is
difficult for patients to sit or lie on the robot. So the sitting/lying gait trainers need an auxiliary device
to transfer the patient to the robots. It will cause the originally narrow rehabilitation space to become
more crowded in rehabilitation institutions or hospitals. Based on the modular principle, the LLR-Ro
is composed of the movable seat, the left mechanism leg model, the right mechanism leg model, the
control box, and the touch screen monitor. The LLR-Ro was designed as shown in the Figure 1. There
are four universal wheels under the base of the movable seat, so the movable seat can separate from
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the LLR-Ro to transfer the patient on the robot easily without the help of another auxiliary device. The
innovative design of the movable seat can also help the patient realize sitting or lying on it fairly easily.

Figure 1. The prototype of the LLR-Ro: (a) The prototype of the LLR-Ro; (b) The movable seat separated
from and grouped into the LLR-Ro; (¢) The back angle of the movable seat altered from 110° to 170°.

The most important part of the LLR-Ro is the mechanism leg as shown in Figure 2. The left
mechanism leg module and the right mechanism leg module are bilaterally symmetrical. Each module
has a mechanism leg, which has the hip, knee, and ankle joint in the human body sagittal. Based on
Man-machine Engineering and the innovative design for the mechanism, the length of the mechanism
leg can be automatically adjusted to fit patients with different heights through the motor-driven
pushrod. The mechanism leg contains sensors to estimate the torque and force produced by patients.
It also contains sensors to measure joint rotation and motors to drive the three joints. Both the hip joint
and knee joint adapt a mechanical structure where the torque sensors are installed on the joint axis.
Though it increases the difficulty of the mechanism leg design, it avoids the transmission errors of the
joint torques.

Knee Static torque sensor

Pushrod

Ankle joint motor

Length adjustmen
of the calf

Figure 2. Design of the mechanism leg.

The torque sensors for the hip joint and knee joint of the mechanism leg were manufactured by
Shijiazhuang Baisen Instruments and Technology Co., Ltd. in China. The profile of the sensor and the
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sensor’s detailed parameters are shown in Figure 3, including the rated output, range, bridge voltage,
and output signal.

Main Technical Specifications

Rated Output:1.9mV/V
Range:200Nm

Bridge Voltage:10VDC

Output Signal:0~40mV

Working Temperature:-20~+65°C
Safe Overload:150%F.S
Hysteresis:+0.1%FS
Creep(30min):+0.1%FS

Zero Balance: 1%FS

Figure 3. The profile and detailed parameters of the torque sensor.

Based on the functions of the LLR-Ro, the hardware control system contains the central control
module, the human-machine interactive system, the sensor feedback system, and the motion control
system, as shown in Figure 4. The central control module mainly runs the control software and receives
the operational order from the human-machine interactive system. The human-machine interactive
system displays the control software interface and feeds back the training conditions. The motion
control system receives the motion control commands from the central control module, realizes the
motor closed-loop control, and feeds back the joint real motion condition to the central control module.
The sensor feedback system acquires the sensor information and achieves the sensor state.

Sensor feedback system

PC104Bus -

Digital acquisition card  Limit switch
PM548 1-8

e B

/ RS232 convert  Absolute encoder
77777777777777777777777777777777777777 RS485

1

1

|

1 VGA
TUSB
1

1

1

1

1

1

1

1

Doctor Touch screen

Human-machine
interactive system

Motion control

I I

I 1

I I

1 1

| i

i system , |

I I

! USBCAN = [

: Relay module ! |

1 \L 3 [

i DC motor I b

R PN U P

: e E -

! Encoder g Linear 1 | Potentio- Torque  Pressure
! 1-6 Servo Brake  actuator [ meter  sensor sensor
e drivers 176 14109 0L 19 ddA 1A

Figure 4. Design of the hardware control system.
2.2. Patient Lower Limb Motion Intention Acquisition

Based on the innovative design of the robot mechanism leg, the joint angular torques, angular
positions, and angular velocities of the LLR-Ro can be measured in real time. Through the dynamics
relationship between the patient leg and robot mechanism leg, and the variation of the mechanism leg
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joint torques, the robot can conclude the patient motion intention and help the patient realize active
rehabilitation training. The flow chart of patient lower limb motion intention acquisition is shown
in Figure 5. When the patient’s foot is placed on the mechanism leg without active force, the value
Ty, is collected by the joint torque sensors. Then, the patient can begin active rehabilitation training,
and the patient starts to exert force on the mechanism leg. At this time, the torques of each joint are
recorded, which is called the actual torque 7c. By comparing 7¢ and 7, the patient’s movement
intention is determined by the rehabilitation robot, and then the speed of motor movement is controlled.
Considering the uncertainty of the patient motion intention and the unsteadiness of the patient’s
illness, the patient’s safety is the most important factor to be considered. The variation of the torque
sensor is processed through the recursion median filtering. The sampling frequency is set as 200 Hz.
The sampling period is set as five samples per period. The deviation value At is calculated through
the average difference between data in the current moment and data in the previous moment. The
control speed is obtained through the proportional control function S = H x At. The proportionality
coefficient H is set large at the start of active training or when the patient’s lower limb has low strength.
It can be adjusted by the therapist to assist the patient as needed. The optimal coefficient H should also
be determined through the clinical trial to meet patients with different levels of rehabilitation.

+ Ar Human joint Direction of
torque variation joints’ motion

Human-machine
dynamics model

Conditioning B
amplification Reference Torque S=HxAt Speed of

joints’ motion

Torque Sensors <— [4— Servo Controllers

Figure 5. The motion intention acquisition flow diagram of the patient’s lower limb.

The mechanism legs were simplified into a linkage model, as shown in Figure 6. O, A, and B
represent the hip joint, knee joint, and ankle joint of mechanism leg, respectively. The hip joint angle
and knee joint angle are expressed through 67 and 0>, while the ankle joint angle is a constant equaling
90°. I;(i = 1,2,3) represents the length of each segment, C;(i = 1,2, 3) represents the rod centroid, and
R;(i = 1,2,3) represents the length from centroid to joint axis.

=y

Figure 6. The linkage model of the mechanism leg.
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We obtained the coordinate position of point D:

{ xp = Iy cos 601 + I cos(01 + 63) — I3sin(61 + 6,) M

yp = l1sin0y + I sin(01 + 03) + I3cos(01 + 63)
The angular position and angular velocities of each rod centroid were calculated:

Xc1 = Ry cos 01

Yo = R] sin 91

Xcp = Iy cos 01 + Ry cos(01 + 02)

Yoo = l] sin 61 + Rz sin(61 + 92)

Xc3 = Iy cos 61 + Ip cos(61 + 62) — Rz sin(61 + 63)

Yoz = lysin61 + b sin(91 + 92) + Rz COS(61 + 92)

Xc1 = —R10; sin 6, : @)
j/c1 = R] 91 Ccos 91

Xoo = —Qlll sin 01 — (91 + éz)RQ sin(61 + 03)

Yoo = 0111 cos 61 + (91 + Qz)Rz cos(61 + 67)

Xc3 = —6111 sin 61 — (91 + 92)12 sin(61 + 07) — (91 + 92)R3 cos(601 + 62)
yC3 = 9111 cos 01 + (91 + Qz)lz COS(Q] + 92) - (61 + 92)R3 Sil’l(91 + 92)

Then the total kinetic energy of the mechanism leg E; was:

miRy% + mo (2 4+ Ro2) +my (2 + 1% + Re?) + (I + I + I3)+
%le 2(myRoly + mzlyly)[sin 01 sin(01 + 62) + cos 61 cos(61 + 07)|+ ¢+
m3l1R3[sin 67 cos(61 + 02) — cos 01 sin(01 + 07)]
Ep = By + Eip + Exs = { 3022[maRo? + my(1p? + Ra?) + (I + 1) |+ N E)
mszz + m3(lzz + R32) + (L +13)+
010, (maRaly + m3lyly)[sin 01 sin(071 + 6;) + cos 61 cos(61 + 02)]+
mzl1R3[sin 61 cos(61 + 6,) — cos 07 sin(61 + 6,)]

where Ej;(i = 1,2,3) represents the kinetic energy of the rod i, m;(i = 1,2,3) represents the weight of
the rod i and I; represents the rotational inertia of the rod i.
The total potential energy of the mechanism leg E, was:

(m1gR1 + ngll + H13g11) sin 61+

Ep=Ep1+Epa+ Eps = (magRy + m3gly) sin(01 + 02) + m3gRs cos(01 + 62) |

@
where E;(i = 1,2,3) represents the potential energy of the rod i.

Lagrange function is defined as the difference between the total kinetic energy (K) and the total
potential energy (P) of the mechanical system [35]:

L=K-P. @)

By using Lagrange function, the system dynamics equation (the second Lagrange
equation) [35] was:

dJdL JL

T:EE_%' (6)

where 0 represents the generalized coordinates of the kinetic energy and potential energy system,
0 represents the generalized velocity of the system, and 7 represents the driving torque vector.
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As the potential energy Ep did not contain g obviously, the dynamics equation was transformed
into [35]:
d 0, 9E, JE
T= e - @)
todg dq  Iq

Each joint torque was calculated:

myR12 + ma (2 + Ra?) +mz (2 + 12 + Ra?) + (I + b + )+

010 2(myRoly + m3lyly)[sin 0y sin(Oy + 62) + cos Oy cos(61 + 02)]+ ¢+
3l R3[sin 01 cos(61 + 02) — cos Oy sin(0; + 02)]
myRy? + m3(lz2 + R32) +(L+1L)+

0> (maRaly + mslyly)[sin 07 sin(67 + 02) + cos 01 cos(67 + O2)]+ ¢+

o d JE;  JE & B m3l1R3[sin 01 cos(67 + 63) — cos 61 sin(01 + 6)] ®)
LT 20, 201 90, » 2(maRaly + m3lily)[sin 61 cos(01 + 02) — cos 07 sin(67 + 02)]— N ’
! m3l1R3[sin 01 sin(67 + 62) + cos 07 cos (61 + 07)]

& 2{ (maRaly + m3lyla) [sin 01 cos(61 + 02) — cos 0 sin(01 + 02)]— }
mzl1R3[sin 6 sin(071 + 63) + cos O cos(61 + 62)]

(m1gRy + mpgh + m3gly) cos 01+

(magRy + m3gly) cos(01 + 602) — m3gR3 sin(61 + 07)

éz["lszz +m3(h? + Rs?) + (I + 13)]7
16,2 2(maRaly + m3lilp)[sin 67 cos(01 + 62) — cos 07 sin(6; + 02)]— N
2 m3l1R3[sin 61 sin(01 + 62) + cos 01 cos(61 + 62)]
d 0E, 9E,  9Ep ) ) )
Tzzag—fez 30, myRy? 4 m3z(l? + R3?) + (I, + I3)+ )
2 013 (maRaly + m3lly)[sin 61 sin(01 + 6;) + cos 01 cos(01 + 62)]+ ¢+

m3l1R3[sin 01 cos(01 + 02) — cos 67 sin(01 + 62)]

(magRy + m3gly) cos(61 + 02) — m3gRz sin(61 + 6)

The dynamics equation was simplified as follows [35]:
H(0)0+C(6,0)0+ G(0) =T, (10)

where, H(8) represents the inertia matrix, C(8, 6) represents the centrifugal force and the Coriolis
force matrix, and G(0) represents the gravity matrix.

The contact force between the lower limb of the patient and the end of the mechanism leg changed
in real time with the movement of the mechanism leg. When we just considered the effect on the joint
torque of the mechanism leg from patient leg weight, the joint torque 7, generated by the endpoint
force was obtained based on the force Jacobin formula [35]:

7, =J'(0)F, (11)

where JT(8) represents the force Jacobin matrix of the mechanism legs and Fy represents the contact
force between the patient’s leg and the mechanism leg while the patient does not exert active force.
Combined with the mechanism leg’s kinematics, the expression J'(8) was obtained:

—l;sin 01 — I sin(61 + 02) 11 cos 01 + I cos(01 + O2)

T(g) —
() = ~lpsin(601 + 65) I cos(61 + 62) 1

Combined with the robot dynamics equation, the dynamics modeling of human-machine
coordination was obtained when the patient’s leg was put on the rehabilitation robot:

H(0)0+C(6,0)0 + G(0) = At = -] (0)F,. (13)
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3. Results

3.1. Verification of the Mechanism Leg Dynamics Equations

The dynamics equations of the LLR-Ro were so complicated and the solution procedure was
tedious. It is very necessary to prove the correctness of the derivative results. The verification of
the dynamics equation was conducted through ADAMS software and MATLAB software. ADAMS
software, designed by American MSC Company, was used for the multi-body dynamics simulation.
Figure 7 shows the simulation model developed through ADAMS.

Figure 7. Simulation model developed through ADAMS.

The model is a three linkage manipulator. It has three joints moving in xy-plane. The first joint is
the hip joint and the second is the knee joint. The third joint is the ankle joint and it is locked. The
detailed parameters of the three linkage manipulator are given as below in Table 1.

Table 1. The parameters of the three linkage manipulator.

Parameters Thigh Calf Foot
Segment Length 390 mm 400 mm 100 mm
Distance from Centroid to the Joint Axis 50 mm 250 mm 50 mm
Segment Rotational Intertia 15kgm?  02kgm? 0.02 kgm?

The simulation time was f = 8 s, and the driving function of the hip joint is given as below:

{ 011(t) = 10 + 4.935t> — 0.603t> +0.011t* (0 <t <4) (14)

O12(t) = 53.216 + 13.384¢; — 123442 — 0.425t;% + 0.066t,* (t; =t—4;,4<t<8) ’

where 011 and 03 are the hip joint angular position at the times 0 <t <4 and 4 < t < 8, respectively.
The driving function of the knee joint is given as below:

{ 021 (t) = —11.3902 + 1.967£> — 0.098t* (0 <t < 4) 15)

O (t) = —81.350 — 21.691t; + 2.84842 + 0.407H3 — 0.0811% (1 =t—4;4<t<8) ’

where 0,1 and 05, are the knee joint angular position at the times 0 <t <4 and 4 < t < 8, respectively.
Then we obtained the hip joint and knee joint actual driving torque through ADAMS, as shown
in Figure 7. Meanwhile, we also achieved the theoretical driving torques based on the dynamics
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Equations (8) and (9). According to the driving function of joints, the velocity and accelerations of the
hip and knee joints were obtained as below:

O11(t) = 9.870¢ — 1.8092 + 0.044£3 (0 <t < 4)

O11(t) = 9.870 —3.618t + 0.1322 (0 <t < 4)

O12(t) = 13.384 — 2468t — 1.27542 +0.26413 (1 =t —-4,4 <t <8)

élz(t) = 2468 —2.550t; +0.792t12 () = t—4,4 <t <8) 6
01 (t) = —22.780t +5.901#% — 0.3923 (0 <t < 4)

01 (t) = —22.780 + 11.802¢t — 1.176t> (0 < t < 4)

O (t) = —21.691 + 5.696t; + 122142 —0.324+3 (1) = t—4,4 <t <8)

O (t) = 5.696 + 2.442t; —0.9724% (1 =t—4,4 <t <8)

The theoretical driving torques were also obtained through MATLAB, as shown in Figure 8. Based
on the contrast curves, the theoretical curves basically fit with the actual curves. So we could conclude
that the dynamics equations of the LLR-Ro are correct.
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Figure 8. The simulation curves and theoretical curves of the mechanism leg joints: (a) The simulation
curves and theoretical curves of the hip joint; (b) The simulation curves and theoretical curves of the
knee joint.

3.2. Calibration Experiment of the Joint Static Torque Sensors

In active training, the torque sensors are important for the whole control. The calibration
experiment of torque sensors was conducted. The voltage values of the torque sensors were obtained
through the analogue acquisition PL2318. The voltage values were processed through the combing
limit range filter with an average value filter. The merit of this filtering method is that it can overcome
accidental jamming and the curve of the voltage value is smooth. The calibration of the hip joint torque
sensor was similar to the calibration of the knee joint torque sensor. The detailed calibration process of
the hip joint torque is introduced in Figure 9.

Through data processing, the calibration curves of the hip and knee joint torque sensors were
obtained, as shown in Figure 10. The curves can be described through the below expression:

17)

M; = 1253V,
M, = 1345V, '

where M; and M), represent the hip joint torque and the knee joint torque, and their units are Nm, and
V1 and V; represent the voltage value of hip joint torque and knee joint torque, and their units are V.
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Figure 9. The calibration experiment of torque sensors: (a) The thigh of the mechanism leg is set at the
horizontal position; (b) One point is marked from the hip joint axis 585 mm; (c) The analytical weights
(each weight is 2.5 kg) are put on the marked point one by one until the weight equals 17.5 kg; (d) The
weights start to be unloaded one by one until it equals 0 kg. The steps above are repeated three times,
and the voltage values are processed through the combing limit range filter and average value filter.
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Figure 10. The calibration curves of the joint torque sensors: (a) The calibration curves of the hip joint
torque sensors; (b) The calibration curves of the knee joint torque sensors.

3.3. Verification Experiment of the Motion Intension Acquisition Based on Biomechanics

Based on the calibration experiment of the joint torque sensors, there existed errors between the
actual torques and the theoretical torques. It was necessary for the joint torques to set a given threshold
values. The given threshold values were obtained through the experiment, as shown in Figure 11. Then
theoretical torques and the actual torques just from the mechanism leg weight were also obtained, as
shown in Figure 12. The experiment curves were similar to the theoretical curves. However, the errors
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were very large at the start of the experiment, because of the heavy mechanism leg and the mechanism
assembly error. The maximum errors of the hip joint and the knee joint from the mechanism leg weight
were 9.82 Nm and 3.89 Nm, respectively. So the given threshold values of the hip joint torque and the
knee joint torque were set to 10 Nm and 5 Nm, respectively.

Mechanism Leg Parameters :
m,=35.5kg; m, =7.6kg; m, =1.6kg; [[=385mm; [, =390mm; [, =80mm; R =20mm; R, =240mm; R, =50mm;
1,=1.69kg -m*; 1,=0.712kg-m*; 1,=0.024kg - m’

Figure 11. The experiment to obtain the joint torques from the mechanism leg weight.
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Figure 12. The calibration curves of the joint torque sensors: (a) Hip torque just from the mechanism
leg weight; (b) Knee torque just from the mechanism leg weight.

One volunteer participated in the experiment and his leg was put on the mechanism leg, as shown
in Figure 13.

Volunteer Leg Parameters : Male, 25 years old;body weight 65kg
m=9.147kg; m, =2.811kg; m, =0.795kg; [,)=385mmy; I, =390mm;
I, =80mm; R =233.33mm; R, =207.97mm; R, =39.56mm

Figure 13. The verification experiment of active training without patient active force.
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Figure 14 shows the theoretical and experiment joint torque curves from the mechanism leg and
volunteer leg weight. The maximum error of the hip joint without active force was 9.08 Nm and the
maximum error of the knee joint without active force was 3.91 Nm.

100 0 4
Theoretical Curves Theoretical Curves
o — — —Experiment Curves de N — — —Experiment Curves
=]
o a0 3
=2 =
S T 5
g o
= 60 §
£ 5
g 50 z
Z @ R N
a 2 4 6 8 0 2 4 & 2
s #s)
(a) (b)

Figure 14. Joint torques from the mechanism leg and patient leg weights: (a) Hip torque from the
mechanism leg and patient leg weights; (b) Knee torque from the mechanism leg and patient leg weights.

4. Discussion

From the calibration curves of the joint torque sensors in Figure 10, the actual test points were
closely distributed around the fitting curves, reflecting that the torque sensor had better linear
characteristics. However, because of the complex structure of the components around the torque
sensor, and the processing accuracy, installation error, and the wear and amplification error of the
conditioning board, there was a deviation between the function relationship between the voltage value
of the torque sensor in the real state and the ideal state.

At the start, the errors in Figure 14 were smaller than the errors in Figure 12 because the volunteer’s
leg weights were just like a pre-tightening force, making the transmission error on the mechanism leg
smaller. It was demonstrated that the proposed threshold values of the joint torques were satisfied
for future experiments. All the errors in Figure 14 were in the scope of the threshold values. From
Figures 12 and 14, although the volunteer’s leg weight was much lighter than the mechanism leg
weight, the variations of the joint torques were prominent. If the patient exerted his active force on the
mechanism leg, the variations of joint torques could be much larger. Based on the variations of the
joint torques, the principle of detecting the volunteer motion intention is clear and feasible.

Compared with other methods, like EMG, for obtaining patient motion intention, this method
may be more suitable for continuous active rehabilitation training control. This is because the EMG
signals would be reduced with the patient limb becoming stronger, while the variations of the LLR-Ro
torque sensors would be increased. In the future, the research team will continue conducting clinical
trials to verify the excellent effect of the active rehabilitation training based on the biomechanics and
differential analysis through biomechanics signals and EMG signals on the LLR-Ro.

5. Conclusions

This paper investigates a new applicable and effective sitting/lying multi-joint lower limb
rehabilitation robot. In order to improve patient’s training initiative and accelerate the rehabilitation
process, anew motion intention acquisition method based on biomechanics is proposed. The simulation
experiment demonstrates the correctness of the mechanism leg dynamics equations, the calibration
experiment of the joint torque sensors provides the hardware support for active rehabilitation training,
and the consecutive variation of the torque sensors from just the mechanism leg weight and both
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the mechanism leg and patient leg weights obtains the feasibility of lower limb motion intention
acquisition. In the future, new active rehabilitation training for the LLR-Ro will be proposed on the
basis of the motion intention acquisition method in this paper. Meanwhile, the patients” recovery
efficiency through the future active rehabilitation training method will be verified in clinical trials.
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Abstract: In the process of rehabilitation training for stroke patients, the rehabilitation effect is
positively affected by how much physical activity the patients take part in. Most of the signals
used to measure the patients’ participation are EMG signals or oxygen consumption, which increase
the cost and the complexity of the robotic device. In this work, we design a multi-sensor system
robot with torque and six-dimensional force sensors to gauge the patients’ participation in training.
By establishing the static equation of the mechanical leg, the man-machine interaction force of the
patient can be accurately extracted. Using the impedance model, the auxiliary force training mode is
established, and the difficulty of the target task is changed by adjusting the K value of auxiliary force.
Participation models with three intensities were developed offline using support vector machines,
for which the C and o parameters are optimized by the hybrid quantum particle swarm optimization
and support vector machines (Hybrid QPSO-SVM) algorithm. An experimental statistical analysis
was conducted on ten volunteers’ motion representation in different training tasks, which are divided
into three stages: over-challenge, challenge, less challenge, by choosing characteristic quantities
with significant differences among the various difficulty task stages, as a training set for the support
vector machines (SVM). Experimental results from 12 volunteers, with tasks conducted on the lower
limb rehabilitation robot LLR-II show that the rehabilitation robot can accurately predict patient
participation and training task difficulty. The prediction accuracy reflects the superiority of the
Hybrid QPSO-SVM algorithm.

Keywords: rehabilitation robot; human-robot interaction; training task; multi-sensor system; quantum
particle swarm optimization; support vector machines

1. Introduction

Neuromuscular injury can lead to disability or inconvenient movements, such as stroke and spinal
cord injury, which have become important problems in the world [1]. Nowadays, there are more than
33 million stroke patients in the world [2], the mortality rate is as high as 80%, and 75% of the survivors
are disabled [3]. The necessity to develop rehabilitation robots has made it one of the research hotspots
in the world [4,5]. As a robot that is in direct contact with the patient, the rehabilitation robot shoulders
the responsibility of helping the patient recover smoothly and safely. The human-computer interaction
strategy, the energy interaction and role distribution control, are very important [6].

Sensors 2019, 19, 4681; d0i:10.3390/s19214681 25 www.mdpi.com/journal/sensors
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Clear detection of human—computer interaction and patient intention are the basis of flexible robot
control. Most rehabilitation robots use force sensors to feedback mechanical information from patients,
such as Hongbing Tao [7], Victor G [8]. Hwang et al. judged human motion intention by collecting
pressure sensor data placed at the contact point between the standing posture rehabilitation robot and
stroke patients [9]. Wolf S et al. connected the elastic element in series with the driving part and named
it the Serial elastic actuator. By detecting the deformation of the elastic element, the joint moment can be
detected and the motion intention of the patient can be judged [10]. Kim et al. used only one pressure
sensor to realize the assistant force of the robot in the motion of the patient’s elbow joint [11]. Some of
them rely on current changes of the joint motors to detect motion intentions, such as Kim [12]. A few
researchers use surface EMG (electromyography) signals and EEG (electroencephalogram) signals to
predict the patients” motor intentions [13,14], such as Edward [15], Magdalena [16], and Tang [17].
Yepes et al. use electromyogram signals to determine the required moment of the knee joint [18]. Some
researchers apply EMG signals in motion modal recognition of the prosthesis [19] and Cooperative
Robot [20]. All these measurement methods have their own advantages, but EEG is susceptible to
noise interference [21]. The EMG signal is not easy to collect when the skin surface changes [22,23].
Relatively speaking, it does not increase the cost of the robot and the complexity of the system. In this
paper, the joint torque sensor and the hardware detection system of the six-dimensional force sensor
on the sole are used.

Meanwhile, the rehabilitation effect is not only related to scientific rehabilitation training methods
and reasonable training planning, but also has a great impact on the patients’ active participation
and active sports intention, which has been proven by clinical studies [24]. In order to improve the
active participation of patients during the training process, it is necessary to provide assistance to
patients according to the interaction situation during the training process [25] and to maximize the
patient’s independent tasks. Introducing patients” movement characteristics and physical fitness into
the control strategy has a positive impact on the rehabilitation effect on the patients [26]. Yatsenko et al.
controlled and adjusted the movement speed of the robotic arm according to the amplitude ratio
of the EMG signal of the affected limb [27], and the patient could quickly adapt to control the
movement of the prosthesis [28], but it was inconsistent with the movement characteristics of the
human body. Many researches have introduced velocity field and virtual channel technology in the
specific trajectory of rehabilitation training [29,30]. Cai uses impedance control to construct the velocity
field in different directions of expected trajectories and provide correction force within a certain range
of trajectories, with the correction force being a rigid force outside the interval threshold [31], but the
threshold size setting is not given. In order to provide more accurate training for patients, radial basis
function (RBF) neural network has excellent analytical ability in the patient’s motor ability analysis,
which was researched by Wolbrecht [32] and Pehlivan [33]. However, during the training period,
the rehabilitation robot frequently interferes with the training of patients, which easily causes the side
effect of relying on the machine, and fails to motivate the active participation of patients. In order
to introduce the training state of patients into the control loop more accurately, many studies have
judged the patient’s psychological-level participation by collecting the patient’s EMG signal, EEG
signal, and other physiological information [34-36]. At the same time, in order to stimulate patients
to actively participate in training, most rehabilitation robots currently use interesting games [37] or
virtual reality technology [38].

In summary, this paper proposes a lower limb rehabilitation robot using joint torque sensors
and six-dimensional force sensors on the foot soles. In the training task, man—-machine interaction
force information is collected, from which can be extracted characteristic quantities to predict the task
difficulty by using support vector machines. The rest of this paper is organized as follows: the second
section introduces the rehabilitation robot structure of multi-sensor system and human-machine
interaction mechanical model. In the third section, a multi-difficulty rehabilitation training task is
proposed. Under the model of impedance control, a support vector machines algorithm is used to
establish the model of the patients” active participation and task difficulty detection. The fourth
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section analyses the characteristic quantity of 10 healthy volunteers during different difficulty training
tasks, using support vector machines (SVM) to predict the participation and task difficulty of two
other volunteers.

2. LLR-II Rehabilitation Robot

2.1. Structural Design of LLR-II

In order to adapt to the patients in the early stage of rehabilitation, the lower limb rehabilitation
robot LLR-II designed in this paper can be trained in two postures, so as to prevent the mechanical
leg from squeezing the patient [39,40]. As to the hardware platform of the rehabilitation system,
LLR-II adopts a modular design and consists of five sub-modules: lower limb mechanical leg, main
control system, sensor system, multi-function seat, and mechanical limit adjustment frame, as shown
in Figure 1, to validate that the rehabilitation robot can accurately predict subjects participation and
training task difficulty.

Figure 1. The LLR-II Rehabilitation.

The mechanical leg is a planar three-degree-of-freedom serial mechanism, similar to the three
joints of human leg, including hip, knee, and ankle. In order to solve the problem of excessive driving
power of the hip joint, a self-balancing design is adopted. The knee drive component is installed on the
back of the hip joint rotation axis to balance the weight of part of the mechanical leg, reduce the driving
power of the hip joint, and improve the dynamic performance of the mechanical leg. The addition of
an electric pushrod in the mechanical leg can automatically adapt to patients with a height of 1500 mm
to 1900 mm. In order to realize the safety of sitting and lying posture training for patients, variable
joint limitation consisting of fastened limit groove and driven limit groove was designed, as shown in
Figure 2.

Torque sensors are mounted inside the hip and knee joint of the LLR-II sagittal plane to detect
the dynamic torque characteristics of the patient’s training state in real time. The dynamic torque
characteristic of the ankle joint is detected by a six-dimensional force sensor mounted on the sole
of the foot. The torque sensor is manufactured by Sunrise Instruments Company in China, and the
six-dimensional force sensor is manufactured by Junde Technology Co., Ltd. in China. The profile
of the sensor and the sensor’s detailed parameters are shown in Figure 3. The output side of the
reducer increases the sensitivity and accuracy of the mechanical information detection and uses this
information to complete the patient’s motion intention detection.

Based on the LLR-II rehabilitation training function, its electrical control system is divided
into Control Center system, Movement Control system, Signal Feedback system, Human-Computer
Interaction system, as shown in Figure 4. The control center system use a variety of sensors to monitor
the human—computer interaction state, and uses a variety of signals to complete the planning and

27



Sensors 2019, 19, 4681

training tasks; the robotic arm receives the instructions and drives the affected limbs to perform the
multi-mode advanced rehabilitation training under the guidance of the driving system.

Knee joint s 6,50
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Groove ;

o " Torque
. sensor
Limit swith—
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Figure 2. The detailed design of LLR-II leg mechanism.
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Figure 3. The detailed design of LLR-II leg mechanism.
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Figure 4. The sensors system composition of LLR-II.
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2.2. Man—Machine Interaction Mechanics Model of LLR-II

The joint no-load moment in LLR-II man-machine coupled motion is affected by the weight
of the mechanical leg and the patient’s leg, and it can be expressed as a nonlinear function of joint
variables [41].

Mx1 = P(anl) 1)

where, M5 is the column vector of joint no-load torque, F(e) is the mapping function, and 0,1 is the
joint variable.

According to its own structure, it can be simplified as a planar three-link series mechanism.
It should be noted that, considering the large weight of the leg, in order to increase the stability of the
hip joint, the self-balancing design concept was introduced in the design process. The specific model
can be shown in Figure 5.

Figure 5. Leg model of lower limb rehabilitation robot.

In the Figure, I;-I3 represent the length of the thigh, calf, and sole, respectively; I represents the
length of the self-balancing part; O, A, B represent the hip, knee, and ankle joints, respectively; D, P
respectively represent the first and last two endpoints; G1, G2, G represent the weight of the machine
and the patient’s thigh, calf, and foot, respectively; G4 represents the weight of the self-balancing
part; Ri—Ry represent the lengths from the center of gravity of each part to the node; 61,0,,03
represent the joint variables, in a counter-clockwise positive direction; 64, 05 represent the intermediate
quantity introduced.

The joint no-load moment equation is obtained as

M, cosB1 cosOy cosOs Gsly + Gali + Gi1R; — G4Ry
M, | = 0 cosOy cosOs || Gslh + GaRy (2)
M3 0 0 cos 65 G3R3

In combination with Equation (2), the above equation can be modified to:

M, cos01 cos(61+ 02+ 03) cos(—02—61) || Gsli + Gali + G1R1 — G4Ry + f;
M, | = 0 cos(01 + 62 + 03) cos(—62 —67) G3lr + GRy + f, 3)
M3 0 0 COS(—@Z - 61) G3R3 +f3

It can be abbreviated as:
M3y1 = L3x3(6)eCsx “)
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In the formula, the joint no-load torque term is represented by M3y, and the joint variable term is
L3x3(0), and Czy; is a characteristic parameter term.

The characteristic parameter item Czy is associated with patient information, which is unique to
any patient, and needs to be solved for each patient. Since joint variables L; and 0; can be measured by
the sensor system on the robot body, but G; cannot be directly measured by the weight of the patient’s
leg, the measured torque M is the sum of applied torque M}, and no-load torque M:

M, =M, +M 5)
And can be obtained from Equation (4) as,
Cax1 = L3xa(0) oMz (6)

First, the ankle joint is moved at a small speed V, the foot pressure value f, 4 at this time is recorded
at intervals At, the joint angles 01, 0, and 03 are calculated, and a total of k times are recorded.
Then the knee joint is rotated k times in the same manner, knee joint torque value M, and angle values
01,07 and 03 are recorded, then the hip joint is rotated to record k hip joint torque values M; and angle
values 01,0, and 03, then f, 4, 03,0,, 01 are converted into My,04,05. C31, C21 and Cyq are calculated
according to the following formulae.

M3 = cos 05,Cs1; (i=1-k)

_ k ) 7

Ca = %'Zl L @
=

cos Os;

Mj; = cos 04;Cp1; + cos 95{631 (1 =1- k)

E _ li My;—cos 05,C3; (8)
21 = ki:l cos Oy

My; = cos 01;C1y; + cos 04;Ca1 + cos 05,Ca1 (i =1-k)

" _ —
- M ;—cos 05;C31 —cos 04;C )
Cll — %.Z 1{—COS i053914icos 4iCo1
i=1
- = = 9T
Csx1 :[ Cn Ca Cn ] (10)

The force exerted by the patient’s active intention is the main feature to be identified in rehabilitation
training. We judge the rehabilitation effect of the patient by identifying the force that the patient can
produce actively. In the training process, the actual measurement of human—machine interaction force
is the data measured by the sensor system of the robot. The following equation is the established
equivalent terminal mechanical model of human patients.

foxa = H(03x1, Msx1, Ms3x1) 11

In the formula, f,,; is static terminal forces in the plane of motion, 03y is current position lower
joint variable, M3y is three-joint no-load torque, M3y is measured force/torque at the three joints,
and H(e) is the mapping function.

In the process of human—machine motion, since the force exerted by the patient mainly acts on the
pedal, a six-dimensional force sensor is placed in the middle of the bottom of the pedal. Due to the
influence of the arch structure of the foot, the force at the heel and the forepaw is simplified to two
points: B and P. The force at the heel generates torque mainly at the hips and knees, and the force at the
forepaw generates pressure on the foot pedal, as shown in Figure 6.
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Figure 6. End applied force model.

In Figure 6, f, represents the patient applying force at point B; fex, f,y and denote the horizontal
and vertical resolution of f,, respectively; f}.., f},., represent the horizontal and vertical resolution of
foot forepaw forces, respectively; [y, [gxa represent the moment arms generated by f,» at point A and
O, respectively; lgy 0, lgya represent the moment arm generated by f,,, at point A and O, respectively;
InzxB, nzyp represent the moment arms generated by f),., and fhzy at point B; f, and fy represent the
force measured by the sensor mounted on the sole of the robot foot, respectively.

The moment of hip and knee joint can be expressed as:

M, IysinOs +1;sin@; 1 cosOs + 11 cos 01 || fox
= ] 8 (12)
Mh2 12 sin 95 lz cos 95 fgy
The patient’s heel force f, can be expressed as:
£ fgx | IsinOs +I;sin0; I cos 05 + 11 cos 01 ! M (13)
s fgy a 12 sin 65 lz cos 95 MhZ
From which can be obtained
Iycos 05 —(lpcosOs+1ycos6q) || Msy—M;
—1I5 sin O5 I, sin 05 + 1 sin 01 Mgy, — M) 14
fo= ((I2sin 05 + 13 sin 61 ) (12 cos 05) — (I2 sin 05) (I cos O5 + Iy cos 07)) (14)

The force exerted on the patient’s forefoot is collected by a six-dimensional force sensor on the
sole of the foot that has the same axial direction as the pedal, so the end force f;,, can be decomposed

as follows:
f,,cos 06 + f, sin O
fhzz[fhzx]: x o806 Ty (15)
fzy . sin0s —f, cos Og

Then, the equivalent terminal force of the patient can be calculated as:

f=fyt Fie [ " ] (16)

where Fy, Fy are the horizontal and vertical components of terminal force;
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By combining Equations (13) and (15), the terminal static component can be expressed as follows:

F. — I, cos O(Mg1—M; )~ (I cos O+11 cos 61) (Mso—M>) +
r ((12 sin O+1; sin 81)(12 cos 0)— (I sin 0) (I, cos O-+1; cos 9])) (17)
fycos(01 + 62+ 03+ 71/2) + £, sin(01 + 02 + 03 + 71/2)

In the formula, 0 is intermediate variable of joint Angle, 6 =-6,-0,.
r - —L sin (M1 —M;)+ (I sin O+1; sin 01) (Ms;-M>)
= ——— 2 —— = +
y ((lz sin 6+1; sin 91)(12 cos 0)—(Ip sin 0) (I cos O+1 50581)) (18)

fisin(61 + 62 + 63 +1/2) —fycos(Gl + 62+ 603+ 7/2)

Equations (17) and (18) can completely solve the mapping relationship between terminal force
and joint variables, no-load torque and measured torque mentioned in Equation (11), and provide the
entry parameters for the following judgment of patients’ motion intention and control strategy.

3. Participation Detection of LLR-II

3.1. Assist Force Training Control

According to the change of the patient’s participation in the training process, the assist mode and
the active training mode are divided into different grades to ensure that the patient completes the
training and maximize the patient’s training enthusiasm and task completion. Using the impedance
control model, the human—computer interaction force is represented by the end position offset, and is
magnified by game in the task. With the participation of the robot’s assistant force, the task difficulty is
classified, to ensure that patients can find suitably challenging rehabilitation tasks. In order to improve
the level of the patients” active participation, according to the recognized level of physical participation,
the size of the auxiliary force is adjusted in real time to ensure that patients maintain a high level of
participation for training.

With the progress of rehabilitation training, the patient gradually has a certain ability to control
the affected limb, but when it is not enough to fully control it, it is necessary to introduce assistance
training, in which the robot obtains the patient’s motion intention through the force/torque sensor,
and then drives the affected limb for training. In order to improve the coordination ability of each
joint, the patient needs to complete the trajectory training, such as the circular trajectory and the linear
trajectory. In many cases, the patient does not have the ability to perform the trajectory training task
independently, and the robot needs to assist in suppressing the wrong movement. The assistance
training control mode introduces the impedance model as shown in Figure 7. According to the current
joint actual position 6,, the position positive solution is compared with the current desired position of
the training trajectory, the auxiliary force calculation is performed, the auxiliary force Fr is obtained,
the patient force F, is summed, and the result is sent to the impedance controller to obtain the end
position control amount P. It then inversely solves the position, calculates the desired joint position
04, and transmits it to the position controller to realize the assist control.

F.
Human-Machine 0: Positional Forward
Solution
Trajectory planning

Position Inverse Solution

Figure 7. Assistance training control block diagram.
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In order to make patients intuitively understand the movement track of their affected limbs, a task
game was designed in which the patient operated the virtual mice to walk in the safe area between the
red lines. The position of the mouse on the screen reflects the position of the patient’s limb end in the
motion plane. Participation scores increased with the time the mice spent walking in the safe area,
and did not increase when the mice were outside the safe area. The trajectory of the safe passage can
be selected according to the length of the patient’s limb, and the width of the safe passage is related to
the parameters of the impedance model. The impedance model parameters are as follows:

0.0625 5 1000
M’[ 0.0625 ]’B *[ 5 ]’K’[ 1000 ] (19)

In order to make the width of the safety passage between the red lines challenging for most
patients, and not tedious at the same time, 70 kg is selected as the standard reference value for the
weight of patient, and the positional offset of the standard reference value is selected as the width of the
safety channel. The standard reference value of 70 kg was selected as appropriate to the lot of volunteers
that the machine was tested on, and it is used to provide an approximate starting point to the initial
conditions of the algorithm. During the training task, patients need to resist the weight of their limbs
and control the virtual mice to walk at a constant speed in the safe passage. If the virtual mice touch
the red line during the task, the physical strength of the mice will decline until the end of the training
mission cycle. According to the size of the auxiliary force, the task difficulty is divided into nine levels,
with K values ranging from 0 to 0.8, respectively. The degree to which patients participate in training
is related to the degree of the patient’s recovery and individual physical strength. These parameters
are difficult to quantify. Therefore, the degree of the patients’ participation in training is quantified in
stages by means of an experimental questionnaire. In the course of the experiment, patients are asked
to try nine different difficulty training tasks, and they are asked to accept questionnaires to determine
the current situation. Task difficulty is appropriate for each patient. Tasks with different difficulty can
be divided into three states: under-challenge, challenge, and over-challenge, which are expressed by
-1,0,1.

3.2. Patient Participation and Training Task Difficulty Prediction Model

In order to predict the degree of the patient’s task participation, a mathematical model based on
support vector classifiers and regression machines was established according to the characteristics of
the small sample and nonlinear data of a small number of patients’ training data and questionnaire
data. The characteristic parameters were extracted from the training data, and the data was analyzed.
The implicit mathematical relationship between input value and output value predicts the actual
participation of patients, so as to achieve the goal of selecting the appropriate task difficulty.

Using the characteristic quantity of patient training data and task difficulty states, a QPSO-
MLSSVM (quantum particle swarm optimization and multi-output least squares support vector
machine) model can be established and tested. This model is based on the LS-SVM (least squares
support vector machines) model, which is a class of kernel-based learning methods normally used
for regression and classification problems. The main distinction in LS-SVM is solving for a set of
linear equations, rather than the quadratic programming problem in classical SVMs [42]. The QPSO
(quantum particle swarm optimization) algorithm is used to optimize the key parameters in the model
to make the model performance better [43,44]. The sample set is {(x,-, y,-),i =1,2,..., l}, where x; € R"
is the input value of the ith sample, y; € R is the output value of the nth sample. The assumption is

fi(x) = @ o®@(x;) +b;,i =1,2,...,1 (20)
where, ®(x;) is the spatial conversion variable function, w is the weight vector, b is the adjustment
parameter.
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We optimize the confidence interval under this condition, and transform the optimization problem
into the minimum value problem according to the principle of structural risk minimization [45]:

1
min  YwlP+CY &
i=1
s.t. yiofi(x) 21-&;,i=1,2,...,1 1)

&i20i=12..,1

where, C is the weight coefficient; &; is the relaxation factor.

The first item in the optimization problem reflects the generalization ability and the model
complexity, the second item reflects the model error, and the parameter C adjusts the weight of these
two items. Introducing the Lagrange equation into the above formula:

L = wl? + Cil(é,- +&)- il ai(e + & -y + (wTo®@(x;) + D))
= = (22)
_i“l a:(é‘ + é: + Y- ((uT.CD(x,-) + b)) - glzl(niéi + 7]:5:)

where &0, a®) and i) represent &, a, n with * and without *, a*) and n*) are Lagrange multipliers.
A relaxation variable is introduced é,-,éz >0,i=1,2,...,1, ¢ is the insensitive.

The radial basis function is selected to calculate the spatial inner product of the kernel function in
the support vector machine model. The result obtained by the above formula is inserted back into the
Lagrange equation to obtain the dual equation of the optimization function:

maxW al, = —%ii ( —a])xK xl,x] +XI: i(ﬂiJFa;)fi (23)

i=1j=1 i=1 i=1
The constraint of this dual equation is:

1
L (a-a)=0 (24)
a;,a; € (0,C)

where, C > 0 is the Penalty parameter

When 0 < a; < C, &; = 0; when 0 < al*. <C, é: = 0, the corresponding sample is the standard
support vector, and expresses the reliability of the calculation. In general, the b value of the standard
support vector is calculated respectively, and then the average value is calculated.

b= NNSV{O<Z C[yi— Y (al- —a:)@(xi)oQD(x,-) —e]

a; x;€SV

In order to eliminate local optima problems, the QPSO algorithm and the SVM algorithm are
mixed the Hybrid QPSO-SVM algorithm. The formula of QPSO is:

(25)

+ X [yi— )y (ai—a:)é(xi)ocb(xi)wLe
0<a;<C x;€SV

Mpest = MZ P;

Pc = ¢P,] 1 ‘P) o
xz](t +1) = Pc; + aimb“t/ —x,-,-(t)| ]n(ll')

34



Sensors 2019, 19, 4681

And the particle swarm velocity formula is:
vii(t+1) = wevy(t) + clrlj[Pij(t) - xij(t)] + ceri[ng(t) - xgj(t)] (27)

where, Pijs Pgjr Pjj are the optimal positions of the i particle and the g particle in the j dimension,
respectively; mpest, Mpestj are center points of the current best position of all individuals on all
dimensions; M is the particle swarm size; p; is the current best position of the i particle; p i is the
random position between p;;, p,;; « is the control coefficient.

QPSO optimizes two key parameters, C and o of the MLSSVM, and the optimization goal is
minimizing the fitness(o, ) function. The sample mean square error (MSE) is selected as the particle
swarm fitness function.

M
fitness(o,y) = AL/IZ(%' _9i)2 9
i=1

where, y; is the actual value and #j; is the predicted value. When fitness reaches its minimum,
the optimal solution is obtained.

4. Experiment

In order to verify the effectiveness of this method for patients, 12 groups of healthy volunteers
were tested. All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of Yanshan University. Because the speed of physical expenditure
for stroke patients is different in difficult tasks and due to the changes of the assistant force parameter
K, maintaining the foot in a safe area requires a different level of initiative. With the increase of the
difficulty coefficient, the K value of the assisted force parameter decreases gradually. Meanwhile,
the patients’ goal participation will increase during the training process, which may lead to a rapid
decline in the patients’ physical strength. So the human-computer interaction exerted by the patient
at the end of the robotic chain is related to the degree to which the patient participates in the task.
The degree of the patients’ participation in tasks is also closely related to the difficulty of the tasks.
To verify this point, the force/moment of three joints is calculated as the terminal force in robot
coordinates. Secondly, the obtained data yields an observation of the changes of the calculated end
force in the training cycle and a comparison of the position of the end of the robot under different
parameter K values of the assisted force.

Figure 8 shows the end force after transforming the data collected by the sensor into the end force
of the robot coordinate after eliminating the self-weight of the robot. Under the assists force with
K = 0.4 task difficulty, the human-robot interaction force keeps at a relatively low level for a period
of time at the beginning of training. At 380 s, the volunteer is too weak to bear his own weight to
complete the task, and the Human-robot interaction has reached its first peak. At 400 s, the volunteer
challenges himself again and strives to achieve the goal of the task, so the human-robot interaction
force declines rapidly because the volunteer takes the initiative to bear the weight of their limbs.
However, the second phase of maintaining a lower level is shorter than the first phase, and the second
peak of the interaction force appears. At the end of the training, it is difficult for the volunteer to bear
part of the body weight again in order to achieve the goal of the task, so the interaction force, which is
almost entirely composed of the volunteer’s limb weight, keeps at a high level. The variations in the
time period of repeated challenges for a volunteer at different task difficulties are shown in Figure 9.
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Figure 8. Sensors measuring terminal force during training: (a) Human-computer interaction of
six-dimensional force acquisition under the training task of assistant force parameter K = 0.4; (b) the
calculated terminal force in robot coordinates under the training task of assistant force parameter
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Figure 9. Terminal force during different difficulty tasks training: (a) the training task of assistant force
parameter K = 0.1; (b) the training task of assistant force parameter K = 0.5; (c) the training task of
assistant force parameter K = 0.6; (d) the training task of assistant force parameter K = 0.8.
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The picture above is the terminal force of the first volunteer in training tasks with different K
values of the assist force. After a questionnaire survey of the volunteer, the K = 0.1 of assist force task
for the patient is “over—challenge”, and the K = 0.5, K = 0.6 of the assist force task are “challenge”,
with the K = 0.8 of the assist force task being “under-challenge”. Under the over-challenge task, there
being heavier limb weights to load, the volunteer’s physical exertion is fast and there appear many
peaks in the human-robot interaction force. With the increasing participation of assistive forces in
training, volunteers need less initiative to achieve task goals. This phenomenon can be clearly seen by
observing the relationship between the end position and the safe passage.

Figure 10 shows the relationship between the terminal position of the robot and the safe passage of
the target in the different difficulty training tasks for the first volunteer. The blue line is the rehabilitation
robot terminal position, and the green line is the target terminal trajectory, while the red line is the
safe passage. The difficulty of K =0, K= 0.1, K=0.2, K = 0.3 assist force tasks are “over-challenge”,
K =04, K=0.5,K=0.6 assist force tasks are “challenge”, and K = 0.7, K = 0.8 assist force tasks are
“under-challenge”. It is difficult for the volunteer to complete the task goal in the over-challenged task.
In the under-challenged task, it’s easy for volunteers to reach the goal position.
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Figure 10. Terminal position during different difficulty tasks training.

The degree of patient participation under different task difficulties is reflected in the fluctuation of
human-machine interaction mechanical signals, and the feature fluctuation represents the fluctuation
of signal data in this period. The greater the fluctuation of the feature, the greater the degree of
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dispersion, as it is more sensitive to signal fluctuation, and it is more suitable to be used as an input
parameter of the detection model for patient participation. The sample data is processed by using four
indicators, describing the degree of dispersion of the signals, the interquartile range, and the variance.
The above features in the data are statistically analyzed to judge their significance and correlation
under different volunteer states. Significance analysis is undertaken to compare the feature data of
“under-challenge” and “over-challenge” volunteer states with that of the “challenge” state, in order to
judge that the feature data have significant differences in the three states. The correlation is done to
compare the insignificant features with the degree of volunteer participation, whether and if there is
correlation. This feature will still be used as an input parameter to train the support vector machine.
This paper extracted the preliminary feature variables in Table 1.

Table 1. Characteristic parameters of volunteer participation.

Type Description
PrmsE Mean square error of position
Pstp Position standard deviation
Tsca The proportion of time outside the safe passage
Fo Inter-quartile range of terminal force
Unax Maximum value in frequency domain of terminal force
fmax Peak frequency in frequency domain of terminal force
Fp Component at frequency 0 in frequency domain of terminal force
Fyar Variance of terminal force
Por Offset range of position
Uhyiax Maximum value in frequency domain of volunteer motivation
fhviax Peak frequency in frequency domain of volunteer motivation
PymaE Mean absolute error of position

Ten volunteers were selected to carry out the experimental verification of the participation and task
difficulty detection. Each volunteer was trained in 10 difficult tasks that lasted from 15 min to 20 min.
In order to eliminate the influence of physical energy consumption between each experiment, they were
conducted one day apart. After the end of the experiment, a questionnaire survey was conducted
on the difficulty of the task, which is divided into three participation levels: “under-challenge”,
“challenge”, and “over-challenge”. As part of the experiment, the data of hip and knee joint torque,
plantar six-dimensional force, and terminal trajectory were collected. With the different participation
of assistive force, there are different performances of the terminal force and position. The characteristic
quantities were extracted, as shown in Table 2, from the training data. The training data characteristic
quantities of volunteers were then compared to their classification, according to the predicted task
difficulty. The pairwise t-test comparisons of the characteristic quantities were statistically analyzed to
verify whether the characteristic quantities are significantly different under different task difficulties.
Comparisons of the characteristics of each two difficult tasks, using one-way repeated measure ANOVA,
were done separately. Table 2 shows the results of the significance analysis of the characteristic quantity
in the difficulty of the three tasks. p value is the test probability, F value is the effect of random error.
When p value is less than 0.05, the characteristic quantity has significant difference under different
difficult tasks.

The significance analysis of the characteristic quantity from the training data of 10 volunteers
shows that there are obvious differences when comparing the Prmsg, Pstp, Tsca, Pmag among
different volunteers. The p value of Fg, Umax, Fp are greater than 0.05, only in the case of the
difficult and medium groups. For Fg, Umax, Fp there are obvious differences in other groups, as it
can distinguish the difficulty of the under-challenge tasks. Although Pog has significant differences,
its value is rough and its stability is not high. Accordingly, Prmsk, Pstp, Tsca, Fo, Umax, Fp, PmAE
are used as feature inputs for volunteer participation and task difficulty classification. Figure 11

38



Sensors 2019, 19, 4681

shows more intuitively the difference in training characteristics among three difficulty levels for

each volunteer.

Table 2. Significance comparison of characteristic quantities.

Comparison Prwmse Pstp Tsca
P F P F P F
Difficult/Medium ~ 3.19x107*  1.09x107"  15x10™* 376x10710 1.44x10™3 59x10™*
Difficult /Easy ~ 2.74x 1077  32x107™  426x107® 1.08x107* 206x1071  19x107*
Medium/Easy ~ 8.08 x 107° 0.1 1.26 x 1078 0.112 6.13x 10710 0.634
Comparison Fo Unmax Fuax
P F P F P F
Difficult/Medium 0.844 0.0904 0.136 0.07 0.39 0.382
Difficult /Easy 9.97 x 1073 0.01 6.37 x 1074 0.028 0.028 0.007
Medium/ Easy 47 %1073 0.339 0.0147 0.65 0.154 0.066
Comparison Fo Fuar Por
P F P F P F
Difficult/Medium 0.735 2x107° 0.255 0.001 7.59 x 1076 0.0035
Difficult /Easy 0.033 0.221 0.961 0.072 3.07x1071% 566 x 1071
Medium/ Easy 0.0013 0.002 0.193 0.212 2922x1078  1.78 x 10>
Comparison Uhmax fimax PMmAE
P F P F P F
Difficult/Medium 0.0013 0.009 0.001 0.6789 0.0005 538 x 10712
Difficult /Easy 0.1478 0.003 0.072 0.5531 3.19x1077  429x10713
Medium/ Easy 0.5216 6.06 x 1077 0.929 0.8565 2.32x107° 0.339
K=0 = = = K=05 K=0 = = = K=0.5
----- K=0.1 s K=0.6
= K=0.2 K=0.7
K=0.3 === K=0.8
K304 = = = K=0.9

Figure 11. Characteristic quantity of training data under different task difficulties: (a) characteristic
quantity of Volunteer 1# training data; (b) characteristic quantity of Volunteer 2* training data.

Figure 11 shows the characteristics of two volunteers under different task difficulty. Among them,
the red line is under the task difficulty of over-challenging and difficult; the green line is under the
task difficulty of challenging; the blue line is under the task difficulty of under-challenge. Prwmsk,
Pstp, Tsca, Fp, Pmak are positively correlated with the task difficulty evaluation, and Fg, Umax are

negatively correlated with the task difficulty evaluation.
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The training data of 100 groups of 10 volunteers receiving the test were used as training sample
data. At the same time, another two volunteers were randomly selected as the predictive group.
Two volunteers in the predictive group were trained in all tasks with different difficulty levels,
and questionnaires were conducted on task difficulty. Their training data is used as predictive sample
data. Extracted feature quantities X as input from 100 sets of experimental sample data and the
training set known category information Ys (Task Difficulty of Patient Evaluation) were taken as
output. The prediction model based on QPSO-MLSSVM hybrid optimization algorithm and the two
comparison models based on MLSSVM algorithm and a neural network algorithm were established.
QPSO is an iterative optimization that optimizes the parameters C and ¢ in the MLSSVM algorithm to
improve the generalization ability and prediction accuracy of the model. The 20 sets of data in the test
set are similar to the ones in the training set, and seven feature quantities X; are extracted as inputs of
the existing model, and the predicted output ¥, is obtained by the model operation. The accuracy of
the model was evaluated by a minimum mean square deviation operation between Y; (Task Difficulty
of Patient Evaluation) and Y.

In the analysis of the results, the training samples obtained from the mathematical model cannot
directly reflect the prediction ability of the model. Further model evaluation can be achieved by
comparing the prediction data of the training samples with the real data. Common evaluation indexes
of the model include MSE, RMSE, correlation coefficient, and so forth. In this paper, the mean square
error and the correlation coefficient are used to evaluate the model.

The data from 100 datapoints of the volunteers’ participation status were input into the prediction
model to train the model, and the prediction tested on 20 datapoints. Correlation analysis was
conducted on the actual values and predicted values of the data, and the linear fitting results are shown
in Figure 12.

s true value

Medium

Difficulty Evaluation of Training Tasks

Test Group Training Task Number

Figure 12. Comparison between task difficulty prediction and reality of test group.

In order to further analyze the classification effect of the QPSO-MLSSVM support vector machine
on the state of volunteer participation, the minimum mean square error (MSE) and mean absolute error
(MAE) as well as Standard Deviation (MAPE) of the predicted and true values of various volunteer
participation states was obtained, as shown in Table 3

Table 3. Significant comparison of characteristic quantities.

MSE MAE STD
Matching degree 0.0428 0.1822 0.1006

Training concentration simply divides task difficulty evaluation into —1, 0, and 1. Because patients
have different evaluation criteria for difficulty, the dynamic trend in training data is different, and the
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results after algorithm testing will be distributed around three values. If the test results are graded
according to the difficulty of (—1.5, —0.75), (-0.25, 0.25), (0.75, 1.25), the accuracy of the test can reach
100%. In order to eliminate the result of slightly larger offset, the determination range is reduced to
half of the original one that are (-1.25, -0.5), (=0.5, 0.5), (0.5, 1.5). And the test accuracy can still reach
80%. The matching result of task difficulty evaluation shows that the predicted value of task difficulty
is close to the real value, which also verifies that volunteers’ evaluation of the difficulty of training
tasks can be obtained from training data.

5. Discussion

Early rehabilitation training for stroke patients is very important and effective. While the
rehabilitation robot can be used in the later stages of recuperation and even as a workout enhancer,
the research work is aimed at the early stages of post-trauma rehabilitation. The aim is to re-train
the nerve control and brain-body associations for typical movements of the affected limb. Overall,
the success of training is measured in how quickly and effectively a patient regains normal control
of their limbs. In order to make patients take the initiative to participate fully, while not letting the
patient’s physical strength drop rapidly, dispelling the enthusiasm of patient training, is a complex
problem. It is very important to choose the appropriate training task difficulty for patients. Therefore,
this paper determines whether the current task difficulty is suitable for patient training to achieve
optimal training effect based on the data of the patient in the training task. The final experiment in the
paper proves that the matching degree of task difficulty evaluation of the two volunteers in the test
group was worse than that of the test difficulty evaluation of the volunteers in the experimental group
from the fitness curve. This is due to the volunteer’s subjective persistence and subjective evaluation
of the difficulty of the task. However, the support vector machine task difficulty judgment model still
has a prediction accuracy of 80% for the volunteer task difficulty evaluation of the test group. As the
training data continues to increase and a variety of training information is introduced, the prediction
accuracy of the judgment model will become higher and higher.

As can be seen from Figures 8 and 10, when volunteers perform multiple training tasks with
different difficulty, with the decrease of difficulty and the increase of the proportion of assistant
power, the strength needed by volunteers to achieve the goal task position and the speed of physical
consumption will be reduced. During clinical trials, most volunteers have emotional issues when
performing challenging tasks. Most of them have low mood, and some are irritated. They need to
continue their psychological counselling and speech encouragement to support their task training.
When the volunteers were under challenging tasks, most of them felt bored and emotionally stable.
It may have an effect on the experimental results for the frequency of speech encouragement during
training. In this clinical trial, speech encouragement was given four times in each training process
to minimize the influence of this factor. In the future, the research team will use a variety of
measurements to study the emotional and physical characteristics of volunteers to verify their impact
on rehabilitation training.

In this paper, the performance of volunteers in training tasks at different levels of difficulty
is investigated in order to determine whether the task difficulty is appropriate and to verify and
judge the past data. But it also proves the validity and universality of the assistant training strategy.
This control strategy can maximize the ability of patients to actively participate in training. In the
future, the research team will continue to study and improve upon such clinical trial data. It is expected
that the task difficulty can be judged and predicted online, and then the assistant force can be adjusted
in real time, so that patients can participate in training actively and optimally.

6. Conclusions

This paper studies a seated and reclining training lower limb rehabilitation robot with a multi-joint
sensing system. In order to make the patient participate actively in the training task, an assistive force
training control strategy and corresponding task difficulty are proposed. The multi-joint mechanical
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sensing system is used to solve the more accurate end mechanical model, and then the human-computer
interaction force is detected. Clinical trials of 10 volunteers were conducted, and each volunteer
underwent nine levels of difficulty training. Through the optimized support vector machines algorithm,
quantitative features in the training data are taken as the input set, and the volunteer’s evaluation
of the task difficulty is taken as the output set, and a task difficulty judgment model based on the
volunteer training data is obtained. The training difficulty of two other volunteers, not in the original
10 persons training set, was predicted. It was verified that the difficulty judgment model of the task
was universal and could exclude the influence of body size and weight. By comparing the prediction
results of various algorithm models, the accuracy and convergence speed of the optimization algorithm
are verified.

Future work will concentrate on extending the research to alternative models, such as described
in the introduction, with a detailed comparison providing possible improvements to the data pipeline.
The application will also benefit from a continuous expansion of the dataset, as more patient trials
become available. This will also lead to the training data being judged and predicted online, and the
difficulty of the task being adjusted in real time to optimize the rehabilitation effect of the patient in the
future. As discussed throughout the paper, the patient’s perception of the difficulty of the training
exercise influences their mood, behavior, and performance. As such, matching the patient’s perception
is an important task in itself, even if the mechanical ground truth may be misrepresented. The desired
end result for the rehabilitation robot, including future research, is a real-time online assessment which
includes individual patient profiles, which should make patient subjectivity less relevant.
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Abstract: Large scale, complex, networked enterprises, as may be considered (trans)national energy
systems, multi-national manufacturing enterprises, smart cities a.s.o. are structures that can be
characterized as systems of systems (SoS) and, as such, require specific modelling paradigms and
control architectures to ensure their successful running. Their main characteristic is the necessity
of solving practically one-of-a-kind problems with respect to the external context and internal
configuration, thus dealing with dynamically evolving flows of data and information. The paper
introduces the concept of intelligent cyber-enterprise, as an integrating paradigm that uses information
and knowledge dynamics, in order to model and control SoS, especially focusing on the importance
of appropriately adapt external and internal perception of an enterprise through a new generation of
sensorial systems—the perceptive interfaces. The authors analyze sensing and perception in relation
to intelligent cyber enterprise model and propose an implementation for a perceptive system interface.

Keywords: cyber-physical systems; intelligent cyber enterprise; systems interface

1. Introduction

New technological developments have helped solve many scientific and socio-economic problems
over the years. Nowadays we can produce goods in every economic sector, and we can transport
them in very short time no matter what distance is required all around the globe. This can be done
nowadays much faster than ever. We can extract the required data from very large amounts of data,
found in a single location or combine from multiple locations through heterogenous interconnected
networks. We may use the information provided in a very short period, so that we may easily find
a solution and adapt depending on the circumstances.

Availability of resources, personalized products, social enterprise, environmental awareness,
globalization of markets, all of these represent important factors in today’s enterprises’ management
and economic development. The problem is, they represent also pressure factors in the decision-making
process, considering the following aspects:

e Decision making is often a problem of selecting from several possible solutions, based on available
information and optimization (efficiency) criteria.

e Asnow there are huge amounts of available data, this availability often increases the complexity of
the problem, by taking into account too much information (irrelevant for the core of the decision).
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e This complexity either may generate such models that their analysis and performance evaluation
take too much time with respect to the problem-solving time horizon or may encourage model
simplification (including finding false similarities) which results in incorrect models.

Either way, a correct decision making implies both an appropriate problem modelling and a correct
selection of relevant information and data to be used (gathered and exchanged) in its solving.
The approach of this paper is thus oriented on:

e Defining a modelling approach for a system of systems structure, oriented on problem-solving
(the intelligent cyber-enterprise).

e Defining a generic problem model, in order to support systems dynamics, reconfiguration
and adaptation to the environment and context, with respect to information flow (the
perception-reasoning-learning model).

e Identification of the role and place of perceptive interfaces in ensuring the appropriate gathering
and flow of information (including human in the loop aspect).

Some aspects related to process identification in order to allow appropriate design of perceptive
interfaces are included. Information technologies that are used in control systems and knowledge
management represent the most important aspects out of all the tools that are available on the market.
Also, because the degree of complexity has increased in different engineering domains, new models
and paradigms appeared over the years. On the other hand, globalization and sustainable development
require a new economic perspective that must include social and environmental impact in order to
develop sustainable businesses and production systems [1]. In the present paper the authors analyze
sensing and perception in relation to the intelligent cyber enterprise model and propose a new concept:
perceptive system interface.

2. Related Work

New emerging concepts, such as internet of things (IoT) and cyber-physical systems (CPS)
paradigm represent only a small part of the technological drivers of the next industrial revolution.
In this section we address important concepts and paradigms related to the development of intelligent
cyber enterprise model.

CPS are related to the study of complex systems as well as systems of systems focusing on
physical and virtual components, interactions, process interconnections and information processing
and addressing a wide range of temporal and spatial scales [2]. CPS are characterized by the
National Science Foundation [3] as “engineered systems that are built from and depend upon the
synergy of computational and physical components. Emerging CPS will be coordinated, distributed,
and connected, and must be robust and responsive.”

Cyber-physical systems must have the capability to be reconfigurable in order to integrate the
human factor into system engineering and socio-technical systems. This new trend emphasizes the
constant need of interoperability paradigm, seen both from the classical considerations as well as the
new trends as we must sense and perceive the smart system taking into consideration all interoperating
systems. This new shift can have an important consequence in the near future in the design process as
well as the implementation phase. The adoption of cloud-based technologies will have an impact on
the design and implementation on the next generation of sensing systems [4].

With the development of the internet of things and future internet paradigms, the number of
systems that need to cooperate and interact in the future will increase both in number and complexity.
Thus, we must perceive the purpose of every system in order to use the proper methodology in order to
verify and validate each functionality. One solution can be the model-based cyber-physical systems [5].

Advances in internet-oriented paradigms have led to the development of Edge/Fog computing
model aiming to optimize smart applications to expand their functionalities close to the geographic
location of the IoT devices, rather than outsourcing computations to far away datacenters. A proposed
architecture includes an edge/fog/cloud monitoring system and a capillary container orchestrator that
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is able to handle highly dynamic IoT environments in which the edge node may be overloaded at
runtime due to an increase in the workload [6].

Security is an important component of future internet systems. One important aspect in addressing
security is trust. Edge, fog and cloud computing have to rely on resources and services under
ownership of various entities [7]. A proposed trust management architecture that relies on the use of
blockchain-based smart contracts (SCs) and specifically designed trustless smart oracles is presented
in [7].

Correlated with these concepts, new enterprise models have emerged. Such models have been
related to the factories of the future paradigm. Factories of the future aggregate the concepts and
represent the future of an enterprise that is built on collaboration, connectivity at different organizational
structures, machineries and human operators, in order to become part of interconnected networks of
suppliers, transporters and customers.

Distributed manufacturing systems are an important component of factories of the future and
require new scheduling optimization models. A proposed model is presented in [8] and is developed
based on a discrete fruit fly optimization algorithm with three heuristic methods proposed to initialize.

Another important component of factories of the future is represented by material flow analysis.
Results have been used with success in optimizing material flows and waste streams in production
processes [9].

A sensing enterprise represents a new paradigm based on the digital innovation concept that
deals with the adoption of sensing and future internet technologies. Sensing enterprises are mostly
connected to virtual enterprises and their networks. Seen from the perspective of a smart system in
general, sensing enterprises must have the capability to sense, model and interpret signals from the
real world and thus to be able to adapt into a more agile configuration of the system [10]. In relation
to such systems a product service systems conceptual framework is proposed in [11] in order to
facilitate the development of interoperable product systems and service systems in accordance with
the stakeholders needs.

Another important model associated with factories of the future is the cognitive manufacturing.
Cognitive manufacturing is a proposed manufacturing organization method, based on perception and
cognition that integrates IoT principles, Artificial intelligence and data analytics technologies. One of
the main objectives of cognitive manufacturing implementations is to integrate process as well as
enterprise wide data and information, as to achieve improvements in the use of equipment, processes
reengineering based on decision-making models and data analytics models, enterprise integration of
knowledge management models [12].

Cognitive manufacturing systems address the following;:

e Improvement of product lifecycle management by providing an integrating enterprise and
environment focused approach;

e  Adaptive systems integration;

e  Analyzing manufacturing data obtained from sensors: production management systems are
generating huge amounts of manufacturing data;

e  Using decision making models in correlation with business intelligence systems;

e Linking the overall decision-making procedures of the enterprise with knowledge
management systems.

3. Intelligent Cyber Enterprise

In this section, the authors briefly describe the concept of intelligent cyber-enterprise (ICE), [13]
seen as a socio-technical complex system. In relation to the implementation enterprise wide CPS
systems the concept of ICE was proposed.
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The connection between physical processes and their cybernetic representation is a very important
aspect in order to modeling and design exactly the behavior of a process and thus being capable to
integrate hardware-in-the-loop and human-in-the-loop components [5].

A cyber-enterprise represents an aggregation of physical objects, knowledge represented through
process models (workflows), control algorithms, humans and information represented by adequate
software tools and communication processes [14]. Thus, within an ICE, all these components must be
capable to interact and cooperate in order to achieve intelligent enterprise goals, in terms of production,
costs, time bound and resources limitations in order to satisfy all clients, suppliers and economic
partners in a sustainable environment. Such a proper interaction must take into consideration the
level of required intelligence, the amount of required data and how to extract information from
heterogeneous flows within the enterprise, as well as by the emergent intelligent behavior of the
enterprise in order to become adaptive, reactive or proactive, depending on the economic constraints
and demands [15].

The ICE must be modeled in order to be capable to solve any specific problem, being capable
to divide any problem at the lowest level of complexity. On the other hand, problems that must
be solved are goals existing at the operational level that must include the minimum amount of
enterprise resources.

From the CPS perspective, in order to achieve these results, we must include at least a control
loop and at least one enterprise resource. The more complex a problem becomes there is a demand to
include multiple control loops and specific resources. Control loops must operate in real time and
must be based on targeted algorithms and rules, using well defined sets of data. The more complex
a problem becomes there is a necessity to integrate heterogeneous information structures and heuristics.
An intelligence-based model for the ICE is represented in Figure 1.
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Figure 1. CPS-based enterprise model. Adapted from [16].

Every component of the ICE architecture must be capable to be independent according to different
pre-defined specifications and must have the capacity to communicate, allowing the transfer of
meta-data, information and knowledge in order to provide reliable context-oriented behavior [17].

Another aspect that must be taken into consideration is to connect subsystems in clusters,
depending on the initial functional requirements. For examples, machines are a part of manufacturing
cells that communicate based on protocols, standards and rules, all of them being embedded in control
algorithms. Thus, functionalities can be added afterwards depending on the required specifications,
initial or during the process implementation. Manufacturing cells are part of a manufacturing system,
and thus are capable to fulfill any given problem and to develop various products [3]. The main
characteristics of ICE include:

e Perception: this characteristic has the purpose to develop and integrate results from measurement
science for sensing and perception. The role of perception is to better understand the system'’s
complexity and thus to reduce the risks related to the adoption of new technologies.
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e Mobility of Systems: this characteristic will develop specific test methods in order to determine the
performance of each intelligent system.

e  Human-Machine Interaction: this characteristic has the purpose of delivering specific
test methods, protocols and information models in order to facilitate a more effective
human-machine collaboration.

o Agility of Industrial Systems: this characteristic has the purpose of delivering agility performance
metrics, data sets and information models in order to enable manufacturers to adapt and
reconfigure system components.

e Embodied Al and Data Generation for Manufacturing: this characteristic has the purpose to deliver
structural artificial intelligence and machine learning models and tools in order to improve the
performance and autonomy of manufacturing applications.

e Collaboration: this characteristic has the purpose to deliver specific models in order to facilitate
calibration, coordination, in order to mitigate the lack of advanced automation.

e Safety Performance: this characteristic will provide performance metrics, specific test methods and
measurement tools in order to support the development of next-generation systems that will have
the capability to integrate human behavior and to enable tactual-based safe human collaboration
and manufacturing tasks.

Intelligent cyber enterprise systems design is focused on adopting new technologies in order
to become agile, safe and productive, being also capable to interoperate with smart manufacturing
applications and to better evolve.

3.1. Sensing in Correlation to the Enterprise Environment

In order to easily reconfigure, taking into consideration all existing constraints, a sensing system
need different resources and conditions in order to be constantly under control. All the functions of
a sensing system can be seen as a CPS. These systems can easily make the switch between physical
world and thus merge to virtual world. By the help of sensor networks and actuating systems,
the sensing system can monitor all the physical processes, collect data from all devices connected,
interpret and expose data in different formats in order to make it widely available for every interested
stakeholder and software applications to use it in order to better understand the real world.

The artificial intelligence concept can be seen from two different perspectives: both from the
traditional approach but more important, from the machine learning perspective. Thus, a smart system
will need to be capable of integrating generating mechanisms (physical and virtual) in order to extract
the exact data that is needed. This might mean that simulation tools must be used in order to better
under the behavior of the system and thus know how to instantly react based on its behaviors. Or,
it might mean that data can be extracted from different web resources or multiple physical systems.

In order to develop a measurement mechanism in order to better understand a smart system,
and thus sense and perceive the system performances in order to reduce the risk related to the adoption
of new technologies, there is a need to integrate sensors and algorithms in order to create productive
manufacturing environments.

If in the past we could identify manufacturing systems formed from simple sensors, actuators and
controllers, now, there is an urgent need to integrate complex sensor networks in order to use them for
the system perception. This is a complex task that makes it very difficult to implement it for academia,
system integrators and even manufacturers in order to identify the right solution. The technical idea is
to identify existing and emerging sensing and perception technologies and related software in order to
understand the product and research solutions landscape.

Due to specific constraints related to flexibility and reusability, smart systems play a very important
role in strengthening worldwide manufacturing competitiveness by stimulating responsiveness and
innovation. To achieve this goal, smart systems must be capable to perceive and adapt depending on

49



Sensors 2019, 19, 4422

the need of collaboration with other smart systems or humans. Thus, they must have the capability to
learn, adapt and quickly integrate into the rest of the enterprise.

3.2. Perception and Cognition in Correlation to Enterprise Environment

The design of enterprise systems based on the ICE model includes the integration of perception,
reasoning, learning and cognition models. These aspects become relevant in the development of
perceptive system interfaces for the ICE. An important aspect of ICE is related to extending the enterprise
sensing function to a perception function. The perception-reasoning-learning loop (PRL) is further
addressed, from a functional point of view and with a special emphasis on the awareness concept.

The ICE functioning is based on problem solving. Usually, such problems are described in terms of
system-specific production/functioning goals, with different levels of precision, from strategical (profit
versus investments, sustainability, market coverage, utilities availability, durations for problem-solving,
quality of processes and products, safety, etc.) to more resource oriented, as number of products/services
delivered, cost/profit per product, a.s.o.

Every problem is solved by a sequence of activities, performed by specified resources, at given
times (eventually triggered by specific events)—which will denominate as workflows, and which are
pieces of knowledge.

Resource oriented problems are solved by deterministic, predictable, well-defined workflows;
operational and strategic problems, implying collaboration between resources, are solved by ad-hoc
combination of workflows, with respect to availability of resources and context. Such problems may be,
usually, solved in different ways, implying very different resources, approaches (interconnections of
resources), costs and time. Solving approaches are determined mainly by resource availability, but also
by the information availability, interpretation and possibility of gathering (sensing/perception). Also,
networking is determined by the possibility of information interoperability between resources.

Appropriate interfaces for information transmission and appropriate perception of external
information become crucial for such problem-solving approach. As designing specific interfaces for
any possible problem is impossible, it is important to focus on the interface adaptability in order to
allow the maximum flexibility for problem solving.

It results that an appropriate complex problem model should underline:

e System goals—allowing the definition of specific parameters to be measured, transferred,
contextualized and used as information for solution evaluation.

e  Available system resources, for the time horizon of problem-solving—every resource allowing
specification of functionality (workflows available—as knowledge stakeholders) input/output
information and triggering events.

e  Problem context—external information available and, respectively, necessary.

Such a model allows, once the appropriate solution is found, to design appropriate perceptive
interfaces either between interconnected systems (including human operators) or with the environment.

Perception in an ICE environment may be referred as the active process that facilitates the
interpretation of the environment by integrating information and “stimuli” from the sensory system.
Two processing mechanisms can be relevant in the context of an enterprise environment:

e  “bottom-up” or non-aware consisting mainly of passively listening to all sensorial channels);
e “top-down” or aware consisting mainly of anticipating and selecting certain stimuli, also referred
as perception control).

Relevant aspects of human brain functions and processes that can be modeled in enterprise
processes and systems, include:

e  Forecasting of information that is expected in a certain situation;

e  Focusing on specific information (neglecting other information);
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e Interpolating data with respect to an existing pattern, when real information is presenting gaps
(the phenomenon of “we see what we expect to see”);

e  Structuring large amounts of (sometimes possible irrelevant) information, in order to select, during
the process of reasoning, the relevant one;

e  Hierarchically organization of recurrent interconnected networks each providing specific functions;

e Connectivity patterns distributed among functionally specialized processes based on input-output
connectivity specifications and local architecture;

e Dynamics of interfaces between functionally specialized processes;

e mechanisms allowing processing modules to incorporate adaptive changes enhancing processing
system parameterization with respect to the adaptability factors of the network;

e Dynamically reconfigurable models which are incorporating functional clusters;

e Adaptive agents which connect depending on context and on the complexity of the goal;

e Interconnection process of several structural and functional modules in parallel-distributed
configurations that are generating emergent behavior.

Three phases of perception can be identified, in association to the following gestalt principle:
every person has a role in one’s perception process, designating a three-stage sequence:

1.  Hypothesis related to perception. This will guide the selection, organization and interpretation of
the stimuli.

2. Acquisition of information from the sensing system.

3. Comparison of the hypothesis with the acquired sensory information.

Reasoning is considered the (brain) capability of solving problems. The main components of the
reasoning process in an ICE environment are: the problem identification, the problem categorization
and the identification of the solution.

The solution identification process of a specific enterprise problem can be associated with
a reasoning mechanism. Action based on the proposed solution generates feedback that can be
measured and interpreted in order to generate a new perception/reasoning cycle. An generic
perception/reasoning cycle that can be integrated in problem solving mechanisms of enterprise systems
can include the following:

e  The categorization phase is the one that determines how the following phases are performed:

e  Success criteria;

e Selection (of the solving patterns—if any);

e  Filtering;

e  Fusion (on relevant input information);

e  Planning, estimation, validation: an internal loop whose execution depends on the category of the
identified problem, but whose goal is to advance towards the solution by a stepwise decomposition
of the problem;

e  Feedback;

e  Evaluation of success (achieving the desired goal or estimation of the distance towards it).

Learning in an ICE environment can be associated to saving and retrieving a solved problem
using a knowledge model. A deep learning process can also be associated to the enterprise system
environment. In this process knowledge, used and validated for a given number of times may be
retrieved “reflexively” i.e., without a volitional act. Rule mining and self-learning are being used with
success in various industrial cases. One such a case is related to the development of a mixed-integer
mathematical model to represent the direct energy consumption of machines and indirect energy
consumption on a shop floor [18].
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3.3. Intelligent System Interfaces

An interface has various interpretations across technical literature: a connection, a composition
of connections, a boundary, a linkage, an interaction between functional entities, a logical relation,
a specification [19].

ISO/IEC standards (ISO/IEC 2382-1/1993) define interfaces as: “A shared boundary between
two functional units, defined by various characteristics pertaining to the functions, physical signal
exchanges, and other characteristics.” [20].

System Interface design can be addressed taking into consideration the following aspects:

e Characteristics of the system for which the interface is developed.

e  Characteristics of the connected systems or of the environment.

e Interaction type. The type of interface can be related to different classifications: simple or complex,
human- machine (H2M) or machine-machine (M2M), physical or logical, hardware, software or
hybrid, internal or external.

e Interface structure.

e Interface behavior is related to behavioral patterns designed for the interface. Interface behavior
describes how interfaces are used. This can be related to data handling, protocol, connection
initiation procedure, synchronization, data-driven or event-driven.

e Interface monitoring.

e Interface configuration.

e Interface error handling. Some aspects relevant for error handling include data integrity,
confirmation of transmission, error correction and error recovery.

e  System security in relation to the interface.

e Interface control document.

When addressing the necessity of developing intelligent system interfaces, the following
characteristics are relevant:

Adaptation. The adaptation of a system to changes in the environment or in an interconnected
system needs to be addressed as both a change in the system itself but also as a change in its interfaces.
In this context adaptation can become a function of the interface.

Learning. Machine learning techniques can be used in association with interface components.
Patterns in data exchanged through the interface can emerge as a result of machine learning techniques
applied at interface level. Such patterns can be used to optimize the functions of an interface.
An example can be related to the amount of time the interface is used.

Prediction. Prediction is not only associated with intelligent systems but can become a function of
the interface. Components fulfilling this functional role should be able to generate predictive models
related to the environment and/or behavior of the interface.

Optimization. An interface can be extended with components that can monitor the function and
behavior. Aggregated data from such components can be used in interface optimization processes.

When developing intelligent interfaces, the following aspects need to be addressed:

e Interface structure in accordance with system structure and behavior.
e Interface behavior in relation to the input and output data.
e Interface functionality in correlation with inputs and in accordance with the needs of the system.

4. Design of Systems Interfaces for the Intelligent Cyber Enterprise

In the current section the authors propose a model for a generic perceptive systems interface
as a part of an ICE architecture. In order to implement the perception function two facilitator
components are proposed: a process/behavior identification component and a semantic routing
component. The semantic routing component facilitates the transfer of data and information between

52



Sensors 2019, 19, 4422

enterprise system components. The process identification component discovers behaviors associated
to the function and current use of the interface (how the interface is used) in accordance with patterns
identified in the data and event streams transferred through the interface. As the interface connects
system components, the process identification system analyses data in order to determine a workflow
or a process associated with data passing through the interface.

4.1. Intelligent Cyber Enterprise Perceptive Systems Interface

The main functional aspects of a perceptive interface are showcased in the context of an ICE system
model, described in this section. The proposed interface relies on components that enable its adaptation
through the discovery of behavioral models based on observations of transferred information and then
by selecting the appropriate behavior from a behavior repository.

The ICE architecture enabling the usage of perceptive system interfaces is depicted in Figure 2
and has the following components:

Integration Layer—this layer is responsible to integrate data from all levels of the system and to
provide the basis for the design and implementation of the cyber intelligent systems. This layer is also
responsible with the integration of all nodes and layers intro a homogeneous structure that hosts the
intelligent entity instances needed to manage this structure. In order to implement the integration
layer, the system must have specific components in order to fulfill different roles:

Nodes—represent computation units that are responsible with hosting the intelligent entity
instances. The entire lifecycle of a node is managed by the “lifecycle manager”. Each node must expose
its own semantic interface which appears in the system as an Intelligent Entity. Through this interface,
every node can receive different commands in order to check the state of every instance or to generate
new events.

Domain Knowledge Repository—this repository is responsible with the interpretation of the system’s
domain in an easy to understand machine format. The elements of the domain must be uniquely
addressable so that metadata can easily target the domain’s concepts. Also, the relation between
all components of a system domain must be clearly stated for the domain knowledge repository to
provide reasoning capabilities and thus, to be capable to determine the context in which the needed
information is processed.

Semantic Service Repository—this repository is responsible with the storage of the semantic
description of all the services that are exposed by the intelligent entities instances. To achieve this,
each service must contain metadata that refers to the system’s knowledge base. Thus, these services
can be described based on existing standards (e.g., OWL-s, SAWDL, etc.).

Semantic Event Subscription Manager/Event Routing—this layer is responsible with the subscription
of all the system’s components to the semantic events that are generated by the intelligent entities.
This layer must select the exact events based on specific contexts in order to generate an event generation
rule such as subscription to the events generated by sensors. The information regarding subscriptions
must be sent to the “semantic event router” which is responsible to the transfer of information between
the event generator and the subscriber.

Intelligent Interface Instance Registry—this registry is responsible with the storage of all the
information that is sent through the entire system and that is deployed in the intelligent instances,
thus, providing a shortcut to the services that are exposed by the intelligent entities.

Intelligent Interface Repository—this repository is responsible with the management of each
process creation and deployment or un-deployment of the intelligent interface. On the other hand,
this repository is responsible with the management of every behavior of the Intelligent Interface.

The perceptive system interface is deployed at the boundary of each intelligent entity instance and
requires the following components: semantic interface, enterprise system adapters, physical adapters,
lifecycle manager and behavior selection/execution component.

The proposed interface (Figure 3) will allow the connection of both virtual and physical resources
of an enterprise system. The use of semantic data models facilitates service and event-based interactions
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between the system’s components. The components of the interface: service interface, event sinks and
event sources include a semantic description and the information transferred between the systems is
semantically enhanced.
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Figure 2. Generic ICE system interface and system model.
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Figure 3. Block diagram of an intelligent entity instance.

Enterprise system adapters are components that facilitate the connection to services, business
process execution engines or service orchestration engines. Behavior selection will allow the adaptation
in accordance to the process requirements. The semantic augmentation of data will facilitate data
interoperability between system components:

Physical adapters—adapters for the physical devices. These adapters are designed for data
acquisition and integrate sensors, sensor networks and sensing systems. These adapters can also
connect actuators, actuator networks and actuating systems providing input form control systems.

Behavior Selection/Execution System. Behaviors are associated with execution engines.
The selection system will facilitate the selection of the appropriate behavior, from the behavior
repository, in accordance with predefined criteria.

Lifecycle manager addresses the following operations: initializing, maintenance, management of
the components of the current instance and selecting behaviors or adapters. Using a semantic interface,
the lifecycle manager can expose a set of services including deploy components of the instance, routing
to the appropriate event source.
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4.2. Semantic Routing System

The ICE interfaces need to be associated with a scalable, semantically enhanced middleware
solution that facilitates the integration of required resources in a distributed system. The middleware
solution is characterized by the following elements [21]:

e Integration of semantics—this middleware solution manages the system’s ontology that is used to
describe each component of the system and their interactions. This ontology will furthermore
help in accessing resources and to the creation of the applications that are built on top of the
middleware in order to provide information regarding the state of the system;

e The solution must support communication at different levels within a distributed system (e.g.,
service-based or event-based);

e  The solution must contain all the features that are implemented in the system and thus,
being capable to enable the development of robust and scalable systems.

On the other hand, the systems that are developed based on the middleware solution must have
a homogeneous distributed nature, so that, within each node of the system, the middleware can have
the same components and will execute the same operations. Each node of the system is determined
by specific applications that, together with the distributed nature of each system built using this
middleware solution, represent the basis for the creation and implementation of the ICE.

Thus, the middleware solution components are further detailed:

Components that manage the resources of each local node include: node manager and node
application manager.

Components that manage the semantic layer include: semantic manager, semantic service executor,
automatic event manager, distributed RDF store and the P2P overlay manager.

The P2P overlay manager supervises the P2P overlay network containing the nodes of the system.
Scalable distributed systems can be developed using structured P2P overlays based on distributed
hash tables (DHT). P2P overlay stores key-value pairs in the nodes of the system. The system facilitates
nodes to become part and leave the network without interfering with the system’s operation. A uniform
distribution of data across the network is desired in order not to generate congestions. The proposed
component uses overlay to manage RDF triples and to transfer messages containing results of the
query evaluation.

The semantic manager component facilitates the system components access to the system’s
ontology. The ontology referring functions of the semantic manager is implemented using Apache
Jena. The semantic API exposes functions that allow easier creation of individuals from the classes of
the ontology including application, node, event. The semantic service executor component allows
system components to invoke remote semantic services.

The automatic event manager facilitates the event-based connection of the system components.
New events will be accepted only if they are in accordance with the predefined requirements.
The operation of the declarative event management system is associated with the automatic event
manager component. The semantic manager component handles system’s ontology new definitions of
EventSink individuals. The component identifies the corresponding event sources by using semantic
queries containing properties related to the event sink descriptors.

Therefore, the proposed middleware solution must have the capability to manage all the processes
of most of the applications that are deployed in the “managed applications container” managed by the
node application manager. Analyzing these applications, we have identified various operations that
must be exposed, bundled into the following APIs:

e  Semantic API—they represent basic operations of the system’s ontology.

e  Event/Quert API—they are responsible with the execution of SPARQL queries with RDFS reasoning
of the distributed semantic store.

e  Service API—they enable each application to call remote semantic services.
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In order to achieve the best results, the middleware solution must contain a set of predefined
semantic definitions that are responsible with providing a consistent implementation of communication
and interoperability at different levels and thus, to support various features (e.g., remote application
management) [22,23]. On the other hand, on top of these semantic definitions, each system must define
its own semantic class.

4.3. Process Identification

The focus of this section is to detail the application of process discovery techniques on data streams
in order to generate behaviors for the adaptive interface. Although most of the steps required to
generate the relevant sequences of events are specific to each implementation, for some of the common
ones, domain-independent solutions are investigated [12,24]:

Event identification—using the data transferred through the interface, which might be in continuous
form, to create sequences of events relevant to the application domain. This is a domain-specific problem
as the rules for extracting events from observations are dependent on the layout of the monitored
environment. Internet-of-Things oriented systems can be used in relation to processing large streams
of data coming from heterogeneous devices, such as employing semantically-rich representations.

Activity recognition—transforming sequences of “low-level” events into sequences of activities
that will be represented in the resulting process model; this task is especially important given the
granularity of the input data streams considered here. Solving this problem requires domain-dependent
knowledge in the form of “activity models”.

Process instance or process case identification—this task involves associating each collected event or
detected activity to one of more process instances; it should be noted that, depending on the application,
this pre-processing step can be applied before or after the activity recognition one. The solutions are
mostly limited to domain-specific rules, for example, based on the resources (and/or agents) involved
in each process instance.

A process mining system implementation can be developed around the previously described
tasks of event recognition/collection, process instance identification, action recognition and process
model discovery, following an informational flow similar to that depicted in Figure 4.
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Figure 4. Semantic routing system and middleware ontology.

Taking into consideration several design concerns such as portability—making the system capable
of handling several related application domain—and the minimization of the effort required the experts
in providing the necessary system KB, a system architecture similar to the one presented in Figure 5
can be implemented—a set of major functional blocks, each corresponding to one of the previously
mentioned processing tasks loosely arranged around a central data repository containing everything
from raw collected to events to recognized activity sequences and process instances.
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Figure 5. Process identification system model.

The required input from domain experts, for each processing tasks, is:

e  Event identification—rules for mapping streams of observations to event sequences;

e Activity recognition—depending on the complexity of the monitored environment and the event
sources, ranging from simple translation rules (for events generated by “virtual sensors” is fetched
from the logs of existing workflow-management systems) to state-space action models;

e Process instance identification—the “observation manager” component handles the data
acquisition and optionally the process of “semantically lifting” the observations based on a set
of domain-specific transformation rules. The other components of the system each deal with
one of the three information processing tasks, with the “process mining component” relying
on the results generated by the other two. The “process instance identification component”
can be implemented using either domain specific rules (such as a combination of keys that can
uniquely identify a process case) or around a generic “event correlation” detection algorithm.
The translation from the “event” to the “activity” abstraction level is performed by the “activity
recognition” component. This processing step can be performed either before or after running the
instance identification procedure. As mentioned in the previous section, the “high-level” activities
that result in the sequences of observed events can be inferred using a schema that generates a pair
consisting in a planning domain and problem, solvable using an off-the-shelf external planner.

The result of solving each planning problem will be an activity trace, from which the causal and
independence relations between the activity instances can be derived. This information is subsequently
used to build a workflow net. Unlike many process discovery methods that use an “event log” as
input, newly proposed approaches based on Petri Net “unfoldings” accept (labelled) partial ordered
sequences of events and as such offer better results from a smaller sample size in the case of processes
with high concurrency (of course, having the downside that this information must be provided by
an expert, or derived from another source).
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5. Implementation of the Intelligent Cyber Enterprise System Interfaces and Event
Routing System

5.1. Implementation of the Event Routing System

The proposed implementation involves the routing of data to a specific systems interface.
The implementation of an event routing system facilitates the integration of new data sources such
as sensors or system components without the reconfiguration of the communication network [25].
The data is routed to the appropriate source based on the semantic description. In order to perform the
routing process, the following sequence of operations is proposed:

1.  An application connected to a node generates a new instance of class EventSink though the
semantic APL.

2. The semantic RDF store is updated and the component notifies the automatic event manager
(AEM) component.

3. The AEM receives the description of the sink and extracts the ListenerRule and the GenerationRule.

4. Alist of event sources is obtained by the AEM calling the methods defined in Query API using
the SPARQL query defined in the ListenerRule component. The AEM registers the query in as to
obtain notifications when sources are available.

5. The process associated to the event routing is configured by the AEM based on the event
sources register.

e  The association event-node is identified based on the system ontology association of nodes with
EventSource class individuals.

e Every identified node is associated by the AEM with sematic service exposes by the AEM
component. The function of the semantic service is to manage the event generation process related
to the requirements of the application associated to the identified EventSource. The description of
the GenerationRule is correlated with the details of the new EventSink.

e  The AEM creates events based on the predefined requirements of the application.

The implementation of the event routing system is based on a P2P overlay network that allows
dynamic configuration of new nodes. Identified nodes are integrated in the system without interfering
with the systems operation. Operations of the event routing process are distributed. The operations
involved in the process of adding the node to the system are further described:

e The Node Manager component of node initializes the local components and the node manager
defines the EventSources and semantic services.

e The AEM selects a sink for the event source form the applications that imposes a value change
event generation. The node manager component sends the first event signaling a node start.

e Deployment events related to the new application are generated, events that can be used by the SI
to update a detailed view of the system.

e The deployed application configures an EventSource. This registration will trigger a notification
of the AEM component, that monitors the creation of new EventSources that correspond with the
context requirements of the EventSink.

e The ARM receives the notification and configures a “value-change” event generation strategy for
the registered EventSource.

5.2. Process Identification Based on Interface Traffic

By addressing the enterprise as a CPS, different enterprise systems can be interconnected and data
collected form sensors can be aggregated. An industrial scenario was chosen involving the following
event sources: position detection devices, RFID readers and contact sensors. The scenario involves
human activities and the use of sensors that are present in an industrial environment but used for
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different purposes and by different industrial systems. The scenario is related to the movement of parts
in an industrial environment. The part is transported in a container, by a worker operating a vehicle.
The contact sensor detects the opening of a gate. The RFID reader identifies the tags on the vehicle and
the container. The vehicle travels through three areas: AREA 1 to AREA3 and a position detection
device, detects the vehicle in the specific area.

The first step in extracting the process model involves the event identification tasks. Through the
application of rules such as “An observation collected from RFID reader X of a tag Y implies that Y is
currently in AREA 17, an event sequence such as the one in Table 1 can be interpreted in relation to
a specific component.

Table 1. Case study observations from sensors.

Timestamp. Device Previous Value Current Value
ts1 Contact_sensor_A Closed Open
ts2 RFID_Reader_1 - 5023f674ae4d2e
ts2 RFID_Reader_1 - 2537f674ae4d3b
ts4 Contact_sensor_B Closed Open
tsb Positon_1 Area_1 Area_2
ts6 Position_1 Area_2 Area_3
ts7 Contact_2 Closed Open
ts8 RFID_Reader_2 - 2537f674ae4d3b
ts9 RFID_Reader_2 - 5023f674ae4d2e

To showcase a possible solution for the activity recognition tasks using the state-based action
model library mentioned previously, the movement of vehicles can be considered. The action models
are designed in terms of the system’s state space. Each action definition will specify the action’s
preconditions and effects as expressions based on state variables. As such, the action models will not
directly refer event types, leading to the separation of the knowledge engineering tasks required in
order to deploy the observation manager and activity recognition components.

As mentioned previously, the action recognition problem can be converted into a planning
problem. This approach allows the reuse of existing tools developed in the field of automated planning
such as PDDL editors and planners with various capabilities. For this approach, the development of
a “template” planning domain and problem definitions is required. The template contains a type/object
hierarchy, a set of predicates (for describing the state) and a set of action definitions.

Listing 1 details an action definition for “Transport”. Procedures can be developed to infer the
type hierarchy of the planning domain from the system’s Knowledge Base.

Listing 1. Action definition for “Transport”

(:durative-action transport

:parameters (?v—Vehicle ?I11—Location ?12—Location)
:duration (= ?duration 22)

:condition

(at start (at ?v ?11) (next_to ?11 ?12))

:effect

(atend

(and

(at ?v ?12)

(not (at ?v ?11))

)))
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A set of PDDL domain / problem files is created, based on the template defined for each instance
of the action recognition problem. Using the information resulting from the event detection phase,
the “init”, “goals” and “actions” will be augmented (Listing 2).

i

Listing 2. Augmentation of “init”, “goals” and “actions”

(:init

at 5023f674ae4d2e (event3_pred)
at 5023f674ae4d2e (not (event3_pred))

)
(:goal and(

(event3_constr_satisf)

)

(:action event3_constr

:precondition (and (event3_pred) (at_loc vehiclel Area3))
:effect (and (event3_constr_satisf) (increase (total-cost) 2))

)

The schema used to constrain the trajectory, relies on the usage of timed initial literals, available
since PDDL 2.2. In the proposed case, a timestamp and a “window” predicate is be enabled and the
predicate is be added as a goal. This predicate is related to a new action, whose preconditions are related
to an event. A conjunction of predicates is describing the change in the monitored environment’s state
represented by the event, which in this case corresponds to “vehiclel”’s arriving in “Area2”. Similar
constructs will be added for all the available events.

Solving the problem with these actions will allow an existing planner to instantiate planning
operators (actions) capable of “explaining” (at a higher level of abstraction) the trajectory in the
monitored environment’s state space, described by the collected events. For the proposed scenario
(Table 1), in the case of events at t6 and t7, satisfying the goal requires predicates “event6_constr_satisf”
and “event7_constr_satisf” to be true. These can only be set by adding instances of actions
“event6_constr” and “event7_constr” to the plan. However, in order to satisfy the preconditions of
“event7_constr”, a “transport” action instance for the areas “Zone2” and “Zone3” must be added
before it.

Several post-processing steps must be applied on the resulting plan. Such steps include the removal
of the special actions used to create the trajectory constraints and the detection of the concurrency
relations between activities extracted.

The process instance identification step can be performed before or after the action recognition
phase, based on the initial sequence of events or the results of the activity recognition stage
(partially-ordered sequences of activities). This can be accomplished using either domain-specific rules
or one of the semi-automated, iterative approaches mentioned in the previous section.

The results obtained after the action recognition and instance identification steps can be used
to compile an event log, referring high-level activities instead of low-level events. The activities can
be subsequently used as the input for the process model discovery step. Given the availability of
additional information regarding the concurrent execution of some of the activities (derived from the
set of action models used in the recognition step), the study focused on methods capable of using this
knowledge. As such, a method based on building event structures followed by folding them into Petri
Nets, was used to generate a process model. An example of a process model is described in Figure 6.
Some aspects of the process model such as “AND” and “XOR” blocks need to be further analyzed and
modeled with the aid of a higher level Petri Net formalism. The system implementation was used to
validate the proposed approach in a case study built around a simulated logistic process.
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Figure 6. Process model of the proposed scenario.

6. Discussion

In this article, we have explored the possibility of developing a process identification model
aimed towards identification of processes associated to data transferred through a system interface.
Such processes usually occur in an enterprise environment and are beyond the scope of established
process management systems [26]. The identified workflows or processes are associated to the interface
as interface behaviors.

The proposed model enhances the capability of a system interfaces by attaching a perception
function that facilitates the interpretation of the working environment and connected systems by
integrating information and “stimuli” from the sensory system [27].

Advantages of the proposed system include:

e  Automated analysis of data and information transferred through a system interface;

e  Pattern recognition in data and information transferred through a system interface;

e  Automated identification of behaviors associated to an interface;

e  Facilitation of interface redesign in accordance with the data and information transferred
between systems;

e Interface operation optimization in accordance with the data and information transferred
between systems;
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e  Enhancing system adaptation capabilities by adding the adaptation capability to the
system interface.

This represents a novel approach that can provide benefits in enterprise environments adopting IoT
and CPS technologies, in which a large number of events collected from sensors or system components
are transferred through system interfaces [28]. The resulting interface behavior model offer meaningful
insights into the behavior of the system and allows for the use of novel process mining techniques for
conformance checking.

In order to address the entire complexity of the considered domain, ontologies based on DL were
used. Using this method, the tasks associated to processes can be associated to reasoning problems.
The proposed model demonstrates how data acquired form sensors or other system components can
be analyzed and used in determining interface behaviors.

Two main categories of activity recognition problems have been analyzed in regard to the proposed:
model learning based and specification base. Due to user requirements level, portability and flexibility
issues only specification-based methods have been further addressed. The authors followed the main
lines of research into applying and extending existing process workflow management techniques in CPS
and particularly in ICE environment. Due to the benefits for industrial automation systems, the authors
focused on the applications of the developed techniques in process mining in a CPS environment.

Knowledge engineering tasks are still required to develop the planning domain used in the activity
recognition step and the rules that enable the identification of individual instance traces in the stream
of events. An important factor for the adoption of the proposed method are the events that relate
directly to state changes in the observed system. Usually process discovery techniques are used in
correlation to logs of various enterprise systems.

Although the discovered process model has the same structure as the process used to generate
the dataset, some performance and scalability issues related to the activity recognition step were
discovered. Planning time is a relevant factor associated to the proposed method and is directly
related to the increase in the system resource consumption. An “object-based” decomposition method,
can be implemented in order to increase the efficiency in solving the simple planning problems and
identifying “macro-operators” from existing cases. These aspects can correlate to the original domain
and lead to improvements in planning time, by creating “short-cuts” in the state space and transferring
them to automated planners [13,18]. Such an approach allows the augmentation of enterprise systems
and their components with system interfaces capable of analyzing patterns in the transferred data and
associating the patterns to workflows or processes. This approach couples the systems interface to the
process associated with the actual system [12].

The event routing system facilitates the implementation of the process identification model and
routes relevant data to the appropriate system interface.

The advantage proposed by the process identification model is the ability to generate process
models in the absence of a pre-modeled process or to offer a basis for comparison of the existing
pre-modeled process to the actual execution. The proposed approach utilizes the data already handled
by the interface augmenting the function of the interface and enabling the future autonomous adaptation
to process chances [12].

Further research is conducted in the area of autonomous adaptation models for systems interfaces
that will allow an automatic reconfiguration of an interface in accordance with the detected changes
in interface behavior and based on the selection of appropriate interface behaviors form behavior
repositories [29]. An extensive discussion regarding the available translation methods for different
process modelling paradigms and the association to models of interface behaviors needs to be addressed
in future research.

7. Conclusions

A new approach to future enterprise as a complex system is proposed: intelligent cyber enterprise.
The authors address the enterprise model of the intelligent cyber enterprise, describing a key component,
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the perceptive interface, thus proposing a method to solve the operational context adaptability problems
in complex infrastructures. A behavioral model is developed, based on data and information acquired
from the enterprise environment.

The proposed model integrates key functions such as processing, perception, communication,
learning, pattern recognition and data mining. The proposed case studies address an enterprise
environment consisting of intelligent systems-based components with a high degree of autonomy.
The case studies illustrate the advantages of the proposed model in relation to complex systems
behavior modeling, thus facilitating system adaptation to a dynamic working environment.

Author Contributions: Conceptualization, I.D.; Formal analysis, M.A.M.; Methodology, S.I1.C., M.A.M., L.S.S. and
L.V.; Software, D.R.; Supervision, I.D.; Validation, D.R.; Writing — original draft, S.I.C., M.AM. and L.S.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Jardim-Goncalves, R.; Grilo, A.; Agostinho, C.; Lampathaki, F; Charalabidis, Y. Systematisation of
Interoperability Body of Knowledge: The foundation for Enterprise Interoperability as a science. Enterp. Inf.
Syst. 2013, 7, 7-32. [CrossRef]

2. Monostori, L.; Kadar, B.; Bauernhansl, T.; Kondoh, S.; Kumara, S.; Reinhart, G.; Sauer, O.; Schuh, G.; Sihn, W.;
Ueda, K. Cyber-physical systems in manufacturing. Cirp Ann. 2016, 65, 621-641. [CrossRef]

3. Cyber-Physical Systems (CPS), Program Solicitation NSF 19-553; National Science Foundation: Alexandria, VA,
USA, 2019.

4. Vladareanu, V.; Dumitrache, I.; Vladareanu, L.; Sacala, I.S.; Tont, G.; Moisescu, M. A. Versatile intelligent
portable robot control platform based on cyber physical systems principles. Stud. Inform. Control 2015, 24,
409-418. [CrossRef]

5. Dumitrache, I; Sacala, LS.; Moisescu, M.A.; Caramihai, S. A conceptual framework for modeling and design
of Cyber-Physical Systems. Stud. Inform. Control 2017, 26, 325-334. [CrossRef]

6.  Taherizadeh, S.; Stankovski, V.; Grobelnik, M. A capillary computing architecture for dynamic internet of
things: Orchestration of microservices from edge devices to fog and cloud providers. Sensors 2018, 18, 2938.
[CrossRef]

7. Kochovski, P; Gec, S.; Stankovski, V.; Bajec, M.; Drobintsev, P.D. Trust management in a blockchain based fog
computing platform with trustless smart oracles. Future Gener. Comput. Syst. 2019, 101, 747-759. [CrossRef]

8.  Zhang, X; Liu, X;; Tang, S.; Krolezyk, G.; Li, Z. Solving Scheduling Problem in a Distributed Manufacturing
System Using a Discrete Fruit Fly Optimization Algorithm. Energies 2019, 12, 3260. [CrossRef]

9. Krolezyk, J.B.; Krolczyk, G.M.; Legutko, S.; Napiorkowski, J.; Hloch, S.; Foltys, J.; Tama, E. Material Flow
Optimization—A Case Study in Automotive Industry. Tehnicki vjesnik/Tech. Gaz. 2015, 22, 1447-1456.

10. Panetto, H.; Zdravkovic, M.; Jardim-Goncalves, R.; Romero, D.; Cecil, J.; Mezgar, I. New perspectives for the
future interoperable enterprise systems. Comput. Ind. 2016, 79, 47-63. [CrossRef]

11. Pirayesh, A.; Doumeingts, G.; Seregni, M.; Gusmeroli, S.; Westphal, I.; Gonzalez, L.; Hans, C.;
Nufiez Arifio, M.].; Canepa Eugenio, A.; Laskurain, A. Conceptual Framework for Product Service Systems.
Systems 2018, 6, 20. [CrossRef]

12.  Repta, D.; Moisescu, M.A.; Sacala, 1.S.; Dumitrache, I.; Stanescu, A.M. Towards the development of
semantically enabled flexible process monitoring systems. Int. ]. Comput. Integr. Manuf. 2017, 30, 96-108.
[CrossRef]

13. Ponce-de-Ledn, H.; Rodriguez, C.; Carmona, J.; Heljanko, K.; Haar, S. Unfolding-Based Process Discovery.
In Automated Technology for Verification and Analysis; Springer International Publishing: Cham, Switzerland,
2015; pp. 31-47.

14. Wang, L.; Torngren, M.; Onori, M. Current status and advancement of cyber-physical systems in
manufacturing. J. Manuf. Syst. 2015, 37, 517-527. [CrossRef]

15.  Dumitrache, I.; Caramihai, S.I. Intelligent cyber-enterprise in the production context. IFAC Proc. Vol. 2014,
47, 821-826. [CrossRef]

63



Sensors 2019, 19, 4422

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Lee, J.; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing
systems. Manuf. Lett. 2015, 3, 18-23. [CrossRef]

Leitao, P.; Colombo, A.W.; Karnouskos, S. Industrial automation based on cyber-physical systems technologies:
Prototype implementations and challenges. Comput. Ind. 2016, 81, 11-25. [CrossRef]

Zhang, L.; Li, Z; Krolezyk, G.; Wu, D.; Tang, Q. Mathematical Modeling and Multi-Attribute Rule Mining
for Energy Efficient Job-Shop Scheduling. J. Clean. Prod. 2019, 241, 118289. [CrossRef]

Parslov, J.E; Mortensen, N.H. Interface definitions in literature: A reality check. Concurr. Eng. 2015.
[CrossRef]

Standard, M.J. ISO/IEC 2382-1:1993 Information Technology—Vocabulary; Department of Standards Malaysia:
Cyberjaya, Malaysia, 1993.

Sacala, I.S.; Moisescu, M.A.; Repta, D. Towards the development of the future internet based enterprise in
the context of cyber-physical systems. In Proceedings of the 2013 19th International Conference on Control
Systems and Computer Science, Bucharest, Romania, 29-31 May 2013; pp. 405-412.

Kannengiesser, U.; Neubauer, M.; Heininger, R. Subject-oriented BPM as the glue for integrating enterprise
processes in smart factories. In OTM Confederated International Conferences “On the Move to Meaningful Internet
Systems”; Springer: Basel, Switzerland, 2015.

Seiger, R.; Huber, S.; Schlegel, T. Proteus: An integrated system for process execution in cyber-physical
systems. In Enterprise, Business-Process and Information Systems Modeling; Springer: Basel, Switzerland, 2015.
Van Der Aalst, W.M.; Dustdar, S. Process mining put into context. IEEE Internet Comput. 2012, 16, 82-86.
[CrossRef]

Jiang, Y.; Chen, C.P; Duan, J. A new practice-driven approach to develop software in a cyber-physical system
environment. Enterp. Inf. Syst. 2016, 10, 211-227. [CrossRef]

Dumitrache, I.; Caramihai, S.I.; Stanescu, A. From mass production to intelligent cyber-enterprise.
In Proceedings of the 2013 19th International Conference on Control Systems and Computer Science,
Bucharest, Romania, 29-31 May 2013; pp. 399-404.

Starzyk, J.A.; Guo, Y.; Zhu, Z. Dynamically reconfigurable neuron architecture for the implementation of
self-organizing learning array. In Proceedings of the 18th International Parallel and Distributed Processing
Symposium, 2004 Proceedings, Santa Fe, NM, USA, 26-30 April 2004; p. 143.

Davis, J.; Edgar, T.; Porter, J.; Bernaden, J.; Sarli, M. Smart manufacturing, manufacturing intelligence and
demand-dynamic performance. Comput. Chem. Eng. 2012, 47, 145-156. [CrossRef]

Wang, S.; Wan, J.; Zhang, D.; Li, D.; Zhang, C. Towards smart factory for Industry 4.0: A self-organized
multi-agent system with big data based feedback and coordination. Comput. Netw. 2016, 101, 158-168.
[CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

64



E SeNnsors ﬁw\n\py

Atrticle
3D Object Reconstruction from Imperfect Depth Data
Using Extended YOLOv3 Network

Audrius Kulikajevas !, Rytis Maskeliiinas !, Robertas Damagevi¢ius >>* and Edmond S. L. Ho *

1 Department of Multimedia Engineering, Kaunas University of Technology, 51423 Kaunas, Lithuania;

audrius.kulikajevas@ktu.edu (A.K.); rytis.maskeliunas@ktu.lt (R.M.)

Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
Department of Computer and Information Sciences, Northumbria University,

Newcastle upon Tyne NE1 8ST, UK; e.ho@northumbria.ac.uk

*  Correspondence: robertas.damasevicius@vdu.lt

Received: 21 February 2020; Accepted: 2 April 2020; Published: 3 April 2020

Abstract: State-of-the-art intelligent versatile applications provoke the usage of full 3D, depth-based
streams, especially in the scenarios of intelligent remote control and communications, where virtual
and augmented reality will soon become outdated and are forecasted to be replaced by point cloud
streams providing explorable 3D environments of communication and industrial data. One of
the most novel approaches employed in modern object reconstruction methods is to use a priori
knowledge of the objects that are being reconstructed. Our approach is different as we strive to
reconstruct a 3D object within much more difficult scenarios of limited data availability. Data stream
is often limited by insufficient depth camera coverage and, as a result, the objects are occluded
and data is lost. Our proposed hybrid artificial neural network modifications have improved the
reconstruction results by 8.53% which allows us for much more precise filling of occluded object
sides and reduction of noise during the process. Furthermore, the addition of object segmentation
masks and the individual object instance classification is a leap forward towards a general-purpose
scene reconstruction as opposed to a single object reconstruction task due to the ability to mask out
overlapping object instances and using only masked object area in the reconstruction process.

Keywords: 3D scanning; 3D shape reconstruction; RGB-D sensors; imperfect data; hybrid neural networks

1. Introduction

One of the pressing issues in computer vision is three-dimensional (3D) object reconstruction,
due to it becoming a core technology in numerous high-end industrial applications such as smart
manufacturing, industrial automation and Industry 4.0 [1]. Moreover, there exists a wide variety
of applications that would benefit from real time computer vision systems that are capable of fully
reconstructing scenes, with most notable examples being an interactive medium such as virtual reality
(VR) games and simulations [2], augmented reality (AR) applications or even in newest booming
technologies such as extended reality (XR) [3]. Further examples for applications of such systems
could include gesture [4,5] and posture [6] applications, indoor mapping [7], obstacle detection [8]
recreating environments in movies or even digital forensics [9] to allow for crime scene recreation,
robotics [10], teleconferencing [11] with the use of holograms and more. Therefore, we can safely
assert that there is definitely a need for affordable, commercially viable solutions capable of providing
real-time reconstruction capabilities available to the average user with as little complexity and barrier
of entry, in terms of both financial investments and knowledge about the field, as possible.

As we cannot expect an average user to have the access to professional filming sets, mounting
arrays of laser scanners capable of scanning the entirety of the room, in addition to the computing
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resources that would be required to stitch the data retrieved from multiple high-fidelity depth sensors,
we need a solution that would meet or exceed the previous caveats. Therefore, we need a solution
capable of working in real-time on a regular non-enthusiast grade workstation or even on a laptop.
Furthermore, while we cannot expect the user to have a modern sensor array setup we can try to
minimize the initial setup cost to a single depth sensor available in electronics stores or even in quite
a few modern mid-tier and flagship phones. While solutions for scene reconstruction from a single
depth sensor already exist, these solutions require incremental building per each frame [12,13]. This is
done based on camera localization information and delta frames and in the scene reconstruction
algorithms that make use of simultaneous localization and mapping (SLAM) [14]. To reliably fill all
the holes in the areas that are occluded by other objects and even because of self-occlusion, we would
have to scan the entirety of the object from all sides to have its full profile. Furthermore, incremental
methods tend to underperform because of one principal flaw: changes in the scene can disrupt the
mesh [15]. Making the applications in non-static real world scenes limited, where instead of the
entirety of the view moving some objects can change their localization, or even suddenly pop-in or
pop-out of the frame. Other proposed methods, such as space carving [16], would bypass some of the
incremental building problems by performing what is essentially a subtractive reconstruction from
multiple perspectives. However, these methods assume that you can accurately acquire the mask,
which can be impossible in certain lighting conditions.

A majority of current algorithms for performing 3D object reconstruction have limitations:
objects must be monitored from a large number of views; or views must follow a small baseline, thus the
methods cannot function properly when provided only a small number or a single view. To solve these
issues one of the most novel approaches employed for state-of-the-art reconstruction algorithms is
to employ a priori knowledge of the objects that are being reconstructed [17,18]. These are generally
relying on black-box models such as neural networks (NN). One of the most obvious advantages
of using a priori information is for the algorithm to approximate the occluded object information,
which we as humans are capable inferring quite easily. These methods have shown success in solving
this task. For example, 3D Recurrent Reconstruction Neural Network (3D-R2N2) for multi-view
reconstruction on the Sanford Online Products [19] and ShapeNet [20] datasets, has managed to achieve
this task with fewer images available with competitive results [21], with the proposed improvement
that uses densely connected structure as encoder and utilizing Chamfer Distance as loss function [22].
Additionally, Generative Adversarial Networks (GANSs) can be used to generate 3D objects from
multiple 2D views [23] or even from a single image [24]. GANs have also been shown to be able to
predict former geometry of damaged objects [25]. Other authors have used feedforward NNs to detect
valid matches between points in an image using different views with more than 98% accuracy [26].
Additionally it was shown that by adopting Bernstein Basis Function Networks (BBFNs) it is also
possible to solve the task of reconstructing a 3D shape [27]. A trilateral convolutional neural network
(Tri-CNN) that uses three dilated convolutions in 3D to extend the convolutional receptive field was
applied on the ShapeNet and Big Data for Grasp Planning [28] data sets to obtain 3D reconstruction
from a single depth image [29].

A majority of methods are using voxel based representations, e.g., PointOutNet [30] has shown
the ability to predict and generate plausible 3D object shapes. This allows for the model to perform
multiple predictions from a single input and using point cloud distribution modeling to refine the
final results. Other approaches include: hierarchical surface predictions (HSPs) [31] for predicting
high resolution voxel grids using convolutional neural networks (CNNs); discrete wavelet transform
(DWT) and principal component analysis (PCA) can be used to get targeted object models, which can
be used as an input to an artificial neural network (ANN) to recognize the 3D shape. Other authors
have used geometric adversarial loss (GAL) in order to regularize single-view 3D object for object
reconstruction using a global perspective by training the GAN to reconstruct multi-view valid 3D
models [32]. RealPoint3D network composed of an encoder, a 2D-3D fusion module, and a decoder,
accepts a single-object image and a nearest-shape retrieved from ShapeNet to generate fine-grained
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point clouds [33]. Similarly, PGNet [34], a recurrent generative network, uses the original images and
partial projection images for fine-grained 3D reconstruction. Finally, it was shown that using ANNSs it
is possible to produce a fully textured, appropriately proportioned 3D model from a single RGB [35] or
RGB-D frame [36], however, this approach was limited to basic volume primitives (rectangular boxes
and spheres) .

Even though the black-box methods have shown substantial improvements over existing
state-of-art reconstruction algorithms such as incremental reconstruction, they can still be prone
to severe mishaps due to poor illumination conditions, and object material interaction with light
(mainly reflectivity). Furthermore, due to the fact that these methods rely on the visible light spectrum,
they are incapable of working in dark environments. Therefore, they would not be suitable to be used
in critical applications such as security.

Starting with the Microsoft Kinect released in 2010 [37] to Intel Realsense [38], the depth sensors are
becoming the norm not only in the flagship mobile phones. As of late, stereoscopic depth is becoming
available in newer budget phones with the introduction of multiple back facing cameras on a single
device. For these reasons we have almost reached an era of the RGB-Depth (RGB-D) sensors being
readily available. Therefore, focusing solely on the RGB cameras is missing the potential that the
RGB-D cameras may provide for the object reconstruction tasks. For example, depth data stream from
the Kinect camera has been used to generate topologically correct 3D mesh models [39].

Applying additional information provided by the RGB-D senor is the logical next step in the
lifecycle of the object reconstruction algorithms as we believe they are less dependent on ambient
conditions and could potentially be used in pitch black situations due to modern depth sensors using
infrared cameras for object depth calculations on the hardware level. We concede that the depth sensors
have their own limitations such as speckling due to surface properties [40,41] and distortions caused
by infrared projections [42]. However, we believe that the addition of the depth sensor information in
conjunction with readily available color data adds useful information. This information helps ANNs to
better generalize input data and increase robustness against different lighting conditions. This includes
pitch black environments as the depth information is sufficient to reconstruct the captured scene in
most cases.

We present an improved hybrid ANN architecture for reconstructing polygonal meshes using
only a single RGB-D frame, and employing a priori knowledge, which allows the neural network to be
deployed on low-end RGB-D sensor devices with low frame rates.

2. Materials and Methods

2.1. Proposed Hybrid Neural Network Architecture

Our hybrid NN architecture (Figure 1) consists of two major branches: the preliminary input
branch that is used for object instance classification and their mask extraction; secondary input branch,
which uses the results of preliminary branch in conjunction with the inputs of preliminary branch
to perform individual object reconstruction. However, unlike preliminary branch we do not use
generalized branches for reconstruction, instead we have n of specialized branches for each of the
object categories. This allows us to more easily train additional types of objects in the reconstruction
branches without having to re-train for classification, in addition this allows to re-train any of the
individual reconstruction branches without losing the existing gradients by performing the training
on more models [43]. The modularity of the system also provides the advantage of reduced training
times as each branch can specialize onto its own generalization task, which gives the ability to change
the network configurations of the reconstruction branches by simplifying for easier objects or having
more elaborate ANN structures for more complex objects.
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Figure 1. Our extended YOLOv3 capable of extracting geometric object segmentation along with object
bounding boxes.

2.2. Classification and Segmentation Algorithm

Our aim is to detect individual object instances in the scene in order to have a system that is usable
in real-world environments. Therefore, we need a classifier that is capable of detecting more than a
single object instance for given frame, for example, having two cups and a toy plane on a table would
require us to rebuild both of the cups and the toy plane models, respectively. Fortunately, some research
has already been performed in the area of individual object instance classification [44—-46].

For this reason, to perform our classification task we use one of existing state-of-the-art classifiers
as it has shown to produce some of the best results in classification tasks, i.e. YOLOv3 [47],
which we have adapted to our needs to output an additional geometric segmentation mask (Figure 1),
while authors have mentioned to be unable to achieve object instance segmentation in their original
paper. Additionally, we define the term geometric segmentation as extension to segmentation that
allows to discriminate between nearby object instances. This is done by generating a heatmap glow
that radiates from the origin of the object. While other more lightweight methods exist, such as
MobileNet [48], in our paper we try to compare the classification results using three different methods:
using only color information; using only depth information; using both color and depth information.
Therefore, we have decided to use a slower, but more accurate algorithm to have the most representative
results.

Just as the majority of the individual object instance classifying algorithms, YOLOv3 uses what is
know as anchors for object detection. These anchors are used as jumping off bounding boxes when
classifying objects, for example, a motor vehicle has a very different profile from a basketball. While the
basketball in most cases has close to 1:1 aspect ratio bounding box, meaning that their width is the
same, or very close when the image is distorted, to its height, while a motor vehicle like an automobile
for the most part has height that is lower than its width. For this reason, one anchor could specialize
in detecting automobiles, while the other can specialize in detecting basketballs. Additional feature,
albeit a less useful one due to the way our training and testing dataset is generated, is the specification
of bounding box scales by the authors of YOLOv3. These size specializations group bounding boxes
into three groups: small, medium and large. For example small objects may include kitchen utensils,
medium objects may include people, large objects may include vehicles. However, these bounding
box groups are not exclusionary for these objects unlike anchors as these can vary a lot based on the
camera distance from the object. Therefore, as our dataset is completely uniformly generating object
scales this grouping loses some of its usefulness.

In our work, we have experimented with three types of inputs into the ANN: color space,
front-to-back object depth field and the combination of both. In the case of color space, we use
3 channel inputs for representation of red, green, blue colors; when using depth field, we use a single
channel input containing only normalized depth field values and for the combination of both we use
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RGBD channels in the same principle. Depth value normalization is performed by dividing each pixel z
value using zyqy of the frame thus landing the depth in range of z = [0, 1]. Our input layer is thereafter
connected to DarkNet53 network containing 53 convolutional layers as per specifications, which outputs
three routes: main route used generally used for larger objects, route 2 used for medium sized objects
and, finally, route 1 for smaller objects. Due to testing set being uniformly randomly generated,
and containing the same object in potentially all size categories, we lose some of the flexibility that
is provided by this setup and it impacts classification performance minimally, if removed. However,
to stay true to the original algorithm and have an as unbiased result as possible, we have decided to
keep all of the branches used in the source material. Additionally, these three routes provide good
jumping off points for shortcuts to be used in our segmentation extension (Figure 2).

Main
Route

Geometrical Object Segmentation Extension

Convolutional
Branch A Layer
Segmentation
Branch B Branch B Convolutional Output
Layer

I Branch B I Branch B Convolutional
Layer

Figure 2. Our proposed geometrical object segmentation extension.

Route 1

L

Due to each of the nearby routes being separated by the power-of-two scale, we use transposed
convolutional layer [49] to upscale them gradually and then and merge them into desired final shape
matrix. We construct our classless geometric segmentation mask by firstly upscaling the main route
output and merging it with route 2, and the resulting layer is then upscaled again and merged with the
final DarkNet output (route 1) which provides us a layer containing latent information of all previous
layers that are each specified in learning different sized objects.

Next, we branch out our resulting hidden nodes into four different layers. Each layer contains
slightly different network configuration, allowing them to essentially vote on their influence in the
final result by extracting different latent feature-maps from the previous layers (Table 1). The first
three branches (A, B, C) are convolutional branches containing one, two and three convolutional layers,
respectively. However, for our final branch (D) instead of the convolutional layer, we use a max pool
layer to extract the most prominent features. We have selected this parallel stacked approach, because
we found it to be more efficient in extracting the object masks than linearly stacked layers when
training the segmentation layers independently from the entirety of a model. This decoupling of the
segmentation task from the classification task when training gives the additional benefit of allowing us
to use transfer learning, which has shown to have very good practical results [50].

Next, we run our concatenated branches through convolutional layers to extract the most viable
features and normalize their output in the range of (0, 1) giving us the final segmentation image.
In our case the final segmentation output is 80 x 60 due to it being more than sufficient to extract
approximate depth masks as we do not require pixel perfect segment representations. Finally, we use
cascading flood-fill (Algorithm 1) to classify the masks pixels-wise. This is done because we found the
generated binary masks to be impervious to false positives and false negatives, unlike classification
using bounding boxes which can have three types of errors: false positives, false negatives and
misclassification. This allows us to remove false positive bounding box detections when they do not
intersect the origin of the mask. In our testing set, best cascade parameters were € = 0.9, 6 = 0.01.
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Table 1. Geometric Segmentation architecture.

Type Filters Size Output
Transposed Convolution 1024 2x2x2 20 x 20
Main route  Concatenate - - 20 x 20
Convolution 256 1x1 20 x 20
Transposed Convolution 256 2x2x2 40x40
Route 2 Concatenate - - 40 x 40
oute Convolution 256 1x1 40 x 40
Upscale - - 160 x 120
Branch A Convolution 128 1x1/2 80 x 60
Branch B Convolution 32 1x1 160 x 120
ane Convolution 128  1x1/2 80 x 60
Convolution 32 1x1 160 x 120
BranchC  Convolution 128 2x2 160 x 120
Convolution 256 3x3/2 80 x 60
BranchD  Max Pool 256 3x3/2 80 x 60
Concatenate - - 80 x 60
Convolution 256 1x1 80 x 60
Convolution 128 1x1 80 x 60
Convolution 1 1x1 80 x 60
Clip Values - - 80 x 60

Algorithm 1 Cascading flood-fill

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

1

2
3
4:
5:
6
7
8!
9

: procedure GET_SEED(box, mask, €) > Seeds initial values.
: cx, cy < box > Get center for box.
seed < @
seed < find_closest_max(box, mask) > Find closest max pixel within bounds.
if seed # @ A seedyqp,e > € then
seed;; < box;y > Set seed id to box id
return seed > Return seed if value greater than e
end if
return & > No valid seed was found.
end procedure
procedure FILL_NEIGHBOURS(seed, ) > Recursively fill free neightbours with same or lower
values.
foreach n € seed,,eightbw,,s do > For every neighboring mask pixel.
if njg = S N nygrye < seedygpye N Mygrye > 6 then
n;q <— seed;y > Set neighbor to same id as seed.
FILL_NEIGHBOURS(n) > Call recursively.
end if
end for
end procedure
bounding_boxes < sort_con fidence(bounding_boxes) > Sort bounding boxes by confidence.
for each box € bounding_boxes do > For each bounding box b

seed < GET_SEED(box,€)
if seed # & then
FILL_NEIGHBOURS seed, 6)
end if
end for
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Additionally, we have also modified YOLOv3 network for we had issues with the network
being unable to train by consistently falling into local minima during gradient descent and getting
perpetually stuck in them. To solve this issue we introduced periodic hyper parameters [51] during
model learning. Specifically, we had changed the learning rate to alternate in specified range of

Iin = 1670, Iryax = 1le™4.
% X (Irmax — Wrmin) + 1 in, ifx <wp
y(x) = elﬂxm%vﬂ;l) (1)

— X (Irmax — rin) + Win,  otherwise

This periodical learning rate (Equation (1)) has vastly improved our models ability to learn the
underlying relationships of input date by alternating between low and high training rates, therefore
jumping out of potential local minima that it might start orbiting around during stochastic gradient
descent. Our function has two stages, the first stage that consists of two training iterations, where w; =
2 x s, and the second stage of 4 iterations, where wy = 4 x s where s is the number of steps per batch.
We selected the two state learning function because having high learning rates initially may cause the
model to diverge. Therefore, during the first stage we linearly increase the learning rate. Once in the
second stage we use the cosine function and the modulus operator for the model to alternate between
two values. The shape of the alternating function also can have influence in model convergence as
some models require to be in different extremum points for different amounts of times. Therefore,
having a different dataset may require more fine-tuning of parameters of this equation for different
slope shapes, while still maintaining the benefits of having alternating learning rates.

Additionally, as we are training the NN from scratch, we have noticed that our network, despite
being able to find better convergence results due to periodical learning rate jumping out of local
minima, had a high bias rate. A high bias rate is an indicator that our model is over-fitting on our data
set. To solve this additional issue, we modified the YOLOv3 network by adding additional dropout
layers with the dropout rate of P(x) = 0.5 after each branch of DarkNet53 and before each of the final
layers predicting the bounding boxes.

Furthermore, we had issues of model overfitting to the training set, to solve this we additionally
modified the neural network by adding two additional dropout layers. We trained our model 6 times,
each with 50 iterations using mini-batch of size 8 for comparison, because after about 50 iterations the
standard YOLOwv3 model starts to overfit and loose precision with our validation dataset. Therefore,
for most objective comparison we trained our modified network for same number of epochs. Note that
even though our method also starts to overfit, unlike the YOLOV3 network model, the accuracy of our
modified model when overfitting remains roughly at the same value from which we can deduce that
the changes make the model more stable.

Figure 3 shows the differences in loss function when trained using the RGB, RGB-D and Depth
data as input. For the unmodified YOLOv3 we are using Ir = le~5 as the midpoint between our
minimum and maximum learning rates in the periodic learning rate function. As we can see from
the graph, the loss function using static learning rate on the RGB and RGB-D datasets reaches a local
minimum causing the model to slow down its ability to learn new features, unlike our periodic learning
rate which seems to temporarily force the model to overshoot its target which sometimes causes it to
fall into a better local minimum. This effect can be seen in the distinct peaks and valleys in the graphs.
The outlier in these graphs are depth-only data points. While in both cases the loss function seems
lower and has a better downwards trajectory in stochastic descent, however, we have noticed that
despite seemingly lower loss when compared to RGB and RGB-D, the actual model accuracy is very
unstable on epoch-per-epoch basis. We assert that this is the case due to depth alone providing very
unstable data that’s very hard to interpret. We make this assumption due to the fact that even when
taken an expert to evaluate the depth maps alone, it is usually very hard to discern what type of object
it is without knowing its texture; it is only possible to tell that there is in fact an object in the frame.
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Finally, we can see that the RGB-D data is a clear winner when training in both cases, which means
that depth data can indeed help in model generalization.
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Figure 3. Training loss comparison between baseline YOLOv3 and our modified version when using
RGB, RGB-D and depth data as training. Due to the loss function being inherently noisy for each
of the mini-batches, we have used Savitzky-Golay [52] digital filter to perform the smoothing of the
overall graph.

2.3. Reconstruction Algorithm

The proposed algorithm for 3D object reconstruction consists of two subsystems: voxel cloud
reconstruction and post-processing (Figure 4). In reconstruction step we take the outputs of the 3D
classifier mask for the object and in conjunction with the original depth map which we feed into
our reconstruction ANN (Figure 5) that performs the object reconstruction task for the given masked
input frame. Unlike the classification algorithm we only use the underlying depth input from the
classifier as it provides enough information for the specific object reconstruction. This is due to fact
that we already know the class of the object, which is required for classification because different
objects can have very similar depth representations. However, during reconstruction this is not an
issue because our ANN is designed in such a way that each branch is responsible for reconstructing
similar object representations.

Once the classifier-segmentation branch has finished its task, for each object instance the
appropriately trained reconstruction branch is selected. In our case all the branches are highly
specialized on a single type of object that it can reconstruct, which is why object classification is required.
However, we believe that there is no roadblock to having more generic object reconstruction branches
for example all similar objects may be grouped to a single reconstruction task. This could potentially
allow some simplifications in the classification-segmentation as it would no longer be required
to classify highly specific object instances thus reducing failure rate caused by object similarities.
For example, a cup and a basket can be very similar objects and be misclassified. Additionally,
the hybridization allows for fine tuning of the reconstruction branches without having to retrain the
entire neural network model potentially losing already existing gradients via on-line training skewing
the results towards new data posed. This in turn reduces re-training time if new data points are
provided for a specific object as we no longer need to touch the established branches due to modularity.

Inside our reconstruction network branch (Figure 2) for given depth input we use convolutional
layers to reduce the dimensionality of the input image during the encoding phase (see Table 2). For a
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given input, we create a bottleneck convolution layer which extracts 96 features, afterwards we use
a spatial 2D dropout [53] layer before each with P(x) = 0.1 to improve generalization. We use
spatial dropout as it is shown to improve generalization during training as it reduces the effect of
nearby pixels being strongly correlated within the feature maps. Afterwards, we add an additional
inception [54] layer (Figure 6) which we will use as a residual block [55] followed by another spatial
dropout. Afterwards, we add two additional bottleneck residual layers, each followed by additional
dropouts. With final convolution giving us final 256 features with the resolution of 20 x 15. Our final
encoder layer is connected using a fully-connected layer to a variational autoencoder [56] containing
2 latent dimensions, as variational autoencoders have shown great capabilities in generative tasks.
Finally, the sampling layer is connected to full-connected layer which is then unpacked into a 4 x
4 x 4 matrix. We use the transposed three-dimensional convolutional layers in order to perform
up-sampling. This is done twice, giving us 4 feature maps in 32 x 32 x 32 voxel space. Up to this
point we have used Linear Rectified Units [57] (ReLUs) for our activation function, however, for our
final 3D convolutional layer we use a softmax function in order to normalize its outputs where each
voxel contains two neurons. One neuron indicating the confidence of it being toggled on, the other
neuron showing the confidence of the neuron being off. This switches the task from a regression task
to a classification task, allowing us to use categorical cross entropy to measure the loss between the
predicted value and our ground truth.

Reconstruction from depth sensor workflow

Prediction-Segmentation via

RGB-D Sensor Extended YoloV3

Q l is_running
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Classify object
instances

Load reconstruction
model weights
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Figure 4. Workflow of object reconstruction from sensor data.
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Figure 5. Diagram of a single object reconstruction network architecture branch. For the given
depth frame, the depth encoder creates a bottleneck, which is then directly connected to VAE node,
the resulting sampler is connected into voxel decoder. The voxel decoder layer outputs a 32 x 32 x
32 x 2 matrix which can be explained as x x y x z X s, where x, y, z components indicate position in 3D
grid, and s component indicates voxel state encoded as one-hot.

Table 2. Architecture of the reconstruction neural network.

Type Filters Size Output
Input - B 320 x 240
Convolution 96 5x5/2 160 x 120
Dropout 2D P(x) = 0.1 - 160 x 120
Inception 8,4 - 160 x 120
Convolution 16 1x1 160 x 120
Add - - 160 x 120
Convolution 128 5x5/2 80 x 60
Dropout 2D P(x) = 0.05 - 80 x 60
Inception (8,4) - 80 x 60
Inception (16, 8) - 80 x 60
Encoder Convolution 32 1x1 80 x 60
Add - - 80 x 60
Convolution 128 3x3/2 40 x 30
Dropout 2D P(x) = 0.025 - 40 x 30
Inception 8,4) - 40 x 30
Inception (16, 8) - 40 x 30
Inception (32, 16) - 40 x 30
Convolution 64 1x1 40 x 30
Add - - 40 x 30
Convolution 256 3x3/2 20 x 20
Flatten - - 76 800
Fully-Connected - - 512
VAE Mean - - 2
Standard Deviation - - 2
Sampling - - 2
Fully-Connected - - 64
Reshape - - 4x4x4
Inception 3D (32, 16) - 4x4x4
Inception 3D (16, 8) - 4x4x4
Inception 3D 8,4) - 4x4x4
Convolution 3D 16 1x1x1 4x4x4
Add - - 4x4x4
Transposed Conv 3D 64 3x3x3x2 8§ x8x8
Inception 3D (16, 8) - 8x8x8
Decoder Incegtion 3D (8,4) - 8§x8x8
Convolution 3D 16 1x1x1 8x8x8
Add - - 8x8x%x8
Transposed Conv 3D 32 3x3x3x2 16x16x16
Inception 3D (8,4) - 16 x 16 x 16
Convolution 3D 16 1x1x1 16 x 16 x 16
Add - - 16 x 16 x 16
Transposed Conv 3D 4 5x5x5x2 32x32x32
Convolution 3D (Softmax) 2 3x3x3 32 x32x32
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Figure 6. An example of the inception layer. An input layer is connected to three branches in parallel.
If multiple inception layers are used inception layers are connected sequentially. Final inception
layer outputs and 1 x 1 convolution are then connected using addition. The result is then used for
subsequent layers.

2.4. Proposed Network vs. YOLOv3

Our approach is the hybridization of two ANN architectures: classification-segmentation branch
and reconstruction branch (see Figure 7). The classification-segmentation branch as the name suggests
performs object instance classification and segmentation. This information is then fed to the object
reconstruction branches. Object reconstruction branch contains a fleet of specialized pre-trained
autoencoder models where each of the auto-encoders can reconstruct the model’s three-dimensional
representation while being provided only a single depth frame. The initial classification-segmentation
branch is our expanded interpretation of YOLOv3 which adds crucial output to already existing
YOLOV3 network output, i.e., the object instance segmentation. This extension adds crucial information
which is required for the reconstruction step by extracting the object instance mask that can be applied
per each object on the initially captured depth.

Depth
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Encoder
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YoloV3 ol

Masked
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Figure 7. Full view of the proposed network model that extends the YOLOv3 network.
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2.5. Dataset

As our method entails the requirement of a priori information for the captured object
reconstruction, there is a need for a large well labeled element dataset. However, unlike for object
recognition which has multiple datasets, e.g., COCO [58] dataset, Pascal VOC [59]; there seems to be a
lack of any public datasets that provide RGB-D scene representation in addition to it’s fully scanned
point cloud information viable for our approach. While datasets like ScanNet [60] exist, they are
missing finer object details due to focusing their scan on full room experience that we are trying to
preserve. Therefore, our training data consists exclusively out of synthetically generated datasets,
which use the ShapeNetCore, a subset of ShapeNet dataset that provides 3D object models spanning
55 categories (see an example of a coffee cup model in Figure 8). In addition, we use real-life data
acquired by the Intel Realsense ZR300 and Intel Realsense D435i (Intel Corp., Santa Clara, CA, USA)
devices for visual validation as it is impossible to measure it objectively without having a 3D artist
recreating a 1:1 replica of said objects, which is unfortunately unfeasible option. However, using real
world samples as a validation set is not subject to training bias because they are never being use in the
training process.

As mentioned, for the training of the black-box model we are using the ShapeNetCore dataset that
we prepare using Blender [61] in order to create the appropriate datasets. Due to the fact that we are
training a hybrid neural network, we need two separate training and testing sets, one for each task.

be
I B
o

Q
U

Figure 8. A coffee cup model from the ShapeNetCore dataset.

2.5.1. Classification Dataset

To create this subset of data we create random scenes by performing the following procedure.
Firstly, we randomly decide how many objects we want to have in the scene in the range of
Nobjects = [1;10) and pick that many random objects from ShapeNetCore dataset to populate the scene.
Before applying any external transformations we transform the object geometry so that all objects are
of uniform scale and have the same pivot point. To perform the required transformations firstly we
calculate the geometry extents. Once we know the object extents we can move all the objects on Up
axis (in our case this is z) and scale down all vertices by the largest axis (Algorithm 2). This gives us a
uniformly scaled normalized geometry that we can freely use.
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Algorithm 2 Normalize geometry

1: procedure EXTENTS(G) > Calculates extents for geometry G
2 miny, miny, minz < Infinity > Initialize min vector
3 mMaxy, maxy, maxz < —Infinity > Initialize max vector
4 foreach v € G do > For each vertex v
5: miny < min(vy, miny)

6 miny < min(vy, niny)

7 ming < min(vz, min;)

8 maxy <— max(vy, maxy)

9 max, < max(vy, max,)
10: max; < max(v;, max;)
11: end for
12: return min, max

13: end procedure

14: min, max < EXTENTS(G)

15: bounds < max — min

16: max_bound <+ 1/max(bounds, boundsy, bounds;)

17: foreach v € G do > For each vertex v
18: Uy < Uy /max_bound

19: vy vy/max_bound

20: v < (v; — ming)/max_bound > Offset the vertex on up axis before normalizing bounds
21: end for

We place the selected objects with random transformation matrices in the scene, making sure
sure that the objects would never overlap in space. To generate random local transformation matrix
(L) (Equation (3)) we need three of it’s components: Scale (S), Rotation (R;) and with random value;
use either capital or lower-case s in both places in the range of s = [0.7,2); Rotation (R;), where rotation
is random value in the range of 6 = [0,277), we perform rotation only on z axis to ensure that randomly
generated scenes are realistic and do not require artist intervention; Translation (T), where x and y
values are non-intersecting values in the range of r = [—5,5] and « = [0,27) (Equation (2)).

X =71 X Cosx
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L=SxRxT= 3
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0001 0 0 01 |xy z1

Once the selection objects are placed we need to apply lighting in order to have real-life like
environments. To do this, we use the Lambertian shading model and directional lights. We randomly
generate 1;gs = [1;4) lights in the scene. We pick a random light rotation, we ignore translation as
it does not matter in directional lights; we generate a random color in the range of Colggg = [0.7,1],
we selected the minimum bound of 0.7 to avoid unrealistic real-world lightning; and random intensity
I =[0.7,1]. This light acts as our key light. To avoid hard shadows being created, which wouldn’t be
the case unless using spotlight in real world, for each key light we create a backlight which is pointing
the opposite direction of key light with half the intensity and identical color to the key light.

Once the scene setup is complete, we render the scene in three modes: color, depth and mask.
Color mode gives us the scene representation from a regular light spectrum camera. As we are not
putting any background objects into the scene the generated background is black. However, later on
we use augmentation during training to switch the backgrounds to improve recall rates. Once the color
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frame is extracted we extract the mask, in order to extract the mask we assign each object an incremental
ID starting at 1, this allows us to differentiate between objects in the frame. Finally, we render the
depth representation of the scene. Before rendering depth we place a plane on the ground that acts as
our ground place, this allows for more realistic depth representations because the objects are no longer
floating in space. The depth is rendered front-to-back, meaning the closer the object is to the camera
the closer to zero depth value is, the front-to-back model was chosen because this is the same as Intel
Realsense model.

Each of the scenes is rendered in 320 x 240 resolution n = 25 times by placing it in random
locations (Algorithm 3) and pointing it at the center of the scene, where r = 10, zi, = 4, Zyax = 6.

Algorithm 3 Camera location

1: step_size <— 2/ (1 —n)

2: fori<ndo

3 0 < random(i,i+1) > Random float in the range of [i, i+1]
4 X < cos(step_size X 0) X r

5.y < sin(step_size x 0) X r

6 z 4— random (Zyiy, Zmax )

7. end for

We save the perspectives as OpenEXR format [62] instead of traditional image formats instead of,
for example, PNG, as OpenEXR file format is linear, allowing for retention of all depth range without
any loss of information as it is not limited to 32 bits per pixel. The final EXR file has these channels
in it R, G, B containing red, green and blue color information respectively; id channel contains the
information about the mask for specific pixel; Z information containing the linear depth data.

Once we create the input image, we additionally label the data and extract the segmentation
mask that will be used as output when training the artificial neural net. We perform this step after
the scene is rendered in order to account for any kind of occlusion that may occur when objects are in
front of each other causing them to overlap. We extract the object bounding boxes by finding the most
top-left and bottom-right pixel of the mask. The binary mask is extracted based on the pixel square
distance from the center of the bounding box. This means that the center pixels for the bounding box
are completely white and the closer to the edges it is the darker it gets. We use non-flat segmentation
to be able to extrapolate individual object instances in the mask when they overlap, and this is done by
interpolating the pixel intensity from the bounding box edge to bounding box center. The mask is then
scaled down to 80 x 60 resolution as it is generally sufficient and reduces the required resources.

2.5.2. Anchor Selection

The existing anchors that are being used with COCO, Pascal VOC and other datasets are not
suitable for our dataset, rarely fitting into them. Therefore, we performed class data analysis and
selected three most fitting anchors per classifier branch scale. As we can see from Figure 9, our classes
generally tend to be biased towards 1:1 aspect ratio due to data set being randomly generated unlike
in real world applications.

However, while the classes tend to be biased towards 1:1 for the most part, the assertion that all
individual object instances would neatly fit into this aspect ratio would be incorrect as they still retain
certain bias. According to previous Single Shot Detection (SSD) research [63], selecting inadequate base
anchor boxes can negatively affect the training process and cause the network to overfit. Therefore,
we chose to have 3 anchors per anchor size as this seems to sufficiently cover the entire bounding box
scale spread by including tall, wide and rectangle objects. We select the anchor points using K-Means
to split data into 9 distinct groups (Figure 10).
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Once we have our cluster points for bounding box detections, we sort them in order to group into
small, medium and large anchor sets. Giving us three different anchors, each having the most popular
aspect ratios per that scale detection branch as it can be seen in Table 3.
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Figure 9. Each individual point denotes the mean object bounding box scale for each class type.
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Figure 10. Selected anchors using K-Means clustering algorithm. Different colors denote distinct anchor
groups responsible for detecting objects in the spread.

Table 3. Anchor scales in pixels calculated using the K-Means clustering method.

Anchor Type Anchor 1 Anchor 2 Anchor 3
Small 18.83,47.53 52.34,37.53 34.13,73.28
Medium 86.35, 46.02 62.74,68.31  62.75,102.19
Large 96.69,84.20 103.66,119.51  136.34, 146.64

The neural network architecture described in Section 2.2 was trained in three separate modes
in order to infer how much the additional depth information improves the classification results.
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These three modes consist of RGB, RGB-D and Depth training modes. Where RGB mode implies we
train using only the color information that was generated from the dataset, the RGB-D mode uses both
depth and color information and finally Depth mode trains the network using only depth information.
We do not use any additional data augmentation when training in both RGB and RGB-D modes.
We do however, add additional augmentation when training in the RGB-D mode. When training
in the RGB-D mode there is a small chance that either RGB or Depth channel will not be included
in the testing sample. We perform this augmentation because both RGB camera and Depth sensors
may potentially have invalid frames. Therefore, we assert that both of these data points are equally
necessary for the classification task, and that they must be generalized separately from each other
and should provide equal contributions to the classification task. This is decided randomly when
preparing the mini-batch to be sent to the artificial neural network for training. Thereis A = 0.1
chance that the input specific data point will be picked for additional augmentation. If the data point
is picked for augmentation then there is equal probability that either RGB or Depth Data will be erased
from the input and replaced with zeros. We decided on this augmentation approach because both
RGB and Depth frames using real sensors are prone to errors. For example, the RGB camera may
fail in bad lighting or even be unavailable when the room is pitch black. Likewise, the depth frames
are also prone to errors due to inconsistencies in generating depth map which causes the sensor to
create speckling effect in the depth information, additionally cameras being too close to object may
be completely unable to extract proper depth information. Therefore, we chose this augmentation
approach as it allows for the sensors to work in tandem when both are available, but fill in the gaps,
when one of them is failing to provide an accurate information.

2.5.3. Reconstruction Dataset

For the reconstruction training set, we use the same ShapeNetCore dataset to generate the
corresponding depth images and ground truths for the individual objects voxel cloud. We used
Blender to generate the training data. However, the generated input data is different. We assert that
the object material does not influence the objects shape, therefore we no longer generate the color
map unlike when generating classification data. Therefore, we only render the depth information for
each object. We render individual objects by placing the cameras in such a way that the specific object
would be visible from all angles from 45° to 90° at a distance from 1 to 1.5 m, excluding the bottom.
As a result we have 48 perspectives for each of the object models. Once again we save the models
as OpenEXR file in order to preserve the depth values in this lossless format. Finally, we generate
the voxel-cloud representation [64]. Voxelization is performed by partitioning into the equally sized
cells, where the cell size is selected based on the largest object dimension axis. Following the space
partitioning, we repeat over each of the cells and compute whether the specific cell should be filled by
ray-polygon intersection [65].

2.6. Evaluation

In order to evaluate the correctness of our results, we evaluate the results of the proposed
algorithm, and additionally we evaluate both of the subsystems individually. To evaluate the
classification accuracy, we use the mAP metrics to assess the quality of the classifier and it’s output
bounding boxes. When performing the classification accuracy evaluation, we evaluate all three train
models: RGB, RGB-D and Depth. This allows us to determine the quality differences between the
addition of depth information in the classification task.

For the reconstruction task we require the output voxel representation of the object to be as close
to ground truth as possible. For that, we define our reconstruction quality as the Intersection-over-Union
metric. Furthermore, we use the Correctness, Completeness, and Quality metrics during evaluation.
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3. Results

3.1. Settings

Our experiments have been executed using two computers: (1) a workstation with Intel i7-4790
CPU with 16 GB of RAM which achieved 55.76 fps, and nVidia 1070 graphics card with 8 GB GDDR5
VRAM; and (2) a laptop computer using nVidia 960M graphics chip with 4GB GDDR5 VRAM,
Intel i5-4210H CPU and 12 GB of RAM, which reached 11.503 fps. We consider that these machines
should represent the target range of end user devices.

3.2. Quantitative Results

3.2.1. Object Instance Classification Results

In order to evaluate our model in all cases, we have used the mAP metric, which is a widely used
method in order to evaluate mean average precision of the predicted bounding boxes with respect to
their Intersection-over-Union (IoU), provided that the object classes match. As per suggested COCO
evaluation we filter out bounding boxes which have an IoU < 0.5 in order to compare all of our trained
model versions.

As Table 4 suggests, our iterative training approach in addition to dropout layer was substantially
better in the object classification task as opposed to the originally suggested variant which would
either plateau with too low of a learning rate or get stuck in a constant loop around the local minima
due to the initial learning rate being too high. Therefore, we can assert that a periodic learning rate is a
useful tool to improve model generalization and the speed at which the network can train by adding
additional noise during training time in a form of sudden overshooting. Furthermore, we can see that
the addition of depth information as input greatly increases the recall rate in both cases, while the
depth information alone has similar recall rate in both cases. This suggests that the depth cameras
can not only greatly benefit in the object classification task when used in conjunction with visible
light spectrum cameras but it can be used as a fallback when no light source is available, albeit with
lower precision.

Table 4. Mean precision values in respect to IoU > 0.5 for each of our trained models.

Network Type mAP (%)

Our RGB-D 60.20%
YoloV3 RGB-D 55.75%
Our RGB 41.27%
YoloV3 RGB 37.96%
Our Depth 26.46%
YoloV3 Depth 20.87%

One of the glaring issues we noticed with the ShapeNetCore dataset during our experiments is
that, while there are specified a total of 55 classes, a lot of those classes have major overlap in form and
function which may dramatically affect the overall mAP value, such as classes that are categorized
as distinct (e.g., pistol and handgun) could still be grouped into the same class as they share key
characteristics which may not be viable to differentiate when using relatively low resolution images.
Additionally, some groups of objects can be distinct in their use (e.g., mug and ashcan and basket) in
many cases have no differentiable features and would require each individual scene to be hand crafted
by an artist in order to provide visual queues about the objects in relation to the world, which should
potentially allow for differentiation between very similar objects (Figure 11). However, this is currently
beyond the scope of our paper.
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Figure 11. Prediction made with our extended YOLOuv3 network. Left to right: (1) Input color image
with predicted object instances; (2) Input depth frame; (3) Upscaled to 320 x 240 ground truth mask;

(4) Predicted mask upscaled to 320 x 240. Same object is being treated as two distinct classes due to
lack of cues for the artificial neural network of what the specific object may be due to scenes being
generated randomly.

3.2.2. Mask Prediction Results

As one of our main goals is to extract individual object instances from the depth map, we extended
the YOLOuv3 network architecture to be able to predict object masks. In order to compare the predicted
mask similarity with the ground truth we use the structural similarity index metric (SSIM) that
measures perceived similarity between two images.

As we can see from Figure 12, in all cases our YOLOuv3 extension for object mask prediction
is capable of extracting mask frame not only from the combined RGB-D frames but also from the
RGB and Depth frames alone. This shows us that both color and depth information individually is
generally enough for this task. However, both of these sensors may fail in different environments so
the conjunction of both would most likely procure the most accurate results. Additionally, while in
both method cases (static and periodical) the similarity is generally more than enough to extract
accurate mask, using periodical approach provides a much lower standard deviation, hence better
expected results. Additionally, the higher similarity also signals a tighter mask which may improve
reconstruction quality due to reduction in bad data. While in our tests RGB has slight advantage over
RGB-D when generating a mask, it is worth noting that Depth adds an additional dimension to the data
which makes the dataset slightly harder when compared to RGB alone. This is due to RGB alone being
able to drop the randomly generated background, unlike RGB-D which has a non-uniform background
due to addition of ground plane. As we can see in Figure 13, our approach is applicable not only for
synthetic but for real-world data too. This indicates that the network managed to generalize well and
it’s result can be used during reconstruction step.

3.3. Reconstruction Results

3.3.1. Quantitative Results

We can observe the achieved results for our proposed method in Figure 14 as they compare to
previously achieved results in hybrid neural-network reconstruction [66]. As we can see the mean
IoU metric value as compared to the results presented in [66] has significantly improved for some
of the models, more importantly—even if the the improvement was minimal or if the results were
slightly lower the error spread is lower. This indicates that the achieved results are much more stable.
Additionally we can see that our reconstruction results are comparable to that of other state-of-art
methods like 3D-R2N2 reporting 0.571 mean Ioll.
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Figure 12. Similarity of created mask to the mask of ground truth. The hashed bar denotes the similarity
of masks predicted by the YOLOv3 network, the solid bar denotes the similarity of masks predicted for
Depth, RGB-D and RGB frames by the network model proposed in this paper.
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Figure 13. An example of real world object classification using the proposed network model: segmented
and classified RGB frame (left), depth frame (middle), and predicted depth mask (right).
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Figure 14. Comparison between the predicted object shape and ground truth using the IoU metric for
different objects in the training set. The hashed bars denote the results achieved using the network
proposed in [66]. The solid bars denote the results for the proposed network.
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3.3.2. Visual Inspection and Result Validation

For every object that we have trained, we had collected real world examples using Intel Realsense
device in order to compare how well synthetic results transfer into real world data. The results for the
given dataset can be seen in the Table 5.

Table 5. Visual evaluation of object reconstruction. Table presents: RGB frame, original depth frame;
reconstructed cloud of voxels; triangulated and smoothed surface created using predicted voxel cloud;
and a corresponding similar object in the training set.

Voxel Cloud Mesh

Training Data

raen 3
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The reconstructed object shapes are generally recognizable. However, certain object angles cause
the network to fail the task, for example, one of the bowls is missing half of it’s voxels, while the other
bowl may be considered a near perfect reconstruction. While the ANN has managed to reconstruct
the Book and Knife datasets, it has generally only managed to reconstruct their base shape primitives
which make the objects somewhat indistinguishable by experts without any prior information of what
the objects may be. While the human bias may notice the minute structural differences between the
knife handle and blade in terms of it’s width, we still consider this a failed reconstruction. Can has
managed to achieve great results in terms of reconstruction, while the pillow reconstruction could be
considered near perfect. Mug in our training set is one of the trickiest objects as it contains a handle
which should be reconstructed with a hole and additionally the mug cannot be fully filled in with
voxels as in our case it is empty. While in all three cases the basic shape of the cup was maintained,
there are some issues with two test cases. One of the test cases was missing a hole for the handle,
while another is substantially distorted. However, the distortions may be explained by extremely
noisy dataset. The Chair dataset allowed to reconstruct the shape of the chair although some of the
details were missing. The Laptop and Bottle datasets are the hardest ones in terms of depth sensor
capabilities. Depth sensor has issues in retrieving depth information for IR reflective surfaces causing it
to distort the images fully. Such surfaces in our case are computer screen and a plastic bottle. However,
the laptop data has surprisingly managed to account for this error in depth map, albeit containing
some distortions.

3.3.3. Reconstruction of Multiple Objects

As a proof of concept, we have performed the experiments to reconstruct multiple objects in
the scene (see an example of results in Figure 15). By extracting the individual object masks and
performing an object reconstruction individually we have managed to reconstruct the specific objects
in the scene. However, we are unable to predict the object’s relative position, rotation and scale in
relation to camera space. For this reason, we have had to specify the object transformation in relation
to camera and other scene objects manually to perform final scene render.

Figure 15. An example of reconstruction of multiple objects in the scene: segmented and classified
RGB frame (left), depth frame (middle), and predicted depth mask (right).

4. Discussion and Concluding Remarks

4.1. Discussion

One of the main advantages of our suggested hybrid NN based method is that unlike other
non-hybrid approaches, it is relatively easy to include additional objects into the dataset, due to the fact
that you can train network branches separately. Unlike other approaches, we do not need to re-train
the model with all the previous data as we do not risk losing any of the existing gradients due to
network being skewed to the new data points. The modularity of the approach allows us to train the
network reconstruction nodes per each object category independently. Additionally, this modularity
allows for variance of the model per object class, meaning we can adjust complexity of the ANN
depending on the difficulty of the object that is being reconstructed. Furthermore, we believe that our
approach is a step forward to generic object reconstruction as we are capable of extracting multiple
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objects from the same scene thanks to masking during classification step, which allows to send only
the relevant objects depth information into the reconstruction node.

While our approach is capable of extracting the individual object instances and reconstructing
them, additional research is required for full scene reconstruction. This feat requires finding the camera
space matrices, paving the way for application in Extended Reality systems. One of the standing issues
with our current approach in terms of reconstruction is that our ground-truths are perspective-invariant.
This makes training the network slightly harder, additionally it may somewhat reduce the quality of
the results due to network somewhat trying to adjust to observation angle, therefore making the IoU
metric values lower, despite visually being feasible. Solving the perspective invariance may also be
a partial solution to the homography [67,68] problem as our reconstructed object would already be
rotated with respect to the camera space.

Additionally, the improvements on the dataset may be obtained by creating and incorporating a
real-world dataset along with synthetic data for the depth encoding step. Thus, we can potentially
improved results when using real depth sensors. Additional improvements to the network architecture
may also be found by changing the complexity of the model [69]; pruning dead neurons [70];
using neuro-evolutionary and neuro-genetic algorithms to find a much more fitting solution [71];
enhancing the learning of the artificial neural networks by using metaheuristic control mechanism [72];
or using multiple frames from a video feed instead of the current single frame solution as a large
number of depth frames from a single view may reveal some hidden features and improve recall
rate [73]. Using multiple frames would allow for exploration of what improvements may be achieved
with the use of recurrent neural networks (RNN) for they have shown to be capable of predicting
sequential data [74-76]. Finally, using the RGB frames combined with depth frames for reconstruction
can potentially add some missing features from the depth due to inherent noisiness of the sensor,
therefore improving the recall rate [77,78].

Finally, we have compared the complexity of the proposed network model with the YOLOv3
network as well as with other popular network architectures. The results presented in Table 6 how that
the proposed network model is only sightly more complex than YOLOV3 in terms of the number of
model parameters and operation, but outperforms other network architectures in terms of operations.

Table 6. Comparison of neural network complexity by the number of parameters, number of operations
and model size.

Network Model No. of Parameters No. of Operations Model Size (MB)
YOLOV3 [47] 61.81 M 294.86 M 946
Proposed (extended YOLOv3) 67.45M 305.61 M 1010
AlexNet [79] 60 M 16.04 G 217
GoogleNet [80] 7M 16.04 G 40
ResNet152 [81] 60 M 11.3G 230
VGC16 [82] 138 M 1547 G 512.24
NIN [83] 76 M 11.06 G 29
SimpleNet [84] 54M 652 M 20

4.2. Concluding Remarks

Our proposed hybrid artificial neural network modifications have allowed to improve the
reconstruction results with respect to theYOLOv3 network results by 8.53% which allows for much
more precise filling of occluded object sides and the reduction of noise during the process. Additionally,
the reconstruction results are a lot more stable when compared to previous results. Furthermore,
the addition of object segmentation masks and the individual object instance classification is a leap
forward towards a general purpose scene reconstruction as opposed to single object reconstruction
task due to the ability to mask out overlapping object instances and use only masked object area in the
reconstruction process. While further research is needed in order to retrieve object orientation and
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position with respect to camera space, we believe our method allows for a much broader application
in comparison to previous research due to its focus on single object reconstruction.
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