The Rook’s Guide to C++

26 November 2013

© 2013 Jeremy A. Hansen
All rights reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License, as described at

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Printed in the United States of America

First edition: November 2013

ISBN 978-1-304-66105-0

Rook’s Guide Press
19 Black Road
Berlin, VT 05602
http://rooksguide.org

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://rooksguide.org

Preface

What you are reading is the first of what I hope to be many ever-
improving iterations of a useful C++ textbook. We’ve gone fairly
quickly from whim to print on an all-volunteer basis, and as a result,
there are many things that I'd add and change if I had an infinite
amount of time in my schedule. The vast majority of the contents
were written in less than 36 hours by 25 students (mostly freshmen!)
at Norwich University over a long weekend. Some of it is mine, and
some was added by our crack team of technical editors as we trans-
lated sleep-deprived poor grammar into sleep-deprived better gram-
mar.

Where it goes from here is mostly up to you! If there’s a section
that’s missing or in need of clarification, please take a bit of time
and make those changes. If you don’t want to bother yourself with
the GitHub repository, send me your additions and modifications di-
rectly.

I want to first thank my family for the time I didn’t spend with
them on the writing weekend and throughout the summer when I
was editing and typesetting. I promise I won’t do this next summer!

My next thanks go out to the technical editors and typesetters,
without whom you would have a much uglier book. Thanks to Ted
Rolle for building the initial KTgXframework and to Matt Jadud for
the incredibly helpful pointers on how to manage the pile of typeset-
ting files in a collaborative environment. I also thank Craig Robbins

1ii

and Levi Schuck, who, on different sides of the planet, managed to
contribute extensively to the heavy lifting of getting the book into
the shape it’s in now. If we ever meet, I owe you a beer or whatever
you’re having!

I also would like to thank all of the Kickstarter backers not only
for the money which made this possible, but for reinforcing the idea
that this is a worthwhile contribution to the community. Peter Stephen-
son and Andrew Pedley also contributed food directly over the text-
book writing hackathon weekend, and without them we’d never have
gotten our saturated fat quota! (Note to future project leaders: there’s
nothing that gets a bunch of college students who are generally luke-
warm about programming to write a textbook like free food. It didn’t
even matter what the food was. Really.)

Thanks to Matt Russo for shooting the video and organizing the
media and social networking efforts with the Kickstarter project through
the writing weekend.

Special thanks to Allyson LeFebvrel for the textbook photogra-
phy, several diagrams, and the extensive search through the semi-
final textbook that turned up a bunch of mistakes that I missed.

And my last (and not at all least) thanks go out to all the stu-
dents who showed up in person or digitally. And without getting
too grandiose, you remind us all that we can make the world better
by showing up. Keep showing up!

Jeremy
jeremyhansen@acm.org
26 November 2013

"That’s “la-fave”, everyone

Contents

E Variablea

lZ.l How do I decide which data type Ineed?

D2 Identifiery
2.3 Declaring a Variabld
0.4 Initializing Variableg

2.5 Assignment Statementd

2.6 Review Questiong .
D.7 _Review Answerd . .

p.8 Further Reading . .

Literals and Constants

3.1 Literala

3.2 Declared Constants

B.3 _Review Questiong .
3.4 Review Answerq . .

Assignments

#.1 _Review Questiong .
4.2 Review Answerd . .

Jury

NN U1 U R W

[I RIEE N I

5.1 Review Questiong .

5.2 Review Answers . .
5.3 Further Reading . .

6.1 _Review Questiong .
6.2 Review Answers . .

6.3 Further Reading . .

[[.1 Review Questiong .
[[.2 Review Answers . .
7.3 Further Reading . .

E Commenta

B.1 Review Questiong .
B.2 Review Questiong .

E Data Types and Conversioﬂ

5.1 Floating-point typea

0.2 Other types introduced by C++11

p.3 Conversion Between

Typed . . . o o v

0.4 Coercion & Casting

0.5 Automatic Typesin C++11

0.6 Review Questiong .
0.7 Review Answery . .
0.8 Further Reading . .

10 Conditionals

0.1 if,else,andelse if|

[10.1.1 A small digression on expressions

[10.1.2 Using else
[10.2 switch statements

15
18
19
19

21
23
24
24

25
28
30
31

33
35
37

39
40
42
42
43
44
45
45
45

[10.3 Review Questiong oo v v v v .. 54

[10.4 Review ANSWEIS o o v v v e e 54

55
1.1 Review Questiong 59
[[1.2 Review Answera 60
[11.3 Further Reading 60

Iiz Loopg 61
2.1 Introduction 61
[12.2 Having Fun while Programming 61
2.3 do-whileLoopd 63
[12.4 Event-Based Loops vs Count-Based Loopy 65
12.5 for workor foroplay 66
12.6 Picking aLoop o o i i 67
2.7 NestedLoOpS. o oo vttt 68
f[2.8 Infinite Loopy o v i i 68
2.9 Review Questiong 69
[2.10 Review Answera 70
[12.11 Further Reading 70

71
[13.1 Multi-dimensional Arrayd. 73
[13.2 Review Questiond 74
3.3 Review ANSWerso ovvv oottt 74
f[3.4 FurtherReadind 75

14 Blocks, Functions, and Scope 77
41 Blockd 77
14.2 Basic Functionsin C+4 78
14.2.1 What are functions and why do we use them? 78

14.2.2 The parts of a basic function 78

143 voidFunctions 81

[14.4 Overloading Function Names 82

...........................

[14.6 Review Questionyg o oo v v

4.7 Review ANSWerS« oo vvv oot
14.8 FurtherReading

15

Problem Solving & Troubleshooting|

i15.1 The Compilation Errol
[[5.2 The Logic Erroﬂ
15.3 The Infinite Loop
15.4 Review Questiond
155 Review ANSWErS o o v v v v v

16

The Preprocessox

6.1 Review Questiong
16.2 Review Answers

n7

Advanced Arithmetid

(71 Exampled o

|]7.1.1 Ppow (g|
1712 sqrtQ)l
713 Moduld

[17.2 Review Questionyo
[17.3 Review ANSWEIS o oo v ..
[17.4 Further Reading

8 File I/O

(8.1 T[/OStreams. v vv v
82 Filel/T
[18.3 Opening and closingaFilg
8.4 Reading fromaFild
18.5 WritingdatatoaPFild
18.6 Introduction to Classes and Objects
[18.7 Other functiony
[18.8 Review Questiong o oo v v v

89
89
90
90
91
92

93
94
95

97
98
98
99
100
101
101
102

[18.9 Review ANSWErS oo v v .. 110

[18.10 Further Reading 110
111
9.1 Review Questiong 114
9.2 Review Answera 115
20 Dynamic Data 117
R0.1 Review Questiong 121
P0.2 Review Answera 121
£0.3 Further Reading 121
P1 Classes and Abstraction 123
P11 structd 123
21.2 Assigning values to member variabled 124
P13 Classed oo 124
21.4 public and private variables and functiond . . 125
21.5 Defining member functions 126
21.6 Using member functions 126
1.7 classesand structstogethef 127
21.8 CONStructors v v v v v e 128
21.9 Overloading Member Functionsg 129
R1.10 Review Questiond 130
P1.11 Review ANSWETrS . . .« . o o v v e e 131
P1.12 Further Reading 132
R2 Separate Compilation 133
E2.1 Review Questiona 135
R2.2 Review ANSWerS oo oo vi i 136
P23 Further Reading o o oo i 136
137

P3.1 #include <utility>]
#include <tuple> (C++11) 137

p3.2 #include <iterators 138
p3.2.1 Forwarditeratord 139
p3.2.2 Bidirectional iteratorg 139
P3.2.3 Random access iteratora 140

3.3 #include <vectors|, 140

23.4 #include <map> 141

P3.5 Further Reading 143

License

OSSO

This work by Jeremy A. Hansen (jeremyhansen@acm.org) is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License, as described at

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

X1

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Dramatis Personae

Managing Editor:
Jeremy A. Hansen, PhD, CISSP
Technical Editing & Typesetting:
Jeremy A. Hansen
Matt Jadud, PhD
Craig D. Robbins
Theodore M. Rolle, Jr.
Levi Schuck
Media & Outreach:
Matthew E. Russo

Cover Art & Graphic Design:
Allyson E. LeFebvre

Content Authors:

Tyler Atkinson, Troy M. Dundas, Connor J. Fortune, Jeremy A. Hansen, Scott
T. Heimann, Benjamin J. Jones, Michelle Kellerman, Michael E. Kirl, Zachary
LeBlanc, Allyson E. LeFebvre, Gerard O. McEleney, Phung P. Pham, Megan
Rioux, Alex Robinson, Kyle R. Robinson-O’Brien, Jesse A. Rodimon, Mat-
thew E. Russo, Yosary Silvestre, Dale R. Stevens, Ryan S. Sutherland, James
M. Verderico, Christian J. Vergnes, Rebecca Weaver, Richard Z. Wells, and
Branden M. Wilson.

Funding & Support:

Peter Stephenson, PhD, VSM, CISSP, CISM, FICAF, LPI at the Norwich Uni-
versity Center for Advanced Computing & Digital Forensics

Andrew Pedley at Depot Square Pizza

xiii

Kickstarter contributors:

Nathan Adams, Chris Aldrich, Jay Anderson, Kent Archie, Erik Arvedson, Astrolox,
Phoebe Ayers, Papa Joe Barr, Julia Benson-Slaughter, Georgia Perimeter College,
Patrick Berthon, Francis Bolduc, Greg Borenstein, Patrick Breen, Igor Bronshteyn,
Valdemar Bucilko, Ross Buckley, Nikita Burtsev, Jakob Bysewski, David Camara,
Dave M. Campbell, Brian V. Campbell III, S. Canero, Serge Canizares, Andrew Carl-
berg, Casey B. Cessnun, Winston Chow, W. Jesse Clements, Greg Crawford, Sean
Cristofori, Jordan G Cundiff, Michael David, Joseph Davies, Ashley Davis, David
C. Dean, DJS, Carlton Doc Dodd, Phil Dodds, Dominic, Sankar Dorai, dryack, Matt
DuHarte, Brandon Duong, Van Van Duong, Daniel Egger, Chris Fabian, Jorge F.
Falcon, Tek Francis, Fuchsi, Steve Gannon, Michael Gaskins, Gavlig, Adam Gibson,
Russell E. Gibson, Goldenwyrm, James Green, Brian J. Green, Casey Grooms, Vitalik
Gruntkovskiy, Vegar Guldal, Felix Gutbrodt, Jeremy Gwinnup, Beau T. Hahn, Paul
R. Harms - Norwich 1975, Corey H. Hart, MBA, Aaron A. Haviland, Josh Heffner,
Greg Holland, Henry Howard, Mark V Howe, Ivaliy Ivanov, Matt Jadud, Joseph
Jaoudi, Tim R. Johnson, Ibi-Wan Kentobi, Mark King, Mitchell Kogut III, Sigmund
Kopperud, Michael Korolev, Jamie Kosoy, Aria Kraft, Alexander Tyr Kristjansson,
Richard Kutscher, Eric Laberge, John Lagerquist, Philip Lawrence, Mark Brent Lee,
John and Nancy LeFebvre, Nevin :-) Liber, Jonathan Lindquist, Thomas Lockney,
Stuart A. MacGillivray, Dr. Pedro Maciel, Troels Holstein Madsen, William Ma-
rone, Fred Mastropasqua, Miles Mawyer, michael mazzello, Ryan McDonough, Mat-
thew McFadden, John Mclntosh II, Sean McNamara, mdsaravanan, Brandon Meski-
men, Andrew Mike, G.F. Miller IV, Marcus Millin, Salvador Torres Morales, Danny
Morgan, Ken Moulton, Aaron Murray, mvi, Jon Nebenfuhr, Philip K. Nicholson,
chris nielsen, Pontus Nilsson, Mike Noble, Aleksander R. Nordgarden-Redner, Greg
O’Hanlon, Doug Otto, Randy Padawer, Ph.D., J Palmer, Tasos Papastylianou, Paul,
James Pearson-Kirk, Matthew Peterson, Grigory Petrov, pezmanlou, Joachim Pile-
borg, Kyle Pinches, pkh, Mary Purdey, Marshall Reeves, Matthew Ringman, Craig
D. Robbins, Antonio Rodriguez, Armando Emanuel Roggio, Victor Suarez Rovere,
Christian Sandberg, Jaymes Sattler, Paolo Scalia, Patrice Scheidt, Daniel Schmitt,
Levi Schuck, Raman Sharma_Himachali, Michael Shashoua, Daniel Shiffman, Clay
Shirky, sillygoatgirl, Kevin J. Slonka, Brian Smith, Hazel Smith & Rebecca Twigg,
Andrey Soplevenko, Kasper Souren, Derek A. Spangler, Speckman, Kellan St.Louis,
Nick Stefanou, Steve, Andrew Stewart, Jeremy Sturdivant, Cyrille Tabary, Adam
8T Tannir, M Taylor, Telecat Productions, Aron Temkin, Mitchell Tilbrook, Nathan
Tolbert, Devin M. Tomlinson - Vermont Born, Todd Trimble, Michiel van Slobbe,
James A. Velez, Marco Verdecchia, David Walter, Lothar Werzinger, Wayne West,
Sean Whaley ’05 & M’08, Mark Wheeler, Tommy Widenflycht, Dylan Widis, Tony
Williamitis, Adam M. Williams, Stephen D. Williams, Dylan Wilson, Wesley Wiser,
wizzy, Sam Wright, Janet Hong Yam, and Jy Yaworski.

Chapter 1

History

Developed by Bjarne Stroustrup, C++ has become one of the most popular pro-
gramming languages in the world. Originally, it was designed as an improvement
upon the C language, which was developed by Bell Labs. Developed in the early
1970s, C’s name is derived from the B programming language, which in turn was
derived from the BCPL language. C gained a large following, in part due to its use in
the development of the UNIX operating system. Due to both its popularity and the
number of versions on the market, an American National Standards Institute (ANSI)
committee was formed in 1982 to create a standard for the C language, which was
adopted in 1989.

Stroustrup began with the idea that object oriented programming would be an
important addition to C, and created C with Classes. In 1983, Stroustrup’s contri-
butions officially became known as C++, its name stemming from C and adding the
++ (increment) operator. It wasn’t until 1998 that the international standard for
C++ was established.

Since then, most changes have been minor. In 2005, a report was released by
the ISO on features that were intended to be included in the next version of C++.
The early versions of this became known as C++0x, until 2011, when the C++11
standard was released by the ISO.

In this book, we’ll favor older techniques, pre-C++11. When C++11 features
are discussed, they will be pointed out as such. While not all of the new features
are discussed, we will be trying our best to explain them as we go.

Chapter 2

Variables

Variables are extremely important to every programmer - they will be a critical part
of your programming toolkit regardless of the language you use. Very simply put,
a variable is a space in memory that can store some range of values. Some of the
basic data types are shown in Table R.1|. For a deeper discussion of data types, refer

to Chapter .

int Short for integer; stores whole numbers

char Short for character; stores a single letter, digit, or
symbol

bool Short for Boolean; stores true or false

float | Short for floating point number; stores numbers
with fractional parts

double | Short for double precision floating point num-
ber; stores bigger numbers with bigger fractional
parts than float

Table 2.1: A few basic data types

2.1 How do I decide which data type I need?

What you can do with a variable depends on the type of data they contain. For
instance, you can’t store the number 100000 in a char because a char stores
only character data. To store 100000 the programmer should use an int. If you
think you are dealing with numbers that have fractional parts, you need at least a
float. You generally want to use the smallest variable type that will get your job
done. Simply put, if it is a round number, int works fine; ifit’'sa true or false,
use bool; for a letter, use char; for fractional numbers, use f1oat; for a really
big number or a number with many digits after the decimal point, use double.

2.2 Identifiers

Now we have an idea of what types of variables we will use in the program. How do
we have the program differentiate between multiple ints, chars, or doubles?
We have to name them! The name we use will give the variable an identity, so it’s
known as an identifier. An identifier can be almost anything you’d like, provided
the identifier does not begin with a number or symbol.ﬂ Remember that the variable
name can only be one word long. You may use a an underscore to replace a space
if you so desire, and note that C++ is case sensitive. That is, testresults,
TestResults, and Test_Results are all different identifiers.

2.3 Declaring a Variable

The line of code that creates a variable is called a declaration. A declaration is the
program telling the computer “save a place in memory for me with this name.”
A declaration for an integer variable named myVariable looks like this:

‘ int myVariable;

The specific syntax—the set of grammatical rules for the language—is impor-
tant to follow when declaring variables. Notice that the first part (int) is the data
type of the variable. The second part is the identifier (nyVariable), or variable
name. The last part is the semicolon (;) which signifies the end of a statement. You
can think of the semicolon in C++ as equivalent to a period at the end of a sentence;

"There are a few exceptions, including those words that describe data types (as
in the table above) and other keywords such as if and while, which you’ll learn
about in later chapters.

it is the end of a complete thought. Note that you may declare several variables of
the same data type together. Consider this example:

int x, y, z;

double a;

The above example creates three variables of type int named X, y, and z and
one variable of type double named a.

2.4 Initializing Variables

Values can be immediately assigned to a variable at the time of its declaration. This
is known as initializing a variable. To do this, the variable’s name is followed by
an equals sign (=, the assignment operator), the value, and a semicolon. Consider
this example:

int x = 20;
double a = 2.2;

Note that uninitialized variables can cause problems if they are used anywhere
before they are assigned a value. When a variable is declared, it contains whatever
was already in that space of memory, which can give them unpredictable values.
This means that is is often a good idea to initialize variables to some sensible initial
value when they are declared.

2.5 Assignment Statements

An assignment statement is a method of assigning a value to a variable after it
has been declared. All assignment statements have the variable being assigned the
value on the left side of an equals sign and the value to assign on the right side.
Note that the expression on the right side of the assignment may contain arithmetic
operations such as multiplication, division, addition, and subtraction, or even other
variables. Consider the following example:

nt b=2,x=20,y=0;

1,
b;

Moo
+ 0

i
X
y =

2.6 Review Questions

1. Declare two variables of type int and initialize them to an appropriate
value.

2. Declare three integer variables: sum, a, b. Initialize the variables a and b
to an appropriate integer and use an assignment statement to assign sum
the result of a plus b.

3. Declare a double variable called number and initialize it to 13.6.

4. Create a program in which 3 variables are declared. Create one float
named myFloat, one int named myInt, and one double named my-
Double. Initialize them to 3.14, 3, and 3.14159, respectively.

2.7 Review Answers

1. int a = 6;
int b = 0;

2. int sum, a = 6, b = 0;
sum = a + b;

3. double number = 13.6;

int main ()

{
float myFloat = 3.14;
int myInt = 3;
4. double myDouble = 3.14159;

return 0;

2.8 Further Reading

« http://www.cplusplus.com/doc/tutorial/variables/

« http://www.tutorialspoint.com/cplusplus/cpp_variable_types.htm

http://www.cplusplus.com/doc/tutorial/variables/
http://www.tutorialspoint.com/cplusplus/cpp_variable_types.htm

Chapter 3

Literals and Constants

3.1 Literals

A literal is a value outside of a variable such as 5, 9, 103, and —21. Each of those
is an int, but a literal can be of any data type. The point is, these are values that
the C++ compiler already recognizes, and can’t be changed. In other words, you
can’t convince the compiler to give the literal 3 the value of 4, because 3 is constant.
Table B.1] contains a few examples.

3.2 Declared Constants

We call a variable whose value we cannot change a constant. After you declare
a constant, you are unable to change it, no matter what. The difference between
declaring a normal variable and a constant is that we simply place the keyword
const before the data type in the declaration. This indicates whatever variable
and type that follows the const will be a constant and cannot be changed. Since
it is a constant, we will also need to initialize the value at the time we declare the
variable. Here is an example (we cover the cout object shortly in Chapter f):

const float pi = 3.14;
float radius = 5, area;
area = radius * radius * pi;
cout << area; // outputs 78.5

3.3

1.

34

Literal value Data Type
123.45f float
13.8903 double

-389283220.342423 double
49e-8 double
12 int
12u unsigned int
'x! char
"text" string
true bool
false bool

Table 3.1: Examples of a few literals

Review Questions

Describe the difference between literals and declared constants. When would
a declared constant be more useful than a literal constant?

What is the difference between a normal variable and a constant?

Build a program in C++ that does the following:

(a) Declare a double variable named Feet. Initialize it to your height.

(b) Declare a double constant named MetersPerFoot, with the
value of 0.3048.

(c) Declare a double variable named Meters. Set it to Feet multi-
plied by MetersPerFoot.

Create a program that displays the diameter and area of a circle for any given
radius. Use a const float to represent 7.

Review Answers

A literal is a value not stored in a variable; a constant is an unchanging value
stored in a variable.

Normal variables can be changed or overwritten; constants cannot be changed
or overwritten.

double Feet 5.5;
const double MetersPerFoot = .3048;
double Meters = Feet * MetersPerFoot;

float radius = 5;

const float pi = 3.14159
double diameter, area;
diameter = radius * 2;

area = pi * (radius * radius)

Chapter 4

Assignments

Assignments are a way for a user or a programmer to assign a value to a variable.
The way we assign a value to a variable in C++ is different from how we might do

it in math. In mathematics we are allowed to say that x = 3 or3 = X, butin
C++ the only acceptable way to assign the value of 3 to X is to type x = 3.
The = in the expression X = 3 is known as an assignment operator. This

allows the program to set a variable’s value depending on its type. Here are some
examples of setting a value to different types of variables:

int x = 4;

char alpha = "A’;
string word = “Alpha”;
float y = 3.14;

We are able to declare variables and assign a value to those variables immedi-
ately by using the assignment operator. When we assign literal values to variables
of type char, the value must be surrounded by single quotes (for example, 'A").
When we assign values to variables of type st ring, the literal value must be sur-
rounded by double quotes (for example, "Alpha'"). We do not have to initialize
the values of the variables, however. We can set them later in the code like this:

int myVal;
// some code
myVal = 0;

In all of the lines of code in this section where a variable is set using the as-
signment operator, the “thing that is being given a value” is known as an lvalue,
and the expression on the right that is being stored in the variable is known as the

11

rvalue. Literals such as 'A"' or 3 can never be an Ivalue. Aside from literals, the
rvalue can consist of other variables, like this:

myVal = myVal2;

Even though myVal2 is a variable, we are only using the value stored in the
variable, not the variable itself. For example, if myVal2 had a value of 6, myvVal
would then be assigned to the value 6 with the above code.

We can also store the results of an arithmetic expression in a variable like this:

‘ myVal = 5 + 6; //assigns myVal a value of 11

But we can’t write

‘ 5 + 6 = myVal; // ERROR!

since 5 + 6 doesn’t refer to a place where we can store a value. We can also
combine arithmetic expressions with variables as an rvalue like this:

myVal2 = 6;
myVal = 4 + myVal2;

In this case, the variable myVal would be assigned a value of 10 because the
variable myVal2 was initialized to a value of 6, and 4 + 6 is 10. The value
of myValz2 remains unchanged. Make sure that the variable myVval, the variable
myVal2, and the literal 4 are of the same type. For example, the following code
will result in an error:

int myValue = 4;
int yourVal;
string myString = “word”;

yourVal = myValue + myString;
// Adding string to an int is
// probably not what you meant!

When we try to combine different variable types, the compiler will get very
mad at us. Some exceptions to this rule are if we try to combine floats, ints,
and doubles. These types have the ability to be combined (to a certain extent)
because they are all numeric values. Both doubles and f1oats can hold values
with a decimal point such as —3.14, 0.003, or 5.167289 whereas an int can only
hold round values such as 2, —18, or 100. Refer to Chapter {l for more information
on converting between data types.

4.1

1.

4.2

Review Questions
Which of the following is an incorrect way to assign a value to a variable x
of type int?
(@ 7 = x;
(b)
(¢) int x(7);
(d)

int x = 7;

X = 7;

Which of the following is an incorrect way to assign a value to a variable of
type string?

(@) string myString = "word";
(b) string myString = 'word';
(c) myString = "word";

Is the following code incorrect? If so, why? If it is correct, why?

int x = 6, y;
char myChar = ’x’;
y = myChar + x;

Write a program that declares two int variables and two double vari-
ables. Add and subtract five from each of your declared integer variables.
Then add and subtract 7.32 your double variables by 7.32. Then output
each of your results to the screen.

Review Answers

a. When we store a value in a variable, the variable goes on the left of the
assignment operator, and the value being stored in that variable goes to the
right of the assignment operator.

b. String literals must be surrounded by double quotes, not single quotes;
single quotes are used for single characters like 'b'.

The code is incorrect. This will probably not produce the expected result it
tries to add an int and a char and store that value in a variable of type
int.

Chapter 5

Output

Output in C++ is done with the object cout (“console output”). The object cout
prints useful information to the screen for the user. For example, if we wanted to
prompt the user with

Type in your name:

we would use cout. cout is extremely important when you are starting to learn
C++ asit gives you the ability to display the current state of any variable and provide
user feedback at any point in your program. Let’s make a program that outputs
something to the screen:

#include <iostream >
using namespace std;
int main ()
{
cout << "Go Cadets!”;
return 0;

}

The symbol << is called the insertion operator and is needed between cout
and what you want to display to the screen. In this case, we are displaying a string
literal "Go Cadets!". Asyou know, every statement in C++ ends with a semi-
colon, and this one is no exception.

What if we want to print more, though?

15

#include <iostream >
using namespace std;
int main ()

cout << "Go Cadets!”;
cout << "You can do it!”;
return 0;

Try to compile and run that. It works, but it’s not really the desired output.
You should get:

Go Cadets!You can do it!

How do we get those on a different line? One of the ways we can do it is to
use the object end1l. endl means “end line”, and is used when you want to end
one line and start over on the next—it’s like hitting enter on your keyboard. You

will also need another redirect operator between the string literal and the end1.
Putting all of this together looks like this:

#include <iostream >

using namespace std;

int main ()

{
cout << "Go Cadets!” << endl;
cout << "You can do it!”;
return 0;

}

This prints:
Go Cadets!
You can do it!

That works a bit more as intended. Alternatively, we can combine the two lines
that use cout into a single one like this:

cout << "Go Cadets!” << endl << ”"You can do it!”;

Another way we can accomplish this, without needing another redirect oper-

ator, is with the special character '\n'. '\n' is a newline character, it prints a
new line just like the end1 object.

#include <iostream >

using namespace std;

int main ()

{
cout << ”"Go Cadets!\nYou can do it!”;
return 0;

}

This prints:
Go Cadets!
You can do it!

Another thing we can use with the console output object is the special character
"\t '. Printing this character is the same as pressing the tab key on your keyboard,
and is used for indentation and formatting. Let’s look at an example that uses the
newline character, the tab character, and some text:

#include <iostream >

using namespace std;

int main ()

{
cout << ”"\tGo Cadets!\nYou can do it!”;
return 0;

}

This code prints:

Go Cadets!
You can do it!

We don’t always have to output words the screen using cout. We can also
print variables of type int, double, and f1oat and can control the number of
digits that appear after the decimal point. For example, if we had a variable that
contained the value 3.14159265 we might only care about the first two numbers
after the decimal point and just want to output 3.14 to the screen. We do that with
the precision() member function. This function call will result in subsequent
float or double variables being printed with the specified number of decimal
places. In the following code, the number of digits is set to 2:

#include <iostream >

using namespace std;

int main ()

{
double num = 3.14159265;
cout.precision (2);
cout << num << endl;

}

This code prints:
3.14

To display data in a similar way as a spreadsheet, we can create a field of
characters and set the number of characters in each field using the width () and
£i11 () member functions. Notice the use of the 1eft flag in the following code,
which positions the output on the left side of the field; the default is for the output
to be on the right side:

#include <iostream >
using namespace std;
int main ()
{
cout << ”"Norwich” << endl;
cout.width (15);
cout << "University” << endl;
cout. fill (°*7);
cout.width (20);
cout << left << "Corps of Cadets” << endl;

The above code prints:

Norwich
University

Corps of Cadets

LR RS

5.1 Review Questions

1. Which of the following is a correct way to output Hello World to the
screen?

(a) output: "Hello World";

)
(b) cout >> "Hello World";
(¢) cout << "Hello World";
(d) console.output << "Hello World";

2. Which of the following is a correct way to output Hello! to the screen
on one line and Goodbye! to the screen on the next line?

cout >> "Hello!" >> "Goodbye!";
output: "Hello!\nGoodbye!";
cout << "Hello!" << \n << "Goodbye!";

cout << "Hello!" << '\n' << "Goodbye!";

5.2

5.3

. Aside from the answer in the previous question, write two alternative ways

of printing Hel1lo! and Goodbye! to the screen on two different lines.

. Write several lines of code using the width () and £i11 () functionsina

main () thatprints Programming! tothe screenwith4 'x' characters
printed after it.

. Write code to output the values 124, 12.376, z, 1000000, and strings! as

distinct values, separated by spaces.

. What is the output of the following program?

#include <iostream >
#include <string >
using namespace std;
int main ()

string shirt = "maroon”, pants = “blue”;
cout << shirt << 7 7 << pants << endl;
return 0;

Review Answers

c.

d.

cout << "Hello!" << endl << "Goodbye!"; or
cout << "Hello!\nGoodbye!";

(other similar answers are possible)

cout. fill (°’x’);
cout.width(16);
cout << left << "Programming!”;

cout << 124 << " " << 12.376 << " z " << 1000000
<< " strings!";

maroon blue

Further Reading

http://java-samples.com/showtutorial.php?tutorialid=245

http://java-samples.com/showtutorial.php?tutorialid=245

« http://www.cplusplus.com/doc/tutorial/basic_io
« http://www.cplusplus.com/reference/ostream/ostream/

« http://www.cplusplus.com/doc/tutorial/functions/

http://www.cplusplus.com/doc/tutorial/basic_io
http://www.cplusplus.com/reference/ostream/ostream/
http://www.cplusplus.com/doc/tutorial/functions/

Chapter 6

Input

When a programmer wants a user to enter data, such as the price of an item, he
or she will use the cin object, pronounced “see-in”, in conjunction with >>, the
extraction operator in the program. Let us look at the following code:

#include <iostream >
using namespace std;
int main ()
{
int x = 0;
cout << "Please enter a value for x: 7 << endl;
cin >> x;
return 0;

When you compile and run this code, here’s what the output will look like:
Please enter a value for x:
As a user you may want to check the value that was entered. To do this, simply

21

add an additional cout statement like this:

#include <iostream >
using namespace std;
int main ()
{
int x = 0;
cout << "Please enter a value for x: 7 << endl;
cin >> x;
cout << "The value of x is: 7 << x;
return 0;
}

The output of this code is:
Please enter a value for x:
Suppose the user enters a value of 1 for x. The output that follows is:
The value of x is: 1

As you can see, the value displayed is the one entered. This can be a very useful
technique in troubleshooting the values of variables throughout a program. Do not
be afraid to insert additional cout statements throughout a program to check the
values of variables when debugging. This can help in the debugging process and
speed up catching errors.

If you want to have a user input more than one value, just repeat the code for
each individual variable:

#include <iostream >
using namespace std;
int main ()

{

int x
int y

03
03

cout << "Please enter a value for x: ” << endl;
cin >> x;

cout << "Please enter a value for y:
cin >> y;

cout << "The value of x is: 7 << x << endl;
cout << "The value of y is: 7 << y << endl;
return 0;

»

<< endl;

We can’t always trust that the user will input the correct data into a variable.
For example, if a user was prompted to input an age into a variable of type int
but typed the character z, the program would not behave properly because the user
entered the wrong data type. We can check for improper input like this by using the

cin.fail () function in a conditional statement. Look at the following code:

#include <iostream >
using namespace std;
int main ()
{
int x = 0;
int y = 0;
cout << "Please enter a value for x: 7 << endl;
cin >> x;
if (cin.fail())
{
cout << "That is not a valid data type!”;
}
}

This introduction to cin statements is only the beginning. They will get slightly
more complicated after we introduce strings, arrays, and overloaded operators.

6.1 Review Questions

1. Which of the following numbered lines of code are proper cin statements?

#include <iostream >
using namespace std;
int main ()
{
int x = 0;
int y = 0;
cout << "Please enter a value for x: 7 ;
cin << x; // #1
cin >> x; // #2
cin >> x // #3
cin x; /] #4
cin >< x; // #5
X >> cin; // #6
return 0;
}

2. Must you always use cin with cout? Why or why not?
3. What is the redirect operator, and how is it used to process user input?

4. Can you use cin to store a value in a variable that already has a value?

6.2

Write code that allows the user to enter an integer value and store it in a
variable. Your code should prompt the user, receive their input, and then
print their input value back to them.

Add some functionality to the code you wrote for the previous exercise. Add
two new variables, one char and one float or double. Prompt the
user properly for each value. The program should print out the values of the
variables, clearly labeled, on separate lines.

Review Answers

Only #2 (cin >> x;)is correct.

You do not need to to use cin statements exclusively with cout state-
ments, though it is good practice to provide adequate feedback to users.

The redirect operator is >>, and it is used in conjunction with cin on the
left and a variable on the right that receives the value entered by the user.

Yes, and the previous value is overwritten.

Further Reading

http://www.cplusplus.com/reference/iolibrary

http://www.cplusplus.com/doc/tutorial/basic_ic

http://www.cplusplus.com/reference/iolibrary
http://www.cplusplus.com/doc/tutorial/basic_io

Chapter 7

Arithmetic

One of the most important things provided by C++ is the ability to do math. Ev-
erything a computer sees is a number. To a computer, its ability to do math and
manipulate numbers is as essential to it as breathing is to us. (My apologies to
anything not living that may be reading this).

The operators (+, -, *, /) in C++ are slightly different from what you may be
used to from your second-grade math class. Addition is still a plus sign (+) and
subtraction is still a minus sign (-). On the other hand, multiplication becomes an
asterisk (*) and division becomes a forward slash (/). Think of the forward slash
as over as in “5 over 9” is the same as the fraction 5/9 or 3.

To do math in C++, you will either want a variable to store the answer, or output
the answer to the user.

The following code directly outputs the answer to the user:

‘ cout << 9 + 2; // Prints 11

This code shows how to use a variable to store the answer:

‘ int sum = 9 + 2; // sum now holds 11

Note that when you use a variable to store an answer, the variable must come
first in the equation (before the equal sign) and must be the only thing on the left
side of the equation. There are some other things to note. When you use more
complicated equations, you can use parentheses to help. C++ uses a familiar or-
der of operations (Parentheses, Exponents, Multiply, Divide, Add, and Subtract, or
PEMDAS), but without the exponent operation (this topic is covered in Chapter [[7).
However, unlike in normal arithmetic, parentheses do not imply multiplication. For

25

example, (4) (3), which we might expect to mean “4 times 3” does not mean the
same as 4 * 3, the correct syntax. The expression (4) (3) results in a syntax
error and will not compile. The compiler returns an error message like this:

'error: '4' cannot be used as a function.'

In C++, there are several methods of shortening and simplifying the code you're
creating. The first is the increment operator (++), which is found in the name of
the language, C++. This operator increases the value of the variable it’s applied to
by 1. Conversely, the decrement (- -) operator decreases the value by 1.

Keep in mind that order does matter with the increment and decrement opera-
tors. They can be used as either prefixes or suffixes, but where you put the operator
results in slightly different behavior. Starting with similarities, C++ and ++C both
increase value of C by one. The difference lies in when another variable is being set
to that incremented value, such as B = C++. B will be set to C before C is incre-
mented. B = ++C will cause B to be set to C+1, in a similar waytoB = 1 + C.

int A;

A = 4;

A++;

//A contains 5

//A contains 8

int A, B;
B=17;
A = B++;

//A contains 7, B contains 8

int A, B;
B = 7;
A = ++B;

//A contains 8, B contains 8

int A, B;
B = 3;
A = B——;

//A contains 3, B contains 2

Expression | Equivalent to
A "= 3, A=A * 3;
B -= 5; B =B - 5;
C /= 10; |C = C / 10;

Table 7.1: Examples of compound assignment updates

int A, B;
B = 3;
A = B;

//A contains 2, B contains 2

Compound assignment operators can decrease the amount you type and can

make your code more readable. These are the operators +=, -=, * =, and /=. What
makes these operators special is that they use the value you want to change in the
operation. For example, X += 2 isequivalenttox = x + 2.

Keep in mind the order that was used, as this becomes important with sub-
traction and division. The variable being changed is equivalent to the two leftmost
variables in the longhand expression. Let’s say we have X and Y, and want to set
X equal to the value of Y divided by the value of X. This is impossible with this
method, as X /= YisequivalenttoX = X / Y,andY /= Xis equivalent to
Y=Y/ X

Here is some sample code using the concepts we presented in this chapter:

#include <iostream >
using namespace std;

int main ()

{

int a =5, b= 10, ¢ = 15, d = 20;

cout << "a + b =7 << a + b << endl;
cout << "d — ¢ = 7 << d — ¢ << endl;
cout << "a * b =7 << a * b << endl;
cout << d / a = " << d / a << endl;

The output of this code is:

a

d
a
d

7.1

1.

+ b = 15
- c =5
*b = 50
/ a =4

Review Questions
Write a statement declaring two integer variables a and b and initialize them
to 6 and 3, respectively.

Without changing the last line, fix the following code so there will be an
output of 12.

int a = 4, b= 2;
a=a+ 2 * b;
cout << aj;

What is the output of the following code?

int a =2, b =5, c¢c = 6;
a++;
b=>0"* a;
(c —a) + 3;
cout << a << endl;
cout << b << endl;
cout << ¢ << endl;

c =

4. What is the output of the following code?

=}

t

060 T o0 T o

* +

T o0 T0 000 T o =~
It
o+ o+

+

I
T DD T TN T =00 P

o
I

cout <<
cout <<
cout <<

b,

(U

a;
a << endl;
b << endl;

¢ << endl;

5. What is the output of the following code?

int a=4,b =2, c, d;
a=>b + 3;

b++;

c = (b + 4) * 2

c =c¢c + 2

d a+ b — 3

a++;

a=a+ 2 —>b;

b=>"* 2

cout << "a=" << a << endl;
cout << "b=" << b << endl;
cout << "¢c=" << ¢ << endl;
cout << "d=" << d << endl;

6. What is the output of the following code?

nt m 3, n =2, X, Vy;
=m 5;

+

i
X
m——;

y = (m+ 4) / 3;
n =n+ 2;

m++;
X =x 2 - 3

y =y " 2

n=n-+y"*3

cout << "m=" << m << endl;
cout << "n=" << n << endl;
cout << "x=" << x << endl;
cout << "y=" << y << endl;

7.2 Review Answers

1. int a = 6, b = 3;

int a = 4, b = 2;
a = (a+ 2) " b;
cout << aj;

15

4. 132
66
198

b=6
c=16
d=5
6. m=5
n=16
x=13
y=4

7.3 Further Reading

« http://www.cplusplus.com/doc/tutorial/operators/

« http://www.sparknotes.com/cs/c-plus-plus-fundamentals/basiccommands/section1|
rhtm]

http://www.cplusplus.com/doc/tutorial/operators/
http://www.sparknotes.com/cs/c-plus-plus-fundamentals/basiccommands/section1.rhtml
http://www.sparknotes.com/cs/c-plus-plus-fundamentals/basiccommands/section1.rhtml

Chapter 8

Comments

As a C++ programmer, comments will make your life easier. They are meant to
serve as notes, not just for you, but for anyone that may attempt to read your code.
To this end, comments are a quick explanation of the code. There are two kinds of
comments, single-line comments and multi-line comments.

Single-line comments typically come after a line of code. For a single-line com-
ment, simply type a double slash // at the end of the line, and follow it with what-
ever notes you like, preferably to explain what that line of code does. Alternatively,
the comment can start on a line of its own. Here are some examples:

int count; // This
// to count something
count = count + 1;

variable was declared

//Increments count by 1

// Variable declared, and initialized to pi
float length = 3.14159;

Multi-line comments, sometimes called block comments, are used when you
have a lot to say. They begin with a slash star (/ *) and are ended by a star slash

(* /). Here is an example:

/*
*This is a
*multi—line
*comment

*/

/* This is also a

comment */

33

Block comments do not need a star at the beginning of every line (as in the
preceding example), but many programmers write it anyways, because it makes it
easier to see and understand that “this is still a comment, don’t write code here”
Some development environments will automatically color-code certain pieces of
code, so comments might be gray, for example, and the * at the beginning of each
line might be unnecessary in that case. However, someone else may use a different
development environment that does not use colors, so the stars can still improve
readability.

Keep in mind when commenting, the point is to be clear and concise. Try to
explain what’s happening as accurately as possible, but try to keep it short. As
you learn C++, use comments to explain what you’re doing and why. You have to
assume that the person reading your code needs an explanation for each non-trivial
line.

//Commenting at the beginning of the file

// Allows you to give a summary of your program
#include <iostream >

using namespace std;

int main ()

{
// This cout statement outputs to the screen
cout << "Hello world” << endl;
cout << "What’s the date?” << endl;

// Comments should be used to explain things that may
// not be obvious to someone other than you
cin >> date; // Takes the date from the user

/*
* You can also use comments to remind yourself of
changes you want to make, e.g.

“debug code past this point”

*/
return 0;

8.1 Review Questions

1. Comment each line of this code:

#include <iostream >
using namespace std;

int main ()
int time;
cout << “Enter time \n”;
cin >> time;
int answer = (32 time * time) / 2;
cout << "The distance is 7;
cout << answer;
seconds\n”;

*

cout <<
return 0;

2. Fix this code by removing or modifying comments so that it runs and com-

piles as it should.

/* #include <iostream > includes the iostream™

using namespace std;

int main ()

{
int time; // A place to store the time
cout << “Enter time \n”; // Ask to enter the time
cin >> time; // Takes user input
int answer = (32 * time * time) / 2; // Calculates it
cout << "The distance is 7; /* Outputs
cout << answer; the distance
cout << 7 seconds\n”; in seconds */
return 0;

}

3. Explain the purpose of commenting. How does it help
someone else need to be able to understand your code?

4. Write and properly comment your own simple program.

you? Why would

5. Go back to the program you wrote from the previous question. Add further
comments that explain what’s happening and share the commented code

with a classmate or friend. Ask them if they understand what’s happening
from just the comments.
. Add comments to the following code.

Note: Save percentages in hockey are shown to three decimal places and not
multiplied by 100: .900 instead of 90%.

#include <iostream >
#include <cstdlib >

using namespace std;
int main ()

double shots, goals, saves, save_perc;
char cont;

do {
cout.unsetf(ios :: fixed);
cout.unsetf(ios:: showpoint);

cout << ”“Enter the number of shots on goal:\t”;
cin >> shots;
cout << "Enter the number of goals scored:\t”;
cin >> goals;
cout << endl;

saves = shots — goals;
save_perc = (saves / shots);
cout << 7If there were ” << shots << ” shots and ”

»

<< goals << goals\n”;

cout << “then the goalie’s save percentage was

cout.setf(ios:: fixed);
cout.setf(ios:: showpoint);
cout.precision (3);

cout << save_perc << endl << endl;

cout << "Run again? Y/N\t7;

cin >> cont;

cont = toupper(co
} while (cont == Y
return 0;

8.2 Review Questions

1. Answers will vary

#include <iostream> /* includes the iostream */
using namespace std;
int main ()
{
int time; // A place to store the time
9 cout << “Enter time \n”; // Ask to enter the time
: cin >> time; // Takes user input
int answer = (32 * time * time) / 2; // Calculates it
cout << "The distance is 7; // Outputs
cout << answer; // the distance
cout << 7 seconds\n”; // in seconds
return 0;
}

3. Comments help you check that you know what you’re doing and make sure
you are doing everything that needs to be done. They also help other people
understand your code, which is especially useful if your logic is different
from theirs.

4. Answers will vary.

5. Keep trying until someone else understands the code from the comments
alone.

6. Answers will vary.

Chapter 9

Data Types and
Conversion

Suppose you need to carry two products across a farmyard: apples and water. The
container you choose would depend on the product, and how much of the product
you have to move. You might choose a small hand basket to carry a few apples,
and a larger bushel basket to carry a large number of apples. Similarly, you could
use a one-gallon bucket or a five-gallon bucket, depending on how much water you
expected to move.

In a similar way, we choose data types to describe the type of data we would
like to store in a variable, and “how much” of that data we expect to store.

Every variable has a data type which describes the range of possible values
that may be stored in the variable. The C++ language defines a handful of basic
types, some of which were discussed in Chapter [|. These types, their sizes (which
may vary depending on the operating system), and the range of possible values
can be found in Table P.1. Additionally, the C++11 standard provides for the long
long int data type as described in Table p.3.

Several of the integer types have unsigned versions, which may only contain
values greater than or equal to zero. The floating-point types do not have un-
signed versions, as the sign is part of the standard that defines how these variables
are represented in memory.

39

bool 1 byte trueor false

char 1 byte —128 to 127
short int (short) | 2bytes | —32,768 to 32,767
int 4 bytes | —2,147,483, 648 to

2,147,483, 647
long int (long) 4 bytes | —2,147,483,648 to
2,147,483, 647

float 4 bytes | See “Floating-point Types”
below

double 8 bytes | See “Floating-point Types”
below

long double 8 bytes! | See “Floating-point Types”
below

Table 9.1: Common data types and their ranges of values

Type Size Range of Values
long long int 8 bytes | —9,223, 372,036, 854, 775, 808
(long long) to 9,223, 372,036, 854, 775, 807

Table 9.2: C++11’s long long int data type

9.1 Floating-point types

Floating-point types are used to represent numbers that are not whole integers. For
example:

’ float f = 3.35;

Variables of type f 1oat and of type double store these numbers in similar
components as scientific notation, so the above value could be represented as 335 x
1072, The first part, 335, (sometimes called the coefficient or significand) is stored
separately from the second part, —2, (called the exponent). The types can represent

'A long double might be stored as an 80-bit extended precision type, but
this is dependent on the compiler. Variables of this type will be at least as large as

adouble.

Type Size Range of Values

unsigned char 1 byte | 0to 255
unsigned short 2 bytes | 0to 65,535
unsigned int 4 bytes | 0to 4,294,967,295
unsigned long 4 bytes | 0 to 4,294,967,295

unsigned long long? | 8bytes | 0to
18,446, 744,073,709, 551,615

Table 9.3: Unsigned types

Type Exponent Range | Significand Range

float 0 to 255 2238, 388, 608 possible values

double 0 to 2,048 252 4,503,599, 627, 370, 496
possible values

long double | 0to 2,048 252 4,503,599, 627, 370, 496
possible values

Table 9.4: Floating point types

different ranges of significand and exponents, as shown in Table p.4.
In fact, we can use scientific notation in conjunction with floating-point vari-
ables. The previous code that assigned a value to f can also be written as:

float f = 335e—2; // Sets f to 3.35

Both float and double include a few special values that represent non-
numeric results, such as infinity, negative infinity, and NaN (Not a Number).

float g = 10.0 / 0.0; // g is set to infinity
float h = g * —1.0; // h is set to negative infinity
float i = g / h;

// Since infinity divided by negative infinity is
// undefined, the result of the division is not a
// number, and i is set to NaN

*This data type is found in the C++11 standard.

9.2 Other types introduced by C++11

C++11 provides the cstdint library, which defines several additional types that
may be convenient. These types are listed in Table p.5.

Type Purpose Unsigned version

intmax_t | The integer of maximum size | uintmax_t
supported on the platform

int8 t An integer of exactly 8 bits uint8_t

int16_t An integer of exactly 16 bits uint16_t
int32_t | Aninteger of exactly 32 bits uint32_t
int64_t | Aninteger of exactly 64 bits uint64_t

Table 9.5: Data types found in C++11’s cstdint library

These types are provided in part because the basic types like int and short
are not guaranteed to be of any particular size, which can cause problems when
compiling the same code on different platforms.

9.3 Conversion Between Types

It is sometimes necessary to convert a variable of one type to another, perhaps in
order to pass the variable to a function that doesn’t support the variable’s original
type. Here is an example of a variable of type int being converted (automatically)
toadouble:

int x = 2;

double y;

y = x; // Type conversion: the integer 2 is converted
// to the double 2.0

cout << "y = 7 << y << endl; // This prints y = 2

This example demonstrates a widening conversion, since any possible value
of X can be represented in y. On the other hand, we can do the reverse conversion:

int x;

double y = 2.0;

x =y; // Type conversion: the double 2.0 is converted
// to the int 2

cout << "x = 7 << x << endl; // This prints x = 2

This code compiles and runs, but the compiler produces the following warning:
warning: converting to 'int' from 'double'

The compiler has a good reason for this warning: not all possible values that
can be represented in a double can be represented in an int. We refer to thisasa
narrowing conversion. If we change the code slightly, we can see where problems
can occur:

int x;

double y = 2.9;

x = y; // Type conversion: the double 2.9 is converted
// to the int 2

cout << "x = 7 << x << endl; // This prints x = 2

Because integers cannot represent the numbers after the decimal point, they are
simply dropped. This might seem counterintuitive, as we might expect the values to
be rounded up from 2. 9 to 3. Fortunately, C++11 provides a round () function
in the <cmath> library that returns the integer closest to the passed parameter:

int x;

double y = 2.9;

x = round(y);

// round(y) returns the double 3.0 (the closest integer
// to the passed parameter) This double is then

// converted to the int 3

» »

cout << "x = << x << endl; // This prints x = 2

9.4 Coercion & Casting

The examples in the previous section relied on the compiler to perform the con-
versions from int to double and double to int. This implicit, automatic
conversion is often referred to as coercion, and can be found in the following ex-
ample:

int z = 3.3 + 4.8; // z is set to the integer 8
// (coerced from the double 8.1)

The compiler still warns us that it is converting the double to an int. In
this case, we know that we want an integer value, so we can tell the compiler to
explicitly convert the doubles to ints using explicit casts, as follows:

int z = (int)3.3 + (int)4.8; // z is set to 7

We enclose the “target” type in parentheses (in this case, int) and place it

before the value or expression we want to convert. Doing this removes the warning
that the compiler produces when it coerces the double to int. The above still
isn’t quite what we want, though, since the individual doubles are converted to 3
and 4, respectively. (Remember that converting from a double to an int drops
the part after the decimal point rather than rounding!) It would be better to convert
the result of the addition, rather than the individual values, like this:

‘ int z = (int) (3.3 + 4.8); // z is set to 8

9.5 Automatic Types in C++11

C++11 introduces the auto data type, which leaves the determination of a vari-
able’s type up to the compiler. At compile time, the data type of the value that is
assigned determines the data type that replaces the auto type. Some of the syntax
in the second line below may be unfamiliar—for a description of what’s happening
there, refer to Chapter E

auto myVar = 3; // myVar is an int
auto myVar2 = &myVar; // myVar2 is an int”
auto myVar3 = “t’; // myVar3 is a char

The decltype operator is another new feature, which extracts types from
objects and is used in a similar way as auto:

auto myVar = 3; // myVar is an int
decltype (myVar) myVar4; // myVar4 is an int
decltype (myVar < 1) myVar5; // myVar5 is a bool

In these examples, it is easy to determine the types assigned to the variable,
but the power of auto is in conjunction with complicated types like iterators of
container objects as discussed more in Chapter E Here is an example:

std :: vector <int> v; // Create a vector of integers
v.push_back(2); // Add an element containing 2 to the vector
v.push_back(8); // Add an element containing 8 to the vector
auto mylterator = v.begin();

// The above is equivalent to:

// std::vector<int >::iterator mylterator = v.begin();

9.6

1.

Review Questions
What’s the difference between the various data types that store numbers?
Why would you use one over the other?

If you assign the result of an int divided by an int to a float (eg.
float num = 13/7;), what could happen to the resulting value?

Declare a variable named sampleSize and set it to 14.58093.

Write code that increases sampleSize by 12.495.

Review Answers

ints only store whole numbers. floats and doubles can store num-
bers with decimal points. ints are useful for anything that cannot have
fractional parts, and you might also use a double for very large numbers.

The fractional part is left off. (numis 1 in the example)
double sampleSize = 14.58093;
sampleSize += 12.495;

Further Reading

http://www.cplusplus.com/reference/cstdint/
http://en.wikipedia.org/wiki/Floating point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://learncpp.com/cpp-tutorial/25-floating-point-numbers/

http://www.cplusplus.com/reference/cstdint/
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://learncpp.com/cpp-tutorial/25-floating-point-numbers/

Chapter 10

Conditionals

Conditionals are used to direct the program to different sections of code. In plain
English, we might have a statement “If X is greater than Y, do this..” Conditionals
direct the program to behave differently depending on the results of a comparison.
Several common comparison operators used in C++ are:

Symbol

Meaning

Is equal to

Is not equal to

Greater than or equal to

ANV
1

Less than or equal to

\%

Greater than

Less than

&&, and

Logical AND: The condition on the left AND the condition
on the right must be true

| |, or

Logical OR: The condition on the left OR the condition on
the right must be true

Table 10.1: Common comparison operators

47

10.1 if,else,andelse if

The most popular conditional is the if statement. An if statement looks like this:

if (variable == variable2)

// Code here executes only when
// the value of variable is the same as variable2

The keyword if is used to start the statement. Parentheses are used to contain
the conditional expression. If the expression inside the parentheses is true, then the
following expression will be executed.

10.1.1 A small digression on expressions

Note that curly braces merely surround expressions to become a single expression.
The act of surrounding expressions creates a code block. However, having only one
expression within a code block is the same as not having it in a code block.

if (variable == variable2)
{

cout << “Yes!”;
}

is the same as

if (variable == variable2)
cout << "Yes!”;

It is not recommended to go without braces for mere brevity at the cost of
making mistakes later on. For example, suppose you have some code for baking

bread, like the following.

if (breadType == 10)
ovenFanOn = true;

Then later you are told that bread type 10 needs to be cooked at 350 °F. So you
make the following change:

if (breadType == 10)
ovenFanOn = true;
ovenTemp = 350;

Figure 10.1: if and else statement flow of execution

Except that is really the same as:

if (breadType == 10)
ovenFanOn = true;

ovenTemp = 350;

Now the baker is upset because every loaf is being cooked wrong except bread
of type 10! What you really meant was:

if (breadType == 10)
{
ovenFanOn = true;
ovenTemp = 350;

}

Here’s another bear trap that you'll likely hit:

if (breadType == 9);
ovenFanOn = true;

It is still valid syntax, but the expression after the if statement is an empty
expression. An empty expression does nothing, and so now every bread type will
have the fan on, which is not what the baker wanted.

10.1.2 Using else

An else statement may be placed after an if statement, and any time the expres-
sion inside the parentheses following the 1f is not true, the code inside the else

block is executed. For example:

int a = 0;
if (varl == var2)
{
// Code here executes only when
// the value of variable is the same as variable2

a = 1;

}

else

{
// Code here executes if they are not the same
a = 2;

}

An else statement is used when you want some code to execute in any other
case where the if statement is not true. An example of how this works is also
shown in Figure [10.1.

An else 1if could also be placed after the 1f statement. An else if is
an additional if statement checked only when the previous if statement is false.
While else is a catch-all, else if chains an if to test for other conditions.
Multiple else 1if statements can be used, and they are all checked sequentially,
and if necessary, an el se statement can be included at the end as a final catch-all.
Take a look at Figure for a flowchart example.

Here’s what the three statements would look like all together:

if (a == b)
{

cout << "They are the same!” << endl;

}
else if(a > b)
{

cout << 7a is bigger!” << endl;
else
cout << "a is smaller!” << endl;

Note that every conditional expression is in parentheses. Each if must be
followed by a (. ..) (with a Boolean expression inside the parentheses) in C++.
Conditional expressions also appear in loops (discussed in Chapter [[3) and switch
statements.

if (a>b)

Outputs "a is bigger" Outputs "a is smaller"

Outputs "They are the same!"

Figure 10.2: How if-else chaining works

10.2 switch statements

switch statements (also sometimes called switch-case statements) make a
menu-like set of blocks. It does the same job as many if statements, but can sim-
plify the job when used correctly. Here is an example:

switch (variable):
{
case 1:
//code to execute when variable is equal to 1
break;
case 2:
//code to execute when variable is equal to 2
break;
default:
// code to execute when variable is neither 1 nor 2
break;
}
// Resume here after a break

If variableisequal to 1 then the code following case 1: will be executed.
If it is equal to 2, then the code following case 2: will be executed, and if it is

equal to neither, then the code following default : will be executed. The cases
are separated by the break statement, which forces the code to leave the switch
statement’s block of code. This code:

switch (variable)
{
case 1:
cout << "You picked case 1. Lame.”;
break;

case 2:

cout << "Case two is way better.”;
break

default:
cout << "WRONG!”;
break;

is equivalent to this code:

if (variable == 1)
{
cout << 7"You picked case 1. Lame.”;
else if (variable == 2)
{
cout << "Case two is way better.”;
}
else
{
cout << "WRONG!”;
}

When there are only a few cases, if, else 1if, and else statements are
often easier. However, when you get to a greater number of cases, switch state-
ments become easier.

In switch statements, only one case’s code executes, provided that each
case is followed by break. Otherwise, the program continues execution until
it reaches a break statement or the end of the switch block. With an if and
else 1if, only one branch may be executed, and the condition in the else if
is only evaluated if the condition in the if is false.

Here is some code that uses both switch and if statements. Compiling and
running the following code results in the output in Table [[0.3.

User enters Output

//Program start | <1> Addition

<2> Subtraction

<3> Compare

Type the number of your desired option:

1 The result of this addition is 9.3

2 The result of this subtraction is 0.9
3 A is greater than B
//anything Not an option

other than 1,

2, or 3

Table 10.2: The sample program’s output

#include <iostream >
using namespace std;
int main() {

int choice;

double a = 5.1, b = 4.2;
cout << 7<1> Addition\n<2> Subtraction\n<3> Compare\n”;
cout << "Type the number of your desired option:\t”;
cin >> choice;

switch (choice) {
case 1:
cout << “The result of this addition is
<< a + b << endl << endl;
break;
case 2:
cout << “The result of this subtraction is
<< a — b << endl << endl;
break;
case 3:
if (a > b)
cout << "A is greater than B”;
else if (a < b)
cout << "A is less than B”;
else //a ==
cout << "A equals B”;
break;
default:
cout << "Not an option”;

break;

»

}

return 0;

}

10.3 Review Questions

1.

What is the output of the following code?

int a = 5;
int b = 10;

if(a > b)
cout << "a is greater than b.”;
else
cout << "b is greater than a.”;

Why are switch statements useful?
When are braces ({ }) needed in an if statement?

Write a program that checks which number is higher than another and prints
out an appropriate message. This program should use 2 variables, an if
statement and an else statement. Bonus: Rewrite it to also check if the
numbers are equal.

10.4 Review Answers

1.
2.

b is greater than a.

switch statements are useful for making menus for the user. (Other an-
swers are also possible)

Braces are needed for any code longer than 2 lines following an if.

#include <iostream >
using namespace std;
int main ()

{

int inputl, input2;

» »

enter a number: H
cin >> inputl;

cout << “enter a number to compare to the first: 7;
cin >> input2;

if (inputl > input2)

cout <<

cout << inputl << 7 is greater than 7 << input2;
else
cout << input2 << 7 is greater than ” << inputl;

Chapter 11

Strings

Let’s discuss strings. A string is a data type typically used to hold a collection
of printable characters such as words, sentences, or longer sequences. In order to
use strings in your program you must first include the string library:

#include <string >
using namespace std;

Also note that a st ring, for convenience, can be treated like an array of individual
characters.

When we declare variables of type string, we declare them just like we
would an int, float, or double. We can create a variable named myString
of type string by doing this:

#include <string >
using namespace std;

string myString;

If you choose not to have using namespace std; in your code, the variable
myString must be declared as follows:

#include <string >

std:: string myString;

We can then store anything we want in that string as long as it is made up of
characters. When a literal value is assigned to a string, it should be surrounded

55

by double quotes such as in the case of "Hello":

#include <string >

string myString = “Hello”;

If we are storing the value of a string entered by a user, the user does not
have to use quotes. We can store "Hello" in the string by doing the following:

string myString;
cin >> myString; // User types: Hello
// myString is now ”“Hello”

It is also possible to use the arithmetic operator + with strings to concatenate (com-
bine) the two strings. If we combined one string that contained "Hello" and
another string that contained "Wor1d" the connected string would then read
"HelloWorld".

string vl = “Hello”,

v2 = "World”;
cout << vl + v2 << endl;
// Outputs:
// HelloWorld

In order to have a space between the two words, one of the strings would need to
contain a space such as this:

string vl = “Hello”, v2 = 7 World”;
/] A

cout << vl + v2 << endl;

// Outputs:

// Hello World

Or it can be represented as:

string vl = “Hello 7, v2 = "World”;
/] "

cout << vl + v2 << endl;

// Outputs:

// Hello World

Alternatively, a space can be added like so:

string vl = "Hello”, v2 = "World”;
cout << vl + 7 7 + v2 << endl;

/1 "

// Outputs:

// Hello World

The first two concatenates the two strings to create one string that contains “Hello
World”, and the third concatenates three strings to produce the same result.

When reading strings from std: : cin, the default behavior is to collect all
characters until the first whitespace (a tab, space, or newline) character that it finds
in the input. For example, if the user inputs “Hello World” in the following code,
std: : cin stops reading at the first whitespace, and thus the string would con-
tain only “Hello”. If we want to read the entire line of text, we need to use the
getline () function, which reads until the first newline character. This is how
you use the getline () function:

string myString;
getline (cin, myString);

This function call will take the entire line of input, including all whitespace charac-
ters, and store it in the variable myString.

We can also find out the length of the string by using the member function
length () withany string object. For example, if we wanted to find the length
of a string entered by a user and store it in a variable named stringLength,
we might do this:

string myString;
int stringLength;
getline (cin, myString);
stringLength = myString.length () ;
cout << "The string you entered was
<< stringLength
<< 7 characters long.”
<< endl;

»

Aside from finding the length of a string, we can search for certain characters in the
string by using the £ind () and rfind () member functions. For example, if we
wanted to find a single space in a string variable named myString that contains
“Hello World”, we would do this:

string myString = “Hello World”;
int spot = myString.find (> 7);

Hl e|l |1l o W ol r| 1l d

myString

Figure 11.1: A string viewed as an array

This code results in the value 5 being stored in the variable named spot be-
cause the space character is stored at index 5 if you treat the string as an array, as
shown in Figure [[1.1.

Remember that we start at index 0, so even though the space is in the sixth
position, it is at index 5 in the string. When a line of text is stored in a string, think of
it as being stored in memory in an array of the same length as there are characters in
the string. For example, the string "Hello World" can be contained in an array
with 11 slots, therefore the space character would be found in myString[5].
The £ind () function can also search within a string from some arbitrary starting
point, instead of from the beginning:

string myString = “Hello World”;

int spot, spot2;

spot = myString.find(” ”); // Found at index 5
// Starting from index 5, found at index 7

spot2 = myString.find (70", spot);

The second argument that is passed to the function (in this case, spot) is the index
at which you want to start your search.

We can also use the r£ind () function to find a character in reverse direction
from the end of the string, or from some starting point, as above. If we wanted to
find the single character string "0" before the space we might do something like
this:

string myString = “Hello World”;

int spot, spot2;

spot = myString.rfind(” 7); // found at index 5
// starting from index 5, found at index 4
spot2 = myString.rfind ("0”, spot);

This function call to rfind () uses the arguments "0" and spot. This stores
the position of the first "0" it comes across after going in reverse from the index

stored in spot (which contains 5). The last line would be equivalent to:

// starting from index 5, found at index 4
spot2 = myString. rfind (70", 5);

Both of these function calls will start searching for the string "o" backwards from
the same spot in the string, at index 5.
Sometimes the string you search for cannot be found, as in this example:

string myString = “Hello World”;
int spot = myString.find(’Q”); // No Q in this string!

In this case, the find () (or rfind (), for that matter) returns a special value
named string: :npos. When we use find () or rfind () and believe that
they could fail, we should verify that the string was found, as below:

string userInput;

int spot;

cin >> userInput;

spot = userInput.find(7Z”);

if (spot == string ::npos)

cout << "There was no Z in what you typed!” << endl;
else

cout << "The first Z was in position 7 << spot << endl;

11.1 Review Questions

1. Write code to declare a string and take input from a user.
Can a string be treated as a character array?

When do you use a string?

What is the #include needed to use strings?

What function do you have to use to take an input with a space?

Write code that takes in 5 words and outputs each of them 4 times.

N e W

Write a program that takes in an input of at least two words of the same
length. The program should then switch the last word and the first word.

11.2 Review Answers

string myString;
cout << ”Please input a string: 7;

1. getline (cin, myString);
//cin >> myString; is also acceptable
2. Yes
When you need to hold a collection of printable characters such as words,

sentences, or longer sequences.
4. #include <string>

5. getline

string myString ;

cout << "Please input a string: 7;
6. getline (cin, myString);

//cin >> myString; is also acceptable

11.3 Further Reading

« http://www.harding.edu/fmccown/cpp_strings.pdf’
« http://www.stanford.edu/class/cs106x/handouts/08-C++-Strings.pdf’

http://www.harding.edu/fmccown/cpp_strings.pdf
http://www.stanford.edu/class/cs106x/handouts/08-C++-Strings.pdf

Chapter 12

Loops

12.1 Introduction

Okay, so you know how to do some programming, but now you need to be able to
handle a dozen or more operations that are obnoxiously repetitive. Imagine that you
have a program that needs to allow data to be entered about your employees. Do
you really want to have to write out the code to do that for every single individual?
No—you want to set it up so you write it out as concisely as possible, and copy and
paste just won’t work. What we need to do is write the relevant code once and have
it repeated for us as many times as necessary.

For this, we’ll use a structure known as a loop, which does exactly what you
expect it would. A loop allows you to repeat a section of code as many times as you
need. When the code reaches the end of the section, it goes back to the top of the
section and the loop starts again. After each repetition of the loop (which we call an
iteration), it will check for an end condition that is specified by the programmer.

12.2 Having Fun while Programming

The first loop we’ll cover is the while loop, probably the simplest and easiest-to-
use loop. It’s referred to as a pretest loop as it’s designed to check the loop’s end
condition prior to a repetition of the loop.

In Figure [12.1, the basic model of a pretest loop is shown. A diamond is used
to represent where a decision must be made. In this case, it’s a Boolean expression.
If the expression is true, control passes to the rectangle, which represents an action
(or actions) to be performed: the statements that represent the body of the loop.

61

Boolean
Expression

Statement(s)

Figure 12.1: Logic of awhile loop

As with everything else we’ve learned so far, syntax is important. The structure
is simple enough, as the pseudocode below shows:

while (BooleanExpression)
{
statement ;
statement;
// whatever else needs to be done

The important thing to remember here is to be sure you have some statement
to eventually allow the loop to exit. When the Boolean expression is false, re-
member, the loop is finished.

Also, note that, like an if statement, the braces are not necessary if there
is only one statement following the line with the while keyword and Boolean
expression. Is it recommended to use the braces with only one statement? For your
own sanity, and that of others reading your code, yes. Do you have to? No, but
some organizations’ coding standards might say otherwise, because it makes the
code easier to read and edit. So remember, it’s best to start with good habits early.

Let’s look at an actual example of a while loop.

int i = 10; //initializes 1 at 10

»

cout << “T—minus ”;

// while loop that is ended when i is less than 0
while (i >=0)
{

// outputs the value of i, then moves to a new line
cout << i << endl;

// decreases the value of i by 1

i——;

}s

cout << "Lift Off!”;

The above code prints a countdown:
10

e}

=N WP O

Lift Off!

12.3 do-while Loops

Remember how the while loop is known as a pretest loop? Well, a do-while
loop is known as a post-test loop for a similar reason. Let’s take a look at the
flowchart in Figure and take a guess as to why.

Post-test loops perform the statements in the body of the loop before it tests
the end condition. Let’s look at how this will affect the syntax you will use when

implementing the loop.

Statement(s)

Boolean
Expression

Figure 12.2: Logic of a do-while loop

something;

something ;

// whatever else needs to be done
} while (BooleanExpression)

The difference between a while and a do-while loop is where each checks
its end condition. In this case, the line with the while and the end condition are
after the main section of code. In anormal while loop, the program can potentially
meet the end condition before even entering the loop body, and just pass over it. In
a do-while loop, the program checks the end condition after each iteration of the
loop, so it will run at least once before the loop ends.

There’s not a whole lot more to add then hasn’t been stated in the while loop
section, so here’s an example.

char cont; // Short for continue;
// continue is a key word and can’t be used

do {
cout << "Go Cadets!\n”;
cout << "Do you want to continue? Type Y for yes: \t”;
cin >> cont;

} while (cont == ’Y’);

12.4 Event-Based Loops vs Count-Based Loops

Loops can be organized into two categories based on how you use them. These two
categories are defined by if you want to do a certain number of iterations of the loop
(a count-controlled loop) or continue until some event occurs, such as a particular
user input (an event-controlled loop). Let’s look at code examples to differentiate
the two. The first example shows an event-controlled while loop.

// Declares sum and temp. Initializes sum to 0.
int sum=0, temp;

cout << "Please give a number to add: 7;

// User inputs into a temporary variable to add to sum
cin >> temp;

while (temp != 0)

{
// Sets sum equal to sum+temp at start of loop
sum += temp;
cout << endl << “total:
// asks user to input temp variable again
cout << "Add another number? If yes, input

<< ”a nonzero integer. If no, input 0.” << endl;

cin >> temp;

5

<< sum << endl;

»

This example shows a count-controlled while loop:

int counter = 1;
while (counter != 12)
{

cout << counter << endl;
counter ++;

12.5 for work or for play

Consider what we have needed for each loop we’ve covered. We’ve needed to ini-
tialize a variable that we want to check. We’ve also needed an end condition to test
that variable against. Finally, we needed a way of modifying that variable to meet
that end condition. After that, it’s whatever we’ve felt like putting in. With the for
loop, we put those three elements into the loop header, separated by semicolons (;).
A for loop would would look something like this:

for(Intialization; Test; Update)
{

something ;

something ;

// whatever else you need

The for loop by its nature lends itself to being a count-controlled loop. You use
this kind of loop to count up (or down) each iteration until you get to the specified
value.

Let’s run through how a for loop should run, following the code below. As-
suming everything is correct, you would initialize the first value to something such
asan int counter that is set to 1. The TestExpression will include the
same Boolean logic you would use in while and do-while loops, so let’s just say
when counter is less than or equal to 5, the loop will terminate. Finally, let’s say
counter++ is the update expression. In each iteration (unless you also decide to
change counter from the body of the loop) you will move through this pretest
loop four times.

This code corresponds to the logic in Figure [[2.3:

for(int counter = 1; counter <= 5; counter++)

{

cout << counter << endl;

}

...which produces the following output:

G W N

counter = 1

counter
==

5

True

False Statement{S)

Add 1to
counter

\

Figure 12.3: Logic of a for loop

12.6 Picking a Loop

Which loop you use is dependent on your preferences and needs. A for loop
is nice, but it’s more convenient as a count-controlled loop. If you needed to use
an event-controlled loop, you may prefer to use a while or do-while loop. A
for loop is a nice way to condense the initialization, end conditions and update
statement of the loop into one short line. When choosing between a do-while
and a while loop, you should remember that with a do-while, it will always
run at least once, while a while loop may run zero or more times.

12.7 Nested Loops

Much like if statements, loops can be nested within each other. Just remember to
practice good formatting habits to keep the code from being too confusing. Take a
look at the example below, then let’s talk our way through it.

//a single day

for(int hours = 0; hours < 24; hours++)
{
// a single hour
for(int minutes = 0; i < 60; minutes++)
{
//a single minute
for(int seconds = 0; seconds < 60; seconds++)
{

//outputs the current time
cout << hours <<

5

<< 7:”7 << seconds << endl;

» . »

<< minutes

For those readers who concluded that this is a clock simulation, you are correct!
Our system of time is set up that we have 24 hours in a day, and each hour is a
60 minute cycle, and each minute is a 60 second cycle. The code mimics this by
advancing the seconds 60 times before advancing each minute. After 60 minutes, the
hour counter loop is incremented. Each time an outer loop starts another iteration,
variables inside the inner loops are reset.

12.8 Infinite Loops

Remember to have some way of advancing towards the end condition. What will
happen if you can’t reach that end condition from within the loop? Most likely an
infinite loop will occur, which is a loop that can’t stop itself. Depending on the
operation of the loop, you may not know what is happening, and the loop could
potentially cause disastrous results. Let’s look at an example of a while loop that
suffers from an infinite loop.

int counter = 1;

while (counter != 12)

{
cout << counter << endl;
counter += 2;

Because counter starts with a value of 1, and adds 2 each time the loop
executes, counter will always be odd, and never equal twelve. Therefore, the
loop will never end.

12.9 Review Questions

1. Create a while loop that increments some integer variable x initialized
with a value of 0 by 3 until the value of x reaches a value of 30. Make sure
you declare the variable and initialize it first!

2. Create a do-while loop that reads integer values given by the user into an
integer variable X, initialized to 0, then adds those values onto some variable
named totalVval until totalVal reaches at least 20.

3. Create a for loop that outputs your name to the screen 10 times before
exiting the loop.

4. Spot the logic error and correct it in the following code:

for(int j = 10, j > 0, j——)

{

cout << j << endl;
it (- 1)
{

}

cout << "BOOM!\n”;

5. Inthe last question, was the loop an event-controlled loop or count-controlled
loop?

12.10 Review Answers

int x = 0;
while (x < 10)
{

}

X++;

int x = 0;

int totalVal = 0;
do

{

»

cout << "Type in a number: 7;
cin >> x;
totalVal += x;

}

while (totalVal < 20);

for(int i = 0; i < 10; i++)
{

3. cout << “Your name here\n”;

}

for (int j = 10; j > 0; j——)
{

cout << j << endl;
if (j == 1)
4. {
cout << "BOOM!\n”;
}
}

5. Count-controlled

12.11 Further Reading

« http://www.cplusplus.com/doc/tutorial/control/
« http://www.cprogramming.com/tutorial/lesson3.html]

o http://www.cprogramming.com/c++11/c++11-ranged-for-loop.html

http://www.cplusplus.com/doc/tutorial/control/
http://www.cprogramming.com/tutorial/lesson3.html
http://www.cprogramming.com/c++11/c++11-ranged-for-loop.html

Chapter 13

Arrays

An array is a series of variables that are the same of the same type (int, float,
double, char, and so on). Arrays are held in a computer’s memory in a strict
linear sequence. An array does not hold anything other than the elements of the
specified type, so there is no assigning an array of type £ 1oat and hoping to store
a string there. Doing so would cause a “type mismatch error” and the program
wouldn’t compile. To create an array, the programmer types something like this:

char Scott[5];

The char is the data type for all elements in the array, Scott is the name of
the array (you can be as creative as you want with the name), and the 5 inside the
square brackets represents the size of the array. So char Scott[5] canhold 5
pieces of data that are of type char.

When trying to visualize an array, think of a rectangle split up into as many
pieces as the array has places to hold data. In Figure [13.1, the rectangle has five
spaces, each of type char awaiting some values.

In order to refer to the individual elements in an array, we start with the number
0 and count upwards. We use [0] to access the first element in the array, [1] for
the second, [2] for the third, and so on. In order to read or write certain locations
of the array, we state the name of the array and the element we want to access. It
should look like this:

Scott[3] = 'Q’;
cout << Scott[3];

The diagram below depicts how the computer interprets this.

71

char Scott[5]

Figure 13.1: The array named Scott has five spaces for char data

o 1 2 3 4

Q
char Scott[5]

Figure 13.2: The fourth element of Scott now contains 'Q'

You can also store values inside the array ahead of time when you declare the
array. To do so, you need to enclose the values of the appropriate type in brackets
and separate the values with a comma. Below are two examples, one an array where
each element is of type char and another where each element is of type int.

char Scott[5] = {’S’, '¢’, "o, "t’, "t’};
int John[5] = {99, 5, 1, 22, 7};

Note that, in the C and C++ language, arrays of characters intended to be
treated as a string must contain a special character called the null character! or

'Often abbreviated NUL; Note that this is not the same as the NULL pointer

null terminator. The null terminator marks the end of the string. In C++, this is
represented by the special character ' \0'. Because the null temrinator takes up
one element in the array, any character array that is intended to be used as a print-
able string must be declared having a size one larger than the longest string that
you expect to store. Initializing the above character array should really be done as
the following (notice that we make the array one element larger!):

‘ char Scott[6] = {’S’, 'c¢’, "o, "t’, "t’, "\0’};

Alternatively, you can initialize a character array with a string literal, as below.
We discuss string literals in more detail in Chapter B.

‘ char Scott[6] = "Scott”;

It is also possible to let the computer figure out the appropriate length for an
array when the array is being initialized at the same time as when it is declared.
The below code produces an identical array as the previous example:

‘ char Scott[] = "Scott”;

13.1 Multi-dimensional Arrays

A two-dimensional array (some might call it a “matrix”) is the same thing as an
array, but is an “array of arrays”. Here’s a two-dimensional three-by-three array:

‘ int Rich[3][3]; // 2D

Declaring arrays with more dimensions are possible with similar syntax. Here’s
a three-dimensional 10 x 10 x 10 example:

‘ int Sam[10][10][10]; // 3D

And here is a four-dimensional 10 x 10 x 10 x 10 array. This is possible even
though it’s hard to visualize.

‘ int Travis[10][10][10][10]; // 4D

A user can input values into a multi-dimensional array in a similar way as a
single-dimensional array.

described in Chapter [Ld.

int neo[3][3] = {{1,2.,3}, {4.,5,6}, {7.8,9}};
cout << neo[0][0] << endl << endl; // first number, 1
cout << 7 7 << neo[2][2]; // last number, 9

The same logic is applied for 3-dimensional and 4-dimensional arrays, but when
filling them be mindful of the order of the input so that when you want to view
certain elements in the array you are able to correctly access them.

13.2 Review Questions

1. Declare an integer array named my Int with a size of 10.

2. If an array has a size of 20, how many indexes are there in the array and
what are they?

3. Declare a character array named myArray with a size of 4, and initialize
the characters in the array to 'Z', 'a', 'c',and 'h'.

4. Create a program in which an integer array named myArray is declared
with a size of 10. Use a for loop to prompt the user to store a value in every
index of the array. After the array is given values, output the values of the
array to the screen using a for loop. Output each value of the array on its
own line.

13.3 Review Answers

1. int myInt[10];
2. There are 20: indexes 0 through 19.
3. char myArray[4] = 'Z', 'a', 'c', 'h';

#include <iostream >
using namespace std;
int main ()
{
int myArray[10];
cout << "Enter 10 integers, press [ENTER]

E

<< 7after every integer.\n”;

»

for (int i = 0; i < 10; i++)
4 {
’ cin >> myArray[i];

}

for (int j = 0; j < 10; j++)

{

cout << myArray[j] << endl;
}
return 0;

13.4 Further Reading

« http://www.cplusplus.com/doc/tutorial/arrays/
« http://www.cplusplus.com/forum/beginner/43663/
« http://msdn.microsoft.com/en-us/library/7wkxxx2e.aspx

« https://www.youtube.com/watch?v=SFGOAKYXfOo

http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/forum/beginner/43663/
http://msdn.microsoft.com/en-us/library/7wkxxx2e.aspx
https://www.youtube.com/watch?v=SFGOAKYXfOo

Chapter 14

Blocks, Functions, and
Scope

14.1 Blocks

Since we’ve covered 1f statements and loops, let’s go into more detail about the
code that’s contained within them. When you need to contain multiple lines of
code, we’ve shown how to use braces. These braces will create a new layer in the
code, and the lines within would be grouped into what is known as a compound
statement, sometimes called a block.

Take a look at the example below. There are two blocks here: the one where x
is less than 5, and one where X is greater than 5. Notice the variables declared in
each, y and z. When these are declared, they are only usable within the blocks that
they were declared. When that block reaches its end, they are lost to the rest of the
program. This is because the scope of the variables within the blocks is limited to
those blocks. We discuss scope further at the end of this chapter.

77

int x;
cin << x;

if(x < 5)
int y; // Declares y
cin << y; // User input stored in y
X += y; /] Sets y to x + vy

else if(x > 5)

int z; // Declares z
cin << z; // User input stored in z
X —= z; // Sets x to x — z

cout >> x;

14.2 Basic Functions in C++

14.2.1 What are functions and why do we use them?

Functions are an important part of C++ programming. Without them, programs
would be confusing and difficult to troubleshoot. When programs are written, they
tend to be written in logical chunks which we call subprograms. These subprograms
are known as functions in C++ which, when called in a program, may execute what-
ever the programmer wants. Simply put, functions are like miniature programs that
when pieced together form the actual program that you are trying to write.

14.2.2 The parts of a basic function

A function declaration (sometimes known as the prototype) is normally placed
before the main () function in your code. This lets the compiler know that there
is a function that will be defined in more detail further on in your program. With
basic functions, your declarations should start with a return type suchas double,
int, and so on; this is the data type your function will return.

After the return type, the next item that needs to be written is the function’s
name, which can be almost anything you want. Remember that you will be using
it again later in your code, so it makes sense to make it something short and logical
that you can remember! Now that you have your data type and your function name,
it’s time for zero or more function parameters. These will be written inside paren-
theses immediately following your function’s name. Each parameter is in turn made

Function return type Function Name Parameters, with type definition

Figure 14.1: The structure of a function declaration

up of a data type and a name like a variable declaration. A comma separates func-
tion parameters and your declaration must end with a semicolon after the closing
right parenthesis. Here is an example of a function declaration:

//cost and price are parameters
double profit (int cost, double price);

Using a function looks much like an abbreviated version of the function dec-
laration. A function call is responsible for telling the compiler when and how to
execute a function. Function calls are found in another function like main (). Of-
ten the user is prompted to enter necessary data with cout statements and his or
her response is collected with cin. Once this data is collected, the program holds
it until a function call is made somewhere in the code. Once the function call is
made, the compiler takes the entered data and then uses the code in the function
definition (which we will go over shortly) to operate on the parameters and return
a value. For your function call, write your function name followed by the variables
or values you want to pass in. In a functiton call, it is not necessary to specifty the
data types, as they are already understood.

Here is an example of a function call:

#include <iostream >
using namespace std;

// function declaration (prototype)
double profit (int cost, double price);

int main ()
{
double a, b;
int c;
cout << "Enter the manufacturing cost of the item: 7;
cin >> c;

cout << "Enter the retail price of the item: ”;
cin >> b;

// function call to profit with cost = ¢ and price = b
a = profit (c, b);

cout << a << endl;

return 0;

You have a declaration and a function call now. The only thing left is the code
inside the function definition—the function body is the most important part be-
cause it contains the code needed by the compiler to execute the function.

The function definition will usually have a lot more code than both the dec-
laration and the function call. As a result, the definition and body are also more
difficult to write than the declaration or call. The function definition and body is
often placed after your main () function. Multiple function definitions and bodies
can be placed after your main() in no particular order, though it makes it less
confusing if you use the same order as when they were declared. Start your func-
tion definition with your function heading, which looks exactly like your function
declaration but without a semicolon. Following your heading, you need your func-
tion body. Start your function body by placing an opening left brace ({) on the
line following your heading. The code that makes up the function body follows the
brace. After the code in the body is finished, you end the body with a closing right
brace (}). Notice that the semicolon is not necessary either after your heading or
after your closing brace. The standard rules for semicolons apply within the body
of the function, though. What goes inside the function body depends completely
on what you want the function to do. You may declare variables to be used just in
your function and can leave the function using return statements at any time.

Below is an example of a function definition:

// function definition
double profit (int cost, double price)
{
double p; // temporary variable
p = price — cost; // calculate the profit
return p; // return the result to the calling function
}

Great, now that you have a grasp of the three major parts of basic functions we
can move on to other related material!

The functions we just described are known as programmer defined func-
tions since the programmer defines these functions. There are also predefined
functions which are available for your convenience. Predefined functions are func-
tions that are already written and defined. In order to use predefined functions, the
programmer needs to include the necessary library and then call the function wher-
ever they need it.

In the following example we will use the sqrt () function to calculate the
square root of the user’s input. The sqrt () function is described in more detail
in Chapter [[7.

#include <iostream >
#include <cmaths>
using namespace std;
int main ()

{
double num;
cout << ”"Please enter a number: 7;
cin >> num;
cout << sqrt(num) << endl;
return 0;
}

14.3 wvoid Functions

void functions are functions that do not return a value. Notice that other func-
tion declarations that do return a value start with their return type suchas double,
int, or the like. void functions behave the same except no value is returned. A
common application where a void function is used is printing the result of calcula-
tions to the screen. The calculations might be performed elsewhere, but the results
would be printed using the void function. Syntax for void functions works in
the same way as normal functions, but the keyword void is written where the

return data type would normally go. The declaration, function call and definition
for void functions will follow the same format as other functions. Note that, like
other functions, there does not necessarily need to be parameters in a void func-
tion. Here is an example of a simple void function declaration:

void displayMessage () ;

Remember the definition and calling of displayMessage () would be the
same as any other function with the exception of the void return type and that
no value is returned! Here is an example of a definition, declaration, and how this
function would be called:

#include <iostream >
using namespace std;

void displayMessage () ;

int main ()
i
int x = 2, y;
y = x + 1;
// This doesn’t return anything
displayMessage () ;

return 0;

}

void displayMessage ()
{

}

cout << "Calculations are done!” << endl;

14.4 Overloading Function Names

Overloading function names allows the same name to be used in multiple function
definitions but with different parameter listings. Function names can be reused
using this feature. Function name overloading eliminates problems associated with
having multiple names for functions with similar purposes and can make the code
both more understandable and more convenient for the programmer to write.

Below is an example of an overloaded function name. Notice that both func-
tions have the same name, but different parameter types.

int plus(int num, int numr);
float plus(float num, float numr);

Here is an example of improper function overloading. Simply changing the
return type does not work—the parameters must be different!

int plus(int num, int numr);
float plus(int num, int numr);

14.5 Scope

As we dive into more complex programs there is a need for a wide variety of vari-
ables in different locations in the code. Some of these variables are declared within
individual blocks of code, such as within loops or conditionals. Others are declared
completely outside functions. The two primary types of variables we are going to
look at here are local and global. The location of the declaration of a variable within
the code changes how that variable may be used.

Local variables are declared within a block of code. A local variable is available
to code from the point of its declaration through the end of that block of code. A
simple example is a variable declared inmain():

int main ()

{
int games;
return 0;

}

The variable games is a local variable because it exists only within the local
function, main (). It cannot be used anywhere outside main () without some
additional work (such as passing it by reference to a function). Similarly, variables
declared in other functions are not available to code in main().

#include <iostream >
using namespace std;

void my_games() ;

int main ()

{
my_games () ;
cout << games; // ERROR! No such variable here!
return 0;

}
void my_games ()
int games = 10;

cout << games;

}

In the previous example function, my_games () is called by main() and
outputs 10. The variable games is local to that function. If games is referenced
anywhere else outside that function, the program will not compile.

An easy way to understand local variables is to compare them to your neigh-
bors. Everyone that lives on your street and around you are variables, and since
you all share the same street, they are local. The neighbors on an adjacent street
might be close to where you live, but since they do not share the same street, they
might not be considered neighbors. You can think of these neighbors on the adja-
cent street as other functions. While they might be close by, they do not share the
same street.

Global variables are quite different from local variables. Global variables can
be used by code anywhere within the program. A global variable is declared outside
of any function. Using similar code as in the example above, we make the games

variable global:

#include <iostream >
using namespace std;

int games;
void my_games() ;
void their_games () ;

int main ()

{
games = 5;
my_games () ;
their_games () ;
return 0;

}
void my_games ()

cout << games << endl;

}
void their_games ()
{
cout << games << endl;
}

Both functions print the same variable, causing the program to produce the
following output:
5
5

To sum it up, local variables work only within the block of code that it is de-
clared. Global variables are declared outside functions, and can be used at any point
in the program.

14.6 Review Questions

1. What are the three parts of a function?
2. Can avoid function return a value?

3. How many functions can one program have?

4. What is the output of the following code snippet?

#include <iostream >
using namespace std;

void example () ;

int main ()

{

return 0;

}

void example ()

{
cout << "Hello World”;

}

5. Write code using at least one function that will ask the user to guess a
“magic” number (of your choice) between 1 and 100 until they get it right.
After a guess, the program should output whether the number they guessed
is higher or lower than the “magic” number. It should also display how many
guesses the user makes, and loop until the guess is correct.

6. Using at least one function, write code that prompts the user for a number
of miles travelled and a number of hours, then calculates the user’s speed in
miles per hour.

14.7 Review Answers

1. Return type, function name, parameter(s)
No

As many as you want

oW

There is no output

#include <iostream >
using namespace std;
void guessing_game () ;

int main() {
guessing_game () ;

void guessing_game () {

int guess, counter 0, number = 5;
bool found = false;
do {

cout << “Guess a number:\t”;

cin >> guess;

if (guess > 100 or guess <= 0)

{
cout << "Number is between 1 and 100!\n\n”;
counter ++;

else if (guess < number)

cout << "Too low. Guess again.\n\n”;
counter ++;

else if (guess > number)

{
cout << ”Too high. Guess again.\n\n”;
counter ++;

else //guess == number

{

cout << “You got it!\n”;
found = true;
counter ++;

} while (!found);
cout << It took you 7 << counter << ” guesses!\n”;
cout << ”Thanks for playing!\n\n”;

#include <iostream >
using namespace std;
double mph(double miles, double hours);

int main ()

{
double miles = 0, hours = 0, milesPerHour;
cout << “Enter the number of miles traveled:
cin >> miles;
cout << "Enter the travel time in hours: 7;

6. cin >> hours;

cout << “Your speed in miles per hour:
<< mph(miles, hours);

return 0;

»

}

double mph(double miles, double hours)
{

}

return miles/hours;

14.8 Further Reading

« http://www.cplusplus.com/doc/tutorial/functions/
« http://www.cplusplus.com/doc/tutorial/functions2/

« http://www.cprogramming.com/tutorial/lesson4.html

http://www.cplusplus.com/doc/tutorial/functions/
http://www.cplusplus.com/doc/tutorial/functions2/
http://www.cprogramming.com/tutorial/lesson4.html

Chapter 15

Problem Solving &
Troubleshooting

Problem solving and troubleshooting in programming is often referred to as de-
bugging. Does your program not compile? Does it not achieve the desired effect?
Debugging is your answer. And, unless you are a perfect programmer, you are likely
to do quite a bit of debugging. The first step to debugging is looking for common
errors.

15.1 The Compilation Error

These errors happen when your compiler returns an error message after you hit
compile. The messages usually tell you what is wrong, and what line the error is
on, but be sure to double-check the lines immediately before and after the reported
error. Because the code is incorrect, the compiler can only guess at what you meant
and give you a hint.

For example, one of the most common errors a beginning programmer will en-
counter is forgetting a semicolon. In some development environments (like NetBeans
in Figure [15.1), this will cause the error to be reported not on the line with the miss-
ing semicolon, but on the following line.

89

E’Imain.cpp x] 4 » ;IEI
Source Histary | u-»-|ﬁ%$‘l€;|§>%tﬁ|<§f§|v D|%ﬂ
[T finclude <iostresm> Alm
[V using namespace std; =
3
4 int main() {

5 for (int i = 0; i < 10; i++)
6 { E
[T} @ "Count: "D -
9 L
=] return 0; =
10 3
[
Output - sorting (Build) X | ol
w:mn 1Rt MAlm|) s . =
|:1><w:5: error: expected *;’ before'}'E = |
-
e RT | of

Figure 15.1: A syntax error in the NetBeans development environ-
ment

15.2 The Logic Error

Logic errors are often subtle, and occur after the code compiles. When the code is
executed, however, the result is wrong. This may happen when arithmetic opera-
tors like +, -, *, and / get mixed up. Another common issue is misplacement of
parentheses, as a misplaced parenthesis can cause problems in complex expressions.

15.3 The Infinite Loop

Another specific logic error is the infinite loop. The infinite loop is a common error
that can result in your program repeating the same block of code over and over.

For an infinite loop to occur, the conditional expression of a while, for, or
do-while loop remains true. There are many ways for this to happen, such as
accidentally using = instead of == to compare two numbers, or using the wrong
operators, like a > in the place of a <.

[=]

[main.cpp x] P

Source Histary | - v| g L & IE

i |~
<< [«

using namespace std;

° [
3

4 int maini)

5 {

3 int wvarl = 1;

& =
g {

(1] cout << "Test";

10)

11 return 0;

1z 1 LI
output X | =]

[0 sorting (Build) = |sorting (Build, Run) = Isorting (Run} x |
t,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Test,Te;I
stTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestT

E estTestTestTestTestTestTestTestTestTestTestTest TestTestTest TestTestTestTestTast
TestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTes

ﬁl tTestTestTestTestTestTest Test Test TestTest TestTestTest Test TestTestTestTestTestTe
stTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestT
estTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTestTest
Test,Test,Test,Test,Test,Tesl j

Figure 15.2: An infinite loop in the NetBeans development environ-
ment

15.4 Review Questions

1. Consider the following function:

double average (double s1, double s2, double s3, s4);

{

retun sl+s2+s3+s4/4

(a) Find the syntax errors in the function.

(b) There is a logic error in the function. What is it? How does it affect
the output of the code?

2. The below program compiles, but does not get the result the programmer

wanted. Why?

int main ()

{
int shots, goals, saves;
double save_perc;
char cont;

cout.unsetf(ios :: fixed);
cout.unsetf(ios::showpoint);

cout << "Enter the number of shots on goal:\t”;
cin >> shots;

cout << "Enter the number of goals scored:\t”;
cin >> goals;

cout << endl;

saves = shots — goals;

// Hockey shows save % as decimal to three places

save_perc = (saves / shots);

cout << "If there were ” << shots << ” shots and
<< goals << 7 goals, 7

<< ”"then the goalie’s save percentage was ”;

»

cout.setf (ios:: fixed);
cout.setf(ios:: showpoint);
cout.precision (3);

cout << save_perc << endl << endl;
return 0;

15.5 Review Answers

1. (a) retun should be return. There is an extra semicolon at the end
of the function header, and one missing after the return statement.

(b) There are no parentheses around the addition, so s4 will be divided
by 4, then added to s1 + s2 + s3, instead of adding all four
variables and then dividing the sum by 4.

2. Remove the unused variable cont and cout.unsetf lines. Because
shots and goals are both integers, the program does the math as though
you are looking for an int result and doesn’t store the fractional parts,
even though it stores the result in a double. Change shots, goals,
and saves to be of type double and the program will work as intended.

Chapter 16

The Preprocessor

Preprocessor directives are lines of code that are executed before the compilation of
the code begins. These directives are like getting everyone in a room before starting
a project or doing warmups before running a race. One of the most frequently-used
preprocessor directives is #include.

When we want to include in our code a system library or some other file, we
use the keyword #include followed by the library name or the file name. The
way we distinguish between including libraries and including files is with angle
brackets and quotes, respectively. For example, when we want to use objects like
cout or cin, we need to include the iostream library like so:

‘ #include <iostream >

If we want to include a file, such as a file named myFile. h, we can write:

‘ #include “myFile . h”

However, when we include files, they must be in the same directory as the
file where the #include appears. We discuss the Standard Template Library in
Chapter 3, and include a short sample of other libraries in Table [L6.1.

93

Library Provides Some common uses
<iostream> | Input/output cout, cin:
stream objects see Chapters § and ff
<cstdlib> | The C standard | rand (), abs (), NULL
library
<cmaths> Mathematical pow(),sqrt (),
functions cos(),tan(),sin():
see Chapter [17
<iomanip> | Input/output set_iosflags(),
manipulation setfill (),
setprecision()
<ctime> Time-related clock (), time()
functions
<string> The string | See Chapter [L]]
class
<fstream> | File input and | See Chapter [L§

output streams

Table 16.1: Some useful libraries and a sampling of what they provide

16.1 Review Questions

1. Which of the following demonstrate correct syntax for #include state-
ments? (Note: some of these may be syntactically correct but not do what

you would expect!)

(a) #include <aFile.txt>

(b) #include <iostream>;

(¢) include <iostream>

(d) #include myFile.txt;
(e) #include "myFile.txt"

(f) #include <cmaths>;

(g) include <cmath>

(h) include

"cmath"

(i) #include <cmath>
(j) #include (iostream);

(k) #include <iostream>

2. Identify the the preprocessor statements in the following code:

#include <cstdlib >
#include <iostream >
using namespace std;
int main(int argc, char *argv[])
{
cout << "Included!” << endl;
return 0;

}

3. Which library is required to use the cout object?
4. Isusing namespace std; apreprocessor directive?

5. If you want to be able to use the funtion pow (), which library do you need?

16.2 Review Answers

1. a,e i, and k.

The first two lines are preprocessor directives.
The iostream library.

No.

The cmath library.

AR e

Chapter 17

Advanced Arithmetic

Advanced arithmetic in C++ includes mathematics that can’t be used in code with-
out the use of the <cmath> library. This is mathematics that goes above and
beyond the primitive operations: addition (+), subtraction (-), multiplication (*),
and division (/). As we have seen before, some simple arithmetic might look like:

The variable X is declared as an integer. The next line sets it to one. The +=
operator adds five to x, which makes x contain six. Doing simple operations like
these does not require any special libraries or unusual commands. Any compiler
canlook at a +, -, *, or / in a line of code and know exactly what the programmer
expects to happen. Some math requires a little extra help, though. In this case, help
is the <cmath> library.

<cmaths> is a library that is needed for trigonometric, hyperbolic, exponen-
tial, logarithmic, rounding, and absolute value functions. The <cmath> library is
designed to make your life simple and to make complicated mathematics easier in
C++. Using the <cmath> library in code is as simple as including it at the top of
your source code file with the rest of your libraries. For example:

#include <iostream >
#include <cmaths>

After the inclusion of the <cmath> library, you can use certain mathematical
functions in your code such as pow (%, V), which raises the parameter x to the

97

power of parameter y, and sqrt (z), which returns the square root of z. In your
first few C++ programs you will probably not use the more advanced mathemati-
cal functions included in the <cmath> library, but for a full list of the functions
provided in <cmath>, refer to “Further Reading” at the end of this chapter.

17.1 Examples

17.1.1 pow()

pow is the function called when you want to raise a value or variable to a certain
power. Take a look at the code below and we’ll break it down line by line.

int x, y;
X = 4;
y = pow(x + 1, 3) + 6;

First, we are declaring two variables: x and y. After that we set X to 4. Now
we get to a more interesting section of code. We are asking the compiler to raise
the value of X plus 1 to the power of 3, add 6, and then place the result in y. To use
the pow function, you must understand its syntax. Here is the breakdown:

pow (starting value, power being raised)

Inpow(x + 1, 3) + 6, we are raising the starting value x + 1 to the
power of 3. Before the power of 3 is applied, 1 is added to x. In this case it is the
simple operation of 4+1, which yields 5. After we get 5, we raise it to the 3 power
to get a value of 125. After we reach the value of 125 we are finished with the pow
function and resume using normal operators when we add 6 to 125 resulting in the
final value of 131.

Undoubtedly there are more complicated uses of the pow function, such as
multiple uses of pow in the same line of code. You might use multiple pow opera-
tions in code that calculates the length of one side of a triangle using the Pythagorean
Theorem. Look at the following code and see if you can figure out what the output
value would be:

int x, y, z;

x = 3;

y = x + 1;

z = pow(x, 2) + pow(y, 2);
cout << z;

If you got 25, then you have the right answer! After initializing the variables
X and y and setting their values (3 for x and x+1 for y), we raise each value to the

power of 2. For visual reference,

‘ z = pow (3, 2) + pow (x+1, 2);

results in

z =9 + 16;

Z’s value is set to 25. The pow function is simple to use and can make the
program simpler from a readability standpoint.

17.1.2 sqrt()

Square roots are calculated using the sqrt function. Take a look at the example
below to see how it is called in a program:

int a, b;
a = 25;
b = sqrt(a);

sqrt is simpler than pow in that it only requires one parameter. Since sqrt
returns a double, you should usually assign the result to a doub 1e variable, but
in this example, sqrt returns exactly 5, so it is implicitly converted to an int
without any issues.

There are cases where both sqrt and pow are used in the same formula, such
as when calculating the distance between two points. When writing such code, it
is very important to keep track of the parentheses and to use correct syntax. One
such syntax mistake is made when programmers think that C++ syntax is the same
as algebraic syntax. This is not the case in C++!

‘ int x = (5)(pow(3, 3)); // Incorrect syntax!

When the compiler sees this, it doesn’t view it as multiplication, but instead as
(according to a professional), “function shenanigans.” It is important to be explicit
with mathematical symbols in C++. So instead of the incorrect code above, use:

*

‘ int x = 5 (pow (3, 3));

As an example, we will use code to compute the distance between the two
points (4,4) and (6, 10) on a plane.

int x1, x2, yl, y2;

float dist;
x1 = 4;
yl = 4;
X2 = 6;
y2 = 10;

dist = sqrt(pow (x2 — x1, 2) + pow (y2 — yl, 2));
cout << dist;

Your final answer after the calculation is executed is roughly 6.342555. With-
out the help of the advanced arithmetic operations, getting to this result would be a
difficult, long, drawn-out process. pow and sqrt are handy functions that make
life easier, all with the help of the <cmath> library.

17.1.3 Modulo

The modulo operator (the percent sign: %) finds the remainder, or what was left over
from division. This program uses the modulo operator to find all prime numbers (all
the numbers that never have a remainder of 0 when divided by every number except
1 and itself) that can be held by an int.

#include <iostream >
using namespace std;
int main ()
{
int divby, remainder;
for (int test = 1; test < 2147483647; test++)
{
bool isprime = true;
for (divby = 2; divby < test; divby++)
{ // Store the remainder of testprime/divby

remainder = test % divby;
if (remainder == 0) // If the number is not prime
{
isprime = false;
break; // Leave the for loop
}
if (isprime) // If it passes the test, it is prime.
cout << 7 7 << testprime; // Print the prime

}

return 0;

}

17.2 Review Questions

1. Which #include library is needed to use advance arithmetic operators?

2. Write C++ code to calculate 2°.

3. Write a statement to set the value of a variable of type double to the square

root of 10001.

4. Complete the code below to find the length of the hypotenuse of a right
triangle (remember that a® 4 b> = ¢?) given the lengths of the other two

sides. What is the final output of your code?

#include <iostream >
// Add necessary libraries here

using namespace std;

int main ()

{
double a = 3.0, b = 4.0
double c;
/1l
// Finish the program...
/1l

cout << ”"The hypotenuse of the right triangle
<< ¢ << endl;

17.3 Review Answers

1. #include <cmath> must be included to include advanced operators.

2. pow(2, 9)
3. double b = sqrt(10001);

#include <iostream >
#include <cmath>

using namespace std;

int main ()

{
float a = 3.0, b
double c;

1]
IS
S)

a = pow(a, 2);
b = pow(b, 2);
c sqrt(a+b);

cout << "The hypotenuse of the right triangle is
<< ¢ << endl;

The final output of the code is:
The hypotenuse of the right triangle is 5.0

17.4 Further Reading

- http://pages.cpsc.ucalgary.ca/~jacob/Courses/Fall00/CPSC231/Slides/08- Arithmetic.
pdf

« http://www.cplusplus.com/reference/cmath/

http://pages.cpsc.ucalgary.ca/~jacob/Courses/Fall00/CPSC231/Slides/08-Arithmetic.pdf
http://pages.cpsc.ucalgary.ca/~jacob/Courses/Fall00/CPSC231/Slides/08-Arithmetic.pdf
http://www.cplusplus.com/reference/cmath/

Chapter 18

File I/O

File 1/0 refers to the input and output (I/O) from and to files. So far we have been
using cin to get input from the keyboard and cout to output to the screen. Just
like output can be sent to the screen, output can be sent to a file. Input can be taken
either from a keyboard or from a file. Input and output is handled in the program
through objects called streams. This chapter will discuss how to take input from a
file and send output to the same file or a different one.

File I/O is useful because files provide a way to store data permanently. With
keyboard input and screen output, the data is temporary and goes away once the
program is finished. When it comes to files, the data is there for us and we do not
have to waste our time typing it over and over again.

18.1 I/O Streams

If data is flowing into your program it is called an input stream. If data is flowing
out of the program it is called an output stream. We have actually been using both
types of streams already! cin, which handles a flow of data from the keyboard, is
an input stream and cout, which produces a flow of data to the screen, is an output
stream. If an input stream object is connected to a file, then the program can get its
input from that file. Similarly, an output stream object can send data to the screen
or to a file. A file can be opened for both reading and writing, in which case it can
be accessed by both input and output streams.

103

18.2 FileI/O

When the program opens a file for input, the program is reading from the file. When
the program opens a file for output, the program is writing to the file. C++ provides
us with the ifstream, of stream, and f st ream classes for reading from and
writing to files. All of these classes are available through the £stream library,
which means we must #include it in our code in order to use them:

#include <fstream >

The of stream type (read that as “output file stream”) is used to write data
to files. The ifstream type (“input file stream”) is used to read data from files.
Objects of type f st ream (“file stream”) can combine the behavior of ifstream
and of stream and allow us to both read from and write to files.

The cin and cout objects are already declared for you. However, in order
touse ifstream, of streamand fstream objects, you must declare one like
you would any other variable. Declaring these objects looks like this:

// Declares a variable of type ifstream named input
ifstream inFile;
// Declares a variable of type ofstream named output
ofstream outFile;

The variable inF1ile will deal with getting input from a file, while the variable
outFile will deal with outputting data to a file.

Every file on a computer has its own name and a location (or path). An example
of a text file name is TextFile. txt and its location in a Windows operating
system might be c: \storage\TextFile.txt. In a UNIX-based operating
system, the same file might be in /home /user1/TextFile. txt. Regardless
of the operating system, we need to know the file’s path in order to tell the program
where to find the file.

18.3 Opening and closing a File

Before we can even start reading from and writing to a file we must open it. In order
to open a file you must first make an object of type ifstream, ofstream, or
fstream just like we did earlier. We open a file using a member function named
open. The of stream object will create a file for you if the file you're opening
for output does not exist. Otherwise, if the file already exists, the open function
will erase existing data in the file by default. The following example demonstrates
how to open files for both input and output:

#include <iostream> //For cin and cout
#include <fstream> // For ifstream and ofstream
using namespace std;
int main ()
{
// Declares a variable of type ifstream called inFile
ifstream inFile;
// Declares a variable of type ofstream called outFile
ofstream outFile ;
//Opens text file for input
inFile .open(” TextFile.txt”);
// Creates text file for output
outFile .open(” OutputTextFile.txt”);
return 0;
}

Once you are done with the file, it is good practice to close it. Closing the file
disconnects it from the program and prevents the program from continuing to read
from or write to the file. If the program ends normally or crashes, the files will be
automatically closed. Closing files is even simpler than opening them. All you need
to do is use the close function with empty parentheses. For example, to close
both inFile and outFile:

inFile . close ();
outFile.close () ;

18.4 Reading from a File

We use the i fstream class to read data from a file. Instead of having a user input
data from the keyboard, we now input the data from a file. As you recall from earlier
in the book, we used cin with >>, the extraction operator. This is the operator
we use when we would like get input from the keyboard and it is also used with
ifstream objects. Once we have declared our variable of type ifstream and
opened a file, we can use it to input data. Using this is very similar to cin except

we replace cin with the name of our variable. For example:

#include <iostream >
#include <fstream >
using namespace std;
int main ()
{
int number = 5;
ifstream inFile;

inFile .open(” TextFile.txt”);
inFile >> number;
// The value 5 in number is overwritten

// by the integer stored in the file

return 0;

This will read in one integer from the file and store it into the variable num-
ber. You can input all different types of data including characters, doubles, and
floats. Overall, if stream objects are very similar to cin—you just have to
declare one and remember to use the variable name instead of cin.

18.5 Writing data to a File

We use the of stream class to output data to files. cout outputs data to our
screen whereas of stream stores data in files. Just like cout, of stream ob-
jects use <<, the insertion operator. Using this is very similar to cout except we

replace the cout with the name of our variable. For example:

#include <iostream >
#include <fstream >

using namespace std;
int main ()

{

char Letter = A’}
ofstream outFile;

outFile.open(”OutputTextFile.txt”);
outFile << Letter; // Puts the letter 'A’ into the file

return 0;

This example would write the letter 'A"' to the text file we created named
OutputTextFile. txt. Youcanalso create numeric variables and output them
to the file just like:

int num = 10;
outFile << num << endl;

This example would output the number 10 and create a new line in the text file
we created.

18.6 Introduction to Classes and Objects

We will go into more detail about classes and objects in Chapter 1 but it is nec-
essary to go over it briefly in this section. Both cin and cout are objects. An
object is a variable that has functions built in and may have multiple pieces of data
associated with it. ifstreamand of stream are object types that define which
operations may be performed on and which data are stored in the objects. For exam-
ple, the function open () (along with close () and many others) is considered a
member function of ifstreamand of stream, which means it is a function
that is associated with object of those two types. Getting a little more into detail,
these object types are defined as part of a class. A class is a blueprint for complex
data types. We already know data types such as integers, doubles, and chars,
but using classes, you will be able to design your own data type.

When calling the functions open or close, you will notice we use a period
between the object name and the function. We call this the dot operator and it is
used to reference member functions and member variables of a class.

18.7 Other functions

The <fstreams> library comes with many functions to help test to see if things are
working. One example is the fail () function. We use this function to determine
whether the file was opened successfully or not. We usually use 1f statements with
the function so that if the file does not open correctly we can warn the user. For
example:

inFile .open(” TextFile.txt”);
if (inFile. fail ())
{

cout << “Failed to open!”;

}

This will warn the user if the file did not open correctly. If the file did open
correctly, the program would continue without printing the error message.

The next function is the eof () (end of file) function. This function tests to
see if the stream has reached the end of the file. This function is very useful in order
to know when to stop reading from the file. For example:

int number;

inFile .open(” TextFile .txt”);
while (!inFile.eof())

{

inFile >> number

}

This example shows how the eof () function can be used in a while loop.
The while loop will read integers from the file until the program reaches the end
of the file. This is useful for gathering all the data from one file.

The get () and put () functions are used to read and write single characters,
respectively. The function get () allows the program to read in a single character
into a variable of type char. When we use the >> operator, spaces, tabs and new-
lines—the whitespace characters—around data are skipped automatically. However
with get (), nothing is done automatically, so the whitespace characters can be
extracted, too. The member function get () takes one argument in parentheses
that must be a char variable. For example:

char Character;
ifstream inFile;

cin.get(Character);
// or
inFile .get(Character);

This will read in the next character typed on the keyboard or from the file. Even
if the next character is a space, tab, or newline, the program will store that character
in the variable.

The put () function is used to output one character. This function takes one
argument of type char in the parentheses. For example:

/1

char Character = "\n’; // newline character
ofstream outFile ;

cout.put(Character);

or

outFile .put(Character);

18.8 Review Questions

1.

10.

11.
12.

What do we call the type of object used to control data flowing into your
program?

What do we call the type of object used to control data flowing out of your
program?

What header file must you #include in order to use ifstream and
ofstream?

What are ifstreamand of stream used for?

How do you declare an ifstream object named input and an of-
stream object named output?

How would you open a file named TextFile. txt withan ifstream
object called input?

How would you close a file named TextFile. txt with an of stream
object called output?

What kind of function is the eof () function and what does it do?
What are the benefits of using files for input and output?

What is the difference between cin >> c; andcin.get(c); if cis
of type char?

Write a program that outputs the contents of some file to the screen.

Write a program that reads in a text file and prints to the screen the number
of times the character 'e' shows up.

18.9 Review Answers

oW

10.

An input stream
An output stream
You need to #include <fstream>

ifstream is used to read data from a file. ofstream is used to write
data to a file.

ifstream input;
ofstream output;

input.open("TextFile.txt");
output.close();

The eof () function is a member function. It returns t rue if the program
has reached the end of the file.

File input and output are useful because files provide a way to store data
permanently. With keyboard input and screen output, the data is temporary
and disappears once the program is finished. The data stored in files on the
other hand remains the same until another program changes it. Also, an
input file can be used by many programs at the same time without having
to store multiple copies or re-enter the data over and over again.

The first cin statement the next non-whitespace character into c, but the
callto cin. get () stores the next character in ¢ whether it is whitespace
or not.

18.10 Further Reading

« http://www.cprogramming.com/tutorial/lesson10.html

« http://www.cplusplus.com/doc/tutorial/files/

« http://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm

http://www.cprogramming.com/tutorial/lesson10.html
http://www.cplusplus.com/doc/tutorial/files/
http://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm

Chapter 19

Pointers

Pointers do just what they sound like they do. They point to a space in memory,
usually a location occupied by a variable. A pointer is an address in memory. The
pointer itself is a variable, but it also refers to a variable. It is declared using an
asterisk following the data type:

int *ptr;

The variable named ptr is of type int *, an “integer pointer” that stores the
address of a variable of type int.

To indicate that a pointer variable is not pointing toward any usable data,
we often set its value to NULL, which is defined as zero when you #include
<cstdlib>:

int *ptr = NULL;

C++11 provides a dedicated null pointer object called nullptr that can be
used similarly:

‘ int *ptr = nullptr;

*

There are two operators used in conjunction with pointers. The * operator,
beyond being used for multiplication and for pointer declarations, also acts as the
dereference operator. The dereference operator changes the pointer into the value
it is pointing to. It “follows” the address stored in the pointer and returns whatever
is in that location.

The & operator is the reference operator. The dereference operator returns
the memory address of the variable it precedes. You will use this to produce a pointer

111

int*p int var1 int var2

Figure 19.1: The state of the variables after lines 1-3

to the indicated variable. Let’s declare pointer p and use it:

int *p; // Declare an int pointer
int varl = 2; // Declare an int, set it to 2
p = &varl; // Take the address of varl and store it in p
cout << *p; // Go to the address stored in p;
// return the value; print it out

The output of this code is:

2
Here is a slightly longer example:
int *p;
int varl = 2;

int var2 = 4;
p = &varl; // Take the address of varl and store it in p
*p = var2; // Go to the address stored in p;

// assign it the value stored in var2

// The preceding two lines are equivalent to varl = var2
cout << *p << endl;

cout << varl << endl;

cout << var2 << endl;

The output of this code is:
4
4
4

Figure shows the state of the variables in the second example after they
are declared and initialized (lines 1-3). After the fourth line is executed, p will store
the address of var1. Figure shows the state of the variables. After the fifth
line of code is executed, the location where p points is assigned the value stored in
var2. Since p contains the address of var1, var1 receives that value. Figure

int*p int var1 int var2

Figure 19.2: The state of the variables after line 4

int*p int var1 int var2

Figure 19.3: The state of the variables after line 5

shows the state of the variables.

Use caution when declaring pointers. If you are declaring more than one pointer
in a single line, make sure to indicate each pointer variable with the * before the
variable name. Here is a correct declaration of two pointers:

*

‘ int *p, *q;

This results in an integer pointer named p and an integer pointer named q.
Contrast that with the below code:

int *p, q;

This results in an integer pointer named p and an integer named q. An equiv-

alent way to write the above is:

’ int q, *p;

19.1 Review Questions

1. What is the output of the following code?

int *a, b, c;

a = &b;

b = 5;

c 1;

b =D>b— b;

c=b * b;

*a = ¢ — *a;

a = &c;

*a = ¢ — 7;

c =c¢ + c;

*a = *a + b;

c=2c¢ + b;

b=c¢c— 3;

c = *a— 7;

cout << *a << endl;
cout << b << endl;
cout << ¢ << endl;

2. What is the output of the following code?

int a, b, *c;

D6 T =
I
RN g e

= &a;

= *c — a;
c = *c + 4;
a=D>b + a;
c = &b;

a =a—b;
¢ = b + a;
e = ¢ — 1;
a a * 1;
a=b— *c;
a=a— *"c;

cout << a << endl;
cout << b << endl;
cout << *c << endl;

19.2 Review Answers

1. -21
-17
-21

2. -7
7

7

Chapter 20

Dynamic Data

Up to this point, we have only discussed variables that are set up at compile time.
Allocating space for variables at compile time is adequate in many cases, but occa-
sionally a program will need to allocate space for data in memory while it is running.
Consider the following code:

int arraySize;

cout << “Enter the number of elements in your array: 7;
cin >> arraySize;

// We want to create an array with arraySize elements
int myArray[arraySize]; // SYNTAX ERROR!

In order to allocate the space for myArray, the compiler needs to know how
many elements make up the array so that there is enough room in memory to ac-
commodate the array. Unfortunately, the value of arraySize is not known until
the user enters something on the keyboard after the program has started running and
as a result, the compiler returns a syntax error.

In C++, pointers are used to keep track of dynamically-allocated data:

float *fPtr = NULL; // (1) Declare a pointer to a float ,
// which currently points nowhere

In order to dynamically allocate an object of type £1loat, we use the new
operator:

fPtr = new float; // (2)

The created object of type £1oat does not have a name, so the new operator

117

(1)
NULL
float*
fPtr
(2) >
float* float
fPtr
) g o
float* float
fPtr

Figure 20.1: Allocation and dereferencing of pointers

returns a f1oat ™ that can be used to access the object. This pointer is stored in
fPtr. We use the dereference operator (*, that is) to access the data:

*fPtr = 2.2; // (3) Goes to address at fPtr & puts 2.2 there
cout << "Data at 7 << fPtr << 7: 7 << *fPtr << endl;

// This outputs: Data at 0x200102b0: 2.2

// Note that the address listed may differ

// Also note the difference between printing fPtr and *fPtr

Notice that when a value is assigned to £Ptr, the pointer is being changed.
When a value is assigned to * fPtr (notice the dereference operator), the floating-
point value at the address stored in fPtr is changed.

Memory leak

4
) o
~float~* float
fPtr
float
Memory leak
5
) 22
~float™* float
fPtr
3.3
float

Figure 20.2: Allocation and memory leaks

fPtr =
*fPtr =
cout <<
fPtr =

*fPtr =
cout <<
// This
// Data
// Data

float *fPtr;
new float;

2.2; // Goes to address at fPtr & puts 2.2 there

"Data at 7 << fPtr << 7: 7 << *fPtr << endl;
new float; // (4) fPtr now holds address of
/1l a new float object
3.3; // (5)
"Data now at 7 << fPtr << ”7: 7 << *fPtr << endl;

outputs:
at 0x200102b0: 2.2
now at 0x200483c0: 3.3

In this example, the f1oat containing the value 2.2 still resides in memory,
but is no longer reachable. This condition is called a memory leak, and results in
programs that consume more memory than they require. In order to free up the

memory properly, we use the delete operator:

float *fPtr;
fPtr = new float;
*fPtr = 2.2; // (6) Goes to the address at fPtr and stores
2.2 there
cout << ”"Data at 7 << fPtr << 7: 7 << *fPtr << endl;
delete fPtr; // (7) Frees up the dynamically—allocated
// memory at the address stored in fPtr

At this point in the code, £Pt r can be referred to as a dangling pointer, since
the memory location it refers to is no longer valid, and the pointer just “dangles”
there, pointing to nothing useful.

(6) >
2.2
float* float
fPtr
dangling
Eointer
(7)
float™
fPtr

Figure 20.3: Deallocation and dangling pointers

Arrays can be dynamically allocated, too:

float *fPtr = new float[10]; // Allocate an array of ten
// floats and store their location in fPtr

Arrays must be deleted in a similar fashion, but the syntax changes slightly:

delete [] fPtr; // Free up the entire array

20.1 Review Questions
1. Write code to declare an integer pointer and dynamically allocate an integer.
On the next line, assign this dynamically-allocated integer the value 13.

2. Given the following code, write a few lines that deallocate any dynamically-
allocated memory and set all pointer values to NULL:

int *a
int *b;
int c;
b = &c;

= new int [24];

20.2 Review Answers

int *iPtr = new int;
1. *iPtr = 13;

delete [] a;
9 a = NULL;
: b = NULL;

20.3 Further Reading

o http://www.cplusplus.com/doc/tutorial/dynamic/

http://www.cplusplus.com/doc/tutorial/dynamic/

Chapter 21

Classes and Abstraction

Imagine for a second you’re behind the wheel of an automobile. You're driving
along, but do you know your engine is working right if it’s not making any horren-
dous screeching sounds? Do you have any idea how your steering actually works
when you turn the wheel? So long as you can press down on the accelerator to
move forward and the steering handles correctly, you probably don’t care about the
specifics of how things work.

Abstract data types (ADTs) are the automobiles of C++, and one of the rea-
sons C++ is known as an object-oriented programming language. It’s their job
to package and obscure the information from the average user, and at the same time
make their lives more convenient. ADTs can be thought of as a group of data of dif-
ferent types that are treated as a single item. For example, if we wanted to record
the name, identification number, age, graduation date, and sex of all of the students
on a campus, we could create a new data type named Student with those vari-
ables. In the following sections we will show you how to use and define two types
of ADTs: structures and classes.

21.1 structs

A common example of a struct is a Point. Points store int, float, or
double variables x and y, which represent the position of the Point on the the

123

X and Y axes on a coordinate plane. Such a st ruct might look like this:

struct Point

double x;
double y;
b

In the example, the keyword st ruct is used to declare the structure definition
while the identifier, the word directly to the right of struct (Point), is the structure
name and the name of a new data type. The braces are used just like when we define
a function. However, directly after the closing brace, there must be a semicolon!

Once a structure is defined, it can be used just like the data types int, char,
string, and so on. For example, we might declare a Point structure named
input like this:

‘ Point input;

21.2 Assigning values to member variables

Any variable of type Point such as the one above is a collection of two variables,
X and y. Any variables contained in the struct can be accessed by combining
the structure name—input in our example—followed by a symbol called the dot
operator (the period, .) and the member variable’s name. For example, if we
wanted to set X in input, we would use the dot operator as follows:

‘ input.x = 5;

21.3 Classes

classesarelike st ructsexcept classes contain both variables and functions,
whereas st ructs only contain variables Also, in a struct, member variables
are public by default while all members of a class are private by default. We’ll
discuss the distinction more in a minute. First, let’s take a look at an actual class
definition.

This has been the conventional way to think about classes and structs,
but in reality the only difference between the two is that members of a struct
are public by default and members of a class are private by default.

class Rectangle

i

public:

Rectangle (); //A default constructor
//The following two lines are mutators
void setBase(float length);

void setHeight(float length);
// The following two lines are accessors
float getHeight();
float getBase();
//The following two lines perform operations
float findArea();
float findPerimeter ();

private:

float Base;

float Height;

b

Notice the similar syntax to the struct. Like a struct, the declaration
starts with the class keyword, followed by the name of the class, and after the
closing right brace, a semicolon. Notice the public: and private: sections
of the definition. To indicate that a set of member variables or functions is private,
we use the private keyword followed by a colon. Everything after the keyword
will be considered private. We will discuss what this means in the next section.

On the other hand, if we want to indicate that a set a member variables or
functions is public, we use the keyword public followed by a colon. Everything
after this keyword will be considered public.

214 public and private variables and
functions

The biggest difference between classes and structs is the ability to determine
how accessible the data within the class is. A general rule of thumb is to put vari-
ables in the private: section, where they would be referred to as private mem-
ber variables, and related functions in the public: section, where they would
be referred to as public member functions. Private members can only be accessed
by the class’s member functions and nowhere else, while public members can be
used anywhere, in the same way that the members of a struct can be used.

Within the above class definition, we have seven member functions that we
need to define. Each function has a specific purpose to set the values of private
member variables, return the values of private member variables, or perform some
other operation using those member variables.

Functions that are declared in the above code with names starting with the
word get will be used to access the variables; these functions are called accessors.
Functions that are declared in the above code that have names starting with the
word set will be used to change the variables’ values; these functions are called
mutators. Accessors and mutators can be named whatever you like, but it is a
common convention to name them get and set plus the name of the variable you
are accessing or mutating,.

The functions whose names start with £ ind perform operations using the vari-
ables, but do not change them or return their values directly. The function named
Rectangle () is known as a constructor. When a Rectangle object is cre-
ated, it will be initialized according to the code in this constructor. By the end of this
chapter, you’ll understand how useful these are in object-oriented programming.

21.5 Defining member functions

We now describe how to use member functions with private member variables.
When we define a member function, all the member variables within the class
are accessible to the function. For example, we can define the member function
setBase () from Rectangle above like this:

void Rectangle :: setBase(float length)

{

Base = length;

}

In this code, we are able to directly access the member variable Base because
both the function setBase () and the member variable Base are a part of the
class. Since we are not returning anything to the user, the function is defined as
a void function. In order to define a member function, we have to use a special
operator called the scope resolution operator (: :). The function is defined by
using the return type, the class name, scope resolution operator, then the member
function name with any parameters listed just like any other non-class function.

21.6 Using member functions

All member functions have direct access to member variables even if the variable
is private. The reason we use mutators is because we do not want the user to have
direct access to any variables within the class—we give them indirect access instead.
We do this by requiring them to pass a value to the mutator member function which
sets the member variable. That might look like this:

int main ()
{
Rectangle r;
float b;
cout << "Please input the length of the base: 7;
cin >> b;
r.setBase(b);
return 0;

In the above code, we start by creating a Rectangle variable named r. After
the user is prompted for the length of the base, which is stored in the variable b,
we call the setBase () member function with the dot operator and pass b as a
parameter to the function.

We are able to pass the value of the variable entered by the user to the setBase ()
function which then sets the member variable Base to the passed value. This is how
we “mutate” private member variables in a class using a public member function.

To retrieve the value of a member variable, we need to create accessor func-
tions. These are defined like this:
float Rectangle :: getBase ()

{
}

return Base;

When it comes to using accessors, it is very simple. Just match the data type
that you want to access, in this case it was a f 1oat, and define the member function
with that return type. Then, in order to access the variable, all we need to do is
use the keyword return followed by the identifier. This enables us to access the
private variable when we need to.

21.7 classes and structs together

We can also combine structsand classesifneed be. For example, if we wanted
to take in three points we could create a Triangle class with these points which
are individually of type Point, a struct that contains x and y variables:

struct Point

double x;
double y;

b

class Triangle
{
public:
// accessors for points a, b, and c
// mutators for points a, b, and c
private:

Point a;

Point b;

Point c;

}s

Here we have the ability to combine a st ruct witha class in order to have
all three points, a, b, and c that each contain their own variables x and y. Despite
the fact that the variables in the st ruct are public, we cannot access those specific
values outside the Triangle unless we use a member function. This is because
they’re still private members of the class Triangle, so their scope is limited to
functions within the class. If we had a mutator function for Point a, it might
look like this:

void Triangle :: setA(double userX, double userY)
{

a.x = userX;

a.y = userY;
}

The values of userX and userY are passed in by the calling function. Notice
again that in order to access the X and y coordinates, we must use the dot operator
with any of the Point objects a, b, or c.

21.8 Constructors

Another way to set the values of the variables in a class is through constructors. A
constructor is a member function with the same name as the class and cannot be
called directly. Constructors are what we use to initialize the variables of the class
when it’s first created. For example, if we wanted to set default values for a class

named student defined as:

class student

{

public:
student(); // constructor
// accessors
// mutators

private:
string name;
int age;
int grad_year;
string id;

s

we would have a default constructor with the name student () without any re-
turn type. To initialize the variables in the class through the constructor, we use
syntax similar to a function definition:

student :: student ()
{
name = "N/A”;
age = 0;
grad_year = 0;
id = 7A00000000”;
}

21.9 Overloading Member Functions

Note that, like other functions, you can overload any of the functions in a class.
Going back to the Rectangle example used earlier, take a look at the following
code.

class Rectangle
{
public:
Rectangle (); //A default constructor
// Overloaded constructor
Rectangle(float userBase, float userHeight);
void setBase(float length); //These two lines are mutators
void setHeight(float length);
float getHeight(); //These two lines are accessors
float getBase () ;
float findArea(); //These two lines perform operations
float findPerimeter ();
private :
float Base;
float Height;

}s

Notice the second constructor, Rectangle(float userBase, float
userHeight). We define it very similarly to the default constructor:

Rectangle :: Rectangle (float userBase, float userHeight)
{

Base = userBase;

Height = userHeight;
}

21.10 Review Questions

1. Given the following struct definition and global variable:

struct personlnfo
{
string name;
int birth_year;
int birth_month;
int birth_day;
int age;

}s

personlnfo pinfo;

which of the following are incorrect ways to use the dot operator?

(a) pinfo.age

(b

(c

) personInfo.birth_year
)
(d) pinfo. (string name)
)

information.name

() birth_year.pinfo

2. Create a class called Animal that can store information about animals

in a zoo and has the following private variables:

string name; // the name of the animal
int pounds; // number of pounds of food eaten
char animalType; // the type of animal:

// "h’ for herbivore

// "¢’ for carnivore

You should have public member functions that get and set each variable, and
afunction called print () that prints all the information about the animal.

3. This program will require a struct and a class.

Write a program that can calculate the slope of a line.

You will have a struct called Point which contain the following vari-

ables:

’ double x, y;

You will then have a class called Line, and it will have the following private

variables:

’ Point a, b;

Your class should have accessor and mutator functions, a function that calcu-
lates and returns the slope of a line between the two Pointsasadouble,

and a function that outputs the data to the user called print ().

21.11 Review Answers

1. Only (a) is correct: (b) through (e) will result in syntax errors.

class Animal

{

public:
Animal () ;
string getName () ;
void setName(string inputName);
int getPounds();
void setPounds(int inputPounds);
char getType();
void setType(char inputType);
void print();

private:
string name ; // the name of the animal
int pounds ; // number of pounds of food eaten
char animalType ; // the type of animal

}s

21.12 Further Reading
« http://pages.cpsc.ucalgary.ca/~jacob/Courses/Fall00/CPSC231/Slides/08- Arithmetic!
pdf’
« http://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm

o http://www.cprogramming.com/tutorial/lesson7.html]

http://pages.cpsc.ucalgary.ca/~jacob/Courses/Fall00/CPSC231/Slides/08-Arithmetic.pdf
http://pages.cpsc.ucalgary.ca/~jacob/Courses/Fall00/CPSC231/Slides/08-Arithmetic.pdf
http://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
http://www.cprogramming.com/tutorial/lesson7.html

Chapter 22

Separate Compilation

Separate compilation is the process of breaking a C++ program into separate files
to improve organization. Parts of the program can be spread out over a number
of different files that are later compiled individually, then linked using a linker
to produce the final, working program. When changes are made, only those files
with changes need to be recompiled, the result of which can then be relinked with
the previously-compiled files. This process is nearly invisible in most development
environments, which recompile and relink these files automatically. When the de-
velopment environment takes care of these details, the user is left with the sole task
of making changes where they are needed.

One of the most basic applications of separate compilation is used when writing
abstract data types. Recall from Chapter 1 that there are declaration and definition
sections in a class. The declaration contains class functions and variables, both
public and private, while the definition section is where the function definitions and
most actual code can be found. The process of separate compilation requires the
two sections to be split into separate files, each of which is written and maintained
separately and later used together to create a working program.

Declarations will be put into the interface file or the header file which typ-
ically has a . h suffix. In most code written by novice programmers, there will be
only one class declaration in each header file. To use the class in your code
elsewhere, you should use #include followed by the file name in double quotes.
Below is an example of the contents of an interface file called student . h.

133

#include <string >
using namespace std;

class student
{
public:
student () ;
int getAge();
void setAge(int update);
int getID();
void setID (int update);
string getName () ;
void setName(string update);
private:
int age;
int ID;
string name;

}s

To use the student class in some other source code file, that file should in-
clude the following line:

#include “student.h”

The quotes around student . h tell the compiler to find the header file in the
same directory as the current file.

The implementation file will include all the function definitions for the stu-
dent class. The implementation file can be called anything the programmer wants,
but typically ends with a . cpp suffix. For example, the implementation file for
student will probably be student . cpp.

To ensure that a new implementation file is compiled into your program, you
do not need to #include anything. However, the development environment will
automatically compile and link the implementation file if it has been added to your
project. The only files that you should #include are header files.

To avoid linker errors, your files should have safeguards to ensure that classes
and functions are not declared more than once within the same program. These
safeguards are simple, and should be included in each header file. For example, we
place the following two lines at the top of the file student . h:

#ifndef STUDENT H // STUDENT H could be anything
#define STUDENT H // as long as it is unique to this file

The following line should go at the end of the same file:

#endif //STUDENT H — a reminder about the #ifndef above

The above three lines do the following:

1. Test if STUDENT_H has been previously #def ined, usually because this
header file has been #included elsewhere.

2. Ifithasnotbeen #defined, #define itnow and proceed with compiling
the code between the #ifndef and #endif.

3. Close the #ifndef block. If STUDENT_H was previously defined, skip
to the line after this one.

Here is an example of what these lines look like alongside some actual code:

#ifndef STUDENT_H
#define STUDENT_H

class student

{
// class declaration because this is an interface file

}s

#endif //STUDENT _H

This combination of preprocessor directives will ensure that the student
class is only defined once.

22.1 Review Questions

1. What is a header file?
What file extension do we typically use for a C++ header file?

What file extension do we typically use for a C++ implementation file?

oW

In which file would would you typically store an abstract data type’s (ADT’s)
declaration?

5. How do you incorporate a header file named something.h into a file
named main. cpp?

6. Do you incorporate an implementation file into your project the same way?

7. How do you prevent redeclaration of ADTs and functions in header files?

22.2 Review Answers

1. A header file stores the interface of an ADT
A header file ends in . h
An implementation file ends in . cpp

In the interface file

AN ol

Add #include "something.h" alongside the other #include
statements in main. cpp.

6. No, the implementation file will automatically be compiled and linked by
your development environment as long as the implementation file is in your
project.

7. You prevent redeclaration by adding lines similar to the following to the top
of your header file:

#ifndef SOMETHING_H
#define SOMETHING_H

Then add the following to the end of the header file:

’ #endif // SOMETHING H

22.3 Further Reading

« http://elm.eeng.dcu.ie/~ee402/ee402notes/html/ch03s14.html]

« http://web-ext.u-aizu.ac.jp/~fayolle/teaching/2012/C++/pdf/1-separate compilation.
pdf

http://elm.eeng.dcu.ie/~ee402/ee402notes/html/ch03s14.html
http://web-ext.u-aizu.ac.jp/~fayolle/teaching/2012/C++/pdf/1-separate_compilation.pdf
http://web-ext.u-aizu.ac.jp/~fayolle/teaching/2012/C++/pdf/1-separate_compilation.pdf

Chapter 23

STL

The Standard Template Library (STL) provides a set of tools beyond those that are
provided by the “base” C++ language. While a comprehensive discussion of the
features of the STL is far beyond the scope of this text, there are several libraries
that offer extremely important features with which you should become comfortable.
Note: rather than assuming that

using namespace std;

is at the top of every code example, each data type, function, or variable derived
from the STL will be shown with the prefix std: :. This highlights which parts of
the examples below come from the STL, and which are part of the language.

23.1 #include <utility>
#include <tuple> (C++11)

The pair class, found in <utilitys>, links two values which may be of different
types. The tuple class, introduced in C++11, links any number of values which
may be of different types. For example, to link a student’s identification number (an
integer) and their grade point average (a f1oat), we can write:

std :: pair<int , float > grades = { 112233, 3.81 };

137

We can assign different values to the pair later with the make_pair function:

grades = std :: make_pair(123450, 2.79);

The first and second members are used to extract the individual compo-
nents of the pair:

std:: cout << "ID: ” << grades.first << > (GPA ~
<< grades.second << 7)” << std::endl;

// This prints:

// ID: 123450 (GPA 2.79)

If we wanted a more complicated set of values linked together, such as a stu-
dent’s name, identification number, grade point average, and major, we could con-
struct the following:

tuple <std :: string , int, float, std::string> ethan =
{ ?Ethan Allen”, 802802, 3.15, “Engineering”};

Unfortunately, the tuple class does not have first or second members.
The first and second elements can be retrieved in a slightly more complicated way
than with pair objects:

» 5

std :: cout << std::get<0>(ethan) << s major is
<< std::get<3>(ethan) << std::endl;

// This prints:

// Ethan Allen’s major is Engineering

»

In the code below, the get function returns a reference to the third element
(the GPA) of the tuple ethan, and sets that value to 3.99:

std :: get<2>(ethan) = 3.99;

These types may not be all that useful by themselves, but are often used in
conjunction with container classes like vector and map, described below.

23.2 #include <iterator>

Iterators are objects that refer to elements within a container object (like std: : vector,
std: :map, and std: :array) and allow for traversal through those elements.

The list of features in iterators vary depending on the container class. While the
specifics of the iterators vary, most iterators belong to one of the following cate-
gories, based on the operations that may be performed on them.

23.2.1 Forward iterators

« Can be incremented to move forward in the container to the next item

« Can be dereferenced like a pointer variable

std ::array <int > myArray = { 5, 10, 15, 20, 25 };
std ::array ::iterator mylterator, arrayEnd;
arrayEnd = myArray.end();

// Demonstrating forward iteration
for (mylterator = myArray.begin ();
mylterator != arrayEnd;

++mylterator)
std :: cout << *"mylterator << 7 7

std :: cout << std::endl << "The end!” << std::endl;
// This prints:

// 5 10 15 20 25
// The end!

23.2.2 Bidirectional iterators

+ Everything a forward iterator can do and:

«+ Can be decremented to move backward in the container to the previous item

std ::array <int > myArray = { 5, 10, 15, 20, 25 };
std ::array::iterator mylterator, arrayBegin;
arrayBegin = myArray.begin () ;

// Demonstrating backward iteration
for (mylterator = myArray.end();
mylterator != arrayBegin;
—mylterator)
std :: cout << *mylterator << 7 7

std :: cout << std::endl << "The beginning!” << std::endl;
// This prints:

// 25 20 15 10 5
// The beginning!

23.2.3 Random access iterators

« Everything a bidirectional iterator can do and:

« Can use arithmetic operators to move forward and backward a certain num-
ber of items at once

+ Allows comparisons between iterators to determine relative positions in the
container

« Can use array-style access to elements in the container

// Create an array of 5 integers

std ::array <int, 5> myArray = { 5, 10, 15, 20, 25 };
std ::array<int, 5>::iterator mylterator, arrayEnd;
arrayEnd = myArray.end () ;

mylterator = myArray.begin () ;

// Demonstrating random access
std :: cout << mylterator[1] <<
<< mylterator[3] << std::endl;

» o

// Demonstrating iterator comparisons
if (mylterator < arrayEnd)
std :: cout << "Not at the end of the array yet!”
<< std::endl;

// Demonstrating arithmetic operations on an iterator
for (mylterator = myArray.begin ();
mylterator != arrayEnd;
mylterator += 2)
std :: cout << *mylterator << 7 7

std :: cout << std::endl << "The end!” << std::endl;

// This prints:

// 10 20

// Not at the end of the array yet!
// 5 15 25

// The end!

23.3 #include <vector>

Vectors are containers similar to arrays that are flexible in size and quite fast. While
we can use iterators as above, we can also treat the vectoxr much like an array.

// Start with 10 elements, all with the value 98.6
std :: vector <float > temperatures (10, 98.6);

// The last element has a fever of 103.1 degrees!
temperatures[9] = 103.1;

for (int i = 0; i < temperatures.size(); i++)

{

» . »

std :: cout << "Patient << 1 << 7’s temperature is
<< temperatures[i] << std::endl;

5

The vector class also provides member functions front () and back ()
which return references to the first element and the last element in the vector, re-
spectively. For example:

»

std:: cout << "The last patient’s temperature is
<< temperatures.back() << std::endl;

std :: cout << "The first patient’s temperature is
<< temperatures.front() << std::endl;

»

Don’t confuse the back () and front () functions with the end () and
begin() functions. The back() and front () functions return references
to the elements, while end () and begin() return iterators pointing to those
elements.

23.4 #include <map>

This library provides one of the STL’s associative container object classes. An asso-
ciative container differs from an array in that items in an array are referenced with
a number which indicates the item’s position in memory:

int myArray[10]; // An array of ten integers
myArray [0] = —5; // Set the first integer in the array to —5

An associative container, on the other hand, can use any data type to reference
the items in the container. For example, you might choose to use a string to
reference a collection of int items to store a list of students’ ages according to
their names.

std ::map<std :: string ,int> students;

“John” > 19
string int
“Max” i 19 i map<string,int>
string int
“Christine” > 20
string int
“Maria” > 18
string int

ages

Figure 23.1: Pairing strings and ints in a map object

Perhaps you want to create the object with some initial values:

std ::map<std :: string ,int > students =
{ {"John™, 19},
{"Max”, 19},
{”Christine”, 20},
{”Maria”, 18} };

This code produces a structure like in Figure 3.1. With these names and ages
paired, we can now retrieve the ages using the names.

string name = "Christine”;
std :: cout << name << ” is 7 << students[name]
<< 7 years old.” << std::endl;

// This code prints:
// Christine is 20 years old.

New students may also be added in the following way:

students[”June”] = 18;
students [”Omar”] 19;

Objects of type map may be iterated, and in C++11, their contents can be
printed in a range-based for loop as we briefly demonstrate here. Each item in the
std: :map<std::string, int>isoftypestd::pair<std::string,ints>.

for (auto& item : students)

» . E

std :: cout << item.first << is 7 << item.second <<
years old.” << std::endl;

»

// This code prints:

// John is 19 years old

// Max is 19 years old

// Christine is 20 years old
// Maria is 18 years old

// June is 18 years old

// Omar is 19 years old

23.5 Further Reading

« http://en.wikipedia.org/wiki/Standard Template Library

« http://www.cplusplus.com/reference/stl/

http://en.wikipedia.org/wiki/Standard_Template_Library
http://www.cplusplus.com/reference/stl/

Index

void functions, B

Abstract data types,
accessors, [12§
assignment operator, f, [L1

block comments, B3

casts, E
class, @

coefficient, i
coercion,
constructor, ,

count-controlled, 3

dangling pointer,
data type, @

declaration,
dereference operator,

dot operator, @,

end condition, (1
event-controlled, E
exponent, @

extraction operator, ﬂ, @

File 1/0, [[03
floating-point types, Bg
function body,
function call, 79
function declaration, E
function definition, 9

function heading,
header file,

identifier,
implementation,
initializing, B

input stream, @
insertion operator, E,
interface,

iteration, E

linked,
local variable, B3

loop, b1l

lvalue, EI

member function, 107
memory leak,
multi-line comments, E

mutators,

narrowing conversion, E
null character, 3
null terminator, {3

object, @

object-oriented programming language,

output stream, @

parameters, @

144

path, flo4
post-test loop, E
predefined functions, B1

pretest loop, 1
programmer defined functions, B1

prototype, E

reference operator,
return type,

rvalue, [12

scope resolution operator,
significand, g

single-line comments, B3
streams,

strings, E

syntax, E

widening conversion, @

	History
	Variables
	How do I decide which data type I need?
	Identifiers
	Declaring a Variable
	Initializing Variables
	Assignment Statements
	Review Questions
	Review Answers
	Further Reading

	Literals and Constants
	Literals
	Declared Constants
	Review Questions
	Review Answers

	Assignments
	Review Questions
	Review Answers

	Output
	Review Questions
	Review Answers
	Further Reading

	Input
	Review Questions
	Review Answers
	Further Reading

	Arithmetic
	Review Questions
	Review Answers
	Further Reading

	Comments
	Review Questions
	Review Questions

	Data Types and Conversion
	Floating-point types
	Other types introduced by C++11
	Conversion Between Types
	Coercion & Casting
	Automatic Types in C++11
	Review Questions
	Review Answers
	Further Reading

	Conditionals
	if, else, and else if
	A small digression on expressions
	Using else

	switch statements
	Review Questions
	Review Answers

	Strings
	Review Questions
	Review Answers
	Further Reading

	Loops
	Introduction
	Having Fun while Programming
	do-while Loops
	Event-Based Loops vs Count-Based Loops
	for work or for play
	Picking a Loop
	Nested Loops
	Infinite Loops
	Review Questions
	Review Answers
	Further Reading

	Arrays
	Multi-dimensional Arrays
	Review Questions
	Review Answers
	Further Reading

	Blocks, Functions, and Scope
	Blocks
	Basic Functions in C++
	What are functions and why do we use them?
	The parts of a basic function

	void Functions
	Overloading Function Names
	Scope
	Review Questions
	Review Answers
	Further Reading

	Problem Solving & Troubleshooting
	The Compilation Error
	The Logic Error
	The Infinite Loop
	Review Questions
	Review Answers

	The Preprocessor
	Review Questions
	Review Answers

	Advanced Arithmetic
	Examples
	pow()
	sqrt()
	Modulo

	Review Questions
	Review Answers
	Further Reading

	File I/O
	I/O Streams
	File I/O
	Opening and closing a File
	Reading from a File
	Writing data to a File
	Introduction to Classes and Objects
	Other functions
	Review Questions
	Review Answers
	Further Reading

	Pointers
	Review Questions
	Review Answers

	Dynamic Data
	Review Questions
	Review Answers
	Further Reading

	Classes and Abstraction
	structs
	Assigning values to member variables
	Classes
	public and private variables and functions
	Defining member functions
	Using member functions
	classes and structs together
	Constructors
	Overloading Member Functions
	Review Questions
	Review Answers
	Further Reading

	Separate Compilation
	Review Questions
	Review Answers
	Further Reading

	STL
	#include <utility> #include <tuple> (C++11)
	#include <iterator>
	Forward iterators
	Bidirectional iterators
	Random access iterators

	#include <vector>
	#include <map>
	Further Reading

