
Happy Learn Haskell Tutorial Vol 1
http://www.happylearnhaskelltutorial.com/

Written and Illustrated by GetContented
(enquiries@getcontented.com.au)

Updated on: June 5, 2016.

Contents

1 How to learn Haskell enjoyably 6

1.1 Fascination . 6

1.2 Wish to Create . 6

1.3 Too Many Details? . 6

1.4 The Journey Begins . 6

1.5 And Now You... 7

1.6 No Magic, But Why Pain? 7

1.7 Precise Language . 7

1.8 Taking Care . 7

1.9 Two Phases of Learning . 7

1.10 Stages Build Skill . 7

1.11 Simple, but Fun Examples 8

1.12 Progressive Learning . 8

1.13 Natural Assmiliation . 8

1.14 Motivation is King . 9

http://www.happylearnhaskelltutorial.com/

Happy Learn Haskell Tutorial Vol 1

2 Your First Step 9

2.1 Values . 9

2.2 Types . 10

2.3 Definitions . 10

2.4 Functions . 11

2.5 Our First Program . 11

2.5.1 A Definition . 12

2.5.2 A Term, or Variable Name 12

2.5.3 A Function Name 12

2.5.4 A String Value . 12

2.5.5 An Expression . 13

2.6 Homework . 13

3 Types as Jigsaw Pieces 13

3.1 A String Value . 13

3.2 Puzzles . 13

3.3 Definitions again . 14

3.4 Type Annotations . 14

3.5 Types for Functions . 15

3.6 IO Actions as Puzzles . 15

3.7 Putting values together like puzzle pieces 16

3.8 The whole program . 16

3.9 Another way to look at it 17

3.10 What is a Function? . 17

3.11 Arguments? . 17

3.12 Nonsense Programs? . 18

3.13 The shape of main . 18

3.14 The two simple programs 18

3.15 Pulling the definitions apart more 19

3.16 Are signatures mandatory? 19

3.17 Signatures as documentation 19

3.18 Homework . 19

4 The Main Road 20

0

Happy Learn Haskell Tutorial Vol 1

4.1 How a Haskell Program is Made 20

4.2 Purity . 20

4.3 Everything in Haskell is pure 22

4.4 An Analogy . 22

4.5 Haskell is Awesome . 23

5 Function Magic 24

5.1 A Story of Magic Coins . 24

5.2 After the Story . 27

5.3 Functions that Return Functions 28

5.4 Homework . 30

6 Sockets & Plugs 31

6.1 Reusability . 31

6.2 Functions are Values . 31

6.3 Plugging Values into Functions 32

6.4 Defining Functions . 33

6.5 Operator Sections . 34

6.6 What is commutivity? . 34

6.7 Homework . 35

7 Output Other Things 36

7.1 Integer or Int? . 36

7.2 Type Variables . 36

7.3 Type Variables can be named anything 37

7.4 Typeclasses . 37

7.5 The Show Typeclass . 38

7.6 Parentheses and Precedence 39

7.7 The print Function . 39

7.8 Homework . 39

8 Make Decisions 40

8.1 if...then...else expressions 40

8.2 Nesting if Expressions . 41

8.3 Case Expressions . 41

8.4 Guard Patterns . 42

1

Happy Learn Haskell Tutorial Vol 1

8.5 Argument Pattern Matching 43

8.6 Conclusions . 44

8.7 Homework . 44

9 Shop For Food with List 46

9.1 The Smallest List . 46

9.2 The (:) Operator . 47

9.3 List Syntax . 47

9.4 The List Type . 48

9.5 Lists of Other Types . 48

9.6 Lists with More Items . 49

9.7 Polymorphic Values and Types 49

9.8 The (:) Operator Again, Binding & Associativity 50

9.9 The Shopping List . 51

9.10 Counting The Items . 51

9.11 Adding a Message with (++) 52

9.12 Pattern-Matching with the (:) Value Constructor 53

9.13 Totality and More on Pattern-Matching with (:) 53

9.14 Prefix Operator Pattern-Matching 54

9.15 A Tiny Bit of Recursion . 55

9.16 The Final Shopping List Program 55

9.17 Homework . 56

10 A Dream Within a Dream 56

10.1 Predicates, String, Char . 57

10.2 The Ord typeclass . 57

10.3 Transforming Titles . 58

10.4 Building Up a Function to Rename the Movie List . . . 58

10.5 Homework . 61

11 More Shopping 62

11.1 Tuples . 62

11.2 Type Aliases (or Type Synonyms) 62

11.3 The Final Program . 63

11.4 More Recursion Explained 64

2

Happy Learn Haskell Tutorial Vol 1

11.5 Folding . 64

11.6 Using foldr . 65

11.7 Built in Recursive Functions 67

11.8 Homework . 67

12 How To Write Programs 67

13 At The Zoo 68

13.1 Sum Types . 69

13.2 Pattern Matching with Sum Types 69

13.3 More Recursion . 70

13.4 What is Currying? . 71

13.5 The Finished Program . 71

13.6 Homework . 73

14 Cats and Houses 74

14.1 Another Sum Type . 74

14.2 Product Types and Algebraic Data Types 74

14.3 Pattern-Matching Product Types 75

14.4 Function Composition . 76

14.5 Importing a Module . 77

14.6 Maybe An Answer . 77

14.7 A Little Finding & Sorting 78

14.8 More About Maybe . 79

14.9 The Final Program . 80

14.10Homework . 82

15 Basic Output 82

15.1 Setup Your Environment 82

15.2 putStrLn, print and String 83

15.3 Ways To Solve Problems 83

15.4 Guided Exercise 1: Display Hello 83

15.5 Guided Exercise 2: Display the Sum of Two Numbers . 84

15.6 Guided Exercise 2: Display the Product of Two Numbers 85

15.7 Reader Exercise 1 . 85

3

Happy Learn Haskell Tutorial Vol 1

15.8 Reader Exercise 2 . 85

15.9 Reader Exercise 3 . 86

15.10Reader Exercise 4 . 86

15.11Reader Exercise 5 . 86

15.12Reader Exercise 6 . 86

16 Fridge, The Game 86

16.1 Do Blocks with IO . 87

16.2 Do Block Nesting . 88

16.3 Whole-Program Recursion 88

16.4 Homework . 88

17 The People Book 89

17.1 Models of Data . 90

17.2 More on Data Types . 90

17.3 Making Our Types Show . 91

17.4 Building Our First Value . 91

17.5 Records . 91

17.6 Finding a Person from the List 93

17.7 Filtering out People in a List 93

17.8 A Note About List Efficiency 94

17.9 Higher Order Functions: filter 95

17.10Some Eta Reduction . 95

17.11Using filter . 96

17.12Higher Order Functions: map 97

17.13Higher Order Functions: sortBy 100

17.14Removing Parentheses With The ($) Function 102

17.15Using minimumBy . 102

17.16Homework . 103

18 Times-Table Train of Terror 104

18.1 Tuples or Pairs . 104

18.2 Ranges and the zip function 104

18.3 Determining the Level Number 105

18.4 The game loop . 106

4

Happy Learn Haskell Tutorial Vol 1

18.5 Homework . 108

19 Skwak the Squirrel 108

19.1 More on the ($) Function 116

19.2 Mid-Lesson Homework . 116

19.3 Continuing On . 116

20 Basic Input 118

20.1 Guided Program 1 . 118

20.2 Guided Program 2 . 120

20.3 Guided Program 3 . 121

20.4 A Little More About IO . 121

20.5 Your Turn . 122

20.6 Reader Exercise 1 . 122

20.7 Reader Exercise 2 . 122

20.8 Reader Exercise 3 . 122

20.9 Reader Exercise 4 . 122

20.10Reader Exercise 5 . 122

21 Getting Set Up 123

21.1 Mac Set Up . 123

21.2 Manual Set Up . 123

21.3 Questions & Community 123

22 Frequently Asked Questions 124

22.1 Volume 2 and Language Features 124

23 Many Thanks 125

5

Happy Learn Haskell Tutorial Vol 1

1 How to learn Haskell enjoyably

1.1 Fascination

Just like you, when we discovered computers we were taken in, fasci-
nated by their potential. We watched happily as programs seemed to
make anything possible. Such amazing works by the programmers
who created them.

1.2 Wish to Create

Delight quickly changed to desire: desire to write our own programs,
but how best to begin? Discovering many books, we filled our heads
with knowledge, sadly not finding much guidance about proceeding
with the practical craft.

1.3 Too Many Details?

Trying our hand at making programs ourselves, we discovered de-
tails cluttered us. Losing our delight, we’d stop. We simply didn’t
understand how to use our dusty book-learning. Our programs stank.

1.4 The Journey Begins

We felt bound by our knowledge,needing to return to the freedom of
before we began, so we endured tedious practice and failure, mak-
ing the theory our own, slowly understanding. Again we found no
guide lighting our path, but after an arduous journey, finally the fog

6

Happy Learn Haskell Tutorial Vol 1

lifted and we could write excellent programs and still be excited and
joyous.

1.5 And Now You...

So you too want to become a programmer. Luckily, you’ve found this
guide, crafted by people who have lived this path to the end, and
would save you the pain and boredom we endured.

1.6 No Magic, But Why Pain?

There’s no magic here, but there are more-, or less-difficult paths to
choose. If you want mastery, you always need deep practice, but why
should this mean pain and boredom? Small steps will be our guide,
and fun our companion. But, how to journey?

1.7 Precise Language

Far more precise language than ours is needed to program. To write
in such a language, we need to know the correct words and their
strict arrangements; and how to tease our intent apart and clothe it
nicely as a program. This is not all.

1.8 Taking Care

A little knowledge, that dangerous thing, produces some success,
and worlds of possibilities arise, bringing excitement with them. The
eager beginner quickly gets into a flurried muddle, as enthusiasm
has them tackling too much too soon. Initial elation slowly turns
into bitter disappointment and they give up or worse, spread hate.
We don’t want this for you.

1.9 Two Phases of Learning

Instead, your learning will proceed in two staggered stages. Each
lesson will introduce several programs. Reading, understanding and
typing these in yourself will embed them in your own experience.
You need this practice to recognise the pieces and to know what
they do. We’ll then adjust them slightly and see how they change.

1.10 Stages Build Skill

This proceeds in a graded, staged way. Using real-world problems
to illustrate simple solutions with the language constructs seen so
far, our reading will slowly increase in difficulty until we have seen
the core of the language and beyond.

7

Happy Learn Haskell Tutorial Vol 1

1.11 Simple, but Fun Examples

The second stage starts further along, when enough reading means
you know how to do small things. Again, we’ll take care to work
within enjoyable limits as we show you how begin to build a path
the other way: from problem solving, to intention, to code. This
stage will solidify your understanding. Proceeding, we slowly take
the training wheels off and before you know it, you’ll be able to make
some well-designed programs that read well, are easy to understand
and are enjoyable to change.

Many books don’t address the subject of how to craft solutions,
or they just leave you with nothing but some exercises and your
own intuition. Most are focussed heavily on programming language
topics first, and how you use them to do things second, if at all. You’ll
notice we’re primarily interested in you learning how to do useful
things, rather than the language for its own sake. Practical things
will anchor the language more in your memory and experience.

1.12 Progressive Learning

Our material is cleverly crafted to gradually introduce you to the
entire language. We do this over the course of the various, inter-
esting examples which are present in every chapter, across all the
volumes. We chose this way because the other way bores people to
sleep, which is inconsiderate and tedious.

1.13 Natural Assmiliation

Countless people have found programming difficult to learn because
of boring examples, unpolished writing, or material being organised
for language features rather than learner interest.

On the other hand, we’ve seen great success in material that uses
varied repetition, amusing useful pictures, fun examples using real-

8

Happy Learn Haskell Tutorial Vol 1

world topics and small graded steps. This guided our choices in
building the entire series, one volume of which you have in your
hands.

1.14 Motivation is King

If motivation really is what pulls us through practice, then we sin-
cerely hope we’ve inspired motivation and excitement in you with
this series, and wish you never forget the love that we all share for
learning and programming. May it guide you always.

2 Your First Step

Let’s begin our journey to learn Haskell with a program that gets a
message on the screen.

It’s important to begin simply, because doing small steps helps
you to avoid frustration and increases happiness!

So, in this lesson, we’ll discover this very simple program together,
and pull it apart to understand it. None of the following sentence
will make any sense yet, but it will by the end of the lesson: our first
program will be a single definition for an entry-point called main,
and it will use a built-in function called putStrLn and a value of
type String.

So, we’ll first explain what the terms values, types, definitions and
functions mean when talking about Haskell, then we’ll show you the
program, and explain it piece by piece.

2.1 Values

A value in Haskell is any data. The word "Step", for example. All
values have a type, which tells us and Haskell what sort of data they
are. (The type of "Step" is String).

9

Happy Learn Haskell Tutorial Vol 1

2.2 Types

A type is a name for a set or group of values that are similar. As an
example, there is a type for representing values like 5, and 34 called
Integer. Most of the time, the types of our values are not written
down in the program. Haskell will work out what the types are for
you, however, Haskell lets you write them down if you’d like to, like
this: 5 :: Integer and 34 :: Integer.

We’ll definitely learn much more about types later, so don’t worry
too much about them for now. To whet your appetite, though,Haskell
lets us make our own types. This means it’d be impossible to list
them all here, but you can easily write most programs using only a
handful of types, so it’s not too hard to think about.

Types are important because they decide how the pieces of your
program can fit together, and which values are allowed to go where.

2.3 Definitions

The “=” symbol lets us tell Haskell that we want it to remember a
name for an expression. The name goes on the left of it, and the
expression on the right. An expression is simply a way to connect

10

Happy Learn Haskell Tutorial Vol 1

up some values together in relation to each other.

The = symbol relates (or we can say binds) the name or pattern
on the left of it with the expression on the right of it. For example,
five = 5 tells Haskell that the name five means the value 5.

2.4 Functions

A function is a relation between one type and another type, and
they’re used in expressions with values. In Haskell a function is it-
self a value. If you provide a function with an input value, (by ap-
plying the function to the value), it will return (give you back) the
corresponding output value of the output type when it’s evaluated.

Be careful how you think about this! Function means something
different in Haskell than in most other programming languages.
Functions in Haskell are not sets of steps for the computer to fol-
low.

Our first program will show you an example of function applica-
tion, so read on!

2.5 Our First Program

Here, then is our first program to read. Just one line. We see an
expression that is being named “main”. The expression involves a
function being applied to a value, and the types are not shown:

main = putStrLn "Polly wants a cracker"

If you were to run this first program, it will put "Polly wants

a cracker" on to the screen.

This may look very confusing, but keep calm. We’ll break it into
five parts, and explanations:

11

Happy Learn Haskell Tutorial Vol 1

2.5.1 A Definition

This whole line is called a definition. It’s made of three pieces: 1.
the variable or term name, 2. the “=” symbol, and 3. an expression.

Haskell programs are created by making definitions and expres-
sions and embedding expressions in other definitions and expres-
sions.

It’s important to realise that the “=” symbol doesn’t mean we’re
“setting” anything here, or “putting” anything into anything else. We
use it to name expressions, is all. The name does not “contain” the
value, so we cannot re-define the same name at a different point in
our program, or change the name’s “content” or definition after it has
been defined.

2.5.2 A Term, or Variable Name

main: This piece is the name (called the term or variable) that we’re
defining. In this particular case, it’s “main”, and that is a special name
to Haskell. Every program must define main, and it is evaluated and
executed by Haskell to run your program. If you named it pain in-
stead of main, your program would not work. This is called the entry
point because it’s where Haskell will start executing your program
from.

main is a value, and also an input/output action (IO action for
short). IO actions are different to normal values because they de-
scribe how to make input & output happen. We’ll learn more about
this later.

2.5.3 A Function Name

putStrLn: this is a function name. If we put the name of a function
in an expression and a value to its right like this, when it’s evaluated,
Haskell will apply the function to the value to “produce” another
value. We say it takes a String value, and returns an IO action. When
this IO action value is executed, it will output its String to the screen.

2.5.4 A String Value

"Polly wants a cracker": This is one way to write text in
Haskell programs. It is a value whose type is String. (We can just

12

Happy Learn Haskell Tutorial Vol 1

call this a String). AString is a List of Char values. Char values,
or characters, are any written letter, number, or symbol. If you like,
you can imagine a String as symbols pegged to a piece of yarn —
strung together. We’re using this String in our program to provide
the putStrLn function with the data it needs to print to the screen.

2.5.5 An Expression

Expressions are how we express values. They have a type, too. This
particular expression evaluates to the IO action that results from
providing theString"Polly wants a cracker" to theput-
StrLn function.

This is a lot to take in all at once. Study it well, but don’t worry if
things aren’t clear yet, it will become easier as you read on. Check
back to this page later for reference.

2.6 Homework

Your homework is to try to run this program, if you have a com-
puter. This will involve setting up Haskell, too! Look at Chapter
21 if you want some helpful hints on how to get started and set up
your Haskell development system.

3 Types as Jigsaw Pieces

Ok so we previously looked at reading our first program and began
to understand it. Let’s look at some more programs and expressions.
This time, though,we’ll focus on the types of the elements to explain
what’s going on.

3.1 A String Value

Here is a String value:

"Dolly wants a cracker"

A nice way to think about values is as if they’re magical puzzle
pieces that can shrink and grow as needed to fit together. If val-
ues are puzzle pieces in this analogy, then their types would be the
shapes of the puzzle pieces. This analogy only really works for sim-
ple types, but it can be handy.

3.2 Puzzles

So, perhaps we might think of that String value like this:

13

Happy Learn Haskell Tutorial Vol 1

3.3 Definitions again

Let’s look at a definition for this String value. We make definitions
so we can re-use things in other parts of our program later on. We’ll
name this one m (as in message):

m = "Dolly wants a cracker"

As we’ve seen briefly before, this is telling Haskell that we want
to define the name m as being the String that is literally "Dolly
wants a cracker". Writing definitions for names like this is just
like writing a mini dictionary for Haskell, so it can find out what we
mean when we use these names in expressions in other parts of our
programs.

3.4 Type Annotations

Now we’ll see what it looks like when we include the code to de-
scribe the type of m, too.

m :: String
m = "Dolly wants a cracker"

Writing the type annotation like this helps both us and Haskell
to know what types values and expressions are. This is also called
a type signature. You probably worked out that (::) specifies the
type of a name in the same way that (=) is used to specify the
meaning of a name.

Haskell now knows that m means "Dolly wants a

cracker" whenever we use it in another expression, and
that it is a String. Anywhere we use the m variable, Haskell will
use our String value; they now mean the same thing.

14

Happy Learn Haskell Tutorial Vol 1

3.5 Types for Functions

Now, what about putStrLn? As we know, this is a name that
Haskell already has ready-made for us. Let’s look at its type:

putStrLn :: String -> IO ()

(Note: You will never need to write this type in your own code
because it’s already defined. We’ve just shown it here so you can see
what it is, and how to work with it.)

We can read this as “putStrLn has type String to IO action”, or
“putStrLn is a function from String value to IO action”. String
is the function’s input type, (->) signifies that it’s a function, and
goes between the input and output types, and IO () is the func-
tion’s output type.

3.6 IO Actions as Puzzles

Let’s look at what an IO () value might look like if we imagined it
as a puzzle piece (the shape is completely made up, but we’ll use it
to explain the types of values):

What about putStrLn? Well, it’d need be a value of type IO

() once it had a String popped into it. We could imagine that it
looked like this, roughly:

It’s not an IO () value. It’s something that can be, when supplied
with a String value. See how that makes it a kind of mapping
between values of these two types?

15

Happy Learn Haskell Tutorial Vol 1

3.7 Putting values together like puzzle pieces

When we put a String value in that pink gap, we get an expression
that will evaluate to a value whose type is IO ().

putStrLn "Dolly wants a cracker" :: IO ()

As you can see, we can put a type signature on almost any expres-
sion. For example, here’s another expression that means the same
thing, but with too much annotation:

putStrLn ("Dolly wants a cracker" :: String) :: IO ()

We put a sub-expression type annotation for the String as well
as an annotation for the whole expression! Very silly. In real code,
we’d never see an expression like this, because Haskell can almost
always work out the types from the context, which is called type in-
ference. Notice we’re using parentheses around the string so Haskell
knows which signature goes with which expression.

Of course we could use our m that we defined earlier instead, and
show off its type annotation, too:

putStrLn m :: IO ()

3.8 The whole program

So this expression is an IO () value, and because main needs to be
an IO () as well, we can see that one possible definition of main
could be this putStrLn expression. Here’s the whole program to
print out the String:

m :: String
m = "Dolly wants a cracker"

main :: IO ()
main = putStrLn m

16

Happy Learn Haskell Tutorial Vol 1

3.9 Another way to look at it

So far so good, now let’s see some similar things visualised slightly
differently:

When we put a value next to a function, like in the expression
putStrLn "No!", we can say putStrLn is taking the literal
String whose value is "No!" as its argument. The word argu-
ment means the parameter to a function. In Haskell, wrting two
things with a space between usually means that the thing on the
left is a function and it will be applied to the value or expression on
the right.

3.10 What is a Function?

A function is a value that expresses a relationship between types.
That is, it relates one set of values to another set of values. The
putStrLn function relates String values to IO actions, for ex-
ample. If you plug (or connect) a String value into putStrLn as
we have seen above, together they form an expression of type IO

action.

3.11 Arguments?

The “hole” position that putStrLn has is called an argument (or
parameter). By giving a value to a function as an argument as de-
scribed, we are telling Haskell to connect them into one expression
that is able to be evaluated, into a value of its return type.

In the picture above, main is shown as being square-shaped. By
itself,putStrLn doesn’t have the same shape as main, so it needs
something “plugged” into it before we can equate it to main.

Once the String is plugged in, the whole thing is an expression
with the same shape that is required for main, which means we can
write a program with the definition for main we saw above.

main :: IO ()
main = putStrLn "No!"

Another way to say this is that the IO action that results from

17

Happy Learn Haskell Tutorial Vol 1

connecting these together is a value. Before it has the String con-
nected to it, it’s an IO value that is a function of its String argu-
ment (and that function is named putStrLn).

3.12 Nonsense Programs?

It’s important to remember that Haskell receives programs as text
files, so there is nothing stopping you from writing programs that
make no sense, such as trying to provide something other than a
String as an argument to putStrLn.

main :: IO ()
main = putStrLn 573 -- this will not compile!

Haskell won’t let you compile or run obviously incorrect programs,
though. It will give you an error if you try. You should try to compile
the incorrect program above. Haskell will tell you there is a type-
checking error.

3.13 The shape of main

So, we saw that main needs its definition to be of a certain “shape”.
Haskell requires that main is an IO action. Its type is written IO (),
which is an IO action that returns nothing of interest (but does some
action when executed). We use the double-colon operator (::) to
mark the type that a definition, expression or value is “of”. Below,
we’ll see this in operation some more.

3.14 The two simple programs

Let’s take a look at these two programs which were referenced in
the drawings earlier:

main :: IO ()
main = putStrLn "Yay"

main :: IO ()
main = putStrLn "No!"

By the way, you can only define an identifier once in each Haskell
file, so don’t try to put both the above definitions in one file and
expect it to compile. Haskell will give you an error. An identifier is
just another name for a variable or term, as discussed in an earlier
chapter.

The first program prints out “Yay” on the screen, and the second
one prints “No!”

As discussed we read the (::) operator as “has type”. IO () is
the type of IO actions that wrap the empty tuple. The empty tuple
is a container that can never have anything inside of it, so it’s used
as a simple way to express the value of having no value at all.

Handily for us, IO () is the same type of value that putStrLn
returns when we give it a String as an argument.

18

Happy Learn Haskell Tutorial Vol 1

3.15 Pulling the definitions apart more

Let’s read another program that does exactly the same thing as the
No! program above, but goes about it a little differently:

message :: String
message = "No!"

main :: IO ()
main = putStrLn message

We’ve just pulled the No! String out into its own definition (nam-
ing it message), with its own type signature. Don’t let it scare you,
it’s pretty simple. It just means message is a String, and its value
is "No!".

3.16 Are signatures mandatory?

Do you have to write type signatures? Not always! We started the
book with a definition for main that had no type signature, and then
added one, so you can leave them off — as long as Haskell can infer
what you mean by itself. Don’t worry, it’ll tell you if it can’t work it
out.

Haskell uses a pretty nifty feature called type inference to figure
out what types things should be if you don’t write type signatures
for them.

3.17 Signatures as documentation

However, it’s often a good idea to put type signatures in so you and
others know what your code means later. We recommend doing this
because it improves the readability of your program, too.

Did you notice you can use type signatures to let you work out
what to plug in to what? They can be incredibly useful when pro-
gramming.

3.18 Homework

Your homework is to do an internet search on Haskell programs and
see if you can identify at least ten definitions, and ten type signa-
tures. Don’t get too worried by odd looking things, just stick to the
homework. We want to get you familiar with what these things look
like.

19

Happy Learn Haskell Tutorial Vol 1

4 The Main Road

We discovered that main is the entry-point of all Haskell programs.
In other words, the point where they start executing. We also dis-
covered that main is an action, so now we’re going to delve a little
bit into actions, IO, and what purity means.

Bear with us while we work through this part. Haskell works differ-
ently than you would think, and it’s important to get a clear mental
picture of how it behaves.

4.1 How a Haskell Program is Made

Haskell programs are made by writing definitions in text files, and
running a program called a compiler on those text files. The com-
piler understands Haskell, and translates the text files as Haskell
into an executable program, which we can then run.

4.2 Purity

In Haskell, all the things you can write are called pure: definitions,
values, expressions and functions, even the values that produce ac-
tions.

Pure here means they are consistent, equational and express
truths about value. That makes them easy to think and reason
about. They’re expressed in the world of the computer, where pure
thought can exist. All the expressions in Haskell use this purity,
which makes writing software joyful because we can lock parts of
our programs down into separated, predictable behaviour that al-
most always works as we think it will.

20

Happy Learn Haskell Tutorial Vol 1

To understand this, let’s think about the way addition works. It
never, ever changes. If you add the numbers 1 and 5, you will never
get a different result than 6. Of course! This is what we mean by
pure — we can talk about what is true or false in this “world” with
some certainty. Contrast this to something from the real world: the
current time. This is not a pure value because it is always changing.

Let’s see a program that does this. Don’t worry if you don’t under-
stand anything about it yet. We’ll explain it in later chapters:

-- a program to
-- add 1 and 5

main :: IO ()
main = print (1 + 5)

Every time you run the program above, it will return 6. It can never
change,which is because it only uses simple pure functions and pure

values to obtain its result. Contrast that to the following program,
which uses pure IO actions that contain non-pure values:

-- a program to get and print
-- the current time as seconds

import Data.Time.Clock.POSIX

main :: IO ()
main = getPOSIXTime >>= print

When we run this program, it takes the current time from IO, and
passes it to some screen-printing code which is built into the IO

portion of the print function, which prints it out on the screen. Ev-
ery time you run this program you’ll get a different answer, because
the time is not a pure value. It’s always changing.

Something to note, though, is that getPOSIXTime and print

are still pure functions. They will always return the same thing: a
description of non-pure actions. That is, they describe non-pure val-
ues and functionalities. That means when we write our program we
can still use pure functions like the above, but when it is run, those
values can send non-pure values and functions around, like the time
or printing things to the screen. These are called IO actions, because
they describe some action on the input/output context.

21

Happy Learn Haskell Tutorial Vol 1

4.3 Everything in Haskell is pure

Some more about this. So how can we say everything in Haskell is
pure, if we just showed you a Haskell program that deals with the
time which we just explained is an impure value? Well, the Haskell
program is pure, and only expresses pure values and functions, but
the IO type allows us to describe and contain computations and val-
ues that deal with the non-pure real world!

Pure values and expressions and functions are much easier to rea-
son about because they’re simple and direct, which is why it’s nice
to program in Haskell: It lets us talk about the non-pure world using
pure descriptions.

Unfortunately, most of the interesting things we want to program
are not completely pure. Haskell has certain special functions and
values that are marked as IO actions. You’ve seen one or two already.
These are also pure, like everything in Haskell, but they give us a
gateway into the messier “real world”. They let us describe actions
that can happen in the real world.

In Haskell, the types of things that let us do this are made with
a constructor named IO, which stands for Input/Output. That is, the
world of the error-prone, non-pure, complicated, real world where
things are always changing, and where there is input and output
from keyboards, mice, disks, time, the internet, random numbers and
printers. The real world is usually hard to think about simply, and
much more difficult to program for. It doesn’t obey the same rules as
the pure world and is harder to lock down into predictable behaviour

because it’s so complex and complicated.

getPOSIXTime :: IO POSIXTime

As we can see, the type of the function that can get the POSIX
time (a type of time value) is an IO type, which shows that it is an
action in the impure world. That means it will return a POSIXTime
when it is executed.

So,IO actions can be executed, which is what happens when their
IO behaviour is activated - this is how programs are run. This IO be-
haviour is effectively invisible to the pure world. The pure world can
never “see outside” to the real IO world, however the IO world can
use pure values, functions and expressions without problem. Run-
ning a program is how we execute IO actions. When we compose
our IO actions with other IO actions and pure functions, we can
build up useful, functioning programs.

4.4 An Analogy

Let’s use an analogy here: think about a simple electric circuit: a
battery, some wires, a switch and a light globe. By themselves, all
of these things are simple, “pure” things. The light and switch are
slightly different than the others, but they are still just themselves.
However, the switch can “do input” into the circuit, and the light
globe can “do output” from the circuit in the form of glowing light.
The wire and battery can do no such things. They don’t have any
action in the real world at all.

22

Happy Learn Haskell Tutorial Vol 1

If we connect these components into a circuit by binding them to-
gether, we can throw the switch (that is, give the circuit some input)
and the light bulb will cause there to be light (that is, we’ll get some
output). This doesn’t change what these components are, obviously.
However, some of the parts provide effects in the world outside the
“world” of their pure value inside the circuit. The wires are like our
totally pure non-IO functions in Haskell because they don’t do any-
thing outside the circuit: they’re not like the light or the switch.

You can see how all of these components are in themselves purely
what they are, and all of them can be used as part of other bigger
composed circuits, which in total have some IO action on the real
world, but also that some of these component (such as the wires)
don’t actually do any actions in the world of IO for the circuit, but
are necessary for the whole circuit.

In a similar way, IO actions have a foot in both worlds: while
being able to be evaluated like ordinary Haskell expressions, which
does nothing in the IO world, they also contain the ability to be
executed: that is, to interact with the outside world and effect it in
some way, and so they are marked with the IO type marker. To create
programs that interact with the IO world, we bind combinations of
these IO actions together along with pure functions to create bigger
IO actions that can do what we want.

4.5 Haskell is Awesome

Haskell is an awesome language: it’s capable of letting us cleanly
think about and build pure expressions and functions, and also lets
us connect these pure things up to the real, messy world in a way

23

Happy Learn Haskell Tutorial Vol 1

that keeps as much of our programs simple, clear and separate as
possible.

When a program is composed of pieces like this, it’s very easy to
reuse parts of it, and it’s much easier to spot problems and adjust
things.

Note that Haskell programmers will often refer to a pure IO value
as an action, as well as referring to the part of one that effects the
real world, such as the action of putting a message on the screen.
This can sometimes be confusing, so just remember it can mean
either.

5 Function Magic

One of the simplest types possible has only two values. They repre-
sent truth and falsehood. In Haskell, this type is called Bool (short
for boolean), and its two values are named True and False:

True :: Bool
False :: Bool

In later chapters, we’ll see how important these two values are.
We’ll use them for checking things,and doing all sorts of other useful
things. For now, we’re going to use them to introduce you to how to
really think about functions.

5.1 A Story of Magic Coins

Let’s imagine you’re a book-keeper on holidays looking for a good
spot to read a pocket book called “The magic language of Haskell”,
and you end up in a milk bar on planet Boolean where the local
currency is Bool coins. You just bought a milkshake, and now you
really want to play your favourite song on the jukebox as you read,
so you open up your money holder, and here’s what you see:

24

Happy Learn Haskell Tutorial Vol 1

Drats! Mostly False coins. The jukebox takes two True coins,
and you only have one of them.

You spy a misshapen robot character at one end of the bar who
might be a Haskell wizard. Maybe this guy can help.

He puts down his milkshake, and as you explain your plight to him,
he stops frowning and clicking his tongue and reaches into his cloak.

Pushing a small glowing bag in your direction, he seems genuinely
happy to be able to help.

“You pay for these by learning how they work” he says simply, re-
fusing your offer of paying with False coins. Satisfied, you take the
bag and look inside as you walk to the jukebox. You pick out one of
the glowing coins inside, and take a look. It appears to be made of
something magical:

You notice an inscription on the coin. It looks like some kind of ar-
cane magical writing, obviously written in Haskell, the ancient mag-
ical language of the robot wizard folk:

(\x -> True) :: Bool -> Bool

You’re a little familiar with this language yourself. Being a book-
keeper, you like to read many of the titles you stock, some of them

25

Happy Learn Haskell Tutorial Vol 1

about Haskell. Happily you remember you just happen to have that
beginner’s pocket guide to the Haskell language in your back pocket.
Oh yes, that was why you came in here in the first place, to read it!

You recall that the arrow symbol (->) usually indicates a func-
tion: that is, a mapping from one type of things to another type.
However, here there is a True value on the right, and \x on the left.
These aren’t types. What’s going on?

You consult your pocket book, and after a few minutes of rifling
through the pages, you discover that this is a thing called a lambda,
in coin form. A lambda, you read, is a function with no name: a way of
getting a completely new value from a value. It also says functions
are values, too, but you don’t know what that could possibly mean,
so you ignore that for now.

The syntax, (that is, the way it’s written), has \ followed by a vari-
able name that represents what you are applying this function to.
This variable can be used in the area to the right of (->). It seems
this lambda isn’t using the (x) variable name it has at all. This
lambda produces a new True whenever you apply it to any True
or False value and ignores the x variable entirely.

This is great! It’s just what you wanted. You can take your False
coins and make new True ones from them! Those wily robot wiz-
ards, making such magic!

You take one of your coins, and you place it to the right of the
magic coin, so its magic will bind them together. POP!

The magic coin pops, they both disappear, and a brand new True

coin appears! Slowly you realise you just did something very silly,
though.

The coin you applied to the magic coin was that single True coin
you already had! So it did nothing, effectively. You write this down
in the margin of your book, for future reference:

(\x -> True) True -- Equals True
-- Pointless waste. Don’t do this!

The -- code is called a comment, and it’s not part of the code, it’s
just for marking notes you can write to readers of your code, includ-
ing yourself. When Haskell sees --, it will ignore all the writing to
the right of it until the end of the line.

You wrote parentheses around the lambda expression. If you
didn’t, Haskell would think the first True was a function, and that
you wanted to apply it to the second True, and that would cause
Haskell to not compile your program.

So now you’ve used your single True coin, but you got another
one in its place, so no harm done you suppose to yourself, though
you did just use up one of your magic lambda coins.

Time to try with a False coin. Frrrrzzzzt... POP! Brilliant! It
worked. You now have two True coins so you can play your song.
You note your new discovery in your note-book:

(\x -> True) False -- Equals True

26

Happy Learn Haskell Tutorial Vol 1

Before you play your song though, you get curious. What if you
fed one of your magically created coins into another one of those
magic coins? Will it explode? Will the world stop?

Furtively, you glance over toward the robot wizard for guidance,
but he appears to be engaged in an apparently amusing conversa-
tion with himself about folding wizard gowns into luggage and cata-
morphisms, whatever they are.

Why not try! You quickly grab a magic coin, and thrust one of
your newly made coins next to it. POP! again. It does exactly what
happened the first time. So you write this down, too:

(\x -> True) ((\x -> True) False) -- equals True

You read that back and it looks a little complicated. The part on
the right is the coin that resulted from shoving a False into the
magic coin. Then we put that whole bracketed thing on the right of
another magic coin. It’s correct, just has lots of things going on!

You slide over to the juke box, put your coins in and then begin
listening to the sweet sounds of Never Gonna Give You Up by Rick
Astley, a timeless classic on your home-world.

You go back to your seat and keep reading the book a bit more.
You’ve seen definitions before. You know how to make them. We see
a definition for a magic coin:

magicCoin :: Bool -> Bool
magicCoin = \x -> True

You read on and find out that because we’re not using x in the
body of our function, we can actually replace it with the underscore
character; “ ” to say that this is a function that has one argument, but
it won’t be used. Fascinating, you think, as you hum happily, sipping
your shake.

5.2 After the Story

We leave our story here, but we see that we can use the magic-

Coin function in the same way that we used putStrLn earlier, ex-
cept because magicCoin has type Bool -> Bool, we can feed
an applied expression of it into another application of it.

magicCoin :: Bool -> Bool
magicCoin = _ -> True

newCoin :: Bool
newCoin = magicCoin False

newCoinAgain :: Bool
newCoinAgain = magicCoin newCoin

newCoinAgain’ :: Bool
newCoinAgain’ = magicCoin (magicCoin False)

We can keep applying it as many times as we like, however this
magicCoin function is only useful if you want to take a True or
False and make a sure it’s a True.

There’s another way to write this function in Haskell. Let’s take a

27

Happy Learn Haskell Tutorial Vol 1

look at it:

magicCoin’ :: Bool -> Bool
magicCoin’ _ = True

We don’t have lambda syntax here. This is regular function defini-
tion syntax. We’re using “ ” to pattern-match on any value at all, and
not use it.

We could have also written this function like this, listing out one
equality definition for each value in the argument:

magicCoin’’ :: Bool -> Bool
magicCoin’’ True = True
magicCoin’’ False = True

There is no reason to do this with our trivial example, but this
shows you another way to write functions. We could write a function
that flips a boolean value to its opposite value. This is actually built
into Haskell already as the function named not, but we’ll make our
own, and show you how easy it is to read it:

not’ :: Bool -> Bool
not’ True = False
not’ False = True

This means we first check if the input value is True, and if so, we
return False. If it’s False, we return True. This is called pattern
matching. It’s just simple pattern-matching: matching on the values.

5.3 Functions that Return Functions

Let’s look at another lambda, but this one will return the magic-

Coin function! Let’s really think about this. Functions are values
just like Bool values or String values or any other type of values.
What about the type of this function that returns a function? It will
take a Bool, and return a (Bool -> Bool), that is, it returns a
function from Bool to Bool, so this is what we’re looking at:

(_ -> magicCoin) :: Bool -> (Bool -> Bool)

Let’s set this up as a definition. We’ll call it magicBool:

magicBool :: Bool -> (Bool -> Bool)
magicBool = _ -> magicCoin

Those types don’t need brackets, because they naturally group up
to the right. This is a function that takes two arguments! Let’s re-
move the brackets from the signature, and spell magicCoin out as
a lambda.

magicBool’ :: Bool -> Bool -> Bool
magicBool’ = _ -> (_ -> True)

We’ve included parentheses for you to understand better, but
they’re not needed here. There are actually two other ways we could
write this, let’s see:

28

Happy Learn Haskell Tutorial Vol 1

-- using two lambdas,
-- without parentheses
magicBool’1 :: Bool -> Bool -> Bool
magicBool’1 = _ -> _ -> True

-- using just one lambda
magicBool’2 :: Bool -> Bool -> Bool
magicBool’2 = _ _ -> True

So, how would we use this? Well, It’s a function so we can just give
it any Bool value, then it’ll give us back the magicCoin function
as a value! Then, if we want to,we can give that another Bool value,
and it’ll give us back the value True.

This might seem useless at first, but let’s switch it into normal
function syntax, and then we’ll look at a very useful function.

magicBool’’ :: Bool -> Bool -> Bool
magicBool’’ _ _ = True

Ok, so what if we wanted a function that tells us if any one of two
values is True? This is a function that is built into Haskell, you’ll see
it later. If you’re this high, or you’re an adult, you can ride the scary
ride!

Here’s how it could be made with what we know so far:

eitherTrue :: Bool -> Bool -> Bool
eitherTrue False False = False
eitherTrue _ _ = True

So if both the arguments are False, we should reply with False,
however for everything else, the answer is going to be True. (That
is: either one is True, or both are True).

Neat, isn’t it? This is a very useful function, and programmers use
it all the time.

This process of making a function that returns a function itself
is called currying after the mathematician Haskell Curry (yes, that’s
why Haskell is named Haskell). This is how Haskell takes arguments.
By doing more, we can get more than 2.

What about something more involved, like maybe adding two In-
teger numbers? Well, we’ll show you this here just now, but it’s really
the topic of the next section, so don’t worry if you don’t quite get it
yet.

We’re going to define a function called plus that takes an Int

value (Int is a whole number type), and returns a function that takes
another Int value and returns the first added to the second. We’re
going to use the (+) operator / function here. Just ignore it for now
other than to know that it’s the way to add two numbers in Haskell.

plus :: Int -> Int -> Int
plus x y = x + y

plus’ :: Int -> Int -> Int
plus’ = \x -> \y -> x + y

increment :: Int -> Int
increment = plus 1

29

Happy Learn Haskell Tutorial Vol 1

increment’ :: Int -> Int
increment’ = (\x -> \y -> x + y) 1

additionResult :: Int
additionResult = plus 100 25

First we have plus, which takes two arguments and returns the
first added to the second (using the (+) operator).

Next we have plus’ which does the exact same thing, but we’re
using lambda syntax, and nesting one lambda in another.

Then increment, which uses the plus function and gives it one
of its two arguments,which as we know will give us another function
back. (Which will add one to whatever you give it). After that we
have the same function done with lambdas: increment’. Finally,
we have a definition for the expression of adding 100 to 25.

5.4 Homework

This chapter might have seemed pretty simple or quite easy for you,
but what we just saw is very deep, so it’s worth thinking about some
more.

Haskell functions cannot take multiple arguments, only one each.
However, what they can do is return another function. The way we
get functions to work with more than one argument in Haskell is to
wrap other functions around them, as we saw above. In other words,
to make functions that give functions as their result.

If each of these functions that are returned also take an argument,
we can create a kind of chain of arguments. Let’s see.

When we see this:

add :: Int -> Int -> Int
add x y = x + y

It’s just a “sweeter”, easier, more convenient way of writing this:

add :: Int -> (Int -> Int)
add = \x -> (\y -> x + y)

We can put a number into x by applying the function to an argu-
ment, and we get a function back: add 2 for example:

add :: Int -> (Int -> Int)
add = \x -> (\y -> x + y)

-- substitute 2 in for x.
-- note that this is not Haskell code,
-- it’s just to show you what happens:
-- add 2 is equal to \2 -> (\y -> 2 + y)
-- add 2 is equal to \y -> 2 + y

If you wanted, you could call this a partial function application,
but it’s really not what’s going on. All Haskell functions only take
one argument, so all we’ve done is supply the add function (which
produces another function) with one argument.

30

Happy Learn Haskell Tutorial Vol 1

When we write add 2 3what we’re actually doing is supplying a
function-producing function with one argument (add 2) and then
immediately providing the function that gets produced by that with
the 3 argument: (add 2) 3.

Your homework is to read through this very well, and really try to
understand it. Try out all of the program fragments in this chapter,
and if you don’t understand any of this at all,write to us and tell us so
we can adjust the book. All of the rest of your Haskell understanding
relies on understanding this. We will explain it a little more in the
next chapter, but it’s quite important.

If you’ve already learned another programming language, then
this particular point will be incredibly difficult to understand for you.
If you haven’t learned another programming language before, it’s
going to be much easier because the way Haskell works is simpler,
in the sense that it is not as complex. Of course if you’ve learned
something complex and you think that is ordinary, when you see
something simple it makes things very difficult to understand.

You’ll often hear us talking about things like “a function of two
arguments” or, “put the letter ’x’ in as the third argument”, but this
is just an easier way to say what we mean. It’s not accurate, but we
can use the short-hand form because we all understand that Haskell
functions only take one argument, and when we say a function of
two arguments, we really mean a function that produces a function
that uses both their arguments in its inner body.

6 Sockets & Plugs

In this chapter, we’ll explain another way that might help you to
think about functions work when they’re used. All of these views of
functions can help you to get a rounded idea of how to use them
well. We’re spending so much time on this because it’s the under-
pinning of everything in Haskell.

We could think of them like they were electronic devices, waiting
to have something plugged into them. Depending on what you plug
in, you will get a different result.

6.1 Reusability

Functions are one of the most basic ways to re-use expressions in
a program. They save us repeating ourselves as we write programs.
Functions take variables or parameters that can have different val-
ues (of a type) for each new time the function is applied.

6.2 Functions are Values

Functions are also themselves values, but they are a special kind of
mapping-value from values to other values.

This is why putStrLn "hi" means to “apply the putStrLn

function to the String value "hi".

31

Happy Learn Haskell Tutorial Vol 1

Another way to think of it is that putStrLn makes a kind of map-
ping between any String value to a corresponding IO () value.

Let’s imagine there’s a function called plus5which takes a whole
number as its single parameter. When we give it a value, the result
is whatever its input is, but 5 more.

If we were applying this function to the number 53, for example,
we would write the function application plus5 53.

-- we apply the function plus5
-- to the number 53
plus5 53

Above, we show this function as a machine box with a plug and a
screen that shows the “answer”.

Int is one of Haskell’s names for the type of whole numbers; both
negative and positive. The mathematical name for a whole number
is integer, which comes from latin and means “entire”.

The function’s type is written in Haskell as Int -> Int, which
means “the type of all functions that maps from any Int value, to
any Int value”.

We can also say that Int -> Int is “an Int that is a function
of another Int”. Its value isn’t just an Int until you “give” it an Int.

6.3 Plugging Values into Functions

So in the graphic, we “plug” 53 into this plus5 box, and it displays
58. Comparing our graphic with the way function application is ac-
tually written, we can see it’s reversed. In Haskell, as well as in Math,
we usually plug values in to the right of the function, (or sometimes,
with operators, the left and right), whereas in our box graphic, or
with audio equipment, we’re plugging values in on the left of the
boxes (which represent functions).

This is an important point. The way people think and do things is
often put a different way around compared to the way you have to
write things in Haskell. This is often the same thing with Math. In
Math and Haskell, you have to be more consistent and precise. For
example, in everyday life, we’d say ”add five to three”, but in Math
and Haskell, we’d write 5 + 3.

It’s good to realise there are usually many ways to look at some-

32

Happy Learn Haskell Tutorial Vol 1

thing. For example, if we look at a toggle switch, and it’s marked “off”,
does that mean it’s currently off, or that pressing it will “action” the
off functionality? (ie turn it off). There is no one true right answer,
so it’s good to be aware there are many ways to express the same
thing that can often appear as complete opposites to each other.

Getting back to our machine, the moment we plug our 53 ::

Int into the box, the type of the box changes from Int -> Int

to just Int. We can then plug that whole expression (plus5 53)

into any other function box that takes an Int as an argument. We
may have to use brackets, though, in Haskell.

-- apply plus5 to 53:
plus5 53

-- apply plus5 to
-- the application of plus5 to 6
plus5 (plus5 6)

What if we wanted to plug the expression plus5 53, into the
function plus5 again? Well, we could do that like this: plus5
(plus5 53), and the result would be 63:

We can clearly see that the “output” of the first box as 58 can
be plugged into the “input” of the second box. (Don’t get confused,
this is not an IO action! We’re not talking about actually outputting
these numbers on the screen or anything, just plugging values into
functions as a metaphor).

6.4 Defining Functions

So, let’s move on and read a definition for this plus5 function. We
already know what it does:

plus5 :: Int -> Int
plus5 x = x + 5

This is the type declaration and definition for a function that takes
one argument of type Int. We’re naming that argument x here in
this definition (that’s why the x appears on the left of the = sign). We
could have named it almost anything we liked. To “use” this function,
you supply plus5 with an Int value by placing it to the right of it
like this: plus5 7.

The definition uses something special we haven’t seen yet called
an operator. Here it’s an infix function called (+) that is named
as the + symbol, and it takes two numeric arguments, one on ei-
ther side! A function is called an infix function when it appears
between its arguments. Normal functions are called prefix because
they are placed before their argument(s). Functions that are named

33

Happy Learn Haskell Tutorial Vol 1

as symbols like (+) here are called operators, and they almost al-
ways only ever take exactly two arguments, and are usually infix, like
(+). You’ll also notice when we talk about them, we put parenthe-
ses around them. In Haskell this is how they’re referred to outside
of when you’re using them in a function application.

Let’s look at another program that does almost the same thing.
Notice we’re using a different variable name here (we called it num-
ber), rather than x.

plus6 :: Int -> Int
plus6 number = number + 6

Now we’ll present another way to write this. If you have an infix
operator such as (+), and you want to use it as a prefix function,
you can just wrap it in parentheses. This function works exactly the
same as plus6:

plus6’ :: Int -> Int
plus6’ number = (+) number 6

6.5 Operator Sections

Next we’ll present another identical function,but using what’s called
a section. A section is a partially applied operator. That means it has
one of its two arguments supplied, and that becomes a function. It
always uses round brackets.

plus6’’ :: Int -> Int
plus6’’ number = (+6) number

See if you can guess the type of (+6) right now. First, you might
want to think about the type of the (+) operator. It takes two nu-
meric arguments, and returns one numeric argument. So, if one of
its arguments are supplied, it will become a function of only one ar-
gument. Then, we apply this function to the number variable to get
our result.

So, you can think of the type of the function (+6) as taking a
single number, then returning a number.

It doesn’t matter which side you put the value on with the op-
erator (+), because (+) takes two identical arguments, and is an
operation that works the same no matter the order. In math, this
property is called the commutative property.

6.6 What is commutivity?

The word commute can be broken into com-, which means alto-
gether, and mut- which means to change. Commutativity means the
ability to interchange, so we can see that we can interchange the
numbers between either side of (+), and it makes no difference.

Here are four functions that are identical in result:

sevenPlus :: Int -> Int
sevenPlus number = (7+) number

34

Happy Learn Haskell Tutorial Vol 1

sevenPlus’ :: Int -> Int
sevenPlus’ = (7+)

plusSeven :: Int -> Int
plusSeven number = (+7) number

plusSeven’ :: Int -> Int
plusSeven’ = (+7)

6.7 Homework

Your homework is to get familiar with more definitions, and seeing
how function arguments are used in function bodies. Don’t get too
worried or confused by the many tricky weird looking things you’ll
see as you look at other code.

We’ll show you some code below. You should also do an internet
search for ”haskell defining functions”, go through the first 10 or so
returned pages and quickly scan through them for value and func-
tion definitions. Rememeber there are two ways to define functions:
either with the lambda syntax like sevenPlus = \number ->

(7+) number or with the “normal” syntax like sevenPlus num-

ber = (7+) number. Your aim here is simply to recognise where
the definitions are.

Here are the examples. Remember, don’t get caught on what you
don’t know, just look for what you do know. Remember, you’re just
looking for the definitions, especially the function definitions:

squaredNum :: Integer -> Integer
squaredNum x = x ˆ 2

lengthNum :: Show a => a -> Int
lengthNum n = length $ show n

bool1, bool2 :: Bool
bool1 = True
bool2 = False

notBool :: Bool -> Bool
notBool b = if b == bool1 then bool2 else bool1

veryNotBool :: Bool -> Bool
veryNotBool = \aBool -> notBool aBool

sumFrom1To :: Integral a => a -> a
sumFrom1To 0 = 0
sumFrom1To n = n + sumFrom1To (n - 1)

isEven :: Integral a => a -> Bool
isEven n = n ‘mod‘ 2 == 0

35

Happy Learn Haskell Tutorial Vol 1

7 Output Other Things

We’ve seen putStrLn. It lets us output any String on the screen.

What if we want to print out a number instead of a String?

We have the following definition for an expression that is adding
two numbers, and we want to print the resulting value out in a pro-
gram.

7.1 Integer or Int?

number :: Integer
number = 100390 + 29389

(Integer, by the way, is the type of unbounded whole numbers
in Haskell. Unbounded means they have no upper or lower limit (or
bounds). In contrast, the maxBound of Int that this document is
being prepared on now is 9223372036854775807.)

So, we know that the putStrLn :: String -> IO ()

function takes a String, and leaves us with an IO () value.

We don’t have a String, though, we have an Integer value.
How can we match these up so we can print out our number on the
screen?

In order to answer that, let’s first look at the type of the (+) func-
tion. We know from experience that it takes a number and another

number and returns their sum as a number, but the actual type isn’t
something we’ve seen, and includes some special new stuff for us.
Let’s look:

7.2 Type Variables

(+) :: Num a => a -> a -> a

Ok, breathe. Let’s first look at the right side: a -> a -> a. Why
all the a’s?

Well, we know from all the (->)’s that this means it’s a function
that takes two values of type “a”, and returns a third “a”. What is “a”,
though? It’s what’s called a type variable. That means it can be any
type. If it starts with a lowercase letter, it’s a type variable. If it starts
with a capital, it’s an actual type, or a typeclass, which we’ll explain
soon (Num is a typeclass in Num a => a).

One important point about type variables is that while they can be
any type at all, all the “a”s must still be the same type as each other
when using the function! So if we used an Integer value as our
first argument, so saying that the first type a was Integer in (+),
then we would need to use an Integer as our second argument,
too:

-- both types must be the same,
-- so this will be fine:
goodNumber = (3 :: Integer) + (5 :: Integer)

36

Happy Learn Haskell Tutorial Vol 1

-- this would cause a type error
willNotWork = (3 :: Int) + (5 :: Integer)

If we don’t specify the type of our numbers, Haskell’s type infer-
ence works it out for us, which saves a lot of time and hassle.

7.3 Type Variables can be named anything

Ok, so here is another way to write the (+) function, which shows
you that variables don’t necessarily have to be named a:

-- it’s a lot smaller to write
-- ’a’ than ’theNumber’
(+) :: Num theNumber =>

theNumber ->
theNumber ->
theNumber

7.4 Typeclasses

Now we have to think about the “Num a =>” part. That can be read
as “a is constrained to types which are instances of the Num type-
class”. This mouthful means that the (+) function can take two
arguments of any type at all (here we’re naming them a), as long as
that type (again, here called a) is an instance of a typeclass called
Num. Luckily for us, all numbers are!

A typeclass is not a concrete type like Integer,Int or String.
It’s a way of tagging many types (a “class” of them, if you like) so that
we can have functions or values that work with many similar types
that do similar things, but that are actually different. Let’s take a
look:

-- a small int 5:
intFive = 5 :: Int

-- a "floating-point" value of 10.3
floatTenPointThree = 10.3 :: Float

-- add them together with (+). This will not work...
-- because both types are concretized (or specialized)
errorResult = intFive + floatTenPointThree

-- add them together with (+). This will work
result = (fromIntegral intFive) + floatTenPointThree

-- the result is 15.3

37

Happy Learn Haskell Tutorial Vol 1

Here we’re using fromIntegral to build an “unspecialised”Num
a => a version of the Int value of intFive so we can subse-
quently add it to floatTenPointThree. The value 5 :: Int

is not of type Float, so the types won’t match unless we do this.
However, if either of the values are of type Num a => a, then (+)
will typecheck because it can match both types together (by con-
cretizing the Num a => a type to Float).

The Float,Int, and Integer types are all instances of the Num
typeclass. There are many numeric types in Haskell such as these. To
be able to do arithmetic functions on different numeric typed values,
they are tagged as Num which allows us to define each of the simple
arithmetic functions for each type differently, but use them all with
the same name and interchange values.

This “tagging” is called making a type an instance of a typeclass.
When a programmer does this, they provide a definition against the
particular type, for the functions that the typeclass requires.

So we can see that (+) can add a Float or an Integer to a Num
a => a without a problem. The Num typeclass is, in this way, like
a kind of contract that programmers of a type can decide to kind of
”subscribe to” which gives them the ability to write implementations
of the functions that the Num typeclass provides. In turn, the type-
class system gives that type the ability to work with all the other
types that are instances of that typeclass.

So the Num typeclass means there actually isn’t only one defini-
tion for the functions for addition: (+), subtraction: (-), multipli-
cation: (*), negation: negate, etc but rather that each type — that

is, each instance of Num — has its own definition for each of these
functions.

7.5 The Show Typeclass

What does all of this have to do with printing our number on the
screen? Remeber, that problem we started the chapter with?

Well, there’s a typeclass called Show (with a big S), and this pro-
vides a single function: show (with a small s), that can take any
instance of Show, and makes a String version of it. Let’s look at
the type of the show function:

-- takes a "showable" thing
-- and returns a String
show :: Show a => a -> String

We see that show is a function which takes a single argument
of any type (the “a” type variable above) constrained to the Show

typeclass, and returns a String. That single argument is anything
that has an instance of Show defined for it. We know this because
of the Show a => constraint.

Printing things to the screen is such a common thing to do that
many types have an instance of Show already, including of course,
Integer and Int, so getting back to the first program of this chap-
ter, we can just apply show to our Integer and then pass it to
putStrLn. Let’s see how:

38

Happy Learn Haskell Tutorial Vol 1

number :: Integer
number = 100390 + 29389

main :: IO ()
main = putStrLn (show number)

7.6 Parentheses and Precedence

Parentheses are needed on show number because putStrLn

only takes one argument, and the function application precedence
rules mean that taking them off would give it two. Precedence is a
fancy-pants word that simply means “which things come before or
after which other things”. If we left off the parentheses, we would
have this: putStrLn show number, which Haskell would see as
“apply putStrLn to the value show, and then apply that to the
value number”. However,putStrLn takes onlyString values,and
show is a function, so that would definitely be a type error.

7.7 The print Function

We have one last trick up our sleeves to show you (pardon the
pun). It’s the print function. This is very similar to putStrLn ::

String -> IO (), but rather than taking a String, it can take a
value whose type is any instance of Show! Let’s see a version of our
program that uses print :: Show a => a -> IO () rather
than putStrLn:

number :: Integer
number = 100390 + 29389

main :: IO ()
main = print number

7.8 Homework

See if you can work out what the following program does.

number1 :: Num a => a
number1 = 1 + 5 + 7 + 3 + 2

number2 :: Num a => a
number2 = number1 * number1

main :: IO ()
main = print number2

Hint: don’t get caught up by the types of the values. This will
probably be confusing, and should confuse you at least a little bit.
We’ll explain what’s going on later, however, the important thing is
just see if you can work out what the program will do when you run
it.

39

Happy Learn Haskell Tutorial Vol 1

8 Make Decisions

In this chapter we’ll look at all the ways we can make code that gives
results that depend on values.

8.1 if...then...else expressions

First up, let’s look at a program that takes a name, then prints a
message, depending on what the name is.

message :: String -> String
message name = if name == "Dave"

then "I can’t do that."
else "Hello."

main :: IO ()
main = putStrLn (message "Dave")

We see message is a function that takes a String and returns a
String. The String it takes as an argument is named name in the
body of the function. It’s pattern-matched into the name variable, is
another way to say this.

The if...then...else expression is one way we can control
what will happen in Haskell programs.

It’s very good for what’s called a two-way branch; that is, when
there are two “paths” to take: the path for True or the path for
False. (It’s either True that name is "Dave", or it’s False).

The result of the if expression is dependent on the variable
named name.

So what about this (==) operator that we saw in that program?
Let’s look at its type:

(==) :: Eq a => a -> a -> Bool

Here we have a new typeclass constraint, this time called Eq. This
operator works out if its two arguments evaluate to the same value.
If so, it returns the Bool value True, otherwise False.

Bool is the type which comprises just the values True and
False. These are used to express whether things are true or not
in Haskell.

Eq provides the (==) and (/=) operators. They mean “is equal
to”, and “is not equal to” respectively. Eq is short for equal or equality.

40

Happy Learn Haskell Tutorial Vol 1

An if expression has three sections, and it must always have
three sections. The first section is an expression that must evalu-
ate to a Bool value. You can begin to see why (==) is quite an
important operator now, can’t you? When it evaluates to True, the
expression that follows “then” is returned, otherwise the expression
after the “else” is returned.

The entire if expression always results in a single value, both of
its return expressions must have the same type.

8.2 Nesting if Expressions

So, what if we want to actually test for more than just two alterna-
tives? (maybe “Dave”, “Sam” or other).

Well we can “chain” these if expressions by putting another one
into the first one:

message :: String -> String
message name =
if name == "Dave"
then "I can’t do that."
else if name == "Sam"

then "Play it again."
else "Hello."

So now, it’ll check if the name is Dave: if so, it’ll respond with “I
can’t do that” as before, otherwise if the name is Sam, it’ll respond
with “Play it again”, and if it’s neither, it’ll be “Hello”. Phew! Look

at that if expression! What a mouthful. And this will only get more
annoying as we add more options.

Let’s see the same program but using the (/=) operator instead:

message :: String -> String
message name =
if name /= "Dave"
then if name == "Sam"

then "Play it again."
else "Hello."

else "I can’t do that."

No surprises here, we just have to flip the branches around as
we’ve done.

Having this many branches in our if expressions is not very easy
to read. Let’s look at a better way to do the same thing. Before
we do this, though, it should be mentioned if you’re writing these
programs in, then realise that the spacing matters in Haskell! So,
we must indent our lines properly. There is actually another way we
can write haskell which uses lots of punctuation instead of spacing,
but spacing looks nicer, so we will use that.

8.3 Case Expressions

Here we’re using a case expression. You can see how it works pretty
easily when comparing it to the nested if expressions from our pre-
vious example.

41

Happy Learn Haskell Tutorial Vol 1

message :: String -> String
message name =

case name of
"Dave" -> "I can’t do that."
"Sam" -> "Play it again."
_ -> "Hello."

main :: IO ()
main = putStrLn (message "Dave")

To evaluate a case expression, the expression between “case”
and “of” is first evaluated, then Haskell will run through all the pat-
terns we have given it on the left of the -> symbols, and try to
pattern-match the value with them. If it finds a match, it returns
the corresponding expression to the right of the -> symbol.

Case expressions are incredibly powerful because of the pattern
matching we can do. Here we’ve just shown you an extremely ba-
sic example where the single name expression name is matched to
simple value String patterns.

What about the underscore () pattern? This pattern matches ev-
erything in Haskell, and it’s included to make sure any time our func-
tion is called in the future with something we didn’t anticipate, it
will still work. Notice that the order matters. Dave will be matched
before Sam. In this example it’s not so important. Take a look at the
following example, though:

message :: String -> String
message name =
case name of

_ -> "Hello."
"Dave" -> "I can’t do that."
"Sam" -> "Play it again."

main :: IO ()
main = putStrLn (message "Dave")

The order matters! In this case, even if name is "Dave", the code
will never get that far, because the underscore matches on every-
thing, and it’s first in the list!

In this case,our program will compile just fine,but it’s not what we
want. This is called a logical error, because while it’s syntactically
correct, it doesn’t have the correct logic. If we compile this with a
Haskell compiler such as GHC, it will issue us a pattern-match over-
lap warning, letting us know that we’ve got multiple paths of logic
flow for the same inputs.

Do note, also, that all of the types of the result expressions have to
be the same. The same rule applies from the if expressions, above.
You can’t have a different result type in any of the expressions on
the right. The whole case expression is a single expression, so it
must result in a value of a single type.

8.4 Guard Patterns

Let’s look at yet another way to do the same thing, this time using
what’s called a guard pattern:

42

Happy Learn Haskell Tutorial Vol 1

message :: String -> String
message name
| name == "Dave" = "I can’t do that."
| name == "Sam" = "Play it again."
| otherwise = "Hello."

So we immediately notice that the function definition’s = symbol
is gone from the right hand side. It no longer says message name

= . . . but rather there are multiple “definitions” each with a pipe (|)
symbol in front of them.

The way this works is that the expressions on the left are tested for
equality to True, in order. When a True value is found, it returns
the expression to the right of the = sign that corresponds to that
expression. This is not pattern matching like in the case expression,
but rather test for truth, so it’s subtlely different. This is quite good
for when you to test for several things.

Also notice that where a case or if expression can actually be
inserted anywhere you like, this one is only usable in named function
definitions. You can’t use this form within a lambda, for example.

You can also see that we’re using something called otherwise

here as our default expression value. The otherwise identifier is
defined very simple, as True, so we could have written this:

message :: String -> String
message name
| name == "Dave" = "I can’t do that."
| name == "Sam" = "Play it again."
| True = "Hello."

Which of course, because it’s testing for True, will always match.
The only difference is, otherwise actually means something to
human programmers, so that’s why we use it.

Wherever possible,we should endeavour to make our programs as
clear as possible for our future selves, and others who may want to
read our code. Sometimes it’s quite literally the difference between
our code being used or not.

8.5 Argument Pattern Matching

There’s still one more way we can write this, so let’s see that now.
This is just a simple regular function definition, but with many defi-
nitions, and using pattern matching on values in the argument list:

message :: String -> String
message "Dave" = "I can’t do that."
message "Sam" = "Play it again."

_ = "Hello."

main :: IO ()
main = putStrLn (message "Dave")

Here we’re using pattern matching again, but directly on the argu-
ment list. Notice that the name variable is gone entirely, and our old
friend the underscore is back. That’s because we’re directly pattern
matching on what the name value would be.

43

Happy Learn Haskell Tutorial Vol 1

8.6 Conclusions

In the simple examples we’ve shown, none of the techniques stand
out as obviously better or worse, except the if expression when we
want to match on more than one thing.

The case expression is probably the best fit, because there’s less
repetition. Each have benefits and drawbacks, and we’ll see more
of each of them as we proceed. This section is mostly to get you
familiar with them.

As what we need changes, the different conditionals will make
more or less sense. What if we needed to detect if the name started
with a “D”? In that case, the if expression or guard pattern would
make more sense to use than the others. The case expression, or
other direct pattern matching style examples wouldn’t make sense
there.

Let’s finish by adding another simple clause to our case expression
example:

message :: String -> String
message name =

case name of
"Dave" -> "I can’t do that."
"Sam" -> "Play it again."
"Creep" -> "Feeling lucky?"
_ -> "Hello."

main :: IO ()
main = putStrLn (message "Dave")

8.7 Homework

Two parts to your homework. First is to try all the examples your-
self. Experiment with changing "Dave" to other names, then do an
internet search for examples of each type of conditional technique
and recognise the pieces.

Don’t get too worried that they won’t look as simple as our ex-
amples here. Just use our examples as a kind of guide, and try to
pick out the pieces you do recognise, and don’t get confused if the
examples you find look crazy. Ignore the crazy for now and look for
the parts you do recognise.

The second part of your homework is to help reinforce your un-
derstanding of currying. Maybe you forgot what that was. It’s when
we use two or more functions wrapped around themselves to make
a way for a function to take multiple arguments.

Let’s look at a function that might look a little bit strange at first:

addThem :: Int -> Int -> Int -> Int -> Int
addThem a b c d = a + b + c + d

You can probably work out that this function adds its four argu-
ments together. Of course, what we really mean is that it has the
effect of having four arguments and adding them together, but we
understand what is really happening when we define a function like
this. What is really happening is that Haskell builds a “multi-level”
function that looks like the following (notice the indentation and

44

Happy Learn Haskell Tutorial Vol 1

how each function argument lines up with an Int in the type sig-
nature):

addThem :: Int -> (Int -> (Int -> (Int -> Int)))
addthem = \a -> (\b -> (\c -> (\d -> a + b + c + d)))

And, because the way function application works in Haskell, we
can apply values to it in this way addThem 1 2 3 4, then it will
return 10.

So, we can see from this that addThem is defined as a function
that takes a variable called a and returns a function. That function
uses a deep inside its bowels; that second function is a function
that takes a variable called b, and so on, until you get to the inner
function body of the function that takes d as its argument. You can
see how these variables match up to the type signature above it,
which we’ve put parentheses around to group them, showing the
way Haskell builds the functions up more clearly.

Well, to unpack this a little bit more, let’s make five different defi-
nitions to show each step of this process, and provide you with type
annotations of each of those definitions. First up, we’ll create a defi-
nition that where we apply1 to the a variable, and so we can remove
its outer function wrapper, the one with the a variable in it:

-- here we have applied the addThem function to 1
addThemOne :: Int -> Int -> Int -> Int
addThemOne = addThem 1
-- which looks like this:
-- addThem 1 == \b -> (\c -> (\d -> 1 + b + c + d))

-- this is the same thing as applying the value 1
-- to that function / lambda:
-- (\a -> (\b -> (\c -> (\d -> a + b + c + d)))) 1

We can see from that quite clearly that 1 has been substituted in
for a within the function. We don’t need the outer part of the func-
tion syntax \a -> any more because we’ve applied that function to
the value 1, which makes it disappear.

Next we’ll satisfy the b variable with the value 2, and we can
therefore also similarly remove that function wrapper, because it
has been applied:

-- here we have injected 2 into the addThemOne function
addThemOneToTwo :: Int -> Int -> Int
addThemOneToTwo = addThemOne 2
-- which is the same thing as
-- addThem 1 2
-- and would look like this:
-- addThemOne 2 == (\c -> (\d -> 1 + 2 + c + d)
-- which is the same thing as this
-- function application, ie applying 2 to it:
-- (b -> (\c -> (\d -> 1 + b + c + d)) 2

Next we will place 3 into the c variable. Are you noticing the type
signatures? They’re getting smaller by one with each application
of our function. This should make sense because each time we’re
building a new function by applying a value to a previous function
which produces a function of one less argument. Let’s continue:

-- here we have applied the addThemOneToTwo
-- function to the value 3

45

Happy Learn Haskell Tutorial Vol 1

addThemOneToThree :: Int -> Int
addThemOneToThree = addThemOneToTwo 3
-- which is the same thing as
-- addThem 1 2 3
-- or addThemOne 2 3
-- and would look like this:
-- addThemOneToTwo 3 == (\d -> 1 + 2 + 3 + d)
-- again, this is the same as this
-- function application:
-- (\c -> (\d -> 1 + 2 + c + d)) 3

Finally, we put the value 4 into d:

-- here we take 4 and put it into
-- the addThemOneToThree function
addThemOneToFour :: Int
addThemOneToFour = addThemOneToThree 4
-- which is the same thing as
-- addThem 1 2 3 4 or
-- addThemOne 2 3 4 or
-- addThemOneToTwo 3 4 or
-- and would look like this:
-- addThemOneToThree 4 == 1 + 2 + 3 + 4
-- which equals 10
-- again, this is the same as this
-- function application:
-- (\d -> 1 + 2 + 3 + d) 4

We hope this is clear, if it’s not at all, we’d really appreciate your
feedback. You can give it by following the feedback link on the main
page.

9 Shop For Food with List

We’re going to use Haskell to make a shopping list for when we go
to shop for food, and to write some code to find out how many items
we have on it.

9.1 The Smallest List

Before we make the list, let’s see how to make the simplest list pos-
sible in Haskell, calling it aList:

aList = []

We’ll get to the types in a minute,but this is a definition for a name
called aList and it’s defined to be the empty list. This is the name

46

Happy Learn Haskell Tutorial Vol 1

given to those square brackets on the right with nothing between
them: it’s a list that has nothing inside it.

What about a list with one thing inside it? Let’s say we want to
have a list with “sauce” written in it. Well, there are two main ways
to do that. First up, we could build it up using the (:) operator:

9.2 The (:) Operator

aList2 = "sauce" : []

This might look a bit weird, but the (:) operator is just a function
that makes new bigger lists out of old ones. It’s an infix function and
like all operators, it takes two arguments: in this case, an element
("sauce") and a list ([]). Remember that infix means it sits in
between its arguments? What (:) does is make a new list with the
element argument prepended to the list argument. That is, it returns
a fresh list with the element at the front of the list.

It’s important to notice that "sauce" : [] doesn’t do any-
thing to the [] value. It’s still the empty list, and it doesn’t change
when we write expressions that use it. The aList2 definition and
expression just uses it, but it doesn’t change it.

Because (:) is an operator, we can also apply it as if it were a
prefix function, by using parentheses:

-- a list with just pie on it
aList3 = (:) "pie" []

This is the same thing as aList2, but with "pie" instead of
"sauce". It’s a different syntax, though. Syntax is the form of writ-
ing something. If we use parentheses around an operator, it works
like a regular prefix function of two arguments.

9.3 List Syntax

There’s yet another way to make a list, which is the most usual way
that you’ll see in Haskell programs:

47

Happy Learn Haskell Tutorial Vol 1

-- a list with just pie on it
aList4 = ["napkin"]

You need to recognise these three ways a list can be written, but
we’ll give you lots of practice, so don’t worry!

9.4 The List Type

So what’s the type of aList4? Let’s see:

aList4 :: [String]
aList4 = ["napkin"]

Ok so, usefully, its type looks very similar to how we write its val-
ues!

There is another way to write this type (it’s a bit of a strange way
to write it, though), so let’s quickly see that here:

aList4 :: [] String
aList4 = ["napkin"]

We can put the type name (the brackets) on the left, or wrapped
around the second type.

So, because it “takes another type” as an argument similarly to a
function, we can call the list type a kind of container type: it has two

pieces - the container type (List), and its element type in the case of
List (in the above, it’s String). That is, the list type is a parameterised
type.

There are many container types in Haskell, and almost none of
them besides this one have this “wrap-around-another-type” syntax.
This can sometimes confuse people when they get to learning the
other container types, which is why we’re introducing the normal
syntax now.

Just know that even though list has a special syntax, it’s still a
regular data type, which is why we can write the string list type
using regular type syntax as [] String as well as the special list
syntax of [String].

9.5 Lists of Other Types

So, moving on... what would a list with an Integer value in it look
like?

aList5 :: [Integer]
aList5 = [879]

Ok. So by now you’ve probably noticed how using the list type
is sort of similar to function application, but for types rather than
values.

A function is a thing that ”wraps” another value to turn it into
another value. The function (+5) for example, wraps a number to

48

Happy Learn Haskell Tutorial Vol 1

turn it into a number 5 greater than the first one: we do this by
applying the function to the value.

Well, these “container types” like list, they actually take a variable,
too! This is obviously not like the value variables that functions take,
though, it’s a type variable! This means in a type signature, you put
another type with it as we’ve seen, which will result in a composed
type. In the case of list, the parameter is the type of its elements. By
itself, List doesn’t actually mean anything other than the potential
for a list-like type of some variety.

That is, by itself, in the same way that functions don’t result in
a concrete value until you apply them to another value, types with
type variables are not a concrete type until you put a type with them.

By the way, we can, of course, write the above code using the (:)
data-constructor operator instead. The following means the exact
same thing:

aList6 :: [Integer]
aList6 = 879 : []

9.6 Lists with More Items

So this is great and all, but we want to write a whole shopping list,
not just a list with one item on it! We’re going to need more items.

Here’s a definition for a list with two items:

aList7 :: Num a => [a]
aList7 = [1,3]

We notice two things here. First, to have more items you put com-
mas between items in this syntax. Second, we notice that we haven’t
told Haskell a concrete type for our list. It’s a Num-constrained value
called “a”!

9.7 Polymorphic Values and Types

This means that we’re letting Haskell work out what type the num-
bers are. All we care about is that the type that Haskell picks for
them is an instance of the Num typeclass. This is not to say that
they don’t have an actual type when Haskell compiles our code, it
definitely will.

49

Happy Learn Haskell Tutorial Vol 1

These kinds of values with typeclass-constrained types, like the
type Num a => a, are called polymorphic values. Polymorphic just
means many-shaped, and comes to us from Greek. The empty list
([]) is actually a polymorphic value, too. That’s how we’re able to
write "sauce" : [] or 1 : [] and have Haskell still match
the types properly:

-- the type of the empty list.
-- "t" could be any variable name
[] :: [t]

So the empty list is a value, which from looking at its type sig-
nature, can see we use any type we like with it. When we hook it
up to a value with a more concrete type like Integer, say, Haskell
infers we must mean the empty list of Integer, because nothing
else would make sense ([] :: [Integer]).

Interestingly, the List type is a polymorphic type. That means it
takes an argument, which will be another type! We just saw this
a few times when we saw Lists of String ([String]), and Lists of
Integer ([Integer]), and just now a List of Num a => a when
we saw aList7 = [1,3] :: Num a => [a].

9.8 The (:) Operator Again, Binding & Associativity

Okay, so here’s another definition for this same list, constructed us-
ing the (:) operator:

aList8 :: Num a => [a]
aList8 = 1 : 3 : []

There’s nothing much new here, except that if you’ve got a mind
like a super keen blade, you’ll have noticed something odd about
the (:) operator, which is in order for this code to work, Haskell
must be applying the (:) function to 3 and [] first, otherwise it
would be applying it to 1 and 3, which we know is impossible be-
cause of the type of (:) :: a -> [a] -> [a] — its second
argument has to be a list.

So what’s going on here, then? The (:) operator is binding to
the right; it has what’s called right-associativity. Binding can be de-
scribed as when you apply a function to a value or variable, you’re
binding the value as the function’s argument. Associativity is just a
fancy name meaning “the order functions evaluate their arguments
in when there are no parentheses around”.

The (:) operator usually functions as though it were written like
this:

-- we don’t need these parentheses
aList8 :: Num a => [a]
aList8 = 1 : (3 : [])

Interesting! Most functions we’ve seen so far bind to the left
(they’re left-associative). So this one is right-associative, in other
words, it prefers to associate to the things to the right of it first be-
fore it gets to the left. So Haskell looks at the 1, then looks at the

50

Happy Learn Haskell Tutorial Vol 1

first (:) and says “hey, let’s wait until we’ve seen what’s more to
the right of this (:) before we do any binding or application here”.

It’s good that it’s set up like this, because if it were left-associative,
then it would try to do (1 : 3) first, which would not work be-
cause (:) takes an element and a list as arguments, and 3 is not a
list. In that case, we’d have to write lots of parentheses to get it to
work properly, which would be a pain.

Again, here’s the type of the (:) operator:

(:) :: a -> [a] -> [a]

This means it’s a function that takes any value at all of some type
called “a”, and a list of that same “a” type, and returns another list of
that type.

9.9 The Shopping List

We’ve covered a lot so far, so let’s just take a look at the shopping
list program that prints a shopping list on the screen while we catch
our breath.

shoppingList :: [String]
shoppingList =
["Carrots"
, "Oats"
, "Butter"
, "Apples"

, "Milk"
, "Cereal"
, "Chocolate"
, "Bananas"
, "Broccoli"
]

main :: IO ()
main = print shoppingList

This program just prints the shopping list data using print,
which uses the built in Show instance for List and prints a list on
the screen in the usual program notation above. It’s not very pretty!

How do we know it uses show to print this out? Well the print
function takes a value whose type has a Show instance, remember?
Let’s remember its type: print :: Show a => a -> IO ().

9.10 Counting The Items

What if we want to print out the number of items on the list instead?
Well there’s a function called length that will give us just that:

length :: Foldable t => t a -> Int

This type signature looks kind of crazy because the function is
extremely general — that is, it works with values from a whole class
of container types! Let’s break it down.

51

Happy Learn Haskell Tutorial Vol 1

We recognise there is a type constraint Foldable t =>, but
that it’s using a typeclass that is new for us called Foldable. This
is specified on the type variable “t”. Then there’s a type variable “a”,
which is completely unconstrained, so it can be anything we like.

This “t a”might feel a little bit familiar, because it’s a generalised
version of what we’ve just seen when we arrange our list’s type in
that odd way we discussed: ["hey"] :: [] String. Let’s see,
does this look similar?

aList9 :: [] String
aList9 = ["Cat Food", "Lasagne"]

What about if we told you that list is an instance of the Fold-

able typeclass? Well, it is. So, the type [] String could match
Foldable t => t String.

So, thinking about the length function again, it takes a single
value. The type of that value is “t a” where “t” is a wrappering type
around “a”, and where t is constrained to types that are Foldable.

Foldable is a class of types that have a shape or structure that
lets us reduce them to a single value in various ways. The length
function reduces a Foldable structure down to a single Int value
representing the item count of the “container of items”. You can see
why it’s called Foldable if you think of cooking where you fold
eggs into batter — you might fold three eggs, say, into one single
batter mix.

The fact that the list type has an instance specified for Fold-

able means it can be the “t” in our type signature for Foldable
t => t a. We know from the above that when we write the type
[String], it means the same as the type [] String.

If this is at all confusing, well don’t worry about it too much for
now. We’ll see many more examples of types that are composed of
two or more parts like this later on.

So, we can safely pass length our shoppingList, because the
types will match. It will happily return the number of items in it as
an Int value.

9.11 Adding a Message with (++)

Let’s adjust our program so it prints a nice message with the number
of items in our shopping list:

shoppingList :: [String]
shoppingList =
["Carrots"
, "Oats"
, "Butter"
, "Apples"
, "Milk"
, "Cereal"
, "Chocolate"
, "Bananas"
, "Broccoli"
]

main :: IO ()

52

Happy Learn Haskell Tutorial Vol 1

main = putStrLn ("There are "
++ (show (length shoppingList))
++ " items on the shopping list.")

Wow, that is a lot of parentheses. Later we’ll see how to reduce the
number of parentheses used. Also, what is this new operator (++)?

Well, (++) joins, or concatenates, two lists together. Happily for
us, the String type is itself just a list of type Char (the type of
all written characters). That is,String is identical to [Char]. The
type of (++) is [a] -> [a] -> [a], so here we’re just joining
three strings together to print out.

Now, let’s look at another way to represent shoppingList

(which Haskell sees as identical to the above):

shoppingList :: [String]
shoppingList =
"Carrots" :
"Oats" :
"Butter" :
"Apples" :
"Milk" :
"Cereal" :
"Chocolate" :
"Bananas" :
"Broccoli" : []

This shouldn’t pose too much of a problem by now. As we know,
the (:) operator has type a -> [a] -> [a], which means it
takes a single item of any type, and a list of items of that same type,
and then returns a list of items with that same type.

We can do like the above; chain the function applications of (:) to
make a list, as long as we put a list of some kind at the end.

9.12 Pattern-Matching with the (:) Value Constructor

The (:) operator is very handy. Because it’s a value constructor,
we can also use it in pattern-matching to match parts of lists in
arguments to functions! This is the case for all value constructors.

Let’s take a look at a function that will get the first item from
any list of strings (which includes our shoppingList obviously,
because it’s just a list of strings). If the list is empty, it’ll just return
a blank String:

firstOrEmpty :: [String] -> String
firstOrEmpty [] = ""
firstOrEmpty (x:_) = x

Remember when pattern-matching, the definitions or patterns
that appear earlier in the list will get their arguments matched first,
if they can.

9.13 Totality and More on Pattern-Matching with (:)

The first definition for this function is very easy to understand. It
just matches on the empty list, which if it finds it, it returns the
empty String. We have this in case an empty list is passed in as

53

Happy Learn Haskell Tutorial Vol 1

its argument. If we left it out and an empty list was passed, it would
cause a runtime error when we ran our program. This would be
bad. Including it makes the function total, which means it covers all
possible values.

It’s good to have total functions because programs change, and
when they do, unexpected things can happen. Total functions let
us stop some of those unexpected things happening, and so we can
find any errors when the program is being compiled (called compile-
time) rather than when it’s being executed (called run-time).

The second definition is using the (:) value constructor operator
as a pattern matcher. We know this value that we’re pattern match-
ing on must be a list with at least one item on it, because to get
to the second definition, the first “empty list match” must have been
passed over (we can say that it failed matching).

So, the (:) operator “pulls” the first item of the list out and “puts”
it into the variable x, and then the “ ” part throws the remainder of
the list away, and this part of the function just returns the first item
of the list as its result! This is pretty neat, isn’t it?

So, does this mean we can pattern match with any function inside
arguments like this? No. The (:) operator is actually part of the
list type, and is used as we know, for constructing values. We’ve
seen this happen when we write expressions like 1 : 2 : [].
We’re using it there to build up a list. These functions are called
data constructors, or value constructors. We can use them when in
patterns for pattern matching, but we can’t use ordinary functions,
so don’t expect to see (+) in a pattern match any time soon!

We know this will be a little hazy for you right now, but it will
become clearer as we start to learn about more complicated data
types later on. Don’t worry too much about this for now.

9.14 Prefix Operator Pattern-Matching

You know that (:) is an operator, and operators can be changed
from infix functions to prefix functions by using parentheses. Let’s
see what happens when we try to match using the (:) as a prefix
function:

firstOrEmpty’ :: [String] -> String
firstOrEmpty’ [] = ""
firstOrEmpty’ ((:) x _) = x

Haskell has no problem with this at all, and nor should it. It turns
out ((:) x) as a pattern means exactly the same thing as
(x:). You probably won’t see this very much in any source code
you encounter, because it’s less easy to read and write, but we’re
showing you here so that you understand that (:) is not syntax or
special, it’s just a data-constructor function, and they can all be used
in patterns in the same way.

Let’s see another function. This takes the first two elements of a
String list and joins them together with a comma if there are at
least two items in the list, otherwise it just returns the first one if
there’s one, otherwise an empty String.

54

Happy Learn Haskell Tutorial Vol 1

firstOnesOrEmpty :: [String] -> String
firstOnesOrEmpty [] = ""
firstOnesOrEmpty [x] = x
firstOnesOrEmpty (x:y:_) = x ++ ", " ++ y

Fancy, right? You can use more than one (:) in your pattern
matches. Notice in order to make sure our function was total, we
had to add another definition. [x] matches only lists with exactly
one item in them, and returns the single String inside. So you
can use either the (:) value constructor, or the special [] syn-
tax to pattern match variables out of lists. So we could rewrite the
firstOnesOrEmpty [x] = x clause as firstOnesOrEmpty
(x:[]) = x and it’d mean the exact same thing.

9.15 A Tiny Bit of Recursion

Now, we’re going to blow your mind a little bit. Don’t worry if this
confuses you. Just read it carefully, and it might make sense. We’ll
cover this a lot more, so if it doesn’t then that’s fine.

What if we wanted something that would put comma-space be-
tween all of the elements of the list of strings and join them into
one single string? Let’s take a look:

joinedWithCommas :: [String] -> String
joinedWithCommas [] = ""
joinedWithCommas [x] = x
joinedWithCommas (x:xs) = x ++ ", " ++ joinedWithCommas xs

Notice the last definition actually refers to itself! This is called
recursion. We’ve stopped using “ ” to “throw away” the rest of the
list, we pattern-match it into a variable called xs, and then we use
it... by passing it back into an application of the very same function
we’re defining!

What? Crazy! Completely cool, though! Recursion is an incredibly
common and useful thing in Haskell.

This function is actually already implemented more generally in a
Module called Data.List as the function named intercalate.
We’ll see it later when we use that module. It’s more general because
you can put anything between the items, not just ", " as we have
here.

9.16 The Final Shopping List Program

So our final program below prints out the count of items, and then
the whole comma-separated list.

shoppingList :: [String]
shoppingList =
["Carrots"
, "Oats"
, "Butter"
, "Apples"
, "Milk"
, "Cereal"
, "Chocolate"
, "Bananas"

55

Happy Learn Haskell Tutorial Vol 1

, "Broccoli"
]

main :: IO ()
main = putStrLn ("There are "

++ (show (length shoppingList))
++ " items on the shopping list."
++ " and the list is: "
++ joinedWithCommas shoppingList)

joinedWithCommas :: [String] -> String
joinedWithCommas [] = ""
joinedWithCommas [x] = x
joinedWithCommas (x:xs) = x ++ ", " ++ joinedWithCommas xs

9.17 Homework

Your homework is to think about this recursive function, think it
through, and also to run all the code.

Think about what joinedWithCommas would do if it was
passed an empty list, and one String, then two Strings, what
would it do for three?

We’ll explain it more soon, so if you don’t understand it yet, it’s to
be expected and don’t worry about it. This can take many months to
understand properly.

10 A Dream Within a Dream

Let’s say we have a movie collection, and for some reason, we’re only
interested in movies whose first letter is in the first half of the al-
phabet. In our program, we’ll call those good movies, and the others
bad.

movies =
["Aeon Flux"
, "The Black Cat"
, "Superman"
, "Stick It"
, "The Matrix Revolutions"
, "The Raven"
, "Inception"

56

Happy Learn Haskell Tutorial Vol 1

, "Looper"
, "Hoodwinked"
, "Tell-Tale"
]

We’d like to be able to make a new list of our movies with “good”
or “bad” appended to the name so we know which we can watch.

10.1 Predicates, String, Char

What we need is a function that decides if a movie is good:

isGood :: String -> Bool
isGood (x:_) = x <= ’M’
isGood _ = False

This kind of function, one that returns a Bool value that is depend-
ing on another value, is called a predicate function. It’s yet another
fancy word which comes to us from the subject of Logic. It simply
means something can be either affirmed or denied about something
else. That’s exactly what’s going on here. We’re finding out if some-
thing is good or bad, by our arbitrary distinction, and returning a
Bool value depending on that.

The first line takes any String of at least one element, matches
x to the first element, then throws the rest away, and uses the (<=)
:: Ord a => a -> a -> Bool operator to check if it’s ear-
lier in the alphabet than ’M’.

There are some new things here, obviously. First is that we’ve got
single quotation marks around M.What is the type of this thing? Well
it’s ’M’ :: Char. In Haskell, single quotation marks are used to
indicate that something is a Char value.

As we mentioned before, a String is simply [Char]. That
means "Hello" is the exact same thing as [’H’, ’e’, ’l’,

’l’, ’o’]. So, String has a special syntax, just like list has a
special syntax. You can either write strings as a list of Char values,
or you can write them with double quotation marks around them.

10.2 The Ord typeclass

Back to our predicate function, we notice we’re using the (<=) func-
tion. This is called “less than or equal to”. Its type indicates it takes
two values of type constrained by the Ord typeclass. This typeclass
is for types whose values can be compared in some ordered way
(hence the name).

We’re matching on the String argument using (:), grabbing
out the head as x, comparing it to the Char value ‘M’ to see if it’s
in the first half of the alphabet, because A is “less than or equal to”
M. The head of a list is the Haskell name for its first item, and the tail
is the name for the remainder.

The Ord typeclass provides a type with the compare,(<),(<=),
(>), (>=), max, and min functions. They provide functionality to
do various comparisons of values.

57

Happy Learn Haskell Tutorial Vol 1

The end result of the above is a function that checks if a movie’s
title starts with a letter in the first half of the alphabet.

10.3 Transforming Titles

Now we’ll see a function that takes a movie title and gives us a new
name for it, depending on its good/bad assessment:

assess :: String -> String
assess movie = movie ++ " - " ++ assessment
where assessment = if isGood movie

then "Good"
else "Bad"

In this function, we’re introducing you to a where clause. This
isn’t an expression, so we can’t embed where clauses anywhere we
like, but rather they let us write definitions that are only “in effect”
within the level above where they appear. This is called local scop-
ing. That is, the scope of the definition only applies locally to the
where clause.

This is why in the assess function above, we can use the defini-
tion for assessment within the function’s body expression.

We can have multiple definitions and even functions written in
where clauses. Let’s see another definition of the assess function
that has two definitions in its where clause:

assess’ :: String -> String

assess’ movie = movie ++ " - " ++ assessment
where assessment = if movieIsGood

then "Good"
else "Bad"

movieIsGood = isGood movie

Here we’ve just pulled isGood movie out into its own locally
scoped definition. We don’t recommend it, but if you wanted to get
crazy, you could even put where clauses within definitions within
other where clause definitions. Usually if you have this level of nest-
ing, you should consider pulling your functions into smaller pieces.

10.4 Building Up a Function to Rename the Movie List

Next we’re going to see a partial function so we can explain how
it works to you in stages. Here, by partial we mean it’s not total,
because it’s missing some cases of values of its arguments. That is,
the function doesn’t cover every possibility. This is not a good thing
to do, ordinarily. We’re just doing it here to show how we build up a
function in steps.

So, this function we want to write should take a list of movies and
give us back the newly named movie list...

assessMovies :: [String] -> [String]
assessMovies [] = []
assessMovies [y] = [assess y]

58

Happy Learn Haskell Tutorial Vol 1

... but it doesn’t, because it only works properly on lists of length
0 or 1, and we already know that in general, lists can be any length.
The [y] pattern only matches against lists of one item, naming the
item y as it does, and here we’re returning a new list with the newly
named movie in it by passing it to our assess function. We see we
can have function applications inside of lists without trouble.

Next, we’ll see that we add a pattern for lists of two items and
change the whole thing to use the (:) operator as a pattern-
matcher, because we know [x] and (x:[]) are the same thing,
but also to use the (:) operator to make the new list rather than
how we did above:

assessMovies :: [String] -> [String]
assessMovies [] = []
assessMovies (y:[]) = assess y : []
assessMovies (x:y:[]) = assess x : assess y : []

This is a little better, but what about lists with more than two
items? Also, it’s getting tedious writing so many definitions, and
a pattern of repetition is emerging. As we become programmers,
we need to learn to see these repeated patterns, because they’re
usually an indication that something can be done in a better, or more
abstract way.

One of the first patterns to notice is our second definition works
for 1-item lists, and our third pattern-match has the exact same 1-
item list pattern in it as the second definition.

If we could match the (y:[]) part as one whole variable name

in the third pattern, then somehow replace it with an application of
the assessMovies function itself, we might be able to reduce these
two definitions down to just one.

Well, you probably guessed that we can do this, and in fact this is
exactly what we’re going to do. This process of using the function
we’re defining within that function definition itself is called recur-
sion, and it’s one of the foundational underpinnings of Haskell.

So these two duplicated patterns can be resolved with a single
definition,as long as we keep our empty list as a base case, otherwise
we’d end up in an endless cycle. The empty list is our way out of the
recursion. The recursive definition handles everything other than
the empty list, which the base case handles.

assessMovies :: [String] -> [String]
assessMovies [] = []
assessMovies (x:xs) = assess x : assessMovies xs

So, if we had the list ["The Matrix"], that’s equivalent to
"The Matrix" : [], and so matches the second pattern with
"The Matrix" as x, and [] as xs. The body of the function uses
the list construction operator (:) to join the result of assess x to
the application of assessMovies with its argument of the empty
list,which results in the empty list as the base case,ending the recur-
sion. You should think about how this works across a few different
lists of different sizes.

Another way to think of this is if you had to crack some eggs.
You could write down a definition for making cracked eggs like this:

59

Happy Learn Haskell Tutorial Vol 1

“crack eggs” is: take a line of eggs. Crack the first egg, then do “crack
eggs” on the rest of the eggs until there are none left. See how
“crack eggs” is both the definition and used in itself? It’s the same
idea here, except Haskell creates a new list rather than modifies an
existing one. We define building a list of assessed movies as: if the
list is empty, give an empty list, otherwise take the first item and
make its assessment String, joining that as the head of the list to
the evaluation of the rest of the assessed movie titles list.

It’s really beautiful, isn’t it? You can start to see why having purity
can really pay off. We can do this kind of substitution and equational
reasoning easily. Why? precisely because we have pure functions,
and because Haskell gives us these nice abstract pieces to work with.

This pattern - applying a function (the function assess here) to
each element of a list — is so common that there’s actually a func-
tion called map that extracts this mapping functionality. It takes a
mapping function and a list as arguments. Its type is map :: (a

-> b) -> [a] -> [b]. This type says that map is a function of
two arguments, the first one of which is a function.

The assess function’s type is String -> String. This fits
into the pattern of the first argument of map: a -> b. In Haskell
a -> b means the types can be different, but don’t have to. It’s a
function of one type to a second type (which may or may not be the
same type). So, assess :: String -> String fits the first
argument to map. If we supply the function map with the function
assess as its first argument, that means we’re saying the type a in
map’s type signature must be String, and also that the type bmust
be String, too. That means the second argument and the return

type must both be [String].

Let’s rewrite assessMovies using map to get an intuition of how
to use it, and build a small full program around it. If any of this is
unclear, the next chapter will most likely clear it up as it delves more
into functions such as map.

import qualified Data.List as L

movies =
["Aeon Flux"
, "The Black Cat"
, "Superman"
, "Stick It"
, "The Matrix Revolutions"
, "The Raven"
, "Inception"
, "Looper"
, "Hoodwinked"
, "Tell-Tale"
]

isGood :: String -> Bool
isGood (x:_) = x <= ’M’
isGood _ = False

assess :: String -> String
assess movie = movie ++ " - " ++ assessment

where assessment = if isGood movie
then "Good"
else "Bad"

assessMovies :: [String] -> [String]
assessMovies = map assess

60

Happy Learn Haskell Tutorial Vol 1

assessedMovies :: [String]
assessedMovies = assessMovies movies

main :: IO ()
main = putStrLn (L.intercalate "\n" assessedMovies)

First we import the Data.List package so we can use the in-
tercalate function (which takes a joining list of a type, and a list of
Lists the same type and builds a fresh list by joining each element
of the list together with the joining item between). Here we’re using
it with [Char], and [[Char]] which is the same as String and
[String], because String is just a type alias for [Char].

If we were to define a “new” version of String, we could do it
like this, because String is simply a type alias to a list of Char,
otherwise known as a type synonym:

-- type sets up a type alias:
type NewString = [Char]

This is how we create a type alias (or type synonym). Once we
have this in our program, everywhere Haskell sees NewString in
your program, it will interpret it as [Char]. Note that these are
not different types, they’re identical, they just have different inter-
changeable names.

Anyway, after this, back in our main program, we set up the movies
expression, and the isGood and assess functions. Then we create
the assessMovies function which takes the list of movies and
uses map with assess to build a list of assessed movies. Once

that is done, we create the assessMovies expression that simply
applies assessMovies to the movies list.

The main function then simply prints out with the passed in new-
line ("\n" is the special newline character in a String) between
each of the assessedMovies (that’s what intercalate does).

10.5 Homework

See if you can change the program so that it has a different first
letter that decides which movies are bad and good.

After you’ve done that, see if you can change the program so that
it has different movie titles in it.

61

Happy Learn Haskell Tutorial Vol 1

11 More Shopping

Let’s take a look at a program which will let us work out how much
our shopping list will cost in total.

11.1 Tuples

To do this,we’ll use a new type of data called a Tuple. A Tuple lets you
keep some number of items of potentially different types together
as one item. We can have 2-tuples, 3-tuples, and so on.

aShoppingListItem :: (String, Int)
aShoppingListItem = ("Bananas", 300)

This is a single shopping list item: a 2-tuple value. It has the
String "Bananas", and the Int 300 which we’re going to use
to represent the number of cents that the bananas cost.

We can have tuples of different lengths. There are 3-tuples, and
4-tuples, and you can pretty much have as many as you’d like but it’s
best to just stick to two, or maybe three at the very most. There are
better ways to build up composed data types that we’ll see later on
if you need to do that.

In the same way as we know that [String] is a type that can be
expressed as [] String, we can express the 2-tuple (String,

Int) as (,) String Int. In the same way, the 3-tuple (Int,

String, Int) could be expressed as (,,) Int String Int,
and so on. You can see the pattern. Note that each of the composed
types can be any type at all. So, tuple types are created with the (,)
style type constructors, there is actually an identically named value
constructor for tuples. So you could just as easily write your tuple
values as ("Bananas", 300), or as (,) "Bananas" 300.

11.2 Type Aliases (or Type Synonyms)

We actually want a list of these items, though. Let’s take a look what
it’d look like to have a new name for our (String, Int) tuple
type so our program is more self-explanatory.

type ShoppingListItem = (String, Int)

aShoppingListItem :: ShoppingListItem
aShoppingListItem = ("Bananas", 300)

We use “"type"” to tell Haskell we’re defining a type alias (or
type synonym). This means Haskell sees ShippingListItem as
being the same type as (String, Int). This is just to make our
programs more readable for us. Haskell won’t see these types as
different, so if you accidentally used a (String, Int) where you
meant to use a ShoppingListItem, then Haskell won’t complain.
Ideally, we’d like it to, though.

Note that in Haskell, all types must start with a capital letter, and
all variable names must start with a lowercase letter.

62

Happy Learn Haskell Tutorial Vol 1

Ok so let’s look at another couple of type synonyms to make things
clearer, and also a type synonym for shopping lists, and an actual
shopping list, too:

type Name = String
type PriceInCents = Int
type ShoppingListItem = (Name, PriceInCents)
type ShoppingList = [ShoppingListItem]

shoppingList :: ShoppingList
shoppingList = [("Bananas", 300)

, ("Chocolate", 250)
, ("Milk", 300)
, ("Apples", 450)
]

So Name is now String, PriceInCents is Int, Shop-

pingListItem is a tuple of Name and PriceInCents, which
is the same as saying it’s a tuple of String and Int, and
ShoppingList is the same thing as [(Name,PriceInCents)],
which is a list of tuples, and is the same thing as [(String,Int)].

All of these type aliases makes it much easier to understand what
the programmer who wrote this intended. Especially the type Pri-
ceInCents. If we didn’t have this, we would have no idea what the
numbers in each tuple are supposed to represent. We would have
to either work it out by looking at all of the code, or hope that the
programmer had written some helpful comments in the code.

11.3 The Final Program

Let’s look at the finished program that will tell us how much the
total price of a shopping list is, in cents:

type Name = String
type PriceInCents = Int
type ShoppingListItem = (Name, PriceInCents)
type ShoppingList = [ShoppingListItem]

shoppingList :: ShoppingList
shoppingList = [("Bananas", 300)

, ("Chocolate", 250)
, ("Milk", 300)
, ("Apples", 450)
]

sumShoppingList :: ShoppingList -> PriceInCents
sumShoppingList [] = 0
sumShoppingList (x:xs) = getPriceFromItem x +

sumShoppingList xs

getPriceFromItem :: ShoppingListItem -> PriceInCents
getPriceFromItem (_, price) = price

main :: IO ()
main = putStrLn ("Price of shopping list is "

++ show (sumShoppingList shoppingList)
++ " cents.")

We have two new functions to look at here.

The first is getPriceFromItem. The name pretty much ex-
plains exactly what it does. It uses pattern matching on a Shop-

63

Happy Learn Haskell Tutorial Vol 1

pingListItem (which is a tuple), and extracts only the second
element of the tuple.

There are actually two functions that work with tuples called fst
and snd that pull out the first or second element of a tuple respec-
tively. We could have just defined getPriceFromItem as being
snd, because we’ve pretty much just re-created it here, but it’s use-
ful to show you how to do it.

11.4 More Recursion Explained

The second new function is sumShoppingList. This is using re-
cursion to go over each item in the list, and apply the getPrice-
FromItem function to them, adding the prices together as it does
so.

When sumShoppingList is evaluated, one way to think about
how it can do the work to find a value is to imagine what it would
look like if all of the expansions of sumShoppingList had already
taken place inside the body of the function. This is, then, an equiva-
lent expression to sumShoppingList shoppingList:

getPriceFromItem ("Bananas", 300)
+ (getPriceFromItem ("Chocolate", 250)
+ (getPriceFromItem ("Milk", 300)
+ (getPriceFromItem ("Apples", 300)

+ 0)))

After this we can imagine what it’d be like after all the get-

PriceFromItem functions have been applied to their tuple argu-
ments, this is an equivalent expression:

300 + 250 + 300 + 450 + 0

It’s pretty easy to see how this is equal to 1300.

11.5 Folding

Going from the expanded recursion form to the single number is an
example of what’s called folding, and it involves reducing a list to a
single value.

We’ve seen this pattern a fair bit so far. Let’s look at it some more
with a few more recursive functions:

joinStrings :: [String] -> String
joinString [] = ""
joinStrings (x:xs) = x ++ joinStrings xs

sumIntegers :: [Integer] -> Integer
sumIntegers [] = 0
sumIntegers (x:xs) = x + sumIntegers xs

-- subtracts all subsequent numbers from
-- the first numbers
subtractNums :: Num a => [a] -> a
subtractNums [] = 0
subtractNums (x:xs) = x - subtractNums xs

64

Happy Learn Haskell Tutorial Vol 1

productOfIntegers :: [Integer] -> Integer
productOfIntegers [] = 1
productOfIntegers (x:xs) = x * productOfIntegers xs

If you look across all of those functions, and try to see what’s sim-
ilar about them, you may notice some interesting things:

Firstly, there is a single value for the empty list case. This is called
the base value. The case is called the base case, because it’s where
the recursion ends.

Secondly, there is an operation being applied between each ele-
ment of the list. For joinStrings, it’s (++). For productOfInte-
gers, it’s (*). This is called the folding function, because it’s what
Haskell uses to do the folding after the recursion has been fully ex-
panded.

Thirdly, and a little more subtle, is that all of these functions fold
to the right,which means the recursive function application happens
at the right. This is why they’re called right folds. If we had our
recursion on the left, it works differently.

11.6 Using foldr

If you remember, functions are values as well, which means we can
pass a function into another function as a value. In fact, if you re-
memeber, all functions of more than one argument do this. Let’s look
at all the examples of the above, rewritten using the generalised fold
right function:

joinStrings :: [String] -> String
joinStrings xs = foldr (++) "" xs

sumIntegers :: [Integer] -> Integer
sumIntegers xs = foldr (+) 0 xs

subtractNums :: Num a => [a] -> a
subtractNums xs = foldr (-) 0 xs

productOfIntegers :: [Integer] -> Integer
productOfIntegers xs = foldr (*) 1 xs

So, it seems foldr takes three arguments! The first is a function
of two arguments: the folding function. The second is the base value,
and the third is the list we’re folding over.

This is what the type signature of foldr looks like:

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

Just like length is generalised to work on any kind of Fold-
able, so is foldr. Actually, foldr and length are part of the
Foldable typeclass.

Let’s imagine what the type of foldr would actually be spe-
cialised to for the joinStrings function, given that it’s dealing
only with lists as its Foldable type.

First, the Foldable instance we’re dealing with is the one for
List, so we could replace the “Foldable t => t” part with List
like this:

65

Happy Learn Haskell Tutorial Vol 1

foldr :: (a -> b -> b) -> b -> [] a -> b

but we can just write [] a as [a], so:

foldr :: (a -> b -> b) -> b -> [a] -> b

Okay, the Foldable => t constraint and type is now replaced
with List, because Foldable related to the container type, which
is List, and that is now fully specified.

Next, what about the type of a? Well, we know foldr takes three
arguments, and the third is a list of String in the body of join-
Strings because it looks like this: joinStrings xs = foldr

(++) "" xs and xs is of type [String].

So,a must be String. We take a List of Strings. While we’re at it,
b will be String, too (because the (++) function, which we’re using,
has the same type on both of its arguments. So we can rewrite the
type for foldr as specialised inside joinStrings like this:

foldr :: (String -> String -> String)
-> String
-> [String]
-> String

That makes more sense in that case. We fold over our list of
strings, joining them together with (++) as we go, and our base
case for when we have only got the empty list left is the empty string
"".

Next, though, we’ll look at sumShoppingList again, and how
to make it use foldr. We’d just like to remind you about the type
of the folding function in foldr. It’s (a -> b -> b), and that
means that first argument can be a different type than the second,
but doesn’t have to, but that the second one must be the same type
as the result.

sumShoppingList :: ShoppingList -> PriceInCents
sumShoppingList [] = 0
sumShoppingList (x:xs) =

getPriceFromItem x + sumShoppingList xs

sumShoppingList’ :: ShoppingList -> PriceInCents
sumShoppingList’ xs = foldr getPriceAndAdd 0 xs

getPriceAndAdd :: ShoppingListItem ->
PriceInCents ->
PriceInCents

getPriceAndAdd item currentTotal =
getPriceFromItem item + currentTotal

getPriceFromItem :: ShoppingListItem -> PriceInCents
getPriceFromItem (_, price) = price

main :: IO ()
main = putStrLn ("Price of shopping list is "

++ show (sumShoppingList shoppingList)
++ " cents.")

So,sumShoppingList’ is our function that uses foldr, which
also uses another new function getPriceAndAdd, whose type
could be thought of as a -> b -> b which matches the first ar-
gument of foldr, and 0 is our base value just like in our recursive

66

Happy Learn Haskell Tutorial Vol 1

version.

11.7 Built in Recursive Functions

Haskell already has “built-in” functions for sum, product and join-
ing strings together (concat generally concatenates lists of the
same type together, so will work fine on String values). Here,we’ve
just been illustrating how they could be built to show you how ba-
sic recursion works. The built-in functions are more generalised to
work on any Foldable instance.

11.8 Homework

Your homework is to go through all the functions we saw, think about
how they work, using pen & paper to work out the steps involved in
evaluating them applied to some values of your own choosing.

12 How To Write Programs

At this point, we’ve seen enough Haskell in actual programs that we
can start to level up our learning to the next stage: adjusting and
writing extremely simple programs.

We haven’t yet seen all of Haskell’s basics even once through yet,
though, so we continue our tour of reading basic programs as we do.

A warning at this point: as Han-Solo says to Luke in Star Wars:
“Don’t get cocky, kid!”

That is, don’t try to do too much at this point and don’t expect too
much from yourself. Just proceed little by little. Build up piece by
piece. Before you know it, you’ll be at a point where you can write
small but enjoyable programs, and you’ll know how to begin to find
things for yourself when you don’t know!

67

Happy Learn Haskell Tutorial Vol 1

In other books, writing programs is often left as an exercise for
the reader to work out how to do, but this doesn’t sit well with us,
and it usually doesn’t work very well, either.

We prefer to guide you, because the task of problem solving is not
necessarily obvious. In order to write a program, one strategy is to
pull the problem its trying to solve apart into smaller pieces. This is
called step-wise refinement, or top-down design.

We can also go the other way: (Bottom-up design, obviously!)
start with the things we already know we can do. Smaller, known
pieces, then build up with those to form larger and larger pieces by
combining them until we have our complete program.

Professional programmers use both of these strategies all the
time to piece programs together and solve problems.

Haskell is very good at helping us to do both of these things. Its
type system shows us where things match up, and its functional na-
ture lets us easily separate data from code which keeps things free
to be reused, re-combined and composed.

We use processes called equational reasoning, function extrac-
tion, dummying, black-boxing (otherwise known as encapsulation)
and refactoring to do these strategies; identical processes that soft-
ware professionals use every day to get their work done, sometimes
without realising it.

Let’s continue.

13 At The Zoo

In this chapter, we’ll make a small program that tells a Zoo owner
what advice to take for each animal in the Zoo if it escapes. In the
process, we’ll introduce you to an awesome feature of Haskell: the
ability to make your own data types, and values of those types.

We’ll have a value for each of a number of animals, and we’ll also
have a list of animals which we’ll call a Zoo.

To do this, we’ll use the data keyword which creates a new data
type, and specifies all the values it can possibly be. Another name
for these kinds of types is a sum type, because the values of the type
“summed together” make up the whole type.

68

Happy Learn Haskell Tutorial Vol 1

13.1 Sum Types

So, let’s see a sum type.

data Animal = Giraffe
| Elephant
| Tiger
| Flea

We’re saying that we want Haskell to make a new type, named
Animal. We’re also saying that the data for the Animal type can
be any one of Giraffe, Elephant, Tiger or Flea, but nothing
else. These values are also called value constructors, even though
they’re each only able to construct the value that they are. We’ll see
why more later.

Let’s see the type for Zoo next:

type Zoo = [Animal]

Pretty simple. AZoo is an Animal list. You might recognise this is
just a type synonym, for our convenience and documentation. Next
we’ll see a definition for a Zoo:

localZoo :: Zoo
localZoo = [Elephant

, Tiger
, Tiger
, Giraffe

, Elephant
]

Ok, the Zoo named localZoo has some Animal values in it.
Let’s put all of this together and add a function that uses a case

expression to give some advice when a particular animal escapes.

13.2 Pattern Matching with Sum Types

Below, we have a function that takes a single Animal, and returns a
piece of advice as a String, for when that Animal escapes. Look-
ing at the case expression, you can see it’s matching against the
values of the Animal data type.

data Animal = Giraffe
| Elephant
| Tiger
| Flea

type Zoo = [Animal]

localZoo :: Zoo
localZoo = [Elephant

, Tiger
, Tiger
, Giraffe
, Elephant
]

adviceOnEscape :: Animal -> String
adviceOnEscape animal =

69

Happy Learn Haskell Tutorial Vol 1

case animal of
Giraffe -> "Look up"
Elephant -> "Ear to the ground"
Tiger -> "Check the morgues"
Flea -> "Don’t worry"

If you remember how case expressions work, the animal vari-
able is checked against each of the left hand side patterns to see
if it maches, and if it does, the right hand side expression (here a
String value) will be returned.

Do you notice that there’s no default case, usually marked with an
underscore? That’s because we know this function is total already,
because it has one item for each of the possible data values of the
Animal type, so there’s nothing left to catch for a default case.

13.3 More Recursion

Next we’re going to look at a function that takes a Zoo, and returns
a list of all the advice for when all the animals in that Zoo escape,
by using the adviceOnEscape function and recursion.

adviceOnZooEscape :: Zoo -> [String]
adviceOnZooEscape [] = []
adviceOnZooEscape (x:xs) =
adviceOnEscape x : adviceOnZooEscape xs

Maybe you recognise this code as recursion, and similar to the
previous chapters, in that it has a kind of a “folding” shape.

It’s a little bit different, though, because we can’t just use (:) as
the folding function, as we’re also applying adviceOnEscape to
each item as we fold them together into the new list.

In fact, in this case while we could think of it as folding the list
into another list, we’re not really folding the list down to a single
value, we’re just applying a function across all the elements of the
list. Another way to look at it is that we’re making a new list that is
just like the old one with a function applied to all its elements.

We could try a fold to do this, but we’d have to extract both the
adviceOnEscape and the (:) out into a single folding function.
Let’s see what that would look like, and we’ll also see some more
local binding using a where clause while we do so:

adviceOnZooEscape :: Zoo -> [String]
adviceOnZooEscape [] = []
adviceOnZooEscape (x:xs) =

adviceOnEscape x : adviceOnZooEscape xs

adviceOnZooEscape’ :: Zoo -> [String]
adviceOnZooEscape’ xs =

foldr addAdviceForAnimal [] xs
where addAdviceForAnimal animal adviceList =

adviceOnEscape animal : adviceList

When we look at them together, we can see that we’re worse off
that before! foldr was supposed to help us write less code, but
it actually has us producing more! This should be telling us some-
thing: that foldr is not the right abstraction to use here.

70

Happy Learn Haskell Tutorial Vol 1

We included a function called addAdviceForAnimal, which
we used as our folding function. As we’ve seen before, the where

clause handily makes definitions below it available to the ad-

viceOnZooEscape’ function. This is called local scoping. The
where clause makes the definitions witin it only available within
the expressions that appear above it. We’ll see more of this soon.

So, it turns out that there is actually a function whose job it is
to do what we want here: take a list of a and turn it into a list
of b, using a function of type (a -> b) (which we could call the
mapping function). It’s called map :: (a -> b) -> [a] ->

[b], because it keeps the “shape” of the list, but through across all
its values and applies the mapping function to each item, producing
a new list of mapped values as it does. Let’s see it in action:

adviceOnZooEscape :: Zoo -> [String]
adviceOnZooEscape xs = map adviceOnEscape xs

Really nice, and clean looking. The map function is called a higher
order function because it takes a function as an argument, so it’s an
order higher than normal functions that just take values.

Also, we can simplify this by not mentioning the argument to the
function. It still has one, but it’s implied by the types of the function
and map. Observe:

adviceOnZooEscape :: Zoo -> [String]
adviceOnZooEscape = map adviceOnEscape

You give a 2-argument function only 1 argument, and this turns it
into a 1-argument function! Haskell rocks!

We’re defining adviceOnZooEscape as a function of one ar-
gument without mentioning the argument it takes. We can do this
because we’re also not mentioning the second argument of map.
Another way to say this is that we’ve made an expression of map, a
2-argument function, and we’ve only given it one of its arguments,
so the result is a function of one argument.

13.4 What is Currying?

You may remember that a function plus :: Int -> Int ->

Int can be defined as plus x y = x + y, or it can be defined
as plus = \x -> (\y -> x + y), they’re identical to Haskell,
because a 2-argument function is actually a function that returns
a function of one argument. If we give plus one Int value, it will
bind that value to x, and return the inner function. Let’s see a defition
for plus5: plus5 = plus 5. This will return the function y ->

5 + y. This way of defining multiple argument functions is called
currying. It’s named after one of the men who invented it, Haskell
Curry. Yes, Haskell is named after him.

13.5 The Finished Program

Next we’ll see how this connects up to a comma-separating function,
and a definition for main to finish the program, and we’ll use another

71

Happy Learn Haskell Tutorial Vol 1

where clause:

import qualified Data.List as L

data Animal = Giraffe
| Elephant
| Tiger
| Flea

type Zoo = [Animal]

localZoo :: Zoo
localZoo = [Elephant

, Tiger
, Tiger
, Giraffe
, Elephant
]

adviceOnEscape :: Animal -> String
adviceOnEscape animal =
case animal of
Giraffe -> "Look up"
Elephant -> "Ear to the ground"
Tiger -> "Check the morgues"
Flea -> "Don’t worry"

adviceOnZooEscape :: Zoo -> [String]
adviceOnZooEscape = map adviceOnEscape

joinedWithCommasBetween :: [String] -> String
joinedWithCommasBetween [] = ""
joinedWithCommasBetween [x] = x
joinedWithCommasBetween (x:xs) =

x ++ ", " ++ joinedWithCommasBetween xs

We have some new things here. Firstly, we have a qualified import.
Importing is how we can include other code to use in ours. Making
it qualified means all the imports actually sit underneath a special
name (we’re calling it L here), and so as you can see, when we want
to use the intercalate function below, in main’s definition, we
have to write L.intercalate to tell it we mean the one inside
the Data.List module.

The second thing to note is that we’ve included a joinedWith-
CommasBetween function. We’re not actually using it here. We’ve
seen it before, but it’s identical to the function obtained by providing
the intercalate function from Data.List with a ", " value,
except that it also works on any Lists, not just [String], so we
included the definition so you can understand one way interca-
late could work.

The type of intercalate is [a] -> [[a]] -> [a]. Be-
cause the String type is actually just a synonym for [Char], this
fits if “a” is Char. (It fits as String -> [String] -> String).

The type of the expression intercalate ", " is [String]
-> String, same as joinedWithCommasBetween.

We’re using two lines in a where clause inside our main, this time.
There is advices, which uses adviceOnZooEscape to build a
list of pieces of advice using localZoo, and stringToPrint

which uses intercalate and advices to create a string that is
passed to putStrLn.

72

Happy Learn Haskell Tutorial Vol 1

13.6 Homework

Your homework is to write a program that prints out the String

"Hello there", and then change it to print out your name. Try
to remember what you have to write and not look at the book while
you’re writing your program. Only once you’ve finished, check your
work against the book, and by running the program.

Once you’ve done that, do it again, but make the program print
out your mother’s name.

Once you’ve done that, do it again this time with your favourite
colour.

Do this by both using a separate definition for the String, as
well as putting the String directly in.

You should do this as many times as you need to with different
String values,not looking until after, so that you can write any pro-
gram that prints out a String without looking anything up. Make
sure you’re writing the type signatures, as well.

Now it’s time to pat yourself on the back, and take a break - you’ve
written your first Haskell programs! Well done.

At this point, you know how simple function application works.
You take a value, and you put it to the right of a function, and this
expression in total is equal to the returned value.

Why did we wait so long before recommending you begin to write

code? Simply, we want you to be very comfortable with seeing, read-
ing and understanding things you write before you begin to write
them.

73

Happy Learn Haskell Tutorial Vol 1

14 Cats and Houses

Feline Crescent has ten houses on it. Each house has a cat of a
different breed living in it. We’ll be seeing sections of programs that
we’ll slowly build up to a program that finds the oldest of the cats
on the street and prints out where they live, along with their age in
equivalent human years.

14.1 Another Sum Type

First, let’s see a data type for cat breeds:

data CatBreed =
Siamese | Persian | Bengal | Sphynx

| Burmese | Birman | RussianBlue
| NorwegianForest | CornishRex | MaineCoon

If you remember, we know this sum type means we’re declaring a
new type of data called CatBreed, and all the possible values are
listed above.

14.2 Product Types and Algebraic Data Types

Next, we’ll see a data type for Cat. This is a new kind of data type
called a product type. This lets us make values that combine more
than one type. When we saw tuples, you may rememeber we said
that there are better ways to combine multiple values into one value.
Well, this is that better way. A Cat can have an Age, and a Name,
and a breed (CatBreed).

type Name = String
type Age = Integer
data Cat = Cat Name CatBreed Age

This tells Haskell that Cat is a new type for data, and that it has
only one value constructor. Both sum types and product types are

74

Happy Learn Haskell Tutorial Vol 1

examples of algebraic data types. You can have combinations of
these types in the one type, which means you can have types that
are sums of product types. We’ll see more of this later, so don’t worry
too much about this for now. Algebra is another fancy word which
just means a sort of language of combining elements together — in
this case, we’re combining types. You probably know this word from
Maths if you’ve studied it.

Our code also tells Haskell that Cat is the name of the value
constructor, as well as the name of the type. So how does Haskell
know when we’re talking about the type, and when we’re talking
about the value? Well, by looking at the places we’re using it, it can
use inference to work it out.

Notice the Cat type is defined as one single Cat data construc-
tor, which has variable “slots” for the name, breed and age. This ac-
tually tells Haskell to make the value constructor function Cat ::

Name -> CatBreed -> Age -> Cat and this can be used to
make Cat values (which is why it’s called a data constructor), as
well as pattern match for these values. Remember how (:) is a
value constructor for the list type? Well, it’s the same thing at work
here.

14.3 Pattern-Matching Product Types

Next we’ll see a product type for House:

type HouseNumber = Int
data House = House HouseNumber Cat

And a function to work out how old a cat is in human years:

-- this is a commonly agreed upon
-- way to work out cat ages
humanAge :: Cat -> Age
humanAge (Cat _ _ catAge)
| catAge <= 0 = 0
| catAge == 1 = 15
| catAge == 2 = 25
| otherwise = 25 + (catAge - 2) * 4

We’re using a guard pattern to match all the possibilities here.
Maybe you can remember that the (<=) operator means “is less
than or equal to”. There is a similar operator for the other direction,
too (>=) which means “is greater than or equal to”.

Notice that the first argument to humanAge is a Cat, a single
value of the Cat type, but it’s being kind of “pulled apart” by the
pattern match using the value constructor. This takes the first two
fields of the Cat data type and ignores them (by matching them to “ ”
which as you might know by now, basically throws them away), and
then binds a variable name to the age of the Cat called catAge,
so the rest of the function can compare and do math with it.

Next we’ll see some data for a street, which will be a list of
houses, and a couple of functions for working with that data:

street :: [House]

75

Happy Learn Haskell Tutorial Vol 1

street =
[House 1 (Cat "George" Siamese 10)
, House 2 (Cat "Mr Bigglesworth" Persian 5)
, House 3 (Cat "Mr Tinkles" Birman 1)
, House 4 (Cat "Puddy" Burmese 3)
, House 5 (Cat "Tiger" Bengal 7)
, House 6 (Cat "The Ninja" RussianBlue 12)
, House 7 (Cat "Mr Tinklestein"

NorwegianForest
8)

, House 8 (Cat "Plain Cat" MaineCoon 9)
, House 9 (Cat "Shnooby" Sphynx 7)
, House 10 (Cat "Crazy Ears Sam"

CornishRex
3)

]

getCatFromHouse :: House -> Cat
getCatFromHouse (House _ c) = c

getHumanAgeOfCatFromHouse :: House -> Age
getHumanAgeOfCatFromHouse =

humanAge . getCatFromHouse

So, street is a value whose type is [House]. The type of
House says it has a single data constructor, also called House

which takes two fields (House :: HouseNumber -> Cat ->

House) and returns a House value. Each of these houses has an
embedded Cat value in it constructed with the Cat data construc-
tor which is building a Cat out of a Name, its CatBreed, and its
Age.

Moving on from there, we know that every House must have a
Cat in it if we look at the House type, so we see there’s a simple

function that extracts the Cat value from a House value by using
pattern matching (called getCatFromHouse).

14.4 Function Composition

The next function (getHumanAgeOfCatFromHouse) probably
looks a little curious, because we’ve got a new operator in it named
(.) which kind of glues two functions together. It turns them into
a single function that does the same as calling the first one on the
result of calling the second one. It’s called the function composition
operator. We’ll talk more about this function later, but you can think
of it as feeding the “output” of the function on the right into the
“input” of the function on the left.

The type of getHumanAgeOfCatFromHouse is annotated to
be House -> Age. As we just saw, getCatFromHouse takes a

76

Happy Learn Haskell Tutorial Vol 1

House and gives a Cat, and humanAge takes a Cat and gives an
Age. So, if we somehow could chain or pipe them together (glue
them at the Cat, so to speak!), then giving this new function a
House value would give us back an Age. This is exactly what the
(.) operator does to two functions: it chains them together to form
a new one that does the work of both, as long as they have a common
type between them.

Here’s another way to write that same relation by just using reg-
ular function application rather than function composition.

getHumanAgeOfCatFromHouse :: House -> Age
getHumanAgeOfCatFromHouse h =
humanAge (getCatFromHouse h)

We can see that we have to include a variable for the House value
here, and we can see that we’re applying the function getCat-

FromHouse to the House, and then applying the function human-
Age to the resultant Cat.

Sometimes it makes more sense to use normal function appli-
cation, like the above: humanAge (getCatFromHouse h) and
other times it makes more sense to use function composition like
this: humanAge . getCatFromHouse, but they mean the same
thing. We’ll see more of (.) later.

14.5 Importing a Module

Now we’ll see a function from the Data.List module called find
that can be used to get a particular item from a List. A module is a
kind of named package of additional functions and types that other
programmers have written. So, the Data.List module contains
lots of good things to do with lists, and it needs to be imported in
our file at the top. We’re “aliasing” it (or locally renaming it) to L by
using the as keyword. The qualified keyword makes sure when
it imports all the function names, it doesn’t load them directly into
our local namespace. That way, if we already have things named
the same thing as the module we’re importing, there won’t be any
conflicts.

-- don’t forget, this goes
-- at the top of the file
import qualified Data.List as L

14.6 Maybe An Answer

Let’s look at the type signature for the find function, noticing that
we’ve qualified the function as being in the L aliased namespace by
putting L.find instead of just find:

import qualified Data.List as L

L.find :: Foldable t => (a -> Bool) -> t a -> Maybe a

77

Happy Learn Haskell Tutorial Vol 1

We can see this function takes two arguments; firstly a function of
type a -> Bool, and secondly a value of type Foldable t =>

t a. This function then returns another wrapper type. This one is
called Maybe, and it is wrapping the same type that our Foldable
t => t is wrappering.

What does this function do, though? Well, it takes that function of
a -> Bool and applies it to each of the items in the Foldable t

=> t a. If it can’t find any that return True, it returns the Nothing
value, which comes from the Maybe a type. If it does find any that
return True, it returns the first one, wrapped in the Just value
constructor from the Maybe a type.

Here’s an example:

names = ["Harry", "Larry", "Barry"]

result1 = L.find isHarry names
where isHarry name = name == "Harry"

-- result1 will be:
-- Just "Harry"

result2 = L.find isJake names
where isJake name = name == "Jake"

-- result2 will be:
-- Nothing

So we can easily see when it finds a value because True was
returned by the finding function (also called the predicate, remem-
ber?), it returns it wrapped it in Just, and when it doesn’t, it returns
Nothing.

14.7 A Little Finding & Sorting

Let’s put this to work on a function that can find the oldest cat in a
list of houses:

findOldestCat :: [House] -> Maybe Cat
findOldestCat [] = Nothing
findOldestCat houses = Just oldestCat
where
oldestCat
= getCatFromHouse houseWithOldestCat

houseWithOldestCat
= head housesSortedByCatAge

housesSortedByCatAge
= L.sortBy catAgeComparer houses

catAgeComparer (House _ (Cat _ _ age1))
(House _ (Cat _ _ age2))

= compare age2 age1

This function might look insane at first, but it’s just layers on lay-
ers, and we’re going to slowly pull the layers apart together. It’ll be
fun, let’s start.

Let’s go from the bottom up. catAgeComparer is a function
that takes two houses and compares the ages of the cats contained
within. It does this by pattern matching the ages out of the cats, and
the cats out of each house all at once (its type is House -> House

-> Ordering).

An Ordering is a built-in sum data type which has values of
LT, EQ and GT which stand for less than, equal to and greater than

78

Happy Learn Haskell Tutorial Vol 1

respectively. Ordering values are used by sorting functions in
Haskell.

The sortBy :: (a -> a -> Ordering) -> [a] ->

[a] function from Data.List takes a function whose type is (a
-> a -> Ordering) to sort its second argument: a list. That fits
the type of catAgeComparer, which is why we’re using sortBy

in our definition of housesSortedByCatAge in the line above
that. Put another way, the sortBy function takes a comparing
function (that is, one that returns an Ordering), and a list, and
returns that list sorted by using the comparing function on adjacent
elements.

Because we want to sort oldest to youngest, our application of
the compare function in catAgeComparer has age2 first. If age1
was first, it’d sort youngest to oldest.

Next, we have houseWithOldestCat which takes the
housesSortedByCatAge value obtained by sorting the houses,
and picks off the first one with the head function. It’s only safe to
use the head function when we can be absolutely sure there is at
least one item in the list we’re applying it to. Otherwise it will cause
your program to crash (crashing is a term that means the program
unexpectedly stopped working). We’re sure that there is at least one
item in the list we’re applying head to because we have a clause
that matches on the empty list and returns Nothing.

Finally,oldestCat is obtained by applying getCatFromHouse
to houseWithOldestCat, which will obviously just get the cat
out of the house.

14.8 More About Maybe

Now we can talk some more about the Maybe Cat type that you
can see in the findOldestCat function’s type signature.

Maybe is a type that takes another type to make types with (this is
called a type constructor). That means you can have values of type
Maybe Int,Maybe Cat,Maybe House, or Maybe any other con-
crete type you like.

It’s a sort of wrapper for other types, and it’s what we use in
Haskell when we want to make a type’s value optional.

In our case, we can’t be 100% sure if the list we pass to find-

OldestCatwill contain something. If it is empty, then we obviously
can’t pass a Cat back at all. The way Maybe values work is there’s a
value called Nothing which represents “no value” of the wrapped
type, and there’s a value called “Just a”which represents any other
value of our wrapped type. Take a look at the following values and
their type signatures:

Just 5 :: Num a => Maybe a
Just "Heya" :: Maybe String
Just (Cat "YOOBEY" Sphynx 8) :: Maybe Cat
Nothing :: Maybe Cat
Nothing :: Maybe Integer
Nothing :: Maybe a

You might be surprised to know that Nothing :: Maybe

Cat can’t be compared to Nothing :: Maybe Integer. This

79

Happy Learn Haskell Tutorial Vol 1

is because Cat is a different type than Integer and you can’t com-
pare differently typed values (unless they’re polymorphic values —
that is, values whose types have type variables like Nothing ::

Maybe a, or 5 :: Num a => a).

So, Nothing :: Maybe Cat means “there are no cats”,
and Just (Cat "YOOBEY" Sphynx 8) means “a value of the
optional-Cat type that has a Cat in it). This is different than the
values whose type is Cat, because a value of the type Cat must be
a Cat as defined by the type - it can’t be empty at all.

This is a very nice property for a programming language to have.
If there is a value whose type is Integer, you can be sure it won’t
have anything other than exactly that in it, which makes reading and
reasoning about programs much much easier.

However, every positive side has a negative side, too, and the
negative side of this is that it makes working with empty things
slightly more complicated than if there were just a general value
that means an empty thing. We definitely think the complexity is
worth it, though, because these optional types are some of the
biggest sources of errors in programming languages that don’t have
this feature of “typed optionality”.

14.9 The Final Program

We’ve added a main function and two additional helper functions:

import qualified Data.List as L

data Cat = Cat Name CatBreed Age
type Name = String
data CatBreed =

Siamese | Persian | Bengal | Sphynx
| Burmese | Birman | RussianBlue
| NorwegianForest | CornishRex | MaineCoon

type Age = Integer

data House = House HouseNumber Cat
type HouseNumber = Int

street :: [House]
street =
[House 1 (Cat "George" Siamese 10)
, House 2 (Cat "Mr Bigglesworth" Persian 5)
, House 3 (Cat "Mr Tinkles" Birman 1)
, House 4 (Cat "Puddy" Burmese 3)
, House 5 (Cat "Tiger" Bengal 7)
, House 6 (Cat "The Ninja" RussianBlue 12)
, House 7 (Cat "Mr Tinklestein"

NorwegianForest
8)

, House 8 (Cat "Plain Cat" MaineCoon 9)
, House 9 (Cat "Shnooby" Sphynx 7)
, House 10 (Cat "Crazy Ears Sam"

CornishRex
3)

]

humanAge :: Cat -> Age
humanAge (Cat _ _ catAge)
| catAge <= 0 = 0
| catAge == 1 = 15
| catAge == 2 = 25

80

Happy Learn Haskell Tutorial Vol 1

| otherwise = 25 + (catAge - 2) * 4

getCatFromHouse :: House -> Cat
getCatFromHouse (House _ c) = c

getHumanAgeOfCatFromHouse :: House -> Age
getHumanAgeOfCatFromHouse =

humanAge . getCatFromHouse

findOldestCat :: [House] -> Maybe Cat
findOldestCat [] = Nothing
findOldestCat houses = maybeOldestCat
where
maybeOldestCat
= case findOldestCatHouse houses of

Just house ->
Just (getCatFromHouse house)

Nothing ->
Nothing

findOldestCatHouse :: [House] -> Maybe House
findOldestCatHouse houses =

if length housesSortedByCatAge > 0
then Just (head housesSortedByCatAge)
else Nothing

where housesSortedByCatAge
= L.sortBy catAgeComparer houses

catAgeComparer (House _ (Cat _ _ age1))
(House _ (Cat _ _ age2))

= compare age2 age1

getCatName :: Cat -> String
getCatName (Cat name _ _) = name

getHouseNumber :: House -> String

getHouseNumber (House number _) = show number

main :: IO ()
main = putStrLn oldest
where
oldest =
case findOldestCatHouse street of

Nothing ->
"There is no oldest cat!"

Just house ->
"The oldest cat is "
++ getCatName (getCatFromHouse house)
++ ", is "
++ show (getHumanAgeOfCatFromHouse house)
++ " equivalent human years old"
++ " and it lives in Number "
++ getHouseNumber house

Phew! We’ve covered a lot of code in this chapter.

The two helper functions getCatName and getHouseNumber

use pattern matching to grab out the name of a cat and the num-
ber of a house (and make sure they’re a string by using the show

function).

The main function uses a definition called oldest which uses a
case expression on the application of findOldestCatHouse to
street, which returns a value of type Maybe House. The case

expression is used to match on either the Nothing value to report
an error, or the Just value, in which case it takes the house out
of the Just value constructor with pattern matching and creates
a nice descriptive sentence about the oldest cat, its age in human
equivalent years, and where it lives.

81

Happy Learn Haskell Tutorial Vol 1

14.10 Homework

Your homework is to write a definition for a name and value whose
type is String, and a program that prints that String using put-
StrLn. Make sure you can do it from memory without looking it up,
and write out the types for all definitions in your program.

15 Basic Output

Covers: writing programs to create basic output

15.1 Setup Your Environment

Let’s start writing some software! At this point, you should find out
how to use an interactive Haskell environment because we’ll be us-
ing it to check types and run code. An internet search will help you
to find this. There are countless tutorials on how to set up and install
this software, and it has a tendency to change, so we won’t repeat
them here, but if you’re using GHC, then you will already have the

82

Happy Learn Haskell Tutorial Vol 1

interactive environment GHCi installed, which is what we’ll be us-
ing. A good start is to go to http://www.haskell.org/ and to
use the stack environment because it sorts out a lot of the common
problems with setup and installation.

In particular, when you write your Haskell files in a text editor, you
load them into GHCi with the :load filename (or :l file-

name) command and then you can run main and other functions by
typing main and pressing the return key. You can also check types
by using the :type (or :t) command in front of an expression, and
when you’ve changed your code, you can use :reload (or :r) to
reload the file, which gives a pretty nice workflow for constantly
type-checking your work.

You’ll also need a text editor. Atom, Sublime Text or Textmate are
reasonably good ones, depending on if you’re on Windows or Mac.

In a later update to this tutorial,we will most likely address setting
up Haskell and which tools to use.

15.2 putStrLn, print and String

We begin by taking a number of simple, graded exercises. By now,
you’re familiar with recognising the putStrLn & print functions
and String values and their types. Doing these exercises, and then
revising them later will anchor these things in your long term mem-
ory.

15.3 Ways To Solve Problems

To do them,we’ll run through some ways to think about solving them
together, then at the end you will get to solve similar problems on
your own. You should not look at the example run-throughs when
you’re doing your own programs,otherwise you won’t build your own
real-world usage understanding. If you have to look, that’s fine, how-
ever once you’ve finished, you should do that exercise again from the
start without looking.

These exercises may seem stupidly simple at first, but they’re de-
signed to get you to think in a way that will pay off as the programs
get more complicated and larger with time.

15.4 Guided Exercise 1: Display Hello

Task: Write a program to print “Hello” on the screen.

We can immediately see we’ll need the String "Hello", so let’s
create a definition for that, and its type:

helloString :: String
helloString = "Hello"

If we didn’t already know the type of "Hello", we could ask
GHCi by typing :t "Hello" at the prompt, and it will tell us
"Hello" :: [Char] and as we know, String is a type syn-
onym for [Char]. This can be very helpful for working out the types

83

http://www.haskell.org/

Happy Learn Haskell Tutorial Vol 1

of expressions and values so we know what will work with what.

So now we have our String, we want to be able to print it on the
screen. This will be an IO action, and as we know, Haskell programs
always start with the IO action main, so we will need to make a
definition for that. The type of main has to be IO ().

So, on the one hand we have helloString whose type is
String, and on the other, we need a definition for main whose
type is IO ().

So we want a function whose type is String -> IO (). We
could use the hoogle Haskell search (at https://www.haskell.
org/hoogle/) to find this for us by typing in the type signature
to its search feature, but we happen to already know of a function
whose type matches this, because we’ve seen it many times by now:
putStrLn has type String -> IO (), and we know that means
if we apply a String value to it by putting it to the right of it,
together they will be an expression whose type is IO (). We also
know how to make definitions: you write a name on the left, an
equals sign, then an expression on the right.

So, we can join all of this information up, and finish our program:

helloString :: String
helloString = "Hello"

main :: IO ()
main = putStrLn helloString

15.5 Guided Exercise 2: Display the Sum of Two Num-
bers

Task: Write a program to add the number 3029 to 2938 then print
the answer on the screen by itself.

Ok, we’ll use a top-down approach this time. We know we’ll need
to have a program that prints a number on the screen.

We’re very familiar with printing numbers on the screen by now.
We can either use putStrLnwith a String version of the number,
or the print function which takes any instance of Show (which
Integer is), so let’s write our program “as if” we already had the
addition expression that evaluated to a single number. To do this,
we can “dummy in” a definition of a single number (let’s use 0 for
now):

theAnswerNumber :: Integer
theAnswerNumber = 0

main :: IO ()
main = print theAnswerNumber

If you compile this and load it into GHCi, it will work just fine.

Now, the only thing that remains is to work out how to change
that expression from just 0 to an expression that will add the num-
bers together, and we know about the (+) operator which takes two
numbers, and returns their sum. Let’s use it:

84

https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/

Happy Learn Haskell Tutorial Vol 1

theAnswerNumber :: Integer
theAnswerNumber = 3029 + 2938

main :: IO ()
main = print theAnswerNumber

15.6 Guided Exercise 2: Display the Product of Two
Numbers

Task: Write a program to print the product (multiplied value) of 33
and 398.

Again, we know the type of main is IO (), and we know the
type of print is Show a => a -> IO (), so we’ll feed print

a single value to make an expression which we can define as main.

main :: IO ()
main = print 0

Now we have this, what if we just replace the value 0 with 33

* 398? Well, in Haskell we know that a space between things will
mean we want function application, and we know that this is very
high precedence, and it’ll apply from left to right, so print 33 *

398would mean the same thing as (print 33) * 398, and if we
try that, Haskell will give us this type error, because it’d be trying to
apply (*) to an IO () value...: No instance for (Num (IO

())) arising from a use of ‘*’.

That means it first bound 33 to print’s argument, to give an
expression of type IO (), and then tried to pass that IO () value
into (*) as one of its arguments, which didn’t work, because the
type of (*) is Num a => a -> a -> a, not IO (), which does
not have an instance of the Num typeclass. That’s what that error
message says.

So, we need to use brackets to turn 33 * 398 into a single ex-
pression which can be passed as the one argument to print. Once
we do that, it works, and that’s our program done:

main :: IO ()
main = print (33 * 398)

Now it’s your turn!

15.7 Reader Exercise 1

Task: Write a program that prints "This sentence is false"

on the screen. Once you’ve done this, make it say "No it’s not"

instead. Once you’ve done this, change it to say "One plus two

is not seven".

15.8 Reader Exercise 2

Task: Write a program that prints the number 20938 on the screen.

85

Happy Learn Haskell Tutorial Vol 1

15.9 Reader Exercise 3

Task: Write a program that adds the number of whatever the current
month is right now (1 is for January, 2 is for February etc.) to the
current year, and prints it on the screen. (Note: it needn’t actually
generate or get the current month, you just write it in as a number
yourself).

15.10 Reader Exercise 4

Task: Write a program that multiplies your current age with your
mother’s current age and prints it on the screen. (Just write the val-
ues you know for these ages in as numbers, you don’t need to make
the computer actually get the numbers from the user).

15.11 Reader Exercise 5

Task: Write a program that adds the numbers 5,7,8 and 9 together
and prints the result on the screen.

15.12 Reader Exercise 6

Task: Write a program that subtracts 999 from 1098 and prints it
on the screen.

16 Fridge, The Game

This is one of the simplest horror games ever. The original idea was
by Peter Halasz of http://becauseofgames.com who created
it in the programming language C when he was learning how to
program.

We’re going to use this little game to learn how to get some input
from the user, to sequence chunks of IO code together, and also to
see a way to make a program continue until the user wants to stop.

Here is the listing. We explain it below.

86

http://becauseofgames.com

Happy Learn Haskell Tutorial Vol 1

main :: IO ()
main = do

putStrLn "You are in a fridge. What do you want to do?"
putStrLn "1. Try to get out."
putStrLn "2. Eat."
putStrLn "3. Die."
command <- getLine
case command of
"1" ->

putStrLn "You try to get out. You fail. You die."
"2" ->

do
putStrLn "You eat. You eat some more."
putStrLn "Damn, this food is tasty!"
putStrLn "You eat so much you die."

"3" ->
putStrLn "You die."

_ ->
putStrLn "Did not understand."

putStrLn "Play again? write y if you do."
playAgain <- getLine
if playAgain == "y"
then main
else putStrLn "Thanks for playing."

This program uses a do block,which is something we haven’t seen
before. This allows you to join many actions together into one single
action. There are two main things to know about do blocks, which
we’ll cover below.

16.1 Do Blocks with IO

Firstly, all of the actions in an IO do block are executed in the order
they’re written. That is, they’re sequenced together. Secondly, using
“<-”, you can connect an inner value from an IO action on its right
to a variable on its left. It’s worth noting that you can only use this
<- syntax within a do block, though.

You’ll also notice that we have a case expression. We can use
any Haskell expressions we like in a do block as long as they result
in an action of the same type as the do block’s type.

Anyway, let’s see these things in action with two tiny example
programs, one for do blocks combining and sequencing IO actions,
and one for gathering input from the user.

main :: IO ()
main =
do
putStrLn "Hello"
putStrLn "There"

Ok, so this program will first print Hello on the screen, then it
will print There on the next line. The do block takes one or more
actions, and packs them into a single action. The type of that do
block above is IO (), just like main, and in IO, these actions will
be sequenced one after the other as we’ve written them down the
page.

And now, getting some input from the user:

87

Happy Learn Haskell Tutorial Vol 1

main :: IO ()
main =

do
putStrLn "What is your name? "
theName <- getLine
putStrLn ("You said your name is " ++ theName)

Ok here we’re sequencing three actions together. We can get in-
put from the user in Haskell with getLine. When this program is
run, once the first line has been output, it will wait for the user to
put some text in and press return. Once they do that, it will have
bound that text into the getLine action, pulled that value out as
theName, and printed out the last line which includes that text the
user entered!

If we look back at our original program, and look at the line com-
mand <- getLine, you’ll see <- is there to pull the String from
the getLine action and set the variable “command” to its value.
The type of getLine is IO String, which means it’s an IO action
that “contains” a String when it’s executed. When we use <-, we
can think about it like it’s extracting the String value from the ac-
tion (note that this applies only when we’re in an IO action, though).

16.2 Do Block Nesting

Notice, also, that you can put do blocks within do blocks. This is
called nesting. We’re doing this by having another do block in the
“2” branch of the case expression.

16.3 Whole-Program Recursion

This game has two sections. First it tells the user their options and
asks for their input with getLine, and then depending on what they
wrote, it tells them what happened. Next, it asks if they want to play
again, and if they do, it runs the whole thing again by calling main.
This is recursion of the whole program. The program is an IO action,
and do blocks allow us to compose IO actions, so it’s perfectly fine
to have the whole program at the end recursively.

One last thing to note about do blocks, though, is that they must
always end with the same type as the whole do block. So, becuase
ours ends with an if expression whose resultant type is IO (),
which is the type of the main function itself, it will work just fine.
We’ll see more examples of do blocks in later chapters.

16.4 Homework

Homework is to go for a walk with a pad and pen and write a program
to add up a few of the numbers on number plates of cars in your
street (assuming there are lots of cars around, if not, pick something
else where there are lots of numbers). Add them up using the (+)
function, and use either print or putStrLn with show. Do this
as many times as you need to so that you know how to do it without
looking it up. You will probably need to do this in a few different
sessions to fully anchor it in your memory. Also, write a function
that prints out a greeting.

88

Happy Learn Haskell Tutorial Vol 1

You’ll notice that we’re giving you lots of repeated homework with
putStrLn, print, show and the other basics. That’s because we
want to make sure you can do it very well. Varied repetition, or prac-
tice, is the key to getting very good with a skill.

17 The People Book

In this chapter, we’ll see some code for working with our own super-
simple address book, and in the process introduce an extremely use-
ful variety of functions called higher order functions. We’ll also dig
a bit deeper into sum and product types (or algebraic data types as
they’re generally known as together), and introduce records, another
way to work with data within such data types.

Imagine you were building up a list of your favourite people from
the subject areas of maths and computing. (I know, what a silly sug-
gestion!) So,what kind of information would you want to write down
about them? Let’s just pick a couple of things about them to keep
track of.

89

Happy Learn Haskell Tutorial Vol 1

17.1 Models of Data

A data model is a set of data types or data that describes something.
We’ve actually been doing data-modelling the whole book. When we
say that we’re going to use an Integer value to represent some-
one’s age, for example, we’re doing data-modelling. In our case right
now, we’re about to be modelling people. So, what data would make
up a person?

Well, because a person can have many pieces of information about
them (or we could call them fields or attributes), we need a way to
build a single type out of a combination of other types. To do this in
Haskell, we use a product type, as we’ve briefly seen before. Here’s
an example of one of these product types:

type Name = String
type Year = Int
data Person = Person Name Name Year
deriving (Show)

You’re probably wondering about some things here. What is “de-
riving”? Why is data being used without the | symbol, and why is
Name written twice? We’ll go through this now.

Firstly, we can see that we have a type alias for Name as String.
We also have one for Year as Int. Great, there’s nothing new there.
We know that just says these different type names can be used for
those types, and Haskell will know what we mean. As you know,
these are called type aliases or type synonyms.

17.2 More on Data Types

What about data Person though? Well, this is how we define
Person to be an algebraic data type, as we mentioned above. The
data keyword tells Haskell we’re creating our own fresh new type.
We’ve seen these before, but let’s go through it in more detail to
understand it better.

The part to the left of the = symbol is the type name. Once our
type is created, this name can be used in places where types can
go, for example in type annotations. This name is Person in the
example above. If we’d written data Muppet = HappyMuppet

Name instead, then Muppet would be the type name instead.

Next we’ll look to the right of the = symbol. We see Person again.
This is a value constructor. When we create a type like this, Haskell
creates us a function (or just a value if there are no type fields) for

90

Happy Learn Haskell Tutorial Vol 1

each of the values the type describes. In our case, we just have the
one, which is Person. Looking to the right of this, we can see the
types that make up this Person value, and the value constructor.

If we’d created the more complicated data type of data Sized-

Person = TallPerson Name | ShortPerson Name, then
we would have two value constructors: TallPerson ::

String -> SizedPerson and TallPerson :: String -

> SizedPerson, just to show you how it looks when there are sum
and product types in the one algebraic data type.

Anyway, it’s called a product type because a single piece of
this type of data is a product of more than one piece of data of
these types. These pieces of data are often called fields of the
data type. Again, if we’d written data Muppet = HappyMup-

pet Name, then HappyMuppet would be the value constructor
(also sometimes called the data constructor).

So, after we’ve defined this type, Haskell will have defined a
new value constructor function for us automatically Person ::

Name -> Name -> Year -> Person. Notice that the return
type of this function is Person as well as the function being named
Person. If we go back to our muppet example as a contrasting ex-
ample, we can see that the type of the data constructor would be
this instead: HappyMuppet :: Name -> Muppet.

17.3 Making Our Types Show

There is also this deriving (Show) line after Person. That is for
us to tell Haskell that we’d like it to create an easy to print version
of this data type for us, automatically creating an instance of the
Show typeclass for this data type. When we use show on it, it will
just print it out like it’s written in the code.

17.4 Building Our First Value

Back to Person, though, those Name fields... why two names? Is it
first and last names? If so, which is which? Let’s see an entry for a
person. Maybe that will clear it up:

-- the famous mathematician
-- Blaise Pascal
blaise :: Person
blaise = Person "Blaise" "Pascal" 1623

Ah, so the given name comes first, and the family name goes sec-
ond. But, what is Year supposed to represent here? Is it the year of
birth? of death? of something else?

17.5 Records

Don’t you wish there was some way we could see exactly what the
types were supposed to mean inside of the product type itself? Well,

91

Happy Learn Haskell Tutorial Vol 1

it turns out there is. It’s what’s called record syntax, which is simply
a way to let us name the fields as we specify a data type. Here’s what
the Person type looks like using record syntax:

type Name = String
type Year = Int
data Person = Person

{ personFirstName :: Name
, personLastName :: Name
, yearOfBirth :: Year }

deriving (Show)

Okay, there are names for the fields now, so it’s clearer what each
means. Also, Haskell automatically makes what is called a getter
function for the fields, and it also allows us to use something we’ll
see called record update syntax for making new data based on exist-
ing data. So,personFirstName is a function of type Person ->

Name, which means we pass it a Person and it gives us back the
first name, and so on for the other fields. How about constructing a
Person now? What’s that like? Well, it can work like this:

blaise :: Person
blaise =

Person { personFirstName = "Blaise"
, personLastName = "Pascal"
, yearOfBirth = 1623 }

However, we can still build a Person the usual way, and all the
old things work as before.

Something new, though, is that we can also easily build new
records out of others by doing the following:

traise :: Person
traise = blaise { personFirstName = "Traise" }

This is called record update syntax. This one creates a person
whose data looks like this: Person {personFirstName =

"Traise", personLastName = "Pascal", yearOf-

Birth = 1623}. Note that we can now “set” and “get” the data for
fields in any order we like. We can set more than one field at once,
too.

Let’s look at some more people:

people :: [Person]
people =
[Person "Isaac" "Newton" 1643
, Person "Leonard" "Euler" 1707
, Person "Blaise" "Pascal" 1623
, Person "Ada" "Lovelace" 1815
, Person "Alan" "Turing" 1912
, Person "Haskell" "Curry" 1900
, Person "John" "von Neumann" 1903
, Person "Lipot" "Fejer" 1880
, Person "Grace" "Hopper" 1906
, Person "Anita" "Borg" 1949
, Person "Karen" "Sparck Jones" 1935
, Person "Henriette" "Avram" 1919]

92

Happy Learn Haskell Tutorial Vol 1

17.6 Finding a Person from the List

Let’s see how we’d find a particular person, say, the first person
whose birthday is after 1900 in the list. First, we need to make sure
we’ve imported the Data.Listmodule, because we’ll be using the
find function from that module. At the top of our code file,we make
sure the import is present:

import qualified Data.List as L

Then, we can find our person with this definition of an expression:

firstAfter1900 :: Maybe Person
firstAfter1900 =

L.find (\(Person _ _ year) -> year >= 1900) people

The find function has the following type signature L.find ::

Foldable t => (a -> Bool) -> t a -> Maybe a. This
means it takes two arguments: a function from some type of value
called a to a Bool known as the predicate, and a Foldable of
that same a type. Our Foldable instance will be on list, because
we have people :: [Person] as our Foldable t => t a

value.

Essentially what the function does is apply the predicate to each
of the items until one returns True in which case it returns that
particular item wrapped in Just, otherwise it returns Nothing. It’s
not the most efficient way to find things because of the way lists are
constructed, but it will be fine for our purposes here.

Also to note here is the way we’re using the Person constructor
to pattern-match out the parts of the Person as it gets fed into
the find function, with our predicate: (Person year) ->

year >= 1900). The two underscores simply throw those partic-
ular fields away because we’re not interested in them, and we just
match out the year as the variable year which we then compare to
1900.

Instead of doing it like that, we could also have written it like this,
which is a bit more flexible because it doesn’t depend on the field
ordering in the data type:

firstAfter1900’ :: Maybe Person
firstAfter1900’ =

L.find (\person -> yearOfBirth person >= 1900) people

17.7 Filtering out People in a List

Let’s see how we’d find the sub-list of people whose name begins
with L, using recursion and the list above:

firstNameBeginsWithL :: Person -> Bool
firstNameBeginsWithL p =

case personFirstName p of
’L’:_ -> True
_ -> False

makeNewListWithOnlyLPeople :: [Person] -> [Person]
makeNewListWithOnlyLPeople [] = []

93

Happy Learn Haskell Tutorial Vol 1

makeNewListWithOnlyLPeople (x:xs)
| firstNameBeginsWithL x =

x : makeNewListWithOnlyLPeople xs
| otherwise =

makeNewListWithOnlyLPeople xs

peopleThatBeginWithL =
makeNewListWithOnlyLPeople people

The firstNameBeginsWithL function takes a Person as the
variable p, gets the first name with the personFirstName getter
function, then we have a case expression on that.

If the first name is a String beginning with the letter L, it will
match ’L’: because (:) is, as we know, a value constructor that
matches any list and pattern-match splits it into its head and tail.
This returns True, otherwise the “ ” pattern will pattern-match on
anything else, which means we return False.

Next we’ll look at the makeNewListWithOnlyLPeople func-
tion, which is a reasonably simple recursive function using guard
patterns. Rememeber that guard patterns work by Haskell match-
ing the first expression that evaluates to True, then returning the
expression on the right of the corresponding = symbol. We pull
the Person list into head and tail as x and xs respectively using
pattern-matchin again. If the Person in x has a first name that be-
gins with L, we add it to the return list by using (:) to prepend it
to the tail of the list (xs) with the function applied to it. If it doesn’t
begin with L, we simply apply the function to the tail of the list.

You might notice that makeNewListWithOnlyLPeople is us-

ing the firstNameBeginsWithL function as a kind of testing
function. This type of function is called a predicate function in pro-
gramming. It checks if something is true or not. What if we wanted
to be able to swap out that function, and make a whole lot of differ-
ent lists with people whose names started with letters other than
L? Well, next we’ll look at a general way to do just this.

17.8 A Note About List Efficiency

You might be thinking that this way of finding something is very inef-
ficient. You’d be correct if you were thinking this! For small amounts
of data, the list type is very handy and useful, and more than efficient
enough. However, for much larger amounts of data, we would use
have to use different functions and types if we wanted things to be
fast and efficient. We’ll see these in later volumes. As with every-
thing, the context gives meaning to the content, so as the content
changes (you get a bigger set of data), we must choose different
ways of working with it (choose different context of functions).

Lists are very good for certain things, such as for representing data
that is added to at the front. They are also quite easy to write code
for, so they’re good for beginners to look at first, such as yourself. As
you learn programming more you’ll start to get an appreciation and
understanding of the different types for storing data, and when it’s
good to use each.

94

Happy Learn Haskell Tutorial Vol 1

17.9 Higher Order Functions: filter

What we just saw is a very common pattern in Haskell: we take
a testing function that returns a Bool value (otherwise known as
a predicate) and a list of the same type of items that the predicate
takes, and we return a new list of items that resulted in True when
“tested” against the predicate. It’s so common that there’s already a
built-in higher-order function for it in Haskell called filter:

filter :: (a -> Bool) -> [a] -> [a]

A higher-order function is a function that takes one or more func-
tions as argument(s). This term also applies to functions that return
functions, but because of the way functions work in Haskell, that’s
so common and easy that we usually don’t count it.

Let’s see how rewriting our “only L people” function using filter

simplifies it:

makeNewListWithOnlyLPeople’ :: [Person] -> [Person]
makeNewListWithOnlyLPeople’ xs =
filter firstNameBeginsWithL xs

Here, xs is matched to the list of type Person, and we pass it
to filter, along with our predicate (firstNameBeginsWithL).
This version does exactly what our previous function does,but with a
lot less code to read and write. Using these built in common function
like filter and the others we’ll see later is really useful because
it saves us having to reinvent the wheel each time we want such
common functionality. It also gives us a common language to talk
about these things with other Haskell programmers.

17.10 Some Eta Reduction

We can further simplify the definition by removing the xs from both
sides of the equals sign!

makeNewListWithOnlyLPeople’’ :: [Person] -> [Person]
makeNewListWithOnlyLPeople’’ =
filter firstNameBeginsWithL

That is, filter usually takes two arguments: a function of type
(a -> Bool) (any type at all to Bool), and a value of type [a] (a
list of that same type), then returns a value of type [a] (another list
of that same type). If we were to supply it with both arguments, it

95

Happy Learn Haskell Tutorial Vol 1

would return us value of type [a], but if we only supply the first one
(the predicate from a -> Bool), then we’ll end up with a function
from [a] to [a]!

The technical name for this process of getting rid of these vari-
ables that are repeated on the right hand side of the inside and
outside is called eta reduction.

Here’s another example of it:

plus num1 num2 = num1 + num2

plus’ num1 = (num1 +)

plus’’ = (+)

All three of these functions work in the same way. The (+) func-
tion already takes two arguments, which as we know in Haskell
means it is actually two nested functions. Let’s look at yet another
way to do the same thing, this time with lambdas:

add = \x -> (\y -> x + y)

add’ = \y -> (+y)

add’’ = (+)

In each step, we’re simply removing one of the unnecessary vari-
ables from our function definition, because (+) is already a function
itself, so by the end, all we’re doing is effectively saying that add’’
is simply the (+) function.

17.11 Using filter

Getting back to our original functionality, let’s look at a different way
to write the whole function:

-- don’t get confused, c is not the letter c here
-- it’s a variable name, holding the Char value
-- we’re matching on
firstLetterIs :: Char -> String -> Bool
firstLetterIs c "" = False
firstLetterIs c (x:_) = c == x

firstNameBeginsWith :: Char -> Person -> Bool
firstNameBeginsWith c p =

firstLetterIs c firstName
where firstName = personFirstName p

peopleThatBeginWithL :: [Person]
peopleThatBeginWithL =
filter (firstNameBeginsWith ’L’) people

We have firstLetterIs, a more general function that takes
a Char and a String and returns True if the first letter of the
String is the passed in Char value. The beauty of this function is
if we decide we want to use a different letter, we just have to change
the one spot in the code.

Then there’s the firstNameBeginsWith function that gets the
first name of the passed in Person and matches its first letter
against a passed in Char value by using the firstLetterIs func-
tion.

96

Happy Learn Haskell Tutorial Vol 1

Finally, we use filter along with the partially applied func-
tion firstNameBeginsWith ’L’ and the people list to create
a Person list value defined as peopleThatBeginWithL.

It might be pretty clear to you now how we can easily build a list
by filtering on the first name beginning with any character we like,
and it should be reasonably easy to see how you could create a list of
people whose last names start with a different letter. (For example,
filter (firstNameBeginsWith ’H’) people).

17.12 Higher Order Functions: map

Now we’re going to take a look at something we’ll need later on. We
may want to get the last name of a Person. We know how to do this
for one Person just fine. Let’s say the person is blaise, then we’d
write personLastName blaise. That’s pretty straightforward.

Well, what if we actually wanted to get a whole list of first names
from a whole list of people? What would we use? Well, given what
we know about recursion, we’d probably write it something like this:

peopleToLastNames :: [Person] -> [String]
peopleToLastNames [] = []
peopleToLastNames (x:xs) =
personLastName x : peopleToLastNames xs

Study this little function well! What we’re seeing is a function with
two definitions, as usual. It’s looking like some standard recursion.

The first definition simply says if the [Person] passed in is the
empty list of Person, return the empty list of String.

The second definition is where most of the work takes place. This
first pattern matches the head of the list into x and the tail into xs.
So,x will be a Person, and xs will be a [Person]. It then returns
applying personLastName to x which gives us a String, then
prepends this using (:) to the result of calling the whole function
again on the tail of the list (recursively).

Next we can imagine what it’d be like if we wanted a kind of
general function so we weren’t locked in to only using the per-

sonLastName function. Let’s see what an equivalent first name
function would be like, first:

peopleToFirstNames :: [Person] -> [String]
peopleToFirstNames [] = []
peopleToFirstNames (x:xs) =
personFirstName x : peopleToFirstNames xs

Not much changes, does it? We’ve really only changed the func-
tion that gets called on each Person value to turn it into a String
value. What if we made a general function and let the programmer
using the function pass in their own function of type Person ->

String, that way we could make this quite general:

mapPeople :: (Person -> String) -> [Person] -> [String]
mapPeople f [] = []
mapPeople f (x:xs) =
f x : mapPeople f xs

97

Happy Learn Haskell Tutorial Vol 1

Ok, notice we’ve added another function argument at the front
— it’s f, which is the function of type Person -> String we’re
passing in — and all our function definitions now have an added
f parameter and variable. Also notice we’re using it by appling it
to x before using (:) with our recursive function application of
mapPeople at the end of the last line which also has to have the
f argument, as it’s now a required argument to our function.

This is now quite general. We can use this with first names or last
names. Let’s see the redefined version of these functions now:

peopleToLastNames :: [Person] -> [String]
peopleToLastNames people =

mapPeople personLastName people

peopleToFirstNames :: [Person] -> [String]
peopleToFirstNames people =
mapPeople personFirstName people

That’s starting to look very nice and compact. We now know,
though, that we can eta reduce these functions by getting rid of the
people argument, as follows:

peopleToLastNames :: [Person] -> [String]
peopleToLastNames = mapPeople personLastName

peopleToFirstNames :: [Person] -> [String]
peopleToFirstNames = mapPeople personFirstName

Nice. However, it’s time to let you in on a secret. The mapPeople

function already exists in Haskell, as an even more general function
called map. This one works on lists of any type of value at all.

Let’s see its type signature:

map :: (a -> b) -> [a] -> [b]

This takes two arguments: a function from anything a to any-
thing b, a list of those a values, and returns a list of those b values.
For us, this means we’d want these a and b values to be Person

and String (we call this specialisation). Pay careful attention and
note that where Haskell has written a and b in type signatures, that
doesn’t mean that those types have to be different, only that they
can be different, if you’d like.

To illusrated this, if you want to map from String to String,
or the same type to the same type, there’s nothing stopping you.
For example, here’s a function that maps from a list of strings to
their reverse string counterparts, using the reverse function: re-
verseMap = map reverse :: [String] -> [String].

So, anyway, we could have just written our mapPeople function
like this:

mapPeople :: (Person -> String) -> [Person] -> [String]
mapPeople = map

Or, we could just have used map instead of mapPeople.

98

Happy Learn Haskell Tutorial Vol 1

So, given we have a list of people called people, we’d create a
list of their last names like this:

lastNames :: [String]
lastNames = map personLastName people

Very nice and compact.

So, the higher order function map takes a function and a list. It
gives a new list with the function applied to each element of the
list. Let’s see how map could be implemented:

map’ :: (a -> b) -> [a] -> [b]
map’ f [] = []
map’ f (x:xs) = f x : map’ f xs

As you can see, it’s very similar to the function we had for getting
the last names of people.

Here’s a picture that might help you understand what map does
visually:

You get a whole new list with new items that have been created
by applying the function to the original elements. The original list
and items are still there, unchanged.

This is important: Haskell values are almost never modified,
they’re always created afresh, or referred to if they’re identical.

You might be tempted to think of it a bit like the function is “do-
ing something” to each element, especially with these higher order
functions, but it’s not, it’s looking at the original element and using
the passed-in mapping function to make an entirely new element
for the new list, leaving the original untouched. This is very good,
because if two functions are referring to one value, the last thing you
want is for that value to be changed by one of the functions without
the other one realising it. Luckily, this can’t happen in Haskell. This
is because Haskell has purity, which means functions cannot work
on things other than their arguments.

99

Happy Learn Haskell Tutorial Vol 1

17.13 Higher Order Functions: sortBy

Ok, so now we have our last names in our lastNames variable, per-
haps we might want to sort them. First, we need to make sure we’ve
imported the Data.List module, because the sorting functions
are in that module. At the top of our code file, we make sure the
following is present:

import qualified Data.List as L

Before we get to these functions for sorting, we need to know a
little about the Ord typeclass. This is for types that can be ordered.
Ord provides the functions compare, (<), (<=), (>), (>=), min
and max. These functions allow comparison between two values in
various ways. You should investigate their types using hoogle. There
is also a sum type called Ordering that this typeclass uses that has
the values LT, GT, and EQ, which represent less-than, greater-than
and equal-to respectively. The compare function returns this type,
and sorting functions use the compare function and the Ordering
type to do their work.

Right, so now we can have a definition for our sorted last names
using the sort function from the Data.List module, whose type
signature is Ord a => [a] -> [a]. It takes a list whose ele-
ment type must be instances of Ord (for comparing and ordering,
remember), and returns the sorted version of that list.

sortedLastNames :: [String]
sortedLastNames = L.sort lastNames

This will be sorted alphabetically. What if we wanted it in reverse?
Well, there is a reverse function in Haskell whose type is [a] ->

[a] that will reverse any list at all. Instead of using this, though,
we’re going to see how to use a function called sortBy that takes
a function like compare, instead.

Firstly, sortBy has a type of a -> a -> Ordering -> [a]

-> [a] and compare has type a -> a -> Ordering, so you’ll
notice that the sort function is effectively the same thing as
sortBy compare. To reverse the order, we can simply provide a
function to sortBy that returns the opposite Ordering that com-
pare would return, and we can do that by swapping the arguments
to compare:

reverseSortedLastNames :: [String]
reverseSortedLastNames =
L.sortBy (\x y -> compare y x) lastNames

This definition is more efficient than doing reverse (sortBy

compare lastNames), because it only has to go through the list
once. For our small data set, this is not going to be a problem. It
would matter with a very large list, though. In that case, though, a
list would probably not actually be the best data structure to use.

We can see there that we’ve used a lambda of two arguments to
flip the order of compare’s arguments. This has the intended result
of a reverse-sorted list of the lastNames.

There’s an arguably better way to do this than use a lambda,
though. Haskell has a commonly-used function called flip that

100

Happy Learn Haskell Tutorial Vol 1

works with any function of two or more arguments. Pass it any 2-
argument function, and it’ll return you a function that works exactly
the same, but has its arguments swapped. So here’s an alternate way
to write reverseSortedLastNames:

reverseSortedLastNames’ :: [String]
reverseSortedLastNames’ =

L.sortBy reverseCompare lastNames
where reverseCompare = flip compare

At this point, how we get the list of firstNames should appear
as no surprise.

firstNames :: [String]
firstNames =
map personFirstName people

Ok, but what if we wanted to sort the people list itself by some
field of each person? Well, Data.List has a sortOn function
whose type is Ord b => (a -> b) -> [a] -> [a]. It orders
the new list by the result of some function a -> b applied to each
element.

Let’s say for our purposes we want to create a list of people sorted
by their first names. The function personFirstName fits the a

-> b type perfectly for our purposes, as its type is Person ->

String and we want to sort on the first name String.

sortedPeopleByFirstName :: [Person]
sortedPeopleByFirstName =
L.sortOn personFirstName people

Now let’s see a function that takes a year, and a person, and
works out how many years ago from that year that person was born.

yearsSinceBirthAtYear :: Year -> Person -> Int
yearsSinceBirthAtYear y p = y - yearOfBirth p

We map y to the comparison year, and p to the passed in person,
then apply the yearOfBirth function to the person and subtract
that from the comparison year. If we wanted to get this across all
the people, we could map it as a part-applied function, say for 2012:

allYearsSinceBirthAt2012 :: [Int]
allYearsSinceBirthAt2012 =
map (yearsSinceBirthAtYear 2012) people

The type of yearsSinceBirthAtYear :: Year ->

Person -> Int means if we apply one argument to it (2012 in
this case), we’ll end up with a function (Person -> Int) that is
locked to compare with 2012, takes a single argument (a Person)
and replies with the number of years difference between 2012 and
that person’s birth year.

And now a function that shows the earliest year of birth for the
people on our list. This uses the minimum function which will work
on lists containing instances of Ord. Actually it’s a very general
function, because it will work not only on list, but any instance of
Foldable. There’s also a maximum function that gets the highest
ordered value, too. Let’s see their type signatures before we proceed:

101

Happy Learn Haskell Tutorial Vol 1

minimum :: (Ord a, Foldable t) => t a -> a
maximum :: (Ord a, Foldable t) => t a -> a

These functions have two typeclass constraints on them. This says
that tmust be an instance of the Foldable typeclass, but also that
a must be an instance of the Ord typeclass. Note that you cannot
pass an empty list into these functions. You must only pass a list
that has at least one item in them.

Luckily for us,Int has an instance for Ord, and list has an instance
for Foldable, so minimum will work perfectly for us:

earliestYearOfBirth :: [Person] -> Year
earliestYearOfBirth people =
minimum (L.map yearOfBirth people)

17.14 Removing Parentheses With The ($) Function

In Haskell, we prefer not to use so many parentheses. There is a
higher order function called ($) that will take a function on the
left of it, and some expression on the right, and apply the function
to the expression. It has an extremely low precedence, which means
it will pretty much be applied last of all. This is basically the same
effect as having parentheses wrapped around the expression on the
right. Let’s see how the function above can be written with the ($)
function.

earliestYearOfBirth’ :: [Person] -> Year
earliestYearOfBirth’ people =

minimum $ L.map yearOfBirth people

Note that we can’t get rid of the people variable, though, be-
cause the minimum function is wrapping the whole expression
L.map yearOfBirth people.

Note also that the ($) function is only for the cases where the
parentheses would go right to the very end of the expression on the
right.

17.15 Using minimumBy

Last of all, we want to find out which Person was born first out of
our list of people.

bornFirst :: [Person] -> Person
bornFirst people =

L.minimumBy compareBirthYears people
where compareBirthYears x y =

compare (yearOfBirth x) (yearOfBirth y)

Lots to explain here!

Data.List’s minimumBy :: Foldable t => (a -> a

-> Ordering) -> t a -> a function is another higher-order
function: that is, it takes a function which is a comparing function (a

102

Happy Learn Haskell Tutorial Vol 1

-> a -> Ordering). It also takes a Foldable instance wrap-
ping some “a” values of any type, and gives us the minimum one by
using the comparing function on successive pairs of items.

Notice that the “a” type doesn’t have to be an instance of Ord
here. So long as the comparing function returns an Ordering and
its two arguments are the same type,minimumBywill compile with
no problem.

Here, we’re using a where clause to locally scope the comparing
function compareBirthYears, which simply takes two people,
matches them into x and y respectively, and returns the application
of the compare function on their yearOfBirth fields.

Because compare has the type Ord a -> a -> a -> Or-

dering, and the yearOfBirth fields are Integer and they are
instance of Ord, compare can do the comparison, and this means
compareBirthYears x y returns an Ordering, which means
it’s the correct type that minimumBy requires.

These higher-order functions such as map, filter, fold and
now minimumBy and maximumBy might seem complicated at first,
but with lots of practice in thinking through all the types of the
functions concerned, they will become second nature to read, and
then later, to write.

17.16 Homework

Your homework is to adjust the program by adding middle name
(middleName) as a field to a Person, and adjusting all the func-
tions and usage of functions as you go. Make up some middle names
for these people. See if you notice that by using records, we’ve made
it much easier to change our program. See if you can imagine how
difficult it would be changing our program if all the functions were
tied to the shape of our data type!

103

Happy Learn Haskell Tutorial Vol 1

18 Times-Table Train of Terror

We’re going to introduce you to a tiny toy educational game that
introduces quite a few new functions and features of Haskell.

We won’t be using any special algebraic data types in this program.
In particular, our main type will be:

-- a game Level is simply a pair
-- of Integer values
type Level = (Integer, Integer)

18.1 Tuples or Pairs

A Level is simply a pair that has two Integer values. As this is
a simple math game, each level will be a pair of numbers that rep-
resent the two numbers for a multiplication question. (For example,
a level value of (7,9) would represent a question something like
“What is 7 times 9?”).

The next definition is where we build the levels for this game:

levels :: [Level]
levels =

concat $ map pairsForNum [3,5..12]
where
pairsForNum num = zip [2..12] $ repeat num

18.2 Ranges and the zip function

Wow, there is a lot packed into this value expression. Let’s pull it
apart piece by piece.

The levels value is a list of Level values. It’s defined using the
($) function, which takes a function on the left, and applies it to
the value or expression on the right.

In our case here, the value expression on the right is map

pairsForNum [3,5..12]. The main new thing in this expres-
sion for us is [3,5..12], which is what’s called a range. The range

104

Happy Learn Haskell Tutorial Vol 1

of numbers between 1 and 100, for example, would be represented
as [1..100]. The range above, though, is every number between
3 and 12, in odd numbers. (So, 3,5,7,9,11).

So what we’re doing, then, is mapping the pairsForNum func-
tion across this range. This function takes a number, calling it num,
and “zips” the range [2..12] together with repeat num. Zipping
is creating pairs from one item each of a number of lists as we’ll
see. The repeat function gives an infinite list of whatever its ar-
gument is. The zip function takes two lists, and builds pairs out of
those lists, taking one item from each as it does. So,zip [1,2,3]

[4,5,6] will create [(1,4),(2,5),(3,6)]. However, the zip
function will stop when the first list runs out of values, so zipping
an infinite list of repeated items with another that has only a few is
just fine, as we’re doing.

So what we’ll end up with by using map pairsForNum

[3,5,..12] is a list of lists of pairs of Integer values. This basi-
cally means we’re combining each of the elements with each of the
others. Then, we use concat to concatenate all the lists into one
list. For example, concat [[1],[2],[3]] results in [1,2,3],
for example. In math, this is called a cartesian product. You don’t
have to know this, but later we’ll see other, much simpler-looking,
easier ways to do this. Unfortunately using them requires knowing
more than we currently know, so that will have to wait.

The end result of this expression is that we have a list of 55 levels
for our train of terror!

18.3 Determining the Level Number

Here’s a function we’ll use in our program to work out what number
level the player is at:

levelNumber :: [a] -> Int
levelNumber remainingLevels =

totalLevels - levelsLeft
where totalLevels = length levels + 1

levelsLeft = length remainingLevels

We take a list of remaining levels, then subtract the number of
levels left (using the length function) from the number of levels we
started with plus one. As the player “moves up” the train, we’ll be
reducing the size of the list, so the remaining levels will get less,
and the level number will go up. Notice from the type signature
that we don’t care what the element type of the list passed into it
is, as long as it’s a list.

The main function simply gives the player a greeting message,
then starts the trainLoop function that handles all the game-play
(by passing in the levels value).

main :: IO ()
main = do
putStrLn "Suddenly, you wake up. Oh no, you’re on..."
putStrLn "The Times-Table Train of Terror!"
putStrLn "Try to get to the end. We DARE you!"
trainLoop levels

105

Happy Learn Haskell Tutorial Vol 1

You can see we have our old friend the do block in action again,
joining a whole bunch of IO actions together to form one.

In a moment, we come to the main game-play function, train-
Loop.

18.4 The game loop

The function trainLoop has two definitions.

The first is for an empty list, which for our program means the
player has won, because they got to the end of the train without
failing. In this case, we declare their victory to them.

The second definition comes into play when there are still levels
passed in. This means the game is still in play. Each time the player
gets done with a level, we remove it from the list, then pass the rest
of the levels back into the trainLoop function and start it again.

trainLoop :: [Level] -> IO ()
trainLoop [] =
putStrLn "You won! Well done."

trainLoop remainingLevels @ (currentLevel : levelsAfterThisOne) =
do
let currentLevelNumber =

levelNumber remainingLevels
(num1, num2) =

currentLevel
putStrLn $
"You are in a Train Carriage "
++ show currentLevelNumber

++ " of " ++ (show $ length levels)
putStrLn "Do you want to:"
putStrLn "1. Go to the next Carriage"
putStrLn "2. Jump out of the train"
putStrLn "3. Eat some food"
putStrLn "q. Quit"
activity <- getLine
case activity of

"1" ->
do
putStrLn $ "You try to go to the next carriage."

++ " The door is locked."
putStrLn "Answer this question to unlock the door:"
putStrLn $ "What is " ++ show num1

++ " times " ++ show num2 ++ "?"
answer <- getLine
if answer == (show $ num1 * num2)
then do

putStrLn "The lock is opened!"
trainLoop levelsAfterThisOne

else do
putStrLn $ "Wrong. You try to open the lock,"

++ " but it won’t open."
trainLoop remainingLevels

"2" -> jumpingFutility
"3" -> eatingFutility
"q" -> putStrLn $ "You decide to quit."

++ " Thanks for playing. Bah-Bye!"
_ -> do
putStrLn "That makes NO sense! Try again."
trainLoop remainingLevels

The construction with an @ symbol means the whole argument is
matched as remainingLevels, and then, also, currentLevel
is set to the first item of the list, and levelsAfterThisOne is set

106

Happy Learn Haskell Tutorial Vol 1

to the tail of the list. When we use the @ symbol like this, it’s called
an as pattern.

The trainLoop passes back an IO action, so we begin a very
large do block. This do block has lots of different kinds of things in
it, to get you familiar with more complicated looking do blocks.

Ideally, we would pull each of the sections into their own function.
For now we’ll look at it like this because it serves our purposes quite
nicely to show you a larger do block.

Remember, each of these expressions will evaluate to an IO ac-
tion (because the final value of this function’s type is IO ()), and
the do block simply connects them all up properly so they become
one single IO action.

First, we set up some variables we’ll need later using let. A
let expression is another way we can define some locally scoped
definitions. In a do block, name defined in a let expression will
be available for the remainder of the do block. One of these is
currentLevelNumber which uses the levelNumber function
we just looked at, and the next line is pattern matching the cur-

rentLevel variable into two number variables num1 and num2.
Remember, currentLevel’s type is Level, which is (Integer,
Integer), so num1 and num2 will both be Integer values.

Then we print out a message explaining that the player is on a
certain train carriage, using show to turn the number values into
strings so they can be fed into (++) with the other strings.

Next, a menu is described, and we receive a line of text from the
player with getLine, which goes into the variable called activ-
ity.

After this,we have a case expression that matches on the player’s
response. If they wrote 2, 3 or q, then we write a message and restart
the whole game, or quit out (q quits the game).

107

Happy Learn Haskell Tutorial Vol 1

If, however, they typed 1 in, they’re asked this level’s multiplication
question. If they get it right, it unlocks the current level and they can
proceed, which we do by starting the trainLoop again but with
only the tail of the levels (by using the levelsAfterThisOne

variable).

All that remains is to show the definitions for jumpingFutil-
ity and eatingFutility. These actions are executed if the
player tries to jump or eat.

All they do is print a message, then start the game at the very
beginning by returning trainLoop applied to the initial levels.

jumpingFutility :: IO ()
jumpingFutility = do
putStrLn "You try to jump out of the train."
putStrLn "You fail and die."
trainLoop levels

eatingFutility :: IO ()
eatingFutility = do
putStrLn "You see a delicious looking cupcake."
putStrLn "You eat it. It’s a time travel cupcake!"
trainLoop levels

18.5 Homework

Write a program that prints your birthday on the screen. Write an-
other program that prints two numbers added on the screen, then
one for multiplied, then subtracted.

19 Skwak the Squirrel

Games! We saw the Fridge game. It took place in one single “room”
which made it very limited. Then, the Train game didn’t really give
you any freedom, but at least it had more rooms.

Next we’ll see a game that lets us imagine that we’re a squirrel
and we live in a tree. Our new game will only have two areas, but it
will provide more capability than before. And, in the process, we’ll
get some more practice with all the things we’ve seen so far.

If we wanted to make a game that is a tiny bit more like a real text
adventure game, it’d have to let the player move around between its
game areas.

To keep it ultra-simple, let’s say we (our squirrel) could be able
to go between only the inside and outside of the tree, perhaps. The

108

Happy Learn Haskell Tutorial Vol 1

program we’ll be discovering in this section is a lot more compli-
cated than the Fridge game, but it’s about one of the most simple,
basic text adventures possible.

Let’s look at the types first:

data GameObject = Player
| Acorn

deriving (Eq, Show)
data Room =
Room Description [GameObject]

deriving (Show)
type Description = String
type Inventory = [GameObject]
type GameMap = [Room]
type GameState = (GameMap, Inventory)

We have a GameObject type whose values can be either
Player or Acorn. Fairly straightforward, this is just a sum type like
we’ve seen before. What about deriving (Eq, Show), though?
Well, this is a way to make a type become an instance of these type-
classes without having to write the code for it manually ourselves.
Being an instance of Eq means we can use (==) and other compar-
ison functions on values of this type, and being an instance of Show
means it can be converted to strings with the show function.

Now, the Room type is a product type and it has a type construc-
tor called Room as well as a value constructor of the same name,
which is used to make values of the Room type. It has fields of De-
scription, and a list of type GameObject which is used to hold
the contents of the Room. So, because of the way the GameObject
type is defined, a Room can have one or more Player or Acorn
values in it. Our game will only ever have one of each in the whole
game.

Next are a bunch of type synonyms which should be pretty easy
to understand by now, possibly with the exception of GameState
which is a 2-Tuple (otherwise known as a pair) of GameMap, and

109

Happy Learn Haskell Tutorial Vol 1

Inventory, which is a list of GameObject. GameMap is a list of
Room.

The GameState type will be what we use to store all the chang-
ing pieces of our game as the player plays it. The GameMap will be
all the rooms in the game, and the Inventory is what the player
is holding moment by moment.

Let’s see a definiton for the initial state of the game and the main
function, that will start the game.

initialState :: GameState
initialState =
([Room "You are inside a tree." [Player]
, Room "You are outside of a tree." [Acorn]]

, [])

main :: IO ()
main = do

putStrLn "Welcome to Skwak the Squirrel."
putStrLn "You are a squirrel."
gameLoop initialState

Now we see the main function, which as we know is the IO ac-
tion that will be executed by Haskell when we compile and run our
program.

All it does it announce the game, then runs a function called
gameLoop using the intialState which is the state that the
game should start with. The gameLoop contains the bulk of the
program, and we’ll see it in a moment.

First, Let’s look at initialState. This is a GameState, which
as we know from the types is a 2-Tuple that has a list of Room then
a list of GameObject. We start our game with two rooms... we
use the Room constructor to build the rooms. We have the outside
and the inside of the tree. The Player is inside, and the Acorn is
outside.

Let’s look at the gameLoop function now:

gameLoop :: GameState -> IO ()
gameLoop (rooms, currentInv) = do
let currentRoom =

case findRoomWithPlayer rooms of
Just r -> r
Nothing -> error $ "Somehow the player "

++ "ended up outside the map!"
possibleCmds =

validCommands currentRoom currentInv
if playerWon (rooms, currentInv)
then gameOverRestart
else do
describeWorld currentRoom currentInv possibleCmds
takeActionThenLoop
currentRoom currentInv possibleCmds rooms

110

Happy Learn Haskell Tutorial Vol 1

This function takes a GameState and returns an IO action. It’s
the main functionality of the game. Each move the player makes
goes through the game loop once, which is why it’s called a loop,
because it’s like a circle.

We see that we can have a let expression in our do block which
essentially sets up temporary variables in the do block from that
point onwards.

We’re finding and grabbing the current room from the list of
rooms, or throwing up our hands if it can’t find the Player.

Then we work out which commands are valid for the current room
and the current inventory. Some player commands are only possible
with some combination of Acorn being in the room with the player,
or in the inventory.

Once that is done, we check if the player has won with an if

expression, and if so, we tell the player they’ve won and offer to
play again. If they didn’t win, then we describe the world to them at
the room they’re in, and let them take an action by grabbing their
command, then go back again to the start (using the takeAction-
ThenLoop function).

Now we’ll go through the remaining functions. Note, though, that
we can use any expressions (such as if) with no trouble in a do

block for IO, even other nested do blocks, so long as those expres-
sions result in an IO value of some kind. We’ll see in a moment that
all of those functions we just discussed yield IO values of some kind.

findRoomWithPlayer :: [Room] -> Maybe Room
findRoomWithPlayer rooms =
L.find (\(Room _ obs) ->

any (== Player) obs)
rooms

We can tell by the name that findRoomWithPlayer should re-
turn the Room whose objects include the Player. We’re returning
a Maybe Room because it’s technically possible that the Player

might not be in any Room. If that’s the case, there’s a problem, be-
cause the game won’t work. That’s why there’s an application of the
error function in gameLoop if findRoomWithPlayer can’t find
a Player.

We’re using a lambda as our Room-testing function here. The way
find works is it looks through the list passed into it, applies the pred-
icate section function (== Player) to each item, and if it finds
one that returns True, it returns that one, wrapped in the Just

data constructor from the Maybe type. If it doesn’t, it returns the
Nothing value (also from the Maybe type.

In depth, our lambda takes a Room, pulls it apart using pattern-
matching to get at the objects (which is a list of GameObject),
names that obs, and then passes that to any,which will check to see
if any of them return True for the function (== Player) which
checks to see if something is equal to the Player value.

Next we’ll see the function that crafts the valid commands for a
particular room and inventory combination:

111

Happy Learn Haskell Tutorial Vol 1

validCommands :: Room -> Inventory -> [String]
validCommands (Room _ gameObjs) invItems =

["go"] ++ takeCommandList
++ dropCommandList ++ ["quit"]

where
takeCommandList =

if somethingToTake gameObjs
then ["take"]
else []

dropCommandList =
if length invItems > 0
then ["put"]
else []

This function takes a Room and an Inventory and returns a list
of String values that are all the commands that a player can type
in depending on the current data: whether there is anything to take
(in the room), or drop (from inventory).

It’s using the list concatenation operator (++) to join the String
lists together into one list to return, and two definitions with if

expressions to ensure we only put “take” or “put” on the command
list if it’s appropriate.

somethingToTake :: [GameObject] -> Bool
somethingToTake objs =

any (/= Player) objs

Of course, we can eta-reduce this function as we know by now
(that is, get rid of the repeated trailing arguments):

somethingToTake :: [GameObject] -> Bool

somethingToTake = any (/= Player)

Here we take a list of GameObjectwhich is used byvalidCom-
mands as the list of objects in the room that can be taken. We’re
using it to work out if there is anything that is not a Player in the
list. The any function takes a predicate function, evaluates it on
each item of a list, and returns True if any of the evaluations re-
turn True, otherwise False. The function (/=) means not equal
to, and comes from the Eq typeclass. The end effect answers the
question “Are there any non-player objects in this room?”.

As we’ve seen before, the use of parentheses around (/=

Player) makes it into what’s called a section: it creates a function
of one argument, having applied one of the 2-arguments required by
the operator. Here we’re creating a function that takes a GameOb-
ject and returns a Bool that indicates whether the GameObject
was Player.

playerWon :: GameState -> Bool
playerWon (rooms, currentInv) =

any hasAcornAndInside rooms
where hasAcornAndInside (Room desc objs) =

desc == "You are inside a tree."
&& any (==Acorn) objs

This function answers the question “Has the player won yet?” The
player has won if the acorn is in the tree (and not in the player’s
inventory). Pay careful attention to the indentation (where the lines
start). This matters!

112

Happy Learn Haskell Tutorial Vol 1

We test for this by pulling the GameState tuple apart into a vari-
able each for rooms and current inventory. We then go through all
the rooms, and using the any function again, check if there’s one
which has the description “You are inside a tree.” that also has the
Acorn in its objects list.

Note the use of the && operator, which takes two Bool} ex-

pressions and returns \{True if they’re both True. This is
called the logical and operator. It’s one way we can connect up logic
expressions into larger chunks of meaning. There is also an (||)

operator that is logical or, which will return True if either of its in-
puts evaluate to True, and a not function that takes only one Bool
expression and returns the logical inverse of it (that is, if it’s True,
it returns False and vice-versa).

Our playerWon function is a not the best way we could write
it, because we’re relying on the description of the room to check if
it’s the inside room. This gives us a lot of room for errors to creep
in by accident. We did this to keep the types a bit simpler as you’re
learning. It’s bad because what if we changed the description in the
actual Room data, but then forgot to change this check String. It
would mean it’d be impossible to win the game.

A better way would be to pull this description into its own defini-
tion that is defined in only one place. The best way, though, would
be to have an identifier in the Room data type representing the type
of Room it is, and to check against this to see if this Room was the
winning goal Room.

gameOverRestart :: IO ()

gameOverRestart = do
putStrLn $ "You won!"
++ "You have successfully stored the acorn"
++ " for winter. Well done!"

putStrLn "Do you want to play again? y = yes"
playAgain <- getLine
if playAgain == "y"
then gameLoop initialState
else putStrLn "Thanks for playing!"

Our function to check if the game is now over uses a do block
to print some messages congratulating the player, then asks if they
want to play again, collects a line of input from them, and restarts
the game from the beginning by using initialState if their input
equals "y". Very straight-forward!

getCommand :: IO String
getCommand = do
putStrLn "What do you want to do?"
getLine

getCommand is a simple little action that prints a query to the
player, gets that response and returns it. The type is IO String,
which is the same type as getLine. Notice that as getLine is the
last line of the function, we don’t need to use anything to pull the
value out here, because it has the return type already. We’ll see how
it’s used now in takeActionThenLoop:

takeActionThenLoop :: Room ->
Inventory ->
[String] ->

113

Happy Learn Haskell Tutorial Vol 1

[Room] ->
IO ()

takeActionThenLoop currentRoom
currentInv
possibleCmds
rooms =

do
command <- getCommand
if any (==command) possibleCmds
then case command of
"go" ->

do
putStrLn "You go..."
gameLoop $ movePlayer (rooms, currentInv)

"take" ->
do
putStrLn "You take the acorn..."
gameLoop $
moveAcornToInventory (rooms, currentInv)

"put" ->
do
putStrLn "You put the acorn down..."
gameLoop $
moveAcornFromInventory (rooms, currentInv)

"quit" ->
putStrLn $ "You decide to give up."

++ " Thanks for playing."
_ ->

do
putStrLn "That is not a command."
gameLoop (rooms, currentInv)

else do
putStrLn $ "Command not possible here,"

++ " or that is not a command."
gameLoop (rooms, currentInv)

Even though this is one of the largest functions in the program, it’s
reasonably simple. It’s structured by firstly taking a command from
the user, then checking if the command is one of the valid ones for
the player right now. If not it complains that it can’t understand and
just goes back to the gameLoop with the current data. However, if
it does actually match against a valid command, it runs through the
case expression trying to find a match.

Each of the commands has a corresponding function which re-
sults in a modified GameState, which is then passed back into the
gameLoop function for a further turn. We’ll see each of these func-
tions momentarily.

Notice that we use the ($) function all over the place, such as
to apply gameLoop to the result of the evaluation of the command
functions, such as movePlayer.

Also notice that there is a pattern match for “ ”, which for com-
pleteness will match on any other values for the command. In our
case there aren’t actually any other commands, but not having this
is a potential source of problems in the future as things change, and
Haskell will complain if we leave it off. Take a moment and think
what would happen if you added a new command to the valid-

Commands function, but didn’t add it to the takeActionThen-

Loop function. If we keep this underscore catch-all, then play the
game, the game will tell us that our new command is not recog-
nised as a command. If we leave it off, though, our program will
crash. That’s why it’s better to have total functions.

These next three functions are to adjust the game state when the

114

Happy Learn Haskell Tutorial Vol 1

player does something.

movePlayer :: GameState -> GameState
movePlayer (rooms, inv) =

(newRooms, inv)
where
newRooms =
map adjustRooms rooms

adjustRooms (Room d objs) =
if any (==Player) objs
then (Room d (filter (/=Player) objs))
else (Room d (Player : objs))

moveAcornToInventory :: GameState -> GameState
moveAcornToInventory (rooms, inv) =

(newRooms, newInv)
where
newInv =

Acorn : inv
newRooms =

map adjustRooms rooms
adjustRooms (Room d objs) =
Room d (filter (/=Acorn) objs)

moveAcornFromInventory :: GameState -> GameState
moveAcornFromInventory (rooms, inv) =

(newRooms, newInv)
where
newInv =
filter (/=Acorn) inv

newRooms =
map adjustRooms rooms

adjustRooms (Room d objs) =
if any (==Player) objs
then Room d (Acorn : objs)
else Room d objs

Our game only has two rooms, so the movePlayer function just
goes over “all” two rooms using the map function, and applies a func-
tion that takes the Player out if it’s there using filter, or puts it
in if it’s not there, using the list-prepend function (:). It does this
by pattern-matching the Room into its pieces, then reconstructing it
with a new GameObject list.

The moveAcornToInventory function returns a new 2-tuple
(a GameState) that is comprised of an adjusted set of rooms by
mapping a deconstructing-reconstructing function that uses fil-
ter to remove all acorns from the rooms’ GameObject list (there
should only be one anyway), and an adjusted inventory by prepend-
ing anAcorn to it using(:). This “moves”theAcorn into inventory.

The moveAcornFromInventory does the reverse of this. The
mapping function that puts the Acorn into the room where the
player is is quite interesting because it has an if expression to de-
tect if a particular room’s game objects contains the Player, and if
so, it prepends an Acorn, otherwise it just re-builds the passed in
room as it was before.

describeWorld :: Room ->
Inventory ->
[String] ->
IO ()

describeWorld currentRoom
currentInv
possibleCmds =

do
putStrLn $ describeRoom currentRoom
putStrLn $ describeInventory currentInv
putStrLn $ describeCommands possibleCmds

115

Happy Learn Haskell Tutorial Vol 1

This is pretty straightforward, it just uses other functions to de-
scribe to the player which room they’re in, what they’re carrying and
also which commands they can use here.

Notice, again, that we’re using another do block to make a single
IO action out of a bunch of putStrLn function applications.

19.1 More on the ($) Function

Also we see the function ($) again at work, applying the function
on the left of it to the result of evaluating everything on the right
of it. The function application operator is often used as above, to
avoid having to type brackets around expressions, as you probably
know by now. It has the lowest possible precedence, which means
it’s evaluated last, after all the other parts of an expression.

The type signature of this is ($) :: (a -> b) -> a -> b

which means it takes a function from a to b (on the left of it) and an
a (on the right of it), and applies the function to the “a” which gives
a b. Obviously this is an extremely general function because ($)

can apply to any function, and any value as long as they fit together.

Again, it’s important to realise that even though the type signature
of ($) says it takes a function from a types to b types, it doesn’t have
to be different types, but they can be if you like. So, (+3) fits the
description even though its type is Num a => a -> a and this is
because (a -> b) goes from one “any type” to another “any type”,
so not necessarily the same type. (a -> b) is actually the type

that fits any type of function at all!

There is no difference in result between writing (+3) $ 7 and
writing (+3) 7, but when you start adding more arguments it starts
to matter, like in (+3) $ 7 * 5 which gives 38, a different an-
swer than (+3) 7 * 5, which is 50. From this we can see that
($) changes the order that things are evaluated in, just like putting
parentheses around some things (so,(+3) $ 7 * 5 is equivalent
to (+3) (7 * 5)).

19.2 Mid-Lesson Homework

Your homework (yes, mid-lesson homework) is to experiment with
the ($) function, and explicit bracketing, and explore the differ-
ences and similarities if you can.

19.3 Continuing On

Next, the three functions that describeWorld uses:

describeRoom :: Room -> String
describeRoom (Room desc objs) =
desc ++ if any (==Acorn) objs

then " There is an acorn here"
else ""

describeInventory :: Inventory -> String
describeInventory [] =

116

Happy Learn Haskell Tutorial Vol 1

"You are holding nothing"
describeInventory inv =

"You are holding: " ++
(concat $ map show inv)

describeCommands :: [String] -> String
describeCommands commands =
"Commands: "
++ (L.intercalate ", " commands)

The describeRoom function takes a single Room and pattern-
matches it into the desc and objs variables, which are the descrip-
tion of the Room, and the objects that the Room contains respec-
tively. Notice that we’re using (++) to append the result of an if

expression to the Room’s description here. The if expression uses
a section. Remember that a section is effectively a partially applied
operator. In this case, (==Acorn) :: GameObject -> Bool

will check if something is an Acorn, and return a Boolean value
for that (True/False).

Let’s think some more about the function any :: Foldable

t => (a -> Bool) -> t a -> Bool for a moment. This is a
function that takes a predicate from types a to Bool, a Foldable
t a and then returns a Bool. This function will tell us if any item in
the list “satisfies” the predicate. That is, if any item in the list returns
True for our predicate function.

Or, partially applied to the (==Acorn) section as in any

(==Acorn), it will tell us if there’s an Acorn in a supplied list!
If there is an Acorn, it’ll say so. If not, just an empty String.

Next we’ll look at the describeInventory function. There are
two definitions on this function. The first is for when there is nothing
in the passed-in Inventory, so we’re matching on an empty list.
This is simple.

The second definition is where the meat is. If the match with
the empty list failed, that means there must be something in the
Inventory, which we now pattern-match to the “inv” variable.

We then use the list concatenation operator (++) to append the
result of an expression to the end of the beginning of a description of
what they player is holding. Of course, this works because String
is [Char], so therefore a list.

The expression we’re appending is (concat $ map show

inv). We can break this apart into its pieces. Firstly, we now know
about the ($) function, and can think about it like it’s bracketing
like this: (concat (map show inv)).

Thinking about the expression map show inv, we can see that
this takes theinv list and returns a new list that it builds by applying
the show function to each GameObject in it, turning it into a list
of strings. We can see this clearly if we check its type: map show

:: Show a => [a] -> [String].

The function concat :: Foldable t -> t [a] ->

[a] takes a Foldable-wrapped list of type a, and returns a list
of type a. So in this case, because we’re passing it a [String],
which as you know is the same as a [[Char]]. So that means the
Foldable t that concat needs will be the list type, so a list

117

Happy Learn Haskell Tutorial Vol 1

of list of Char. The concat function will concatenate (join) that
[String] to be a single String (or turn the [[Char]] into a
[Char], same thing), by joining all the strings into one String.

The end result is that describeInventory will either tell the
player they’re holding nothing, or that they’re holding a list of what
they’re holding. The fact that there will only ever be one item in the
list means we don’t need to comma-separate it or anything.

Next is the describeCommands function. It takes a list of com-
mands, which are just String values, and calls the intercalate
function from Data.List on that it. This is a pretty neat function.
Its type is [a] -> [[a]] -> [a]. The first argument is a sep-
arator, and the second is a list of items of the same type. It then
joins them all together into one big list after putting the separator
between each of the items. So, here we’re using it to separate all the
commands by comma-space so that it reads nicely.

20 Basic Input

Covers: basic input, simple do blocks, simple function application,
simple definitions.

We’re going to teach you just enough IO that you can write be-
ginning programs. More will come later as we need it to do more
capable programs.

We’ll begin straight away on the guided program building.

20.1 Guided Program 1

Task: Make a program to ask for a name, then say hello to that person
using their name.

Taking this problem apart, there seem to be three pieces. Let’s
begin with the piece we can do easily: ask for a name. This is simply

118

Happy Learn Haskell Tutorial Vol 1

printing a string on the screen, which we know how to do:

main :: IO ()
main = putStrLn "What is your name?"

So we’ve solved a third of the problem. Next, we need to actually
get the name of the user. If we think of the functions we know about,
the getLine function is the obvious contender here, which has the
type IO String. We’re going to have to compose this with our
putStrLn action. By now, handily, we know about do syntax which
lets us combine multiple IO actions into one.

You can think of each expression in an IO do block as a piece of
the composed IO action, which is exactly what it is. You can write
any kind of expressions you like in that do block, so long as it will
evaluate to IO ().

As we’ve seen, there are two exceptions to this rule, and they are
do-block let notation, which is used for definitions of pure expres-
sions, and the <- syntax, which is used for defining variables as
the “inner values” of IO actions that we want to connect to some
other part of the rest of the code in our do block.

So, right away, we notice getLine’s type isn’t what we need it to
be. It’s IO String, not IO (). However, we know by now that we
can use <- to “get” a pure value out of an IO action so long as the
code is still in IO. This do block is an IO action, so we can do it here.
Let’s add the do block and then use getLine to define a variable
called theirName as the String value it pulls out. Remember,
though, that the last expression in a do block must be of type IO

(), so for now we’ll use a new function that we haven’t seen called
return to create a value of this type. We’ll use the expression re-
turn () to put () into IO and make that the end expression of
our entire do block:

main :: IO ()
main = do
putStrLn "What is your name?"
theirName <- getLine
return ()

The return function places a value into an IO action. It doesn’t
have anything to do with returning values from actions, just with
putting values into actions. It’s possibly a bad name to have for your
understanding at the beginning, so we apologise about that.

The last piece is to print their name out with hello in front. To do
this, we’ll need to use the putStrLn function again, and also the
(++) operator that joins (concatenates) two lists into one. String
is simply a list of Char as we know, so this will work fine.

Choose your variable names wisely! Good naming is one of the
most difficult tasks in programming. It can help or hinder future
readers of your code, including yourself. Names should always help
to explain your code as much as possible.

Notice in the next piece of code that we don’t need to have the
return () function application now because of putStrLn. How-
ever, we are using brackets around the application of (++) to its
arguments because if we didn’t,putStrLn would just take the one

119

Happy Learn Haskell Tutorial Vol 1

String as its argument, and (++) would be being applied to an
IO () value on the left side rather than a String.

main :: IO ()
main = do

putStrLn "What is your name?"
theirName <- getLine
putStrLn ("Hello, " ++ theirName)

This program is just about the simplest possible program that we
could write that uses both input and output in Haskell. If you’d like
to, try playing with it a little,by changing to different String values.
Don’t get discouraged if things go wrong.

20.2 Guided Program 2

Task: Write a program that asks you for your name, then your pet’s
name, then tells you the info back.

This is still a very simple program, so we’ll just use what we know
about putStrLn, do blocks, (++) and getLine to build our pro-
gram:

main :: IO ()
main = do

putStrLn "What is your name?"
theirName <- getLine
putStrLn "What’s your pet’s name?"
petName <- getLine

putStrLn ("Your name is "
++ theirName
++ " and your pet’s name is "
++ petName)

As we’ve said before, it’s very important to get your indentation
correct in Haskell. If you don’t, Haskell won’t know what you mean,
and will often complain with strange sounding errors. The indenting
is good because it stops us from having to use a lot of bracketing,
because Haskell can use the indenting to work out what you mean.

You should experiment and try out different indentations when
you have a program that compiles to see what works and what
doesn’t, and to get familiar with some of the errors that appear when
things go wrong.

The above program is almost the same as the first one, except this
time we’re extracting two variables from the user using getLine.
Notice that you can chain operators if they take two of the same type
of arguments (such as (++)) and then the result of the first appli-
cation will be fed in as the first argument to the second operator, as
you would expect it to work.

Let’s look at a different way to write a similar program, which may
surprise you a little.

120

Happy Learn Haskell Tutorial Vol 1

20.3 Guided Program 3

Task: Write a program to ask for the time, then to write “again!” and
then ask the user the time again and print out both times.

It’s virtually the same idea for thinking through how to build this
program, however we’re going to create a separate action to be re-
used in our main action.

Any time you would end up repeating yourself, it’s a great idea to
re-use a fragment or value. There’s no reason not to separate it out
by making a definition for it. Then you don’t have to repeat yourself!
This is one of the core reasons to write computer programs. You
should strive to get the computer to do as much of the repetitious
work as possible.

whatTimeIsIt :: IO String
whatTimeIsIt = do
putStrLn "What time is it now?"
getLine

main :: IO ()
main = do

timeString <- whatTimeIsIt
putStrLn "Again!"
timeString2 <- whatTimeIsIt
putStrLn ("Ok, you said it was "

++ timeString
++ " and then you said it was "
++ timeString2)

So whatTimeIsIt is an IO String action. It has the same

type as getLine, so we can treat it exactly the same. Looking at
it, you can see getLine is the last value in its do block, so it’s just
using a do block to connect outputting a question up with asking
the answer, and returning that string (in IO, of course).

Here we see the difference between using action results and pure
expressions very clearly. We can use the action twice to get two
potentially very different values out. We do so using <- again, and
set two different variables to their answer.

Then, we just output the result sentence. All of this is joined up
using a do block as before. Nice!

20.4 A Little More About IO

All an IO action is, is a description of how to enact some execution
of code later on. The <- syntax doesn’t actually “get” anything out of
anything else. You can think of it like it does, but what it really does
is tells Haskell what to do with action values to combine them. It
tells Haskell how to connect up the producing-part of a piece of code
that queries the user for input to the rest of the consuming-part of
the program, for example.

When we write do blocks, all we’re really doing is telling Haskell
what relationship the smaller pieces should be in compared to each
other, and then when the program is executed, things happen in the
right order. This will become clearer with more practice, and in later
volumes.

121

Happy Learn Haskell Tutorial Vol 1

20.5 Your Turn

Now it’s your turn. When you do these exercises, do them without
looking at the supporting explanation documents in this lesson. If
you have to look, you can, but mark the exercises you had to look
for, and re-do them again after you’ve finished doing them all. You
should do them again the next day and so on trying without look-
ing until you can easily do them without any problem at all. Make
up some programs of your own that involve asking questions and
replying with the inputted data. Don’t try to do anything more com-
plicated than this, yet. You can do this. Let’s go.

20.6 Reader Exercise 1

Task: Write a program to print a welcome on the screen.

20.7 Reader Exercise 2

Task: Write a program to ask for someone’s last name, then print it
out on the screen.

20.8 Reader Exercise 3

Task: Write a program that asks two personal questions about the
user, and tells their responses back.

20.9 Reader Exercise 4

Task: Write a program that says it’s going to ask the user to pick three
numbers, then uses a separate IO String action that prompts a
user to pick a number, then does it again two more times, then tells
them the numbers they picked (note we’re not actually using num-
bers here, just String input and output).

20.10 Reader Exercise 5

Task: Write a program to ask the user where they live, then write a
message saying something telling them you’ve heard that’s a great
place to live, using the place name in a sentence.

122

Happy Learn Haskell Tutorial Vol 1

21 Getting Set Up

Thankfully, these days, Haskell is a reasonably easy programming
language to get started with. Having said this, all programming lan-
guages aren’t particularly easy at the beginning.

We have two ways that we recommend to get started.

21.1 Mac Set Up

If you have a Mac, and a small amount of money to spend, then we
very much recommend checking out http://haskellformac.
com. It’s a really simple, easy way to get off the ground in Haskell,
and complements this book quite well. The publishers of this tool
have made it so you can pretty much just dowload it and start typing
Haskell in and get compiling without worrying too much about the
tooling normally involved.

Beautiful!

21.2 Manual Set Up

The alternative to this is that you need to know how to use the
command line at least enough to install software. Again, thank-
fully, setting up Haskell here is a lot easier than it has been very
recently in the past. If you don’t know how to use the command

line, though, there’s a nice little tutorial here: https://www.

davidbaumgold.com/tutorials/command-line/.

To get set up with Haskell in this way, go to http://www.

haskellstack.org and follow the instructions. The people who
set up the stack installer have spent quite a bit of effort on making
the install process reasonably easy.

21.3 Questions & Community

Haskell has a very helpful and enthusiastic community. If you go to
https://www.haskell.org/community you can read about
the latest ways to connect with the community and get help if you
have any problems with getting started, or any other questions at
all.

123

http://haskellformac.com
http://haskellformac.com
https://www.davidbaumgold.com/tutorials/command-line/
https://www.davidbaumgold.com/tutorials/command-line/
http://www.haskellstack.org
http://www.haskellstack.org
https://www.haskell.org/community

Happy Learn Haskell Tutorial Vol 1

22 Frequently Asked Questions

Many of our readers ask these questions, so this chapter addresses
them for when other readers have these same questions.

22.1 Volume 2 and Language Features

Question: Are you planning Volume 2 of the book? Or another book
with advanced topics (such as Monads, Combinators, the Y combina-
tor, beta-reduction, Generalized Algebraic Data Types, etc.)

Answer: Yes, we’re definitely planning Volume 2. It’s currently be-
ing written and will be released in beta book soon.

We like to draw the teaching of topics out into two or three phases,
depending on how you see it. These are: 1. getting the student used
to reading/seeing a language feature in action in many places, but
not talking about the general case too much 2. getting the student
to use a language feature in a few places until they’re familiar with
using it on their own and know when it should be used and only
then 3. understanding the general case, and naming the feature.

Sometimes we will introduce the third “phase”with the first, some-
times with the second, and sometimes only afterward. It really de-
pends on the topic, how complex it is, and how easy it is to under-
stand.

Having said this, Volume 1 has seen Monad and Combinators the

entire book. You might be talking about the combinator pattern here.
Again, our whole book uses this approach of building up small func-
tions that do tiny things,and then building our programs out of these
pieces. That’s the combinator pattern.

What about beta-reductions? Well, that’s just function application,
so yes, we’ve been doing that the entire book as well.

However, some of these topics, such as the Y-combinator and Gen-
eralised Algebraic Datatypes are incredibly advanced. While we do
plan more volumes than just 1 and 2, it’s worth noting that our books
exist to describe things to people so they can use them. It’s no good
studing GADT’s if you aren’t extremely well versed at using normal
ADT’s first, and even then it’s only useful if you’re building something
that is worth the extra complexity.

The Y combinator is an example of something so advanced that
most people who understand it have trouble explaining how to ap-
ply it to a real use-case, or what it’s for. Its sole purpose is to allow
you to do calculation in a functional language without any named
variables or functions. That is, to show how you can “bootstrap” com-
putation by having nothing more than function application.

In terms of naming language features when we use them, we of-
ten find people get incredibly confused when you throw a multitude
of jargon at them. Haskell has a lot of names for things, and we’ve
witnessed many times where students have started to understand
something, then exclaimed the equivalent of “Oh, THAT’s all ((fea-
ture)) is, I totally know how THAT works!” We’d rather you got an
understanding of what you’re doing so that when we explain what

124

Happy Learn Haskell Tutorial Vol 1

things are, you have a practical base for them.

As a good example of this, notice how we don’t use the name
Monad at all in our book, and yet we use them the whole way
through (with do syntax mostly. Or, notice how we don’t use the
word currying until about Chapter 13, but we use the feature the
whole way through the book.

If we were writing a book for people who had used other lan-
guages before, we would definitely introduce more names earlier
on, but even then the names can sometimes get in the way. As a
good example, the proper name for folding in Haskell is catamor-
phism. It doesn’t help you to know that when you start, and it’s not
even that helpful later on until you get to see how it contrasts to
anamorphisms, which are things that unfold. What does that mean?
It’s when you build up a collection of things from a single seed value.

23 Many Thanks

We’d like to give you a heartfelt thank you for purchasing and read-
ing this book. You’ve helped to improve learning Haskell for people
who prefer this style of learning by supporting this book.

We’d love it if you shared this with as many people as you can, and
asked them to purchase a copy if they are able to as well. Not only
will they get ongoing updates for free, but it will also support the
ongoing creation of more excellent learning material for beginners
and beyond.

It’s our plan to continue to write more volumes until we’ve done
enough examples and exercises to take you through a broad under-
standing of how to read and write Haskell code to an intermediate
level and further, where you can hopefully build whatever you’d like
to, or at least have the confidence and knowledge to learn what you
need to in order to do so.

This book and series is an ongoing work which means it will con-
tinue to be tweaked and adjusted as time passes, and so if any-
thing sucked, was awesome, you got confused, or was really clear
and you loved it, please do let us know on the feedback link on
http://www.happylearnhaskelltutorial.com we’d love
to hear from you! There are no stupid questions, so don’t be afraid,
you’ll probably end up helping improve the quality of this book.

We hope you’ve had as much of an enjoyable time reading and
using this volume as we have making it, and we’d love for you to

125

http://www.happylearnhaskelltutorial.com

Happy Learn Haskell Tutorial Vol 1

join us on further volumes.

— GetContented

This book is licenced as Attribution - NonCommercial - ShareAlike
3.0 Unported (CC BY-NC-SA 3.0) http://creativecommons.
org/licenses/by-nc-sa/3.0/legalcode

Please consider purchase if you haven’t, as it helps our on-
going work on helping you learn new things! http://www.

happylearnhaskelltutorial.com

126

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://www.happylearnhaskelltutorial.com
http://www.happylearnhaskelltutorial.com

	How to learn Haskell enjoyably
	Fascination
	Wish to Create
	Too Many Details?
	The Journey Begins
	And Now You...
	No Magic, But Why Pain?
	Precise Language
	Taking Care
	Two Phases of Learning
	Stages Build Skill
	Simple, but Fun Examples
	Progressive Learning
	Natural Assmiliation
	Motivation is King

	Your First Step
	Values
	Types
	Definitions
	Functions
	Our First Program
	A Definition
	A Term, or Variable Name
	A Function Name
	A String Value
	An Expression

	Homework

	Types as Jigsaw Pieces
	A String Value
	Puzzles
	Definitions again
	Type Annotations
	Types for Functions
	IO Actions as Puzzles
	Putting values together like puzzle pieces
	The whole program
	Another way to look at it
	What is a Function?
	Arguments?
	Nonsense Programs?
	The shape of main
	The two simple programs
	Pulling the definitions apart more
	Are signatures mandatory?
	Signatures as documentation
	Homework

	The Main Road
	How a Haskell Program is Made
	Purity
	Everything in Haskell is pure
	An Analogy
	Haskell is Awesome

	Function Magic
	A Story of Magic Coins
	After the Story
	Functions that Return Functions
	Homework

	Sockets & Plugs
	Reusability
	Functions are Values
	Plugging Values into Functions
	Defining Functions
	Operator Sections
	What is commutivity?
	Homework

	Output Other Things
	Integer or Int?
	Type Variables
	Type Variables can be named anything
	Typeclasses
	The Show Typeclass
	Parentheses and Precedence
	The print Function
	Homework

	Make Decisions
	if...then...else expressions
	Nesting if Expressions
	Case Expressions
	Guard Patterns
	Argument Pattern Matching
	Conclusions
	Homework

	Shop For Food with List
	The Smallest List
	The (:) Operator
	List Syntax
	The List Type
	Lists of Other Types
	Lists with More Items
	Polymorphic Values and Types
	The (:) Operator Again, Binding & Associativity
	The Shopping List
	Counting The Items
	Adding a Message with (++)
	Pattern-Matching with the (:) Value Constructor
	Totality and More on Pattern-Matching with (:)
	Prefix Operator Pattern-Matching
	A Tiny Bit of Recursion
	The Final Shopping List Program
	Homework

	A Dream Within a Dream
	Predicates, String, Char
	The Ord typeclass
	Transforming Titles
	Building Up a Function to Rename the Movie List
	Homework

	More Shopping
	Tuples
	Type Aliases (or Type Synonyms)
	The Final Program
	More Recursion Explained
	Folding
	Using foldr
	Built in Recursive Functions
	Homework

	How To Write Programs
	At The Zoo
	Sum Types
	Pattern Matching with Sum Types
	More Recursion
	What is Currying?
	The Finished Program
	Homework

	Cats and Houses
	Another Sum Type
	Product Types and Algebraic Data Types
	Pattern-Matching Product Types
	Function Composition
	Importing a Module
	Maybe An Answer
	A Little Finding & Sorting
	More About Maybe
	The Final Program
	Homework

	Basic Output
	Setup Your Environment
	putStrLn, print and String
	Ways To Solve Problems
	Guided Exercise 1: Display Hello
	Guided Exercise 2: Display the Sum of Two Numbers
	Guided Exercise 2: Display the Product of Two Numbers
	Reader Exercise 1
	Reader Exercise 2
	Reader Exercise 3
	Reader Exercise 4
	Reader Exercise 5
	Reader Exercise 6

	Fridge, The Game
	Do Blocks with IO
	Do Block Nesting
	Whole-Program Recursion
	Homework

	The People Book
	Models of Data
	More on Data Types
	Making Our Types Show
	Building Our First Value
	Records
	Finding a Person from the List
	Filtering out People in a List
	A Note About List Efficiency
	Higher Order Functions: filter
	Some Eta Reduction
	Using filter
	Higher Order Functions: map
	Higher Order Functions: sortBy
	Removing Parentheses With The ($) Function
	Using minimumBy
	Homework

	Times-Table Train of Terror
	Tuples or Pairs
	Ranges and the zip function
	Determining the Level Number
	The game loop
	Homework

	Skwak the Squirrel
	More on the ($) Function
	Mid-Lesson Homework
	Continuing On

	Basic Input
	Guided Program 1
	Guided Program 2
	Guided Program 3
	A Little More About IO
	Your Turn
	Reader Exercise 1
	Reader Exercise 2
	Reader Exercise 3
	Reader Exercise 4
	Reader Exercise 5

	Getting Set Up
	Mac Set Up
	Manual Set Up
	Questions & Community

	Frequently Asked Questions
	Volume 2 and Language Features

	Many Thanks

