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Editorial

Wearable Sensors Applied in Movement Analysis
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Recent advances in the miniaturization of electronics have resulted in sensors whose
sizes and weights are such that they can be attached to living systems without interfering
with their natural movements and behaviors. They may be worn on the body as accessories
or as part of clothing, enabling personalized mobile information processing. Wearable sen-
sors enable unobtrusive and continuous monitoring of body orientation, movements, and
various physiological parameters during real-life activities. Thus, they may become crucial
tools not only for researchers but also for clinicians, as they have the potential to improve
diagnosis, better monitor disease progression, and thus individualize treatment. We also
expect that after the SARS-CoV-2 crisis, interest in devices that promote telemedicine, such
as low-cost wearable sensors, will increase significantly.

To be used in real-life situations, wearable sensors should meet the following three criteria:
(1) Be imperceptible to the wearer. They should have wireless connectivity and consume little
power. An example of algorithm development that optimizes both gesture recognition
and energy consumption is presented in [1]. There, a finger gesture recognition system
was developed using a lightweight multi-layer perceptron implemented on a low-end
micro-controller unit with a two-axis flex sensor. The final prototype achieves up to 95.5%
recognition accuracy while consuming less than 2.74 mJ of energy per gesture on a low-end
embedded wearable device, which is 10% better than previous algorithms. (2) Be intu-
itive to install. The developed systems should provide high-performance body fixation
solutions that are easily accepted by the user. Moreover, the electronic system should be
self-calibrating and operating. An interesting way to increase the acceptance in domestic
applications may be to use smartphones—very broadly accepted electronic devices—as
control devices for the developed sensors. In [2], it is shown that dystonia assessment
using smartphone-coupled inertial sensors and machine learning is a promising way to
detect dystonia in real-life applications. (3) Provide accurate and easy-to-interpret information.
Cross-platform interfaces that enable secure data storage and easy data analysis and visual-
ization are needed. As an illustration, using Inertial Measurement Units (IMUs) to assess
gait pattern evolutions during a 6-min walk test before and after a supervised exercise
training program, the authors of [3] obtained such easy-to-interpret information in patients
with symptomatic peripheral artery disease of the lower extremities. Two results can be
quoted: a significant increase in walking speed after supervised exercise training and a
significant positive correlation between the change in stride length and the change in 6-min
walking distance. Therefore, the use of IMUs with the aim to investigate gait pattern during
physical examination has potential applications for optimizing exercise prescription in
patients with peripheral artery disease. Beyond the above examples, the papers published
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in this Special Issue show that several domains may benefit from wearable sensors when
these three criteria are considered.

Sport is a clear example of a domain where imperceptible sensors are needed so as
not to interfere with movement. The information from the sensors may help to improve
the efficiency of training through accurate biofeedback. The authors of [4] have shown
that a system of eight IMUs was able to identify the different phases (stance times) in a
1000 m speed skating trial for 12 competitive athletes. The IMUs results compare well
with a foot pressure detector, which is considered the gold standard: between 90.1% and
96.1% for the average stance time. In [5], it is shown that two IMUs attached to the ski
boots of nineteen experienced alpine skiers allow researchers to distinguish between an
experienced skier and a beginner by comparing the recorded time series with those of
a group of reference skiers. More generally, wearable sensors offer accurate methods of
monitoring real-time movement parameters during sport, with an expected high relevance
in optimizing training programs and performance or in minimizing risk of injury [6,7].
Note that wearable sensors also offer non-invasive and portable techniques to monitor the
sports practices of persons with disability, especially in wheelchair sports [8].

Wearable sensors may also provide clinicians with additional quantitative information
when assessing musculoskeletal conditions, such as neck pain and low-back pain. Regard-
ing neck pain, the authors of [9] used a single IMU placed on a participant’s forehead
while performing a test to assess sensorimotor performance of the neck through repeated
head rotations. A Linear Support Vector Machine can discriminate acute and subacute
non-specific neck pain patients from healthy control participants with 82% accuracy by
analyzing time series of angular speed and acceleration. The study was conducted with
38 acute and subacute non-specific neck pain patients and 42 healthy control participants
and demonstrates that machine-learning methods can provide relevant information from
relatively small datasets. The same observation is made in [10], where the kinematics
of 20 patients with chronic low-back pain (CLBP) and 20 healthy participants without
CLBP were recorded from three IMUs attached to the participants while they performed
1-min repetitive bending (flexion) and return (extension) trunk movements. It was found
that Gaussian Naive Bayes machine learning achieved 79% accuracy in identifying CLBP
patients. Moreover, machine learning identified that simple kinematic indicators were
sensitive to low-back pain and therefore could gradually be used by clinicians in the as-
sessment of CLBP patients. Machine learning can even go beyond binary classification in
CLBP patients, as shown in [11]. From the video analysis of 115 CLBP participants lifting
an 8 kg weight, Ward clustering suggests that there are four different lifting techniques in
people with CLBP. One of the clusters, moving the trunk the least and the knee the most,
demonstrates the least pain self-efficacy. Again, these results may help clinicians determine
the best motor strategies to relieve pain in their patients.

A final topic explored in this Special Issue is gait analysis and its relationship to fall
risk in the elderly. One challenge in this population is the implementation of automated gait
assessment for continuous monitoring, either at home or in care institutions and hospitals.
In [12], an IMU was used to assess patients with automated assessment based on the Berg
balance scale. Optimal agreement (98.4%) with the therapist’s scoring can be achieved
using a one-dimensional convolutional neural network and a gated recurrent unit in a
population of 53 hospitalized patients with brain diseases aged 50 to 80 years. Finally, it
was shown in [13] that additional information from a single IMU, placed on the lower back
of 73 care institute residents who performed a Timed-Up and Go (TUG) test considerably
improved fall risk prediction. Kinematic observations and TUG time were included in a
multiple logistic regression. The proposed new test, called i+TUG, achieved an accuracy
of 74.0%, with a specificity of 95.9% and a sensitivity of 29.2% in classifying residents into
fallers and non-fallers.

Beyond applications in elderly aiming at favoring an autonomous, active, and healthy
ageing [14], wearable sensors may bring important improvement in monitoring patients
with neurological diseases. As shown in the review [15], e-health approaches, including
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wearable sensors, may be beneficial for self-management and disease understanding of
patients suffering from multiple sclerosis. Wearable motion sensors can be helpful in
measuring physical activity of patients suffering from multiple sclerosis [16]. Another
case of interest is the application of motion sensors to detect freezing of gait (FOG) in
Parkinsons’s disease, i.e., a gait disturbance typical of the mid- and late-stages of the
disease. As discussed in the review [17], many challenges are still to be addressed in FOG
detection, such as building large enough datasets allowing a more accurate detection via
machine-learning techniques. In addition, wearable sensors may be used to estimate the
metabolic energy expenditure and physical activity levels of different intensities in stroke
patients with hemiparesis [18].

Wearable sensors can clearly bring great value in the analysis of movement, in sports
as well as medical contexts, and not in the least for patients suffering from chronic diseases.
While the potential is shown in the papers presented here and many others, we are confident
that with further development of hardware and signal processing, many new opportunities
will follow.

Acknowledgments: The Guest Editors thank all the authors, reviewers, and members of MDPI’s
editorial team whose work has led to the publication of this Special Issue. Financial support from the
European Regional Development Fund (Interreg FWVl NOMADe) is acknowledged.
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Machine Learning Derived Lifting Techniques and Pain
Self-Efficacy in People with Chronic Low Back Pain
Trung C. Phan 1, Adrian Pranata 2,3 , Joshua Farragher 2,4, Adam Bryant 4, Hung T. Nguyen 1 and Rifai Chai 1,*

1 School of Science, Computing and Engineering Technologies, Swinburne University of Technology,
Hawthorn, VIC 3122, Australia

2 School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
3 School of Kinesiology, Shanghai University of Sports, Shanghai 200438, China
4 Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, The University of Melbourne,

Melbourne, VIC 3010, Australia
* Correspondence: rchai@swin.edu.au

Abstract: This paper proposes an innovative methodology for finding how many lifting tech-
niques people with chronic low back pain (CLBP) can demonstrate with camera data collected
from 115 participants. The system employs a feature extraction algorithm to calculate the knee,
trunk and hip range of motion in the sagittal plane, Ward’s method, a combination of K-means and
Ensemble clustering method for classification algorithm, and Bayesian neural network to validate
the result of Ward’s method and the combination of K-means and Ensemble clustering method. The
classification results and effect size show that Ward clustering is the optimal method where precision
and recall percentages of all clusters are above 90, and the overall accuracy of the Bayesian Neural
Network is 97.9%. The statistical analysis reported a significant difference in the range of motion of
the knee, hip and trunk between each cluster, F (9, 1136) = 195.67, p < 0.0001. The results of this study
suggest that there are four different lifting techniques in people with CLBP. Additionally, the results
show that even though the clusters demonstrated similar pain levels, one of the clusters, which uses
the least amount of trunk and the most knee movement, demonstrates the lowest pain self-efficacy.

Keywords: low back pain; lifting technique; camera system; ward clustering method; K-means clustering
method; ensemble clustering method; Bayesian neural network; pain self-efficacy questionnaire

1. Introduction

Chronic low back pain (CLBP) is a multifactorial condition that is the leading cause
of activity limitations and work absenteeism, affecting 540 million people worldwide [1].
Adaptation in trunk muscle control is commonly observed in people with CLBP, which
is associated with changes in trunk muscle properties [2] and delayed reaction time in
response to external perturbations [3]. These adaptations could be reflected in trunk and
lower limb movement variability, especially during lifting [4].

Lifting is a complex activity that requires coordination of the lower limbs (e.g., hip
and knee) and the trunk [4]. In simplistic terms, lifting techniques could be classified as
a stoop lift (i.e., lifting with flexed back) or leg lift (i.e., lifting with hips and knees bent
and back straight). Although lifting with the legs was traditionally considered to be a safer
lifting technique, this has been disputed in several studies [5,6]. Lifting movements can
vary considerably between individuals depending on factors such as hamstring tightness
and movement speed—both of which have been demonstrated in people with CLBP or in
risk factors for CLBP [7–9]. Therefore, dichotomous classification of lifting techniques may
not be appropriate in people with CLBP. It is currently unknown how many different lifting
techniques people with CLBP would demonstrate. This information may guide clinicians
in identifying and individualizing target areas for rehabilitation for people with CLBP.

5
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Moreover, it is well established that CLBP is associated with changes in psychosocial
domain such as pain self-efficacy [10]. Pain self-efficacy is defined as the belief in one’s
ability to perform painful or perceived painful tasks or movements to achieve a desirable
outcome. Pain self-efficacy is typically measured using a Pain Self-Efficacy Questionnaire
(PSEQ) [11]. In people with CLBP, low pain self-efficacy is associated with higher pain
intensity, disability, and fear-avoidance beliefs [12–14]. Therefore, pain self-efficacy is an
important attribute to be assessed in people with CLBP.

Recent technology using the computational intelligence technique for classification [15]
may assist with the identification of different lifting techniques in people with CLBP. In
principle, there are three main steps for activity recognition: (i) data capture by appropriate
sensor; (ii) segmentation of the captured data and feature extraction; (iii) recognition of the
activity using appropriate classification/identification techniques.

In classification, machine learning is known as one of the categories of artificial intelli-
gence. In general, there are two types of machine learning: supervised and unsupervised.
In supervised machine learning, once the data set has been labelled with each input, a
pre-set correct output is assigned [16]. By contrast, unsupervised machine learning tech-
niques utilize unlabelled data sets to identify patterns which will then be clustered into
different groups [16]. In different medical and health applications, clustering algorithms
have been applied to cluster patient records to identify a trend in health care [17,18], detect
a set of co-expressed genes [19], categorize patients from medical records [20], and from
the symptoms, find out patient subgroups [21]. It is unknown whether different movement
patterns could be identified using unsupervised machine learning techniques or clustering
algorithms in people with CLBP.

Thus, this study aims to present an innovative methodology for identifying different lift-
ing movement patterns in people with CLBP using unsupervised machine learning techniques
and range of motion. Therefore, the main contribution of this paper is the novel application
of unsupervised machine learning techniques for lifting movement pattern classification in
the CLBP participants. We hypothesized that people with CLBP will lift utilizing various
techniques when clustered using the trunk, hip and knee movement integration.

2. Materials and Methods

The components for the camera-based cluster classification system introduced in this
paper are presented in Figure 1.
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2.1. Participants

One-hundred and fifteen males and females (nfemales = 57) with CLBP aged 25 to
60 years old with CLBP were recruited from a large physiotherapy clinic in Melbourne
(VIC, Australia). This study was approved by the University of Melbourne Behavioural
and Social Sciences Human Ethics Sub-Committee. Participants were included in the study
if they had reported pain between the gluteal fold and the twelfth thoracic vertebra (T12)
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level, with or without leg pain that had persisted for >3 months. Participants were excluded
from the study if they demonstrated overt neurological signs, such as muscle weakness
and loss of lower limb reflexes, had had spine and lower limb surgery, had been diagnosed
with active inflammatory conditions such as rheumatoid arthritis, had been diagnosed with
cancer or did not comprehend written or verbal English. The participants in this study had
not received any physiotherapy intervention during their assessment of lifting technique.
All participants completed assessments of pain self-efficacy using the PSEQ [10].

2.2. Data Collection

The lifting task protocol has been published previously [4,22]. In summary, partici-
pants began the test standing upright, barefooted, with their arms by their sides. Partic-
ipants were instructed to bend down and lift an 8 kg weight (i.e., an average weight of
groceries [23]) placed between their feet with both hands from the ground up to the level of
their abdomen. Participants were instructed to utilize a lifting technique of their choosing.
Eight lifting trials were performed, with the first 2 trials serving as practice trials, hence
excluded from data analysis. The sequence of consecutive actions during the lifting task is
summarized and presented in Figure 2.
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Kinematic data were collected using non-reflective markers placed on the participants’
skin to mark the head, trunk, pelvis, upper and lower limbs [22]. A 12-camera motion
analysis system (Optitrack Flex 13, NaturalPoint, Corvallis, OR, USA) with 120 Hz sampling
rate was utilized to provide the three-dimensional recording of anatomical landmarks.
Kinematic data were grouped, named, cleaned and gap-filled using Optitrack Motive
software (NaturalPoint, Corvallis, OR, USA). The data were then passed through to a
custom-written analysis pipeline of Visual3D v5.01.6 (C-Motion, Inc., Germantown, MD,
USA). Angular displacement and velocity data of different joints in all planes were derived
using custom-written software (LabVIEW 2009, National Instruments).

2.3. Pre-Processing and Features Extraction

The angular displacement of the trunk, hip and knee joints during lifting were used
for analysis and were inputted into the machine learning algorithm.

A joint range of motion is chosen to simplify the complex data into efficient features.
The joint range is calculated by taking the difference between maximum and minimum
values of that joint’s angular displacement.

Range o f motion (ROM) = Max(θ)−Min(θ) (1)
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where Max(θ) is the maximum value of joint’s angular displacement, and Min(θ) is the
minimum value of the joint’s angular displacement.

One perspective of inter-joint coordination in manual lifting is a distal-to-proximal
pattern of extension of the knee, hip, and lumbar vertebral joints [24]. In addition, the
movement of the knee, the hip and the lumbar take an important role in achieving the
lifting task and generating different types of lifting techniques. From the provided data,
the range of motion of the trunk, hip and knee in the sagittal plane are extracted for further
analysis. A between-side average value was used for the knee and hip, as there was no
statistically significant ROM differences between the left and right sides.

2.4. Partitional Clustering

Clustering is known as one of the common techniques which is used to generate
homogeneous groups of objects [25]. From the provided data points, all the data points
that are similar and closely resemble each other will be placed into the same cluster [26].
Partitional clustering is known as one of the most popular algorithm in clustering [27–29].
In partitional clustering, data points are separated into a predetermined number of clusters
without a hierarchical structure.

The K-means clustering algorithm is most commonly used as a partitional cluster-
ing [30]. In K-means clustering algorithm, h clusters are generated so that the distance
between the points within its own clusters and centroids is less than the distance to cen-
troids of other clusters. The algorithm’s operation begins with the selection of h points as
the centroid. Following the selection of the h points, all points are allocated to the closest
centroid, resulting in the formation of t clusters. The average of each cluster’s points will
then be used to generate a centroid. These centroids make up the mean vector, with each
field of the vector equalling each cluster centroid. A new centroid generates the new cluster
as a result of this process. In the situation where the centroids remain unchanged, K-means
clustering algorithm will be completed. K-means clustering has certain advantages such as
less space and time complexity or optimal results accomplished for equal-sized globular
and separated clusters [30]. However, K-means clustering algorithm shows sensitivity
to outliers and noises. Moreover, a poor initial choice of centroid in partitioning process
might produce increasingly poor result. In this study, K-means clustering algorithm was
implemented using kmean function from Matlab.

2.5. Ensemble Clustering

In recent years, clustering ensemble has widely been used to improve the robustness
and quality of results from clustering algorithms [31–34]. In ensemble clustering, multiple
results from different clustering algorithms are combined into final clusters without retriev-
ing features or base algorithm information. In ensemble clustering, the only requirement
is obtaining the base clustering information instead of the data itself. This is useful for
dealing with privacy concerns and knowledge reuse [35].

The ensemble clustering algorithm consists of two main stages: diversity and con-
sensus function. The data set is processed in the diversity stage with a single clustering
algorithm with several initializations or multiple standard clustering algorithms. The
results of this process are recorded-based clustering. Afterwards, the consensus function
is implemented to combine the based clustering result and produce the final consensus
solution. Currently, there is a different approach for consensus function, such as conducting
co-association matrix or hypergraph partitioning. With a co-association matrix, a key advan-
tage is the specification of a number of clusters in consensus partition is not required [30].
However, hypergraph partitioning requires this specification information [30]. However, in
this research, the cluster number will be investigated and is used as input of hypergraph
partitioning. As a result, a co-association matric will be unsuitable in this case. Thus,
hypergraph partitioning is chosen for the consensus function in this research.

In the hypergraph, there are two main components: hyperedges present clusters,
and vertices present equivalent samples or points. A clustering is presented as a label
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vector ϑt. Label vector ϑ with mixture of r label vector ϑ1, ϑ2, . . . , ϑr, where r is known
as number of clustering, is the procedure by consensus function. The objective function
is described by function T : Vv∗r → Vv mapping a set of clustering to an integrated
clustering T :

{
ϑt
∣∣t ∈ {1, 2, . . . , r} → ϑ

}
. Labelled vector of ϑt is demonstrated by

binary matrix Lt where each cluster is specified with a column. In situation where the
row is relating to an object with a known label, and all entries of the row in the binary
membership indicator matrix Lt are considered equal to 1. In contrast, in the situation
where the row is relating to an unknown label, objects are considered equal to 0. Matrix
L =

(
L1 L2 . . . Lr) as a hypergraph adjacency matrix is explained with v vertices and

a = ∑r
e=1 ge hyperedges.

There are three algorithms in hypergraph methods: Cluster-based Similarity Partition-
ing Algorithm (CSPA), HyperGraph Partitioning Algorithm (HGPA) and Meta-Clustering
Algorithm (MCLA).

In the Cluster-based Similarity Partitioning Algorithm, clustering can be used to
generate a measure of pair-wise similarity because it illustrates the relationships among the
objects that reside within the same cluster. The fraction of the clustering, where two objects
occur within the same cluster and can be calculated in one sparse matrix multiplication
1
r L Lc where L is indicator matrix and L c is matrix transposition, it is indicated by the
entries of B [35]. The purpose of the similarity matrix is to re-cluster the items using any
suitable similarity-based clustering technique.

HyperGraph Partitioning Algorithm (HGPA) partitions the hypergraph by cutting the
smallest number of hyperedges possible. All hyperedges are weighed to ensure that they
are all of the same weight. Furthermore, all vertices have the same weight. The partitions
are created using the minimal cut technique, which divides the data into I unconnected
components of roughly equal size. For these partitions, Han et al. (1997) employed the
HMETIS hypergraph partitioning package [36]. In contrast to CSPA, which considers local
piecewise similarity, HGPA solely considers the comparatively global links between items
across partitions. Furthermore, HMETIS has a proclivity for obtaining a final partition in
which all clusters are nearly the same size.

Cluster correspondence is dealt with in MCLA integration. MCLA finds and consoli-
dates cluster groups, transforming them into meta-clusters. Constructing the meta-graph,
computing meta-clusters, and computing clusters of the objects are the three key aspects
of this method for finding the final clusters of items. The hyperedges Je, e = 1, 2, . . . , a
are the meta-vertices, and the graph and edge weights are proportional to the similarity
between vertices. Matching labels can be identified by partitioning the meta-graph into
o balanced meta-clusters. Each vertex is appropriately weighted to the size of the cluster
to which it belongs. Balancing ensures that the sum of vertex-weights is generally equal
within each meta-cluster. To achieve clustering of the J vectors, the graph partitioning
package METIS is used in this stage. Each vertex in the meta-graph represents a distinct
cluster label; as a result, a meta-cluster denotes a collection of corresponding labels. The
hyperedges are crushed into a single meta-hyperedge for each of the o meta-clusters. An
object is assigned to the meta-cluster with the highest entry in the association vector. Ties
are broken in an ad hoc manner using this approach.

For this research, ensemble clustering is used to improve the robustness and quality
of results from the K-means clustering algorithm. At the diversity stage, the K-means
clustering algorithm with various initial choices of a centroid is applied to the data set to
create base clustering. Following base clustering, in the consensus function stage, CSPA,
HGPA, and MCLA algorithms are used separately to conduct the final results. Following
base clustering, in the consensus function stage, the CSPA, HGPA, and MCLA algorithms
are used separately to conduct the final results. The ROM of trunk, hip and knee as
features were passed through K-means with squared Euclidean distance and random initial
choice of centroid using Matlab multiple times (50 times) to form-based clustering for
ensemble cluster. Before passing these results to ensemble clustering, duplicated results
from K-means were removed to increase the quality and diversity of based clustering. From
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obtained-based clustering, ensemble clustering uses CSPA, HGPA, and MCLA as consensus
functions processed to finalize the final result using the python ClusterEnsembles package.

2.6. Clustering—Wards

Besides partitioning clusters, the other widely utilized clustering algorithm is Hierar-
chical Clustering. The Hierarchical Clustering algorithm produces clusters in a hierarchical
tree-like structure or a dendrogram [26,37].

In the beginning, each data point is assigned as a single unique cluster. By combining
two data sets, allocating the data to an existing cluster, or merging two clusters after each
loop, a new cluster can be formed [38]. The condition to create a new cluster is when the
similarity or dissimilarity between every pair of objects (data or cluster) is found. Currently,
there are four common kinds of linkage techniques, but research has shown that Ward’s
linkage is the most effective technique for dealing with noisy data compared to the other
three [26,38,39].

The linkage technique developed by Ward in 1963 uses the incremental sum of squares,
which means the growth in the total within-cluster sum of squares as a consequence of
merging two clusters [26]. The sum of squares of the distance between entire objects in the
cluster and the cluster’s centroid is explained as the within-cluster sum of squares [38]. The
sum of squares metric is equal to the distance metric dAB, which is shown below:

d2
EF =

2nEnF
nE + nF

‖yE + yF‖ 2 (2)

where the Euclidean distance is represented by || ||, the centroid of cluster E and F is
represented by yE and yF respectively, and the number of elements in cluster E and F is
represented by nE and nF. In some research studies as references, Ward’s linkage does
not contain the factor of 2 in Equation (2) when nE is multiplied by nF. This factor’s main
purpose is to ensure that the distance between two singleton clusters will be the same as
the Euclidean distance.

To calculate the distance from cluster D to a new cluster C, cluster C is formed by
merging clusters E and F, and the updated equation is shown as follows:

d2
DC =

nE + nD
nC + nD

d2
DE +

nF + nD
nC + nD

d2
DF −

nD
nC + nD

d2
EF (3)

where the distance between cluster D and cluster E is represented by dDE, the distance
between cluster D and cluster F is represented by dDF, the distance between cluster F
and cluster E is represented by dEF, the number of elements in clusters E, F, C and D are
represented by nE, nF, nC and nD.

After the hierarchical cluster is formed, a cut point is determined which can be at
any position in the tree so that a full description of the clusters (final output) can be
extracted [26]. In this study, the ROM of the trunk, hip and knee were passed through Ward
clustering with Euclidean distance using the linkage and cluster function in Matlab.

2.7. Determining Optimal Number of Cluster

In partitioning clustering, for example, K-means clustering, the number of cluster h
to be formed is defined and given, and choosing the correct optimal number of clusters
for a single data set is challenging. This question, unfortunately, has no definitive answer.
The method for determining similarity and the partitioning parameters define the ideal
number of clusters, which is highly subjective. A basic and popular strategy is to examine
the dendrogram produced by hierarchical clustering to see if it offers a specified number of
clusters. Unfortunately, this strategy is as subjective. Direct technique and statistical testing
method are two of these methods. Optimizing a criterion, such as the sum of squares
within a cluster or the average silhouette, is a direct strategy. The equivalent procedures are
known as the elbow and silhouette methods. The silhouette method analyses the average
distance between clusters while the elbow method analyses the total within-cluster sum of
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square (WSS) for different clusters. In this research, both elbow and silhouette methods
are used to determine optimal number of cluster for K-means cluster and Ward clustering
using evalclusters function from Matlab and KElbowVisualizer function from Yellowbrick.

2.8. Machine Learning—Classification

A Bayesian neural network [15,40] construction operates a feed-forward structure
with three layers, and it is formed by:

zk(x, w) = f

(
bk +

l

∑
i=1

wki f

(
bi +

m

∑
j=1

wijxj

))
(4)

where the transfer function is represented by f (.), and in this paper, the hyperbolic tangent
function is applied, the number of input nodes is represented by m (j starts from 1 to m),
the number of hidden nodes is represented by l (i starts from 1 to l), the quantity of output
is represented by q (k starts from 1 to q), the weight from input unit xj to the hidden unit yi
is represented by wij, the weight from hidden unit yi to the output zk is represented by wki,
and biases are represented by bi and bk.

Bayesian regularization structure is suggested to improve the generalization capabil-
ities of the neural network irrespective of whether the presented data are noisy and/or
finite [41]. In Bayesian learning, the probability distribution of network factors will be
observed; thus, the trained network’s greatest generalization can be delivered. Particularly,
all of the obtainable data can be compatible and used in this kind of neural network to train.
Consequently, the application with a small data set is appropriate.

The best possible model in the Bayesian framework, which the training data S cor-
responded to, is acquired automatically. Founded on Gaussian probability distribution
on weight values, applying Bayes’ theorem can compute the posterior distribution of the
weights w in the network H and this is presented below:

p(w |S, H) =
p(S |w, H)p(w|H)

p(S|H)
(5)

where p(S |w, H) represents the probability that knowledge about the weight from obser-
vation is included, the knowledge about background weight set is contained in the prior
distribution p(w|H) , and lastly, the p(S|H) represents the network H evidence.

For a MLP neural network described in Figure 3, the cost function G(w) can be
minimized to achieve the most possible value for the neural network weight wMP, and the
cost function is shown below:

G(w) = βKS(w) + αKW(w) (6)

where hyper-parameters are symbolized by α and β, and the effective difficulty of network
structure is operated by the ratio α/β, the error function is symbolized by KS(w) and the
total square of weight function is symbolized by KW(w); this function can be calculated
using the below equation:

KW(w) =
1
2
‖w‖2 (7)

Updating the cost function with hyper-parameters, the neural network with a too
large weight can lead to poor generalization when new test cases are used and can be
avoided. Consequently, during a neural network training process, a set of validation is
not compulsory.

To update hyper-parameters, the Bayesian regularization algorithm is used, and it is
shown below:

αMP =
γ

2KW(wMP)
; βMP =

N − γ

2KS(wMP)
(8)
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where the effective number of parameters is represented by γ = c− 2αMPtr
(

HMP)−1, the
total number of parameters in the network is represented by c, the total number of errors is
represented by N, and the Hessian matrix of G(w) at the smallest, minimum point of wMP

is represented by H.
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The Bayesian framework can estimate and evaluate the log evidence of model Hi, and
it is shown below:

ln p(S|Hi) = −αMPKMP
W − βMPKMP

W − 1
2

ln |A|+ W
2

ln αMP +
N
2

ln βMP + ln M + 2 ln M +
1
2

ln
2
γ
+

1
2

ln
2

N − γ
(9)

where the number of network parameters is represented by W, the number of hidden nodes
is represented by M, and the cost function Hessian matrix is represented by A. The best
optimal structure will be found out based on the log evidence value; a structure which has
the highest value will be chosen.

To measure multi-class classification performance, the familiar performance metric can
be considered and used: precision, recall and accuracy. These indicators are shown as follows:

Recall =
TPO

TPO + FNO
(10)

Precision =
TPO

TPO + FPO
(11)

Accuracy =
Total o f correctly classi f ed data

Total number o f data
(12)

where the number of the data inputs, which is denoted as O and is classified correctly, is
represented as TPO (true positive of O), and O denotes one of the classes in multi-class. The
number of the data inputs, which does not denote as O and is classified as O, is represented
as FPO (false positive of O), and the number of the data inputs, which denotes as O and is
classified as not O, is represented as FNO (false negative of O).

The clustering algorithm’s output is combined with the original input data set to
create a new Bayesian neural network classification data set. For the Bayesian neural
network classification, the data set is separated into two sets: the first set contains 50%
of the overall sets used for training purposes and the second sets has the remaining sets
for testing purposes. In addition, to train this neural network classifier, the Levenberg–
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Marquardt with Bayesian regularization algorithm is implemented, and the mean squared
error function is selected as the error function KD(w) [41]. In this study, cluster result
(Wards Clustering, combination of K-means and CPSA, HGPA and MCLA) and features of
the clustering algorithm’s data (ROM of trunk, hip and knee) were passed to the Bayesian
neural network with maximum number of epochs of 600 and maximum mu of 1 × 10100.
Minimum performance gradient is 1 × 10−20 using Matlab script. Fifty percent of the data
set (239 trials) was used for training purposes, and the other half (234 trials) was used for
testing purposes.

2.9. Statistical Analysis

Besides using the Bayesian neural network to choose the better unsupervised machine
learning algorithm for classifying the lifting technique, the Partial η2 (partial eta squared)
is used to measure the effect size of different algorithms from the statistical point of view.

A one-way multivariate analysis of variance (MANOVA) was used to examine the
trunk, hip, and knee ROM differences between each cluster. Tukey’s Honestly Significant
Difference test was conducted to analyse significant group differences. The statistical analy-
sis methods (least significant difference) were performed with patient-reported outcome
measures such as the pain self-efficacy questionnaire (PSEQ). All analyses were conducted
with a significance level set at 0.05 using IBM SPSS software version 28.0.1 (SPSS Inc.,
Chicago, IL, USA).

3. Results

Four-hundred and seventy-three lifting trials were included in this study. The partici-
pants’ demographic information is summarized in Table 1.

Table 1. Descriptive participants’ demographic information.

Variables (Units) Mean (SD)

Age (years) 45.4 (11.6)
Height (cm) 173.4 (11.1)
Weight (kg) 79.6 (17.6)

BMI (m/kg2) 26.3 (5.4)
Pain Level (VAS out of 100) 45.8 (19.9)
Duration of Pain (months) 89.2 (113.3)

ODI (%) 31.5 (14.4)
PSEQ (out of 60) 45.2 (9.9)

BMI, body mass index; ODI, Oswestry Disability Index; PSEQ, Pain self-efficacy questionnaire; VAS, Visual
Analogue Scale; SD, standard deviation.

The results of elbow and silhouette methods for the Ward clustering algorithm are
shown in Figures 4 and 5. The results of the elbow and silhouette methods for the K-
means clustering algorithm are shown in Figures 6 and 7. The elbow method for both
Ward and K-means suggests the optimal number of clusters is two, while the silhouette
method suggests that four is the optimal number of clusters. In this study, the cluster result
represents the lifting technique that people with CLBP uses. Currently, lifting techniques
can be classified as two techniques: a stoop lift or leg lift. The main object of this research is
to identify how many possible lifting techniques people with CLBP can perform besides
the two lifting techniques. As a result, the optimal number of clusters for both K-means
and Ward clustering is four.

The descriptive statistics pertaining to the range of motion of the trunk, hip and knee
for each cluster between different unsupervised machine learning methods are summarized
in Table 2.
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Table 2. Descriptive statistics (mean (SD)) of trunk, hip and knee range of motion for each cluster
between methods.

Mean (Standard Deviation)
Trunk Hip Knee

Ward Clustering

Cluster 1 34.19 (6.84) 114.58 (9.74) 136.24 (12.35)
Cluster 2 41.88 (7.84) 107.37 (9.27) 96.39 (12.66)
Cluster 3 54.00 (9.26) 83.92 (13.02) 26.70 (10.36)
Cluster 4 48.04 (9.73) 93.54 (9.61) 67.29 (13.72)

K-means + CSPA

Cluster 1 34.19 (6.84) 105.20 (9.67) 88.75 (7.46)
Cluster 2 33.01 (7.35) 108.60 (11.55) 115.13 (15.31)
Cluster 3 53.17 (9.09) 86.44 (13.84) 31.72 (16.95)
Cluster 4 47.28 (9.82) 93.91 (10.35) 64.57 (10.53)

K-means + HGPA

Cluster 1 52.80 (9.89) 84.26 (13.06) 30.92 (14.99)
Cluster 2 47.65 (9.24) 96.07 (9.26) 65.36 (10.90)
Cluster 3 44.92 (8.93) 105.23 (9.61) 89.02 (7.81)
Cluster 4 38.11 (7.38) 108.59 (11.62) 115.08 (15.45)

K-means + MCLA

Cluster 1 47.52 (9.52) 95.24 (10.68) 65.59 (11.18)
Cluster 2 42.58 (8.59) 105.79 (10.47) 95.49 (10.07)
Cluster 3 53.90 (9.16) 84.23 (12.98) 27.18 (10.60)
Cluster 4 36.09 (7.05) 111.80 (9.95) 129.71(13.84)

Classification of four clusters by applying the Bayesian neural network as a classifier
on the test set of different methods is summarized in Table 3. Additionally, the effect
sizes of different unsupervised machine learning are shown in Table 4. For trunk, hip and
knee features, Ward clustering provided the highest effect compared to the combination of
K-means and ensemble clustering. The Bayesian neural network and effect size calculation
result suggests that Ward clustering is the optimal algorithm for this study.

The optimum number of hidden nodes of the Bayesian neural network training versus
log evidence is plotted and represented in Figure 8. Based on the plot, the training model
with nine hidden nodes is determined as the best classification indication.

Cluster 2 was the most common, which constituted 40.80% of all self-selected tech-
niques. The least chosen was Cluster 1 (6.76% of all data analysed). The descriptive statistics
pertaining to PSEQ and pain level for each cluster are summarized in Table 5.
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Table 3. Classification results (recall, precision and accuracy) of Bayesian neural network between
each cluster on test set.

Method Cluster Recall Precision Accuracy

Ward Clustering

Cluster 1 93.8% 93.8%

97.9%
Cluster 2 99.0% 96.9%
Cluster 3 98.0% 100%
Cluster 4 97.2% 98.6%

K-means + CSPA

Cluster 1 93.1% 88.5%

93.6%
Cluster 2 88.1% 94.5%
Cluster 3 94.9% 98.2%
Cluster 4 98.3% 93.5%

K-means + HGPA

Cluster 1 98.3% 96.7%

94.9%
Cluster 2 89.8% 98.1%
Cluster 3 96.6% 89.1%
Cluster 4 94.9% 96.6%

K-means + MCLA

Cluster 1 94.2% 98.5%

97.0%
Cluster 2 100% 94.8%
Cluster 3 98.1% 98.1%
Cluster 4 91.7% 100%

Table 4. Partial eta squared effect size result between different methods.

Method Trunk Hip Knee

Ward Clustering 0.015 0.078 0.122
K-means + CSPA 0.002 0.013 0.029
K-means + HGPA 0.007 0.010 0.043
K-means + MCLA 0.001 0.003 0.058
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Table 5. Descriptive statistics (mean (SD)) of PSEQ, and pain level for each cluster.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

PSEQ
Mean 35.56 43.89 46.13 45.57
(SD) (8.45) (9.95) (10.53) (9.5)

Pain
Mean 51.03 50.33 47.73 48.17
(SD) (10.22) (20.40) (21.21) (19.27)

SD, standard deviation.
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The result of the hierarchical tree is represented using a dendrogram shown in Figure 9.
Four clusters were created. A 3D scatter plot was generated to visualize the clustering
algorithm’s output in three-dimensional space, and it is shown in Figure 10.
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There were significant differences between all clusters and body regions (F (9, 1136)
= 195.67, p < 0.0001). The post hoc test revealed different features between the clusters
summarized in Figure 11. Post hoc test results show that there were significant differences
between all clusters for trunk, hip and knee ROM. This shows that the four cluster results
are completely distinctive from a statistical point of view.
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Figure 11. Estimated marginal means of trunk, hip and knee ROM between clusters.

Clusters 2 and 4 are hip dominance with more knee movement than the trunk. Cluster
3 is hip dominance with more trunk movement compared to the knee. Cluster 1 is knee
dominance with more hip movement than the trunk.

Post hoc test revealed PSEQ between the clusters, summarized in Figure 12. The PSEQ
mean scores of cluster 1 is statistically significantly different from other clusters (p < 0.05).
The PSEQ mean scores are not statistically significantly different between clusters 2, 3, and
4 (p > 0.05 for each pair of clusters). From a clinical point of view, if the PSEQ is greater
than 40, there is minimal impairment, and the patient is very confident. If the PSEQ value
is less than 40, it means there is an impairment, and the patient is not too confident. As a
result, it makes only cluster 1 (PSEQ mean score is 36.56) different from the other clusters.
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Figure 12. Estimated marginal means of PSEQ between clusters (red dashed line indicates threshold
value for PSEQ; below red line suggests clinically significant finding or low pain self-efficacy).

4. Discussion

To the best of our knowledge, this is the first study to utilize unsupervised and
supervised machine learning algorithms to classify different movement strategies during
a dynamic task using motion capture camera. Besides stoop lift (represent as cluster 3)
and leg lift (represent as cluster 1), the study found two additional lifting techniques in
people with CLBP, which is in agreement with our study hypothesis. In clusters 2 and 4,
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people with CLBP tend to use the hip mainly with additional support from knee to lift.
Although the Ward clustering method is different from the combination of K-means and
ensemble clustering method, descriptive statistics of the trunk, hip and knee ROM results
for each cluster between methods are similar. Both the Ward clustering method and the
combination of K-means and ensemble clustering method suggest that there would be four
different lifting techniques: hip dominance with more trunk movement (cluster 3—ward
clustering, cluster 3—K-means and CSPA, cluster 1—K-means and HGPA, and cluster
3—K-means and MCLA); knee dominance with more hip movement (cluster 1—ward
clustering, cluster 2—K-means and CSPA, cluster 4—K-means and HGPA, and cluster
4—K-means and MCLA); hip dominance with more knee movement than the trunk (cluster
4—ward clustering, cluster 4—K-means and CSPA, cluster 2—K-means and HGPA, and
cluster 1—K-means and MCLA); and hip dominance with much more knee movement than
the trunk (cluster 2—ward clustering, cluster 1—K-means and CSPA, cluster 3—K-means
and HGPA, and cluster 2—K-means and MCLA). Additionally, the study suggested that
Ward clustering was the optimal clustering method for the current data set.

The algorithm in this study resulted in high recall and precision values for all lifting
clusters. These indicate that most of the data have been classified correctly, and the model
performs well. There is potential to classify any new data using this result. In previous
research, hierarchical clustering techniques have been applied in psychiatry. Paykel and
Rassaby [42] applied hierarchical clustering to classify suicide attempters. The result has
helped to investigate the causes and to guide some improvement for the method of therapy.
Additionally, Kurz et al. [43] used Ward’s hierarchical agglomerative method to classify
suicidal behaviour. This study’s accuracy is 95.7% (Ward’s method had classified 96% of
all cases) [43]. Their clusters were found to have implications for clinical interpretation,
therapy and prognostication. This demonstrates that hierarchical clustering can successfully
provide some valuable information for further application.

In this study, there are a few variables and aspects that might impact lifting technique
in people with CLBP such as height, weight, age, duration of pain and lumbar muscle
strength. However, multivariant analysis of covariance (MANCOVA) was conducted as
further analysis to determine whether trunk, hip and knee ROM performances differed
between each cluster whilst controlling for these variables. MANCOVA results indicated
that there is a statistically significant difference between clusters in terms of combined
trunk, hip and knee ROM, after controlling for height, weight, age, duration of pain and
lumbar muscle strength. Therefore, the results from MANCOVA suggested that there was
no significant differences in our initial MANOVA analysis.

Lifting is an important risk factor associated with work-related CLBP [44]. People with
CLBP utilized different lifting techniques compared to people without CLBP, particularly, less
trunk ROM and increased knee ROM, which are identified as one of many phenotypes of
lifting techniques in this study [45]. Identification of lifting techniques in people with CLBP
is potentially important in rehabilitation. Physiotherapists and manual handling advisors
often encourage CLBP patients to lift with a straight back, which is already the most common
lifting technique identified in this study [46]. It is unclear whether the straight-back lifting
technique is the cause or the result of the motor adaptation of CLBP. Therefore, it is perhaps
unsurprising that the general advice to keep the back straight during lifting did not prevent
future low back pain [46]. Identifying lifting techniques and their impact on the lumbar spine
can help clinicians to guide LBP patients in adopting a lifting technique that imposes the least
amount of force on the lumbar spine. This information can help clinicians in directing effective
ergonomic interventions in people with occupational LBP. Additionally, identifying lifting
techniques in people with CLBP may help physiotherapists direct and prioritize rehabilitation
towards appropriate areas of the body that may be associated with a painful lifting technique
(e.g., trunk, hip, and knee). This may result in positive changes in pain and CLBP-related
disability (i.e., precision medicine).

An important finding of this study is that despite the majority of the clusters demon-
strating similar pain levels, cluster 1 demonstrated the lowest pain self-efficacy, which
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was associated with the least amount of trunk movement and the most knee movement
during lifting (i.e., lifting with a ‘straight’ back). This finding is consistent with the previous
literature that pain self-efficacy is positively correlated with lifting lumbar ROM in people
with CLBP [47]. The lower self-efficacy in this group may manifest as reluctance to bend
the lumbar spine during lifting, which in a past study has been associated with higher
lumbar extension load [48]. This in turn, may sensitize lumbar tissues resulting in pain
perpetuation. Thus, observation of a patient’s lifting technique and pain self-efficacy may
be key clinical assessments to define this group and develop appropriate multicomponent
interventions, such as education and exercise [49].

One should interpret these study results with caution. One limitation of this study is
the small sample size. The reader needs to be cautious when applying the result to a larger
sample size. However, in previous studies with an even smaller sample size (n = 236 [42]
and 486 [43]), this method could still cluster participants accurately. Another limitation of
this study is the clustering performed on the repetitions instead of mean joint angles for each
participant, as this study aims to identify and capture as many different lifting techniques
that people with CLBP could demonstrate. This means that we could not account for
within-participant lifting technique variability (i.e., variation between each lifting repetition
performed by a single participant). Pain alters movement variability within and between
participants due to differences in muscle recruitment strategies, psychological features
(e.g., fear-avoidant behaviour) and muscle function (e.g., strength, flexibility) to name a
few [50,51]. As a result, a small number of CLBP participants in this study (n = 17 or 15% of
total participants) demonstrated employed >1 lifting technique (i.e., belonged to >1 lifting
clusters). The clinical implication of this limitation is currently unclear and should be
evaluated in future studies. Third, the experiment only focused on the sagittal plane’s
trunk, hip and knee ROM. As such, we were unable to capture movement of the trunk,
hip and knee in the other coronal and axial planes. However, the symmetrical lifting task
involves mainly movements of the lumbar spine, hip and knee in the sagittal plane. Future
studies should explore clustering techniques involving movements in all planes.

It is currently unknown if lifting technique clusters in healthy people are different
from those with CLBP. Future studies should aim to compare different lifting techniques
in healthy people and people with CLBP. This information will guide the assessment and
rehabilitation of movement in people with CLBP. A validation of this novel methodology
from a clinic point of view can be conducted in future studies. Authors should discuss the
results and how they can be interpreted from the perspective of previous studies and of
the working hypotheses. The findings and their implications should be discussed in the
broadest context possible. Future research directions may also be highlighted.

5. Conclusions

To the best of our knowledge, this research is the first study introducing an innovative
methodology for classifying different movement strategies during lifting tasks in people
with CLBP using unsupervised and supervised machine learning techniques. The optimal
unsupervised machine learning technique based on Ward’s clustering accurately differenti-
ated four distinct movement groups in people with CLBP instead of two lifting techniques,
as in current state-of-the-art research studies. The output of the clustering (four clusters)
has been validated by the supervised machine learning using Bayesian Neural Network
with an accuracy of 97.9%. This promising technique could aid in more precise assessment
and rehabilitation of people with CLBP.
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Abstract: Nowadays, the better assessment of low back pain (LBP) is an important challenge, as it is
the leading musculoskeletal condition worldwide in terms of years of disability. The objective of this
study was to evaluate the relevance of various machine learning (ML) algorithms and Sample Entropy
(SampEn), which assesses the complexity of motion variability in identifying the condition of low back
pain. Twenty chronic low-back pain (CLBP) patients and 20 healthy non-LBP participants performed
1-min repetitive bending (flexion) and return (extension) trunk movements. Analysis was performed
using the time series recorded by three inertial sensors attached to the participants. It was found
that SampEn was significantly lower in CLBP patients, indicating a loss of movement complexity
due to LBP. Gaussian Naive Bayes ML proved to be the best of the various tested algorithms,
achieving 79% accuracy in identifying CLBP patients. Angular velocity of flexion movement was
the most discriminative feature in the ML analysis. This study demonstrated that: supervised ML
and a complexity assessment of trunk movement variability are useful in the identification of CLBP
condition, and that simple kinematic indicators are sensitive to this condition. Therefore, ML could
be progressively adopted by clinicians in the assessment of CLBP patients.

Keywords: artificial intelligence; machine learning; inertial measurement unit—IMU; movement
complexity; sample entropy; trunk flexion

1. Introduction

Low back pain (LBP) is the leading cause of a high number of years lived with disability
worldwide. In both 10–24 and 50–74-year-old age groups, LBP is typically responsible for
the loss of an entire year of full health [1]. A better understanding of this musculoskeletal
condition and its complexity is therefore essential for clinicians involved in the care of
patients with LBP.

LBP, especially chronic LBP (CLBP), leads to a fear of movement and causes patients to
limit their activities of daily living and social participation to avoid pain [2,3]. The sedentary
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lifestyle of LBP patients is an exacerbating factor and leads to chronicity [4,5]. A better
understanding of the relationship between the kinematics of the lumbo–pelvic–hip complex
and LBP is currently of high importance. The evaluation of these movements can potentially
be performed easily and inexpensively with one or more low-complexity devices [6], such as
inertial sensors, also called inertial measurement units (IMUs) [7–11]. Low complexity can
be understood as ready-to-use, which is a necessary feature in clinical practice. Information
from the IMU time series can be obtained using various methods, including machine
learning (ML) algorithms [12–18]. Our study focused on IMU-based testing of lumbo–
pelvic–hip complex movements and ML-based algorithm analysis of CLBP patients and
non-LBP (NLBP) subjects. The power of current computers and commercially available
equipment allows ML to be increasingly affordable; hence it seemed logical to include it in
the development of a clinical test to assess LBP.

An example of interest for the present study is the ability of a single IMU to measure
the variability of repetitive trunk bending and return (b&r) movements by computing
the sample entropy (SampEn) [19] from the different time series recorded in healthy sub-
jects [20]. In the latter study [20], it was shown that 50 repetitions of trunk b&r movements
could provide kinematic data that allow for the accurate computation of SampEn from
the six time series recorded by a single IMU and, therefore, may be used to assess move-
ment complexity [21]. We hypothesize that such a b&r test can be used to investigate LBP
and, if possible, discriminate between the presence and absence of LBP in individuals.
In the present study, we extended the results of [20] in several directions: (1) increasing
the number of IMU from one to three; (2) using SampEn measurements in combination
with ML methods to analyze the recorded time series; (3) including patients with CLBP in
the population of NLBP subjects previously included in [20]. We will now address these
three points.

1. The use of a set of three IMUs should provide more information about the b&r
test and allows the whole lumbopelvic–hip complex to be examined. Some authors
placed the IMUs at L2 and S2 vertebrae to measure low lumbar flexion–extension
movements [22], while others chose T10-12 and S2 to be able to measure the local
dynamic stability, coordination, and variability of the lumbar spine in repeated flexion–
extension movements [23]. We chose T12 and S2 so to consider the entire lumbar spine
for a given movement. Differences between the time series of different sensors can
provide information about the relative angular velocity and acceleration between two
anatomical landmarks. Typically, for sagittal plane angular velocities, the difference
between the data from a sensor placed at the twelfth thoracic vertebra and a sensor
placed at the second sacral vertebra should provide an estimate of the lumbar angular
velocity. From a clinical perspective, the use of three IMUs placed at different points
may help to identify the most relevant location for a single IMU, which may be useful
when time constraints apply.

2. Two main techniques were used in this study. The first is a standard statistical analysis,
which consists of computing the SampEn from the IMUs time series in two groups—
NLBP subjects and CLBP patients—and comparing them. The second technique is
ML, which has been used for about 40 years in the study of LBP [13], especially in the
field of medical imaging and clinical data analysis for diagnostic and decision-making
purposes [14,15]. Note that SampEn will be part of the data used by ML to identify
CLBP patients.

3. We believe that a first step toward integrating the clinical interpretation of a test,
such as the b&r test, into a biopsychosocial model must be to examine its ability
to discriminate between CLBP patients and NLBP subjects. A recent study using
a particular supervised ML algorithm (Support Vector Machine, SVM) to analyze
IMU data has already shown that a kinematic test of the lumbar spine is able to
discriminate NLBP subjects from LBP patients and classify them according to their
risk of chronicity, i.e., between high risk and medium to low risk, with an accuracy of
>75% [12]. Moreover, it has been shown in [24] that SVM can detect neck pain from
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rotational head movements with an accuracy of 82%. These last two studies show
that a diagnostic analysis using ML algorithms supplied with kinematic parameters is
a promising way to investigate these spinal conditions further. Our work focuses on
the kinematic signature of patients suffering from CLBP and, more specifically, on the
complexity of their variability during repetitive movements of the trunk along the
lines of [20].

The main question addressed by this study is: “Can an instrumented b&r test identify
CLBP patients by resorting to ML algorithms?” Our hypothesis is that algorithms such as
SVM can accurately discriminate CLBP patients from NLBP subjects using raw data from
three IMUs and SampEn values.

2. Materials and Methods
2.1. Population

Data were collected from a group of CLBP patients and from a matched group of
healthy NLBP subjects. The study protocol was approved by the Intercommunale de
Santé Publique du Pays de Charleroi Ethics Committee (ISPPC/OM008) under the number
B325-2020-43666 and complied with the Helsinki Declaration on the Ethical Principles
for Medical Research Involving Human Beings. All of the patients and subjects received
an information sheet explaining the purpose of the study and gave informed consent
before participation.

Twenty CLBP patients were recruited on a voluntary basis between the 3 November
and the 1 December 2020 from the pool of patients treated for CLBP at the University
Hospital of Charleroi (CHUC) in the “Sport Santé” department in Monceau-sur-Sambre,
Belgium. The inclusion criteria were: the presence of LBP diagnosed by a physician and
lasting longer than three months, ability to perform three trunk flexions with the lower limbs
extended, aged between 18 and 65 years, body mass index (BMI) between 18 and 35 kg·m−2,
and a pain score of less than 8/10 on a verbal Numerical Rating Scale (NRS) the day of the
test. The exclusion criteria were: the presence of tumor, fracture, neurological signs (loss
of strength and/or sensitivity), decrease or abolition of reflexes, and presence of pain of
neuropathic origin evaluated by a positive DN4 (“diagnostic de Douleur Neuropathique”,
i.e., neuropathic pain diagnostic) questionnaire [25], recent trauma, surgery at the spinal
level, vertigo and balance disorders due to positional changes, musculoskeletal disorders in
another region that could interfere with the b&r test, or systemic and metabolic disorders.

Twenty healthy NLBP subjects were recruited on a voluntary basis between 1 De-
cember and 15 December 2020 from CHUC staff or their personal acquaintances. They
were matched with the CLBP patients using the following criteria: age, BMI, and physical
activity level. For these subjects, the exclusion criteria were: the presence of LBP in the
past year, history of spinal surgery, musculoskeletal disorders in another region that could
interfere with the b&r test, systemic and metabolic disorders, and the use of analgesics.

2.2. Protocol, Data Collection and Preprocessing

The general characteristics were collected from all participants: gender, age, BMI, and
physical activity level were collected through the Global Physical Activity Questionnaire
(GPAQ) [26]. Two experienced examiners (physiotherapists) were involved in the protocol.
A first examiner (examiner #1) gave standardized instructions to each participant and
showed a video demonstrating how to perform the b&r test. The same examiner (#1)
cleaned the skin with cotton wool and ether at the sites where the three IMUs were taped.
These were attached with hypoallergenic double-sided adhesive tape (Figure 1): Sensor #1
(SENS1) on the opposite to the spinous process of the twelfth thoracic vertebra (T12); Sensor
#2 (SENS2) opposite to the second sacral vertebra (S2) on a horizontal line connecting the
posterior-superior iliac spines; and Sensor #3 (SENS3) on the lateral side of the thigh, 10 cm
below the greater trochanter.
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Each participant was then placed in a standing position with their arms by their sides,
as shown in Figure 1. To perform the b&r test, the participants were instructed to bend the
trunk forward (flexion) without flexing their lower limbs and to touch a target in the center
of a stool with the fingertips of both hands, followed by an immediate trunk extension to
return to the starting position while focusing on a target in front of them (Figure 1). This
movement was repeated continuously, as quickly and comfortably as possible. The test
was performed once and lasted 70 s. The participants were allowed to stop the test before
the end of the 70 s if they felt unable to continue; however, in this case, they were then
excluded from the study. The examiner was present near the participant during the test but
gave no verbal instructions.

A second examiner (examiner #2) recorded the data from the IMUs on a computer
located less than 3 m from the patient or subject, with the IMUs connected to the computer
via a cable [27]. Examiner #2 informed the participant of the time remaining every 10 s.
The computer screen was visible to neither examiner #1 nor the participant. The data were
stored on the computer’s hard disk drive for later analysis.

The IMUs used are part of a homemade system called DYSKIMOT (for Motor Dyskine-
sia), which has been presented in detail previously in [27]. The DYSKIMOT system software
(v. 3.1) recorded the data from the three IMUs with a sampling frequency of 100 Hz. The
system is based on commercial IMUs (LSM9DS1, SparkFun Electronics, Niwot, CO, USA)
equipped with a triaxial accelerometer, gyroscope, magnetometer, and thermometer. Time
series of accelerations (Acc X, Y, Z) along each of the 3 axes of each sensor and angular
velocities (Gyr X, Y, Z) were recorded. The DYSKIMOT software also computed the angular
accelerations (AccA X, Y, Z) in real-time by numerical differentiation (method) and the
corrected angles (AngC X, Y, Z) by numerical integration and linear drift subtraction of
the angular velocities. Typical traces are shown in Figure 2. The DYSKIMOT IMU casing
was 3D printed using PLA (Polylactic Acid), the most widely used polymer in 3D printing.
Other polymers may have been used, such as ABS (Acrylonitrile butadiene styrene) or TPU
(Thermoplastic polyurethane). The latter choice made it possible to produce flexible parts
that would presumably be more comfortable for the user.
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Figure 2. Typical traces of (A) Acc X (blue), Acc Y (purple), and Acc Z (orange) and (B) Gyr X (blue),
Gyr Y (purple), and Gyr Z (orange) time series recorded with SENS1 during a b&r test in a healthy
NLBP subject.

As in [2], we considered the first 10 s of the time series as the warm-up period, and
any data collected after 70 s were omitted from analyses. Therefore, only data between 10
and 70 s were used for the analysis; all of the time series lasted 1 min.

2.3. SampEn and Complexity Factors

An R (v 4.1.0, R Core Team, Auckland, New Zealand) routine was developed to
calculate SampEn for all recorded time series. In accordance with Yentes [19], we used the
following parameters in the algorithm (R-Studio) for calculating the SampEn: vector length
m = 2, tolerance r = 0.2 SD and the number of points in the data series N = 6000. The details
can be found in [20]. The values obtained from Gyr and Acc, respectively, were referred to
as SampEn Gyr X, Y, Z and SampEn Acc X, Y, Z.

In the case of the b&r test, the Gyr Y time series should have considerable practical
implications since it follows the direction of the performed movement. Therefore, specific
computations were performed for this time series. The Gyr Y of SENS2 was subtracted
from the same time series of SENS1 (Gyr Y) and SENS3 (−Gyr Z; SENS3 has a different
orientation, see Figure 1). SampEn was computed for the resulting time series. The calcula-
tion of SampEn using these data should provide a relevant estimation of the complexity of
angular velocity variations in lumbar and hip -flexion during the b&r test. The SampEn
values obtained in this way were termed the lumbar flexion complexity factor (LCF) and
the hip flexion complexity factor (HCF), and together formed what we called complexity
factors (CF).

Statistical comparisons between all SampEn and CF in CLBP patients and NLBP
subjects were performed with a t-test or with a Mann–Whitney rank sum when the Shapiro–
Wilk normality test failed. The mean, SD, standard error of measurement (SEM = SD√

N
,

where N is the sample size), 95% confidence interval (CI denotes half-width), and minimum
detectable change (MDC = 1.96

√
2 SEM) were calculated for the differences in parameter

values between the two groups. Statistical tests were performed with SigmaPlot software
(v. 14.0, Systat Software, San Jose, CA, United States of America) with a significance level
of 5%.

2.4. Machine Learning Analysis
2.4.1. Data Segmentation

The first way to apply ML is to use and analyze a given time series as a whole. A
second way is to divide the time series into cycles and use them as independent data
related to a particular participant. Since we have explored both options, further details on
segmentation into cycles are provided below.
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The different b&r cycles can be clearly seen in Figure 2. Each cycle corresponds to the
repetition of b&r trunk movements carried out by a participant. The start and end of each
cycle were determined by identifying the successive minima of the Acc Z time series for
SENS1, i.e., the time series with the highest signal-to-noise ratio.

The segmentation algorithm, which divides the time series into distinct cycles, consists
of five steps: (1) averaging the original Acc Z time series using a rolling centered window
(width: 25 points or 0.25 s); (2) calculating the global amplitude and the exact value of
the threshold (40% of the amplitude above the minimum); (3) extracting data below this
threshold to avoid the processing of local minimum above this threshold; (4) detecting the
minima and computing the cycle limits as the average position of two consecutive minima;
(5) finally, all cycles were normalized by linear interpolation to 450 points, which is the
maximum number of points for a cycle in our data set. The last 450 points were referred to
as “itime”.

In the Results section, ML analysis based on 1-min time series is referred to as “whole
sequences”, and ML analysis based on individual cycles is referred to as “cycle segmentation”.

2.4.2. Discrimination of NLBP and CLBP Participants

The discriminating power of classification by the ML algorithm was assessed by
computing accuracy and Area Under Curve (AUC) values for binary classification. Several
classification algorithms were used, all belonging to the supervised ML, as each participant
was labeled with either NLBP or CLBP condition. The ML algorithms studied were
Linear Support Vector Machines (Linear SVM), Non-linear Support Vector Machine Radial
Basis Function (SVM RBF), Random Forest (RF), Gaussian naive Bayes (GaussianNB),
K-neighbors (KNN), Adaptive Boosting (AdaBoost), and Decision Tree (DT) [28]. The
grid-search method [29] was used to optimize the hyperparameters for each ML algorithm.
The hyperparameters are listed in Table 1. The ML algorithms and the grid search are
implemented by the v1.1 Scikit-learn library.

Table 1. Classifier’s hyperparameters.

ML Algorithm Hyperparameters

BF KNN number of neighbours (3, 5, 8, 10), weighting function (uniform, distance), algorithm (Brute-Force
(BF KNN or BF KNN), kd_tree, auto, ball_tree)

Linear SVM regularization parameter (0.001, 0.01, 0.1, 1, 10, 100, 1000)
SVM RBF C-parameter (0.001, 0.01, 0.1, 1, 10, 100), kernel coefficient Gamma (0.001, 0.01, 0.1, 1, 10, 100)

DT maximum depth of the tree (1, 5, 10, 100), function to measure the quality of the splits (gini, entropy),
strategy to select the split nodes (best, random)

RF maximum depth of the tree (1, 5, 10, 100), number of trees in the forest (1, 5, 10, 100), number of
features considered in the search for the best split (1, 5, 10, 100)

AdaBoost maximum number of estimators at which boosting stops (5, 10, 50, 100, 500), weight applied to each
classifier at each boosting iteration (0.000001, 0.001, 0.1, 1, 5, 10, 100)

GaussianNB ratio of the largest variance of all features added to the variances for computational stability
(0.0000001, 0.01, 1, 10, 100)

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support Vector Machine, RBF: radial basis function, DT: Decision
Tree, RF: Random Forest, AdaBoost: Adaptive boosting, GaussianNB: Gaussian naive Bayes; hyperparameters in
bold are the selected ones by the grid-search function.

Statistical describers were maximum, minimum, mean, median, 1st quartile, 3rd
quartile, and SD for each available time series (each component X, Y, and Z was treated as
an independent time series). These parameters, referred to as raw data features, were used
as discriminators for ML algorithms. The performance evaluation of each ML algorithm
was measured after an n-fold cross-validation process, scaling of the time series, and
100 training repetitions with a random ordering of NLBP and CLBP.

The computed SampEn and CF were also included as features in the ML algorithms in
a second step. The accuracy and AUC of the ML algorithms were computed using only raw
data features and only SampEn or CF. The added value of SampEn and CF in identifying
CLBP was assessed.
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2.4.3. Most Discriminative Features

Two methods were used to identify the best discriminating feature: Sequential Feature
Selector forward (SFS Forward) and Sequential Feature Selector backward (SFS Back-
ward) [30]. The SFS Forward accumulates the best-performing features one by one and
creates a hierarchy from the best-performing feature to the worst-performing feature. The
SFS Backward starts with all features and removes the worst-performing features one by
one. This results in a hierarchy from the longest-remaining feature to the least-remaining
feature. Each SFS was run 700 times (7 algorithms × 100 training repetitions).

3. Results
3.1. SampEn & CF

Four of the 18 calculated SampEn values (six time series and 3 IMUs) showed signif-
icant differences between CLBP and NLBP groups. HCF showed significant differences
between CLBP and NLBP groups, whereas LCF did not. These statistically significant
results are shown in Table 2, while the others have been omitted for simplicity.

Table 2. Significative differences (T-test or Wilcoxon test depending on the normality or not of the
distribution of the SampEn values) between CLBP and NLBP groups. All parameters are SampEn
values defined in Section 2.3.

SampEn Gyr Y SENS1 Gyr Z SENS2 HCF Gyr Y SENS2 Acc X SENS2
CLBP NLBP CLBP NLBP CLBP NLBP CLBP NLBP CLBP NLBP

Mean 0.161 0.208 0.625 0.516 0.272 0.326 Median 0.217 0.282 0.266 0.389
SD 0.05 0.072 0.168 0.144 0.053 0.100 Q1 0.187 0.220 0.227 0.312

SEM 0.011 0.016 0.038 0.032 0.012 0.022 Q3 0.261 0.343 0.407 0.523
p-value 0.021 0.035 0.044 p-value 0.021 0.047

Difference NLBP−CLBP

Mean 0.035 −0.108 0.055 Mean −0.034 0.097
SD 0.168 0.254 0.111 SD 0.159 0.301
CI 0.074 0.111 0.046 CI 0.070 0.132

SEM 0.038 0.057 0.024 SEM 0.036 0.067
MDC 0.104 0.157 0.070 MDC 0.099 0.187

CI: 95% confidence interval; SEM: Standard Error of Measure; MDC: Minimal Detectable Change; SampEn value
for: the Y-axis of the gyroscope from the sensor 1 (Gyr Y SENS1), the Z-axis of the gyroscope from the sensor 2
(Gyr Z SENS2), Hip Complexity Factor (HCF), the Y-axis of the gyroscope from the sensor 2 (Gyr Y SENS2), the
X-axis of the accelerometer from the sensor 2 (Acc X SENS2).

3.2. Cycle Segmentation

The result of the segmentation process was a data set of 1678 cycles labeled with their
respective index (CLBP patient or healthy NLBP subject). Figure 3 show the principle of
segmentation. Figure 4 shows all the computed cycles for Gyr Y of SENS2 as a function of
time in the form of a mean cycle and a shaded area indicating the cycle’s SD.

3.3. Machine Learning

The optimal hyperparameter values for each ML algorithm are highlighted in bold in
Table 1. The performance indicators of all the ML algorithms used are listed in Table 3.

Table 3. Comparison of prediction performance between the whole sequences and cycle segmentation
procedures, for all considered ML algorithms.

Whole Sequences Cycle Segmentation

Algorithms Accuracy (%) AUC Accuracy (%) AUC

BF KNN 0.63 ± 0.08 0.69 ± 0.09 0.65 ± 0.05 0.67 ± 0.06
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Table 3. Cont.

Whole Sequences Cycle Segmentation

Algorithms Accuracy (%) AUC Accuracy (%) AUC

Linear SVM 0.72 ± 0.07 0.79 ± 0.07 0.68 ± 0.06 0.71 ± 0.08
SVM RBF 0.52 ± 0.06 0.52 ± 0.09 0.64 ± 0.04 0.71 ± 0.06

DT 0.66 ± 0.08 0.65 ± 0.09 0.66 ± 0.06 0.65 ± 0.06
RF 0.78 ± 0.07 0.83 ± 0.08 0.72 ± 0.05 0.80 ± 0.06

AdaBoost 0.68 ± 0.07 0.74 ± 0.08 0.70 ± 0.06 0.74 ± 0.08
GaussianNB 0.79 ± 0.08 0.85 ± 0.07 0.69 ± 0.07 0.74 ± 0.07

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support Vector Machine, RBF: radial basis function, DT:
Decision Tree, RF: Random Forest, AdaBoost: Adaptive boosting, GaussianNB: Gaussian Naive Bayes. Bold
numbers indicate best prediction results.
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Figure 3. Principle of cycle segmentation based on minima of Acc Z. The dashed horizontal line
represents the global threshold (40% above the global minima). The dotted vertical lines represent
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threshold, and the blue dots show the minima of the pink lines.
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Figure 4. Mean Gyr Y of the SENS2 cycle as function of time is shown for NLBP subjects (green
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and SD refer to all cycle values at a given normalized time point (itime).
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The best classification accuracy was obtained using the whole sequences with the
GaussianNB algorithm. In this case, an accuracy of 79% and an AUC value of 0.85 were
obtained. Gaussian naive Bayes process each feature, computing a normal distribution
with their mean and standard deviation. To predict the class of a new subject, the algorithm
computes the likelihood of the subject’s raw data belonging to the gaussian distribution of
NLBP and CLBP. The Gaussian naïve Bayes could compare the scores obtained for each
class and decide the best-fitted class for the subject. As the raw data were on a times series,
it seems reasonable that the data fit well with the GaussianNB algorithm.

Table 4 shows the effects of using SampEn or CF as features instead of raw IMU data
for the whole sequences. The performance globally decreased with SampEn. The best
algorithm (GaussianNB) achieved 64% Accuracy and an AUC value of 0.69. Using CF, the
best algorithm (SVM RBF) achieved 74% Acc and an AUC value of 0.80. Overall, cycle
segmentation produced the worst results, so for simplicity, we have omitted these data
from the results table.

Table 4. Accuracy and AUC scores for CLBP-NLBP classification using the whole sequences with
different features.

Whole
Sequences Raw Data SampEn CF

Algorithms Accuracy
(%) AUC Accuracy

(%) AUC Accuracy
(%) AUC

BF KNN 0.63 ± 0.08 0.69 ± 0.09 0.59 ± 0.10 0.62 ± 0.09 0.73 ± 0.06 0.78 ± 0.06
Linear
SVM 0.72 ± 0.07 0.79 ± 0.07 0.53 ± 0.02 0.64 ± 0.10 0.68 ± 0.06 0.74 ± 0.07

SVM RBF 0.52 ± 0.06 0.52 ± 0.09 0.53 ± 0.02 0.64 ± 0.10 0.74 ± 0.06 0.80 ± 0.08
DT 0.66 ± 0.08 0.65 ± 0.09 0.58 ± 0.07 0.56 ± 0.07 0.60 ± 0.10 0.61 ± 0.10
RF 0.78 ± 0.07 0.83 ± 0.08 0.59 ± 0.08 0.64 ± 0.09 0.68 ± 0.07 0.71 ± 0.07

AdaBoost 0.68 ± 0.07 0.74 ± 0.08 0.55 ± 0.10 0.57 ± 0.10 0.62 ± 0.10 0.62 ± 0.11
GaussianNB 0.79 ± 0.08 0.85 ± 0.07 0.64 ± 0.06 0.69 ± 0.07 0.60 ± 0.08 0.60 ± 0.10

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support Vector Machine, RBF: radial basis function, DT:
Decision Tree, RF: Random Forest, AdaBoost: Adaptive boosting, GaussianNB: Gaussian Naive Bayes. Bold
numbers indicate best prediction results.

3.4. Most Discriminative Features

The minimum value of Gyr Y measured by SENS2 was the most discriminative feature
(first 355 times in 700 runs), followed by the Q3 of Acc X measured by SENS3. The SD of
Acc Y measured by SENS2 was the most discriminating feature of the second test (114 times
in 700 runs). The complete results can be found in Table 5.

Table 5. Number of times the most discriminating characteristics are first and second out of 700 runs.

Feature First Feature Second

Gyr Y SENS2 min 355 Acc Y SENS2 SD 114
Acc X SENS3 Q3 136 Gyr Y SENS2 min 112
Acc Y SENS2 SD 111 Acc X SENS3 Q3 103
Acc Y SENS2 SD 89 Acc Y SENS2 Q1 83
Acc X SENS3 Q1 64 Acc X SENS3 mean 71

Gyr: Gyroscope; Acc: Accelerometer; SENS: Sensor; min: minimum; SD: standard deviation; Q1: 1st quartile; Q3
3rd quartile.

4. Discussion

Our results showed that ML was able to discriminate CLBP patients from NLBP
subjects with good accuracy, especially for the GaussianNB algorithm. The identification
of the most discriminating features shows that Gyr Y SENS2 min is the best parameter:
CLBP patients have a lower flexion angular velocity (in norm) in the return phase of the
b&r test than NLBP subjects; the angular velocity was measured by a sensor placed in
front of the second sacral vertebra. A wide variety of models for the kinematic analysis
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of the lumbar region are available in the literature [31]. Several authors have proposed
positioning two sensors, one near T12 and the other near S2, to characterize the movements
of the lumbar spine in the sagittal plane. Some used this model with an optoelectronic
system [32], while others used IMUs with or without comparison to an optoelectronic
system [9,11,32,33]. In the positioning of our IMUs, SENS2 (placed at S2) provided the
maximum number of discriminative features. SENS1 (placed at T12) alone did not provide
us with discriminative data, but the HCF, calculated from SENS2 (S2) and SENS3, did. The
optimal number of sensors remains an open discussion, but SENS2 should be preferred for
clinical applications. According to our results, the single SENS2 seems to be sufficient to
clinically discriminate between CLBP and NLBP subjects; this result may seem attractive
for clinical use by reason of its simplicity; however, due to the limited sample of our study,
this finding should be treated with caution. Nonetheless, we advocate the use of multiple
sensors to analyze lumbopelvic and hip movements in clinical research in order to expand
our understanding of the disturbances of these movements in the clinical setting.

Due to the early onset of fatigue, the duration of the b&r test (70 s) could be a source
of bias if a CLBP patient is severely physically deconditioned. However, the test can be
interrupted after 20 s, and reliable SampEn values can be obtained despite a three-fold
shorter time series [20]. Future clinical studies should be conducted to understand the
effects of spinal erector muscle fatigue on the b&r test. The use of the b&r test in acute or
sub-acute patients has also not been clinically studied.

Some values of SampEn and CF were significantly different between CLBP patients
and NLBP subjects when the b&r test was performed. SampEn showed a significant
difference for the Gyr Y of SENS1, located at the lower thoracic level, and Gyr Y SENS2,
located at the upper sacral level. These differences suggest a lower complexity of variability
in angular velocity measured about the transverse axis, which corresponds to the main
b&r movement. In other words, CLBP patients show more stereotyped movements of the
lumbo–pelvic complex, which is consistent with the optimal variability paradigm of [21,34]:
the healthier an individual, the more variability they can show in performing a movement,
which is an indication of their adaptability. HCF also showed a significant decrease in
CLBP patients, as did SampEn for Acc X of SENS2. In contrast, SampEn for Gyr Z showed
an increase. The former describes the complexity of the pelvic tilting movement about
an antero–posterior axis, and the latter the complexity of the vertical pelvic displacement,
which is an obvious part of the b&r test. As with lumbar muscle activity in a previous
study [35], the observed behaviors suggest a tendency toward stereotyped movements in
CLBP patients. The literature suggests that the increase or decrease in complexity may
indicate two different pathological phenotypes: instability or hypercontrol [36]. It is quite
possible that the observed phenomenon of either upward or downward changes in CF is
responsible for the less and even non-discriminative results in distinguishing CLBP patients
from NLBP participants. In future studies, it would be appropriate to pre-classify CLBP
patients using existing relevant clinical tests [37–39] to investigate the ability of the b&r test
to highlight these two phenotypes.

Despite these observed significant differences, the mean differences between SampEn
and HCF in CLBP patients compared with NLBP subjects are so close to those of SEM
and MDC that the clinical interest of SampEn can be questioned. Furthermore, although
SampEn is easy to compute with any modern computer, a deviation of this parameter from
a norm not yet established may be very difficult or impossible to detect by a clinician in
practice. It is important to identify more standard kinematic parameters (position, velocity,
acceleration) representative of the CLBP population. Visualization of all cycles performed
during the b&r test in a single graphical representation has already shown that NLBP
participants, for example, achieved overall higher values for angular velocity about the
flexion axis than CLBP patients. This component of angular velocity proved to be the most
discriminating feature in our study. Therefore, focusing on flexion movement velocity may
be a good recommendation for clinicians when managing CLBP patients.
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Regardless of the most discriminating features, the ML algorithms were able to accu-
rately identify CLBP patients when performing a b&r test. The algorithm with the best
performance is GaussianNB, which is supplied with the whole time series recorded by the
IMUs. It achieves an accuracy of 79% and an AUC value of 0.85. It is worth noting that
good accuracy can also be achieved when an SVM RBF algorithm is provided with CF
from the whole time series. In this case, an accuracy of 74% and an AUC value of 0.80 are
achieved. The better performance of the SVM algorithm might be related to a well-known
property of this method, which tends to perform better than other ML algorithms when the
number of features is small [40].

Abdollahi et al. were able to distinguish LBP patients from NLBP subjects during a
kinematic test using ML analysis—specifically SVM—of time series collected via an IMU
attached to the sternum [12]. They were also able to classify them according to the risk
of chronicity [12]. Similar results with lower accuracy were obtained with the same test
but using classical statistical analysis (linear discriminant analysis) [41]. In our study, we
found that the SENS2 had higher discriminating power in both classical statistical analysis
and ML analysis. However, we did not investigate whether our method is able to classify
patients according to their risk of chronicity. The differences between [12] and our study
are mainly due to the different experimental protocols. Although we use a sagittal plane
test, our test is performed over a longer period of time (60 s of recording) with a sensor
recording frequency (100 Hz) five times higher than [12]. The amount of data collected
this way allowed us to analyze the complexity of the movement variation. In our study,
we did not measure the center of mass motion, and our NLBP population consisted of
only 20 subjects, which severely limits the learning ability of the ML process. However,
both studies demonstrate the interest in using ML in spinal kinematic analysis to identify
and assess CLBP patients. It remains to be shown that these tools are also useful for the
therapeutic follow-up of these patients.

As a counterpoint to using biomechanics to better understand LBP conditions, a meta-
model created with the help of a panel of 27 multidisciplinary experts is used to illustrate
the number of factors that contribute to LBP, disability, quality of life, and other outcomes as
well as the number and strength of their interactions [42]. With a problem as multifactorial
and complex as LBP, the authors of this counterpoint emphasize the need to integrate
the interactions of biopsychosocial factors into research to improve the management of
patients with LBP. This suggests that in future works, it will be essential to integrate these
biopsychosocial factors and the state of the internal environment into the raw IMU data
and the variability indicators computed from them when performing a b&r test to better
understand its discriminating power. This may be achieved via analysis from non-invasive
portable electrochemical sensors [43] of fluids such as sweat and its relevant components.
An ML algorithm can help achieve this goal, as both quantitative and qualitative data can
be used.

5. Conclusions

The objective of this study was to evaluate the relevance of various machine ML
algorithms and SampEn in the identification of LBP conditions. Using the raw data
from three IMUs and the SampEn values obtained during a b&r test, the results showed
better abilities to discriminate CLBP patients from NLBP subjects for the GaussianNB ML
algorithm than the SampEn discriminant values alone. This study demonstrated that:
supervised ML and a complexity assessment of trunk movement variability are useful in
the identification of CLBP conditions, and that simple kinematic indicators are sensitive to
the latter condition.

Regardless of the pathology studied, our study can shed light on the advantages
and disadvantages of “standard” statistical analysis and ML-based approaches in clinical
applications. In standard statistical analysis, the experimenter/clinician a priori identifies
relevant indices and computes them. If the indices are well chosen, they will show sta-
tistically significant differences between groups, typically between healthy subjects and
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patients. By accepting arbitrariness in the choice of indices, such a methodology can show
significant results for small populations, typically groups of 20 subjects, which can be
easily recruited from a clinician’s patients and acquaintances. One of the advantages of
ML is that the algorithm itself finds the most discriminative indices in a non-arbitrary
way, but the population has to be larger than in usual statistical analysis, which can make
ML complicated to apply in daily clinical practice. What we have shown is that ML may
already give good results in discriminating small but accurately selected groups and that it
may also identify the main discriminative features of the performed measurements. The
latter features might, in turn, be used in quick clinical tests based on the measurement of
a single parameter and threshold value. Hence, ML may provide key parameters to be
included in more standard approaches already used in daily clinical practice.

Author Contributions: Conceptualization, P.T., W.B., A.T., E.S.-B.; methodology, P.T., M.H., L.P., O.N.;
software, P.T., M.H., L.P., O.N.; validation, P.T., F.B., F.D., R.S. and M.H.; data curation, P.T., M.H.,
L.P.; writing—original draft preparation, P.T., M.H., L.P., F.B.; writing—review and editing, P.T., F.B.,
F.D., R.S., M.H., A.T., E.S.-B., W.B., O.N. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors acknowledge financial support from the First Haute-Ecole program, project n◦
1610401, DYSKIMOT, in partnership with OMT-Skills (http://omtskills.be/—accessed on 8 october
2020), and from the European Regional Development Fund (Interreg FWVl 4.7.360 NOMADe).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Intercommunale de Santé Publique du Pays de
Charleroi Ethics Committee (ISPPC/OM008) under the number B325-2020-43666.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are available at https://osf.io/t4dgr/ (accessed on 19 January
2022), folder “Low Back Pain vs Healthy”. Source codes are available at https://github.com/
martinhouryfors/IMU-and-IA-to-Assess-Chronic-Low-Back-Pain (accessed on 15 June 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah,

F.; Abdelalim, A.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic
Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [CrossRef]

2. Ippersiel, P.; Teoli, A.; Wideman, T.H.; Preuss, R.A.; Robbins, S.M. The Relationship Between Pain-Related Threat and Motor
Behavior in Nonspecific Low Back Pain: A Systematic Review and Meta-Analysis. Phys. Ther. 2022, 102, pzab274. [CrossRef]
[PubMed]

3. André, M.; Lundberg, M. Thoughts on Pain, Physical Activity, and Body in Patients With Recurrent Low Back Pain and Fear: An
Interview Study. Phys. Ther. 2022, 102, pzab275. [CrossRef] [PubMed]

4. Senba, E.; Kami, K. A New Aspect of Chronic Pain as a Lifestyle-Related Disease. Neurobiol. Pain 2017, 1, 6–15. [CrossRef]
5. Mahdavi, S.B.; Riahi, R.; Vahdatpour, B.; Kelishadi, R. Association between Sedentary Behavior and Low Back Pain; A Systematic

Review and Meta-Analysis. Health Promot. Perspect. 2021, 11, 393–410. [CrossRef]
6. Cappelle, J.; Monteyne, L.; Van Mulders, J.; Goossens, S.; Vergauwen, M.; Van der Perre, L. Low-Complexity Design and Validation

of Wireless Motion Sensor Node to Support Physiotherapy. Sensors 2020, 20, 6362. [CrossRef]
7. Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.; Roy, J.-S. Validity and Reliability of Wearable

Sensors for Joint Angle Estimation: A Systematic Review. Sensors 2019, 19, 1555. [CrossRef]
8. Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The Use of Wearable Devices for Walking and Running Gait Analysis Outside

of the Lab: A Systematic Review. Gait Posture 2018, 63, 124–138. [CrossRef]
9. Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of Inertial Measurement Units with an Optoelectronic

System for Whole-Body Motion Analysis. Med. Biol. Eng. Comput. 2017, 55, 609–619. [CrossRef]
10. Cuesta-Vargas, A.I.; Galán-Mercant, A.; Williams, J.M. The Use of Inertial Sensors System for Human Motion Analysis. Phys. Ther.

Rev. 2010, 15, 462–473. [CrossRef]
11. Bauer, C.M.; Heimgartner, M.; Rast, F.M.; Ernst, M.J.; Oetiker, S.; Kool, J. Reliability of Lumbar Movement Dysfunction Tests for

Chronic Low Back Pain Patients. Man. Ther. 2016, 24, 81–84. [CrossRef] [PubMed]

34



Sensors 2022, 22, 5027

12. Abdollahi, M.; Ashouri, S.; Abedi, M.; Azadeh-Fard, N.; Parnianpour, M.; Khalaf, K.; Rashedi, E. Using a Motion Sensor to
Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach. Sensors 2020, 20, 3600. [CrossRef]

13. Mathew, B.; Norris, D.; Hendry, D.; Waddell, G. Artificial Intelligence in the Diagnosis of Low-Back Pain and Sciatica. Spine 1988,
13, 168–172. [CrossRef] [PubMed]

14. Tagliaferri, S.D.; Angelova, M.; Zhao, X.; Owen, P.J.; Miller, C.T.; Wilkin, T.; Belavy, D.L. Artificial Intelligence to Improve Back
Pain Outcomes and Lessons Learnt from Clinical Classification Approaches: Three Systematic Reviews. NPJ Digit. Med. 2020,
3, 93. [CrossRef] [PubMed]

15. D’Antoni, F.; Russo, F.; Ambrosio, L.; Vollero, L.; Vadalà, G.; Merone, M.; Papalia, R.; Denaro, V. Artificial Intelligence and
Computer Vision in Low Back Pain: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 10909. [CrossRef] [PubMed]

16. Galbusera, F.; Casaroli, G.; Bassani, T. Artificial Intelligence and Machine Learning in Spine Research. JOR Spine 2019, 2, e1044.
[CrossRef]

17. Tack, C. Artificial Intelligence and Machine Learning | Applications in Musculoskeletal Physiotherapy. Musculoskelet. Sci. Pract.
2019, 39, 164–169. [CrossRef]

18. Girase, H.; Nyayapati, P.; Booker, J.; Lotz, J.C.; Bailey, J.F.; Matthew, R.P. Automated Assessment and Classification of Spine, Hip,
and Knee Pathologies from Sit-to-Stand Movements Collected in Clinical Practice. J. Biomech. 2021, 128, 110786. [CrossRef]

19. Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The Appropriate Use of Approximate Entropy and
Sample Entropy with Short Data Sets. Ann. Biomed. Eng. 2013, 41, 349–365. [CrossRef]

20. Thiry, P.; Nocent, O.; Buisseret, F.; Bertucci, W.; Thevenon, A.; Simoneau-Buessinger, E. Sample Entropy as a Tool to Assess
Lumbo-Pelvic Movements in a Clinical Test for Low-Back-Pain Patients. Entropy 2022, 24, 437. [CrossRef]

21. van Emmerik, R.E.A.; Ducharme, S.W.; Amado, A.C.; Hamill, J. Comparing Dynamical Systems Concepts and Techniques for
Biomechanical Analysis. J. Sport Health Sci. 2016, 5, 3–13. [CrossRef]

22. Falk, J.; Aasa, U.; Berglund, L. How Accurate Are Visual Assessments by Physical Therapists of Lumbo-Pelvic Movements during
the Squat and Deadlift? Phys. Ther. Sport 2021, 50, 195–200. [CrossRef] [PubMed]

23. Beange, K.H.E.; Chan, A.D.C.; Beaudette, S.M.; Graham, R.B. Concurrent Validity of a Wearable IMU for Objective Assessments
of Functional Movement Quality and Control of the Lumbar Spine. J. Biomech. 2019, 97, 109356. [CrossRef] [PubMed]

24. Hage, R.; Buisseret, F.; Houry, M.; Dierick, F. Head Pitch Angular Velocity Discriminates (Sub-)Acute Neck Pain Patients and
Controls Assessed with the DidRen Laser Test. Sensors 2022, 22, 2805. [CrossRef] [PubMed]

25. Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking,
A.; et al. Comparison of Pain Syndromes Associated with Nervous or Somatic Lesions and Development of a New Neuropathic
Pain Diagnostic Questionnaire (DN4). Pain 2005, 114, 29–36. [CrossRef] [PubMed]

26. Cleland, C.L.; Hunter, R.F.; Kee, F.; Cupples, M.E.; Sallis, J.F.; Tully, M.A. Validity of the Global Physical Activity Questionnaire
(GPAQ) in Assessing Levels and Change in Moderate-Vigorous Physical Activity and Sedentary Behaviour. BMC Public Health
2014, 14, 1255. [CrossRef]

27. Hage, R.; Detrembleur, C.; Dierick, F.; Pitance, L.; Jojczyk, L.; Estievenart, W.; Buisseret, F. DYSKIMOT: An Ultra-Low-Cost Inertial
Sensor to Assess Head’s Rotational Kinematics in Adults during the Didren-Laser Test. Sensors 2020, 20, 833. [CrossRef]

28. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2019; ISBN 978-1-4920-3264-9.

29. Ndiaye, E.; Le, T.; Fercoq, O.; Salmon, J.; Takeuchi, I. Safe Grid Search with Optimal Complexity. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 4771–4780.

30. Aha, D.W.; Bankert, R.L. A Comparative Evaluation of Sequential Feature Selection Algorithms. In Learning from Data;
Fisher, D., Lenz, H.-J., Eds.; Lecture Notes in Statistics; Springer: New York, NY, USA, 1996; Volume 112, pp. 199–206.
ISBN 978-0-387-94736-5.

31. Pourahmadi, M.R.; Ebrahimi Takamjani, I.; Jaberzadeh, S.; Sarrafzadeh, J.; Sanjari, M.A.; Bagheri, R.; Taghipour, M. Kinematics of
the Spine During Sit-to-Stand Movement Using Motion Analysis Systems: A Systematic Review of Literature. J. Sport Rehabil.
2019, 28, 77–93. [CrossRef]

32. Pourahmadi, M.R.; Ebrahimi Takamjani, I.; Jaberzadeh, S.; Sarrafzadeh, J.; Sanjari, M.A.; Bagheri, R.; Jannati, E. Test-Retest Relia-
bility of Sit-to-Stand and Stand-to-Sit Analysis in People with and without Chronic Non-Specific Low Back Pain. Musculoskelet.
Sci. Pract. 2018, 35, 95–104. [CrossRef]

33. Shojaei, I.; Vazirian, M.; Salt, E.G.; Van Dillen, L.R.; Bazrgari, B. Timing and Magnitude of Lumbar Spine Contribution to Trunk
Forward Bending and Backward Return in Patients with Acute Low Back Pain. J. Biomech. 2017, 53, 71–77. [CrossRef]

34. Goldberger, A.L.; Peng, C.-K.; Lipsitz, L.A. What Is Physiologic Complexity and How Does It Change with Aging and Disease?
Neurobiol. Aging 2002, 23, 23–26. [CrossRef]

35. Falla, D.; Gizzi, L.; Tschapek, M.; Erlenwein, J.; Petzke, F. Reduced Task-Induced Variations in the Distribution of Activity across
Back Muscle Regions in Individuals with Low Back Pain. Pain 2014, 155, 944–953. [CrossRef]

36. Stergiou, N.; Decker, L.M. Human Movement Variability, Nonlinear Dynamics, and Pathology: Is There a Connection? Hum. Mov.
Sci. 2011, 30, 869–888. [CrossRef] [PubMed]

37. Laird, R.A.; Keating, J.L.; Kent, P. Subgroups of Lumbo-Pelvic Flexion Kinematics Are Present in People with and without
Persistent Low Back Pain. BMC Musculoskelet. Disord. 2018, 19, 309. [CrossRef] [PubMed]

35



Sensors 2022, 22, 5027

38. Tousignant-Laflamme, Y.; Cook, C.E.; Mathieu, A.; Naye, F.; Wellens, F.; Wideman, T.; Martel, M.; Lam, O.T. Operationalization of
the New Pain and Disability Drivers Management Model: A Modified Delphi Survey of Multidisciplinary Pain Management
Experts. J. Eval. Clin. Pract. 2020, 26, 316–325. [CrossRef] [PubMed]

39. Molgaard Nielsen, A.; Hestbaek, L.; Vach, W.; Kent, P.; Kongsted, A. Latent Class Analysis Derived Subgroups of Low Back Pain
Patients—Do They Have Prognostic Capacity? BMC Musculoskelet. Disord. 2017, 18, 345. [CrossRef]

40. Li, X.; Cervantes, J.; Yu, W. A Novel SVM Classification Method for Large Data Sets. In Proceedings of the 2010 IEEE International
Conference on Granular Computing, San Jose, CA, USA, 14–16 August 2010; pp. 297–302.

41. Davoudi, M.; Shokouhyan, S.M.; Abedi, M.; Meftahi, N.; Rahimi, A.; Rashedi, E.; Hoviattalab, M.; Narimani, R.; Parnianpour, M.;
Khalaf, K. A Practical Sensor-Based Methodology for the Quantitative Assessment and Classification of Chronic Non Specific
Low Back Patients (NSLBP) in Clinical Settings. Sensors 2020, 20, 2902. [CrossRef]

42. Cholewicki, J.; Breen, A.; Popovich, J.M.; Reeves, N.P.; Sahrmann, S.A.; van Dillen, L.R.; Vleeming, A.; Hodges, P.W. Can
Biomechanics Research Lead to More Effective Treatment of Low Back Pain? A Point-Counterpoint Debate. J. Orthop. Sports Phys.
Ther. 2019, 49, 425–436. [CrossRef]

43. Lu, H.; He, B.; Gao, B. Emerging Electrochemical Sensors for Life Healthcare. Eng. Regen. 2021, 2, 175–181. [CrossRef]

36



Citation: Jung, W.; Lee, H.G.

Energy–Accuracy Aware Finger

Gesture Recognition for Wearable IoT

Devices. Sensors 2022, 22, 4801.

https://doi.org/10.3390/s22134801

Academic Editors: Fabien Buisseret,

Liesbet Van der Perre and Frédéric

Dierick

Received: 12 May 2022

Accepted: 21 June 2022

Published: 25 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Energy–Accuracy Aware Finger Gesture Recognition for
Wearable IoT Devices
Woosoon Jung 1 and Hyung Gyu Lee 2,*

1 Department of Computer and Information Engineering, Daegu University, Gyeongsan-si 38453, Korea;
quado.jung@gmail.com

2 Department of Software, Duksung Women’s University, Seoul 01369, Korea
* Correspondence: hglee@duksung.ac.kr

Abstract: Wearable Internet of Things (IoT) devices can be used efficiently for gesture recognition
applications. The nature of these applications requires high recognition accuracy with low energy
consumption, which is not easy to solve at the same time. In this paper, we design a finger gesture
recognition system using a wearable IoT device. The proposed recognition system uses a light-
weight multi-layer perceptron (MLP) classifier which can be implemented even on a low-end micro
controller unit (MCU), with a 2-axes flex sensor. To achieve high recognition accuracy with low
energy consumption, we first design a framework for the finger gesture recognition system including
its components, followed by system-level performance and energy models. Then, we analyze system-
level accuracy and energy optimization issues, and explore the numerous design choices to finally
achieve energy–accuracy aware finger gesture recognition, targeting four commonly used low-end
MCUs. Our extensive simulation and measurements using prototypes demonstrate that the proposed
design achieves up to 95.5% recognition accuracy with energy consumption under 2.74 mJ per gesture
on a low-end embedded wearable IoT device. We also provide the Pareto-optimal designs among a
total of 159 design choices to achieve energy–accuracy aware design points under given energy or
accuracy constraints.

Keywords: MLP; gesture recognition; flex sensor; model search; neural network

1. Introduction

Gesture recognition is among the popular issues for human–machine interface applica-
tions. In particular, hands are the parts that can move most accurately with relatively little
energy, compared to other body parts. Thus, hand gesture recognition is used as an efficient
interface for human–computer interaction (HCI) [1–8]. Traditionally, vision-based gesture
recognition received much attention since it avoid the need to wear any tools or equipment
on the body [1,2,6]. However, it is also known that the performance of vision-based gesture
recognition is highly dependent on camera setup such as the angle to the object, the size of
the image and the intensity of illumination [9]. In addition, high computation requirements
and power consumption are needed to process and analyze multiple images in real time.
Thus, it may not be feasible to implement vision-based gesture recognition applications on
low-end embedded devices.

An alternative method of implementing gesture recognition is to use wearable sensors
such as inertial measurement units (IMU), electromyography (EMG) sensors, flex sensors,
and pressure sensors [3,8,10–13]. Unlike vision-based approaches, a wearable sensor-
based approach is not only less sensitive to the perceived environments but also generates
relatively small amounts of data with affordable (or even higher) recognition accuracy. In
addition, this approach can recognize minimal body movements including small finger
gestures. Most of all, its computation and power requirements may be less than vision-
based approaches. In that sense, a wearable sensor-based approach is more suitable for
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gesture recognition than a vision-based approach if we are targeting low-end wearable
IoT devices.

Among various wearable sensors such as IMUs, EMG, and flex sensors, we focus
on using a state-of-the-art flex sensor [14] which can measure bi-directionally in 2 axes
of bending with a single sensor. This sensor is suitable for being implemented in low-
end embedded devices because it provides low-power, drift-free, and path-independent
sensing with high accuracy. In addition, the sensor is made from silicon, which is good for
wearable implementations.

In this paper, we design a light-weight finger gesture recognition system that can be
implemented in low-end embedded devices using a single flex sensor. To this end, we
first design a framework for a finger gesture recognition system that recognizes 17 finger
gestures. The framework consists of data collection, preprocessing filters, and a light-
weight multi-layer perceptron (MLP)-based classifier. Then, we construct performance
and energy models to find optimal design choices efficiently. We analyze and discuss the
energy–accuracy aware system-level design issues, and explore the design choices of finger
gesture recognition by considering computation requirements/memory resource targeting
for four types of low-end micro controller units (MCUs). Finally, the functionality and
feasibility of the proposed work are verified by implementing prototypes. The contributions
of this paper are summarized as follows:

- Provide the full design for a finger gesture recognition system using a single flex sensor.
- Explore the design choices of a finger gesture recognition system in terms of perfor-

mance, accuracy, and energy consumption using the conducted performance and
energy consumption models.

- Demonstrate the functionality and feasibility of the proposed designs by implementing
the prototypes using four commonly used low-end embedded MCUs.

- Show the energy–accuracy aware design which achieves up to 95.5% accuracy with
an energy consumption of 2.74 mJ per gesture.

- Provide the energy–accuracy aware Pareto-optimal designs among a total of 159 design choices
to find energy–accuracy aware design points under given energy or accuracy constraints.

The rest of this paper is organized as follows. The backgrounds are described in
Section 2. In Section 3, the framework and component-level design for the finger gesture
recognition system are described, while Section 4 discusses energy–accuracy aware design
optimization. Finally, Section 5 demonstrates the experiment results, followed by the
conclusion in Section 6.

2. Backgrounds

This section describes the backgrounds of this work which consists of the existing
work related to gesture recognition and the basics of the flex sensor used in this work.

2.1. Related Work

An IMU sensor which embeds micro electro mechanical systems (MEMS) accelerome-
ters, gyroscopes, and magnetometers was popularly used because it can capture the wide
range of body movements. An IMU sensor can even be attached to a cane to detect falls in
the elderly [10]. However, IMUs generally require high filtering resources because raw data
contain a lot of noise and drifts [4]. In addition, a high sampling rate (higher than a few kilo
samples per second) requirement for recognizing delicate movements and high recognition
accuracy are major concerns for implementing on low-end embedded devices [15].

EMG sensors are used for body movement recognition as well. Instead of directly
measuring the physical movements of the body, the sensor alternatively measures the
biomedical signals using specially made probes attached to the skin surface. EMG sensors
can detect the very fine movements of the body that cannot be detected by physical
movement measuring sensors alone [3,16,17]. However, the acquired biomedical signals
vary for different people even with the same movement and are noise sensitive depending
on the condition of the skin surface even for the same person [18].
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Conventional flex sensors based on conductive ink, fiber-optic, or conductive fabric
technologies are used for various wearable IoT applications such as embedded device-based
health care [19], sign language recognition [20,21], and posture correction [22]. Multiple
sensors are attached to each joint of the body, and the measured bending information
is used for recognizing the body movement. This method provides a low-cost and low-
energy solution that can be easily implemented in low-end embedded devices. However,
the recognized body activity is generally simple and must use multiple sensors to detect
complex body movements. Recently, an advanced flex sensor that can measure two axes
of bi-directional bending with a single sensor was developed [14]. The sensor embeds a
low-power integrated analog front and generates digital angular data in degree. We use
this advanced flex sensor for finger gesture recognition in this paper. Thus, the details on
this flex sensor will be explained in Section 2.2.

In general, data collected from the wearable flex sensor for body movement recog-
nition requires time-domain data analysis using machine learning (ML) techniques such
as dynamic time warping (DTW) [20], hidden Markov models (HMMs) [21], recurrent
neural networks (RNNs), and long short-term memory (LSTM). Although these techniques
support relatively high recognition accuracy for time-series data, it is questionable whether
these techniques can be efficiently implemented in a low-end wearable device [7,23] because
of the not trivial size of memory requests. Since the data used in HCI applications generally
have a small number of dimensions compared to the images, a simple MLP technique can
be a sufficient solution if it satisfies the desired performance and accuracy. Therefore, this
paper focuses on using an MLP technique where the computation requirements (processing
time) are simply proportional to the size of MLP model. The optimal MLP structure was
determined in terms of model size, accuracy, and energy consumption in this paper.

2.2. Basics of Flex Sensors

Flex sensors measure the amount of bending or deflection. There are three types of
commonly used flex sensors, as shown in Figure 1. Depending on the material, the sensor
is categorized as conductive ink, fiber-optic, or conductive fabric. The operating principle
of the sensors utilizes a phenomenon where the electrical properties of a material used in
the sensor change when the flex sensor is physically bending. Depending on the type of
flex sensor, the maximum bending angle, durability, and stability of the measured value
appear differently. For example, sensors made with conductive ink are widely used due
to low cost, but accuracy is relatively low, and calibration or filtering is required because
the measured values vary slightly depending on the measurement environment such as
temperature and humidity. In addition, the physical length of the sensor is fixed without
elasticity, which limits the wearability of the sensor.
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Sensors made with an optical fiber support high accuracy and high durability. How-
ever, a pair of a light source and a detector is required, and only unidirectional sensing
is possible [24]. Conductive fabric/polymers can be used for wearable applications due
to the elasticity of the sensor compared to other technologies. The cost of these sensors
is relatively high, compared with other types of sensors, and these sensors respond to
pressure as well as bending, making it difficult to maintain high accuracy. Most of all,
conventional flex sensors can measure one axis of bending. Thus, multiple sensors must be
used to measure complex movements [13].
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The advanced flex sensor introduced in the previous subsection is made with a silicone
elastomer layered with a conductive and non-conductive material. This sensor not only
measures the bending degree of two axes stably with a single sensor, but also has the
advantage of being flexible and stretchable with silicon material. As mentioned, this
sensor is not a simple variable resistor type but a sensor module that embeds a low-
power integrated analog front, resulting much less noise over time compared with the
other sensors. In addition, it generates digital data through an inter-integrated circuit
(I2C) standard communication interface. This means that power-hungry analog-to-digital
converters (ADCs) are not necessary, which is good for wearable IoT devices.

Figure 2 shows the collected sample data from two users, repeating several gestures
with their index fingers, where a single flex sensor is attached. The measured values indicate
the angle changes according to the movement of the finger. Although there are slight
deviations in the measured values of each repeated gesture, we observe specific patterns
for each gesture regardless of the users. These patterns appear differently depending on the
type of gesture. We also note that the duration of a single gesture—the number of sample
data related to the gesture—varies depending on the type of the gesture and user. The
duration of a single gesture also varies depending on the time even for the same gesture
by the same person. Therefore, gesture recognition should be appropriately designed in
consideration of these variations.
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3. Designing the Finger Gesture Recognition System

This section mainly describes the design for a light-weight finger gesture recognition
system using a wearable flex sensor, implemented in low-end wearable devices. To this
end, the system-level design including its framework is proposed. Then, the component-
level design consisting of designing preprocessing filters and an MLP-based classifier
is described.

3.1. System Architecture

Figure 3 shows the framework for the proposed finger gesture recognition system. The
system simply consists of three parts: raw data collection, preprocessing, and classification.
The first step for finger gesture recognition is to collect motion data generated from a 2-axes
flex sensor. The flex sensor attached to the index finger generates a series of 32-bit sample
data. One set of sample data represents the X-axis (16 bits) and Y-axis (16 bits) bending
degrees of the index finger at the moment of sampling. The flex sensor can operate at a
sampling rate of up to 500 Hz. In this work, we set the maximum sampling frequency to
100 Hz, which is sufficient for finger gesture recognition applications.

Raw data collected from the flex sensor can be directly used as an input to the gesture
classifier. However, in general, the raw data may include lots of measurement noise and
there are non-negligible deviations in the raw data collected even for the same gestures
depending on the time and user, as shown in Figure 2. Additionally, the group of data
sent to the classifier for gesture recognition should not be mixed with other sample data
related to past or future gestures. Without resolving these problems prior to classification,
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recognition accuracy can be degraded while the computation requirements and energy
consumption during the classification process can be increased significantly. For this reason,
we design preprocessing filters which will be described in detail in Section 3.2.
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Figure 3. The framework for the proposed finger gesture recognition system.

Finally, the preprocessed group of data is sent to the classifier for recognizing the
gesture among predefined ones. The main purpose of this study is to design and implement
a gesture recognition system with high accuracy that can be implemented even on a low-
end embedded device which operates with a limited energy resource such as a tiny battery
or via energy harvesting. To this end, we design a light-weight MLP-based classifier to
decrease computation requirements and energy consumption to as low as possible. The
design and optimization of this MLP-based classifier will be explained in Section 3.3.

3.2. Designing Preprocessing Filters

In this section, we design preprocessing filters that convert the shape of data, as shown
in Figure 4 by applying a noise filter, a segmentation filter, a normalization filter, and a
reshape filter in order.
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Noise filter: No matter how well the sensor circuit is designed, it is unavoidable
that the raw data contain a lot of noise during data collection from the sensor, as shown
in Figure 4a. Noise is generated in a random and non-uniform pattern, which makes
detecting the unique pattern of each gesture even more difficult, and finally requires more
computation. To minimize the effect of noise, we use an infinite impulse response (IIR),
where the input signal and output signal are applied recursively to perform filtering. This
IIR filter is more suitable for our work than a finite impulse response (FIR) filter because of
its low implementation cost and low latency.
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Data segmentation filter: The segmentation filter first separates a group of data, only
related to a single gesture among continuously collected data from the sensor. To design
this segmentation function, we investigate an average rate of change in sampled data to
indicate the start and end of collecting a group of data only related to a single gesture,
assuming that the finger is not moving for a certain amount of the time before and after
each gesture. The average rate of change can be simply calculated at the same time as
executing the noise filter so that the overhead for calculating the average rate of change
is minimized. Starting from a steady state, the collection is started if the average rate of
change is over the predefined threshold, and the collection is stopped if the average rate
of change is under the predefined threshold as well. We reasonably set this threshold
empirically after intensive experiments.

The second role of the segmentation filter is to change the variable number of sampled
data for a single gesture to the fixed number. As mentioned, the number of sample data
grouped into a single gesture varies depending on gesture type, user, and time of trial. If
this number varies, it is difficult to apply a simple MLP-based classifier. To resolve this
issue, we interpolate the data if the number of data is smaller than the predefined number
while we reduce the number of data by applying a smoothing function in the opposite
case, so that the number of sampled data to the classifier is fixed with the predefined one,
as shown in Figure 4b. Since the number of data to be sent to the classifier for a single
gesture recognition is also tightly coupled with setting the sample rate of the flex sensor
and designing a classifier as well, we discuss this issue in Section 4, separately.

Normalization and Reshaping: Normalization is an efficient method for an MLP-
based classifier to increase recognition accuracy while reducing the computation require-
ments by adjusting the amplitude of data. We use a MinMax scaler, which normalizes
the amplitude of data based on maximum and minimum values among the whole set of
data, as shown in Figure 4c. Note that minimum and maximum values of the data are
determined during the segmentation, the additional overhead of this process is almost
negligible. The last process before sending the data to the classifier is reshaping the output
of the sensor to fit the input of the MLP with a predefined size. Since the output of sensor
data is 16 bits from the X-axis and 16 bits from the Y-axis, it is converted from 2D array to
1D array data, as shown in Figure 4d. This process is simple, with almost no computational
overhead for this process if this process is performed with the normalization process.

3.3. Designing an MLP-Based Classifier

For recognizing hand gestures, we design a simple MLP-based classifier but support
high recognition accuracy using minimal resources. This section only describes a classifier
design and component-level optimization issue while system-level optimization issues will
be discussed in Section 4.

Input Layer: In designing the input layer of an MLP-based classifier, the number
of nodes is mainly determined by the size of the input data set. In our design, since the
segmentation filter determines the size of the input data set with a predefined number, the
number of nodes in the input layer is also designed to have the same number with the
predefined one in the segmentation filter.

Hidden Layer: Determining the number of hidden layers and the number of nodes
for each hidden layer is a main design issue because they are directly related to the amount
of computing, memory space, and energy consumption, in addition to recognition accuracy.
Huge design choices include selecting a proper structure for the hidden layer. In this
work, the amount of data generated by the flex sensor is smaller compared with that of
image processing. Thus, the number of hidden layers we consider is limited to a single
or a double hidden layer. To find the best solution, we intensively explore the design
choices of the MLP-based classifier by changing the number of nodes used for each layer in
terms of recognition accuracy, energy consumption, and the feasibility of implementation
considering the performance and memory size targeting low-end embedded devices. Each
node in the hidden layer uses a rectified linear unit (ReLu) activation function. For each
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explored MLP model, we perform an independent training and testing process. The
exploration in detail will be described with system-level optimization in Section 4, while
the results will be described in Section 5.

Output Layer: The number of nodes in the output layer is generally determined by
the number of recognized gestures. In this work, the number of gestures is set to 17. Thus,
we design the output layer to have 17 nodes. Each node in the output layer uses a Softmax
activation function to generate a probability value for each gesture so that the gesture with
the highest probability is selected as the final result.

4. Energy–Accuracy Aware Design Optimization

Based on the design described in Section 3, this section analyzes the implementation
issues of energy–accuracy aware system-level optimization targeting low-end embedded
devices. We first analyze the practical issues of designing an entire system focusing on
performance and power management. Then, we build performance and energy estimation
models to find the energy–accuracy trade-offs. Finally, energy–accuracy aware system-level
design optimization is described.

4.1. Performance (Timing) Estimation Models

In terms of the design components, the proposed system consists of data collection,
preprocessing filters, and an MLP-based classifier. At the same time, in terms of hardware
components, the system mainly consists of a flex sensor and an MCU board. Thus, man-
agement of these hardware components is a practical issue of the implementation. For
example, activation/deactivation scheduling of the MCU and the sensor module is tightly
coupled with the performance and energy consumption of the system. The MCU can be
in a standby state synchronized with the operating frequency of the sensor. When the
preprocessing and MLP classification tasks are executed in the MCU, the sensor can be
entered into a standby state to minimize the power consumption of the sensor. To address
these issues, we first build timing models of gesture recognition, as shown in Figure 5.
Table 1 describes the parameters used in our timing models.
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The time taken per single gesture recognition, tges, is defined as the sum of the time
for executing data collection, tcol , which is equal to the duration of a gesture, the time for
preprocessing, tpre, and the time for MLP classification, tMLP. Depending on the user and
the type of gesture, tcol varies from 0.8 s to 1.2 s based on our experiences. tpre and tMLP
vary from 33 µs to 1727 µs, and 284 µs to 3360 µs, respectively, depending on the number
of sensor data, the size of MLP models, and the type of MCUs.

Looking at the data collection process which accounts for most of the time spent on
gesture recognition, the MCU repeats the sensor data read with the sampling frequency
fs. At each period of read, the MCU reads a single data set, and then transits back to the
standby state, waiting for the next interruption from the sensor. The time for reading a
single set of data is defined as tread, and the time spent in the standby state is defined as
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tstandby. In our experiments, tread is measured as 269 µs, which is determined by the I2C
configuration when running at 400 KHz. Note that the sensor is always in the active state
during tcol , while it is in the standby state during tpre and tMLP. Since tcol varies only with
the type of gesture and user, and not with the design parameters, the number of sampled
data per gesture to be recognized, N, is calculated as:

N = tcol ∗ fs (1)

When estimating tpre, since we expect that it is proportional to N, we model it as
a simple function of N. We also expect that tMLP may be proportional to N because N
determines the number of nodes in the input layer. However, since N varies depending on
the gesture and user, we change N into N′, which is a fixed number in the segmentation
process. In addition to N′, tMLP is also tightly coupled with the size of MLP parameters,
NMLP. Thus, we model tMLP as a function of N′ and NMLP. Based on the scenario described
above, tges can be estimated as follows:

tges = N ∗ 1
fs
+ tpre(N) + tMLP

(
N′, NMLP

)
(2)

Since our design considers N′ as close to N as possible, tges is mainly affected by
fs and NMLP because N is, in turn, determined by fs, as shown in Equation (1). We find
tpre(N) and tMLP(N′, NMLP) from the extensive measurements using several low-end MCU
prototypes which will be explained in Section 5.

Table 1. Description of the parameters used in the model.

Definition Description

N Number of sampled data per gesture to be recognized

NMLP Number of parameters used in the MLP classifier

fs Sensor frequency (sample rate)

tges
Time taken per gesture recognition
= tcol + tpre + tMLP

tread
Time taken to read one sample from the sensor
269 us (including time to wakeup, I2C transfer, time to sleep)

tpre
Time taken to perform preprocessing
Depends on fs

tMLP
Time taken to perform the MLP evaluation
Depends on # of parameters in the fs

tcol
Time taken to collect data
=
(

tread + tstandby

)
× N

4.2. Energy Estimation Models

Figure 6 visualizes the power consumption of two main hardware components during
tcol , tpre and tMLP. Considering the complexity of power management, our design only
uses two power states—active and standby—for both the MCU and the sensor.

The energy consumption per single gesture recognition, Eges, is defined as the sum
of the energy consumption in the MCU, Emcu, and the energy consumption in the sensor,
Esensor. The energy consumption of the MCU, in turn, consists of the energy consump-
tion for executing three tasks—data collection, Emcu_col , preprocessing, Emcu_pre, and MLP
classification, EMLP—as follows:

Emcu = Emcu_col + Emcu_pre + Emcu_MLP. (3)
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In the data collection task, the MCU operates periodically with the frequency of fs
to read data from the sensor, switching between the active and standby states. Thus, the
energy consumed by the MCU for executing the data collection task is the sum of the energy
consumption in the active and standby states as follows:

Emcu_col = tread·N·Pmcu_active + (tcol − tread·N)·Pmcu_standby, (4)

where Pmcu_active and Pmcu_statndby indicate the power consumption of the MCU in the active
and standby states, respectively.

The energy consumption for executing the preprocessing, Emcu_pre, and the energy
consumption for executing the MLP operation, Emcu_MLP, are simply estimated by:

Emcu_pre = tpre·Pmcu_active, Emcu_MLP = tMLP·Pmcu_active. (5)

As mentioned, the sensor is in the active state only during data collection for time tcol ,
and the Esensor is defined as:

Esensor = tcol ·Psensor_active +
(
tpre + tMLP

)
Psensor_idle, (6)

where Psensor_active and Psensor_idle indicate the power consumption of the sensor in the active
and standby states, respectively. Unlike the MCU, the power consumption of the sensor in
the active state depends on the sampling frequency, fs. To reflect the power consumption
change by fs, we build a power consumption model of the sensor by directly measuring
the power consumption depending on fs as follows:

Psensor_active = α· fs, (7)

where α is the coefficient, which is determined as 3.56, for the flex sensor we used in the
design with a 3.3 V operating voltage.

Based on Equations (3)–(7), Eges is finally estimated as below:

Eges =
(
tread·N + tpre + tMLP

)
·Pmcu_active + (tcol − tread·N)·Pmcu_standy + α·tcol · fs +

(
tpre + tMLP

)
·Psensor_idle. (8)

Similar to Equation (2), only fs and NMLP are major optimizable design parameters
among the parameters used in Equation (8), while the other parameters such as Pmcu_active
and Pmcu_standy are determined by the type of MCU device. Note that we do not consider
any dynamic frequency and voltage scaling in this work, thus Pmcu_active and Pmcu_standy are
constant if the same MCU devices are used in the design.

4.3. Energy–Accuracy Aware System-Level Design

There are numerous design choices where the energy and accuracy are trade-off
relations in general. This means that maximizing recognition accuracy while simultaneously
minimizing energy consumption is not easy to solve. Thus, we first define accuracy- or
energy-constrained objective functions as below:

Minimize Eges( fs, NMLP)

Subject to Acc(NMLP) ≥ TA
or

Maximize Acc( fs, NMLP)

Subject to Eges( fs) ≤ TE
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where TA and TE are the given thresholds for the minimum accuracy and for the maximum
energy consumption, respectively. In addition to this, we also consider a resource constraint
of the devices such as the memory size of the device.

As modeled in previous sections, the sampling frequency, fs, is a primary design factor
which affects all three tasks. In general, the lower the fs, the lower the Eges, while lowering
fs may negatively affect recognition accuracy. In addition to fs, there are many other design
choices as well as selecting a proper low-end device that can implement all the designs on
it. For these reasons, we first discuss major system-level design choices, and then narrow
down the design choices considering four types of commonly used low-end MCUs.

Using Equation (8), we can easily analyze and explore the design choices of fs in terms
of energy consumption. However, recognition accuracy cannot be simply explored with fs
and the other design parameters. For example, increasing fs may enhance recognition accu-
racy because it provides more information to the MLP classifier. However, improvement in
accuracy is not simply proportional to fs, and there is a saturation point. Thus, we have to
find an optimal setting of fs through system-level design choice exploration.

In designing preprocessing filters, a simple design choice is whether each filter is
adopted. We use a segmentation filter and a reshape filter for all design choices because
they are indispensable while noise and normalization filters are optional. In designing a
segmentation filter, determining N is tightly coupled with the setting of fs, as shown in
Equation (1), and the effects of this will be analyzed through design choice explorations as
well. In terms of changing the number of sampled data from N to N′ in the segmentation
filter, if the difference between N and N′ is larger, energy consumption in the sensor is
relatively high, while the information provided to the MLP classifier is limited. Thus, we
set the difference between the two numbers as close as possible by considering average tcol .

In designing a MLP classifier, finding the optimal number of parameters used in the
MLP is important to find an energy–accuracy aware design. The higher the NMLP, the
higher the accuracy but the larger the energy consumption. Similar to fs, the maximum
achievable accuracy is also limited even when NMLP is increasing continuously. Thus, we
also explore the design choices of the MLP classifier by varying NMLP and fs, considering
the constraint of memory space in the target device.

5. Evaluations

This section introduces experimental setups including the prototypes we implement
to verify the energy–accuracy aware design points. Then, the results of design choice
exploration and the Pareto-optimal energy–accuracy aware design points are presented
with some findings and discussions.

5.1. Experimental Setup

To demonstrate the feasibility of the proposed designs, we implemented an in-house
prototype tiny enough to wear on the body, as shown in Figure 7. The prototype consists
of an MCU board and a flex sensor attached to the index finger. The MCU board embeds
Bluetooth communication so that the recognized results can be transferred to PCs or
smartphones. The flex sensor is connected through I2C to the MCU board. We consider
four commonly used low-end MCUs for targeting low-end embedded devices. Table 2
shows the operating clock frequency, on-chip memory size, type of architecture, and power
consumption of four MCUs. CC2652R shows the highest computation speed and the largest
memory, including a single-precision floating point unit (FPU), while the other three MCUs
have lower computation requirements and memory resources without FPUs. Note that
using a hardware FPU and a different bus width of each MCU may affect the precision
of floating point operation slightly. However, this issue is beyond our work because
the compiler provided from each MCU handles this issue separately. In terms of power
consumption in the active state, Atmega2560 has the largest active power consumption
per MHz even though it is an 8-bit reduced instruction set computer (RISC) processor. In
the standby state, CC2652R consumes the largest amount of power, while Atmega2560
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consumes the least amount of power among four MCUs. For the flex sensor, we use a
2-axes flex sensor [14].
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Table 2. Characteristics of the low-end MCUs used in this work.

MCU
Clock

Frequency
(MHz)

On-Chip
Memory

(KB)

Max.
NMLP

Architecture
Active

Current
(mA/MHz)

Standby
Current

(uA)

CC2652R 48 80 18,100 CortexM4F
32 bit RISC 0.07 675

Atmega2560 16 8 1972 AVR 8 bit
RISC 2.3 170

Atmega1284P 16 16 3960
AVR 8 bit
RISC with
picoPower

0.86 210

MSP430 16 4 900 16 bit RISC 0.13 420

The prototypes are used for two purposes—data collection and design verification—
through real-time gesture recognition. In data collection, the raw data collected are directly
sent to the PC so that the data are used for training and for testing the MLP classifier. The
prototypes are also used to provide the timing information to the energy models defined
in Section 4.3. While the timing information is directly measured from the prototype
board, the power consumption of the MCU is acquired from the datasheet rather than the
prototype to fairly estimate only energy consumption related to gesture recognition. This
means that energy estimation is not affected by the type of board implementation.

In total, 17 types of gestures are defined as continuous motions, as shown in Figure 8.
The gray circles in the figure indicate the finger positions at the start/end of each motion.
We collected a total of 5100 gestures (300 sets) from 5 users. Each set consists of 17 different
gestures, and each user repeated one set of gestures 60 times. The users consist of four
males and one female, with ages from 20 s to 40 s and heights from 160 to 180 cm. In order
to prevent the overfitting of the trained network model and to ensure generalization ability,
the collected gestures were randomly mixed among the same gestures. Then, two-thirds of
collected data were used for training with the cross-validation method, while the remaining
one-third of collected data were used for evaluation.

MLP training is performed in the Pytorch environment. The hyper-parameters used
for trainings are 0.0075 and 500 for the learning rate and epoch, respectively. No significant
performance change is observed after the epoch of 500, so the maximum epoch is fixed
at 500. For comparison purposes, we build one gated recurrent unit (GRU) and two tiny
ML models generated using TensorFlow and Neuton’s AutoML, which is commercially
available from Google AI.
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Figure 8. Definition of 17 finger gestures.

5.2. Results of Design Choice Exploration

Figure 9a shows the changes in tpre for four types of MCUs by increasing fs. As
expected, tpre is almost linearly proportional to fs. Figure 9b shows the changes in tMLP
by increasing NMLP. Note that we change N into NMLP for simplification. Although it is
not precisely linearly proportional to NMLP, we can still use this approximate linear model
based on our experiments. As shown in the graphs, the slopes are lower in the order of
CC2652R, Atmega2560/1284P, and MSP430, which directly shows the computation power
of each MCU.
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Figure 9. Comparison of preprocessing and MLP time.

Figure 10 presents the results of recognition accuracy by varying NMLP for the single
and double hidden layers of MLPs, and also with and without preprocessing filters. In this
paper, NMLP is calculated as:

NMLP = i·h1 + ∑n−1
k=1 (hk·hk+1) + hn·o + ∑n

k=1 hk + o (9)

where i and o indicate the number of nodes in the input and output layers, respectively,
while hk is the number of nodes in the k-th hidden layer, and n is the number of hidden
layers. Note that i is equal to N′, which is affected by fs. This means that NMLP reflects the
effect of fs as well. For better understanding, we also mark the label of the X-axis with fs.
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As expected, recognition accuracy is highly correlated with NMLP in all four configura-
tions. Increasing NMLP enhances recognition accuracy in all four configurations until NMLP
reaches 689. However, increased accuracy starts to saturate from NMLP = 689 for the single
hidden layer with preprocessing and from NMLP = 1597 for the double hidden layer with
preprocessing. Clearly, applying preprocessing filters enhances accuracy for both single-
and double-hidden-layer configurations. The contributions of preprocessing filters are
significant especially when NMLP is in low regions—smaller than 900 in our experiments.
In case of MSP430, which has a maximum 900 of NMLP, the achievable maximum accuracy
without a preprocessing filter is 78.7% in the single layer of MLP, while that of the one with
a preprocessing filter is 91.0%.

The accuracy for the single hidden layer and double hidden layer of MLPs shows
different behaviors depending on whether the preprocessing filter is applied. When pre-
processing filters are not applied, the double-hidden-layer MLP shows better performance
at most ranges of NMLP. In general, it is known that using more hidden layers is useful
to solve non-linear problems [25]. We observe that without preprocessing, the gesture
data show more non-linearity. When processing filters are applied, the single-hidden-layer
MLP shows better accuracy than the double hidden layer when NMLP is not sufficient.
As shown in the figure, the accuracy of the single-hidden-layer MLP increases rapidly as
NMLP increases, while that of the double-hidden-layer MLP increases relatively slowly. The
accuracy of the single-hidden-layer MLP with preprocessing starts to saturate from 89.7%
at NMLP = 689, whereas the accuracy of the double-hidden-layer MLP starts to saturate
from 92.3% at NMLP = 1583, which uses 2.32-fold more resources. We found that applying
preprocessing filters reduces the non-linearity of the data so that maximum accuracy is
reached quickly to the saturation point in the single-hidden-layer MLP.

Based on comparisons of the four configurations, we conclude that the single-hidden-
layer MLP with preprocessing is more suitable for devices that have limited resources.

5.3. Pareto-Optimal Energy–Accuracy Aware Design Points

We explored the design choices of the proposed finger gesture recognition system in
terms of accuracy as well as the energy consumption by analyzing a total of 159 designs
with varying design choices. Figure 11 shows the energy–accuracy results of each design
choice as well as the Pareto-optimal designs. As shown in the figure, MSP430 and CC2652R
quickly converge to peak accuracy by increasing the energy constraints. MSP430 consumes
approximately half the energy compared to CC2652R while still reaching 91.0% accuracy.
However, the maximum NMLP of MSP430 is only 900, so it cannot reach the highest
achievable accuracy of 95.5%, and only CC2652R can achieve maximum accuracy even
though it consumes approximately twice the energy.

Atmega2560 has the worst energy–accuracy efficiency. We found that Atmega2560
is based on an 8-bit RISC architecture, and computation requirements during the prepro-
cessing and forward propagation operations in the MLP needs more active time of the
MCU, which increases energy consumption when fs and NMLP increase. We observe
similar energy–accuracy behaviors in Atmega1284P but with lower energy consumption
than that of Atmega2560 because the active power consumption of Atmega1284P is lower
than Atmega2560. Nevertheless, neither can be a Pareto-optimal.

Figure 11 also includes the energy–accuracy information of three models (one GRU
and two AutoML) which are generated by a commercial platform. Due to the memory
limitation, all three models are only applicable to CC2652R. The accuracy of two AutoML
models are comparable to our MLP model that has 891 to 3287 parameters. However, due
to the energy consumption, those models cannot be selected as Pareto optimal. The GRU
model shows slightly better accuracy than our design, with similar energy consumption.
Thus, it can be selected as a Pareto-optimal solution if CC2562R or higher MCU is used
for the target device. However, this GRU model cannot be a solution if the user wants to
implement it on a low-end MCU such as MSP430 or lower.
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Table 3 shows the design choices of each Pareto Front in detail. If the accuracy is given
as a design constraint, MSP430 can be used if the given accuracy is under 91.0% while
CC2652R MCU can be used over 91.0% of constraints. When energy consumption is a major
constraint of the design, MSP430 is mostly used if the budget of the energy is under 2.39 mJ
per gesture while CC2652R is used if the energy budget is over 2.39 mJ. ATmega2560/1284P
can still be considered as a target MCU if the users want to reuse the hardware and software
they have already developed. In this case, the results of our exploration could be useful
as well.

Table 3. Details of the Pareto Front design choices.

MCU Type Sample
Rate NMLP

Memory
Size (Byte) MLP Layers Accuracy

(%) Eges (mJ)

MSP430 5 185 740 10 × 6 × 17 51.1 1.31
7 297 1188 14 × 7 × 7 × 17 60.1 1.33
9 449 1796 18 × 12 × 17 78.1 1.36
11 589 2356 22 × 11 × 11 × 17 81.7 1.37
12 689 2756 24 × 16 × 17 89.7 1.42
14 891 3564 28 × 19 × 17 91.0 1.47

CC2652R 20 1583 6332 40 × 27 × 17 92.3 2.39
30 3287 13,148 60 × 30 × 30 × 17 92.9 2.49
40 5603 22,412 80 × 57 × 17 94.8 2.61
50 7787 31,148 GRU 95.8 2.72

A confusion matrix is useful for analyzing the patterns of mispredictions. Figure 12a
shows the confusion matrix of a model using 891 parameters with an accuracy of 91.0%
and an energy consumption of 1.47 mJ when using a MSP430. In this design, 21.0% of
“Double Click” gestures (class 7) are mispredicted as “Click” gestures (class 6). As defined
in Figure 8, “Click” moves the finger up and down once, while “Double Click” moves the
finger up and down in the same way but twice. Figure 13 shows the raw data collected
on two gestures directly from the sensors. As shown in the figures, the patterns of the
two gestures are similar, thus the model with 891 parameters is not enough to distinguish
them clearly.

Figure 12b shows the confusion matrix of the classifier using 8513 parameters, which
is 9.55-fold greater than using 891 parameters. This design achieves 95.5% accuracy with
an energy consumption of 2.74 mJ when using CC2652R. Nevertheless, 14.0% of “Double
Click” gestures (class 7) are mispredicted as “Click” gestures (class 6). This may indi-
cate that simple MLP may not be a perfect solution to completely distinguish these two
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gestures. Although this design shows a lower number of mispredictions than the design
with 891 parameters, energy consumption is increased by 1.86 fold, while improvement
in accuracy is only 4.4%. In addition, this design cannot be implemented in MSP430 be-
cause of memory shortage. Table 4 summarizes and compares this work with existing
hand/finger gesture recognition designs, in terms of the sensors, classification models
with size information, the number of recognized classes, accuracy, and implementation.
We do not directly compare recognition accuracy because the target applications, type of
sensor, the number of recognized classes, and the dataset used for training and testing are
different in each work. As shown in the table, most studies only provide the design and
performance analysis without details on implementation issues. The work in [3,7] tried to
reduce model size and can be implemented in MCU devices, but not on low-end MCUs
with only a few tens of KB memory and low computing resources. The work in [8] was
implemented on an Arduino Due board. However, the Arduino board only collects and
preprocesses the collected data while classifications are performed on Field Programmable
Gate Arrays (FPGAs). Most of all, none of the existing studies considers energy–accuracy
design choices, which is very important for designing wearable IoT devices.

Table 4. Comparisons of existing hand gesture recognition studies.

[1] [3] [5] [6] [7] [8] [13] [23] [26] This
Work

Used sensors Camera EMG
(Myo)

Depth
camera

Optical
and
IMU

Flex
Sensor IMU

Pressure,
flex, gyro,
IMU, etc.

Accelerometer Flex
sensor

2-axes
flex

sensor

Models
(num. of

parmas or
mem. size)

CNN +
RNN

(N/A)

CNN
(34 K)

Custom
(600 MB)

HMM
(N/A)

GRU +
MAP

(50 K~)

RCE
(274.3 Kb)

LSTM
(N/A)

RNN
(69 K)

AL 1

(N/A)
MLP

(185~8513)

Classes 4 7 124 26 4 10 31 8 4 17

Accuracy (%) 96.4 98.8 91.9 98.1 97.3 98.6 90.0 88.6 88.3 95.5

Implementation N/A N/A
Inter i5,

GPU
(GTX750)

N/A Raspberry
Pi 3

Arduino +
FPGA N/A N/A N/A

CC2652R,
Atmega,
MSP430

1 AL: adversarial learning.
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6. Conclusions

In this paper, we implemented a finger gesture recognition system based on a light-
weight MLP-based classifier using a low-end MCU and a 2-axes flex sensor. In order to
find energy–accuracy aware design points, we first designed a full process of finger gesture
recognition and its system-level performance and energy models. Then, we analyzed
system-level design issues including sensor operating frequency and the size of the MLP
classifier. Finally, we explored the numerous design choices based on accuracy and energy
constraints. Considering four commonly used MCUs, a total of 159 design points were
determined according to the configuration of the sensor operating frequency, the presence
of preprocessing filters, and the size of the MLP classifier. As a result of Pareto Fronts, the
proposed design achieved up to 95.5% accuracy with an energy consumption of 2.74 mJ,
which shows up to 10% higher accuracy than previous studies [26] with similar low-end
MCUs. Collectively, this study details how to achieve energy–accuracy aware design points
under given energy or accuracy constraints.

In this work, we do not address the effect of using AI accelerators such as digital
signal processors (DSPs), FPGAs or application-specific integrated chips (ASICs). Since
these accelerators will greatly affect performance as well as energy efficiency, considering
these components will be our future work to find energy–accuracy aware design choices
for wearable IoT devices.
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Home-Based Measurements of Dystonia in Cerebral Palsy
Using Smartphone-Coupled Inertial Sensor Technology and
Machine Learning: A Proof-of-Concept Study
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Abstract: Accurate and reliable measurement of the severity of dystonia is essential for the indication,
evaluation, monitoring and fine-tuning of treatments. Assessment of dystonia in children and
adolescents with dyskinetic cerebral palsy (CP) is now commonly performed by visual evaluation
either directly in the doctor’s office or from video recordings using standardized scales. Both methods
lack objectivity and require much time and effort of clinical experts. Only a snapshot of the severity
of dyskinetic movements (i.e., choreoathetosis and dystonia) is captured, and they are known to
fluctuate over time and can increase with fatigue, pain, stress or emotions, which likely happens
in a clinical environment. The goal of this study was to investigate whether it is feasible to use
home-based measurements to assess and evaluate the severity of dystonia using smartphone-coupled
inertial sensors and machine learning. Video and sensor data during both active and rest situations
from 12 patients were collected outside a clinical setting. Three clinicians analyzed the videos and
clinically scored the dystonia of the extremities on a 0–4 scale, following the definition of amplitude
of the Dyskinesia Impairment Scale. The clinical scores and the sensor data were coupled to train
different machine learning models using cross-validation. The average F1 scores (0.67 ± 0.19 for
lower extremities and 0.68 ± 0.14 for upper extremities) in independent test datasets indicate that it
is possible to detected dystonia automatically using individually trained models. The predictions
could complement standard dyskinetic CP measures by providing frequent, objective, real-world
assessments that could enhance clinical care. A generalized model, trained with data from other
subjects, shows lower F1 scores (0.45 for lower extremities and 0.34 for upper extremities), likely
due to a lack of training data and dissimilarities between subjects. However, the generalized model
is reasonably able to distinguish between high and lower scores. Future research should focus on
gathering more high-quality data and study how the models perform over the whole day.

Keywords: cerebral palsy; dystonia; choreoathetosis; machine learning; home-based; inertial
measurement unit; wearable device
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1. Introduction

Cerebral palsy (CP) is the most common physically disabling condition in childhood,
associated with a lifelong movement disability [1]. CP is caused by brain malformation or
brain injury acquired pre- or perinatally, or early in the postnatal period [1]. Three different
subtypes of motor disorder are distinguished within CP: spastic, dyskinetic and ataxic
CP [1]. Dyskinetic CP accounts for 6–15%, with a prevalence of about 0.12–0.3 in every 1000
live births in Europe [2]. On average, dyskinetic CP is the most disabling form of CP [3].

Dyskinetic movements and postures are characterized by two features, which often
co-exist in the same patient: dystonia, which is described by abnormal patterns of posture
and/or slow movements; and choreoathetosis, which is characterized by faster involuntary,
uncontrolled, jerky, and contorting movements [3]. Dystonia and choreoathetosis can
seriously hamper everyday activities of patients.

Several new invasive treatments have been developed in recent decades to reduce
dyskinesia and thereby improve daily live function [3]. These neuromodulation treatments
include intrathecal baclofen treatment provided via an implanted microinfusion pump,
and deep brain stimulation [4]. Intrathecal baclofen treatment has been shown to effective
in achieving personal treatment goals in children with dyskinetic CP, however only a small
effect on dystonia and choreoathetosis could be shown [5,6]. Deep brain stimulation can
be effective in a selected group of individuals with dyskinetic CP. For patient selection, an
in-depth understanding of dyskinetic movements is required [7].

Accurate and reliable measurements of the severity of the movement disorder are
essential for indication, evaluation, monitoring and fine-tuning of these treatments (i.e.,
indication, dosage of medication and location and dosage of stimulation). However, it
remains a huge challenge to capture the severity of the dyskinetic movements and postures
in an objective way.

Assessment of dystonia and choreoathetosis in children and adolescents is now com-
monly performed by visual evaluation either directly in the doctor’s office or from video
recordings using standardized scales [8]. These assessments are both lacking objectivity
and require much time and effort of clinical experts. Furthermore, only a snapshot of the
severity of dyskinetic movements is captured, and they are known to fluctuate over time
and can increase with fatigue, pain or emotions (e.g., stress), which likely happens in a
clinical environment [9].

The gold standard for the analysis of upper and lower extremity movements in
individuals with CP is a collection of 3D kinematics (rotations of multiple joints and
segments during reaching, grasping and walking) [10,11]. However, the collection of data
for 3D kinematics requires advanced motion capture systems, which do not allow outside-
lab measurements. To enable measurements at home and in daily life environments, for CP,
there is an increasing interest in using simpler systems for data collection, such as video-
based markerless motion tracking (e.g., OpenPose) [12] and Inertial Measurements Units
(IMUs) [13,14]. These easily applicable measurement systems, combined with machine
learning models trained by algorithms (e.g., traditional such as logistic regression, random
forest, support vector machine, or deep learning algorithms) may significantly contribute to
the early detection of CP [15] and the monitoring of daily life functions [12,13]. Within other
neurological diseases such as Parkinson’s disease [16–18] and Huntington’s disease [19],
wearable sensors in combination with machine learning techniques are also increasingly
used in monitoring of movement disorders. Specifically, in the last decade, IMUs became
an attractive and accurate solution, with an increased battery life of several hours, or days,
small form-factors, and low cost, making them a very suitable option for home-based
measurements for the assessment of movement disorders in childhood. Inertial motion
quantities, such as accelerations and angular velocities, combined with an algorithm that
automatically assess the presence and amplitude of dystonia and choreoathetosis, would
yield meaningful information without manual and time investment. However, no algorithm
specific for automatic evaluation of dystonia and choreoathetosis from sensor data is
available for dyskinetic CP. As dystonia and choreoathetosis can be significantly variable
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in dyskinetic CP between as well as within subjects concerning involved body parts, and
dependent on environmental factors and the activity performed [20–22], the automatic
evaluation is a challenging machine learning task.

Monitoring of movement disorders of children and young adults with dyskinetic CP
for a longer period of time within a well-known environment would provide a realistic and
reliable evaluation of dystonia and choreoathetosis and can serve treatment decision and
monitoring for this complex group. Within this proof-of-concept study, we used four IMUs
coupled to a smartphone, allowing the collection of IMUs data and time-synchronized
video recordings at home. We aim (1) to show the feasibility of data collection in a natural
environment in children and young adults with dyskinetic CP and (2) to train a machine
learning model that can detect and score dystonia using IMU data.

2. Materials and Methods

The flowchart in Figure 1 summarizes the dataflow from home measurements (IMUs
and videos) towards the final evaluation of the picked classification models. Below, a
detailed description of the methods is provided.
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Figure 1. Flowchart of used methodology—measurements of dyskinesia at home (MODYS@home).

2.1. Participants

Participants were recruited from the pediatric outpatient rehabilitation department
during regular appointments from 1 March till 31 October 2021. Patients were included if
they had: (1) a clinical diagnosis of dyskinetic CP [23,24], (2) were 4–24 years old, and (3) if
parents/caregivers were able to follow the instructions for the home-based measurements.

In total, 12 participants were included; Participants had following characteristics
(mean ± Standard deviation (range)):

• Age 14.9 ± 4.4 (10.2–21.4) years;
• Weight: 37.3 ± 17.2 (21.7–76.9) kg;
• Height: 145.41 ± 23.5 (116–190) cm;
• 4 females/8 males;
• Gross Motor Function Classification System (GMFCS): II (n= 2), IV (n = 5) or V (n = 5);
• Manual Ability Classification System (MACS): II (n = 1), III (n = 3), IV (n = 2), V (n = 6).

The study was approved by the Medical Ethics Committee of the VU University
Medical Center Amsterdam (The Netherlands). Written informed consent was obtained
from participants and, if applicable, their parents for participation in this study.

2.2. Measurements
2.2.1. Materials

The following materials were used for the experiments:

(1) Mobile phone: Samsung A71 (Samsung Electronics, Daegu, South-Korea), with;
(2) MODYS@home app (developed by Rutgers Engineering, Norg, The Netherlands): a

custom mobile application for Android, using the Xsens DOT Software Development

57



Sensors 2022, 22, 4386

Kit (SDK). The app automatically links recorded videos with corresponding time
stamps in the sensor data;

(3) Four IMUs (Xsens DOT, Xsens Technologies B.V., Enschede, The Netherlands). Xsens
DOT is a wearable sensor incorporating 3D accelerometers, gyroscopes and mag-
netometers to provide acceleration, angular velocity, and the Earth’s magnetic field.
Combined with Xsens, sensor fusion algorithms, 3D orientation and free acceleration
are provided [10]. Inertial and orientation data outputs of the Xsens DOT sensor are
presented in Table 1. The Xsens DOT sensors were set to measure with a sampling
frequency of 60 Hz with an accelerometer range of ±16 g and a gyroscope range of
±2000 dps;

(4) Fixation material (Xsens DOT Adhesive patches (Xsens DOT, Xsens Technologies B.V.,
Enschede, The Netherlands), FabriFoam NuStim Wrap (Fabrifoam, Exton, PA, USA),
3m Coban self-adherent wrap (3M, St. Paul, MN, USA).

Table 1. Inertial and orientation data outputs of Xsens DOT sensors.

Output Unit

Free acceleration m/s2

Angular velocity degree/s

Euler angles degree. Roll, pitch, yaw (ZYX Euler Sequence. Earth fixed
type, also known as Cardan or aerospace sequence)

2.2.2. Procedure

For the measurements within this proof-of-concept study, participants could choose
between measurements at home or in the hospital. For home measurements, participants re-
ceived a measurement set containing a mobile phone with the MODYS@home app installed,
four IMUs, chargers for the phone and sensors, fixation material and a manual. The four
Xsens DOT sensors were attached towards the forearm (palmar on the forearm, proximal of
processus styloideus ulnae) and lower leg (proximal of the lateral malleolus) (Figure 2). The
method of fixation on the attachment site was individually determined. Participants and
parents/caregivers were instructed on how to place the IMUs on the participant and how
to use the MODYS@home app to record videos and collect sensor data. They were asked to
record 10 videos of about 1 minute each day, for both active and resting situations for 7 days
within a period of 2 weeks. After the period of 2 weeks, the measurements set was picked
up by the researcher and data was transferred by USB-connection for further analysis. For
the individuals measured in the hospital, activities and rest data were collected, mimicking
a home-based environment. Examples of activities performed at home as well as in the
hospital are wheelchair driving, walking, stair climbing, cycling, eating/drinking, sport
activities, gaming, computer use, playing music, playing a board game, reading, watching
a video/television, using a communication device and resting in a chair or lying down.
Activities were chosen by parents/caregivers and participants dependent on the functional
level of the individual. Videos during passive movements, e.g., caregiving, transfers were
excluded in the current analysis.

2.3. Software

Clinical scoring was done using an open-source tool for video annotation, ELAN
version 6.2, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands, sourced
from: https://archive.mpi.nl/tla/elan/download (accessed on 3 May 2022); MATLAB
(Mathworks Inc., Natick, MA, USA) release R2018b was used for processing the data and
developing the machine learning models. The code used in the current study is made
available (Supplementary S1).

58



Sensors 2022, 22, 4386Sensors 2022, 22, 4386 5 of 14 
 

 

 

Figure 2. Attachment sites of the inertial sensor units on the upper extremity (A1,A2) and the lower 

extremity (B1,B2). 

2.3. Software 

Clinical scoring was done using an open-source tool for video annotation, ELAN ver-

sion 6.2, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands, sourced 

from: https://archive.mpi.nl/tla/elan/download (accessed on 3 May 2022).; MATLAB 

(Mathworks Inc., Natick, MA, USA) release R2018b was used for processing the data and 

developing the machine learning models. The code used in the current study is made 

available (Supplementary S1). 

2.4. Clinical Scoring 

Three clinicians assessed the videos. For each time window of 5 seconds, a score be-

tween 0–4 was assigned for dystonia for the left and right arm and the left and right leg, 

separately, following the definition of amplitude of the Dyskinesia Impairment Scale (DIS) 

[25] for scoring dystonia. Within Parkinson’s disease, a 5 s time windows was found to be 

optimal to achieve the minimum estimation error when estimating the severity of tremor, 

bradykinesia and dyskinesia using accelerometers and machine learning [26]. The DIS 

distinguishes between proximal and distal segments of the extremities when scoring am-

plitude. This score was summarized within the current scoring. Thus, each clinician pro-

vided four scores for dystonia for each time window of each video. The median of the 

three scores was calculated as the final score for the machine learning. 

2.5. Data Pre-Processing  

Data from the IMUs required pre-processing to serve as input for machine learning . 

As some time stamps were missing with different sensors, the sensor data from the four 

sensors was synchronized using linear interpolation with the values from adjacent 

timestamps. 

For each sensor, the resultant free acceleration (𝑎) and resultant angular velocity (𝜔) 

at each time stamp was calculated using Equations (1) and (2) respectively: 

𝑎𝑟 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 (1) 

𝜔𝑟 = √𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2 (2) 

Each sensor therefore provided 11 signals: 4 accelerations, 4 angular velocities and 3 

Euler angles. A single timestamp containing data from all four sensors consisted of 4 × 11 

= 44 signals. Each 5 s time window contained 300 timestamps. 

In MATLAB, the videos were automatically linked to the sensor data, cutting out 

parts of the sensor data where a video was recorded. These cut-out parts of sensor data 

were segmented into time windows of 5 s, equal to the clinical windows. Finally, the clin-

ical scores were automatically linked to the corresponding time windows. Figure 3 shows 

an example of the sensor signals togethers with the clinical scoring. 

Figure 2. Attachment sites of the inertial sensor units on the upper extremity (A1,A2) and the lower
extremity (B1,B2).

2.4. Clinical Scoring

Three clinicians assessed the videos. For each time window of 5 seconds, a score
between 0–4 was assigned for dystonia for the left and right arm and the left and right
leg, separately, following the definition of amplitude of the Dyskinesia Impairment Scale
(DIS) [25] for scoring dystonia. Within Parkinson’s disease, a 5 s time windows was found
to be optimal to achieve the minimum estimation error when estimating the severity of
tremor, bradykinesia and dyskinesia using accelerometers and machine learning [26]. The
DIS distinguishes between proximal and distal segments of the extremities when scoring
amplitude. This score was summarized within the current scoring. Thus, each clinician
provided four scores for dystonia for each time window of each video. The median of the
three scores was calculated as the final score for the machine learning.

2.5. Data Pre-Processing

Data from the IMUs required pre-processing to serve as input for machine learning. As
some time stamps were missing with different sensors, the sensor data from the four sensors
was synchronized using linear interpolation with the values from adjacent timestamps.

For each sensor, the resultant free acceleration (a) and resultant angular velocity (ω) at
each time stamp was calculated using Equations (1) and (2) respectively:

ar =
√

a2
x + a2

y + a2
z (1)

ωr =
√

ω2
x + ω2

y + ω2
z (2)

Each sensor therefore provided 11 signals: 4 accelerations, 4 angular velocities and
3 Euler angles. A single timestamp containing data from all four sensors consisted of
4 × 11 = 44 signals. Each 5 s time window contained 300 timestamps.

In MATLAB, the videos were automatically linked to the sensor data, cutting out parts
of the sensor data where a video was recorded. These cut-out parts of sensor data were
segmented into time windows of 5 s, equal to the clinical windows. Finally, the clinical
scores were automatically linked to the corresponding time windows. Figure 3 shows an
example of the sensor signals togethers with the clinical scoring.

Per subject, two tables containing input data and output were created for machine
learning. Tables were created for both upper and lower extremities, by adding the data
from the left and right extremities.

2.6. Feature Selection and Extraction

Research has shown that feature selection is an effective way to improve the learning
process and recognition accuracy, and decreases the complexity and computational cost [27].
We used a method recently described by Den Hartog et al. [28]. In brief, time domain
and frequency domain features were tested on the data from all subjects. A Fast Fourier
Transform was used to extract frequency-domain features. Initially, 32 different feature
classes were tested for usability. For each time window, a single feature class was extracted
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per IMU signal, creating 11-dimensional feature vectors (1 feature class × 11 signals). These
feature vectors were then fed to six different machine learning algorithms (Decision Tree,
Discriminant Analysis, Naïve Bayes, Support Vector Machine, k-nearest neighbors, and
Ensemble Learning), to test the feature classes’ predictive power. Feature classes were only
selected if they were capable of achieving an F1 score of at least 0.7 with a machine learning
algorithm, indicating a strong correlation with the output. A total of 10 feature classes
passed the selection round (Table 2).
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Figure 3. Example of data of one participant’s right wrist during a resting activity showing inertial
sensor output: free acceleration, angular velocity and Euler angle, (A) with a high level of dystonia
and (B) with a low level of dystonia. The number within the time windows of 5 s is the median
clinical score of three raters for upper extremity dystonia of the right wrist.

Table 2. Overview of the 10 feature classes passed the feature selection round.

Nr Feature Class

1 Absolute harmonic mean
2 Absolute maximum
3 Bandpower
4 Geometric mean
5 Maximum
6 Median
7 Minimum
8 Root-mean-square
9 Root-sum-of-squares
10 Shannon entropy

Next, for each time window, all 10 feature classes were extracted for each of the
11 IMU signals, creating 10-dimensional feature vectors (10 classes × 11 signals). This means
that for each time window there are 110 features that could describe the characteristics of
that window.

Next, sequential feature selection (SFS) as described by MATLAB (Sequential Feature
Selection—MATLAB & Simulink—MathWorks Benelux) was used, as this is an effective
way to identify redundant and irrelevant features. Sequential feature selection is a wrapper-
type feature selection algorithm that starts training using a subset of features and then adds
or removes a feature using a selection criterion. The selection criterion directly measures
the change in model performance that results from adding or removing a feature. The
algorithm repeats training and improving a model until its stopping criteria are satisfied.
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In this study, sequential feature selection (SFS), with a maximum number of objective
evaluation of 20, was used. SFS sequentially adds features to an empty candidate set until
the addition of further features does not decrease the objective function. In this study,
misclassification rate was set as the objective function.

Finally, the extracted features were normalized to rescale the data to a common scale.
Supervised machine learning algorithms learn the relationship between input and output
and the unit, scale, and distribution of the input data may vary from feature to feature. This
will impact the classification accuracy of the models. In this work, the data was normalized
by scaling each input variable to a range of 0 to 1.

2.7. Machine Learning and Algorithms

After processing the data and extracting features, the next step is to feed the feature
vectors to machine learning algorithms. In this study, six types of supervised machine learn-
ing algorithms were tested: Decision Tree, Discriminant Analysis, Naïve Bayes, Support
Vector Machine, k-nearest neighbors, and Ensemble Learning.

2.8. Training, Validating and Testing

For an objective evaluation of the machine learning algorithms, the datasets were
divided into a training dataset, validation dataset and testing dataset.

Since the datasets were small, a 5-fold cross-validation was used to evaluate the
performance of the models. For each iteration, 80% of the data was used for training and
validation, and 20% was used for testing. For training the machine learning models, another
5-fold cross-validation was also used within the training and validation data.

The validation dataset provides an evaluation of a model fit on the training dataset
while tuning the model’s hyperparameters [29]. After training and validating, the trained
models were evaluated with the testing data containing 20% of the data. The testing dataset
was used to provide an unbiased evaluation of a final model fit on the training dataset [29].
This testing dataset was not used for training. Since a 5-fold cross-validation was used,
all samples were tested in the testing dataset. The models’ predicted clinical scores of the
testing data were compared with the true clinical scores, to calculate the precision, recall
and F1 score of the model when used on unseen data [29].

Most datasets contain a severe skew in the class distribution, which could lead to the
machine learning algorithms performing poorly on the minority classes. To address this
problem, the training data was oversampled to equalize the number of samples per score.

Different models were trained, validated, and tested using four different settings
for each type of the six machine learning algorithms. This was done for both the upper
extremities dataset and the lower extremities dataset. Models were trained (1) using all
features (ALL), (2) using all features and hyperparameter tuning to find the optimal set
of hyperparameters (ALL + HYP), (3) with selected features (SFS) and (4) using selected
features and hyperparameter tuning (SFS + HYP) (Table 3).

Table 3. Types of models used for training, validating, and testing.

Model Features Hyperparameter Tuning

ML model (ALL) All features no
ML model (ALL + HYP) All features yes

ML model (SFS) Selected features with SFS no
ML model (SFS + HYP) Selected features with SFS yes

ML = machine learning; ALL = all features; SFS = Sequential feature selection; HYP = hyperparameter tuning.

For the ALL + HYP and SFS + HYP, the hyperparameters were determined using
a Bayesian optimization algorithm with 15 iterations during the first fold (Table 3). The
found hyperparameters were then used during the remaining folds to test for the model’s
precision, recall and F1 score.
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Individual models (i.e., using the data of one participant only) as well as generalized
models (i.e., using all data) were trained. The performance for each model was calcu-
lated. The trained individual models were tested on holdout testing data using 5-fold
cross-validation. Generalized models were evaluated using leave-two-subjects-out cross-
validation (6-fold). For each of the 6 folds, data from 10 subjects was used for training and
validating (5-fold cross-validation), and tested on the data from the two left-out subjects.

As main performance metric the F1 score was computed, which used the precision
and recall (Equations (3)–(5)), calculated from ‘True positive’ (TP), ‘False positive’ (FP), and
‘False negative’ (FN) scores. F1 scores were calculated after training and validating, and
after testing the models on the holdout test data. Per patient, the models with the highest
F1 scores were selected as the final models for that patient. In addition, for the generalized
models the root mean square errors (RMSE) was calculated and confusion matrix plotted
for better interpretation of the model performance.

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1 score = 2 · precision · recall
precision + recall

(5)

3. Results
3.1. Datasets

Two patients were measured within the movement laboratory mimicking a home envi-
ronment and activities, the other ten patients were measured at home by parents/caregivers.
Even though parents/caregivers were instructed to record 10 one-minute videos each day,
there were large differences in the number of samples (5-s time windows) in the final
datasets for each subject. Not all parents/caregivers filmed as many videos as they were
instructed. One participant stopped after one measurement due to uncomfortableness
while attaching and wearing the sensors. The data of this subject were excluded for the indi-
vidual trained models. Furthermore, errors in the sensors occurred for some measurements,
resulting in loss of data. The most common errors were failure of one or more sensors and
an error in the synchronization between the sensors. Moreover, not all windows could
be scored because certain body parts were not visible on the videos. These factors led to
different sizes of datasets for each subject. Table 4 lists the number of samples in each
dataset of each subject. See Supplementary S2 for an overview of the distribution of the
scores for each patient. The full dataset is available (Supplementary S3).

Table 4. Overview of best individual model per dataset for each patient.

Subject Dataset Samples Best
Algorithm Model F1 Score

Validation
F1 Score

Test
Precision

Test
Recall
Test

Subject 1 dys lower 720 KNN ALL + HYP 1 0.50 0.98 0.33
dys upper 726 KNN SFS 0.92 0.74 0.74 0.75

Subject 2 dys lower 189 KNN ALL 0.94 0.93 0.93 0.93
dys upper 186 KNN SFS + HYP 0.88 0.75 0.73 0.77

Subject 4 dys lower 120 KNN ALL 1 0.74 0.87 0.64
dys upper 125 KNN SFS 0.97 0.70 0.85 0.60

Subject 5 dys lower 338 KNN ALL 1 0.66 0.96 0.50
dys upper 441 KNN SFS 0.98 0.96 0.95 0.98

Subject 6 dys lower 66 n/a n/a n/a n/a n/a n/a
dys upper 66 KNN ALL + HYP 0.96 0.60 0.65 0.73
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Table 4. Cont.

Subject Dataset Samples Best
Algorithm Model F1 Score

Validation
F1 Score

Test
Precision

Test
Recall
Test

Subject 7 dys lower 334 KNN ALL 0.95 0.82 0.81 0.83
dys upper 336 NB ALL + HYP 0.97 0.59 0.73 0.50

Subject 8 dys lower 336 NB ALL + HYP 1 0.62 0.81 0.50
dys upper 298 KNN SFS 0.93 0.64 0.73 0.58

Subject 9 dys lower 588 KNN ALL + HYP 0.93 0.85 0.84 0.85
dys upper 583 KNN ALL 0.97 0.75 0.86 0.66

Subject 10 dys lower 514 n/a n/a n/a n/a 1 1
dys upper 510 KNN SFS 0.97 0.53 0.53 0.54

Subject 11 dys lower 478 KNN ALL + HYP 0.97 0.37 0.43 0.33
dys upper 444 ENS ALL 0.84 0.76 0.75 0.77

Subject 12 dys lower 775 KNN SFS 0.93 0.51 0.61 0.44
dys upper 1237 ENS ALL 0.85 0.46 0.54 0.41

Dys lower = dystonia of lower extremity; Dys upper = Dystonia of upper extremity; NB = Naïve Bayes;
KNN = k-nearest neighbors; ENS = Ensemble Learning; ALL = all features; SFS = Sequential feature selection;
HYP = hyperparameter tuning.

3.2. Individual Clinical Scores Classification

Table 4 gives an overview of the best models (algorithm and model type) of each
patient, together with the corresponding F1 scores, precision and recall. k-nearest neighbors
algorithms led to the highest F1 validation score in most datasets and were therefore most
often chosen as final model. Table 5 gives and overview of the mean F1 scores, precision
and recall of all best models combined. High F1 scores (0.97 ± 0.03 for lower extremity
dystonia and 0.93 ± 0.06 for upper extremity dystonia) were observed during validation of
the individual models. In the independent test datasets, the F1 scores (0.67 ± 0.19 for lower
extremity dystonia and 0.68 ± 0.14 for upper extremity dystonia) were lower (Table 5).

Table 5. Overview of mean F1 score, precision and recall.

Dataset Mean F1 Score
Validation

Mean F1 Score
Test

Mean Precision
Test

Mean Recall
Test

dys lower 0.97 ± 0.03 0.67 ± 0.19 0.82 ± 0.18 0.66 ± 0.26
dys upper 0.93 ± 0.06 0.68± 0.14 0.73 ± 0.13 0.66 ± 0.16

Dys lower = dystonia of lower extremity; Dys upper = Dystonia of upper extremity.

3.3. Generalized Clinical Scores Classification

See Table 6 for an overview of the best models per dataset. Figures 4 and 5 show
the confusion matrices of the datasets. The generalized model showed lower F1 scores
(0.45 for the lower extremities and 0.34 for the upper extremities) in the test datasets than
the individual models. F1 scores were high in the validation data sets, but significantly
lower in the test data sets, indicating the model does not work equally as well on unseen
data. The majority of misclassifications occurred in neighbouring clinical scores, since
they present similar behaviours. The RMSE were 1.07 for dystonia lower extremties and
0.98 for dystonia upper extremites, respectively. A clinical score of 4 in the dystonia upper
extremities data set was never correcly classified, likely due to a lack of training samples
during training of the models.
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Table 6. Overview of best generalized model per dataset.

Dataset Samples Best
Algorithm Model F1 Score

Validation
F1 Score

Test
Precision

Test
Recall
Test

dys lower 4533 ENS SFS 0.93 0.45 0.43 0.48
dys upper 4976 KNN SFS 0.91 0.34 0.32 0.36

Dys lower = dystonia of lower extremity; Dys upper = Dystonia of upper extremity; KNN = k-nearest neighbors;
ENS = Ensemble Learning; SFS = Sequential feature selection.
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4. Discussion

Within this study, the feasibility was assessed to train machine learning models with
a sufficient performance within dyskinetic CP by using home-based measured IMU and
video data, collected by parents/caregivers.
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In summary, most of the parents/caregivers were able to collect enough data to
clinically score the videos and use IMUs data for feature calculation. For 1 patient out of
12, discomfort due to the fixation of sensors was reported. We consider the performance
(i.e., F1 score) of the individual trained model as moderate and the overall performance
of the generalized models as low. However, when looking at the confusion matrices, the
misclassifications were most often observed in neighboring classes, indicating that these
models are reasonably able to correlate between the severity of the disorder and the clinical
score. This observation is confirmed by the RMSEs of about 1 on a 4-point scale.

The current results are in line with previous studies using wearable IMUs or accelerom-
eters within other patient populations (e.g., Parkinson’s disease [30–32] and Huntington’s
disease [19], showing that it is feasible to automatically predict the severity of movement
disorders such as tremor, bradykinesia and dyskinesia. Most studies using wearables to
monitor movement disorders have been performed within Parkinson’s disease includ-
ing steps towards clinical implementation (i.e., assessment of measurement properties of
methods). However, widespread clinical use is still lacking [16,18]. When relating the
current results to studies in Parkinson’s disease, reported performance are comparable:
e.g., Tsipouras et al. [31] used IMUs to automatically classify lepodova-induced dyskinesia
within standardized tasks on a 0–4 scale, using machine learning algorithms and multiple
combinations of sensors and features. A generalized model within this study achieved
an average accuracy (79% ± 11%) [31]. However, the results need to be interpreted with
care as no independent test set was used and no F1 scores were computed. Another study
used sensors placed on the upper and lower extremities. A high correlation between the
estimated dyskinesia severity scores was found between the model prediction and the
expert-rated scores on (r = 0.77 (p < 0.001)) [33]. Although the population of Parkinson’s
disease and dyskinetic CP are not directly comparable, it indicates the potential of the
proposed methodology for individuals with dyskinetic CP. A current study suggested that
IMUs can be used as a mobile alternative for marker-based motion capture (omitting the
need for an advanced movement laboratory) within upper extremity movements analysis
of standardize movements in dyskinetic CP [14]. The proposed methodology goes one
step further by using home-based collected IMUs data within unstandardized situations.
This methodology is especially interesting for individuals who cannot perform standard-
ized movements (such as gait and reaching/grasping), where instrumented methods are
lacking [34]. In addition, the methodology gives the opportunity to capture the variability
within dystonia for a longer period of time. The results show that within an individual,
dystonia is ‘consistent’ enough to be detected within unseen data. However, this is not true
for all individuals (i.e., subject 11 and subject 12 showed lower F1 scores within the test
set). The same applies to the generalized models. A possible inconsistency within data of
individuals as well as between individuals could be explained by, on the one hand, the
challenge for clinicians to score home-based videos consistently and, on the other hand, the
variation of dystonia concerning velocity and position that can occur within and between
individuals [20]. As the performance of machine learning models greatly depends on
the amount, the coverage and quality of the data, the performance of individual model
would most likely increase with the collection of more data from each individual, as well
as measures from more patients.

A limitation of this study is the low number of subjects included, which limits the
amount of data used to train and test the generalized models. Another limitation of this
study is that data was collected only at certain fixed moments, which were mainly standing,
sitting, and lying down. The developed models are therefore not properly trained with
data from other everyday activities. This is likely to lead to inaccuracies in the predictions
if the models are used to predict data over an entire day. Future research should focus on
gathering more types of movements and activities, to train even more accurate predictive
models. The model might also improve by adding IMUs data from children and young
adults without a movement disorder, especially as it has been hypothesized that overflow
movements seen in dystonia may contain a small repertoire of involuntary movements
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within a more variable repertoire of intended voluntary movements [35]. As collection
of more and variable data might be difficult to perform on large scale, possible data
augmentation techniques for time series should be considered in future studies [36]. In
addition, it could be an option to perform a ‘calibration measurement’ for each individual
before using sensors in a home environment [16], add some extra clinical scores on time
windows and use transfer learning (i.e., adding the individual scored data to the pre-
trained generalized model) to improve the performance of the generalized models for each
patient individually.

Since the results of this study demonstrated the feasibility of monitoring dystonia
at home, it would be interesting to study the use of the models for treatment assessment
(e.g., how the clinical scores vary before and after intrathecal baclofen treatment), with the
hypothesis that the clinical scores will decline after the treatment. Moreover, the methods
described in this paper could also be used to classify choreoathetosis, which also occurs in
dyskinetic CP. However, there was too little variation in the scores in the current data to
train models to classify choreoathetosis.

5. Conclusions

The results of this study indicate that it is feasible to assess dystonia in dyskinetic CP
outside a clinical setting, using home measurements and individually trained machine
learning models and thereby provide clinical useful information about the progression of
dystonia during a longer period of time. The findings are in line with previous research on
automatic assessment of dyskinesia in Parkinson’s disease. To enhance clinical care, future
studies should evaluate how standard dyskinetic CP measures can be complemented by
providing frequent, objective, real-world assessments. Even though the generalized models
achieved low F1 scores, they are reasonably able to link high clinical scores to high severity
of the disorder and vice versa, even though they were trained with a limited amount of
data. Future research should focus on gathering more high-quality data and study how the
models perform over longer periods of time.
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Abstract: Understanding neck pain is an important societal issue. Kinematic data from sensors may
help to gain insight into the pathophysiological mechanisms associated with neck pain through a
quantitative sensorimotor assessment of one patient. The objective of this study was to evaluate
the potential usefulness of artificial intelligence with several machine learning (ML) algorithms
in assessing neck sensorimotor performance. Angular velocity and acceleration measured by an
inertial sensor placed on the forehead during the DidRen laser test in thirty-eight acute and subacute
non-specific neck pain (ANSP) patients were compared to forty-two healthy control participants
(HCP). Seven supervised ML algorithms were chosen for the predictions. The most informative
kinematic features were computed using Sequential Feature Selection methods. The best performing
algorithm is the Linear Support Vector Machine with an accuracy of 82% and Area Under Curve of
84%. The best discriminative kinematic feature between ANSP patients and HCP is the first quartile
of head pitch angular velocity. This study has shown that supervised ML algorithms could be used to
classify ANSP patients and identify discriminatory kinematic features potentially useful for clinicians
in the assessment and monitoring of the neck sensorimotor performance in ANSP patients.

Keywords: artificial intelligence; supervised machine learning; kinematics; head rotation test;
neck pain

1. Introduction

Understanding neck pain is an important societal issue [1,2]. The overall prevalence
of neck pain in the general population ranges from 0.4% to 86.8% and is higher in women
than in men [3]. It ranks fourth in terms of years lived with a disability [1,2]. The ma-
jority of patients with neck pain are now classified as experiencing a “non-specific” neck
disorder [4–6], meaning neck pain that occurs without trauma, signs or symptoms of
major structural pathology, neurologic signs or specific pathology [4]. Acute or subacute
non-specific neck pain (ANSP) means that the pain has been present for less than three
months [4,7]. The assessment of sensorimotor function, a generic term for tests that encom-
pass all afferent and efferent information flows and central integration mechanisms that
contribute to joint stability [8], has demonstrated its importance for a better understanding
of the pathophysiological mechanisms associated with chronic neck pain [9]. Indeed, the
assessment of sensorimotor function, especially through kinematics of the head rotations,
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seems promising for the identification of chronic neck pain [10] but also of acute-subacute
neck pain as shown by our previous results, which suggested that sensorimotor changes
may also occur rapidly after pain resolution [11]. Nevertheless, identification based on
sensorimotor evaluation requires the ability to know what would characterize neck pain
in terms of the kinematic features of movement. Sensorimotor assessment of neck motion
based not only on position degrees of freedom but also on velocity and acceleration features
(e.g., peak and average velocity) appears promising because it has high sensitivity and
specificity [10,12].

Identifying kinematic features from time series and comparing them between groups,
e.g., to evaluate treatments or classify neck pain motion across ageing, is a widely used
method [11–15]. Here, we focus on a peculiar test called DidRen laser test, designed to
assess sensorimotor control of the neck and about which the interested reader will find
detailed information in [11,15,16]. The DidRen laser test consists of a standardized task in
which yaw rotations of the head are performed from “target to target” in the same sequence.
These are fast, accurate, and small-amplitude rotations (±30◦) of the head in response to
real visual targets to be hit by a laser beam placed on the subject’s head [17]. However,
such a methodology removes a substantial amount of information from the raw time series.
The DidRen laser test did not cause pain in the patients (probably because of the too low
amplitude of the rotation < 30◦). Since the relationship between pain and sensorimotor
control is well-established [18–21], if the test had caused pain when performed, it could
have increased the kinematic difference between ANSP patients and healthy subjects.

Resorting to artificial intelligence (AI) techniques may lead to another type of analysis,
i.e., “the machine” should find the relevant specifications of time series. The present study is
devoted to the latter case. AI is defined as a field of science and engineering concerned with
the computational understanding of what is commonly referred to as intelligent behavior
and the creation of artefacts that exhibit such behavior [22]. Machine learning (ML) is
defined as a subfield of AI as follows: “Machine learning is a branch of artificial intelligence
that systematically applies algorithms to synthesize the underlying relationships among
data and information” [23]. ML provides an experiential “learning” that can be related to
human intelligence as ML can improve its analyses by using computer algorithms. There
are two main forms of ML: supervised and unsupervised [24]. In supervised ML (SML),
the algorithms are provided with training data that are analyzed for the features that are
important for classification and labelled. The model is then “trained” on these data before
being tested on unlabeled data. In our case, the data will be measured in head rotations.
In SML, data must first be labelled by a clinician (painful or not, for example) so that the
model can learn to interpret them through pattern recognition. Then, the model is tested
with unlabeled data to obtain an interpretation result [25,26]. Several algorithms can be
trained for pattern recognition, such as logistic regression, support vector machine, decision
tree, random forest, naïve Bayes or K-nearest neighbor [24]. Patterns may be representative
of various features, among which pathology and pain, see e.g., [27].

The first aim of this work was to evaluate the discriminative ability of AI and SML
methods in sensorimotor assessment of yaw angular displacement of the head in patients
with ANSP compared with healthy control participants (HCP) with data from a previous
study [11] obtained during the DidRen laser test [15–17]. A second aim of this work was
to illustrate the potential of SML for clinicians in musculoskeletal physiotherapy [28]. In
ecological situations, neck kinematics should be quickly assessed by a therapist using
thresholds designed to identify relevant impairments in the history of patients with neck
pain. We test whether SML can provide such kinematic values and therefore has predictive
value for ANSP.
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2. Materials and Methods
2.1. Patients and Participants

This study included 80 subjects (38 ANSP patients and 42 HCP) from a previous
study [11]. Data were collected from February to December 2019. ANSP patients diagnosed
by general practitioners were recruited from a consecutive sample in a private manual ther-
apy center in Brussels, Belgium. Inclusion criteria for ANSP patients were acute-subacute
(<3 months) non-specific neck pain with a Neck Disability Index (NDI) ≥ 8% [29] and a
Numeric Pain Rating Scale (NPRS) > 3 [30–34]. HCP were recruited by one of the authors
(RH) from a sample of convenience from colleagues at the university hospital and from
acquaintances. They were included if they reported no neck symptoms: NDI < 8% [29],
NPRS = 0 [30], and no pain on active head rotation and/or manual spinal assessment [35].
Characteristics of the ANSP patients and HCP are listed in Table 1. All subjects signed an
informed consent form. The study was approved by the Academic Bioethics Committee
(https://www.a-e-c.eu, (accessed on 30 January 2019) Brussels, B200-2018-103) and con-
ducted in accordance with the Declaration of Helsinki. The authors confirm that all ongoing
and related trials for this drug/intervention are registered (ClinicalTrials.gov: 04407637).

Table 1. Characteristics of the acute and subacute non-specific neck pain (ANSP) patients and healthy
control participants (HCP). p-values resulted from t-test for age and BMI, Mann–Whitney U-test for
NDI and NPRS, and Chi-2 for gender.

ANSP Patients (n = 38) HCP (n = 42) p-Values

Age (years), mean ± SD 46.2 ± 16.3 24.3 ± 6.8 <0.001
Gender n (men/women), (%) 21 (55%)/17 (45%) 27 (64%)/15 (36%) 0.55

BMI (kg m−2), mean ± SD 23.5 ± 3.2 21.5 ± 4.2 0.014
NDI (100), median [Q1–Q3] 22 [16–31.5] 0 [0–0] <0.001

NPRS, median [Q1–Q3] 6 [4–7] 0 [0–0] <0.001
BMI: body mass index, NDI: neck disability index, NPRS: numeric pain rating scale.

2.2. Protocol

The protocol was described in a previous study [11]. It essentially involved assessment
of fast neck yaw rotations with the DidRen laser test [15,16] for ANSP patients and HCP,
completed by manual examination of the painful spinal region for segmental tenderness.
For ANSP patients, the manual examination served to confirm familiar pain and guide the
treatment. For HCP, thanks to its high sensitivity (92%), the manual examination was used
to exclude HCP if they had pain at one or more levels of the cervical spine and confirm that
they are not healthy in the neck [35]. The DidRen laser test was used to standardize the
rotational yaw movements of the participant’s head. Briefly, participants wore a helmet
to which a laser was attached. They pointed the laser as fast as possible at three targets
equipped with photosensitive sensors (Figure 1A,B). The angular separation of targets is
30◦, and the sequence was fixed: center-left-center-right-center. Participants were asked to
perform the sequence as fast as possible.

During the DidRen laser test, head angular displacement kinematics were recorded in
3D (yaw, pitch, and roll) using the DYSKIMOT inertial sensor [36]. The detailed description
of the sensor can be found in the study by Hage et al. [36]. The sensor consists of a 3-axis
accelerometer, a gyroscope and magnetometer, and a temperature sensor. These internal
components respectively measure acceleration (in g, ±16 g), angular velocity (in ◦/s,
±2000◦/s), and magnetic field (in gauss, ±16 gauss). The sensor recorded the motion at a
sampling frequency of 100 Hz. The DYSKIMOT sensor was placed in front of the helmet
(Figure 1C), with the yaw-axis (or X) in the vertical direction. The pitch-axis (or Y) was
aligned with subject’s medio-lateral axis at the start of the test and the roll-axis (or Z) was
aligned with the antero-posterior axis. The head rotation demanded in the DidRen laser
test is oriented along the yaw-axis. Note that the subjects were not instructed to realize
pitch or roll rotations of the head during the test.
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Figure 1. Description of the DidRen laser test. (A) Rear view of head position in front of the targets.
(B) Schematic top view of the experimental setup with the three photosensitive sensors. The reference
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the test. (C) Helmet worn by an HCP (here RH) with laser on the top of the head and DYSKIMOT
inertial sensor on the forehead.

2.3. Data Analysis
2.3.1. Dataset and Pre-Processing

In our previous papers [11,15], we analyzed the same dataset by resorting to “standard”
statistical tests: we calculated several kinematical features of the angular position, speed,
and acceleration time series (e.g., peak speed, time to reach peak, etc.). Then we showed
that some parameters were significantly different between ANSP and HCP [11], and that
age also had a significant impact on the parameters [15]. In the present study, we re-analyse
the same dataset by using the raw sensor data to train various ML algorithms with the
goal of finding an algorithm able to separate ANSP and HCP. To our knowledge, it is the
first time that such ML techniques are used in the field of neck pain. The dataset consists
of 7 time series for each participant: time, angular velocity (three components labelled
GyrX, GyrY, GyrZ), and acceleration (AccX, AccY, AccZ). Then, a pre-processing procedure
was applied to convert each time series into a summary format for all participants. Each
time series is summarized with 7 statistical descriptors: 1st, 2nd, and 3rd quartiles, mean,
minimum, maximum, and standard deviation. The result is a dataset with 186 inputs and
42 features (6 time series × 7 descriptors). Each set of statistical descriptors is labeled as
ANSP (value 1) or HCP (value 0).

2.3.2. ML Algorithms and Determination of the Best Performer

It is generally difficult to determine a priori which ML algorithm performs best on a
given dataset [37]. Therefore, several algorithms were tested to determine the most appro-
priate for classifying ANSP patients and HCP: K-Nearest Neighbor (KNN), Linear Support
Vector Machine (Linear SVM), Non-linear Support Vector Machine Radial Basis Function
(SVM RBF), Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost), and
Gaussian Naive Bayes (GaussianNB).

The comparison between selected algorithms was based on metrics such as accuracy
and the Area Under Curve (AUC) score, computed from the Receiver Operating Charac-
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teristic (ROC) curve. These metrics are only meaningful if the predictions are based on
data that the ML algorithms have never learned. Therefore, the dataset was randomly split
into two parts. The first part is the “training set”, which consists of 80% of the dataset
used to train the ML algorithms. The second part (remaining 20%) is the “test set” used to
make the predictions with the trained ML algorithms. The validation of the ML algorithms
is performed by n-fold cross-validation [38]. To minimize the biases associated with the
training dataset, 100 different cross-validations were performed on mixed data for each
selected ML algorithm. The hyperparameters of the ML algorithms were optimized using
the Grid Search method [39] that finds the best combination of fixed hyperparameters
based on n-fold cross-validation.

For KNN, the optimized parameters were the following: the number of neighbors
(n_neighbors: 3, 5, 8, 10), the weighting function (weights: uniform, distance) and the
algorithms used to compute the nearest neighbors (algorithms: Brute-Force (BF KNN or BF
KNN), kd_tree, auto, ball_tree). For Linear SVM, different values for the regularization
parameter or C-parameter (0.1, 1, 10, 100, 1000) were used in the evaluation to test the
dependence of the approach on the C-parameter. For SVM RBF, the C-parameter (0.001,
0.01, 0.1, 1, 10, 100) and the kernel coefficient Gamma (0.001, 0.01, 0.1, 1, 10, 100) parameter
were optimized. For DT, the optimized parameters were the maximum depth of the tree
(max_depth: 1, 5, 10, 100), the function to measure the quality of the splits (criterion: gini,
entropy), and the strategy to select the split nodes (splitter: best, random). For RF, the
optimized parameters were the maximum depth of the tree (max_depth: 1, 5, 10, 100),
the number of trees in the forest (n_estimators: 1, 5, 10, 100), and the number of features
considered in the search for the best split (max_features: 1, 5, 10, 100). For Adaboost, the
optimized parameters were the maximum number of estimators at which boosting stops
(n_estimators: 1, 5, 10, 50, 100, 500) and the weight applied to each classifier at each boosting
iteration (learning_rate: 0.000001, 0.001, 0.1, 1, 5, 10, 100). For GaussianNB, the optimized
parameter was the ratio of the largest variance of all features added to the variances for
computational stability (var_smoothing: 0.0000001, 0.01, 1, 10, 100).

All the computations related to the determination of the best performer were made in
Python 3.8 and SciKit-Learn 1.0.2 software.

2.3.3. Determination of Most Informative Kinematic Features and Logistic Regressions

The most informative kinematic features, i.e., the features that trigger the most pre-
dictions, were computed by using the Sequential Feature Selector (SFS) forward and
backward [40]. The backward SFS removes the poorest features one by one, while the
forward SFS identifies the best combination of features. In both cases, the result is a list
of kinematic features that performed best according to the AUC score. Each SFS was run
700 times (7 ML algorithms × 100 random data repartitions). Once the most informative
kinematic feature was identified, a logistic regression was performed by using it, and the
accuracy of this logistic regression was computed. Another logistic regression on total
DidRen laser test duration was also performed to compare the present results to the unique
outcome of the original DidRen laser test [17].

All the computations related to the determination of the most informative features
and ML algorithms were made in Python 3.8 and SciKit Learn 1.0.2 software.

3. Results
3.1. Optimal Hyperparameters and Performance Metrics of ML Algorithms

Optimal hyperparameters are presented in Table 2. Performance metrics of the selected
ML algorithms are given in Table 3. The least performing ML algorithm is the KNN, and
the best performing one is the linear SVM with an accuracy of 82% and AUC of 84%. We
show in Figure 2 the ROC curve of the Linear SVM, which is the best ML algorithm we
found to classify ANSP patients and HCP.
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Table 2. Optimal hyperparameter values: Number of neighbors (n_neighbors), Regularization
parameter (C-parameter), Kernel coefficient (gamma), maximum depth of the tree (max_depth),
number of trees in the forest (n_estimators), and number of features to consider when looking for the
best split (max_features).

ML Algorithm Hyperparameters

BF KNN n_neighbors = 5, weights = “distance”
Linear SVM kernel = “linear”, C = 10
SVM RBF gamma = 0.001, C = 100
DT max_depth = 1, criterion = “entropy”, splitter = “best”
RF max_depth = 10, n_estimators = 100, max_features = 10

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support Vector Machine, RBF: radial basis function, DT:
Decision Tree, RF: Random Forest.

Table 3. Performance metrics of the selected ML algorithms.

ML Algorithm Accuracy AUC Score

BF KNN 0.66 ± 0.03 0.51 ± 0.07
Linear SVM 0.82 ± 0.03 0.84 ± 0.04
SVM RBF 0.65 ± 0.05 0.57 ± 0.09
DT 0.74 ± 0.03 0.70 ± 0.04
RF 0.76 ± 0.03 0.76 ± 0.04
AdaBoost 0.75 ± 0.04 0.76 ± 0.05
GaussianNB 0.77 ± 0.03 0.82 ± 0.03

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support Vector Machine, RBF: radial basis function, DT:
Decision Tree, RF: Random Forest, AdaBoost: Adaptive Boosting, GaussianNB: Gaussian Naive Bayes, AUC: area
under curve.
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Figure 2. Receiver Operating Characteristic (ROC) curve of Linear SVM (in blue). The dotted red line
represents the worst possible scenario, a random classifier.

The ROC curve plots the False Positive Rate ( FP
FP+TN ) and the True Positive Rate

( TP
TP+FN ) at all thresholds of Linear SVM classification.

3.2. Most Discriminative Features and Logistic Regressions

The most discriminative feature, regardless of the ML algorithm and SFS, was the
first quartile of head pitch angular velocity (or GyrY), which ranked first 813 times in 1400.
The second most discriminative feature was the median of head pitch angular velocity
(ranked first 444 times in 1400). Thus, the pitch angular velocity appears to be the best
discriminating feature to differentiate ANSP patients and HCP assessed with the DidRen
laser test.
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A logistic regression based on the median of head pitch angular velocity led to an
accuracy of 77%. A logistic regression based on total duration of the DidRen test led to an
accuracy of 63%.

4. Discussion

Our findings showed the effectiveness of the kernel linear SVM classifier in distin-
guishing ANSP patients from HCP. The accuracy of the linear SVM was 82% and the
AUC score was 84%. The interpretation of the AUC score should be evaluated in terms
of the importance given to its accuracy. We can assume that the medical community in
the field of oncology prefers an AUC score close to 100%. Considering, on the one hand,
the musculoskeletal field and, on the other hand, in relation to the non-specific pathology,
the comparison between ANSP patients and HCP, which shows a great variability of the
results [41], an AUC score higher than 80% can be considered satisfactory. As mentioned in
the Introduction, the DidRen laser test did not cause pain in ANSP patients. This feature
may help ANSP patients to show kinematic features such as HCP, which may increase the
number of false negatives. Therefore, a larger rotation amplitude than 30◦ may decrease
the false-negative rate.

Seven time series (time and kinematic data) related to yaw, pitch, and roll angular
displacement and velocity of the head, which can be easily acquired with a single inertial
sensor, were used to train the selected ML algorithms. However, regardless of the ML
algorithm and SFS, not all axes of head motion have good discriminative information, as
the two best discriminating kinematic features were related to head pitch. The accuracy
was best with the linear SVM and lowest with all other selected ML algorithms, such as
the non-linear SVM (RBF). The same finding regarding the superiority of linear SVM over
RBF has already been observed in a study with limited sample size (17 young and 17 old
subjects) aimed at detecting age-related changes in running kinematics [42]. For use in
future clinical trials with kinematic variables with limited sample size, linear SVM may
thus be a suitable option.

Like other studies using ML algorithms to detect kinematic changes in healthy or
pathological subjects [42–45], our study is based on a rather small dataset in terms of typical
AI calculations, but the results are consistent with the conclusions of [46]. While conduct-
ing observational sensorimotor assessment studies with large datasets holds promise for
improving the understanding and management of various pathologies, here, the patho-
physiological mechanisms associated with neck pain, the use of small datasets may also
allow for a reduction in selection bias [46]. In addition, it is worth noting that an SVM has
already been used in the musculoskeletal field to compare temporomandibular patients
with control subjects [47]. With a smaller sample (10 patients and 10 control subjects), they
achieved an average predictive accuracy of 60% (p = 0.10) [47]. The linear SVM algorithm is
affordable with today’s standard devices: a tablet computer could efficiently post-process
the data from any wearable inertial sensor. Note also that a logistic regression based on
head pitch angular velocity could be easily implemented on any smartphone, but with a
lower accuracy of 77%.

The main discriminatory information used by the linear SVM algorithm to distinguish
ANSP patients from HCP are the first quartile and the median of head pitch angular velocity.
The two best kinematic discriminating features differed from those obtained by inferential
statistical analysis, suggesting that ML approaches are complementary and clinically useful
to detect kinematic changes in patients with ANSP.

HCP have larger medians and quartiles for head pitch angular velocity (computed
from GyrY time series) than ANSP patients, making the Y-axis a highly discriminatory
direction that should be prioritized for future clinical trials with the DidRen laser test.
Our results may seem counterintuitive at first, because the DidRen laser test consists
of a sensorimotor assessment organized around the Z-axis, i.e., during the execution of
yaw rotations of the head. Thus, it would stand to reason that the GyrX time series
should contain most of the discriminative information. Nevertheless, it is interesting
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to note that the sensorimotor disturbances in ANSP patients may be highlighted by the
stronger secondary coupled motion during yaw rotations. There seems to be a reason for
this, because biomechanically, coupled bending rotations in the cervical spine lead to a
compensatory roll rotation, which compensates for the yaw rotation of the head, and the
associated coupled movements observed during pitch head movements [48]. Indeed, in
HCP, we can observe that yaw head rotation (55.5 ± 10.8◦) is coupled with a larger pitch
motion (16.3 ± 11.4◦) than roll motion (4.6 ± 6.2◦) [48]. If we apply these considerations
to patient assessment, this information may be of clinical interest because 3D motion
analysis may be a useful tool for assessing postural changes in the cervical spine during
sitting, but also because altered kinematics are associated with decreased performance,
e.g., neck velocity and neck motion fluidity in functional movement tasks, in people with
neck pain [49].

The present discussion suggests that the ML algorithms can provide relevant func-
tional variables and thus optimize the prediction of ANSP status during the DidRen laser
test. To further illustrate this point, we mention that total test duration was the only pa-
rameter measured in the original version of the DidRen laser test [17]. Logistic regression
performed with duration yields lower accuracy than that obtained with the median of pitch
head rotation alone, the latter parameter being favored by linear SVM.

In experimental studies, control and experimental groups are usually formed in such
a way that no significant difference is observed in parameters such as age, ethnicity, gender,
and degeneration/maturation stage, except for the variable of interest. In our case, this
means that ANSP patients and HCP groups should differ only in terms of NDI and NPRS.
Age is also significantly different in our groups, but we do not believe this is problematic
for our purpose. Indeed, ML algorithms are designed to distinguish between HCP and
ANSP patients. To find out the characteristics of ANSP patients, it is logical to compare
them with the “healthiest” subjects, i.e., our HCP group. On the other hand, a control group
with too young subjects would also have led to bias, since we have shown in a previous
study that the kinematic behaviors recorded with the DidRen laser test have a U-shaped or
inverted U-shaped age profile, making the differences between young and old particularly
clear [16]. Because the prevalence of degenerative joint changes increases with age [4,50],
possibly leading to movement limitations (yaw rotation steadily decreases between the ages
of 30 and 60) [51], we selected HCP using a very sensitive manual examination [35]. After
this examination, positive control subjects (with potential neck disorders) were excluded,
and because their average age was higher (see [11]: the mean age of the excluded control
subjects was 43.3 years), the average age of our HCP group decreased compared with the
ANSP group. It is worth noting that a significant age difference between control and disease
subjects was already found in a study aimed at developing and determining the predictive
performance of ML models to distinguish between different subtypes of low-back pain and
healthy control subjects [52]. For this purpose, as we did, they did not include age as a
predictor when constructing the model [52].

It has already been shown by authors of the present study that several kinematic
features of head rotation movements were significantly different in HCP and ANSP patients
in terms of statistical tests comparing means [11]. The novelty of our results can also be
outlined by comparing them with similar studies. The next logical step in the kinematical
analysis of head rotation movements is to investigate whether some kinematic parameters
can be used as predictors of neck pain or not. Bahat et al. performed simple logistic
regressions on all selected kinematical parameters and found that it was the case [10]. For
example, they found a sensitivity of 91% (right) and 94% (left) and a specificity of 95% (right
and left) for head peak yaw angular velocity, and the maximum AUC was obtained with
head peak pitch angular velocity [10]. Note that the discriminative power of head peak
yaw angular velocity was shown in [11,13], where a test in a virtual (VR) environment was
performed. The extent to which our current results hold in a VR environment is an open
problem that we leave for future work.
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We reach the same conclusion as [10] regarding pitch angular velocity by using a
more model-independent approach, i.e., by allowing machine learning algorithms to sort
out the most discriminant features from the raw data. We also go beyond simple logistic
regressions by including all relevant features in a single ML algorithm. Indeed, converting
time series into scalar variables may remove a substantial amount of information contained
in the original time series that could lead to extra false negative results or inaccurate
predictions [53]. Roijezon et al. used linear discriminant analysis to identify neck-pain
patients, i.e., the same kind of methodology as ours, but obtained lower sensitivity and
specificity than in the present study: they found a sensitivity of 74.6% and a specificity
of 73.5% for classification based on head peak yaw angular velocity [12]. Thus, to our
knowledge, this is the first time that ML algorithms have been applied to the raw sensor
data recorded during head rotation to find a multi-feature classification algorithm for
identifying ANSP patients. A clear advantage of this type of algorithm, in addition to the
high accuracy currently achieved, is that it can be systematically improved by increasing
the size of the data set and allowing the algorithm to “learn” from the new data.

In summary, we have shown that AI can help identify patients suffering from neck
pain using the DidRen laser test augmented by an inertial sensor. In our approach, the
accuracy and AUC scores are computed from inertial sensor’s kinematic data. The obtained
ML algorithm can be implemented in any tablet or smartphone and lead to an “augmented
DidRen laser test”; hence, our results may be transferred to daily clinical practice. In our
opinion, the best way to merge the DidRen laser test and an inertial sensor is to develop
a VR version of the test: it will improve the standardization of the test through the stan-
dardization of the environment, and any VR device has at least one inertial sensor able
to collect the needed data. Such a work is in progress, see e.g., [54]. Using AI to interpret
sensor data can in principle be used in other movements than the rotation demanded in
the DidRen laser test, but then the AI training must be made for each different motion,
which outlines the necessity of defining standardized movements in clinical tests. Today,
there is still no clinical gold standard for diagnosing acute neck pain, but the use of the
DidRen laser test and AI appears to be a promising candidate to provide clinically useful
information that can improve patient management. The diagnostic ability of our framework
has been proven in the present study, but it is worth mentioning the possibility of data
storage offered by sensor technology. The more data that will be stored, the more the
ML accuracy will be refined, i.e., our diagnostic algorithm is systematically improvable
over time. Moreover, the same test can be performed at various points of one patient’s
treatment to assess his/her evolution. One last feature of our approach is that it identifies
key kinematic parameters (such as peak angular speed) on which therapists can focus to
follow one patient’s evolution.
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Abstract: The Timed Up and Go test (TUG) is commonly used to estimate the fall risk in the elderly.
Several ways to improve the predictive accuracy of TUG (cameras, multiple sensors, other clinical
tests) have already been proposed. Here, we added a single wearable inertial measurement unit (IMU)
to capture the residents’ body center-of-mass kinematics in view of improving TUG’s predictive
accuracy. The aim is to find out which kinematic variables and residents’ characteristics are relevant
for distinguishing faller from non-faller patients. Data were collected in 73 nursing home residents
with the IMU placed on the lower back. Acceleration and angular velocity time series were analyzed
during different subtasks of the TUG. Multiple logistic regressions showed that total time required,
maximum angular velocity at the first half-turn, gender, and use of a walking aid were the parameters
leading to the best predictive abilities of fall risk. The predictive accuracy of the proposed new test,
called i + TUG, reached a value of 74.0%, with a specificity of 95.9% and a sensitivity of 29.2%. By
adding a single wearable IMU to TUG, an accurate and highly specific test is therefore obtained. This
method is quick, easy to perform and inexpensive. We recommend to integrate it into daily clinical
practice in nursing homes.

Keywords: TUG; kinematics; fall risk; logistic regression; elderly; inertial sensor

1. Introduction

The proportion of elderly people is steadily increasing. According to the World Health
Organization (WHO) estimates, it will account for 22% of the world’s population by 2050.
Physiological changes caused by ageing result in deterioration of balance, coordination,
and strength, leading to an increased incidence of falls in people over 65 years. Falls are one
of the top five causes of death in this age group and their incidence is particularly increasing
in people living in nursing homes, with an average of 1.7 falls per bed per year compared
to 0.65 in people living independently [1]. In addition, falls lead to more complications
in people living in nursing homes, with 10 to 25% of falls resulting in a fracture or open
wound [2]. The main risk factors for falls are muscle weakness, balance problems, and gait
disturbances [2].

The Timed Up and Go test (TUG) [3] is commonly used in the medical field to predict
fall risk in the elderly. Very simply, TUG consists of measuring the time it takes a person to
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get up from a chair with arms after having heard a “Go”, walk forward three meters at a
comfortable pace, turn around, walk back to the chair, and sit down again. According to
the pioneering study [4], a time greater than 14.0 s indicates a potential fall risk. Obvious
advantages of the TUG are the following. It is quick to perform, it requires no equipment
other than a chair and a stopwatch, and it involves a sequence of movements common to
daily life: getting up, walking, turning, and sitting. In the review [5], it is concluded that
the predictive power of the TUG is greater in people living in institutions than in people
living independently. This conclusion is shared by [6]. However, this test is limited by the
fact that total time is the only parameter measured and that it categorizes fall risk according
to a threshold value that is increasingly controversial in the literature. The threshold used
to identify fallers in nursing homes actually varies between 13.0 and 32.6 s, depending on
the study [5].

Several authors have already proposed ways to improve TUG by adding inertial
sensors to measure acceleration or velocity, by combining it with other clinical tests, or by
using cameras [7–10]. The corresponding tests are often referred to as instrumented TUG
(iTUG). Their predictive performances can be correlated with a gold-standard but more
complex functional tests such as Community Balance and Mobility Scale [11]. Among these
approaches, we think that the addition of wearable inertial measurement units (IMUs,
or inertial sensors) is particularly promising. The information contained in the measured
time series (acceleration and angular velocity) goes well beyond the total time measured in
TUG, making the iTUG a clinical tool that allows detailed analyses of the TUG’s different
subtasks. The use of a single IMU is actually adequate to separate the TUG subtasks with
sufficient accuracy for clinical applications [10,12,13]. From a methodological point of view,
splitting TUG into different subtasks can improve its discriminatory power in various
conditions: obese women [14], children with traumatic brain injury [15], and adults with
vestibular hypofunction [16].

Using a single IMU placed on a patient’s lower back, Buisseret et al. proposed to
combine the kinematic data of a 6-min walk test (6MWT) and the result of TUG to improve
its predictive accuracy [7]. However, kinematic data of the TUG collected during the latter
study were not analysed, despite evidence that a movement such as a trunk rotation is
an index of balance measurement that requires special attention [8,11,17–21]. Moreover,
among fall-related fractures, hip fractures are the most common. A fall during a turn
increases the risk of hip fracture 8-fold compared to a fall in a straight line [18]. Therefore,
in this study, we propose a detailed analysis of the two half-turns during TUG from a
kinematic point of view by adding to the conventional measures such as duration and
maximum angular velocity a parameter called “jerk”, which is a measure of movement’s
smoothness [22].

The aim of this study is to determine: (1) which general characteristics and kinematic
parameters are relevant to discriminate fallers (F) from non-fallers (NF) in a population of
elderly nursing home residents, based on a dataset previously collected in [7]; (2) which
of the relevant variables are best suited to predict a fall within six months using a logistic
regression-based model—the model will be called i + TUG in the following to differentiate
it from previous attempts called iTUG—and (3) whether i + TUG improves the predictive
power of the TUG by assessing its predictive properties (sensitivity, specificity, and overall
accuracy). Since our methodology seems to be very similar to the [7] proposal, it is
worthwhile to outline here the difference between the present work and the latter. In [7],
the duration of TUG was measured and supplemented by kinematic data from a 6MWT.
A prediction of fall risk was proposed as a decision process that depends on thresholds for
TUG duration and parameters that assess the variability of walk during the 6MWT. Here,
fall risk is predicted only from TUG (duration and kinematic data) using multiple logistic
regressions. Thus, the proposed assessment of fall risk is intended to be much shorter,
with a decision criterion that can be systematically improved.
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2. Materials and Methods
2.1. Population

All residents who participated in this study were at least 65 years old and lived in
four different nursing homes in the Charleroi region (Belgium). All residents or their legal
representatives gave their consent to participate in the study after being informed about
the modalities of the study and the possible side effects. The experimental protocol is in
accordance with the Declaration of Helsinki on Medical Research Involving Human Sub-
jects and was approved by the Academic Bioethics Committee (reference B200-2017-144).
The study was longitudinal and included two evaluations 6 months apart: the first one
in May 2018 and the second one in November 2018. Here, we analyze data previously
collected, part of which has already been analyzed in [7]. No new measurements were
taken and the processed data had not been analyzed in previous studies.

The only inclusion criterion was that residents were at least 65 years old. Residents
with lower limb movement disorders that prevented them from walking, cognitive disor-
ders that prevented them from understanding the instructions given during the experiment,
or cardio-respiratory disorders that prevented them from walking for 6 min were excluded.
Some residents who were originally included in the sample could not be reexamined and
were therefore also excluded if: they had dropped out of the study or had been hospi-
talized during the study period; they had one or more medical conditions that occurred
between the two measurements; their medication had changed in a way that affected the
measurement; and they were no longer alive.

According to all these criteria, 73 residents took part in the study until the end, giving an
initial total of 92 residents. A summary of our resident’s general characteristics can be found
in Table 1. Cognitive status was assessed with Hodkinson Abbreviated Mental test score
(AMTS) [23] that is included in Part 1 of the Fall Risk Assessment Tool [24]. An AMTS score
(on 10) ≥ 9 was considered as an intact status [24] and <7 as a possibility of dementia [25].
Residents with a possibility of dementia or diagnosed with Alzheimer’s disease were not
excluded. The number of residents in faller and non-faller groups with these conditions are
reported in Table 1.

Table 1. General characteristics of the residents. Fallers were identified according to the fall records be-
tween the 6-months interval (t1 and t2). Numerical data are written under the form mean ± standard
deviation (t-test performed) or median [Q1–Q3] (Mann–Whitney test performed). For the age,
the minimum and maximum values in each group are given (second line). Exact Fisher tests were
performed for the categorical data (M/F or Yes/No). p-values for the comparison between fallers
(F) and non-fallers (NF) groups are given in the last column. Total TUG time (TTUG) was assessed
with a stopwatch. Medications included: psychotrope, antiarrhythmic, and diuretics. Hypertension
is defined as a value > 140/90 mmHg.

Parameter F NF p

Residents (n) 24 49
Age (years) 84 ± 9 83 ± 8 0.646

66–96 65–96
Medication 4 [2–5] 3 [2–5]

FRAT 11 [10–14] 10 [8–12]
TTUG (s) 24.5 ± 8.5 21.5 ± 8.1 0.096

Gender (M/F) 6/18 22/27 0.128
Walking aid required (Yes/No) 15/9 21/28 0.140

Post-stroke hemiparesis (Yes/No) 2/21 4/45 0.677
Possibility of dementia (Yes/No) 3/21 9/40 0.739

Alzheimer disease (Yes/No) 5/19 14/35 0.577
Previous heart surgery (Yes/No) 8/16 9/40 0.238

Diabetic polyneuropathy (Yes/No) 3/21 8/41 1
Hip or knee replacement (Yes/No) 3/21 9/40 0.739
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2.2. Protocol

This study was conducted in two phases. An initial measurement, conducted in May
2018 (t1), included: (1) a collection of information about each resident, such as medications,
presence and type of a walking aid, medical history (fracture, prosthesis, disease, . . . );
(2) the placement of a DYSKIMOT inertial sensor [7] in the back of each subject at the level
of the fourth lumbar vertebra; and (3) a TUG and a 6MWT performed by each resident.
The latter test is not taken into account in the present study. TUG data recording began
when the “Go” instruction was given and stopped when the participant sat again on the
chair. Hence, total TUG time (TTUG) was directly measured from the length of the time
series. After this initial measurement, nursing home staff were asked to record resident falls
over a 6-month period. In November 2018 (t2), based on data collected by on-site medical
staff, a fall survey was conducted on each resident and they were classified as faller (F) or
non-faller (NF). Nursing staff were regularly reminded to record residents’ falls through
several telephone contacts.

The DYSKIMOT sensor and its placement have been discussed in detail in [7], to which
we refer the interested reader. Here, we summarize some key points for completeness.
The DYSKIMOT sensor (3 cm × 3 cm, 10.44 g) is based on the commercially available
IMU (LSM9DS1, SparkFun Electronics, Niwot, CO, USA), which integrates a triaxial ac-
celerometer, a gyroscope, a magnetometer and a thermometer. The IMU was attached to
the resident’s back at the level of the fourth lumbar vertebra using an elastic strap. The mea-
sured time series are the three components of acceleration,~a(t), and angular velocity, ~ω(t),
in the sensor’s frame with a sample frequency of 100 Hz. Time series were recorded on a
computer via the DYSKIMOT software (v. 2.1). The sensor was placed such that the three
axes of its frame correspond to the anterio-posterior (AP), medio-lateral (ML) and vertical
(V) directions when the resident is standing at rest.

Our data analysis was based on aAP, giving the acceleration in the walking direction,
and on ωV , giving rotation velocity during the two half-turns. These two time series
contained the clearest signal in all residents and were used to determine the different
subtasks of TUG. Typical traces of the AP acceleration (aAP) and of the V angular velocity
(ωV) during TUG are shown in Figure 1.

Figure 1. Typical traces of the AP acceleration (aAP) and of the V angular velocity (ωV) during TUG.
Acceleration is expressed in a fraction of g = 9.81 m s−2, and angular velocity is expressed in ◦ s−1.
White/gray areas highlight the different subtasks of the TUG. Arrows indicate the peak angular
velocity during the two half-turns. Horizontal grey dashed lines show zero value.
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2.3. Division of the TUG into Subtasks and Selected Kinematic Parameters

For each resident, we divided the TUG into 6 subtasks by visual inspection of aAP(t)
and ωV(t), as illustrated in Figure 1: (1) the get-up phase occurred between the beginning
of the TUG and the end of the aAP peak (i.e., when aAP comes back to a 0 value after the
peak); (2) the walk phase, where ωV has an oscillatory behaviour around 0; (3) the first
half-turn, corresponding to the first peak in ωV , i.e., when ωV stops oscillating around 0 to
exhibit a global positive or negative trend; (4) the walk back phase, identified as the first
one; (5) the second half-turn, identified as the first one; (6) the sit phase, until the end of the
time series. A sharp peak in aAP is observed in this phase when the resident’s back hits the
chair back.

After identification, the durations of the subtasks were recorded: Tget−up, Twalk, Tturn−1,
Twalk back, Tturn−2 and Tsit. Then, a more detailed assessment of half-turns was realised,
since it is known to be strongly related to participant’s stability [18]. Maximal angular
velocities (in absolute values) were recorded during the first, ωmax

V1 , and second half-turns,
ωmax

V2 (Figure 1). Finally, dimensionless jerks were calculated during the first, J1, and second,
J2, half-turns as follows [22]:

Ji = ln

(
T3

turn−i

ωmax 2
Vi

∫ bi

ai

j2(t) dt

)
, (1)

where j = dωV
dt , i = 1, 2, and where ai, bi are the time values giving the beginning and

end of half-turn i, respectively. The derivative was computed by finite differentiation. We
recall that dimensionless jerk is a measure of motion’s smoothness. The smaller the Ji,
the smoother the motion. We hypothesized that NF would reach smaller durations and
jerks, and larger maximal angular velocities than F.

2.4. Statistical Analysis

First, we evaluated the differences between the F and the NF groups, with significance
level α of 0.05. For this purpose, t-tests were used for continuous variables, Mann–Whitney
tests were used for ordinal variables (scores), and exact Fisher tests were used for categori-
cal variables.

Second, based on the results of the above analyses, models predicting falls in our pop-
ulation were designed by resorting to multiple logistic regression. The logistic regression
model is given by the following equation:

ln
(

P
1 − P

)
= β0 +

n

∑
j=1

β jXj, (2)

where Xj are the n selected parameters, and where β0, β j are fitted on the collected data via
multiple logistic regression. Once the β j are fitted on the data, Equation (2) becomes a classi-
fication tool: given a set of parameters Xi, measured on one participant, the output P leads
either to the value 0 (no predicted fall) or 1 (predicted fall). The model prediction, i.e., fall or
no fall, were then compared with the actual falls of the participants. Note that several mod-
els were actually used, differing in the number of selected parameters, n, see below. Model
performance was measured by computing sensitivity, Se = True positive

False negative + True positive , speci-

ficity, Sp =
True negative

False positive + True negative and accuracy, Acc =
True positive + True negative

Total . Five
models (Mi with i between 0 to 4) were built for different parameter selections:

• (M0) only X1 = TTUG parameter used when comparing F and NF groups (TUG in
Table 2);

• (M1) all parameters with p < 0.05 used when comparing F and NF groups (kinTUG
in Table 2): X1 = ωmax

V1 ;
• (M2) all parameters with p < 0.1 used when comparing F and NF groups (iTUG in

Table 2): X1 = ωmax
V1 and X2 = TTUG;
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• (M3) all parameters with p < 0.2 used when comparing F and NF groups (i + TUG
in Table 2): X1 = ωmax

V1 , X2 = TTUG, X3 = Walking aid required (Yes = 1, No = 0) and
X4 = Gender (M = 1, F = 0);

• (M4) all parameters with p < 0.3 when comparing F and NF groups (i + TUG2 in
Table 2): X1 = ωmax

V1 , X2 = TTUG, X3 = Walking aid required, X4 = Gender, X5 = Tturn−1
and X6 = J1.

Age was not included in our models because of its large p-value. It therefore has no
ability to discriminate between F and NF in our sample, although a positive correlation
between age and TTUG has been found in recent works [26,27].

Table 2. First seven rows: βi coefficients fitted from model (2). The first row gives β0. Last three rows:
performance indicators of the models (Se: sensitivity, Sp: specificity, Acc: accuracy).

Parameters M0 M1 M2 M3 M4
Xi (TUG) (kinTUG) (iTUG) (i + TUG) (i + TUG2)

β0 −1.709 1.423 0.822 1.207 1.553
ωmax

V1 −0.0245 −0.0213 −0.0208 −0.0231
TTUG 0.0434 0.0139 −0.0046 0.0197

Walking aid required 0.403 0.333
Gender −0.637 −0.649

J1 −0.0027
Tturn−1 − 0.124

Performance Indicators
Se (%) 8.3 8.3 12.5 29.2 20.8
Sp (%) 95.9 91.8 91.8 95.9 91.8
Acc (%) 67.1 64.4 65.7 74.0 68.5

t-tests, Mann–Whitney tests, exact Fisher tests and multiple logistic regressions were
performed using SigmaPlot software (v. 14.0, Systat Software, San Jose, CA, USA).

3. Results
3.1. Population

The general characteristics of the residents are presented in Table 1. The ratio of
females to males is 3 to 1 in the F group, compared with 1.2 to 1 in the NF group. The two
groups did not differ significantly in any of the recorded parameters. TTUG is higher in F
than NF as expected, with a p-value under the M2-threshold (Table 2). Walking aid and
gender reached p-values below the M3-threshold (Table 2).

3.2. F versus NF Comparison

The comparison results for kinematic parameters are presented in Table 3. ωmax
V1 was

significantly different in both groups, with a higher mean value in NF. The same trend is
observed for ωmax

V2 but with a non-significant p-value. Only ωmax
V1 has a p-value below the

M1-threshold (Table 2). J2 and Tturn−1 can be included in M4 (Table 2), while the other
parameters will not be further considered.

3.3. Multiple Logistic Regressions

Results from the multiple logistic regressions are shown in Table 2. It is readily observed
that M3 (i + TUG) reaches the best performances (grey area), and that adding extra parameters
(M4) does not improve M3.
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Table 3. Comparison of kinematic parameters between fallers (F) and non-fallers (NF) groups.
Data are written under the form mean ± standard deviation. p-values for the comparison between
F and NF groups are given in the last column; parameters are ordered by increasing p-values,
with significant values in bold font.

Parameters Xi F NF p

ωmax
V1 (◦ s−1) 82.0 ± 19.0 92.9 ± 23.4 0.031

J1 12.0 ± 2.3 11.6 ± 2.8 0.203
Tturn−1 (s) 5.2 ± 2.2 4.9 ± 2.5 0.293

J2 12.0 ± 3.2 11.4 ± 3.9 0.304
ωmax

V2 (◦ s−1) 96.3 ± 24.5 106.2 ± 35.0 0.315
Tget−up (s) 4.8 ± 3.5 4.0 ± 2.2 0.338

Tsit (s) 3.7 ± 3.4 3.1 ± 1.9 0.545
Tturn−2 (s) 4.3 ± 2.3 3.8 ± 2.0 0.569
Twalk (s) 4.2 ± 2.2 4.0 ± 3.0 0.634

Twalk back (s) 3.9 ± 2.7 4.0 ± 4.1 0.773

4. Discussion

Our clinical challenge was to improve the predictive ability of the well-known TUG
in two ways: (1) by instrumenting it to assess multiple quantitative kinematic parameters
specific to the different subtasks of the TUG and (2) by including qualitative features of
the residents. Our multiple logistic regressions led to the development of an i + TUG
(M3-model in Table 2) for predicting fall risk in our sample that included the parameters of:
a TUG with TTUG, an iTUG with ωmax

V1 , and walking aid and gender characteristics.
Thirty-six residents used walking aids to compensate for postural instability and/or

mobility decline (F = 11 and NF = 26). In our sample, the postural instability and/or
mobility decline typically have several causes, which include diabetic polyneuropathy
(F = 3 and NF = 8), Alzheimer’s disease (F = 5 and NF = 14), and post-stroke hemiparesis
(F = 2 and NF = 4). No residents with Parkinson’s disease were included, but this condition
was not an exclusion criteria.

The predictive ability of a fall risk test is a critical component of evidence-based
patient care, especially among elderly nursing home residents. The indicators of predictive
performance we obtained for i + TUG are better than those for TUG, which shows how
interesting it is to add additional information to TUG. Our model can be compared with
previously proposed models. In [28], the limited predictive ability of TUG for identifying F
in a sample of community-dwelling older adults was already pointed out. They showed a
sensitivity of 32% (versus 29.2% with our i + TUG) and a specificity of 73% (95.9%).

In a preliminary study conducted with the same sample of residents [7], we improved
the discriminative and predictive qualities of TUG by adding kinematic data collected
during a 6MWT. The addition of kinematic factors increased the accuracy of the test from
65.7% to 73.9%, with a sensitivity of 85% and a specificity of 50%. Here, we have shown that,
based on data collected with the same sensor in the same sample, it is possible to achieve the
same predictive accuracy using only data collected during i + TUG. Combining the results
of our previous study [7] and the findings obtained here, it appears that an instrumented
6MWT (i6MWT) and the i + TUG developed here are highly complementary, with one test
having a high sensitivity and the other high specificity. Because sensitivity refers to the
test’s potential to identify F residents and specificity refers to the test’s potential to identify
NF residents, we recommend that, in daily clinical practice and long-term monitoring of
nursing home residents, each resident should undergo an i + TUG in the first instance to
rule out that he/she is at risk for falls. If the i + TUG can not rule out that he/she is at risk
for falls, an i6MWT must also be performed to confirm that he/she is indeed at risk.

The mean TTUG was 24.5 s for F and 21.5 s for NF, both values that are close to the 22.5 s
found in [4] and the 22.1 s found in [29]. Furthermore, the inclusion of kinematic data from
a single wearable IMU sensor allowed for computing TUG’s subtask durations. It appears
that our mean Tget−up (4.3 ± 2.7 s) is higher than the value reported in [9] (2.1 ± 0.3 s). This
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discrepancy can be explained by the fact that the get-up movement is first initiated by a
trunk tilt (ωML, not studied here) and terminated by a hip extension (aAP). We chose the
latter way of identifying the get-up phase, while, in [9], they chose the former. Our larger
value can also be explained by the age of our sample. As shown in [30], there is indeed a
relationship between sarcopenia in the elderly and the long time it takes them to get up.

A clear finding in our study is that ωmax
V1 is significantly higher in NF. This result is

consistent with previous findings. In the study [18] that led to the development of the “Dite
Turn test”, it was shown that elderly people who are more prone to fall turn more slowly
and unsteadily. They highlighted four characteristics of the turn performed in the TUG that
distinguish F from NF: the time required to turn, i.e., Tturn−i that we found to be higher in
F, but also indirectly ωmax

Vi ; the number of steps to complete the turn; the stable appearance
of the subject during the turn and the fact that the subject makes a smooth transition
between the turning and walking subtasks. The number of steps was not measured in
this work. However, the smoothness/stable appearance of the movement was evaluated
using Ji. We found that Ji is decreased in NF, i.e., their motion is smoother in agreement
with the observation of [18], although the difference is not significant. In [19,20], it is also
highlighted that the duration and velocity of rotation measured by an inertial sensor during
a 7-day period were increased in F. The i + TUG is able to reach the same conclusion within
a much shorter time period. Same conclusions about ωmax

Vi have been found in [19]. As for
our results, the jerk was measured during the first and second half-turns. It would have
been interesting to extend the measurement to the end and the beginning of walking in
the case of the first half-turn, and to the end of walking and the beginning of the transition
to the sitting position in the case of the second half-turn. Indeed, it was shown in [13]
that the strategies for approaching the half-turn differ between young and old participants
regarding velocity. Interestingly, ωmax

V2 is not significantly different between F and NF.
This could be due to greater variability in our sample. As pointed out in [31], the second
half-turn requires more cognitive skills, different motor planning, and greater visual skills
because of the need to anticipate the sitting phase.

We acknowledge that our sample size may be considered small for a geriatric popula-
tion, which is a limitation of our study. In addition, our measurements were performed
in nursing homes and may not be representative of the majority of the elderly popula-
tion. TUG assesses only the person’s global mobility; other risk factors such as visual or
cognitive impairment, or polymedication [5] need to be considered to capture the entire
clinical picture. To address this limitation, it would be interesting to combine the results
of the i + TUG with other tests, such as the Falls Risk Assessment Tool (FRAT), which
takes into account the other risk factors mentioned above. Our sample was not designed
to examine age effects on fall risk because both F and NF have similar means and a large
range of ages. However, age increases TTUG [27], and presumably the fall risk. A review
paper [32] found that people aged 85 years or older in the United States are four times more
likely to be injured in falls than a population aged 65 to 74 years. Lower limb weakness
and, more generally, sarcopenia may be partly responsible for this [33,34]. Knee extensor
muscle strength was not assessed. Since knee extensor muscle strength could identify the
elderly at risk of falling [35], these missing data are also a limitation of our study. Note
that the threshold of 85-years in the review [32] is close to the mean age of our sample,
illustrating the importance of predicting fall risk in very old people. A wider spread of
age would be required, which is an interesting perspective. Finally, we excluded residents
with cognitive disorders that prevented them from understanding the instructions given
during the experiment. However, even a mild cognitive impairment could affect the iTUG
subtasks [31]. Our protocol does not allow us to determine the impact of mild cognitive
impairment on our findings.

5. Conclusions

We have shown that integrating kinematic data collected with a single low-cost IMU
during TUG and general resident characteristics can improve the accuracy of fall risk predic-
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tion. The new i + TUG achieves 74% versus 67% for the TUG. The i + TUG is highly specific
(95.9%) and quick to perform; it may be implemented on a smartphone. We recommend
integrating the i + TUG into the test battery commonly performed in nursing homes to rule
out residents at risk for falls with a high degree of confidence.

It should be kept in mind that the management of an elderly resident in a nursing
home must be multifactorial. The i + TUG must therefore be integrated to optimize a care
and diagnostic approach that does not neglect the psychosocial and behavioural aspects
and always focuses on the resident/caregiver duo.
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Abstract: This study aimed to investigate the effects of supervised exercise training (SET) on spa-
tiotemporal gait and foot kinematics parameters in patients with symptomatic lower extremity
peripheral artery disease (PAD) during a 6 min walk test. Symptomatic patients with chronic PAD
(Fontaine stage II) following a 3 month SET program were included. Prior to and following SET, a
6 min walk test was performed to assess the 6 min walking distance (6MWD) of each patient. During
this test, spatiotemporal gait and foot kinematics parameters were assessed during pain-free and
painful walking conditions. Twenty-nine patients with PAD (65.4 ± 9.9 years.) were included. The
6MWD was significantly increased following SET (+10%; p ≤ 0.001). The walking speed (+8%) and
stride frequency (+5%) were significantly increased after SET (p ≤ 0.026). The stride length was
only significantly increased during the pain-free walking condition (+4%, p = 0.001), whereas no
significant differences were observed during the condition of painful walking. Similarly, following
SET, the relative duration of the loading response increased (+12%), the relative duration of the
foot-flat phase decreased (−3%), and the toe-off pitch angle significantly increased (+3%) during the
pain-free walking condition alone (p ≤ 0.05). A significant positive correlation was found between
changes in the stride length (r = 0.497, p = 0.007) and stride frequency (r = 0.786, p ≤ 0.001) during
pain-free walking condition and changes in the 6MWD. A significant negative correlation was found
between changes in the foot-flat phase during pain-free walking condition and changes in the 6MWD
(r = −0.567, p = 0.002). SET was found to modify the gait pattern of patients with symptomatic PAD,
and many of these changes were found to occur during pain-free walking. The improvement in
individuals’ functional 6 min walk test was related to changes in their gait pattern.

Keywords: intermittent claudication; vascular rehabilitation; 6 min walking test; functional walking

1. Introduction

Lower extremity peripheral artery disease (PAD) is a chronic atherosclerotic vascular
morbidity that leads to the narrowing and/or occlusion of lower-limb arteries [1]. PAD
affects more than 200 million people worldwide [2]. Intermittent claudication—a pain
occurring in the lower limbs during exercise and resolving with rest—is one of the typical
manifestations of PAD [1]. Intermittent claudication has a huge impact on patients’ daily
life activities, leading to reduced quality of life for these individuals [3,4].

Beyond the well-known manifestations of reduced walking capacities, physical func-
tion, altered muscular characteristics, and impaired balance [5–9], gait abnormalities have
also been documented in patients with PAD [10–17]. Previous investigations reported a
reduction in walking speed and cadence, smaller step length, and greater stance phase
duration in patients with PAD compared to age-matched non-PAD individuals [13,17,18].
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These changes were also observed during pain-free walking conditions [13,15,18]. The
attributes of slower gait speed and stride frequency and shorter stride length were recently
associated with higher levels of circulating biomarkers of inflammation and endothelial
cell oxidative stress [19].

Cardiovascular risk management, pharmacological treatment, and exercise therapy are
the main pillars of the treatment of PAD [1]. Following supervised exercise training (SET),
greater treadmill walking performance has been well documented, with an improvement of
~82 m and ~120 m in treadmill pain-free and maximal walking distance, respectively [20].
Although less investigated, the 6 min walk test (6MWT)—an overground submaximal
functional walking test—is also an effective tool that had been used to assess walking
performance following interventions in patients with PAD [21,22]. A meta-analysis showed
a mean improvement of ~35 m in 6 min walking distance (6MWD) following SET in
individuals with PAD [23].

The question of whether SET induces gait changes, and whether the latter are
related to treadmill performance in symptomatic patients with PAD, remains contro-
versial [24–30]. To the best of our knowledge, the recent study by Lanzi et al. [29] is the
only study to have assessed this relationship. Their study [29] showed that SET reduced
the duration of the push-off and extended the duration of the foot-flat during a constant-
speed treadmill exercise. Interestingly, in treadmill tests, gait changes were found to
be significantly related to the delayed onset claudication distance [29]. However, the
question of whether gait changes following SET are also related to functional walking
improvements assessed by the 6MWT remains to be investigated. The investigation
of this issue would be clinically relevant, as the 6MWT is representative of the type of
walking one commonly partakes in daily life [21]. Following SET, a greater distance
covered during the 6MWT is observed alongside an obvious increase in average walking
speed. As spatiotemporal gait parameters (such as stride frequency and length) are
influenced by walking speed [31], it is expected that gait pattern changes should be
observed following SET during the 6MWT.

Previous investigations showed that the durations of the inner-stance phases (e.g.,
foot-flat and push-off) were altered during an acute treadmill exercise performed at
a constant speed in patients with symptomatic PAD [29,32]. These findings showed
that, compared to the pain-free walking condition, the duration of foot-flat phase in-
creased and the duration of the push-off phase decreased with the onset of claudication
pain [29,32]. The extended duration of the foot-flat phase during exertion may ameliorate
the balance between oxygen supply and demand in the active ischemic calf muscula-
ture [13,29]. On the other hand, the reduced duration of the push-off phase during the
transition from pain-free to painful walking may be related to exercise-induce ischemia,
which may lead to calf muscle strength deficit and affect forward propulsion [8]. No-
tably, even if the onset of the claudication distance was delayed following SET, similar
evolutions were observed during a constant-speed treadmill test regarding temporal
gait parameters [29]. This suggests that once claudication is established and it worsens
to moderate-to-maximal levels, similar gait adaptations occur during an acute bout of
exercise before and following SET [29]. However, the evolution of spatiotemporal gait
parameters during acute exercise in the form of the 6 min walk test following SET remain
to be investigated in these individuals.

The primary aim of this study was to determine the spatiotemporal gait and foot kine-
matics parameters during an acute bout of 6MWT (acute adaptations) and in response to
3 month SET (chronic adaptations) in patients with symptomatic PAD. It was hypothesized
that (1) SET would improve the 6 min walking distance (chronic adaptations); (2) SET
would increase walking speed, and as well stride frequency and length (chronic adapta-
tions); and (3) during the transition from pain-free to painful walking, similar acute gait
adaptations would be observed during the 6MWT before and after SET.
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2. Methods
2.1. Participants

Symptomatic patients with chronic lower extremity PAD were recruited from the
Division of Angiology of the University Hospital of Lausanne, Switzerland. As described
elsewhere, all the participants were enrolled in the Angiofit study and took part in the
SET program [29,33]. For the purpose of this study, we included data regarding all the
patients’ spatiotemporal gait and foot kinematics parameters during the 6MWT before
and following SET. This study was approved by the local ethics committee (study number:
2016-01135) and was conducted in accordance with the Declaration of Helsinki. Before
participation, the patients provided written, voluntary, informed consent.

2.2. Experimental Design

Each participant underwent (i) a pre-SET vascular medicine examination; (ii) a pre-
SET 6MWT with gait assessment; (iii) a 3-month SET program; (iv) a post-SET 6MWT with
gait assessment; and (v) a post-SET vascular medicine examination.

2.2.1. Vascular Medicine Examination

The medical history of each individual was assessed, and physical and vascular
evaluations were performed. The ankle–brachial index (ABI) and toe–brachial index (TBI)
were measured in accordance with the guidelines [1]. ABI and TBI values related to the
most symptomatic leg were considered for the analyses.

2.2.2. Six Min Walk Test

In an indoor 50 m corridor, the patients were asked to walk as far as possible within
6 min to determine their 6MWD [34]. The patients were told that they were allowed to
stop during the test and/or lean against the wall. If they did so, they were instructed to
resume walking as soon as they could. During the test, standard phrases of encouragement
were used in accordance with the guidelines [34]. The pain-free walking time (PFWT6min)
and distance (PFWD6min) during the 6MWT was recorded during the test. These values
correspond to the time or distance covered by the patients until the onset of pain. At
the end of the test, the rate of perceived exertion on Borg’s scale (6: “very very light”;
20: “maximal effort”) [35] and the claudication pain severity on the visual analogue scale
(VAS; 0: “no pain”; 10: “maximal pain”) were also recorded. In the post-SET condition, the
6MWT was performed at least 48 h following the last training session.

2.2.3. Multimodal SET

The patients participated in the clinical multimodal SET program, as previously
described [29,33,36,37]. Briefly, the patients performed Nordic walking twice weekly and
exercises to strengthen the lower limbs once a week. Each exercise session’s duration was
60 min. However, this was the total time available for each training session and does not
represent the actual exercising time performed by the patients. Indeed, depending on the
exercise tolerance and the baseline functional status of the patient, the actual exercising
time at the beginning of the program was around 15–25 min, which increased progressively
up to 30–45 min at the end of the program. Each training session started with a 5–10 min
warm-up and ended with a 5 min cool down. A clinical exercise physiologist supervised
all of the training sessions.

During the outdoor Nordic walking sessions, the patients were asked to walk until
they experienced moderate-to-severe claudication leg pain. Subsequently, the patients
were asked to rest until they experienced complete (or almost complete) resolution of the
pain. To enable complete supervision over the training sessions, patients were asked to
walk back and forth over a 100–200 m section of level ground. In addition, the training
intensity of the exercise sessions was also monitored using Borg’s scale [35]. During
the first few weeks of training, patients were asked to exercise at a low intensity (9–11
on Borg’s scale). Subsequently, if feasible and safe, the exercise intensity was increased

93



Sensors 2021, 21, 7989

to a moderate or moderate-to-vigorous intensity (12–16 on Borg’s scale). The duration
of each walking bout depended on the exercise intensity and the induced claudication
pain. In general, walking bouts 5–10 min in duration were performed when the exercise
intensity (assessed by Borg) was set at a low-to-moderate intensity. On the other hand,
walking bouts 1 to 4 min in duration were performed when the exercise intensity was set
at a moderate-to-vigorous intensity. The latter, despite inducing a higher cardiovascular
stimulation, usually elicits a rapid increase in, and high levels of, claudication pain in
these individuals.

The strengthening of the lower limbs was performed indoors with circuit training
composed of 5–6 stations. Each station consisted of (1) a different type of walking, such
as toe/heel, high knees, side-to-side, or backward walking, or (2) lower-limb resistance
exercises (calf/heel raise, lunges, or squats) using body weight, dumbbells, or elastic bands.
During the first few weeks of training, the patients were asked to perform 5–15 repetitions
of each exercise using their body weight, interspersed with 30 to 60 s of recovery. The
exercise training intensity was mainly set at a low level. In the following weeks, the patients
were encouraged to exercise at a moderate intensity (12–14 on Borg’s scale). To that end,
the patients were asked to increase the number of repetitions (20–30 repetitions using their
body weight) or to exercise using dumbbells or elastic bands (10–20 repetitions).

During the program, the patients received 6 h of therapeutic workshops on cardiovas-
cular risk factors and a healthy lifestyle (regarding nutrition, physical activity, and tobacco).
Compliance with the SET program was defined by the percentage of attended sessions out
of the total number of sessions [29].

2.3. Spatiotemporal Gait and Foot Kinematics Parameters

During the 6MWT, the patients wore two Physilog® (GaitUp, Lausanne, Switzerland)
inertial sensor units (dimensions: 50 mm × 40 mm × 16 mm, weight: 36 g) [38,39]. These
sensors were used to evaluate spatiotemporal gait and foot kinematics parameters [38,39].
Physilog® units integrate a microcontroller, a memory unit, a three-axial accelerometer
(range ±3 g), a 3-axial gyroscope (range ±800◦ s−1), and a battery [38,39]. The inertial
sensors displayed good accuracy and precision parameters and showed excellent test–retest
reliability [39]. Physilog® units have been validated in young [39] and older adults [38,39].
In addition, these sensors were also validated in individuals affected by stroke [40] and
in children with cerebral palsy [41]. Finally, these sensors were previously used in other
clinical populations, such as patients with Parkinson’s disease [42] and in patients with
PAD [29].

The spatiotemporal gait and foot kinematics parameters were recorded during the
whole 6MWT. For the analyses, ten consecutive strides were selected 1 min after the
beginning of the test (pain-free walking: pain-free) and before the end of the 6 min walk
test during the painful walking condition (pain).

During the 6MWT, walking speed, spatiotemporal gait, and foot kinematics parame-
ters were assessed. Stride length was the only spatial parameter. The temporal parameters
were stride duration and frequency (i.e., cadence) and the relative duration of the swing,
stance, and double support phases (% of gait cycle duration). In addition, the relative
duration of the inner-stance phases (i.e., loading response, foot-flat and push-off) were
also reported [38,39]. The foot kinematics parameters were the heel-strike pitch angle (the
positive angle formed between the level ground and the foot during heel-strike), the toe-off
pitch angle (the negative angle formed between the level ground and the foot during
toe-off), and the foot clearance (the foot’s height during the swing phase). Details regarding
the estimation of the spatiotemporal gait and foot kinematics parameters are presented in
the supplementary materials.

The symmetry between the legs was assessed by dividing the values of the most
symptomatic leg by those of the less or non-symptomatic leg [29].
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2.4. Statistical Analysis

The sample size was estimated using our previous data [36], showing that 23 patients
were necessary (power 80%; α = 5%). The Kolmogorov–Smirnov test was used to assess
the normality of the distribution. First, a two-way repeated measures analysis of variance
(ANOVA) (time (before SET vs. after SET) × duration (pain-free vs. pain)) was used to
evaluate the symmetry of the spatiotemporal gait and foot kinematics parameters between
legs. Second, a two-way ANOVA was also used to compare the gait pattern in the most
symptomatic leg alone. If the ANOVAs showed a significant main effect (time or duration)
or interaction effect (time × duration), multiple comparison analyses with Bonferroni
adjustments were performed to detect the differences. Paired t-tests were used to compare
the 6MWT and vascular parameters before and following the multimodal SET program. To
determine the relationship between the spatiotemporal gait and foot kinematics changes
(i.e., delta; post- minus pre-training values) and changes in 6MWD following SET, partial
correlations, controlled for gait baseline values, were performed. The data are expressed
as the mean ± SD. The level of significance was set at p ≤ 0.05. SPSS 27 software (IBM
Corporation, Armonk, NY, USA) was used for the statistical analyses.

3. Results
3.1. Participants

Twenty-nine symptomatic patients with chronic PAD were included. All the patients
completed the 3 month SET program. Their general characteristics are reported in Table 1.
A similar pharmacological therapy was observed before and after SET, except that one
patient started antidiabetic therapy during SET. The compliance of the participants with
the SET program was 98 ± 4%.

Table 1. Characteristics of the participants.

Variables Mean ± SD or n (%)

Number of included patients 29
Men 15 (52)

Women 14 (48)
Age—years 65.4 ± 9.9

BMI—kg·m−2 28.7 ± 6.2
Cardiovascular risk factors

Hypercholesterolemia 23 (79)
Hypertension 24 (83)

Smoking (current) 12 (41)
Smoking (former) 13 (45)
Smoking (never) 4 (14)

Family history of CVD 13 (45)
Type 2 diabetes mellitus 8 (28)

Type 1 diabetes 1 (3)
Prior history of CVD

Cardiac 8 (28)
Cerebrovascular 2 (7)

Prior arterial revascularisation 13 (45)
Ongoing treatment

Antiplatelet 28 (97)
Antihypertensive 24 (83)

Lipid lowering 23 (79)
Antidiabetic 9 (31)

BMI: body mass index; CVD: cardiovascular disease.

3.2. Vascular Parameters

The values regarding the ABI (before SET: 0.79 ± 0.14 after SET: 0.78 ± 0.14;
p = 0.829) and TBI (before SET: 0.60 ± 0.15, after SET: 0.60 ± 0.18; p = 0.971) were un-
changed following SET.

95



Sensors 2021, 21, 7989

3.3. Six Min Walk Test

Following SET, a significant increase was observed in the 6MWD values (+10%;
Table 2). The values regarding PFWT6min and PFWD6min did not change significantly
(Table 2). The RPE at the end of the 6MWT was significantly higher after SET (Table 2).
Values relating to claudication pain at the end of the 6MWT were unchanged (Table 2).

Table 2. 6 min walk test before and after supervised exercise training.

Variable Before After p Value

6MWD—m 425.5 ± 70.3 468.7 ± 84.3 ≤0.001
PFWT6min—s 125.1 ± 55.4 123.3 ± 54.0 0.869

PFWD6min—m 162.5 ± 67.4 179.2 ± 77.6 0.245
6MWTRPE 12.3 ± 2.5 13.2 ± 2.2 0.043
6MWTVAS 6.8 ± 2.2 7.1 ± 1.8 0.432

6MWD: 6 min walking distance; PFWT6min: pain-free walking time during the 6 min walk test; PFWD6min:
pain-free walking distance during the 6 min walk test; 6MWTRPE: rate of perceived exertion at the end of the
6 min walk test; 6MWTVAS: claudication pain at the end of the 6 min walk test. Bold p value is statistically
significant (p ≤ 0.05).

3.4. Spatiotemporal Gait and Foot Kinematics Parameters: Acute and Chronic Adaptations

The symmetry of the spatiotemporal gait and foot kinematics parameters between
legs showed no significant time, duration, or time × duration interaction effect (data not
shown). This suggests that similar acute and chronic adaptations were present in both
legs of the participants. Therefore, for sake of clarity, only the results regarding the most
symptomatic leg were presented.

3.4.1. Spatiotemporal Gait Parameters (Acute Adaptations)

During the 6MWT, a significant duration effect was observed for all the spatiotemporal
gait parameters (Table 3). Multiple comparison analyses demonstrated that walking
speed, stride duration, stride frequency, stride length, duration of swing, loading response
duration, and push-off phase duration significantly decreased during the transition from
the pain-free to painful walking condition, whereas the duration of the stance, foot-flat,
and double support phases significantly increased during the 6MWT (Table 3).

3.4.2. Spatiotemporal Gait Parameters (Chronic Adaptations)
Walking Speed

A significant time and time × duration interaction effect was found with regard to the
walking speed (Table 3). Multiple comparison analyses revealed that walking speed was
significantly increased following SET during the pain-free and painful walking conditions
(p ≤ 0.026, Table 3).

Stride Length

A significant time and time × duration interaction effect was found regarding the
stride length (Table 3). Multiple comparison analyses showed that stride length was
significantly increased following SET (time effect: p = 0.013). Compared to the values
recorded before SET, stride length was significantly increased following SET during the
pain-free walking condition alone (p = 0.001), whereas no significant differences were
observed during the painful walking condition (p = 0.569).

Stride Duration and Frequency

Following SET, stride duration and frequency significantly increased (time effect:
p ≤ 0.001) with no significant time × duration interaction effect (Table 3).
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Table 3. Spatiotemporal gait parameters in the most symptomatic leg during the 6 min walk test before and after supervised
exercise training (SET).

Before SET After SET Two-Way ANOVA p-Values

Variable Pain-Free Pain Pain-Free Pain Time Effect Duration Effect Time×Duration

Walking speed—m·s−1 1.3 ± 0.2 1.2 ± 0.2 * 1.5 ± 0.2 # 1.3 ± 0.2 *,# ≤0.001 ≤0.001 0.031

Spatial Parameter

Stride length—m 1.4 ± 0.2 1.3 ± 0.2 * 1.4 ± 0.2 # 1.3 ± 0.2 * 0.013 ≤0.001 0.020

Temporal Parameters

Stride duration—s 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 ≤0.001 ≤0.001 0.502

Stride frequency—Hz 1.0 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 ≤0.001 ≤0.001 0.297

Stance duration—% 60.1 ± 2.0 60.5 ± 1.9 59.6 ± 2.3 60.5 ± 2.4 £ 0.431 0.017 0.033

Swing duration—% 39.9 ± 2.0 39.5 ± 1.9 40.4 ± 2.3 39.5 ± 2.4 £ 0.431 0.017 0.033

Loading response—% 12.5 ± 3.1 11.0 ± 2.7 * 14.0 ± 3.2 # 11.3 ± 3.0 * 0.013 ≤0.001 0.019

Foot-flat—% 55.2 ± 6.3 59.8 ± 6.3 * 53.2 ± 6.4 # 60.4 ± 6.3 * 0.139 ≤0.001 0.011

Push-off—% 32.3 ± 4.9 29.2 ± 4.8 32.7 ± 5.5 28.3 ± 5.0 0.706 ≤0.001 0.098

Double support—% 20.9 ± 3.5 22.9 ± 3.7 19.5 ± 4.0 21.9 ± 3.9 0.057 ≤0.001 0.413

Ten consecutive strides were analyzed during pain-free walking (pain-free) and during painful walking at the end of the 6 min walk test
(pain). Bold p value is statistically significant. * p ≤ 0.05 for significant difference compared to pain-free. # p ≤ 0.05 for significant difference
compared to before SET. £ p ≤ 0.05 for significant difference to pain-free within after SET condition.

Stance and Swing Phase

After SET, the relative duration of the stance and swing phase was unchanged (time
effect: p = 0.431); however, a significant time × duration interaction effect was observed
(Table 3). Multiple comparison analyses revealed a significant increase in the relative
duration of the stance phase during the painful condition compared to the pain-free
condition following SET alone (p = 0.008). Similarly, a significant decrease in the relative
duration of the swing phase was observed during the painful condition compared to the
pain-free walking condition following SET alone (p = 0.008).

Inner-Stance Phases

A significant time and time × duration interaction effect was observed regarding the
relative duration of the loading response (Table 3). Multiple comparison analyses revealed
a significant increase in this parameter following SET (time effect: p = 0.013). After SET,
there was a significant increase in the relative duration of the loading response during
the pain-free walking condition alone (p = 0.001), whereas no significant differences were
observed during the painful walking condition (p = 0.523).

The relative duration of the foot-flat phase was unchanged after SET (time effect:
p = 0.139); however, a significant time × duration interaction effect was observed (Table 3).
Multiple comparison analyses revealed a significant decrease following SET during the
pain-free walking condition alone (p = 0.002), whereas no significant differences were
observed during the painful walking condition (p = 0.420).

No significant time and time × duration interaction effect was observed for the relative
duration of the push-off or for the double support phases (Table 3).

3.5. Foot Kinematics Parameters (Acute Adaptations)

During the 6MWT, all the foot kinematics parameters showed a significant duration
effect, except for the first maximal toe clearance (Table 4). Multiple comparison analyses
showed that the heel-strike pitch angle, toe-off pitch angle, maximal heel clearance, second
maximal toe clearance, and minimal toe clearance significantly decreased during the
transition from the pain-free to the painful walking condition during the 6MWT (Table 4).
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Table 4. Foot kinematics in the most symptomatic leg during the 6 min walk test before and after supervised exercise
training (SET).

Before SET After SET Two-Way ANOVA p-Values

Variable Pain-Free Pain Pain-Free Pain Time Effect Duration Effect Time × Duration

Heel-strike pitch
angle—◦ 26.9 ± 6.8 24.4 ± 6.2 27.8 ± 5.9 24.2 ± 5.0 0.463 ≤0.001 0.080

Toe-off pitch
angle—◦ −68.8 ± 6.4 −65.2 ± 8.1 * −70.5 ± 6.3 # −65.1 ± 7.2 * 0.356 ≤0.001 0.047

Max heel
clearance—cm 30.1 ± 5.4 28.9 ± 5.6 30.5 ± 4.5 29.2 ± 5.1 0.517 0.003 0.476

First max toe
clearance—cm 7.8 ± 4.1 7.6 ± 4.2 7.9 ± 3.2 7.7 ± 3.5 0.837 0.252 0.895

Second max toe
clearance—cm 18.1 ± 4.1 16.7 ± 3.4 17.5 ± 4.2 15.6 ± 3.6 0.082 ≤0.001 0.210

Min toe clearance—cm 2.4 ± 0.9 2.1 ± 0.8 2.4 ± 1.1 2.2 ± 1.1 0.800 0.013 0.933

Ten consecutive strides were analyzed during pain-free walking (pain-free) and during painful walking at the end of the 6 min walk test
(pain). Bold p value is statistically significant. * p ≤ 0.05 for significant difference compared to pain-free. # p ≤ 0.05 for significant difference
compared to before SET.

3.6. Foot Kinematics Parameters (Chronic Adaptations)

The toe-off pitch angle was unchanged after SET (time effect: p = 0.356); however, a
significant time × duration interaction effect was observed (Table 4). Multiple comparison
analyses revealed that, compared to before SET, the toe-off pitch angle significantly increased
following SET during the pain-free walking condition alone (p = 0.05), whereas no significant
differences were observed during the painful walking condition (p = 0.938). No significant
time and time × duration interaction effect was observed regarding the heel-strike pitch angle,
maximal heel clearance, second maximal toe clearance, or minimal toe clearance (Table 4).

4. Correlations

The relationships between gait pattern changes during the pain-free walking condition
and changes in 6MWD following SET are displayed in Table 5. A significant positive cor-
relation was found between changes in stride length, stride frequency, and second max toe
clearance during the pain-free walking condition and changes in 6MWD (Table 5). On the
other hand, a significant negative correlation was found between changes in the duration of
the foot-flat phase during the pain-free walking condition and changes in 6MWD (Table 5).

Table 5. Relationship between spatiotemporal gait and foot kinematics changes during pain-free
walking condition and changes in 6 min walking distance following supervised exercise training.

Gait Pattern Changes Relationship with the 6 min Walking Distance Changes p Value

Stride length—m r = 0.497 0.007
Stride frequency—Hz r = 0.786 ≤0.001
Stance duration—% r = −0.261 0.180
Swing duration—% r = 0.261 0.180

Loading response—% r = 0.320 0.097
Foot-flat—% r = −0.567 0.002
Push-off—% r = 0.303 0.116

Double support—% r = −0.356 0.060
Heel-strike pitch angle—◦ r = 0.313 0.105

Toe-off pitch angle—◦ r = −0.100 0.614
Max heel clearance—cm r = −0.112 0.570

First max toe clearance—cm r = 0.035 0.858
Second max toe clearance—cm r = 0.424 0.025

Min toe clearance—cm r = −0.117 0.553
Bold p value is statistically significant (p ≤ 0.05). All correlations were controlled for gait baseline values.

98



Sensors 2021, 21, 7989

5. Discussion

The results of this study partially confirm our hypotheses: (1) SET improved the
6MWD in patients with symptomatic PAD; (2) following SET, walking speed, stride
frequency and stride length were significantly greater during the 6MWT. However,
stride length was significantly increased following SET during the pain-free walking
condition alone, whereas no significant differences were observed during the painful
walking condition. Similarly, changes in the relative duration of the inner-stance
phases (loading response and foot-flat) and the toe-off pitch angle following SET
were observed during the pain-free walking condition alone; (3) during the transition
from the pain-free to the painful walking condition, the spatiotemporal gait and foot
kinematics parameters were shown to undergo a similar evolution before and after
SET during the 6MWT. Finally, our results showed that changes in stride length and
frequency and in the relative duration of the foot-flat phase during the pain-free
walking condition were related to changes in functional walking performance during
the 6MWT following SET.

The results of the present investigation confirm previous findings, which showed
that SET improves 6MWD in symptomatic patients with PAD [9,23]. We observed a
~43 m improvement in 6MWD, which was greater than the substantial meaningful
change of +20 m [43] or +35 m [44] previously observed in these individuals. The
greater improvement in 6MWD observed in the present investigation may have been
related to the training characteristics of the multimodal SET program. Indeed, the
patients combined the strengthening of the lower limbs with Nordic walking, which
are both functional training modalities. This type of training likely led to better
improvements in functional walking performance. The greater improvement in 6MWD
could also be related to the 50 m course length, as previous studies showed that
longer course lengths were associated with greater walking distances [45]. By contrast,
this improvement was similar to the minimal detectable change of >46 m recently
observed in patients with claudication [46]. Taken together, these results suggest that
multimodal SET is effective at improving functional walking performance in patients
with symptomatic PAD [33,36,37].

During the transition from the pain-free to painful walking conditions, similar
acute adaptations were observed for the spatiotemporal gait and foot kinematics
parameters during the 6MWT before and after SET. These results extend previous
findings observed during constant-speed treadmill exercises in patients with symp-
tomatic PAD [13,29] and highlight that similar acute gait adaptions also occur during
the 6MWT, which is a more functional form of walking that represents daily life more
accurately [21]. Previous studies have shown that, when compared to aged-matched
individuals, gait abnormalities exist from the first step taken (pain-free), suggesting
muscle metabolic myopathy in patients with PAD [15,47,48]. Gait worsening was also
documented once leg claudication pain was established, highlighting the role of muscle
ischemia on gait pattern changes during exertion in these individuals [15]. Our results
are in line with these findings. We observed that the walking speed, stride duration,
stride frequency, stride length, relative duration of swing, loading response duration,
and push-off phase duration decreased (pain-free > end), whereas the duration of the
stance, foot-flat and double support phases significantly increased (pain-free < end)
during the transition from the pain-free to the painful walking condition during the
6MWT. The extended duration of the stance and the foot-flat phases during exertion
may ameliorate the balance between oxygen supply and demand in the active ischemic
calf musculature [13,29]. It is also possible that patients adopt this pattern to improve
their stability during painful walking [13,29]. The reduced duration of the push-off
phase during the transition from the pain-free to the painful walking condition may be
related to exercise-induced ischemia, which may lead to calf muscle strength deficit
and affect forward propulsion [8]. Consequently, this may also affect walking speed,
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stride frequency and stride length, and foot kinematics, especially during the 6MWT,
where patients are allowed to choose their own walking pace.

In current research, there are a limited number of studies regarding gait pattern
changes following exercise interventions in patients with symptomatic PAD, and the
findings are inconsistent. Indeed, some studies [27,29,30,49], but not others [24,25,28],
observed significant gait changes following SET. The results of the present investiga-
tion showed that gait pattern was modified in patients with symptomatic PAD during
the 6MWT following multimodal SET. It is, however, interesting to note that many
of these changes occurred during the pain-free walking condition alone. Indeed, al-
though walking speed and stride frequency increased following SET, stride length
was significantly increased following SET during the pain-free walking condition
alone, whereas no significant differences were observed during the painful walking
condition. These findings indicate that the increased walking speed observed dur-
ing the painful walking condition following SET is mainly related to an increased
stride frequency rather than increased stride length. Similarly, the relative duration
of the loading response phase increased, and the relative duration of the foot-flat
phase decreased following SET during the pain-free walking condition alone. The
toe-off pitch angle was also increased following SET, but again, during the pain-free
walking condition alone. These observations are in contrast to previous findings that
show the relative duration of the foot-flat phase was increased during constant-speed
maximal treadmill exercises following SET in patients with symptomatic PAD [29].
A possible explanation is that this may have been due to the testing protocol used
to assess gait changes following SET. Indeed, compared to the constant-speed tread-
mill test, walking speed during 6MWT exhibited different values before and after
SET. Following SET, the patients demonstrated an improved dynamic balance, which
allowed them to walk faster during the 6MWT, causing a reorganization of the du-
rations of the loading response (increased) and foot-flat (decreased) phases during
the pain-free walking condition. This is in line with previous observations, which
showed that the duration of the foot-flat phase was negatively correlated to walking
speed in both PAD and non-PAD individuals [13]. Once claudication pain began and
worsened to moderate-to-maximal levels, the walking speed decreased during the
6MWT. Interestingly, the relative durations of the loading response and the foot-flat
phases returned to the pre-SET values despite the greater walking speed in the post-
SET condition. This suggests that factors other than the walking speed are related to
gait pattern changes. These findings indicate the potential role of exercise-induced
ischemia and claudication pain on gait adaptations during exertion in patients with
symptomatic PAD.

The use of non-invasive inertial sensors with the aim to investigate gait pattern
during physical assessment has potential applications with regard to the optimization
of the prescription of training in patients with PAD. Indeed, these inertial sensors may
easily assess gait pattern evolutions during functional acute exercise performed before
and following an exercise training program. This technology allows one to evaluate
the gait changes in the transition from the pain-free to painful walking condition, and
therefore produces a valid description of daily-life walking pattern in these individuals.
In addition, by evaluating the potential correlation between gait pattern and functional
performance changes following rehabilitation, specific training approaches could be
conceived to optimize patients’ benefits. Interestingly, our results showed that the
changes in stride length and frequency during the pain-free walking condition were
positively correlated to changes in 6MWD. In addition, the changes in the relative
duration of the foot-flat phase during the pain-free walking condition were negatively
correlated with changes in 6MWD. These findings suggest a link between changes in
gait pattern during the pain-free walking condition and improved functional walking
performance in patients with symptomatic PAD. These results feature important clini-
cal implications and indicate the need for further investigations regarding the effects
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of specific gait training modalities on gait pattern and its relation to functional walking
performance in these individuals. A previous meta-analysis showed that walking
training with cueing of cadence improves spatiotemporal gait parameters more than
walking training alone in older patients with cardiovascular disease [50]. Walking
training with cueing of cadence, which was usually 5–10% greater than comfortable
cadence, improves walking speed, stride length and frequency, and walking symme-
try in patients who have experienced a stroke [50]. Based on the gait abnormalities
previously observed in patients with PAD [13,15,17,18], these specific gait training
modalities could be promising with regard to improving gait pattern and (functional)
walking performance in these individuals.

This study featured some limitations. First, the present investigation lacked a
control group that did not participate in the 3 month SET. Even though previous
findings showed no difference in gait pattern over time in patients with PAD who
did not participate in a vascular rehabilitation program [24], future randomized
controlled trials are needed to better investigate gait changes following training
interventions in these individuals. Second, because of the descriptive nature of our
results, it was not possible to elucidate the mechanisms related to our observations.
More detailed kinetics and kinematics gait analyses are needed to better describe gait
pattern before and after SET. Third, even though it was used in previous works, the
inertial system used in the present investigation has never been validated in patients
with PAD.

In conclusion, these results show that multimodal SET modifies gait pattern dur-
ing the 6 min walk test in patients with symptomatic PAD. However, many of these
changes (stride length, the relative duration of the loading response and foot-flat
phases, and toe-off pitch angle) only occurred during the pain-free walking condi-
tion, highlighting the role of claudication pain in gait pattern in this population. In
addition, changes in stride length and frequency and in the relative duration of the
foot-flat phase during the pain-free walking condition were correlated with changes
in 6 min walking distance. These findings suggest that new rehabilitation strate-
gies, including specific gait training modalities, should be further investigated in
this population.
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Abstract: In this study, a wearable inertial measurement unit system was introduced to assess
patients via the Berg balance scale (BBS), a clinical test for balance assessment. For this purpose,
an automatic scoring algorithm was developed. The principal aim of this study is to improve the
performance of the machine-learning-based method by introducing a deep-learning algorithm. A
one-dimensional (1D) convolutional neural network (CNN) and a gated recurrent unit (GRU) that
shows good performance in multivariate time-series data were used as model components to find
the optimal ensemble model. Various structures were tested, and a stacking ensemble model with
a simple meta-learner after two 1D-CNN heads and one GRU head showed the best performance.
Additionally, model performance was enhanced by improving the dataset via preprocessing. The
data were down sampled, an appropriate sampling rate was found, and the training and evaluation
times of the model were improved. Using an augmentation process, the data imbalance problem was
solved, and model accuracy was improved. The maximum accuracy of 14 BBS tasks using the model
was 98.4%, which is superior to the results of previous studies.

Keywords: balance assessment; data augmentation; gated recurrent unit; human activity recognition;
inertial measurement unit; one-dimensional convolutional neural network

1. Introduction

Elderly, brain-damaged, and rehabilitation patients often have poor balance. If this
and related conditions are not diagnosed promptly, the patients are more likely to suffer
further injury by falling [1,2]. Recently, human activity recognition (HAR) was introduced
to monitor the motion of a subject in daily life using healthcare devices to determine
measures to prevent such accidents [3–5].

In HAR research, various sensors are used, such as an inertial measurement unit (IMU),
vision sensors, electrocardiograms (ECGs), and electromyography (EMG) devices [6]. For
example, a recent HAR study used a textile stretch sensor attached to patients‘ clothing [7].
The IMU-based HAR is among the most popular research targets. Even if a non-invasive
method is used, such as EMG and ECG, the connections are often unreliable, and they must
be changed often, creating fallacious artifact signals [8]. Although cameras are an option,
there are limitations to camera installation, owing to bulkiness and obstruction, not to
mention privacy issues. Furthermore, lighting and spacing are often problematic [9]. On the
other hand, IMUs avoid these problems. Microelectromechanical IMU systems have small
size, low cost, and low operational power requirements. Hence, they can be implemented
as wearable devices (e.g., smartwatches, fitness bands, and smart clothing [9,10]). Because
human health problems are most often expressed as measurable behaviors [11], IMUs
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are more suitable for daily activity data collection than other sensors. Hence, many IMU-
based HAR studies have been accomplished [3–5,9]. Digo’s study [12] was conducted to
effectively recognize the working condition by wearing only one IMU in the trunk position.
This may allow users to wear fewer IMUs, making it easier to use IMUs in daily life.
Studies on user motion recognition using an IMU in a smartphone were also performed to
recognize motion for daily life [13–15].

Machine-learning models have been widely used [16] for sensor-based HAR mea-
surement, allowing manual and heuristic features to be extracted. Jianchao’s study [17]
attempted to classify daily patient behaviors with an IMU using global and local features.
Global features (e.g., mean and variance) are typically captured using sliding-window
techniques, whereas local features typically contain correlation information, such as simi-
larity and error rates. A final feature vector can be determined by using a feature selection
algorithm, which shows better classification performance than other methods. In stud-
ies using machine learning, the feature selection method often determines the model’s
performance. In order to extract good manual and heuristic features, sufficient under-
standing of data and signal processing algorithms is required. Hence, it takes a great deal
of time and effort to obtain the desired results because selections and combinations of
features must be manually verified [18]. By comparison, deep learning uses raw data as
input, and all feature extraction and classification procedures are mathematically combined
automatically. Therefore, the process is not only fast and convenient, but it also has the
advantage that human error is far less likely. Even features that cannot be recognized by
humans can be mathematically extracted. Hence, recently, deep-learning algorithms have
been employed more often than machine learning methods, and they have performed
well [19]. In a paper by Nathanial Pickle [20], an algorithm was used to estimate whole-
body angular momentum and directly determined imbalances by learning wearable IMU
data with a one-layer artificial neural network, achieving good performance. In Chung’s
HAR study [21], data from a multimodal nine degrees-of-freedom IMU was used, and an
ensemble model comprising a long short-term memory (LSTM) for each head modality
was proposed. Among the many deep-learning studies, the mixed-model convolutional
neural network (CNN)/recurrent neural network (RNN) showed better performance than
machine-learning models, CNNs, and RNNs alone in many studies [22]. Mekruksa Vanich
et al. [23] studied an HAR algorithm using a built-in smartphone IMU. They proposed a
four-layer CNN–LSTM model that outperformed the stand-alone LSTM machine-learning
model. Mekruksa-Vanich’s study [24] demonstrated a CNN-bidirectional gated recurrent
unit (GRU) model that showed better classification performance than a machine-learning
model, including a CNN with a GRU, against several IMU-based HAR open datasets.

In this work, an HAR algorithm is examined by introducing an IMU system to assess
patients via the Berg balance scale (BBS), a clinical test for balance assessment. The BBS is a
highly reliable balance test for elderly and stroke patients [25,26]. It consists of 14 static and
dynamic motion tasks performed in daily life. Each motion is scored, and the total score is
used to assess the patient’s probability of falling. A previous study [27] used a machine-
learning model for the scoring algorithm. Sensor data with high-scoring contributions
were selected for each task. The sum of the energy in the front and rear sections of the
motion data was used as a feature, and the amplitudes of frequency components up to
15 Hz were also used. The features were selected by kernel principal component analysis (a
feature extraction algorithm), and the data were classified using a support vector machine
(SVM). The results showed excellent performance, which improved the performance of
Badura’s study [3]. However, because these studies used machine-learning models, a
great deal of time and effort was required to extract and verify the manual and heuristic
features. Hence, in this study, the final feature vector is extracted and classified using a
deep-learning algorithm, thus reducing the time and effort requirements of the feature
extraction process. It also improves the scoring accuracy. Furthermore, the dataset of the
previous study is improved using a signal-processing algorithm, and the performance and
computational efficiency of the model are improved. The dataset of the previous paper
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had a data imbalance problem. To resolve this, an oversampling-based data augmentation
process was performed to equalize the amount of data for each class and to increase
the total amount of data. These efforts led to an increase in the accuracy of the model.
Additionally, the previous data suffered oversampling of participants’ movement data.
This was resolved by finding an optimal sampling rate of data. The sampling rate of the
data was reduced. Hence, it is now possible to reduce the computational complexity while
preserving classification accuracy. This also lowers the data-sampling rate of the IMU
module, which contributes to reducing the power consumption of the wearable device.
Furthermore, we further improve the deep-learning model by optimizing the GRU and
one-dimensional (1D) CNN models with a shallow structure in consideration of our small
dataset. Additionally, performance improvement was achieved by using an ensemble of
the two models. As with previous papers, we attempted to create a single model that can
cover all BBS tasks. As a result of our experiments, the model comprising two 1D-CNN
heads and one GRU head stacking ensemble model had the highest average accuracy on
all 14 tasks. This result was superior to previous results [3,27].

2. Materials and Methods
2.1. Experiment
2.1.1. Motion and Experimental Protocol

The BBS was devised to assess the balance of elderly and stroke patients [25,26]. For
this exam, subjects are asked to perform 14 functional tasks, and a rehabilitation therapist
assigns a score from 0 to 4 for each task. Combined scores of 0 to 20, 21 to 40, and 41 to 56
represent balance impairment, acceptable balance, and good balance, respectively. Table 1
presents a description of the 14 BBS tasks.

Table 1. Berg balance scale tasks.

No. Task Description

1 Sitting to standing
2 Standing unsupported
3 Sitting unsupported
4 Standing to sitting
5 Transfers
6 Standing with eyes closed
7 Standing with feet together
8 Reaching forward with outstretched arms
9 Retrieving object from floor

10 Turning to look behind
11 Turning 360◦

12 Placing alternate foot on stool
13 Standing with one foot in front
14 Standing on one foot

The experiment was performed at the Stroke (brain injury) rehabilitation clinic of the
Department of Rehabilitation, Inha University Hospital. The patient wore a wearable IMUs
and performed BBS with a rehabilitation therapist in the same manner as the usual BBS
assessment. Some patients could not do all tasks, and they perform only tasks that they
could do. Patient data had a data imbalance problem in which the amount of data for
each score was different and some scores had no data. Therefore, a healthy participant
experiment was conducted to complement the lack of data. Healthy participant exper-
iments were advised by rehabilitation specialists and experimented under the coach of
rehabilitation therapists. The healthy participants conducted experiments that imitated
the patient’s movements. The healthy participants performed all the motions with a score
of 0 to 4 in the 14 tasks of the BBS assessment. Therefore, in the experiment with healthy
participants, it was possible to obtain the same as five times of experiment data per person.
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2.1.2. Participants

This study was approved by the Institutional Review Board of Inha University Hos-
pital. Among hospitalized brain disease patients, those expected to be at risk of falling
due to poor balance participated. The diseases of each patient differed slightly, but each
had either cerebral infarction, cerebral hemorrhage, brain atrophy, or brain embolism. A
total of 53 patients (31 male and 22 female) participated, and their ages ranged from 50
to 80 years. The mean age was 64.9, and the standard deviation was 12.6. The healthy
experimental participants included three males in their 20s. The average age of healthy
participants was 28.7, and the standard deviation of age was 0.6. Figure 1 shows scenes of
the BBS experiment conducted with a healthy participant.
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Figure 1. Scenes of BBS experiment conducted with a healthy participant.

2.1.3. Equipment and Data

Noraxon’s myoMotion was used for the experiment. This equipment is a multichannel
wireless IMU system certified as an ISO 13485 compliant (Registration # MED-0037b) and
an FDA 510 K compliant (Registration number #2098416) medical device. The system
consists of a multi-channel IMU module capable of wireless data transmission, a receiver,
and a Velcro band for attaching the IMU to the human body. The receiver was connected to
a computer via USB and records the received data using the provided software. By adding
a USB webcam to the configuration, it can record video time-synchronized with IMU data.
Because the recorded video and IMU data can be checked simultaneously, the video can be
used as the golden state of the IMU data. Figure 2 shows the configuration of the Noraxon
myoMotion.
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Figure 2. Configuration of the Noraxon myoMotion.

IMU sensors were attached at eight locations: the forehead (FH), back (B), both wrists
(RtW: right wrist, LtW: left wrist), both ankles (RtA: right ankle, LtA: left ankle), and
both hips (right and left hips). Each IMU sensor yielded nine types of sensor data: three-
dimensional (3D) acceleration data (Acx, Acy, Acz); and data that excluded gravity and
pitch (P), roll (R), yaw (Y), and 3D rotation data (Rox, Roy, Roz). The rotation data contained
the number of accumulated rotations for each 3D axis. The sampling rate of the data was
100 Hz. Figure 3 shows the position of wearable IMU and the types of IMU sensor data.
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2.1.4. Output Data Description

Each IMU outputs nine data types, owing to the eight IMUs used. This provides a
total of 72-dimensional time series data items output in real time. Additionally, video was
recorded for use as a golden state of IMU data. The duration of the experiment for patient
participants was approximately 10–15 min. Some patients could not perform all 14 tasks,
resulting in shorter performance times. Fifty-three experimental data were recorded from
the patients. Three healthy participants performed all the motions from score 0 to score 4,
and 15 experimental data were obtained from the healthy participants. Therefore, the
equivalent of 78 experimental data were recorded.

2.2. Methodology of the Proposed Method

Figure 4 presents the methodology of the proposed method. Before training the deep-
learning model with the data, the dataset was improved, and 14 models were evaluated by
10-fold cross-validation.
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2.2.1. Preprocess
Noise Depression, Normalization, and Zero-Padding

The high-frequency noise of an inertial sensor can be removed using an empirical mode
decomposition algorithm [28]. As in a previous study [27], the signal was decomposed into
10 intrinsic mode function (IMF) components and resynthesized from the first to the seventh
IMF (low-frequency components) to remove the high-frequency component considered to
be noise. Min–max feature scaling normalization was performed on the data to prevent
the model from being biased to large values caused by unit differences. Multivariate
time-series motion data output from the eight wearable IMUs were continuously recorded
from the start to the end of the assessment. Therefore, it was necessary to extract only the
section in which the assessment was performed from the data. Using the video, each task
execution section was identified, and the IMU data of this section was used as task data.
The data length for each task was set to the longest data item in the task, and zero paddings
were performed at the end of the data having short lengths.

Data Down-Sampling

According to a previous IMU-based HAR study, even when the sampling rate for
100–250 Hz data was decreased to 12–42 Hz [29], the performance reduction was small,
and even the sampling rate of 10 Hz was sufficiently recognizable [21]. Likewise, because
the sampling rate of the BBS motion data was 100 Hz, adequate down-sampling was
expected to improve the efficiency of the model. To select an appropriate sampling rate,
the accumulated information with respect to the frequency was observed, and the accuracy,
training time, and evaluation time before and after down-sampling were compared with a
classification model. The process is described in detail in Steps 1–5.

1. From the first person in Task 1, an n-point fixed Fourier transform was applied to
each of the 72 sensor data outputs from the eight IMUs, and amplitudes from first to
the n/2th were extracted.

2. For each person, the amplitude values of all sensors were summed for each frequency
component. The accumulated amplitude value for each N Hz frequency was calcu-
lated, where N = {1, 2, 3 . . . 50}. The accumulated amplitude for each frequency was
divided by the sum of the amplitudes up to 50 Hz, which is the sum of all frequency
components, and multiplied by 100 to obtain the percentage (%). Thereafter, the
average percentage of the accumulated data for each frequency for all the subjects
were calculated.

3. Processes 1–2 were repeated until Task 14, and the average of all tasks in terms of the
percentage of accumulated data/information were calculated for each frequency.

4. The trend of the accumulated information was observed for each frequency, and a
frequency having a small increase was selected. To restore up to the corresponding
frequency component, the sampling rate was set to twice the frequency component
based on the Nyquist sampling theory [30].

The accuracy, training time, and evaluation time of the model were compared before
and after the data down-sampling.

Data Augmentation Using the Over-Sampling Technique

A medical dataset can easily become unbalanced because it is difficult to obtain
negative class data [31]. Therefore, the amount of BBS motion data for each score was
unequal. If the model is trained on an unbalanced dataset, the model may be biased toward
the majority class, leading to poor performance [32,33]. One way of solving this problem is
to balance the dataset by generating new data similar to the original [34–36]. Similarly, BBS
motion data can be improved using an oversampling technique [37]. As in Khorshidi’s
study [38], an over-sampling technique was applied to both the majority and minority
classes to equalize the amount of data in each and to increase the total number. Steps 1–3
below describe the data augmentation process:
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1. The class set of the scores was As. The number of k samples with the closest Euclidean
distance to a random sample, x (x ε An), is xk (xkε An). xk can be obtained using the
k-nearest neighbor algorithm.

2. The number of n (n ≤ k) new samples between x and xk is xn, and the rule for
generating xn is given by Equation (1):

xn = x + rand(0, 1) ∗ |x− xk| (1)

3. Steps 1 and 2 are repeated, so that the amount of class data in each class (A0 ∼ A4)
becomes N.

To evaluate the model performance, k = 2 and N = 60 were applied using the augmen-
tation process.

2.2.2. Classification Model

In this study, 1D-CNN and GRU ensemble classification models were introduced for
the BBS scoring algorithm. The 1D-CNN and LSTM models often show good performance
on multivariate time-series data [39–41]. Because the amount of BBS data is small, each
1D-CNN and GRU model was constructed with a shallow structure, which is advantageous
for small amounts of data [42,43]. The following describes the 1D-CNN and GRU structures
used in the experiment and the ensemble model that showed the best performance.

1D-CNN Head and GRU Head

The 1D-CNN head has one convolution layer followed by a max-pooling layer with a
size of two, followed by a flattening layer. The kernel size of the convolution layer was
three, the number of filters was 64, and the rectified linear unit was used as the activation
function. The padding option was the same, and stride was set to one.

The GRU head had a one-time-distributed GRU layer, and its output was flattened.
The input size of the GRU unit was 64, and the output size was 64. When using a non-time-
distributed GRU layer, the information of all units in the layer was compressed into one
vector having a fixed size. Therefore, if the input is long, information may be lost, leading
to low model performance [44]. However, the time-distributed GRU layer outputs a feature
vector for each unit, and this problem can be alleviated.

1D-CNN, GRU Stacking Ensemble Model

The 1D-CNN and GRU stacking ensemble model is composed of three heads. The
three heads include two 1D-CNN heads having a kernel size of one and three, and one GRU
head is composed of a one-time distributed GRU layer. The outputs of the three heads are
then concatenated, followed by a dense layer with 100 perceptrons. In this case, between
these two layers, a 50% dropout was applied to prevent overfitting and to generalize the
model. The last layer was a softmax with five perceptrons.

The overall structure was a stacking ensemble. The three heads represented each
of the models, and the subsequent layers were meta-learners. The meta-learner was
equally applied to the proposed model and other experimental models. Figure 5 shows the
structure of the 1D-CNN and GRU stacking ensemble model.

Training and Evaluation

The model optimizer was Adam with a learning rate of 0.001. The loss function
used was the categorical cross entropy, and the batch size was optimized for each task.
Batch size1∼14 = {64, 32, 64, 16, 32, 32, 32, 64, 32, 64, 64, 64, 64, 64}. Early stopping
was applied; the training was completed when the loss no longer decreased, the patience
number was 20, and the maximum number of epochs was limited to 500.
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When evaluating the accuracy of a model with data randomly split into training and
testing, there may be differences in the accuracy, depending on the split data. Therefore,
the model performance was evaluated using the average of the Stratified K-fold cross-
validation accuracy. Stratified K-fold cross-validation maintains the ratio of the amount
of data per class of the original dataset when splitting the training and test data in K-fold
cross-validation. Because the amount of data for each class was equalized by improving
the dataset, the data for each class for training and testing were also equalized. Only
accuracy was used as the evaluation metric because the model was trained on balanced
data; hence, it was not necessary to use an evaluation metric such as the F1 score used in
the case of imbalanced data [45]. When evaluating the model, the average performance of
all BBS tasks was used; this was to make a good model that could cover all BBS tasks, as in
previous studies [3,27].

3. Results and Discussion
3.1. Improving Model Efficiency through a Data Down-Sampling Process

To determine an appropriate sampling rate, the accumulated data for each frequency
were analyzed. Figure 6 shows the amount of accumulated data with respect to the
frequency.

As the frequency increases, the increase in the amount of data tends to decrease. The
sum of the frequency components under 10 Hz was more than 90% of the total information,
thus confirming that most of the information is in the low-frequency region. In the 5–10 Hz
range, the increase in the information rapidly decreases and thereafter remains small.
Therefore, the appropriate sampling rate was set such that the frequency component below
10 Hz could be restored. According to the Nyquist sampling theory [30], the sampling rate
required to restore a frequency component of n Hz is 2 × n Hz. Therefore, the appropriate
sampling rate was set to 20 Hz.
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When down-sampling data from 100 to 20 Hz, the amount of data was reduced by 80%;
however, the amount of information was reduced by 8.3%. The classification performance of
the scoring model was compared to the data before and after down-sampling to determine
the degree to which this loss of information affects the scoring performance. Figure 7 shows
the scoring accuracy of 14 tasks using the 1D-CNN model before and after down-sampling.
Input data of the model was preprocessed multidimensional time-series data output from
the eight IMUs.
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When the sampling rate was 20 Hz, the average accuracy of the model decreased by
0.2%. When the data sampling rate was 20 Hz, the training time was reduced by 67.7%
compared with when the sampling rate was 100 Hz; in addition, the epoch time was
reduced by 66.4%, and the evaluation time was reduced by 58.6%. After down-sampling
the data, the gain in the computational efficiency of the model was greater than the loss,
owing to the performance decrease caused by information loss. As shown in Figure 7,
when the sampling rate was below 20 Hz, the decrease in accuracy was greater; therefore,
it was not appropriate to further lower the sampling rate. By observing the graph of
Figures 6 and 7, given the similarity in the shapes, the correlation between the amount of
information and the model performance is considered to be high. Therefore, predicting the
decrease in the model performance based on the amount of information is a reasonable
method.
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3.2. Classification Model

The 1D-CNN and RNN based models, which show good performance on multivariate
time-series data, were used as the scoring algorithms. In many studies, the performance
could be improved with the 1D-CNN- and RNN-based ensemble models rather than using
them alone [23,46–48]. This study also tried to find the model structure with the best
performance by combining the 1D-CNN model and the RNN-based model using various
model structures. Table 2 presents the average performance of the model in the 14 tasks.
The performance on each task is the average performance of 10-fold cross-validation. The
model names listed in the table are abbreviated as follows: 1D-CNN: C; GRU: G; Double
head 1D-CNN: DC; Triple-head 1D-CNN: TC; 1D-CNN after GRU: C-G; 1D-CNN and
GRU parallel: C+G; and double-head 1D CNN and GRU parallel: DC+G.

Table 2. Performance of 1D-CNN, GRU-based model.

Model C G DC TC C-G C+G DC+G

Mean accuracy (%) 94.9 95.6 95.6 95.3 95.3 95.9 96.1
Standard deviation of

accuracy (%) 4.4 4.1 4.0 4.4 4.7 4.1 3.8

Max accuracy (%) 99.8 99.8 100 99.8 100 100 100
Min accuracy (%) 87.1 87.4 87.6 86.4 85.7 87.2 88.8

Mean epoch 64.9 80.6 69.9 63.8 80.1 71.7 78.8
Mean training time (s) 5.172 21.351 8.383 10.270 13.304 21.729 26.551

Epoch time (s) 0.081 0.265 0.120 0.161 0.166 0.303 0.337
Evaluation time (s) 0.099 0.073 0.142 0.153 0.115 0.095 0.129

Before constructing the ensemble model, the parameters of the single 1D-CNN and
GRU models were optimized, and their performance was checked. Between the two
models, the mean accuracy of the GRU model was 95.6%, which is 0.7% higher than that
of the 1D-CNN model. However, the training time of the 1D-CNN model was about 76%
shorter than that of the GRU model. Therefore, the 1D-CNN and GRU model were both
excellent. After this test, various 1D-CNN and GRU ensemble models were tested to find
the optimal model.

First, a double-head 1D-CNN model with kernel sizes of one and three was tested for
the scoring algorithm. In previous studies [49,50], the performance of multi-head 1D-CNN
was found to be better than that of the single-head 1D-CNN and LSTM. The test results
showed that the mean accuracy of the double-head 1D-CNN was 95.6%, which is 0.7%
higher than that of the 1D-CNN single model and the same as that of the GRU single model.
However, the training time was 60% shorter than that of the GRU single model. Therefore,
it could be helpful in improving performance. Additionally, triple-head 1D-CNN models
with kernel sizes of one, three, and five were tested. The experimental results showed that
the performance of the triple-head 1D-CNN was not better than that of the double-head
1D-CNN because the mean accuracy of the triple-head 1D-CNN model was 0.3% lower
than that of the double-head 1D-CNN model, and the training time of the triple-head
1D-CNN model was 23% longer than that of the double-head 1D-CNN model; hence,
adding three or more 1D-CNN heads did not improve performance.

Second, a model comprising a GRU layer after the 1D-CNN layer was tested. It is
natural for the GRU layer to come after the CNN layer in theory [51]. Therefore, many
studies have used this model and have obtained good performance [52,53]. The test results
showed that the mean accuracy of the 1D-CNN after the GRU model was 95.3%, which is
0.4% higher than that of the 1D-CNN single model, but it was 0.3% lower than that of the
GRU single model. Additionally, the training time of the 1D-CNN after the GRU model
was 59% longer, and the mean accuracy was 0.3% lower than that of the double-head
1D-CNN model.

Third, the 1D-CNN and GRU parallel models were tested. In XU’s study [54], the
CNN and LSTM parallel models outperformed the 1D-CNN and LSTM single models.
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From the test results, the mean accuracy of the 1D-CNN and GRU parallel models was
95.6%, which is 1.0 and 0.3% higher than that of the 1D-CNN and GRU single models,
respectively. It was also 0.3% higher than the double-head 1D-CNN model, whose mean
accuracy was the highest.

From the previous test results, the performance improved in two cases: double-head
1D-CNN model and 1D-CNN and GRU parallel models. Therefore, a model with two
1D-CNN heads and one GRU head, which is a stacking ensemble model, was tested. The
results of the test showed that the mean accuracy of the two 1D-CNN heads and one GRU
head model was 96.1%, which was the highest of all tested models. Additionally, the
stability of this model was the best because the standard deviation of the accuracy of the
model was 0.2–0.9% lower than that of the other models.

3.3. Improvement in Model Performance through Data Augmentation

One of the objectives of this study was to develop a model that shows good perfor-
mance in all BBS tasks. Therefore, the amount of data for each score in all the tasks was
made the same so that the effect of augmentation was equal for each task. The amount of
data for each score was set to 60 for the model tests. Because Task 2 “Standing unsupported,”
which had the most imbalanced data, had 56 participants’ motion data with Score 4. The
under-sampling technique was not considered because over-sampling showed generally
better performance in the data imbalance problem [37]. Many studies have improved
the performance of classification models using the oversampling technique [34–36,55].
However, the over-sampling technique also decreases the model performance because
new data increases noise or can cause overlapping between classes [56]. Therefore, the
amount of data for each score was fixed at 60 to reduce the complexity of the experiment.
Subsequently, using the model with the best performance, the test was performed to deter-
mine whether the model performance could be improved when the amount of data was
increased. Figure 8 shows the model performance with respect to the amount of data for
each score.
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The average accuracy increases with the increase in the amount of data for each
score. The model performance was saturated when the amount of data for each score was
220. Therefore, it was confirmed that the appropriate amount of data for each score to
maximize the model performance was 220. When the amount of data for each score was
220, the average accuracy on the 14 tasks was 98.4%. Figures 9 and 10 show boxplots of the
accuracy of the model in the 14 tasks when the amount of data for each score was 60 and
220, respectively. The accuracy increased, and the variance of the accuracy decreased when
the amount of data for each score was 220.
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3.4. Comparison with Previous Study

This study evaluated model excellence by comparing the results of previous studies.
Prior studies include those of Badura [3] and Kim [27]. Kim’s was a study in which the
performance was improved by changing the feature extraction process and machine learn-
ing classification model of Badura’s study. Unlike previous studies, this study applied a
deep-learning algorithm and performed feature extraction using the deep-learning model.
The data sampling rate of the previous studies (100 Hz) was down-sampled to 20 Hz, and
the computational complexity was improved without reducing model accuracy. Reduc-
ing the sampling rate of data is meaningful in that it can contribute to reducing power
consumption by lowering the sampling rate of the wearable devices. The dataset of the
previous study had a data imbalance problem in which the amount of data for each score
was different. In this study, this problem was solved by performing data augmentation
based on the oversampling algorithm. As a result, the classification accuracy was increased.
Additionally, a healthy participant experiment was performed to compensate for the insuf-
ficient amount of data in some classes. Because healthy participants performed all actions
from zero to four on all tasks, the amount of data was equal to five times the patient data
per healthy participant. The total amount of data was 78, 53 of which were patient data,
and 15 were created by three healthy participants. By using the 10-fold cross-validation
average accuracy as the evaluation method of the model, the evaluation method of previous
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studies, which can produce good results only in some splits, was improved overall. Table 3
summarizes the improvement points of this study compared with these previous studies.

Table 3. Improvements in this study compared to previous studies.

Study Badura’s Study Kim’s Study This Study

Classification model Multi-layer perceptron (MLP) Support vector Machine
(SVM)

Double head 1D-CNN and
single head GRU stacking

ensemble

Feature extraction

Manual (Frequency and time
domain feature, Feature
selection: Fisher’s linear

discriminant)

Manual (Frequency domain
and energy feature, Feature

selection: KPCA)
Automatic in deep learning

Sampling rate of data (Hz) 100 100 20 (Introduce data
down-sampling)

Data imbalance problem Yes Yes No (Introduce data
augmentation)

Amount of experimental data 63 53 78

Evaluation method Random split Training:
Test = 7:3

Random split Training:
Test = 7:3

Mean accuracy of 10-fold
cross validation

The main achievement of this study is the improvement of accuracy. Table 4 shows the
scoring accuracy of the model in the previous studies and the model that showed the best
performance in this study. The model names listed in the table are abbreviated as follows:
double-head 1D CNN and GRU stacking ensemble: DC+G.

Table 4. Comparison of results of previous study with this study.

Task Badura’s MLP
Accuracy (%)

Kim’s SVM
Accuracy (%) DC+G Accuracy (%)

1 87.5 100 98.5
2 92.2 100 98.5
3 100 100 99.6
4 89.1 87.5 99.0
5 70.3 76.5 96.7
6 89.1 100 97.9
7 76.6 100 99.0
8 76.6 92.9 98.9
9 89.1 100 97.8
10 70.3 78.6 98.2
11 78.1 100 97.8
12 79.7 80.0 98.2
13 62.5 90.0 98.1
14 67.2 100 99.1

Average 80.6 93.2 98.4
Standard deviation 10.9 9.1 0.7

The average accuracy of the model in this study was about 18% higher than that of
the multi-layer perceptron model of Badura’s study [3] and about 5% higher than that of
the SVM model of Kim’s study [27]. It was also confirmed that the standard deviation of
the accuracy for the BBS task from 1 to 14 of the models of this study was 0.7%, which was
much smaller than 10.9% of the MLP model of Badura’s study and 9.1% of Kim’s SVM
model. This means that the model of this study can cover all BBS tasks well.
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4. Conclusions

In this study, a deep learning-based BBS auto-scoring algorithm was developed. The
best model was the stacking ensemble model with a meta-learner comprising a simple
dense layer behind two 1D-CNN heads and one GRU head. The computational complexity
and accuracy of the model were improved by improving the dataset during preprocessing.
During the down-sampling process, it was possible to find a reasonable sampling rate
by analyzing the accumulated information amount and the trend in the accumulated
information amount with respect to the frequency change. After down-sampling, the
computational complexity of the model was reduced. During the data augmentation
process, the dataset was improved using the over-sampling technique. By creating data
similar to the original data, the amount of data for each score was equalized, and that of
both minority and majority classes was increased so that the deep-learning model could
learn the data more generally. As a result, the scoring performance of the model was
improved without a performance decrease caused by noise or class overlapping that occurs
otherwise due to the generated data [56]. The accuracy was saturated when the amount of
data for each score exceeded a certain threshold. The maximum average accuracy of the
model in the 14 tasks was 98.4%, which was superior to previously reported results.

In the previous study [27], the efficiency of the algorithm could be increased by using
only sensor data, which is advantageous to score classification for each BBS task. Of course,
the deep-learning method performs this process inside the model by adjusting the weights
between perceptrons. However, it has a disadvantage in that the amount of computations
is large because all sensor data must be entered as an input. Therefore, in a follow-up
study, an attention model deep-learning method will be introduced, and weights will
be visualized to exclude data having a low contribution to scoring classification. This
will not only increase the computational efficiency of the model, but it will also have the
advantage that users can wear fewer sensors. Furthermore, we will introduce the latest
deep-learning techniques and improve the dataset with signal processing algorithms to
increase performance.

The algorithm of this study can be applied to a wearable healthcare device that
evaluates the balance ability in the daily life of elderly or brain-disease patients who are at
risk of falling. With wearable healthcare devices, users can know their balance ability and
probability of falling at any time without having to visit a hospital, and it will be helpful
for falling prevention.
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Abstract: Recent developments in sensing technology have made wearable computing smaller and
cheaper. While many wearable technologies aim to quantify motion, there are few which aim to
qualify motion. (2) To develop a wearable system to quantify motion quality during alpine skiing,
IMUs were affixed to the ski boots of nineteen expert alpine skiers while they completed a set protocol
of skiing styles, included carving and drifting in long, medium, and short radii. The IMU data were
processed according to the previously published skiing activity recognition chain algorithms for turn
segmentation, enrichment, and turn style classification Principal component models were learned
on the time series variables edge angle, symmetry, radial force, and speed to identify the sources of
variability in a subset of reference skiers. The remaining data were scored by comparing the PC score
distributions of variables to the reference dataset. (3) The algorithm was able to differentiate between
an expert and beginner skier, but not between an expert and a ski instructor, or a ski instructor and a
beginner. (4) The scoring algorithm is a novel concept to quantify motion quality but is limited by
the accuracy and relevance of the input data.

Keywords: IMU; principal component analysis; wearable; scoring; carving

1. Introduction

Recent developments in sensor technology have made sensing units cheaper and easier
to implement. These developments have made the application of “wearable technology”
or smart sporting equipment appealing to not only scientists and elite athletes, but also
recreational athletes. Such users are interested in more than the quantity of a movement
performed (e.g., steps, ski turns, or kilometers per run); they are also interested in the
quality of motion, or how well they performed the activity [1]. Together, the recent
developments and new users of wearable technology have led to a number of recent
publications concerning the measurement of motion quality during skiing, especially
during in-field experiments [1–4].

A popular sensor choice in the field-based measurements are inertial measurement
units (IMUs). These sensors combine accelerometers, gyroscopes, and optionally, magne-
tometers to record three-dimensional acceleration, angular velocity, and magnetic field
signals. IMUs have been used to measure center of mass kinematics [5], skier posture [6],
trunk orientation [7], vibration transmission [8], knee joint angles [9], edge angle [10], as
well as the estimation of skier kinetics [11]. Despite the variety of approaches to quantify
skiing performance, these studies focused exclusively on competitive alpine skiing [12].
Although the results of these studies provide motion quality parameters to scientists and
coaches regarding athlete performance or injury risk, the methods used are not “plug-and-
play” systems. In general, the methods utilized in the studies above require extensive
sensor calibration, bulky measurement equipment, or offline post-processing [13]. While
these processes can be quite simple, they can also be quite complex and can significantly
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influence data quality [14]. Indeed, this limitation was a key finding in one of the earliest
publications regarding wearable systems to measure motion quality during skiing [15].
This study used an extensive sensor setup (tri-axial accelerometer, tri-axial gyroscope,
force-sensing resistors, radar, and infrared distance sensors) to estimate a wide variety of
parameters related to competitive skiing simulations. The main intent of this system was
to provide data to augment feedback normally given by a human coach. The authors of
this paper highlighted that although the measurement system was quite comprehensive, it
was prohibitively obtrusive for regular everyday use, and future systems should focus on
providing an interface that is easy and intuitive to operate and interpret.

More recently, there have been further developments in the area of motion quality
assessment in alpine skiing. Yamagiwa and colleagues developed a simple system based
on a single IMU mounted on the trunk of a skier to assess skiing quality based on turning
tempo (turn frequency) [16]. The algorithm assessed only the variability of tempo during
a run in order to differentiate between high- and low-skill skiers. However, this study
only presented the development of the algorithm; it did not report any group statistics
and included a limited number of participants. Kos and Umek [17,18] proposed a more
complex system, integrating bending and load transducers directly into a ski in addition to
an IMU placed on the torso of skiers. Although this system was quite comprehensive and
provided real-time feedback to users, the hardware requirements (data-logger, backpack,
cables) and calibration procedures (static and dynamic requirements) rendered it infeasible
for realistic everyday frictionless use.

Recent work addressing the literature gap regarding low-friction systems has de-
veloped a wearable-system based on IMUs mounted on the cuffs of both ski boots and
a smartphone hub for data recording, storage, and online data processing within a cus-
tom application [3]. This provides the platform for the automated detection of turns [4],
data processing and extraction of skiing specific metrics [19], and turn classification into
carving, drifting, or non-parallel turning styles [2]. Together, these steps fit within the
activity recognition chain (ARC, segmentation, enrichment, classification) [20]. Brunauer
and colleagues [21] have proposed an extension of the ARC, going beyond answering the
question of “What did X do?”, to “How well has X performed?” and “What should X do to
improve?” In order for this proposed extension to function, it requires an objective quantifi-
cation of which parameters define motion quality (i.e., edge angle, radial force, CoM speed,
turning radius). One approach to answer these types of questions is principal component
analysis (PCA). PCA is a common tool in statistics and machine learning used to reduce
the dimensionality of large time series datasets, where many variables contain redundancy
with respect to the total variability of the dataset [22]. In the context of human movement
analysis, PCAs have been utilized to identify unique gait patterns during walking [23], to
discriminate between patients with and without knee osteoarthritis [24], and to evaluate
motion quality during functional movements and classify athletes as novice or elite [25].
PCAs have also been implemented in other smart sports equipment settings—for example,
to detect errors during balance board tasks [26]. In the context of skiing, PCAs have been
used to identify the main motions or principal movements related to skiing technique
during slalom racing [27]. While PCAs would normally be applied to an entire dataset, in
the context of wearables and smart coaching, an alternative approach would be to apply a
PCA model to individual time series variables in order to identify the specific components
of individual parameters which contribute to overall variability. In this way, a wearable
system could be developed which is more sensitive to individual parameter shapes, rather
than traditional metrics such as mean, standard deviation, maximum, or minimum.

In order to develop a robust model of skiing movement quality, we develop a principal
component analysis (PCA)-based model of motion quality during alpine skiing using a
simple sensor system, and we evaluate the performance of the algorithm during in-field
skiing conditions compared to expert raters.
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2. Materials and Methods
2.1. Participants

Nineteen advanced or expert skiers (8 male/11 female, age 34.6 ± 7.8 years, height
1.73 ± 0.1 m, weight 72.7 ± 11.0 kg) were recruited to participate in this study. All partici-
pants were either ski instructors or current or former competitive alpine skiers, including
four former FIS Alpine World Cup athletes. Additionally, three separate participants, one
beginner, one ski instructor, and one expert skier, were recruited to complete a separate
algorithm validation. Participants were informed of the testing procedures in detail, in-
cluding possible benefits and risks of the investigation, prior to signing the consent form as
approved by the local ethics committee (EK-GZ: 11/2018). This experiment was conducted
in accordance with the Declaration of Helsinki.

2.2. Overall Design

In order to construct a “systematic” dataset comprising a variety of skiing styles,
participants completed seven skiing runs, performing at least ten consecutive turns during
each run. Participants performed carving and drifting style turns. In both styles, turns were
performed in long, medium, and short radii. Long-radius turns were defined as at least
three snow-cat groomed widths (>12 m), medium-radius turns were defined as roughly
two snow-cat groomed widths (~8 m), and short-radius turns were defined as less than two
snow-cat groomed widths (<8 m). The seventh test run was a “maximum performance” run
performed at the participants self-selected turn radius and style. Additionally, participants
performed one snowplow steering and one pure snowplow run; however, data from these
runs were not included in the analysis. All tests were performed at three Austrian ski
resorts between January and March 2019. In order to ensure consistent slope conditions, all
tests were performed before 11 am. All tests were completed on freshly groomed blue or
red pistes with limited fresh snowfall (<6 cm).

2.3. Data Acquisition

All tests were performed on commercially available recreational race skis. Long-
and medium-radius turns, as well as the “maximum performance” runs, were performed
on a “giant slalom” model (Atomic Redster G9 171/177/183 cm length, 18.6 m radius).
Short-radius and non-parallel turns were performed on “slalom” skis (Atomic Redster S9,
155/165 cm length, 12.7 m radius). Prior to testing sessions, participants completed at least
one run to familiarize themselves with the test skis.

The wearable system consisted of two IMUs (configuration: 2.5 × 3 × 0.83 mm ± 16 g
and ±1000 dps full-scale resolution, board by Movesense [28]) mounted on the upper
posterior cuff of each ski boot using a custom housing and strap. The Y axis of the IMU was
aligned with the vertical axis of the boot pointing superiorly, the X axis with the lateral axis
pointing to the right, and the Z axis with the roll axis pointing posteriorly (Figure 1). Both
the accelerometer and gyroscope sampled at 833 Hz. The raw signals were filtered by an
analog anti-aliasing low-pass filter, and again after A/D conversion by a digital low-pass
filter (filter cutoff: 416.5 Hz—accelerometer; 245 Hz—gyroscope) The filtered signals were
transmitted via Bluetooth at 54 Hz to a smartphone running a custom application, where
they were stored for further processing. Additionally, global navigation satellite system
(GNSS) signals were recorded at 1 Hz by the same custom application on the mobile phone.
A central requirement of the wearable system is its “plug-and-play” character; therefore,
after factory calibration, no further IMU calibrations were performed.
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decelerating (i.e., the beginning and end of a run). Pre-processed data from each turn were 
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right turn differences) according to the algorithms proposed by Snyder and colleagues 
[19] and speed based on the mobile phone GNSS. Finally, each turn in the segmented, 
enriched dataset was classified as either carving, drifting, or non-parallel style according 
to the classification algorithm described by Neuwirth and colleagues [2]. Although this 
algorithm was able to distinguish among styles with high accuracy (~93%), not all turns 
within one style are similar, specifically with regard to turn size. Therefore, in order to 
add a further layer of specificity to the scoring algorithm, each classified turn was further 
classified according to the assigned turn size (small, medium, and large). Although the 
turn style for each run was specified, the classified turn styles assigned by the classifica-
tion algorithm were not always identical to the style intended. Table 1 shows the number 
of turns from each participant classified in each turning style/radius, as well as the “in-
tended” turn styles included. Due to synchronization errors, specific runs from 10 partic-
ipants were excluded. These participants were all included in the test dataset, preventing 
their “lack” of data from influencing the model results. 
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rithm. The participants placed into the reference dataset were selected based on their ob-
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Figure 1. Measurement system and axis orientation. The X axis (red) points to the right, the Y axis
(green) points vertically, and the Z axis (blue) points posteriorly.

2.4. Pre-Processing

All collected data were processed according to the process outlined by the ARC
proposed by Brunauer and colleagues [21]. Each run was segmented into turns using the
algorithm described by Martinez et al. [3,4]. Briefly, this algorithm detects peaks in the roll
axis gyroscope signal to segment turns based on the pendulum model of skiing. The first
and last detected turn from each run, as well as turns with an average speed one median
absolute deviation below the median speed for that run, were excluded from the dataset
in order to exclude turns within each sequence where the skier was either accelerating or
decelerating (i.e., the beginning and end of a run). Pre-processed data from each turn were
enriched with the metrics, speed, radial force, edge angle, and edge angle symmetry (left–
right turn differences) according to the algorithms proposed by Snyder and colleagues [19]
and speed based on the mobile phone GNSS. Finally, each turn in the segmented, enriched
dataset was classified as either carving, drifting, or non-parallel style according to the
classification algorithm described by Neuwirth and colleagues [2]. Although this algorithm
was able to distinguish among styles with high accuracy (~93%), not all turns within one
style are similar, specifically with regard to turn size. Therefore, in order to add a further
layer of specificity to the scoring algorithm, each classified turn was further classified
according to the assigned turn size (small, medium, and large). Although the turn style for
each run was specified, the classified turn styles assigned by the classification algorithm
were not always identical to the style intended. Table 1 shows the number of turns from
each participant classified in each turning style/radius, as well as the “intended” turn
styles included. Due to synchronization errors, specific runs from 10 participants were
excluded. These participants were all included in the test dataset, preventing their “lack”
of data from influencing the model results.

The processed dataset was split participant-wise into reference (42%) and test (58%)
datasets. The reference dataset was used to learn a PCA model and develop a scoring
system. The test dataset was then used as “new data” to test the performance of the
algorithm. The participants placed into the reference dataset were selected based on their
objectively high skiing level. These five “gold-standard” skiers included one male and one
female professional instructor and three retired male World Cup athletes (retired after 2006).
These skiers had a combined 49 World Cup Victories, 13 World Championship medals,
4 Olympic Medals, and 9 World Cup Overall or discipline crystal globes.
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Table 1. Turns classified per participant as carving or drifting in long, medium, and short radii. Although participants were
instructed to complete turns of specific styles, some turns were classified as different styles or radii. Experience levels: WC
corresponds to retired world cup ski racers, while FIS corresponds to retired FIS level ski racers.

# Experience Level Group
Carving Drifting Completed

RunsLong Medium Short Long Medium Short

1 WC Ref 10 42 29 9 25 1 CL, CM, CS,
DL, DM, DS, Max

3 WC Test 3 4 0 ~ ~ ~ CL
4 Instructor Test ~ ~ ~ ~ ~ 34 DS
5 Instructor Test ~ ~ ~ ~ ~ 37 DS
6 FIS Test ~ ~ ~ ~ 18 10 DS
7 Instructor Test ~ ~ ~ ~ 1 23 DS
8 Instructor Test ~ ~ 12 ~ ~ 22 CS, DS
9 Instructor Test ~ ~ 5 ~ 2 18 DS
11 Instructor Test ~ ~ ~ ~ 2 15 DS
12 Instructor Test 1 10 7 ~ ~ 17 CM, DS, Max

14 Instructor Test 15 16 2 8 11 2 CL, CM, CS,
DL, DM, DS, Max

15 FIS Test 4 42 22 5 17 47 CL, CM, CS,
DL, DM, DS, Max

16 Instructor Test ~ 33 4 7 43 35 CL, CM, CS,
DL, DM, DS, Max

17 Instructor Ref 2 73 12 14 24 3 CL, CM, CS,
DL, DM, DS, Max

19 Instructor Ref 8 18 30 6 12 5 CL, CM, CS, DM, DS
20 Instructor Test 5 54 25 12 22 45 CL, CM, CS, DL, DM, DS, Max
21 FIS Test 13 21 14 6 16 20 CL, CM, CS, DL, DM, DS, Max
23 WC Ref 10 59 59 20 6 27 CL, CM, CS, DL, DM, DS, Max
24 WC Ref 11 43 ~ 21 9 ~ CL, CM, DL, DM, Max

Total 82 415 221 108 208 361 84

2.5. Scoring Alogirthm

A PCA model was applied to the reference dataset to learn the signal characteristics
(principal components) of the reference skiers. The principal components scores (the linear
representations of each sample in the principal component space) of the first three principal
components were retained and used as a reference distribution to assess the similarity
between the reference and test datasets (scoring).

A centered PCA model was learned separately on each input variable (edge angle,
radial force, speed, symmetry) for each skiing style in the reference dataset. Therefore, each
variable is represented by an n × 101 dimensional matrix, Pref, where n is the number of
samples (turns) and 101 is the number of features—in this case, the signal normalized to
100% turn duration. The PCA yields two results, a matrix of eigenvectors and a matrix of
eigenvalues. The eigenvectors represent the direction of the largest sources of variability in
Pref and are ordered by the magnitude of variability that they explain. These are termed

principal component loading vectors
→
PCre f . The eigenvalues of each eigenvector are the

representations of the original dataset in the principal component space and are termed PC
scores, PCSre f , and they represent the amount of variability contributed by each sample to

each PC loading vector. In this way,
→
PCre f can be thought of as a transformation matrix

from the PC space and the original data space. The mean vector response of each variable

and
→
PCre f were retained as the required data to transform new data to the PC space, where

the transformed data can be scored.
While the eigenvectors

→
PCre f are used to transform new data into the PC space, the

eigenvalues PCSre f are scalars which describe the contribution of each PC to the overall
variability of the dataset. Therefore, assuming that the skiers in the reference dataset
represent the “gold standard” of skiing performance, within one PC of one variable (ex. PC
1 of edge angle), the distribution of PCSre f describes the optimal weighting of that PC for
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that variable, where scores close to the middle of the distribution are desirable, and those
at each tail are less desirable.

An absolute Z-score for each PC of each variable was calculated and transformed into
discrete scoring bins, where Z < 0.75 = 4, Z > 0.75 and Z < 1.5 = 3, Z > 1.5 and Z < 3 = 2, Z >
3 = 1. These Z-scores were normalized by the variance explained by each PC and summed
within variables so that PC that contributed most to the variability of the reference dataset
carried the most weight in the score. The final score for each turn was calculated as the
sum of normalized Z-scores across variables, expressed as a percentage of the maximum
score, where higher scores represent higher similarity to the reference dataset. In order to
form a single continuous scale for all turns, those turns classified as carving were scaled
from 7 to 10, and those classified as drifted turns from 3to 6. Not addressed in this study
were the turns classified as snowplow and snowplow steering [2]. These classes were not
scored by this algorithm but assigned scores of 1 (snowplow) and 2 (snowplow steering) in
order to complete the 1–10 scale. None of the turns included in this study were classified
as snowplow.

The final scoring model consists of a set of vectors representing the mean response of

each variable, a set of loading vector means (
→
PCre f ) and loading vector standard deviations

for each PC of each variable, in each turn size (small, medium, large) of each turning style
(carving and drifting).

The test dataset was processed according to the same pre-processing steps as the
reference dataset (segmentation, enrichment, and classification). Rather than learning a
new PCA model in the incoming dataset, each variable of each metric was scaled by the
mean response of the reference dataset and transformed to the PC space using the matrix
→
PCre f . The test dataset was then scored according to the scoring algorithm described above.

Finally, three skiers completed a shortened protocol consisting of three runs in set
radii (long, short, and self-selected) and self-selected turning style, using the instrumented
ski boot, while being observed by three professional ski instructors. The instructors rated
the skiing quality using two items, the overall quality (“On a scale of 1–4, how is the overall
skiing quality? 1 being not able to ski, 4 being excellent”), the skiing dynamics (“On a scale
of 1–4, how dynamic is the skiing? 1 being static, 4 being very dynamic”), and the skiing
turn style (“What is the skiing style: carving, drifted, or mixed?”). The scores were scaled
using the assigned style (3–6, drifting, 5–8 mixed, 7–10 carving) in order to match the scale
of score provided by the wearable system. Data from the instrumented boot were processed
according to the algorithm above, and the mean score from each run was compared to the
scores assigned by the expert raters using Pearson correlations. Correlations less than 0.3
were interpreted as small, between 0.3 and 0.6 as medium, and greater than or equal to
0.6 as large [29]. Finally, the scores from all turns from each skier were compared using
a Kruskal–Wallis test to determine if the algorithm was able to assign different scores to
skiers of different skill levels.

3. Results
3.1. Explained Variability

The first three PCs of each variable in each turning condition explained at least 85% of
the variability of the reference dataset for all variables in all skiing styles (Figure 2). The
first three PCs of speed explained 99.1 ± 1.6%, 0.9 ± 1.6%, and 0.03 ± 0.1% of the total
variability across all skiing styles. Similarly, the first three PCs of edge angle explained
95.9 ± 2.9%, 2.7 ± 1.4%, and 1.3 ± 1.5% of the total variability across all skiing styles. For
radial force, the first three PCs explained 75.5± 9.9%, 4.4± 5.2%, and 6.6± 3.0% of the total
variability. Finally, for symmetry, the first three PCs explained 60.4 ± 10.3%, 26.0 ± 9.1%,
and 9.0 ± 3.6% of the total variability.
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3.2. PC Response and Score Response

A sample response of each variable in the PC space is shown in Figure 3 for carving
short radius. For example, the third row (Figure 3g–i) shows the responses of the first three
PCs of radial force. Higher PC 1 scores for radial force indicate lower radial force, while
lower scores indicate higher radial force. For PC 2, high scores indicate peak radial forces
occurring later in turn duration, while lower PC 2 scores indicate peak radial forces earlier
in the turn. Finally, in Figure 3i, higher PC 3 scores indicate single peaks in radial force,
with longer transition phases where radial forces are low, while lower PC 3 scores indicate
double peaks in radial force.

3.3. Test Score Distribution

The scores assigned by the wearable system to the training dataset are shown in
Figure 4. In all styles except carving medium, the scores were moderately skewed towards
higher scores (carving long: −0.58, carving medium: 0.01, carving short −0.36, drifting
long: −0.82, drifting medium: −0.52, drifting short: −0.38).
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3.4. Validation Test

A large correlation was observed between the expert assigned dynamic score and
the median score of all turns assigned by the wearable system within each run (r = 0.71,
p = 0.048), but not between the overall quality score and the score assigned by the wearable
system (r = 0.59, p = 0.120). Additionally, differences were observed between the algorithm-
assigned scores for the beginner and expert skiers (p = 0.02), but not between the ski
instructor and the expert skier (p = 0.23) and the beginner and the ski instructor (p = 0.44).

4. Discussion

The goal of the study was to develop a wearable sensor system-based scoring algo-
rithm to assess motion quality during skiing. The system proposed in the current study is
both well suited for use in a mobile application and is able to discriminate between high-
and low-skill skiers, but only when the skiing style is sufficiently different (i.e., carving vs.
drifting). Additionally, this scoring system embraces the previous steps proposed by the
ARC (segmentation/enrichment/classification) and assesses motion quality relative to the
performed technique and turn size [21].

A critical aspect of a scoring system is that it provides outputs which are prepared to
feed further motion quality algorithms, such as the extended ARC [21]. For example, an
algorithm which only provides a single numeric score is appropriate for comparing athletes
or students but does not provide sufficient information to address further questions, such
as “What should X do?”. As the inputs of the algorithm proposed by this paper are
easily interpretable, context-relevant parameters (e.g., edge angle, radial force, speed, and
symmetry), the sub-scores calculated for each feature could be used to translate the scores
for each PC into concrete coaching steps.

Although a PCA is typically used to address the main sources of variability in a
dataset and reduce the number of input variables, in this case, PCAs are applied to each
signal separately in order to identify the main variability sources within each signal
independently, specifically so that the results could be translated into context-relevant
coaching instructions. For example, consider a skier whose lowest sub-score comes from
the radial force variable. Their PC 1 score was lower than the target. A low PC 1 score for
radial force indicates that they ski with higher radial force than the target so they should
aim for a lower radial force turn. Their PC 2 score was higher than the target, which, for
radial force, indicates that the radial force peak was later in the turn. Therefore, they should
aim to have their peak radial force earlier in the turn. Finally, for PC 3, their score was
similar to the target, so the duration of the turn with higher radial force was similar to
the reference.

Additionally, the scoring algorithm incorporates signals related to multiple aspects of
alpine skiing and is able to assess the motion quality across all of the aspects independently
of each other. For example, although skier A achieved a good score for PC 1 of edge angle,
they received a low PC 2 score: both of these aspects are related to skiing performance;
however, the magnitude of edge angle is more important for the timing of the peak edge
angle, as, during carving skiing, the edge angle is directly related to the turn radius [30].
This is also reflected in the PCA results, as the variance explained by PC 1 (related to
signal magnitude) in all skiing styles and all variables explained 82 ± 17% of the total
variance, while PC 2 and PC 3 (generally related to signal timing and duration) explained
14 ± 15% and 3 ± 4% of the total variance of the dataset, respectively. The algorithm also
considers this fact, scaling the contribution of each PC to the total score for each variable
by the variance explained for each PC. For example, if a skier were to score a perfect 4 in
each PC of radial force, their scores would be 2.78, 0.88, and 0.34, as PC 1–3 explain 70%,
22%, and 5%, respectively, of the total variance in the radial force signal. This prevents
poor scores in PCs, which contribute very little to the overall variability from exacting an
outsized influence on the overall score—for example, speed, where PC 1 explains ~99%
of the variability across all styles. In the case of speed, the 1 Hz GPS signal is linearly
interpolated to the 54 Hz IMU sample frequency by the application. Therefore, only the
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magnitude of the signal and not the shape of the signal is meaningful. In this case, the PCA
is also “smart” enough to treat this parameter in the same way that a maximum value only
would be scored.

The primary consideration for a scoring algorithm is its ability to distinguish between
high- and low-skill skiers. In general, it can be observed that higher scores are associated
with higher edge angles, higher symmetry, higher radial force, and higher speed, which
generally matches the assumptions of higher performance observed in competitive envi-
ronments [12]. The simplest proof of concept would be to use the algorithm to compare
two skiers, one retired WC athlete and one beginner skier. The beginner skier was able to
complete drifting turns with a low motion quality, but not carving turns. Given that the
two skiers in this test completed the same test protocol, the mean score from the two skiers
should represent their overall skiing quality. The average score for skier A, the retired WC
athlete, across all collected turns was ~8.4, reflecting their high motion quality even in
“lower-skill” drifted turns. The average score for skier B, the beginner, was 5.9. Although
this skier was instructed to perform carving turns, according to the algorithm, this skier
was unable to perform carving turns, and thus a majority of their turns were classified as
drifting and thus scored below 7.

The results of the in-field validation show that the scoring algorithm was correlated
with scores representing skiing dynamics, but not with the overall skiing quality. Therefore,
it appears that the algorithm scores movement quality more based on the dynamics of
the movement than the subjective motion quality as assessed by expert raters. This is a
logical outcome, since the dynamics were the parameters directly measured by the IMU
system (acceleration and angular velocities). Although the algorithm was able to correctly
rank the skills of the three test skiers (beginner < instructor < expert), and the scores
assigned accurately distinguished between the beginner and expert skier, Figure 5 shows
that, outside of edge angle and speed, the scores were generally quite similar across all
variables. Due to these similarities, the scores assigned by this algorithm are likely only
discriminant enough to differentiate between skiers when the skiing style is sufficiently
different (higher vs. lower dynamics).
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The observation that the algorithm scores skiers based on their skiing dynamics
highlights the importance of the choice of skiers included in the reference dataset. The
scores assigned by the algorithm to the test dataset were generally skewed towards higher
scores, which would be expected since the skiers in this dataset were all either instructors
or former competitive alpine skiers. Although the reference group in this study contained
only elite alpine skiers (retired WC athletes), the algorithm only assesses how similar the
variability new data was to the set of reference skiers for each individual skiing style.
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Therefore, it is possible to receive a negative score when PC scores are either above or
below the reference skiers’ values. For example, a skier with extremely high edge angles
might receive the same score as a skier with a lower edge angle because they are both
equally different from the reference dataset but in opposite directions, even though the case
of the extremely high edge angle indicates objectively better skiing quality. Additionally,
it is possible that the variability contained in this dataset (containing only expert skiers)
might not represent the variability that might be contained by a dataset that includes
more intermediate or novice skiers. On the contrary, such a dataset might not generate
meaningful targets, as the variability of such a dataset would represent the variability
between skill groups rather than the variability of a reference group. This highlights the
importance of the selection of an appropriate reference group, which should match the
quality of skiing to be evaluated by the algorithm.

In this context, a distinct advantage of this algorithm is its flexibility in adapting to a
new reference. A user could simply record a new selected group of reference skiers, and
the algorithm could learn a new reference model based on this new dataset, provided that
it contained an appropriate volume of turns in all desired skiing styles. This could also be
done on an individual level to provide a baseline for competitive skiers to detect subtle
changes in skiing technique possibly related to fatigue and increased injury risk during
longer training sessions [31].

A limitation of an approach such as the extended ARC is the issue of dependency.
The accuracy of each step in the extended ARC is dependent on the accuracy of the
previous step. For example, the accuracy of the ski style classification is dependent on
the accuracy of the feature extraction step, which is dependent on the accuracy of the
segmentation step. Despite this limitation, all of the steps in the extended ARC proposed
above have been previously validated. Martinez and colleagues performed in-lab [3] and
in-field [4] validations of the turn detection and segmentation algorithm, and the accuracy
and precision of the estimated features edge angle and radial force have been shown to be
−0.77 ± 1.00◦ and 1.50 ± 1.33◦, respectively, and the classification algorithm proposed by
Neuwirth and colleagues was able to distinguish between drifting and carving turns with
an accuracy of 95%. This indicates that the error contributed from previous processing steps
likely imposes a minimal influence on the accuracy of the scoring system. Additionally, the
algorithm was designed based on input data processed via the same input algorithms, and,
thus, the error contributed by the system itself is inherently included in the model of skiing
motion quality.

5. Conclusions

The scoring algorithm presented in this study is a first step towards developing
a wearable system to evaluate skiing motion quality that could be implemented in a
stand-alone application for regular use by both recreational and competitive alpine skiers.
The proposed system is a novel approach to quantifying motion quality and was able
to differentiate between high- and low-skill skier abilities. Additionally, the system is
easy to use, flexible, and could be easily adapted to accommodate reference skiers of
varying abilities. Future work should focus on validating the algorithm in a wider range
of skiing conditions, such as powder or moguls, using a more accurate reference scoring
and incorporating further features (e.g., pressure distribution, ski bending, or mechanical
energy dissipation) into the algorithm in order to provide a more robust and comprehensive
view of motion quality during alpine skiing [12].
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Abstract: Inertial measurement units (IMUs) have been used increasingly to characterize long-track
speed skating. We aimed to estimate the accuracy of IMUs for use in phase identification of long-track
speed skating. Twelve healthy competitive athletes on a university long-track speed skating team
participated in this study. Foot pressure, acceleration and knee joint angle were recorded during a
1000-m speed skating trial using the foot pressure system and IMUs. The foot contact and foot-off
timing were identified using three methods (kinetic, acceleration and integrated detection) and the
stance time was also calculated. Kinetic detection was used as the gold standard measure. Repeated
analysis of variance, intra-class coefficients (ICCs) and Bland-Altman plots were used to estimate the
extent of agreement between the detection methods. The stance time computed using the acceleration
and integrated detection methods did not differ by more than 3.6% from the gold standard measure.
The ICCs ranged between 0.657 and 0.927 for the acceleration detection method and 0.700 and 0.948
for the integrated detection method. The limits of agreement were between 90.1% and 96.1% for
the average stance time. Phase identification using acceleration and integrated detection methods is
valid for evaluating the kinematic characteristics during long-track speed skating.

Keywords: inertial measurement unit; movement analysis; long-track speed skating; validity

1. Introduction

Long-track speed skating is a skillful sport where athletes glide on a 400-m ice rink at
a speed of more than 50 km/h. The athletes accelerate their body using the ground reaction
force exerted by the ice through an approximately 1 mm wide blade attached to the bottom
of the skate shoe. Various studies have identified kinematic features of different movement
phases, such as changes in the knee and trunk angles during races [1,2], that may influence
the performance of long-track speed skating athletes. Additionally, a smaller push-off
angle, which is the angle of the shank with respect to the floor in the frontal plane, has
been shown to be associated with a greater power output [3] and skating velocity during a
5000-m race [1,2], although such a relationship was not observed during a 1500-m race [2].
Changes in the blade tilt angle during a 4000-m long-distance skating event have also been
reported [4]. Several studies have also demonstrated the benefit of a greater knee flexion
angle before the push-off to generate increased kinetic energy [3,5,6].

The majority of the studies that have investigated kinematic features during long-track
speed skating has primarily used video analysis [1–6]. However, conventional kinematic
measurements using video analysis have several limitations [7]. First, video analysis is
largely influenced by the visibility of body landmarks. However, landmark visibility is
often interfered by people or objects during long-track speed skating competitions or
training sessions. Therefore, researchers need to synchronize measurements with multiple
cameras and/or incorporate special environmental conditions to quantify kinematics with
good body landmark visibility. Consequently, most kinematic analyses of long-track speed
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skating only measure an isolated segment of an entire race [1,2]. Although one study
showed significant variability in the knee joint angles of athletes with similar performance
levels [8], the source of the variability may partly be explained by the limited precision of
the measurements.

Second, video analysis requires an enormous amount of time for data processing, which
includes the identification of movement phases and digitization of body landmark positions.
This limits the use of acquired data for immediate feedback to the athletes. Therefore, feedback
regarding skating techniques must be provided predominantly based on visual or qualitative
assessments from observers, without the benefit of a quantitative assessment.

In an effort to solve these limitations, inertial measurement units (IMUs) have been
used increasingly in recent years as an alternative method to measure kinematics in various
sports, such as speed skating, running and skiing. An IMU utilizes three axial accelerome-
ters, gyroscopes and geomagnetometers [7]. The validity of IMUs for gait event detection
has been well established [9,10], while evidence is limited for movement phase detection
during sports performance. IMUs have several advantages over conventional video anal-
yses. First, IMUs are not restricted by the visibility of body landmarks because the IMU
system does not use positional data to compute kinematic outcomes. This allows for a
kinematic measurement in a crowd and for a wide range of performance areas. Second, a
kinematic analysis with IMUs does not require the digitization of body landmarks, allow-
ing for a real-time display of kinematic features, including the angular velocity, acceleration
and joint and segment angles. Therefore, the IMU is a promising tool for use in kinematic
data acquisition in various situations, including sporting events and clinical rehabilitation.

The validity of joint angles derived from IMUs during gait and running has been widely
examined by comparing them with gold standard measurements (e.g., an optical 3D motion
capture system and a magnetic motion capture system) [11–13]. However, the validity of
IMUs for the identification of movement phase classifications during long-track speed skating
remains unknown. While no standardized movement phase classifications exist for long-track
speed skating, foot contact and foot-off of each leg represent the start of the stance and swing,
respectively, and both are important features for characterizing skating strokes [4]. Therefore,
in this study, we focused on the identification of foot contact and foot-off. The objective of this
study was to estimate the accuracy of IMUs for identification of foot contact and foot-off in
competitive speed skaters during long-track speed skating by comparing the method with
phase identification using the foot pressure sensor system. The validation of IMUs would
advance the applicability of the system for use during long-track speed skating competitions
and training sessions to allow for comprehensive kinematic analyses in flexible environments
and instant feedback to athletes.

2. Materials and Methods
2.1. Participants

Twelve healthy competitive athletes on a university long-track speed skating team
participated in the study after signing an informed consent form. All the participants had
more than 10 years of speed skating experience. The demographic characteristics of the
participants are shown in Table 1. This study was approved by the ethics committee of
the Takasaki University of Health and Welfare (approval number: 1904) in accordance
with the Declaration of Helsinki. The participants had no musculoskeletal or neurological
pathologies that could affect task performance.

Table 1. The demographics of the study participants (n = 12).

Sex (Female:Male) 5:7
Height (mean ± SD), m 165.6 ± 6.12

Body weight (mean ± SD), kg 63.46 ± 5.85
Personal best time for 1000 m (mean ± SD), sec 77.41 ± 11.76

SD: standard deviation.
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2.2. Data Acquisition

Data recording was performed during a full-speed 1000-m skating event from a static
start position on a 400-m, two-lane indoor oval (Meiji Hokkaido-Tokachi Oval, Obihiro,
Hokkaido, Japan).

The kinematic data were acquired using eight IMU sensors at a sampling rate of
100 Hz (myoMOTION, Noraxon, Scottsdale, AZ, USA). A data logger was embedded in
each sensor, allowing data recording over a wide area. The IMU sensors were attached
with double-sided tape to the skin at standardized locations on the lower thorax and pelvis
and bilaterally on the thighs, shanks and feet. The specific sensor locations are shown in
Table 2. Subsequently, the subjects wore compressive racing suits designed specifically for
the body shape of each of the individual participants, which ensured that displacement
of the sensors did not occur while recording was taking place. The foot sensors on the
skating shoes were also stabilized with tape. The sensor locations were marked on the skin
or skating shoes with a pen, as each sensor was attached, and we verified that there were
no changes in the sensor locations before and after the data recordings.

Table 2. Sensor locations.

Lower Thoracic In line with the spinal column at L1/T12
Pelvic Body area of the sacrum
Thigh Frontal and distal half (where there is less muscle displacement during motion)
Shank Front and slightly medial (along the tibia)
Foot Upper foot, slightly below the ankle

The kinetic data were acquired using a portable foot pressure measurement system
at a sampling rate of 100 Hz (F-Scan System, TeckScan, South Boston, MA, USA). The
system consists of two sensor sheets, two cuff units, one data logger unit and two cables
connecting the cuff units and the data logger. Two sensor sheets were trimmed to the
participant’s foot size and a sensor sheet was inserted and attached to the sole of each
of the skate shoes using double-sided tape. The cuff units were stabilized at the middle
shanks and the data logger was attached to the back waist using Velcro tape. The IMU and
foot pressure systems were synchronized using an electrical synch signal.

2.3. Data Analysis

We excluded the data from the first and last straights (first and last 50 m) and the
first curve (100-m) from the analysis because the skating technique during these segments
differs substantially from the remaining segment. Therefore, we analyzed the data for the
remaining 800-m (400-m straight and 400-m curve) segment. The data from each side (left
and right) were analyzed separately for both the straight and the curve. We adopted three
types of analytical methods to detect foot contact and foot-off (Table 3).

Table 3. Overview of the three analytical methods used to detect foot contact and foot-off.

Name Type of Sensor Type of Signal

Kinetic detection Foot pressure Force
Acceleration detection IMU Foot sagittal acceleration
Integrated detection IMU Foot sagittal acceleration + knee flexion angle

IMU: inertial measurement unit.

The first detection (the kinetic detection method) was based on the foot pressure
data. Foot contact and foot-off were defined as the moments in which the foot pressure
exceeded (foot contact; the vertical solid line in Figure 1A) and diminished below (foot-off;
the vertical dotted line in Figure 1A) 20% of the peak foot pressure, which was calculated
from all evaluated strokes (the horizontal dashed line in Figure 1A). Based on our empirical
observations of the data obtained from all the participants in this study, 20% peak foot
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pressure was high enough to avoid false detections due to noise, but low enough to detect
both the foot contact and foot-off.
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Figure 1. The timing identifications using three different detection methods. The vertical solid and
dotted lines in each panel show the foot contact and foot-off timing, respectively. We calculated
the stance time by computing the duration of the foot contact and foot-off for each skating stroke
(intervals within horizontal arrows). (A) Kinetic detection using the foot pressure. The horizontal
dotted line indicates the threshold level (20% peak) for the identification of foot contact and foot-off.
(B) Acceleration detection using the sagittal foot acceleration. Gray line: raw sagittal acceleration.
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(C) Integrated detection using both the foot sagittal acceleration and the knee flexion angle.

The second detection (the acceleration detection method) was based on the foot sagittal
(anterior-posterior direction of the foot) acceleration data obtained from the IMU sensors
on each foot. The sagittal acceleration signal was used because it showed consistent
changes at both the foot contact and foot-off throughout the entire 1000-m of skating.
The measured sagittal acceleration signals were filtered and decomposed to their high-
frequency (Butterworth high-pass filter at a cut-off frequency of 20 Hz; the red line in
Figure 1B) and low-frequency (Butterworth low-pass filter at a cut-off frequency of 10 Hz;
the blue line in Figure 1B) components. The high-frequency component represents instant
acceleration changes and clearly shows foot contact (the vertical solid line in Figure 1B) and
foot-off (the vertical dotted line in Figure 1B). The low-frequency component represents
slower acceleration changes and shows the swing movement of the leg. We divided the
data such that each segment comprised the start and end of the swing movement based on
the low-frequency component of the acceleration. We then looked for the moment at which
the high-frequency component of the foot sagittal acceleration reached its peak. The first
and second peaks were set as the foot contact and foot-off, respectively.

The third detection (the integrated detection method) was based on the combination of
the foot acceleration and the knee flexion angle. Raw data were automatically filtered using
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a robust fusion algorithm (Kalman filter) optimized for IMU data by the IMU software
(myoRESEARCH 3.10, Noraxon, Scottsdale, AZ, USA). Four element quaternion values
were derived by combining the elemental sensor component axes to estimate the angular
offset of each sensor from the calibrated position in the global coordinate [14,15]. The knee
flexion angle was automatically calculated using the biomechanical model adopted by the
IMU system software. The bias (normalized root mean square) of the knee flexion angle,
derived by the present IMU software from the angle based on the model recommended
by the International Society of Biomechanics [16], has been reported to be 16.9 ± 5.1%
during gait. The knee flexion angle showed a phasic pattern within each stroke (Figure 1C),
allowing for clear segmentation of the strokes. We divided the data such that each segment
comprised the start and end of the phasic pattern, which constituted one stroke and swing
of each leg. We then looked for the moment at which the high-frequency component of
the foot sagittal acceleration reached its peak. The first and second peaks were set as
the foot contact (the vertical solid line in Figure 1C) and foot-off (the vertical dotted line
in Figure 1C), respectively. All the timing detections were performed by combining the
automated and visual identifications.

Based on previous studies that reported the validity of IMU systems to detect gait
events [17,18], we calculated the stance time for each stroke (calculated as the time from foot
contact to foot-off for each stroke) separately for each leg (right and left), section (straight
and curve) and detection method (kinetic, acceleration and integrated detection). The
data analysis was performed using custom-made programs (MATLAB 2014a, MathWorks,
Natick, MA, USA).

2.4. Statistical Analysis

The stance time as calculated based on the kinetic detection method was considered as
the gold standard measure in our study. The difference in the stance times among the three
detection methods was examined by a repeated measures analysis of variance (ANOVA).
The Tukey honestly significant difference test was performed for the post-hoc pairwise
comparisons. We used the intra-class coefficient (ICC) to examine the similarity between
the kinetic detection and acceleration/integrated detection methods by computing the ICC
(2,1) and their 95% confidence intervals (95% CIs). To assess the validity of the proposed
detection method, Bland-Altman plots and limits of agreement were calculated for both the
acceleration and integrated detection methods, where we estimated the level of agreement
between the proposed methods and the gold standard measure (i.e., the kinetic detection
method). The bias between the proposed methods and the gold standard measure was
calculated as the mean difference between the measurements from each method. The upper
and lower limits of agreement, which defined the margin in which 95% of the differences
between the methods were expected to lie, were calculated as a bias of ±1.96 SD. The
precision of the limits of agreement is reported as the 95% confidence interval. SPSS ver. 21
(IBM, Armonk, NY, USA) was used for the statistical analyses. A statistical significance
level of p < 0.05 was used for all the tests.

3. Results

In total, 1036 strokes (86.3 ± 10.4 strokes per participant) were analyzed in this study.
The stance times detected by the three methods are summarized in Table 4. The results of the
repeated measures ANOVA showed significant differences of stance time among detection
methods on the right side (straight: F = 15.236, p < 0.001; curve: F = 92.298, p < 0.001).
The post-hoc analysis showed that acceleration and integrated detection methods on
the right side significantly overestimated the stance time by 2.4–3.6%, compared to the
kinetic detection method (p < 0.05; Table 4). No significant difference was found between
acceleration and integrated detections.
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Table 4. Stance time detected by kinetic, acceleration and integrated detection methods.

Section Side Kinetic Detection Acceleration Detection Integrated Detection F p
Mean (SD), ms Mean (SD), ms ∆% LOA% Mean (SD), ms ∆% LOA%

Straight Right 713.1 (243.3) 730.5 (252.2) * 2.4 95.4 738.8 (259.4) * 3.6 94.2 15.236 <0.001
Left 736.7 (261.2) 740.2 (250.1) 0.5 91.8 744.8 (264.6) 1.1 90.1 0.670 0.512

Curve Right 614.7 (142.6) 629.4 (153.5) * 2.4 96.1 632.3 (150.2) * 2.9 93.4 92.298 <0.001
Left 587.6 (127.1) 587.8 (108.5) 0.0 93.8 583.3 (102.2) 0.7 95.0 0.479 0.619

The differences between the acceleration and integrated detection methods and the kinetic detection methods are shown as ∆%. The
proportion of cases within the limits of agreement is shown as LOA%. The F value and p value were obtained by the repeated measures
analysis of variance. * Significantly different from the kinetic detection method in the post-hoc analysis.

The ICC (2,1) results for each detection method are summarized in Table 5. The ICC (2,1)
was ≥0.700 for the integrated detection method for all the sections on both sides, while the
ICC (2,1) was 0.657 for the acceleration detection method in the curve for the left side.

Table 5. The intra-class coefficient as computed by the acceleration and integrated detection methods.

Section Detection Method
Right Left

ICC (2,1) [95% CI] ICC (2,1) [95% CI]

Straight Acceleration 0.927 [0.906−0.943] 0.882 [0.852−0.907]
Integrated 0.948 [0.925−0.963] 0.868 [0.834−0.895]

Curve Acceleration 0.904 [0.875−0.926] 0.657 [0.582−0.721]
Integrated 0.891 [0.529−0.956] 0.700 [0.633−0.757]

ICC: intra-class coefficient; 95% CI: 95% confidence interval.

The Bland-Altman plot is shown separately for each section (straight and curve), side
(right and left), and detection method (acceleration and integrated) (Figures 2 and 3).

Sensors 2021, 21, x FOR PEER REVIEW 6 of 10 
 

 

3. Results 
In total, 1036 strokes (86.3 ± 10.4 strokes per participant) were analyzed in this study. 

The stance times detected by the three methods are summarized in Table 4. The results of 
the repeated measures ANOVA showed significant differences of stance time among 
detection methods on the right side (straight: F = 15.236, p < 0.001; curve: F = 92.298, p < 
0.001). The post-hoc analysis showed that acceleration and integrated detection methods 
on the right side significantly overestimated the stance time by 2.4–3.6%, compared to the 
kinetic detection method (p < 0.05; Table 4). No significant difference was found between 
acceleration and integrated detections. 

The ICC (2,1) results for each detection method are summarized in Table 5. The ICC 
(2,1) was ≥0.700 for the integrated detection method for all the sections on both sides, 
while the ICC (2,1) was 0.657 for the acceleration detection method in the curve for the left 
side. 

The Bland-Altman plot is shown separately for each section (straight and curve), side 
(right and left), and detection method (acceleration and integrated) (Figures 2 and 3). 

The gray-shaded areas in the figures show the limits of agreement of the two 
detection methods. The proportion of cases within the limits of agreement was greater 
than 90% for all the measurements (LOA% in Table 4). 

 

Figure 2. The Bland-Altman plot depicts the differences between the different detection methods 
in the straight, with 95% limits of agreement. The mean difference is shown by the dotted line. The 
95% confidence intervals of the limits of agreement are also depicted (gray-shaded area). (A) 
Acceleration detection on the right side. (B) Acceleration detection on the left side. (C) Integrated 
detection on the right side. (D) Integrated detection on the left side. 

Figure 2. The Bland-Altman plot depicts the differences between the different detection methods in the straight, with
95% limits of agreement. The mean difference is shown by the dotted line. The 95% confidence intervals of the limits of
agreement are also depicted (gray-shaded area). (A) Acceleration detection on the right side. (B) Acceleration detection on
the left side. (C) Integrated detection on the right side. (D) Integrated detection on the left side.

140



Sensors 2021, 21, 3649

Sensors 2021, 21, x FOR PEER REVIEW 7 of 10 
 

 

 

Figure 3. The Bland-Altman plot depicts the differences between the different detection methods 
in the curve, with 95% limits of agreement. The mean difference is shown by the dotted line. The 
95% confidence intervals of the limits of agreement are also depicted (gray-shaded area). (A) 
Acceleration detection on the right side. (B) Acceleration detection on the left side. (C) Integrated 
detection on the right side. (D) Integrated detection on the left side. 

Table 4. Stance time detected by kinetic, acceleration and integrated detection methods. 

Section Side 
Kinetic Detection Acceleration Detection Integrated Detection 

F p 
Mean (SD), ms Mean (SD), ms ∆% LOA% Mean (SD), ms ∆% LOA% 

Straight Right 713.1 (243.3) 730.5 (252.2) * 2.4 95.4 738.8 (259.4) * 3.6 94.2 15.236 <0.001 
 Left 736.7 (261.2) 740.2 (250.1) 0.5 91.8 744.8 (264.6) 1.1 90.1 0.670 0.512 

Curve Right 614.7 (142.6) 629.4 (153.5) * 2.4 96.1 632.3 (150.2) * 2.9 93.4 92.298 <0.001 
 Left 587.6 (127.1) 587.8 (108.5) 0.0 93.8 583.3 (102.2) 0.7 95.0 0.479 0.619 

The differences between the acceleration and integrated detection methods and the kinetic detection methods are shown as ∆%. 
The proportion of cases within the limits of agreement is shown as LOA%. The F value and p value were obtained by the 
repeated measures analysis of variance. * Significantly different from the kinetic detection method in the post-hoc analysis. 

 

Table 5. The intra-class coefficient as computed by the acceleration and integrated detection methods. 

Section Detection Method 
Right Left 

ICC (2,1) [95% CI] ICC (2,1) [95% CI] 
Straight Acceleration 0.927 [0.906−0.943] 0.882 [0.852−0.907] 

 Integrated 0.948 [0.925−0.963] 0.868 [0.834−0.895] 
Curve Acceleration  0.904 [0.875−0.926] 0.657 [0.582−0.721] 

 Integrated 0.891 [0.529−0.956] 0.700 [0.633−0.757] 
ICC: intra-class coefficient; 95% CI: 95% confidence interval. 

Figure 3. The Bland-Altman plot depicts the differences between the different detection methods in the curve, with 95%
limits of agreement. The mean difference is shown by the dotted line. The 95% confidence intervals of the limits of agreement
are also depicted (gray-shaded area). (A) Acceleration detection on the right side. (B) Acceleration detection on the left side.
(C) Integrated detection on the right side. (D) Integrated detection on the left side.

The gray-shaded areas in the figures show the limits of agreement of the two detection
methods. The proportion of cases within the limits of agreement was greater than 90% for
all the measurements (LOA% in Table 4).

4. Discussion

In this study, we aimed to estimate the accuracy of IMUs for the phase identification
of long-track speed skating for competitive speed skaters by comparing it with phase
identification using the foot pressure sensor system. We examined the agreements of the
acceleration and integrated detection methods with the gold standard measurements (i.e.,
the kinetic detection method) to calculate the stance time based on the foot contact and
foot-off identified by each detection method.

The main finding of this study is the high degree of agreement between the kinetic
and acceleration/integrated detection methods measured with the foot pressure sensor
and IMU systems, as shown by the moderate to high ICCs. This was true for both sides
(left and right) and segments (the straight and the curve). While statistically significant
differences between the methods were found for the stroke time on the right side for both
the straight and the curve, these differences were within 3.6%. The significant difference
may partly be due to the large number of strokes used for the comparison, while the
magnitude of the observed errors may not be very meaningful. Our Bland-Altman analysis
shows that in the straight, the extent of the bias was proportional to the observed stance
time (Figure 2). It is known that, during running, the stance time is prolonged as the
running speed decreases [19]. Therefore, it should be noted that both the acceleration
and integrated methods may be biased when the stance time is greater and the skating
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speed is slower (e.g., during long-distance skating). Our results also suggest that during
the curve, the ICCs for the left side were substantially lower than those for the right side.
This side-specific difference may be related to the asymmetrical skating form during the
curve. Further study is needed to investigate the side-specific difference of the skating
form during the curve in speed skating.

The acceleration and integrated detection methods were in significant agreement with
the gold standard measure for the computation of the stance time, which suggests that the
timing of the foot contact and foot-off for each leg and stroke can be accurately detected
by these methods. The identification of foot contact and foot-off during skating is crucial
for characterizing skating performance. It has been shown that the force measured by the
sensor embedded in the skate shoe is greater when the subject stands on one leg (single
leg stance), while the force substantially decreases when both legs are on the ice (double
leg stance) [20]. The detection methods proposed in this study can be used to characterize
skating performance using only IMUs, with minimal interference to the performance
of the subject. The accuracy of acceleration and integrated methods was similar in our
study, suggesting either method can be used for the detection of foot contact and foot-off.
However, the phases of the speed skating motion can be divided into more details than
just foot contact and foot-off [21]. IMUs have the potential to be used to identify a more
detailed phase classification. In particular, the knee flexion, hip flexion and hip extension
angles may potentially be used for a more detailed phase classification, as these angles
show phase-dependent changes [22]. Therefore, the combined use of acceleration and the
joint angle profiles obtained by IMUs would be ideal for future studies.

This study had several limitations. First, we only included healthy competitive athletes
from a university long-track speed skating team. Further studies are necessary to generalize
the results to different populations. Second, we used a foot pressure system as the gold
standard measure, although the system itself could exhibit a measurement bias. Specifically,
we used 20% peak force as the threshold for the foot contact and foot-off timing for the
kinetic detection method. The 20% threshold was selected based on the observation of
all trials from all participants, assuring no false detection in the kinetic detection, while
the threshold may not be generalizable to other datasets. Furthermore, in reality, foot
contact and foot-off occurred respectively earlier and later than the timing identified by
the kinetic detection. This time lag between the actual and detected events can explain the
systematic bias observed between the detection methods (i.e., all the positive ∆% values in
Table 4). This time lag can overestimate the bias, while providing conservative results for
the objective of this study.

5. Conclusions

In this study, we examined the agreement among the acceleration and integrated
detection methods and the gold standard measure (i.e., the kinetic detection method) to
calculate the stance time based on the foot contact and foot-off identified by each detection
method. Despite the statistically significant differences between the acceleration/integrated
detection methods and the gold standard measure on the right side, these differences were
within 3.6%. The current data show that phase identification using acceleration and
integrated detection is valid for evaluating the kinematic characteristics during long-track
speed skating.
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