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Preface to ”Electron Scattering from Atoms, Ions and
Molecules”

Electron collision physics covers a broad range of processes in atoms and molecules.

Understanding these processes can be achieved via experimental and theoretical investigations that

support and challenge each other. The last few decades have been witness to tremendous progress

in both the computational and experimental techniques applied to study and model electron-driven

processes. Access to modern supercomputer facilities has allowed for the computational modelling

of collision processes involving complex atoms and molecules; in turn, this allows for a sophisticated

modelling and the diagnostic assessment of various plasmas. Applications of electron collision

physics range from fusion, precision measurement and attoclocks to radiation damage and

biomedical research. This volume collates diverse applications of collision physics, highlighting

the importance and power of theoretical and computational techniques while also presenting new

experiments which disclose exciting new developments in collision processes.

Rajesh Srivastava and Dmitry V. Fursa
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“Atoms” Special Issue (Electron Scattering from Atoms, Ions
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* Correspondence: rajesh.srivastava@ph.iitr.ac.in

Electron collision physics covers a broad range of processes in atoms and molecules.
Understanding these processes can be achieved via experimental and theoretical investiga-
tions that support and challenge each other. The last few decades have seen tremendous
progress in both the computational and experimental techniques applied to study and
model electron-driven processes. Access to modern supercomputer facilities has allowed
for the computational modelling of collision processes involving complex atoms and
molecules [1–6] and this in turn allows for sophisticated modelling and diagnostic assess-
ment of various plasmas [1,7,8]. Applications of electron collision physics range from
fusion [3,7], precision measurement and attoclocks [9] to radiation damage and biomedical
research [10,11]. This volume collates diverse applications of collision physics, highlighting
the importance and power of theoretical and computational techniques while also present-
ing new experiments which disclose the exciting new developments in collision processes.

Pulsed mater injection in plasma devices is an actively growing research direction
with many important applications including fusion, material processing, plasma–surface
interactions, plasma thrusters, etc. Sadek et al. in [7] report on experiments with a magneton
RF plasma which operated in argon. Pulsed argon gas injection is analyzed by optical
emission spectroscopy of argon 2p-1s transitions. The measured line intensities in the
700–900 nm wavelength range are compared with those computed from a collisional–
radiative (CR) model in order to determine time-resolved electron temperature in the pulsed
injection conditions. In the CR modelling, the population mechanisms under consideration
are direct and stepwise electron impact excitation (including cascades from high-energy
levels), the while depopulation mechanisms considered are radiative transitions (mitigated
by radiation trapping) and quenching reactions induced by collisions with neutral argon
atoms. It was demonstrated that the full CR model better describes the optical spectrum
than the coronal model, thereby revealing the importance of considering mechanisms
involving Ar 1s levels and especially radiation trapping.

Plasma diagnosis via the utilization of optical emission spectroscopy (OES) is a power-
ful technique used to study plasma kinetics and gain knowledge of the production rate of
different species present in the plasma. Information on key plasma parameters, such as
electron temperature and electron density, can be obtained by comparing the OES measure-
ments with the results of plasma modelling. To assess plasmas that significantly deviate
from the equilibrium conditions, appropriate collisional–radiative (CR) models must be
developed. Shukla et al. in [1] report on the development of a such model for Ar and Ar+

plasma. Their CR model uses a comprehensive set of cross sections to describe electron
impact excitations between different fine-structure resolved levels of Ar and Ar+. The cross
sections are obtained using relativistic distorted wave theory and are generally in good
agreement with more accurate but more restrictive R-matrix calculations. In addition, the
electron impact ionization, radiation trapping, diffusion, and three-body recombination
processes are considered. Argon plasmas are of particular interest due to a considerable
discrepancy between the electron temperature values obtained from the Langmuir probe
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and the line-ratio estimates in argon helicon plasma. The CR model was applied to an
argon helicon plasma reported by Soltani and Habibi [12] for both ICP and helicon modes
at various powers.

The interaction of high-energy radiation with condensed matter leads to the produc-
tion of a large number low-energy electrons and ions via a cascade of ionization processes.
In biological matter, these secondary electrons can interact resonantly or directly with
biomolecules, causing damage to the DNA and the RNA in terms of either single or
double-strand breaks. The complete set of absolute cross sections resulting from low- to
intermediate-energy electron collisions with DNA molecules is required for radiation dam-
age modelling, e.g., in Monte Carlo particle track simulation. Such cross sections include the
total ionization and dissociative ionization cross sections. However, the cross sections for
dissociative ionization, also known as partial cross sections, are very scarce. Rehman and
Krishnakumar in [10] have used a crossed beam electron–molecular experiment along with
the relative flow technique to measure absolute total and partial ionization cross sections of
adenine molecules. The most abundant fragment cations from adenine include CnHnNn

+

(n = 5, 4, 3, 2, 1) at m/z of 135 (C5N5H5+), 108 (C4N4H4
+), 81 (C3N3H3

+), 54 (C2N2H2
+),

27 (CNH+), and HCNH+. Good agreement was found with binary-encounter dipole calcu-
lations of Huo et al. [13]. The dominance of CnHnNn

+ (n = 1 to 5), confirmed by the cross
section measurements, suggests that the most favored pathway for adenine dissociation
via electron ionization is effective due to the loss of HCN molecules in succession.

Dissociative electron attachment (DEA) is the dominant pathway for the interaction
of low-energy electrons with molecules. DEA is a resonant process whereby the electron
energy is translated to the nuclear motion via the dynamics of the negative ion resonance
state (NIRA). A fascinating feature of DEA is site selectivity, which directly correlates with
the functional group present at the site and originates from the nature of NIRS as core
excited resonances. Tadsare et al. in [11] studied DEA processes in aromatic molecules
aniline and benzylamine. These are present in many biological molecules, including DNA
bases. It was found that H− and CN− are two dominant channels in the measurements of
DEA to aniline and benzylamine, with H− being the most dominant for both molecules.
The absolute cross sections, as a function of electron energy for these channels, have been
produced from both molecules. The DEA dynamics of the H− channel has been investigated
using the velocity slice imaging technique. The kinetic energy and angular distribution
of hydride anions, formed in DEA to aniline and benzylamine, have been determined.
The results of the investigation show that the functional group-dependent site-selective
fragmentation, observed in aliphatic compounds, can also be seen in aromatic compounds.

In most of the electron–atom elastic scattering studies, a model potential approach is
used consisting of static, exchange, polarization and absorption potentials [14]. The model
potential is then used in the Schrodinger or Dirac equations depending upon whether the
calculation is non-relativistic or relativistic. The equations can be solved through partial
wave phase shift analysis and scattering phase shifts are obtained. The cross sections
are eventually calculated using the phase shifts. In order to calculate model potential,
charge density of the atom is required to obtain the static and exchange potentials and
polarizability of the atom for calculating the polarization potential. Thus, accurate atomic
structure calculations must be performed to establish the charge density and polarizability
in addition to solving the scattering problem. Sahoo [2], using relativistic coupled-cluster
(RCC) theory [15], via his calculations provided the electron density functions for obtaining
the static and exchange potentials of the atoms. He presented the accurate electron densities
and electric polarizabilities of Be, Mg, Ne and Ar atoms using two variants of the RCC
method. Using these quantities, model potentials for the electron scattering of these atoms
can be constructed. He also evaluated the second- and third-order electric dipole and
quadrupole polarizabilities using a linear response approach.

Electron scattering cross sections of neutral tin are important for fusion research.
Indeed, they have applications as fusion reactors, e.g., ITER. Accurate and comprehensive
collision data for electron scattering on both neutral and all ion stages of tin will enable the
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modelling of plasma containing tin and the identification of tin spectral signatures across
the different regions of the fusion plasma [16]. The collision data available for electron
scattering on atomic tin are limited to several theoretical works and one experimental study.
In view of this, Umer et al. [3] carried out electron scattering cross sections calculations from
atomic tin using the relativistic convergent close-coupling method [17]. They presented
integrated and momentum transfer cross sections for elastic scattering from the ground
and the first four excited states of tin. Various integrated and selected differential cross
sections are presented for excitation of the 5p2, 5p6s, 5p5d and 5p6p manifolds from the
ground state. The total ionization cross sections are calculated from the ground and the
first four excited states, accounting for the direct ionization of the 5p valence shell and the
closed 5s shell and the indirect contributions from excitation–autoionization.

In the scattering calculations from a projectile on a target, the results are reported in
terms of different cross sections. However, the scattering time delay has garnered recent
attention because it allows for the characterization of the projectile–target interaction in
the temporal domain. In general, it is assumed that scattering interactions constitute
instantaneous responses to the incident projectile. In reality, attoseconds (as) of delay in the
time scale are needed to determine the specific interaction. This means that, compared to
the projectile that does not feel the scattering centre, the scattered particles experience a
time lag or time advancement. This phenomenon can be represented through a parameter
known as Eisenbud–Wigner–Smith (EWS) time delay [18]. Aiswarya and Jose [4] presented
a study on the angular time delay of e-C60 elastic scattering in their paper. They employed
the annular square well (ASW) potential to simulate the C60 environment. In fact, the time
delay in electron scattering depends on both the scattering angle θ and scattered electron
energy E. The contribution from different partial waves to the total angular time delay
profile was examined in detail.

There are various ions which are considered for carrying out high-precision mea-
surements such as testing Lorentz symmetry violations, parity nonconservation effects,
non-linear isotope shift effects and quantum information, including for the optical atomic
clock experiments. In fact, optical lattices, when blended with unique features of optical
transitions in the ionic system, lead to the revolution in the clock frequency states. Singly
charged alkaline-earth ions are the most eligible candidates for consideration for use high-
precision measurements due to several advantages they possess. Since the confinement
of Mg+ ions in a monochromatic optical dipole trap has become feasible experimentally
for several ms, the pathways to implement these ions and thus realize optical lattice clocks
have been opened up due to the fact that ions provide more accurate atomic clocks. This is
due to the fact that various systematics in the ions can be controlled easily. Jyoti et al. [9]
reported the magic wavelengths (λmagics) [19] and tune-out wavelengths (λTs) of many S1/2
and D3/2,5/2 states, as well as transitions among these states of the Mg+, Ca+, Sr+ and Ba+

ions that are independent of M values. In many earlier studies, values of the electric dipole
(E1) matrix elements were inferred precisely by combining measurements and calculations
of λmagic. Similarly, the λT values of an atomic state can be used to infer the E1 matrix
element [20].

Arretche et al. [5] studied the low-energy scattering of electron–Zn/Cd by applying
model exchange and semiempirical polarization potentials. Their study was motivated
by the fact that the total cross section measurements for electron scattering by Zn and Cd
performed previously and the existence of p-wave shape resonances below 1 eV are well
established in the literature. It was suggested that a second d-wave shape resonance could
exist in both systems at an energy slightly higher than the one recorded for the p-wave
but still below the inelastic threshold. In view of this, they reported the elastic scattering
calculations for electron collisions with Zn and Cd atoms below 4 eV using a semiempirical
approach [21], as well the scattering length for both targets. Their results show that the
d-wave shape resonance can be found in Zn but is absent in Cd.

Campbell et al. [8] reported an interesting study on the inclusion of electron interac-
tions by rate equations in chemical models [22]. The concept of treating subranges of the
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electron energy spectrum as species in chemical models was investigated. This is intended
to facilitate the simple modification of chemical models by incorporating the electron in-
teractions as additional rate equations. It is anticipated that this embedding of the fine
details of the energy dependence of the electron interactions into rate equations will yield
an improvement in computational efficiency compared to other methods. In their study, the
authors proposed and tested a method to simulate nonequilibrium interactions of electrons
with gas molecules. In this method, the energy range of the electrons is split into subranges
that are then treated in a time-step calculation in the same way as chemical species. As
such, the electron interactions can be incorporated easily into existing simulations without
new coding being required. The authors found that, in excitation of gas molecules with
one vibrationally excited level, the initial energy of the electrons was transferred to the gas
molecules until an equilibrium was reached that, with sufficiently small subranges, was
very close to the predicted equilibrium values. This equilibrium was then maintained over a
long time (106 s), validating the method of calculating the rates for the electron interactions.
It was observed that the simulated electron spectrum was also very close to the predicted
Maxwellian distribution. Thus, they concluded that their proposed method is capable
of producing accurate results. However, the minimum number of subranges, and thus
computational efficiency, will need to be assessed for the requirements and circumstances
of particular applications.

In recent years, the electron impact ionization of atoms, molecules and ions which
are the most fundamental atomic processes has been studied using different theoretical
and experimental techniques. Electron impact ionization, also referred to as (e, 2e), in-
volves the collision of an incident electron with a target (either an atom or an ion or a
molecule), leading to the ionization of the target [23]. Upon determining the energies and
the momenta of all the particles involved in the collision, complete understanding of the
ionization process is established. Thus, (e, 2e) collisions have become an important tool for
investigating the collision dynamics of targets. The triple differential cross section (TDCS)
is the physical quantity that is of prime interest in these studies, providing information
about collision processes, ionization mechanisms, and the dependence of the ionization
process on the electron kinematics under which ionization is taking place. Pandey and
Purohit [6] carried out calculations for the electron impact triple differential cross section
(TDCS) and reported the results for nitrogen molecules. The TDCSs have been obtained
using distorted wave Born formalism [24] by taking the orientation averaged molecular
orbital (OAMO) approximation.

This current volume of the Special Issue presents a collection of interesting papers
related to electron scattering from various atoms and molecules and explores the possible
applications of these studies and their findings to plasma physics.

Author Contributions: All authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Time-Resolved Analysis of the Electron Temperature in RF
Magnetron Discharges with a Pulsed Gas Injection
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Richard Clergereaux 2 and Luc Stafford 1,*

1 Département de Physique, Université de Montréal, Montreal, QC H2V 0B3, Canada
2 LAPLACE (Laboratoire Plasma et Conversion d’Energie), Université de Toulouse, CNRS,

31000 Toulouse, France
3 LCC (Laboratoire de Chimie de Coordination), CNRS, 31000 Toulouse, France
* Correspondence: luc.stafford@umontreal.ca

Abstract: Pulsed gas injection in a plasma can affect many fundamentals, including electron heating
and losses. The case of an asymmetric RF magnetron plasma with a pulsed argon injection is analyzed
by optical emission spectroscopy of argon 2p-to-1s transitions coupled with collisional-radiative
modeling. For a fully detailed population model of argon 2p levels accounting for direct and stepwise
electron-impact excitation in optically thick conditions, a rapid decrease in the electron temperature,
Te, is observed during each gas injection with the sudden pressure rise. The opposite trend, with
unrealistic Te values before and after each pulse, is observed for analysis based on simple corona
models, thus emphasizing the importance of stepwise excitation processes and radiation trapping.
Time-resolved electron temperature variations are directly linked to the operating parameters of the
pulsed gas injection, in particular the injection frequency. Based on the complete set of data, it is
shown that the instantaneous electron temperature monotonously decreases with increasing pressure,
with values consistent with those expected for plasmas in which charged species are produced by
electron-impact ionization of ground state argon atoms and lost by diffusion and recombination on
plasma reactor walls.

Keywords: optical emission spectroscopy; collisional radiative modeling; RF plasma; magnetron
discharges; pulsed gas injection

1. Introduction

Pulsed matter injection is an appealing method in many plasma devices. It consists
of the pulsed injection of gases, liquids, aerosols, or sprays. This can be done by gas
puffing or supersonic flows [1,2], by gas or liquid valves, by ink-jet printer heads [3–5]
or by direct liquid injection [6–8]. Pulsed gas injection enables to control the discharge
physics. As an example, long term discharges in fusion devices can be sustained by the
pulsed injection of fuel gas [9,10]. For supersonic gas injection, a significant increase in
the fueling efficiency is observed due to the short injection time and the prompt cooling of
the plasma edge consecutive to the massive injection of matter [9]. In RF discharges used
for sputtering applications, pulsed injection of N2 in Ne can induce a transition between
two excitation mechanisms of plasma particles, from Penning reaction to electron-impact
excitation [11,12]. Pulsed gas injection also enables to control the gas fluid dynamics. For
example, a continuous injection of gases in a given reactor can produce an asymmetric
flow and, consequently, an asymmetric distribution of the plasma parameters that pulsed
plasma operation can avoid. Indeed, during the afterglow between pulses, species can
efficiently diffuse in the plasma volume yielding to uniform power deposition [13]. The
gas flow can also be efficiently guided to regions of interest, for example near a substrate or
a target [14].
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Pulsed gas injection further enables to control the plasma chemistry. First, depending
on the operating conditions (gas pressure, reactor dimensions, power, etc.), it can affect
the reaction kinetics involved in the plasma volume and at the plasma reactors walls [15].
For example, the production of metal-carbon clusters of higher masses is improved with
the pulsed injection of He/CH4 gas mixtures in arc discharges [16]. In addition, a pulsed
injection of organosilicon precursors in an asymmetric RF plasma allows to combine
plasma-enhanced chemical vapor deposition and physical vapor deposition without target
poisoning [17]. Such conditions can further induce nucleation of nanoparticles in the
plasma volume [18]. It is also possible to design the region of reactive species production.
For example, a selective production of the precursors and deposition can be achieved by
isolating spatially and temporally the injected gases from the plasma zone using a pulsed
gas injection coupled with a pulsed injection of power [13,19]. In addition, many reactive
precursors can be introduced in a pulsed mode. It allows to manipulate complex precursors
such as liquids, metalorganic compounds diluted in solvents [20], as well as to introduce
liquid dispersions of nanoparticles [8]. The latter is an attractive method for the formation
of nanocomposite coatings based on at least one nanometer-sized (less than 100 nm) phase.
The properties of such materials can be tailored by the chemical composition, crystal
structure, and morphology of the matrix, but also by the nature, size, form, volume fraction,
and distance between each nanometric inclusions (particles, filaments, tubes) [21,22]. Many
studies are devoted to plasma processes with pulsed gas injection [23]. A new “hybrid”
method based on a pulsed injection mode has been recently proposed [24]. It consists of a
Direct Liquid Reactor-Injector (DLRI) in which nanoparticles are synthesized by mixing a
liquid and a gaseous precursor prior to their injection in a pulsed mode in the plasma. The
nanoparticles as well as the solvent are then injected in the plasma as a gas pulse with a
duration and a frequency set by the chemical reaction kinetics.

In contrast to usual plasmas operating under constant pressure, the conception of
advanced plasma processes with a pulsed gas injection inevitably implies a complex tem-
poral dynamic associated with sudden pressure and plasma phase composition variations.
Such feature can induce multiscale variations of the fundamental plasma properties, in-
cluding electron density and temperature, number density of excited species, neutral gas
temperature, etc. [18,25]. During nanocomposite thin film deposition using a DLRI, this
can play an important role (i) on the dissociation kinetics of the matrix precursor [26],
(ii) on the charging and transport dynamics of nanoparticles in the plasma [27], (iii) on
the plasma-substrate interaction during thin film deposition [28], and therefore, (iv) on
the physical and chemical properties of the coatings [29]. As a building block towards a
better understanding of plasma processes using the DLRI, the objective of this study is to
gain insights into the physics driving low-pressure RF plasmas with pulsed gas injection.
Experiments are done in the specific case of a magnetron RF plasma operated in argon [30].
Optical emission spectroscopy combined with collisional-radiative modelling of Ar 2p-to-1s
transitions is used to analyze the electron kinetics over a wide range of DLRI conditions.

2. Experimental Setup
2.1. Plasma Reactor and Pulsed Gas Injection

A schematic of the RF (13.56 MHz) magnetron plasma reactor used in this work
is presented in Figure 1. The system consists of a 28 cm × 28 cm (diameter × height)
cylindrical stainless-steel chamber with grounded walls. A two-stage pumping system
ensures a residual vacuum of 10−5 Torr. Argon is fed into the reactor using an Atokit from
Kemstream® plugged on the injection ring surrounding the top electrode. The injection
parameters for the set of experiments reported in this work are the opening time of the
first valve before the mixing chamber (5 ms), the opening time of the outer valve leading
to the injection ring (10 ms), and the offset time between the closure of the two valves
(2 ms). In these experiments, the frequency of the Ar injection pulses is varied and sets
sequentially at f = 0.1, 0.5 and 1 Hz. Pulsed gas injection is producing an overpressure, ∆p,
in the plasma chamber. Values of ∆p are mainly controlled by the injection parameters and
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the base pressure, p0. The latter is adjusted using a throttle valve located at the entrance of
the pumping system.
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Figure 1. Overview of the experimental set up from (a) a side view and (b) a top view.

The RF power is fed to the top stainless-steel electrode (5 cm diameter), while the
bottom electrode (10 cm diameter) is grounded. This results in an asymmetrical RF plasma
with an inter-electrode gap of 5 cm. A matching box set between the RF power supply and
the reactor is used to minimize the reflected power. For the experiments reported in this
work, a nominal power of 100 W is sent to the plasma and the reflected power is oscillating
with the gas pulses between 3 and 7 W.

2.2. Optical Emission Spectroscopy Measurements

As shown in Figure 1b, optical emission spectroscopy (OES) measurements are taken
from a port and a collimator located on the side of the reactor. They are recorded over the
700–900 nm wavelength range with an AVANTES spectrometer (AVASpec-3648-2-USB)
having a spectral resolution of ~0.16 nm (full width at half maximum). A typical spectrum
depicting most of the intense Ar 2p-to-1s transitions (corrected for both background noise
and apparatus spectral response) from a plasma generated at 5 mTorr and 100 W is shown
in Figure 2.
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Figure 2. Typical optical emission spectrum of the argon plasma examined in this work.

For all conditions reported in this work, the measured line intensities are compared to
those computed from a collisional-radiative model based on Donnelly’s trace-rare-gases
optical emission spectroscopy method [31] in order to determine time-resolved electron
temperature in these pulsed injection conditions. As discussed previously [18,32,33], the
model is however adapted with respect to Donnelly’s work to account for radiation trapping
and stepwise excitation through resonant 1s levels.
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3. Results and Discussion
3.1. Influence of the Pressure Pulses

Optical emission spectra are recorded along a pulse of gas injection for an injection
frequency of 0.1 Hz. Figure 3 shows the evolutions of the operating pressure (blue plot)
and the Ar 811 nm emission line intensity during a period of injection (red plot) and for
two conditions of base pressure set to p0 ~5 mTorr (a) and 160 mTorr (b)—the constant
pressure rise being of ∆p ~70 mTorr during each cycle.
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Figure 3. Comparison between the evolutions of the pressure (blue curve) and the Ar 811 nm emission
line intensity (red curve) on an injection period. Injection frequency is set to 0.1 Hz corresponding to
an overpressure ∆p ~70 mTorr. In (a), the base pressure is set at p0 ~5 mTorr and in (b) at p0 ~160 mTorr.

Clearly, for both conditions presented in Figure 3, there is a synchronized evolution
of the Ar 811 nm emission line intensity with the pressure pulse. In the case of the lower
pressure condition, the sudden rise and slow drop in pressure led to a similar evolution of
the line intensity. However, the opposite behaviour is observed at higher pressure, although
the variations appear to be less pronounced than in the first condition. To understand these
apparently conflicting results, it is worth looking first at the well-known equation for the
measured intensity of a given emission line Iλ:

Iλ = f (λ)Aijniθij (1)

where f(λ) is the apparatus function at the wavelength λ of interest, Aij is the Einstein
coefficient for spontaneous emission of the transition, ni is the number density of the Ar
emitting level, and θij is the escape factor of the transition. In optically thin media (θij = 1),
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given that f (λ) is measurable and that Aij is a known constant, the line emission intensity
therefore only depends on the number density of the emitting level. In complex media
such as non-equilibrium plasmas, ni cannot simply be calculated assuming a Boltzmann
equilibrium (as in equilibrium plasmas), but requires a full description of its population
and depopulation mechanisms through a particle balance equation. A schematic of the Ar
2p-to-1s transitions with the dominant population and depopulation mechanisms of Ar 2p
states is presented in Figure 4.
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As a first approximation, assuming that the Ar 2p level is mostly populated by electron
impact on both ground-state argon atoms (direct excitation) and Ar 1s states (stepwise
excitation via metastable and resonant levels), while only lost by spontaneous emission,
the steady-state ni can be written as:

ni =
kground−i nArne + kstep−i nArm ne

∑j Aij
(2)

where kground-I and kstep-I are the reaction rates for direct and stepwise excitation, respectively,
nAr is the number density of argon atoms in the ground state level, nArm is the number
density of argon atoms in a metastable or resonant state, ne is the electron number density,
and ∑j Aij is the sum of the Einstein coefficients corresponding to the allowed radiative
transitions from the corresponding emitting level. Therefore, based on Equation (2), the
opposing trends observed in Figure 3 can a priori be linked to changes in nArm , nAr, ne, Te
or a combination of all these. This readily justifies the use of a detailed collisional-radiative
model for all emitting 2p states to gain further insights into the physics driving such
transient plasmas.

3.2. Results from the Collisional Radiative Model and Comparison with the Experiments

The collisional radiative model used in this work is based on the resolution of the par-
ticle balance equations of all Ar 2p levels using Te and ne as the only adjustable parameters.
More specifically, for each (Te, ne) pair, it calculates a theoretical spectrum by solving the
ten Ar 2p balance equations (see Figure 4) and computing the resulting intensity of relevant
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emission lines using Equation (1). The considered population mechanisms are direct and
stepwise electron impact excitation using cascading cross-sections (in order to account
for the contribution of higher-energy levels [31]), while the depopulation mechanisms
are radiative transitions (mitigated by radiative trapping of the lines, when applicable)
and quenching reactions by collisions with neutral argon atoms (see Figure 4). It is worth
mentioning that the four Ar 1s levels balance equations are also simultaneously solved to
account for stepwise excitation and radiation trapping. More details can be found in [34].
Once the theoretical emission line intensities are obtained for every (Te, ne) pair, they
are compared to the experimental (measured) ones by calculating a percentage standard
deviation and the Te and ne values resulting in the best fit are assumed to correspond to
the real plasma parameters. In order to run, the model requires input parameters such as
the operating pressure and the neutral gas temperature (to calculate the number density
of argon atoms in the ground state via the ideal gas law), as well as the absorption length
along the line of sight of the optical emission spectroscopy measurement to account for
optically thick Ar 2p-1s transitions [18,32,33].

Figure 5a shows typical percentage standard deviation plots calculated on a set of
emission bands as a function of Te for three ne values of interest for lowest base pressure
condition, p0 ~5 mTorr. For these experimental conditions, a minimum of the percent-
age standard deviation is observed for an electron temperature of 2.6 eV no matter the
value of the electron number density. Here, the chosen range of electron number density
(1014–1016 m−3) is based on Langmuir probe measurements done in similar experimental
conditions [30]. Figure 5b confirms the optimal agreement between the theoretical and
experimental spectra as found by the CR model for Te = 2.6 eV. Similar electron temperature
values were obtained by Langmuir probes for low-pressure argon RF plasmas sustained
in comparable experimental conditions (pressure, reactor dimensions) [30]. Such little
influence of the electron density on the optimal Te value observed in Figure 5a implies
that the CR model is mostly independent of the electron number density over the range of
experimental conditions investigated. Two physical possibilities could lead to this result:
either stepwise excitation processes have no contribution on the population kinetics of
the Ar 2p levels, or the stepwise processes do indeed contribute but all the other pop-
ulation/depopulation mechanisms also have an electron number density dependency,
resulting in its vanishing from the particle balance equations of Ar 1s states. To verify
which of these two hypotheses applies to the present situation, a corona model based on
the work of Huddlestone et al. [35] and in which stepwise processes are neglected is also
calculated.
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Figure 5. (a) Evolution of the percentage standard deviation as a function of the electron temper-
ature for three electron number densities and a base pressure p0 ~5 mTorr. (b) Agreement of the
experimental and model emission line intensities for the optimal (Te, ne) values.
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3.3. Impact of Stepwise Excitation Processes on the Study of the Electron Temperature

To determine the role of stepwise excitation processes over the range of experimental
conditions examined, two separate cases were considered. First, the CR model is computed
using all mechanisms that could play a role in the Ar 2p and 1s kinetics, a scenario we shall
refer to as the standard CR model. Second, the same CR model is computed but all the
stepwise processes are neglected, which in the end means it is considered that nArm = 0
and all the optical transition are optically thin. This scenario, based on the steady-state
corona model, will be referred to as the Corona model. The temporal evolution of the
electron temperature over the injection period is reported in Figure 6 for both scenarios.
The evolution of the pressure drop is also reported.
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pulse (blue curve) on a normalized injection period for an injection frequency of 0.1 Hz. Electron
temperatures are shown for both CR and Corona models.

In the case of the standard CR model, a decrease in Te of about 1 eV is observed
in Figure 6 concomitantly with the gas pulse, reaching a minimum of 1.4 eV and then
increasing back to 2.5 eV as the pressure lowers back to its initial value. This trend agrees
with the calculations of Liebermann et al. [36] as well as with the results reported by
Maaloul et al. [30]. On the other hand, the opposite trend is observed in the case of the
Corona model since the electron temperature rises to 1 eV and drops back to 0.5 eV as the
pressure also rises and drops. More interestingly, both of the models clearly do not agree
on the electron temperature at any given time of the pulse except at the close end of the
pulse, where Te (CR) is minimal and Te (Corona) is maximal.

To verify which model better depicts the physics driving the temporal evolution of
the plasma, the temporal evolution of the percentage standard deviation in both cases is
analyzed; the results are shown in Figure 7a. As can be seen, the standard CR model always
better describes the experimental data than the Corona model. Moreover, at the beginning
of the pulse, an almost match of the electron temperature (at ~1 s) also corresponds to the
time where the percentage standard deviations are equals. Therefore, even if the Corona
model is less relevant to simulate the optical emission spectra, it becomes almost as accurate
as the standard CR model during the gas pulse. The reason behind this similarity is due
to radiation trapping, as shown in Figure 7b. Indeed, it shows the temporal evolution
of the self-absorption percentage of the Ar 811 nm emission line, as calculated by the
standard CR model. Self-absorption is at a minimum (~20%) directly after the beginning of
the gas pulse. Since, as mentioned before, neglecting stepwise excitation processes in the
Corona model implied neglecting self-absorption of argon 2p-1s transitions, it thus explains
(1) why the two models almost agree when radiation trapping becomes less important,
(2) why the standard CR model is systematically better at simulating the measured spectra
since radiation trapping is found to be an important mechanism over an important part
of the pulse cycle, and (3) why the temporal evolution of the standard deviation as well
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as of the electron temperature share an evolution closer to the form of the pressure pulse.
Therefore, radiation trapping plays an important role in the kinetics of Ar 2p states and
must imperatively be considered to obtain a correct temporal evolution of the electron
temperature. Additionally, it means that processes involving Ar 1s levels do contribute
to the population kinetics of the Ar 2p levels but, as mentioned before, due to all the
other mechanisms also having a ne dependency, the model is in the end independent from
the electron density. Finally, a decrease in the radiation trapping with an increase in the
pressure makes sense since the lower electron temperature and the additional quenching
reactions by neutral argon atoms can only result in lower Ar 1s number densities and thus
less self-absorption of the lines linked to 2p-to-1s transitions.
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3.4. Effect of the Pulsed Gas Injection Parameters

Experiments with injection frequencies from 0.1 to 1 Hz are also carried out. For a
fixed pumping valve position, the frequency reduces the overpressure from 65 to <1 mTorr
when increasing the frequency (Figure 8). Spectra are analyzed in such conditions with the
standard CR model. The temporal evolutions of the electron temperature are reported in
Figure 8 for the four conditions. For an injection frequency of 0.1 Hz (p0 ~160 mTorr), the
electron temperature is, as in lower pressure condition (Figure 6), following the opposite
trend of the pressure, but on a much smaller scale (Figure 8a). The experiment carried out
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with an injection frequency of 0.5Hz (p0 ~110 mTorr) result in barely noticeable variation of
the electron temperature with the pressure pulse (Figure 8b). Therefore, it can be concluded
that the base pressure, p0, more than the temporal variation, ∆p, is determinant in fixing the
electron temperature: this parameter being particularly sensible to temporal variations at
low pressure. To verify this claim, measurements are recorded with an injection frequency
of 1 Hz and two different base pressure of p0 ~70 and 240 mTorr (Figure 8c,d). Clearly, the
higher-pressure results in the lower electron temperature, confirming precedent conclusion
in agreement with previous works at constant pressures [30].
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3.5. Global Trend and Comparison with Reference Measurements

Figure 9 shows all the electron temperatures obtained from the comparison between
measured and simulated (CR model) line emission intensities of Ar 2p-to-1s transitions
under the different experimental conditions and reports them as a function of pressure.
Clearly, a global trend emerges from this graph, which can be compared to a scaling
law (curve). This scaling law is based on the resolution of the particle balance equation
of charged species in which electrons and ions are mostly produced by electron-impact
ionization of ground state argon atoms and lost by ambipolar diffusion and recombination
on plasma reactor walls. In such model, the electron temperature becomes solely governed
by the number density of ground state argon atoms (linked to the pressure via the ideal
gas law) and the reactor dimensions. Here, the particle balance equation is solved for
a cylindrical geometry with a length of 5 cm and a radius of 14 cm. Similar values are
obtained from the heuristic global model reported in [36]. Based on this complete set of
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data, it is now clear that small variations of the pressure on the low-pressure side will affect
more significantly the electron temperature than small variations of the pressure on the
high-pressure side.
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4. Conclusions and Perspectives

Optical emission spectroscopy measurement of the Ar 2p-to-1s transitions used in
combination with a collisional-radiative model of the Ar 2p levels evidence that pulsed gas
injections at low frequency (0.1–1 Hz) in a low-pressure capacitively coupled plasma reactor
significantly affect the discharge. A decrease in the electron temperature following the
pressure pulse is observed. A comparison of this result to that of a corona model highlight
the importance of considering mechanisms involving Ar 1s levels, and especially radiation
trapping, in the particle balance equation of Ar 2p and 1s states. Additionally, a global trend
comparable to a scaling law is evidenced, linking an increase in the real-time operating
pressure to a decrease in the electron temperature. Pressure variations on the low-pressure
side have been observed to more importantly influence the electron temperature. This
work is a first and necessary step to describe more complex plasmas in the presence of
pulses of gaseous or liquid precursors with or without nanoparticles for deposition of
nanocomposite coatings using the DLRI. Indeed, in such case, the role of precursors (liquid
or gases) and/or nanoparticles can highly affect the plasma behavior and, especially, the
electron temperature [18].
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Abstract: Comprehensive collisional radiative (CR) models have been developed for the diagnos-
tic of argon plasma using Ar and Ar+ emission lines. The present CR models consist of 42 and
114 fine-structure levels of Ar and Ar+, respectively. Various populating and depopulating mech-
anisms are incorporated in the model. A complete set of electron-impact fine-structure resolved
excitation cross-sections for different excited levels in Ar and Ar+ are used, which are obtained by em-
ploying relativistic distorted wave theory. Along with this, the electron-impact ionization, radiation
trapping, diffusion, and three-body recombination are also considered. Further, to demonstrate the
applicability of the present CR model, we applied it to characterize the Helicon-plasma utilizing the
optical emission spectroscopy measurements. The key plasma parameters, such as electron density
and electron temperature, are obtained using their measured Ar and Ar+ emission line intensities.
Our results are in reasonable agreement with their anticipated estimates. The matching of our cal-
culated intensities of the different Ar and Ar+ lines shows excellent agreement with the measured
intensities at various powers.

Keywords: Ar and Ar+ collisional radiative model; relativistic distorted wave theory; electron-impact
excitation cross-sections; argon plasma

1. Introduction

Non-invasive spectroscopic plasma diagnostic utilizing the optical emission spec-
troscopy (OES) measurements offers a powerful tool to study the deriving physics of
plasma kinetics and gain knowledge of the production rate of different species present in
the plasma. Since most of the laboratory plasmas significantly deviate from equilibrium
conditions, giving rise to the need for the development of collisional radiative (CR) models
to extract the information of key plasma parameters such as electron temperature (Te)
and electron density (ne). We observe from the literature [1–3] that either the plasma or
inert gases are often considered or added in small amounts in any plasma to characterize
it. We find primarily that neutral argon gas is commonly used, and the intensities of
its emission lines are measured and utilized to characterize various plasmas. In many
high-density argon plasmas, along with the neutral emission lines, significant emissions
from higher ionic states of argon, particularly from its first ionic state (i.e., Ar+), are also
observed [4–7]. However, most of the CR models have used for the characterization of
the plasma emission lines of the neutral argon, and not the lines of Ar+. Further, in such
types of plasma, the electron-impact processes are the dominant processes [4]. The most
important are the electron-impact excitations/de-excitations from the ground and the first
excited manifold levels. It is due to the fact that the population densities of the ground and
the first excited manifold are much higher as compared to other higher levels. Therefore,
it would be interesting and important to carry out plasma diagnostics by incorporating
reliable electron-impact excitation cross sections of the various fine-structure levels of the
Ar and Ar+, along with other contributing processes in the CR models. To the best of our
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knowledge, it would be the first study where we presented the calculation of the plasma
parameter results obtained from CR models using both the atomic and ionic emission lines.

Further, plasma with low discharge pressure, high electron density, and low ion and
electron temperatures are very useful and important for practical plasma sources [8]. From
this point of view, Helicon Plasma (HP) sources, which use Helicon waves (HW) [8,9],
are quite promising as these sources can produce plasmas with high ne ≈ 1013 cm−3 and
ionization efficiency [10,11] for input power smaller than a kW at radio frequency (rf) with
some magneto-static field. Thus, HP sources have various applications, such as in fusion
research [12,13], material processing [14–16], plasma propulsions and thrusters [17–19],
plasma Wakefield accelerators [20], etc. In the world’s largest TOKAMAK fusion device,
which is the International Thermonuclear Experimental Reactor (ITER), the neutral beam
injection (NBI) ion sources are all inductively coupled plasma (ICP) type [21]. In ITER, ICP
is generated inside the driver at rf 1 MHz and high powers up to 90 kW. However, it is
beneficial to lower the value of the required rf power while maintaining the same plasma
densities to obtain a more operational margin with accuracy and cost diminution. In this
respect, various experimental studies [4,5,22] have shown that the Helicon heating is a very
effective rf coupling technique to achieve plasma densities in Helicon discharges up to
one order higher than the ICP discharges at the same rf power. With these developments,
researchers worldwide have started investigating the HP source for the ITER nuclear beam
system [11,21–26]. In most HP source [4] experiments, the working noble gas is argon; thus,
it makes the diagnostics of argon plasma in these sources important and worth exploring.

In this regard, Soltani and Habibi [4] recently designed and developed an HP source
for the NBI system. In their work, they identified and measured the intensities of the
emission lines from both the Ar and Ar+. Thus, it would be beneficial from the application
point of view to take up the diagnostic study of the HP of argon gas in light of their OES
measurements [4]. Therefore, in this study, we aim to develop the detailed CR models
of Ar and Ar+ for HP in light of the experimental study of Soltani and Habibi [4]. The
present CR models of Ar and Ar+ have been developed by incorporating important atomic
processes, such as electron-impact excitation/de-excitation, electron-impact ionization,
radiation trapping, diffusion, and three-body recombination. It is worth mentioning that
the electron-impact processes play a dominant role in plasma kinetics. Therefore, the cross-
sections of these processes should be incorporated in a consistent manner [27]. However,
the measurements and benchmark non-perturbative calculations are preferred, but these
are available for selected transitions and also at a very limited energy range [28–33]. Mostly
these considered transitions are unresolved fine-structured and thus are not suitable for de-
veloping a plasma model. However, in the plasma model, cross-sections for a large number
of fine-structured transitions are required in the wide range of impact energy. Therefore,
calculations from a reliable variant of the perturbative approach are often useful. In this
regard, our group has reported electron-impact cross-sections for various atoms and ions
using the relativistic distorted wave approach (RDW). In this RDW theory, the bound state
atomic wave functions of Ar and Ar+ are at the Dirac–Fock level obtained from GRASP2K
code [34]. Further, the projectile electron wave functions are computed numerically by
solving the Dirac equations, which naturally incorporates relativistic effects such as spin-orbit
interaction and jj coupling. Our calculated RDW cross-sections [35–38] are in reasonable
agreement with the available respective measurements [29,30,39] and non-perturbative
R-matrix calculations [31,32], though later better B-spline R-matrix calculations [33] for
excitation from the ground state to some upper excited states were also reported, which
reasonably compare with our RDW cross-sections. Additionally, our reported fine-structure
resolved cross-sections have been successfully used in various plasma diagnostic stud-
ies [40–42]. All the incorporated electron-impact excitation cross-sections [35,37,38,43] of
Ar and Ar+ in the present CR model are calculated from the RDW theory.

Further, we use a spectroscopic diagnostic approach which is based on comparing
the peak intensity of emission lines obtained experimentally with the intensity obtained
using our CR model. It would be worth mentioning here that in the present work, we
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have not included the line-broadening in the CR model. We have obtained the plasma
parameters by employing the OES measurements of Soltani and Habibi [4] for Ar and Ar+

emission lines. Moreover, we would like to add that Evdokimov et al. [7] have reported
their OES measurements of the magnetron discharge plasma considering Ar and Ar+ lines
and presented their modeling results. They primarily developed a CR model to characterize
their magnetron plasma, following our earlier reported CR model of Gangwar et al. [36]
for neutral Ar plasma, and also took only a single emission line of Ar+ (i.e., 488 nm). In
their approach, they have considered a single electron-impact transition in Ar+, which can
only be suitable for magnetron plasma. However, in the case of different plasmas, where
all other possible electron excitation processes that can occur from the ground and different
excited states of Ar+ and various other population transfer mechanisms are essential, this
approach might not be appropriate. All these processes (mentioned above) are considered
in the present CR models, and details are given in the next section.

2. Collisional Radiative Model

The particle balance equation of the present CR model, which is used to obtain
the population density (nj) as a function of electron density and electron temperature
corresponding to an excited level j of any considered system, can be written as:

x

∑
i = 1
i 6= j

kij(Te)nine + ∑
i>j

Ae f f
ij ni + nen+nek+j(Te)−

x

∑
i = 1
i 6= j

k ji(Te)njne−

∑
i<j

Ae f f
ji nj − njnek j+(Te)− njk

di f f
j = 0.

(1)

All the positive and negative terms, shown in Equation (1), represent the population
and depopulation channels for the excited level j, respectively. The first and fourth terms
are the population transfer by electron collisional excitation and de-excitation, respectively,
whereas the second and fifth terms denote the radiative decays, respectively, from the
upper levels and to the lower levels. The third and sixth terms represent the three-body
recombination and ionization processes, respectively. The last term of the equation shows
the depopulation by diffusion of excited states through the chamber walls. In Equation (1),
x refers to the number of fine-structure (FS) levels taken in the CR model for the Ar/Ar+.
The selection of these levels is made such that, in each iteration, we added most of the
fine structure levels of an excited atomic state configuration until the populations of the
radiating excited levels no longer change significantly by further addition of the levels. In
Equation (1), ni refers to the population density of fine-structure levels and n+ is the ion
density of the first ionic state of the concerned atomic system, i.e., neutral Ar or Ar+. Further,
as mentioned above, the most important processes are the electron-impact excitations/de-
excitations from the ground and the first excited manifold levels in the considered plasma
conditions [4]. On the other hand, out of the two-body and three-body recombination
processes, we have included only the latter, as it is crucial for low-temperature plasma [44].
The charge exchange process is also not included in the present model, though this can
affect the charge-state balance of the low-temperature and low-density plasma. However,
we omit these processes for the sake of simplicity, noting that the purpose of this study is
to demonstrate the utility and accuracy of our recently calculated cross-sections. In fact,
the laser-produced plasma in [45–47] is at a lower temperature (Te~1 eV) than the present
Ar plasma studies and significantly higher electron density (ne~1E16–1E17 cm−3, therefore
enhancing three-body recombination), yet they still found the significance of radiative
recombination. Further, the population transfer due to electron-impact excitation and
ionization in Equation (1), are included through rate-coefficients kij and k j+, respectively.
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The rate-coefficients for electron-impact excitation can be evaluated using the following
expression:

kij =

√
2

me

∫ ∞

Eij

σij(E)
√

E f (E)dE. (2)

Here, me is the mass of electrons, Eij denotes the excitation threshold energy of i→ j
transition. σij(E) is the electron-impact excitation cross-section for the i→ j transition. f (E)
represents the Maxwellian electron energy distribution function (EEDF), which is related to
the electron energy probability function through f (E) = E1/2F(E). This choice of EEDF is
made for the sake of simplicity and to be in consistency with the experimental plasma of
Soltani and Habibi [4], where they have also taken the Maxwellian EEDF. Similarly, the rate-
coefficient for the electron-impact ionization can be obtained by replacing the upper-state
with ionization level in Equation (2) and using electron-impact ionization cross-section
(σi+) in place of excitation cross-section. The rate-coefficients for reverse processes, e.g.,
electron-impact de-excitation and three-body recombination, are incorporated using the
detailed balance principle [41,44,48]. Thus, the electron-impact de-excitation rate-coefficient
(k ji) can be written in terms of excitation cross-section as:

k ji =
gi
gj

√
2

me

∫ ∞

Eij

σij(E)EF(E− Eij)dE. (3)

Here, gi and gj are the statistical weights of the initial and final states, respectively.
Further, the rate-coefficient for the three-body recombination (k+i) can be obtained by
using the Saha relation [44] as follows:

k+i =
gi

2g+

(
h2

2πmTx

)3/2√ 2
me

∫ ∞

Ei+

σi+(E)EF(E− Ei+)dE. (4)

Here, g+ refers to the statistical weight of the singly ionized state of Ar/Ar+ ground
state and Ei+ is the ionization threshold energy of Ar/Ar+. In order to account for the
radiation trapping effect, the transition probability (Aij) in Equation (1) is replaced by

effective transition probability (Ae f f
ij ), having relation Ae f f

ij = Λij × Aij, for i→ j tran-
sition. Here, the escape factor (Λij) is a function of gas temperature, dimensions of the
plasma chamber [4], and population density of the lower level. We have used Mewe’s
approximation [49] to calculate the escape factor in the present work as given below,

Λ(Kijρ) =
2− e−Kijρ/1000

1 + Kijρ
. (5)

The required values of transition probabilities are taken from the NIST database [50].
The radius of the plasma chamber (ρ) is taken as 2.4 cm, and the gas temperature is equal
to room temperature. We solve first the particle balance equation (Equation (1)) to obtain
the population densities of different excited fine-structure levels of Ar. We have taken
42 fine-structure levels (i.e., x = 42). These levels are the ground state (3p6) and the excited
configurations 3p54s (with 4 FS), 3p54p (with 10 FS), 3p53d (with 12 FS), 3p55s (with 4 FS),
3p55p (with 10 FS) states, as well as the first ionization state of neutral argon, i.e., 3p5.
All of these states are given in Table 1 in the more familiar LS coupling notation, which
we specifically derived for the purpose of the present work. Additionally, these were
reported elsewhere in Paschen notation [36]. Table 1 also shows the electronic configuration
of the different states and their energies [50]. All these considered levels are connected
through different radiative and collisional transitions such as electron-impact excitation/de-
excitation, ionization, diffusion, and three-body recombination, as shown in Figure 1. In
the case of neutral argon, n+ is the population density of Ar+ in Equation (1). The electron-
impact excitation rate-coefficients are obtained using Equation (2) by employing RDW
electron-impact excitation cross-sections calculated by our group [36]. In order to evaluate
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the ionization rate-coefficient, the required electron-impact ionization cross-sections are
taken from the experiments [51,52]. The rate-coefficients for the diffusion of metastable
states of Ar are taken from Kolts et al. [53]. It is worth mentioning that the escape factors
required in Equation (1) are computed for the transitions which decay to the ground state
of Ar, as only these have a significant contribution compared to other transitions.

Table 1. The energy levels of Ar, considered in the present CR model.

Level No. Level LS Coupling Excitation Energy
(eV)

1 3p6 1S0 0
2 3p5(2P

◦
3/2)4s

3P2 11.548
3 3P1 11.623
4 3p5(2P

◦
1/2)4s

3P0 11.723
5 1P1 11.828
6

3p5(2P
◦
3/2)4p

3D1 12.907
7 3D3 13.076
8 3D2 13.095
9 3P1 13.153
10 3P2 13.172
11 3P0 13.273
12

3p5(2P
◦
1/2)4p

3S1 13.283
13 1D2 13.302
14 1P1 13.328
15 1S0 13.480
16

3p5(2P
◦
3/2)3d

3P0 13.845
17 3P1 13.863
18 3P2 13.903
19 3F4 13.979
20 3F3 14.012
21 3F2 14.063
22 3D3 14.100
23 3D1 14.153
24

3p5(2P
◦
1/2)3d

3D2 14.214
25 1D2 14.234
26 1F3 14.236
27 1P1 14.303
28 3p5(2P

◦
3/2)5s

3P2 14.068
29 3P1 14.090
30 3p5(2P

◦
1/2)5s

3P0 14.241
31 1P1 14.255
32

3p5(2P
◦
3/2)5p

3D1 14.464
33 3D3 14.500
34 3D2 14.506
35 3P1 14.525
36 3P2 14.529
37 3P0 14.575
38

3p5(2P
◦
1/2)5p

3S1 14.680
39 1P1 14.687
40 1D2 14.688
41 1S0 14.738
42 3p5 2P3/2 15.760
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Figure 1. Energy level diagram of Ar along with the various collisional and radiative processes
considered in the present CR model. The solid lines show excitations and de-excitation from the
ground state of Ar. Wavy lines represent the radiative transitions. Here, FS stands for fine-structure.

In the next step, we solve the particle balance equation (Equation (1)) to obtain the
population densities of different excited fine-structure levels of Ar+. We considered 114 fine-
structure levels (i.e., x = 114). These are 3p5 (ground state) and excited 3s3p6, 3p43d (with
28 FS), 3p44s (with 8 FS), 3p44p (with 21 FS), 3p45s (with 8 FS), 3p44d (with 26 FS), 3p45p
(with 19 FS) states as well as first ionization level of Ar+ 3p4. These considered levels are
listed in Table 2, along with their electronic configurations and associated energies [50]. The
CR model framework outlining the interconnection between FS levels via different radiative
and collisional transitions is shown in Figure 2, such as electron-impact excitation/de-
excitation, electron-impact ionization, and three-body recombination. Here, n+ is the
population density of Ar++ in Equation (1). The required RDW cross-sections of 114 fine-
structure levels to evaluate electron-impact excitation rate-coefficient (Equation (2)) are
taken from our previous work [38]. In addition, we have also calculated the additional RDW
electron-impact excitation cross-sections of 3p44s→ 3p44p transitions because we did not
report these cross-sections earlier [38]. These transitions play a vital role in the population
and depopulation of the considered emission lines in the present work. The electron-impact
ionization cross-sections of Ar+ needed to calculate the ionization rate-coefficients are taken
from the reported measurements [54]. The required radiation trappings in Equation (1) are
calculated for the transitions which decay to the ground state of Ar+, as we have found that
only for these transitions, giving significant contributions.

Table 2. The energy levels of Ar+, considered in present CR model.

Level No. Level LS Coupling Excitation
Energy (eV) Level No. Level LS Coupling Excitation

Energy (eV)

1
3p5

2P3/2 0 59
3p4(1S)4p

2P3/2 23.802
2 2P1/2 0.177 60 2P1/2 23.846
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Table 2. Cont.

Level No. Level LS Coupling Excitation
Energy (eV) Level No. Level LS Coupling Excitation

Energy (eV)

3 3s3p6 2S1/2 13.480 61

3p4(3P)5s

4P5/2 22.515
4

3p4(3P)3d

4D7/2 16.406 62 4P3/2 22.592
5 4D5/2 16.425 63 4P1/2 22.683
6 4D3/2 16.444 64 2P3/2 22.700
7 4D1/2 16.457 65 2P1/2 22.802
8 4F9/2 17.629 66

3p4(1D)5s
2D5/2 24.284

9 4F7/2 17.695 67 2D3/2 24.284
10 4F5/2 17.743 68 3p4(1S)5s 2S1/2 26.665
11 4F3/2 17.776 69

3p4(3P)4d

4D7/2 22.773
12 2P1/2 17.942 70 4D5/2 22.788
13 2P3/2 18.061 71 4D3/2 22.811
14 4P1/2 18.254 72 4D1/2 22.837
15 4P3/2 18.288 73 4F9/2 22.949
16 4P5/2 18.334 74 4F7/2 22.014
17 2F7/2 18.496 75 4F5/2 23.070
18 2F5/2 18.616 76 4P1/2 23.082
19 2D3/2 18.656 77 4F3/2 23.103
20 2D5/2 18.732 78 4P3/2 23.119
21

3p4(1D)3d

2G9/2 19.116 79 2F7/2 23.162
22 2G7/2 19.119 80 4P5/2 23.171
23 2F5/2 20.246 81 2F5/2 23.258
24 2F7/2 20.272 82 2P1/2 23.549
25 2D5/2 21.367 83 2P3/2 23.630
26 2D3/2 21.428 84 2D5/2 23.874
27 2P3/2 21.624 85 2D3/2 23.893
28 2P1/2 21.675 86

3p4(1D)4d

2G7/2 24.623
29

3p4(1S)3d
2D5/2 22.266 87 2G9/2 24.624

30 2D3/2 22.309 88 2P1/2 24.728
31 3p4(1D)3d 2S1/2 22.825 89 2P3/2 24.738
32

3p4(3P)4s

4P5/2 16.644 90 2D5/2 24.757
33 4P3/2 16.748 91 2D3/2 24.794
34 4P1/2 16.812 92 2F7/2 24.814
35 2P3/2 17.140 93 2F5/2 24.826
36 2P1/2 17.266 94 3p4(1D)4d 2S1/2 25.445
37

3p4(1D)4s
2D3/2 18.426 95

3p4(3P)5p

4P5/2 23.404
38 2D5/2 18.454 96 4P3/2 23.438
39 3p4(1S)4s 2S1/2 20.743 97 4D7/2 23.484
40

3p4(3P)4p

4P5/2 19.223 98 4P1/2 23.487
41 4P3/2 19.261 99 4D5/2 23.514
42 4P1/2 19.305 100 4D3/2 23.570
43 4D7/2 19.494 101 2P1/2 23.581
44 4D5/2 19.549 102 2P3/2 23.620
45 4D3/2 19.610 103 2D5/2 23.620
46 4D1/2 19.642 104 4D1/2 23.649
47 2D5/2 19.680 105 2S1/2 23.674
48 2D3/2 19.762 106 2D3/2 23.682
49 2P1/2 19.801 107 4S3/2 23.702
50 2P3/2 19.867 108

3p4(1D)5p

2P3/2 25.170
51 4S3/2 19.967 109 2F5/2 25.187
52 2S1/2 19.972 110 2F7/2 25.193
53

3p4(1D)4p

2F5/2 21.127 111 2P1/2 25.242
54 2F7/2 21.143 112 2D3/2 25.307
55 2P3/2 21.352 113 2D5/2 25.309
56 2P1/2 21.426 114 3p4 3P2 27.630
57 2D3/2 21.492
58 2D5/2 21.498
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Figure 2. Energy level diagram of Ar+ along with the various collisional and radiative processes
considered in the present CR model. The solid lines show excitations and de-excitation from the
ground state of Ar+ (2P3/2). Wavy lines represent the radiative transitions. Here FS stands for
fine-structure.

We have solved the coupled particle balance equations (Equation (1)) numerically by
utilizing the standard matrix inversion approach, similar to our previous CR models [36,42].
The evaluation of the rate-coefficients of the different processes has been performed as an
intermediate step by providing the necessary cross-sections and the required transition
probabilities. The needed transition probabilities are taken from the NIST database [50].
Simpson’s integration method is used to calculate the integrals corresponding to rate-
coefficients in Equations (2)–(4). The required ground state population of the Ar atom in the
CR model is evaluated from the standard gas law at the experimental conditions mentioned
in Ref. [4], whereas in the case of the Ar+, following the charge neutrality condition, we take
the ground state population density as equal to the electron density that we obtained from
our CR model for argon. Since Equation (1) depends on the values of Te and ne for solving
it, we assume a tentative wide grid of the different values of Te and ne separately. Then, by
taking each value of Te and different values of ne, we solve Equation (1) for each set of (Te
and ne). After solving the coupled particle balance equations, we obtain the population
densities (nj) of each considered fine-structure level as a function of different sets of Te and
ne in the wide range of their values. Further, using these obtained population densities, we
have calculated the intensities (I) of the considered emission lines of Ar and Ar+ using the
following equation,

Iji ∝ nj
hc
λji

Ae f f
ji . (6)

Here, h and c represent Planck’s constant and the speed of light, respectively. λji
( j→ i ) stands for the emitted wavelength. Now, to obtain the plasma parameters, i.e.,
values of Te and ne which exactly correspond to the experimental plasma, the calculated
CR model intensities are needed to be optimized or matched with their corresponding OES
measured intensities [4]. A conventional way to achieve this optimization or matching is to
calculate standard deviation parameters between the CR model simulated intensities and
respective OES measured intensities.
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To match our calculated model intensities for the considered emission lines of Ar
and Ar+ with the experimentally measured intensities [4], we have first normalized these
intensities individually by using the following relation,

Inormalized
j,OES(Model) =

Ij,OES(Model)
n′
∑

j=1
Ij,OES(Model)

× 100. (7)

Here, Inormalized
j,OES and Inormalized

j,Model are the normalized intensities estimated from the OES
measurements [4] and CR model, respectively. The n′ represents the number of considered
emission lines of Ar and Ar+, which is four (i.e., n′ = 4), and the choice of these lines
is justified in the next section. Further, we have employed the minimum scatter or least
square approximation approach to check the best match of the calculated and experimental
intensities [4] by obtaining the following deviation parameter to be minimum,

∆ =
n′

∑
j=1

(Inormalized
j,OES − Inormalized

j,Model )
2

Tene
. (8)

As mentioned above, the deviation parameter is a way to measure the agreement
of the model intensities with the corresponding measurements [4]. Thus, its magnitude
represents the least square difference between the normalized intensities obtained from
the OES measurements [4] and the CR model. Therefore, the intensities obtained from
the CR model for different sets of Te and ne are used in the above relation in order to find
when the deviation parameter has the minimum value. Once this minimum condition
with a particular combination of (ne and Te) is achieved, the corresponding value of Te and
ne are considered to represent the actual plasma parameters. This we will refer to as the
obtained/extracted parameters (Te and ne) for the specific case. This method has also been
used successfully by us in our earlier work [36,41,42] to find the plasma parameters by
matching the CR model and experimentally measured intensities.

3. Results and Discussion

Before discussing the present diagnostic results obtained from our CR models, we
wish to briefly highlight the significance of using a CR Model in extracting the plasma
parameters from OES measurements. The literature reveals that to extract ne and Te from
OES measurements, the intensity of Ar-750.2 nm (for relative electron density estimation)
and the ratio of Ar-811.5 and Ar-750.2 nm is often used to study the E-H-W mode transi-
tions [55,56]. In the determination of line-ratio as a function of electron temperature, the
upper radiating levels are assumed to be populated from the ground and metastable states
through the electron-impact excitation process. This approach is very relevant; however,
it should be noted that the line-ratio showed significant dependence only up to 3 eV [56].
Beyond that, the ratio is almost insensitive to the change in electron temperature [56].
Therefore, the scheme may not be suitable for helicon mode, where the presence of signifi-
cant emission from Ar+ suggests a relatively higher electron temperature. A recent study
reported a considerable discrepancy between the electron temperature values obtained
from the Langmuir probe and the line-ratio [55] in Ar Helicon plasma. Therefore, applying
CR models to extract plasma parameters from OES measurements is relevant.

As mentioned above, we employed the present CR models to study the experimental
argon gas plasma reported by Soltani and Habibi [4]. They designed and developed a
Helicon plasma source and showed the mode change from ICP to Helicon using OES
measurements. In ICP mode, the magneto-static field (B◦ ) is zero, whereas, in the case of
Helicon mode, it varies from 350 to 750 G. Simultaneously, in both the modes, they recorded
the spectra with changing rf power from 300–1000 W keeping the neutral background
pressure at 0.7 mTorr. In their spectra, they have identified the specific emission lines of
Ar in the range of 650–850 nm in the case of ICP mode, whereas in Helicon mode, they
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observed emission lines representing Ar and Ar+ in the spectral range of 400–850 nm. In the
present work, we have analyzed the data of OES measurements at B◦ = 0 G (ICP mode) and
B◦ = 750 G (Helicon mode) of argon gas plasma provided by Soltani and Habibi [4]. It is
worth mentioning that the 3p54p FS levels of Ar and 3p44p FS levels of Ar+ are quite crucial
for the present plasma diagnostics. The reason is that Soltani and Habibi [4] identified
emission lines in their spectra of Ar and Ar+, which corresponds to the decay from these
levels. Here, we also selected the emission lines of Ar: 738.4, 751.4, 772.4, and 811.5 nm, and
for Ar+: 434.8, 458.9, 480.6, and 487.9 nm that are originating from the 3p54p and 3p44p FS
levels of Ar and Ar+, respectively. In addition, only these lines have substantial intensities,
which are necessary for the calculation at all powers. Further, only these combinations of
lines were sensitive with respect to the plasma parameters, i.e., electron temperature and
electron density. Consequently, the evaluation of the population density distributions of
such FS levels is the main goal of our CR models. We have used the Ar lines in the ICP
mode and Ar and Ar+ lines in Helicon mode for plasma diagnostics. The Ar emission line
at 772.4 nm is unresolved consisting of two lines at 772.38 nm and 772.42 nm. Therefore,
while performing comparison, the theoretical model intensity is the summed value of these
two lines.

Using our CR models of Ar and Ar+, we have calculated intensities of their emission
lines as mentioned above through Equation (7) at several combinations of Te and ne in the
wide range. These calculations are performed separately at various plasma operating powers
of 300, 600, 800, 900, and 1000 W. Thereafter, the deviation parameters are calculated using
the intensities of Ar lines in ICP mode and Ar as well as Ar+ lines in Helicon mode through
Equation (8). Further, these deviation parameters are plotted as a function of Te and ne in
each mode at different powers. Then, we analyzed them to ascertain the minima to obtain the
electron temperature and electron density values, which eventually characterize the plasma. As
an illustration, the variation of the deviation parameter with respect to the electron temperature
(at fixed ne, which we found corresponds to the minimum deviation parameter) at 1000 W for
both the modes are shown in Figure 3. From this figure, we can see that for B◦ = 0 (ICP mode),
the minimum value of deviation parameter is found at 4.0 eV with ne = 1× 1017 m−3 and
for B◦ = 750 G (Helicon mode) at 8.13 eV with ne = 1× 1019 m−3. Thus, these values of the
Te and ne, we can take as the extracted plasma parameters at 1000 W in different modes.
It should be noted that in both cases, the minimum values of deviation parameters are
less than 10 units. As explained earlier, the deviation parameter measures the agreement
of the model intensities with the corresponding measurements [4]. Thus, 10 units can be
said to as a good match of the intensities obtained from the CR model and experiment [4].
Similarly, we obtained the Te and ne values at all other powers for ICP and Helicon modes.

Figure 3. Deviation parameters as a function of Te at the extracted value of ne for argon plasma for
(a) ICP mode (using Ar lines) and (b) Helicon mode (using Ar+ lines) at 1000 W.
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We have shown all the obtained plasma parameters (i.e., Te and ne) in both the modes
in Table 3. From this table, one can observe that for the case of ICP mode, the electron
temperature slightly increases from 3.39 to 4.00 eV with an increase of the power from 300
to 1000 W. Our values are quite close to the experimental value of electron temperature
4.0 eV for the ICP mode as reported by Soltani and Habibi [4]. We also found from our
results that in the ICP mode, the electron density did not change much with respect to the
variation in power and remained close to the value of 1× 1017 m−3. Further, our model
predicts a similar feature of the variation of electron temperature with respect to the power
obtained using Ar lines in Helicon mode as was in ICP. We observe that the Te varied from
5.65 to 7.95 eV in the Helicon mode as the power increased from 300 to 1000 W. However,
in contrast to ICP mode, the electron density is not constant but varies from the value of
3× 1018 to 1× 1019 m−3 with the increase of power. We also observe from the present
values that when the power is increased beyond 600 W in Helicon mode (with Ar lines),
the electron temperature is abruptly increased. This suggests that up to the 600 W power,
the argon plasma is in ICP mode, and thereafter, the plasma gets ionized, which is in
confirmation with the observation of Soltani and Habibi [4]. Because of this reason, in
Helicon mode, at lower powers, i.e., 300–600 W, Ar+ lines are not observed experimentally,
whereas at higher powers, i.e., 800–1000 W range, both Ar and Ar+ spectral lines have
been observed. Since both the spectral lines from Ar and Ar+ represent the same Helicon
plasma, the plasma parameters obtained from the CR models should ideally be the same
for a particular power. We also find from Table 3 that our CR models using Ar and Ar+

lines give quite close values of Te and ne in the range of 800–1000 W.

Table 3. Electron temperature (Te) and electron density (ne) for argon plasma at different modes and
powers obtained using the present CR models.

Power (W)
Te (eV)

ICP Mode
(Using Ar Lines)

Te (eV)
Helicon Mode

(Using Ar Lines)

Te (eV)
Helicon Mode

(Using Ar+ lines)

ne (m−3)
Helicon Mode

(Using Ar Lines)

ne (m−3)
Helicon Mode

(Using Ar+ Lines)

300 3.39 5.56 - 3.00 × 1018 -
600 3.59 5.95 - 4.48 × 1018 -
800 3.61 7.39 7.96 9.79 × 1018 9.70 × 1018

1000 4.00
4.00 (Exp. [4]) 7.95 8.13 1.00 × 1019 1.0 × 1019

Since Soltani and Habibi [4] have recorded the spectra with rf power variation in
two different modes, it would be worth seeing how our plasma parameters behave with
these variations. In Figure 4, we have shown the plot between the modes and obtained
electron temperatures at 1000 W. There is a huge difference in the value of Te obtained
using Ar lines in the ICP and Helicon modes. This may be due to the fact that in Helicon
mode, the plasma gets more ionized as compared to the ICP mode. The appearance of Ar+

emission lines in Helicon mode suggests that a higher fraction of electron-neutral collisions
are resulting in excited argon ions rather than excited neutrals. It is only possible if the
average electron energy is higher, as the threshold excitation energy is much higher for Ar
ion levels than Ar-neutral excited states. The higher average energy also supports a higher
ionization degree in Helicon mode. In this mode, the electron temperatures obtained using
Ar and Ar+ lines are nearly equal as expected because the plasma is the same. Further,
for the Helicon mode, the variation of electron temperatures obtained using Ar lines with
respect to powers is given in Figure 5. As shown in this figure, we observe a sudden jump
in the temperature, which represents the transition from ICP to Helicon mode, as pointed
out earlier.
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Figure 4. Variation of obtained electron temperature (Te) using the present CR model in different
plasma operating modes at fixed power of 1000 W.

Figure 5. Variation of obtained electron temperatures (Te) using present CR model at various powers
for Helicon mode using Ar lines. The jump from point A to B reflects the transition of plasma
operating mode.

Furthermore, in Figures 6–8, we have compared the normalized intensities obtained
from the CR models (at the plasma parameters as given in Table 3) with the OES measure-
ments [4]. In Figures 6 and 7, we find that the intensities of the considered transitions
of Ar show good agreement with the experimental results [4] within the 4%. The largest
differences are observed for the spectral lines 738.4 and 772.4 nm. Further, in Figure 8, we
observe good agreement for all considered emission lines of Ar+ with the experimental
intensities [4]. The maximum difference was observed for 487.9 nm, which is 2%. Since the
largest discrepancies are small in all three cases (Figures 6–8), we can say that predictions
from our CR model are quite reasonable. Consequently, the obtained plasma parameters
(Te and ne) given in Table 3 at various powers are reliable.
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Figure 6. Comparison of normalized intensities obtained from CR model and OES measurements [4]
of argon plasma in ICP mode (using Ar lines) at 1000 W.

Figure 7. Comparison of normalized intensities obtained from CR model and OES measurements [4]
of argon plasma in Helicon mode (using Ar lines) at 1000 W.

Figure 8. Comparison of normalized intensities obtained from CR model and OES measurements [4]
of argon plasma in Helicon mode (using Ar+ lines) at 1000 W.

As population densities are the main output of the CR models through which we have
calculated the intensities in different modes at various powers, it would be thus worth
seeing how the population densities vary with respect to the experimental values, which
we have obtained through the measured intensities [4] using Equation (6). For this purpose,
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in Figure 9, we plotted the ratio of upper-level population densities of the considered four
emission lines in the present work, with respect to the wavelengths for the ICP and Helicon
modes at 1000 W. To calculate this ratio, we divided all the upper-level population densities
of the considered lines of Ar (738.4, 751.4, 772.4, and 811.5 nm) and Ar+ (434.8, 458.9, 480.6,
and 487.9 nm) with the density corresponding to the largest wavelength among these lines
in each case, i.e., 811.5 and 487.9 nm. The population densities with which the ratios are
obtained are 3.24 × 1017 m−3 in ICP mode and 1.97 × 1017 m−3 and 1.17 × 1014 m−3 in
Helicon mode. These are shown in Figure 9a–c, respectively. On comparing our results
with the values obtained from measurements [4], we find a reasonable agreement between
both sets of results for the ICP and Helicon modes at 1000 W.

Figure 9. Comparison of upper-excited level population ratio of the considered emission lines with
measurements [4] for argon plasma in (a) ICP mode (using Ar lines), (b) Helicon mode (using Ar
lines), and (c) Helicon mode (using Ar+ lines), at 1000 W.

4. Conclusions

In the present work, we have developed a fine-structure resolved CR model using
Ar and Ar+ emission lines for the diagnostics of the argon gas plasma. The required OES
measurements are taken from the work of Soltani and Habibi [4]. Our models contain
many possible populations transfer mechanisms among the fine-structure levels of Ar and
Ar+. The intensities of the different lines observed in the measurements for Ar and Ar+ are
calculated using the present CR models. These values are compared with the experimental
intensities to extract the plasma parameters (Te and ne) in ICP and Helicon modes at various
powers. The extracted plasma parameters for both these modes at different powers seem
to characterize the argon gas plasma of Soltani and Habibi [4] appropriately. We have
also presented and compared the upper-level population density ratios with the measured
values [4] and found good agreement. We believe our present extensive CR models consider
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most population transfer mechanisms and can be easily extended to characterize any other
Ar and Ar+ plasma.
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Abstract: Electron ionization of a genetically important nucleobase, adenine, was investigated from
threshold to 500 eV using crossed electron beam–effusive molecular beam geometry and time-of-flight
mass spectrometry. We measured the complete set of absolute partial cross sections for adenine using
the relative flow technique (RFT) up to an electron energy of 500 eV. Normalization to absolute values
was performed using electron ionization cross sections for argon and the vapor pressure data of
adenine. The total cross sections obtained by summing the partial cross sections were compared
with the existing theoretical and experimental data. The appearance energies of various fragment
ions were also measured and compared with the reported data. The prominence of ions with mass
(HCN)n

+ (n = 1 to 5) indicated a possible pathway to form adenine in the interstellar medium through
aggregation of HCN units. Analysis of the partial cross sections for various groups of fragment ions
as a function of electron energy was found to give insights into their composition.

Keywords: electron ionization; absolute cross sections; molecular processes—ISM: molecules

1. Introduction

Measurement of absolute total and partial cross sections for electron-impact ionization
of biological molecules is important in radiation biology. Any high energy radiation on
interaction with matter in a condensed form leaves a final trail of low energy electrons [1,2].
These electrons are produced through a cascade of ionization processes. Thus, the large
number of secondary electrons and ions produced in the process carry a dominant fraction
of the energy of the incident radiation [2,3]. In biological matter, these charge particles can
interact resonantly or directly with the biomolecules through a series of reactions, causing
damage to the DNA and the RNA in terms of either single or double strand breaks [3–5].
The direct interaction can break the backbone of the DNA, while the resonances or transient
anion formation will create neutral radicals and anionic fragments [1–5]. Thus, to under-
stand the radiation damage and its complete description, the entire sequence of events
leading to the final chemical state of the molecules must be known, and the mechanisms
involved must be understood. The complete set of absolute cross sections resulting from
low to intermediate energy electron collisions with DNA molecules and its building blocks
are needed as input in bio-chemical models as well as in Monte Carlo particle track sim-
ulations used to study damage in living cells induced by ionizing radiations, nano- and
micro-dosimetry, and cancer therapy [6–9]. Monte Carlo track simulations [6] of radiation
damage accounts for ionization, but the probability of simultaneous ionization and disso-
ciation, known as dissociative ionization, has not been incorporated in these simulations
or in any other model due to the unavailability of either theoretical or measured data
on such processes for DNA bases. These data are in the form of partial cross sections,
which are the cross sections for the formation of an ion of specific mass-to-charge ratio.
Despite its importance, very limited data on the absolute partial ionization cross sections
of the DNA bases exist though absolute total ion cross sections for the DNA and RNA
bases up to 200 eV have been reported [10–13]. In recent works on adenine ionization,
Minaev et al. [11] studied the formation of positive and negative ions of adenine under
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the impact of electrons (from 0.1 to 200 eV) using the crossed electron and molecular beam
technique. The method measures the molecular beam intensity and determines the total
cross sections for the formation of positive and negative ions of the studied molecules, their
energy dependences, and absolute values. Quantum chemical calculations are performed
for the studied molecules, ions, and fragments for interpretation of the crossed beams
experiments. Jochims et al. [14] used photoionization mass spectrometry with synchrotron
radiation in the 6–22 eV photon energy range to investigate fragmentation pathways, ion-
ization energies, and ion appearance energies (AEs) and compared them with the results
of electron impact. Dawley et al. [15] investigated the electron ionization of adenine near
the threshold region using a high-resolution hemispherical electron monochromator and
a quadrupole mass spectrometer. Ion efficiency curves of the threshold regions and the
corresponding appearance energies (AEs) are presented for the parent cations and the
five most abundant fragment cations of each molecule. The enthalpies of the possible
reactions from the adenine were also obtained computationally, and ionization energies
were calculated using quantum chemical calculations. van der Burgt et al. [16] measured
the mass spectra, the relative ion yield, and appearance energies for various fragment ions
up to 100 eV. They obtained the partial cross sections after normalizing their data to the
theoretical values of total ion cross sections. Very recently, Ostroverkh et al. [17] measured
the mass spectrum at 70 eV in a crossed beam experiment and the ion yield curves near
the threshold.

On the theoretical side, there have been several reports on the total ionization cross
sections. These include those using semi-classical Deutsch-Märk formalism and Binary-
Encounter Bethe (BEB) formalism by Bernhardt and Paretzke [18] and Możejko et al. [19],
Peudon et al. [20], and Bull et al. [21] using BEB formalism. Huo et al. provided data using
an improved binary-encounter dipole (iBED) model [22], and Vinodkumar et al. [23] used
a Spherical Complex Optical Potential (SCOP) model and scattering theory. Champion [24]
used the Born approximation to calculate the cross sections. The most recent study was
by Tan et al. [25], using a semi-empirical approach. The electron ionization induced
fragmentation of adenine was studied by Bauer and Grimm [26] using semi-empirical and
density functional theory.

Adenine, a purine nucleobase, has a significant role in both protein synthesis and
cellular respiration because it is a main component of DNA and ATP. Additionally, adenine
is interesting to the astrobiology and astrochemistry community because of the possi-
bility of its formation in space [27–29] and its potential role in the synthesis of larger
bio-complexes [30]. Adenine has been found in meteoritic materials [31,32], and a possible
precursor of adenine, cyanomethanimine, has been detected in the interstellar medium [33].
Meteorites provide a record of the chemical processes that occurred in the solar system
before life began on Earth. Several organic molecular species have been identified so far in
astronomical environments, containing the main functional groups necessary to initiate a
complex organic chemistry and indicating that many more complex molecules are synthe-
sized in space [34–36]. Until recently, the role of HCN in forming prebiotic molecules in
solutions has been speculated [37,38]. However, Chakraborti et al. [27] proposed, on the
basis of model calculations, that adenine can be produced in space by HCN oligomerization
in the gas phase. Therefore adenine can be viewed as a pentamer of HCN, formed by
successive addition of HCN molecules in four steps [39] in gas phase reactions in the dense
interstellar clouds in star-forming regions.

Considering the paucity of accurate data, we made extensive measurements on the
electron ionization cross sections for DNA bases; total ion cross sections have already been
communicated [40]. The only reports on partial cross sections have been by Minaev et al.
at 95 eV [11] and by van der Burgt et al. up to 100 eV [16]. Minaev et al. derived the partial
cross sections from the total ionization cross sections measured by them, while van der
Burgt et al. derived them from theoretical total ionization cross sections. Here, we present
the partial ion cross sections by a direct measurement using the relative flow technique up
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to the electron energy of 500 eV. We also report ionization energy (IE) for the parent ions
and appearance energies (AE) for most fragment ions.

2. Experiment
2.1. Measurement

Accurate determination of target density and the electron current in the interaction
volume is needed in a crossed beam experiment to measure the absolute cross sections. It is
difficult to determine the target density profile in a beam and its exact volume overlap with
the electron beam in the cross-beam experimental set up. This is overcome by a normaliza-
tion technique called the Relative Flow Technique (RFT) [41], which compares the intensity
of the sample species with that of a standard species of known cross section, provided
that the measurements for both the gases are carried out under identical experimental
conditions. This is achieved by the gas flowing through a capillary under a molecular flow
regime so that the molecules effusing out of it will have a specific beam profile independent
of the nature of the molecules, and hence the geometry of the interaction volume becomes
independent of the nature of the gas. The only change will be a constant multiplier, which
depends on the pressure behind the capillary and can be measured accurately. While
this technique is rather straightforward for molecules that have enough vapor pressure at
room temperature, those with low vapor pressure, especially those that are solids at room
temperature, need to be heated to elevated temperatures to increase their vapor pressure.
Pressure measurements at such elevated temperatures are technically a very difficult task
in cross-beam experimental setups due to the absence of appropriate manometers. The
measurements of adenine is one such case. We have overcome this problem by measuring
the temperature accurately and using the temperature versus vapor pressure data.

Though the experiment has been described elsewhere [42,43], for completeness we
describe the essential features here. It uses an effusive molecular beam formed by a capillary,
a magnetically collimated and pulsed electron gun, a Faraday cup to measure the incident
electron current, a Time of Flight Mass Spectrometer (ToFMS) to mass select the ions, a pair
of micro-channel plates (MCP) in chevron configuration as a detector, and the associated
electronics and computer program to record the ion signal as a function of the mass and
electron energy.

The effusive beam of adenine molecules is prepared by heating the commercially
available sample (Sigma-Aldrich, St. Louis, MO, USA) in the oven to effuse through the
capillary directly into the interaction region, as described earlier [43]. The temperature
of the oven was gradually increased over a period of a few days to the required value of
474 K, while monitoring the mass spectrum of emanated water vapor. This was to ensure
the uniform heating of the sample to thermal equilibrium as well as eliminating the water
vapor from the sample. The uniformity of the temperature along the sample was ensured
by monitoring it close to both the ends by different well-calibrated thermocouples. The
temperature of the sample was maintained at 474 K to obtain reasonable target densities
but at a low enough pressure to ensure molecular flow regime. At this temperature, the
calculated pressure was 45.82 mTorr, low enough to ensure molecular flow through the
capillary (0.2 mm diameter) so that the ratio of mean free path to the capillary diameter
was much higher than unity.

The pulsed electron beam was operated at a repetition rate of 5 kHz, with the pulse
duration being 300 ns. A pulsed extraction field was applied immediately after the electron
pulse to extract the cations resulting from the electron–molecule collisions. The ions were
detected by the MCP detector mounted at the end of the flight tube and operated in the
pulse counting mode. The ion extraction field and the ion optics, including the flight
tube, and the detector biases were optimized to ensure no discrimination in the collection,
transmission, and detection of the ions due to the initial velocity distribution of the ions
and their mass-to-charge ratio. Uniform detection efficiency was ensured by changing the
bias voltage combination on the front and back of the MCP detector plates and looking
for relative variation of the intensity of the highest mass peak to that one below 40 amu/e,
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and the operating voltages were fixed in the range where this ratio showed saturation. The
uniformity of the detector efficiency up to mass-to-charge ratio of 130 amu/e was also
confirmed by measuring the positive ion counts on electron impact from Ar and Xe and
comparing the ratios of Ar2+ to Ar+, Xe2+ to Xe+, and Xe3+ to Xe+ with those reported in
the literature. These were found to be in agreement within the experimental uncertainties.

A computer-controlled programming system allowed the storage of the mass spectra,
the electron current as a function of the electron energy, and the ion yield curves. The ion
yields curves were converted to absolute cross sections by using the Ar+ cross section from
Argon at 100 eV as the standard. The measurements for Ar were carried out by flowing the
gas through the same oven and the capillary tube used for making measurements on the
sample molecules. Argon measurements were done immediately before and after under
similar experimental conditions, except for the oven temperature. During Ar measurements,
the oven was kept at room temperature in order to prevent interference from the adenine
sample. An independent set of measurements on argon were carried out at different
temperatures to determine any systematic error arising due to higher temperatures. These
measurements showed no effect on the argon data with temperature. The pressure of Ar
behind the capillary was measured using a capacitance manometer, while the pressure
for the sample molecules was determined by using the vapor pressure data of adenine
reported by W. Zielenkiewicz [44]. The vapor pressure for adenine at 474 K was determined
from the relation [44] given as follows:

log
(

p
p0

)
= 38.4 ± 0.6 − 17350 ± 252

T

In RFT, under identical conditions, we measured the intensities, Nu, of an ion u of
the sample gas under study and Ns of an ion of known cross sections, which was used
as a standard (s). The partial ionization cross section σu can be related with known cross
sections (σs), as

σu =σs × Nu

Ns
× Is

Iu
× Fs

Fu
×
√

Ms

Mu
× Ks

Ku

where N represents the intensity of each ion, F is the flow rate of individual gases, M
is the molecular weight of each gas, and I is the time-averaged electron beam current.
Ks and Ku are the efficiency of collection, transmission, and detection of the ion used as
the standard and the one under measurement, respectively. This equation can be further
simplified, since F.M1/2 is proportional to pressure P behind the capillary under molecular
flow conditions, as

σu =σs × Nu

Ns
× Is

Iu
× Ps

Pu
× Ks

Ku
(1)

One of the crucial aspects of the experiment, which was described above, is to ensure
that K is the same for all ions so that the ratio Ks/Ku is unity. The possibility of thermal
decomposition of adenine was ruled out by measuring the mass spectra at fixed electron
energy as a function of temperature over the range of temperature. No change in the
relative intensity of the mass spectra or no new fragments were observed with a change in
temperature. The possible thermal decomposition of the sample could also be identified by
the change of color of the powder on visual inspection of the remaining sample after the
experiment. By taking into account all these, we ensured that thermal decomposition did
not contribute any erroneous signal in our measurements.

In the measurement procedure, to begin with, the mass spectrum was measured in
crossed beam mode at an electron energy of 100 eV and a temperature of 474 K. Next, the ion
yield curves for all the fragments were recorded from 0–500 eV. Then, argon was introduced,
and Ar+ counts were recorded at 100 eV. During the crossed beam measurements the
contribution to ion counts coming from the uniformly filled background molecules due to
scattering at the surfaces was subtracted from the measured crossed beam data in order to
have the contribution from the beam alone. This was done by placing the oven in such a
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way that no molecular beam was available in the interaction region and the chamber was
filled uniformly by the sample gas. The background mass spectrum was subtracted, and
the resultant ion counts were normalized to the electron current and pressure to obtain the
normalized counts for each mass fragment. The mass scale was calibrated using Ar+ and
Ar++. Partial cross sections were calculated using Equation (1) given above.

In order to ensure complete collection and detection of the ions, we used voltage biases
on the ToF spectrometer, which did not provide the best mass resolution. This resulted in
mass peaks overlapping with each other in certain mass ranges, forming a few envelopes.
Individual contributions for ions of a given mass-to-charge ratio (m/z) were obtained by
unfolding each envelope to individual peaks, assuming Gaussian shapes. The area under
each Gaussian was taken as the contribution due to that particular ion.

2.2. Uncertainty Estimation

The uncertainties in the present measurements are estimated as follows. The un-
certainties arise from the relative cross section (ion yield curve) measurement as well as
from the normalization to the absolute numbers. The uncertainty in the ion yield curves
arise mainly from possible overlap volume change (in the electron beam and molecular
beam) with respect to the change in electron energy apart from possible variations in the
electron current source and target pressure. While strict control could be made in the
current source variation and target pressure variation, the systematic error from the volume
overlap change is difficult to control. The uncertainty due to temporal variation in the
experimental parameters is reduced by completing one scan of the entire electron energy
up to 500 eV within 300 s. The reproducibility of the ion yield curves is within 1% over the
entire energy range. The volume overlap changes with the electron beam is checked by
making measurements on Ar+ from Ar in the electron energy range used here and was
consistent with existing data [45] within 5%. Wherever the mass peaks were not clearly
resolved, we employ deconvolution, leading to uncertainty in the relative intensities of the
peaks thus obtained. The contribution due to this varies depending on the overall shape
of the envelopes of peaks and the statistics. In addition to this, uncertainties also arise
from measurement of electron current, pressure and statistical errors from ion counting.
Non-linear effects due to pulse pile up are addressed by keeping the maximum total count
rate (inclusive of all the masses) at the most at one-tenth of the electron beam pulse rate,
even though we use a multi-hit card for data acquisition. It is assured that the temperature
remains the same at the oven and other end of capillary within 0.1 ◦C, which causes an
uncertainty of less than 0.1% in the vapor pressure. The uncertainty quoted in [44] in the
temperature dependence of the vapor pressure data is about 2%, which we assume as
the uncertainty in the pressure of adenine. The uncertainty in the Ar pressure measure-
ment is about 0.1%. One important source of uncertainty in the absolute cross sections
arises from that of the Ar ionization cross sections we use for normalization. We use the
most recent data [45], which quotes an uncertainty of 5%. These data are consistent with
other measurements [46–48]. An analysis of the data from all the four sets [45–48] gives
a standard deviation of 2.9%. Assuming 5% uncertainty in the Ar data and combining it
with the uncertainty in the counting statistics, including that arising from the Gaussian
deconvolution of the peaks, pressure measurements and the uncertainty in the ion yield
curve provide a total uncertainty of 6% in the present measurements in absolute cross
sections for all the ions, which are at least 10% of the intensity of the parent ion. The
maximum uncertainty in the detection efficiency for ions over the range of interest is about
10%. This gives a total uncertainty in the cross section measurements of 12%.

3. Results and Discussion
3.1. Mass Spectrum

The relative intensities of the peaks measured at 70 eV and 100 eV electron impact is
given in Table 1 along with other reported data. The dominant peaks in the spectrum are
(CNH)n

+ with n = 1 to 5 and HCNH+. We could not collect H+ and measure its intensity
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reliably due to the relatively large initial kinetic energy with which it is produced and also
due to it getting deflected away during its flight to the detector by the magnetic field used
to collimate the electron beam.

Table 1. Relative intensities of major fragment ions from adenine.

m/z

Electron Impact Photon
Impact

Present
Work
100 eV

Minaev
et al. [11]
95 eV

Present
Work
70 eV

NIST
[50]
70 eV

Rice
et al. [49]
70 eV

Ostroverkh
et al. [17]
70 eV

Jochims et al.
[14] 20 eV

136 8.0 4.29 8 7.6 - 7.86 -
135 100 100 100 100 100 100 100
134 6 2.86 6.4 3 3 3.32 10
120 0.5 - 0.44 - 3 1.55 1
119 1.3 - 1.3 1.2 - 1.44 3
118 0.8 - 0.81 0.9 - 1.11 -
108 25 35.7 23.7 27 34 30.3 57
107 1.9 5.0 1.8 1.9 3 2.44 10
92 2.4 - 2.4 1.5 - 1.55 9
83 1.3 - 1.2 0.8 - 0.441 -
82 2.0 - 1.9 0.6 - 0.332 -
81 10.2 22.9 9.9 9.7 19 10.9 50
80 5.3 10.0 5.1 3.3 7 4.43 10
70 5.0 5.0 5.0 3.6 5 4.42 17
66 11.8 20.0 11.8 6.3 15 7.59 41
65 3.9 7.14 3.6 1.8 6 2.58 0
56 2.3 - 2.3 1.5 - 1.37 -
55 6.9 11.4 6.6 2.4 - 2.33 -
54 25 32.9 23 11.2 31 15.3 55
53 24 25.7 21 7.6 24 8.45 28
43 7.6 10.0 7.3 4.3 12 6.542 34
42 2.6 5.0 2.3 0.5 3 0.443 16
41 2.7 2.85 2.6 1.1 2 1.03 7
40 6.7 10.0 5.8 1.6 5 1.89 1
39 10.4 10.0 8 2.2 8 2.58 1
38 9.9 11.4 7.2 2.4 10 2.44 0
29 16 8.57 15.5 3.6 12 7.58 60
28 82 21.4 74 18.5 78 67.1 110
27 12.8 10.0 7.7 1.9 12 0.551 10
18 - - - - - 11.7 -
17 - - - - - 4.20 -
15 - - - - - 4.43 -
14 - - - - - 3.43 -
13 3.9 - 1.5 - - - -
12 2.8 - 0.85 - - - -

The relative intensities measured by Rice and Dudek [49] matches well with our
100 eV electron impact mass spectra within experimental accuracies for most fragments,
the notable exceptions being m/z = 54 and 27. The high prominence of the important ion
fragment at m/z = 28 observed in the present measurement and in [14,49] is not observed
in [11,50]. Recent measurements of van der Burgt [16] also observed relatively high intensity
of m/z = 28. Dawley et al. [15] state that the relatively large intensity of m/z = 28 observed
by them may due to contamination from N2. They observed larger intensity for this ion
than the parent ion. Considering this, we have tried to eliminate and evaluate the presence
of N2 in our experiment. We eliminate possible external leak from the atmosphere by
having a background pressure of a few times 10−9 Torr in the experiment. Further, the
analysis of the mass spectrum of adenine shows that if at all, there is very little presence of
N2 in our experiment. This is done by looking at the ratio of m/z = 28 to that m/z = 14 (N+
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and N2
2+). The reported value of this ratio at 100 eV from N2 is 3.2 [51], where as in the

present measurements it is about 60. Even assuming that N+ collection and detection after
mass analysis may be skewed due to their relatively large kinetic energy, this ratio is too
large. In fact, the measured ratio for N2

+ to N2
2+ (both having thermal energies) from N2 is

about 53 [52]. Our experiment is designed to collect, mass analyze and detect all the ions
independent of their initial velocity distribution. We also note the considerable intensity of
m/z = 29 (about 20 % of that of m/z = 28), which can only be formed from adenine. Due to
its composition, CH3N+, its formation needs rearrangement of at least one H atom from
another site in the molecule. Even assuming a H atom scrambling may be common place
in an excited adenine ion prior to its fragmentation, the probability for the formation of
this ion is not too small. Hence the observed high cross section for m/z = 28, which arises
from a direct fragmentation process, is not surprising. In view of these we believe that the
contribution to m/z = 28 from N+

2 , if at all is very small.
We also observe the ion of m/z = 67.5 with reasonable intensity, which corresponds

to doubly charged parent ion, C5H5N5
2+. We could not obtain a reliable number for its

intensity as it is mixed with m/z = 67 and 68 due to limited mass resolution. The ions of
m/z = 12 and 13 are also seen in the present data. We note that the low mass ions have
relatively higher ion yield in comparison to other experiments. The variation observed in
different experiments in the relative intensity of the observed mass peaks may be due to
systematic errors in the various experiments. There are two sources of systematic errors
that may affect the observed relative ion intensity distribution in the mass spectra. The first
one is the variation in efficiency of the detector as a function of the mass-to-charge ratio.
The second one is the collection and transmission efficiency of the mass spectrometer. The
collection and transmission depend on the initial kinetic energy and angular distribution
of the ions. In addition, their mass-to-charge ratio may also come into effect when a
quadrupole mass spectrometer is used for mass analysis. The lighter ions are likely to be
affected more by the kinetic energy discrimination, while the heavier ions are likely to be
affected by the detection efficiencies. In the present measurements, except for the case of H+,
we ensure that the uncertainties due to collection and detection efficiencies are minimized
by using narrow electron gun pulses, a large pulsed field extraction and appropriate
detector biases, and sensitive pulse counting electronics. Automation of the experiment
allowed us to run the experiment without interruption for several days continuously in
order to build up adequate statistics while using minimum electron beam current and
target pressure. This eliminated various other systematic errors arising from deviation
from single collision conditions and detector and counting electronics pile-up issues.

3.2. Appearance Energies and Fragmentation Channels

We measured ion yield curves for most fragment ions from adenine in the energy range
0–500 eV, and the curves near threshold for some prominent ions are shown in Figure 1. The
changes in slope of the ion yield curves are indicated by solid lines superimposed on them
in order to obtain the appearance energies (AEs). The solid lines were obtained using linear
fit. We are unsure whether the exponential fit based on Wannier threshold law is applicable
or is critical for determining the appearance energies in the case of ionization of poly-
atomic molecules due to the absence of well-separated molecular ion states. This becomes
particularly troublesome for fragment ion formation from them, as we lack information
on the dissociating states and their dynamics. In view of this, we use the relatively simple
approach of linear fit. The appearance potentials of the major m/z ions are listed in Table 2,
as measured from the onsets in the ion yield curves. The present AE values in this table
were derived by reading out the intersection of linear fit with the energy axis. Table 2 also
includes the AE measured by Jochims et al. [14] using photon impact and Dawley et al. [15]
using electron impact ionization. In most cases, we observed two AE values due to the
clear change in the slope of the ion yield curve. Two slopes could be due to the particular
ion being formed by two different pathways, with the second one contributing at higher
energies. This kind of change of slope in ion yield curve is not apparent in the parent ion
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and C4H4N4
+ fragment ion (Figure 1). In most ion fragments, our first threshold is in close

agreement with the existing measurements using electron impact by Dawley et al. [15].
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Table 2. Appearance energies of major ions from adenine in eV.

m/z

Photon
Impact Electron Impact

Jochims
et al. [14]

Dawley
et al. [15]

van der Burgt
et al. [16]

Present

1st 2nd Difference

135 8.2 ± 0.03 8.7 ± 0.3 8.0 ± 0.2 8.8 ± 0.3 - -

108 11.56 ±
0.05 11.7 ± 0.2 11.3 ± 0.2 12.3 ± 0.5 - -

94 - - - 15 ± 0.5 17 ± 0.5 2
93 - - - 15.2 ± 0.5 17.2 ± 0.5 2
92 - - - 15.6 ± 0.4 17.6 ± 0.4 2
91 - - - 16.5 ± 0.5 - -
82 - - - 15.7 ± 0.4 18.2 ± 0.4 2.5
81 12.8 ± 0.1 14.14 ± 0.5 13.1 ± 0.2 13.5 ± 0.5 16.3 ± 0.5 2.8
80 - 15.1 ± 0.5 14.8 ± 0.7 17.5 ± 0.4 21.5 ± 0.4 4
70 13.1 ± 0.1 14.9 ± 0.2 12.6 ± 0.4 13.0 ± 0.4 16.5 ± 0.4 3.5
66 13.2 ± 0.1 14.2 ± 0.3 13.5 ± 0.2 16.5 ± 0.4 19.0 ± 0.4 2.5
65 - 17.9 ± 0.4 15.7 ± 1.3 17.0 ± 0.4 20.5 ± 0.4 3.5
64 - - - 18.5 ± 0.4 - -
56 - - - 16.5 ± 0.4 18.6 ± 0.4 2.1
55 - - - 15.5 ± 0.5 18 ± 0.5 2.5
54 13.7 ± 0.1 14.6 ± 0.3 13.5 ± 0.3 13.5 ± 0.5 17.5 ± 0.4 4
53 - 16.7 ± 0.5 15.3 ± 0.5 16.0 ± 0.5 21 ± 0.4 5
51 - - - 14 ±0.5 21 ± 0.4 7
43 13.0 ± 0.1 14.0 ± 0.3 13.3 ± 0.6 13.0 ± 0.5 17.0 ± 0.4 4
42 - - - 14 ± 0.4 19 ± 0.4 5
41 - - - 16 ± 0.4 22 ± 0.4 6
40 - 15.7 ± 0.3 15.9 ± 0.2 16.0 ± 0.5 20.0 ± 0.5 4
39 - 18.1 ± 0.2 17.1 ± 0.5 14.5 ± 0.5 21.5 ± 0.4 7
38 - - - 15.0 ± 0.5 23 ± 0.5 8

29 14.0 ± 0.1 15.15 ±
0.15 13.7 ± 0.3 14.5 ± 0.5 - -

28 13.1 ± 0.1 13.1 ± 0.5 12.9 ± 0.4 15 ± 0.4 17.0 ± 0.4 2
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Table 2. Cont.

m/z

Photon
Impact Electron Impact

Jochims
et al. [14]

Dawley
et al. [15]

van der Burgt
et al. [16]

Present

1st 2nd Difference

27 - 13.5 ± 0.2 14.0 ± 0.6 14 ± 0.5 20 ± 0.5 6
25 - - - 14 ± 1 - -
24 - - - 15 ± 1 - -
15 - - - 12 ± 0.5 19 ± 0.5 7
14 - - - 19.5 ± 0.5 27 ± 0.5 7.5
13 - - - 26 ± 1 37 ± 1 11
12 - - - 27 ± 1 38 ± 1 11

For the parent ion, m/z = 135 amu, we measured an ionization energy of 8.8 ± 0.3 eV
from the ion yield curve shown in Figure 1. This agrees with the 8.8 ± 0.2 eV of Mi-
naev et al. [11] and 8.7 ± 0.3 eV of Dawley et al. [15] both using electron impact ionization
and 8.6 ± 0.006 of Plutzer et al. [53] using resonance 2-photon ionization. Our measured
value is higher than the 8.2 ± 0.03 of Jochims et al. [14] using photoionization and the verti-
cal ionization energy of 8.08 eV and adiabatic ionization energy of 8.07 eV using quantum
chemical calculations by Dawley et al. [15].

The experimental AE value for the formation of m/z = 108 (C4H4N4
+) is 12.3 ± 0.5 eV

in our work. This AE value matches with that of 12.3 ± 0.1 obtained by Pilling et al. [54]
using the photoelectron-photoion coincidence technique (PEPICO) but higher than the
11.56 ± 0.05 eV determined in the photoionization study by Jochims et al. [14] and 11.7 ± 0.2
given by Dawley et al. [15]. Our measured AE value for the formation of m/z = 81 (C3H3N3

+)
is 13.50 ± 0.5 eV. This is in between the AE value of 14.14 ± 0.5 by Dawley et al. [15] using
electron impact and 12.8 ± 0.1 by Jochims et al. using photon impact [14]. We observed an
AE value of 13.5 ± 0.5 eV for the formation of m/z = 54 (C2H2N2

+). This is close to the AE
value of 13.7 + 0.1 by Jochims et al. [14] and lower than the 14.55 ± 0.3 by Dawley et al. [15].
For m/z = 28 (HCNH+) we find the appearance energy to be 15 ± 0.4, which is slightly
larger than the values obtained by Jochims [14] and Dawley et al. [15].

We find that a second threshold appears for the formation of fragment ions of m/z = 92
and below. These thresholds should be indicative of new production channels for the
respective ions in which the corresponding neutral parts may be fragmenting further.
It may also be due to electronic excitation in any of the fragments (ionic or neutral).
Additional thresholds for several ions between m/z = 37 and 71 have been observed by
van der Burgt et al. [16]. The differences in the first and second thresholds in the present
measurements are shown in the last column in Table 2. We note that this difference is about
4 eV or less as we go down in mass, until the production of m/z = 53, which corresponds
to C2HN2

+. The next lower mass we observe is 43, corresponding to CH3N2
+, which is

structurally one less C atom and corresponds to further cleaving of the ring structure. From
here on, the difference in the two thresholds increases and reaches as much as 11 eV for
C+ formation, with the notable exception of that of m/z = 28, which is CH2N+. This large
difference for the lighter ions may also arise from the double ionization process. Since
the neutral radicals also play a major role in the chemical reactions in the tracks of high
energy radiation, the knowledge of the neutral radical formation plays a crucial role in
radiation chemistry. As the detection of neutral fragments are experimentally very difficult,
the only method is to model the dissociative ionization process through quantum chemical
calculations in order to incorporate these additional channels. In this respect, identification
of the higher thresholds may be useful.

The formation mechanism of various ions has been discussed by a number of au-
thors [14–17,26,49,55]. The recent study by Dawley et al. [15] combined experimental
results with quantum chemical calculations. The most important aspect of these studies is
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the identification of the formation channels for (CHN)n
+ with n = 1 to 4 by elimination of 1

to 4 HCN radicals from the parent C5H5N5
+ ion, as shown in Figure 2.
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As shown in Table 1, we confirmed prominent fragment peaks corresponding to ions
CnHnNn

+ (n = 1 to 5) at m/z of 27 (CNH+), 54 (C2N2H2
+), 81 (C3N3H3

+), 108 (C4N4H4
+),

and 135 (C5N5H5+) in the mass spectrum of adenine. Each of these ions is formed by
the loss of one HCN unit in succession from the adenine molecule. The ratios of partial
ionization cross sections for these ions on elimination of HCN units relative to that of the
parent ion at 31%, 11.2%, 23%, and 14%, respectively, at 100 eV are considerably high.
This is consistent with photoionization [14]. The elimination of HCN is an important
process in the electron ionization of polynitrogen heterocycles and constitutes the reaction
sequence in many purine derivatives [56], including purine itself [57]. The decomposition
of adenine following electron impact has been studied [49,55] on the basis of extensive
isotopic substitution to establish the extent of site selectivity in fragment ion formation and
by [14] using photon impact to show the successive expulsion of HCN from the adenine.
Jochims et al. [14] also show that the corresponding ions CnHnNn

+ (n = 1 to 5) have higher
relative intensity both in electron and photon impact to adenine. It has been proposed
that successive addition of HCN molecules in four steps [39] in gas phase reactions can
produce adenine by oligomerization, where it can be seen as a pentamer of HCN [27]. In
the fragmentation pattern of adenine, we see that the loss of each unit of HCN leads to a
prominent ion with high partial cross sections. Successive loss of HCN is the most preferred
pathway, and most ions are formed by losing HCN units in the dissociative ionization
of adenine. This could be understood as a de-oligomeriztion of the adenine oligomer by
electron impact.

3.3. Cross Sections

Partial cross sections for the formation of all the dominant ions are shown in Figures 3
and 4. In Figure 3, we give the cross sections for the most prominent ions, (CHN)n

+ with
n = 1 to 5 and CH2N+ (m/z = 28), along with the only other available data for comparison.
The partial cross sections for a selected set of prominent ions along with the total cross
sections are given in Table 3.
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Table 3. Partial ionization cross sections for prominent ions and the total ion cross section obtained
by summing all the partial cross sections.

Electron
Energy
(eV)

Partial Ionization Cross Sections for Prominent Ions (×10−18 cm2)
Total
Cross
Section
(10−16 cm2)HCN+ HCNH+ C2N+ C2NH+ C2N2H+ C2N2H2

+ C3N3H3
+ C4N4H4

+ C5N5H5
+

8.5 0 0 0 0 0 0 0 0 0.20 0.002
9 0 0 0 0 0 0 0 0 0.34 0.003
10 0 0 0 0 0 0 0 0 2.3 0.03
11 0 0 0 0 0 0 0 0 7.8 0.105
12 0 0 0 0 0 0 0 0 9.3 0.138
13 0 0 0 0 0 0 0 0.026 21.7 0.138
14 0 0.025 0 0.015 0 0.01 0.03 0.22 42.9 0.221
15 0 0.05 0.039 0.018 0 0.013 0.04 1.0 74.6 0.407
16 0 0.10 0.070 0.022 0.03 0.02 0.07 2.4 116 0.694
17 0 0.20 0.070 0.032 0.045 0.054 0.22 5.9 159 1.09
18 0 0.73 0.093 0.044 0.12 0.20 0.51 10.4 203 1.53
19 0.079 1.5 0.11 0.059 0.11 0.50 1.2 17.3 246 2.05
20 0.13 3.1 0.23 0.071 0.15 0.97 2.1 24.0 288 2.60
25 0.37 22 0.57 0.25 2.0 8.3 10.4 59.7 418 3.16
30 0.92 65 1.1 1.3 9.1 22.3 21.4 80.3 459 5.93
35 1.8 122 2.9 4.1 22.9 41.4 30.3 93.0 483 8.21
40 4.8 178 7.6 9.2 39.4 61.0 36.7 100 501 10.8
45 8.4 225 12.6 15.7 56.3 77.3 41.1 105 520 12.5
50 13 260 16.9 20.9 68.1 86.8 43.2 107 529 14.4
55 19 289 22.5 26.7 78.7 96.4 45.3 111 535 15.5
60 24 316 26.1 30.5 88.5 103 47.5 115 544 16.9
65 30 334 31.1 35.4 94.7 109 46.3 113 544 18.0
70 37 351 34.2 37.9 99.6 111 46.9 114 542 18.6
75 41 356 37.4 40.2 103 113 47.7 116 545 19.2
80 47 364 40.0 43.1 106 115 48.3 115 543 19.6
85 49 371 41.1 45.3 110 116 48.2 118 544 19.9
90 53 379 44.0 46.7 111 117 48.6 118 544 20.1
95 59 384 46.2 48.5 112 117 49.2 119 540 20.6
100 60 385 46.6 48.8 113 117 48.0 119 536 21.0
125 68 380 51.5 49.4 116 114 47.8 120 527 20.6
150 70 369 49.9 47.8 112 109 47.4 120 512 20.6
175 68 353 45.7 44.8 100 102 45.2 117 495 19.4
200 62 341 42.2 42.4 98.4 99.6 44.8 120 485 19.1
225 58 321 41.0 38.2 90.4 94.1 42.8 113 469 17.0
250 53 305 37.1 35.6 85.5 90.0 41.4 111 455 16.6
275 48 289 33.3 33.5 80.3 84.1 40.1 108 443 16.2
300 46 279 32.6 30.9 79.8 80.1 39.2 105 428 15.3
325 41 264 30.6 28.8 72.4 76.8 37.8 101 418 14.7
350 39 249 28.3 27.4 68.2 73.0 35.2 97.5 405 13.9
375 36 239 25.0 25.4 63.8 69.7 33.6 93.5 391 13.4
400 34 224 23.6 24.3 60.0 66.3 31.8 89.7 381 12.9
425 32 215 22.6 22.6 56.4 64.0 30.8 86.9 368 12.5
450 29 197 20.8 20.2 52.8 58.6 29.2 81.9 346 11.8
475 28 193 20.3 19.8 52.3 57.8 29.0 80.8 347 11.1
500 26 178 18.3 18.9 47.7 54.2 28.1 77.2 340 11.5

From Figure 3, it is apparent that there is considerable difference between the existing
data [16] and the present measurements. The difference exists both in magnitude and
relative shape of the cross section curves (ion yield curves). The absolute magnitude
given in [16] was obtained by normalization with theoretical total ion calculations and
hence one may expect some difference. However, the difference in magnitude in the two
data sets appears to be beyond this since the differences depend on m/z values. We are
unable to attribute the reason for the observed differences except for a possible source of
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errors arising from ion transmission efficiencies of the mass spectrometer and detection
efficiencies as a function of m/z. As explained in the experimental section, we have taken
utmost care in eliminating these errors. The deviations in the shape of the cross section
curves in the two measurements should not arise from these errors, at least in the zeroth
order. A possible source of error in this respect seems to be overcorrection for the variation
in the electron beam current as the current measured at the Faraday cup could be smaller
than the actual current passing through the interaction volume. This effect is likely to be
more pronounced as the electron energy decreases. As mentioned earlier, we have taken
utmost care in eliminating this problem and characterized the experiment satisfactorily
using known cross sections.

The complete set of partial ionization cross sections for all the ions of significant
intensities are given in Figure 4. As expected, the cross sections for most of the ions rise
relatively steeply toward the respective peaks and then decrease rather slowly towards
higher energies. The energy corresponding to the cross section peak varies from ion to
ion, but with a more or less systematic change as a function of m/z. For example, the peak
for the parent ion (m/z = 135) occurs at an energy of about 75 eV, while that for C+ occurs
at about 160 eV. In the panels in Figure 4, we plot the cross sections for bunches of ions,
irrespective of their absolute magnitudes, by using appropriate multipliers as given in the
panels. This allows comparison of the relative shape of cross section curves within a given
mass range, which may provide some insight into their formation process.

Among the ions with m/z = 12 to 15 (C+, CH+, N+ and NH+), NH+ has the smallest
appearance energy (AE) of 12 eV, followed by N+ with an AE of 19.5 eV in comparison to
CH+ (AE = 26 eV) and C+ (AE = 27 eV). That NH+ has the least AE is not surprising, since
it can be formed without breaking either of the two ring structures of adenine. However, it
is interesting to note that in terms of absolute cross sections, the overall production of NH+

is about a factor of 10 smaller than that of CH+ and C+ ions. Even the N+ formation cross
section is a factor of 5 higher than that of NH+.

For the ions of m/z ranging from 24 to 29, we see three different groupings. m/z = 28
and 29 start off earlier than others, with AE of 15 and 14.5 eV respectively. Ion of m/z = 27
(HCN+) has a yield curve different from others. The third group of m/z = 24 (C2

+) and
25 (C2H+) seem to follow each other, but are different from the other two groups. C2H+

and C2
+ have AEs of 14 eV and 15 eV, respectively. However, the ion yield curves are

rather flat, with very small slope at low energies, and do not start rising till about 40 eV
for C2H+ and 45 eV for C2

+. HCN+ has an AE of 18.5 eV and seems to have a second
threshold for formation at 30 eV. Possible channels for formation of m/z = 28 (HCNH+) have
been discussed by Dawley et al. [15], and they do not favor direct formation through the
fragmentation of the imidazole ring based on energetics. However, energy consideration
may be valid at the threshold, and beyond the threshold there would be enough excess
energy for the parent molecular ion to undergo any sort of structural change leading to
fragmentation. The observed similarity in the yield curves of HCNH+ to that of HCNH2

+

(or H2CNH+) should help in identifying the fragmentation dynamics leading to these
ions. That the HCNH+ formation channel is the most dominant fragmentation channel of
adenine ionization demands further study.

In the range of masses 38 to 43, we notice two groups with m/z = 38 and 39 having
considerably different shapes for their ion yield curves in comparison to the other four. This
difference could be attributed to their composition, which then would have a bearing on
the fragmentation of the parent ion. The ions m/z = 38 and 39 would have compositions of
C2N+ and C2NH+, respectively, while those of 40 to 43 would have a composition involving
CN2Hn

+ with n varying from 0 to 3. The difference in the number of C and N atoms in the
two sets would have a dependence on how the ring structures in adenine break to form
the respective fragments. All the ions in these groups of ions have two distinct AEs. As
expected, in each of the groups, the AEs keep increasing with the reduction in the number
of H atoms.
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For the ions of m/z in the range of 51 to 56 also, we can clearly see the dependence
of the ion yield curves on the composition of the ions in terms of the number of C, N,
and H atoms. By comparing the shapes, one may even distinguish between two likely
compositions of a given ion. In this set of ions, we notice three groupings: 51 (which
could only be C3NH+) (first group), 53 (C3NH3

+ or C2N2H+) and 54 (C2N2H2
+) (second

group) and 55 (C2N2H3
+) and 56 (C2N2H4

+) (third group). The ion of m/z = 51 is clearly
demarcated from that of 54 with the distinction in the number of C and N atoms, and we see
clear difference in the shape of the ion yield curves between the two. The ion of m/z = 53
could have in principle two compositions—C3NH3

+ or C2N2H+. From a comparison of the
curve of m/z = 53 with those of 51 and 54, one may conclude that C2N2H+ is the most likely
composition for 53. The difference between 53 and 54 at low energies and those of 55 and
56 from 54 is indicative of the difference in the number of hydrogen atoms. We note that
for an ion with a given number of C and N atoms, the yield curves (and also their peaks)
tend to shift to higher electron energies as the number of H atoms decreases. This seems to
be the case in almost all the ions we observed.

Next we consider the ions in the range of m/z = 65 to 70. In addition to 65 and 70, we
observe 66, 67, 67.5, and 68. The ion of m/z = 67.5 corresponds to the doubly charged parent
ion. Due to insufficient mass resolution, we are unable to separate it from m/z = 67 and 68
to obtain accurate numbers. Our analysis shows that at 100 eV, m/z = 68 has very small
intensity, and the intensity of m/z = 67.5 is about a factor of three larger in comparison to
that of m/z = 68. Thus, the cross section curve identified as m/z = 67–68 may be treated to
be mainly that of the doubly charged adenine ion. This may explain the difference in the
shape of the curve in comparison to others in the panel. C3N2H+ is the composition for
m/z = 65, while m/z = 70 is most likely to be C2N3H4

+. m/z = 66 has been identified to
be C3N2H2

+, though, in principle, it could also be C2N3
+. The yield curves for m/z = 65

and m/z = 70 are clearly different, consistent with their composition and based on what
we have seen so far from other groups of ions. The question is, based on the empirical
relation we have seen so far, whether we can identify the composition of m/z = 66. We note
that the cross section for m/z = 66 peaks at about 80 eV, while that of m/z = 65 (C3N2H+)
peaks at about 95 eV, and for m/z = 70 (C2N3H4

+), it peaks at 90 eV. If m/z = 66 were to be
C2N3

+, its yield curve should have peaked at an energy higher than 90 eV. On the other
hand, if its composition is C3N2H2

+, its yield curve should peak at an energy smaller than
that of m/z = 65 (C3N2H+), which it does. So one may conclude that the composition of
m/z = 66 is C3N2H2

+ and not C2N3
+. While it may be already known or there may be other

means to identify the composition of m/z = 66 from adenine, what we want to show is the
consistency in the relation between the composition and the shape of the ion yield curves
that we have discussed so far.

In the range of m/z = 80 to 85, we observe three ions, 80, 81 and 82, with 81 (C3N3H3
+)

being the dominant ion. The yield curve of m/z = 80 is considerably different from the
other two. In addition, it has much higher AE (17.5 eV in comparison to 13.5 eV for 81).
The mass 80 ion could have two possible compositions. It could be C3N3H2

+, that is, one H
atom less than that of mass 81 (C3N3H3

+), or there could be a difference in the number of C
and N atoms along with appropriate number of H atoms, that is, C4N2H4

+. Based on the
difference in shape of the ion yield curve and the large difference in AE, we may argue that
the composition of m/z = 80 is C4N2H4

+ and not C3N3H2
+.

The cross sections for the ions of m/z = 91 to 94 are relatively low, and their yield curves
look almost similar, except for a slight variation in the peak positions. The compositions
of the ions are most likely to be C4N3Hn

+, with n varying from 1 to 4. With only a change
in the number of H atoms, it is not surprising to see them having almost similar ion yield
curves. The shift in the energy of the peak cross section seems to decrease with an increase
in the number of H atoms, consistent with our discussion so far.

We present cross sections for ions of m/z = 108 (C4N4H4
+) and 135 (the parent ion,

C5N5H5
+) in the last panel in Figure 4. As is expected, the ion yield curves for the two

look different from each other. The AE of 12.3 ± 0.5 eV for m/z = 108 is smaller than
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all other fragment ions. However, we note that this is slightly larger than other reported
measurements [14–16]. The peak cross section for m/z = 108 is at 115 eV. The AE for the
parent ion is 8.8 ± 0.3 eV and is consistent with previous reports. The maximum of the
cross section is found to be at about 75 eV. The most notable feature in the case of the parent
ion is the presence of some structure in the ion yield curve at about 35 eV.

So far, we have discussed the cross sections in terms of the AEs and the energy
corresponding to the peak cross section for given sets of fragment ions. We observed that
the lighter the ion, the more the tendency to increase both the AE and the peak energy. In
addition, given a fixed number of C and N atoms, the addition of H atoms seems to lower
these energies. The general tendency for the lighter ions to have larger peak energy was
seen in the case of uracil [43]. This was explained based on the availability of states in the
ionization continuum, which increases with electron energy. The shift of the peaks to higher
values for lighter ions is due to the fact that these ions have more available channels of
formation as compared to the heavier ones. One way this happens is through the opening
of multiple ionizations and excitations of heavier ions, which fragments, giving rise to
lighter ions.

Figure 5 (reproduced from [40]) shows the total ionization cross sections from threshold
to 500 eV. Though already reported, we provide it here for continuity and as a marker
of accuracy for the partial cross sections. As mentioned earlier, the absolute total cross
sections were obtained by summing the absolute partial ion cross sections that we measured.
Thus, total ion cross sections would indicate the accuracy of the measured partial ion
cross sections. In the figure, our total ion cross sections are compared with the available
experimental [11,16] and theoretical results [18–24]. So far, only Minaev et al. [11] have
made absolute cross section measurements for adenine up to 200 eV. Their results are
considerably larger than the present results and all the theoretical results. As mentioned
earlier, van der Burgt et al. [16] measured the relative cross sections up to 100 eV and
normalized them to absolute values using the average value of various theoretical results
at 70 eV. All theoretically calculated cross section curves exhibit the typical shape, with
a maximum energy between 80–90 eV and a gradual decline towards higher energies.
The cross sections in our measurements peak at 100 eV. On the whole, there is reasonable
agreement between our data and most of the theoretical results. However, it appears that
the improved binary-encounter dipole (iBED) model employed by Huo et al. [22] provides
the best agreement. We also note that the recent calculations by Tan et al. [25] (not shown
in the figure) have better agreement with the present results below 100 eV. Very recently,
Mendez et al. [58] provided a scaling rule for the ionization of biological molecules by fully
stripped ions. Their scaling law for H+ projectiles and our results for electron projectiles
show excellent agreement for adenine along with other DNA bases. This is important in
the context of the limited electron impact data with which we could compare the present
results. The consistency shown in the scaling behavior indirectly certifies the accuracy of
the present total ion cross sections and, consequently, the present partial ion cross sections.
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4. Conclusions

In this work, we used a crossed electron-molecular beam experiment along with the
Relative Flow Technique (RFT) to measure the absolute partial ionization cross sections of
adenine molecules, which exist in solid form at room temperature. The total ionization cross
sections obtained from summing the partial cross sections are compared with the theoretical
calculations and are found in reasonable agreement. Our measured cross section values are
in close agreement with the theoretical calculation by Huo et al. [22] using the improved
binary-encounter dipole (iBED) model. The relative ion intensities (mass spectrum) and
appearance energies measured are also found in reasonable agreement with the existing
data. The most abundant fragment cations from adenine include CnHnNn

+ (n = 5, 4, 3,
2, 1) at m/z of 135 (C5N5H5+), 108 (C4N4H4

+), 81 (C3N3H3
+), 54 (C2N2H2

+), 27 (CNH+),
and HCNH+ as determined from the experiment. The dominance of CnHnNn

+ (n = 1 to
5) confirmed by our cross section measurements shows that the most thermodynamically
favored pathway for adenine dissociation due to electron ionization appears to be the
loss of HCN molecules in succession. This supports the idea of formation of adenine by
successive addition of HCN units and may help us in understanding the formation of
adenine in space.

Comparison of the ionization yield curves for various sets of fragment ions provided
some interesting, though not unexpected results. We find that lighter ions tend to have
higher appearance energies as well as higher energies at which the cross section peaks.
Within a group of ions with a given number of C and N atoms, we find that there is a
systematic shift in the abovementioned energies as a function of the number of H atoms.
We also find that we are able to use this information to identify the composition of a given
ion where more than one possibility exists. The fact that adenine is a relatively simple
system with only three species of atoms was helpful in this respect. It would be interesting
to investigate this idea in other similar molecules. Rich possibilities exist for the further
investigation of dissociative ionization of adenine using momentum imaging. Finally, we
hope that the measured partial cross sections will be immediately useful in biochemical
modelling and Monte Carlo track simulations to understand the damage mechanism in the
living cells and in other applications.
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19. Możejko, P.; Sanche, L. Cross section calculations for electron scattering from DNA and RNA bases. Radiat. Environ. Biophys. 2003,
42, 201–211. [CrossRef] [PubMed]

20. Peudon, A.; Edel, S.; Terrissol, M. Molecular basic data calculation for radiation transport in chromatin. Radiat. Prot. Dosim. 2006,
122, 128–135. [CrossRef]

21. Bull, J.N.; Lee, J.W.L.; Vallance, C. Absolute electron total ionization cross-sections: Molecular analogues of DNA and RNA
nucleobase and sugar constituents. Phys. Chem. Chem. Phys. 2014, 16, 10743–10752. [CrossRef] [PubMed]

22. Huo, W.M.; Dateo, C.E.; Fletcher, G.D. Molecular data for a biochemical model of DNA damage: Electron impact ionization and
dissociative ionization cross sections of DNA bases and sugar-phosphate backbone. Radiat. Meas. 2006, 41, 1202–1208. [CrossRef]

23. Vinodkumar, M.; Limbachiya, C.; Barot, M.; Swadia, M.; Barot, A. Electron impact total ionization cross sections for all the
components of DNA and RNA molecule. Int. J. Mass Spectrom. 2013, 339–340, 16–23. [CrossRef]

53



Atoms 2022, 10, 100

24. Champion, C. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components. J. Chem. Phys.
2013, 138, 184306. [CrossRef] [PubMed]

25. Tan, H.Q.; Mi, Z.; Bettiol, A.A. Simple and universal model for electron-impact ionization of complex biomolecules. Phys. Rev. E
2018, 97, 032403. [CrossRef]

26. Bauer, C.A.; Grimme, S. Elucidation of electron ionization induced fragmentations of adenine by semiempirical and density
functional molecular dynamics. J. Phys. Chem. A 2018, 118, 11479. [CrossRef] [PubMed]

27. Chakraborti, S.; Chakraborti, S.K. Can DNA bases be produced during molecular cloud collapse? Astron. Astrophys. 2000, 354,
L6–L8.

28. Saladino, R.; Crestini, C.; Costanzo, G.; Negri, R.; di Mauro, E. A possible prebiotic synthesis of purine, adenine, cytosine, and
4(3H)-pyrimidinone from formamide: Implications for the origin of life. Bioorg. Med. Chem. 2001, 9, 1249–1253. [CrossRef]

29. Gupta, V.P.; Tandon, P.; Rawat, P.; Singh, R.N.; Singh, A. Quantum chemical study of a new reaction pathway for the adenine
formation in the interstellar space. Astron. Astrophys. 2011, 528, A129. [CrossRef]

30. Evans, N.L.; Ullrich, S.; Bennett, C.J.; Kaiser, R.I. On the interaction of adenine with ionizing radiation: Mechanistical studies and
astrobiological implications. Astrophys. J. 2011, 730, 69. [CrossRef]

31. Callahan, M.P.; Smith, K.E.; Cleaves, H.J.; Ruzicka, J.; Stern, J.C.; Glavin, D.P.; House, C.H.; Dworkin, J.P. Carbonaceous meteorites
contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. USA 2011, 108, 13995. [CrossRef]

32. Martins, Z.; Botta, O.; Fogel, M.L.; Sephton, M.A.; Glavin, D.P.; Watson, J.S.; Dworkin, J.P.; Schwartz, A.W.; Ehrenfreund, P.
Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet. Sci. Lett. 2008, 270, 130–136. [CrossRef]

33. Zaleski, D.P.; Seifert, N.A.; Steber, A.L.; Muckle, M.T.; Loomis, R.A.; Corby, J.F.; Martinez, O.; Crabtree, K.N.; Jewell, P.R.; Hollis,
J.M.; et al. Detection of E-cyanomethanimine toward Sagittarius B2(N) in the Green Bank telescope primos survey. Astrophys. J.
Lett. 2013, 765, L10. [CrossRef]

34. Stoks, P.G.; Schwartz, A.W. Uracil in carbonaceous meteorites. Nature 1979, 282, 709–710. [CrossRef]
35. Joyce, G.F. The antiquity of RNA-based evolution. Nature 2002, 418, 214–221. [CrossRef]
36. Ziurys, L.M. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life.

Proc. Natl. Acad. Sci. USA 2006, 103, 12274–12279. [CrossRef] [PubMed]
37. Oro, J.; Kimball, A.P. Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen

cyanide. Arch. Biochem. Biophys. 1962, 96, 293–313. [CrossRef]
38. Sanchez, R.A.; Ferris, J.P.; Orgel, L.E. Studies in prebiotic synthesis. IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives

to purines. J. Mol. Biol. 1968, 38, 121–128. [CrossRef]
39. Volkenshtein, M.V. Biophysics; Mir Publishers: Moscow, Russia, 1983.
40. Rahman, M.A.; Krishnakumar, E. Communication: Electron ionization of DNA bases. J. Chem. Phys. 2016, 144, 161102. [CrossRef]
41. Srivastava, S.K.; Chutjian, A.; Trajmar, S. Absolute elastic differential electron scattering cross sections in the intermediate energy

region. I. H2. J. Chem. Phys. 1975, 63, 2659–2665. [CrossRef]
42. Rahman, M.A.; Gangopadhyay, S.; Limbachiya, C.; Joshipura, K.N.; Krishnakumar, E. Electron ionization of NF3. Int. J. Mass

Spectrom. 2012, 319–320, 48–54. [CrossRef]
43. Rahman, M.A.; Krisnakumar, E. Absolute partial and total electron ionization cross sections of uracil. Int. J. Mass Spectrom. 2015,

392, 145. [CrossRef]
44. Zielenkiewicz, W.J. Enthalpies of Sublimation and Vapor Pressures of Adenine, 1-Methyladenine, 2-Methyladenine, 3-

Methyladenine, and 8-Methyladenine. Chem. Eng. Data 2000, 45, 626. [CrossRef]
45. Rejoub, R.; Lindsay, B.G.; Stebbings, R.F. Determination of the absolute partial and total cross sections for electron-impact

ionization of the rare gases. Phys. Rev. A 2002, 65, 042713. [CrossRef]
46. Krishnakumar, E.; Srivastava, S.K. Ionisation cross sections of rare-gas atoms by electron impact. J. Phys. B At. Mol. Opt. Phys

1988, 21, 1055–1082. [CrossRef]
47. Straub, H.C.; Renault, P.; Lindsay, B.G.; Smith, K.A.; Stebbings, R.F. Absolute partial and total cross sections for electron-impact

ionization of argon from threshold to 1000 eV. Phys. Rev. A 1995, 52, 1115–1124. [CrossRef]
48. Ma, C.; Sporleder, C.R.; Bonham, R.A. A pulsed electron beam time of flight apparatus for measuring absolute electron impact

ionization and dissociative ionization cross sections. Rev. Sci. Instrum. 1991, 62, 909–924. [CrossRef]
49. Rice, J.M.; Dudek, G.O. Mass spectra of nucleic acid derivatives. II. Guanine, adenine, and related compounds. J. Am. Chem. Soc.

1967, 89, 2719–2725. [CrossRef]
50. Data Compiled by: NIST Mass Spectrometry Data Center, Wallace, W.E. Adenine Mass Spectrum (Electron Ionization). Available

online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C73245&Units=SI&Mask=200#Mass-Spec (accessed on 1 September 2015).
51. Krishnakumar, E.; Srivastava, S.K. Cross sections for the production of N2

+, N++N2
2+ and N2+ by electron impact on N2. J. Phys.

B At. Mol. Opt. Phys. 1990, 23, 1893–1903. [CrossRef]
52. Mark, T.D. Cross section for single and double ionization of N2 and O2 molecules by electron impact from threshold up to 170 eV.

J. Chem. Phys. 1975, 63, 3731–3736. [CrossRef]
53. Plutzer, C.; Kleinermanns, K. Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy.

Phys. Chem. Chem. Phys. 2002, 4, 4877–4882. [CrossRef]
54. Pilling, S.; Lago, A.F.; Coutinho, L.H.; de Castilho, R.B.; de Souza, G.G.B.; de Brito, A.N. Dissociative photoionization of adenine

following valence excitation. Rapid Commun. Mass Spectrom. 2007, 21, 3646–3652. [CrossRef] [PubMed]

54



Atoms 2022, 10, 100

55. Sethi, S.K.; Gupta, S.P.; Jenkins, E.E.; Whitehead, C.W.; Townsend, L.B.; McCIoskey, J.A. Mass spectrometry of nucleic acid
constituents. Electron ionization spectra of selectively labeled adenines. J. Am. Chem. Soc. 1982, 104, 3349–3353. [CrossRef]

56. Porter, Q.N.; Baldas, J. Mass Spectrometry of Heterocyclic Compounds; Wiley-Interscience: New York, NY, USA, 1971.
57. Goto, T.; Tatematsu, A.; Matsuura, S. Organic mass spectrometry. I. Mass spectra of pteridine, methylpteridines, and hydrox-

ypteridines. J. Org. Chem. 1965, 30, 1844–1846. [CrossRef]
58. Mendez, A.M.P.; Montanari, C.C.; Miraglia, J.E. Scaling rules for the ionization of biological molecules by highly charged ions. J.

Phys. B At. Mol. Opt. Phys. 2020, 53, 175202. [CrossRef]

55





Citation: Tadsare, V.; Das, S.;

Gokhale, S.; Krishnakumar, E.;

Prabhudesai, V.S. Dynamics of Site

Selectivity in Dissociative Electron

Attachment in Aromatic Molecules.

Atoms 2022, 10, 98. https://doi.org/

10.3390/atoms10040098

Academic Editors: Rajesh Srivastava

and Dmitry V. Fursa

Received: 1 September 2022

Accepted: 17 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atoms

Article

Dynamics of Site Selectivity in Dissociative Electron
Attachment in Aromatic Molecules
Vishvesh Tadsare, Sukanta Das, Samata Gokhale, E. Krishnakumar and Vaibhav S. Prabhudesai *

Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
* Correspondence: vaibhav@tifr.res.in

Abstract: Dissociative electron attachment has shown site selectivity in aliphatic molecules based on
the functional groups present in them. This selectivity arises from the core excited resonances that
have excited parent states localized to a specific site of the functional group. Here, we show that such
site selectivity is also observed in the amine group when present in aromatic molecules. However,
the proximity of the aromatic ring to the functional group under investigation has a substantial effect
on the dissociation dynamics. This effect is evident in the momentum distribution of the hydride
ions generated from the amine group. Our results unravel the hitherto unknown facets of the site
selectivity in aromatic organic molecules.

Keywords: electrons; molecules; cross-sections; dynamics

1. Introduction

Low-energy electron-induced chemistry plays a vital role in many phenomena, ranging
from radiation biology to astrochemistry. Dissociative electron attachment (DEA) is a
dominant channel in these processes where the electron energy is intrinsically translated
to the nuclear motion via the dynamics of the negative ion resonance state (NIRS). The
most fascinating aspect of DEA is the site selectivity shown in the dissociation process, as
manifested in the hydride ion formation [1]. This site selectivity directly correlates with
the functional group present at the site. Hence, it has been seen even in larger molecules
such as DNA bases [2]. This site selectivity is beyond the conventional threshold energy-
based selectivity shown in the dissociation processes [3]. The NIRSs that participate in the
electron attachment and give site selectivity are core excited resonances. The underlying
parent excited neutral states for these NIRSs show the localization of the excited molecular
orbital [4]. The excitation of non-bonding electrons from a specific site to the anti-bonding
molecular orbital with the capture of the incoming electron to the same or other orbital
results in the localization of the dissociation process. For example, hydride ion formation
in ammonia peaks at 5.5 eV electron energy. This peak arises from a core excited Feshbach
resonance. The underlying parent neutral excited state is the first triplet excited state of
ammonia known to dissociate along with the H−NH2 bond [5]. This excited state is
formed by the excitation of the lone pair of electrons from the N atom to the Rydberg type
orbital 3sa′1. This localized excited state provides the site selectivity to the DEA process. The
localization due to the excitation of the lone pair of electrons in ammonia remains almost
unaffected in simple saturated aliphatic amines such as n-propyl amine [4,6]. However, as
in the unsaturated amines and particularly in the aromatic amines, the lone pair of electrons
from the N-site may get easily influenced by the delocalized π electron cloud of the phenyl
group, it would be interesting to see its effect on the site selectivity in the DEA process.

In DEA to various amines, the systematic difference between the saturated and unsat-
urated amines has been seen in terms of the ion yields and their peaks [7], which indicates
the presence of low-lying shape resonance at lower electron energy in the (M−H)− chan-
nel around 2 eV. The 5.5 eV peak in the H− channel, which has been seen in ammonia
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and n-propyl amine (at 5.7 eV), is also consistently seen in the (M−H)− channel in the
saturated amines with varying energy positions [7]. However, this peak loses its intensity
substantially in the aromatic or unsaturated amines, and the low-energy shape resonance
dominates the (M−H)− DEA channel. The presence of this resonance is understood to
be due to π and π* orbitals in the unsaturated amines, which influence the Rydberg-type
orbitals. With this observation in mind, we have investigated the DEA dynamics of the
H− channel in the aromatic molecules aniline and benzylamine using the velocity slice
imaging technique.

In aniline, the amine group is directly attached to the phenyl group, making it an
unsaturated amine, whereas, in benzylamine, the amine group is attached to the benzyl
group, making it another saturated amine. However, the benzylamine also contains the
aromatic ring, giving a test bed to explore its influence on the site selectivity of DEA and its
underlying dynamics.

The aromatic amines are also important from a biological point of view. Aromatic
amines are present in many biological molecules, including DNA bases adenine, gua-
nine, and cytosine, and, as mentioned earlier, it is well-recognized that the reactions
induced by low-energy electrons in living cells represent an important step toward radi-
ation damage [8,9]. Understanding the DEA dynamics in these molecules will also serve
as a stepping stone to studying the DEA in higher aromatic compounds and complex
biomolecules. We also present the absolute cross-sections for the DEA process in these two
molecules as it is closely related to the dynamics of the process and is of importance in
theoretical modeling as well as for possible use in practical applications.

2. Experimental Setup

We measured the kinetic energy and angular distribution of hydride anions formed in
DEA to aniline and benzylamine by the velocity slice imaging (VSI) technique. Although
the experimental setup for these measurements is described earlier, here we give its brief
description [10]. We performed the experiments by crossing the magnetically collimated
pulsed electron beam at right angles with the effusive molecular beam generated using a
capillary array. The molecular beam coincided with the axis of the VSI spectrometer. The
electron current was measured using a Faraday cup placed against the electron gun across
the interaction region of the spectrometer. The pulsed electrostatic field on the pusher
electrode extracted the ions. A four-element electrostatic lens with the appropriate voltage
condition velocity focused the ions onto the position-sensitive detector made of a pair of
microchannel plates (MCPs) of 75 mm in diameter in the chevron geometry, followed by a
phosphor screen. We used a CCD camera to capture the illuminated spots on the phosphor
screen due to the ion hit on the detector. While determining the ion yield as a function of
the incoming electron energy, we used the spectrometer in the mass-spectrometer mode.
In this mode, we applied DC electric potentials to the MCPs and the phosphor screen.
We counted the ions by detecting the electrical signal pulses on the MCP back electrode.
The voltage pulses were amplified and fed to a multiple-event time digitizer to obtain the
time-of-flight mass spectra. Using these mass spectra as a function of electron energy, we
determined the relative cross-sections for different DEA channels. We used the relative flow
technique to put these cross-sections on the absolute scale using the mass spectra obtained
for O− from molecular oxygen. To obtain accurate absolute cross-sections, we ensured the
complete collection of all the ions onto the detector (as confirmed by the VSI data) and
the elimination of the bias voltage dependence on the detection efficiency as a function
of mass-to-charge ratios. We used the arrival time of ions of given m/e to determine the
detector pulsing delay in the imaging mode. In this mode, we pulsed the MCP back voltage
at an appropriate time delay to capture the signal from the ions of interest. We recorded the
images on the CCD camera and analyzed the ion hit distribution in the offline mode using
a homebuilt Matlab-based data analysis program. We used 80 ns pulses on the detector to
obtain the slice images.
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For creating the molecular beam, we used aniline (purity > 99.5%) and benzylamine
(purity > 99.5%) from Sigma-Aldrich. The liquid sample was stored in an evacuated glass
bulb connected to the vacuum chamber via a glass-to-metal seal using a 1

4 -inch stainless
steel tube through a leak valve (make: Granville Phillips). To eliminate any dissolved gases,
including water vapor, the sample liquid in the bulb was pumped by a rotary pump until
its volume was reduced to 1/3rd before using it as the target source. The sample vapor
beam was introduced in the chamber in two ways: (i) through the capillary array (we
term this as a crossed-beam measurement) and (ii) directly into the chamber (we term this
as a static gas background measurement). The overall chamber pressure rises when the
target vapor is flown through the capillary array. As the electron beam passes through
this raised background gas, it contributes to the measured mass spectrum. The static
gas background measurements are carried out to subtract these background counts from
the crossed beam measurements. The two spectra are subtracted on proper current and
pressure normalization. The details of this technique to measure the absolute cross-section
are given in ref. [4].

3. Results and Discussions
3.1. Absolute Cross-Sections

The earlier measurements of the negative ion formation in aniline by resonant electron
capture by Pikhtovnikov et al. show (M−H)− ion signal peaking at 2.6, 5.3, 6.3, and 8.3 eV;
(M− 2H)− ion signal peaking at 5.3, 7, 9.2, and 10.6 eV; (M−NH2)

− ion signal peaking at
6.7 eV; CN− peaking at 6 eV; C2H− peaking at 9.7 eV; NH2

− peaking at 7.1 eV; and NH−

ion signal peaking at 9.2 eV [11]. They found the (M−H)− at 8.3 eV, NH2
−, and CN− as

the most dominant channels. However, DEA to benzylamine has not been reported in the
literature so far.

We found H− and CN− as the most dominant channels in our measurements of DEA
to aniline and benzylamine. The absolute cross-sections as a function of electron energy for
these channels from both the molecules are shown in Figure 1.
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(c) H− and (d) CN− channels from benzylamine as a function of electron energy.

As the figure shows, both the molecules show H− as the most dominant channel.
However, the cross-section for this channel from aniline is two orders of magnitude lower
than that for benzylamine. This observation is consistent with the previous measurements
of the (M−H)− channel from the saturated and unsaturated amines [7]. Interestingly,
the H− channel also shows a similar trend. The H− cross-section shows three peaks at
5, 8.7, and 9.9 eV, whereas in the benzylamine, the H− cross-section peaks at 5.5 and 8.4 eV.
The CN− channel peaks at 10 and 5.5 eV, respectively. For benzylamine, the absolute
cross-section for NH2

− also peaks at 5.5 eV, whereas this channel is too weak in aniline.
The measured absolute cross-section values for the DEA channels from both the molecules
are given in Table 1.
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Table 1. Absolute cross-sections for the dominant channels observed in DEA to aniline and ben-
zylamine. The absolute cross-sections for ammonia and n-propylamine are also given. In all these
values, the typical uncertainty is about 15%.

H− NH2
− CN−

Molecule Peak Position
(eV)

Cross-Section
(cm2)

Peak Position
(eV)

Cross-Section
(cm2)

Peak Position
(eV)

Cross-Section
(cm2)

Aniline 5.0 5.3 × 10−21 10.0 2.0 × 10−22

8.7 4.3 × 10−21 15.4 1.0 × 10−22

9.9 4.3 × 10−21

Benzylamine 5.5 6.5 × 10−19 5.5 6.0 × 10−20 5.5 8 × 10−20

8.4 9.0 × 10−20 8.3 8 × 10−21

Ammonia 1 5.7 2.3 × 10−18 5.9 1.6 × 10−18

10.5 5.0 × 10−19 10.2 9.0 × 10−20

n-propylamine 2 5.2 5.2 × 10−20

8.8 1.7 × 10−20

1 Experimental value from reference [12], 2 Experimental value from reference [4].

The absolute cross-section values obtained for the benzylamine and aniline follow the
trend observed in an earlier work on the saturated and unsaturated amines [7]. We have
determined the origin of the hydride ions at various observed peaks by measuring the ion
yield curves for the H− and D− ions from partially deuterated aniline (C6D5NH2). The
results are shown in Figure 2.
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 Hି NHଶି CNି 

Molecule Peak Position 
(eV) 

Cross-Section 
(cm2) 

Peak Position 
(eV) 

Cross-Section 
(cm2) 

Peak Position 
(eV) 

Cross-Section 
(cm2) 

Aniline 5.0 5.3 × 10−21   10.0 2.0 × 10−22 
 8.7 4.3 × 10−21   15.4 1.0 × 10−22 
 9.9 4.3 × 10−21     

Benzylamine 5.5 6.5 × 10−19 5.5 6.0 × 10−20 5.5 8 × 10−20 
 8.4 9.0 × 10−20   8.3 8 × 10−21 

Ammonia 1 5.7 2.3 × 10−18 5.9 1.6 × 10−18   
 10.5 5.0 × 10−19 10.2 9.0 × 10−20   

n-propylamine 2 5.2 5.2 × 10−20     
 8.8 1.7 × 10−20     

1 Experimental value from reference [12], 2 Experimental value from reference [4]. 
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the molecule. The 8.7 eV peak can be attributed to the phenyl part of the molecule (Figure 
2b). This clearly shows the site selectivity observed in the aromatic amine. Interestingly, 
the presence of the phenyl group does not substantially alter the DEA peak from the N −H site compared to that from ammonia. With the observed analogy with the amine group 
in the aliphatic compounds, we attribute the 5.5 eV peak in benzylamine to the amine site 
and that at the 8.4 eV to the phenyl group. 

Photodissociation measurements by King et al. [13] on aniline revealed that the sec-
ond excited singlet electronic state of aniline corresponds to a π → 3s Rydberg electronic 
transition, calculated to lie at 4.53 eV. They anticipated that the 3s Rydberg electron den-
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Figure 2. The ion yield curves as a function of electron energy for (a) H− and (b) D− ions from DEA
to partially deuterated aniline (C6D5NH2).

As shown in Figure 2a, the 5 and 9.9 eV peaks can be attributed to the N−H site in the
molecule. The 8.7 eV peak can be attributed to the phenyl part of the molecule (Figure 2b).
This clearly shows the site selectivity observed in the aromatic amine. Interestingly, the
presence of the phenyl group does not substantially alter the DEA peak from the N−H
site compared to that from ammonia. With the observed analogy with the amine group in
the aliphatic compounds, we attribute the 5.5 eV peak in benzylamine to the amine site and
that at the 8.4 eV to the phenyl group.

Photodissociation measurements by King et al. [13] on aniline revealed that the second
excited singlet electronic state of aniline corresponds to a π → 3s Rydberg electronic
transition, calculated to lie at 4.53 eV. They anticipated that the 3s Rydberg electron density
in this latter excited state evolves into an σ* character upon the extension of one of the
N−H bonds, which shows a conical intersection with the ground state at the stretched
N–H bond. It contributes to the direct dissociation of this bond, i.e., the second singlet
excited state of aniline is expected to be essentially repulsive and of 1 π σ* character. Hence,
this state may act as the parent state for the anion state of aniline, contributing to the H−

channel that peaks at 5 eV. The peak in the hydride ions from benzylamine was at 5.5 eV,
which is closer to that obtained in ammonia (5.5 eV) and n-propylamine (5.7 eV).
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The first ionization energy of aniline is at 8 eV, and the second is at 9.1 eV. Since the H−

comes at 8.9 eV at the second resonance, we conclude that the excitation of electrons from
HOMO may not play any role in this resonance. The HOMO-1 has a contribution largely
from the delocalized electrons from the phenyl ring. The 8.9 eV resonance, as observed in
aniline and its deuterated form, may arise from the excitation of this HOMO-1 orbital. In
an attempt to find the parent state of this resonance, we compared the DEA with the VUV
absorption [14] and electron energy loss spectra [15] reported earlier. From these results,
we note that the n→ 3p Rydberg transition at about 8.5 eV may be the parent state of the
DEA resonance at 8.7 eV. Interestingly, DEA to benzene also shows a peak in the C6H5

−

channel around 8 eV [16]. Benzylamine also shows a peak at 8.4 eV. We may conclude that
the molecule’s phenyl part may play a significant role in this resonance. Benzylamine also
shows a very weak shoulder near 10 eV. Based on the comparison with the DEA studies on
ammonia and methane, we propose the origin of this shoulder to be from the N−H site,
like in ammonia, or from the C−H site of CH2, like in methane.

To probe the effect of the delocalized electrons on the site selectivity of DEA and the
underlying dynamics, we performed the angular and kinetic energy distribution measure-
ments of the ions formed by DEA to both the molecules using the VSI technique.

3.2. Angular and Kinetic Energy Distributions

We measured the VSI images of the H− and CN− ion momentum distribution at
various peaks observed in the cross-section measurements of both the molecules. We
discuss the details of the kinetic energy and angular distributions obtained from these
measurements below.

H− Ions

The VSIs obtained for the H− ions near the first peak, i.e., at 4.7 eV in aniline and 5.5 eV
in benzylamine, are shown in Figure 3, along with the angular distributions obtained from
the images. The VSI obtained for H− ions from benzylamine shows considerable similarity
with that obtained from ammonia [17] and from n-propylamine [6]. However, the image
obtained for aniline shows some difference. The corresponding angular distributions are
shown in Figure 3c,d. As discussed earlier, the dynamics described for the photodissociation
of aniline at 4.53 eV have the origin in the π → 3s Rydberg electronic transition, which
further passes on to the σ* orbital. It results in the cleavage of the N−H bond. As the N
atom is present next to the phenyl ring, the delocalized π electrons would influence its lone
pair of electrons. This, it appears, is not only affecting the cross-section of the hydride ion
formation channel through DEA but also the angular distribution.
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Figure 3. Momentum images obtained for the H− ions from (a) aniline at 4.7 eV and (b) benzylamine
at 5.5 eV. The incoming electron beam direction is from top to bottom; (c,d) are the respective
angular distributions.

The angular distribution obtained for aniline in this channel is considerably flatter,
indicating internal dynamics involved in the dissociation process. The dynamics might
be in the form of changes in the bond lengths and/or angles to circumvent the barrier
present in the direct dissociation path. In comparison, we find that the angular distribution
for the H− ions from benzylamine resembles that for ammonia. The cross-section is also
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substantially higher than aniline and compares well with n-propylamine [4]. We have also
determined the kinetic energy distribution of the H− ions, as shown in Figure 4.
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The kinetic energy distribution for H− ions from aniline peaks at 1.25 eV and ex-
tends up to 2 eV. The heat of formation of the aniline radical (C6H5NH) can be estimated
using its electron affinity (1.61 eV) and the heat to deprotonation reaction of the aniline
molecule (1540 kJ/mol) [18]. Based on the heat of formation for H (218 kJ/mol), C6H5NH2
(87 kJ/mol), and C6H5NH (252 kJ/mol) and the electron affinity of H (0.75 eV), we estimate
the threshold for the H− ion formation from the N−H site via two body fragmentation as
3.2 eV. Based on the N−H bond dissociation energy in aniline as 386.2 kJ/mol, the other
estimate of the threshold for this channel is 3.25 eV [19]. At the 4.7 eV electron energy, the
excess energy in the system would be about 1.5 eV (1.45 eV), out of which the maximum
of 1.48 eV (1.43 eV) would appear as the kinetic energy of H− ion. As most of the excess
energy appears as the kinetic energy of the hydride ion, about 0.3 eV energy appears in the
internal excitation of the aniline radical. However, the images obtained across the peak do
not show a substantial increase in the kinetic energy of the hydride ion, indicating that the
excess energy goes as the internal energy of the aniline radical. This is an important feature
indicating that there might be a barrier to the direct dissociation channel, and the system
undergoes dissociation with a considerable reshaping of the molecule.

For benzylamine, the bond dissociation energy of C6H5CH2HN−H is 418.3 kJ/mol,
which makes the threshold for the H− ion formation from the N−H site 3.58 eV [20].
Hence, at 5.5 eV electron energy, the fragments would carry a maximum of 1.92 eV energy,
and that would translate to the maximum of 1.9 eV as the kinetic energy of the H− ion. The
observed kinetic energy distribution at 5.5 eV peaks around 1.25 eV and extends up to 2 eV.
This also clearly indicates the two-body dissociation.

The VSI and the kinetic energy distribution obtained at the second peak in the cross-
section for both molecules are shown in Figure 5. The VSIs for both the molecules show a
relatively big blob with a considerable intensity throughout. For both the molecules, the
kinetic energy distribution obtained is spread over a similar energy range and is flatter for
benzylamine than for aniline.

In the absence of the C−H bond dissociation energy for the phenyl part of both
compounds, we consider the upper limit for this to be the same as for benzene. The C−H
bond dissociation energy in benzene is 474 kJ/mol, making the threshold for this channel
4.2 eV. For benzylamine, the bond dissociation energy of the C−H from the CH2 part is
368 kJ/mol [20]. This makes the threshold for the H− ion formation from this site 3.06 eV.

Based on these thresholds and the kinetic energy distributions observed in the H−

channel from the C−H site, we conclude that the internal excitation of the molecular
neutral fragment is in the range of 2.5 to 4.5 eV, which is sufficient to make this radical
break further. The blob observed in the VSI and the overall energetics point to a possible
many-body break-up. Moreover, considering the amount of excess energy in the internal
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excitation, we cannot rule out the ring-breaking dynamics as well. This conclusion is
in accordance with the aliphatic compounds where the C−H bond breaks have been
associated with the many-body break-up mechanism [21].
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Figure 6 shows the VSI obtained for the CN− ion from both molecules. However,
although both the molecules show this channel peaking at substantially different electron
energies, the momentum images are in the form of a blob. For aniline, the CN− formation
is necessarily associated with the ring-breaking many-body dissociation process, whereas
for benzylamine, it can arise from the CH2NH2, which is still a many-body break-up
mechanism. However, the difference in the resonance energies is indicative of the difference
in the origin of this channel. The kinetic energy of this ion in aniline extends up to 0.7 eV
peaking at zero. The energy distribution from the benzylamine extends only up to 0.25 eV
with a peak at zero. Interestingly, however, the cross-section of this channel in the two
molecules differs by more than an order of magnitude.
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4. Conclusions

To conclude, we have shown that the functional group-dependent site-selective frag-
mentation observed in aliphatic compounds is also observed in aromatic compounds. The
original understanding of the site selectivity due to the excitation of the localized electron
cloud from the lone pair of electrons holds for the saturated amine where the dissociation
dynamics observed in the ammonia are replicated. However, in the unsaturated amine, the
delocalized π electron cloud plays a role in the DEA dynamics. The H− ion signal from
the N−H site peaks around 5 eV. This channel results from the two-body dissociation
dynamics. The earlier reasoning for the lower absolute cross-section due to the presence of
π electron interaction seems to be reasonable as we have observed an order of magnitude
difference in the DEA cross-section between aniline and benzylamine. The H− ion signal
from the C−H site peaks between 8 and 9 eV. Like in aliphatic molecules, in aromatic
molecules as well, this channel is associated with the many-body fragmentation dynamics.
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The CN− channel, which must result from the many-body dissociation, shows different
kinetic energy ranges, possibly due to the difference in its origin in the two channels. It
would be interesting to compare the dissociation dynamics of these molecules with ben-
zene and other molecules such as pyridine and pyrrol, where the N atom is part of the
aromatic ring.
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Constructing Electron-Atom Elastic Scattering Potentials Using
Relativistic Coupled-Cluster Theory: A Few Case Studies
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Abstract: In light of the immense interest in understanding the impact of an electron on atoms
in the low-energy scattering phenomena observed in laboratories and astrophysical processes, we
propose an approach to construct potentials using relativistic coupled-cluster (RCC) theory for the
determination of electron-atom (e-A) elastic scattering cross-sections (eSCs). The net potential of an
electron, scattered elastically by an atom, is conveniently expressed as the sum of the static (Vst) and
exchange (Vex) potentials due to interactions of the scattered electron with the electrons of the atom
and potentials due to polarization effects (Vpol) on the scattered electron by the atomic electrons. The
Vst and Vex potentials for the e-A eSC problems can be constructed with a knowledge of the electron
density function of the atom, while the Vpol potential can be obtained using the polarizabilities of the
atom. In this paper, we present the electron densities and electric polarizabilties of Be, Mg, Ne and Ar
atoms using two variants of the RCC method. Using these quantities, we construct potentials for e-A
eSC problems. To obtain Vpol accurately, we evaluate the second- and third-order electric dipole and
quadrupole polarizabilities using a linear response approach.

Keywords: coupled-cluster theory; electron scattering; electric polarizabilities

1. Introduction

The accurate estimation of scattering cross-sections of electrons with atomic systems is
of interest for a wide range of applications in laboratory scattering processes and astrophy-
sics [1–4]. The challenge for the calculation of scattering cross-sections lies in determining
accurate wave functions for the scattered electron in the vicinity of an atomic target [5,6].
The coupling between the scattered wave functions and atomic wave functions are ad-
dressed through the close-coupling [7] and R-matrix [8] formalism, but they are mostly
used in a non-relativistic framework [9,10] owing to the complexity involved in the rel-
ativistic formalism. In another approach, the interactions among the scattered electron
and atomic electrons are included by splitting them into two parts—an electron-electron
correlation component and the effects of electron polarization due to the atomic elec-
trons [11–16]. In this approach, the wave functions of the electron and atom are solved
separately. The electron correlation effects within the atom are accommodated via a suitable
many-body method in the determination of the atomic wave functions (equivalent to atomic
wave density functions (ρ)). These functions are further used to construct the interaction
potential for the scattered electron. It has both direct and exchange terms owing to the
indistinguishable nature of the electrons. An atom is polarized due to the charged scattered
electron which modifies the behavior of its wave functions. This effect also influences the
construction of the effective potentials of the scattered electrons and is estimated using
the electric polarizabilities of the atom. These effective potentials are used to obtain the
wave functions of the scattered electrons, for different ranges of kinetic energies, using
a distorted wave function (DW) formalism [17,18]. For a highly energetic scattered elec-
tron, it is desirable to use the relativistic Dirac equation in the DW approximation (RDW
method) [19–22].
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In light of several applications of electron-atom scattering cross-sections, such as in
modelling metal vapour lasers and plasma plasma environments [23], insights have been
gained into different physical processes in many natural and technological environments,
including the Earth’s atmosphere and in the atmospheres of other planets and their satel-
lites [24], as well as understanding of electron-atom interactions [25]. Theoretical studies
on electron scattering by Be, Mg, Ca, Ne, Ar and other atoms have previously been carried
out [26–33]. Most of these atoms have closed-shell electronic configurations.

From the above discussion, it is clear that improvement in the accuracy of the scattering
cross-section depends on the accurate evaluation of the atomic wave function and the
electric polarizabilities of the atom. Typical many-body methods employed to determine
the atomic wave functions include a method informed by many-body perturbation theory
(MBPT method), the configuration interaction (CI) method, and the coupled-cluster (CC)
method. Among these, the CC method is viewed as the “gold standard” for its ability
to incorporate electron correlations in the determination of the atomic wave functions at
a given approximation level [34–37]. Here, we employ the CC method in a relativistic
framework (RCC method) to evaluate the atomic wave functions. Although the (R)CC
method has previously been widely applied to calculate many spectroscopic properties
to a high degree of accuracy, its ability to obtain scattering cross-sections has not been
rigorously tested, except in our first demonstrations in Mg+ [38] and Ca [39] when studying
scattering cross-sections in plasma embedded and confined atom problems. Furthermore,
atomic polarization effects on the scattering cross-sections are quite significant. Often, only
contributions from the electric dipole polarizabilities (αd) are considered in the construction
of scattering potentials due to their dominant contributions. In recent calculations, it has
been shown that contributions arising through the electric quadrupole (αq) and coupled
dipole-quadrupole (B) polarizabilities are non-negligible [15,40]. The aim of the present
investigation was to provide general approaches to accurately determine the ρ, αd, αq and
B values of atomic systems by employing an RCC method that can be used whenever
required to obtain the elastic scattering cross-sections of an electron from the closed-shell
atomic systems. For representation purposes, we give the results for Be, Ne, Mg and Ar
atoms; however, the scheme is very general and can be extended to atomic systems with
open-shell configurations.

Apart from the application of electric polarizabilities to determine electron scattering
potentials, they are also immensely important for estimating Stark shifts in atomic energy
levels. This is why atomic polarizability studies are interesting in their own right. In the
literature, αd has been extensively studied due to its predominant contribution to the
energy shift, followed by αq then B in the presence of an external electric field. Recently,
we proposed a linear response approach to determine the αd, αq and B values for Zn in the
RCC and relativistic normal CC (RNCC) theory frameworks [41]. We had found that the
results from the RCC and RNCC theories differed significantly in the commonly considered
singles and doubles approximation. Here, we investigate ρ, αd, αq and B values using both
methods, and compare them with previously reported results for Be, Ne, Mg and Ar atoms.
Using these values, we determine the electron scattering potentials and represent these by
plotting them against the radial distances. Though these potentials are obtained using a
relativistic method, the estimated potentials can be used in both the DW and RDW methods
to calculate electron scattering cross-sections with different projectile energies.

2. Theory

For the spherically symmetric interaction potential V(r) of a projectile electron with
the target, the direct and exchange scattering amplitudes can be determined by [42]

f (k, θ) =
1

2ιk

∞

∑
l=0

((l + 1)(exp(2ιδκ=−l−1)− 1) + l(exp(2ιδκ=l)− 1))Pl(cos θ) (1)
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and

g(k, θ) =
1

2ιk

∞

∑
l=0

(exp(2ιδκ=l) − exp(2ιδκ=−l−1))P1
l (cos θ) (2)

Here k is the relativistic wave number, δκ=−l−1,l are the scattering phase shifts with
κ = −l − 1 and κ = l refer to the relativistic quantum numbers for projectile electron
with j = l + 1/2 and j = l − 1/2, respectively. In the above equation, θ is the scattering
angle, and Pl(cos θ) and P1

l (cos θ) are Legendre polynomials and associated Legendre
functions, respectively. Using these amplitudes, the differential cross-sections per unit solid
angle for spin unpolarized electrons can be calculated by

dσ

dΩ
= | f (k, θ)|2 + |g(k, θ)|2, (3)

from which integrated cross-sections can be estimated by integrating over the solid angle.
In the (R)DW approximation, the first-order scattering amplitude of an electron from an
atomic system with nuclear charge Z and N number of electrons can be expressed as

f (J f , µ f ; Ji, µi, θ) = 4π2

√
k f

ki
〈Fk f

DW |Hscat|Fki
DW〉, (4)

where J and µ represent the angular momenta of the states of the atomic target and the
scattered electron, respectively, k is the momentum of the scattered electron and FDF are the
(R)DW wave functions, while the subscript i denotes the initial state and f denotes the final
state. A similar expression can be given for g. In the DW method, the effective scattering
Hamiltonian in atomic units (a.u.) is given by

Hscat = −
1
2
∇2 + V(r) (5)

whereas in the RDW method, it is given by

Hscat = cα · p + βc2 + V(r). (6)

Here c is the speed of light, α and β are the Dirac matrices and V(r) is the scattering
potential. For accurate determination of scattering cross-sections, it is imperative to obtain
V(r) accurately. In a more convenient form, V(r) can be expressed as [11]

V(r) = Vst(r) + Vex(r) + Vpol(r), (7)

where Vst(r), Vex(r) and Vpol(r) are known as the static, exchange and polarization
potentials, respectively. The static potential can have contributions from the nuclear po-
tential (Vnuc(r)) and the direct electron-electron Coulomb interaction potential VC(r); i.e.,
Vst(r) = Vnuc(r) + VC(r). Usually, a point-like atomic nucleus is considered in the scat-
tering cross-section calculations by defining Vnuc(r) = − Z

r for the atomic number of the
system Z. In the present study, we have used the Fermi-charge distribution, given by

ρA(r) =
ρ0

1 + e(r−c)/a
, (8)

where ρ0 is the normalization constant, c is the half-charge radius and a = 2.3/4ln(3) is
known as the skin thickness, to take into account the finite size effect of the nucleus. This
corresponds to the expression for the nuclear potential, as [43]
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Vnuc(r) = −
Z
N r
×

{
1
c (

3
2 + a2π2

2c2 − r2

2c2 +
3a2

c2 P+
2

6a3

c2r (S3 − P+
3 )) for ri ≤ c

1
ri
(1 + a62π2

c2 − 3a2r
c3 P−2 + 6a3

c3 (S3 − P−3 )) for ri > c,
(9)

where the factors are

N = 1 +
a2π2

c2 +
6a3

c3 S3

with Sk =
∞

∑
l=1

(−1)l−1

lk e−lc/a

and P±k =
∞

∑
l=1

(−1)l−1

lk e±l(r−c)/a. (10)

Similarly, we can express VC(r) = ∑Ne
b=1〈φb| 1

|~r−~rb | |φb〉 with Ne, denoting the total
number of electrons of the target atom, and |φb〉 is the single particle wave function of the
atomic electron b such that

1
|~ri −~rj|

=
∞

∑
k=0

4π

2k + 1
rk
<

rk+1
>

k

∑
q=−k

Yk∗
q (θ, ϕ)Yk

q (θ, ϕ), (11)

where r> = max(ri, rj), r< = min(ri, rj), and Yk
q (θ, ϕ) is the spherical harmonics of rank k

with its component q. In terms of the Racah operator (Ck
q), the above expression is given by

a scalar product as

1
|~ri −~rj|

=
∞

∑
k=0

rk
<

rk+1
>

Ck(r̂i) ·Ck(r̂j). (12)

In the Dirac theory, the single particle orbital wave functions are given by

|φ(r)〉 = 1
r

(
P(r)χjmj lL(θ, ϕ)

iQ(r)χjmj lS(θ, ϕ)

)
, (13)

where the upper and lower components are the large and small components of the single
particle wave function, respectively, P(r) and Q(r) denote the radial parts of these com-
ponents, and the χ’s denote the spin angular parts of each component which depend on
the quantum numbers j, mj, and l. lL denotes l for the large component, while lS denotes
l for the small component. Thus, for a closed-shell atomic target, such as those under
consideration here, we can have

VC(r) = ∑
b
(2jb + 1)

∫ ∞

0
drb

1
r>

[
P2

b (rb) + Q2
b(rb)

]
. (14)

It is worth noting that, for open-shell atomic targets, there will be a finite value of multipoles
k in the above expression and the computation of VC(r) will be quite difficult, but is
possible [38]. Using density function formalism, the above expression can be given by

VC(r) = ∑
b

[
1
r

∫ r

0
drbρb(rb)r′2b +

∫ ∞

r
drbρb(rb)rb

]
, (15)

where the atomic density function is given by ρ̂(r) = ∑i ρ̂i(r) = ∑i |φi〉〈φi| with

〈φj|ρ̂i(r)|φk〉 = δjiδik
(

Pj(r)Pk(r) + Qj(r)Qk(r)
)
. (16)
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It is not possible to determine Vex(r) separately as it depends on the wave function of
the scattered electron itself. However, it can be approximately estimated using the Hara
free electron gas model, given by [44]

Vex(r) = −
2
π

KF(r)F[η(r)], (17)

where the Fermi momentum KF(r) = (3πρ(r))1/3 and F(η) = 1
2 + 1−η2

4η ln
∣∣∣ 1+η

1−η

∣∣∣ with

η(r) = K(r)
KF(r)

for the local electron momentum given by

K2(r) = K2
F + 2I + k2. (18)

Here, I denotes the ionization potential (IP) of the target atom and k2/2 is the kinetic energy
of the projectile electron. This means that evaluation of Vex(r) requires the atomic density
function and the IP of the atom, along with the kinetic energy of the projectile. Since the
kinetic energy of the projectile is arbitrary, we provide here only the ρ(r) values, while IPs
can be used from the experimental data.

The polarization potential is given by [45,46]

Vpol(r) = −
(

αd
2r4 +

αq

2r6 −
B

2r7 + O(1/r8)

)

×
[
1− e(r/rc)6

]
, (19)

where αd, αq and B are known as the second-order dipole, second-order quadrupole and
third-order dipole-quadrupole polarizabilities, respectively. O(1/r8) corresponds to the
higher-order polarizability contributions and is neglected here. rc is an adjustable parameter,
which can be determined by estimating IP using the above potential in the equation of
motion, and is assumed to be different for different atoms and also for different levels of
approximation in the above expression. For convenience and demonstration purposes,
without losing much accuracy, we have considered rc = 3.5 in atomic units (a.u.) for all the
atoms considered [46].

In the following section, we present the RCC method to estimate ρ(r), Vst, αd, αq and B
in the closed-shell atomic systems. In place of calculating Vst(r) directly using RCC theory,
we estimate it by evaluating Vnuc(r) and VC(r) separately with VC(r) obtained from the
ρ(r) values. The expectation values of the operators are again evaluated using the standard
RCC and RNCC theory frameworks, and the results are compared with the earlier reported
literature values.

3. Methods for Calculations

Since αd, αq and B are determined by treating electric dipole operator D and quadrupole
operator Q as external perturbations, the atomic wave functions without these external
operators are denoted with the superscript 0 (|Ψ(0)

0 〉). We have utilized the Dirac–Coulomb
Hamiltonian to determine these unperturbed wave functions, given by

H0 =
Ne

∑
i=1

[
cαi · pi + (βi − 1)c2 + Vnuc(ri) + ∑

j>i

1
rij

]
, (20)

where rij = |~ri −~rj| is the inter-electronic separation between the electrons located at the ri
and rj radial positions with respect to the center of the nucleus.

The density matrix of the atomic state |Ψ(0)
0 〉 can be determined by

ρ(r) =
〈Ψ(0)

0 |ρ̂(r)|Ψ
(0)
0 〉

〈Ψ(0)
0 |Ψ

(0)
0 〉

. (21)
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Following [41], the expressions for αd, αq and B of the ground state of a closed-shell
system can be given by

αd = 2
〈Ψ(0)

0 |D|Ψ
(d,1)
0 〉

〈Ψ(0)
0 |Ψ

(0)
0 〉

,

αq = 2
〈Ψ(0)

0 |Q|Ψ
(q,1)
0 〉

〈Ψ(0)
0 |Ψ

(0)
0 〉

(22)

and

B = 2
〈Ψ(d,1)

0 |D|Ψ(q,1)
0 〉

〈Ψ(0)
0 |Ψ

(0)
0 〉

, (23)

where |Ψ(0)
0 〉 and |Ψ(o,1)

0 〉 are the zeroth-order wave function and the first-order wave
function of the atom due to an operator O ≡ D or Q.

From the above expressions, it is clear that accurate evaluations of αd, αq and B

depend on the many-body method employed to determine |Ψ(0)
0 〉 and |Ψ(o,1)

0 〉. These wave
functions can be determined by solving the following equations

H0|Ψ(0)
0 〉 = E(0)

0 |Ψ
(0)
0 〉 (24)

and

(H0 − E(0)
0 )|Ψ(o,1)

0 〉 = (E(o,1)
0 −O)|Ψ(0)

0 〉 (25)

with the first-order energy correction E(o,1)
0 due to O, which is zero in the present study.

Our intention here is to demonstrate the evaluation of ρ(r), αd, αq and B in the closed-
shell atoms using the RCC and RNCC theories to construct the electron-atom scattering
potentials. In the RCC theory, we can express [47,48]

|Ψ(0)
0 〉 = eT(0) |Φ0〉, (26)

and
|Ψ(o,1)

0 〉 = eT(0)
T(o,1)|Φ0〉, (27)

where T(0) accounts for electron correlation effects, and T(o,1) includes electron correlations,
along with the effect due to O, while acting on the Dirac–Hartree–Fock (DHF) wave function
|Φ0〉 of the system.

In this approach, the expressions for ρ, αd, αq and B are given by [41]

ρ(r) =
〈Φ0|eT(0)†

ρ̂(r)eT(0) |Φ0〉
〈Φ0|eT(0)† eT(0) |Φ0〉

, (28)

αd = 2
〈Φ0|eT(0)†

DeT(0)
T(d,1)|Φ0〉

〈Φ0|eT(0)† eT(0) |Φ0〉
, (29)

αq = 2
〈Φ0|eT(0)†

QeT(0)
T(q,1)|Φ0〉

〈Φ0|eT(0)† eT(0) |Φ0〉
(30)

and

B = 2
〈Φ0|T(d,1)†eT(0)†

DeT(0)
T(q,1)|Φ0〉

〈Φ0|eT(0)† eT(0) |Φ0〉
. (31)
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Evaluating the above expressions involves two major challenges, even after making
approximations in the level of excitations in the RCC calculations. The first being that there
are two non-terminating series in the numerator and denominator. The second challenge
is that the numerator can have factors which are both connected and disconnected to the
operators D or Q. These problems can be partially addressed by defining a normal-order
form of operators with respect to |Φ0〉, in which the above expressions can be simplified
to [49,50]

ρ(r) = 〈Φ0|eT(0)†
ρ̂(r)eT(0)

T(d,1)|Φ0〉c, (32)

αd = 2〈Φ0|eT(0)†
DeT(0)

T(d,1)|Φ0〉c, (33)

αq = 2〈Φ0|eT(0)†
QeT(0)

T(q,1)|Φ0〉c (34)

and

B = 2〈Φ0|T(d,1)†eT(0)†
DeT(0)

T(q,1)|Φ0〉c, (35)

where subscript c denotes connected terms only appearing within the respective expression.
Although this removes the non-terminating series appearing in the denominator, it still
contains a non-terminating series in the numerator. Further, the above expressions with
connected terms hold good only when there is no approximation made in the T operator.
In practice, T is truncated as for our RCCSD method. These expressions again do not
satisfy the Hellman–Feynman theorem [34]. All these problems can be circumvented by
the RNCC theory.

In the RNCC theory, the ket state is the same as in RCC theory but the bra state is
replaced by

〈Ψ̃(0)| = 〈Φ0|(1 + Λ(0))e−T(0)
, (36)

with a de-excitation operator Λ(0) that satisfies

〈Ψ̃(0)|Ψ(0)〉 = 〈Φ0|(1 + Λ(0))e−T(0)
eT(0) |Φ0〉 = 1. (37)

It can be shown that the eigenvalues of both 〈Ψ(0)| and 〈Ψ̃(0)| are the same if

〈Φ0|ΛH̄0|Φ0〉 = 0, (38)

where H̄ = e−T(0)
H0eT(0)

= (HeT)c.
Now, we can write the first-order perturbed wave function in the RNCC theory

as [41,51]

〈Ψ̃(o,1)| = 〈Φ0|
[
Λ(o,1) + (1 + Λ(0))T(o,1)

]
e−T(0)

. (39)

Consequently, the RNCC expressions for ρ(r), αd, αq and B are given by

ρ(r) = 〈Φ0|
(

1 + Λ(0)
)

˜̂ρ(r)|Φ0〉, (40)

αd = 〈Φ0|
(

1 + Λ(0)
)

D̃T(d,1) + Λ(d,1)D̃|Φ0〉, (41)

αq = 〈Φ0|
(

1 + Λ(0)
)

Q̃T(q,1) + Λ(q,1)Q̃|Φ0〉 (42)

and

B = 〈Φ0|Λ(d,1)D̃T(q,1) + Λ(q,1)D̃T(d,1)|Φ0〉, (43)

where Õ = (OeT(0)
)c. In the RNCC theory, we also consider only the singles and dou-

bles excitations (RNCCSD method) to carry out the calculations. It is worth noting
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here that the next leading-order electron correlation effects to ρ(r), αd, αq and B aris-
ing through the higher-level excitations will converge faster in the RNCC theory than the
RCC theory [41,51].

4. Results and Discussion

We first evaluate the density functions ρ(r) of the ground states of the Be, Mg, Ne
and Ar atoms. Since the correlation contributions, i.e.,the differences between the DHF
and RCC/RNCC values (given as δρ(r)), to these functions are very small compared to the
DHF values, we consider these contributions separately. In Figure 1, we plot ρ(r) values
from the DHF method, while the correlation contributions δρ(r) from the RCCSD and
RNCCSD methods are shown in Figure 2. As can be seen from the first figure, the density
profiles of Be, Mg, Ne and Ar appear to be different. This suggests that the electronic charge
distributions among these atoms are quite different. From the second figure, we see that
there are slight differences in the correlation contributions from the RCCSD and RNCCSD
methods in Be, while, for the other atoms, not much difference is observed. As mentioned
earlier, accurate values of αd, αq and B are important in determining Vpol(r) for the electron-
atom scattering problem. Therefore, the roles of the electron correlation effects through the
RCCSD and RNCCSD methods in the above atoms can be better understood through the
calculation of electric polarizabilities.
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Figure 1. Densityprofiles of (a) Be, (b) Mg, (c) Ne and (d) Ar atoms obtained using the DHF method
in their ground states. The radial distances (r) are given in atomic units (a.u.), while density values
ρ(r) are unitless.
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Figure 2. Correlation contributions to ρ(r) (shown in figure as δρ(r)) from the RCC and RNCC
methods in (a) Be, (b) Mg, (c) Ne and (d) Ar. As seen, the δρ(r) values are almost the same through
the RCC and RNCC methods in all atoms except Be in which slight differences are evident.

To our knowledge, there are no available calculations of ρ(r) of the atoms considered
which explicitly use the (R)CC methods previously discussed. In a recent study [52], a CI
method was employed in a non-relativistic framework to determine density functions for
studying the quantum potential neural network of Li, Be and Ne atoms. We found that
the density function behaviors we obtained for Be and Ne almost matched those of the
density functions of these atoms reported in [52]. We could not find any reference which
specifically reported the density functions of Mg and Ar; however, from analyses of radial
function distributions in Ne and Ar shown in [53], we assume that the behavior of the
density functions of the Ar atom we obtained using the DHF method follow the correct
trend. Moreover, in a different investigation [54], calculations of the ρ(r) values in carbon
atoms followed similar trends to our results for Mg. From all these analyses, we infer that
our ρ(r) values for Mg should be correct. Since the previous studies did not explicitly
discuss δρ(r) contributions, we were unable to compare our findings for these values with
any other calculations.

In Table 1, we present the αd, αq and B values calculated using the DHF, RCCSD and
RNCCSD methods. It can be seen from this table that there are large differences between
the results from the DHF and RCCSD methods. These differences become larger in the
determination of αq followed by the B values. The RCCSD values of B in the alkaline-earth
atoms are about 2.5 times larger than the DHF values. In all atoms, the RNCCSD values of
αd, αq and B are seen to be lower than the RCCSD values, except in the determination of
αq in the Be atom. The αd values from the RCCSD and RNCCSD methods are very close
to each other, but there are significant differences observed among the αq values of the
RCCSD and RNCCSD methods. These differences are quite prominent in the evaluation
of the B values. As discussed in the previous section, an approximated RNCC method is
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more reliable in the determination of properties than an approximated RCC method; thus,
we believe that our RNCCSD results are more accurate and should be treated here as the
final results.

Table 1. Our calculated values of αd, αq and B (in a.u.) of the Be, Mg, Ne and Ar atoms from the
DHF, RCCSD and RNCSSD methods. These values are also compared with precise values from
the literature.

Property DHF RCCSD RNCCSD Others

Be atom
αd 30.53 38.33 37.40 37.739(30) [55]

37.76(22) [56]
37.86(17) [57]
37.74(3) [58]

αq 220.15 299.82 304.34 300.96 [55]
300.6(3) [56]

B −1218.38 −2729.17 −2172.95 −2100(60) [55]

Mg atom
αd 54.94 71.74 69.40 71.22(36) [55]

71.3(7) [56]
72.54(50) [57]

71.2(4) [58]
αq 567.37 809.56 797.91 813.9(16.3) [55]

812(6) [56]
B −3847.89 −9293.74 −7226.24 −7750(780) [55]

Ne atom
αd 1.98 2.70 2.62 2.6669(8) [59]

2.652(15) [57]
2.66110(3) [58]

2.64 [60]
αq 4.76 7.48 7.09 7.52(15) [55]

7.36 [60]
B −6.15 −14.38 −11.67 −18.12(54) [55]

−17.27 [60]

Ar atom
αd 10.15 11.21 11.15 11.083(7) [61]

11.070(7) [62]
11.089(4) [57]
11.083(7) [58]

11.33 [63]
10.73 [64]

αq 37.19 51.61 50.33 53.37(1.07) [55]
53.22 [63]
49.46 [64]

B −71.07 −140.53 −115.35 −159(8) [55]
−167.5 [63]
−141 [64]

Due to the enormously wide use of electric polarizabilities in various experimental
applications, a number of theoretical calculations have been presented in the literature.
We consider the results obtained from previous experiments [59,61,62], sources that pro-
vide compilations of earlier data [55,58], our own previous RCC calculations [57], and
evidence cited in papers that report most of these quantities using a single many-body
method [56,60,63,64]. The results of other studies are mostly summarized in [55,58]. Many
earlier theoretical studies determined the αd values, with less theoretically based results
found for the αq values of the atoms considered. To our knowledge, only a few non-
relativistic calculations for the B values of the Be, Mg, Ne and Ar atoms considered have
been reported [55,60,63,64]. Furthermore, we did not find any experimental results of αd
for Be and Mg, but precisely measured αd values are available for Ne and Ar. Both of
our RCCSD and RNCSSD values are in agreement with those obtained from previous
calculations. We note that our RCCSD value of αq is closer to the previously reported
precise calculation result than the RNCCSD value; however, this trend is different for the
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αd and B values. These findings are slightly different for the Mg atom, where it is observed
that both the αd and αq values from our RCCSD method closely matched the previously
reported accurate calculations, but the RNCCSD value for B was in closer agreement with
the previous calculation [55]. From these comparisons, it is not possible to argue that
the RCCSD method values are more accurate than the RNCCSD results wherever they
agree with the previous calculations unless they are verified experimentally. The αq and B
values, previously estimated using a finite-field (FF) approach, are not numerically reliably.
The experimental value of αd in Ne is very precise, and comparison of theoretical results
with this value can indicate the validity of the many-body methods employed. We also
compared our RNCCSD values of αd and αq with the literature values in Table 1. For Be,
there are several calculations of αd available; we have listed some of the precise theoretical
results in the above table from the CC and RCC calculations. Several calculations of αq of
the considered atoms, including Be, have been reported using non-relativistic variation-
perturbation methods using a finite-field (FF) approach [55,60,63,64], and using a combined
CI and MBPT (CI + MBPT) method in a sum-over-states approach [56]. Our RNCCSD
αd value closely matches the previously estimated values. We found a slight difference
for the αq value from the RNCCSD method and the previously reported precise value
using the CI + MBPT method [56]. Our RCCSD value of αd in Mg agrees closely with the
previously calculated values using various many-body methods. However, the previously
reported αd values from different calculations spread over a wide-range. This is due to the
large electron correlation effects exhibited by both the valence electrons of the Mg atom.
Nonetheless, our RNCCSD value of αd is also close to that obtained from other calculations.
However, our RCCSD value for αq is closer to previous calculations while the RNCCSD
result differs significantly from the earlier calculations. From this difference, we cannot
say with confidence that the RCCSD value is more accurate than the RNCCSD result. This
is because the earlier predicted αq values are obtained using non-relativistic methods or
lower-order relativistic methods. Thus, only empirical measurements can confirm the
reliability of these calculations. Comparing the αd value of Ne with experiment [59], our
RCCSD value is closer to the experimental value than the RNCCSD value. We anticipate
that after including Breit and quantum electrodynamic corrections, the RNCCSD value
will improve further. Similarly, the αq value from the RCCSD method is closer to the
previous calculations than the RNCCSD method. Since there is no experimental result for
αq available, we cannot claim that the RNCCSD value is less accurate than the RCCSD
result. Similar trends for the αd and αq values can be seen in the Ar atom.

Compared to the αd and αq values, B values have received little attention both in
theoretical and experimental studies. The contributions of these values to the Stark effects
are extremely small when being precisely observed. Strong electron correlation effects are
also involved when evaluating B values accurately. In addition, extrapolation of B values
from the FF approach requires inclusion of both the electric dipole and quadrupole field
interactions in the atomic Hamiltonian. In the linear response approach, estimations of
the B values demand calculation of first-order perturbed wave functions due to both the
electric dipole and quadrupole operators. These are the main reasons why the B values
are not widely investigated in many atomic systems. We identified some literature values
for B of the Be, Mg, Ne and Ar atoms [55,60,63,64] which are listed in Table 1. These
literature values are obtained by adopting an FF approach in a non-relativistic framework.
By comparison of our calculations with literature values, we note that our RNCCSD values
agree with the earlier reported values, while the RCCSD results differ greatly for both the
Be and Mg atoms. However, this is reversed for the Ne and Ar atoms. The reason for this
could be that different many-body methods were considered to estimate the B values of the
alkaline-earth atoms and of the noble gas atoms. We assume that our RNCSSD results are
more reliable compared to all the listed values in Table 1.

In Figure 3a,b, we show the individual contributions to V(r) from the RCCSD and
RNCCSD methods for the Be atom. As can be seen in both these plots, the contributions
from Vnuc dominates while the VC contributions are also quite visible. There are also

75



Atoms 2022, 10, 88

noticeable contributions arising from the Vpol(r). Similar trends can also be observed for
the RCCSD values, as shown in Figure 3c, and the RNCCSD values, as shown in Figure 3d,
for the Mg atom, but the shapes are slightly different due to VC(r) and Vpol(r) contributions.
These differences can be understood from the density profiles of both the atoms shown in
Figure 1. In Figure 4a–d, we show different contributions to V(r) from the RCCSD and
RNCCSD methods for Ne and Ar. As can be seen from the figure, the trends from individual
contributions to V(r) in both Ne and Ar appear quite similar except for their magnitudes.
The figure also shows that contributions from Vpol(r) are negligibly small in both the atoms.
Compared to the alkaline-earth atoms, the results for both the Ne and Ar atoms look quite
similar to those for the Mg atom. It is of note that the density profiles shown in Figure 1
of the Be and Ar atoms appear similar, while the density profiles of Mg and Ne appear
to have similar features. Thus, it is not possible to obtain a clear picture of the scattering
potential behavior of an electron from an atom just by looking at the density profile of the
atom. Nonetheless, we have discussed procedures to construct the electron-atom scattering
potentials by evaluating contributions from the static and polarization potentials due to
the Be, Mg, Ne and Ar atoms using the RCC and RNCC methods. These procedures can
also be adopted for heavier closed-shell atomic systems, where electron correlation effects
could be very pronounced.
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Figure 3. Plots demonstrating comparative analyses of contributions from Vnuc(r), VC(r) and Vpol(r)
to the electron scattering potential V(r) from the Be and Mg alkaline-earth atoms. In (a,b), results
are given from the RCCSD and RNCCSD methods, respectively, for the Be atom. Results from the
RCCSD and RNCCSD methods are shown in (c,d), respectively, for the Mg atom. All quantities are
given in a.u.
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Figure 4. Plots demonstrating different contributions to V(r) from the Ne and Ar noble atoms. In (a,b),
results are given from the RCCSD and RNCCSD methods, respectively, for the Ne atom, while the
results from the RCCSD and RNCCSD methods for the Ar atom are shown in (c,d), respectively. All
quantities are given in a.u.

5. Conclusions

We have demonstrated approaches employing relativistic-coupled cluster theory to
determine potentials for the evaluation of electron-atom elastic scattering cross-sections.
For this purpose, we considered both the standard and normal versions of the relativistic
coupled-cluster theory in the singles and doubles approximation, and presented results
for the Be, Mg, Ne and Ar atoms as representative elements for the alkaline-earth and
noble gas atoms of the Periodic Table. To estimate the static potential contributions, the
finite-size nuclear effect was determined through the nuclear potential, while the two-
electron correlation effects were estimated using relativistic coupled-cluster theory. The
density functions of the above atoms from both the considered relativistic coupled-cluster
theories were presented to estimate the Coulomb exchange potential contributions, which
we neglected here for estimating potentials. Furthermore, we determined the electric dipole,
quadrupole and dipole-quadrupole polarizabilities to account for the electron polarization
effects on the scattering potential. The results from both the standard and normal relativistic
coupled-cluster theories were compared with the literature values. These methods can be
further applied to other heavier atomic systems to study electron-atom scattering cross-
sections more accurately where the electron correlation effects within the atom will be more
prominent than for the lighter elements investigated here.
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Abstract: Light shift in a state due to the applied laser in an atomic system vanishes at tune-out
wavelengths (λTs). Similarly, differential light shift in a transition vanishes at the magic wavelengths
(λmagics). In many of the earlier studies, values of the electric dipole (E1) matrix elements were inferred
precisely by combining measurements and calculations of λmagic. Similarly, the λT values of an atomic
state can be used to infer the E1 matrix element, as it involves dynamic electric dipole (α) values of
only one state whereas the λmagic values require evaluation of α values for two states. However, both
the λmagic and λT values depend on angular momenta and their magnetic components (M) of states.
Here, we report the λmagic and λT values of many S1/2 and D3/2,5/2 states, and transitions among
these states of the Mg+, Ca+, Sr+ and Ba+ ions that are independent of M values. It is possible to
infer a large number of E1 matrix elements of the above ions accurately by measuring these values
and combining with our calculations.

Keywords: relativistic all-order method; magic wavelength; tune-out wavelength; dipole polarizability

1. Introduction

Singly charged alkaline-earth ions are the most eligible candidates for considering
for high-precision measurements due to several advantages [1]. Except Be+ and Mg+,
other alkaline-earth ions have two metastable states and most of the transitions among the
ground and metastable states are accessible by lasers. This is why these ions are considered
for carrying out high-precision measurements such as testing Lorentz symmetry viola-
tions [2–4], parity nonconservation effects [5], non-linear isotope shift effects [6], quantum
information [7,8] and many more, including for the optical atomic clock experiments [9].
Above all, optical lattices blended with unique features of optical transitions in the ionic
system lead to the revolution in the clock frequency states. Since the confinement of Mg+

ions in a monochromatic optical dipole trap has become feasible experimentally for several
ms [10], the pathways to implement these ions to realize optical lattice clocks have been
opened up due to the fact that ions provide more accurate atomic clocks since various
systematics in the ions can be controlled easily [11,12].

One of the major systematics in the aforementioned high-precision measurements is
the Stark shift due to the employed laser, which depends on the frequency of the laser.
The solution to this problem was suggested by Katori et al. [13], who proposed that the
trapping laser can be tuned to wavelengths at which differential ac Stark shifts of the
transitions can vanish [13]. These wavelengths were coined as magic wavelengths (λmagics)
and are being popularly used in optical lattice clocks. The development of the technique
to measure λmagics in the singly charged 40Ca+ ion [14] has opened up the possibilities
to measure these wavelengths in the other ions, such as Al+, Hg+, Yb+, Cd+, In+ and
so on, that are being considered in many high-precision measurements. Further, the
infrared magic wavelength has been identified recently for all optical trapping of 40Ca+ ion
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clock [15]. The stability of optical lattices can be enhanced by optical cavities in various
dimensions while availing the coordinated choice of λmagics [16] and state-dependent
potentials [17], which can further be implemented in the all-optical confinement of these
ions. In quantum state engineering [18], λmagics provide an opportunity to extract accurate
values of oscillator strengths [19], which are particularly important for correct stellar
modeling and analysis of spectral lines identified in the spectra of stars and other heavenly
bodies so as to infer fundamental stellar parameters [20,21].

Apart from the magic trapping condition, where light shift in two internal states is
identical, another well-known limiting case is where light shift in one state vanishes. This
case is known as a tune-out condition [22]. Applications of such tune-out wavelengths
(λT) lie in novel cooling techniques of atoms [23], selective addressing and manipulation of
quantum states [24–26], precision measurement of atomic structures [27–32] and precise
estimation of oscillator strength ratios [33]. Additionally, tune-out conditions are powerful
tools for the evaporative cooling of optical lattices [34] and, hence, are important for
experimental explorations.

In one of the experiments pertaining to magic wavelengths of alkaline-earth ions, Liu
et al. demonstrated the existence of magic wavelengths for a single trapped 40Ca+ ion [14],
whereas Jiang et al. evaluated magic wavelengths of Ca+ ions for linearly and circularly
polarized light using the relativistic configuration interaction plus core polarization (RCICP)
approach [35,36]. Recently, Chanu et al. proposed a model to trap Ba+ ions by inducing
an ac Stark shift using a 653 nm linearly polarized laser [37]. Kaur et al. reported magic
wavelengths for nS1/2− nP1/2,3/2 and nS1/2−mD3/2,5/2 transitions in alkaline-earth-metal
ions using linearly polarized light [16], whereas Jiang et al. located magic and tune-out
wavelengths for Ba+ ions using the RCICP approach [38]. Despite having a large number
of applications, these magic wavelengths suffer a setback because of their dependency on
the magnetic-sublevels (M) of the atomic systems. Linearly polarized light has been widely
used for the trapping of atoms and ions as it is free from the contribution of the vector
component in the interaction between atomic states and electric fields. However, the magic
wavelengths thus identified are again magnetic-sublevel dependent for the transitions
involving states with angular momenta greater than 1/2. On the other hand, the cooling
of ions using circularly polarized light requires magnetic-sublevel selections. In order to
circumvent this M dependency of magic wavelengths, a magnetic-sublevel-independent
strategy for the trapping of atoms and ions was proposed by Sukhjit et al. [39]. Later on,
Kaur et al. implemented a similar technique to compute magic and tune-out wavelengths
independent of magnetic sublevels M for different nS1/2 − (n− 1)D3/2,5,2 transitions in
Ca+, Sr+ and Ba+ ions corresponding to n = 4 for Ca+, 5 for Sr+ and 6 for Ba+ ion [40].

In addition to the applications of λmagic in getting rid of differential Stark shift in a
transition, they are also being used to infer the electric dipole (E1) matrix elements of many
allowed transitions in different atomic systems [14,38,41,42]. The basic procedure of these
studies is that the λmagic values are calculated by fine-tuning of the magnitudes of domi-
nantly contributing E1 matrix elements to reproduce their measured values. Then, the set
of the E1 matrix elements that gives rise to the best matched λmagic values are considered
as the recommended E1 matrix elements. However, calculations of these λmagic values of
a transition demand the determination of the dynamic E1 polarizabilities (α) of both the
states. In view of this, use of the λT values of a given atomic state can be advantageous,
as they involve dynamic α values of only one state. Furthermore, both the λmagic and λT
values depend on angular momenta and their magnetic components (M) of atomic states.
This requires evaluation of scalar, vector and tensor components of the α values for states
with angular momenta greater than 1/2, which is very cumbersome. To circumvent this
problem, we present here M-sublevel-independent λmagic and λT values of many states
and transitions involving a number of S1/2 and D3/2,5/2 states in the alkaline-earth metal
ions from Mg+ through Ba+ that can be inferred to the E1 matrix elements more precisely.
The basic idea behind this work is to use the calculated E1 matrix elements to predict
the M-independent λmagic and λT values of the above ions. Theoretical determinations

82



Atoms 2022, 10, 72

of these λmagic and λT are very sensitive to the magnitudes of a few principal E1 matrix
elements. When measurements of these quantities are available, by combining them with
our calculations it is possible to fine tune the E1 matrix element values to higher precision.
At this stage, our reported λmagic and λT values will be useful to guide the experimentalists
to carry out these measurements. The measurements can be achieved by setting up exper-
iments suitably by fixing the polarization and quantization angles of the applied lasers.
To validate our results for the transitions involving high-lying states, we compared the
values of our λmagic and λT values for the ground to the metastable states of the considered
alkaline-earth ions with the previously reported values.

The paper is organized as follows: In Section 2, we provide underlying theory and
Section 3 describes the method of evaluation of the calculated quantities. Section 4 discusses
the obtained results, while concluding the study in Section 5. Unless we have stated
explicitly, physical quantities are given in atomic units (a.u.).

2. Theory

The electric field E (r,t) associated with a general plane electromagnetic wave can be
represented in terms of complex polarization vector χ̂ and the real wave vector k by the
following expression [43]

E(r, t) =
1
2
E χ̂e−ι(ωt−k.r) + c.c., (1)

where c.c. is the complex conjugate of the preceding term. Assuming χ̂ to be real and
adopting the coordinate system as presented in Figure 1, the polarization vector can be
expressed as [39]

χ̂ = eισ(cosφ χ̂maj + ι sinφ χ̂min), (2)

where χ̂maj and χ̂min denote the real components of the polarization vector χ̂, σ is the real
quantity denoting the arbitrary phase and φ is analogous to degree of polarization A such
that A = sin(2φ). For linearly polarized light, φ = 0 whereas φ takes the value either π/4
or 3π/4 for circularly polarized light, which further defines A = 0 for linearly polarized
and A = 1(−1) for right-hand (left-hand) circularly polarized light [43]. As shown in
Figure 1, this coordinate system follows

cos2θp = cos2φ cos2θmaj + sin2φ sin2θmin (3)

and
θmaj + θmin =

π

2
. (4)

Figure 1. Representation of elliptically polarized laser beam swept out by the laser’s polarization vector in
one period. χ̂ represents the laser’s complex polarization vector and k̂ as the laser wave vector perpendicular
to quantization axis χ̂B. The vectors χ̂maj, χ̂min and k̂ are mutually perpendicular to each other.

Here, θp is the angle between quantization axis χ̂B and direction of polarization vector
χ̂ and the parameters θmaj and θmin are the angles between respective unit vectors and χ̂B.
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When an atomic system is subjected to the above electric field and the magnitude of E
is small, a shift in the energy of its nth level (Stark shift) can be given by

δEK
n ' −

1
2

αK
n (ω)|E |2, (5)

where αK
n (ω) is known as the second-order electric dipole (E1) polarizability and the

superscript K denotes angular momentum of the state, which can be atomic angular
momentum J or hyperfine-level angular momentum F. Depending upon polarization,
dynamic dipole polarizability αK

n (ω) can be expressed as

αK
n (ω) = αK

nS(ω) + β(χ)MK
2K αK

nV(ω)

+γ(χ)
3M2

K−K(K+1)
K(2K−1) αK

nT(ω),
(6)

where αK
nS, αK

nV and αK
nT are the scalar, vector and tensor components of the polarizability,

respectively. The expression can be defined on the basis of the coordinate system provided
in the Figure 1. Geometrically, values for β(χ) and γ(χ) in their elliptical form are given
as [39,43]

β(χ) = ι(χ̂× χ̂∗).χ̂B = Acos θk (7)

and
γ(χ) =

1
2
[3(χ̂∗.χ̂B)(χ̂.χ̂B)− 1] =

1
2

(
3cos2 θp − 1

)
, (8)

where θk is the angle between direction of propagation k and χ̂B. Substitution of β(χ) and
γ(χ) from Equations (7) and (8) reforms the expression for dipole polarizability to

αK
n (ω) = αK

nS(ω) + Acosθk
MK
2K αK

nV(ω)

+

(
3cos2θp−1

2

)
3M2

K−K(K+1)
K(2K−1) αK

nT(ω)
(9)

with the azimuthal quantum number MK of the respective angular momentum K.
Thus, it is obvious from Equation (6) that the αK

n values of two states have to be same
if we intend to find λmagic for the transition involving both the states. Since the above
expression for αK

n has MK dependency, the λmagic become MK dependent. In order to
remove MK dependency, one can choose MK = 0 sublevels but in the atomic states of
the alkaline-earth ions they are non-zero while isotopes with integer nuclear spin of the
alkaline-earth ions MKs are again non-zero. To address this, a suitable combination of the
β(χ) and γ(χ) parameters needs to be chosen such that cosθk = 0 and cos2θp = 1

3 , which
are feasible to achieve in an experiment by setting θk, χ̂maj and φ values, as demonstrated
in Ref. [39]. In such a scenario, the λmagic values can depend on the scalar part only by
suppressing the vector and tensor components of αK

n ; i.e., the net differential Stark effect of
a transition occurring from the J to J′ states will be given by

δEJ J′ = −
1
2

[
αJ

nS(ω)− αJ′
nS(ω)

]
E2. (10)

This has an additional advantage that the differential Stark effects at an arbitrary electric
field become independent of the choice of atomic or hyperfine levels in a given atomic system,
as the scalar component of αJ

n and αF
n are the same. Again, the same choice of λmagic values

will be applicable to both the atomic and hyperfine levels in a high-precision experiment.

3. Method of Evaluation

Determination of αJ
n values requires accurate calculations of E1 matrix elements.

For the computation of E1 matrix elements, we need accurate atomic wave functions of
the alkaline-earth ions. We employed here a relativistic all-order method to determine

84



Atoms 2022, 10, 72

the atomic wave functions of the considered atomic systems, whose atomic states have
a closed-core configuration with an unpaired electron in the valence orbital. Detailed
descriptions of our all-order method can be found in Refs. [44–47]; however, a brief outline
of the same is also provided here for the completeness.

Our all-order method follows the relativistic coupled-cluster (RCC) theory ansätz

|ψv〉 = eS|φv〉, (11)

where |φv〉 represents the mean-field wave function of the state v and constructed as [48]

|φv〉 = a†
v|0c〉, (12)

where |0c〉 represents the Dirac–Hartree–Fock (DHF) wave function of the closed core.
Subscript v represents the valence orbital of the considered state. In our calculations, we
consider only linear terms in the singles and doubles approximation of the RCC theory (SD
method) by expressing [48]

|ψv〉 = (1 + S1 + S2 + ...)|φv〉, (13)

where S1 and S2 depict terms corresponding to the single and double excitations, respec-
tively, that can further be written in terms of second quantization creation and annihilation
operators as follows [49]

S1 = ∑
ma

ρmaa†
maa + ∑

m 6=v
ρmva†

mav (14)

and

S2 =
1
2 ∑

mnab
ρmnaba†

ma†
nabaa + ∑

mna
ρmnvaa†

ma†
naaav, (15)

where indices m and n range over all possible virtual orbitals, and indices a and b range over
all occupied core orbitals. The coefficients ρma and ρmv represent excitation coefficients of
the respective single excitations for the core and the valence electrons, respectively, whereas
ρmnab and ρmnva depict double excitation coefficients for the core and the valence electrons,
respectively. These amplitudes are calculated in an iterative procedure [50], due to which
they include electron correlation effects to all-order.

Hence, atomic wave function of the considered states in the alkaline-earth ions are
expressed as [48,51]:

|ψv〉SD =
[
1 + ∑ma ρmaa†

maa +
1
2 ∑mnab ρmnaba†

ma†
nabaa

+∑m 6=v ρmva†
mav + ∑mna ρmnvaa†

ma†
naaav

]
|φv〉.

(16)

To improve the calculations further and understand the importance of contributions
from the triple excitations in the RCC theory, we take into account important core and
valence triple excitations through the perturbative approach over the SD method (SDpT
method) by redefining the wave function expression as [48]

|ψv〉SDpT = |ψv〉SD +
[

1
6 ∑mnrab ρmnrvaba†

ma†
na†

r abaaav

+ 1
18 ∑mnrabc ρmnrabca†

ma†
na†

r acabaa

]
|φv〉.

(17)
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After obtaining the wave functions of the interested atomic states, we evaluate the E1
matrix elements between states |ψv〉 and |ψw〉 as [49]

Dwv =
〈ψw|D|ψv〉√
〈ψw|ψw〉〈ψv|ψv〉

, (18)

where D = −eΣjrj is the E1 operator with rj being the position of jth electron [51]. The re-
sulting expression of numerator of Equation (18) includes the sum of the DHF matrix
elements zwv; twenty correlation terms of the SD method that are linear or quadratic func-
tions of excitation coefficients ρmv, ρma, ρmnva and ρmnab; and their core counterparts [45].

In the sum-over-states approach, expression for the scalar dipole polarizability is given
by

αv(ω) =
2

3(2Jv + 1) ∑
v 6=w

(Ev − Ew)|〈ψv||D||ψw〉|2
(Ev − Ew)2 −ω2 , (19)

where 〈ψv||D||ψw〉 is the reduced matrix element for the transition occurring between
the states involving the valence orbitals v and w. Here, we dropped the superscript J in
the dipole polarizability notation for the brevity. For convenience, we divide the entire
contribution to αn(ω) for any state v, into three parts, as

αv = αv,c + αv,vc + αv,val (20)

where c, vc and val corresponds to core, valence-core and valence contributions arising
due to the correlations among the core orbitals, core-valence orbitals and valence-virtual
orbitals, respectively [52]. Due to much smaller magnitudes, the core and core-valence
contributions are calculated using the DHF method. The dominant contributions will arise
valence from αv,val due to small energy denominators. Again, the high-lying states will
not contribute to αv,val owing to large energy denominators. Thus, we calculate E1 matrix
elements only among the low-lying excited states and refer the contributions as ‘Main’.
Contributions from the less contributing high-lying states are referred as ‘Tail’ and are
estimated again using the DHF method. To reduce the uncertainties in the estimations of
Main contributions, we used experimental energies of the states from the National Institute
of Science and Technology atomic database (NIST AD) [53].

4. Results and Discussion

The precise computation of magic and tune-out wavelengths requires the accurate de-
termination of E1 matrix elements as well as dipole polarizabilities. In our work, we used E1
matrix elements available on Portal for High-Precision Atomic Data and Computation [54]
and NIST Atomic Spectra Database [53], respectively.

We listed resonance transitions, magic wavelengths and their corresponding polar-
izabilities along with their uncertainties for magnetic-sublevel independent nS − mD
transitions for alkaline-earth ions from Mg+ through Ba+ along with their comparison with
the available literature in the Table 1 through Table 4, respectively. Results reported by Kaur
et al. [40] were obtained by similar analyses, but contributions from some of the high-lying
states were neglected in that work. Furthermore, we used excitation energies for most of
the states listed in the NIST AD compared to Kaur et al. This resulted in more precise values
of dipole polarizabilities, hence further improving the magic and tune-out wavelengths.
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Table 1. Magic wavelengths λmagic (in nm) with their corresponding polarizability αn (ω) (in a.u.)
for (3, 4)S1/2 − 3D3/2,5/2 and 4S1/2 − 4D3/2 transitions in Mg+ ion.

3S1/2 − 3D3/2 3S1/2 − 3D5/2

Resonance λres λmagic αmagic Resonance λres λmagic αmagic

3D3/2 → 6P3/2 292.92 3D5/2 → 5F5/2 310.56
313.89 (2) 168.72 (13) 313.86 (2) 168.85 (13)

3D3/2 → 5P1/2 385.15 3D5/2 → 5P3/2 384.920
385.300 (1) 73.51 (7) 385.101 (1) 73.59 (6)
757.8 (1.5) 40.43 (5)

3D3/2 → 5P3/2 1091.83 3D5/2 → 4F5/2 448.24
1092.436 (1) 37.41 (5) 756.7 (1.5) 40.45 (5)

3D3/2 → 4P1/2 1095.48 3D5/2 → 4P3/2 1091.72

4S1/2 − 3D3/2 4S1/2 − 3D5/2

4S1/2 → 5P3/2 361.48 4S1/2 → 5F7/2 310.56
361.26 (1) −202.1 (1.3) 344.87 (47) −160.00 (13)

4S1/2 → 5P1/2 361.66 4S1/2 → 5P3/2 361.48
361.627 (1) −203.2 (1.3) 361.626 (1) −203.8 (1.3)

4S1/2 → 4P3/2 922.08 4S1/2 → 5P1/2 361.66
923.812 (1) −140.74 (97)

4S1/2 → 4P1/2 924.68 3D5/2 → 5P3/2 384.93
385.408 (4) −163.67 (13)

3D3/2 → 4P3/2 1091.83 3D5/2 → 4F5/2 448.24
1092.377 (1) 1976.9 (1.5)

3D3/2 → 4P1/2 1095.48 4S1/2 → 4P3/2 922.08
1132.53 (6) 1681.4 (1.3) 923.812 (1) −144.72 (98)

4S1/2 → 4P1/2 924.68
3D5/2 → 4P3/2 1091.72

1128.42 (6) 1706.3 (1.3)

4S1/2 − 4D3/2 4S1/2 − 4D5/2

4D3/2 → 7F5/2 526.58 4D5/2 →
7F5/2,7/2

526.57

591.48 (1) −422.01 (31) 591.34 (1) −421.69 (31)
4D3/2 → 7P3/2 591.83 4D5/2 → 7P3/2 591.81

591.8603 (3) −422.86 (31)
4D3/2 → 7P1/2 591.98

616.11 (22) −482.44 (35) 616.02 (23) −482.19 (35)
4D3/2 → 6F5/2 634.87 4D5/2 → 6F7/2 634.85
4P1/2 → 4D3/2 787.92

789.499 (4) −1578.9 (1.2)
4P3/2 → 4D3/2 789.82 4P3/2 → 4D5/2 789.85
4D3/2 → 6P3/2 811.78 4D5/2 → 6P3/2 811.75

811.8186 (1) −1973.6 (1.5) 812.118 (1) −1980.0 (1.5)
844.63 (10) −2964.8 (2.2)

4D3/2 → 6P1/2 812.83
812.648 (1) −1991.3 (1.5)
843.61 (11) −2921.4 (2.2)

4S1/2 → 4P3/2 922.08 4S1/2 → 4P3/2 922.08
923.839 (1) −4957.9 (6.5) 923.839 (1) −4975.8 (6.4)

4S1/2 → 4P1/2 924.68 4S1/2 → 4P1/2 924.68
4D3/2 → 5F5/2 963.51 4D5/2 → 5F7/2 963.45

1006.10 (13) 3585.5 (2.7) 1005.86 (13) 3594.8 (2.7)

Further discussion regarding the magic wavelengths is provided in the Section 4.1
for the considered alkaline-earth ions. Furthermore, we discussed our results for tune-out
wavelengths in the Section 4.2 along with the comparison of our results with respect to the
available theoretical data.

4.1. Magic Wavelengths
4.1.1. Mg+

In Table 1, we tabulated our results for magic wavelengths and their corresponding
dipole polarizabilities for (3, 4)S1/2 − 3D3/2,5/2 and 4S1/2 − 4D3/2 transitions. Figure 2a
demonstrates scalar dipole polarizabilities of 3S1/2 and 3D3/2,5/2 states of Mg+ ion with
respect to the wavelength of the external field. It can be perceived from the figure that a
number of magic wavelengths at the crossings of the scalar polarizabilities’ curves of the
corresponding state have been predicted for the transition. As can be seen from Table 1,
a total of 4 magic wavelengths were found for 3S− 3D3/2 transition, whereas the 3S− 3D5/2
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transition shows a total of 3 magic wavelengths in the range 300–1250 nm, out of which
no magic wavelength was found to exist in visible spectrum. However, all the magic
wavelengths enlisted in Table 1 support red-detuned trap.

Figure 2b represents the plot of scalar dipole polarizabilities of 4S and 4D3/2,5/2 states
against the wavelength of the external field. It can also be assessed from Table 1 that there exists
a total of nine magic wavelengths in the considered wavelength range for 4S− 4D3/2 transition,
whereas only five magic wavelengths are seen for the 4S− 4D5/2 transition. However, in both
cases, all the magic wavelengths except those around 616 nm, 844 nm and 1006 nm are close
to resonance, thereby making them unsuitable for further use. However, out of these three
values, λmagic at 616 nm lies in the visible region and is far-detuned with considerable deep
potential. Hence, we recommend this magic wavelength for the trapping of Mg+ ions for both
4S–4D3/2,5/2 transitions for further experimentations in optical clock applications.

Figure 2c demonstrates the magic wavelengths for the MJ-independent scheme for 4S–
3D3/2,5/2 transitions for Mg+ ions along with their corresponding scalar dynamic polarizabil-
ities. According to Table 1, it can be realized that none of the magic wavelengths for these
transitions lie within the visible spectrum of electromagnetic radiations. However, all of these
magic wavelengths support a red-detuned trap, except 1132.53(6) nm and 1128.42(6) nm
for 4S-3D3/2 and 4S− 3D5/2 transitions, respectively, support far blue-detuned traps and are
found to be useful for experimental demonstrations.

(a) (b)

(c) (d)

(e) (f)

Figure 2. α v/s λ plots for various transitions in Mg+ and Ca+ ions. (a) α v/s λ plot for 3S1/2 −
3D3/2,5/2 transition in Mg+ ion. (b) α v/s λ plot for 4S1/2 − 4D3/2,5/2 transition in Mg+ ion. (c)
α v/s λ plot for 4S1/2 − 3D3/2,5/2 transition in Mg+ ion. (d) α v/s λ plot for 4S1/2 − 3D3/2,5/2

transition in Ca+ ion. (e) α v/s λ plot for 5S1/2 − 3D3/2,5/2 transition in Ca+ ion. (f) α v/s λ plot for
5S1/2 − 4D3/2,5/2 transition in Ca+ ion.
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4.1.2. Ca+

We considered 4S− 3D3/2,5/2 and 5S− (4, 3)D3/2,5/2 transitions for locating the magic
wavelengths in Ca+ ion. We tabulated magic wavelengths for these transitions along with
the comparison of λmagics with the only available results for 4S− 3D3/2,5/2 in Table 2. In
addition, we plotted scalar dipole polarizabilities against wavelengths for these transitions
in Figure 2d–f, correspondingly. According to Table 2, it is determined that, subsequently,
three and two magic wavelengths exist between 393 nm and 1030 nm for 4S− 3D3/2,5/2
transitions. In both cases, except 1029.0(1.2) nm and 1011.90(90) nm magic wavelengths,
which are far-detuned, all other magic wavelengths are close to resonances and are not
suitable for laser trapping.

During analysis, six and five magic wavelengths were located for the 5S− (3, 4)D3/2
and 5S− (3, 4)D5/2 transitions, respectively. It was also determined that all the magic wave-
lengths are approximately same for both 5S− 4D3/2 and 5S− 4D5/2 transitions. Moreover,
λmagics around 845 nm, 847 nm and 860 nm share deep trapping potential for blue-detuned
traps and, hence, are further recommended for configuring feasible traps. λmagic at 1191.56
nm, identified in the infrared region for both 5S− 4D3/2,5/2 transitions, is the only magic
wavelength that supports the red-detuned trap. In addition, the polarizability for this wave-
length is sufficient enough for creating an ion trap at reasonable laser power. To validate
our results, we also compared our results with the results provided only for 4S− 3D3/2,5/2
in Ref. [40], and noticed that the results for these transitions are in good agreement with
only less than 1% variation w.r.t. obtained results.

Table 2. Magic wavelengths λmagic (in nm) with their corresponding polarizability αn(ω) (in a.u.) for
(4, 5)S1/2 − 3D3/2,5/2 and 5S1/2 − 4D3/2,5/2 transitions in Ca+ ion and their comparison with the
available literature.

4S1/2 − 3D3/2 4S1/2 − 3D5/2

Resonance λres λmagic αmagic Resonance λres λmagic αmagic

4S1/2 → 4P3/2 393.48 4S1/2 → 4P3/2 393.47
395.795 (3) 5.6 (1.6) 395.795 (3) 5.6 (1.6)

395.82 (3) [40] 4.90 [40] 395.82 (2) [40] 95.87 [40]
4S1/2 → 4P1/2 396.96 4S1/2 → 4P1/2 396.96
3D3/2 → 4P3/2 850.04 3D5/2 → 4P3/2 854.44

852.42 (2) 95.67 (26) 1011.90 (90) 88.89 (25)
852.45 (2) [40] 4.20 [40] 1014.10 (3) [40] 89.01 [40]

3D3/2 → 4P1/2 866.45
1029.0 (1.2) 88.39 (25)

1029.7 (2) [40] 88.55 [40]

5S1/2 − 3D3/2 5S1/2 − 3D5/2

4P1/2 → 5S1/2 370.71 4P1/2 → 5S1/2 370.71
371.76 (1) 6.7 (1.6) 371.76 (1) 6.7 (1.6)

4P3/2 → 5S1/2 373.80 4P3/2 → 5S1/2 373.80
5S1/2 → 6P3/2 447.33 5S1/2 → 6P3/2 447.33

447.385 (5) 3.0 (1.6) 447.385 (5) 2.9 (1.6)
5S1/2 → 6P1/2 448.07 5S1/2 → 6P1/2 448.07

448.088 (2) 2.9 (1.6) 448.088 (2) 2.9 (1.6)
847.69 (2) −1089.4 (2.8) 845.78 (4) −1079.8 (2.8)

3D3/2 → 4P3/2 850.04 3D5/2 → 4P3/2 854.44
860.22 (7) −1154.7 (3.0)

3D3/2 → 4P1/2 866.45
5S1/2 → 5P3/2 1184.22 5S1/2 → 5P3/2 1184.22

1191.59 (1) 58.9 (1.6) 1191.59 (1) 56.8 (1.5)
5S1/2 → 5P1/2 1195.30 5S1/2 → 5P1/2 1195.30

5S1/2 − 4D3/2 5S1/2 − 4D5/2

5S1/2 → 6P3/2 447.33 5S1/2 → 6P3/2 447.34
447.52 (2) −204.2 (2.4) 447.52 (2) −205.3 (2.4)

5S1/2 → 6P1/2 448.07 5S1/2 → 6P1/2 448.07
448.16 (2) −204.7 (2.4) 448.16 (1) −205.8 (2.4)

471.22 (24) −279.71 (85) 471.67 (23) −279.85 (85)
4D3/2 → 5F5/2 471.81 4D5/2 → 5F5/2,7/2 472.23

565.51 (2) −355.55 (91) 566.03 (13) −356.17 (92)
4D3/2 → 6P3/2 565.53 4D5/2 → 6P3/2 566.15

566.67 (17) −356.93 (92)
4D3/2 → 6P1/2 566.71
4D3/2 → 4F5/2 891.45 4D5/2 → 4F7/2 892.98
5S1/2 → 5P3/2 1184.22 5S1/2 → 5P3/2 1184.22

1191.56 (1) 776.1 (8.1) 1191.56 (1) 779.9 (7.9)
5S1/2 → 5P1/2 1195.30 5S1/2 → 5P1/2 1195.302
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4.1.3. Sr+

Figure 3a–c demonstrate MJ-independent dynamic dipole polarizability versus wave-
length plots for (6, 5)S1/2 − 4D3/2,5/2 and 6S1/2 − 5D3/2,5/2 transitions for Sr+ ion. The re-
sults corresponding to these figures are listed in Table 3. Only two magic wavelengths
were traced for the 5S − 4D3/2 transition, whereas only one magic wavelength exists
for the 5S− 4D5/2 transition. According to Table 3, for the 6S− 4D3/2 transition, three
magic wavelengths exist below 480 nm, with a dynamic polarizability of value less than
15 a.u.; however, another three λmagics, lie between 1000 nm and 1231 nm. The λmagics
at 1002.401 nm and 1087.35 nm support blue-detuned traps with sufficiently high polar-
izabilities for the experimental trapping of Sr+ ions. For the 6S− 4D5/2 transition, five
magic wavelengths were located between 420 nm and 1250 nm, out of which the magic
wavelengths at 421.47(5) nm, 474.61(1) nm, 477.549(0) nm and 1230.05(6) nm follow red-
detuned traps, whereas the only magic wavelength at 1025.19(17) nm, with corresponding
α = −2858.0(8.8) a.u., supports a blue-detuned trap, which can be useful for experimental
purposes. We recommend this magic wavelength of Sr+ ion for the 6S-4D5/2 transition.
Moreover, it is also observed that all the magic wavelengths for these two transitions lie
between the same resonance transitions and are closer to each other. Threfore, it is probable
to trap Sr+ ion for both of these transitions with same magic wavelength.

(a) (b)

(c) (d)

(e) (f)
Figure 3. α v/s λ plots for various transitions in Sr+ and Ba+ ions. (a) α v/s λ plot for 5S1/2 and
4D3/2,5/2 states of Sr+ ion. (b) α v/s λ plot for 6S1/2− 4D3/2,5/2 transition in Sr+ ion. (c) α v/s λ plot for
6S1/2− 5D3/2,5/2 transition in Sr+ ion. (d) α v/s λ plot for 6S1/2− 5D3/2,5/2 transition in Ba+ ion. (e) α

v/s λ plot for 7S1/2− 5D3/2,5/2 transition in Ba+ ion. (f) α v/s λ plot for 7S1/2− 6D3/2,5/2 transition in
Ba+ ion.
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Table 3 also shows that there are four magic wavelengths that lie within the wave-
length range of 640 nm to 1450 nm for the 6S− 5D3/2 transition. It is also observed that
three out of four magic wavelengths for 6S− 5D3/2 transition support blue-detuned traps;
however, the λmagic = 1233.61(5) nm at αmagic = −6756(24) a.u. is recommended for ex-
perimental purposes as it is far-detuned and a high value of dipole polarizability indicates
deep trapping potential. On the other hand, only three magic wavelengths were identified
for the 6S− 5D5/2 transition in Sr+ ion with two supporting blue-detuned traps. Two out
of these λmagics, i.e., 1233.06(5) nm and 1448.4(1.6) nm, are located at higher wavelength
ranges, with deep potentials for their respective favourable blue- and red-detuned traps.
Therefore, both of these values are recommended for further experimental studies. More-
over, we compared our magic wavelengths for 5S− 4D3/2,5/2 transitions with respect to
the available literature in the same table. It is seen that our reported values are in excellent
approximation with the results obtained by Kaur et al. [40], with a variation by less than
0.05%. Unfortunately, we could not find any data related to other transitions to carry out
the comparison with. Hence, it can be concluded from the comparison of available data that
our results are promising and can be used for further prospective calculations of atomic
structures and atomic properties of this ion.

Table 3. Magic wavelengths λmagic (in nm) with their corresponding polarizability αn (ω) (in
a.u.) along with their comparison with the available literature for (5, 6)S1/2 − 4D3/2,5/2 and 6S1/2 −
5D3/2,5/2 transitions in Sr+ ion.

5S1/2 − 4D3/2 5S1/2 − 4D5/2

Resonance λres λmagic αmagic Resonance λres λmagic αmagic

5S1/2 → 5P3/2 407.89 5S1/2 → 5P3/2 407.89
417.00 (5) 15.3 (2.1) 417.00 (4) 15.2 (2.1)

416.9 (3) [40] 14.47 [40] 416.9 (3) [40] 13.3 [40]
5S1/2 → 5P1/2 421.67 5S1/2 → 5P1/2 421.67
4D3/2 → 5P3/2 1003.94 4D5/2 → 5P3/2 1003.01

1014.68 (26) 108.70 (90)
1014.6 (2) [40] 108.35 [40]

4D3/2 → 5P1/2 1091.79

6S1/2 − 4D3/2 6S1/2 − 4D5/2

5P1/2 → 6S1/2 416.27 5P1/2 → 6S1/2 416.30
421.47 (5) 15.0 (2.1) 421.47 (5) 14.9 (2.1)

5P3/2 → 6S1/2 430.67 5P3/2 → 6S1/2 430.67
6S1/2 → 7P3/2 474.37 6S1/2 → 7P3/2 474.37

474.61 (1) 11.3 (2.1) 474.61 (1) 10.9 (2.1)
6S1/2 → 7P1/2 477.49 6S1/2 → 7P1/2 477.49

477.549 (0) 11.1 (2.1) 477.557 (5) 10.7 (2.1)
1002.40 (3) −2470.0 (7.5) 1025.19 (17) −2858.0 (8.8)

4D3/2 → 5P3/2 1003.94 4D5/2 → 5P3/2 1033.01
1087.35 (9) −4653 (15)

4D3/2 → 5P1/2 1091.79 6S1/2 → 6P3/2 1201.73
6S1/2 → 6P3/2 1201.73 1230.05 (6) 170.2 (3.6)

1230.02 (6) 223.4 (4.2)
6S1/2 → 6P1/2 1244.84 6S1/2 → 6P1/2 1244.84

6S1/2 − 5D3/2 6S1/2 − 5D5/2

5D3/2 → 5F5/2 562.45 5D5/2 → 5F5/2 565.20
643.871 (2) −528.6 (1.5) 647.41 (2) −534.6 (1.6)

5D3/2 → 7P3/2 643.88 5D5/2 → 7P3/2 647.49
649.49 (2) −538.2 (1.6)

5D3/2 → 7P1/2 649.65
6S1/2 → 6P3/2 1201.73 6S1/2 → 6P3/2 1201.73

1233.61 (5) −6756 (29) 1233.06 (5) −5620 (23)
6S1/2 → 6P1/2 1244.84 6S1/2 → 6P1/2 1244.84
5D3/2 → 4F5/2 1297.85 5D5/2 → 4F5/2 1312.62

1411.9 (1.5) 4382 (13)
5D5/2 → 4F7/2 1312.84

1448.4 (1.6) 3812 (11)

4.1.4. Ba+

The results for magic wavelengths for 6S− 5D3/2,5/2, 7S− 5D3/2,5/2 and 7S− 6D3/2,5/2
transitions in Ba+ ion are tabulated in Table 4. As per Figure 3d and Table 4, a maximum
number of magic wavelengths were located between 480 and 700 nm. It is also observed
that the magic wavelengths that lie between 6S− 6P1/2 and 6S− 6P3/2 resonant transitions
support blue-detuned trap; however, the dynamic dipole polarizability corresponding to
these magic wavelengths are too small to trap Ba+ ions at these wavelengths. A total of
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six magic wavelengths were found for the 7S− 5D3/2 transition, out of which two lie in
the vicinity of 526 nm. The sharp intersection of the polarizability curves of the involved
states of transition lie at 583.76(1) nm, 638.75(5) nm and 1380.83(24) nm. Similarly, four
magic wavelengths were identified for the 7S − 5D5/2 transition; however, unlike the
7S− 5D3/2 transition, no magic wavelength was identified in the vicinity of 600 to 1300 nm.
It was also determined that three out of these four λmagics, support a blue-detuned trap, al-
though the trapping potentials for these traps are not deep enough for further consideration
in experimentations.

Table 4. Magic wavelengths λmagic (in nm) with their corresponding polarizability αn (ω) (in
a.u.) along with their comparison with the available literature for (6, 7)S1/2 − 5D3/2,5/2 and 7S1/2 −
6D3/2,5/2 transitions in Ba+ ions.

6S1/2 − 5D3/2 6S1/2 − 5D5/2

Resonance λres λmagic αmagic Resonance λres λmagic αmagic

6S1/2 → 6P3/2 455.53 6S1/2 → 6P3/2 455.53
480.71 (2) −4.1 (1.6) 480.76 (2) −8.3 (1.4)

480.6 (5) [40] −2.89 [40]
6S1/2 → 6P1/2 493.55 6S1/2 → 6P1/2 493.55
5D3/2 → 6P3/2 585.53 5D3/2 → 6P3/2 614.34

588.32 (1) 330.15 (60) 653.17 ()35 247.90 (57)
588.4 (3) [40] 329.33 [40] 695.7 (3) [40] 219.4 [40]

5D3/2 → 6P1/2 649.87
693.46 (48) 221.91 (56)

655.50 (3) [40] 244.89 [40]

7S1/2 − 5D3/2 7S1/2 − 5D5/2

6P1/2 → 7S1/2 452.62 6P1/2 → 7S3/2 452.62
466.95 (13) 0.5 (1.6) 466.88 (9) −2.6 (1.5)

6P3/2 → 7S1/2 490.13 6P3/2 → 7S1/2 490.13
7S1/2 → 8P3/2 518.49 7S1/2 → 8P3/2 518.49

518.79 (2) −22.9 (1.5) 518.79 (2) −31.9 (1.5)
7S1/2 → 8P1/2 526.75 7S1/2 → 8P1/2 526.75

526.779 (6) −28.7 (1.5) 601.37 (6) −548.8 (1.6)
583.76 (1) −548.6 (2.4)

5D3/2 → 6P3/2 585.53 5D5/2 → 6P3/2 614.34
638.75 (5) −573.9 (2.4)

5D3/2 → 6P1/2 649.87
7S1/2 → 7P3/2 1306.14 7S1/2 → 7P3/2 1306.14

1380.83 (24) 59.8 (1.4) 1380.83 (24) 59.2 ()1.3
7S1/2 → 7P1/2 1421.54 7S1/2 → 7P1/2 1421.54

7S1/2 − 6D3/2 7S1/2 − 6D5/2

7S1/2 → 8P3/2 518.49 7S1/2 → 8P3/2 518.49
519.03 (11) −376 (34) 519.07 (10) −405 (31)

7S1/2 → 8P1/2 526.750 7S1/2 → 8P1/2 526.75
526.84 (12) −483 (43) 526.84 (6) −480 (43)
531.0 (1.0) −664.2 (4.0) 532.8 (2.4) −655.2 (3.8)

6D3/2 → 6F5/2 536.28 6D5/2 → 6F7/2 539.31
542.17 (7) −613.1 (3.2)

6D5/2 → 6F5/2 542.26
645.33 (10) −580.8 (2.5)

6D3/2 → 8P3/2 637.25 6D5/2 → 8P3/2 645.70
735.65 (92) −728.3 (3.2)

6D3/2 → 8P1/2 649.77 6D5/2 → 5F7/2 871.32
744.0 (2.2) −746.4 (3.2) 889.20 (20) −1211.6 (5.5)

6D3/2 → 5F5/2 874.02 6D5/2 → 5F5/2 889.99
7S1/2 → 7P3/2 1306.14 7S1/2 → 7P3/2 1306.14

1381.25 (35) −78 (77) 1381.39 (33) −125 (77)
7S1/2 → 7P1/2 1421.54 7S1/2 → 7P1/2 1421.54

Table 4 also compiles the magic wavelengths for 7S− 5D3/2,5/2 transitions and shows
that there exists six and four magic wavelengths for 7S − 5D3/2 and 7S − 5D5/2 transi-
tion, respectively. It is also seen that the magic wavelengths between 6P3/2 − 7S and
7S − 8P3/2 as well as the 5D3/2 − 6P1/2 and 7S − 7P3/2 transitions seem to be missing,
as shown in Figure 3e. It is also observed that the magic wavelength at 466.95(13) nm
and 1380.83(24) nm are slightly red-shifted; nevertheless, the λmagic at 638.75(5) nm in
the visible region supports a blue-detuned trap, and can have sufficient trap depth at
reasonable laser power.

Similarly, the magic wavelengths and their corresponding dynamic dipole polarizabil-
ity along with their comparison with available literature is also provided in the same table
for 7S− 6D3/2,5/2 transitions. The same was demonstrated graphically in Figure 3f, which
includes a total of thirteen magic wavelengths in all for the considered transitions. It is
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also examined that no magic wavelength exists between 6D3/2 − 6F5/2 and 6D3/2 − 8P1/2
resonances. Unlike the 7S− 6D3/2 transition, around eight magic wavelengths were located
between 7S− 8P3/2 and 7S− 7P1/2 resonances, and all of them support blue-detuned traps.
Moreover, magic wavelengths at 532.8(2.4) nm, 735.65(92) nm and 1381.39(33) nm are
expected to be more promising for experiments due to sufficient trap depths for reasonable-
power lasers. However, on the comparison of our results for 6S− 5D3/2,5/2 transitions for
Ba+ ion, we observed that all the magic wavelengths agree well with the results obtained
by Kaur et al., in Ref. [40], except the last magic wavelengths that were identified at 693 nm
and 653 nm for 6S− 5D3/2 and 6S− 5D5/2 transitions.

4.2. Tune-Out Wavelengths

We illustrated tune-out wavelengths for different states of the considered transitions
in the alkaline-earth ions along with their comparison with the already available literature
in Table 5. To locate these MJ-independent tune-out wavelengths, we evaluated the scalar
dipole dynamic polarizabilities of these states for considered alkaline-earth ions and identi-
fied those values of λ for which polarizability vanished. It is also highlighted that, in Mg+

ion, all the tune-out wavelengths identified for 3S1/2 and 4S1/2 states lie in the UV region,
whereas, for (3, 4)D3/2,5/2 states, a few tune-out wavelengths are located in visible range.
Moreover, the largest λT is identified for the 4D3/2 state at 1331.53(53) nm. Furthermore,
only one tune-out wavelength, i.e., λT = 280.1136(2) nm for 3S1/2, could be compared
with the result presented by Kaur et al. in Ref. [55] and it is seen that our result is in good
accord with this value.

Similarly, we pointed out tune-out wavelengths for nS1/2 and (n − 1)D3/2, n =
(4, 5), (5, 6) and (6, 7) states for Ca+, Sr+ and Ba+ ions, by identifying λs at which their cor-
responding αs tend to zero. Hence, it was perceived that, out of 25 tune-out wavelengths for
all states of Ca+ ion, only seven of them lie within visible spectrum and, on comparison of
different tune-out wavelengths for the 4S1/2 and 3D3/2 states of Ca+ ion, it was determined
that all of these results are supported by the results obtained in Refs. [40,55]. However, one
of the tune-out wavelength located at 493.13(87) nm for the 3D5/2 state of Ca+ ion seems
have 2% variation from the wavelength obtained by Kaur et al. in Ref. [40]. This results
from the fact that the present study incorporates more precise E1 matrix elements for the
high-lying transitions as well their excitation energies from the portal for High-Precision
Atomic Data and Computation [54].

For Sr+ ion, the maximum number of tune-out wavelengths was identified out of all
the considered alkaline-earth ions. It is also realized that most of these λs lie within the
visible spectrum of electromagnetic radiation, and are mostly comprised of all the λT values
corresponding to 5S1/2, 5D3/2 and 5D5/2 states. Additionally, during the comparison of these
values with the results published in Refs. [40,55], it was determined that the tune-out wavelength
at 417.04(6) nm for 5S1/2 as well as λT = 1018.91(38) nm for the 4D3/2 state agree well with
the available results; howsoever, the tune-out wavelengths at 606.47(53) nm and 593.0(2.0) nm
for 4D3/2 and 4D5/2 states, respectively, show a discrepancy of less than 2%, which lies within
the error bar of 5%.

In the case of Ba+ ion, we located 23 tune-out wavelengths, which, in all, comprise of 10, 9
and 4 wavelengths in visible, UV and infrared regions, respectively. It is also highlighted that
all the tune-out wavelengths that exist in visible region lie within the range 480 nm to 550 nm.
We also compared our tune-out wavelengths for 6S1/2 and 5D3/2,5/2 states against available
theoretical data in Refs. [38,40,55] and it was found that all the λTs except 468.61 nm and 459.57
nm, respectively, for 5D3/2 and 5D5/2 states show disparities of less than 1%, which lies within
the considerable error limit.
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5. Conclusions

We identified a number of reliable magnetic-sublevel-independent tune-out wave-
lengths of many S1/2 and D3/2,5/2 states, and magic wavelengths of different combinations
of S1/2 − D3/2,5/2 transitions in the alkaline-earth ions from Mg+ through Ba+. If they
can be measured precisely, accurate values of many electric dipole matrix elements can
be inferred by combining the experimental values of these quantities with our theoretical
results. Most of the magic wavelengths found from this study show that they can be
detected using the red- and blue-detuned traps. In fact, it is possible to perform many
high-precision measurements by trapping the atoms at the reported tune-out and magic
wavelengths of the considered transitions in the future, which can be applied to different
metrological studies.
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Abstract: Since total cross section measurements for electron scattering by Zn and Cd performed in
the 1970s, the existence of p-wave shape resonances below 1 eV are well established in the literature.
It was suggested that a second d-wave shape resonance could exist in both systems at an energy
slightly higher than the one recorded for the p-wave but still below the inelastic threshold. We
report elastic scattering calculations for electron collisions with Zn and Cd atoms below 4 eV using a
semiempirical approach, as well the scattering length for both targets. Our results show that, indeed,
the d-wave shape resonance is found in Zn but absent in Cd. In fact, our cross sections and the few
other ones available for this energy range are in discrepancy with the available experimental total
cross sections for Cd.

Keywords: elastic scattering; electron scattering; semiempirical potentials; shape resonances

PACS: 34.80.Bm; 34.80.-i

1. Introduction

The study of electron–Zn and electron–Cd collisions may provide valuable information
for the modeling of metal vapor plasmas [1]. In the same spirit, since electron–atom
collisions constitute the most basic chemical reaction that an atom can go through, the
characterization of electronic collisions with metal vapor atoms constitutes a problem with
its own relevance within atomic physics.

In spite of several decades of theoretical and experimental investigations on electron–
Zn/Cd scattering, accurate determination of the elastic and inelastic cross sections is far
from being considered as a closed problem, mainly in the low-energy domain. Here, we
focus on energies below ≈4.0 eV where the scattering is purely elastic for both the targets.

Surprisingly, despite almost 100 years since the first measurements of electron–Zn/Cd
cross sections [2,3], we find a limited number of published works on the determination
of total cross sections for energies below 4 eV. In an article from 1976, Burrow et al. [4]
reported measurements of low-energy electron scattering by Zn and Cd using an electron
transmission method. Due to the limitations intrinsic to the measurement process, only
transmitted currents in arbitrary units as a function of the incident energy were presented.
The experimental data showed the existence of shape resonances which were identified
with the (ns2np)2P ground state configurations of the negative ions with energies (widths)
0.49 (0.45) and 0.33 (0.33) eV for Zn and Cd, respectively. In 1991, Marinković et al. [5]
presented measurements for the relative differential cross sections (DCSs) for elastic and
electronic excitation cross sections for Cd from 3.4 to 85 eV and, in 2002, Kontros et al. [6]
presented total cross section data for electron scattering by Cd with resonant structures be-
ing found at 0.33 and 3.74 eV. In 2003, Sullivan et al. [7] published an extensive investigation

99



Atoms 2022, 10, 69

focused on the study of the formation of transient ionic states in electron–Zn/Cd collisions,
however, total cross sections for energies lower than 4 eV were not effectively presented.

From the theoretical side, the scenario is not much different. In 1992, Yuan and
Zhang [8] reported elastic cross sections for Zn and Cd calculated based on the model
correlation potential of Perdew and Zunger (PZ) [9] (as recommended by Padial and Nor-
cross [10]). From now on, they shall be denoted as model potential (MP) calculations. In
2005, Zatsarinny and Bartschat [11] presented benchmark ab initio calculations for low-
energy electron–Zn scattering performed with the R-matrix method. In addition to these
two references, we find the ab initio calculations of Berrington et al. [12] for electron–Cd.
This work was performed with four different theoretical methodologies and can be con-
sidered as the benchmark for a Cd analog to the one of Zatsarinny and Bartschat [11]
for Zn. Due to the energy range of interest in this study, we direct special attention to
the DCSs at 3.4 eV calculated with the convergent close-coupling (CCC) and the rela-
tivistic convergent close-coupling (RCCC) because they allow a direct contrast between
the relativistic- and non-relativistic-based calculations. Finally, we have the recent article
of McEachran et al. [13] for electron–Zn where cross sections from 0.01 to 5000 eV were
recommended for transport simulations.

In addition to the unequivocal presence of the p-wave shape resonances, Burrow et al. [4]
conjectured about the possible existence of resonances of the same nature in the d-wave
in both atoms. In their own words: “There is faint evidence for a very broad feature in
each cross section between the p-wave shape resonance and the first excited states of the
neutral. It is tempting but entirely speculative to suggest that this is associated with a
d-wave shape resonance”. This point is discussed in more detail in the Buckman and Clark
review article [14] where the d-wave resonances are guessed at 2.5 and 2.0 eV for Zn and
Cd, respectively.

As we will see in Section 3, in the case of Zn there is good agreement between the
MP [8] and the ab initio R-matrix calculations [11] for energies above ≈1 eV. Neverthe-
less, some discrepancy exists in the description of the position and width of the p-wave
resonance. Additionally, no d-wave resonance is found in either calculation. For Cd,
there is great divergence among the MP cross sections [8] and the experimental data of
Kontros et al. [6]. Given our recent experience investigating shape resonances in positron–
Zn/Cd scattering at low energies [15], we understand that further investigations on the
possible existence of d-wave shape resonances would be welcome as well as a second
theoretical calculation for Cd in order to contrast with the previous theoretical and experi-
mental results.

Given these considerations and the limited set of information available to study the
subject, at this point, it seems fair to say that the unique point of consensus between all the
results already presented in the literature is the existence of the p-wave resonances below
1 eV. Bearing in mind that the theoretical works already reported on the theme were carried
out with MP [8] and ab initio calculations [11,12], a semiempirical approach appears as a
natural and convenient alternative to bring light to the problem.

Opposed to ab initio and model potential formulations, semiempirical approaches
are based on adjustable parameters, usually tuned to reproduce some external previously
known quantity. In practice, we are going to work with a single-body potential to represent
the electron–atom interaction whose polarization component has asymptotically correct
form up to the first order [16,17], and its short range component is adjusted to reproduce
the position of the p-wave resonances at the energies observed by Burrow et al. [4].

This paper is organized as follows: in Section 2, we present the exchange and polar-
ization potentials adopted to perform our calculations with a very brief description of the
elements of electron–atom scattering theory used to calculate the cross sections; in Section 3,
we show and discuss our results with particular attention to the issue of resonances and
the contrast with previous data; finally, in Section 4 we synthesize our conclusions. Except
where explicitly stated, atomic units are used.
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2. Methods and Procedures

Following our previous works [16,18] and particularly inspired by the article of
O’Connel and Lane [19], we write the effective Hamiltonian for the electron–atom system as

H = −1
2
∇2 + Vst(~r) + Vexc(~r) + Vpol(~r). (1)

The term Vst(~r) represents the electrostatic electron–atom interaction. It directly
depends on the model adopted to describe the atomic system and that determines the
atomic charge density ρ(~r). Once it is chosen, the calculation of Vst(~r) is performed by the
usual means [19].

The indistinguishability between the projectile and the target electrons is a non-local
effect of expressive computational cost in many-body calculations. Here, we adopt a local
model potential Vexc(~r) to describe this effect. Several works were performed throughout
the history of the electron–atom research field in order to develop model exchange poten-
tials and evaluate their performances [20–23]. Here, we follow Riley and Thrular [22] and
chose to work with the Hara free electron gas model (HFEGE) [24] as the recommended
model exchange potential for the low-energy domain.

The HFEGE exchange potential is given by

Vexc(~r) = −
2
π

KF(~r)F[η(~r)] (2)

where the functions KF(~r), F(η), and η(~r) have the forms

KF(~r) = [3πρ(~r)]1/3, (3)

F(η) =
1
2
+

1− η2

4η
ln
∣∣∣1 + η

1− η

∣∣∣, (4)

and

η(~r) =
K(~r)
KF(~r)

, (5)

respectively. In these equations, KF(~r) denotes the Fermi momentum and ρ(~r) is the atomic
charge density. K(~r) is the local momentum given by

K2(~r) = K2
F(~r) + 2I + k2 (6)

where I is the ionization potential of the target atom and k2/2 is the incident kinetic energy
of the projectile.

The representation of the model exchange interaction demands an accurate representa-
tion of the electronic density along the entire space occupied by the atomic target. Contrary
to what happens in positron–atom scattering, the incident electron encounters a purely
attractive potential which evidently causes it to penetrate more deeply into the target field.

In our previous investigations on positron–atom scattering [15,16,18], we adopted
the model electronic density of Salvat et al. [25]. As highlighted by Rabasović et al. [26],
the model densities given by Salvat et al. [25] provide a poor representation of the atomic
shell structure. In order to overcome this difficulty, we adapted our codes to work with
SCF/HF electronic densities. Among many possibilities, we selected the DZP basis as
given in references [27,28] for Zn and Cd, respectively, discarding F type functions, and
constructed the SCF/HF ground state wave functions with the GAMESS package [29].

Figure 1 shows the radial density profile (RDP) calculated with the two prescriptions
for comparison. The atomic shell structure is evidently much better represented by the
SCF model. We also visualize that for r > 2.5 a0 the RDPs converge among each other
for both atoms. This point explains why the use of model densities such as the one of
Salvat et al. [25] usually poses no problems in the positron case; since the positron–atom
static potential is repulsive and exchange is not present, the positron is essentially scattered
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at the edge of the target. In practice, any model potential will depend only on the values of
the atomic charge density in the peripheral region of the system.
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Figure 1. Radial probability density for Zn and Cd atoms obtained from Hartree–Fock (SCF) wave-
functions (this work) for Zn and Cd compared to the ones calculated with model atomic charge
densities obtained from the fitting of Dirac–Hartree–Fock–Slater (DHFS) calculations as given by
Salvat et al. [25].

Finally, the last of the interaction terms is the polarization potential Vpol(~r), whose
asymptotic form is, up to the first order of perturbation theory, given by

lim
r→∞

Vpol(r) ≈ −
αd
2r4 , (7)

where αd is the static dipole polarizability [30]. Here, we adopt the same semiempirical
potential as considered in Arretche et al. [18]:

Vpol(r; rc) = −
αd
2r4

[
1− e−(r/rc)6

]
(8)

where rc is an adjustable parameter. Since the experimental data reported by Burrow et al. [4]
are essentially a measure of the transmitted current (and no partial wave analysis is
performed), we decided to assign the values of rc where the peak of the elastic cross
section computed with all partial waves matches the energy position of the p-wave shape
resonances. Coincidentally, for both the systems we have found rc = 3.400 a0 as the value
that satisfies this criterion.

Table 1 shows the values of the static dipole polarizabilities αd for each target and the
respective cutoff radius rc that reproduces the position of the p-wave shape resonances
at the energies (E (eV)) reported by Burrow et al. [4]. The values for αd were taken from
our recent investigation on low-energy positron scattering by Zn and Cd [15] where the
influence of higher order polarizabilities in positron–Zn/Cd was explored. For the sake of
completeness, the ionization potentials (I (eV)) [31] are also included.

Table 1. Values adopted for the static dipole polarizabilities αd (in a3
0) for each target and the respective

cutoff radius rc (in a0) that reproduces the position (E (eV)) of the p-wave shape resonances at the
energies reported by Burrow et al. [4]. I (eV) denotes the ionization potentials for each target [31].

Atom αd E (eV) I (eV)

Zn 39.20 0.49 9.39
Cd 45.92 0.33 8.99
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In Figure 2, we show the scattering potentials for reference. As expected, the potentials
for Zn and Cd are rather alike since they exhibit very similar electronic structures. Once
the potentials were defined, the cross sections were computed as in Arretche et al. [18].
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Figure 2. Electron–Zn (upper) and electron–Cd (bottom) scattering potentials. Legends are in the figure.

3. Results and Discussion

Unquestionably, measurements of the differential cross sections (DCSs) are a great
challenge in the area of electron/positron–atom scattering, mainly in the very low-energy
region. It is not surprising to find a single measurement of relative elastic DCSs made
by Marinković for electron–Cd at 3.4 eV [5]. While TCS measurements based on the
Beer–Lambert law are the basic test of any theory, it is the DCS that translates the fine
tuning between different components of the scattering potential. For example, in positron–
molecule scattering, it is the degree of polarization considered in the potential which affects
the position of the minima at the intermediate angles in the elastic DCS while the scattering at
high angles (backward scattering) is regulated by the repulsive short range static potential [32].

The relative elastic DCS reported by Marinković et al. [5] at 3.4 eV for Cd is shown in
Figure 3 where the CCC and RCCC of Berrington et al. [12] are also shown for comparison.
Except for the region between 90 and 120 degrees, the three theoretical DCSs are very close
to each other. The DCS of Marinković et al. [5] was normalized at 50 degrees where CCC,
RCCC, and our results find the maximum agreement. Interestingly, our results are very
similar to the RCCC ones. On the other hand, the CCC DCS seems to better describe the
experimental data between 90 and 150 degrees. At present, the lack of data, theoretical
and experimental, does not allow us to go any further in the analysis of this aspect of
the problem.
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Figure 3. Differential elastic cross section for electron–Cd at 3.4 eV compared to the data of
Marinković et al. [5] and Berrington et al. [12]. The relative DCS data were normalized at 50 degrees.

We then pay attention to the elastic integral cross section (ICS) for Zn and Cd which
are given in the upper and bottom panels of Figure 4, respectively. In both plots, the cross
sections computed with our semiempirical approach are shown as a solid red line.

In a given sense, our calculations are somewhat similar to the MP results presented
by Yuan and Zhang [8] since both treat the correlation–polarization effect by single-body
potentials. In reference [8], two sets of cross sections were reported for each target. The first
set was obtained from the PZ correlation potential while the second one was generated by
scaling the correlation potential as Vc → αVc with α chosen to “remove the overestimation
of the correlation effect” and reproduce the 2P-shape resonance of e-Mg scattering at
0.15 eV [33]. In [33], α was taken as 0.8 and the same value was also applied for Zn
and Cd but without any particular justification or connection to the resonance data of
Burrow et al. [4]. Due to that, we have chosen to show only the unscaled cross sections.
We can clearly see in Figure 4 that for both atoms, the MP cross sections (given as a black
dashed line) shift the p-wave resonances to lower energies than the ones experimentally
observed (and reproduced by us) and with narrower widths.

We also consider the results provided by the ab initio many-body techniques. For
Zn, we show the core potential (CPRM) and the B-spline R-matrix (BSRM) cross sections
of Zatsarinny and Bartschat [11]. The core potential approach, as the name suggests, is
based, roughly speaking, on the idea of representing the Hartree potential of the Zn2+

by semiempirical exchange and polarization potentials while the valence “helium-like”
region is treated ab initio. The B-spline technique, on the other hand, uses the B-splines
as a universal basis to represent the electron scattering orbitals. The p-wave resonance
energy predicted by the BSRM calculation occurs at 0.707 eV, a little bit higher than the
experimental one with the CPRM result at an intermediate energy. MP, CPRM, and BSRM
furnish similar cross sections above ≈1 eV while our semiempirical calculations show
another resonance at ≈2.83 eV. The elastic integral cross section below 4 eV is not explicitly
given by Berrington et al. [12], as the only direct information that can be extracted about it
comes from the DCS at 3.4 eV (see Figure 6 of [12]). The ICS calculated from it is given as a
square in the bottom panel. As in Zn, above ≈1 eV the MP, RCCC, and our semiempirical
cross sections perfectly agree with each other. On the other hand, notable discrepancy is
found between the theoretical results and the experimental data of Kontros et al. [6]. Except
for a scale factor, our semiempirical ICS presents the same qualitative dependence with
energy when compared to the experimental points, from threshold up to ≈0.5 eV, with the

104



Atoms 2022, 10, 69

p-wave resonance observed by Burrow et al. [4] being found approximately at the same
energy (0.33 eV). Notwithstanding, above 0.5 eV notable divergence is evident.

In order to better appreciate the resonant structures, we show in Figure 5 the partial
wave cross sections found in our calculations. As stated in the Introduction, the possible
existence of a d-wave shape resonance for both Zn and Cd between the p-wave shape
resonance and the first excited states of the neutral atom was suggested by Burrow et al. [4].
Our results show a d-wave resonance for Zn at 2.83 eV but a flat d-wave cross section for
Cd. Zatsarinny and Bartschat [11] have also found a d-wave resonance with a BSRM at
4.234 eV (see Table III of [11]). Since shape resonances are basically characterized by their
energies and widths, we present these values in Table 2.

Finally, for the sake of completeness, we report the scattering lengths obtained in our
calculations. These values are 2.32 a0 for Zn and 2.24 a0 for Cd.

Table 2. Resonance widths in eV. The experimental values are the ones of Burrow et al. [4]; BSRM is
the B-spline R-matrix of Zatsarinny and Bartschat [11].

Atom Expt BSRM This Work

Zn p 0.45 1.14 0.95
d 0.37 0.70

Cd p 0.33 0.55
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Figure 4. Elastic cross section for electron–Zn (upper panel) and electron–Cd (bottom panel). In both
panels, the present results are given by the solid red line, and the MP calculation results of [8] are
represented by the dashed black line. For Zn, the dotted blue line represents the CPRM calculation
and the dashed blue line the BSRM results [11]. For Cd, the green crosses are the experimental data
of Kontros et al. [6], and the yellow square is the ICS obtained by integration of the RCCC [12] DCS
at 3.4 eV.
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Figure 5. Partial wave contributions to the elastic cross section for electron–Zn (upper panel) and
electron–Cd (bottom panel).

4. Conclusions

The low-energy scattering of electron–Zn/Cd was studied by applying model ex-
change and semiempirical polarization potentials. The external data used to adjust the
short range component of the polarization potential were the resonance data of Burrow
et al. [4]. Given this methodology, we reported the elastic integral cross sections for energies
below 4 eV and the scattering length for both targets.

Our results for the Cd DCS at 3.4 eV are very close to the RCCC of Berrington et al. [12],
but showed small discrepancies with the CCC [12] and the experimental DCS of
Marinković et al. [5] in the intermediate angular region. The elastic ICSs for Zn are in
good agreement with the previous MP and ab initio results but contrasted with the previous
ones, and we have found a clear d-wave resonance as conjectured by Burrow et al. [4] and
pointed by Clark and Buckman [14]. For Cd, no d-wave resonance was found, but our cross
sections corroborate the previous ones obtained with MP and ab initio (only for 3.4 eV).
Even so, all of the theoretical cross sections have a great discrepancy with the experimental
data of Kontros et al. [6].

The calculations presented here show that even for relatively well-documented atomic
systems such as metal vapors, there are still several gaps to be filled. It would be interesting
to see a set of low-energy total cross section measurements for Zn and Cd in order to
contrast with the data of Burrow et al. [4] and, more specifically, with the measurements of
Kontros et al. [6] since these are in disagreement with the theoretical predictions.
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Abstract: The concept of treating subranges of the electron energy spectrum as species in chemical
models is investigated. This is intended to facilitate simple modification of chemical models by incor-
porating the electron interactions as additional rate equations. It is anticipated that this embedding of
fine details of the energy dependence of the electron interactions into rate equations will yield an
improvement in computational efficiency compared to other methods. It will be applicable in situa-
tions where the electron density is low enough that the electron interactions with chemical species
are significant compared to electron–electron interactions. A target application is the simulation of
electron processes in the D-region of the Earth’s atmosphere, but it is anticipated that the method
would be useful in other areas, including enhancement of Monte Carlo simulation of electron–liquid
interactions and simulations of chemical reactions and radical generation induced by electrons and
positrons in biomolecular systems. The aim here is to investigate the accuracy and practicality of the
method. In particular, energy must be conserved, while the number of subranges should be small to
reduce computation time and their distribution should be logarithmic in order to represent processes
over a wide range of electron energies. The method is applied here to the interaction by inelastic
and superelastic collisions of electrons with a gas of molecules with only one excited vibrational
level. While this is unphysical, it allows the method to be validated by checking for accuracy, energy
conservation, maintenance of equilibrium and evolution of a Maxwellian electron spectrum.

Keywords: electron scattering; chemical model; simulation; rate equations; electron energy distribution

1. Introduction

Simulations of atmospheric processes involving chemistry often involve the processing
of a set of reactions specified in the form:

A + B k→ C + D + . . . , (1)

where A, B, C and D are atoms or molecules and k is the rate constant. The rate r at which
A and B interact is given by:

r = k[A][B] , (2)

where [x] represents the density of species x and the rate constant k has the units L3s−1

where “L” is the unit of length in which the density is specified (e.g., cm3s−1).
For each species i with number density ni, a one-dimensional mass continuity equation

can be written:
δni
δt

= Pi − lini , (3)

where Pi and li are the production rate and loss probability [1].
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The set of continuity equations can be solved iteratively until equilibrium is ob-
tained [2], or applied over a series of time steps for non-equilibrium simulations [1]. Even
where equilibrium is required, a time-step simulation is useful to determine the time for
equilibrium to be attained [3].

Electron interactions can be (e.g., [4]) incorporated into the set of rate equations in
forms such as:

A+ + e kr−→ A or A + e ka−→ A− or A + e kex−→ A∗ + e∗ , (4)

where ∗ represents a change in energy and kr, ka and kex are the average rate constants, for
recombination, attachment and excitation, for electrons with a Maxwellian distribution
characterised by an electron temperature Te. However, in many atmospheric applications,
such as those including auroral, cosmic-ray or VUV input, the electrons are not in thermal
equilibrium [5,6]. For example, in the Earth’s nighttime mesosphere, electrons are created
in ionization produced by cosmic rays and by Lyman-α radiation [7], and they then lose
energy in collisions with atmospheric molecules before recombining with positive ions or
attaching to molecules to produce negative ions. At the same time, chemical processes
produce vibrationally-excited OH [8], with some of this energy being transferred to other
species and then to free electrons in superelastic collisions. The time-scale of these processes
depends on the density of each constituent. Therefore, calculating the electron density
requires a non-equilibrium simulation that includes both the electron–impact processes
and chemical processes.

Another potential application may be to enhance Monte Carlo simulation of non-
equilibrium electron–liquid transport [9]. In cases where there are too many tracks (from
ionisation) or too few tracks (from attachment) to simulate, approximate approaches such as
“re-scaling” [10] or “weighting” [11] are used and the distribution of the excited species is
not considered. It is possible that using a chemical model that includes electron interactions
could be applied in such situations. In addition, the chemical model could be applied to
determine a non-equilibrium distribution of excited species in a gas prior to applying a
Monte Carlo simulation of electron impact.

Ionizing radiation applied to biological materials can produce secondary electrons,
radicals (e.g., OH•) and ions (e.g., H3O+), all of which can cause damage to DNA [12,13].
As the electrons may lose energy in a series of interactions with water and other molecules
before interacting with a DNA molecule, a chemical model that incorporates a changing
electron energy spectrum should be applicable to simulating damage to DNA by ioniz-
ing radiation.

Thus, an aim of this work is to develop a method to calculate the development of the
electron energy spectrum for a system where the electrons are interacting with atoms and
molecules that are simultaneously interacting with each other. This has previously been
addressed in plasma physics as part of a “state-to-state” approach [14] in which excited
states of atoms and molecules are treated as independent species. This chemical model is
coupled to the electron distribution via the Boltzmann equation, with the reaction rates
between electrons and chemical species being recalculated each time the coupling is made.
The aim here is to do this with a different approach in which groups of electrons of similar
energy are treated as individual chemical species and consequently all interactions are
calculated in each time step. An advantage of this method is that the electron interactions
can be added into the list of rate equations in existing models, avoiding the work involved in
merging different computer codes that are geared to different problems. Another advantage
is that some detail (e.g., thresholds and narrow resonances) of the electron interactions can
be incorporated into the reaction rates, so they do not have to be recalculated at each time
step and so a relatively coarse energy grid can be used to reduce computation time.

The proposed method is to divide the electron energy range into subranges and to
treat each subrange in the same way as a chemical species i.e., each reaction, such as those
in Equation (4), is replaced by a series of reactions that represent the interaction for a set
of different initial and final electron–energy subranges. Due to the large range of energies
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of different processes (from ionisation to recombination), a logarithmic distribution of the
energy ranges is preferable.

A test of this proposed method, to investigate validity and accuracy, is to simulate
the injection of electrons of one energy into a gas of OH molecules, where only vibrational
excitation of one level of OH is considered. OH is chosen as it is relevant to two of the
examples postulated above.

In Section 2.1, the background theory and computational techniques required to
develop and test the proposed method are outlined. In Section 2.2, the method and its
computational implementation are outlined. The results of various tests of the method to
show its viability and the errors involved are given in Section 3. These results are discussed
in Section 4, from which conclusions are drawn and given in Section 5.

2. Materials and Methods
2.1. Background Theory and Techniques

A simple way to simulate the evolution of a set of interacting species is to apply
Equation (2) to each reaction (1) for a time-step ∆t, so that the change in each species is:

− ∆[A] = −∆[B] = ∆[C] = ∆[D] = k[A][B]∆t. (5)

For each species i, the gains and losses are added up to give the total gain Gi and total
loss Li so the new density ni of species i after time ∆t is:

ni(t + ∆t) = ni(t) + Gi − Li. (6)

The development of the densities of all species can be simulated by iterative application
of Equation (6) over the required time, but the magnitude of ∆t is limited by the requirement
that the density must not go negative and so this “explicit” formula is unsuitable for
simulation of systems over long time intervals.

An alternative “semi-implicit” method [15] is justified by the fact that, through the
time interval ∆t, the loss rate li is proportional to the instantaneous density ni(t). Hence,
an approximation is being made irrespective of whether the value of Li is approximated
by being proportional to ni(t) or ni(t + ∆t). Thus, substituting the final density for the
initial density:

ni(t + ∆t) = ni(t) + Gi − Li = ni(t) + Gi − Li
ni(t)
ni(t)

= ni(t) + Gi − Li
ni(t + ∆t)

ni(t)
(7)

and rearranging:

ni(t + ∆t)
(

1 + Li
1

ni(t)

)
= ni(t) + Gi , (8)

leads to:

ni(t + ∆t) =
ni(t) + Gi

1 + Li
ni(t)

. (9)

As the new density cannot be negative, Equation (9) avoids the main problem with
Equation (6) and so allows much longer values of ∆t to be used.

There are more sophisticated time-step algorithms (e.g., [15,16]), but the requirement
here is to be able to discriminate between the error due to the time-step algorithm and
any error inherent in the approximation of the electron energy spectrum. For example,
the Gauss–Seidel method is quoted to have an error of 1% [16]. As Equation (9) would
be expected to have no error in the limit of very small time steps, the errors due to the
simulation method can be separated from the errors due to the time-step calculation.
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To allow the simulation to run to equilibrium with minimum computation time, an
adaptive time step ∆t is required to implement Equation (9) efficiently [3]. The initial value
of ∆t is set very small (e.g., 10−10 s) and is then successively increased as:

∆tj+1 = f ∆tmin = f min
[

ni(t)
Li − Gi

for ni(t) > 1, Li > Gi

]
∆tj , (10)

where ∆tmin is the minimum time interval for any of the constituents i to fall to zero in the
next time step ∆tj+1 at the current rate of change, and f is a fraction that acts to reduce the
error in the calculations.

The rate constant for collisions between an electron and a gas molecule in a unit
volume is vσ, where v is the electron’s velocity and σ is the cross section or probability for
the interaction. Thus, the rate constant as a function of energy is:

k(E) = vσ = σ
√

2E/m. (11)

It therefore follows that the rate constant k(Ea, Eb) for all transitions of electrons
starting in a range [Ea, Eb] is:

k(Ea, Eb) =

∫ Eb
Ea

σ(E)
√

2E/mF(E)dE
∫ Eb

Ea
F(E)dE

, (12)

where F(E) is the electron energy distribution function (EEDF). For a Maxwell–Boltzmann
distribution:

F(E) =
2√
π

(
1

kBT

)3/2
E1/2e−E/(kBT) , (13)

where T is the electron temperature, and kB is Boltzmann’s constant [17].
The cross section σs for a superelastic collision, for electron impact energy E, can be

determined from the inelastic cross section using [18,19]:

σs(E) =
E + ε

E
σ(E + ε) , (14)

where ε is the threshold energy of the inelastic excitation.
Electrons impacting atoms and molecules will gain or lose energy by elastic scattering.

Published cross sections [20] for elastic electron scattering by OH are only for electron
energy above 1 eV. Thus, as an approximation, the formula for the elastic electron energy
transfer rate for O of Banks [21] is used, i.e.,

dUe/dt = −3.74× 10−18nen(O)T1/2
e (Te − T) (15)

where dUe/dt is the energy transfer rate (eV cm−3s−1), Te is the temperature of a Maxwellian
distribution of electrons, T is the temperature of the O atoms, ne is the electron density
(cm−3), and n(O) is the O density.

2.2. Proposed Method

To incorporate the electron reactions (4) into a time-step simulation, the proposed
approach is to split the electron energy range [Emin, Emax] into N subranges R1–RN , with
R0 set as the range [0, Emin].

In place of the single reaction A + e k−→ A∗ + e∗, a series of reactions:

A + Ri
kij−→ A∗ + Rj , (16)

is entered into the list of chemical reactions, with the number density of electrons in
each energy range Ri treated in the same way as the density of a chemical species. (For
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example, in the current implementation, the number of electrons in the range [0, Emin] is
stored in a variable R0. While a logarithmic distribution of subranges is desirable, a linear
distribution is considered first for simplicity before proceeding to the complications added
by a logarithmic distribution.

Consider a case where electrons lose or gain energy ε in elastic and superelastic
collisions with gas molecules. In Figure 1a, the case where the transition energy ε is less than
the size of the energy subranges is considered for two energy subranges with boundaries
at E01, E12 and E23 and midpoints at E1 and E2. Applying Equation (12) with F(E) = 1 (as
the electron–energy distribution is varying), the rate constant k21 for transitions where the
electron crosses from R2 to R1 is:

k21 =

∫ E12+ε
E12

σ(E)
√

2E/mdE
∫ E23

E12
dE

(17)

The rate constant k22, for cases where the electron energy remains in the same subrange
while the excited species is produced is similarly:

k22 =

∫ E23
E12+ε σ(E)

√
2E/mdE

∫ E23
E12

dE
(18)

If σ(E)
√

2E/m were constant, then energy would be conserved because the energy
lost by electrons that remain in the same subrange would be offset by the higher energy
implied for those that transition to the next subrange, i.e.,

k21(E2 − E1) = (k21 + k22)ε. (19)

However, as σ(E)
√

2E/m varies across the subrange, energy will not be conserved so
a correction is necessary. This is made by solving Equation (19) for a modified value of k22:

k′22 = k21(E2 − E1 − ε)/ε. (20)

In the case of Figure 1b, where ε is greater than the subrange size, all electrons transition
to a lower subrange and there is no physical value of k33. However, a notional value of k′33
can be calculated to maintain conservation of energy:

k′33 = (k32(E3 − E2 − ε) + k31(E3 − E1 − ε))/ε. (21)

While k′33 is an unphysical quantity and can be negative, it implements conservation of
energy by correcting for the approximation that σ(E)

√
2E/m is constant over the subrange.

Applying a similar analysis for the case where ε is much larger than the subrange size leads
to a general equation:

k′ll = Σl−1
i=0kli(El − Ei − ε)/ε (22)

for inelastic collisions and

k′ll = ΣN
i=l+1kli(Ei − El − ε)/ε (23)

for superelastic collisions.
As electrons may be initially introduced at high energy, but then proceed to lose energy

through a series of collision processes down to a very low energy, it is desirable to make the
energy subrange boundaries on a logarithmic scale to keep the total number of subranges
N + 1 to a viable minimum for the calculations while allowing for adequate resolution at
low electron energies. Equations (22) and (23) are applicable, even where electrons in one
subrange can transition to several lower subranges.
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k31
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(b)

Figure 1. Electron energy losses (arrows) in relation to electron–energy subranges: (a) For an energy
transition ε that is less than the subrange size E23 − E12, electrons with initial energies in the shaded
area cross the boundary to range R1, while the others remain within range R2. (b) For ε greater than
the subrange size E34 − E23, all electrons transit to a lower subrange, with those in the shaded region
going to R1 and the others to R2.

Aspects of the model are illustrated in Figure 2, for inelastic and superelastic collisions
of electrons with OH molecules in the lowest and first vibrational level of the ground state.
It shows rate constants for individual energies and average rate constants for the simulation
where the electron energy range is divided into 30 logarithmically-spaced energy subranges
between 0.01 eV and 20 eV, labelled R1–R30, with electrons below 0.01 eV assigned to the
subrange R0.

Inelastic electron–impact cross sections for the 0→1 vibrational excitation in OH,
calculated using the method of Riahi et al. [22], are shown by a solid curve. This case was
chosen as it provides a smoothly varying curve, so that the accuracy of the simulation can
be evaluated with minimum contribution from any structure in the cross sections. The
superelastic cross sections for the 1 → 0 transition, calculated using Equation (14), are
shown by the dashed curve. Using these cross sections in Equation (11), rate constants
for the 0 → 1 excitation (ε = 0.443 eV) are shown for 2500 logarithmically-spaced initial
energies (between 0.005 and 20 eV) by horizontal green lines drawn between the initial and
final electron energies at the appropriate vertical position. Rate constants for the superelastic
deexcitations are plotted similarly in purple. Transitions ending in the lower-energy ranges
all start from within a small energy range near the threshold, so, in applying Equation (12)
to calculate the averaged rate constants, the steps in energy must be sufficiently small.

Equations (17), (18), (22) and (23) were applied to calculate the rate constants for
transitions between pairs of subranges. These are represented in Figure 2 by left-pointing
arrows for inelastic collisions and by right-pointing arrows for superelastic collisions,
drawn from the centre of the initial subrange to the centre of the final subrange, with the
vertical position showing the value of the average rate constant. At low electron energies,
the average rate constants are much lower than the individual ones because, particularly
near the threshold, only a fraction of the possible transitions starting within the higher
energy subrange end in each lower-energy subrange. Thus, these are better described
as “effective” rate constants. This is an example of the way in which details of the cross
section within an energy range are embedded in the rate constants. At higher energies,
where the transition energy is much less than the width of the energy subranges, the
effective rate constants are again lower because only transitions that cross a subrange
boundary are included. The effective rate constants for collisions that leave the electron in
the same subrange are plotted as octagons for the inelastic collisions and squares for the
superelastic collisions.

In some cases, the corrected rate constants produced by Equations (22) and (23) can be
negative. While this is unphysical, it makes a necessary correction to maintain conservation
of energy. The negative values are indicated by filled symbols in Figure 2.
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Figure 2. Rate constants (upper panel) and cross sections (lower panel) as a function of electron
energy for electron–impact vibrational excitation (0→ 1) in OH. Rate constants for inelastic collisions
are shown by green lines from the initial to the final electron energy. In the simulation (for transitions
between pairs of the 31 energy subranges indicated by the vertical dashed lines), the effective
rate constants are shown by arrows drawn from the midpoint of the initial subrange to the final,
while symbols (circles for inelastic and squares for superelastic collisions) show the effective rate
constants for the transitions where the initial and final electron energies are in the same subrange.
Negative rate constants are indicated by solid circles for inelastic collisions and solid squares for
superelastic collisions.

As examples, the reactions added to the model for inelastic collisions starting in
subranges R18 and R30 are specified as:

OH(0) + R18
k18,14−→ OH(1) + R14 where k18,14 = 9.921× 10−10 cm−3s−1

OH(0) + R18
k18,15−→ OH(1) + R15 where k18,15 = 2.225× 10−9 cm−3s−1

OH(0) + R18
k18,16−→ OH(1) + R16 where k18,16 = 1.549× 10−9 cm−3s−1

OH(0) + R18
k18,18−→ OH(1) + R18 where k18,18 = 9.862× 10−11 cm−3s−1

OH(0) + R30
k30,29−→ OH(1) + R29 where k30,29 = 2.161× 10−10 cm−3s−1

OH(0) + R30
k30,30−→ OH(1) + R30 where k30,30 = 1.725× 10−9 cm−3s−1 (24)
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A proof-of-concept test of this proposed method, to investigate validity and accuracy,
is to simulate the injection of electrons of one energy into a gas of OH molecules that are
initially all in the lowest level of the ground state and to consider only excitation to the
first vibrational level. While this is unphysical, as it does not consider the electron–electron
interactions that would dominate in this case, the rationale is to make a stringent test in
a case where a theoretical equilibrium can be calculated. Initially, the electrons will lose
energy in exciting the OH molecules, then regain some of it via superelastic collisions, until
an equilibrium is reached. The total energy of the system (of electrons plus excited OH
molecules) should be equal to the total input energy, while the electrons should have a
Maxwell–Boltzmann distribution as given in Equation (13).

Consider that Ne electrons with a total energy Etot are mixed with Ng OH molecules
in the lowest level of the ground state. Assuming that at equilibrium the vibrational
temperature of the gas and the electron temperature are the same, this temperature T can
be found by solution of the equation:

e−ε/(kT)

1 + e−ε/(kT)
εNg + 1.5kTNe = Etot. (25)

In order to compare results for logarithmic and linear spacing of the subranges, where
the average energy of the electrons EN (i.e., centre of subrange RN) is different between the
two, Ne is chosen so that the equilibrium gas energy Eg is the same:

Ne =
Eg

EN − 1.5kT
where T =

−ε

k ln
( g f

1−g f

) , g f =
Eg

Ngε
. (26)

The electrons can also gain or lose energy in elastic collisions with the gas molecules.
To calculate rate constants for elastic collisions, Equation (15) for electron scattering from O
is used, making the further approximation of applying the characteristic temperature Te of
a Maxwellian distribution of electrons to that of a single electron. This gives the change of
energy of an electron with energy E (eV) for unit gas and electron densities as:

∆E
∆t

= −3.74× 10−18T1/2
e (Te − T) , (27)

where Te = E/k. As ∆E is a small fraction of the electron subranges, the rate for transfer
from subrange Rj to Rk is divided by the number of individual collisions required to transfer
a total energy of Ej − Ek, where Em is the midpoint of the energy subrange Rm. Thus, the
rate constant for elastic collisions that transfer energy from range Rj to range Rk is:

k jk =
∆E

Ej − Ek
where|j− k| = 1 . (28)

To verify this method, the simulated energy of the electrons can be compared with
that predicted in an iteration of the total electron energy Ee:

Ee(t + ∆t) = Ee(t)− ∆E , (29)

where ∆E is calculated using Equation (15).

3. Results

The 119 effective-rate equations illustrated by the arrows and symbols in Figure 2
were applied to a gas containing (per cm3) 108 OH molecules in the ground state and
562,666 electrons in range R30 (determined using Equation (26) to given a final OH energy
at equilibrium of 9.7 MeV) for a logarithmic distribution of subranges. The simulation was
run (with f = 10−6) for 1000 s, giving the results shown in Figure 3 for the OH, electron
and total energies as a function of time. The simulated values at every thousandth time
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step are shown by symbols. In addition, the electron distributions at the beginning and
the end of the simulation are shown. The theoretical and simulated equilibrium values are
plotted as horizontal lines over each energy interval. It can be seen in Figure 3 that energy
is transferred from the electrons to the gas molecules, reaching close to an equilibrium
after 700 s. At this stage, both the gas energy and the total energy are lower by about 2%,
while the electron energy is close to the expected value. The simulated electron energy
distribution is close to the calculated Maxwellian distribution (“Equil. ED”) but with a
residual high-energy tail.

The results for repeating the simulation with 506,677 electrons and a linear distribution
of 31 subranges are shown in Figure 4. The simulated OH energy reaches about ∼1% of the
equilibrium value after about 400 s, but the electron energy stabilises at (proportionally)
a significantly higher absolute value, resulting in a slight excess in the total energy. The
excess electron energy appears as higher values in the number of electrons at <1 eV in the
electron distribution.
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Figure 3. Simulated (symbols) and equilibrium (lines) values of (a) gas, electron and total energies
for N = 30 with a logarithmic distribution of subrange boundaries. The simulated values are plotted
as a function of time at every thousandth time step. The electron distributions (b) are shown for the
original (4), predicted equilibrium (thick line) and simulated at 1000 s (thin line).

In Figure 5, the simulated OH energies are plotted as a function of time for linear
and logarithmic spacing of 31 subranges, each for the uncorrected rates (Equations (17)
and (18)) and for the rates corrected for energy conservation (Equations (22) and (23)). While
there is little difference until about 150 s into the simulation, the values in the corrected
cases approach the predicted equilibrium while those for the uncorrected cases rapidly
gain excess energy. The energy in the corrected linear case is constant between 500 s and
1,000,000 s, while in the logarithmic case it is constant from 700 s to 500,000 s and then
declines slightly. In addition, the OH energies for the corrected logarithmic case with the
negative rates set to zero are shown. These show excess energy appearing after about
1000 s.

The simulations summarised in Figure 5 were repeated for N = 100, giving the ener-
gies plotted in Figure 6 as a function of time. In both the corrected linear and logarithmic
cases, the OH energies converge to the predicted value and the equilibrium is then main-
tained for 1,000,000 s, while for the uncorrected cases the energies still diverge, or go to
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zero in the case of setting negative rates to zero. The rise time for the logarithmic case is
slightly longer than for the linear case.
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Figure 4. Simulated (symbols) and equilibrium (lines) values of (a) gas, electron and total energies
for N = 30 with a linear distribution of subrange boundaries The simulated values are plotted as
a function of time at every thousandth time step. The electron distributions (b) are shown for the
original (4), predicted equilibrium (thick line) and simulated at 1000 s (thin line).
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Figure 5. The calculated OH energies as a function of time are shown for logarithmic and linear
distributions of 31 subranges, compared with the equilibrium value (– – –). For the linear distribution,
uncorrected (- - - -) and corrected (—–) cases are shown, while, for the logarithmic distribution,
uncorrected (— —), corrected (�) and corrected with negative rates reset to zero (–·–·–) are shown.

In Figure 7, the OH, electron and total energies are plotted as a function of time, for
N = 100 with logarithmic spacing, showing all approaches and then remaining very close
to the predicted values. The percentage errors in the total energy are plotted, showing a
rise to about 0.09% before falling to 0.03% when equilibrium is attained. (The discontinuity
at about 200 s is due to a change in sign in the difference between the simulated and
calculated values).
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Figure 6. The calculated OH energies as a function of time are shown for logarithmic and linear
distributions of 101 subranges, compared with the equilibrium value (– – –). For the linear distribution,
uncorrected (- - - -) and corrected (—–) cases are shown, while for the logarithmic distribution
uncorrected (— —), corrected (�) and corrected with negative rates reset to zero (–·–·–) are shown.
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Figure 7. Initial or equilibrium (horizontal lines) and simulated (symbols) energies plotted as a
function of time for N = 100. The percentage errors in the total energy are shown by plus signs.
Vertical dashed lines indicate the times for which the electron distributions are plotted in Figure 8.

The simulated electron distributions, at the times shown by the vertical dashed lines
in Figure 7, are plotted along with the theoretical equilibrium distribution in Figure 8.
The errors (being the difference between the simulated and theoretical distribution as a
percentage of the higher value) are plotted as crosses where the simulated values are higher
and circles for where they are lower. At 110 s, most of the electrons are still at high energy,
but, by 300 s, the Maxwellian distribution has appeared, with a remaining high-energy
tail. This tail, which is almost gone by 1000 s, has disappeared entirely by 106 s, at which
time the rest of the simulated distribution is unchanged since 1000 s, seen clearly in the
similarity of the details of small-scale discrepancies. A possible reason for this remaining
small-scale structure is an aliasing effect between the fixed value of ε and the changing
sizes of the subranges that result in varying proportions of electrons transferring to a lower
or higher-energy subrange.
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Figure 8. Simulated electron distributions (at 110 s, 300 s, 1000 s and 106 s) are plotted along with
the predicted equilibrium distribution (thick lines). Errors, being the difference between simulated
and theoretical values as a percentage of the larger value, are shown by crosses where the simulated
value is larger and circles where it is smaller.

The simulation was applied for different values of the maximum subrange number
N and the scaling fraction f . The results are summarised in Table 1, which gives the
consequent computational parameters (the number of rate equations Neqn, the number of
timesteps in the simulation Nts and, as an indicator of the computational load, their product)
and the errors at 106 s in the electron energy, OH energy and total energy. The percentage
errors in the total energy are plotted in Figure 9 as a function of the computational load
(NeqnNts).
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Figure 9. Percentage errors in the total energy for N = 30, 50 and 100, for in each case (left to right)
f = 10−4, 10−5, 10−6 and 10−7, plotted as a function of the computational load (NeqnNts).
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Table 1. Summary of consequent computational parameters (number of rate equations Neqn, number
of time steps Nts and their product) and percentage errors in the calculated values (of electron energy,
OH energy and total energy) resulting from combinations of the initial computational parameters
(maximum subrange N and scaling fraction f ).

Computational Parameters

Initial Consequent Percentage Errors in Energies:

N f Neqn Nts NeqnNts (106) Electron OH Total

30 0.0001000 119 60,489 7.2 5.48 −0.59 −0.41
30 0.0000100 119 149,550 17.8 4.34 −1.75 −1.57
30 0.0000010 119 408,678 48.6 3.93 −2.13 −1.95
30 0.0000001 119 1,123,618 133.7 3.80 −2.23 −2.05
50 0.0001000 203 19,753 4.0 2.41 0.63 0.68
50 0.0000100 203 51,978 10.6 1.73 −0.22 −0.17
50 0.0000010 203 156,367 31.7 1.45 −0.57 −0.51
50 0.0000001 203 489,639 99.4 1.36 −0.67 −0.61

100 0.0001000 422 18,663 7.9 1.56 1.15 1.17
100 0.0000100 422 48,555 20.5 0.84 0.24 0.25
100 0.0000010 422 141,089 59.5 0.67 0.01 0.03
100 0.0000001 422 423,030 178.5 0.60 −0.07 −0.05

In Figure 10, rate equations based on Equation (28) are added to the model to include
elastic scattering. The peak OH energy produced by excitation is reduced by about 10%.
The OH energy then declines as it is transferred to the electrons and then to the thermal
energy of the gas by elastic scattering. As a check on the approximation embodied in
Equation (28), Equation (15) is applied at each time step to calculate the energy loss using
the instantaneous electron energy, assuming a Maxwellian distribution. The total energy
from the simulation (“Sim. total energy”) and that from assuming a standard Maxwellian
distribution (“Total energy—Maxwellian”) are close, particularly in the first 100 s, indicating
that the approximations involved in Equation (28) are valid.
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Figure 10. The previous simulation with elastic scattering from the gas molecules added. The total
energy (vibrational + electron energy) is shown for: (4) implementation of Equation (28) as rate
equations in the simulation and (— — ) point-by-point application of Equation (15).
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4. Discussion

In Figure 6, it is shown that, with the energy range split into a sufficiently large number
of subranges, the simulated OH energy approaches close to the predicted value and is
maintained at that value over a long time. In Figure 7, it is shown that the OH, electron
and total energies all converge to the predicted values, while Figure 8 shows the simulated
electron distribution to be close to the theoretical distribution. Thus, Equations (22) and (23)
and their implementation are confirmed to be valid. This is emphasised in Figure 6 by
the gross departures from equilibrium in cases where the corrections for conservation of
energy are not applied.

Comparison of Figures 5 and 6 shows that, while the rise time is longer for both the
linear and logarithmic corrected cases for a smaller number of subranges, the effect is more
pronounced in the logarithmic case. As this lag in rise time is not seen for the uncorrected
logarithmic case with N = 30, where it is close to the values of the linear case until the
predicted equilibrium value is reached, it can be inferred that the lag is associated with the
correction for energy conservation and that it is more pronounced in the logarithmic case.

As a major rationale for this method is to increase computational efficiency, it is essen-
tial to reduce the number of subranges to a minimal value. This introduces inaccuracies
as shown in Figures 3 and 4. In the linear case, the electron energy is proportionally high,
presumably due to the major part of the electron distribution being averaged into one
subrange. In the logarithmic case, the OH and total energy are both slightly reduced and
the rise time is substantially increased. Thus, a choice must be made between using a
logarithmic or a linear spacing, depending on whether rise time or accuracy of the elec-
tron spectrum is more important. An approach to this may be to run both a linear and
logarithmic model, so that the difference in results gives an indication of the magnitude of
the errors.

The near-accurate calculation of the OH energies in Figure 4 demonstrates the success-
ful incorporation of the detail of the electron–impact cross sections into a few rate equations
for transitions in and out of the one subrange [0.01–0.8] eV, which incorporates almost all
the electron–impact cross sections below the peak value. This demonstrates the potential of
this method to reduce computation times, relative to recalculating the excitation rates for
each iteration of the electron spectrum.

In Figure 9, it is seen that, for N = 100 and f < 10−6, very high accuracy in the
equilibrium total energy is maintained to 106 s. For each value of N, the discrepancy
asymptotes to a fixed value with decreasing f , showing that the time-step method is
not a source of error in the results for f < 10−6. The figure also shows that there is a
substantial increase in accuracy in reducing f to 10−6, but a further decrease makes little
difference to the accuracy while substantially increasing the computational load. Thus, to
achieve a desired level of accuracy for this particular application, the strategy would be
to use f = 10−6 and then choose the appropriate number of subranges. The inaccuracy
introduced by reducing N is substantially greater than by increasing f . Thus, it appears
that an optimum value of f , in a compromise between computation time and accuracy,
is 10−5.

Figure 10 shows that elastic scattering (calculated using values for O atoms) reduces
the initial excitation of OH by about 10%. Thus, elastic scattering for all the species present
must be included in a simulation.

5. Conclusions

A method to simulate nonequilibrium interactions of electrons with gas molecules
was proposed and tested. In this method, the energy range of the electrons is split into
subranges that are then treated in a time-step calculation in the same way as chemical
species, so the electron interactions can be incorporated easily into existing simulations
without new coding being required. It was found that, in excitation of gas molecules with
one vibrationally-excited level, the initial energy of the electrons was transferred to the gas
molecules until an equilibrium was reached that, with sufficiently small subranges, was very
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close to the predicted equilibrium values. This equilibrium was then maintained over a long
time (106 s), validating the method of calculating the rates for the electron interactions. The
simulated electron spectrum was also very close to the predicted Maxwellian distribution.
On reducing the number of energy subranges (which is desirable for reduced computation
time), two discrepancies became apparent. For a linear spacing of the subranges, the
simulated electron distribution had a higher energy, presumably because most of the
equilibrium electron distribution was represented by a single subrange. However, the
accuracy of the results despite this low resolution confirmed the potential of the method
to reduce computation times by incorporating details of the cross-section spectrum into a
small number of rate equations. For a logarithmic spacing, the rise in gas energy was slow,
and the final gas and total energies were slightly less than the predicted values. Thus, the
proposed method is capable of producing accurate results, but the minimum number of
subranges, and thus computational efficiency, will need to be assessed for the requirements
and circumstances of the particular application.
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Abstract: Triple differential cross section (TDCS) results are reported for the electron impact ionization
of nitrogen molecules. The TDCSs have been calculated in distorted wave Born formalism using
orientation averaged molecular orbital (OAMO) approximation. The TDCS results are presented as
average and weighted sum for the outer molecular orbital 3σg, 1πu, 2σu and the inner 2σg molecular
orbital. The obtained theoretical TDCSs are compared with the available measurements. The results
are analysed in terms of the positions and relative intensities of binary and recoil peaks. Within a first
order model and for a complex molecule, a reasonable agreement is obtained with the experimental
data in the binary peak region with certain discrepancies in position and magnitude in the recoil
peak region.

Keywords: TDCS; weighted and average sum; DWBA; PCI; correlation polarization

1. Introduction

Over the past three decades, electron impact ionization studies have gained consid-
erable experimental and theoretical attention. Atomic and molecular physicists consider
electron impact ionization of targets such as atoms, ions and molecules to be one of the
most important collision processes. Electron impact ionization also referred to as (e, 2e) [1]
involves the collision of a projectile (incident electron) with a target (either an atom or an
ion or a molecule) leading to the ionization of the target. Upon determining the energies
and the momenta of all the particles involved in the collision, one can have a complete
understanding of the ionization process. Thus, (e, 2e) collisions have become an important
tool for investigating the collision dynamics of targets. The triple differential cross section
(TDCS) is the physical quantity that is of prime interest in these studies, it provides informa-
tion about collision processes, ionization mechanisms, and the dependence of the ionization
process on the electron kinematics under which ionization is taking place. Experimental
techniques such as cold target recoil-ion momentum spectroscopy (COLTRIM) [2] and
recoil-ion spectroscopy (RMS) [3] have been instrumental to obtain the cross-sections of the
electron impact ionization of atomic and molecular targets.

Most of the experimental efforts have been focused on inert gas atoms [4], and limited
attempts have been made to measure cross-sections of molecular targets and the theoretical
support also has been less for these measurements. It is mainly due to the experimental
difficulties in measuring TDCS for molecules, as a result of the close spacing of the different
molecular states, and the difficulty of developing a theoretical model to explain molecular
ionization, as a consequence of the multi-centre nature of the target. There have been
efforts to study the electron impact ionization of molecular targets [5–8]. The TDCS has
been calculated for various molecular targets, from simple diatomic atoms to very complex
molecules. Some of these studies may be mentioned; H2 [9–11], N2 [12–17], CO2 [18],
H2O [19–21] and a wide range of biologically complex molecules like pyrimidine [22],
thymine [23] etc. Electron impact single ionization cross-sections of molecular targets can
be calculated by using various theoretical techniques. One of the most successful theoretical
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models to study electron impact ionization of various targets is the distorted-wave Born
approximation (DWBA) [24]. The single ionization of a complex target can be viewed
as a three-body problem in which the spectator electrons are represented by spherically
symmetric potentials. In the DWBA formalism, these spherically symmetric potentials
can be utilized in Schrödinger equation to calculate the continuum wave functions. In
the Born approximation, it is not possible to obtain exact solutions to the Schrödinger
equation. Therefore, it is impossible to describe all the interactions and processes that may
take place during ionization. It is possible to modify the theoretical formalism in several
ways, such as by approximating the post-collision interaction (PCI), taking into account
correlation-polarization effects, and considering the electron exchange.

In the low to intermediate impact energy region, diatomic molecules H2 and N2 and
the triatomic H2O and CO2 are ionized as given in most of the recent studies. Several
studies [25–27] have been done for N2, where TDCS is calculated at different projectile
energy. The electron impact cross sections of N2 molecules have been calculated using the
distorted wave Born approximation (DWBA) method [28]. DWBA has been found to give
a reasonable agreement with the measurements for the (e, 2e) studies on molecules with
certain discrepancies, particularly in the recoil peak region.

In the present communication, we investigate the ionization of nitrogen molecules
at different energies within the distorted-wave Born approximation formalism using the
orientation-averaged molecular orbital approximation. We report the TDCS results for
the ionization of nitrogen molecules at scattered electron energy 500 eV, for the coplanar
asymmetric emission of electrons [29]. In the present study, we have used atomic units
(h̄ = e = me = 1) for all calculations. In the next section, we outline the theoretical approach
used to calculate TDCS.

2. Theory

The initial—state Hamiltonian chosen in the standard DWBA is given by

H0 = Htarget + Tp + Ui (1)

where Htarget is the Hamiltonian for the neutral target, Tp is the kinetic energy operator for
the projectile and Ui is an initial-state spherically symmetric potential for the ionization
process. The DWBA approach was generalized to molecules [30,31].

The triple differential cross section for the ionization of nitrogen molecule by electron
impact is given by

d3σ

dksdkedEe
= (2π)4 kske

ki
|t|2, (2)

where ks, ke, ki are the momenta of the scattered, ejected and the incident electrons, re-
spectively. The term Ee and ‘t’ is referred to as ejected electron energy and transition
matrix element respectively. The transition matrix is represented in the terms of direct and
exchange scattering amplitude. The amplitude is given by

|t|2 = | fdir|2 + | fex|2 − | fdir|| fex| (3)

where the direct scattering amplitude ( fdir) is given by

fdir =< Xs(r1)Xe(r2)|
(−Z)

r12
|Xb(r2)Xi(r1) > (4)

Similarly, the exchange term ( fex) can be expressed as

fex =< Xe(r1)X f (r2)|
(−Z)

r12
|Xb(r2)Xi(r1) > (5)

In this equation, r1, r2 are the position vectors for projectile and active electron, and
r12 is the distance between projectile and active target electron. For incident, bound, and
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scattered electrons, Xi, Xb, Xs represent their distorted wave functions, respectively. The
bound state for the orbitals of the N2 molecule is approximated as the orientation averaged
molecular orbital where. The molecular wave function has been calculated using the
B3LYP/TZ2P [32] basis sets based on density functional theory. We calculate the distorted
waves on symmetric potential, which is based on the Hartree-Fock charge distribution for
N2 averaged over all molecular orientations. For the incoming electron wave function, the
Schrödinger equation is given by

(T + Ui −
k2

i
2
)xi(ki, r) = 0 (6)

T represents the kinetic energy operator. In the initial state, the distortion potential is
determined by the nuclear contribution and the electronic contribution i.e.,

Ustatic = Uel + Unuc (7)

By averaging the two N2 nuclei over all orientations, we get the nuclear part. It is
obtained as a result of placing the nuclear charge on a spherical shell with a radius equal to
the distance of the nucleus from the centre of mass. From the calculated molecular charge
density averaging over all angular orientations, the electronic part is derived. The final
state distorted potential is generated in a similar way except that the active electron is
removed from the charge distribution. The distorting potential proposed by Furness and
McCarthy [33], which was later corrected by Riley and Truhlar [34] is added to the static
Hartree—Fock distorting potential. The exchange—distortion potential UE generated for
same is given by

UE = 0.5[E0 −Ustatic(r)− (E0 −Ustatic(r))2 + 4πρ(r)] (8)

To calculate the TDCSs, we have also included the correlation polarization potential
UCP in the distorting potential which is given by

UCP = UCorr
SR (r), r ≤ r0 (9)

=
−αd
2r4 , r > r0 (10)

UCorr
SR (r) is the short range correlation potential [35] and αd dipole polarizability of

the target.
We have treated the post collision interaction between the two outgoing particles by

the Ward-Macek approximation [36]. In the ward-Mack approximation, one replaces the
actual final state e-e separation r12 by an average value directed parallel to k12. The average
separation is given by

rave
12 =

π2

16
(1 +

0.627
π

√
εlnε)2 (11)

ε is the total energy of the two exiting electrons. With this approximation, the ward-
Macek factor is given by

Mee =
γ

exp (γ)− 1
|1F1(iλ, 1,−2ik12rave

12 ) (12)

Where, γ
exp(γ)−1 = Nee ,which is the Gamow factor.

Also, γ = −2π
k1−k2

, λ = 1
k1−k2

The present model DWBA is employed to calculate the TDCS for the ionization of
the outer 3σg, 1πu, 2σu and the ‘inner’ 2σg molecular orbital of the nitrogen molecule by
electron impact. The results and discussion is presented in the next section.
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3. Results and Discussion

In the present study, we report the results of TDCS calculated in the distorted wave
Born approximation approach for the electron impact single ionization of nitrogen molecules
which includes orientation-averaged molecular orbital approximation. We have calculated
TDCSs for the ionization of nitrogen molecules from ‘outer’ valence orbital 3σg, 1πu, 2σu
and the ‘inner’ 2σg molecular orbital, these orbital have 15.6, 16.7, 18.75 and 39.9 eV ion-
ization potentials respectively. As the electronic states of the three outer orbital are very
closely spaced, it is difficult to be resolved. Therefore, the weighted sum of TDCS for 3σg,
1πu, 2σu orbital with relative efficiencies of 1, 0.78, and 0.32 have also been plotted.

The angular distribution of TDCSs are reported for scattered electron energy Es = 500 eV
and scattering angle −60 at ejected electron energies Ee = 37 eV, Ee = 74 eV and Ee = 205 eV
and the obtained results are compared with the available measurements [29]. The exper-
imental TDCSs [29] and TDCSs obtained by present study are analyzed in terms of the
magnitude of binary and recoil peak and their respective positions. Along with the peak
positions and intensity, the recoil-to-binary peak ratios have been obtained and compared
for measurements [29] as well as for the theoretically obtained results. The TDCSs have
been computed in standard DWBA formalism with first Born term. TDCS calculations
are also reported including the correlation-polarization potential and PCI effects in the
standard DWBA.

The present results are plotted in Figures 1–3 for ejected electron energies Ee = 37 eV,
Ee = 74 eV and Ee = 205 eV. The solid red circles are the experimental TDCS [29]. The
solid curve is for DWBA results with first Born term calculated for the average sum of the
orbitals. The dashed curve is DWBA results including correlation polarization potential,
and the dotted curve represents DWBA calculations including polarization potential and
PCI effects. The dark circles, upside triangles and hollow circles represent the standard
DWBA results, DWBA with polarization potential and DWBA with polarization potential
and PCI with the weighted sum of the orbital respectively.

Figure 1. Electron-impact TDCS for N2 molecule calculated for the weighted and average sum of the
outer orbital (3σg, 1πu, 2σu). The ejected electron energy is 37 eV. Kinematics and legends used are
displayed in the figure frame.

The TDCS results are presented for ejected electron energy 37 eV in Figure 1. A good
agreement with experimental results [29] has been obtained in the present standard DWBA
with first Born term as well as the DWBA results including correlation-polarization potential
and PCI in the binary peak region, particularly in terms of the binary peak positions. The
DWBA results calculated by including polarization potential and PCI with weighted sum
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of orbital are in very good agreement with the measurements [29] in terms of binary peak
positions as well as magnitude of the binary lobe. In the binary peak region, the standard
DWBA results for average and weighted sum shows the binary peaks at ejected electron
angle 61◦ and 62◦ in comparison to the experimental binary peak obtained at 65◦. The
binary peaks of the TDCS curve calculated using DWBA including polarization and PCI
for both average and weighted sum are shifted towards higher ejected electron angles at
69◦. It is observed that the experimental TDCS shows recoil peak in the range of 200◦–300◦

with the recoil peak position around 260◦ . Theoretical TDCS fails to reproduce the recoil
peak in the same range and the magnitude of theoretical recoil peak also does not match
with the experimental data.

Figure 2. Same as Figure 1. The ejected electron energy is 74 eV.

Figure 3. Same as Figure 1. The ejected electron energy is 205 eV.

As shown in Figure 2, the calculated and experimental TDCSs are for an ejected
electron energy of 74 eV. Both the weighted and average sums of the binary peak’s position
show discrepancies in the binary region, and there is less agreement with the experimental
data for smaller ejection angles compared with higher ejection angles. It is observed that
polarization potential and PCI are not very significant at this ejected electron energy. In
terms of binary peak, the theoretical peaks obtained are shifted towards lower ejection
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angles relative to the experimental binary peak. The recoil to binary peak ratio obtained in
the present theoretical TDCS results does not match with the experimental data [29]. The
theoretical results with weighted sum including polarization and PCI show a smaller recoil
peak, however the standard DWBA results show more than a two-peak structure.

At ejected electron energy Ee = 205 eV, the binary peaks observed in the theoretical
TDCSs are shifted towards the lower ejection angle in comparison to the measurements [29].
Both the weighted sum of the orbitals and the average sum of the orbitals fails to reproduce
the position of the experimental binary peak and there is also disagreement in the recoil
to binary peak ratio. In case of Recoil peak, the theoretical models present better results,
however there are discrepancies in the position of the recoil peak. Despite the fact that
there are no experimental points for ejection angles smaller than 20◦, the measured data
show some sign of a binary peak splitting.

Along with weighted and average sum of the outer orbitals, we have analysed TDCS
results in terms of 3σg, 1πu, 2σu contribution individually. In Figure 4, the TDCS results are
presented for the ejection energy 37 eV. It can be observed that the TDCS corresponding
to the 1πu, including polarization potential is the major contributor to the weighted and
average sum of the orbitals in the binary region. There is large discrepancy in the trends
of TDCS in the recoil peak region. There is a huge discrepancy in the recoil to binary
peak ratio.

(a) (b)

Figure 4. Electron-impact TDCS for N2 molecule calculated for 3σg, 1πu, 2σu valence orbitals. The
ejected electron energy is 37 eV. (a) Individual orbital contribution for TDCS calculated by DWBA
formalism, (b) shows contribution of individual orbital calculated by including polarisation potential.
Kinematics and legends used are displayed in the figure frame.

We can see a totally different situation in Figure 5, where we analyse orbitals at ejection
energy 74 eV. The size of the contribution of 1πu, 2σu is nearly equal to the experimental
TDCS. Furthermore, it may be observed that the recoil to binary ratio of these orbitals
is nearly the same. However, 3σg show different behaviour and fails to reproduce the
experimental results.

In Figure 6, the TDCS obtained by DWBA and correlation polarisation potential at
ejected energy 205 eV is presented. In both the cases, highest contribution is given by
1πu, which also gives a higher recoil to binary peak ratio in the case of DWBA, including
polarization potential results compared to the 2σu , 3σg orbitals, while the recoil peak is
small for the DWBA formalism. We can also see a significant difference between these
formalisms at the binary peak.
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(a) (b)

Figure 5. Same as Figure 4 at ejected electron energy 74 eV.

(a) (b)

Figure 6. Same as Figure 4 at ejected electron energy 205 eV.

Besides, calculating TDCS corresponding to the ionization of nitrogen molecules from
the outer orbital, we have also calculated TDCSs for the ionization from inner orbital.
TDCSs obtained for the ionization taking place from 2σg orbitals at 36 eV, 74 eV, and
205 eV ejected energies are presented in Figures 7–9. It can be seen that the theoretical
models give fair agreement with the experimental data in the binary region. However,
significant differences are observed between the theoretical and experimental results in
the recoil region. There is no prominent difference between the theoretical TDCS obtained
by correlation potential and PCI effect. On the other hand, it appears that experimental
binary peak for the inner orbitals in the binary peak region is well reproduced by the TDCS
including polarization potential.

TDCSs obtained for 37 eV ejection energy are plotted in Figure 7. The TDCS obtained
by including polarization potential shows reasonable agreement with the binary peak of
measurements [29] however fails to reproduce the recoil peak as observed in measurements.
The theoretical TDCS including polarization potential shows different behaviour for inner
and outer orbitals. In case of inner orbitals the TDCS calculated by including polarization
potential are in better agreement with the measurements [29].
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Figure 7. TDCS calculation for the ionization of the inner orbital 2σg of N2. The ejected electron
energy chosen here is 37 eV. The legends and kinematics are displayed in the Figure frame.

Figure 8. Kinematics is same as Figure 4 and the ejected electron energy chosen is 74 eV.

There is a mismatch between theoretical and experimental data in terms of recoil to
binary ratio. All theoretical frameworks fail to reproduce the experimental ratio of recoil to
the binary peak.

At high ejection energies, better results are reproduced for the recoil region. At 37 eV,
no recoil peak can be seen in theoretical results. For 74 eV a small peak is obtained for recoil
region, while at 205 eV a better resemblance between the theoretical and experimental
results is obtained in the recoil region. Furthermore, the experimental recoil to binary peak
ratio is much greater than the theoretical one for all the kinematics chosen. It is believed that
the strong interaction between the ejected electron and the residual ion causes a large recoil
intensity. This interaction is enhanced for orbitals with an inner valence and targets with
multiple electrons and multiple centres [29]. It is clear that the approximation employed in
the present study to calculate TDCS requires more efforts to include effects such as multiple
scattering, second order effects to analyse available measurements. We have found the
inclusion of target polarization potential to be significant up to an extent; however, the PCI
is found to be not very significant for the present kinematics.
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Figure 9. Kinematics is same as Figure 4 and the ejected electron energy chosen is 205 eV.

4. Conclusions

TDCSs have been calculated for electron impact ionization of outer 3σg, 1πu, 2σu and
the ‘inner’ 2σg molecular orbital of nitrogen molecules. The effect of target polarization
and post collision interaction between the scattered and ejected electrons after the collision
has also been investigated.

The cross sections have been calculated at 37 eV, 74 eV, and 205 eV ejected energies.
Due to the close proximity of the outer orbital, the TDCS results are also presented as the
average and weighted sum for these orbital. The TDCS results are analysed in terms of
positions and relative magnitudes of binary and recoil peaks. For the outer orbital at 37 eV
ejected electron energy, polarization potential has been found significant and the results are
in good agreement within the binary region however, PCI is not able to make significant
changes in the trends of TDCS. At high ejection energy, the theoretical calculations seem to
reproduce better results for the recoil region. There is a high discrepancy at recoil peak for
37 eV but gives a qualitative agreement for 74 eV and 205 eV ejection energy.

In the case of ionization from the inner orbital of the nitrogen molecule, large discrep-
ancies are observed between theoretical and experimental results however polarization
potential is found to be significant in the binary peak region. There is a qualitative agree-
ment with the binary peak and poor agreement for the recoil peak. The experimental recoil
to binary peak ratio is not well produced by the theoretical methods implied.

The current theory-experiment discrepancies seem to motivate applications of more
sophisticated methods for improvement. For instance, it would be worthwhile to examine
the trends of TDCS of nitrogen molecules further with the distorted wave second Born
approximation.
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