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Computational	and	Inferential	Thinking

The	Foundations	of	Data	Science
By	Ani	Adhikari	and	John	DeNero

Contributions	by	David	Wagner	and	Henry	Milner

This	is	the	textbook	for	the	Foundations	of	Data	Science	class	at	UC	Berkeley.

View	this	textbook	online	on	Gitbooks.

The	contents	of	this	book	are	licensed	for	reuse	under	Creative	Commons	Attribution-
NonCommercial	4.0	International	(CC	BY-NC	4.0)
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What	is	Data	Science
Data	Science	is	about	drawing	useful	conclusions	from	large	and	diverse	data	sets	through
exploration,	prediction,	and	inference.	Exploration	involves	identifying	patterns	in
information.	Prediction	involves	using	information	we	know	to	make	informed	guesses	about
values	we	wish	we	knew.	Inference	involves	quantifying	our	degree	of	certainty:	will	those
patterns	we	found	also	appear	in	new	observations?	How	accurate	are	our	predictions?	Our
primary	tools	for	exploration	are	visualizations	and	descriptive	statistics,	for	prediction	are
machine	learning	and	optimization,	and	for	inference	are	statistical	tests	and	models.

Statistics	is	a	central	component	of	data	science	because	statistics	studies	how	to	make
robust	conclusions	with	incomplete	information.	Computing	is	a	central	component	because
programming	allows	us	to	apply	analysis	techniques	to	the	large	and	diverse	data	sets	that
arise	in	real-world	applications:	not	just	numbers,	but	text,	images,	videos,	and	sensor
readings.	Data	science	is	all	of	these	things,	but	it	more	than	the	sum	of	its	parts	because	of
the	applications.	Through	understanding	a	particular	domain,	data	scientists	learn	to	ask
appropriate	questions	about	their	data	and	correctly	interpret	the	answers	provided	by	our
inferential	and	computational	tools.

Data	Science
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Chapter	1:	Introduction
Data	are	descriptions	of	the	world	around	us,	collected	through	observation	and	stored	on
computers.	Computers	enable	us	to	infer	properties	of	the	world	from	these	descriptions.
Data	science	is	the	discipline	of	drawing	conclusions	from	data	using	computation.	There
are	three	core	aspects	of	effective	data	analysis:	exploration,	prediction,	and	inference.	This
text	develops	a	consistent	approach	to	all	three,	introducing	statistical	ideas	and
fundamental	ideas	in	computer	science	concurrently.	We	focus	on	a	minimal	set	of	core
techniques	that	they	apply	to	a	vast	range	of	real-world	applications.	A	foundation	in	data
science	requires	not	only	understanding	statistical	and	computational	techniques,	but	also
recognizing	how	they	apply	to	real	scenarios.

For	whatever	aspect	of	the	world	we	wish	to	study—whether	it's	the	Earth's	weather,	the
world's	markets,	political	polls,	or	the	human	mind—data	we	collect	typically	offer	an
incomplete	description	of	the	subject	at	hand.	A	central	challenge	of	data	science	is	to	make
reliable	conclusions	using	this	partial	information.

In	this	endeavor,	we	will	combine	two	essential	tools:	computation	and	randomization.	For
example,	we	may	want	to	understand	climate	change	trends	using	temperature
observations.	Computers	will	allow	us	to	use	all	available	information	to	draw	conclusions.
Rather	than	focusing	only	on	the	average	temperature	of	a	region,	we	will	consider	the
whole	range	of	temperatures	together	to	construct	a	more	nuanced	analysis.	Randomness
will	allow	us	to	consider	the	many	different	ways	in	which	incomplete	information	might	be
completed.	Rather	than	assuming	that	temperatures	vary	in	a	particular	way,	we	will	learn	to
use	randomness	as	a	way	to	imagine	many	possible	scenarios	that	are	all	consistent	with
the	data	we	observe.

Applying	this	approach	requires	learning	to	program	a	computer,	and	so	this	text	interleaves
a	complete	introduction	to	programming	that	assumes	no	prior	knowledge.	Readers	with
programming	experience	will	find	that	we	cover	several	topics	in	computation	that	do	not
appear	in	a	typical	introductory	computer	science	curriculum.	Data	science	also	requires
careful	reasoning	about	quantities,	but	this	text	does	not	assume	any	background	in
mathematics	or	statistics	beyond	basic	algebra.	You	will	find	very	few	equations	in	this	text.
Instead,	techniques	are	described	to	readers	in	the	same	language	in	which	they	are
described	to	the	computers	that	execute	them—a	programming	language.

Introduction
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Computational	Tools
This	text	uses	the	Python	3	programming	language,	along	with	a	standard	set	of	numerical
and	data	visualization	tools	that	are	used	widely	in	commercial	applications,	scientific
experiments,	and	open-source	projects.	Python	has	recruited	enthusiasts	from	many
professions	that	use	data	to	draw	conclusions.	By	learning	the	Python	language,	you	will	join
a	million-person-strong	community	of	software	developers	and	data	scientists.

Getting	Started.	The	easiest	and	recommended	way	to	start	writing	programs	in	Python	is
to	log	into	the	companion	site	for	this	text,	datahub.berkeley.edu.	If	you	have	a
@berkeley.edu	email	address,	you	already	have	full	access	to	the	programming
environment	hosted	on	that	site.	If	not,	please	complete	this	form	to	request	access.

You	are	not	at	all	restricted	to	using	this	web-based	programming	environment.	A	Python
program	can	be	executed	by	any	computer,	regardless	of	its	manufacturer	or	operating
system,	provided	that	support	for	the	language	is	installed.	If	you	wish	to	install	the	version
of	Python	and	its	accompanying	libraries	that	will	match	this	text,	we	recommend	the
Anaconda	distribution	that	packages	together	the	Python	3	language	interpreter,	IPython
libraries,	and	the	Jupyter	notebook	environment.

This	text	includes	a	complete	introduction	to	all	of	these	computational	tools.	You	will	learn
to	write	programs,	generate	images	from	data,	and	work	with	real-world	data	sets	that	are
published	online.

Computational	Tools

8

https://datahub.berkeley.edu
https://goo.gl/forms/saQpxdqzS2rKxjTc2
http://continuum.io/downloads


Statistical	Techniques
The	discipline	of	statistics	has	long	addressed	the	same	fundamental	challenge	as	data
science:	how	to	draw	robust	conclusions	about	the	world	using	incomplete	information.	One
of	the	most	important	contributions	of	statistics	is	a	consistent	and	precise	vocabulary	for
describing	the	relationship	between	observations	and	conclusions.	This	text	continues	in	the
same	tradition,	focusing	on	a	set	of	core	inferential	problems	from	statistics:	testing
hypotheses,	estimating	confidence,	and	predicting	unknown	quantities.

Data	science	extends	the	field	of	statistics	by	taking	full	advantage	of	computing,	data
visualization,	machine	learning,	optimization,	and	access	to	information.	The	combination	of
fast	computers	and	the	Internet	gives	anyone	the	ability	to	access	and	analyze	vast
datasets:	millions	of	news	articles,	full	encyclopedias,	databases	for	any	domain,	and
massive	repositories	of	music,	photos,	and	video.

Applications	to	real	data	sets	motivate	the	statistical	techniques	that	we	describe	throughout
the	text.	Real	data	often	do	not	follow	regular	patterns	or	match	standard	equations.	The
interesting	variation	in	real	data	can	be	lost	by	focusing	too	much	attention	on	simplistic
summaries	such	as	average	values.	Computers	enable	a	family	of	methods	based	on
resampling	that	apply	to	a	wide	range	of	different	inference	problems,	take	into	account	all
available	information,	and	require	few	assumptions	or	conditions.	Although	these	techniques
have	often	been	reserved	for	graduate	courses	in	statistics,	their	flexibility	and	simplicity	are
a	natural	fit	for	data	science	applications.

Statistical	Techniques
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Why	Data	Science?
Most	important	decisions	are	made	with	only	partial	information	and	uncertain	outcomes.
However,	the	degree	of	uncertainty	for	many	decisions	can	be	reduced	sharply	by	public
access	to	large	data	sets	and	the	computational	tools	required	to	analyze	them	effectively.
Data-driven	decision	making	has	already	transformed	a	tremendous	breadth	of	industries,
including	finance,	advertising,	manufacturing,	and	real	estate.	At	the	same	time,	a	wide
range	of	academic	disciplines	are	evolving	rapidly	to	incorporate	large-scale	data	analysis
into	their	theory	and	practice.

Studying	data	science	enables	individuals	to	bring	these	techniques	to	bear	on	their	work,
their	scientific	endeavors,	and	their	personal	decisions.	Critical	thinking	has	long	been	a
hallmark	of	a	rigorous	education,	but	critiques	are	often	most	effective	when	supported	by
data.	A	critical	analysis	of	any	aspect	of	the	world,	may	it	be	business	or	social	science,
involves	inductive	reasoning;	conclusions	can	rarely	been	proven	outright,	only	supported	by
the	available	evidence.	Data	science	provides	the	means	to	make	precise,	reliable,	and
quantitative	arguments	about	any	set	of	observations.	With	unprecedented	access	to
information	and	computing,	critical	thinking	about	any	aspect	of	the	world	that	can	be
measured	would	be	incomplete	without	effective	inferential	techniques.

The	world	has	too	many	unanswered	questions	and	difficult	challenges	to	leave	this	critical
reasoning	to	only	a	few	specialists.	All	educated	members	of	society	can	build	the	capacity
to	reason	about	data.	The	tools,	techniques,	and	data	sets	are	all	readily	available;	this	text
aims	to	make	them	accessible	to	everyone.

Why	Data	Science?
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Plotting	the	Classics
Interact
In	this	example,	we	will	explore	statistics	for	two	classic	novels:	The	Adventures	of
Huckleberry	Finn	by	Mark	Twain,	and	Little	Women	by	Louisa	May	Alcott.	The	text	of	any
book	can	be	read	by	a	computer	at	great	speed.	Books	published	before	1923	are	currently
in	the	public	domain,	meaning	that	everyone	has	the	right	to	copy	or	use	the	text	in	any	way.
Project	Gutenberg	is	a	website	that	publishes	public	domain	books	online.	Using	Python,	we
can	load	the	text	of	these	books	directly	from	the	web.

This	example	is	meant	to	illustrate	some	of	the	broad	themes	of	this	text.	Don't	worry	if	the
details	of	the	program	don't	yet	make	sense.	Instead,	focus	on	interpreting	the	images
generated	below.	Later	sections	of	the	text	will	describe	most	of	the	features	of	the	Python
programming	language	used	below.

First,	we	read	the	text	of	both	books	into	lists	of	chapters,	called		huck_finn_chapters		and
	little_women_chapters	.	In	Python,	a	name	cannot	contain	any	spaces,	and	so	we	will	often
use	an	underscore		_		to	stand	in	for	a	space.	The		=		in	the	lines	below	give	a	name	on	the
left	to	the	result	of	some	computation	described	on	the	right.	A	uniform	resource	locator	or
URL	is	an	address	on	the	Internet	for	some	content;	in	this	case,	the	text	of	a	book.	The		#	
symbol	starts	a	comment,	which	is	ignored	by	the	computer	but	helpful	for	people	reading
the	code.

#	Read	two	books,	fast!

huck_finn_url	=	'http://data8.org/data8assets/lec/huck_finn.txt'

huck_finn_text	=	read_url(huck_finn_url)

huck_finn_chapters	=	huck_finn_text.split('CHAPTER	')[44:]

little_women_url	=	

'http://data8.org/data8assets/lec/little_women.txt'

little_women_text	=	read_url(little_women_url)

little_women_chapters	=	little_women_text.split('CHAPTER	')[1:]

While	a	computer	cannot	understand	the	text	of	a	book,	it	can	provide	us	with	some	insight
into	the	structure	of	the	text.	The	name		huck_finn_chapters		is	currently	bound	to	a	list	of	all
the	chapters	in	the	book.	We	can	place	them	into	a	table	to	see	how	each	chapter	begins.

Plotting	the	Classics
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#	Display	the	chapters	of	Huckleberry	Finn	in	a	table.

Table().with_column('Chapters',	huck_finn_chapters)

Chapters

I.	YOU	don't	know	about	me	without	you	have	read	a	book	...

II.	WE	went	tiptoeing	along	a	path	amongst	the	trees	bac	...

III.	WELL,	I	got	a	good	going-over	in	the	morning	from	o	...

IV.	WELL,	three	or	four	months	run	along,	and	it	was	wel	...

V.	I	had	shut	the	door	to.	Then	I	turned	around	and	ther	...

VI.	WELL,	pretty	soon	the	old	man	was	up	and	around	agai	...

VII.	"GIT	up!	What	you	'bout?"	I	opened	my	eyes	and	look	...

VIII.	THE	sun	was	up	so	high	when	I	waked	that	I	judged	...

IX.	I	wanted	to	go	and	look	at	a	place	right	about	the	m	...

X.	AFTER	breakfast	I	wanted	to	talk	about	the	dead	man	a	...

...	(33	rows	omitted)

Each	chapter	begins	with	a	chapter	number	in	Roman	numerals,	followed	by	the	first
sentence	of	the	chapter.	Project	Gutenberg	has	printed	the	first	word	of	each	chapter	in
upper	case.

Plotting	the	Classics
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Literary	Characters
Interact
The	Adventures	of	Huckleberry	Finn	describes	a	journey	that	Huck	and	Jim	take	along	the
Mississippi	River.	Tom	Sawyer	joins	them	towards	the	end	as	the	action	heats	up.	Having
loaded	the	text,	we	can	quickly	visualize	how	many	times	these	characters	have	each	been
mentioned	at	any	point	in	the	book.

#	Count	how	many	times	the	names	Jim,	Tom,	and	Huck	appear	in	

each	chapter.

counts	=	Table().with_columns([

								'Jim',	np.char.count(huck_finn_chapters,	'Jim'),

								'Tom',	np.char.count(huck_finn_chapters,	'Tom'),

								'Huck',	np.char.count(huck_finn_chapters,	'Huck')

				])

#	Plot	the	cumulative	counts:

#	how	many	times	in	Chapter	1,	how	many	times	in	Chapters	1	and	

2,	and	so	on.

cum_counts	=	counts.cumsum().with_column('Chapter',	np.arange(1,	

44,	1))

cum_counts.plot(column_for_xticks=3)

plots.title('Cumulative	Number	of	Times	Each	Name	Appears',	

y=1.08);

Literary	Characters
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In	the	plot	above,	the	horizontal	axis	shows	chapter	numbers	and	the	vertical	axis	shows
how	many	times	each	character	has	been	mentioned	up	to	and	including	that	chapter.

You	can	see	that	Jim	is	a	central	character	by	the	large	number	of	times	his	name	appears.
Notice	how	Tom	is	hardly	mentioned	for	much	of	the	book	until	he	arrives	and	joins	Huck
and	Jim,	after	Chapter	30.	His	curve	and	Jim's	rise	sharply	at	that	point,	as	the	action
involving	both	of	them	intensifies.	As	for	Huck,	his	name	hardly	appears	at	all,	because	he	is
the	narrator.

Little	Women	is	a	story	of	four	sisters	growing	up	together	during	the	civil	war.	In	this	book,
chapter	numbers	are	spelled	out	and	chapter	titles	are	written	in	all	capital	letters.

#	The	chapters	of	Little	Women,	in	a	table

Table().with_column('Chapters',	little_women_chapters)

Literary	Characters
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Chapters

ONE	PLAYING	PILGRIMS	"Christmas	won't	be	Christmas	witho	...

TWO	A	MERRY	CHRISTMAS	Jo	was	the	first	to	wake	in	the	gr	...

THREE	THE	LAURENCE	BOY	"Jo!	Jo!	Where	are	you?"	cried	Me	...

FOUR	BURDENS	"Oh,	dear,	how	hard	it	does	seem	to	take	up	...

FIVE	BEING	NEIGHBORLY	"What	in	the	world	are	you	going	t	...

SIX	BETH	FINDS	THE	PALACE	BEAUTIFUL	The	big	house	did	pr	...

SEVEN	AMY'S	VALLEY	OF	HUMILIATION	"That	boy	is	a	perfect	...

EIGHT	JO	MEETS	APOLLYON	"Girls,	where	are	you	going?"	as	...

NINE	MEG	GOES	TO	VANITY	FAIR	"I	do	think	it	was	the	most	...

TEN	THE	P.C.	AND	P.O.	As	spring	came	on,	a	new	set	of	am	...

...	(37	rows	omitted)

We	can	track	the	mentions	of	main	characters	to	learn	about	the	plot	of	this	book	as	well.
The	protagonist	Jo	interacts	with	her	sisters	Meg,	Beth,	and	Amy	regularly,	up	until	Chapter
27	when	she	moves	to	New	York	alone.

#	Counts	of	names	in	the	chapters	of	Little	Women

counts	=	Table().with_columns([

								'Amy',	np.char.count(little_women_chapters,	'Amy'),

								'Beth',	np.char.count(little_women_chapters,	'Beth'),

								'Jo',	np.char.count(little_women_chapters,	'Jo'),

								'Meg',	np.char.count(little_women_chapters,	'Meg'),

								'Laurie',	np.char.count(little_women_chapters,	

'Laurie'),

				])

#	Plot	the	cumulative	counts.

cum_counts	=	counts.cumsum().with_column('Chapter',	np.arange(1,	

48,	1))

cum_counts.plot(column_for_xticks=5)

plots.title('Cumulative	Number	of	Times	Each	Name	Appears',	

y=1.08);

Literary	Characters
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Laurie	is	a	young	man	who	marries	one	of	the	girls	in	the	end.	See	if	you	can	use	the	plots
to	guess	which	one.

Literary	Characters
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Another	Kind	of	Character
Interact
In	some	situations,	the	relationships	between	quantities	allow	us	to	make	predictions.	This
text	will	explore	how	to	make	accurate	predictions	based	on	incomplete	information	and
develop	methods	for	combining	multiple	sources	of	uncertain	information	to	make	decisions.

As	an	example	of	visualizing	information	derived	from	multiple	sources,	let	us	first	use	the
computer	to	get	some	information	that	would	be	tedious	to	acquire	by	hand.	In	the	context	of
novels,	the	word	"character"	has	a	second	meaning:	a	printed	symbol	such	as	a	letter	or
number	or	punctuation	symbol.	Here,	we	ask	the	computer	to	count	the	number	of
characters	and	the	number	of	periods	in	each	chapter	of	both	Huckleberry	Finn	and	Little
Women.

#	In	each	chapter,	count	the	number	of	all	characters;

#	call	this	the	"length"	of	the	chapter.

#	Also	count	the	number	of	periods.

chars_periods_huck_finn	=	Table().with_columns([

								'Huck	Finn	Chapter	Length',	[len(s)	for	s	in	

huck_finn_chapters],

								'Number	of	Periods',	np.char.count(huck_finn_chapters,	

'.')

				])

chars_periods_little_women	=	Table().with_columns([

								'Little	Women	Chapter	Length',	[len(s)	for	s	in	

little_women_chapters],

								'Number	of	Periods',	

np.char.count(little_women_chapters,	'.')

				])

Here	are	the	data	for	Huckleberry	Finn.	Each	row	of	the	table	corresponds	to	one	chapter	of
the	novel	and	displays	the	number	of	characters	as	well	as	the	number	of	periods	in	the
chapter.	Not	surprisingly,	chapters	with	fewer	characters	also	tend	to	have	fewer	periods,	in
general	–	the	shorter	the	chapter,	the	fewer	sentences	there	tend	to	be,	and	vice	versa.	The
relation	is	not	entirely	predictable,	however,	as	sentences	are	of	varying	lengths	and	can
involve	other	punctuation	such	as	question	marks.
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chars_periods_huck_finn

Huck	Finn	Chapter	Length Number	of	Periods

7026 66

11982 117

8529 72

6799 84

8166 91

14550 125

13218 127

22208 249

8081 71

7036 70

...	(33	rows	omitted)

Here	are	the	corresponding	data	for	Little	Women.

chars_periods_little_women

Little	Women	Chapter	Length Number	of	Periods

21759 189

22148 188

20558 231

25526 195

23395 255

14622 140

14431 131

22476 214

33767 337

18508 185

...	(37	rows	omitted)
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You	can	see	that	the	chapters	of	Little	Women	are	in	general	longer	than	those	of
Huckleberry	Finn.	Let	us	see	if	these	two	simple	variables	–	the	length	and	number	of
periods	in	each	chapter	–	can	tell	us	anything	more	about	the	two	books.	One	way	for	us	to
do	this	is	to	plot	both	sets	of	data	on	the	same	axes.

In	the	plot	below,	there	is	a	dot	for	each	chapter	in	each	book.	Blue	dots	correspond	to
Huckleberry	Finn	and	gold	dots	to	Little	Women.	The	horizontal	axis	represents	the	number
of	periods	and	the	vertical	axis	represents	the	number	of	characters.

plots.figure(figsize=(6,	6))

plots.scatter(chars_periods_huck_finn.column(1),	

														chars_periods_huck_finn.column(0),	

														color='darkblue')

plots.scatter(chars_periods_little_women.column(1),	

														chars_periods_little_women.column(0),	

														color='gold')

plots.xlabel('Number	of	periods	in	chapter')

plots.ylabel('Number	of	characters	in	chapter');
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The	plot	shows	us	that	many	but	not	all	of	the	chapters	of	Little	Women	are	longer	than
those	of	Huckleberry	Finn,	as	we	had	observed	by	just	looking	at	the	numbers.	But	it	also
shows	us	something	more.	Notice	how	the	blue	points	are	roughly	clustered	around	a
straight	line,	as	are	the	yellow	points.	Moreover,	it	looks	as	though	both	colors	of	points
might	be	clustered	around	the	same	straight	line.

Now	look	at	all	the	chapters	that	contain	about	100	periods.	The	plot	shows	that	those
chapters	contain	about	10,000	characters	to	about	15,000	characters,	roughly.	That's	about
100	to	150	characters	per	period.

Indeed,	it	appears	from	looking	at	the	plot	that	on	average	both	books	tend	to	have
somewhere	between	100	and	150	characters	between	periods,	as	a	very	rough	estimate.
Perhaps	these	two	great	19th	century	novels	were	signaling	something	so	very	familiar	us
now:	the	140-character	limit	of	Twitter.

Another	Kind	of	Character

20



Causality	and	Experiments
"These	problems	are,	and	will	probably	ever	remain,	among	the	inscrutable	secrets	of
nature.	They	belong	to	a	class	of	questions	radically	inaccessible	to	the	human	intelligence."
—The	Times	of	London,	September	1849,	on	how	cholera	is	contracted	and	spread

Does	the	death	penalty	have	a	deterrent	effect?	Is	chocolate	good	for	you?	What	causes
breast	cancer?

All	of	these	questions	attempt	to	assign	a	cause	to	an	effect.	A	careful	examination	of	data
can	help	shed	light	on	questions	like	these.	In	this	section	you	will	learn	some	of	the
fundamental	concepts	involved	in	establishing	causality.

Observation	is	a	key	to	good	science.	An	observational	study	is	one	in	which	scientists	make
conclusions	based	on	data	that	they	have	observed	but	had	no	hand	in	generating.	In	data
science,	many	such	studies	involve	observations	on	a	group	of	individuals,	a	factor	of
interest	called	a	treatment,	and	an	outcome	measured	on	each	individual.

It	is	easiest	to	think	of	the	individuals	as	people.	In	a	study	of	whether	chocolate	is	good	for
the	health,	the	individuals	would	indeed	be	people,	the	treatment	would	be	eating	chocolate,
and	the	outcome	might	be	a	measure	of	blood	pressure.	But	individuals	in	observational
studies	need	not	be	people.	In	a	study	of	whether	the	death	penalty	has	a	deterrent	effect,
the	individuals	could	be	the	50	states	of	the	union.	A	state	law	allowing	the	death	penalty
would	be	the	treatment,	and	an	outcome	could	be	the	state’s	murder	rate.

The	fundamental	question	is	whether	the	treatment	has	an	effect	on	the	outcome.	Any
relation	between	the	treatment	and	the	outcome	is	called	an	association.	If	the	treatment
causes	the	outcome	to	occur,	then	the	association	is	causal.	Causality	is	at	the	heart	of	all
three	questions	posed	at	the	start	of	this	section.	For	example,	one	of	the	questions	was
whether	chocolate	directly	causes	improvements	in	health,	not	just	whether	there	there	is	a
relation	between	chocolate	and	health.

The	establishment	of	causality	often	takes	place	in	two	stages.	First,	an	association	is
observed.	Next,	a	more	careful	analysis	leads	to	a	decision	about	causality.
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Observation	and	Visualization:	John	Snow	and
the	Broad	Street	Pump
One	of	the	earliest	examples	of	astute	observation	eventually	leading	to	the	establishment	of
causality	dates	back	more	than	150	years.	To	get	your	mind	into	the	right	timeframe,	try	to
imagine	London	in	the	1850’s.	It	was	the	world’s	wealthiest	city	but	many	of	its	people	were
desperately	poor.	Charles	Dickens,	then	at	the	height	of	his	fame,	was	writing	about	their
plight.	Disease	was	rife	in	the	poorer	parts	of	the	city,	and	cholera	was	among	the	most
feared.	It	was	not	yet	known	that	germs	cause	disease;	the	leading	theory	was	that
“miasmas”	were	the	main	culprit.	Miasmas	manifested	themselves	as	bad	smells,	and	were
thought	to	be	invisible	poisonous	particles	arising	out	of	decaying	matter.	Parts	of	London
did	smell	very	bad,	especially	in	hot	weather.	To	protect	themselves	against	infection,	those
who	could	afford	to	held	sweet-smelling	things	to	their	noses.

For	several	years,	a	doctor	by	the	name	of	John	Snow	had	been	following	the	devastating
waves	of	cholera	that	hit	England	from	time	to	time.	The	disease	arrived	suddenly	and	was
almost	immediately	deadly:	people	died	within	a	day	or	two	of	contracting	it,	hundreds	could
die	in	a	week,	and	the	total	death	toll	in	a	single	wave	could	reach	tens	of	thousands.	Snow
was	skeptical	of	the	miasma	theory.	He	had	noticed	that	while	entire	households	were	wiped
out	by	cholera,	the	people	in	neighboring	houses	sometimes	remained	completely
unaffected.	As	they	were	breathing	the	same	air—and	miasmas—as	their	neighbors,	there
was	no	compelling	association	between	bad	smells	and	the	incidence	of	cholera.

Snow	had	also	noticed	that	the	onset	of	the	disease	almost	always	involved	vomiting	and
diarrhea.	He	therefore	believed	that	that	infection	was	carried	by	something	people	ate	or
drank,	not	by	the	air	that	they	breathed.	His	prime	suspect	was	water	contaminated	by
sewage.

At	the	end	of	August	1854,	cholera	struck	in	the	overcrowded	Soho	district	of	London.	As	the
deaths	mounted,	Snow	recorded	them	diligently,	using	a	method	that	went	on	to	become
standard	in	the	study	of	how	diseases	spread:	he	drew	a	map.	On	a	street	map	of	the
district,	he	recorded	the	location	of	each	death.

Here	is	Snow’s	original	map.	Each	black	bar	represents	one	death.	The	black	discs	mark	the
locations	of	water	pumps.	The	map	displays	a	striking	revelation–the	deaths	are	roughly
clustered	around	the	Broad	Street	pump.	
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Snow	studied	his	map	carefully	and	investigated	the	apparent	anomalies.	All	of	them
implicated	the	Broad	Street	pump.	For	example:

There	were	deaths	in	houses	that	were	nearer	the	Rupert	Street	pump	than	the	Broad
Street	pump.	Though	the	Rupert	Street	pump	was	closer	as	the	crow	flies,	it	was	less
convenient	to	get	to	because	of	dead	ends	and	the	layout	of	the	streets.	The	residents
in	those	houses	used	the	Broad	Street	pump	instead.
There	were	no	deaths	in	two	blocks	just	east	of	the	pump.	That	was	the	location	of	the
Lion	Brewery,	where	the	workers	drank	what	they	brewed.	If	they	wanted	water,	the
brewery	had	its	own	well.
There	were	scattered	deaths	in	houses	several	blocks	away	from	the	Broad	Street
pump.	Those	were	children	who	drank	from	the	Broad	Street	pump	on	their	way	to
school.	The	pump’s	water	was	known	to	be	cool	and	refreshing.

The	final	piece	of	evidence	in	support	of	Snow’s	theory	was	provided	by	two	isolated	deaths
in	the	leafy	and	genteel	Hampstead	area,	quite	far	from	Soho.	Snow	was	puzzled	by	these
until	he	learned	that	the	deceased	were	Mrs.	Susannah	Eley,	who	had	once	lived	in	Broad
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Street,	and	her	niece.	Mrs.	Eley	had	water	from	the	Broad	Street	pump	delivered	to	her	in
Hampstead	every	day.	She	liked	its	taste.

Later	it	was	discovered	that	a	cesspit	that	was	just	a	few	feet	away	from	the	well	of	the
Broad	Street	pump	had	been	leaking	into	the	well.	Thus	the	pump’s	water	was	contaminated
by	sewage	from	the	houses	of	cholera	victims.

Snow	used	his	map	to	convince	local	authorities	to	remove	the	handle	of	the	Broad	Street
pump.	Though	the	cholera	epidemic	was	already	on	the	wane	when	he	did	so,	it	is	possible
that	the	disabling	of	the	pump	prevented	many	deaths	from	future	waves	of	the	disease.

The	removal	of	the	Broad	Street	pump	handle	has	become	the	stuff	of	legend.	At	the
Centers	for	Disease	Control	(CDC)	in	Atlanta,	when	scientists	look	for	simple	answers	to
questions	about	epidemics,	they	sometimes	ask	each	other,	“Where	is	the	handle	to	this
pump?”

Snow’s	map	is	one	of	the	earliest	and	most	powerful	uses	of	data	visualization.	Disease
maps	of	various	kinds	are	now	a	standard	tool	for	tracking	epidemics.

Towards	Causality

Though	the	map	gave	Snow	a	strong	indication	that	the	cleanliness	of	the	water	supply	was
the	key	to	controlling	cholera,	he	was	still	a	long	way	from	a	convincing	scientific	argument
that	contaminated	water	was	causing	the	spread	of	the	disease.	To	make	a	more	compelling
case,	he	had	to	use	the	method	of	comparison.

Scientists	use	comparison	to	identify	an	association	between	a	treatment	and	an	outcome.
They	compare	the	outcomes	of	a	group	of	individuals	who	got	the	treatment	(the	treatment
group)	to	the	outcomes	of	a	group	who	did	not	(the	control	group).	For	example,	researchers
today	might	compare	the	average	murder	rate	in	states	that	have	the	death	penalty	with	the
average	murder	rate	in	states	that	don’t.

If	the	results	are	different,	that	is	evidence	for	an	association.	To	determine	causation,
however,	even	more	care	is	needed.
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Snow’s	“Grand	Experiment”
Encouraged	by	what	he	had	learned	in	Soho,	Snow	completed	a	more	thorough	analysis	of
cholera	deaths.	For	some	time,	he	had	been	gathering	data	on	cholera	deaths	in	an	area	of
London	that	was	served	by	two	water	companies.	The	Lambeth	water	company	drew	its
water	upriver	from	where	sewage	was	discharged	into	the	River	Thames.	Its	water	was
relatively	clean.	But	the	Southwark	and	Vauxhall	(S&V)	company	drew	its	water	below	the
sewage	discharge,	and	thus	its	supply	was	contaminated.

Snow	noticed	that	there	was	no	systematic	difference	between	the	people	who	were
supplied	by	S&V	and	those	supplied	by	Lambeth.	“Each	company	supplies	both	rich	and
poor,	both	large	houses	and	small;	there	is	no	difference	either	in	the	condition	or	occupation
of	the	persons	receiving	the	water	of	the	different	Companies	…	there	is	no	difference
whatever	in	the	houses	or	the	people	receiving	the	supply	of	the	two	Water	Companies,	or	in
any	of	the	physical	conditions	with	which	they	are	surrounded	…”

The	only	difference	was	in	the	water	supply,	“one	group	being	supplied	with	water	containing
the	sewage	of	London,	and	amongst	it,	whatever	might	have	come	from	the	cholera
patients,	the	other	group	having	water	quite	free	from	impurity.”

Confident	that	he	would	be	able	to	arrive	at	a	clear	conclusion,	Snow	summarized	his	data	in
the	table	below.

Supply	Area Number	of
houses

cholera
deaths

deaths	per	10,000
houses

S&V 40,046 1,263 315

Lambeth 26,107 98 37

Rest	of
London 256,423 1,422 59

The	numbers	pointed	accusingly	at	S&V.	The	death	rate	from	cholera	in	the	S&V	houses
was	almost	ten	times	the	rate	in	the	houses	supplied	by	Lambeth.
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Establishing	Causality
In	the	language	developed	earlier	in	the	section,	you	can	think	of	the	people	in	the	S&V
houses	as	the	treatment	group,	and	those	in	the	Lambeth	houses	at	the	control	group.	A
crucial	element	in	Snow’s	analysis	was	that	the	people	in	the	two	groups	were	comparable
to	each	other,	apart	from	the	treatment.

In	order	to	establish	whether	it	was	the	water	supply	that	was	causing	cholera,	Snow	had	to
compare	two	groups	that	were	similar	to	each	other	in	all	but	one	aspect–their	water	supply.
Only	then	would	he	be	able	to	ascribe	the	differences	in	their	outcomes	to	the	water	supply.
If	the	two	groups	had	been	different	in	some	other	way	as	well,	it	would	have	been	difficult	to
point	the	finger	at	the	water	supply	as	the	source	of	the	disease.	For	example,	if	the
treatment	group	consisted	of	factory	workers	and	the	control	group	did	not,	then	differences
between	the	outcomes	in	the	two	groups	could	have	been	due	to	the	water	supply,	or	to
factory	work,	or	both,	or	to	any	other	characteristic	that	made	the	groups	different	from	each
other.	The	final	picture	would	have	been	much	more	fuzzy.

Snow’s	brilliance	lay	in	identifying	two	groups	that	would	make	his	comparison	clear.	He	had
set	out	to	establish	a	causal	relation	between	contaminated	water	and	cholera	infection,	and
to	a	great	extent	he	succeeded,	even	though	the	miasmatists	ignored	and	even	ridiculed
him.	Of	course,	Snow	did	not	understand	the	detailed	mechanism	by	which	humans	contract
cholera.	That	discovery	was	made	in	1883,	when	the	German	scientist	Robert	Koch	isolated
the	Vibrio	cholerae,	the	bacterium	that	enters	the	human	small	intestine	and	causes	cholera.

In	fact	the	Vibrio	cholerae	had	been	identified	in	1854	by	Filippo	Pacini	in	Italy,	just	about
when	Snow	was	analyzing	his	data	in	London.	Because	of	the	dominance	of	the	miasmatists
in	Italy,	Pacini’s	discovery	languished	unknown.	But	by	the	end	of	the	1800’s,	the	miasma
brigade	was	in	retreat.	Subsequent	history	has	vindicated	Pacini	and	John	Snow.	Snow’s
methods	led	to	the	development	of	the	field	of	epidemiology,	which	is	the	study	of	the	spread
of	diseases.

Confounding

Let	us	now	return	to	more	modern	times,	armed	with	an	important	lesson	that	we	have
learned	along	the	way:

In	an	observational	study,	if	the	treatment	and	control	groups	differ	in	ways	other	than	the
treatment,	it	is	difficult	to	make	conclusions	about	causality.

An	underlying	difference	between	the	two	groups	(other	than	the	treatment)	is	called	a
confounding	factor,	because	it	might	confound	you	(that	is,	mess	you	up)	when	you	try	to
reach	a	conclusion.
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Example:	Coffee	and	lung	cancer.	Studies	in	the	1960’s	showed	that	coffee	drinkers	had
higher	rates	of	lung	cancer	than	those	who	did	not	drink	coffee.	Because	of	this,	some
people	identified	coffee	as	a	cause	of	lung	cancer.	But	coffee	does	not	cause	lung	cancer.
The	analysis	contained	a	confounding	factor	–	smoking.	In	those	days,	coffee	drinkers	were
also	likely	to	have	been	smokers,	and	smoking	does	cause	lung	cancer.	Coffee	drinking	was
associated	with	lung	cancer,	but	it	did	not	cause	the	disease.

Confounding	factors	are	common	in	observational	studies.	Good	studies	take	great	care	to
reduce	confounding.

Establishing	Causality
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Randomization
An	excellent	way	to	avoid	confounding	is	to	assign	individuals	to	the	treatment	and	control
groups	at	random,	and	then	administer	the	treatment	to	those	who	were	assigned	to	the
treatment	group.	Randomization	keeps	the	two	groups	similar	apart	from	the	treatment.

If	you	are	able	to	randomize	individuals	into	the	treatment	and	control	groups,	you	are
running	a	randomized	controlled	experiment,	also	known	as	a	randomized	controlled	trial
(RCT).	Sometimes,	people’s	responses	in	an	experiment	are	influenced	by	their	knowing
which	group	they	are	in.	So	you	might	want	to	run	a	blind	experiment	in	which	individuals	do
not	know	whether	they	are	in	the	treatment	group	or	the	control	group.	To	make	this	work,
you	will	have	to	give	the	control	group	a	placebo,	which	is	something	that	looks	exactly	like
the	treatment	but	in	fact	has	no	effect.

Randomized	controlled	experiments	have	long	been	a	gold	standard	in	the	medical	field,	for
example	in	establishing	whether	a	new	drug	works.	They	are	also	becoming	more	commonly
used	in	other	fields	such	as	economics.

Example:	Welfare	subsidies	in	Mexico.	In	Mexican	villages	in	the	1990’s,	children	in	poor
families	were	often	not	enrolled	in	school.	One	of	the	reasons	was	that	the	older	children
could	go	to	work	and	thus	help	support	the	family.	Santiago	Levy	,	a	minister	in	Mexican
Ministry	of	Finance,	set	out	to	investigate	whether	welfare	programs	could	be	used	to
increase	school	enrollment	and	improve	health	conditions.	He	conducted	an	RCT	on	a	set	of
villages,	selecting	some	of	them	at	random	to	receive	a	new	welfare	program	called
PROGRESA.	The	program	gave	money	to	poor	families	if	their	children	went	to	school
regularly	and	the	family	used	preventive	health	care.	More	money	was	given	if	the	children
were	in	secondary	school	than	in	primary	school,	to	compensate	for	the	children’s	lost
wages,	and	more	money	was	given	for	girls	attending	school	than	for	boys.	The	remaining
villages	did	not	get	this	treatment,	and	formed	the	control	group.	Because	of	the
randomization,	there	were	no	confounding	factors	and	it	was	possible	to	establish	that
PROGRESA	increased	school	enrollment.	For	boys,	the	enrollment	increased	from	73%	in
the	control	group	to	77%	in	the	PROGRESA	group.	For	girls,	the	increase	was	even	greater,
from	67%	in	the	control	group	to	almost	75%	in	the	PROGRESA	group.	Due	to	the	success
of	this	experiment,	the	Mexican	government	supported	the	program	under	the	new	name
OPORTUNIDADES,	as	an	investment	in	a	healthy	and	well	educated	population.

In	some	situations	it	might	not	be	possible	to	carry	out	a	randomized	controlled	experiment,
even	when	the	aim	is	to	investigate	causality.	For	example,	suppose	you	want	to	study	the
effects	of	alcohol	consumption	during	pregnancy,	and	you	randomly	assign	some	pregnant
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women	to	your	“alcohol”	group.	You	should	not	expect	cooperation	from	them	if	you	present
them	with	a	drink.	In	such	situations	you	will	almost	invariably	be	conducting	an
observational	study,	not	an	experiment.	Be	alert	for	confounding	factors.

Randomization
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Endnote
In	the	terminology	of	that	we	have	developed,	John	Snow	conducted	an	observational	study,
not	a	randomized	experiment.	But	he	called	his	study	a	“grand	experiment”	because,	as	he
wrote,	“No	fewer	than	three	hundred	thousand	people	…	were	divided	into	two	groups
without	their	choice,	and	in	most	cases,	without	their	knowledge	…”

Studies	such	as	Snow’s	are	sometimes	called	“natural	experiments.”	However,	true
randomization	does	not	simply	mean	that	the	treatment	and	control	groups	are	selected
“without	their	choice.”

The	method	of	randomization	can	be	as	simple	as	tossing	a	coin.	It	may	also	be	quite	a	bit
more	complex.	But	every	method	of	randomization	consists	of	a	sequence	of	carefully
defined	steps	that	allow	chances	to	be	specified	mathematically.	This	has	two	important
consequences.

1.	 It	allows	us	to	account–mathematically–for	the	possibility	that	randomization	produces
treatment	and	control	groups	that	are	quite	different	from	each	other.

2.	 It	allows	us	to	make	precise	mathematical	statements	about	differences	between	the
treatment	and	control	groups.	This	in	turn	helps	us	make	justifiable	conclusions	about
whether	the	treatment	has	any	effect.

In	this	course,	you	will	learn	how	to	conduct	and	analyze	your	own	randomized	experiments.
That	will	involve	more	detail	than	has	been	presented	in	this	section.	For	now,	just	focus	on
the	main	idea:	to	try	to	establish	causality,	run	a	randomized	controlled	experiment	if
possible.	If	you	are	conducting	an	observational	study,	you	might	be	able	to	establish
association	but	not	causation.	Be	extremely	careful	about	confounding	factors	before	making
conclusions	about	causality	based	on	an	observational	study.

Terminology

observational	study
treatment
outcome
association
causal	association
causality
comparison
treatment	group
control	group
epidemiology
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confounding
randomization
randomized	controlled	experiment
randomized	controlled	trial	(RCT)
blind
placebo

Fun	facts

1.	 John	Snow	is	sometimes	called	the	father	of	epidemiology,	but	he	was	an
anesthesiologist	by	profession.	One	of	his	patients	was	Queen	Victoria,	who	was	an
early	recipient	of	anesthetics	during	childbirth.

2.	 Florence	Nightingale,	the	originator	of	modern	nursing	practices	and	famous	for	her
work	in	the	Crimean	War,	was	a	die-hard	miasmatist.	She	had	no	time	for	theories
about	contagion	and	germs,	and	was	not	one	for	mincing	her	words.	“There	is	no	end	to
the	absurdities	connected	with	this	doctrine,”	she	said.	“Suffice	it	to	say	that	in	the
ordinary	sense	of	the	word,	there	is	no	proof	such	as	would	be	admitted	in	any	scientific
enquiry	that	there	is	any	such	thing	as	contagion.”

3.	 A	later	RCT	established	that	the	conditions	on	which	PROGRESA	insisted	–	children
going	to	school,	preventive	health	care	–	were	not	necessary	to	achieve	increased
enrollment.	Just	the	financial	boost	of	the	welfare	payments	was	sufficient.

Good	reads

The	Strange	Case	of	the	Broad	Street	Pump:	John	Snow	and	the	Mystery	of	Cholera	by
Sandra	Hempel,	published	by	our	own	University	of	California	Press,	reads	like	a	whodunit.
It	was	one	of	the	main	sources	for	this	section's	account	of	John	Snow	and	his	work.	A	word
of	warning:	some	of	the	contents	of	the	book	are	stomach-churning.

Poor	Economics,	the	best	seller	by	Abhijit	V.	Banerjee	and	Esther	Duflo	of	MIT,	is	an
accessible	and	lively	account	of	ways	to	fight	global	poverty.	It	includes	numerous	examples
of	RCTs,	including	the	PROGRESA	example	in	this	section.
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Programming	in	Python
Programming	can	dramatically	improve	our	ability	to	collect	and	analyze	information	about
the	world,	which	in	turn	can	lead	to	discoveries	through	the	kind	of	careful	reasoning
demonstrated	in	the	previous	section.	In	data	science,	the	purpose	of	writing	a	program	is	to
instruct	a	computer	to	carry	out	the	steps	of	an	analysis.	Computers	cannot	study	the	world
on	their	own.	People	must	describe	precisely	what	steps	the	computer	should	take	in	order
to	collect	and	analyze	data,	and	those	steps	are	expressed	through	programs.

Programming	in	Python
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Expressions
Interact
Programming	languages	are	much	simpler	than	human	languages.	Nonetheless,	there	are
some	rules	of	grammar	to	learn	in	any	language,	and	that	is	where	we	will	begin.	In	this	text,
we	will	use	the	Python	programming	language.	Learning	the	grammar	rules	is	essential,	and
the	same	rules	used	in	the	most	basic	programs	are	also	central	to	more	sophisticated
programs.

Programs	are	made	up	of	expressions,	which	describe	to	the	computer	how	to	combine
pieces	of	data.	For	example,	a	multiplication	expression	consists	of	a		*		symbol	between
two	numerical	expressions.	Expressions,	such	as		3	*	4	,	are	evaluated	by	the	computer.
The	value	(the	result	of	evaluation)	of	the	last	expression	in	each	cell,		12		in	this	case,	is
displayed	below	the	cell.

3	*	4

12

The	grammar	rules	of	a	programming	language	are	rigid.	In	Python,	the		*		symbol	cannot
appear	twice	in	a	row.	The	computer	will	not	try	to	interpret	an	expression	that	differs	from	its
prescribed	expression	structures.	Instead,	it	will	show	a		SyntaxError		error.	The	Syntax	of	a
language	is	its	set	of	grammar	rules,	and	a		SyntaxError		indicates	that	an	expression
structure	doesn't	match	any	of	the	rules	of	the	language.

3	*	*	4

		File	"<ipython-input-4-d90564f70db7>",	line	1

				3	*	*	4

								^

SyntaxError:	invalid	syntax

Small	changes	to	an	expression	can	change	its	meaning	entirely.	Below,	the	space	between
the		*	's	has	been	removed.	Because		**		appears	between	two	numerical	expressions,	the
expression	is	a	well-formed	exponentiation	expression	(the	first	number	raised	to	the	power
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of	the	second:	3	times	3	times	3	times	3).	The	symbols		*		and		**		are	called	operators,
and	the	values	they	combine	are	called	operands.

3	**	4

81

Common	Operators.	Data	science	often	involves	combining	numerical	values,	and	the	set
of	operators	in	a	programming	language	are	designed	to	so	that	expressions	can	be	used	to
express	any	sort	of	arithmetic.	In	Python,	the	following	operators	are	essential.

Expression	Type Operator Example Value

Addition 	+	 	2	+	3	 	5	

Subtraction 	-	 	2	-	3	 	-1	

Multiplication 	*	 	2	*	3	 	6	

Division 	/	 	7	/	3	 	2.66667	

Remainder 	%	 	7	%	3	 	1	

Exponentiation 	**	 	2	**	0.5	 	1.41421	

Python	expressions	obey	the	same	familiar	rules	of	precedence	as	in	algebra:	multiplication
and	division	occur	before	addition	and	subtraction.	Parentheses	can	be	used	to	group
together	smaller	expressions	within	a	larger	expression.

1	+	2	*	3	*	4	*	5	/	6	**	3	+	7	+	8	-	9	+	10

17.555555555555557

1	+	2	*	(3	*	4	*	5	/	6)	**	3	+	7	+	8	-	9	+	10

2017.0

Example¶
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Here,	from	the	Washington	Post	in	the	early	1980s,	is	a	graph	that	attempts	to	compare	the
earnings	of	doctors	with	the	earnings	of	other	professionals	over	a	few	decades.	Do	we
really	need	to	see	two	heads	(one	with	a	stethoscope)	on	each	bar?	Edward	Tufte,
Professor	at	Yale	and	one	of	the	world's	experts	on	visualizing	quantitative	information,
coined	the	term	"chartjunk"	for	such	unnecessary	embellishments.	This	graph	is	also	an
example	of	the	"low	data-to-ink	ratio"	that	Tufte	deplores.

Most	importantly,	the	horizontal	axis	of	the	graph	is	is	not	drawn	to	scale.	This	has	a
significant	effect	on	the	shape	of	the	bar	graphs.	When	drawn	to	scale	and	shorn	of
decoration,	the	graphs	reveal	trends	that	are	quite	different	from	the	apparently	linear	growth
in	the	original.	The	elegant	graph	below	is	due	to	Ross	Ihaka,	one	of	the	originators	of	the
statistical	system	R.
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In	the	period	1939	to	1963,	the	doctors'	incomes	went	up	from	$3,262	to	$25,050.	So	during
that	period	the	average	increase	in	income	per	year	was	about	$900.

(25050	-	3262)/(1963	-	1939)

907.8333333333334

In	Ross	Ihaka's	graph	you	can	see	that	in	this	period,	the	doctors'	incomes	rise	roughly
linearly	at	a	fairly	steady	rate.	That	rate	is	about	$900,	as	we	have	just	calculated.

But	in	the	period	1963	to	1976,	the	rate	is	more	than	three	times	as	high:

(62799	-	25050)/(1976	-	1963)

2903.769230769231
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That	is	why	the	graph	rises	much	more	steeply	after	1963.

This	chapter	introduces	many	types	of	expressions.	Learning	to	program	involves	trying	out
everything	you	learn	in	combination,	investigating	the	behavior	of	the	computer.	What
happens	if	you	divide	by	zero?	What	happens	if	you	divide	twice	in	a	row?	You	don't	always
need	to	ask	an	expert	(or	the	Internet);	many	of	these	details	can	be	discovered	by	trying
them	out	yourself.
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Names
Interact
Computers	are	designed	to	perform	numerical	calculations,	but	there	are	some	important
details	about	working	with	numbers	that	every	programmer	working	with	quantitative	data
should	know.	Python	(and	most	other	programming	languages)	distinguishes	between	two
different	types	of	numbers:

Integers	are	called		int		values	in	the	Python	language.	They	can	only	represent	whole
numbers	(negative,	zero,	or	positive)	that	don't	have	a	fractional	component
Real	numbers	are	called		float		values	(or	floating	point	values)	in	the	Python
language.	They	can	represent	whole	or	fractional	numbers	but	have	some	limitations.

The	type	of	a	number	is	evident	from	the	way	it	is	displayed:		int		values	have	no	decimal
point	and		float		values	always	have	a	decimal	point.

#	Some	int	values

2

2

1	+	3

4

-1234567890000000000

-1234567890000000000

#	Some	float	values

1.2

1.2
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1.5	+	2

3.5

3	/	1

3.0

-12345678900000000000.0

-1.23456789e+19

When	a		float		value	is	combined	with	an		int		value	using	some	arithmetic	operator,	then
the	result	is	always	a		float		value.	In	most	cases,	two	integers	combine	to	form	another
integer,	but	any	number	(	int		or		float	)	divided	by	another	will	be	a		float		value.	Very
large	or	very	small		float		values	are	displayed	using	scientific	notation.

Float	Values¶
Float	values	are	very	flexible,	but	they	do	have	limits.

1.	 A		float		can	represent	extremely	large	and	extremely	small	numbers.	There	are	limits,
but	you	will	rarely	encounter	them.

2.	 A		float		only	represents	15	or	16	significant	digits	for	any	number;	the	remaining
precision	is	lost.	This	limited	precision	is	enough	for	the	vast	majority	of	applications.

3.	 After	combining		float		values	with	arithmetic,	the	last	few	digits	may	be	incorrect.
Small	rounding	errors	are	often	confusing	when	first	encountered.

The	first	limit	can	be	observed	in	two	ways.	If	the	result	of	a	computation	is	a	very	large
number,	then	it	is	represented	as	infinite.	If	the	result	is	a	very	small	number,	then	it	is
represented	as	zero.

2e306	*	10
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2e+307

2e306	*	100

inf

2e-322	/	10

2e-323

2e-322	/	100

0.0

The	second	limit	can	be	observed	by	an	expression	that	involves	numbers	with	more	than
15	significant	digits.	These	extra	digits	are	discarded	before	any	arithmetic	is	carried	out.

0.6666666666666666	-	0.6666666666666666123456789

0.0

The	third	limit	can	be	observed	when	taking	the	difference	between	two	expressions	that
should	be	equivalent.	For	example,	the	expression		2	**	0.5		computes	the	square	root	of	2,
but	squaring	this	value	does	not	exactly	recover	2.

2	**	0.5

1.4142135623730951

(2	**	0.5)	*	(2	**	0.5)
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2.0000000000000004

(2	**	0.5)	*	(2	**	0.5)	-	2

4.440892098500626e-16

The	final	result	above	is		0.0000000000000004440892098500626	,	a	number	that	is	very	close	to
zero.	The	correct	answer	to	this	arithmetic	expression	is	0,	but	a	small	error	in	the	final
significant	digit	appears	very	different	in	scientific	notation.	This	behavior	appears	in	almost
all	programming	languages	because	it	is	the	result	of	the	standard	way	that	arithmetic	is
carried	out	on	computers.

Although		float		values	are	not	always	exact,	they	are	certainly	reliable	and	work	the	same
way	across	all	different	kinds	of	computers	and	programming	languages.
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Names
Interact
Names	are	given	to	values	in	Python	using	an	assignment	statement.	In	an	assignment,	a
name	is	followed	by		=	,	which	is	followed	by	any	expression.	The	value	of	the	expression	to
the	right	of		=		is	assigned	to	the	name.	Once	a	name	has	a	value	assigned	to	it,	the	value
will	be	substituted	for	that	name	in	future	expressions.

a	=	10

b	=	20

a	+	b

30

A	previously	assigned	name	can	be	used	in	the	expression	to	the	right	of		=	.

quarter	=	1/4

half	=	2	*	quarter

half

0.5

However,	only	the	current	value	of	an	expression	is	assigned	to	a	name.	If	that	value
changes	later,	names	that	were	defined	in	terms	of	that	value	will	not	change	automatically.

quarter	=	4

half

0.5

Names	must	start	with	a	letter,	but	can	contain	both	letters	and	numbers.	A	name	cannot
contain	a	space;	instead,	it	is	common	to	use	an	underscore	character		_		to	replace	each
space.	Names	are	only	as	useful	as	you	make	them;	it's	up	to	the	programmer	to	choose
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names	that	are	easy	to	interpret.	Typically,	more	meaningful	names	can	be	invented	than		a	
and		b	.	For	example,	to	describe	the	sales	tax	on	a	$5	purchase	in	Berkeley,	CA,	the
following	names	clarify	the	meaning	of	the	various	quantities	involved.

purchase_price	=	5

state_tax_rate	=	0.075

county_tax_rate	=	0.02

city_tax_rate	=	0

sales_tax_rate	=	state_tax_rate	+	county_tax_rate	+	

city_tax_rate

sales_tax	=	purchase_price	*	sales_tax_rate

sales_tax

0.475
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Example:	Growth	Rates
Interact
The	relationship	between	two	measurements	of	the	same	quantity	taken	at	different	times	is
often	expressed	as	a	growth	rate.	For	example,	the	United	States	federal	government
employed	2,766,000	people	in	2002	and	2,814,000	people	in	2012.	To	compute	a	growth
rate,	we	must	first	decide	which	value	to	treat	as	the		initial		amount.	For	values	over	time,
the	earlier	value	is	a	natural	choice.	Then,	we	divide	the	difference	between	the		changed	
and		initial		amount	by	the		initial		amount.

initial	=	2766000

changed	=	2814000

(changed	-	initial)	/	initial

0.01735357917570499

It	is	also	typical	to	subtract	one	from	the	ratio	of	the	two	measurements,	which	yields	the
same	value.

(changed/initial)	-	1

0.017353579175704903

This	value	is	the	growth	rate	over	10	years.	A	useful	property	of	growth	rates	is	that	they
don't	change	even	if	the	values	are	expressed	in	different	units.	So,	for	example,	we	can
express	the	same	relationship	between	thousands	of	people	in	2002	and	2012.

initial	=	2766

changed	=	2814

(changed/initial)	-	1

0.017353579175704903

Example:	Growth	Rates
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In	10	years,	the	number	of	employees	of	the	US	Federal	Government	has	increased	by	only
1.74%.	In	that	time,	the	total	expenditures	of	the	US	Federal	Government	increased	from
$2.37	trillion	to	$3.38	trillion	in	2012.

initial	=	2.37

changed	=	3.38

(changed/initial)	-	1

0.4261603375527425

A	42.6%	increase	in	the	federal	budget	is	much	larger	than	the	1.74%	increase	in	federal
employees.	In	fact,	the	number	of	federal	employees	has	grown	much	more	slowly	than	the
population	of	the	United	States,	which	increased	9.21%	in	the	same	time	period	from	287.6
million	people	in	2002	to	314.1	million	in	2012.

initial	=	287.6

changed	=	314.1

(changed/initial)	-	1

0.09214186369958277

A	growth	rate	can	be	negative,	representing	a	decrease	in	some	value.	For	example,	the
number	of	manufacturing	jobs	in	the	US	decreased	from	15.3	million	in	2002	to	11.9	million
in	2012,	a	-22.2%	growth	rate.

initial	=	15.3

changed	=	11.9

(changed/initial)	-	1

-0.2222222222222222

An	annual	growth	rate	is	a	growth	rate	of	some	quantity	over	a	single	year.	An	annual	growth
rate	of	0.035,	accumulated	each	year	for	10	years,	gives	a	much	larger	ten-year	growth	rate
of	0.41	(or	41%).

Example:	Growth	Rates
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1.035	*	1.035	*	1.035	*	1.035	*	1.035	*	1.035	*	1.035	*	1.035	*	

1.035	*	1.035	-	1

0.410598760621121

This	same	computation	can	be	expressed	using	names	and	exponents.

annual_growth_rate	=	0.035

ten_year_growth_rate	=	(1	+	annual_growth_rate)	**	10	-	1

ten_year_growth_rate

0.410598760621121

Likewise,	a	ten-year	growth	rate	can	be	used	to	compute	an	equivalent	annual	growth	rate.
Below,		t		is	the	number	of	years	that	have	passed	between	measurements.	The	following
computes	the	annual	growth	rate	of	federal	expenditures	over	the	last	10	years.

initial	=	2.37

changed	=	3.38

t	=	10

(changed/initial)	**	(1/t)	-	1

0.03613617208346853

The	total	growth	over	10	years	is	equivalent	to	a	3.6%	increase	each	year.

In	summary,	a	growth	rate		g		is	used	to	describe	the	relative	size	of	an		initial		amount
and	a		changed		amount	after	some	amount	of	time		t	.	To	compute	 ,	apply	the
growth	rate		g		repeatedly,		t		times	using	exponentiation.

	initial	*	(1	+	g)	**	t	

To	compute		g	,	raise	the	total	growth	to	the	power	of		1/t		and	subtract	one.

	(changed/initial)	**	(1/t)	-	1	

Example:	Growth	Rates
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Call	Expressions
Interact
Call	expressions	invoke	functions,	which	are	named	operations.	The	name	of	the	function
appears	first,	followed	by	expressions	in	parentheses.

abs(-12)

12

round(5	-	1.3)

4

max(2,	2	+	3,	4)

5

In	this	last	example,	the		max		function	is	called	on	three	arguments:	2,	5,	and	4.	The	value
of	each	expression	within	parentheses	is	passed	to	the	function,	and	the	function	returns	the
final	value	of	the	full	call	expression.	The		max		function	can	take	any	number	of	arguments
and	returns	the	maximum.

A	few	functions	are	available	by	default,	such	as		abs		and		round	,	but	most	functions	that
are	built	into	the	Python	language	are	stored	in	a	collection	of	functions	called	a	module.	An
import	statement	is	used	to	provide	access	to	a	module,	such	as		math		or		operator	.

import	math

import	operator

math.sqrt(operator.add(4,	5))

3.0

Call	Expressions
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An	equivalent	expression	could	be	expressed	using	the		+		and		**		operators	instead.

(4	+	5)	**	0.5

3.0

Operators	and	call	expressions	can	be	used	together	in	an	expression.	The	percent
difference	between	two	values	is	used	to	compare	values	for	which	neither	one	is	obviously
	initial		or		changed	.	For	example,	in	2014	Florida	farms	produced	2.72	billion	eggs	while
Iowa	farms	produced	16.25	billion	eggs	\footnote{http://quickstats.nass.usda.gov/}.	The
percent	difference	is	100	times	the	absolute	value	of	the	difference	between	the	values,
divided	by	their	average.	In	this	case,	the	difference	is	larger	than	the	average,	and	so	the
percent	difference	is	greater	than	100.

florida	=	2.72

iowa	=	16.25

100*abs(florida-iowa)/((florida+iowa)/2)

142.6462836056932

Learning	how	different	functions	behave	is	an	important	part	of	learning	a	programming
language.	A	Jupyter	notebook	can	assist	in	remembering	the	names	and	effects	of	different
functions.	When	editing	a	code	cell,	press	the	tab	key	after	typing	the	beginning	of	a	name	to
bring	up	a	list	of	ways	to	complete	that	name.	For	example,	press	tab	after		math.		to	see	all
of	the	functions	available	in	the		math		module.	Typing	will	narrow	down	the	list	of	options.	To
learn	more	about	a	function,	place	a		?		after	its	name.	For	example,	typing		math.log?		will
bring	up	a	description	of	the		log		function	in	the		math		module.

math.log?

log(x[,	base])

Return	the	logarithm	of	x	to	the	given	base.

If	the	base	not	specified,	returns	the	natural	logarithm	(base	e)	of	x.

The	square	brackets	in	the	example	call	indicate	that	an	argument	is	optional.	That	is,		log	
can	be	called	with	either	one	or	two	arguments.
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math.log(16,	2)

4.0

math.log(16)/math.log(2)

4.0

The	list	of	Python's	built-in	functions	is	quite	long	and	includes	many	functions	that	are	never
needed	in	data	science	applications.	The	list	of	mathematical	functions	in	the		math		module
is	similarly	long.	This	text	will	introduce	the	most	important	functions	in	context,	rather	than
expecting	the	reader	to	memorize	or	understand	these	lists.

Example¶

In	1869,	a	French	civil	engineer	named	Charles	Joseph	Minard	created	what	is	still
considered	one	of	the	greatest	graphs	of	all	time.	It	shows	the	decimation	of	Napoleon's
army	during	its	retreat	from	Moscow.	In	1812,	Napoleon	had	set	out	to	conquer	Russia,	with
over	350,000	men	in	his	army.	They	did	reach	Moscow	but	were	plagued	by	losses	along
the	way.	The	Russian	army	kept	retreating	farther	and	farther	into	Russia,	deliberately
burning	fields	and	destroying	villages	as	it	retreated.	This	left	the	French	army	without	food
or	shelter	as	the	brutal	Russian	winter	began	to	set	in.	The	French	army	turned	back	without
a	decisive	victory	in	Moscow.	The	weather	got	colder	and	more	men	died.	Fewer	than
10,000	returned.
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The	graph	is	drawn	over	a	map	of	eastern	Europe.	It	starts	at	the	Polish-Russian	border	at
the	left	end.	The	light	brown	band	represents	Napoleon's	army	marching	towards	Moscow,
and	the	black	band	represents	the	army	returning.	At	each	point	of	the	graph,	the	width	of
the	band	is	proportional	to	the	number	of	soldiers	in	the	army.	At	the	bottom	of	the	graph,
Minard	includes	the	temperatures	on	the	return	journey.

Notice	how	narrow	the	black	band	becomes	as	the	army	heads	back.	The	crossing	of	the
Berezina	river	was	particularly	devastating;	can	you	spot	it	on	the	graph?

The	graph	is	remarkable	for	its	simplicity	and	power.	In	a	single	graph,	Minard	shows	six
variables:

the	number	of	soldiers
the	direction	of	the	march
the	latitude	and	longitude	of	location
the	temperature	on	the	return	journey
the	location	on	specific	dates	in	November	and	December

Tufte	says	that	Minard's	graph	is	"probably	the	best	statistical	graphic	ever	drawn."

Here	is	a	subset	of	Minard's	data,	adapted	from	The	Grammar	of	Graphics	by	Leland
Wilkinson.

Each	row	of	the	column	represents	the	state	of	the	army	in	a	particular	location.	The
columns	show	the	longitude	and	latitude	in	degrees,	the	name	of	the	location,	whether	the
army	was	advancing	or	in	retreat,	and	an	estimate	of	the	number	of	men.

In	this	table	the	biggest	change	in	the	number	of	men	between	two	consecutive	locations	is
when	the	retreat	begins	at	Moscow,	as	is	the	biggest	percentage	change.
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moscou	=	100000

wixma	=	55000

wixma	-	moscou

-45000

(wixma	-	moscou)/moscou

-0.45

That's	a	45%	drop	in	the	number	of	men	in	the	fighting	at	Moscow.	In	other	words,	almost
half	of	Napoleon's	men	who	made	it	into	Moscow	didn't	get	very	much	farther.

As	you	can	see	in	the	graph,	Moiodexno	is	pretty	close	to	Kowno	where	the	army	started
out.	Fewer	than	10%	of	the	men	who	marched	into	Smolensk	during	the	advance	made	it	as
far	as	Moiodexno	on	the	way	back.

smolensk_A	=	145000

moiodexno	=	12000

(moiodexno	-	smolensk_A)/smolensk_A

-0.9172413793103448

Yes,	you	could	do	these	calculations	by	just	using	the	numbers	without	names.	But	the
names	make	it	much	easier	to	read	the	code	and	interpret	the	results.

It	is	worth	noting	that	bigger	absolute	changes	don't	always	correspond	to	bigger	percentage
changes.

The	absolute	loss	from	Smolensk	to	Dorogobouge	during	the	advance	was	5,000	men,
whereas	the	corresponding	loss	from	Smolensk	to	Orscha	during	the	retreat	was	smaller,	at
4,000	men.

However,	the	percent	change	was	much	larger	between	Smolensk	and	Orscha	because	the
total	number	of	men	in	Smolensk	was	much	smaller	during	the	retreat.
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dorogobouge	=	140000

smolensk_R	=	24000

orscha	=	20000

abs(dorogobouge	-	smolensk_A)

5000

abs(dorogobouge	-	smolensk_A)/smolensk_A

0.034482758620689655

abs(orscha	-	smolensk_R)

4000

abs(orscha	-	smolensk_R)/smolensk_R

0.16666666666666666
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Data	Types
Interact
Every	value	has	a	type,	and	the	built-in		type		function	returns	the	type	of	the	result	of	any
expression.

type(3)

int

type(3/1)

float

The		type		of	an	expression	is	the	type	of	its	final	value.	So,	the		type		function	will	never
indicate	that	the	type	of	an	expression	is	a	name,	because	names	are	always	evaluated	to
their	assigned	values.

x	=	3

type(x)	#	The	type	of	x	is	an	int,	not	a	name

int

Another	type	we	have	encountered	already	is	a	built-in	function.	Python	indicates	that	the
type	is	a		builtin_function_or_method	;	the	distinction	between	a	function	and	a	method	is
not	important	at	this	stage.

type(abs)

builtin_function_or_method

This	chapter	will	explore	other	useful	types	of	data.
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Strings
Interact
Much	of	the	world's	data	is	text,	and	a	piece	of	text	represented	in	a	computer	is	called	a
string.	A	string	can	represent	a	word,	a	sentence,	or	even	the	contents	of	every	book	in	a
library.	Since	text	can	include	numbers	(like	this:	5)	or	truth	values	(True),	a	string	can	also
describe	those	things.

The	meaning	of	an	expression	depends	both	upon	its	structure	and	the	types	of	values	that
are	being	combined.	So,	for	instance,	adding	two	strings	together	produces	another	string.
This	expression	is	still	an	addition	expression,	but	it	is	combining	a	different	type	of	value.

"data"	+	"science"

'datascience'

Addition	is	completely	literal;	it	combines	these	two	strings	together	without	regard	for	their
contents.	It	doesn't	add	a	space	because	these	are	different	words;	that's	up	to	the
programmer	(you)	to	specify.

"data"	+	"	"	+	"science"

'data	science'

Single	and	double	quotes	can	both	be	used	to	create	strings:		'hi'		and		"hi"		are	identical
expressions.	Double	quotes	are	often	preferred	because	they	allow	you	to	include
apostrophes	inside	of	strings.

"This	won't	work	with	a	single-quoted	string!"

"This	won't	work	with	a	single-quoted	string!"

Why	not?	Try	it	out.

The		str		function	returns	a	string	representation	of	any	value.	Using	this	function,	strings
can	be	constructed	that	have	embedded	values.
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55

http://datahub.berkeley.edu/user-redirect/interact?repo=textbook&path=notebooks/Strings.ipynb


"That's	"	+	str(1	+	1)	+	'	'	+	str(True)

"That's	2	True"

Strings

56



String	Methods
Interact
From	an	existing	string,	related	strings	can	be	constructed	using	string	methods,	which	are
functions	that	operate	on	strings.	These	methods	are	called	by	placing	a	dot	after	the	string,
then	calling	the	function.

For	example,	the	following	method	generates	an	uppercased	version	of	a	string.

"loud".upper()

'LOUD'

Perhaps	the	most	important	method	is		replace	,	which	replaces	all	instances	of	a	substring
within	the	string.	The		replace		method	takes	two	arguments,	the	text	to	be	replaced	and	its
replacement.

'hitchhiker'.replace('hi',	'ma')

'matchmaker'

String	methods	can	also	be	invoked	using	variable	names,	as	long	as	those	names	are
bound	to	strings.	So,	for	instance,	the	following	two-step	process	generates	the	word
"degrade"	starting	from	"train"	by	first	creating	"ingrain"	and	then	applying	a	second
replacement.

s	=	"train"

t	=	s.replace('t',	'ing')

u	=	t.replace('in',	'de')

u

'degrade'

Note	that	the	line		t	=	s.replace('t',	'ing')		doesn't	change	the	string		s	,	which	is	still
"train".	The	method	call		s.replace('t',	'ing')		just	has	a	value,	which	is	the	string	"ingrain".
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s

'train'

This	is	the	first	time	we've	seen	methods,	but	methods	are	not	unique	to	strings.	As	we	will
see	shortly,	other	types	of	objects	can	have	them.
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Comparisons
Interact
Boolean	values	most	often	arise	from	comparison	operators.	Python	includes	a	variety	of
operators	that	compare	values.	For	example,		3		is	larger	than		1	+	1	.

3	>	1	+	1

True

The	value		True		indicates	that	the	comparison	is	valid;	Python	has	confirmed	this	simple
fact	about	the	relationship	between		3		and		1+1	.	The	full	set	of	common	comparison
operators	are	listed	below.

Comparison Operator True	example False	Example

Less	than < 2	<	3 2	<	2

Greater	than > 3>2 3>3

Less	than	or	equal <= 2	<=	2 3	<=	2

Greater	or	equal >= 3	>=	3 2	>=	3

Equal == 3	==	3 3	==	2

Not	equal != 3	!=	2 2	!=	2

An	expression	can	contain	multiple	comparisons,	and	they	all	must	hold	in	order	for	the
whole	expression	to	be		True	.	For	example,	we	can	express	that		1+1		is	between		1		and
	3		using	the	following	expression.

1	<	1	+	1	<	3

True

The	average	of	two	numbers	is	always	between	the	smaller	number	and	the	larger	number.
We	express	this	relationship	for	the	numbers		x		and		y		below.	You	can	try	different	values
of		x		and		y		to	confirm	this	relationship.
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x	=	12

y	=	5

min(x,	y)	<=	(x+y)/2	<=	max(x,	y)

True

Strings	can	also	be	compared,	and	their	order	is	alphabetical.	A	shorter	string	is	less	than	a
longer	string	that	begins	with	the	shorter	string.

"Dog"	>	"Catastrophe"	>	"Cat"

True
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Sequences
Interact
Values	can	be	grouped	together	into	collections,	which	allows	programmers	to	organize
those	values	and	refer	to	all	of	them	with	a	single	name.	By	grouping	values	together,	we
can	write	code	that	performs	a	computation	on	many	pieces	of	data	at	once.

Calling	the	function		make_array		on	several	values	places	them	into	an	array,	which	is	a	kind
of	sequential	collection.	Below,	we	collect	four	different	temperatures	into	an	array	called
	temps	.	These	are	the	estimated	average	daily	high	temperatures	over	all	land	on	Earth	(in
degrees	Celsius)	for	the	decades	surrounding	1850,	1900,	1950,	and	2000,	respectively,
expressed	as	deviations	from	the	average	absolute	high	temperature	between	1951	and
1980,	which	was	14.48	degrees.

baseline_high	=	14.48

highs	=	make_array(baseline_high	-	0.880,	baseline_high	-	0.093,

																			baseline_high	+	0.105,	baseline_high	+	0.684)

highs

array([	13.6		,		14.387,		14.585,		15.164])

Collections	allow	us	to	pass	multiple	values	into	a	function	using	a	single	name.	For
instance,	the		sum		function	computes	the	sum	of	all	values	in	a	collection,	and	the		len	
function	computes	its	length.	(That's	the	number	of	values	we	put	in	it.)	Using	them	together,
we	can	compute	the	average	of	a	collection.

sum(highs)/len(highs)

14.434000000000001

The	complete	chart	of	daily	high	and	low	temperatures	appears	below.

Mean	of	Daily	High	Temperature¶
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Mean	of	Daily	Low	Temperature¶
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Arrays
Interact
While	there	are	many	kinds	of	collections	in	Python,	we	will	work	primarily	with	arrays	in	this
class.	We've	already	seen	that	the		make_array		function	can	be	used	to	create	arrays	of
numbers.

Arrays	can	also	contain	strings	or	other	types	of	values,	but	a	single	array	can	only	contain	a
single	kind	of	data.	(It	usually	doesn't	make	sense	to	group	together	unlike	data	anyway.)
For	example:

english_parts_of_speech	=	make_array("noun",	"pronoun",	"verb",	

"adverb",	"adjective",	"conjunction",	"preposition",	

"interjection")

english_parts_of_speech

array(['noun',	'pronoun',	'verb',	'adverb',	'adjective',	

'conjunction',

							'preposition',	'interjection'],	

						dtype='<U12')

Returning	to	the	temperature	data,	we	create	arrays	of	average	daily	high	temperatures	for
the	decades	surrounding	1850,	1900,	1950,	and	2000.

baseline_high	=	14.48

highs	=	make_array(baseline_high	-	0.880,	

																			baseline_high	-	0.093,

																			baseline_high	+	0.105,	

																			baseline_high	+	0.684)

highs

array([	13.6		,		14.387,		14.585,		15.164])

Arrays	can	be	used	in	arithmetic	expressions	to	compute	over	their	contents.	When	an	array
is	combined	with	a	single	number,	that	number	is	combined	with	each	element	of	the	array.
Therefore,	we	can	convert	all	of	these	temperatures	to	Fahrenheit	by	writing	the	familiar
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conversion	formula.

(9/5)	*	highs	+	32

array([	56.48		,		57.8966,		58.253	,		59.2952])

Arrays	also	have	methods,	which	are	functions	that	operate	on	the	array	values.	The		mean	
of	a	collection	of	numbers	is	its	average	value:	the	sum	divided	by	the	length.	Each	pair	of
parentheses	in	the	examples	below	is	part	of	a	call	expression;	it's	calling	a	function	with	no
arguments	to	perform	a	computation	on	the	array	called		highs	.

highs.size

4

highs.sum()

57.736000000000004

highs.mean()

14.434000000000001

Functions	on	Arrays¶

The		numpy		package,	abbreviated		np		in	programs,	provides	Python	programmers	with
convenient	and	powerful	functions	for	creating	and	manipulating	arrays.
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import	numpy	as	np

For	example,	the		diff		function	computes	the	difference	between	each	adjacent	pair	of
elements	in	an	array.	The	first	element	of	the		diff		is	the	second	element	minus	the	first.

np.diff(highs)

array([	0.787,		0.198,		0.579])

The	full	Numpy	reference	lists	these	functions	exhaustively,	but	only	a	small	subset	are	used
commonly	for	data	processing	applications.	These	are	grouped	into	different	packages
within		np	.	Learning	this	vocabulary	is	an	important	part	of	learning	the	Python	language,	so
refer	back	to	this	list	often	as	you	work	through	examples	and	problems.

However,	you	don't	need	to	memorize	these.	Use	this	as	a	reference.

Each	of	these	functions	takes	an	array	as	an	argument	and	returns	a	single	value.

Function Description

	np.prod	 Multiply	all	elements	together

	np.sum	 Add	all	elements	together

	np.all	
Test	whether	all	elements	are	true	values	(non-zero	numbers	are
true)

	np.any	
Test	whether	any	elements	are	true	values	(non-zero	numbers	are
true)

	np.count_nonzero	 Count	the	number	of	non-zero	elements

Each	of	these	functions	takes	an	array	as	an	argument	and	returns	an	array	of	values.
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Function Description

	np.diff	 Difference	between	adjacent	elements

	np.round	 Round	each	number	to	the	nearest	integer	(whole	number)

	np.cumprod	 A	cumulative	product:	for	each	element,	multiply	all	elements	so	far

	np.cumsum	 A	cumulative	sum:	for	each	element,	add	all	elements	so	far

	np.exp	 Exponentiate	each	element

	np.log	 Take	the	natural	logarithm	of	each	element

	np.sqrt	 Take	the	square	root	of	each	element

	np.sort	 Sort	the	elements

Each	of	these	functions	takes	an	array	of	strings	and	returns	an	array.

Function Description

	np.char.lower	 Lowercase	each	element

	np.char.upper	 Uppercase	each	element

	np.char.strip	 Remove	spaces	at	the	beginning	or	end	of	each	element

	np.char.isalpha	 Whether	each	element	is	only	letters	(no	numbers	or	symbols)

	np.char.isnumeric	 Whether	each	element	is	only	numeric	(no	letters)

Each	of	these	functions	takes	both	an	array	of	strings	and	a	search	string;	each	returns	an
array.

Function Description

	np.char.count	
Count	the	number	of	times	a	search	string	appears	among	the
elements	of	an	array

	np.char.find	
The	position	within	each	element	that	a	search	string	is	found
first

	np.char.rfind	
The	position	within	each	element	that	a	search	string	is	found
last

	np.char.startswith	 Whether	each	element	starts	with	the	search	string
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Ranges
Interact
A	range	is	an	array	of	numbers	in	increasing	or	decreasing	order,	each	separated	by	a
regular	interval.	Ranges	are	useful	in	a	surprisingly	large	number	of	situations,	so	it's
worthwhile	to	learn	about	them.

Ranges	are	defined	using	the		np.arange		function,	which	takes	either	one,	two,	or	three
arguments:	a	start,	and	end,	and	a	'step'.

If	you	pass	one	argument	to		np.arange	,	this	becomes	the		end		value,	with		start=0	,
	step=1		assumed.	Two	arguments	give	the		start		and		end		with		step=1		assumed.	Three
arguments	give	the		start	,		end		and		step		explicitly.

A	range	always	includes	its		start		value,	but	does	not	include	its		end		value.	It	counts	up
by		step	,	and	it	stops	before	it	gets	to	the		end	.

np.arange(end):	An	array	starting	with	0	of	increasing	consecutive	integers,	stopping	

before	end.

np.arange(5)

array([0,	1,	2,	3,	4])

Notice	how	the	array	starts	at	0	and	goes	only	up	to	4,	not	to	the	end	value	of	5.

np.arange(start,	end):	An	array	of	consecutive	increasing	integers	from	start,	stoppin

g	before	end.

np.arange(3,	9)

array([3,	4,	5,	6,	7,	8])

np.arange(start,	end,	step):	A	range	with	a	difference	of	step	between	each	pair	of	co

nsecutive	values,	starting	from	start	and	stopping	before	end.
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np.arange(3,	30,	5)

array([	3,		8,	13,	18,	23,	28])

This	array	starts	at	3,	then	takes	a	step	of	5	to	get	to	8,	then	another	step	of	5	to	get	to	13,
and	so	on.

When	you	specify	a	step,	the	start,	end,	and	step	can	all	be	either	positive	or	negative	and
may	be	whole	numbers	or	fractions.

np.arange(1.5,	-2,	-0.5)

array([	1.5,		1.	,		0.5,		0.	,	-0.5,	-1.	,	-1.5])

Example:	Leibniz's	formula	for	 ¶

The	great	German	mathematician	and	philosopher	Gottfried	Wilhelm	Leibniz	(1646	-	1716)
discovered	a	wonderful	formula	for	 	as	an	infinite	sum	of	simple	fractions.	The	formula	is

Though	some	math	is	needed	to	establish	this,	we	can	use	arrays	to	convince	ourselves	that
the	formula	works.	Let's	calculate	the	first	5000	terms	of	Leibniz's	infinite	sum	and	see	if	it	is
close	to	 .

We	will	calculate	this	finite	sum	by	adding	all	the	positive	terms	first	and	then	subtracting	the
sum	of	all	the	negative	terms	[1]:
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The	positive	terms	in	the	sum	have	1,	5,	9,	and	so	on	in	the	denominators.	The	array
	by_four_to_20		contains	these	numbers	up	to	17:

by_four_to_20	=	np.arange(1,	20,	4)

by_four_to_20

array([	1,		5,		9,	13,	17])

To	get	an	accurate	approximation	to	 ,	we'll	use	the	much	longer	array
	positive_term_denominators	.

positive_term_denominators	=	np.arange(1,	10000,	4)

positive_term_denominators

array([			1,				5,				9,	...,	9989,	9993,	9997])

The	positive	terms	we	actually	want	to	add	together	are	just	1	over	these	denominators:

positive_terms	=	1	/	positive_term_denominators

The	negative	terms	have	3,	7,	11,	and	so	on	on	in	their	denominators.	This	array	is	just	2
added	to		positive_term_denominators	.

negative_terms	=	1	/	(positive_term_denominators	+	2)

The	overall	sum	is

4	*	(	sum(positive_terms)	-	sum(negative_terms)	)

3.1413926535917955

This	is	very	close	to	 .	Leibniz's	formula	is	looking	good!

Footnotes¶
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[1]	Surprisingly,	when	we	add	infinitely	many	fractions,	the	order	can	matter!	But	our
approximation	to	 	uses	only	a	large	finite	number	of	fractions,	so	it's	okay	to	add	the	terms
in	any	convenient	order.
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Interact

More	on	Arrays¶
It's	often	necessary	to	compute	something	that	involves	data	from	more	than	one	array.	If
two	arrays	are	of	the	same	size,	Python	makes	it	easy	to	do	calculations	involving	both
arrays.

For	our	first	example,	we	return	once	more	to	the	temperature	data.	This	time,	we	create
arrays	of	average	daily	high	and	low	temperatures	for	the	decades	surrounding	1850,	1900,
1950,	and	2000.

baseline_high	=	14.48

highs	=	make_array(baseline_high	-	0.880,	

																			baseline_high	-	0.093,

																			baseline_high	+	0.105,	

																			baseline_high	+	0.684)

highs

array([	13.6		,		14.387,		14.585,		15.164])

baseline_low	=	3.00

lows	=	make_array(baseline_low	-	0.872,	baseline_low	-	0.629,

																		baseline_low	-	0.126,	baseline_low	+	0.728)

lows

array([	2.128,		2.371,		2.874,		3.728])

Suppose	we'd	like	to	compute	the	average	daily	range	of	temperatures	for	each	decade.
That	is,	we	want	to	subtract	the	average	daily	high	in	the	1850s	from	the	average	daily	low	in
the	1850s,	and	the	same	for	each	other	decade.

We	could	write	this	laboriously	using		.item	:
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make_array(

				highs.item(0)	-	lows.item(0),

				highs.item(1)	-	lows.item(1),

				highs.item(2)	-	lows.item(2),

				highs.item(3)	-	lows.item(3)

)

array([	11.472,		12.016,		11.711,		11.436])

As	when	we	converted	an	array	of	temperatures	from	Celsius	to	Fahrenheit,	Python
provides	a	much	cleaner	way	to	write	this:

highs	-	lows

array([	11.472,		12.016,		11.711,		11.436])

What	we've	seen	in	these	examples	are	special	cases	of	a	general	feature	of	arrays.

Elementwise	arithmetic	on	pairs	of	numerical	arrays¶

If	an	arithmetic	operator	acts	on	two	arrays	of	the	same	size,	then	the	operation	is	performed
on	each	corresponding	pair	of	elements	in	the	two	arrays.	The	final	result	is	an	array.

For	example,	if		array1		and		array2		have	the	same	number	of	elements,	then	the	value	of
	array1	*	array2		is	an	array.	Its	first	element	is	the	first	element	of		array		times	the	first
element	of		array2	,	its	second	element	is	the	second	element	of		array1		times	the	second
element	of		array2	,	and	so	on.

Example:	Wallis'	Formula	for	 ¶
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The	number	 	is	important	in	many	different	areas	of	math.	Centuries	before	computers
were	invented,	mathematicians	worked	on	finding	simple	ways	to	approximate	the	numerical
value	of	 .	We	have	already	seen	Leibniz's	formula	for	 .	About	half	a	century	before
Leibniz,	the	English	mathematician	John	Wallis	(1616-1703)	also	expressed	 	in	terms	of
simple	fractions,	as	an	infinite	product.

This	is	a	product	of	"even/odd"	fractions.	Let's	use	arrays	to	multiply	a	million	of	them,	and
see	if	the	product	is	close	to	 .

Remember	that	multiplication	can	done	in	any	order	[1],	so	we	can	readjust	our	calculation
to:

We're	now	ready	to	do	the	calculation.	We	start	by	creating	an	array	of	even	numbers	2,	4,
6,	and	so	on	upto	1,000,000.	Then	we	create	two	lists	of	odd	numbers:	1,	3,	5,	7,	...	upto
999,999,	and	3,	5,	7,	...	upto	1,000,001.

even	=	np.arange(2,	1000001,	2)

one_below_even	=	even	-	1

one_above_even	=	even	+	1

Remember	that		np.prod		multiplies	all	the	elements	of	an	array	together.	Now	we	can
calcuate	Wallis'	product,	to	a	good	approximation.

2	*	np.prod(even/one_below_even)	*	np.prod(even/one_above_even)

3.1415910827951143

That's	 	correct	to	five	decimal	places.	Wallis	clearly	came	up	with	a	great	formula.

Footnotes¶
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[1]	As	we	saw	in	the	example	about	Leibniz's	formula,	when	we	add	infinitely	many	fractions,
the	order	can	matter.	The	same	is	true	with	multiplying	fractions,	as	we	are	doing	here.	But
our	approximation	to	 	uses	only	a	large	finite	number	of	fractions,	so	it's	okay	to	multiply
the	terms	in	any	convenient	order.
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Tables
Interact
Tables	are	a	fundamental	object	type	for	representing	data	sets.	A	table	can	be	viewed	in
two	ways:

a	sequence	of	named	columns	that	each	describe	a	single	aspect	of	all	entries	in	a	data
set,	or
a	sequence	of	rows	that	each	contain	all	information	about	a	single	entry	in	a	data	set.

In	order	to	use	tables,	import	all	of	the	module	called		datascience	,	a	module	created	for	this
text.

from	datascience	import	*

Empty	tables	can	be	created	using	the		Table		function.	An	empty	table	is	usefuly	because	it
can	be	extended	to	contain	new	rows	and	columns.

Table()

The		with_columns		method	on	a	table	constructs	a	new	table	with	additional	labeled
columns.	Each	column	of	a	table	is	an	array.	To	add	one	new	column	to	a	table,	call
	with_columns		with	a	label	and	an	array.	(The		with_column		method	can	be	used	with	the
same	effect.)

Below,	we	begin	each	example	with	an	empty	table	that	has	no	columns.

Table().with_columns('Number	of	petals',	make_array(8,	34,	5))

Number	of	petals

8

34

5

To	add	two	(or	more)	new	columns,	provide	the	labe	and	array	for	each	column.	All	columns
must	have	the	same	length,	or	an	error	will	occur.
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Table().with_columns(

				'Number	of	petals',	make_array(8,	34,	5),

				'Name',	make_array('lotus',	'sunflower',	'rose')

)

Number	of	petals Name

8 lotus

34 sunflower

5 rose

We	can	give	this	table	a	name,	and	then	extend	the	table	with	another	column.

flowers	=	Table().with_columns(

				'Number	of	petals',	make_array(8,	34,	5),

				'Name',	make_array('lotus',	'sunflower',	'rose')

)

flowers.with_columns(

				'Color',	make_array('pink',	'yellow',	'red')

)

Number	of	petals Name Color

8 lotus pink

34 sunflower yellow

5 rose red

The		with_columns		method	creates	a	new	table	each	time	it	is	called,	so	the	original	table	is
not	affected.	For	example,	the	table		an_example		still	has	only	the	two	columns	that	it	had
when	it	was	created.

flowers

Number	of	petals Name

8 lotus

34 sunflower

5 rose
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Creating	tables	in	this	way	involves	a	lot	of	typing.	If	the	data	have	already	been	entered
somewhere,	it	is	usually	possible	to	use	Python	to	read	it	into	a	table,	instead	of	typing	it	all
in	cell	by	cell.

Often,	tables	are	created	from	files	that	contain	comma-separated	values.	Such	files	are
called	CSV	files.

Below,	we	use	the	Table	method		read_table		to	read	a	CSV	file	that	contains	some	of	the
data	used	by	Minard	in	his	graphic	about	Napoleon's	Russian	campaign.	The	data	are
placed	in	a	table	named		minard	.

minard	=	Table.read_table('minard.csv')

minard

Longitude Latitude City Direction Survivors

32 54.8 Smolensk Advance 145000

33.2 54.9 Dorogobouge Advance 140000

34.4 55.5 Chjat Advance 127100

37.6 55.8 Moscou Advance 100000

34.3 55.2 Wixma Retreat 55000

32 54.6 Smolensk Retreat 24000

30.4 54.4 Orscha Retreat 20000

26.8 54.3 Moiodexno Retreat 12000

We	will	use	this	small	table	to	demonstrate	some	useful	Table	methods.	We	will	then	use
those	same	methods,	and	develop	other	methods,	on	much	larger	tables	of	data.

The	Size	of	the	Table¶

The	method		num_columns		gives	the	number	of	columns	in	the	table,	and		num_rows		the
number	of	rows.

minard.num_columns

5
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minard.num_rows

8

Column	Labels¶

The	method		labels		can	be	used	to	list	the	labels	of	all	the	columns.	With		minard		we	don't
gain	much	by	this,	but	it	can	be	very	useful	for	tables	that	are	so	large	that	not	all	columns
are	visible	on	the	screen.

minard.labels

('Longitude',	'Latitude',	'City',	'Direction',	'Survivors')

We	can	change	column	labels	using	the		relabeled		method.	This	creates	a	new	table	and
leaves		minard		unchanged.

minard.relabeled('City',	'City	Name')

Longitude Latitude City	Name Direction Survivors

32 54.8 Smolensk Advance 145000

33.2 54.9 Dorogobouge Advance 140000

34.4 55.5 Chjat Advance 127100

37.6 55.8 Moscou Advance 100000

34.3 55.2 Wixma Retreat 55000

32 54.6 Smolensk Retreat 24000

30.4 54.4 Orscha Retreat 20000

26.8 54.3 Moiodexno Retreat 12000

However,	this	method	does	not	change	the	original	table.

minard
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Longitude Latitude City Direction Survivors

32 54.8 Smolensk Advance 145000

33.2 54.9 Dorogobouge Advance 140000

34.4 55.5 Chjat Advance 127100

37.6 55.8 Moscou Advance 100000

34.3 55.2 Wixma Retreat 55000

32 54.6 Smolensk Retreat 24000

30.4 54.4 Orscha Retreat 20000

26.8 54.3 Moiodexno Retreat 12000

A	common	pattern	is	to	assign	the	original	name		minard		to	the	new	table,	so	that	all	future
uses	of		minard		will	refer	to	the	relabeled	table.

minard	=	minard.relabeled('City',	'City	Name')

minard

Longitude Latitude City	Name Direction Survivors

32 54.8 Smolensk Advance 145000

33.2 54.9 Dorogobouge Advance 140000

34.4 55.5 Chjat Advance 127100

37.6 55.8 Moscou Advance 100000

34.3 55.2 Wixma Retreat 55000

32 54.6 Smolensk Retreat 24000

30.4 54.4 Orscha Retreat 20000

26.8 54.3 Moiodexno Retreat 12000

Accessing	the	Data	in	a	Column¶

We	can	use	a	column's	label	to	access	the	array	of	data	in	the	column.

minard.column('Survivors')

array([145000,	140000,	127100,	100000,		55000,		24000,		20000,		

12000])
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The	5	columns	are	indexed	0,	1,	2,	3,	and	4.	The	column		Survivors		can	also	be	accessed
by	using	its	column	index.

minard.column(4)

array([145000,	140000,	127100,	100000,		55000,		24000,		20000,		

12000])

The	8	items	in	the	array	are	indexed	0,	1,	2,	and	so	on,	up	to	7.	The	items	in	the	column	can
be	accessed	using		item	,	as	with	any	array.

minard.column(4).item(0)

145000

minard.column(4).item(5)

24000

Working	with	the	Data	in	a	Column¶

Because	columns	are	arrays,	we	can	use	array	operations	on	them	to	discover	new
information.	For	example,	we	can	create	a	new	column	that	contains	the	percent	of	all
survivors	at	each	city	after	Smolensk.

initial	=	minard.column('Survivors').item(0)

minard	=	minard.with_columns(

				'Percent	Surviving',	minard.column('Survivors')/initial

)

minard
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Longitude Latitude City	Name Direction Survivors Percent
Surviving

32 54.8 Smolensk Advance 145000 100.00%

33.2 54.9 Dorogobouge Advance 140000 96.55%

34.4 55.5 Chjat Advance 127100 87.66%

37.6 55.8 Moscou Advance 100000 68.97%

34.3 55.2 Wixma Retreat 55000 37.93%

32 54.6 Smolensk Retreat 24000 16.55%

30.4 54.4 Orscha Retreat 20000 13.79%

26.8 54.3 Moiodexno Retreat 12000 8.28%

To	make	the	proportions	in	the	new	columns	appear	as	percents,	we	can	use	the	method
	set_format		with	the	option		PercentFormatter	.	The		set_format		method	takes		Formatter	
objects,	which	exist	for	dates	(	DateFormatter	),	currencies	(	CurrencyFormatter	),	numbers,
and	percentages.

minard.set_format('Percent	Surviving',	PercentFormatter)

Longitude Latitude City	Name Direction Survivors Percent
Surviving

32 54.8 Smolensk Advance 145000 100.00%

33.2 54.9 Dorogobouge Advance 140000 96.55%

34.4 55.5 Chjat Advance 127100 87.66%

37.6 55.8 Moscou Advance 100000 68.97%

34.3 55.2 Wixma Retreat 55000 37.93%

32 54.6 Smolensk Retreat 24000 16.55%

30.4 54.4 Orscha Retreat 20000 13.79%

26.8 54.3 Moiodexno Retreat 12000 8.28%

Choosing	Sets	of	Columns¶

The	method		select		creates	a	new	table	that	contains	only	the	specified	columns.

minard.select('Longitude',	'Latitude')
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Longitude Latitude

32 54.8

33.2 54.9

34.4 55.5

37.6 55.8

34.3 55.2

32 54.6

30.4 54.4

26.8 54.3

The	same	selection	can	be	made	using	column	indices	instead	of	labels.

minard.select(0,	1)

Longitude Latitude

32 54.8

33.2 54.9

34.4 55.5

37.6 55.8

34.3 55.2

32 54.6

30.4 54.4

26.8 54.3

The	result	of	using		select		is	a	new	table,	even	when	you	select	just	one	column.

minard.select('Survivors')
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Survivors

145000

140000

127100

100000

55000

24000

20000

12000

Notice	that	the	result	is	a	table,	unlike	the	result	of		column	,	which	is	an	array.

minard.column('Survivors')

array([145000,	140000,	127100,	100000,		55000,		24000,		20000,		

12000])

Another	way	to	create	a	new	table	consisting	of	a	set	of	columns	is	to		drop		the	columns
you	don't	want.

minard.drop('Longitude',	'Latitude',	'Direction')

City	Name Survivors Percent	Surviving

Smolensk 145000 100.00%

Dorogobouge 140000 96.55%

Chjat 127100 87.66%

Moscou 100000 68.97%

Wixma 55000 37.93%

Smolensk 24000 16.55%

Orscha 20000 13.79%

Moiodexno 12000 8.28%
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Neither		select		nor		drop		change	the	original	table.	Instead,	they	create	new	smaller	tables
that	share	the	same	data.	The	fact	that	the	original	table	is	preserved	is	useful!	You	can
generate	multiple	different	tables	that	only	consider	certain	columns	without	worrying	that
one	analysis	will	affect	the	other.

minard

Longitude Latitude City	Name Direction Survivors Percent
Surviving

32 54.8 Smolensk Advance 145000 100.00%

33.2 54.9 Dorogobouge Advance 140000 96.55%

34.4 55.5 Chjat Advance 127100 87.66%

37.6 55.8 Moscou Advance 100000 68.97%

34.3 55.2 Wixma Retreat 55000 37.93%

32 54.6 Smolensk Retreat 24000 16.55%

30.4 54.4 Orscha Retreat 20000 13.79%

26.8 54.3 Moiodexno Retreat 12000 8.28%

All	of	the	methods	that	we	have	used	above	can	be	applied	to	any	table.

Tables

85



Sorting	Rows
Interact
"The	NBA	is	the	highest	paying	professional	sports	league	in	the	world,"	reported	CNN	in
March	2016.	The	table		nba_salaries		contains	the	salaries	of	all	National	Basketball
Association	players	in	2015-2016.

Each	row	represents	one	player.	The	columns	are:

Column	Label Description

	PLAYER	 Player's	name

	POSITION	 Player's	position	on	team

	TEAM	 Team	name

	'15-'16	SALARY	 Player's	salary	in	2015-2016,	in	millions	of	dollars

The	code	for	the	positions	is	PG	(Point	Guard),	SG	(Shooting	Guard),	PF	(Power	Forward),
SF	(Small	Forward),	and	C	(Center).	But	what	follows	doesn't	involve	details	about	how
basketball	is	played.

The	first	row	shows	that	Paul	Millsap,	Power	Forward	for	the	Atlanta	Hawks,	had	a	salary	of
almost	 	million	in	2015-2016.

#	This	table	can	be	found	online:	

https://www.statcrunch.com/app/index.php?dataid=1843341

nba_salaries	=	Table.read_table('nba_salaries.csv')

nba_salaries
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PLAYER POSITION TEAM '15-'16	SALARY

Paul	Millsap PF Atlanta	Hawks 18.6717

Al	Horford C Atlanta	Hawks 12

Tiago	Splitter C Atlanta	Hawks 9.75625

Jeff	Teague PG Atlanta	Hawks 8

Kyle	Korver SG Atlanta	Hawks 5.74648

Thabo	Sefolosha SF Atlanta	Hawks 4

Mike	Scott PF Atlanta	Hawks 3.33333

Kent	Bazemore SF Atlanta	Hawks 2

Dennis	Schroder PG Atlanta	Hawks 1.7634

Tim	Hardaway	Jr. SG Atlanta	Hawks 1.30452

...	(407	rows	omitted)

The	table	contains	417	rows,	one	for	each	player.	Only	10	of	the	rows	are	displayed.	The
	show		method	allows	us	to	specify	the	number	of	rows,	with	the	default	(no	specification)
being	all	the	rows	of	the	table.

nba_salaries.show(3)

PLAYER POSITION TEAM '15-'16	SALARY

Paul	Millsap PF Atlanta	Hawks 18.6717

Al	Horford C Atlanta	Hawks 12

Tiago	Splitter C Atlanta	Hawks 9.75625

...	(414	rows	omitted)

Glance	through	about	20	rows	or	so,	and	you	will	see	that	the	rows	are	in	alphabetical	order
by	team	name.	It's	also	possible	to	list	the	same	rows	in	alphabetical	order	by	player	name
using	the		sort		method.	The	argument	to		sort		is	a	column	label	or	index.

nba_salaries.sort('PLAYER').show(5)
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PLAYER POSITION TEAM '15-'16	SALARY

Aaron	Brooks PG Chicago	Bulls 2.25

Aaron	Gordon PF Orlando	Magic 4.17168

Aaron	Harrison SG Charlotte	Hornets 0.525093

Adreian	Payne PF Minnesota	Timberwolves 1.93884

Al	Horford C Atlanta	Hawks 12

...	(412	rows	omitted)

To	examine	the	players'	salaries,	it	would	be	much	more	helpful	if	the	data	were	ordered	by
salary.

To	do	this,	we	will	first	simplify	the	label	of	the	column	of	salaries	(just	for	convenience),	and
then	sort	by	the	new	label		SALARY	.

This	arranges	all	the	rows	of	the	table	in	increasing	order	of	salary,	with	the	lowest	salary
appearing	first.	The	output	is	a	new	table	with	the	same	columns	as	the	original	but	with	the
rows	rearranged.

nba	=	nba_salaries.relabeled("'15-'16	SALARY",	'SALARY')

nba.sort('SALARY')

PLAYER POSITION TEAM SALARY

Thanasis	Antetokounmpo SF New	York	Knicks 0.030888

Jordan	McRae SG Phoenix	Suns 0.049709

Cory	Jefferson PF Phoenix	Suns 0.049709

Elliot	Williams SG Memphis	Grizzlies 0.055722

Orlando	Johnson SG Phoenix	Suns 0.055722

Phil	Pressey PG Phoenix	Suns 0.055722

Keith	Appling PG Orlando	Magic 0.061776

Sean	Kilpatrick SG Denver	Nuggets 0.099418

Erick	Green PG Utah	Jazz 0.099418

Jeff	Ayres PF Los	Angeles	Clippers 0.111444

...	(407	rows	omitted)
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These	figures	are	somewhat	difficult	to	compare	as	some	of	these	players	changed	teams
during	the	season	and	received	salaries	from	more	than	one	team;	only	the	salary	from	the
last	team	appears	in	the	table.	Point	Guard	Phil	Pressey,	for	example,	moved	from
Philadelphia	to	Phoenix	during	the	year,	and	might	be	moving	yet	again	to	the	Golden	State
Warriors.

The	CNN	report	is	about	the	other	end	of	the	salary	scale	–	the	players	who	are	among	the
highest	paid	in	the	world.

To	order	the	rows	of	the	table	in	decreasing	order	of	salary,	we	must	use		sort		with	the
option		descending=True	.

nba.sort('SALARY',	descending=True)

PLAYER POSITION TEAM SALARY

Kobe	Bryant SF Los	Angeles	Lakers 25

Joe	Johnson SF Brooklyn	Nets 24.8949

LeBron	James SF Cleveland	Cavaliers 22.9705

Carmelo	Anthony SF New	York	Knicks 22.875

Dwight	Howard C Houston	Rockets 22.3594

Chris	Bosh PF Miami	Heat 22.1927

Chris	Paul PG Los	Angeles	Clippers 21.4687

Kevin	Durant SF Oklahoma	City	Thunder 20.1586

Derrick	Rose PG Chicago	Bulls 20.0931

Dwyane	Wade SG Miami	Heat 20

...	(407	rows	omitted)

Kobe	Bryant,	in	his	final	season	with	the	Lakers,	was	the	highest	paid	at	a	salary	of	
million.	Notice	that	the	MVP	Stephen	Curry	doesn't	appear	among	the	top	10.	He	is	quite	a
bit	further	down	the	list,	as	we	will	see	later.

Named	Arguments¶

The		descending=True		portion	of	this	call	expression	is	called	a	named	argument.	When	a
function	or	method	is	called,	each	argument	has	both	a	position	and	a	name.	Both	are
evident	from	the	help	text	of	a	function	or	method.
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help(nba.sort)

Help	on	method	sort	in	module	datascience.tables:

sort(column_or_label,	descending=False,	distinct=False)	method	

of	datascience.tables.Table	instance

				Return	a	Table	of	rows	sorted	according	to	the	values	in	a	

column.

				Args:

								``column_or_label``:	the	column	whose	values	are	used	

for	sorting.

								``descending``:	if	True,	sorting	will	be	in	descending,	

rather	than

												ascending	order.

								``distinct``:	if	True,	repeated	values	in	

``column_or_label``	will

												be	omitted.

				Returns:

								An	instance	of	``Table``	containing	rows	sorted	based	on	

the	values

								in	``column_or_label``.

				>>>	marbles	=	Table().with_columns(

				...				"Color",	make_array("Red",	"Green",	"Blue",	"Red",	

"Green",	"Green"),

				...				"Shape",	make_array("Round",	"Rectangular",	

"Rectangular",	"Round",	"Rectangular",	"Round"),

				...				"Amount",	make_array(4,	6,	12,	7,	9,	2),

				...				"Price",	make_array(1.30,	1.30,	2.00,	1.75,	1.40,	

1.00))

				>>>	marbles

				Color	|	Shape							|	Amount	|	Price

				Red			|	Round							|	4						|	1.3

				Green	|	Rectangular	|	6						|	1.3

				Blue		|	Rectangular	|	12					|	2

Sorting	Rows

90



				Red			|	Round							|	7						|	1.75

				Green	|	Rectangular	|	9						|	1.4

				Green	|	Round							|	2						|	1

				>>>	marbles.sort("Amount")

				Color	|	Shape							|	Amount	|	Price

				Green	|	Round							|	2						|	1

				Red			|	Round							|	4						|	1.3

				Green	|	Rectangular	|	6						|	1.3

				Red			|	Round							|	7						|	1.75

				Green	|	Rectangular	|	9						|	1.4

				Blue		|	Rectangular	|	12					|	2

				>>>	marbles.sort("Amount",	descending	=	True)

				Color	|	Shape							|	Amount	|	Price

				Blue		|	Rectangular	|	12					|	2

				Green	|	Rectangular	|	9						|	1.4

				Red			|	Round							|	7						|	1.75

				Green	|	Rectangular	|	6						|	1.3

				Red			|	Round							|	4						|	1.3

				Green	|	Round							|	2						|	1

				>>>	marbles.sort(3)	#	the	Price	column

				Color	|	Shape							|	Amount	|	Price

				Green	|	Round							|	2						|	1

				Red			|	Round							|	4						|	1.3

				Green	|	Rectangular	|	6						|	1.3

				Green	|	Rectangular	|	9						|	1.4

				Red			|	Round							|	7						|	1.75

				Blue		|	Rectangular	|	12					|	2

				>>>	marbles.sort(3,	distinct	=	True)

				Color	|	Shape							|	Amount	|	Price

				Green	|	Round							|	2						|	1

				Red			|	Round							|	4						|	1.3

				Green	|	Rectangular	|	9						|	1.4

				Red			|	Round							|	7						|	1.75

				Blue		|	Rectangular	|	12					|	2

At	the	very	top	of	this		help		text,	the	signature	of	the		sort		method	appears:

sort(column_or_label,	descending=False,	distinct=False)
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This	describes	the	positions,	names,	and	default	values	of	the	three	arguments	to		sort	.
When	calling	this	method,	you	can	use	either	positional	arguments	or	named	arguments,	so
the	following	three	calls	do	exactly	the	same	thing.

sort('SALARY',	True)

sort('SALARY',	descending=True)

sort(column_or_label='SALARY',	descending=True)

When	an	argument	is	simply		True		or		False	,	it's	a	useful	convention	to	include	the
argument	name	so	that	it's	more	obvious	what	the	argument	value	means.
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Selecting	Rows
Interact
Often,	we	would	like	to	extract	just	those	rows	that	correspond	to	entries	with	a	particular
feature.	For	example,	we	might	want	only	the	rows	corresponding	to	the	Warriors,	or	to
players	who	earned	more	than	 	million.	Or	we	might	just	want	the	top	five	earners.

Specified	Rows¶

The	Table	method		take		does	just	that	–	it	takes	a	specified	set	of	rows.	Its	argument	is	a
row	index	or	array	of	indices,	and	it	creates	a	new	table	consisting	of	only	those	rows.

For	example,	if	we	wanted	just	the	first	row	of		nba	,	we	could	use		take		as	follows.

nba

PLAYER POSITION TEAM SALARY

Paul	Millsap PF Atlanta	Hawks 18.6717

Al	Horford C Atlanta	Hawks 12

Tiago	Splitter C Atlanta	Hawks 9.75625

Jeff	Teague PG Atlanta	Hawks 8

Kyle	Korver SG Atlanta	Hawks 5.74648

Thabo	Sefolosha SF Atlanta	Hawks 4

Mike	Scott PF Atlanta	Hawks 3.33333

Kent	Bazemore SF Atlanta	Hawks 2

Dennis	Schroder PG Atlanta	Hawks 1.7634

Tim	Hardaway	Jr. SG Atlanta	Hawks 1.30452

...	(407	rows	omitted)

nba.take(0)

PLAYER POSITION TEAM SALARY

Paul	Millsap PF Atlanta	Hawks 18.6717

This	is	a	new	table	with	just	the	single	row	that	we	specified.
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We	could	also	get	the	fourth,	fifth,	and	sixth	rows	by	specifying	a	range	of	indices	as	the
argument.

nba.take(np.arange(3,	6))

PLAYER POSITION TEAM SALARY

Jeff	Teague PG Atlanta	Hawks 8

Kyle	Korver SG Atlanta	Hawks 5.74648

Thabo	Sefolosha SF Atlanta	Hawks 4

If	we	want	a	table	of	the	top	5	highest	paid	players,	we	can	first	sort	the	list	by	salary	and
then		take		the	first	five	rows:

nba.sort('SALARY',	descending=True).take(np.arange(5))

PLAYER POSITION TEAM SALARY

Kobe	Bryant SF Los	Angeles	Lakers 25

Joe	Johnson SF Brooklyn	Nets 24.8949

LeBron	James SF Cleveland	Cavaliers 22.9705

Carmelo	Anthony SF New	York	Knicks 22.875

Dwight	Howard C Houston	Rockets 22.3594

Rows	Corresponding	to	a	Specified	Feature¶

More	often,	we	will	want	to	access	data	in	a	set	of	rows	that	have	a	certain	feature,	but
whose	indices	we	don't	know	ahead	of	time.	For	example,	we	might	want	data	on	all	the
players	who	made	more	than	 	million,	but	we	don't	want	to	spend	time	counting	rows	in
the	sorted	table.

The	method		where		does	the	job	for	us.	Its	output	is	a	table	with	the	same	columns	as	the
original	but	only	the	rows	where	the	feature	occurs.

The	first	argument	of		where		is	the	label	of	the	column	that	contains	the	information	about
whether	or	not	a	row	has	the	feature	we	want.	If	the	feature	is	"made	more	than	
million",	the	column	is		SALARY	.

The	second	argument	of		where		is	a	way	of	specifying	the	feature.	A	couple	of	examples	will
make	the	general	method	of	specification	easier	to	understand.
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In	the	first	example,	we	extract	the	data	for	all	those	who	earned	more	than	 	million.

nba.where('SALARY',	are.above(10))

PLAYER POSITION TEAM SALARY

Paul	Millsap PF Atlanta	Hawks 18.6717

Al	Horford C Atlanta	Hawks 12

Joe	Johnson SF Brooklyn	Nets 24.8949

Thaddeus	Young PF Brooklyn	Nets 11.236

Al	Jefferson C Charlotte	Hornets 13.5

Nicolas	Batum SG Charlotte	Hornets 13.1253

Kemba	Walker PG Charlotte	Hornets 12

Derrick	Rose PG Chicago	Bulls 20.0931

Jimmy	Butler SG Chicago	Bulls 16.4075

Joakim	Noah C Chicago	Bulls 13.4

...	(59	rows	omitted)

The	use	of	the	argument		are.above(10)		ensured	that	each	selected	row	had	a	value	of
	SALARY		that	was	greater	than	10.

There	are	69	rows	in	the	new	table,	corresponding	to	the	69	players	who	made	more	than	
	million	dollars.	Arranging	these	rows	in	order	makes	the	data	easier	to	analyze.	DeMar

DeRozan	of	the	Toronto	Raptors	was	the	"poorest"	of	this	group,	at	a	salary	of	just	over	
million	dollars.

nba.where('SALARY',	are.above(10)).sort('SALARY')
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PLAYER POSITION TEAM SALARY

DeMar	DeRozan SG Toronto	Raptors 10.05

Gerald	Wallace SF Philadelphia	76ers 10.1059

Luol	Deng SF Miami	Heat 10.1516

Monta	Ellis SG Indiana	Pacers 10.3

Wilson	Chandler SF Denver	Nuggets 10.4494

Brendan	Haywood C Cleveland	Cavaliers 10.5225

Jrue	Holiday PG New	Orleans	Pelicans 10.5955

Tyreke	Evans SG New	Orleans	Pelicans 10.7346

Marcin	Gortat C Washington	Wizards 11.2174

Thaddeus	Young PF Brooklyn	Nets 11.236

...	(59	rows	omitted)

How	much	did	Stephen	Curry	make?	For	the	answer,	we	have	to	access	the	row	where	the
value	of		PLAYER		is	equal	to		Stephen	Curry	.	That	is	placed	a	table	consisting	of	just	one
line:

nba.where('PLAYER',	are.equal_to('Stephen	Curry'))

PLAYER POSITION TEAM SALARY

Stephen	Curry PG Golden	State	Warriors 11.3708

Curry	made	just	under	 	million	dollars.	That's	a	lot	of	money,	but	it's	less	than	half	the
salary	of	LeBron	James.	You'll	find	that	salary	in	the	"Top	5"	table	earlier	in	this	section,	or
you	could	find	it	replacing		'Stephen	Curry'		by		'LeBron	James'		in	the	line	of	code	above.

In	the	code,		are		is	used	again,	but	this	time	with	the	predicate		equal_to		instead	of
	above	.	Thus	for	example	you	can	get	a	table	of	all	the	Warriors:

nba.where('TEAM',	are.equal_to('Golden	State	Warriors')).show()
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PLAYER POSITION TEAM SALARY

Klay	Thompson SG Golden	State	Warriors 15.501

Draymond	Green PF Golden	State	Warriors 14.2609

Andrew	Bogut C Golden	State	Warriors 13.8

Andre	Iguodala SF Golden	State	Warriors 11.7105

Stephen	Curry PG Golden	State	Warriors 11.3708

Jason	Thompson PF Golden	State	Warriors 7.00847

Shaun	Livingston PG Golden	State	Warriors 5.54373

Harrison	Barnes SF Golden	State	Warriors 3.8734

Marreese	Speights C Golden	State	Warriors 3.815

Leandro	Barbosa SG Golden	State	Warriors 2.5

Festus	Ezeli C Golden	State	Warriors 2.00875

Brandon	Rush SF Golden	State	Warriors 1.27096

Kevon	Looney SF Golden	State	Warriors 1.13196

Anderson	Varejao PF Golden	State	Warriors 0.289755

This	portion	of	the	table	is	already	sorted	by	salary,	because	the	original	table	listed	players
sorted	by	salary	within	the	same	team.	The		.show()		at	the	end	of	the	line	ensures	that	all
rows	are	shown,	not	just	the	first	10.

It	is	so	common	to	ask	for	the	rows	for	which	some	column	is	equal	to	some	value	that	the
	are.equal_to		call	is	optional.	Instead,	the		where		method	can	be	called	with	only	a	column
name	and	a	value	to	achieve	the	same	effect.

nba.where('TEAM',	'Denver	Nuggets')	#	equivalent	to	

nba.where('TEAM',	are.equal_to('Denver	Nuggets'))
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PLAYER POSITION TEAM SALARY

Danilo	Gallinari SF Denver	Nuggets 14

Kenneth	Faried PF Denver	Nuggets 11.236

Wilson	Chandler SF Denver	Nuggets 10.4494

JJ	Hickson C Denver	Nuggets 5.6135

Jameer	Nelson PG Denver	Nuggets 4.345

Will	Barton SF Denver	Nuggets 3.53333

Emmanuel	Mudiay PG Denver	Nuggets 3.10224

Darrell	Arthur PF Denver	Nuggets 2.814

Jusuf	Nurkic C Denver	Nuggets 1.842

Joffrey	Lauvergne C Denver	Nuggets 1.70972

...	(4	rows	omitted)

Multiple	Features¶

You	can	access	rows	that	have	multiple	specified	features,	by	using		where		repeatedly.	For
example,	here	is	a	way	to	extract	all	the	Point	Guards	whose	salaries	were	over	 	million.

nba.where('POSITION',	'PG').where('SALARY',	are.above(15))

PLAYER POSITION TEAM SALARY

Derrick	Rose PG Chicago	Bulls 20.0931

Kyrie	Irving PG Cleveland	Cavaliers 16.4075

Chris	Paul PG Los	Angeles	Clippers 21.4687

Russell	Westbrook PG Oklahoma	City	Thunder 16.7442

John	Wall PG Washington	Wizards 15.852

General	Form¶

By	now	you	will	have	realized	that	the	general	way	to	create	a	new	table	by	selecting	rows
with	a	given	feature	is	to	use		where		and		are		with	the	appropriate	condition:

	original_table_name.where(column_label_string,	are.condition)	

nba.where('SALARY',	are.between(10,	10.3))
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PLAYER POSITION TEAM SALARY

Luol	Deng SF Miami	Heat 10.1516

Gerald	Wallace SF Philadelphia	76ers 10.1059

Danny	Green SG San	Antonio	Spurs 10

DeMar	DeRozan SG Toronto	Raptors 10.05

Notice	that	the	table	above	includes	Danny	Green	who	made	 	million,	but	*not*	Monta
Ellis	who	made	 	million.	As	elsewhere	in	Python,	the	range		between		includes	the	left
end	but	not	the	right.

If	we	specify	a	condition	that	isn't	satisfied	by	any	row,	we	get	a	table	with	column	labels	but
no	rows.

nba.where('PLAYER',	are.equal_to('Barack	Obama'))

PLAYER POSITION TEAM SALARY

Some	More	Conditions¶

Here	are	some	predicates	of		are		that	you	might	find	useful.	Note	that		x		and		y		are
numbers,		STRING		is	a	string,	and		Z		is	either	a	number	or	a	string;	you	have	to	specify
these	depending	on	the	feature	you	want.

Predicate Description

	are.equal_to(Z)	 Equal	to		Z	

	are.above(x)	 Greater	than		x	

	are.above_or_equal_to(x)	 Greater	than	or	equal	to		x	

	are.below(x)	 Less	than		x	

	are.below_or_equal_to(x)	 Less	than	or	equal	to		x	

	are.between(x,	y)	 Greater	than	or	equal	to		x	,	and	less	than		y	

	are.strictly_between(x,	y)	 Greater	than		x		and	less	than		y	

	are.between_or_equal_to(x,

y)	
Greater	than	or	equal	to		x	,	and	less	than	or	equal	to
	y	

	are.containing(S)	 Contains	the	string		S	

You	can	also	specify	the	negation	of	any	of	these	conditions,	by	using		.not_		before	the
condition:
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Predicate Description

	are.not_equal_to(Z)	 Not	equal	to		Z	

	are.not_above(x)	 Not	above		x	

...	and	so	on.	The	usual	rules	of	logic	apply	–	for	example,	"not	above	x"	is	the	same	as
"below	or	equal	to	x".

We	end	the	section	with	a	series	of	examples.

The	use	of		are.containing		can	help	save	some	typing.	For	example,	you	can	just	specify
	Warriors		instead	of		Golden	State	Warriors	:

nba.where('TEAM',	are.containing('Warriors')).show()

PLAYER POSITION TEAM SALARY

Klay	Thompson SG Golden	State	Warriors 15.501

Draymond	Green PF Golden	State	Warriors 14.2609

Andrew	Bogut C Golden	State	Warriors 13.8

Andre	Iguodala SF Golden	State	Warriors 11.7105

Stephen	Curry PG Golden	State	Warriors 11.3708

Jason	Thompson PF Golden	State	Warriors 7.00847

Shaun	Livingston PG Golden	State	Warriors 5.54373

Harrison	Barnes SF Golden	State	Warriors 3.8734

Marreese	Speights C Golden	State	Warriors 3.815

Leandro	Barbosa SG Golden	State	Warriors 2.5

Festus	Ezeli C Golden	State	Warriors 2.00875

Brandon	Rush SF Golden	State	Warriors 1.27096

Kevon	Looney SF Golden	State	Warriors 1.13196

Anderson	Varejao PF Golden	State	Warriors 0.289755

You	can	extract	data	for	all	the	guards,	both	Point	Guards	and	Shooting	Guards:

nba.where('POSITION',	are.containing('G'))
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PLAYER POSITION TEAM SALARY

Jeff	Teague PG Atlanta	Hawks 8

Kyle	Korver SG Atlanta	Hawks 5.74648

Dennis	Schroder PG Atlanta	Hawks 1.7634

Tim	Hardaway	Jr. SG Atlanta	Hawks 1.30452

Jason	Richardson SG Atlanta	Hawks 0.947276

Lamar	Patterson SG Atlanta	Hawks 0.525093

Terran	Petteway SG Atlanta	Hawks 0.525093

Avery	Bradley PG Boston	Celtics 7.73034

Isaiah	Thomas PG Boston	Celtics 6.91287

Marcus	Smart PG Boston	Celtics 3.43104

...	(171	rows	omitted)

You	can	get	all	the	players	who	were	not	Cleveland	Cavaliers	and	had	a	salary	of	no	less
than	 	million:

other_than_Cavs	=	nba.where('TEAM',	are.not_equal_to('Cleveland	

Cavaliers'))

other_than_Cavs.where('SALARY',	are.not_below(20))

PLAYER POSITION TEAM SALARY

Joe	Johnson SF Brooklyn	Nets 24.8949

Derrick	Rose PG Chicago	Bulls 20.0931

Dwight	Howard C Houston	Rockets 22.3594

Chris	Paul PG Los	Angeles	Clippers 21.4687

Kobe	Bryant SF Los	Angeles	Lakers 25

Chris	Bosh PF Miami	Heat 22.1927

Dwyane	Wade SG Miami	Heat 20

Carmelo	Anthony SF New	York	Knicks 22.875

Kevin	Durant SF Oklahoma	City	Thunder 20.1586

The	same	table	can	be	created	in	many	ways.	Here	is	another,	and	no	doubt	you	can	think
of	more.
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other_than_Cavs.where('SALARY',	are.above_or_equal_to(20))

PLAYER POSITION TEAM SALARY

Joe	Johnson SF Brooklyn	Nets 24.8949

Derrick	Rose PG Chicago	Bulls 20.0931

Dwight	Howard C Houston	Rockets 22.3594

Chris	Paul PG Los	Angeles	Clippers 21.4687

Kobe	Bryant SF Los	Angeles	Lakers 25

Chris	Bosh PF Miami	Heat 22.1927

Dwyane	Wade SG Miami	Heat 20

Carmelo	Anthony SF New	York	Knicks 22.875

Kevin	Durant SF Oklahoma	City	Thunder 20.1586

As	you	can	see,	the	use	of		where		with		are		gives	you	great	flexibility	in	accessing	rows
with	features	that	interest	you.	Don't	hesitate	to	experiment!
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Trends	in	the	US	Population
Interact
We	are	now	ready	to	work	with	large	tables	of	data.	The	file	below	contains	"Annual
Estimates	of	the	Resident	Population	by	Single	Year	of	Age	and	Sex	for	the	United	States."
Notice	that		read_table		can	read	data	directly	from	a	URL.

#	As	of	Jan	2017,	this	census	file	is	online	here:	

data	=	'http://www2.census.gov/programs-

surveys/popest/datasets/2010-2015/national/asrh/nc-est2015-

agesex-res.csv'

#	A	local	copy	can	be	accessed	here	in	case	census.gov	moves	the	

file:

#	data	=	'nc-est2015-agesex-res.csv'

full_census_table	=	Table.read_table(data)

full_census_table

SEX AGE CENSUS2010POP ESTIMATESBASE2010 POPESTIMATE2010

0 0 3944153 3944160 3951330

0 1 3978070 3978090 3957888

0 2 4096929 4096939 4090862

0 3 4119040 4119051 4111920

0 4 4063170 4063186 4077551

0 5 4056858 4056872 4064653

0 6 4066381 4066412 4073013

0 7 4030579 4030594 4043046

0 8 4046486 4046497 4025604

0 9 4148353 4148369 4125415

...	(296	rows	omitted)

Only	the	first	10	rows	of	the	table	are	displayed.	Later	we	will	see	how	to	display	the	entire
table;	however,	this	is	typically	not	useful	with	large	tables.
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a	description	of	the	table	appears	online.	The		SEX		column	contains	numeric	codes:		0	
stands	for	the	total,		1		for	male,	and		2		for	female.	The		AGE		column	contains	ages	in
completed	years,	but	the	special	value		999		is	a	sum	of	the	total	population.	The	rest	of	the
columns	contain	estimates	of	the	US	population.

Typically,	a	public	table	will	contain	more	information	than	necessary	for	a	particular
investigation	or	analysis.	In	this	case,	let	us	suppose	that	we	are	only	interested	in	the
population	changes	from	2010	to	2014.	Let	us		select		the	relevant	columns.

partial_census_table	=	full_census_table.select('SEX',	'AGE',	

'POPESTIMATE2010',	'POPESTIMATE2014')

partial_census_table

SEX AGE POPESTIMATE2010 POPESTIMATE2014

0 0 3951330 3949775

0 1 3957888 3949776

0 2 4090862 3959664

0 3 4111920 4007079

0 4 4077551 4005716

0 5 4064653 4006900

0 6 4073013 4135930

0 7 4043046 4155326

0 8 4025604 4120903

0 9 4125415 4108349

...	(296	rows	omitted)

We	can	also	simplify	the	labels	of	the	selected	columns.

us_pop	=	partial_census_table.relabeled('POPESTIMATE2010',	

'2010').relabeled('POPESTIMATE2014',	'2014')

us_pop
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SEX AGE 2010 2014

0 0 3951330 3949775

0 1 3957888 3949776

0 2 4090862 3959664

0 3 4111920 4007079

0 4 4077551 4005716

0 5 4064653 4006900

0 6 4073013 4135930

0 7 4043046 4155326

0 8 4025604 4120903

0 9 4125415 4108349

...	(296	rows	omitted)

We	now	have	a	table	that	is	easy	to	work	with.	Each	column	of	the	table	is	an	array	of	the
same	length,	and	so	columns	can	be	combined	using	arithmetic.	Here	is	the	change	in
population	between	2010	and	2014.

us_pop.column('2014')	-	us_pop.column('2010')

array([		-1555,			-8112,	-131198,	...,				6443,			12950,	

4693244])

Let	us	augment		us_pop		with	a	column	that	contains	these	changes,	both	in	absolute	terms
and	as	percents	relative	to	the	value	in	2010.

change	=	us_pop.column('2014')	-	us_pop.column('2010')

census	=	us_pop.with_columns(

				'Change',	change,

				'Percent	Change',	change/us_pop.column('2010')

)

census.set_format('Percent	Change',	PercentFormatter)
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SEX AGE 2010 2014 Change Percent	Change

0 0 3951330 3949775 -1555 -0.04%

0 1 3957888 3949776 -8112 -0.20%

0 2 4090862 3959664 -131198 -3.21%

0 3 4111920 4007079 -104841 -2.55%

0 4 4077551 4005716 -71835 -1.76%

0 5 4064653 4006900 -57753 -1.42%

0 6 4073013 4135930 62917 1.54%

0 7 4043046 4155326 112280 2.78%

0 8 4025604 4120903 95299 2.37%

0 9 4125415 4108349 -17066 -0.41%

...	(296	rows	omitted)

Sorting	the	data.	Let	us	sort	the	table	in	decreasing	order	of	the	absolute	change	in
population.

census.sort('Change',	descending=True)

SEX AGE 2010 2014 Change Percent	Change

0 999 309346863 318907401 9560538 3.09%

1 999 152088043 156955337 4867294 3.20%

2 999 157258820 161952064 4693244 2.98%

0 67 2693707 3485241 791534 29.38%

0 64 2706055 3487559 781504 28.88%

0 66 2621335 3347060 725725 27.69%

0 65 2678525 3382824 704299 26.29%

0 71 1953607 2519705 566098 28.98%

0 34 3822189 4364748 542559 14.19%

0 23 4217228 4702156 484928 11.50%

...	(296	rows	omitted)
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Not	surprisingly,	the	top	row	of	the	sorted	table	is	the	line	that	corresponds	to	the	entire
population:	both	sexes	and	all	age	groups.	From	2010	to	2014,	the	population	of	the	United
States	increased	by	about	9.5	million	people,	a	change	of	just	over	3%.

The	next	two	rows	correspond	to	all	the	men	and	all	the	women	respectively.	The	male
population	grew	more	than	the	female	population,	both	in	absolute	and	percentage	terms.
Both	percent	changes	were	around	3%.

Now	take	a	look	at	the	next	few	rows.	The	percent	change	jumps	from	about	3%	for	the
overall	population	to	almost	30%	for	the	people	in	their	late	sixties	and	early	seventies.	This
stunning	change	contributes	to	what	is	known	as	the	greying	of	America.

By	far	the	greatest	absolute	change	was	among	those	in	the	64-67	agegroup	in	2014.	What
could	explain	this	large	increase?	We	can	explore	this	question	by	examining	the	years	in
which	the	relevant	groups	were	born.

Those	who	were	in	the	64-67	age	group	in	2010	were	born	in	the	years	1943	to	1946.
The	attack	on	Pearl	Harbor	was	in	late	1941,	and	by	1942	U.S.	forces	were	heavily
engaged	in	a	massive	war	that	ended	in	1945.

Those	who	were	64	to	67	years	old	in	2014	were	born	in	the	years	1947	to	1950,	at	the
height	of	the	post-WWII	baby	boom	in	the	United	States.

The	post-war	jump	in	births	is	the	major	reason	for	the	large	changes	that	we	have
observed.
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Trends	in	Gender	Ratios
Interact
We	are	now	equipped	with	enough	coding	skills	to	examine	features	and	trends	in
subgroups	of	the	U.S.	population.	In	this	example,	we	will	look	at	the	distribution	of	males
and	females	across	age	groups.	We	will	continue	using	the		us_pop		table	from	the	previous
section.

us_pop

SEX AGE 2010 2014

0 0 3951330 3949775

0 1 3957888 3949776

0 2 4090862 3959664

0 3 4111920 4007079

0 4 4077551 4005716

0 5 4064653 4006900

0 6 4073013 4135930

0 7 4043046 4155326

0 8 4025604 4120903

0 9 4125415 4108349

...	(296	rows	omitted)

As	we	know	from	having	examined	this	dataset	earlier,	a	description	of	the	table	appears
online.	Here	is	a	reminder	of	what	the	table	contains.

Each	row	represents	an	age	group.	The		SEX		column	contains	numeric	codes:		0		stands
for	the	total,		1		for	male,	and		2		for	female.	The		AGE		column	contains	ages	in	completed
years,	but	the	special	value		999		represents	the	entire	population	regardless	of	age.	The
rest	of	the	columns	contain	estimates	of	the	US	population.

Understanding		AGE		=	100¶
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As	a	preliminary,	let's	interpret	data	in	the	final	age	category	in	the	table,	where		AGE		is	100.
The	code	below	extracts	the	rows	for	the	combined	group	of	men	and	women	(	SEX		code	0)
for	the	highest	ages.

us_pop.where('SEX',	are.equal_to(0)).where('AGE',	

are.between(97,	101))

SEX AGE 2010 2014

0 97 68893 83089

0 98 47037 59726

0 99 32178 41468

0 100 54410 71626

Not	surprisingly,	the	numbers	of	people	are	smaller	at	higher	ages	–	for	example,	there	are
fewer	99-year-olds	than	98-year-olds.

It	does	come	as	a	surprise,	though,	that	the	numbers	for		AGE		100	are	quite	a	bit	larger	than
those	for	age	99.	A	closer	examination	of	the	documentation	shows	that	it's	because	the
Census	Bureau	used	100	as	the	code	for	everyone	aged	100	or	more.

The	row	with		AGE		100	doesn't	just	represent	100-year-olds	–	it	also	includes	those	who	are
older	than	100.	That	is	why	the	numbers	in	that	row	are	larger	than	in	the	row	for	the	99-
year-olds.

Overall	Proportions	of	Males	and	Females¶

We	will	now	begin	looking	at	gender	ratios	in	2014.	First,	let's	look	at	all	the	age	groups
together.	Remember	that	this	means	looking	at	the	rows	where	the	"age"	is	coded	999.	The
table		all_ages		contains	this	information.	There	are	three	rows:	one	for	the	total	of	both
genders,	one	for	males	(	SEX		code	1),	and	one	for	females	(	SEX		code	2).

us_pop_2014	=	us_pop.drop('2010')

all_ages	=	us_pop_2014.where('AGE',	are.equal_to(999))

all_ages
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SEX AGE 2014

0 999 318907401

1 999 156955337

2 999 161952064

Row	0	of		all_ages		contains	the	total	U.S.	population	in	each	of	the	two	years.	The	United
States	had	just	under	319	million	in	2014.

Row	1	contains	the	counts	for	males	and	Row	2	for	females.	Compare	these	two	rows	to
see	that	in	2014,	there	were	more	females	than	males	in	the	United	States.

The	population	counts	in	Row	1	and	Row	2	add	up	to	the	total	population	in	Row	0.

For	comparability	with	other	quantities,	we	will	need	to	convert	these	counts	to	percents	out
of	the	total	population.	Let's	access	the	total	for	2014	and	name	it.	Then,	we'll	show	a
population	table	with	a	proportion	column.	Consistent	with	our	earlier	observation	that	there
were	more	females	than	males,	about	50.8%	of	the	population	in	2014	was	female	and
about	49.2%	male	in	each	of	the	two	years.

pop_2014	=	all_ages.column('2014').item(0)

all_ages.with_column(

				'Proportion',	all_ages.column('2014')/pop_2014

).set_format('Proportion',	PercentFormatter)

SEX AGE 2014 Proportion

0 999 318907401 100.00%

1 999 156955337 49.22%

2 999 161952064 50.78%

Proportions	of	Boys	and	Girls	among	Infants¶

When	we	look	at	infants,	however,	the	opposite	is	true.	Let's	define	infants	to	be	babies	who
have	not	yet	completed	one	year,	represented	in	the	row	corresponding	to		AGE		0.	Here	are
their	numbers	in	the	population.	You	can	see	that	male	infants	outnumbered	female	infants.

infants	=	us_pop_2014.where('AGE',	are.equal_to(0))

infants
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SEX AGE 2014

0 0 3949775

1 0 2020326

2 0 1929449

As	before,	we	can	convert	these	counts	to	percents	out	of	the	total	numbers	of	infants.	The
resulting	table	shows	that	in	2014,	just	over	51%	of	infants	in	the	U.S.	were	male.

infants_2014	=	infants.column('2014').item(0)

infants.with_column(

				'Proportion',	infants.column('2014')/infants_2014

).set_format('Proportion',	PercentFormatter)

SEX AGE 2014 Proportion

0 0 3949775 100.00%

1 0 2020326 51.15%

2 0 1929449 48.85%

In	fact,	it	has	long	been	observed	that	the	proportion	of	boys	among	newborns	is	slightly
more	than	1/2.	The	reason	for	this	is	not	thoroughly	understood,	and	scientists	are	still
working	on	it.

Female:Male	Gender	Ratio	at	Each	Age¶

We	have	seen	that	while	there	are	more	baby	boys	than	baby	girls,	there	are	more	females
than	males	overall.	So	it's	clear	that	the	split	between	genders	must	vary	across	age	groups.

To	study	this	variation,	we	will	separate	out	the	data	for	the	females	and	the	males,	and
eliminate	the	row	where	all	the	ages	are	aggregated	and		AGE		is	coded	as	999.

The	tables		females		and		males		contain	the	data	for	each	the	two	genders.

females_all_rows	=	us_pop_2014.where('SEX',	are.equal_to(2))

females	=	females_all_rows.where('AGE',	are.not_equal_to(999))

females
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SEX AGE 2014

2 0 1929449

2 1 1931375

2 2 1935991

2 3 1957483

2 4 1961199

2 5 1962561

2 6 2024870

2 7 2032494

2 8 2015285

2 9 2010659

...	(91	rows	omitted)

males_all_rows	=	us_pop_2014.where('SEX',	are.equal_to(1))

males	=	males_all_rows.where('AGE',	are.not_equal_to(999))

males

SEX AGE 2014

1 0 2020326

1 1 2018401

1 2 2023673

1 3 2049596

1 4 2044517

1 5 2044339

1 6 2111060

1 7 2122832

1 8 2105618

1 9 2097690

...	(91	rows	omitted)
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The	plan	now	is	to	compare	the	number	of	women	and	the	number	of	men	at	each	age,	for
each	of	the	two	years.	Array	and	Table	methods	give	us	straightforward	ways	to	do	this.
Both	of	these	tables	have	one	row	for	each	age.

males.column('AGE')

array([		0,			1,			2,			3,			4,			5,			6,			7,			8,			9,		10,		

11,		12,

								13,		14,		15,		16,		17,		18,		19,		20,		21,		22,		23,		

24,		25,

								26,		27,		28,		29,		30,		31,		32,		33,		34,		35,		36,		

37,		38,

								39,		40,		41,		42,		43,		44,		45,		46,		47,		48,		49,		

50,		51,

								52,		53,		54,		55,		56,		57,		58,		59,		60,		61,		62,		

63,		64,

								65,		66,		67,		68,		69,		70,		71,		72,		73,		74,		75,		

76,		77,

								78,		79,		80,		81,		82,		83,		84,		85,		86,		87,		88,		

89,		90,

								91,		92,		93,		94,		95,		96,		97,		98,		99,	100])

females.column('AGE')
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array([		0,			1,			2,			3,			4,			5,			6,			7,			8,			9,		10,		

11,		12,

								13,		14,		15,		16,		17,		18,		19,		20,		21,		22,		23,		

24,		25,

								26,		27,		28,		29,		30,		31,		32,		33,		34,		35,		36,		

37,		38,

								39,		40,		41,		42,		43,		44,		45,		46,		47,		48,		49,		

50,		51,

								52,		53,		54,		55,		56,		57,		58,		59,		60,		61,		62,		

63,		64,

								65,		66,		67,		68,		69,		70,		71,		72,		73,		74,		75,		

76,		77,

								78,		79,		80,		81,		82,		83,		84,		85,		86,		87,		88,		

89,		90,

								91,		92,		93,		94,		95,		96,		97,		98,		99,	100])

For	any	given	age,	we	can	get	the	Female:Male	gender	ratio	by	dividing	the	number	of
females	by	the	number	of	males.	To	do	this	in	one	step,	we	can	use		column		to	extract	the
array	of	female	counts	and	the	corresponding	array	of	male	counts,	and	then	simply	divide
one	array	by	the	other.	Elementwise	division	will	create	an	array	of	gender	ratios	for	all	the
years.

ratios	=	Table().with_columns(

				'AGE',	females.column('AGE'),

				'2014	F:M	RATIO',	

females.column('2014')/males.column('2014')

)

ratios
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AGE 2014	F:M	RATIO

0 0.955019

1 0.956884

2 0.956672

3 0.955058

4 0.959248

5 0.959998

6 0.959172

7 0.957445

8 0.957099

9 0.958511

...	(91	rows	omitted)

You	can	see	from	the	display	that	the	ratios	are	all	around	0.96	for	children	aged	nine	or
younger.	When	the	Female:Male	ratio	is	less	than	1,	there	are	fewer	females	than	males.
Thus	what	we	are	seeing	is	that	there	were	fewer	girls	than	boys	in	each	of	the	age	groups
0,	1,	2,	and	so	on	through	9.	Moreover,	in	each	of	these	age	groups,	there	were	about	96
girls	for	every	100	boys.

So	how	can	the	overall	proportion	of	females	in	the	population	be	higher	than	the	males?

Something	extraordinary	happens	when	we	examine	the	other	end	of	the	age	range.	Here
are	the	Female:Male	ratios	for	people	aged	more	than	75.

ratios.where('AGE',	are.above(75)).show()
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AGE 2014	F:M	RATIO

76 1.23487

77 1.25797

78 1.28244

79 1.31627

80 1.34138

81 1.37967

82 1.41932

83 1.46552

84 1.52048

85 1.5756

86 1.65096

87 1.72172

88 1.81223

89 1.91837

90 2.01263

91 2.09488

92 2.2299

93 2.33359

94 2.52285

95 2.67253

96 2.87998

97 3.09104

98 3.41826

99 3.63278

100 4.25966

Not	only	are	all	of	these	ratios	greater	than	1,	signifying	more	women	than	men	in	all	of
these	age	groups,	many	of	them	are	considerably	greater	than	1.

At	ages	89	and	90	the	ratios	are	close	to	2,	meaning	that	there	were	about	twice	as
many	women	as	men	at	those	ages	in	2014.
At	ages	98	and	99,	there	were	about	3.5	to	4	times	as	many	women	as	men.
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If	you	are	wondering	how	many	people	there	were	at	these	advanced	ages,	you	can	use
Python	to	find	out:

males.where('AGE',	are.between(98,	100))

SEX AGE 2014

1 98 13518

1 99 8951

females.where('AGE',	are.between(98,	100))

SEX AGE 2014

2 98 46208

2 99 32517

The	graph	below	shows	the	gender	ratios	plotted	against	age.	The	blue	curve	shows	the
2014	ratio	by	age.

The	ratios	are	almost	1	(signifying	close	to	equal	numbers	of	males	and	females)	for	ages	0
through	60,	but	they	start	shooting	up	dramatically	(more	females	than	males)	starting	at
about	age	65.

That	females	outnumber	males	in	the	U.S.	is	partly	due	to	the	marked	gender	imbalance	in
favor	of	women	among	senior	citizens.

ratios.plot('AGE')

Example:	Trends	in	Gender

117



Example:	Trends	in	Gender

118



Interact

Visualization¶

Tables	are	a	powerful	way	or	organizing	and	visualizing	data.	However,	large	tables	of
numbers	can	be	difficult	to	interpret,	no	matter	how	organized	they	are.	Sometimes	it	is
much	easier	to	interpret	graphs	than	numbers.

In	this	chapter	we	will	develop	some	of	the	fundamental	graphical	methods	of	data	analysis.
Our	source	of	data	is	the	Internet	Movie	Database,	an	online	database	that	contains
information	about	movies,	television	shows,	video	games,	and	so	on.	The	site	Box	Office
Mojo	provides	many	summaries	of	IMDB	data,	some	of	which	we	have	adapted.	We	have
also	used	data	summaries	from	The	Numbers,	a	site	with	a	tagline	that	says	it	is	"where
data	and	the	movie	business	meet."

Scatter	Plots	and	Line	Graphs¶

The	table		actors		contains	data	on	Hollywood	actors,	both	male	and	female.	The	columns
are:

Column Contents

	Actor	 Name	of	actor

	Total	Gross	
Total	gross	domestic	box	office	receipt,	in	millions	of	dollars,	of	all	of
the	actor's	movies

	Number	of

Movies	
The	number	of	movies	the	actor	has	been	in

	Average	per

Movie	
Total	gross	divided	by	number	of	movies

	#1	Movie	 The	highest	grossing	movie	the	actor	has	been	in

	Gross	 Gross	domestic	box	office	receipt,	in	millions	of	dollars,	of	the	actor's
	#1	Movie	

In	the	calculation	of	the	gross	receipt,	the	data	tabulators	did	not	include	movies	where	an
actor	had	a	cameo	role	or	a	speaking	role	that	did	not	involve	much	screen	time.

The	table	has	50	rows,	corresponding	to	the	50	top	grossing	actors.	The	table	is	already
sorted	by		Total	Gross	,	so	it	is	easy	to	see	that	Harrison	Ford	is	the	highest	grossing	actor.
In	total,	his	movies	have	brought	in	more	money	at	domestic	box	office	than	the	movies	of
any	other	actor.

actors	=	Table.read_table('actors.csv')

actors
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Actor Total
Gross

Number	of
Movies

Average
per	Movie #1	Movie Gross

Harrison
Ford 4871.7 41 118.8 Star	Wars:	The

Force	Awakens 936.7

Samuel	L.
Jackson 4772.8 69 69.2 The	Avengers 623.4

Morgan
Freeman 4468.3 61 73.3 The	Dark	Knight 534.9

Tom	Hanks 4340.8 44 98.7 Toy	Story	3 415

Robert
Downey,	Jr. 3947.3 53 74.5 The	Avengers 623.4

Eddie
Murphy 3810.4 38 100.3 Shrek	2 441.2

Tom	Cruise 3587.2 36 99.6 War	of	the	Worlds 234.3

Johnny
Depp 3368.6 45 74.9 Dead	Man's	Chest 423.3

Michael
Caine 3351.5 58 57.8 The	Dark	Knight 534.9

Scarlett
Johansson 3341.2 37 90.3 The	Avengers 623.4

...	(40	rows	omitted)

Terminology.	A	variable	is	a	formal	name	for	what	we	have	been	calling	a	"feature",	such	as
'number	of	movies.'	The	term	variable	emphasizes	that	the	feature	can	have	different	values
for	different	individuals	–	the	numbers	of	movies	that	actors	have	been	in	varies	across	all
the	actors.

Variables	that	have	numerical	values,	such	as	'number	of	movies'	or	'average	gross	receipts
per	movie'	are	called	quantitative	or	numerical	variables.

Scatter	Plots¶

A	scatter	plot	displays	the	relation	between	two	numerical	variables.	You	saw	an	example	of
a	scatter	plot	in	an	early	section	where	we	looked	at	the	number	of	periods	and	number	of
characters	in	two	classic	novels.

The	Table	method		scatter		draws	a	scatter	plot	consisting	of	one	point	for	each	row	of	the
table.	Its	first	argument	is	the	label	of	the	column	to	be	plotted	on	the	horizontal	axis,	and	its
second	argument	is	the	label	of	the	column	on	the	vertical.
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actors.scatter('Number	of	Movies',	'Total	Gross')

The	plot	contains	50	points,	one	point	for	each	actor	in	the	table.	You	can	see	that	it	slopes
upwards,	in	general.	The	more	movies	an	actor	has	been	in,	the	more	the	total	gross	of	all	of
those	movies	–	in	general.

Formally,	we	say	that	the	plot	shows	an	association	between	the	variables,	and	that	the
association	is	positive:	high	values	of	one	variable	tend	to	be	associated	with	high	values	of
the	other,	and	low	values	of	one	with	low	values	of	the	other,	in	general.

Of	course	there	is	some	variability.	Some	actors	have	high	numbers	of	movies	but	middling
total	gross	receipts.	Others	have	middling	numbers	of	movies	but	high	receipts.	That	the
association	is	positive	is	simply	a	statement	about	the	broad	general	trend.

Later	in	the	course	we	will	study	how	to	quantify	association.	For	the	moment,	we	will	just
think	about	it	qualitatively.

Now	that	we	have	explored	how	the	number	of	movies	is	related	to	the	total	gross	receipt,
let's	turn	our	attention	to	how	it	is	related	to	the	average	gross	receipt	per	movie.

actors.scatter('Number	of	Movies',	'Average	per	Movie')
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This	is	a	markedly	different	picture	and	shows	a	negative	association.	In	general,	the	more
movies	an	actor	has	been	in,	the	less	the	average	receipt	per	movie.

Also,	one	of	the	points	is	quite	high	and	off	to	the	left	of	the	plot.	It	corresponds	to	one	actor
who	has	a	low	number	of	movies	and	high	average	per	movie.	This	point	is	an	outlier.	It	lies
outside	the	general	range	of	the	data.	Indeed,	it	is	quite	far	from	all	the	other	points	in	the
plot.

We	will	examine	the	negative	association	further	by	looking	at	points	at	the	right	and	left
ends	of	the	plot.

For	the	right	end,	let's	zoom	in	on	the	main	body	of	the	plot	by	just	looking	at	the	portion	that
doesn't	have	the	outlier.

no_outlier	=	actors.where('Number	of	Movies',	are.above(10))

no_outlier.scatter('Number	of	Movies',	'Average	per	Movie')
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The	negative	association	is	still	clearly	visible.	Let's	identify	the	actors	corresponding	to	the
points	that	lie	on	the	right	hand	side	of	the	plot	where	the	number	of	movies	is	large:

actors.where('Number	of	Movies',	are.above(60))

Actor Total
Gross

Number	of
Movies

Average	per
Movie #1	Movie Gross

Samuel	L.
Jackson 4772.8 69 69.2 The	Avengers 623.4

Morgan
Freeman 4468.3 61 73.3 The	Dark

Knight 534.9

Robert
DeNiro 3081.3 79 39 Meet	the

Fockers 279.3

Liam
Neeson 2942.7 63 46.7 The	Phantom

Menace 474.5

The	great	actor	Robert	DeNiro	has	the	highest	number	of	movies	and	the	lowest	average
receipt	per	movie.	Other	fine	actors	are	at	points	that	are	not	very	far	away,	but	DeNiro's	is
at	the	extreme	end.

To	understand	the	negative	association,	note	that	the	more	movies	an	actor	is	in,	the	more
variable	those	movies	might	be,	in	terms	of	style,	genre,	and	box	office	draw.	For	example,
an	actor	might	be	in	some	high-grossing	action	movies	or	comedies	(such	as	Meet	the
Fockers),	and	also	in	a	large	number	of	smaller	films	that	may	be	excellent	but	don't	draw
large	crowds.	Thus	the	actor's	value	of	average	receipts	per	movie	might	be	relatively	low.

To	approach	this	argument	from	a	different	direction,	let	us	now	take	a	look	at	the	outlier.
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actors.where('Number	of	Movies',	are.below(10))

Actor Total
Gross

Number	of
Movies

Average
per	Movie #1	Movie Gross

Anthony
Daniels 3162.9 7 451.8 Star	Wars:	The

Force	Awakens 936.7

As	an	actor,	Anthony	Daniels	might	not	have	the	stature	of	Robert	DeNiro.	But	his	7	movies
had	an	astonishingly	high	average	receipt	of	nearly	 	million	dollars	per	movie.

What	were	these	movies?	You	might	know	about	the	droid	C-3PO	in	Star	Wars:	

	That's	Anthony	Daniels	inside	the	metallic	suit.	He	plays	C-
3PO.

Mr.	Daniels'	entire	filmography	(apart	from	cameos)	consists	of	movies	in	the	high-grossing
Star	Wars	franchise.	That	explains	both	his	high	average	receipt	and	his	low	number	of
movies.

Variables	such	as	genre	and	production	budget	have	an	effect	on	the	association	between
the	number	of	movies	and	the	average	receipt	per	movie.	This	example	is	a	reminder	that
studying	the	association	between	two	variables	often	involves	understanding	other	related
variables	as	well.

Line	Graphs¶
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Line	graphs	are	among	the	most	common	visualizations	and	are	often	used	to	study
chronological	trends	and	patterns.

The	table		movies_by_year		contains	data	on	movies	produced	by	U.S.	studios	in	each	of	the
years	1980	through	2015.	The	columns	are:

Column Content

	Year	 Year

	Total	Gross	
Total	domestic	box	office	gross,	in	millions	of	dollars,	of	all	movies
released

	Number	of

Movies	
Number	of	movies	released

	#1	Movie	 Highest	grossing	movie

movies_by_year	=	Table.read_table('movies_by_year.csv')

movies_by_year

Year Total	Gross Number	of	Movies #1	Movie

2015 11128.5 702 Star	Wars:	The	Force	Awakens

2014 10360.8 702 American	Sniper

2013 10923.6 688 Catching	Fire

2012 10837.4 667 The	Avengers

2011 10174.3 602 Harry	Potter	/	Deathly	Hallows	(P2)

2010 10565.6 536 Toy	Story	3

2009 10595.5 521 Avatar

2008 9630.7 608 The	Dark	Knight

2007 9663.8 631 Spider-Man	3

2006 9209.5 608 Dead	Man's	Chest

...	(26	rows	omitted)

The	Table	method		plot		produces	a	line	graph.	Its	two	arguments	are	the	same	as	those	for
	scatter	:	first	the	column	on	the	horizontal	axis,	then	the	column	on	the	vertical.	Here	is	a
line	graph	of	the	number	of	movies	released	each	year	over	the	years	1980	through	2015.

movies_by_year.plot('Year',	'Number	of	Movies')
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The	graph	rises	sharply	and	then	has	a	gentle	upwards	trend	though	the	numbers	vary
noticeably	from	year	to	year.	The	sharp	rise	in	the	early	1980's	is	due	in	part	to	studios
returning	to	the	forefront	of	movie	production	after	some	years	of	filmmaker	driven	movies	in
the	1970's.

Our	focus	will	be	on	more	recent	years.	In	keeping	with	the	theme	of	movies,	the	table	of
rows	corresponding	to	the	years	2000	through	2015	have	been	assigned	to	the	name
	century_21	.

century_21	=	movies_by_year.where('Year',	are.above(1999))

century_21.plot('Year',	'Number	of	Movies')

The	global	financial	crisis	of	2008	has	a	visible	effect	–	in	2009	there	is	a	sharp	drop	in	the
number	of	movies	released.
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The	dollar	figures,	however,	didn't	suffer	much.

century_21.plot('Year',	'Total	Gross')

The	total	domestic	gross	receipt	was	higher	in	2009	than	in	2008,	even	though	there	was	a
financial	crisis	and	a	much	smaller	number	of	movies	were	released.

One	reason	for	this	apparent	contradiction	is	that	people	tend	to	go	to	the	movies	when
there	is	a	recession.	"In	Downturn,	Americans	Flock	to	the	Movies,"	said	the	New	York
Times	in	February	2009.	The	article	quotes	Martin	Kaplan	of	the	University	of	Southern
California	saying,	"People	want	to	forget	their	troubles,	and	they	want	to	be	with	other
people."	When	holidays	and	expensive	treats	are	unaffordable,	movies	provide	welcome
entertainment	and	relief.

In	2009,	another	reason	for	high	box	office	receipts	was	the	movie	Avatar	and	its	3D
release.	Not	only	was	Avatar	the	#1	movie	of	2009,	it	is	also	by	some	calculations	the
second	highest	grossing	movie	of	all	time,	as	we	will	see	later.

century_21.where('Year',	are.equal_to(2009))

Year Total	Gross Number	of	Movies #1	Movie

2009 10595.5 521 Avatar
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Interact

Visualizing	Categorical	Distributions¶

Data	come	in	many	forms	that	are	not	numerical.	Data	can	be	pieces	of	music,	or	places	on
a	map.	They	can	also	be	categories	into	which	you	can	place	individuals.	Here	are	some
examples	of	categorical	variables.

The	individuals	are	cartons	of	ice-cream,	and	the	variable	is	the	flavor	in	the	carton.
The	individuals	are	professional	basketball	players,	and	the	variable	is	the	player's
team.
The	individuals	are	years,	and	the	variable	is	the	genre	of	the	highest	grossing	movie	of
the	year.
The	individuals	are	survey	respondents,	and	the	variable	is	the	response	they	choose
from	among	"Not	at	all	satisfied,"	"Somewhat	satisfied,"	and	"Very	satisfied."

The	table		icecream		contains	data	on	30	cartons	of	ice-cream.

icecream	=	Table().with_columns(

				'Flavor',	make_array('Chocolate',	'Strawberry',	'Vanilla'),

				'Number	of	Cartons',	make_array(16,	5,	9)

)

icecream

Flavor Number	of	Cartons

Chocolate 16

Strawberry 5

Vanilla 9

The	values	of	the	categorical	variable	"flavor"	are	chocolate,	strawberry,	and	vanilla.	The
table	shows	the	number	of	cartons	of	each	flavor.	We	call	this	a	distribution	table.	A
distribution	shows	all	the	values	of	a	variable,	along	with	the	frequency	of	each	one.

Bar	Chart¶

The	bar	chart	is	a	familiar	way	of	visualizing	categorical	distributions.	It	displays	a	bar	for
each	category.	The	bars	are	equally	spaced	and	equally	wide.	The	length	of	each	bar	is
proportional	to	the	frequency	of	the	corresponding	category.
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We	will	draw	bar	charts	with	horizontal	bars	because	it's	easier	to	label	the	bars	that	way.
The	Table	method	is	therefore	called		barh	.	It	takes	two	arguments:	the	first	is	the	column
label	of	the	categories,	and	the	second	is	the	column	label	of	the	frequencies.

icecream.barh('Flavor',	'Number	of	Cartons')

If	the	table	consists	just	of	a	column	of	categories	and	a	column	of	frequencies,	as	in
	icecream	,	the	method	call	is	even	simpler.	You	can	just	specify	the	column	containing	the
categories,	and		barh		will	use	the	values	in	the	other	column	as	frequencies.

icecream.barh('Flavor')

Features	of	Categorical	Distributions¶
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Apart	from	purely	visual	differences,	there	is	an	important	fundamental	distinction	between
bar	charts	and	the	two	graphs	that	we	saw	in	the	previous	sections.	Those	were	the	scatter
plot	and	the	line	plot,	both	of	which	display	two	numerical	variables	–	the	variables	on	both
axes	are	numerical.	In	contrast,	the	bar	chart	has	categories	on	one	axis	and	numerical
frequencies	on	the	other.

This	has	consequences	for	the	chart.	First,	the	width	of	each	bar	and	the	space	between
consecutive	bars	is	entirely	up	to	the	person	who	is	producing	the	graph,	or	to	the	program
being	used	to	produce	it.	Python	made	those	choices	for	us.	If	you	were	to	draw	the	bar
graph	by	hand,	you	could	make	completely	different	choices	and	still	have	a	perfectly	correct
bar	graph,	provided	you	drew	all	the	bars	with	the	same	width	and	kept	all	the	spaces	the
same.

Most	importantly,	the	bars	can	be	drawn	in	any	order.	The	categories	"chocolate,"	"vanilla,"
and	"strawberry"	have	no	universal	rank	order,	unlike	for	example	the	numbers	5,	7,	and	10.

This	means	that	we	can	draw	a	bar	chart	that	is	easier	to	interpret,	by	rearranging	the	bars
in	decreasing	order.	To	do	this,	we	first	rearrange	the	rows	of		icecream		in	decreasing	order
of		Number	of	Cartons	,	and	then	draw	the	bar	chart.

icecream.sort('Number	of	Cartons',	

descending=True).barh('Flavor')

This	bar	chart	contains	exactly	the	same	information	as	the	previous	ones,	but	it	is	a	little
easier	to	read.	While	this	is	not	a	huge	gain	in	reading	a	chart	with	just	three	bars,	it	can	be
quite	significant	when	the	number	of	categories	is	large.

Grouping	Categorical	Data¶
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To	construct	the	table		icecream	,	someone	had	to	look	at	all	30	cartons	of	ice-cream	and
count	the	number	of	each	flavor.	But	if	our	data	does	not	already	include	frequencies,	we
have	to	compute	the	frequencies	before	we	can	draw	a	bar	chart.	Here	is	an	example	where
this	is	necessary.

The	table		top		consists	of	U.S.A.'s	top	grossing	movies	of	all	time.	The	first	column	contains
the	title	of	the	movie;	Star	Wars:	The	Force	Awakens	has	the	top	rank,	with	a	box	office
gross	amount	of	more	than	900	million	dollars	in	the	United	States.	The	second	column
contains	the	name	of	the	studio	that	produced	the	movie.	The	third	contains	the	domestic
box	office	gross	in	dollars,	and	the	fourth	contains	the	gross	amount	that	would	have	been
earned	from	ticket	sales	at	2016	prices.	The	fifth	contains	the	release	year	of	the	movie.

There	are	200	movies	on	the	list.	Here	are	the	top	ten	according	to	unadjusted	gross
receipts.

top	=	Table.read_table('top_movies.csv')

top

Title Studio Gross Gross
(Adjusted) Year

Star	Wars:	The	Force
Awakens

Buena	Vista
(Disney) 906723418 906723400 2015

Avatar Fox 760507625 846120800 2009

Titanic Paramount 658672302 1178627900 1997

Jurassic	World Universal 652270625 687728000 2015

Marvel's	The	Avengers Buena	Vista
(Disney) 623357910 668866600 2012

The	Dark	Knight Warner	Bros. 534858444 647761600 2008

Star	Wars:	Episode	I	-	The
Phantom	Menace Fox 474544677 785715000 1999

Star	Wars Fox 460998007 1549640500 1977

Avengers:	Age	of	Ultron Buena	Vista
(Disney) 459005868 465684200 2015

The	Dark	Knight	Rises Warner	Bros. 448139099 500961700 2012

...	(190	rows	omitted)

The	Disney	subsidiary	Buena	Vista	shows	up	frequently	in	the	top	ten,	as	do	Fox	and
Warner	Brothers.	Which	studios	will	appear	most	frequently	if	we	look	among	all	200	rows?
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To	figure	this	out,	first	notice	that	all	we	need	is	a	table	with	the	movies	and	the	studios;	the
other	information	is	unnecessary.

movies_and_studios	=	top.select('Title',	'Studio')

The	Table	method		group		allows	us	to	count	how	frequently	each	studio	appears	in	the
table,	by	calling	each	studio	a	category	and	assigning	each	row	to	one	category.	The		group	
method	takes	as	its	argument	the	label	of	the	column	that	contains	the	categories,	and
returns	a	table	of	counts	of	rows	in	each	category.	The	column	of	counts	is	always	called
	count	,	but	you	can	change	that	if	you	like	by	using		relabeled	.

movies_and_studios.group('Studio')

Studio count

AVCO 1

Buena	Vista	(Disney) 29

Columbia 10

Disney 11

Dreamworks 3

Fox 26

IFC 1

Lionsgate 3

MGM 7

MPC 1

...	(14	rows	omitted)

Thus		group		creates	a	distribution	table	that	shows	how	the	movies	are	distributed	among
the	categories	(studios).

We	can	now	use	this	table,	along	with	the	graphing	skills	that	we	acquired	above,	to	draw	a
bar	chart	that	shows	which	studios	are	most	frequent	among	the	200	highest	grossing
movies.

studio_distribution	=	movies_and_studios.group('Studio')

studio_distribution.sort('count',	

descending=True).barh('Studio')

Categorical	Distributions

132



Warner	Brothers	and	Buena	Vista	are	the	most	common	studios	among	the	top	200	movies.
Warner	Brothers	produces	the	Harry	Potter	movies	and	Buena	Vista	produces	Star	Wars.

Because	total	gross	receipts	are	being	measured	in	unadjusted	dollars,	it	is	not	very
surprising	that	the	top	movies	are	more	frequently	from	recent	years	than	from	bygone
decades.	In	absolute	terms,	movie	tickets	cost	more	now	than	they	used	to,	and	thus	gross
receipts	are	higher.	This	is	borne	out	by	a	bar	chart	that	show	the	distribution	of	the	200
movies	by	year	of	release.
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movies_and_years	=	top.select('Title',	'Year')

movies_and_years.group('Year').sort('count',	

descending=True).barh('Year')
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All	of	the	longest	bars	correspond	to	years	after	2000.	This	is	consistent	with	our	observation
that	recent	years	should	be	among	the	most	frequent.

Towards	numerical	variables¶

There	is	something	unsettling	about	this	chart.	Though	it	does	answer	the	question	of	which
release	years	appear	most	frequently	among	the	200	top	grossing	movies,	it	doesn't	list	all
the	years	in	chronological	order.	It	is	treating		Year		as	a	categorical	variable.

But	years	are	fixed	chronological	units	that	do	have	an	order.	They	also	have	fixed	numerical
spacings	relative	to	each	other.	Let's	see	what	happens	when	we	try	to	take	that	into
account.

By	default,		barh		sorts	the	categories	(years)	from	lowest	to	highest.	So	we	will	run	the	code
without	sorting	by	count.

movies_and_years.group('Year').barh('Year')
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Now	the	years	are	in	increasing	order.	But	there	is	still	something	disquieting	about	this	bar
chart.	The	bars	at	1921	and	1937	are	just	as	far	apart	from	each	other	as	the	bars	at	1937
and	1939.	The	bar	chart	doesn't	show	that	none	of	the	200	movies	were	released	in	the
years	1922	through	1936,	nor	in	1938.	Such	inconsistencies	and	omissions	make	the
distribution	in	the	early	years	hard	to	understand	based	on	this	visualization.

Bar	charts	are	intended	as	visualizations	of	categorical	variables.	When	the	variable	is
numerical,	the	numerical	relations	between	its	values	have	to	be	taken	into	account	when
we	create	visualizations.	That	is	the	topic	of	the	next	section.
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Interact

Visualizing	Numerical	Distributions¶

Many	of	the	variables	that	data	scientists	study	are	quantitative	or	numerical.	Their	values
are	numbers	on	which	you	can	perform	arithmetic.	Examples	that	we	have	seen	include	the
number	of	periods	in	chapters	of	a	book,	the	amount	of	money	made	by	movies,	and	the	age
of	people	in	the	United	States.

The	values	of	a	categorical	variable	can	be	given	numerical	codes,	but	that	doesn't	make
the	variable	quantitative.	In	the	example	in	which	we	studied	Census	data	broken	down	by
age	group,	the	categorial	variable		SEX		had	the	numerical	codes		1		for	'Male,'		2		for
'Female,'	and		0		for	the	aggregate	of	both	groups		1		and		2	.	While	0,	1,	and	2	are
numbers,	in	this	context	it	doesn't	make	sense	to	subtract	1	from	2,	or	take	the	average	of	0,
1,	and	2,	or	perform	other	arithmetic	on	the	three	values.		SEX		is	a	categorical	variable	even
though	the	values	have	been	given	a	numerical	code.

For	our	main	example,	we	will	return	to	a	dataset	that	we	studied	when	we	were	visualizing
categorical	data.	It	is	the	table		top	,	which	consists	of	data	from	U.S.A.'s	top	grossing
movies	of	all	time.	For	convenience,	here	is	the	description	of	the	table	again.

The	first	column	contains	the	title	of	the	movie.	The	second	column	contains	the	name	of	the
studio	that	produced	the	movie.	The	third	contains	the	domestic	box	office	gross	in	dollars,
and	the	fourth	contains	the	gross	amount	that	would	have	been	earned	from	ticket	sales	at
2016	prices.	The	fifth	contains	the	release	year	of	the	movie.

There	are	200	movies	on	the	list.	Here	are	the	top	ten	according	to	the	unadjusted	gross
receipts	in	the	column		Gross	.

top	=	Table.read_table('top_movies.csv')

#	Make	the	numbers	in	the	Gross	and	Gross	(Adjusted)	columns	

look	nicer:

top.set_format([2,	3],	NumberFormatter)
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Title Studio Gross Gross
(Adjusted) Year

Star	Wars:	The	Force
Awakens

Buena	Vista
(Disney) 906,723,418 906,723,400 2015

Avatar Fox 760,507,625 846,120,800 2009

Titanic Paramount 658,672,302 1,178,627,900 1997

Jurassic	World Universal 652,270,625 687,728,000 2015

Marvel's	The	Avengers Buena	Vista
(Disney) 623,357,910 668,866,600 2012

The	Dark	Knight Warner	Bros. 534,858,444 647,761,600 2008

Star	Wars:	Episode	I	-	The
Phantom	Menace Fox 474,544,677 785,715,000 1999

Star	Wars Fox 460,998,007 1,549,640,500 1977

Avengers:	Age	of	Ultron Buena	Vista
(Disney) 459,005,868 465,684,200 2015

The	Dark	Knight	Rises Warner	Bros. 448,139,099 500,961,700 2012

...	(190	rows	omitted)

Visualizing	the	Distribution	of	the	Adjusted	Receipts¶

In	this	section	we	will	draw	graphs	of	the	distribution	of	the	numerical	variable	in	the	column
	Gross	(Adjusted)	.	For	simplicity,	let's	create	a	smaller	table	that	has	the	information	that	we
need.	And	since	three-digit	numbers	are	easier	to	work	with	than	nine-digit	numbers,	let's
measure	the		Adjusted	Gross		receipts	in	millions	of	dollars.	Note	how		round		is	used	to
retain	only	two	decimal	places.

millions	=	top.select(0).with_column('Adjusted	Gross',	

																																					np.round(top.column(3)/1e6,	

2))

millions
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Title Adjusted	Gross

Star	Wars:	The	Force	Awakens 906.72

Avatar 846.12

Titanic 1178.63

Jurassic	World 687.73

Marvel's	The	Avengers 668.87

The	Dark	Knight 647.76

Star	Wars:	Episode	I	-	The	Phantom	Menace 785.72

Star	Wars 1549.64

Avengers:	Age	of	Ultron 465.68

The	Dark	Knight	Rises 500.96

...	(190	rows	omitted)

A	Histogram¶

A	histogram	of	a	numerical	dataset	looks	very	much	like	a	bar	chart,	though	it	has	some
important	differences	that	we	will	examine	in	this	section.	First,	let's	just	draw	a	histogram	of
the	adjusted	receipts.

The		hist		method	generates	a	histogram	of	the	values	in	a	column.	The	optional		unit	
argument	is	used	in	the	labels	on	the	two	axes.	The	histogram	shows	the	distribution	of	the
adjusted	gross	amounts,	in	millions	of	2016	dollars.

millions.hist('Adjusted	Gross',	unit="Million	Dollars")
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The	Horizontal	Axis¶

The	amounts	have	been	grouped	into	contiguous	intervals	called	bins.	Although	in	this
dataset	no	movie	grossed	an	amount	that	is	exactly	on	the	edge	between	two	bins,		hist	
does	have	to	account	for	situations	where	there	might	have	been	values	at	the	edges.	So
	hist		has	an	endpoint	convention:	bins	include	the	data	at	their	left	endpoint,	but	not	the
data	at	their	right	endpoint.

We	will	use	the	notation	[a,	b)	for	the	bin	that	starts	at	a	and	ends	at	b	but	doesn't	include	b.

Sometimes,	adjustments	have	to	be	made	in	the	first	or	last	bin,	to	ensure	that	the	smallest
and	largest	values	of	the	variable	are	included.	You	saw	an	example	of	such	an	adjustment
in	the	Census	data	studied	earlier,	where	an	age	of	"100"	years	actually	meant	"100	years
old	or	older."

We	can	see	that	there	are	10	bins	(some	bars	are	so	low	that	they	are	hard	to	see),	and	that
they	all	have	the	same	width.	We	can	also	see	that	none	of	the	movies	grossed	fewer	than
300	million	dollars;	that	is	because	we	are	considering	only	the	top	grossing	movies	of	all
time.

It	is	a	little	harder	to	see	exactly	where	the	ends	of	the	bins	are	situated.	For	example,	it	is
not	easy	to	pinpoint	exactly	where	the	value	500	lies	on	the	horizontal	axis.	So	it	is	hard	to
judge	exactly	where	one	bar	ends	and	the	next	begins.
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The	optional	argument		bins		can	be	used	with		hist		to	specify	the	endpoints	of	the	bins.	It
must	consist	of	a	sequence	of	numbers	that	starts	with	the	left	end	of	the	first	bin	and	ends
with	the	right	end	of	the	last	bin.	We	will	start	by	setting	the	numbers	in		bins		to	be	300,
400,	500,	and	so	on,	ending	with	2000.

millions.hist('Adjusted	Gross',	bins=np.arange(300,2001,100),	

unit="Million	Dollars")

The	horizontal	axis	of	this	figure	is	easier	to	read.	The	labels	200,	400,	600,	and	so	on	are
centered	at	the	corresponding	values.	The	tallest	bar	is	for	movies	that	grossed	between
300	and	million	and	400	million	dollars.

A	very	small	number	of	movies	grossed	800	million	dollars	or	more.	This	results	in	the	figure
being	"skewed	to	the	right,"	or,	less	formally,	having	"a	long	right	hand	tail."	Distributions	of
variables	like	income	or	rent	in	large	populations	also	often	have	this	kind	of	shape.

The	Counts	in	the	Bins¶

The	counts	of	values	in	the	bins	can	be	computed	from	a	table	using	the		bin		method,
which	takes	a	column	label	or	index	and	an	optional	sequence	or	number	of	bins.	The	result
is	a	tabular	form	of	a	histogram.	The	first	column	lists	the	left	endpoints	of	the	bins	(but	see
the	note	about	the	final	value,	below).	The	second	column	contains	the	counts	of	all	values
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in	the		Adjusted	Gross		column	that	are	in	the	corresponding	bin.	That	is,	it	counts	all	the
	Adjusted	Gross		values	that	are	greater	than	or	equal	to	the	value	in		bin	,	but	less	than	the
next	value	in		bin	.

bin_counts	=	millions.bin('Adjusted	Gross',	

bins=np.arange(300,2001,100))

bin_counts.show()

bin Adjusted	Gross	count

300 81

400 52

500 28

600 16

700 7

800 5

900 3

1000 1

1100 3

1200 2

1300 0

1400 0

1500 1

1600 0

1700 1

1800 0

1900 0

2000 0

Notice	the		bin		value	2000	in	the	last	row.	That's	not	the	left	end-point	of	any	bar	–	it's	the
right	end	point	of	the	last	bar.	By	the	endpoint	convention,	the	data	there	are	not	included.
So	the	corresponding		count		is	recorded	as	0,	and	would	have	been	recorded	as	0	even	if
there	had	been	movies	that	made	more	than	$2,000$	million	dollars.	When	either		bin		or
	hist		is	called	with	a		bins		argument,	the	graph	only	considers	values	that	are	in	the
specified	bins.
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Once	values	have	been	binned,	the	resulting	counts	can	be	used	to	generate	a	histogram
using	the		bin_column		named	argument	to	specify	which	column	contains	the	bin	lower
bounds.

bin_counts.hist('Adjusted	Gross	count',	bin_column='bin',	

unit='Million	Dollars')

The	Vertical	Axis:	Density	Scale¶

The	horizontal	axis	of	a	histogram	is	straightforward	to	read,	once	we	have	taken	care	of
details	like	the	ends	of	the	bins.	The	features	of	the	vertical	axis	require	a	little	more
attention.	We	will	go	over	them	one	by	one.

Let's	start	by	examining	how	to	calculate	the	numbers	on	the	vertical	axis.	If	the	calculation
seems	a	little	strange,	have	patience	–	the	rest	of	the	section	will	explain	the	reasoning.

Calculation.	The	height	of	each	bar	is	the	percent	of	elements	that	fall	into	the
corresponding	bin,	relative	to	the	width	of	the	bin.
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counts	=	bin_counts.relabeled('Adjusted	Gross	count',	'Count')

percents	=	counts.with_column(

				'Percent',	(counts.column('Count')/200)*100

				)

heights	=	percents.with_column(

				'Height',	percents.column('Percent')/100

				)

heights

bin Count Percent Height

300 81 40.5 0.405

400 52 26 0.26

500 28 14 0.14

600 16 8 0.08

700 7 3.5 0.035

800 5 2.5 0.025

900 3 1.5 0.015

1000 1 0.5 0.005

1100 3 1.5 0.015

1200 2 1 0.01

...	(8	rows	omitted)

Go	over	the	numbers	on	the	vertical	axis	of	the	histogram	above	to	check	that	the	column
	Heights		looks	correct.

The	calculations	will	become	clear	if	we	just	examine	the	first	row	of	the	table.

Remember	that	there	are	200	movies	in	the	dataset.	The	[300,	400)	bin	contains	81	movies.
That's	40.5%	of	all	the	movies:

The	width	of	the	[300,	400)	bin	is	 .	So
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The	code	for	calculating	the	heights	used	the	facts	that	there	are	200	movies	in	all	and	that
the	width	of	each	bin	is	100.

Units.	The	height	of	the	bar	is	40.5%	divided	by	100	million	dollars,	and	so	the	height	is
0.405%	per	million	dollars.

This	method	of	drawing	histograms	creates	a	vertical	axis	that	is	said	to	be	on	the	density
scale.	The	height	of	bar	is	not	the	percent	of	entries	in	the	bin;	it	is	the	percent	of	entries	in
the	bin	relative	to	the	amount	of	space	in	the	bin.	That	is	why	the	height	measures
crowdedness	or	density.

Let's	see	why	this	matters.

Unequal	Bins¶

An	advantage	of	the	histogram	over	a	bar	chart	is	that	a	histogram	can	contain	bins	of
unequal	width.	Below,	the	values	in	the		Millions		column	are	binned	into	three	uneven
categories.

uneven	=	make_array(300,	400,	600,	1500)

millions.hist('Adjusted	Gross',	bins=uneven,	unit="Million	

Dollars")

Here	are	the	counts	in	the	three	bins.
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millions.bin('Adjusted	Gross',	bins=uneven)

bin Adjusted	Gross	count

300 81

400 80

600 37

1500 0

Although	the	ranges	[300,	400)	and	[400,	600)	have	nearly	identical	counts,	the	bar	over	the
former	is	twice	as	tall	as	the	latter	because	it	is	only	half	as	wide.	The	density	of	values	in
the	[300,	400)	is	twice	as	much	as	the	density	in	[400,	600).

Histograms	help	us	visualize	where	on	the	number	line	the	data	are	most	concentrated,
epecially	when	the	bins	are	uneven.

The	Problem	with	Simply	Plotting	Counts¶

It	is	possible	to	display	counts	directly	in	a	chart,	using	the		normed=False		option	of	the
	hist		method.	The	resulting	chart	has	the	same	shape	as	a	histogram	when	the	bins	all
have	equal	widths,	though	the	numbers	on	the	vertical	axis	are	different.

millions.hist('Adjusted	Gross',	bins=np.arange(300,2001,100),	

normed=False)
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While	the	count	scale	is	perhaps	more	natural	to	interpret	than	the	density	scale,	the	chart
becomes	highly	misleading	when	bins	have	different	widths.	Below,	it	appears	(due	to	the
count	scale)	that	high-grossing	movies	are	quite	common,	when	in	fact	we	have	seen	that
they	are	relatively	rare.

millions.hist('Adjusted	Gross',	bins=uneven,	normed=False)
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Even	though	the	method	used	is	called		hist	,	the	figure	above	is	NOT	A	HISTOGRAM.	It
misleadingly	exaggerates	the	proportion	of	movies	grossing	at	least	600	million	dollars.	The
height	of	each	bar	is	simply	plotted	at	the	number	of	movies	in	the	bin,	without	accounting
for	the	difference	in	the	widths	of	the	bins.

The	picture	becomes	even	more	absurd	if	the	last	two	bins	are	combined.

very_uneven	=	make_array(300,	400,	1500)

millions.hist('Adjusted	Gross',	bins=very_uneven,	normed=False)

In	this	count-based	figure,	the	shape	of	the	distribution	of	movies	is	lost	entirely.

The	Histogram:	General	Principles	and	Calculation¶

The	figure	above	shows	that	what	the	eye	perceives	as	"big"	is	area,	not	just	height.	This
observation	becomes	particularly	important	when	the	bins	have	different	widths.

That	is	why	a	histogram	has	two	defining	properties:

1.	 The	bins	are	drawn	to	scale	and	are	contiguous	(though	some	might	be	empty),
because	the	values	on	the	horizontal	axis	are	numerical.

2.	 The	area	of	each	bar	is	proportional	to	the	number	of	entries	in	the	bin.

Property	2	is	the	key	to	drawing	a	histogram,	and	is	usually	achieved	as	follows:
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The	calculation	of	the	heights	just	uses	the	fact	that	the	bar	is	a	rectangle:

and	so

The	units	of	height	are	"percent	per	unit	on	the	horizontal	axis."

When	drawn	using	this	method,	the	histogram	is	said	to	be	drawn	on	the	density	scale.	On
this	scale:

The	area	of	each	bar	is	equal	to	the	percent	of	data	values	that	are	in	the	corresponding
bin.
The	total	area	of	all	the	bars	in	the	histogram	is	100%.	Speaking	in	terms	of	proportions,
we	say	that	the	areas	of	all	the	bars	in	a	histogram	"sum	to	1".

Flat	Tops	and	the	Level	of	Detail¶

Even	though	the	density	scale	correctly	represents	percents	using	area,	some	detail	is	lost
by	grouping	values	into	bins.

Take	another	look	at	the	[300,	400)	bin	in	the	figure	below.	The	flat	top	of	the	bar,	at	the	level
0.405%	per	million	dollars,	hides	the	fact	that	the	movies	are	somewhat	unevenly	distributed
across	that	bin.

millions.hist('Adjusted	Gross',	bins=uneven,	unit="Million	

Dollars")
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To	see	this,	let	us	split	the	[300,	400)	bin	into	10	narrower	bins,	each	of	width	10	million
dollars.

some_tiny_bins	=	make_array(300,	310,	320,	330,	340,	350,	360,	

370,	380,	390,	400,	600,	1500)

millions.hist('Adjusted	Gross',	bins=some_tiny_bins,	

unit='Million	Dollars')
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Some	of	the	skinny	bars	are	taller	than	0.405	and	others	are	shorter;	the	first	two	have
heights	of	0	because	there	are	no	data	between	300	and	320.	By	putting	a	flat	top	at	the
level	0.405	across	the	whole	bin,	we	are	deciding	to	ignore	the	finer	detail	and	are	using	the
flat	level	as	a	rough	approximation.	Often,	though	not	always,	this	is	sufficient	for
understanding	the	general	shape	of	the	distribution.

The	height	as	a	rough	approximation.	This	observation	gives	us	a	different	way	of
thinking	about	the	height.	Look	again	at	the	[300,	400)	bin	in	the	earlier	histograms.	As	we
have	seen,	the	bin	is	100	million	dollars	wide	and	contains	40.5%	of	the	data.	Therefore	the
height	of	the	corresponding	bar	is	0.405%	per	million	dollars.

Now	think	of	the	bin	as	consisting	of	100	narrow	bins	that	are	each	1	million	dollars	wide.
The	bar's	height	of	"0.405%	per	million	dollars"	means	that	as	a	rough	approximation,
0.405%	of	the	movies	are	in	each	of	those	100	skinny	bins	of	width	1	million	dollars.

Notice	that	because	we	have	the	entire	dataset	that	is	being	used	to	draw	the	histograms,
we	can	draw	the	histograms	to	as	fine	a	level	of	detail	as	the	data	and	our	patience	will
allow.	However,	if	you	are	looking	at	a	histogram	in	a	book	or	on	a	website,	and	you	don't
have	access	to	the	underlying	dataset,	then	it	becomes	important	to	have	a	clear
understanding	of	the	"rough	approximation"	created	by	the	flat	tops.

Histograms	Q&A¶

Let's	draw	the	histogram	again,	this	time	with	four	bins,	and	check	our	understanding	of	the
concepts.
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uneven_again	=	make_array(300,	350,	400,	450,	1500)

millions.hist('Adjusted	Gross',	bins=uneven_again,	unit='Million	

Dollars')

millions.bin('Adjusted	Gross',	bins=uneven_again)

bin Adjusted	Gross	count

300 32

350 49

400 25

450 92

1500 0

Look	again	at	the	histogram,	and	compare	the	[400,	450)	bin	with	the	[450,	1500)	bin.

Q:	Which	has	more	movies	in	it?

A:	The	[450,	1500)	bin.	It	has	92	movies,	compared	with	25	movies	in	the	[400,	450)	bin.

Q:	Then	why	is	the	[450,	1500)	bar	so	much	shorter	than	the	[400,	450)	bar?
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A:	Because	height	represents	density	per	unit	of	space	in	the	bin,	not	the	number	of	movies
in	the	bin.	The	[450,	1500)	bin	does	have	more	movies	than	the	[400,	450)	bin,	but	it	is	also
a	whole	lot	wider.	So	it	is	less	crowded.	The	density	of	movies	in	it	is	much	lower.

Differences	Between	Bar	Charts	and	Histograms¶

Bar	charts	display	one	quantity	per	category.	They	are	often	used	to	display	the
distributions	of	categorical	variables.	Histograms	display	the	distributions	of	quantitative
variables.
All	the	bars	in	a	bar	chart	have	the	same	width,	and	there	is	an	equal	amount	of	space
between	consecutive	bars.	The	bars	of	a	histogram	can	have	different	widths,	and	they
are	contiguous.
The	lengths	(or	heights,	if	the	bars	are	drawn	vertically)	of	the	bars	in	a	bar	chart	are
proportional	to	the	value	for	each	category.	The	heights	of	bars	in	a	histogram	measure
densities;	the	areas	of	bars	in	a	histogram	are	proportional	to	the	numbers	of	entries	in
the	bins.
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Interact

Overlaid	Graphs¶

In	this	chapter,	we	have	learned	how	to	visualize	data	by	drawing	graphs.	A	common	use	of
such	visualizations	is	to	compare	two	datasets.	In	this	section,	we	will	see	how	to	overlay
plots,	that	is,	draw	them	in	a	single	graphic	on	a	common	pair	of	axes.

For	the	overlay	to	make	sense,	the	graphs	that	are	being	overlaid	must	represent	the	same
variables	and	be	measured	in	the	same	units.

To	draw	overlaid	graphs,	the	methods		scatter	,		plot	,	and		barh		can	all	be	called	in	the
same	way.	For		scatter		and		plot	,	one	column	must	serve	as	the	common	horizontal	axis
for	all	the	overlaid	graphs.	For		barh	,	one	column	must	serve	as	the	common	axis	which	is
the	set	of	categories.	The	general	call	looks	like:

	name_of_table.method(column_label_of_common_axis,	array_of_labels_of_variables_to_plot)	

More	commonly,	we	will	first	select	only	the	columns	needed	for	our	graph,	and	then	call	the
method	by	just	specifying	the	variable	on	the	common	axis:

	name_of_table.method(column_label_of_common_axis)	

Scatter	Plots¶

Franics	Galton	(1822-1911)	was	an	English	polymath	who	was	a	pioneer	in	the	analysis	of
relations	between	numerical	variables.	He	was	particularly	interested	in	the	controversial
area	of	eugenics	–	indeed,	he	coined	that	term	–	which	involves	understading	how	physical
traits	are	passed	down	from	one	generation	to	the	next.

Galton	meticulously	collected	copious	amounts	of	data,	some	of	which	we	will	analyze	in	this
course.	Here	is	a	subset	of	Galton's	data	on	heights	of	parents	and	their	children.
Specifically,	the	population	consists	of	179	men	who	were	the	first-born	in	their	families.	The
data	are	their	own	heights	and	the	heights	of	their	parents.	All	heights	were	measured	in
inches.

heights	=	Table.read_table('galton_subset.csv')

heights
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father mother son

78.5 67 73.2

75.5 66.5 73.5

75 64 71

75 64 70.5

75 58.5 72

74 68 76.5

74 62 74

73 67 71

73 67 68

73 66.5 71

...	(169	rows	omitted)

The		scatter		method	allows	us	to	visualize	how	the	sons'	heights	are	related	to	the	heights
of	both	their	parents.	In	the	graph,	the	sons'	heights	will	form	the	common	horizontal	axis.

heights.scatter('son')

Overlaid	Graphs

157



Notice	how	we	only	specified	the	variable	(sons'	heights)	on	the	common	horizontal	axis.
Python	drew	two	scatter	plots:	one	each	for	the	relation	between	this	variable	and	the	other
two.

Both	the	gold	and	the	blue	scatter	plots	slope	upwards	and	show	a	positive	association
between	the	sons'	heights	and	the	heights	of	both	their	parents.	The	blue	(fathers)	plot	is	in
general	higher	than	the	gold,	because	the	fathers	were	in	general	taller	than	the	mothers.

Line	Plots¶

Our	next	example	involves	data	on	children	of	more	recent	times.	We	will	return	to	the
Census	data	table		us_pop	,	created	below	again	for	reference.	From	this,	we	will	extract	the
counts	of	all	children	in	each	of	the	age	categories	0	through	18	years.
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#	Read	the	full	Census	table

census_url	=	'http://www2.census.gov/programs-

surveys/popest/datasets/2010-2015/national/asrh/nc-est2015-

agesex-res.csv'

full_census_table	=	Table.read_table(census_url)

#	Select	columns	from	the	full	table	and	relabel	some	of	them

partial_census_table	=	full_census_table.select(['SEX',	'AGE',	

'POPESTIMATE2010',	'POPESTIMATE2014'])

us_pop	=	partial_census_table.relabeled('POPESTIMATE2010',	

'2010').relabeled('POPESTIMATE2014',	'2014')

#	Access	the	rows	corresponding	to	all	children,	ages	0-18

children	=	us_pop.where('SEX',	are.equal_to(0)).where('AGE',	

are.below(19)).drop('SEX')

children.show()
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AGE 2010 2014

0 3951330 3949775

1 3957888 3949776

2 4090862 3959664

3 4111920 4007079

4 4077551 4005716

5 4064653 4006900

6 4073013 4135930

7 4043046 4155326

8 4025604 4120903

9 4125415 4108349

10 4187062 4116942

11 4115511 4087402

12 4113279 4070682

13 4119666 4171030

14 4145614 4233839

15 4231002 4164796

16 4313252 4168559

17 4376367 4186513

18 4491005 4227920

We	can	now	draw	two	overlaid	line	plots,	showing	the	numbers	of	children	in	the	different
age	groups	for	each	of	the	years	2010	and	2014.	The	method	call	is	analogous	to	the
	scatter		call	in	the	previous	example.

children.plot('AGE')
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On	this	scale,	it's	important	to	remember	that	we	only	have	data	at	ages	0,	1,	2,	and	so	on;
the	graphs	"join	the	dots"	in	between.

The	graphs	cross	each	other	in	a	few	places:	for	example,	there	were	more	4-year-olds	in
2010	than	in	2014,	and	there	were	more	14-year-olds	in	2014	than	in	2010.

Of	course,	the	14-year-olds	in	2014	mostly	consist	of	the	10-year-olds	in	2010.	To	see	this,
look	at	the	gold	graph	at		AGE		14	and	the	blue	graph	at		AGE		10.	Indeed,	you	will	notice	that
the	entire	gold	graph	(2014)	looks	like	the	blue	graph	(2010)	slid	over	to	the	right	by	4	years.
The	slide	is	accompanied	by	a	slight	rise	due	to	the	net	effect	of	children	who	entered	the
country	between	2010	and	2014	outnumbering	those	who	left.	Fortunately	at	these	ages
there	is	not	much	loss	of	life.

Bar	Charts¶

For	our	final	example	of	this	section,	we	look	at	distributions	of	ethnicities	of	adults	and
children	in	California	as	well	as	in	the	entire	United	States.

The	Kaiser	Family	Foundation	has	complied	Census	data	on	the	distribution	of	race	and
ethnicity	in	the	U.S.	The	Foundation's	website	provides	compilations	of	data	for	the	entire
U.S.	population	in	2014,	as	well	as	for	U.S.	children	who	were	younger	than	18	years	old
that	year.

Here	is	a	table	adapted	from	their	data	for	the	United	States	and	California.	The	columns
represent	everyone	in	the	U.S.A.,	everyone	in	California,	children	in	the	U.S.A.,	and	children
in	California.	The	body	of	the	table	contains	proportions	in	the	different	categories.	Each
column	shows	the	distribution	of	ethnicities	in	the	group	of	people	corresponding	to	that
column.	So	in	each	column,	the	entries	add	up	to	1.
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usa_ca	=	Table.read_table('usa_ca_2014.csv')

usa_ca

Ethnicity USA	All CA	All USA	Children CA	Children

Black 0.12 0.05 0.14 0.05

Hispanic 0.18 0.38 0.24 0.5

White 0.62 0.39 0.52 0.29

Other 0.08 0.18 0.1 0.16

It	is	natural	to	want	to	compare	these	distributions.	It	makes	sense	to	compare	the	columns
directly,	because	all	the	entries	are	proportions	and	are	therefore	on	the	same	scale.

The	method		barh		allows	us	to	visualize	the	comparisons	by	drawing	multiple	bar	charts	on
the	same	axes.	The	call	is	analogous	to	those	for		scatter		and		plot	:	we	have	to	specify
the	common	axis	of	categories.

usa_ca.barh('Ethnicity')

While	drawing	the	overlaid	bar	charts	is	straightforward,	there	is	a	bit	too	much	information
on	this	graph	for	us	to	be	able	to	sort	out	similarities	and	differences	between	populations.	It
seems	clear	that	the	distributions	of	ethnicities	for	everyone	in	the	U.S.	and	for	children	in
the	U.S.	are	more	similar	to	each	other	than	any	other	pair,	but	it's	much	easier	to	compare
the	populations	one	pair	at	a	time.

Let's	start	by	comparing	the	entire	populations	of	the	U.S.A.	and	California.

usa_ca.select('Ethnicity',	'USA	All',	'CA	

All').barh('Ethnicity')
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The	two	distributions	are	quite	different.	California	has	higher	proportions	in	the		Hispanic	
and		Other		categories,	and	correspondingly	lower	proportions	of		Black		and		White	.	The
differences	are	largely	due	to	California's	geographical	location	and	patterns	of	immigration,
both	historically	and	in	more	recent	decades.	For	example,	the		Other		category	in	California
includes	a	significant	proportion	of	Asians	and	Pacific	Islanders.

As	you	can	see	from	the	graph,	almost	40%	of	the	Californian	population	in	2014	was
	Hispanic	.	A	comparison	with	the	population	of	children	in	the	state	indicates	that	the
	Hispanic		proportion	is	likely	to	be	greater	in	future	years.	Among	Californian	children,	50%
are	in	the		Hispanic		category.

usa_ca.select('Ethnicity',	'CA	All',	'CA	

Children').barh('Ethnicity')

More	complex	datasets	naturally	give	rise	to	varied	and	interesting	visualizations,	including
overlaid	graphs	of	different	kinds.	To	analyze	such	data,	it	helps	to	have	some	more	skills	in
data	manipulation,	so	that	we	can	get	the	data	into	a	form	that	allows	us	to	use	methods	like
those	in	this	section.	In	the	next	chapter	we	will	develop	some	of	these	skills.
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Interact

Functions	and	Tables¶

We	are	building	up	a	useful	inventory	of	techniques	for	identifying	patterns	and	themes	in	a
data	set	by	using	functions	already	available	in	Python.	We	will	now	explore	a	core	feature
of	the	Python	programming	language:	function	definition.

We	have	used	functions	extensively	already	in	this	text,	but	never	defined	a	function	of	our
own.	The	purpose	of	defining	a	function	is	to	give	a	name	to	a	computational	process	that
may	be	applied	multiple	times.	There	are	many	situations	in	computing	that	require	repeated
computation.	For	example,	it	is	often	the	case	that	we	want	to	perform	the	same
manipulation	on	every	value	in	a	column	of	a	table.

Defining	a	Function¶

The	definition	of	the		double		function	below	simply	doubles	a	number.

#	Our	first	function	definition

def	double(x):

				"""	Double	x	"""

				return	2*x

We	start	any	function	definition	by	writing		def	.	Here	is	a	breakdown	of	the	other	parts	(the
syntax)	of	this	small	function:
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When	we	run	the	cell	above,	no	particular	number	is	doubled,	and	the	code	inside	the	body
of		double		is	not	yet	evaluated.	In	this	respect,	our	function	is	analogous	to	a	recipe.	Each
time	we	follow	the	instructions	in	a	recipe,	we	need	to	start	with	ingredients.	Each	time	we
want	to	use	our	function	to	double	a	number,	we	need	to	specify	a	number.

We	can	call		double		in	exactly	the	same	way	we	have	called	other	functions.	Each	time	we
do	that,	the	code	in	the	body	is	executed,	with	the	value	of	the	argument	given	the	name		x	.

double(17)

34

double(-0.6/4)

-0.3
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The	two	expressions	above	are	both	call	expressions.	In	the	second	one,	the	value	of	the
expression		-0.6/4		is	computed	and	then	passed	as	the	argument	named		x		to	the
	double		function.	Each	call	expresson	results	in	the	body	of		double		being	executed,	but
with	a	different	value	of		x	.

The	body	of		double		has	only	a	single	line:

	return	2*x	

Executing	this		return		statement	completes	execution	of	the		double		function's	body	and
computes	the	value	of	the	call	expression.

The	argument	to		double		can	be	any	expression,	as	long	as	its	value	is	a	number.	For
example,	it	can	be	a	name.	The		double		function	does	not	know	or	care	how	its	argument	is
computed	or	stored;	its	only	job	is	to	execute	its	own	body	using	the	values	of	the	arguments
passed	to	it.

any_name	=	42

double(any_name)

84

The	argument	can	also	be	any	value	that	can	be	doubled.	For	example,	a	whole	array	of
numbers	can	be	passed	as	an	argument	to		double	,	and	the	result	will	be	another	array.

double(make_array(3,	4,	5))

array([	6,		8,	10])

However,	names	that	are	defined	inside	a	function,	including	arguments	like		double	's		x	,
have	only	a	fleeting	existence.	They	are	defined	only	while	the	function	is	being	called,	and
they	are	only	accessible	inside	the	body	of	the	function.	We	can't	refer	to		x		outside	the
body	of		double	.	The	technical	terminology	is	that		x		has	local	scope.

Therefore	the	name		x		isn't	recognized	outside	the	body	of	the	function,	even	though	we
have	called		double		in	the	cells	above.

x
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----------------------------------------------------------------

-----------

NameError																																	Traceback	(most	recent	

call	last)

<ipython-input-18-401b30e3b8b5>	in	<module>()

---->	1	x

NameError:	name	'x'	is	not	defined

Docstrings.	Though		double		is	relatively	easy	to	understand,	many	functions	perform
complicated	tasks	and	are	difficult	to	use	without	explanation.	(You	may	have	discovered	this
yourself!)	Therefore,	a	well-composed	function	has	a	name	that	evokes	its	behavior,	as	well
as	documentation.	In	Python,	this	is	called	a	docstring	—	a	description	of	its	behavior	and
expectations	about	its	arguments.	The	docstring	can	also	show	example	calls	to	the
function,	where	the	call	is	preceded	by		>>>	.

A	docstring	can	be	any	string,	as	long	as	it	is	the	first	thing	in	a	function's	body.	Docstrings
are	typically	defined	using	triple	quotation	marks	at	the	start	and	end,	which	allows	a	string
to	span	multiple	lines.	The	first	line	is	conventionally	a	complete	but	short	description	of	the
function,	while	following	lines	provide	further	guidance	to	future	users	of	the	function.

Here	is	a	definition	of	a	function	called		percent		that	takes	two	arguments.	The	definition
includes	a	docstring.

#	A	function	with	more	than	one	argument

def	percent(x,	total):

				"""Convert	x	to	a	percentage	of	total.

				

				More	precisely,	this	function	divides	x	by	total,

				multiplies	the	result	by	100,	and	rounds	the	result

				to	two	decimal	places.

				

				>>>	percent(4,	16)

				25.0

				>>>	percent(1,	6)

				16.67

				"""

				return	round((x/total)*100,	2)
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percent(33,	200)

16.5

Contrast	the	function		percent		defined	above	with	the	function		percents		defined	below.
The	latter	takes	an	array	as	its	argument,	and	converts	all	the	numbers	in	the	array	to
percents	out	of	the	total	of	the	values	in	the	array.	The	percents	are	all	rounded	to	two
decimal	places,	this	time	replacing		round		by		np.round		because	the	argument	is	an	array
and	not	a	number.

def	percents(counts):

				"""Convert	the	values	in	array_x	to	percents	out	of	the	

total	of	array_x."""

				total	=	counts.sum()

				return	np.round((counts/total)*100,	2)

The	function		percents		returns	an	array	of	percents	that	add	up	to	100	apart	from	rounding.

some_array	=	make_array(7,	10,	4)

percents(some_array)

array([	33.33,		47.62,		19.05])

It	is	helpful	to	understand	the	steps	Python	takes	to	execute	a	function.	To	facilitate	this,	we
have	put	a	function	definition	and	a	call	to	that	function	in	the	same	cell	below.

def	biggest_difference(array_x):

				"""Find	the	biggest	difference	in	absolute	value	between	two	

adjacent	elements	of	array_x."""

				diffs	=	np.diff(array_x)

				absolute_diffs	=	abs(diffs)

				return	max(absolute_diffs)

some_numbers	=	make_array(2,	4,	5,	6,	4,	-1,	1)

big_diff	=	biggest_difference(some_numbers)

print("The	biggest	difference	is",	big_diff)
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The	biggest	difference	is	5

Here	is	what	happens	when	we	run	that	cell:

Multiple	Arguments¶
There	can	be	multiple	ways	to	generalize	an	expression	or	block	of	code,	and	so	a	function
can	take	multiple	arguments	that	each	determine	different	aspects	of	the	result.	For
example,	the		percents		function	we	defined	previously	rounded	to	two	decimal	places	every
time.	The	following	two-argument	definition	allows	different	calls	to	round	to	different
amounts.
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def	percents(counts,	decimal_places):

				"""Convert	the	values	in	array_x	to	percents	out	of	the	

total	of	array_x."""

				total	=	counts.sum()

				return	np.round((counts/total)*100,	decimal_places)

parts	=	make_array(2,	1,	4)

print("Rounded	to	1	decimal	place:	",	percents(parts,	1))

print("Rounded	to	2	decimal	places:",	percents(parts,	2))

print("Rounded	to	3	decimal	places:",	percents(parts,	3))

Rounded	to	1	decimal	place:		[	28.6		14.3		57.1]

Rounded	to	2	decimal	places:	[	28.57		14.29		57.14]

Rounded	to	3	decimal	places:	[	28.571		14.286		57.143]

The	flexibility	of	this	new	definition	comes	at	a	small	price:	each	time	the	function	is	called,
the	number	of	decimal	places	must	be	specified.	Default	argument	values	allow	a	function	to
be	called	with	a	variable	number	of	arguments;	any	argument	that	isn't	specified	in	the	call
expression	is	given	its	default	value,	which	is	stated	in	the	first	line	of	the		def		statement.
For	example,	in	this	final	definition	of		percents	,	the	optional	argument		decimal_places		is
given	a	default	value	of	2.

def	percents(counts,	decimal_places=2):

				"""Convert	the	values	in	array_x	to	percents	out	of	the	

total	of	array_x."""

				total	=	counts.sum()

				return	np.round((counts/total)*100,	decimal_places)

parts	=	make_array(2,	1,	4)

print("Rounded	to	1	decimal	place:",	percents(parts,	1))

print("Rounded	to	the	default	number	of	decimal	places:",	

percents(parts))

Rounded	to	1	decimal	place:	[	28.6		14.3		57.1]

Rounded	to	the	default	number	of	decimal	places:	[	28.57		14.29		

57.14]
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Note:	Methods¶

Functions	are	called	by	placing	argument	expressions	in	parentheses	after	the	function
name.	Any	function	that	is	defined	in	isolation	is	called	in	this	way.	You	have	also	seen
examples	of	methods,	which	are	like	functions	but	are	called	using	dot	notation,	such	as
	some_table.sort(some_label)	.	The	functions	that	you	define	will	always	be	called	using	the
function	name	first,	passing	in	all	of	the	arguments.
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Interact

Applying	a	Function	to	a	Column¶

We	have	seen	many	examples	of	creating	new	columns	of	tables	by	applying	functions	to
existing	columns	or	to	other	arrays.	All	of	those	functions	took	arrays	as	their	arguments.	But
frequently	we	will	want	to	convert	the	entries	in	a	column	by	a	function	that	doesn't	take	an
array	as	its	argument.	For	example,	it	might	take	just	one	number	as	its	argument,	as	in	the
function		cut_off_at_100		defined	below.

def	cut_off_at_100(x):

				"""The	smaller	of	x	and	100"""

				return	min(x,	100)

cut_off_at_100(17)

17

cut_off_at_100(117)

100

cut_off_at_100(100)

100

The	function		cut_off_at_100		simply	returns	its	argument	if	the	argument	is	less	than	or
equal	to	100.	But	if	the	argument	is	greater	than	100,	it	returns	100.

In	our	earlier	examples	using	Census	data,	we	saw	that	the	variable		AGE		had	a	value	100
that	meant	"100	years	old	or	older".	Cutting	off	ages	at	100	in	this	manner	is	exactly	what
	cut_off_at_100		does.

To	use	this	function	on	many	ages	at	once,	we	will	have	to	be	able	to	refer	to	the	function
itself,	without	actually	calling	it.	Analogously,	we	might	show	a	cake	recipe	to	a	chef	and	ask
her	to	use	it	to	bake	6	cakes.	In	that	scenario,	we	are	not	using	the	recipe	to	bake	any	cakes
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ourselves;	our	role	is	merely	to	refer	the	chef	to	the	recipe.	Similarly,	we	can	ask	a	table	to
call		cut_off_at_100		on	6	different	numbers	in	a	column.

First,	we	create	the	table		ages		with	a	column	for	people	and	one	for	their	ages.	For
example,	person		C		is	52	years	old.

ages	=	Table().with_columns(

				'Person',	make_array('A',	'B',	'C',	'D',	'E',	'F'),

				'Age',	make_array(17,	117,	52,	100,	6,	101)

)

ages

Person Age

A 17

B 117

C 52

D 100

E 6

F 101

	apply	¶

To	cut	off	each	of	the	ages	at	100,	we	will	use	the	a	new	Table	method.	The		apply		method
calls	a	function	on	each	element	of	a	column,	forming	a	new	array	of	return	values.	To
indicate	which	function	to	call,	just	name	it	(without	quotation	marks	or	parentheses).	The
name	of	the	column	of	input	values	is	a	string	that	must	still	appear	within	quotation	marks.

ages.apply(cut_off_at_100,	'Age')

array([	17,	100,		52,	100,			6,	100])

What	we	have	done	here	is		apply		the	function		cut_off_at_100		to	each	value	in	the		Age	
column	of	the	table		ages	.	The	output	is	the	array	of	corresponding	return	values	of	the
function.	For	example,	17	stayed	17,	117	became	100,	52	stayed	52,	and	so	on.

This	array,	which	has	the	same	length	as	the	original		Age		column	of	the		ages		table,	can
be	used	as	the	values	in	a	new	column	called		Cut	Off	Age		alongside	the	existing		Person	
and		Age		columns.
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ages.with_column(

				'Cut	Off	Age',	ages.apply(cut_off_at_100,	'Age')

)

Person Age Cut	Off	Age

A 17 17

B 117 100

C 52 52

D 100 100

E 6 6

F 101 100

Functions	as	Values¶

We've	seen	that	Python	has	many	kinds	of	values.	For	example,		6		is	a	number	value,
	"cake"		is	a	text	value,		Table()		is	an	empty	table,	and		ages		is	a	name	for	a	table	value
(since	we	defined	it	above).

In	Python,	every	function,	including		cut_off_at_100	,	is	also	a	value.	It	helps	to	think	about
recipes	again.	A	recipe	for	cake	is	a	real	thing,	distinct	from	cakes	or	ingredients,	and	you
can	give	it	a	name	like	"Ani's	cake	recipe."	When	we	defined		cut_off_at_100		with	a		def	
statement,	we	actually	did	two	separate	things:	we	created	a	function	that	cuts	off	numbers
at	100,	and	we	gave	it	the	name		cut_off_at_100	.

We	can	refer	to	any	function	by	writing	its	name,	without	the	parentheses	or	arguments
necessary	to	actually	call	it.	We	did	this	when	we	called		apply		above.	When	we	write	a
function's	name	by	itself	as	the	last	line	in	a	cell,	Python	produces	a	text	representation	of
the	function,	just	like	it	would	print	out	a	number	or	a	string	value.

cut_off_at_100

<function	__main__.cut_off_at_100>

Notice	that	we	did	not	write		"cut_off_at_100"		with	quotes	(which	is	just	a	piece	of	text),	or
	cut_off_at_100()		(which	is	a	function	call,	and	an	invalid	one	at	that).	We	simply	wrote
	cut_off_at_100		to	refer	to	the	function.
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Just	like	we	can	define	new	names	for	other	values,	we	can	define	new	names	for	functions.
For	example,	suppose	we	want	to	refer	to	our	function	as		cut_off		instead	of
	cut_off_at_100	.	We	can	just	write	this:

cut_off	=	cut_off_at_100

Now		cut_off		is	a	name	for	a	function.	It's	the	same	function	as		cut_off_at_100	,	so	the
printed	value	is	exactly	the	same.

cut_off

<function	__main__.cut_off_at_100>

Let	us	see	another	application	of		apply	.

Example:	Prediction¶

Data	Science	is	often	used	to	make	predictions	about	the	future.	If	we	are	trying	to	predict
an	outcome	for	a	particular	individual	–	for	example,	how	she	will	respond	to	a	treatment,	or
whether	he	will	buy	a	product	–	it	is	natural	to	base	the	prediction	on	the	outcomes	of	other
similar	individuals.

Charles	Darwin's	cousin	Sir	Francis	Galton	was	a	pioneer	in	using	this	idea	to	make
predictions	based	on	numerical	data.	He	studied	how	physical	characteristics	are	passed
down	from	one	generation	to	the	next.

The	data	below	are	Galton's	carefully	collected	measurements	on	the	heights	of	parents	and
their	adult	children.	Each	row	corresponds	to	one	adult	child.	The	variables	are	a	numerical
code	for	the	family,	the	heights	(in	inches)	of	the	father	and	mother,	a	"midparent	height"
which	is	a	weighted	average	[1]	of	the	height	of	the	two	parents,	the	number	of	children	in
the	family,	as	well	as	the	child's	birth	rank	(1	=	oldest),	gender,	and	height.

#	Galton's	data	on	heights	of	parents	and	their	adult	children

galton	=	Table.read_table('galton.csv')

galton
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family father mother midparentHeight children childNum gender

1 78.5 67 75.43 4 1 male

1 78.5 67 75.43 4 2 female

1 78.5 67 75.43 4 3 female

1 78.5 67 75.43 4 4 female

2 75.5 66.5 73.66 4 1 male

2 75.5 66.5 73.66 4 2 male

2 75.5 66.5 73.66 4 3 female

2 75.5 66.5 73.66 4 4 female

3 75 64 72.06 2 1 male

3 75 64 72.06 2 2 female

...	(924	rows	omitted)

A	primary	reason	for	collecting	the	data	was	to	be	able	to	predict	the	adult	height	of	a	child
born	to	parents	similar	to	those	in	the	dataset.	Let	us	try	to	do	this,	using	midparent	height
as	the	variable	on	which	to	base	our	prediction.	Thus	midparent	height	is	our	predictor
variable.

The	table		heights		consists	of	just	the	midparent	heights	and	child's	heights.	The	scatter
plot	of	the	two	variables	shows	a	positive	association,	as	we	would	expect	for	these
variables.

heights	=	galton.select(3,	7).relabeled(0,	

'MidParent').relabeled(1,	'Child')

heights
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MidParent Child

75.43 73.2

75.43 69.2

75.43 69

75.43 69

73.66 73.5

73.66 72.5

73.66 65.5

73.66 65.5

72.06 71

72.06 68

...	(924	rows	omitted)

heights.scatter(0)
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Now	suppose	Galton	encountered	a	new	couple,	similar	to	those	in	his	dataset,	and
wondered	how	tall	their	child	would	be.	What	would	be	a	good	way	for	him	to	go	about
predicting	the	child's	height,	given	that	the	midparent	height	was,	say,	68	inches?

One	reasonable	approach	would	be	to	base	the	prediction	on	all	the	points	that	correspond
to	a	midparent	height	of	around	68	inches.	The	prediction	equals	the	average	child's	height
calculated	from	those	points	alone.

Let's	pretend	we	are	Galton	and	execute	this	plan.	For	now	we	will	just	make	a	reasonable
definition	of	what	"around	68	inches"	means,	and	work	with	that.	Later	in	the	course	we	will
examine	the	consequences	of	such	choices.

We	will	take	"close"	to	mean	"within	half	an	inch".	The	figure	below	shows	all	the	points
corresponding	to	a	midparent	height	between	67.5	inches	and	68.5	inches.	These	are	all	the
points	in	the	strip	between	the	red	lines.	Each	of	these	points	corresponds	to	one	child;	our
prediction	of	the	height	of	the	new	couple's	child	is	the	average	height	of	all	the	children	in
the	strip.	That's	represented	by	the	gold	dot.

Ignore	the	code,	and	just	focus	on	understanding	the	mental	process	of	arriving	at	that	gold
dot.

heights.scatter('MidParent')

_	=	plots.plot([67.5,	67.5],	[50,	85],	color='red',	lw=2)

_	=	plots.plot([68.5,	68.5],	[50,	85],	color='red',	lw=2)

_	=	plots.scatter(68,	66.24,	color='gold',	s=40)
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In	order	to	calculate	exactly	where	the	gold	dot	should	be,	we	first	need	to	indentify	all	the
points	in	the	strip.	These	correspond	to	the	rows	where		MidParent		is	between	67.5	inches
and	68.5	inches.

close_to_68	=	heights.where('MidParent',	are.between(67.5,	

68.5))

close_to_68
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MidParent Child

68.44 62

67.94 71.2

67.94 67

68.33 62.5

68.23 73

68.23 72

68.23 69

67.98 73

67.98 71

67.98 71

...	(121	rows	omitted)

The	predicted	height	of	a	child	who	has	a	midparent	height	of	68	inches	is	the	average
height	of	the	children	in	these	rows.	That's	66.24	inches.

close_to_68.column('Child').mean()

66.24045801526718

We	now	have	a	way	to	predict	the	height	of	a	child	given	any	value	of	the	midparent	height
near	those	in	our	dataset.	We	can	define	a	function		predict_child		that	does	this.	The	body
of	the	function	consists	of	the	code	in	the	two	cells	above,	apart	from	choices	of	names.
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def	predict_child(mpht):

				"""Predict	the	height	of	a	child	whose	parents	have	a	

midparent	height	of	mpht.

				

				The	prediction	is	the	average	height	of	the	children	whose	

midparent	height	is

				in	the	range	mpht	plus	or	minus	0.5.

				"""

				close_points	=	heights.where('MidParent',	are.between(mpht-

0.5,	mpht	+	0.5))

				return	close_points.column('Child').mean()																								

Given	a	midparent	height	of	68	inches,	the	function		predict_child		returns	the	same
prediction	(66.24	inches)	as	we	got	earlier.	The	advantage	of	defining	the	function	is	that	we
can	easily	change	the	value	of	the	predictor	and	get	a	new	prediction.

predict_child(68)

66.24045801526718

predict_child(74)

70.415789473684214

How	good	are	these	predictions?	We	can	get	a	sense	of	this	by	comparing	the	predictions
with	the	data	that	we	already	have.	To	do	this,	we	first	apply	the	function		predict_child		to
the	column	of		Midparent		heights,	and	collect	the	results	in	a	new	column	called
	Prediction	.

#	Apply	predict_child	to	all	the	midparent	heights

heights_with_predictions	=	heights.with_column(

				'Prediction',	heights.apply(predict_child,	'MidParent')

)
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heights_with_predictions

MidParent Child Prediction

75.43 73.2 70.1

75.43 69.2 70.1

75.43 69 70.1

75.43 69 70.1

73.66 73.5 70.4158

73.66 72.5 70.4158

73.66 65.5 70.4158

73.66 65.5 70.4158

72.06 71 68.5025

72.06 68 68.5025

...	(924	rows	omitted)

To	see	where	the	predictions	lie	relative	to	the	observed	data,	we	can	draw	overlaid	scatter
plots	with		MidParent		as	the	common	horizontal	axis.

heights_with_predictions.scatter('MidParent')
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The	graph	of	gold	dots	is	called	a	graph	of	averages,	because	each	gold	dot	is	the	center	of
a	vertical	strip	like	the	one	we	drew	earlier.	Each	one	provides	a	prediction	of	a	child's	height
given	the	midparent	height.	For	example,	the	scatter	shows	that	for	a	midparent	height	of	72
inches,	the	predicted	height	of	the	child	would	be	somewhere	between	68	inches	and	69
inches,	and	indeed		predict_child(72)		returns	68.5.

Galton's	calculations	and	visualizations	were	very	similar	to	ours,	except	that	he	didn't	have
Python.	He	drew	the	graph	of	averages	through	the	scatter	diagram	and	noticed	that	it
roughly	followed	a	straight	line.	This	straight	line	is	now	called	the	regression	line	and	is	one
of	the	most	common	methods	of	making	predictions.	Galton's	friend,	the	mathematician	Karl
Pearson,	used	these	analyses	to	formalize	the	notion	of	correlation.

This	example,	like	the	one	about	John	Snow's	analysis	of	cholera	deaths,	shows	how	some
of	the	fundamental	concepts	of	modern	data	science	have	roots	going	back	more	than	a
century.	Galton's	methods	such	as	the	one	we	have	used	here	are	precursors	to	nearest
neighbor	prediction	methods	that	now	have	powerful	applications	in	diverse	settings.	The
modern	field	of	machine	learning	includes	the	automation	of	such	methods	to	make
predictions	based	on	vast	and	rapidly	evolving	datasets.

Footnotes¶

[1]	Galton	multiplied	the	heights	of	all	the	women	by	1.08	before	taking	the	average	height	of
the	men	and	the	women.	For	a	discussion	of	this,	see	Chance,	a	magazine	published	by	the
American	Statistical	Association.
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Interact

Classifying	by	One	Variable¶

Data	scientists	often	need	to	classify	individuals	into	groups	according	to	shared	features,
and	then	identify	some	characteristics	of	the	groups.	For	example,	in	the	example	using
Galton's	data	on	heights,	we	saw	that	it	was	useful	to	classify	families	according	to	the
parents'	midparent	heights,	and	then	find	the	average	height	of	the	children	in	each	group.

This	section	is	about	classifying	individuals	into	categories	that	are	not	numerical.	We	begin
by	recalling	the	basic	use	of		group	.

Counting	the	Number	in	Each	Category¶

The		group		method	with	a	single	argument	counts	the	number	of	rows	for	each	category	in
a	column.	The	result	contains	one	row	per	unique	value	in	the	grouped	column.

Here	is	a	small	table	of	data	on	ice	cream	cones.	The		group		method	can	be	used	to	list	the
distinct	flavors	and	provide	the	counts	of	each	flavor.

cones	=	Table().with_columns(

				'Flavor',	make_array('strawberry',	'chocolate',	'chocolate',	

'strawberry',	'chocolate'),

				'Price',	make_array(3.55,	4.75,	6.55,	5.25,	5.25)

)

cones

Flavor Price

strawberry 3.55

chocolate 4.75

chocolate 6.55

strawberry 5.25

chocolate 5.25

cones.group('Flavor')
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Flavor count

chocolate 3

strawberry 2

There	are	two	distinct	categories,	chocolate	and	strawberry.	The	call	to		group		creates	a
table	of	counts	in	each	category.	The	column	is	called		count		by	default,	and	contains	the
number	of	rows	in	each	category.

Notice	that	this	can	all	be	worked	out	from	just	the		Flavor		column.	The		Price		column	has
not	been	used.

But	what	if	we	wanted	the	total	price	of	the	cones	of	each	different	flavor?	That's	where	the
second	argument	of		group		comes	in.

Finding	a	Characteristic	of	Each	Category¶

The	optional	second	argument	of		group		names	the	function	that	will	be	used	to	aggregate
values	in	other	columns	for	all	of	those	rows.	For	instance,		sum		will	sum	up	the	prices	in	all
rows	that	match	each	category.	This	result	also	contains	one	row	per	unique	value	in	the
grouped	column,	but	it	has	the	same	number	of	columns	as	the	original	table.

To	find	the	total	price	of	each	flavor,	we	call		group		again,	with		Flavor		as	its	first	argument
as	before.	But	this	time	there	is	a	second	argument:	the	function	name		sum	.

cones.group('Flavor',	sum)

Flavor Price	sum

chocolate 16.55

strawberry 8.8

To	create	this	new	table,		group		has	calculated	the	sum	of	the		Price		entries	in	all	the	rows
corresponding	to	each	distinct	flavor.	The	prices	in	the	three		chocolate		rows	add	up	to	

	(you	can	assume	that	price	is	being	measured	in	dollars).	The	prices	in	the	two	
	rows	have	a	total	of	 .

The	label	of	the	newly	created	"sum"	column	is		Price	sum	,	which	is	created	by	taking	the
label	of	the	column	being	summed,	and	appending	the	word		sum	.

Because		group		finds	the		sum		of	all	columns	other	than	the	one	with	the	categories,	there
is	no	need	to	specify	that	it	has	to		sum		the	prices.
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To	see	in	more	detail	what		group		is	doing,	notice	that	you	could	have	figured	out	the	total
prices	yourself,	not	only	by	mental	arithmetic	but	also	using	code.	For	example,	to	find	the
total	price	of	all	the	chocolate	cones,	you	could	start	by	creating	a	new	table	consisting	of
only	the	chocolate	cones,	and	then	accessing	the	column	of	prices:

cones.where('Flavor',	are.equal_to('chocolate')).column('Price')

array([	4.75,		6.55,		5.25])

sum(cones.where('Flavor',	

are.equal_to('chocolate')).column('Price'))

16.550000000000001

This	is	what		group		is	doing	for	each	distinct	value	in		Flavor	.
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#	For	each	distinct	value	in	`Flavor,	access	all	the	rows

#	and	create	an	array	of	`Price`

cones_choc	=	cones.where('Flavor',	

are.equal_to('chocolate')).column('Price')

cones_strawb	=	cones.where('Flavor',	

are.equal_to('strawberry')).column('Price')

#	Display	the	arrays	in	a	table

grouped_cones	=	Table().with_columns(

				'Flavor',	make_array('chocolate',	'strawberry'),

				'Array	of	All	the	Prices',	make_array(cones_choc,	

cones_strawb)

)

#	Append	a	column	with	the	sum	of	the	`Price`	values	in	each	

array

price_totals	=	grouped_cones.with_column(

				'Sum	of	the	Array',	make_array(sum(cones_choc),	

sum(cones_strawb))

)

price_totals

Flavor Array	of	All	the	Prices Sum	of	the	Array

chocolate [	4.75	6.55	5.25] 16.55

strawberry [	3.55	5.25] 8.8

You	can	replace		sum		by	any	other	functions	that	work	on	arrays.	For	example,	you	could
use		max		to	find	the	largest	price	in	each	category:

cones.group('Flavor',	max)

Flavor Price	max

chocolate 6.55

strawberry 5.25
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Once	again,		group		creates	arrays	of	the	prices	in	each		Flavor		category.	But	now	it	finds
the		max		of	each	array:

price_maxes	=	grouped_cones.with_column(

				'Max	of	the	Array',	make_array(max(cones_choc),	

max(cones_strawb))

)

price_maxes

Flavor Array	of	All	the	Prices Max	of	the	Array

chocolate [	4.75	6.55	5.25] 6.55

strawberry [	3.55	5.25] 5.25

Indeed,	the	original	call	to		group		with	just	one	argument	has	the	same	effect	as	using		len	
as	the	function	and	then	cleaning	up	the	table.

lengths	=	grouped_cones.with_column(

				'Length	of	the	Array',	make_array(len(cones_choc),	

len(cones_strawb))

)

lengths

Flavor Array	of	All	the	Prices Length	of	the	Array

chocolate [	4.75	6.55	5.25] 3

strawberry [	3.55	5.25] 2

Example:	NBA	Salaries¶

The	table		nba		contains	data	on	the	2015-2016	players	in	the	National	Basketball
Association.	We	have	examined	these	data	earlier.	Recall	that	salaries	are	measured	in
millions	of	dollars.

nba1	=	Table.read_table('nba_salaries.csv')

nba	=	nba1.relabeled("'15-'16	SALARY",	'SALARY')

nba
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PLAYER POSITION TEAM SALARY

Paul	Millsap PF Atlanta	Hawks 18.6717

Al	Horford C Atlanta	Hawks 12

Tiago	Splitter C Atlanta	Hawks 9.75625

Jeff	Teague PG Atlanta	Hawks 8

Kyle	Korver SG Atlanta	Hawks 5.74648

Thabo	Sefolosha SF Atlanta	Hawks 4

Mike	Scott PF Atlanta	Hawks 3.33333

Kent	Bazemore SF Atlanta	Hawks 2

Dennis	Schroder PG Atlanta	Hawks 1.7634

Tim	Hardaway	Jr. SG Atlanta	Hawks 1.30452

...	(407	rows	omitted)

1.	How	much	money	did	each	team	pay	for	its	players'	salaries?

The	only	columns	involved	are		TEAM		and		SALARY	.	We	have	to		group		the	rows	by		TEAM	
and	then		sum		the	salaries	of	the	groups.

teams_and_money	=	nba.select('TEAM',	'SALARY')

teams_and_money.group('TEAM',	sum)

TEAM SALARY	sum

Atlanta	Hawks 69.5731

Boston	Celtics 50.2855

Brooklyn	Nets 57.307

Charlotte	Hornets 84.1024

Chicago	Bulls 78.8209

Cleveland	Cavaliers 102.312

Dallas	Mavericks 65.7626

Denver	Nuggets 62.4294

Detroit	Pistons 42.2118

Golden	State	Warriors 94.0851

...	(20	rows	omitted)
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2.	How	many	NBA	players	were	there	in	each	of	the	five	positions?

We	have	to	classify	by		POSITION	,	and	count.	This	can	be	done	with	just	one	argument	to
group:

nba.group('POSITION')

POSITION count

C 69

PF 85

PG 85

SF 82

SG 96

3.	What	was	the	average	salary	of	the	players	at	each	of	the	five	positions?

This	time,	we	have	to	group	by		POSITION		and	take	the	mean	of	the	salaries.	For	clarity,	we
will	work	with	a	table	of	just	the	positions	and	the	salaries.

positions_and_money	=	nba.select('POSITION',	'SALARY')

positions_and_money.group('POSITION',	np.mean)

POSITION SALARY	mean

C 6.08291

PF 4.95134

PG 5.16549

SF 5.53267

SG 3.9882

Center	was	the	most	highly	paid	position,	at	an	average	of	over	6	million	dollars.

If	we	had	not	selected	the	two	columns	as	our	first	step,		group		would	not	attempt	to
"average"	the	categorical	columns	in		nba	.	(It	is	impossible	to	average	two	strings	like
"Atlanta	Hawks"	and	"Boston	Celtics".)	It	performs	arithmetic	only	on	numerical	columns	and
leaves	the	rest	blank.

nba.group('POSITION',	np.mean)
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POSITION PLAYER	mean TEAM	mean SALARY	mean

C 6.08291

PF 4.95134

PG 5.16549

SF 5.53267

SG 3.9882
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Interact

Cross-Classifying	by	More	than	One	Variable¶

When	individuals	have	multiple	features,	there	are	many	different	ways	to	classify	them.	For
example,	if	we	have	a	population	of	college	students	for	each	of	whom	we	have	recorded	a
major	and	the	number	of	years	in	college,	then	the	students	could	be	classified	by	major,	or
by	year,	or	by	a	combination	of	major	and	year.

The		group		method	also	allows	us	to	classify	individuals	according	to	multiple	variables.
This	is	called	cross-classifying.

Two	Variables:	Counting	the	Number	in	Each	Paired
Category¶

The	table		more_cones		records	the	flavor,	color,	and	price	of	six	ice	cream	cones.

more_cones	=	Table().with_columns(

				'Flavor',	make_array('strawberry',	'chocolate',	'chocolate',	

'strawberry',	'chocolate',	'bubblegum'),

				'Color',	make_array('pink',	'light	brown',	'dark	brown',	

'pink',	'dark	brown',	'pink'),

				'Price',	make_array(3.55,	4.75,	5.25,	5.25,	5.25,	4.75)

)

more_cones

Flavor Color Price

strawberry pink 3.55

chocolate light	brown 4.75

chocolate dark	brown 5.25

strawberry pink 5.25

chocolate dark	brown 5.25

bubblegum pink 4.75

We	know	how	to	use		group		to	count	the	number	of	cones	of	each	flavor:

more_cones.group('Flavor')
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Flavor count

bubblegum 1

chocolate 3

strawberry 2

But	now	each	cone	has	a	color	as	well.	To	classify	the	cones	by	both	flavor	and	color,	we	will
pass	a	list	of	labels	as	an	argument	to		group	.	The	resulting	table	has	one	row	for	every
unique	combination	of	values	that	appear	together	in	the	grouped	columns.	As	before,	a
single	argument	(a	list,	in	this	case,	but	an	array	would	work	too)	gives	row	counts.

Although	there	are	six	cones,	there	are	only	four	unique	combinations	of	flavor	and	color.
Two	of	the	cones	were	dark	brown	chocolate,	and	two	pink	strawberry.

more_cones.group(['Flavor',	'Color'])

Flavor Color count

bubblegum pink 1

chocolate dark	brown 2

chocolate light	brown 1

strawberry pink 2

Two	Variables:	Finding	a	Characteristic	of	Each	Paired
Category¶

A	second	argument	aggregates	all	other	columns	that	are	not	in	the	list	of	grouped	columns.

more_cones.group(['Flavor',	'Color'],	sum)

Flavor Color Price	sum

bubblegum pink 4.75

chocolate dark	brown 10.5

chocolate light	brown 4.75

strawberry pink 8.8

Three	or	More	Variables.	You	can	use		group		to	classify	rows	by	three	or	more	categorical
variables.	Just	include	them	all	in	the	list	that	is	the	first	argument.	But	cross-classifying	by
multiple	variables	can	become	complex,	as	the	number	of	distinct	combinations	of
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categories	can	be	quite	large.

Pivot	Tables:	Rearranging	the	Output	of		group	¶

Many	uses	of	cross-classification	involve	just	two	categorical	variables,	like		Flavor		and
	Color		in	the	example	above.	In	these	cases	it	is	possible	to	display	the	results	of	the
classification	in	a	different	kind	of	table,	called	a	pivot	table.	Pivot	tables,	also	known	as
contingency	tables,	make	it	easier	to	work	with	data	that	have	been	classified	according	to
two	variables.

Recall	the	use	of		group		to	count	the	number	of	cones	in	each	paired	category	of	flavor	and
color:

more_cones.group(['Flavor',	'Color'])

Flavor Color count

bubblegum pink 1

chocolate dark	brown 2

chocolate light	brown 1

strawberry pink 2

The	same	data	can	be	displayed	differenly	using	the	Table	method		pivot	.	Ignore	the	code
for	a	moment,	and	just	examine	the	table	of	outcomes.

more_cones.pivot('Flavor',	'Color')

Color bubblegum chocolate strawberry

dark	brown 0 2 0

light	brown 0 1 0

pink 1 0 2

Notice	how	this	table	displays	all	nine	possible	pairs	of	flavor	and	color,	including	pairs	like
"dark	brown	bubblegum"	that	don't	exist	in	our	data.	Notice	also	that	the	count	in	each	pair
appears	in	the	body	of	the	table:	to	find	the	number	of	light	brown	chocolate	cones,	run	your
eye	along	the	row		light	brown		until	it	meets	the	column		chocolate	.

The		group		method	takes	a	list	of	two	labels	because	it	is	flexible:	it	could	take	one	or	three
or	more.	On	the	other	hand,		pivot		always	takes	two	column	labels,	one	to	determine	the
columns	and	one	to	determine	the	rows.
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	pivot	

The		pivot		method	is	closely	related	to	the		group		method:	it	groups	together	rows	that
share	a	combination	of	values.	It	differs	from		group		because	it	organizes	the	resulting
values	in	a	grid.	The	first	argument	to		pivot		is	the	label	of	a	column	that	contains	the
values	that	will	be	used	to	form	new	columns	in	the	result.	The	second	argument	is	the	label
of	a	column	used	for	the	rows.	The	result	gives	the	count	of	all	rows	of	the	original	table	that
share	the	combination	of	column	and	row	values.

Like		group	,		pivot		can	be	used	with	additional	arguments	to	find	characteristics	of	each
paired	category.	An	optional	third	argument	called		values		indicates	a	column	of	values	that
will	replace	the	counts	in	each	cell	of	the	grid.	All	of	these	values	will	not	be	displayed,
however;	the	fourth	argument		collect		indicates	how	to	collect	them	all	into	one	aggregated
value	to	be	displayed	in	the	cell.

An	example	will	help	clarify	this.	Here	is		pivot		being	used	to	find	the	total	price	of	the
cones	in	each	cell.

more_cones.pivot('Flavor',	'Color',	values='Price',	collect=sum)

Color bubblegum chocolate strawberry

dark	brown 0 10.5 0

light	brown 0 4.75 0

pink 4.75 0 8.8

And	here	is		group		doing	the	same	thing.

more_cones.group(['Flavor',	'Color'],	sum)

Flavor Color Price	sum

bubblegum pink 4.75

chocolate dark	brown 10.5

chocolate light	brown 4.75

strawberry pink 8.8

Though	the	numbers	in	both	tables	are	the	same,	table	produced	by		pivot		is	easier	to	read
and	lends	itself	more	easily	to	analysis.	The	advantage	of		pivot		is	that	it	places	grouped
values	into	adjacent	columns,	so	that	they	can	be	combined	and	compared.
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Example:	Education	and	Income	of	Californian	Adults¶

The	State	of	California's	Open	Data	Portal	is	a	rich	source	of	information	about	the	lives	of
Californians.	It	is	our	source	of	a	dataset	on	educational	attainment	and	personal	income
among	Californians	over	the	years	2008	to	2014.	The	data	are	derived	from	the	U.S.	Census
Current	Population	Survey.

For	each	year,	the	table	records	the		Population	Count		of	Californians	in	many	different
combinations	of	age,	gender,	educational	attainment,	and	personal	income.	We	will	study
only	the	data	for	the	year	2014.

full_table	=	Table.read_table('educ_inc.csv')

ca_2014	=	full_table.where('Year',	are.equal_to('1/1/14	

0:00')).where('Age',	are.not_equal_to('00	to	17'))

ca_2014

Year Age Gender Educational
Attainment

Personal
Income

Population
Count

1/1/14
0:00

18	to
64 Female No	high	school

diploma
H:	75,000
and	over 2058

1/1/14
0:00

65	to
80+ Male No	high	school

diploma
H:	75,000
and	over 2153

1/1/14
0:00

65	to
80+ Female No	high	school

diploma
G:	50,000	to
74,999 4666

1/1/14
0:00

65	to
80+ Female High	school	or

equivalent
H:	75,000
and	over 7122

1/1/14
0:00

65	to
80+ Female No	high	school

diploma
F:	35,000	to
49,999 7261

1/1/14
0:00

65	to
80+ Male No	high	school

diploma
G:	50,000	to
74,999 8569

1/1/14
0:00

18	to
64 Female No	high	school

diploma
G:	50,000	to
74,999 14635

1/1/14
0:00

65	to
80+ Male No	high	school

diploma
F:	35,000	to
49,999 15212

1/1/14
0:00

65	to
80+ Male College,	less	than	4-

yr	degree
B:	5,000	to
9,999 15423

1/1/14
0:00

65	to
80+ Female Bachelor's	degree	or

higher A:	0	to	4,999 15459

...	(117	rows	omitted)
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Each	row	of	the	table	corresponds	to	a	combination	of	age,	gender,	educational	level,	and
income.	There	are	127	such	combinations	in	all!

As	a	first	step	it	is	a	good	idea	to	start	with	just	one	or	two	variables.	We	will	focus	on	just
one	pair:	educational	attainment	and	personal	income.

educ_inc	=	ca_2014.select('Educational	Attainment',	'Personal	

Income',	'Population	Count')

educ_inc

Educational	Attainment Personal	Income Population	Count

No	high	school	diploma H:	75,000	and	over 2058

No	high	school	diploma H:	75,000	and	over 2153

No	high	school	diploma G:	50,000	to	74,999 4666

High	school	or	equivalent H:	75,000	and	over 7122

No	high	school	diploma F:	35,000	to	49,999 7261

No	high	school	diploma G:	50,000	to	74,999 8569

No	high	school	diploma G:	50,000	to	74,999 14635

No	high	school	diploma F:	35,000	to	49,999 15212

College,	less	than	4-yr	degree B:	5,000	to	9,999 15423

Bachelor's	degree	or	higher A:	0	to	4,999 15459

...	(117	rows	omitted)

Let's	start	by	looking	at	educational	level	alone.	The	categories	of	this	variable	have	been
subdivided	by	the	different	levels	of	income.	So	we	will	group	the	table	by		Educational
Attainment		and		sum		the		Population	Count		in	each	category.

education	=	educ_inc.select('Educational	Attainment',	

'Population	Count')

educ_totals	=	education.group('Educational	Attainment',	sum)

educ_totals
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Educational	Attainment Population	Count	sum

Bachelor's	degree	or	higher 8525698

College,	less	than	4-yr	degree 7775497

High	school	or	equivalent 6294141

No	high	school	diploma 4258277

There	are	only	four	categories	of	educational	attainment.	The	counts	are	so	large	that	is	is
more	helpful	to	look	at	percents.	For	this,	we	will	use	the	function		percents		that	we	defined
in	an	earlier	section.	It	converts	an	array	of	numbers	to	an	array	of	percents	out	of	the	total
in	the	input	array.

def	percents(array_x):

				return	np.round(	(array_x/sum(array_x))*100,	2)

We	now	have	the	distribution	of	educational	attainment	among	adult	Californians.	More	than
30%	have	a	Bachelor's	degree	or	higher,	while	almost	16%	lack	a	high	school	diploma.

educ_distribution	=	educ_totals.with_column(

				'Population	Percent',	percents(educ_totals.column(1))

)

educ_distribution

Educational	Attainment Population	Count	sum Population	Percent

Bachelor's	degree	or	higher 8525698 31.75

College,	less	than	4-yr	degree 7775497 28.96

High	school	or	equivalent 6294141 23.44

No	high	school	diploma 4258277 15.86

By	using		pivot	,	we	can	get	a	contingency	table	(a	table	of	counts)	of	adult	Californians
cross-classified	by		Educational	Attainment		and		Personal	Income	.

totals	=	educ_inc.pivot('Educational	Attainment',	'Personal	

Income',	values='Population	Count',	collect=sum)

totals
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Personal
Income

Bachelor's
degree	or
higher

College,	less
than	4-yr	degree

High	school
or	equivalent

No	high
school
diploma

A:	0	to
4,999 575491 985011 1161873 1204529

B:	5,000
to	9,999 326020 810641 626499 597039

C:	10,000
to	14,999 452449 798596 692661 664607

D:	15,000
to	24,999 773684 1345257 1252377 875498

E:	25,000
to	34,999 693884 1091642 929218 464564

F:	35,000
to	49,999 1122791 1112421 782804 260579

G:	50,000
to	74,999 1594681 883826 525517 132516

H:	75,000
and	over 2986698 748103 323192 58945

Here	you	see	the	power	of		pivot		over	other	cross-classification	methods.	Each	column	of
counts	is	a	distribution	of	personal	income	at	a	specific	level	of	educational	attainment.
Converting	the	counts	to	percents	allows	us	to	compare	the	four	distributions.

distributions	=	totals.select(0).with_columns(

				"Bachelor's	degree	or	higher",	percents(totals.column(1)),

				'College,	less	than	4-yr	degree',	

percents(totals.column(2)),

				'High	school	or	equivalent',	percents(totals.column(3)),

				'No	high	school	diploma',	percents(totals.column(4))			

				)

distributions
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Personal
Income

Bachelor's
degree	or
higher

College,	less
than	4-yr	degree

High	school
or	equivalent

No	high
school
diploma

A:	0	to
4,999 6.75 12.67 18.46 28.29

B:	5,000
to	9,999 3.82 10.43 9.95 14.02

C:	10,000
to	14,999 5.31 10.27 11 15.61

D:	15,000
to	24,999 9.07 17.3 19.9 20.56

E:	25,000
to	34,999 8.14 14.04 14.76 10.91

F:	35,000
to	49,999 13.17 14.31 12.44 6.12

G:	50,000
to	74,999 18.7 11.37 8.35 3.11

H:	75,000
and	over 35.03 9.62 5.13 1.38

At	a	glance,	you	can	see	that	over	35%	of	those	with	Bachelor's	degrees	or	higher	had
incomes	of	 	and	over,	whereas	fewer	than	10%	of	the	people	in	the	other
education	categories	had	that	level	of	income.

The	bar	chart	below	compares	the	personal	income	distributions	of	adult	Californians	who
have	no	high	diploma	with	those	who	have	completed	a	Bachelor's	degree	or	higher.	The
difference	in	the	distributions	is	striking.	There	is	a	clear	positive	association	between
educational	attainment	and	personal	income.

distributions.select(0,	1,	4).barh(0)
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Interact

Joining	Tables	by	Columns¶

Often,	data	about	the	same	individuals	is	maintained	in	more	than	one	table.	For	example,
one	university	office	might	have	data	about	each	student's	time	to	completion	of	degree,
while	another	has	data	about	the	student's	tuition	and	financial	aid.

To	understand	the	students'	experience,	it	may	be	helpful	to	put	the	two	datasets	together.	If
the	data	are	in	two	tables,	each	with	one	row	per	student,	then	we	would	want	to	put	the
columns	together,	making	sure	to	match	the	rows	so	that	each	student's	information	remains
on	a	single	row.

Let	us	do	this	in	the	context	of	a	simple	example,	and	then	use	the	method	with	a	larger
dataset.

The	table		cones		is	one	we	have	encountered	earlier.	Now	suppose	each	flavor	of	ice	cream
comes	with	a	rating	that	is	in	a	separate	table.

cones	=	Table().with_columns(

				'Flavor',	make_array('strawberry',	'vanilla',	'chocolate',	

'strawberry',	'chocolate'),

				'Price',	make_array(3.55,	4.75,	6.55,	5.25,	5.75)

)

cones

Flavor Price

strawberry 3.55

vanilla 4.75

chocolate 6.55

strawberry 5.25

chocolate 5.75

ratings	=	Table().with_columns(

				'Kind',	make_array('strawberry',	'chocolate',	'vanilla'),

				'Stars',	make_array(2.5,	3.5,	4)

)

ratings
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Kind Stars

strawberry 2.5

chocolate 3.5

vanilla 4

Each	of	the	tables	has	a	column	that	contains	ice	cream	flavors:		cones		has	the	column
	Flavor	,	and		ratings		has	the	column		Kind	.	The	entries	in	these	columns	can	be	used	to
link	the	two	tables.

The	method		join		creates	a	new	table	in	which	each	cone	in	the		cones		table	is	augmented
with	the	Stars	information	in	the		ratings		table.	For	each	cone	in		cones	,		join		finds	a	row
in		ratings		whose		Kind		matches	the	cone's		Flavor	.	We	have	to	tell		join		to	use	those
columns	for	matching.

rated	=	cones.join('Flavor',	ratings,	'Kind')

rated

Flavor Price Stars

chocolate 6.55 3.5

chocolate 5.75 3.5

strawberry 3.55 2.5

strawberry 5.25 2.5

vanilla 4.75 4

Each	cone	now	has	not	only	its	price	but	also	the	rating	of	its	flavor.

In	general,	a	call	to		join		that	augments	a	table	(say		table1	)	with	information	from	another
table	(say		table2	)	looks	like	this:

table1.join(table1_column_for_joining,	table2,	table2_column_for_joining)

The	new	table		rated		allows	us	to	work	out	the	price	per	star,	which	you	can	think	of	as	an
informal	measure	of	value.	Low	values	are	good	–	they	mean	that	you	are	paying	less	for
each	rating	star.

rated.with_column('$/Star',	rated.column('Price')	/	

rated.column('Stars')).sort(3)
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Flavor Price Stars $/Star

vanilla 4.75 4 1.1875

strawberry 3.55 2.5 1.42

chocolate 5.75 3.5 1.64286

chocolate 6.55 3.5 1.87143

strawberry 5.25 2.5 2.1

Though	strawberry	has	the	lowest	rating	among	the	three	flavors,	the	less	expensive
strawberry	cone	does	well	on	this	measure	because	it	doesn't	cost	a	lot	per	star.

Caution.	Order	matters.	Since	the	second	table	in	a		join		is	used	to	augment	the	first
table,	it	is	important	that	each	row	in	the	first	table	has	exactly	one	matching	row	in	the
second.	If	a	row	in	the	first	table	is	missing	a	match	in	the	second	table,	information	can	be
lost.	If	a	row	in	the	first	table	has	more	than	one	match	in	the	second	table,		join		will	pick
just	one,	which	is	also	a	kind	of	information	loss.

We	can	see	this	in	the	following	example,	which	tries	to	join	the	same	two	tables	by	the
same	two	columns,	but	in	the	other	order.	This	join	does	not	make	sense:	it	is	attempting	to
augment	the	rating	of	each	flavor	with	its	price,	but	according	to	the		cones		table,	there	is
more	than	one	cone	(and	price)	for	each	flavor.	The	result	is	that	two	of	the	cones	end	up
vanishing.	The		join		method	just	finds	the	first	row	corresponding	to		chocolate		in		cones	
and	ignores	the	other	one.

ratings.join('Kind',	cones,	'Flavor')

Kind Stars Price

chocolate 3.5 6.55

strawberry 2.5 3.55

vanilla 4 4.75

Suppose	there	is	a	table	of	reviews	of	some	ice	cream	cones,	and	we	have	found	the
average	review	for	each	flavor.
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reviews	=	Table().with_columns(

				'Flavor',	make_array('vanilla',	'chocolate',	'vanilla',	

'chocolate'),

				'Stars',	make_array(5,	3,	5,	4)

)

reviews

Flavor Stars

vanilla 5

chocolate 3

vanilla 5

chocolate 4

average_review	=	reviews.group('Flavor',	np.average)

average_review

Flavor Stars	average

chocolate 3.5

vanilla 5

We	can	join		cones		and		average_review		by	providing	the	labels	of	the	columns	by	which	to
join.

cones.join('Flavor',	average_review,	'Flavor')

Flavor Price Stars	average

chocolate 6.55 3.5

chocolate 5.75 3.5

vanilla 4.75 5

Notice	how	the	strawberry	cones	have	disappeared.	None	of	the	reviews	are	for	strawberry
cones,	so	there	is	nothing	to	which	the		strawberry		rows	can	be	joined.	This	might	be	a
problem,	or	it	might	not	be	-	that	depends	on	the	analysis	we	are	trying	to	perform	with	the
joined	table.
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Interact

Bike	Sharing	in	the	Bay	Area¶

We	end	this	chapter	by	using	all	the	methods	we	have	learned	to	examine	a	new	and	large
dataset.	We	will	also	introduce		map_table	,	a	powerful	visualization	tool.

The	Bay	Area	Bike	Share	service	published	a	dataset	describing	every	bicycle	rental	from
September	2014	to	August	2015	in	their	system.	There	were	354,152	rentals	in	all.	The
columns	are:

An	ID	for	the	rental
Duration	of	the	rental,	in	seconds
Start	date
Name	of	the	Start	Station	and	code	for	Start	Terminal
Name	of	the	End	Station	and	code	for	End	Terminal
A	serial	number	for	the	bike
Subscriber	type	and	zip	code

trips	=	Table.read_table('trip.csv')

trips

Bike	Sharing	in	the	Bay	Area
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Trip	ID Duration Start
Date Start	Station Start

Terminal End	Date End	Station

913460 765 8/31/2015
23:26

Harry
Bridges
Plaza	(Ferry
Building)

50 8/31/2015
23:39

San
Francisco
Caltrain
(Townsend	at
4th)

913459 1036 8/31/2015
23:11

San	Antonio
Shopping
Center

31 8/31/2015
23:28

Mountain
View	City
Hall

913455 307 8/31/2015
23:13

Post	at
Kearny 47 8/31/2015

23:18
2nd	at	South
Park

913454 409 8/31/2015
23:10

San	Jose
City	Hall 10 8/31/2015

23:17
San	Salvador
at	1st

913453 789 8/31/2015
23:09

Embarcadero
at	Folsom 51 8/31/2015

23:22
Embarcadero
at	Sansome

913452 293 8/31/2015
23:07

Yerba	Buena
Center	of	the
Arts	(3rd	@
Howard)

68 8/31/2015
23:12

San
Francisco
Caltrain
(Townsend	at
4th)

913451 896 8/31/2015
23:07

Embarcadero
at	Folsom 51 8/31/2015

23:22
Embarcadero
at	Sansome

913450 255 8/31/2015
22:16

Embarcadero
at	Sansome 60 8/31/2015

22:20
Steuart	at
Market

913449 126 8/31/2015
22:12

Beale	at
Market 56 8/31/2015

22:15

Temporary
Transbay
Terminal
(Howard	at
Beale)

913448 932 8/31/2015
21:57

Post	at
Kearny 47 8/31/2015

22:12

South	Van
Ness	at
Market

...	(354142	rows	omitted)

We'll	focus	only	on	the	free	trips,	which	are	trips	that	last	less	than	1800	seconds	(half	an
hour).	There	is	a	charge	for	longer	trips.

The	histogram	below	shows	that	most	of	the	trips	took	around	10	minutes	(600	seconds)	or
so.	Very	few	took	near	30	minutes	(1800	seconds),	possibly	because	people	try	to	return	the
bikes	before	the	cutoff	time	so	as	not	to	have	to	pay.
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commute	=	trips.where('Duration',	are.below(1800))

commute.hist('Duration',	unit='Second')

We	can	get	more	detail	by	specifying	a	larger	number	of	bins.	But	the	overall	shape	doesn't
change	much.

commute.hist('Duration',	bins=60,	unit='Second')
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Exploring	the	Data	with		group		and		pivot	¶

We	can	use		group		to	identify	the	most	highly	used	Start	Station:

starts	=	commute.group('Start	Station').sort('count',	

descending=True)

starts

Start	Station count

San	Francisco	Caltrain	(Townsend	at	4th) 25858

San	Francisco	Caltrain	2	(330	Townsend) 21523

Harry	Bridges	Plaza	(Ferry	Building) 15543

Temporary	Transbay	Terminal	(Howard	at	Beale) 14298

2nd	at	Townsend 13674

Townsend	at	7th 13579

Steuart	at	Market 13215

Embarcadero	at	Sansome 12842

Market	at	10th 11523

Market	at	Sansome 11023
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...	(60	rows	omitted)

The	largest	number	of	trips	started	at	the	Caltrain	Station	on	Townsend	and	4th	in	San
Francisco.	People	take	the	train	into	the	city,	and	then	use	a	shared	bike	to	get	to	their	next
destination.

The		group		method	can	also	be	used	to	classify	the	rentals	by	both	Start	Station	and	End
Station.

commute.group(['Start	Station',	'End	Station'])

Start	Station End	Station count

2nd	at	Folsom 2nd	at	Folsom 54

2nd	at	Folsom 2nd	at	South	Park 295

2nd	at	Folsom 2nd	at	Townsend 437

2nd	at	Folsom 5th	at	Howard 113

2nd	at	Folsom Beale	at	Market 127

2nd	at	Folsom Broadway	St	at	Battery	St 67

2nd	at	Folsom Civic	Center	BART	(7th	at	Market) 47

2nd	at	Folsom Clay	at	Battery 240

2nd	at	Folsom Commercial	at	Montgomery 128

2nd	at	Folsom Davis	at	Jackson 28

...	(1619	rows	omitted)

Fifty-four	trips	both	started	and	ended	at	the	station	on	2nd	at	Folsom.	A	much	large	number
(437)	were	between	2nd	at	Folsom	and	2nd	at	Townsend.

The		pivot		method	does	the	same	classification	but	displays	its	results	in	a	contingency
table	that	shows	all	possible	combinations	of	Start	and	End	Stations,	even	though	some	of
them	didn't	correspond	to	any	trips.	Remember	that	the	first	argument	of	a		pivot		statement
specifies	the	column	labels	of	the	pivot	table;	the	second	argument	labels	the	rows.

There	is	a	train	station	as	well	as	a	Bay	Area	Rapid	Transit	(BART)	station	near	Beale	at
Market,	explaining	the	high	number	of	trips	that	start	and	end	there.

commute.pivot('Start	Station',	'End	Station')
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End
Station

2nd	at
Folsom

2nd
at

South
Park

2nd	at
Townsend

5th	at
Howard

Adobe
on

Almaden

Arena
Green
/	SAP
Center

Beale
at

Market

2nd	at
Folsom 54 190 554 107 0 0 40

2nd	at
South
Park

295 164 71 180 0 0 208

2nd	at
Townsend 437 151 185 92 0 0 608

5th	at
Howard 113 177 148 83 0 0 59

Adobe	on
Almaden 0 0 0 0 11 4 0

Arena
Green	/
SAP
Center

0 0 0 0 7 64 0

Beale	at
Market 127 79 183 59 0 0 59

Broadway
St	at
Battery	St

67 89 279 119 0 0 1022

California
Ave
Caltrain
Station

0 0 0 0 0 0 0

Castro
Street
and	El
Camino
Real

0 0 0 0 0 0 0

...	(60	rows	omitted)

We	can	also	use		pivot		to	find	the	shortest	time	of	the	rides	between	Start	and	End
Stations.	Here		pivot		has	been	given		Duration		as	the	optional		values		argument,	and
	min		as	the	function	which	to	perform	on	the	values	in	each	cell.
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commute.pivot('Start	Station',	'End	Station',	'Duration',	min)

End
Station

2nd	at
Folsom

2nd
at

South
Park

2nd	at
Townsend

5th	at
Howard

Adobe
on

Almaden

Arena
Green
/	SAP
Center

Beale
at

Market

2nd	at
Folsom 61 97 164 268 0 0 271

2nd	at
South
Park

61 60 77 86 0 0 78

2nd	at
Townsend 137 67 60 423 0 0 311

5th	at
Howard 215 300 384 68 0 0 357

Adobe	on
Almaden 0 0 0 0 84 275 0

Arena
Green	/
SAP
Center

0 0 0 0 305 62 0

Beale	at
Market 219 343 417 387 0 0 60

Broadway
St	at
Battery	St

351 424 499 555 0 0 195

California
Ave
Caltrain
Station

0 0 0 0 0 0 0

Castro
Street
and	El
Camino
Real

0 0 0 0 0 0 0

...	(60	rows	omitted)
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Someone	had	a	very	quick	trip	(271	seconds,	or	about	4.5	minutes)	from	2nd	at	Folsom	to
Beale	at	Market,	about	five	blocks	away.	There	are	no	bike	trips	between	the	2nd	Avenue
stations	and	Adobe	on	Almaden,	because	the	latter	is	in	a	different	city.

Drawing	Maps¶

The	table		stations		contains	geographical	information	about	each	bike	station,	including
latitude,	longitude,	and	a	"landmark"	which	is	the	name	of	the	city	where	the	station	is
located.

stations	=	Table.read_table('station.csv')

stations

station_id name lat long dockcount landmark installation

2

San	Jose
Diridon
Caltrain
Station

37.3297 -121.902 27 San	Jose 8/6/2013

3
San	Jose
Civic
Center

37.3307 -121.889 15 San	Jose 8/5/2013

4
Santa
Clara	at
Almaden

37.334 -121.895 11 San	Jose 8/6/2013

5 Adobe	on
Almaden 37.3314 -121.893 19 San	Jose 8/5/2013

6 San	Pedro
Square 37.3367 -121.894 15 San	Jose 8/7/2013

7
Paseo	de
San
Antonio

37.3338 -121.887 15 San	Jose 8/7/2013

8
San
Salvador
at	1st

37.3302 -121.886 15 San	Jose 8/5/2013

9 Japantown 37.3487 -121.895 15 San	Jose 8/5/2013

10 San	Jose
City	Hall 37.3374 -121.887 15 San	Jose 8/6/2013

11 MLK
Library 37.3359 -121.886 19 San	Jose 8/6/2013

...	(60	rows	omitted)
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We	can	draw	a	map	of	where	the	stations	are	located,	using		Marker.map_table	.	The
function	operates	on	a	table,	whose	columns	are	(in	order)	latitude,	longitude,	and	an
optional	identifier	for	each	point.

Marker.map_table(stations.select('lat',	'long',	'name'))

The	map	is	created	using	OpenStreetMap,	which	is	an	open	online	mapping	system	that	you
can	use	just	as	you	would	use	Google	Maps	or	any	other	online	map.	Zoom	in	to	San
Francisco	to	see	how	the	stations	are	distributed.	Click	on	a	marker	to	see	which	station	it	is.

You	can	also	represent	points	on	a	map	by	colored	circles.	Here	is	such	a	map	of	the	San
Francisco	bike	stations.

sf	=	stations.where('landmark',	are.equal_to('San	Francisco'))

sf_map_data	=	sf.select('lat',	'long',	'name')

Circle.map_table(sf_map_data,	color='green',	radius=200)

Bike	Sharing	in	the	Bay	Area

217

http://www.openstreetmap.org/#map=5/51.500/-0.100


More	Informative	Maps:	An	Application	of		join	¶

The	bike	stations	are	located	in	five	different	cities	in	the	Bay	Area.	To	distinguish	the	points
by	using	a	different	color	for	each	city,	let's	start	by	using	group	to	identify	all	the	cities	and
assign	each	one	a	color.

cities	=	stations.group('landmark').relabeled('landmark',	

'city')

cities

city count

Mountain	View 7

Palo	Alto 5

Redwood	City 7

San	Francisco 35

San	Jose 16
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colors	=	cities.with_column('color',	make_array('blue',	'red',	

'green',	'orange',	'purple'))

colors

city count color

Mountain	View 7 blue

Palo	Alto 5 red

Redwood	City 7 green

San	Francisco 35 orange

San	Jose 16 purple

Now	we	can	join		stations		and		colors		by		landmark	,	and	then	select	the	columns	we
need	to	draw	a	map.

joined	=	stations.join('landmark',	colors,	'city')

colored	=	joined.select('lat',	'long',	'name',	'color')

Marker.map_table(colored)
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Now	the	markers	have	five	different	colors	for	the	five	different	cities.

To	see	where	most	of	the	bike	rentals	originate,	let's	identify	the	start	stations:

starts	=	commute.group('Start	Station').sort('count',	

descending=True)

starts

Start	Station count

San	Francisco	Caltrain	(Townsend	at	4th) 25858

San	Francisco	Caltrain	2	(330	Townsend) 21523

Harry	Bridges	Plaza	(Ferry	Building) 15543

Temporary	Transbay	Terminal	(Howard	at	Beale) 14298

2nd	at	Townsend 13674

Townsend	at	7th 13579

Steuart	at	Market 13215

Embarcadero	at	Sansome 12842

Market	at	10th 11523

Market	at	Sansome 11023

...	(60	rows	omitted)

We	can	include	the	geographical	data	needed	to	map	these	stations,	by	first	joining		starts	
with		stations	:

station_starts	=	stations.join('name',	starts,	'Start	Station')

station_starts
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name station_id lat long dockcount landmark installation

2nd	at
Folsom 62 37.7853 -122.396 19 San

Francisco 8/22/2013

2nd	at
South
Park

64 37.7823 -122.393 15 San
Francisco 8/22/2013

2nd	at
Townsend 61 37.7805 -122.39 27 San

Francisco 8/22/2013

5th	at
Howard 57 37.7818 -122.405 15 San

Francisco 8/21/2013

Adobe	on
Almaden 5 37.3314 -121.893 19 San	Jose 8/5/2013

Arena
Green	/
SAP
Center

14 37.3327 -121.9 19 San	Jose 8/5/2013

Beale	at
Market 56 37.7923 -122.397 19 San

Francisco 8/20/2013

Broadway
St	at
Battery	St

82 37.7985 -122.401 15 San
Francisco 1/22/2014

California
Ave
Caltrain
Station

36 37.4291 -122.143 15 Palo	Alto 8/14/2013

Castro
Street
and	El
Camino
Real

32 37.386 -122.084 11 Mountain
View 12/31/2013

...	(58	rows	omitted)

Now	we	extract	just	the	data	needed	for	drawing	our	map,	adding	a	color	and	an	area	to
each	station.	The	area	is	1000	times	the	count	of	the	number	of	rentals	starting	at	each
station,	where	the	constant	1000	was	chosen	so	that	the	circles	would	appear	at	an
appropriate	scale	on	the	map.
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starts_map_data	=	station_starts.select('lat',	'long',	

'name').with_columns(

				'color',	'blue',

				'area',	station_starts.column('count')	*	1000

)

starts_map_data.show(3)

Circle.map_table(starts_map_data)

lat long name color area

37.7853 -122.396 2nd	at	Folsom blue 7841000

37.7823 -122.393 2nd	at	South	Park blue 9274000

37.7805 -122.39 2nd	at	Townsend blue 13674000

...	(65	rows	omitted)

That	huge	blob	in	San	Francisco	shows	that	the	eastern	section	of	the	city	is	the	unrivaled
capital	of	bike	rentals	in	the	Bay	Area.
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Interact

Randomness¶

In	the	previous	chapters	we	developed	skills	needed	to	make	insightful	descriptions	of	data.
Data	scientists	also	have	to	be	able	to	understand	randomness.	For	example,	they	have	to
be	able	to	assign	individuals	to	treatment	and	control	groups	at	random,	and	then	try	to	say
whether	any	observed	differences	in	the	outcomes	of	the	two	groups	are	simply	due	to	the
random	assignment	or	genuinely	due	to	the	treatment.

In	this	chapter,	we	begin	our	analysis	of	randomness.	To	start	off,	we	will	use	Python	to
make	choices	at	random.	In		numpy		there	is	a	sub-module	called		random		that	contains
many	functions	that	involve	random	selection.	One	of	these	functions	is	called		choice	.	It
picks	one	item	at	random	from	an	array,	and	it	is	equally	likely	to	pick	any	of	the	items.	The
function	call	is		np.random.choice(array_name)	,	where		array_name		is	the	name	of	the	array
from	which	to	make	the	choice.

Thus	the	following	code	evaluates	to		treatment		with	chance	50%,	and		control		with
chance	50%.

two_groups	=	make_array('treatment',	'control')

np.random.choice(two_groups)

'treatment'

The	big	difference	between	the	code	above	and	all	the	other	code	we	have	run	thus	far	is
that	the	code	above	doesn't	always	return	the	same	value.	It	can	return	either		treatment		or
	control	,	and	we	don't	know	ahead	of	time	which	one	it	will	pick.	We	can	repeat	the	process
by	providing	a	second	argument,	the	number	of	times	to	repeat	the	process.

np.random.choice(two_groups,	10)

array(['treatment',	'control',	'treatment',	'control',	

'control',

							'treatment',	'treatment',	'control',	'control',	

'control'],	

						dtype='<U9')

A	fundamental	question	about	random	events	is	whether	or	not	they	occur.	For	example:
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Did	an	individual	get	assigned	to	the	treatment	group,	or	not?
Is	a	gambler	going	to	win	money,	or	not?
Has	a	poll	made	an	accurate	prediction,	or	not?

Once	the	event	has	occurred,	you	can	answer	"yes"	or	"no"	to	all	these	questions.	In
programming,	it	is	conventional	to	do	this	by	labeling	statements	as	True	or	False.	For
example,	if	an	individual	did	get	assigned	to	the	treatment	group,	then	the	statement,	"The
individual	was	assigned	to	the	treatment	group"	would	be		True	.	If	not,	it	would	be		False	.

Booleans	and	Comparison¶

In	Python,	Boolean	values,	named	for	the	logician	George	Boole,	represent	truth	and	take
only	two	possible	values:		True		and		False	.	Whether	problems	involve	randomness	or	not,
Boolean	values	most	often	arise	from	comparison	operators.	Python	includes	a	variety	of
operators	that	compare	values.	For	example,		3		is	larger	than		1	+	1	.

3	>	1	+	1

True

The	value		True		indicates	that	the	comparison	is	valid;	Python	has	confirmed	this	simple
fact	about	the	relationship	between		3		and		1+1	.	The	full	set	of	common	comparison
operators	are	listed	below.

Comparison Operator True	example False	Example

Less	than < 2	<	3 2	<	2

Greater	than > 3	>	2 3	>	3

Less	than	or	equal <= 2	<=	2 3	<=	2

Greater	or	equal >= 3	>=	3 2	>=	3

Equal == 3	==	3 3	==	2

Not	equal != 3	!=	2 2	!=	2

Notice	the	two	equal	signs		==		in	the	comparison	to	determine	equality.	This	is	necessary
because	Python	already	uses		=		to	mean	assignment	to	a	name,	as	we	have	seen.	It	can't
use	the	same	symbol	for	a	different	purpose.	Thus	if	you	want	to	check	whether	5	is	equal	to
the	10/2,	then	you	have	to	be	careful:		5	=	10/2		returns	an	error	message	because	Python
assumes	you	are	trying	to	assign	the	value	of	the	expression	10/2	to	a	name	that	is	the
numeral	5.	Instead,	you	must	use		5	==	10/2	,	which	evaluates	to		True	.
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5	=	10/2

		File	"<ipython-input-4-5c7d3e808777>",	line	1

				5	=	10/2

												^

SyntaxError:	can't	assign	to	literal

5	==	10/2

True

An	expression	can	contain	multiple	comparisons,	and	they	all	must	hold	in	order	for	the
whole	expression	to	be		True	.	For	example,	we	can	express	that		1+1		is	between		1		and
	3		using	the	following	expression.

1	<	1	+	1	<	3

True

The	average	of	two	numbers	is	always	between	the	smaller	number	and	the	larger	number.
We	express	this	relationship	for	the	numbers		x		and		y		below.	You	can	try	different	values
of		x		and		y		to	confirm	this	relationship.

x	=	12

y	=	5

min(x,	y)	<=	(x+y)/2	<=	max(x,	y)

True

Comparing	Strings¶

Strings	can	also	be	compared,	and	their	order	is	alphabetical.	A	shorter	string	is	less	than	a
longer	string	that	begins	with	the	shorter	string.
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'Dog'	>	'Catastrophe'	>	'Cat'

Let's	return	to	random	selection.	Recall	the	array		two_groups		which	consists	of	just	two
elements,		treatment		and		control	.	To	see	whether	a	randomly	assigned	individual	went	to
the	treatment	group,	you	can	use	a	comparison:

np.random.choice(two_groups)	==	'treatment'

False

As	before,	the	random	choice	will	not	always	be	the	same,	so	the	result	of	the	comparison
won't	always	be	the	same	either.	It	will	depend	on	whether		treatment		or		control		was
chosen.	With	any	cell	that	involves	random	selection,	it	is	a	good	idea	to	run	the	cell	several
times	to	get	a	sense	of	the	variability	in	the	result.

Comparing	an	Array	and	a	Value¶

Recall	that	we	can	perform	arithmetic	operations	on	many	numbers	in	an	array	at	once.	For
example,		make_array(0,	5,	2)*2		is	equivalent	to		make_array(0,	10,	4)	.	In	similar	fashion,	if
we	compare	an	array	and	one	value,	each	element	of	the	array	is	compared	to	that	value,
and	the	comparison	evaluates	to	an	array	of	Booleans.

tosses	=	make_array('Tails',	'Heads',	'Tails',	'Heads',	'Heads')

tosses	==	'Heads'

array([False,		True,	False,		True,		True],	dtype=bool)

The		numpy		method		count_nonzero		evaluates	to	the	number	of	non-zero	(that	is,		True	)
elements	of	the	array.

np.count_nonzero(tosses	==	'Heads')

3
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Interact

Conditional	Statements¶

In	many	situations,	actions	and	results	depends	on	a	specific	set	of	conditions	being
satisfied.	For	example,	individuals	in	randomized	controlled	trials	receive	the	treatment	if
they	have	been	assigned	to	the	treatment	group.	A	gambler	makes	money	if	she	wins	her
bet.

In	this	section	we	will	learn	how	to	describe	such	situations	using	code.	A	conditional
statement	is	a	multi-line	statement	that	allows	Python	to	choose	among	different	alternatives
based	on	the	truth	value	of	an	expression.	While	conditional	statements	can	appear
anywhere,	they	appear	most	often	within	the	body	of	a	function	in	order	to	express
alternative	behavior	depending	on	argument	values.

A	conditional	statement	always	begins	with	an		if		header,	which	is	a	single	line	followed	by
an	indented	body.	The	body	is	only	executed	if	the	expression	directly	following		if		(called
the	if	expression)	evaluates	to	a	true	value.	If	the	if	expression	evaluates	to	a	false	value,
then	the	body	of	the		if		is	skipped.

Let	us	start	defining	a	function	that	returns	the	sign	of	a	number.

def	sign(x):

				if	x	>	0:

								return	'Positive'

sign(3)

'Positive'

This	function	returns	the	correct	sign	if	the	input	is	a	positive	number.	But	if	the	input	is	not	a
positive	number,	then	the	if	expression	evaluates	to	a	false	value,	and	so	the		return	
statement	is	skipped	and	the	function	call	has	no	value.

sign(-3)

So	let	us	refine	our	function	to	return		Negative		if	the	input	is	a	negative	number.	We	can	do
this	by	adding	an		elif		clause,	where		elif		if	Python's	shorthand	for	the	phrase	"else,	if".
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def	sign(x):

				if	x	>	0:

								return	'Positive'

				elif	x	<	0:

								return	'Negative'

Now		sign		returns	the	correct	answer	when	the	input	is	-3:

sign(-3)

'Negative'

What	if	the	input	is	0?	To	deal	with	this	case,	we	can	add	another		elif		clause:

def	sign(x):

				if	x	>	0:

								return	'Positive'

				elif	x	<	0:

								return	'Negative'

				elif	x	==	0:

								return	'Neither	positive	nor	negative'

sign(0)

'Neither	positive	nor	negative'

Equivalently,	we	can	replaced	the	final		elif		clause	by	an		else		clause,	whose	body	will	be
executed	only	if	all	the	previous	comparisons	are	false;	that	is,	if	the	input	value	is	equal	to
0.
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def	sign(x):

				if	x	>	0:

								return	'Positive'

				elif	x	<	0:

								return	'Negative'

				else:

								return	'Neither	positive	nor	negative'

sign(0)

'Neither	positive	nor	negative'

The	General	Form¶

A	conditional	statement	can	also	have	multiple	clauses	with	multiple	bodies,	and	only	one	of
those	bodies	can	ever	be	executed.	The	general	format	of	a	multi-clause	conditional
statement	appears	below.

if	<if	expression>:

				<if	body>

elif	<elif	expression	0>:

				<elif	body	0>

elif	<elif	expression	1>:

				<elif	body	1>

...

else:

				<else	body>

There	is	always	exactly	one		if		clause,	but	there	can	be	any	number	of		elif		clauses.
Python	will	evaluate	the		if		and		elif		expressions	in	the	headers	in	order	until	one	is
found	that	is	a	true	value,	then	execute	the	corresponding	body.	The		else		clause	is
optional.	When	an		else		header	is	provided,	its	else	body	is	executed	only	if	none	of	the
header	expressions	of	the	previous	clauses	are	true.	The		else		clause	must	always	come
at	the	end	(or	not	at	all).
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Example:	"The	Other	One"¶

We	will	now	use	conditional	statements	to	define	a	function	that	seems	rather	artificial	and
contrary,	but	will	come	in	handy	later	in	the	chapter.	It	takes	an	array	with	two	elements	(for
example,		red		and		blue	),	and	another	element	to	compare.	If	that	element	is		red	,	the
function	returns		blue	.	If	the	element	is	(for	example)		blue	,	the	function	returns		red	.	That
is	why	we'll	call	the	function		other_one	.

def	other_one(x,	a_b):

				"""Compare	x	with	the	two	elements	of	a_b;

				if	it	is	equal	to	one	of	them,	return	the	other	one;

				if	it	is	not	equal	to	either	of	them,	return	an	error	

message.

				"""

				if	x	==	a_b.item(0):

								return	a_b.item(1)

				elif	x	==	a_b.item(1):

								return	a_b.item(0)

				else:

								return	'The	input	is	not	valid.'

colors	=	make_array('red',	'blue')

other_one('red',	colors)

'blue'

other_one('blue',	colors)

'red'

other_one('potato',	colors)
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'The	input	is	not	valid.'
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Iteration¶

It	is	often	the	case	in	programming	–	especially	when	dealing	with	randomness	–	that	we
want	to	repeat	a	process	multiple	times.	For	example,	to	check	whether		np.random.choice	
does	in	fact	pick	at	random,	we	might	want	to	run	the	following	cell	many	times	to	see	if
	Heads		occurs	about	50%	of	the	time.

np.random.choice(make_array('Heads',	'Tails'))

'Heads'

We	might	want	to	re-run	code	with	slightly	different	input	or	other	slightly	different	behavior.
We	could	copy-paste	the	code	multiple	times,	but	that's	tedious	and	prone	to	typos,	and	if
we	wanted	to	do	it	a	thousand	times	or	a	million	times,	forget	it.

A	more	automated	solution	is	to	use	a		for		statement	to	loop	over	the	contents	of	a
sequence.	This	is	called	iteration.	A		for		statement	begins	with	the	word		for	,	followed	by
a	name	we	want	to	give	each	item	in	the	sequence,	followed	by	the	word		in	,	and	ending
with	an	expression	that	evaluates	to	a	sequence.	The	indented	body	of	the		for		statement
is	executed	once	for	each	item	in	that	sequence.

for	i	in	np.arange(3):

				print(i)

0

1

2

It	is	instructive	to	imagine	code	that	exactly	replicates	a		for		statement	without	the		for	
statement.	(This	is	called	unrolling	the	loop.)	A		for		statement	simple	replicates	the	code
inside	it,	but	before	each	iteration,	it	assigns	a	new	value	from	the	given	sequence	to	the
name	we	chose.	For	example,	here	is	an	unrolled	version	of	the	loop	above:
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i	=	np.arange(3).item(0)

print(i)

i	=	np.arange(3).item(1)

print(i)

i	=	np.arange(3).item(2)

print(i)

0

1

2

Notice	that	the	name		i		is	arbitrary,	just	like	any	name	we	assign	with		=	.

Here	we	use	a		for		statement	in	a	more	realistic	way:	we	print	5	random	choices	from	an
array.

coin	=	make_array('Heads',	'Tails')

for	i	in	np.arange(5):

				print(np.random.choice(make_array('Heads',	'Tails')))

Heads

Heads

Tails

Heads

Heads

In	this	case,	we	simply	perform	exactly	the	same	(random)	action	several	times,	so	the	code
inside	our		for		statement	does	not	actually	refer	to		i	.

Augmenting	Arrays¶

While	the		for		statement	above	does	simulate	the	results	of	five	tosses	of	a	coin,	the
results	are	simply	printed	and	aren't	in	a	form	that	we	can	use	for	computation.	Thus	a
typical	use	of	a		for		statement	is	to	create	an	array	of	results,	by	augmenting	it	each	time.
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The		append		method	in		numpy		helps	us	do	this.	The	call		np.append(array_name,	value)	
evaluates	to	a	new	array	that	is		array_name		augmented	by		value	.	When	you	use		append	,
keep	in	mind	that	all	the	entries	of	an	array	must	have	the	same	type.

pets	=	make_array('Cat',	'Dog')

np.append(pets,	'Another	Pet')

array(['Cat',	'Dog',	'Another	Pet'],	

						dtype='<U11')

This	keeps	the	array		pets		unchanged:

pets

array(['Cat',	'Dog'],	

						dtype='<U3')

But	often	while	using		for		loops	it	will	be	convenient	to	mutate	an	array	–	that	is,	change	it
–	when	augmenting	it.	This	is	done	by	assigning	the	augmented	array	to	the	same	name	as
the	original.

pets	=	np.append(pets,	'Another	Pet')

pets

array(['Cat',	'Dog',	'Another	Pet'],	

						dtype='<U11')

Example:	Counting	the	Number	of	Heads¶

We	can	now	simulate	five	tosses	of	a	coin	and	place	the	results	into	an	array.	We	will	start
by	creating	an	empty	array	and	then	appending	the	result	of	each	toss.
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coin	=	make_array('Heads',	'Tails')

tosses	=	make_array()

for	i	in	np.arange(5):

				tosses	=	np.append(tosses,	np.random.choice(coin))

tosses

array(['Tails',	'Heads',	'Tails',	'Heads',	'Tails'],	

						dtype='<U32')

Let	us	rewrite	the	cell	with	the		for		statement	unrolled:

coin	=	make_array('Heads',	'Tails')

tosses	=	make_array()

i	=	np.arange(5).item(0)

tosses	=	np.append(tosses,	np.random.choice(coin))

i	=	np.arange(5).item(1)

tosses	=	np.append(tosses,	np.random.choice(coin))

i	=	np.arange(5).item(2)

tosses	=	np.append(tosses,	np.random.choice(coin))

i	=	np.arange(5).item(3)

tosses	=	np.append(tosses,	np.random.choice(coin))

i	=	np.arange(5).item(4)

tosses	=	np.append(tosses,	np.random.choice(coin))

tosses

array(['Heads',	'Heads',	'Tails',	'Tails',	'Heads'],	

						dtype='<U32')

By	capturing	the	results	in	an	array	we	have	given	ourselves	the	ability	to	use	array	methods
to	do	computations.	For	example,	we	can	use		np.count_nonzero		to	count	the	number	of
heads	in	the	five	tosses.
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np.count_nonzero(tosses	==	'Heads')

2

Iteration	is	a	powerful	technique.	For	example,	by	running	exactly	the	same	code	for	1000
tosses	instead	of	5,	we	can	count	the	number	of	heads	in	1000	tosses.

tosses	=	make_array()

for	i	in	np.arange(1000):

				tosses	=	np.append(tosses,	np.random.choice(coin))

np.count_nonzero(tosses	==	'Heads')

481

Example:	Number	of	Heads	in	100	Tosses¶

It	is	natural	to	expect	that	in	100	tosses	of	a	coin,	there	will	be	50	heads,	give	or	take	a	few.

But	how	many	is	"a	few"?	What's	the	chance	of	getting	exactly	50	heads?	Questions	like
these	matter	in	data	science	not	only	because	they	are	about	interesting	aspects	of
randomness,	but	also	because	they	can	be	used	in	analyzing	experiments	where
assignments	to	treatment	and	control	groups	are	decided	by	the	toss	of	a	coin.

In	this	example	we	will	simulate	10,000	repetitions	of	the	following	experiment:

Toss	a	coin	100	times	and	record	the	number	of	heads.

The	histogram	of	our	results	will	give	us	some	insight	into	how	many	heads	are	likely.

As	a	preliminary,	note	that		np.random.choice		takes	an	optional	second	argument	that
specifies	the	number	of	choices	to	make.	By	default,	the	choices	are	made	with
replacement.	Here	is	a	simulation	of	10	tosses	of	a	coin:

np.random.choice(coin,	10)
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array(['Tails',	'Heads',	'Heads',	'Tails',	'Tails',	'Heads',	

'Tails',

							'Tails',	'Heads',	'Tails'],	

						dtype='<U5')

Now	let's	study	100	tosses.	We	will	start	by	creating	an	empty	array	called		heads	.	Then,	in
each	of	the	10,000	repetitions,	we	will	toss	a	coin	100	times,	count	the	number	of	heads,
and	append	it	to		heads	.

N	=	10000

heads	=	make_array()

for	i	in	np.arange(N):

				tosses	=	np.random.choice(coin,	100)

				heads	=	np.append(heads,	np.count_nonzero(tosses	==	

'Heads'))

heads

array([	46.,		64.,		59.,	...,		56.,		54.,		56.])

Let	us	collect	the	results	in	a	table	and	draw	a	histogram.

results	=	Table().with_columns(

				'Repetition',	np.arange(1,	N+1),

				'Number	of	Heads',	heads

)

results
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Repetition Number	of	Heads

1 46

2 64

3 59

4 57

5 54

6 47

7 45

8 50

9 44

10 57

...	(9990	rows	omitted)

Here	is	a	histogram	of	the	data,	with	bins	of	width	1	centered	at	each	value	of	the	number	of
heads.

results.select('Number	of	Heads').hist(bins=np.arange(30.5,	

69.6,	1))

Not	surprisingly,	the	histogram	looks	roughly	symmetric	around	50	heads.	The	height	of	the
bar	at	50	is	about	8%	per	unit.	Since	each	bin	is	1	unit	wide,	this	is	the	same	as	saying	that
about	8%	of	the	repetitions	produced	exactly	50	heads.	That's	not	a	huge	percent,	but	it's
the	largest	compared	to	the	percent	at	every	other	number	of	heads.
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The	histogram	also	shows	that	in	almost	all	of	the	repetitions,	the	number	of	heads	in	100
tosses	was	somewhere	between	35	and	65.	Indeed,	the	bulk	of	the	repetitions	produced
numbers	of	heads	in	the	range	45	to	55.

While	in	theory	it	is	possible	that	the	number	of	heads	can	be	anywhere	between	0	and	100,
the	simulation	shows	that	the	range	of	probable	values	is	much	smaller.

This	is	an	instance	of	a	more	general	phenomenon	about	the	variability	in	coin	tossing,	as
we	will	see	later	in	the	course.
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The	Monty	Hall	Problem¶

This	problem	has	flummoxed	many	people	over	the	years,	mathematicians	included.	Let's
see	if	we	can	work	it	out.

The	setting	is	derived	from	a	television	game	show	called	"Let's	Make	a	Deal".	Monty	Hall
hosted	this	show	in	the	1960's,	and	it	has	since	led	to	a	number	of	spin-offs.	An	exciting	part
of	the	show	was	that	while	the	contestants	had	the	chance	to	win	great	prizes,	they	might
instead	end	up	with	"zonks"	that	were	less	desirable.	This	is	the	basis	for	what	is	now	known
as	the	Monty	Hall	problem.

The	setting	is	a	game	show	in	which	the	contestant	is	faced	with	three	closed	doors.	Behind
one	of	the	doors	is	a	fancy	car,	and	behind	each	of	the	other	two	there	is	a	goat.	The
contestant	doesn't	know	where	the	car	is,	and	has	to	attempt	to	find	it	under	the	following
rules.

The	contestant	makes	an	initial	choice,	but	that	door	isn't	opened.
At	least	one	of	the	other	two	doors	must	have	a	goat	behind	it.	Monty	opens	one	of
these	doors	to	reveal	a	goat,	displayed	in	all	its	glory	in	Wikipedia:

There	are	two	doors	left,	one	of	which	was	the	contestant's	original	choice.	One	of	the
doors	has	the	car	behind	it,	and	the	other	one	has	a	goat.	The	contestant	now	gets	to
choose	which	of	the	two	doors	to	open.

The	contestant	has	a	decision	to	make.	Which	door	should	she	choose	to	open,	if	she	wants
the	car?	Should	she	stick	with	her	initial	choice,	or	switch	to	the	other	door?	That	is	the
Monty	Hall	problem.

The	Solution¶

In	any	problem	involving	chances,	the	assumptions	about	randomness	are	important.	It's
reasonable	to	assume	that	there	is	a	1/3	chance	that	the	contestant's	initial	choice	is	the
door	that	has	the	car	behind	it.

The	solution	to	the	problem	is	quite	straightforward	under	this	assumption,	though	the
straightforward	solution	doesn't	convince	everyone.	Here	it	is	anyway.
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The	chance	that	the	car	is	behind	the	originally	chosen	door	is	1/3.
The	car	is	behind	either	the	originally	chosen	door	or	the	door	that	remains.	It	can't	be
anywhere	else.
Therefore,	the	chance	that	the	car	is	behind	the	door	that	remains	is	2/3.
Therefore,	the	contestant	should	switch.

That's	it.	End	of	story.

Not	convinced?	Then	let's	simulate	the	game	and	see	how	the	results	turn	out.

Simulation¶

We	start	by	setting	up	two	useful	arrays	–		doors		and		goats		–	that	will	allow	us	to
distinguish	the	three	doors	and	the	two	goats.

doors	=	make_array('Car',	'Goat	1',	'Goat	2')

goats	=	make_array('Goat	1',	'Goat	2')

Now	we	define	a	function		monty_hall		that	simulates	the	game	and	returns	an	array	of	three
strings	in	this	order:

what	is	behind	the	contestant's	original	choice	of	door
what	Monty	throws	out
what	is	behind	the	remaining	door

If	the	contestant's	original	choice	is	a	door	with	a	goat,	Monty	must	throw	out	the	other	goat,
and	what	will	remain	is	the	car.	If	the	original	choice	is	the	door	with	a	car,	Monty	must	throw
out	one	of	the	two	goats,	and	what	will	remain	is	the	other	goat.

It	is	clear,	therefore,	that	the	function		other_one		defined	in	an	earlier	section	will	be	useful.
It	takes	a	string	and	a	two-element	array;	if	the	string	is	equal	to	one	of	the	elements,	it
returns	the	other	one.

def	other_one(x,	a_b):

				if	x	==	a_b.item(0):

								return	a_b.item(1)

				elif	x	==	a_b.item(1):

								return	a_b.item(0)

				else:

								return	'Input	Not	Valid'
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If	the	contestant's	original	choice	is	a	goat,	then	the	outcome	of	the	game	could	be	one	of
the	following	two:

original	=	'Goat	1'

make_array(original,	other_one(original,	goats),	'Car')

array(['Goat	1',	'Goat	2',	'Car'],	

						dtype='<U6')

original	=	'Goat	2'

make_array(original,	other_one(original,	goats),	'Car')

array(['Goat	2',	'Goat	1',	'Car'],	

						dtype='<U6')

If	the	original	choice	happens	to	be	the	car,	then	let's	assume	Monty	throws	out	one	of	the
two	goats	at	random,	and	the	other	goat	is	behind	the	remaining	door.

original	=	'Car'

throw_out	=	np.random.choice(goats)

make_array(original,	throw_out,	other_one(throw_out,	goats))

array(['Car',	'Goat	1',	'Goat	2'],	

						dtype='<U6')

We	can	now	put	all	this	code	together	into	a	single	function		monty_hall		to	simulate	the
result	of	one	game.	The	function	takes	no	arguments.

The	contestant's	original	choice	will	be	a	door	chosen	at	random	from	among	the	three
doors.

To	check	whether	the	original	choice	is	a	goat	or	not,	we	first	write	a	little	function	named
	is_goat	.

def	is_goat(door_name):

				"""	Check	whether	the	name	of	a	door	(a	string)	is	a	Goat.
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				Examples:

				=========

				

				>>>	is_goat('Goat	1')

				True

				>>>	is_goat('Goat	2')

				True

				>>>	is_goat('Car')

				False

				"""

				if	door_name	==	"Goat	1":

								return	True

				elif	door_name	==	"Goat	2":

								return	True

				else:

								return	False

def	monty_hall():

				"""	Play	the	Monty	Hall	game	once

				and	return	an	array	of	three	strings:

				

				original	choice,	what	Monty	throws	out,	what	remains

				"""

				original	=	np.random.choice(doors)

				if	is_goat(original):

								return	make_array(original,	other_one(original,	goats),	

'Car')

				else:

								throw_out	=	np.random.choice(goats)

								return	make_array(original,	throw_out,	

other_one(throw_out,	goats))

Let's	play	the	game	a	few	times!	Here	is	one	outcome.	You	should	run	the	cell	several	times
to	see	how	the	outcome	changes.
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monty_hall()

array(['Car',	'Goat	2',	'Goat	1'],	

						dtype='<U6')

To	gauge	the	frequency	with	which	the	different	outcomes	occur,	we	have	to	play	the	games
many	times	and	collect	the	results.	For	this,	we	will	use	a		for		loop.

We	will	start	by	defining	three	empty	arrays,	one	each	for	the	original	choice,	what	Monty
throws	out,	and	what	remains.	Then	we	will	play	the	game		N		times	and	collect	the	results.
We	have	set		N		to	be	10,000,	but	you	can	vary	that.

#	Number	of	times	we'll	play	the	game

N	=	10000

original	=	make_array()					#	original	choice

throw_out	=	make_array()				#	what	Monty	throws	out

remains	=	make_array()						#	what	remains

for	i	in	np.arange(N):	

				result	=	monty_hall()				#	the	result	of	one	game

				#	Collect	the	results	in	the	appropriate	arrays

				original	=	np.append(original,	result.item(0))

				throw_out	=	np.append(throw_out,	result.item(1))

				remains	=	np.append(remains,	result.item(2))

#	The	for-loop	is	done!	Now	put	all	the	arrays	together	in	a	

table.

results	=	Table().with_columns(

				'Original	Door	Choice',	original,

				'Monty	Throws	Out',	throw_out,

				'Remaining	Door',	remains

)

results

The	Monty	Hall	Problem

246



Original	Door	Choice Monty	Throws	Out Remaining	Door

Car Goat	1 Goat	2

Goat	1 Goat	2 Car

Goat	2 Goat	1 Car

Car Goat	2 Goat	1

Car Goat	2 Goat	1

Goat	1 Goat	2 Car

Goat	1 Goat	2 Car

Goat	1 Goat	2 Car

Goat	2 Goat	1 Car

Goat	1 Goat	2 Car

...	(9990	rows	omitted)

To	see	whether	the	contestant	should	stick	with	her	original	choice	or	switch,	let's	see	how
frequently	the	car	is	behind	each	of	her	two	options.

results.group('Original	Door	Choice')

Original	Door	Choice count

Car 3312

Goat	1 3382

Goat	2 3306

results.group('Remaining	Door')

Remaining	Door count

Car 6688

Goat	1 1640

Goat	2 1672

As	our	solution	said,	the	car	is	behind	the	remaining	door	two-thirds	of	the	time,	to	a	pretty
good	approximation.	The	contestant	is	twice	as	likely	to	get	the	car	if	she	switches	than	if
she	sticks	with	her	original	choice.

To	visualize	the	results,	we	can	join	the	two	tables	above	and	draw	overlaid	bar	charts.
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results_o	=	results.group('Original	Door	Choice')

results_r	=	results.group('Remaining	Door')

joined	=	results_o.join('Original	Door	Choice',	results_r,	

'Remaining	Door')

combined	=	joined.relabeled(0,	'Item').relabeled(1,	'Original	

Door').relabeled(2,	'Remaining	Door')

combined

Item Original	Door Remaining	Door

Car 3312 6688

Goat	1 3382 1640

Goat	2 3306 1672

combined.barh(0)

Notice	how	the	three	blue	bars	are	almost	equal	–	the	original	choice	is	equally	likely	to	be
any	of	the	three	available	items.	But	the	gold	bar	corresponding	to		Car		is	twice	as	long	as
the	blue.

The	simulation	confirms	that	the	contestant	is	twice	as	likely	to	win	if	she	switches.
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Finding	Probabilities¶

Over	the	centuries,	there	has	been	considerable	philosophical	debate	about	what
probabilities	are.	Some	people	think	that	probabilities	are	relative	frequencies;	others	think
they	are	long	run	relative	frequencies;	still	others	think	that	probabilities	are	a	subjective
measure	of	their	own	personal	degree	of	uncertainty.

In	this	course,	most	probabilities	will	be	relative	frequencies,	though	many	will	have
subjective	interpretations.	Regardless,	the	ways	in	which	probabilities	are	calculated	and
combined	are	consistent	across	the	different	interpretations.

By	convention,	probabilities	are	numbers	between	0	and	1,	or,	equivalently,	0%	and	100%.
Impossible	events	have	probability	0.	Events	that	are	certain	have	probability	1.

Math	is	the	main	tool	for	finding	probabilities	exactly,	though	computers	are	useful	for	this
purpose	too.	Simulation	can	provide	excellent	approximations,	with	high	probability.	In	this
section,	we	will	informally	develop	a	few	simple	rules	that	govern	the	calculation	of
probabilities.	In	subsequent	sections	we	will	return	to	simulations	to	approximate
probabilities	of	complex	events.

We	will	use	the	standard	notation	 	to	denote	the	probability	that	"event"	happens,
and	we	will	use	the	words	"chance"	and	"probability"	interchangeably.

When	an	Event	Doesn't	Happen¶

If	the	chance	that	event	happens	is	40%,	then	the	chance	that	it	doesn't	happen	is	60%.
This	natural	calculation	can	be	described	in	general	as	follows:

When	All	Outcomes	are	Equally	Likely¶

If	you	are	rolling	an	ordinary	die,	a	natural	assumption	is	that	all	six	faces	are	equally	likely.
Then	probabilities	of	how	one	roll	comes	out	can	be	easily	calculated	as	a	ratio.	For
example,	the	chance	that	the	die	shows	an	even	number	is

Similarly,
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In	general,

Not	all	random	phenomena	are	as	simple	as	one	roll	of	a	die.	The	two	main	rules	of
probability,	developed	below,	allow	mathematicians	to	find	probabilities	even	in	complex
situations.

When	Two	Events	Must	Both	Happen¶

Suppose	you	have	a	box	that	contains	three	tickets:	one	red,	one	blue,	and	one	green.
Suppose	you	draw	two	tickets	at	random	without	replacement;	that	is,	you	shuffle	the	three
tickets,	draw	one,	shuffle	the	remaining	two,	and	draw	another	from	those	two.	What	is	the
chance	you	get	the	green	ticket	first,	followed	by	the	red	one?

There	are	six	possible	pairs	of	colors:	RB,	BR,	RG,	GR,	BG,	GB	(we've	abbreviated	the
names	of	each	color	to	just	its	first	letter).	All	of	these	are	equally	likely	by	the	sampling
scheme,	and	only	one	of	them	(GR)	makes	the	event	happen.	So

But	there	is	another	way	of	arriving	at	the	answer,	by	thinking	about	the	event	in	two	stages.
First,	the	green	ticket	has	to	be	drawn.	That	has	chance	 ,	which	means	that	the	green
ticket	is	drawn	first	in	about	 	of	all	repetitions	of	the	experiment.	But	that	doesn't
complete	the	event.	Among	the	1/3	of	repetitions	when	green	is	drawn	first,	the	red	ticket
has	to	be	drawn	next.	That	happens	in	about	 	of	those	repetitions,	and	so:

This	calculation	is	usually	written	"in	chronological	order,"	as	follows.
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The	factor	of	 	is	called	"	the	conditional	chance	that	the	red	ticket	appears	second,	given
that	the	green	ticket	appeared	first."

In	general,	we	have	the	multiplication	rule:

Thus,	when	there	are	two	conditions	–	one	event	must	happen,	as	well	as	another	–	the
chance	is	a	fraction	of	a	fraction,	which	is	smaller	than	either	of	the	two	component	fractions.
The	more	conditions	that	have	to	be	satisfied,	the	less	likely	they	are	to	all	be	satisfied.

When	an	Event	Can	Happen	in	Two	Different	Ways¶

Suppose	instead	we	want	the	chance	that	one	of	the	two	tickets	is	green	and	the	other	red.
This	event	doesn't	specify	the	order	in	which	the	colors	must	appear.	So	they	can	appear	in
either	order.

A	good	way	to	tackle	problems	like	this	is	to	partition	the	event	so	that	it	can	happen	in
exactly	one	of	several	different	ways.	The	natural	partition	of	"one	green	and	one	red"	is:
GR,	RG.

Each	of	GR	and	RG	has	chance	 	by	the	calculation	above.	So	you	can	calculate	the
chance	of	"one	green	and	one	red"	by	adding	them	up.

In	general,	we	have	the	addition	rule:

Thus,	when	an	event	can	happen	in	one	of	two	different	ways,	the	chance	that	it	happens	is
a	sum	of	chances,	and	hence	bigger	than	the	chance	of	either	of	the	individual	ways.

The	multiplication	rule	has	a	natural	extension	to	more	than	two	events,	as	we	will	see
below.	So	also	the	addition	rule	has	a	natural	extension	to	events	that	can	happen	in	one	of
several	different	ways.
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We	end	the	section	with	examples	that	use	combinations	of	all	these	rules.

At	Least	One	Success¶

Data	scientists	often	work	with	random	samples	from	populations.	A	question	that
sometimes	arises	is	about	the	likelihood	that	a	particular	individual	in	the	population	is
selected	to	be	in	the	sample.	To	work	out	the	chance,	that	individual	is	called	a	"success,"
and	the	problem	is	to	find	the	chance	that	the	sample	contains	a	success.

To	see	how	such	chances	might	be	calculated,	we	start	with	a	simpler	setting:	tossing	a	coin
two	times.

If	you	toss	a	coin	twice,	there	are	four	equally	likely	outcomes:	HH,	HT,	TH,	and	TT.	We	have
abbreviated	"Heads"	to	H	and	"Tails"	to	T.	The	chance	of	getting	at	least	one	head	in	two
tosses	is	therefore	3/4.

Another	way	of	coming	up	with	this	answer	is	to	work	out	what	happens	if	you	don't	get	at
least	one	head:	both	the	tosses	have	to	land	tails.	So

Notice	also	that

by	the	multiplication	rule.

These	two	observations	allow	us	to	find	the	chance	of	at	least	one	head	in	any	given	number
of	tosses.	For	example,

And	now	we	are	in	a	position	to	find	the	chance	that	the	face	with	six	spots	comes	up	at
least	once	in	rolls	of	a	die.	For	example,

and
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The	table	below	shows	these	probabilities	as	the	number	of	rolls	increases	from	1	to	50.

rolls	=	np.arange(1,	51,	1)

results	=	Table().with_columns(

				'Rolls',	rolls,

				'Chance	of	at	least	one	6',	1	-	(5/6)**rolls

)

results

Rolls Chance	of	at	least	one	6

1 0.166667

2 0.305556

3 0.421296

4 0.517747

5 0.598122

6 0.665102

7 0.720918

8 0.767432

9 0.806193

10 0.838494

...	(40	rows	omitted)

The	chance	that	a	6	appears	at	least	once	rises	rapidly	as	the	number	of	rolls	increases.

results.scatter('Rolls')
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In	50	rolls,	you	are	almost	certain	to	get	at	least	one	6.

results.where('Rolls',	are.equal_to(50))

Rolls Chance	of	at	least	one	6

50 0.99989

Calculations	like	these	can	be	used	to	find	the	chance	that	a	particular	individual	is	selected
in	a	random	sample.	The	exact	calculation	will	depend	on	the	sampling	scheme.	But	what
we	have	observed	above	can	usually	be	generalized:	increasing	the	size	of	the	random
sample	increases	the	chance	that	an	individual	is	selected.
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Sampling¶

We	will	now	take	a	more	careful	look	at	sampling,	with	examples	based	on	the
	top_movies.csv		data	set.

top1	=	Table.read_table('top_movies.csv')

top2	=	top1.with_column('Row	Index',	np.arange(top1.num_rows))

top	=	top2.move_to_start('Row	Index')

top.set_format(make_array(3,	4),	NumberFormatter)

Row
Index Title Studio Gross Gross

(Adjusted) Year

0 Star	Wars:	The
Force	Awakens

Buena	Vista
(Disney) 906,723,418 906,723,400 2015

1 Avatar Fox 760,507,625 846,120,800 2009

2 Titanic Paramount 658,672,302 1,178,627,900 1997

3 Jurassic	World Universal 652,270,625 687,728,000 2015

4 Marvel's	The
Avengers

Buena	Vista
(Disney) 623,357,910 668,866,600 2012

5 The	Dark	Knight Warner
Bros. 534,858,444 647,761,600 2008

6
Star	Wars:
Episode	I	-	The
Phantom	Menace

Fox 474,544,677 785,715,000 1999

7 Star	Wars Fox 460,998,007 1,549,640,500 1977

8 Avengers:	Age	of
Ultron

Buena	Vista
(Disney) 459,005,868 465,684,200 2015

9 The	Dark	Knight
Rises

Warner
Bros. 448,139,099 500,961,700 2012

...	(190	rows	omitted)

Sampling	Rows	of	a	Table¶

Each	row	of	a	data	table	represents	an	individual;	in		top	,	each	individual	is	a	movie.
Sampling	individuals	can	thus	be	achieved	by	sampling	the	rows	of	a	table.
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The	contents	of	a	row	are	the	values	of	different	variables	measured	on	the	same	individual.
So	the	contents	of	the	sampled	rows	form	samples	of	values	of	each	of	the	variables.

Deterministic	Samples¶

When	you	simply	specify	which	elements	of	a	set	you	want	to	choose,	without	any	chances
involved,	you	create	a	deterministic	sample.

You	have	done	this	many	times,	for	example	by	using		take	:

top.take(make_array(3,	18,	100))

Row
Index Title Studio Gross Gross

(Adjusted) Year

3 Jurassic	World Universal 652,270,625 687,728,000 2015

18 Spider-Man Sony 403,706,375 604,517,300 2002

100 Gone	with	the
Wind MGM 198,676,459 1,757,788,200 1939

You	have	also	used		where	:

top.where('Title',	are.containing('Harry	Potter'))

Row
Index Title Studio Gross Gross

(Adjusted) Year

22 Harry	Potter	and	the
Deathly	Hallows	Part	2

Warner
Bros. 381,011,219 417,512,200 2011

43 Harry	Potter	and	the
Sorcerer's	Stone

Warner
Bros. 317,575,550 486,442,900 2001

54 Harry	Potter	and	the
Half-Blood	Prince

Warner
Bros. 301,959,197 352,098,800 2009

59 Harry	Potter	and	the
Order	of	the	Phoenix

Warner
Bros. 292,004,738 369,250,200 2007

62 Harry	Potter	and	the
Goblet	of	Fire

Warner
Bros. 290,013,036 393,024,800 2005

69 Harry	Potter	and	the
Chamber	of	Secrets

Warner
Bros. 261,988,482 390,768,100 2002

76 Harry	Potter	and	the
Prisoner	of	Azkaban

Warner
Bros. 249,541,069 349,598,600 2004
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While	these	are	samples	of	movies,	they	don't	involve	chance.

Probability	Samples¶
Much	of	data	science	consists	of	making	conclusions	based	on	the	data	in	random	samples.
Correctly	interpreting	analyses	based	on	random	samples	requires	data	scientists	to
examine	exactly	what	random	samples	are.

A	population	is	the	set	of	all	elements	from	whom	a	sample	will	be	drawn.

A	probability	sample	is	one	for	which	it	is	possible	to	calculate,	before	the	sample	is	drawn,
the	chance	with	which	any	subset	of	elements	will	enter	the	sample.

In	a	probability	sample,	all	elements	need	not	have	the	same	chance	of	being	chosen.

A	Random	Sampling	Scheme¶

For	example,	suppose	you	choose	two	people	from	a	population	that	consists	of	three
people	A,	B,	and	C,	according	to	the	following	scheme:

Person	A	is	chosen	with	probability	1.
One	of	Persons	B	or	C	is	chosen	according	to	the	toss	of	a	coin:	if	the	coin	lands	heads,
you	choose	B,	and	if	it	lands	tails	you	choose	C.

This	is	a	probability	sample	of	size	2.	Here	are	the	chances	of	entry	for	all	non-empty
subsets:

A:	1	

B:	1/2

C:	1/2

AB:	1/2

AC:	1/2

BC:	0

ABC:	0

Person	A	has	a	higher	chance	of	being	selected	than	Persons	B	or	C;	indeed,	Person	A	is
certain	to	be	selected.	Since	these	differences	are	known	and	quantified,	they	can	be	taken
into	account	when	working	with	the	sample.

A	Systematic	Sample¶

Sampling

257



Imagine	all	the	elements	of	the	population	listed	in	a	sequence.	One	method	of	sampling
starts	by	choosing	a	random	position	early	in	the	list,	and	then	evenly	spaced	positions	after
that.	The	sample	consists	of	the	elements	in	those	positions.	Such	a	sample	is	called	a
systematic	sample.

Here	we	will	choose	a	systematic	sample	of	the	rows	of		top	.	We	will	start	by	picking	one	of
the	first	10	rows	at	random,	and	then	we	will	pick	every	10th	row	after	that.

"""Choose	a	random	start	among	rows	0	through	9;

then	take	every	10th	row."""

start	=	np.random.choice(np.arange(10))

top.take(np.arange(start,	top.num_rows,	10))

Row
Index Title Studio Gross Gross

(Adjusted) Year

6
Star	Wars:	Episode	I
-	The	Phantom
Menace

Fox 474,544,677 785,715,000 1999

16 Iron	Man	3 Buena	Vista
(Disney) 409,013,994 424,632,700 2013

26 Spider-Man	2 Sony 373,585,825 523,381,100 2004

36 Minions Universal 336,045,770 354,213,900 2015

46 Iron	Man	2 Paramount 312,433,331 341,908,200 2010

56 The	Twilight	Saga:
New	Moon Sum. 296,623,634 338,517,700 2009

66 Meet	the	Fockers Universal 279,261,160 384,305,300 2004

76 Harry	Potter	and	the
Prisoner	of	Azkaban

Warner
Bros. 249,541,069 349,598,600 2004

86 The	Exorcist Warner
Bros. 232,906,145 962,212,800 1973

96 Back	to	the	Future Universal 210,609,762 513,740,700 1985

...	(10	rows	omitted)

Run	the	cell	a	few	times	to	see	how	the	output	varies.

This	systematic	sample	is	a	probability	sample.	In	this	scheme,	all	rows	have	chance	
of	being	chosen.	For	example,	Row	23	is	chosen	if	and	only	if	Row	3	is	chosen,	and	the
chance	of	that	is	 .
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But	not	all	subsets	have	the	same	chance	of	being	chosen.	Because	the	selected	rows	are
evenly	spaced,	most	subsets	of	rows	have	no	chance	of	being	chosen.	The	only	subsets
that	are	possible	are	those	that	consist	of	rows	all	separated	by	multiples	of	10.	Any	of	those
subsets	is	selected	with	chance	1/10.	Other	subsets,	like	the	subset	containing	the	first	11
rows	of	the	table,	are	selected	with	chance	0.

Random	Samples	Drawn	With	or	Without	Replacement¶

In	this	course,	we	will	mostly	deal	with	the	two	most	straightforward	methods	of	sampling.

The	first	is	random	sampling	with	replacement,	which	(as	we	have	seen	earlier)	is	the	default
behavior	of		np.random.choice		when	it	samples	from	an	array.

The	other,	called	a	"simple	random	sample",	is	a	sample	drawn	at	random	without
replacement.	Sampled	individuals	are	not	replaced	in	the	population	before	the	next
individual	is	drawn.	This	is	the	kind	of	sampling	that	happens	when	you	deal	a	hand	from	a
deck	of	cards,	for	example.

In	the	next	chapter,	we	will	use	simulation	to	study	the	behavior	of	large	samples	drawn	at
random	with	or	without	replacement.

Drawing	a	random	sample	requires	care	and	precision.	It	is	not	haphazard,	even	though	that
is	a	colloquial	meaning	of	the	word	"random".	If	you	stand	at	a	street	corner	and	take	as	your
sample	the	first	ten	people	who	pass	by,	you	might	think	you're	sampling	at	random	because
you	didn't	choose	who	walked	by.	But	it's	not	a	random	sample	–	it's	a	sample	of
convenience.	You	didn't	know	ahead	of	time	the	probability	of	each	person	entering	the
sample;	perhaps	you	hadn't	even	specified	exactly	who	was	in	the	population.
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Empirical	Distributions¶

Much	of	data	science	involves	data	from	large	random	samples.	In	this	section	we	will
examine	some	properties	of	such	samples.

We	will	start	with	a	simple	experiment:	rolling	a	die	multiple	times	and	keeping	track	of	which
face	appears.	The	table		die		contains	the	numbers	of	spots	on	the	faces	of	a	die.	All	the
numbers	appear	exactly	once,	as	we	are	assuming	that	the	die	is	fair.

die	=	Table().with_column('Face',	np.arange(1,	7,	1))

die

Face

1

2

3

4

5

6

A	Probability	Distribution¶

The	histogram	below	helps	us	visualize	the	fact	that	every	face	appears	with	probability	1/6.
We	say	that	the	histogram	shows	the	distribution	of	probabilities	over	all	the	possible	faces.
Since	all	the	bars	represent	the	same	percent	chance,	the	distribution	is	called	uniform	on
the	integers	1	through	6.

die_bins	=	np.arange(0.5,	6.6,	1)

die.hist(bins	=	die_bins)
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Variables	whose	successive	values	are	separated	by	the	same	fixed	amount,	such	as	the
values	on	rolls	of	a	die	(successive	values	separated	by	1),	are	called	discrete.	The
histogram	above	is	called	a	discrete	histogram.	Its	bins	are	specified	by	the	array		die_bins	
and	ensure	that	each	bar	is	centered	over	the	corresponding	integer	value.

It	is	important	to	remember	that	the	die	can't	show	1.3	spots,	or	5.2	spots	–	it	always	shows
an	integer	number	of	spots.	But	our	visualization	spreads	the	probability	of	each	value	over
the	area	of	a	bar.	While	this	might	seem	a	bit	arbitrary	at	this	stage	of	the	course,	it	will
become	important	later	when	we	overlay	smooth	curves	over	discrete	histograms.

Before	going	further,	let's	make	sure	that	the	numbers	on	the	axes	make	sense.	The
probability	of	each	face	is	1/6,	which	is	16.67%	when	rounded	to	two	decimal	places.	The
width	of	each	bin	is	1	unit.	So	the	height	of	each	bar	is	16.67%	per	unit.	This	agrees	with	the
horizontal	and	vertical	scales	of	the	graph.

Empirical	Distributions¶

The	distribution	above	consists	of	the	theoretical	probability	of	each	face.	It	is	not	based	on
data.	It	can	be	studied	and	understood	without	any	dice	being	rolled.

Empirical	distributions,	on	the	other	hand,	are	distributions	of	observed	data.	They	can	be
visualized	by	empirical	histograms.

Let	us	get	some	data	by	simulating	rolls	of	a	die.	This	can	be	done	by	sampling	at	random
with	replacement	from	the	integers	1	through	6.	To	do	this	using	Python,	we	will	use	the
Table	method		sample	,	which	draws	at	random	with	replacement	from	the	rows	of	a	table.	Its
argument	is	the	sample	size,	and	it	returns	a	table	consisting	of	the	rows	that	were	selected.
An	optional	argument		with_replacement=False		specifies	that	the	sample	should	be	drawn
without	replacement,	but	that	does	not	apply	to	rolling	a	die.

Here	are	the	results	of	10	rolls	of	a	die.
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die.sample(10)

Face

5

3

3

4

2

2

4

1

6

6

We	can	use	the	same	method	to	simulate	as	many	rolls	as	we	like,	and	then	draw	empirical
histograms	of	the	results.	Because	we	are	going	to	do	this	repeatedly,	we	define	a	function
	empirical_hist_die		that	takes	as	its	argument	the	sample	size;	the	function	rolls	the	die	as
many	times	as	its	argument	and	then	draws	a	histogram.

def	empirical_hist_die(n):

				die.sample(n).hist(bins	=	die_bins)

Empirical	Histograms¶

Here	is	an	empirical	histogram	of	10	rolls.	It	doesn't	look	very	much	like	the	probability
histogram	above.	Run	the	cell	a	few	times	to	see	how	it	varies.

empirical_hist_die(10)
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When	the	sample	size	increases,	the	empirical	histogram	begins	to	look	more	like	the
histogram	of	theoretical	probabilities.

empirical_hist_die(100)

empirical_hist_die(1000)
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As	we	increase	the	number	of	rolls	in	the	simulation,	the	area	of	each	bar	gets	closer
16.67%,	which	is	the	area	of	each	bar	in	the	probability	histogram.

What	we	have	observed	in	an	instance	of	a	general	rule:

The	Law	of	Averages¶

If	a	chance	experiment	is	repeated	independently	and	under	identical	conditions,	then,	in	the
long	run,	the	proportion	of	times	that	an	event	occurs	gets	closer	and	closer	to	the
theoretical	probability	of	the	event.

For	example,	in	the	long	run,	the	proportion	of	times	the	face	with	four	spots	appears	gets
closer	and	closer	to	1/6.

Here	"independently	and	under	identical	conditions"	means	that	every	repetition	is
performed	in	the	same	way	regardless	of	the	results	of	all	the	other	repetitions.
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Sampling	from	a	Population¶

The	law	of	averages	also	holds	when	the	random	sample	is	drawn	from	individuals	in	a	large
population.

As	an	example,	we	will	study	a	population	of	flight	delay	times.	The	table		united		contains
data	for	United	Airlines	domestic	flights	departing	from	San	Francisco	in	the	summer	of
2015.	The	data	are	made	publicly	available	by	the	Bureau	of	Transportation	Statistics	in	the
United	States	Department	of	Transportation.

There	are	13,825	rows,	each	corresponding	to	a	flight.	The	columns	are	the	date	of	the
flight,	the	flight	number,	the	destination	airport	code,	and	the	departure	delay	time	in
minutes.	Some	delay	times	are	negative;	those	flights	left	early.

united	=	Table.read_table('united_summer2015.csv')

united

Date Flight	Number Destination Delay

6/1/15 73 HNL 257

6/1/15 217 EWR 28

6/1/15 237 STL -3

6/1/15 250 SAN 0

6/1/15 267 PHL 64

6/1/15 273 SEA -6

6/1/15 278 SEA -8

6/1/15 292 EWR 12

6/1/15 300 HNL 20

6/1/15 317 IND -10

...	(13815	rows	omitted)

One	flight	departed	16	minutes	early,	and	one	was	580	minutes	late.	The	other	delay	times
were	almost	all	between	-10	minutes	and	200	minutes,	as	the	histogram	below	shows.

united.column('Delay').min()
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-16

united.column('Delay').max()

580

delay_bins	=	np.append(np.arange(-20,	301,	10),	600)

united.select('Delay').hist(bins	=	delay_bins,	unit	=	'minute')

For	the	purposes	of	this	section,	it	is	enough	to	zoom	in	on	the	bulk	of	the	data	and	ignore
the	0.8%	of	flights	that	had	delays	of	more	than	200	minutes.	This	restriction	is	just	for	visual
convenience;	the	table	still	retains	all	the	data.

united.where('Delay',	are.above(200)).num_rows/united.num_rows

0.008390596745027125

delay_bins	=	np.arange(-20,	201,	10)

united.select('Delay').hist(bins	=	delay_bins,	unit	=	'minute')
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The	height	of	the	[0,	10)	bar	is	just	under	3%	per	minute,	which	means	that	just	under	30%
of	the	flights	had	delays	between	0	and	10	minutes.	That	is	confirmed	by	counting	rows:

united.where('Delay',	are.between(0,	

10)).num_rows/united.num_rows

0.2935985533453888

Empirical	Distribution	of	the	Sample¶

Let	us	now	think	of	the	13,825	flights	as	a	population,	and	draw	random	samples	from	it	with
replacement.	It	is	helpful	to	package	our	analysis	code	into	a	function.	The	function
	empirical_hist_delay		takes	the	sample	size	as	its	argument	and	draws	an	empiricial
histogram	of	the	results.

def	empirical_hist_delay(n):

				united.sample(n).select('Delay').hist(bins	=	delay_bins,	

unit	=	'minute')

As	we	saw	with	the	dice,	as	the	sample	size	increases,	the	empirical	histogram	of	the
sample	more	closely	resembles	the	histogram	of	the	population.	Compare	these	histograms
to	the	population	histogram	above.

empirical_hist_delay(10)
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empirical_hist_delay(100)

The	most	consistently	visible	discrepancies	are	among	the	values	that	are	rare	in	the
population.	In	our	example,	those	values	are	in	the	the	right	hand	tail	of	the	distribution.	But
as	the	sample	size	increases,	even	those	values	begin	to	appear	in	the	sample	in	roughly
the	correct	proportions.

empirical_hist_delay(1000)
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Convergence	of	the	Empirical	Histogram	of	the	Sample¶

What	we	have	observed	in	this	section	can	be	summarized	as	follows:

For	a	large	random	sample,	the	empirical	histogram	of	the	sample	resembles	the	histogram
of	the	population,	with	high	probability.

This	justifies	the	use	of	large	random	samples	in	statistical	inference.	The	idea	is	that	since
a	large	random	sample	is	likely	to	resemble	the	population	from	which	it	is	drawn,	quantities
computed	from	the	values	in	the	sample	are	likely	to	be	close	to	the	corresponding
quantities	in	the	population.
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At	the	Roulette	Table¶

The	distributions	above	gave	us	a	picture	of	the	entire	random	sample.	But	sometimes	we
are	just	interested	in	one	or	two	quantities	computed	based	on	the	sample.

For	example,	suppose	the	sample	consists	of	wins	and	losses	in	a	series	of	bets.	Then	we
might	just	be	interested	in	the	total	amount	of	money	won,	rather	than	the	entire	sequence	of
wins	and	losses.

Equipped	with	our	new	knowledge	about	the	long-run	behavior	of	chances,	let	us	explore	a
gambling	game.	We	will	simulate	betting	on	roulette,	which	is	popular	in	gambling	centers
such	as	Las	Vegas	and	Monte	Carlo.

The	main	randomizer	in	roulette	in	Nevada	is	a	wheel	that	has	38	pockets	on	its	rim.	Two	of
the	pockets	are	green,	eighteen	black,	and	eighteen	red.	The	wheel	is	on	a	spindle,	and
there	is	a	small	ball	on	the	wheel.	When	the	wheel	is	spun,	the	ball	ricochets	around	and
finally	comes	to	rest	in	one	of	the	pockets.	That	is	declared	to	be	the	winning	pocket.

The	table		wheel		represents	the	pockets	of	a	Nevada	roulette	wheel.

wheel

Pocket Color

0 green

00 green

1 red

2 black

3 red

4 black

5 red

6 black

7 red

8 black

...	(28	rows	omitted)

You	are	allowed	to	bet	on	several	pre-specified	collections	of	pockets	displayed	on	a	roulette
table.	If	you	bet	on	"red,"	you	win	if	the	ball	comes	to	rest	in	one	of	the	red	pockets.

At	the	Roulette	Table
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The	bet	on	red	pays	even	money.	That	is,	it	pays	1	to	1.	To	understand	what	this	means,
assume	you	are	going	to	bet	$1	on	"red."	The	first	thing	that	happens,	even	before	the	wheel
is	spun,	is	that	you	have	to	hand	over	your	$1.	If	the	ball	lands	in	a	green	or	black	pocket,
you	never	see	that	dollar	again.	If	the	ball	lands	in	a	red	pocket,	you	get	your	dollar	back	(to
bring	you	back	to	even),	plus	another	$1	in	winnings.

The	function		red_winnings		takes	a	color	as	its	argument	and	returns	1	if	the	color	is	red.
For	all	other	colors	it	returns	-1.	We	apply		red_winnings		to	the		Color		column	of		wheel		to
get	a	new	table		bets		that	shows	the	net	gain	on	each	pocket	if	you	bet	$1	on	red.

def	red_winnings(color):

				if	color	==	'red':

								return	1

				else:

								return	-1

bets	=	wheel.with_column(

				'Winnings:	Red',	wheel.apply(red_winnings,	'Color')

				)

bets

Pocket Color Winnings:	Red

0 green -1

00 green -1

1 red 1

2 black -1

3 red 1

4 black -1

5 red 1

6 black -1

7 red 1

8 black -1

...	(28	rows	omitted)

Suppose	you	decide	to	bet	$1	on	red.	What	might	happen?

Here	is	a	simulation	of	1	spin.
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one_spin	=	bets.sample(1)

one_spin

Pocket Color Winnings:	Red

14 red 1

The	color	of	the	spin	is	the	value	in	the		Color		column.	Regardless	of	your	bet,	the	outcome
might	be	red,	green,	or	black.	To	see	how	often	those	events	happen,	we	can	simulate	many
of	these	single	spins	and	draw	a	bar	chart	of	the	colors	we	see.	(We	could	call	this	an
empirical	bar	chart.)

To	do	that,	we	can	use	a		for		loop.	We	have	chosen	5,000	repetitions	here,	but	you	can
change	that	when	you	run	the	cell.

num_simulations	=	5000

colors	=	make_array()

winnings_on_red	=	make_array()

for	i	in	np.arange(num_simulations):

				spin	=	bets.sample(1)

				new_color	=	spin.column("Color").item(0)

				colors	=	np.append(colors,	new_color)

				new_winnings	=	spin.column('Winnings:	Red')

				winnings_on_red	=	np.append(winnings_on_red,	new_winnings)

Table().with_column('Color',	colors)\

							.group('Color')\

							.barh('Color')
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18	out	of	38	pockets	are	red,	and	each	is	equally	likely.	So	out	of	5,000	simulations,	we'd
expect	to	see	roughly	(but	probably	not	exactly)	 ,	or	2,368,	red	spins.	The

simulation	bears	that	out.

In	the	simulation,	we	also	recorded	your	winnings.	An	empirical	histogram	of	those	shows
the	(approximate)	chances	of	different	outcomes	of	your	$1	bet	on	red.

Table().with_column('Winnings:	Red',	winnings_on_red)\

							.hist(bins	=	np.arange(-1.55,	1.65,	.1))

The	only	possible	outcome	of	each	simulation	is	that	you	win	$1	or	lose	$1,	and	this	is
reflected	in	the	histogram.	We	can	also	see	that	you	win	slightly	less	often	than	you	lose.	Do
you	like	this	gambling	strategy?

Multiple	Games¶
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Most	roulette	players	stay	for	more	than	one	spin	of	the	wheel.	Suppose	you	repeatedly	bet
$1	on	red,	on	200	separate	spins.	How	much	money	will	you	make,	in	total?

Here	is	a	simulation	of	one	set	of	200	spins.	The	table		spins		consists	of	the	results	of	all
200	bets.	Your	net	gain	is	the	sum	of	all	the	+1's	and	-1's	in	the		Winnings:	Red		column	of
	spins	.

spins	=	bets.sample(200)

spins.column('Winnings:	Red').sum()

-26

Run	the	cell	a	few	times.	Sometimes	your	net	gain	is	positive,	but	more	often	it	seems	to	be
negative.

To	see	more	clearly	what	happens,	let	us	simulate	200	spins	many	times,	just	as	we	did	with
a	single	spin.	For	each	simulation,	we	will	record	the	total	winnings	from	the	200	spins.	Then
we	will	make	a	histogram	of	the	5,000	different	simulated	total	winnings.

num_spins	=	200

net_gain	=	make_array()

for	i	in	np.arange(num_simulations):

				spins	=	bets.sample(num_spins)

				new_net_gain	=	spins.column('Winnings:	Red').sum()

				net_gain	=	np.append(net_gain,	new_net_gain)

Table().with_column('Net	Gain	on	Red',	net_gain).hist()
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Notice	the	position	of	0	on	the	horizontal	axis.	That's	where	you	break	even.	How	do	you	like
your	chances	of	making	money	by	using	this	gambling	scheme?

If	the	bet	on	red	isn't	appealing,	maybe	it's	worth	trying	a	different	bet.	A	'split'	is	a	bet	on	two
adjacent	numbers	on	the	roulette	table,	such	as	0	and	00.	The	split	pays	17	to	1.

The	function		split_winnings		takes	a	pocket	as	its	argument	and	returns	17	if	the	pocket	is
either	0	or	00.	For	all	other	pockets	it	returns	-1.

The	table		more_bets		is	a	version	of	the		bets		table	augmented	by	each	pocket's	winnings
on	the	0/00	split.

def	split_winnings(pocket):

				if	pocket	==	'0':

								return	17

				elif	pocket	==	'00':

								return	17

				else:

								return	-1

more_bets	=	wheel.with_columns(

				'Winnings:	Red',	wheel.apply(red_winnings,	'Color'),

				'Winnings:	Split',	wheel.apply(split_winnings,	'Pocket')

				)

more_bets
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Pocket Color Winnings:	Red Winnings:	Split

0 green -1 17

00 green -1 17

1 red 1 -1

2 black -1 -1

3 red 1 -1

4 black -1 -1

5 red 1 -1

6 black -1 -1

7 red 1 -1

8 black -1 -1

...	(28	rows	omitted)

The	code	below	simulates	the	results	of	both	bets	–	on	red	and	on	the	0/00	split	–	on	200
spins	of	the	wheel.	The	code	is	the	same	as	in	the	previous	simulation,	apart	from	the
addition	of	the	lines	for	the	split.	(Note:		num_simulations		and		num_spins		were	previously
defined	as	5,000	and	200,	respectively,	so	we	do	not	need	to	define	them	again.)

net_gain_red	=	make_array()

net_gain_split	=	make_array()

for	i	in	np.arange(num_simulations):

				spins	=	more_bets.sample(num_spins)

				new_net_gain_red	=	spins.column('Winnings:	Red').sum()

				net_gain_red	=	np.append(net_gain_red,	new_net_gain_red)

				new_net_gain_split	=	spins.column('Winnings:	Split').sum()

				net_gain_split	=	np.append(net_gain_split,	

new_net_gain_split)

Table().with_columns(

				'Net	Gain	on	Red',	net_gain_red,

				'Net	Gain	on	Split',	net_gain_split

				).hist(bins=np.arange(-200,	200,	20))
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The	position	of	0	on	the	horizontal	axis	shows	that	you	are	more	likely	to	lose	money	than	to
make	money,	regardless	of	which	bet	you	choose.	In	both	histograms,	less	than	50%	of	the
area	is	to	the	right	of	0.

However,	the	chance	of	making	money	is	larger	for	the	split	bet,	as	is	the	chance	of	making
more	than	$50.	The	gold	histogram	has	plenty	of	area	to	the	right	of	$50,	whereas	the	blue
histogram	has	almost	none.	So	should	you	bet	on	the	split	instead?

That	depends	on	how	much	risk	you	are	willing	to	take,	because	the	histograms	also	show
that	you	are	more	likely	to	lose	more	than	$50	if	you	bet	on	the	split	than	if	you	bet	on	red.

All	bets	at	the	roulette	table	have	the	same	expected	net	loss	per	dollar	bet	(except	the	line
bet,	which	is	worse).	But	the	returns	on	some	bets	are	more	variable	than	on	others.	You
can	go	for	the	big	bucks	by	choosing	those	bets,	as	long	as	you	are	prepared	for	the
possibility	of	losing	big.
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Empirical	Distribution	of	a	Statistic¶

The	Law	of	Averages	implies	that	with	high	probability,	the	empirical	distribution	of	a	large
random	sample	will	resemble	the	distribution	of	the	population	from	which	the	sample	was
drawn.

The	resemblance	is	visible	in	two	histograms:	the	empirical	histogram	of	a	large	random
sample	is	likely	to	resemble	the	histogram	of	the	population.

As	a	reminder,	here	is	the	histogram	of	the	delays	of	all	the	flights	in		united	,	and	an
empirical	histogram	of	the	delays	of	a	random	sample	of	1,000	of	these	flights.

united	=	Table.read_table('united_summer2015.csv')

delay_bins	=	np.arange(-20,	201,	10)

united.select('Delay').hist(bins	=	delay_bins,	unit	=	'minute')

plots.title('Population');

sample_1000	=	united.sample(1000)

sample_1000.select('Delay').hist(bins	=	delay_bins,	unit	=	

'minute')

plots.title('Sample	of	Size	1000');
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The	two	histograms	clearly	resemble	each	other,	though	they	are	not	identical.

Parameter¶

Frequently,	we	are	interested	in	numerical	quantities	associated	with	a	population.

In	a	population	of	voters,	what	percent	will	vote	for	Candidate	A?
In	a	population	of	Facebook	users,	what	is	the	largest	number	of	Facebook	friends	that
the	users	have?
In	a	population	of	United	flights,	what	is	the	median	departure	delay?

Numerical	quantities	associated	with	a	population	are	called	parameters.	For	the	population
of	flights	in		united	,	we	know	the	value	of	the	parameter	"median	delay":

np.median(united.column('Delay'))

2.0

The		NumPy		function		median		returns	the	median	(half-way	point)	of	an	array.	Among	all	the
flights	in		united	,	the	median	delay	was	2	minutes.	That	is,	about	50%	of	flights	in	the
population	had	delays	of	2	or	fewer	minutes:

united.where('Delay',	

are.below_or_equal_to(2)).num_rows/united.num_rows

0.5018444846292948
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Half	of	all	flights	left	no	more	than	2	minutes	after	their	scheduled	departure	time.	That's	a
very	short	delay!

Note.	The	percent	isn't	exactly	50	because	of	"ties,"	that	is,	flights	that	had	delays	of	exactly
2	minutes.	There	were	480	such	flights.	Ties	are	quite	common	in	data	sets,	and	we	will	not
worry	about	them	in	this	course.

united.where('Delay',	are.equal_to(2)).num_rows

480

Statistic¶

In	many	situations,	we	will	be	interested	in	figuring	out	the	value	of	an	unknown	parameter.
For	this,	we	will	rely	on	data	from	a	large	random	sample	from	the	population.

A	statistic	(note	the	singular!)	is	any	number	computed	using	the	data	in	a	sample.	The
sample	median,	therefore,	is	a	statistic.

Remember	that		sample_1000		contains	a	random	sample	of	1000	flights	from		united	.	The
observed	value	of	the	sample	median	is:

np.median(sample_1000.column('Delay'))

2.0

Our	sample	–	one	set	of	1,000	flights	–	gave	us	one	observed	value	of	the	statistic.	This
raises	an	important	problem	of	inference:

The	statistic	could	have	been	different.	A	fundamental	consideration	in	using	any	statistic
based	on	a	random	sample	is	that	the	sample	could	have	come	out	differently,	and	therefore
the	statistic	could	have	come	out	differently	too.

np.median(united.sample(1000).column('Delay'))

3.0
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Run	the	cell	above	a	few	times	to	see	how	the	answer	varies.	Often	it	is	equal	to	2,	the	same
value	as	the	population	parameter.	But	sometimes	it	is	different.

Just	how	different	could	the	statistic	have	been?	One	way	to	answer	this	is	to	run	the
cell	above	many	times,	and	note	the	values.	A	histogram	of	those	values	will	tell	us	about
the	distribution	of	the	statistic.

We	will	use	a		for		loop	to	"run	the	cell	above	many	times."	Before	that,	let's	note	the	main
steps	in	the	simulation.

Simulating	a	Statistic¶

We	will	simulate	the	sample	median	using	the	steps	below.	You	can	replace	the	sample	size
of	1000	by	any	other	sample	size,	and	the	sample	median	by	any	other	statistic.

Step	1:	Generate	one	value	of	the	statistic.	Draw	a	random	sample	of	size	1000	and
compute	the	median	of	the	sample.	Note	the	value	of	the	median.

Step	2:	Generate	more	values	of	the	statistic.	Repeat	Step	1	numerous	times,	sampling
afresh	each	time.

Step	3:	Visualize	the	results.	At	the	end	of	Step	2,	you	will	have	a	record	of	many	sample
medians,	each	one	from	a	different	sample.	You	can	display	all	the	medians	in	a	table.	You
can	also	visualize	them	using	a	histogram	–	that's	the	empirical	histogram	of	the	statistic.

We	will	now	execute	this	plan.	As	in	all	simulations,	we	start	by	creating	an	empty	array	in
which	we	will	collect	our	results.

Step	1	above	is	the	body	of	the		for		loop.
Step	2,	which	is	repeating	Step	1	"numerous	times,"	is	done	by	the	loop.	We	have	taken
"numerous	times"	to	be	5000	times,	but	you	can	change	that.
Step	3	is	display	of	the	table,	and	the	call	to		hist		in	the	subsequent	cell.

The	cell	takes	a	noticeable	amount	of	time	to	run.	That	is	because	it	is	performing	5000
repetitions	of	the	process	of	drawing	a	sample	of	size	1000	and	computing	its	median.
That's	a	lot	of	sampling	and	repeating!

medians	=	make_array()

for	i	in	np.arange(5000):

				new_median	=	np.median(united.sample(1000).column('Delay'))

				medians	=	np.append(medians,	new_median)

Table().with_column('Sample	Median',	medians)
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Sample	Median

3

2

2

3

2

2

2

3

1

3

...	(4990	rows	omitted)

Table().with_column('Sample	Median',	

medians).hist(bins=np.arange(0.5,	5,	1))

You	can	see	that	the	sample	median	is	very	likely	to	be	close	to	2,	which	was	the	value	of
the	population	median.	Since	samples	of	1000	flight	delays	are	likely	to	resemble	the
population	of	delays,	it	is	not	surprising	that	the	median	delays	of	those	samples	should	be
close	to	the	median	delay	in	the	population.

This	is	an	example	of	how	a	statistic	can	provide	a	good	estimate	of	a	parameter.

The	Power	of	Simulation¶
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If	we	could	generate	all	possible	random	samples	of	size	1000,	we	would	know	all	possible
values	of	the	statistic	(the	sample	median),	as	well	as	the	probabilities	of	all	those	values.
We	could	visualize	all	the	values	and	probabilities	in	the	probability	histogram	of	the	statistic.

But	in	many	situations	(including	this	one),	the	number	of	all	possible	samples	is	large
enough	to	exceed	the	capacity	of	the	computer,	and	purely	mathematical	calculations	of	the
probabilities	can	be	intractably	difficult.

This	is	where	empirical	histograms	come	in.

We	know	that	by	the	Law	of	Averages,	the	empirical	histogram	of	the	statistic	is	likely	to
resemble	the	probability	histogram	of	the	statistic,	if	the	sample	size	is	large	and	if	you
repeat	the	sampling	process	numerous	times.

This	means	that	simulating	random	processes	repeatedly	is	a	way	of	approximating
probability	distributions	without	figuring	out	the	probabilities	mathematically	or	generating	all
possible	random	samples.	Thus	computer	simulations	become	a	powerful	tool	in	data
science.	They	can	help	data	scientists	understand	the	properties	of	random	quantities	that
would	be	complicated	to	analyze	in	other	ways.

Here	is	a	classical	example	of	such	a	simulation.

Estimating	the	number	of	enemy	aircraft¶

In	World	War	II,	data	analysts	working	for	the	Allies	were	tasked	with	estimating	the	number
of	German	warplanes.	The	data	included	the	serial	numbers	of	the	German	planes	that	had
been	observed	by	Allied	forces.	These	serial	numbers	gave	the	data	analysts	a	way	to	come
up	with	an	answer.

To	create	an	estimate	of	the	total	number	of	warplanes,	the	data	analysts	had	to	make	some
assumptions	about	the	serial	numbers.	Here	are	two	such	assumptions,	greatly	simplified	to
make	our	calculations	easier.

1.	 There	are	N	planes,	numbered	 .

2.	 The	observed	planes	are	drawn	uniformly	at	random	with	replacement	from	the	
planes.

The	goal	is	to	estimate	the	number	 .	That's	the	unknown	parameter.

Suppose	you	observe	some	planes	and	note	down	their	serial	numbers.	How	might	you	use
the	data	to	guess	the	value	of	 ?	A	natural	and	straightforward	statistic	to	use	as	an
estimate	would	simply	be	the	largest	serial	number	observed.
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Let	us	see	how	well	this	statistic	works	as	an	estimate.	But	first,	another	simplification:	Some
historians	now	estimate	that	the	German	aircraft	industry	produced	almost	100,000
warplanes	of	many	different	kinds,	But	here	we	will	imagine	just	one	kind.	That	makes
Assumption	1	above	easier	to	justify.

Suppose	there	are	in	fact	 	planes	of	this	kind,	and	that	you	observe	30	of	them.
We	can	construct	a	table	called		serialno		that	contains	the	serial	numbers	1	through	 .
We	can	then	sample	30	times	with	replacement	(see	Assumption	2)	to	get	our	sample	of
serial	numbers.	Our	statistic	is	the	maximum	of	these	30	numbers.	That's	what	we	will	use
as	our	estimate	of	the	parameter	 .

N	=	300

serialno	=	Table().with_column('serial	Number',	np.arange(1,	

N+1))

serialno

serial	number

1

2

3

4

5

6

7

8

9

10

...	(290	rows	omitted)

serialno.sample(30).column(0).max()

291
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As	with	all	code	involving	random	sampling,	run	the	cell	a	few	times	to	see	the	variation.	You
will	observe	that	even	with	just	30	observations	from	among	300,	the	largest	serial	number	is
typically	in	the	250-300	range.

In	principle,	the	largest	serial	number	could	be	as	small	as	1,	if	you	were	unlucky	enough	to
see	Plane	Number	1	all	30	times.	And	it	could	be	as	large	as	300	if	you	observe	Plane
Number	300	at	least	once.	But	usually,	it	seems	to	be	in	the	very	high	200's.	It	appears	that
if	you	use	the	largest	observed	serial	number	as	your	estimate	of	the	total,	you	will	not	be
very	far	wrong.

Simulating	the	Statistic¶

Let	us	simulate	the	statistic	to	see	if	we	can	confirm	this.	The	steps	of	the	simulation	are:

Step	1.	Sample	30	times	at	random	with	replacement	from	1	through	300	and	note	the
largest	number	observed.	That's	the	statistic.

Step	2.	Repeat	Step	1	750	times,	sampling	afresh	each	time.	You	can	replace	750	by	any
other	large	number.

Step	3.	Create	a	table	to	display	the	750	observed	values	of	the	statistic,	and	use	the	values
to	draw	an	empirical	histogram	of	the	statistic.

sample_size	=	30

repetitions	=	750

maxes	=	make_array()

for	i	in	np.arange(repetitions):

				sampled_numbers	=	serialno.sample(sample_size)

				maxes	=	np.append(maxes,	sampled_numbers.column(0).max())		

Table().with_column('Max	Serial	Number',	maxes)
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Max	Serial	Number

280

253

294

299

298

237

296

297

293

295

...	(740	rows	omitted)

every_ten	=	np.arange(1,	N+100,	10)

Table().with_column('Max	Serial	Number',	maxes).hist(bins	=	

every_ten)

This	is	a	histogram	of	the	750	estimates,	each	of	which	is	an	observed	value	of	the	statistic
"largest	serial	number	observed."

As	you	can	see,	the	estimates	are	all	crowded	up	near	300,	even	though	in	theory	they
could	be	much	smaller.	The	histogram	indicates	that	as	an	estimate	of	the	total	number	of
planes,	the	largest	serial	number	might	be	too	low	by	about	10	to	25.	But	it	is	extremely
unlikely	to	be	underestimate	the	true	number	of	planes	by	more	than	about	50.
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A	Good	Approximation¶

As	we	noted	earlier,	if	you	generate	all	of	the	possible	samples,	and	compute	the	statistic	for
each	of	them,	then	you	will	have	an	accurate	picture	of	how	different	the	statistic	might	have
been.	Indeed,	you	will	have	a	complete	enumeration	of	all	the	possible	values	of	the	statistic
and	all	their	probabilities.

In	other	words,	you	will	have	the	probability	distribution	of	the	statistic,	and	its	probability
histogram.

The	probability	distribution	of	a	statistic	is	also	called	the	sampling	distribution	of	the	statistic,
because	it	is	based	on	all	of	the	possible	samples.

But,	as	we	have	also	noted	above,	the	total	number	of	possible	samples	is	often	very	large.
For	example,	the	total	number	of	possible	sequences	of	30	serial	numbers	that	you	could
see	if	there	were	300	aircraft	is

300**30

2058911320946490000000000000000000000000000000000000000000000000

00000000000

That's	a	lot	of	samples.	Fortunately,	we	don't	have	to	generate	all	of	them.	We	know	that	the
empirical	histogram	of	the	statistic,	based	on	many	but	not	all	of	the	possible	samples,	is	a
good	approximation	to	the	probability	histogram.	Thus	the	empirical	distribution	of	a	statistic
gives	a	good	idea	of	how	different	the	statistic	could	be.

It	is	true	that	the	probability	distribution	of	a	statistic	contains	more	accurate	information
about	the	statistic	than	an	empirical	distribution	does.	But	often,	as	in	this	example,	the
approximation	provided	by	the	empirical	distribution	is	sufficient	for	data	scientists	to
understand	how	much	a	statistic	can	vary.	And	empirical	distributions	are	easier	to	compute,
if	you	have	a	computer.	Therefore,	data	scientists	often	use	empirical	distributions	instead	of
exact	probability	distributions	when	they	are	trying	to	understand	the	properties	of	a	statistic.

A	Different	Estimate	of	the	Parameter¶

Here	is	an	example	to	illustrate	this	point.	Thus	far,	we	have	used	the	largest	observed	serial
number	as	an	estimate	of	the	total	number	of	planes.	But	there	are	other	possible	estimates,
and	we	will	now	consider	one	of	them.

The	idea	underlying	this	estimate	is	that	the	average	of	the	observed	serial	numbers	is	likely
be	about	halfway	between	1	and	 .	Thus,	if	 	is	the	average,	then
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Thus	a	new	statistic	can	be	used	to	estimate	the	total	number	of	planes:	take	the	average	of
the	observed	serial	numbers	and	double	it.

How	does	this	method	of	estimation	compare	with	using	the	largest	number	observed?	It	is
not	easy	to	calculate	the	probability	distribution	of	the	new	statistic.	But	as	before,	we	can
simulate	it	to	get	the	probabilities	approximately.	Let's	take	a	look	at	the	empirical
distributions	of	both	statistics	based	on	repeated	sampling.	The	number	of	repetitions	is
chosen	to	be	750,	the	same	as	it	was	in	the	earlier	simulation,	for	ease	of	comparison.

maxes	=	make_array()

twice_ave	=	make_array()

for	i	in	np.arange(repetitions):

				sampled_numbers	=	serialno.sample(sample_size)

				new_max	=	sampled_numbers.column(0).max()

				maxes	=	np.append(maxes,	new_max)

				new_twice_ave	=	2*np.mean(sampled_numbers.column(0))

				twice_ave	=	np.append(twice_ave,	new_twice_ave)

results	=	Table().with_columns(

				'Repetition',	np.arange(1,	repetitions+1),

				'Max',	maxes,

				'2*Average',	twice_ave

)

results
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Repetition Max 2*Average

1 296 312.067

2 283 290.133

3 290 250.667

4 296 306.8

5 298 335.533

6 281 240

7 300 317.267

8 295 322.067

9 296 317.6

10 299 308.733

...	(740	rows	omitted)

Notice	that	unlike	the	largest	number	observed,	the	new	estimate	("twice	the	average")	can
overestimate	the	number	of	planes.	This	will	happen	when	the	average	of	the	observed
serial	numbers	is	closer	to	 	than	to	1.

The	histograms	below	show	the	empirical	distributions	of	both	estimates.

results.drop(0).hist(bins	=	every_ten)

You	can	see	that	the	old	method	almost	always	underestimates;	formally,	we	say	that	it	is
biased.	But	it	has	low	variability,	and	is	highly	likely	to	be	close	to	the	true	total	number	of
planes.
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The	new	method	overestimates	about	as	often	as	it	underestimates,	and	thus	is	roughly
unbiased	on	average	in	the	long	run.	However,	it	is	more	variable	than	the	old	estimate,	and
thus	is	prone	to	larger	absolute	errors.

This	is	an	instance	of	a	bias-variance	tradeoff	that	is	not	uncommon	among	competing
estimates.	Which	estimate	you	decide	to	use	will	depend	on	the	kinds	of	errors	that	matter
the	most	to	you.	In	the	case	of	enemy	warplanes,	underestimating	the	total	number	might
have	grim	consequences,	in	which	case	you	might	choose	to	use	the	more	variable	method
that	overestimates	about	half	the	time.	On	the	other	hand,	if	overestimation	leads	to	high
costs	of	needlessly	guarding	against	planes	that	don't	exist,	you	might	be	satisfied	with	the
method	that	underestimates	by	a	modest	amount.

Technical	Note¶

In	fact,	"twice	the	average"	is	not	unbiased.	On	average,	it	overestimates	by	exactly	1.	For
example,	if		N		is	3,	the	average	of	draws	from	1,	2,	and	3	will	be	2,	and	2	times	2	is	4,	which
is	one	more	than		N	.	"Twice	the	average"	minus	1	is	an	unbiased	estimator	of		N	.
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Interact

Testing	Hypotheses¶

Data	scientists	are	often	faced	with	yes-no	questions	about	the	world.	You	have	seen	some
examples	of	such	questions	in	this	course:

Is	chocolate	good	for	you?
Did	water	from	the	Broad	Street	pump	cause	cholera?
Have	the	demographics	in	California	changed	over	the	past	decade?

Whether	we	answer	questions	like	these	depends	on	the	data	we	have.	Census	data	about
California	can	settle	questions	about	demographics	with	hardly	any	uncertainty	about	the
answer.	We	know	that	Broad	Street	pump	water	was	contaminated	by	waste	from	cholera
victims,	so	we	can	make	a	pretty	good	guess	about	whether	it	caused	cholera.

Whether	chocolate	or	any	other	treatment	is	good	for	you	will	almost	certainly	have	to	be
decided	by	medical	experts,	but	an	initial	step	consists	of	using	data	science	to	analyze	data
from	studies	and	randomized	experiments.

In	this	chapter,	we	will	try	to	answer	such	yes-no	questions,	basing	our	conclusions	on
samples	and	empirical	distributions.	We	will	start	with	an	example	from	a	study	conducted	in
2010	by	the	Americal	Civil	Liberties	Union	(ACLU)	of	Northern	California.
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Interact

Jury	Selection¶

In	2010,	the	ACLU	presented	a	report	on	jury	selection	in	Alameda	County,	California.	The
report	concluded	that	certain	ethnic	groups	are	underrepresented	among	jury	panelists	in
Alameda	County,	and	suggested	some	reforms	of	the	process	by	which	eligible	jurors	are
assigned	to	panels.	In	this	section,	we	will	perform	our	own	analysis	of	the	data	and	examine
some	questions	that	arise	as	a	result.

Jury	Panels¶

A	jury	panel	is	a	group	of	people	chosen	to	be	prospective	jurors;	the	final	trial	jury	is
selected	from	among	them.	Jury	panels	can	consist	of	a	few	dozen	people	or	several
thousand,	depending	on	the	trial.	By	law,	a	jury	panel	is	supposed	to	be	representative	of	the
community	in	which	the	trial	is	taking	place.	Section	197	of	California's	Code	of	Civil
Procedure	says,	"All	persons	selected	for	jury	service	shall	be	selected	at	random,	from	a
source	or	sources	inclusive	of	a	representative	cross	section	of	the	population	of	the	area
served	by	the	court."

The	final	jury	is	selected	from	the	panel	by	deliberate	inclusion	or	exclusion.	The	law	allows
potential	jurors	to	be	excused	for	medical	reasons;	lawyers	on	both	sides	may	strike	a
certain	number	of	potential	jurors	from	the	list	in	what	are	called	"peremptory	challenges";
the	trial	judge	might	make	a	selection	based	on	questionnaires	filled	out	by	the	panel;	and	so
on.	But	the	initial	panel	is	supposed	to	resemble	a	random	sample	of	the	population	of
eligible	jurors.

Composition	of	Panels	in	Alameda	County¶

The	focus	of	the	study	by	the	ACLU	of	Northern	California	was	the	ethnic	composition	of	jury
panels	in	Alameda	County.	The	ACLU	compiled	data	on	the	ethnic	composition	of	the	jury
panels	in	11	felony	trials	in	Alameda	County	in	the	years	2009	and	2010.	In	those	panels,
the	total	number	of	poeple	who	reported	for	jury	service	was	1453.	The	ACLU	gathered
demographic	data	on	all	of	these	prosepctive	jurors,	and	compared	those	data	with	the
composition	of	all	eligible	jurors	in	the	county.

The	data	are	tabulated	below	in	a	table	called		jury	.	For	each	ethnicity,	the	first	value	is	the
proportion	of	all	eligible	juror	candidates	of	that	ethnicity.	The	second	value	is	the	proportion
of	people	of	that	ethnicity	among	those	who	appeared	for	the	process	of	selection	into	the
jury.
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jury	=	Table().with_columns(

				'Ethnicity',	make_array('Asian',	'Black',	'Latino',	'White',	

'Other'),

				'Eligible',	make_array(0.15,	0.18,	0.12,	0.54,	0.01),

				'Panels',	make_array(0.26,	0.08,	0.08,	0.54,	0.04)

)

jury

Ethnicity Eligible Panels

Asian 0.15 0.26

Black 0.18 0.08

Latino 0.12 0.08

White 0.54 0.54

Other 0.01 0.04

Some	ethnicities	are	overrepresented	and	some	are	underrepresented	on	the	jury	panels	in
the	study.	A	bar	chart	is	helpful	for	visualizing	the	differences.

jury.barh('Ethnicity')

Distance	between	Two	Distributions¶

Visualizations	give	us	a	quick	sense	of	the	similarities	and	differences	between	two
distributions.	To	say	something	more	precise	about	those	differences,	we	must	first	quantify
the	difference	between	two	distributions.	This	will	allow	our	analyses	to	be	based	on	more
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than	the	assessements	that	we	are	able	to	make	by	eye.

To	measure	the	difference	between	the	two	distributions,	we	will	compute	a	quantity	called
the	total	variation	distance	between	them.

To	compute	the	total	variation	distance,	we	first	take	the	difference	between	the	two
proportions	in	each	category.

#	Augment	the	table	with	a	column	of	differences	between	

proportions

jury_with_diffs	=	jury.with_column(

				'Difference',	jury.column('Panels')	-	

jury.column('Eligible')

)

jury_with_diffs

Ethnicity Eligible Panels Difference

Asian 0.15 0.26 0.11

Black 0.18 0.08 -0.1

Latino 0.12 0.08 -0.04

White 0.54 0.54 0

Other 0.01 0.04 0.03

Take	a	look	at	the	column		Difference		and	notice	that	the	sum	of	its	entries	is	0:	the	positive
entries	add	up	to	0.14,	exactly	canceling	the	total	of	the	negative	entries	which	is	-0.14.

This	is	numerical	evidence	of	the	fact	that	in	the	bar	chart,	the	gold	bars	exceed	the	blue
bars	by	exactly	as	much	as	the	blue	bars	exceed	the	gold.	The	proportions	in	each	of	the
two	columns		Panels		and		Eligible		add	up	to	1,	and	so	the	give-and-take	between	their
entries	must	add	up	to	0.

To	avoid	the	cancellation,	we	drop	the	negative	signs	and	then	add	all	the	entries.	But	this
gives	us	two	times	the	total	of	the	positive	entries	(equivalently,	two	times	the	total	of	the
negative	entries,	with	the	sign	removed).	So	we	divide	the	sum	by	2.
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jury_with_diffs	=	jury_with_diffs.with_column(

				'Abs.	Difference',	

np.abs(jury_with_diffs.column('Difference'))

)

jury_with_diffs

Ethnicity Eligible Panels Difference Abs.	Difference

Asian 0.15 0.26 0.11 0.11

Black 0.18 0.08 -0.1 0.1

Latino 0.12 0.08 -0.04 0.04

White 0.54 0.54 0 0

Other 0.01 0.04 0.03 0.03

jury_with_diffs.column('Abs.	Difference').sum()/2

0.14000000000000001

This	quantity	0.14	is	the	total	variation	distance	(TVD)	between	the	distribution	of	ethnicities
in	the	eligible	juror	population	and	the	distribution	in	the	panels.

We	could	have	obtained	the	same	result	by	just	adding	the	positive	differences.	But	our
method	of	including	all	the	absolute	differences	eliminates	the	need	to	keep	track	of	which
differences	are	positive	and	which	are	not.

Functions	for	Computing	Total	Variation	Distance¶

The	function		total_variation_distance		returns	the	TVD	between	distributions	in	two	arrays.

def	total_variation_distance(distribution_1,	distribution_2):

				return	np.abs(distribution_1	-	distribution_2).sum()/2

The	function		table_tvd		uses	the	function		total_variation_distance		to	return	the	TVD
between	distributions	in	two	columns	of	a	table.
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def	table_tvd(table,	label,	other):

				return	total_variation_distance(table.column(label),	

table.column(other))

table_tvd(jury,	'Eligible',	'Panels')

0.14000000000000001

Are	the	panels	representative	of	the	population?¶

We	will	now	turn	to	the	numerical	value	of	the	total	variation	distance	between	the	eligible
jurors	and	the	panels.	How	can	we	interpret	the	distance	of	0.14?	To	answer	this,	recall	that
the	panels	are	supposed	to	be	selected	at	random.	It	will	therefore	be	informative	to
compare	the	value	of	0.14	with	the	total	variation	distance	between	the	eligible	jurors	and	a
randomly	selected	panel.

To	do	this,	we	will	employ	our	skills	at	simulation.	There	were	1453	prosepective	jurors	in	the
panels	in	the	study.	So	let	us	take	a	random	sample	of	size	1453	from	the	population	of
eligible	jurors.

Technical	note.	Random	samples	of	prospective	jurors	would	be	selected	without
replacement.	However,	when	the	size	of	a	sample	is	small	relative	to	the	size	of	the
population,	sampling	without	replacement	resembles	sampling	with	replacement;	the
proportions	in	the	population	don't	change	much	between	draws.	The	population	of	eligible
jurors	in	Alameda	County	is	over	a	million,	and	compared	to	that,	a	sample	size	of	about
1500	is	quite	small.	We	will	therefore	sample	with	replacement.

Sampling	at	Random	from	the	Eligible	Population¶

Thus	far,	we	have	used		np.random.choice		to	sample	at	random	from	elements	of	an	array,
and		sample		to	sample	rows	of	a	table.	But	now	we	have	to	sample	from	a	distribution:	a	set
of	ethnicities	along	with	their	proportions.

For	this,	we	use	the	function		proportions_from_distribution	.	It	has	three	arguments:

table	name
label	of	column	containing	the	proportions	from	which	to	sample
sample	size
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The	function	draws	at	random	with	replacement	and	returns	a	new	table	which	is	the	old
table	augmented	with	a	column	labeled		Random	Sample	.	The	column	contains	the
proportions	that	appeared	in	the	random	sample.

The	total	size	of	all	the	panels	was	1453,	so	let's	assign	that	number	to	a	name	and	then	call
	proportions_from_distribution	.

panel_size	=	1453

panels_and_sample	=	proportions_from_distribution(jury,	

'Eligible',	panel_size)

panels_and_sample

Ethnicity Eligible Panels Random	Sample

Asian 0.15 0.26 0.14797

Black 0.18 0.08 0.193393

Latino 0.12 0.08 0.116311

White 0.54 0.54 0.532691

Other 0.01 0.04 0.00963524

It	is	clear	from	the	results	that	the	distribution	of	the	random	sample	is	quite	close	to	the
distribution	of	the	eligible	population,	unlike	the	distribution	of	the	panels.

As	always,	it	helps	to	visualize.

panels_and_sample.barh('Ethnicity')
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The	grey	bars	are	a	lot	closer	in	size	to	the	blue	bars	than	the	gold	bars	are.	The	random
sample	resembles	the	eligible	population,	but	the	panels	don't.

We	can	quantify	this	observation	by	calculating	the	total	variation	distance	between	the
distribution	of	the	eligible	population	and	the	random	sample.

table_tvd(panels_and_sample,	'Eligible',	'Random	Sample')

0.013392980041293877

Comparing	this	to	the	distance	of	0.14	for	the	panel	puts	a	numerical	value	on	what	we	saw
in	the	bar	chart.	The	TVD	between	the	eligible	population	and	the	panels	was	0.14,	but	the
TVD	between	the	eligible	population	and	the	random	sample	is	much	smaller.

Of	course,	the	distance	between	the	distributions	of	the	random	sample	and	the	eligible
jurors	depends	on	the	sample.	Sampling	again	might	give	a	different	result.

By	How	Much	Do	Random	Samples	Differ	from	the
Population?¶

The	total	variation	distance	between	the	distributions	of	the	random	sample	and	the	eligible
jurors	is	the	statistic	that	we	are	using	to	measure	the	distance	between	the	two
distributions.	By	repeating	the	process	of	sampling,	we	can	see	how	much	the	statistic
varies	across	different	random	samples.	The	code	below	computes	the	empirical	distribution
of	the	statistic	based	on	a	large	number	of	replications	of	the	sampling	process.
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#	Compute	empirical	distribution	of	TVDs

panel_size	=	1453

repetitions	=	5000

tvds	=	make_array()

for	i	in	np.arange(repetitions):

				new_sample	=	proportions_from_distribution(jury,	'Eligible',	

panel_size)

				tvds	=	np.append(tvds,	table_tvd(new_sample,	'Eligible',	

'Random	Sample'))

results	=	Table().with_column('TVD',	tvds)

results

TVD

0.0247075

0.0141569

0.0138403

0.0214384

0.012278

0.017309

0.0219752

0.0192017

0.02351

0.00818995

...	(4990	rows	omitted)

Each	row	of	the	column	above	contains	the	total	variation	distance	between	a	random
sample	of	size	1453	(the	size	of	the	panels)	and	the	population	of	eligible	jurors.

The	histogram	of	this	column	shows	that	drawing	1453	jurors	at	random	from	the	pool	of
eligible	candidates	results	in	a	distribution	that	rarely	deviates	from	the	eligible	jurors'	race
distribution	by	more	than	0.05.
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results.hist(bins=np.arange(0,	0.2,	0.005))

How	do	the	panels	compare	with	random	samples?¶

The	panels	in	the	study,	however,	were	not	quite	so	similar	to	the	eligible	population.	The
total	variation	distance	between	the	panels	and	the	population	was	0.14,	which	is	far	out	in
the	tail	of	the	histogram	above.	It	does	not	look	like	a	typical	distance	between	a	random
sample	and	the	eligible	population.

So	our	analysis	supports	the	ACLU's	calculation	that	the	panels	were	not	representative	of
the	distribution	provided	for	the	eligible	jurors.	As	with	most	such	analyses,	however,	it	does
not	say	why	the	distributions	are	different	or	what	the	difference	might	imply.

The	ACLU	report	discusses	several	possible	reasons	for	the	discrepancies.	For	example,
some	minority	groups	were	underrepresented	on	the	records	of	voter	registration	and	of	the
Department	of	Motor	Vehicles,	the	two	main	sources	from	which	jurors	are	selected.	At	the
time	of	the	study,	the	county	did	not	have	an	effective	process	for	following	up	on
prospective	jurors	who	had	been	called	but	had	failed	to	appear.	The	ACLU	listed	several
other	reasons	as	well.	Whatever	the	reasons,	it	seems	clear	that	the	composition	of	the	jury
panels	was	different	from	what	we	would	have	expected	in	a	random	sample	from	the
distribution	in	the		Eligible		column.

Questions	about	the	Data¶

We	have	developed	a	powerful	technique	that	helps	decide	whether	one	distribution	looks
like	a	random	sample	from	another.	But	data	science	is	about	more	than	techniques.	In
particular,	data	science	always	involves	a	thoughtful	examination	of	how	the	data	were
gathered.
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Eligible	Jurors.	First,	it	is	important	to	remember	that	not	everyone	is	eligible	to	serve	on	a
jury.	On	its	website,	the	Superior	Court	of	Alameda	County	says,	"You	may	be	called	to
serve	if	you	are	18	years	old,	a	U.S.	citizen	and	a	resident	of	the	county	or	district	where
summoned.	You	must	be	able	to	understand	English,	and	be	physically	and	mentally
capable	of	serving.	In	addition,	you	must	not	have	served	as	any	kind	of	juror	in	the	past	12
months,	nor	have	been	convicted	of	a	felony."

The	Census	doesn't	maintain	records	of	the	populations	in	all	these	categories.	Thus	the
ACLU	had	to	obtain	the	demographics	of	eligible	jurors	in	some	other	way.	Here	is	their	own
description	of	the	process	they	followed	and	some	flaws	that	it	might	contain.

"For	the	purpose	of	determining	the	demographics	of	Alameda	County’s	jury	eligible
population,	we	used	a	declaration	that	was	prepared	for	the	Alameda	County	trial	of	People
v.	Stuart	Alexander	in	2002.	In	the	declaration,	Professor	Weeks,	a	demographer	at	San
Diego	State	University,	estimated	the	jury	eligible	population	for	Alameda	County,	using	the
2000	Census	data.	To	arrive	at	this	estimate,	Professor	Weeks	took	into	account	the	number
of	people	who	are	not	eligible	for	jury	services	because	they	do	not	speak	English,	are	not
citizens,	are	under	18,	or	have	a	felony	conviction.	Thus,	his	estimate	should	be	an	accurate
assessment	of	who	is	actually	eligible	for	jury	service	in	Alameda	County,	much	more	so
than	simply	reviewing	the	Census	report	of	the	race	and	ethnicity	of	all	people	living	in
Alameda	County.	It	should	be	noted,	however,	that	the	Census	data	on	which	Professor
Weeks	relied	is	now	ten	years	old	and	the	demographics	of	the	county	may	have	changed
by	two	or	three	percent	in	some	categories."

Thus	the	distribution	of	ethnicities	of	eligible	jurors	used	in	the	analysis	is	itself	an	estimate
and	might	be	somewhat	out	of	date.

Panels.	In	addition,	panels	aren't	selected	from	the	entire	eligible	population.	The	Superior
Court	of	Alameda	County	says,	"The	objective	of	the	court	is	to	provide	an	accurate	cross-
section	of	the	county's	population.	The	names	of	jurors	are	selected	at	random	from
everyone	who	is	a	registered	voter	and/or	has	a	driver's	license	or	identification	card	issued
by	the	Department	of	Motor	Vehicles."

All	of	this	raises	complex	questions	about	how	to	accurately	estimate	the	ethnic	composition
of	eligible	jurors	in	Alameda	County.

It	is	not	clear	exactly	how	the	1453	panelists	were	classified	into	the	different	ethnic
categories	(the	ACLU	report	says	that	"attorneys	...	cooperated	in	collecting	jury	pool	data").
There	are	serious	social,	cultural,	and	political	factors	that	affect	who	gets	classified	or	self-
classifies	into	each	ethnic	category.	We	also	don't	know	whether	the	definitions	of	those
categories	in	the	panels	are	the	same	as	those	used	by	Professor	Weeks	who	in	turn	used
Census	categories	in	his	estimation	process.	Thus	there	are	also	questions	about	the
correspondence	between	the	two	distributions	being	compared.
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Thus,	while	we	have	a	clear	conclusion	about	the	data	in	our	table	–	the	panels	do	not	look
like	a	random	sample	from	the	distribution	provided	for	eligible	jurors	–	questions	about	the
nature	of	the	data	prevent	us	from	concluding	anything	broader.

U.S.	Supreme	Court,	1965:	Swain	vs.	Alabama¶

In	the	early	1960's,	in	Talladega	County	in	Alabama,	a	black	man	called	Robert	Swain	was
convicted	of	raping	a	white	woman	and	was	sentenced	to	death.	He	appealed	his	sentence,
citing	among	other	factors	the	all-white	jury.	At	the	time,	only	men	aged	21	or	older	were
allowed	to	serve	on	juries	in	Talladega	County.	In	the	county,	26%	of	the	eligible	jurors	were
black,	but	there	were	only	8	black	men	among	the	100	selected	for	the	jury	panel	in	Swain's
trial.	No	black	man	was	selected	for	the	trial	jury.

In	1965,	the	Supreme	Court	of	the	United	States	denied	Swain's	appeal.	In	its	ruling,	the
Court	wrote	"...	the	overall	percentage	disparity	has	been	small	and	reflects	no	studied
attempt	to	include	or	exclude	a	specified	number	of	Negroes."

Let's	use	the	methods	we	have	developed	to	examine	the	disparity	between	8	out	of	100
black	men	in	the	panel	and	the	distribution	of	the	eligible	jurors.

swain_jury	=	Table().with_columns(

				'Ethnicity',	make_array('Black',	'Other'),

				'Eligible',	make_array(0.26,	0.74),

				'Panel',	make_array(0.08,	0.92)

)

swain_jury

Ethnicity Eligible Panel

Black 0.26 0.08

Other 0.74 0.92

table_tvd(swain_jury,	'Eligible',	'Panel')

0.18000000000000002

The	total	variation	distance	between	the	two	distributions	is	0.18.	How	does	this	compare
with	the	TVD	between	the	distributions	of	the	eligible	population	and	a	random	sample?
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To	answer	this,	we	can	simulate	the	TVD	computed	from	a	random	sample.

#	Compute	empirical	distribution	of	TVDs

panel_size	=	100

repetitions	=	5000

tvds	=	make_array()

for	i	in	np.arange(repetitions):

				new_sample	=	proportions_from_distribution(swain_jury,	

'Eligible',	panel_size)

				tvds	=	np.append(tvds,	table_tvd(new_sample,	'Eligible',	

'Random	Sample'))

results	=	Table().with_column('TVD',	tvds)

results.hist(bins	=	np.arange(0,	0.2,	0.01))

The	random	samples	typically	have	a	much	smaller	TVD	than	the	value	of	0.18	that	we	got
for	the	panel	and	the	eligible	jurors.

In	this	analysis,	the	data	are	not	clouded	by	questions	as	in	our	previous	analysis	–	the	total
numbers	of	people	involved	were	relatively	small,	and	the	counting	was	done	carefully	for
the	Supreme	Court	case.

Thus	our	analysis	has	a	clear	conclusion,	which	is	that	the	panel	was	not	representative	of
the	population.	It	is	hard	to	accept	the	Supreme	Court's	judgment	that	"the	overall
percentage	disparity	has	been	small."
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Interact

Terminology	of	Testing¶

We	have	developed	some	of	the	fundamental	concepts	of	statistical	tests	of	hypotheses,	in
the	context	of	examples	about	jury	selection.	Using	statistical	tests	as	a	way	of	making
decisions	is	standard	in	many	fields	and	has	a	standard	terminology.	Here	is	the	sequence
of	the	steps	in	most	statistical	tests,	along	with	some	terminology	and	examples.

Step	1:	The	Hypotheses¶

All	statistical	tests	attempt	to	choose	between	two	views	of	the	world.	Specifically,	the	choice
is	between	two	views	about	how	the	data	were	generated.	These	two	views	are	called
hypotheses.

The	null	hypothesis.	This	says	that	the	data	were	generated	at	random	under	clearly
specified	assumptions	that	make	it	possible	to	compute	chances.	The	word	"null"	reinforces
the	idea	that	if	the	data	look	different	from	what	the	null	hypothesis	predicts,	the	difference	is
due	to	nothing	but	chance.

In	the	examples	about	jury	selection	in	Alameda	County,	the	null	hypothesis	is	that	the
panels	were	selected	at	random	from	the	population	of	eligible	jurors.	Though	the	ethnic
composition	of	the	panels	was	different	from	that	of	the	populations	of	eligible	jurors,	there
was	no	reason	for	the	difference	other	than	chance	variation.

The	alternative	hypothesis.	This	says	that	some	reason	other	than	chance	made	the	data
differ	from	what	was	predicted	by	the	null	hypothesis.	Informally,	the	alternative	hypothesis
says	that	the	observed	difference	is	"real."

In	our	examples	about	jury	selection	in	Alameda	County,	the	alternative	hypothesis	is	that
the	panels	were	not	selected	at	random.	Something	other	than	chance	led	to	the	differences
between	the	ethnic	composition	of	the	panels	and	the	ethnic	composition	of	the	populations
of	eligible	jurors.

Step	2:	The	Test	Statistic¶

In	order	to	decide	between	the	two	hypothesis,	we	must	choose	a	statistic	upon	which	we
will	base	our	decision.	This	is	called	the	test	statistic.

In	the	example	about	jury	panels	in	Alameda	County,	the	test	statistic	we	used	was	the	total
variation	distance	between	the	racial	distributions	in	the	panels	and	in	the	population	of
eligible	jurors.
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Calculating	the	observed	value	of	the	test	statistic	is	often	the	first	computational	step	in	a
statistical	test.	In	our	example,	the	observed	value	of	the	total	variation	distance	between	the
distributions	in	the	panels	and	the	population	was	0.14.

Step	3:	The	Probability	Distribution	of	the	Test	Statistic,
Under	the	Null	Hypothesis¶

This	step	sets	aside	the	observed	value	of	the	test	statistic,	and	instead	focuses	on	what	the
value	of	the	statistic	might	be	if	the	null	hypothesis	were	true.	Under	the	null	hypothesis,	the
sample	could	have	come	out	differently	due	to	chance.	So	the	test	statistic	could	have	come
out	differently.	This	step	consists	of	figuring	out	all	possible	values	of	the	test	statistic	and	all
their	probabilities,	under	the	null	hypothesis	of	randomness.

In	other	words,	in	this	step	we	calculate	the	probability	distribution	of	the	test	statistic
pretending	that	the	null	hypothesis	is	true.	For	many	test	statistics,	this	can	be	a	daunting
task	both	mathematically	and	computationally.	Therefore,	we	approximate	the	probability
distribution	of	the	test	statistic	by	the	empirical	distribution	of	the	statistic	based	on	a	large
number	of	repetitions	of	the	sampling	procedure.

In	our	example,	we	visualized	this	distribution	by	a	histogram.

Step	4.	The	Conclusion	of	the	Test¶

The	choice	between	the	null	and	alternative	hypotheses	depends	on	the	comparison
between	the	results	of	Steps	2	and	3:	the	observed	value	of	the	test	statistic	and	its
distribution	as	predicted	by	the	null	hypothesis.

If	the	two	are	consistent	with	each	other,	then	the	observed	test	statistic	is	in	line	with	what
the	null	hypothesis	predicts.	In	other	words,	the	test	does	not	point	towards	the	alternative
hypothesis;	the	null	hypothesis	is	better	supported	by	the	data.

But	if	the	two	are	not	consistent	with	each	other,	as	is	the	case	in	our	example	about
Alameda	County	jury	panels,	then	the	data	do	not	support	the	null	hypothesis.	That	is	why
we	concluded	that	the	jury	panels	were	not	selected	at	random.	Something	other	than
chance	affected	their	composition.

If	the	data	do	not	support	the	null	hypothesis,	we	say	that	the	test	rejects	the	null	hypothesis.

Mendel's	Pea	Flowers¶

Gregor	Mendel	(1822-1884)	was	an	Austrian	monk	who	is	widely	recognized	as	the	founder
of	the	modern	field	of	genetics.	Mendel	performed	careful	and	large-scale	experiments	on
plants	to	come	up	with	fundamental	laws	of	genetics.
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Many	of	his	experiments	were	on	varieties	of	pea	plants.	He	formulated	sets	of	assumptions
about	each	variety;	these	are	known	as	models.	He	then	tested	the	validity	of	his	models	by
growing	the	plants	and	gathering	data.

Let's	analyze	the	data	from	one	such	experiment	to	see	if	Mendel's	model	was	good.

In	a	particular	variety,	each	plant	has	either	purple	flowers	or	white.	The	color	in	each	plant
is	unaffected	by	the	colors	in	other	plants.	Mendel	hypothesized	that	the	plants	should	bear
purple	or	white	flowers	at	random,	in	the	ratio	3:1.

Mendel's	model	can	be	formulated	as	a	hypothesis	that	we	can	test.

Null	Hypothesis.	For	every	plant,	there	is	a	75%	chance	that	it	will	have	purple	flowers,	and
a	25%	chance	that	the	flowers	will	be	white,	regardless	of	the	colors	in	all	the	other	plants.

That	is,	the	null	hypothesis	says	that	Mendel's	model	is	good.	Any	observed	deviation	from
the	model	is	the	result	of	chance	variation.

Of	course,	there	is	an	opposing	point	of	view.

Alternative	Hypothesis.	Mendel's	model	isn't	valid.

Let's	see	which	of	these	hypotheses	is	better	supported	by	the	data	that	Mendel	gathered.

The	table		flowers		contains	the	proportions	predicted	by	the	model,	as	well	as	the	data	on
the	plants	that	Mendel	grew.

flowers	=	Table().with_columns(

				'Color',	make_array('Purple',	'White'),

				'Model	Proportion',	make_array(0.75,	0.25),

				'Plants',	make_array(705,	224)

)

flowers

Color Model	Proportion Plants

Purple 0.75 705

White 0.25 224

There	were	929	plants	in	all.	To	see	whether	the	distribution	of	colors	is	close	to	what	the
model	predicts,	we	could	find	the	total	variation	distance	between	the	observed	proportions
and	the	model	proportions,	as	we	have	been	doing	thus	far.	But	with	just	two	categories
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(purple	and	white),	we	have	a	simpler	option:	we	can	just	look	at	the	proportion	of	purple
flowers.	The	proportion	white	holds	no	new	information,	as	it	is	just	1	minus	the	proportion
purple.

total_plants	=	flowers.column('Plants').sum()

total_plants

929

observed_proportion	=	

flowers.column('Plants').item(0)/total_plants

observed_proportion

0.7588805166846071

Test	Statistic.	Since	the	model	predicts	75%	purple-flowering	plants,	a	relevant	statistic	is
the	difference	between	0.75	and	the	observed	proportion	of	purple-flowering	plants.

observed_statistic	=	abs(observed_proportion	-	0.75)

observed_statistic

0.0088805166846070982

How	does	this	value	compare	with	what	the	null	hypothesis	says	it	ought	to	be?	To	answer
this,	we	need	use	the	model	to	simulate	new	samples	of	plants	and	calculate	the	statistic	for
each	one.

We	will	start	by	creating	the	array		model_colors		that	contains	the	colors	in	the	proportions
given	by	the	model.	We	can	then	use		np.random.choice		to	sample	929	times	at	random	with
replacement	from	this	array.	According	to	Mendel's	model,	that's	how	the	plants	are
generated.

model_colors	=	make_array('Purple',	'Purple',	'Purple',	'White')

new_sample	=	np.random.choice(model_colors,	total_plants)
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To	compare	with	our	observed	statistic,	we	need	to	know	by	how	much	the	proportion	of
purple-flowering	plants	in	this	new	sample	differs	from	0.75.

proportion_purple	=	np.count_nonzero(new_sample	==	

'Purple')/total_plants

abs(proportion_purple	-	0.75)

0.016953713670613602

Empirical	distribution	of	the	test	statistic,	if	the	null	hypothesis	were	true.	Not
surprisingly,	the	value	we	got	above	is	different	from	our	observed	statistic	of	about	0.00888.
But	how	different	would	it	be	if	we	took	another	sample?	You	can	answer	this	by	re-running
the	two	cells	above,	or	by	simulating	the	statistic	using	a		for		loop.

repetitions	=	5000

sampled_stats	=	make_array()

for	i	in	np.arange(repetitions):

				new_sample	=	np.random.choice(model_colors,	total_plants)

				proportion_purple	=	np.count_nonzero(new_sample	==	

'Purple')/total_plants

				sampled_stats	=	np.append(sampled_stats,	

abs(proportion_purple	-	0.75))

results	=	Table().with_column('Distance	from	0.75',	

sampled_stats)

results.hist()
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Conclusion	of	the	test.	The	observed	value	of	the	statistic,	based	on	Mendel's	data,	is
0.00888	which	is	just	under	0.01.	That's	right	in	the	heart	of	this	distribution.

results.hist()

#Plot	the	observed	statistic	as	a	large	red	point	on	the	

horizontal	axis

plots.scatter(observed_statistic,	0,	color='red',	s=30);

The	statistic	based	on	Mendel's	data	is	consistent	the	distribution	that	our	simulation
predicts	based	on	Mendel's	model.	Thus	the	data	support	the	null	hypothesis	–	Mendel's
model	is	good	–	more	than	they	support	the	alternative.

P-values	and	the	Meaning	of	"Consistent"¶
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In	the	example	about	Alameda	County	juries,	it	was	apparent	that	our	observed	test	statistic
was	far	from	what	was	predicted	by	the	null	hypothesis.	In	the	example	about	pea	flowers,	it
is	just	as	clear	that	the	observed	statistic	is	consistent	with	the	distribution	that	the	null
predicts.	So	in	both	of	the	examples,	it	is	clear	which	hypothesis	to	choose.

But	sometimes	the	decision	is	not	so	clear.	Whether	the	observed	test	statistic	is	consistent
with	its	predicted	distribution	under	the	null	hypothesis	is	a	matter	of	judgment.	We
recommend	that	you	provide	your	judgment	along	with	the	value	of	the	test	statistic	and	a
graph	of	its	predicted	distribution	under	the	null.	That	will	allow	your	reader	to	make	his	or
her	own	judgment	about	whether	the	two	are	consistent.

If	you	don't	want	to	make	your	own	judgment,	there	are	conventions	that	you	can	follow.
These	conventions	are	based	on	what	is	called	the	observed	significance	level	or	P-value
for	short.	The	P-value	is	a	chance	computed	using	the	probability	distribution	of	the	test
statistic,	and	can	be	approximated	by	using	the	empirical	distribution	in	Step	3.

Practical	note	on	finding	P-values.	For	now,	we	will	just	give	a	mechanical	method	for
finding	the	value;	meaning	and	interpretation	will	follow	in	the	next	section.	The	method:
Place	the	observed	test	statistic	on	the	horizontal	axis	of	the	histogram,	and	find	the
proportion	in	the	tail	starting	at	that	point.	That's	the	P-value,	or	rather	a	pretty	good
approximation	to	the	P-value	based	on	the	empirical	distribution.

empirical_P	=	np.count_nonzero(sampled_stats	>=	

observed_statistic)/repetitions

empirical_P

0.5508

The	observed	statistic	of	0.00888	is	pretty	close	to	the	median	of	all	the	values	of	the
statistic	generated	under	Mendel's	model.	You	can	think	of	that	as	a	quantification	of	our
earlier	comment	that	the	observed	statistic	is	"right	in	the	heart"	of	the	distribution	predicted
by	the	null.

But	what	if	it	had	been	further	away?	For	example,	what	if	the	observed	statistic	had	been
0.035?	Then	what	would	we	have	concluded?

np.count_nonzero(sampled_stats	>=	0.035)/repetitions

0.0122
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That's	quite	a	small	proportion.	If	a	P-value	is	small,	that	means	the	tail	beyond	it	is	small,
and	so	the	observed	statistic	is	far	away	from	what	the	null	predicts.	This	implies	that	the
data	support	the	alternative	hypothesis	better	than	they	support	the	null.

So	if	our	observed	statistic	had	been	0.035	instead	of	0.00888,	we	would	have	chosen	the
alternative	hypothesis.

How	small	is	"small"?	There	are	conventions	for	this.

If	the	P-value	is	less	than	5%,	the	result	is	called	"statistically	significant."

If	the	P-value	is	even	smaller	–	less	than	1%	–	the	result	is	called	"highly	statistically
significant."

In	both	cases,	the	test	concludes	that	the	data	support	the	alternative	hypothesis.

Historical	Note	on	the	Conventions¶

The	determination	of	statistical	significance,	as	defined	above,	has	become	standard	in
statistical	analyses	in	all	fields	of	application.	When	a	convention	is	so	universally	followed,	it
is	interesting	to	examine	how	it	arose.

The	method	of	statistical	testing	–	choosing	between	hypotheses	based	on	data	in	random
samples	–	was	developed	by	Sir	Ronald	Fisher	in	the	early	20th	century.	Sir	Ronald	might
have	set	the	convention	for	statistical	significance	somewhat	unwittingly,	in	the	following
statement	in	his	1925	book	Statistical	Methods	for	Research	Workers.	About	the	5%	level,
he	wrote,	"It	is	convenient	to	take	this	point	as	a	limit	in	judging	whether	a	deviation	is	to	be
considered	significant	or	not."

What	was	"convenient"	for	Sir	Ronald	became	a	cutoff	that	has	acquired	the	status	of	a
universal	constant.	No	matter	that	Sir	Ronald	himself	made	the	point	that	the	value	was	his
personal	choice	from	among	many:	in	an	article	in	1926,	he	wrote,	"If	one	in	twenty	does	not
seem	high	enough	odds,	we	may,	if	we	prefer	it	draw	the	line	at	one	in	fifty	(the	2	percent
point),	or	one	in	a	hundred	(the	1	percent	point).	Personally,	the	author	prefers	to	set	a	low
standard	of	significance	at	the	5	percent	point	..."

Fisher	knew	that	"low"	is	a	matter	of	judgment	and	has	no	unique	definition.	We	suggest	that
you	follow	his	excellent	example.	Provide	your	data,	make	your	judgment,	and	explain	why
you	made	it.

The	GSI's	Defense¶
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Tests	of	hypotheses	are	among	the	most	widely	used	methods	of	statistical	inference.	We
have	seen	them	used	in	contexts	as	varied	as	jury	selection	and	flowering	pea	plants.	In	the
final	example	of	this	section,	we	will	perform	a	test	of	hypotheses	in	another	completely
different	context.

A	Berkeley	Statistics	class	of	about	350	students	was	divided	into	12	discussion	sections	led
by	Graduate	Student	Instructors	(GSIs).	After	the	midterm,	students	in	Section	3	noticed	that
their	scores	were	on	average	lower	than	the	rest	of	the	class.

In	such	situations,	students	tend	to	grumble	about	the	section's	GSI.	Surely,	they	feel,	there
must	have	been	something	wrong	with	the	GSI's	teaching.	Or	else	why	would	their	section
have	done	worse	than	others?

The	GSI,	typically	more	experienced	about	statistical	variation,	often	has	a	different
perspective:	if	you	simply	draw	a	section	of	students	at	random	from	the	whole	class,	their
average	score	could	resemble	the	score	that	the	students	are	unhappy	about,	just	by
chance.

The	GSI's	position	is	a	clearly	stated	chance	model.	Let's	test	it	out.

Null	Hypothesis.	The	average	score	of	Section	3	is	like	the	average	score	of	the	same
number	of	students	picked	at	random	from	the	class.

Alternative	Hypothesis.	No,	it's	too	low.

The	table		scores		contains	the	section	number	and	midterm	score	for	each	student	in	a
large	class.	The	midterm	scores	were	integers	in	the	range	0	through	25;	0	means	that	the
student	didn't	take	the	test.

scores	=	Table.read_table('scores_by_section.csv')

scores
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Section Midterm

1 22

2 12

2 23

2 14

1 20

3 25

4 19

1 24

5 8

6 14

...	(349	rows	omitted)

Here	are	the	average	scores	in	the	12	sections.

scores.group('Section',	np.mean).show()

Section Midterm	mean

1 15.5938

2 15.125

3 13.6667

4 14.7667

5 17.4545

6 15.0312

7 16.625

8 16.3103

9 14.5667

10 15.2353

11 15.8077

12 15.7333

Section	3	did	score	a	bit	lower,	on	average,	than	the	other	sections.	Does	this	look	like
chance	variation?
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We	know	how	to	find	out.	Let's	start	by	picking	a	"Section	3"	at	random	from	the	whole	class
and	see	what	its	average	score	is;	and	then	do	that	again	and	again.

First,	we	need	the	number	of	students	in	Section	3:

scores.group('Section')

Section count

1 32

2 32

3 27

4 30

5 33

6 32

7 24

8 29

9 30

10 34

...	(2	rows	omitted)

Now	our	plan	is	to	pick	27	students	at	random	from	the	class	and	find	their	average	score.

The	scores	of	all	the	students	are	in	a	table	with	one	row	per	student.	So	we	will	use
	sample		to	randomly	select	rows,	using	the	option		with_replacement=False		so	that	we
sample	without	replacement.	(Later	we	will	see	that	the	results	are	almost	the	same	as	what
we'd	get	by	sampling	with	replacement	instead).

scores.sample(27,	

with_replacement=False).column('Midterm').mean()

13.703703703703704

We	are	ready	to	simulate	the	empirical	distribution	of	the	random	"Section	3"	mean.
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section_3_mean	=	13.6667

repetitions	=	10000

means	=	make_array()

for	i	in	np.arange(repetitions):

				new_mean	=	scores.sample(27,	

with_replacement=False).column('Midterm').mean()

				means	=	np.append(means,	new_mean)

emp_p_value	=	np.count_nonzero(means	<=	

section_3_mean)/repetitions

print('Empirical	P-value:',	emp_p_value)

results	=	Table().with_column('Random	Sample	Mean',	means)

results.hist()		

#Plot	the	observed	statistic	as	a	large	red	point	on	the	

horizontal	axis

plots.scatter(section_3_mean,	0,	color='red',	s=30);

Empirical	P-value:	0.0581

From	the	histogram,	the	low	mean	in	section	3	looks	somewhat	unusual,	but	the
conventional	5%	cut-off	gives	the	GSI's	hypothesis	the	benefit	of	the	doubt.	With	that	cut-off,
we	say	that	the	result	is	not	statistically	significant.
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Interact

Error	Probabilities¶

In	the	process	by	which	we	decide	which	of	two	hypotheses	is	better	supported	by	our	data,
the	final	step	involves	a	judgment	about	the	consistency	of	the	data	and	the	null	hypothesis.
While	this	step	results	in	a	good	decision	a	vast	majority	of	the	time,	it	can	sometimes	lead
us	astray.	The	reason	is	chance	variation.	For	example,	even	when	the	null	hypothesis	is
true,	chance	variation	might	cause	the	sample	to	look	quite	different	from	what	the	null
hypothesis	predicts.

In	this	section,	we	will	study	how	a	statistical	test	of	hypotheses	might	conclude	that	the	data
support	the	alternative	hypothesis	when	in	fact	the	null	hypothesis	is	true.

Since	we	make	our	decision	based	on	the	P-value,	it	is	time	to	give	a	more	formal	definition
of	that	quantity	than	the	mechanical	method	of	"setting	the	observed	statistic	on	the
horizontal	axis	of	the	empirical	histogram,	and	finding	the	area	in	the	tail	beyond."

Definition	of	P-value¶

The	P-value	is	the	chance,	under	the	null	hypothesis,	that	the	test	statistic	is	equal	to	the
value	that	was	observed	in	the	data	or	is	even	further	in	the	direction	of	the	alternative.

Let	us	first	see	how	this	definition	agrees	with	the	calculations	of	the	previous	section.

Mendel's	Pea	Flowers,	Revisited¶

In	this	example	we	were	assessing	whether	or	not	Mendel's	genetic	model	for	a	species	of
pea	plant	is	good.	Let's	start	by	reviewing	how	we	set	up	the	decision	process,	and	then
examine	the	definition	of	the	P-value	in	this	context.

Null	Hypothesis.	Mendel's	model	is	good:	the	plants	are	purple	or	white	flowering	like
draws	at	random	with	replacement	from	the	population	Purple,	Purple,	Purple,	White.

Alternative	Hypothesis.	Mendel's	model	is	wrong.

Test	Statistic.	The	distance	between	0.75	and	the	observed	proportion	of	purple-flowering
plants:

The	sample	size	is	large	(929),	so	if	Mendel's	model	is	good	then	the	observed	proportion	of
purple-flowering	plants	should	be	close	to	0.75.	If	Mendel's	model	is	wrong,	the	observed
proportion	purple	should	not	be	close	to	0.75,	resulting	in	a	larger	value	of	the	statistic.
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Thus	in	this	situation,	"in	the	direction	of	the	alternative"	means	"larger".

The	observed	value	of	the	test	statistic	(rounded	to	five	decimal	places)	was

and	so,	by	definition,	the	P-value	is	the	chance	that	a	sample	drawn	according	to	Mendel's
model	would	produce	a	statistic	of	0.00888	or	larger.

While	we	haven't	learned	how	to	compute	that	chance	exactly,	we	can	approximate	it	by
simulation,	which	is	what	we	did	in	the	previous	section.	Here	is	all	the	relevant	code	from
that	section.

#	The	model	and	the	data

model_colors	=	make_array('Purple',	'Purple',	'Purple',	'White')

total_plants	=	929

observed_statistic	=	0.0088805166846070982

#	Simulating	the	test	statistic	under	the	null	hypothesis

repetitions	=	5000

sampled_stats	=	make_array()

for	i	in	np.arange(repetitions):

				new_sample	=	np.random.choice(model_colors,	total_plants)

				proportion_purple	=	np.count_nonzero(new_sample	==	

'Purple')/total_plants

				sampled_stats	=	np.append(sampled_stats,	

abs(proportion_purple	-	0.75))

#	The	P-value	(an	approximation	based	on	the	simulation)

empirical_P	=	np.count_nonzero(sampled_stats	>=	

observed_statistic)/repetitions

#	Displaying	the	results

results	=	Table().with_column('Distance	from	0.75',	

sampled_stats)

print('Empirical	P-value:',	empirical_P)

results.hist()

plots.scatter(observed_statistic,	0,	color='red',	s=30);
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Empirical	P-value:	0.5436

Notice	the	calculation	of	the	P-value	based	on	all	the	repetitions	of	drawing	samples
according	to	Mendel's	model	and	calculating	the	test	statistic	each	time:

empirical_P	=	np.count_nonzero(sampled_stats	>=	

observed_statistic)/repetitions

empirical_P

0.5436

This	is	the	proportion	of	samples	in	which	the	statistic	came	out	equal	to	or	larger	than	the
observed	value	of	about	0.00888.

The	calculation	shows	that	if	Mendel's	hypothesis	were	true,	then	the	chance	that	of	getting
a	sample	of	plants	that	produces	a	test	statistic	as	large	as	the	one	Mendel	observed	or
even	larger	is	about	54%.	That's	a	substantial	chance	(and	quite	a	bit	greater	than	the
conventional	5%	cutoff	for	"small").	So	Mendel's	data	produced	a	statistic	that	is	not
surprising	based	on	his	model,	which	supports	his	model	more	than	it	supports	the
alternative.

The	GSI's	Defense,	Revisited¶

In	this	example,	Section	3	consisted	of	27	students	out	of	a	class	of	12	sections,	and	had	an
average	midterm	score	that	was	lower	than	that	of	the	other	sections.	We	were	trying	to
decide	between	the	following	hypotheses:
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Null	Hypothesis.	The	average	score	of	Section	3	is	like	the	average	score	of	27	students
picked	at	random	from	the	class.

Alternative	Hypothesis.	No,	it's	too	low.

Test	Statistic.	The	average	of	the	sampled	scores.

Here,	the	alternative	says	the	observed	average	is	too	low	to	arise	out	of	random	sampling	–
there's	something	about	Section	3	that	makes	the	average	come	out	low.

So	here,	"in	the	direction	of	the	alternative"	means	"smaller".

The	observed	value	of	the	test	statistic	is	13.6667,	the	average	score	of	Section	3.	Thus,	by
definition,	the	P-value	is	the	chance	that	the	average	score	of	27	randomly	picked	students
is	13.6667	or	smaller.

That's	the	chance	that	we	approximated	by	simulation.	Here	is	the	code	from	the	previous
section.

#	The	data

scores	=	Table.read_table('scores_by_section.csv')

sec_3_mean	=	13.6667

sec_3_size	=	27

#	Simulating	the	test	statistic	under	the	null	hypothesis

repetitions	=	10000

means	=	make_array()

for	i	in	np.arange(repetitions):

				new_mean	=	scores.sample(sec_3_size,	

with_replacement=False).column('Midterm').mean()

				means	=	np.append(means,	new_mean)

#	The	P-value	(an	empirical	approximation	based	on	the	

simulation)

empirical_P	=	np.count_nonzero(means	<=	sec_3_mean)/repetitions

#	Displaying	the	results

print('Empirical	P-value:',	empirical_P)

results	=	Table().with_column('Random	Sample	Mean',	means)

results.hist()		

plots.scatter(sec_3_mean,	0,	color='red',	s=30);
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Empirical	P-value:	0.0569

The	calculation	of	the	empirical	P-value	is	extracted	in	the	cell	below:

empirical_P	=	np.count_nonzero(means	<=	sec_3_mean)/repetitions

empirical_P

0.0569

This	is	the	proportion	of	random	samples	in	which	the	sample	mean	was	equal	to	the
Section	3	mean	of	13.667	or	even	smaller.

The	simulation	shows	that	a	randomly	sampled	group	of	27	of	the	students	in	the	class	have
around	a	6%	chance	of	having	an	average	score	that's	as	low	as	the	Section	3	average	or
even	lower.	If	you	follow	the	conventional	5%	cutoff	as	the	definition	of	a	"small"	P-value,
then	6%	isn't	small,	and	the	result	is	not	statistically	significant.	In	other	words,	you	don't
have	enough	evidence	to	say	reject	the	null	hypothesis	of	randomness.

You	are	free	to	defy	convention	and	choose	a	different	cutoff.	If	you	do	so,	please	keep	the
following	points	in	mind:

Always	provide	the	observed	value	of	the	test	statistic	and	the	P-value,	so	that	the
reader	can	make	up	his	or	her	own	mind	about	whether	or	not	the	P-value	is	small.
Don't	look	to	defy	convention	only	when	the	conventionally	derived	result	is	not	to	your
liking.
Even	if	your	tests	conclude	that	Section	3's	average	score	is	lower	than	what	would	be
produced	by	randomly	sampled	students,	there	is	no	information	about	why	it	is	lower.
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The	Possibility	of	Making	a	Wrong	Conclusion¶

This	analysis	of	average	scores	raises	an	important	observation	about	the	possibility	of	our
test	making	the	wrong	conclusion.

Suppose	you	decided	to	use	the	5%	cutoff	for	the	P-value.	That	is,	suppose	you	would
choose	the	alternative	hypothesis	if	the	P-value	is	below	5%,	and	otherwise	stay	with	the
null	hypothesis.

Then	it	is	apparent	from	the	empirical	histogram	of	the	sample	means	that	you	would	have
said,	"It's	too	low,"	if	the	Section	3	mean	had	been	12,	for	example.	The	area	to	the	left	of	12
is	less	than	5%.

results.hist()		

The	area	to	the	left	of	13	is	also	less	than	5%.	All	the	values	of	the	sample	mean	for	which
the	area	to	the	left	is	less	than	5%	are	shown	in	red	below.
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You	can	see	that	if	the	Section	3	mean	had	been	close	to	13,	and	you	were	using	the	5%
cutoff	for	the	P-value,	you	would	have	said	the	section	mean	wasn't	like	the	mean	of	a
random	sample.

You	can	also	see	that	it's	possible	(though	not	likely)	for	the	mean	of	a	random	sample	to	be
around	13.	In	fact,	several	of	the	5000	random	samples	in	our	simulation	had	means	that
were	within	0.01	of	13.

results.where('Random	Sample	Mean',	are.between(12.99,	

13.01)).num_rows

13

What	you	are	seeing	is	the	possibility	of	the	test	making	a	wrong	conclusion.

Had	you	used	a	10%	cutoff	instead	of	5%,	here	in	red	are	the	section	means	that	you	would
have	concluded	were	too	low	to	come	from	a	random	sample,	even	if	they	had	come	from	a
random	sample	without	your	knowledge.

The	Chance	of	Making	a	Wrong	Conclusion¶

Suppose	you	want	to	test	whether	a	coin	is	fair	or	not.	Then	the	hypotheses	are:

Null	Hypothesis.	The	coin	is	fair.	That	is,	the	results	are	like	draws	made	at	random	with
replacement	from	Heads,	Tails.

Alternative	Hypothesis.	The	coin	is	not	fair.
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Suppose	your	data	will	be	based	on	400	tosses	of	the	coin.	You	would	expect	a	fair	coin	to
land	heads	200	times	out	of	400,	so	a	reasonable	test	statistic	to	use	is

We	can	simulate	the	statistic	under	the	null	hypothesis	of	fairness.

coin	=	make_array('Heads',	'Tails')

num_tosses	=	400

repetitions	=	10000

heads	=	make_array()

for	i	in	np.arange(repetitions):

				tosses	=	np.random.choice(coin,	400)

				heads	=	np.append(heads,	np.count_nonzero(tosses	==	

'Heads'))

sampled_stats	=	abs(heads	-	200)

results	=	Table().with_column('|Number	of	Heads	-	200|',	

sampled_stats)

results.hist(bins	=	np.arange(0,	45,	5))

If	the	coin	is	unfair,	you	expect	the	number	of	heads	to	be	off	200,	or	in	other	words	you
expect	the	test	statistic	to	be	larger	than	it	would	be	if	the	coin	were	fair.

So,	as	in	the	example	about	Mendel's	pea	flowers,	the	P-value	is	the	area	in	the	right-hand
tail	of	the	empirical	distribution	of	the	statistic.
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Suppose	you	decide	to	use	a	3.5%	cutoff	for	the	P-values.	Then	you	will	conclude	"unfair"
for	the	top	3.5%	of	10,000	test	statistics	in	the	simulation,	even	if	the	coin	happened	to	be
fair	without	your	knowledge.

In	other	words,	if	you	use	a	3.5%	cutoff	for	the	P-value	and	the	coin	happens	to	be	fair,	there
is	about	a	3.5%	chance	that	you	will	make	the	wrong	conclusion	that	the	coin	is	unfair.

The	Cutoff	for	the	P-value	is	an	Error	Probability¶

The	example	above	is	a	special	case	of	a	general	fact:

If	you	use	a	 %	cutoff	for	the	P-value,	and	the	null	hypothesis	happens	to	be	true,
then	there	is	about	a	 %	chance	that	your	test	will	conclude	that	the	alternative	is
true.

The	1%	cutoff	is	therefore	more	conservative	than	5%	–	there	is	less	chance	of	concluding
"alternative"	if	the	null	happens	to	be	true.	For	this	reason,	randomized	controlled	trials	of
medical	treatments	usually	use	1%	as	the	cutoff	for	deciding	between	the	following	two
hypotheses:

Null	Hypothesis.	The	treatment	has	no	effect;	observed	differences	between	the	outcomes
of	the	treatment	and	control	groups	of	patients	are	due	to	randomization.

Alternative	Hypothesis.	The	treatment	has	an	effect.

The	idea	is	to	control	the	chance	of	concluding	the	treatment	does	something	if	in	fact	it
does	nothing.	This	reduces	the	risk	of	giving	patients	a	useless	treatment.

Still,	even	if	you	set	the	cutoff	to	be	as	low	as	1%,	and	the	treatment	does	nothing,	there	is
about	a	1%	chance	of	concluding	that	the	treatment	does	something.	This	is	due	to	chance
variation.	There	is	a	small	chance	that	data	from	random	samples	end	up	leading	you	astray.

Data	Snooping¶

The	discussion	above	implies	that	if	we	run	500	separate	randomized	controlled
experiments	about	the	effect	of	a	treatment	that	in	fact	has	no	effect,	and	each	experiment
uses	a	1%	cutoff,	then	by	chance	variation,	about	5	of	the	500	experiments	will	conclude
that	the	treatment	does	have	an	effect.

We	can	hope	that	nobody	is	going	to	run	500	experiments	on	a	treatment	that	does	nothing.
But	it	is	not	uncommon	for	researchers	to	test	multiple	hypotheses	using	the	same	data.	For
example,	in	a	randomized	controlled	trial	about	the	effect	of	a	drug,	researchers	might	test
whether	the	drug	has	an	effect	on	various	different	diseases.
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Now	suppose	the	drug	has	no	effect	on	anything.	Just	by	chance	variation,	a	small	percent
of	the	tests	might	conclude	that	it	does	have	an	effect.	So,	when	you	read	a	study	that	uses
tests	of	hypotheses	and	concludes	that	a	treatment	has	an	effect,	always	ask	how	many
different	effects	were	tested	before	the	researchers	found	the	one	that	was	reported.

If	the	researchers	ran	multiple	different	tests	before	finding	one	that	gave	a	"highly
statistically	significant"	result,	use	the	result	with	caution.	The	study	could	be	marred	by	data
snooping,	which	essentially	means	torturing	the	data	into	making	a	false	confession.

In	such	a	situation,	one	way	to	validate	the	reported	result	is	by	replicating	the	experiment
and	testing	for	that	particular	effect	alone.	If	it	comes	out	significant	again,	that	will	validate
the	original	conclusion.

Technical	Note:	The	Other	Kind	of	Error¶

There	is,	of	course,	another	kind	of	error:	concluding	that	the	treatment	does	nothing,	when
in	fact	it	does	something.	Approximating	that	error	is	outside	the	scope	of	this	section.	Just
be	aware	that	if	you	set	up	your	test	to	reduce	one	of	the	two	errors,	you	almost	always
increase	the	other	one.

Technical	Note:	Identifying	the	Rejection	Region¶

In	the	coin	tossing	example	above,	we	were	testing	the	fairness	of	a	coin	based	on	400
tosses,	using	the	3.5%	cutoff	for	the	P-value.	The	test	statistic	was

We	simulated	this	statistic	under	the	null	hypothesis	of	fairness.

The	top	3.5%	of	all	the	statistics,	which	are	the	values	for	which	the	test	will	conclude	that
the	coin	is	unfair,	are	shown	in	red	below.

Error	Probabilities

327



You	can	see	from	the	figure	that	under	the	null	hypothesis	of	fairness,	approximately	the	top
3.5%	of	test	statistics	have	values	above	20.	You	can	also	confirm	this	by	finding	the
proportion	of	such	values:

results.where('|Number	of	Heads	-	200|',	

are.above_or_equal_to(21)).num_rows/results.num_rows

0.0372

That	is,	with	a	3.5%	cutoff,	you	will	conclude	that	the	coin	is	unfair	if	the	test	statistic	is	21	or
greater.

That	is,	you	will	reject	the	null	hypothesis	if	the	test	statistic	is	21	or	greater.	The	range	"21
or	greater"	is	therefore	called	the	rejection	region	of	this	test.	It	corresponds	to	the	number	of
heads	being	221	or	more,	or	179	or	fewer.

How	would	you	find	these	values	if	you	didn't	have	them	marked	in	red	on	the	histogram?
The		percentile		function	comes	in	handy	here.	It	takes	the	percentile	rank	that	you	are
trying	to	find,	and	an	array	containing	the	data.	The	"top	3.5%"	of	the	statistics	correspond	to
the	96.5th	percentile	of	the	statistics:

percentile(96.5,	results.column(0))

21.0
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Note.	Because	of	"ties"	(that	is,	several	equal	values	in	the	data)	and	arbitrary	lengths	of
data	arrays,	percentiles	don't	always	come	out	neatly.	Later	in	the	course	we	will	give	a
precise	definition	of	percentiles	that	covers	all	cases.	For	now,	just	think	of	the		percentile	
function	as	returning	an	answer	that	is	close	to	what	you	intuitively	think	of	as	a	percentile.
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Interact

Example:	Deflategate¶

On	January	18,	2015,	the	Indianapolis	Colts	and	the	New	England	Patriots	played	the
American	Football	Conference	(AFC)	championship	game	to	determine	which	of	those
teams	would	play	in	the	Super	Bowl.	After	the	game,	there	were	allegations	that	the	Patriots'
footballs	had	not	been	inflated	as	much	as	the	regulations	required;	they	were	softer.	This
could	be	an	advantage,	as	softer	balls	might	be	easier	to	catch.

For	several	weeks,	the	world	of	American	football	was	consumed	by	accusations,	denials,
theories,	and	suspicions:	the	press	labeled	the	topic	Deflategate,	after	the	Watergate
political	scandal	of	the	1970's.	The	National	Football	League	(NFL)	commissioned	an
independent	analysis.	In	this	example,	we	will	perform	our	own	analysis	of	the	data.

Pressure	is	often	measured	in	pounds	per	square	inch	(psi).	NFL	rules	stipulate	that	game
balls	must	be	inflated	to	have	pressures	in	the	range	12.5	psi	and	13.5	psi.	Each	team	plays
with	12	balls.	Teams	have	the	responsibility	of	maintaining	the	pressure	in	their	own
footballs,	but	game	officials	inspect	the	balls.	Before	the	start	of	the	AFC	game,	all	the
Patriots'	balls	were	at	about	12.5	psi.	Most	of	the	Colts'	balls	were	at	about	13.0	psi.
However,	these	pre-game	data	were	not	recorded.

During	the	second	quarter,	the	Colts	intercepted	a	Patriots	ball.	On	the	sidelines,	they
measured	the	pressure	of	the	ball	and	determined	that	it	was	below	the	12.5	psi	threshold.
Promptly,	they	informed	officials.

At	half-time,	all	the	game	balls	were	collected	for	inspection.	Two	officials,	Clete	Blakeman
and	Dyrol	Prioleau,	measured	the	pressure	in	each	of	the	balls.	Here	are	the	data;	pressure
is	measured	in	psi.	The	Patriots	ball	that	had	been	intercepted	by	the	Colts	was	not
inspected	at	half-time.	Nor	were	most	of	the	Colts'	balls	–	the	officials	simply	ran	out	of	time
and	had	to	relinquish	the	balls	for	the	start	of	second	half	play.

football	=	Table.read_table('football.csv')

football	=	football.drop('Team')

football.show()
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Ball Blakeman Prioleau

Patriots	1 11.5 11.8

Patriots	2 10.85 11.2

Patriots	3 11.15 11.5

Patriots	4 10.7 11

Patriots	5 11.1 11.45

Patriots	6 11.6 11.95

Patriots	7 11.85 12.3

Patriots	8 11.1 11.55

Patriots	9 10.95 11.35

Patriots	10 10.5 10.9

Patriots	11 10.9 11.35

Colts	1 12.7 12.35

Colts	2 12.75 12.3

Colts	3 12.5 12.95

Colts	4 12.55 12.15

For	each	of	the	15	balls	that	were	inspected,	the	two	officials	got	different	results.	It	is	not
uncommon	that	repeated	measurements	on	the	same	object	yield	different	results,
especially	when	the	measurements	are	performed	by	different	people.	So	we	will	assign	to
each	the	ball	the	average	of	the	two	measurements	made	on	that	ball.

football	=	football.with_column(

				'Combined',	(football.column(1)+football.column(2))/2

				)

football.show()
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Ball Blakeman Prioleau Combined

Patriots	1 11.5 11.8 11.65

Patriots	2 10.85 11.2 11.025

Patriots	3 11.15 11.5 11.325

Patriots	4 10.7 11 10.85

Patriots	5 11.1 11.45 11.275

Patriots	6 11.6 11.95 11.775

Patriots	7 11.85 12.3 12.075

Patriots	8 11.1 11.55 11.325

Patriots	9 10.95 11.35 11.15

Patriots	10 10.5 10.9 10.7

Patriots	11 10.9 11.35 11.125

Colts	1 12.7 12.35 12.525

Colts	2 12.75 12.3 12.525

Colts	3 12.5 12.95 12.725

Colts	4 12.55 12.15 12.35

At	a	glance,	it	seems	apparent	that	the	Patriots'	footballs	were	at	a	lower	pressure	than	the
Colts'	balls.	Because	some	deflation	is	normal	during	the	course	of	a	game,	the	independent
analysts	decided	to	calculate	the	drop	in	pressure	from	the	start	of	the	game.	Recall	that	the
Patriots'	balls	had	all	started	out	at	about	12.5	psi,	and	the	Colts'	balls	at	about	13.0	psi.
Therefore	the	drop	in	pressure	for	the	Patriots'	balls	was	computed	as	12.5	minus	the
pressure	at	half-time,	and	the	drop	in	pressure	for	the	Colts'	balls	was	13.0	minus	the
pressure	at	half-time.

Let's	construct	two	tables,	one	for	the	Patriots	data	and	one	for	Colts.	The	final	column	of
each	table	is	the	drop	in	pressure	from	the	starting	value.

patriots	=	football.where('Ball',	are.containing('Patriots'))

patriots	=	patriots.with_column('Drop',	12.5-

patriots.column('Combined'))

patriots.show()
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Ball Blakeman Prioleau Combined Drop

Patriots	1 11.5 11.8 11.65 0.85

Patriots	2 10.85 11.2 11.025 1.475

Patriots	3 11.15 11.5 11.325 1.175

Patriots	4 10.7 11 10.85 1.65

Patriots	5 11.1 11.45 11.275 1.225

Patriots	6 11.6 11.95 11.775 0.725

Patriots	7 11.85 12.3 12.075 0.425

Patriots	8 11.1 11.55 11.325 1.175

Patriots	9 10.95 11.35 11.15 1.35

Patriots	10 10.5 10.9 10.7 1.8

Patriots	11 10.9 11.35 11.125 1.375

colts	=	football.where('Ball',	are.containing('Colts'))

colts	=	colts.with_column('Drop',	13.0-colts.column('Combined'))

colts

Ball Blakeman Prioleau Combined Drop

Colts	1 12.7 12.35 12.525 0.475

Colts	2 12.75 12.3 12.525 0.475

Colts	3 12.5 12.95 12.725 0.275

Colts	4 12.55 12.15 12.35 0.65

It	looks	as	though	the	Patriots'	drops	were	larger	than	the	Colts'.	A	natural	statistic	is	the
difference	between	the	two	average	drops.	We'll	work	with	that,	but	you	are	free	to	repeat
the	analysis	with	other	natural	statistics	such	as	the	difference	between	the	overall	average
drop	and	that	of	the	Patriots.

patriots_mean	=	patriots.column('Drop').mean()

colts_mean	=	colts.column('Drop').mean()

observed_statistic	=	patriots_mean	-	colts_mean

observed_statistic
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0.73352272727272805

This	positive	difference	reflects	the	fact	that	the	average	drop	in	pressure	of	the	Patriots'
balls	was	greater	than	that	of	the	Colts.

Could	this	difference	be	due	to	chance,	or	are	the	Patriots'	drops	too	large?	This	question	is
very	much	like	the	question	that	we	asked	in	an	earlier	example	about	the	scores	in	one
section	of	a	large	class.	We'll	set	up	the	null	and	alternative	hypotheses	just	as	we	did	in	that
example.

Null	hypothesis.	The	Patriots'	drops	are	like	a	random	sample	of	11	out	of	all	15	drops.	The
average	came	out	higher	than	that	of	the	Colts'	drops	due	to	chance	variation.

Alternative	hypotheis.	The	Patriots'	drops	are	too	large	to	be	the	result	of	chance	variation
alone.

If	the	null	hypothesis	were	true,	then	the	Patriots'	drops	would	be	comparable	to	11	drops
drawn	at	random	without	replacement	from	all	15	drops.	So	let's	create	an	array	of	all	15
drops	and	draw	at	random	from	it.

drops	=	Table().with_column(

				'Drop',	np.append(patriots.column('Drop'),	

colts.column('Drop'))

)

drops.show()
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Drop

0.85

1.475

1.175

1.65

1.225

0.725

0.425

1.175

1.35

1.8

1.375

0.475

0.475

0.275

0.65

drops.sample(with_replacement=False).show()
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Drop

1.225

1.175

1.175

0.475

1.375

0.425

0.85

0.65

1.35

1.65

0.725

0.475

1.475

1.8

0.275

Notice	the	use	of		sample		without	a	sample	size.	That	is	because	the	default	sample	size
used	by		sample		is	the	number	of	rows	of	the	table;	if	you	don't	specify	a	sample	size,	you
get	back	a	sample	of	the	same	size	as	the	original	table.	This	is	ideal	for	our	purposes,
because	when	you	sample	without	replacement	(by	specifiying		with_replacement=False	)	the
same	number	of	times	as	there	are	rows,	you	end	up	with	a	random	shuffle	of	all	the	rows.
Run	the	cell	above	a	few	times	to	see	how	the	output	changes.

We	can	now	use	the	first	11	rows	of	the	shuffled	table	as	a	simulation	of	the	Patriots'	drops
under	the	null	hypothesis.	The	remaining	four	rows	form	the	simulation	of	the	corresponding
Colts'	drops.	We	can	use	these	two	simulated	arrays	to	simulate	our	test	statistic	under	the
null.
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shuffled	=	drops.sample(with_replacement=False)

new_patriots	=	shuffled.take(np.arange(11))

new_patriots_mean	=	new_patriots.column(0).mean()

new_colts	=	shuffled.take(np.arange(11,	drops.num_rows))

new_colts_mean	=	new_colts.column(0).mean()

simulated_stat	=	new_patriots_mean	-	new_colts_mean

simulated_stat

-0.70681818181818212

Run	the	cell	above	a	few	times	to	see	how	the	test	statistic	varies.	Remember	that	the
simulation	is	under	the	null	hypothesis	that	the	Patriots'	drops	are	like	a	random	sample	of	al
15	drops.

It's	time	for	a	step	that	is	now	familiar.	We	will	do	repeated	simulations	of	the	test	statistic
under	the	null	hypothesis.	At	the	end	of	the	simulation,	the	array		simulated_statistics		will
contain	all	of	the	simulated	test	statistics.

simulated_statistics	=	make_array()

repetitions	=	10000

for	i	in	np.arange(repetitions):

				shuffled	=	drops.sample(with_replacement=False)

				new_patriots_mean	=	

shuffled.take(np.arange(11)).column(0).mean()

				new_colts_mean	=	shuffled.take(np.arange(11,	

drops.num_rows)).column(0).mean()

				new_statistic	=	new_patriots_mean	-	new_colts_mean

				simulated_statistics	=	np.append(simulated_statistics,	

new_statistic)

Now	for	the	empirical	P-value,	which	is	the	chance	(computed	under	the	null	hypothesis)	of
getting	a	test	statistic	equal	to	the	one	that	was	observed	or	more	in	the	direction	of	the
alternative.	To	figure	out	how	to	calculate	this,	it's	important	to	recall	the	alternative
hypothesis:
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Alternative	hypotheis.	The	Patriots'	drops	are	too	large	to	be	the	result	of	chance	variation
alone.

The	"direction	of	the	alternative"	is	towards	large	drops	for	the	Patriots,	with	correspondingly
large	values	for	out	test	statistic	"Patriots'	mean	-	Colts'	mean".	So	the	P-value	is	the	chance
(computed	under	the	null	hypothesis)	of	getting	a	test	statistic	equal	to	our	observed	value	of
0.73352272727272805	or	larger.

empirical_P	=	np.count_nonzero(simulated_statistics	>=	

observed_statistic)/repetitions

empirical_P

0.0027

That's	a	pretty	small	P-value.	To	visualize	this,	here	is	the	empirical	distribution	of	the	test
statistic	under	the	null	hypothesis,	with	the	observed	statistic	marked	on	the	horizontal	axis.

print('Observed	Statistic:',	observed_statistic)

print('Empirical	P:',	empirical_P)

results	=	Table().with_column('Simulated	Statistic',	

simulated_statistics)

results.hist()

plots.scatter(observed_statistic,	0,	color='red',	s=30);

Observed	Statistic:	0.733522727273

Empirical	P:	0.0027
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Notice	that	the	bulk	of	the	distribution	is	centered	around	0.	Under	the	null	hypothesis,	the
Patriots'	drops	are	a	random	sample	of	all	15	drops,	and	therefore	so	are	the	Colts'.
Therefore	the	two	sets	of	drops	should	be	about	equal	on	average,	and	therefore	their
difference	should	be	around	0.

But	the	observed	value	of	the	test	statistic	is	quite	far	away	from	the	heart	of	the	distribution.
By	any	reasonable	cutoff	for	what	is	"small",	the	empirical	P-value	is	small.	So	we	end	up
rejecting	the	null	hypothesis	of	randomness,	and	conclude	that	the	Patriots	drops	were	too
large	to	reflect	chance	variation	alone.

The	independent	investiagtive	team	analyzed	the	data	in	several	different	ways,	taking	into
account	the	laws	of	physics.	The	final	report	said,

"[T]he	average	pressure	drop	of	the	Patriots	game	balls	exceeded	the	average
pressure	drop	of	the	Colts	balls	by	0.45	to	1.02	psi,	depending	on	various	possible
assumptions	regarding	the	gauges	used,	and	assuming	an	initial	pressure	of	12.5	psi
for	the	Patriots	balls	and	13.0	for	the	Colts	balls."

--	Investigative	report	commissioned	by	the	NFL	regarding	the	AFC	Championship
game	on	January	18,	2015

Our	analysis	shows	an	average	pressure	drop	of	about	0.73	psi,	which	is	close	to	the	center
of	the	interval	"0.45	to	1.02	psi"	and	therefore	consistent	with	the	official	analysis.

Remember	that	our	test	of	hypotheses	does	not	establish	the	reason	why	the	difference	is
not	due	to	chance.	Establishing	causality	is	usually	more	complex	than	running	a	test	of
hypotheses.

But	the	all-important	question	in	the	football	world	was	about	causation:	the	question	was
whether	the	excess	drop	of	pressure	in	the	Patriots'	footballs	was	deliberate.	If	you	are
curious	about	the	answer	given	by	the	investigators,	here	is	the	full	report.
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Estimation¶

In	the	previous	chapter	we	began	to	develop	ways	of	inferential	thinking.	In	particular,	we
learned	how	to	use	data	to	decide	between	two	hypotheses	about	the	world.	But	often	we
just	want	to	know	how	big	something	is.

For	example,	in	an	earlier	chapter	we	investigated	how	many	warplanes	the	enemy	might
have.	In	an	election	year,	we	might	want	to	know	what	percent	of	voters	favor	a	particular
candidate.	To	assess	the	current	economy,	we	might	be	interested	in	the	median	annual
income	of	households	in	the	United	States.

In	this	chapter,	we	will	develop	a	way	to	estimate	an	unknown	parameter.	Remember	that	a
parameter	is	a	numerical	value	associated	with	a	population.

To	figure	out	the	value	of	a	parameter,	we	need	data.	If	we	have	the	relevant	data	for	the
entire	population,	we	can	simply	calculate	the	parameter.

But	if	the	population	is	very	large	–	for	example,	if	it	consists	of	all	the	households	in	the
United	States	–	then	it	might	be	too	expensive	and	time-consuming	to	gather	data	from	the
entire	population.	In	such	situations,	data	scientists	rely	on	sampling	at	random	from	the
population.

This	leads	to	a	question	of	inference:	How	to	make	justifiable	conclusions	about	the
unknown	parameter,	based	on	the	data	in	the	random	sample?	We	will	answer	this	question
by	using	inferential	thinking.

A	statistic	based	on	a	random	sample	can	be	a	reasonable	estimate	of	an	unknown
parameter	in	the	population.	For	example,	you	might	want	to	use	the	median	annual	income
of	sampled	households	as	an	estimate	of	the	median	annual	income	of	all	households	in	the
U.S.

But	the	value	of	any	statistic	depends	on	the	sample,	and	the	sample	is	based	on	random
draws.	So	every	time	data	scientists	come	up	with	an	estimate	based	on	a	random	sample,
they	are	faced	with	a	question:

"How	different	could	this	estimate	have	been,	if	the	sample	had	come	out
differently?"

In	this	chapter	you	will	learn	one	way	of	answering	this	question.	The	answer	will	give	you
the	tools	to	estimate	a	numerical	parameter	and	quantify	the	amount	of	error	in	your
estimate.
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We	will	start	with	a	preliminary	about	percentiles.	The	most	famous	percentile	is	the	median,
often	used	in	summaries	of	income	data.	Other	percentiles	will	be	important	in	the	method	of
estimation	that	we	are	about	to	develop.	So	we	will	start	by	defining	percentiles	carefully.
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Percentiles¶

Numerical	data	can	be	sorted	in	increasing	or	decreasing	order.	Thus	the	values	of	a
numerical	data	set	have	a	rank	order.	A	percentile	is	the	value	at	a	particular	rank.

For	example,	if	your	score	on	a	test	is	on	the	95th	percentile,	a	common	interpretation	is	that
only	5%	of	the	scores	were	higher	than	yours.	The	median	is	the	50th	percentile;	it	is
commonly	assumed	that	50%	the	values	in	a	data	set	are	above	the	median.

But	some	care	is	required	in	giving	percentiles	a	precise	definition	that	works	for	all	ranks
and	all	lists.	To	see	why,	consider	an	extreme	example	where	all	the	students	in	a	class
score	75	on	a	test.	Then	75	is	a	natural	candidate	for	the	median,	but	it's	not	true	that	50%
of	the	scores	are	above	75.	Also,	75	is	an	equally	natural	candidate	for	the	95th	percentile	or
the	25th	or	any	other	percentile.	Ties	–	that	is,	equal	data	values	–	have	to	be	taken	into
account	when	defining	percentiles.

You	also	have	to	be	careful	about	exactly	how	far	up	the	list	to	go	when	the	relevant	index
isn't	clear.	For	example,	what	should	be	the	87th	percentile	of	a	collection	of	10	values?	The
8th	value	of	the	sorted	collection,	or	the	9th,	or	somewhere	in	between?

In	this	section,	we	will	give	a	definition	that	works	consistently	for	all	ranks	and	all	lists.

A	Numerical	Example¶

Before	giving	a	general	definition	of	all	percentiles,	we	will	define	the	80th	percentile	of	a
collection	of	values	to	be	the	smallest	value	in	the	collection	that	is	at	least	as	large	as	80%
of	all	of	the	values.

For	example,	let's	consider	the	sizes	of	the	five	largest	continents	–	Africa,	Antarctica,	Asia,
North	America,	and	South	America	–	rounded	to	the	nearest	million	square	miles.

sizes	=	make_array(12,	17,	6,	9,	7)

The	80th	percentile	is	the	smallest	value	that	is	at	least	as	large	as	80%	of	the	elements	of
	sizes	,	that	is,	four-fifths	of	the	five	elements.	That's	12:

np.sort(sizes)

array([	6,		7,		9,	12,	17])

Percentiles
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The	80th	percentile	is	a	value	on	the	list,	namely	12.	You	can	see	that	80%	of	the	values	are
less	than	or	equal	to	it,	and	that	it	is	the	smallest	value	on	the	list	for	which	this	is	true.

Analogously,	the	70th	percentile	is	the	smallest	value	in	the	collection	that	is	at	least	as	large
as	70%	of	the	elements	of		sizes	.	Now	70%	of	5	elements	is	"3.5	elements",	so	the	70th
percentile	is	the	4th	element	on	the	list.	That's	12,	the	same	as	the	80th	percentile	for	these
data.

The		percentile		function¶

The		percentile		function	takes	two	arguments:	a	rank	between	0	and	100,	and	a	array.	It
returns	the	corresponding	percentile	of	the	array.

percentile(70,	sizes)

12

The	General	Definition¶

Let	 	be	a	number	between	0	and	100.	The	 th	percentile	of	a	collection	is	the	smallest
value	in	the	collection	that	is	at	least	as	large	as	p%	of	all	the	values.

By	this	definition,	any	percentile	between	0	and	100	can	be	computed	for	any	collection	of
values,	and	it	is	always	an	element	of	the	collection.

In	practical	terms,	suppose	there	are	 	elements	in	the	collection.	To	find	the	 th	percentile:

Sort	the	collection	in	increasing	order.
Find	p%	of	n:	 .	Call	that	 .
If	 	is	an	integer,	take	the	 th	element	of	the	sorted	collection.
If	 	is	not	an	integer,	round	it	up	to	the	next	integer,	and	take	that	element	of	the	sorted
collection.

Example¶

The	table		scores_and_sections		contains	one	row	for	each	student	in	a	class	of	359
students.	The	columns	are	the	student's	discussion	section	and	midterm	score.

scores_and_sections	=	Table.read_table('scores_by_section.csv')

scores_and_sections
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Section Midterm

1 22

2 12

2 23

2 14

1 20

3 25

4 19

1 24

5 8

6 14

...	(349	rows	omitted)

scores_and_sections.select('Midterm').hist(bins=np.arange(-0.5,	

25.6,	1))

What	was	the	85th	percentile	of	the	scores?	To	use	the		percentile		function,	create	an
array		scores		containing	the	midterm	scores,	and	find	the	85th	percentile:

scores	=	scores_and_sections.column(1)

percentile(85,	scores)
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22

According	to	the	percentile	function,	the	85th	percentile	was	22.	To	check	that	this	is
consistent	with	our	new	definition,	let's	apply	the	definition	directly.

First,	put	the	scores	in	increasing	order:

sorted_scores	=	np.sort(scores_and_sections.column(1))

There	are	359	scores	in	the	array.	So	next,	find	85%	of	359,	which	is	305.15.

0.85	*	359

305.15

That's	not	an	integer.	By	our	definition,	the	median	is	the	306th	element	of		sorted_scores	,
which,	by	Python's	indexing	convention,	is	item	305	of	the	array.

#	The	306th	element	of	the	sorted	array

sorted_scores.item(305)

22

That's	the	same	as	the	answer	we	got	by	using		percentile	.	In	future,	we	will	just	use
	percentile	.

Quartiles¶

The	first	quartile	of	a	numercial	collection	is	the	25th	percentile.	The	terminology	arises	from
the	first	quarter.	The	second	quartile	is	the	median,	and	the	third	quartile	is	the	75th
percentile.

For	our		scores		data,	those	values	are:

percentile(25,	scores)
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11

percentile(50,	scores)

16

percentile(75,	scores)

20

Distributions	of	scores	are	sometimes	summarized	by	the	"middle	50%"	interval,	between
the	first	and	third	quartiles.
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The	Bootstrap¶

A	data	scientist	is	using	the	data	in	a	random	sample	to	estimate	an	unknown	parameter.
She	uses	the	sample	to	calculate	the	value	of	a	statistic	that	she	will	use	as	her	estimate.

Once	she	has	calculated	the	observed	value	of	her	statistic,	she	could	just	present	it	as	her
estimate	and	go	on	her	merry	way.	But	she's	a	data	scientist.	She	knows	that	her	random
sample	is	just	one	of	numerous	possible	random	samples,	and	thus	her	estimate	is	just	one
of	numerous	plausible	estimates.

By	how	much	could	those	estimates	vary?	To	answer	this,	it	appears	as	though	she	needs	to
draw	another	sample	from	the	population,	and	compute	a	new	estimate	based	on	the	new
sample.	But	she	doesn't	have	the	resources	to	go	back	to	the	population	and	draw	another
sample.

It	looks	as	though	the	data	scientist	is	stuck.

Fortunately,	a	brilliant	idea	called	the	bootstrap	can	help	her	out.	Since	it	is	not	feasible	to
generate	new	samples	from	the	population,	the	bootstrap	generates	new	random	samples
by	a	method	called	resampling:	the	new	samples	are	drawn	at	random	from	the	original
sample.

In	this	section,	we	will	see	how	and	why	the	bootstrap	works.	In	the	rest	of	the	chapter,	we
will	use	the	bootstrap	for	inference.

Employee	Compensation	in	the	City	of	San	Francisco¶

SF	OpenData	is	a	website	where	the	City	and	County	of	San	Francisco	make	some	of	their
data	publicly	available.	One	of	the	data	sets	contains	compensation	data	for	employees	of
the	City.	These	include	medical	professionals	at	City-run	hospitals,	police	officers,	fire
fighters,	transportation	workers,	elected	officials,	and	all	other	employees	of	the	City.

Compensation	data	for	the	calendar	year	2015	are	in	the	table		sf2015	.

sf2015	=	Table.read_table('san_francisco_2015.csv')

sf2015
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Year
Type Year Organization

Group	Code
Organization

Group
Department

Code Department

Calendar 2015 2
Public	Works,
Transportation
&	Commerce

WTR PUC	Water
Department

Calendar 2015 2
Public	Works,
Transportation
&	Commerce

DPW

General
Services
Agency	-
Public	Works

Calendar 2015 4 Community
Health DPH Public	Health

Calendar 2015 4 Community
Health DPH Public	Health

Calendar 2015 2
Public	Works,
Transportation
&	Commerce

MTA
Municipal
Transportation
Agency

Calendar 2015 1 Public
Protection POL Police

Calendar 2015 4 Community
Health DPH Public	Health

Calendar 2015 2
Public	Works,
Transportation
&	Commerce

MTA
Municipal
Transportation
Agency

Calendar 2015 6
General
Administration
&	Finance

CAT City	Attorney

Calendar 2015 3

Human
Welfare	&
Neighborhood
Development

DSS Human
Services

...	(42979	rows	omitted)
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There	is	one	row	for	each	of	42,979	employees.	There	are	numerous	columns	containing
information	about	City	departmental	affiliation	and	details	of	the	different	parts	of	the
employee's	compensation	package.	Here	is	the	row	correspoding	to	Mayor	Ed	Lee.

sf2015.where('Job',	are.equal_to('Mayor'))

Year
Type Year Organization

Group	Code
Organization

Group
Department

Code Department

Calendar 2015 6
General
Administration
&	Finance

MYR Mayor

We	are	going	to	study	the	final	column,		Total	Compensation	.	That's	the	employee's	salary
plus	the	City's	contribution	towards	his/her	retirement	and	benefit	plans.

Financial	packages	in	a	calendar	year	can	sometimes	be	hard	to	understand	as	they	depend
on	the	date	of	hire,	whether	the	employee	is	changing	jobs	within	the	City,	and	so	on.	For
example,	the	lowest	values	in	the		Total	Compensation		column	look	a	little	strange.

sf2015.sort('Total	Compensation')
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Year
Type Year Organization

Group	Code
Organization

Group
Department

Code Department

Calendar 2015 1 Public
Protection FIR Fire

Department

Calendar 2015 4 Community
Health DPH Public

Health

Calendar 2015 1 Public
Protection JUV Juvenile

Probation

Calendar 2015 6
General
Administration
&	Finance

CPC City
Planning

Calendar 2015 6
General
Administration
&	Finance

CPC City
Planning

Calendar 2015 2
Public	Works,
Transportation
&	Commerce

PUC
PUC	Public
Utilities
Commission

Calendar 2015 1 Public
Protection JUV Juvenile

Probation

Calendar 2015 1 Public
Protection ECD

Department
of
Emergency
Management

Calendar 2015 7 General	City
Responsibilities UNA

General
Fund
Unallocated

Calendar 2015 4 Community
Health DPH Public

Health

...	(42979	rows	omitted)

For	clarity	of	comparison,	we	will	focus	our	attention	on	those	who	had	at	least	the
equivalent	of	a	half-time	job	for	the	whole	year.	At	a	minimum	wage	of	about	$10	per	hour,
and	20	hours	per	week	for	52	weeks,	that's	a	salary	of	about	$10,000.
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sf2015	=	sf2015.where('Salaries',	are.above(10000))

sf2015.num_rows

36569

Population	and	Parameter¶

Let	this	table	of	just	over	36,500	rows	be	our	population.	Here	is	a	histogram	of	the	total
compensations.

sf_bins	=	np.arange(0,	700000,	25000)

sf2015.select('Total	Compensation').hist(bins=sf_bins)

While	most	of	the	values	are	below	$300,000,	a	few	are	quite	a	bit	higher.	For	example,	the
total	compensation	of	the	Chief	Investment	Officer	was	almost	$650,000.	That	is	why	the
horizontal	axis	stretches	to	$700,000.

sf2015.sort('Total	Compensation',	descending=True).show(2)
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Year
Type Year Organization

Group	Code
Organization

Group
Department

Code Department

Calendar 2015 6
General
Administration
&	Finance

RET Retirement
System

Calendar 2015 6
General
Administration
&	Finance

ADM

General
Services
Agency	-
City	Admin

...	(36567	rows	omitted)

Now	let	the	parameter	be	the	median	of	the	total	compensations.

Since	we	have	the	luxury	of	having	all	of	the	data	from	the	population,	we	can	simply
calcuate	the	parameter:

pop_median	=	percentile(50,	sf2015.column('Total	Compensation'))

pop_median

110305.78999999999

The	median	total	compensation	of	all	employees	was	just	over	$110,300.

From	a	practical	perspective,	there	is	no	reason	for	us	to	draw	a	sample	to	estimate	this
parameter	since	we	simply	know	its	value.	But	in	this	section	we	are	going	to	pretend	we
don't	know	the	value,	and	see	how	well	we	can	estimate	it	based	on	a	random	sample.

In	later	sections,	we	will	come	down	to	earth	and	work	in	situations	where	the	parameter	is
unknown.	For	now,	we	are	all-knowing.

A	Random	Sample	and	an	Estimate¶

Let	us	draw	a	sample	of	500	employees	at	random	without	replacement,	and	let	the	median
total	compensation	of	the	sampled	employees	serve	as	our	estimate	of	the	parameter.

our_sample	=	sf2015.sample(500,	with_replacement=False)

our_sample.select('Total	Compensation').hist(bins=sf_bins)
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est_median	=	percentile(50,	our_sample.column('Total	

Compensation'))

est_median

113598.99000000001

The	sample	size	is	large.	By	the	law	of	averages,	the	distribution	of	the	sample	resembles
that	of	the	population,	and	consequently	the	sample	median	is	not	very	far	from	the
population	median	(though	of	course	it	is	not	exactly	the	same).

So	now	we	have	one	estimate	of	the	parameter.	But	had	the	sample	come	out	differently,	the
estimate	would	have	had	a	different	value.	We	would	like	to	be	able	to	quantify	the	amount
by	which	the	estimate	could	vary	across	samples.	That	measure	of	variability	will	help	us
measure	how	accurately	we	can	estimate	the	parameter.

To	see	how	different	the	estimate	would	be	if	the	sample	had	come	out	differently,	we	could
just	draw	another	sample	from	the	population,	but	that	would	be	cheating.	We	are	trying	to
mimic	real	life,	in	which	we	won't	have	all	the	population	data	at	hand.

Somehow,	we	have	to	get	another	random	sample	without	sampling	from	the	population.

The	Bootstrap:	Resampling	from	the	Sample¶

What	we	do	have	is	a	large	random	sample	from	the	population.	As	we	know,	a	large
random	sample	is	likely	to	resemeble	the	population	from	which	it	is	drawn.	This	observation
allows	data	scientists	to	lift	themselves	up	by	their	own	bootstraps:	the	sampling	procedure
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can	be	replicated	by	sampling	from	the	sample.

Here	are	the	steps	of	the	bootstrap	method	for	generating	another	random	sample	that
resembles	the	population:

Treat	the	original	sample	as	if	it	were	the	population.
Draw	from	the	sample,	at	random	with	replacement,	the	same	number	of	times	as
the	original	sample	size.

It	is	important	to	resample	the	same	number	of	times	as	the	original	sample	size.	The
reason	is	that	the	variability	of	an	estimate	depends	on	the	size	of	the	sample.	Since	our
original	sample	consisted	of	500	employees,	our	sample	median	was	based	on	500	values.
To	see	how	different	the	sample	could	have	been,	we	have	to	compare	it	to	the	median	of
other	samples	of	size	500.

If	we	drew	500	times	at	random	without	replacement	from	our	sample	of	size	500,	we	would
just	get	the	same	sample	back.	By	drawing	with	replacement,	we	create	the	possibility	for
the	new	samples	to	be	different	from	the	original,	because	some	employees	might	be	drawn
more	than	once	and	others	not	at	all.

Why	is	this	a	good	idea?	By	the	law	of	averages,	the	distribution	of	the	original	sample	is
likely	to	resemble	the	population,	and	the	distributions	of	all	the	"resamples"	are	likely	to
resemble	the	original	sample.	So	the	distributions	of	all	the	resamples	are	likely	to	resemble
the	population	as	well.

A	Resampled	Median¶

Recall	that	when	the		sample		method	is	used	without	specifying	a	sample	size,	by	default
the	sample	size	equals	the	number	of	rows	of	the	table	from	which	the	sample	is	drawn.
That's	perfect	for	the	bootstrap!	Here	is	one	new	sample	drawn	from	the	original	sample,
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and	the	corresponding	sample	median.

resample_1	=	our_sample.sample()

resample_1.select('Total	Compensation').hist(bins=sf_bins)

resampled_median_1	=	percentile(50,	resample_1.column('Total	

Compensation'))

resampled_median_1

110001.16

By	resampling,	we	have	another	estimate	of	the	population	median.	By	resampling	again
and	again,	we	will	get	many	such	estimates,	and	hence	an	empirical	distribution	of	the
estimates.

resample_2	=	our_sample.sample()

resampled_median_2	=	percentile(50,	resample_2.column('Total	

Compensation'))

resampled_median_2

110261.39999999999
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Bootstrap	Empirical	Distribution	of	the	Sample	Median¶

Let	us	define	a	function		bootstrap_median		that	takes	our	original	sample,	the	label	of	the
column	containing	the	variable,	and	the	number	of	bootstrap	samples	we	want	to	take,	and
returns	an	array	of	the	corresponding	resampled	medians.

Each	time	we	resample	and	find	the	median,	we	replicate	the	bootstrap	process.	So	the
number	of	bootstrap	samples	will	be	called	the	number	of	replications.

def	bootstrap_median(original_sample,	label,	replications):

				"""Returns	an	array	of	bootstrapped	sample	medians:

				original_sample:	table	containing	the	original	sample

				label:	label	of	column	containing	the	variable

				replications:	number	of	bootstrap	samples

				"""

				just_one_column	=	original_sample.select(label)

				medians	=	make_array()

				for	i	in	np.arange(replications):

								bootstrap_sample	=	just_one_column.sample()

								resampled_median	=	percentile(50,	

bootstrap_sample.column(0))

								medians	=	np.append(medians,	resampled_median)

				return	medians

We	now	replicate	the	bootstrap	process	5,000	times.	The	array		bstrap_medians		contains	the
medians	of	all	5,000	bootstrap	samples.	Notice	that	the	code	takes	longer	to	run	than	our
previous	code.	It	has	a	lot	of	resampling	to	do!

bstrap_medians	=	bootstrap_median(our_sample,	'Total	

Compensation',	5000)

Here	is	the	histogram	of	the	5000	medians.	The	red	dot	is	the	population	parameter:	it	is	the
median	of	the	entire	population,	which	we	happen	to	know	but	did	not	use	in	the	bootstrap
process.
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resampled_medians	=	Table().with_column('Bootstrap	Sample	

Median',	bstrap_medians)

#median_bins=np.arange(100000,	130000,	2500)

#resampled_medians.hist(bins	=	median_bins)

resampled_medians.hist()

plots.scatter(pop_median,	0,	color='red',	s=30);

It	is	important	to	remember	that	the	red	dot	is	fixed:	it	is	$110,305.79,	the	population	median.
The	empirical	histogram	is	the	result	of	random	draws,	and	will	be	situated	randomly	relative
to	the	red	dot.

Remember	also	that	the	point	of	all	these	computations	is	to	estimate	the	population
median,	which	is	the	red	dot.	Our	estimates	are	all	the	randomly	generated	sampled
medians	whose	histogram	you	see	above.	We	want	those	estimates	to	contain	the
parameter	–	it	they	don't,	then	they	are	off.

Do	the	Estimates	Capture	the	Parameter?¶

How	often	does	the	empirical	histogram	of	the	resampled	medians	sit	firmly	over	the	red	dot,
and	not	just	brush	the	dot	with	its	tails?	To	answer	this,	we	must	define	"sit	firmly".	Let's	take
that	to	mean	"the	middle	95%	of	the	resampled	medians	contains	the	red	dot".

Here	are	the	two	ends	of	the	"middle	95%"	interval	of	resampled	medians:
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left	=	percentile(2.5,	bstrap_medians)

left

107652.71000000001

right	=	percentile(97.5,	bstrap_medians)

right

119256.73

The	population	median	of	$110,305	is	between	these	two	numbers.	The	interval	and	the
population	median	are	shown	on	the	histogram	below.

#median_bins=np.arange(100000,	130000,	2500)

#resampled_medians.hist(bins	=	median_bins)

resampled_medians.hist()

plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=3,	zorder=1)

plots.scatter(pop_median,	0,	color='red',	s=30,	zorder=2);

The	"middle	95%"	interval	of	estimates	captured	the	parameter	in	our	example.	But	was	that
a	fluke?
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To	see	how	frequently	the	interval	contains	the	parameter,	we	have	to	run	the	entire	process
over	and	over	again.	Specifically,	we	will	repeat	the	following	process	100	times:

Draw	an	original	sample	of	size	500	from	the	population.
Carry	out	5,000	replications	of	the	bootstrap	process	and	generate	the	"middle	95%"
interval	of	resampled	medians.

We	will	end	up	with	100	intervals,	and	count	how	many	of	them	contain	the	population
median.

Spoiler	alert:	The	statistical	theory	of	the	bootstrap	says	that	the	number	should	be	around
95.	It	may	be	in	the	low	90s	or	high	90s,	but	not	much	farther	off	95	than	that.

#	THE	BIG	SIMULATION:	This	one	takes	several	minutes.

#	Generate	100	intervals,	in	the	table	intervals

left_ends	=	make_array()

right_ends	=	make_array()

total_comps	=	sf2015.select('Total	Compensation')

for	i	in	np.arange(100):

				first_sample	=	total_comps.sample(500,	

with_replacement=False)

				medians	=	bootstrap_median(first_sample,	'Total	

Compensation',	5000)

				left_ends	=	np.append(left_ends,	percentile(2.5,	medians))

				right_ends	=	np.append(right_ends,	percentile(97.5,	

medians))

intervals	=	Table().with_columns(

				'Left',	left_ends,

				'Right',	right_ends

)				

For	each	of	the	100	replications,	we	get	one	interval	of	estimates	of	the	median.

intervals
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Left Right

100547 115112

98788.4 112129

107981 121218

100965 114796

102596 112056

105386 113909

105225 116918

102844 116712

106584 118054

108451 118421

...	(90	rows	omitted)

The	good	intervals	are	those	that	contain	the	parameter	we	are	trying	to	estimate.	Typically
the	parameter	is	unknown,	but	in	this	section	we	happen	to	know	what	the	parameter	is.

pop_median

110305.78999999999

How	many	of	the	100	intervals	contain	the	population	median?	That's	the	number	of
intervals	where	the	left	end	is	below	the	population	median	and	the	right	end	is	above.

intervals.where('Left',	are.below(pop_median)).where('Right',	

are.above(pop_median)).num_rows

95

It	takes	a	few	minutes	to	construct	all	the	intervals,	but	try	it	again	if	you	have	the	patience.
Most	likely,	about	95	of	the	100	intervals	will	be	good	ones:	they	will	contain	the	parameter.

It's	hard	to	show	you	all	the	intervals	on	the	horizontal	axis	as	they	have	large	overlaps	–
after	all,	they	are	all	trying	to	estimate	the	same	parameter.	The	graphic	below	shows	each
interval	on	the	same	axes	by	stacking	them	vertically.	The	vertical	axis	is	simply	the	number
of	the	replication	from	which	the	interval	was	generated.
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The	red	line	is	where	the	parameter	is.	Good	intervals	cover	the	parameter;	there	are	about
95	of	these,	typically.

If	an	interval	doesn't	cover	the	parameter,	it's	a	dud.	The	duds	are	the	ones	where	you	can
see	"daylight"	around	the	red	line.	There	are	very	few	of	them	–	about	5,	typically	–	but	they
do	happen.

Any	method	based	on	sampling	has	the	possibility	of	being	off.	The	beauty	of	methods
based	on	random	sampling	is	that	we	can	quantify	how	often	they	are	likely	to	be	off.

To	summarize	what	the	simulation	shows,	suppose	you	are	estimating	the	population
median	by	the	following	process:

Draw	a	large	random	sample	from	the	population.
Bootstrap	your	random	sample	and	get	an	estimate	from	the	new	random	sample.
Repeat	the	above	step	thousands	of	times,	and	get	thousands	of	estimates.
Pick	off	the	"middle	95%"	interval	of	all	the	estimates.
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That	gives	you	one	interval	of	estimates.	Now	if	you	repeat	the	entire	process	100	times,
ending	up	with	100	intervals,	then	about	95	of	those	100	intervals	will	contain	the	population
parameter.

In	other	words,	this	process	of	estimation	captures	the	parameter	about	95%	of	the	time.

You	can	replace	95%	by	a	different	value,	as	long	as	it's	not	100.	Suppose	you	replace	95%
by	80%	and	keep	the	sample	size	fixed	at	500.	Then	your	intervals	of	estimates	will	be
shorter	than	those	we	simulated	here,	because	the	"middle	80%"	is	a	smaller	range	than	the
"middle	95%".	Only	about	80%	of	your	intervals	will	contain	the	parameter.
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Interact

Confidence	Intervals¶

We	have	developed	a	method	for	estimating	a	parameter	by	using	random	sampling	and	the
bootstrap.	Our	method	produces	an	interval	of	estimates,	to	account	for	chance	variability	in
the	random	sample.	By	providing	an	interval	of	estimates	instead	of	just	one	estimate,	we
give	ourselves	some	wiggle	room.

In	the	previous	example	we	saw	that	our	process	of	estimation	produced	a	good	interval
about	95%	of	the	time,	a	"good"	interval	being	one	that	contains	the	parameter.	We	say	that
we	are	95%	confident	that	the	process	results	in	a	good	interval.	Our	interval	of	estimates	is
called	a	95%	confidence	interval	for	the	parameter,	and	95%	is	called	the	confidence	level	of
the	interval.

The	situation	in	the	previous	example	was	a	bit	unusual.	Because	we	happened	to	know
value	of	the	parameter,	we	were	able	to	check	whether	an	interval	was	good	or	a	dud,	and
this	in	turn	helped	us	to	see	that	our	process	of	estimation	captured	the	parameter	about	95
out	of	every	100	times	we	used	it.

But	usually,	data	scientists	don't	know	the	value	of	the	parameter.	That	is	the	reason	they
want	to	estimate	it	in	the	first	place.	In	such	situations,	they	provide	an	interval	of	estimates
for	the	unknown	parameter	by	using	methods	like	the	one	we	have	developed.	Because	of
statistical	theory	and	demonstrations	like	the	one	we	have	seen,	data	scientists	can	be
confident	that	their	process	of	generating	the	interval	results	in	a	good	interval	a	known
percent	of	the	time.

Confidence	Interval	for	a	Population	Median:	Bootstrap
Percentile	Method¶

We	will	now	use	the	bootstrap	method	to	estimate	an	unknown	population	median.	The	data
come	from	a	sample	of	newborns	in	a	large	hospital	system;	we	will	treat	it	as	if	it	were	a
simple	random	sample	though	the	sampling	was	done	in	multiple	stages.	Stat	Labs	by
Deborah	Nolan	and	Terry	Speed	has	details	about	a	larger	dataset	from	which	this	set	is
drawn.

The	table		baby		contains	the	following	variables	for	mother-baby	pairs:	the	baby's	birth
weight	in	ounces,	the	number	of	gestational	days,	the	mother's	age	in	completed	years,	the
mother's	height	in	inches,	pregnancy	weight	in	pounds,	and	whether	or	not	the	mother
smoked	during	pregnancy.

baby	=	Table.read_table('baby.csv')
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baby

Birth
Weight

Gestational
Days

Maternal
Age

Maternal
Height

Maternal
Pregnancy
Weight

Maternal
Smoker

120 284 27 62 100 False

113 282 33 64 135 False

128 279 28 64 115 True

108 282 23 67 125 True

136 286 25 62 93 False

138 244 33 62 178 False

132 245 23 65 140 False

120 289 25 62 125 False

143 299 30 66 136 True

140 351 27 68 120 False

...	(1164	rows	omitted)

Birth	weight	is	an	important	factor	in	the	health	of	a	newborn	infant	–	smaller	babies	tend	to
need	more	medical	care	in	their	first	days	than	larger	newborns.	It	is	therefore	helpful	to
have	an	estimate	of	birth	weight	before	the	baby	is	born.	One	way	to	do	this	is	to	examine
the	relationship	between	birth	weight	and	the	number	of	gestational	days.

A	simple	measure	of	this	relationship	is	the	ratio	of	birth	weight	to	the	number	of	gestational
days.	The	table		ratios		contains	the	first	two	columns	of		baby	,	as	well	as	a	column	of	the
ratios.	The	first	entry	in	that	column	was	calcualted	as	follows:

ratios	=	baby.select('Birth	Weight',	'Gestational	

Days').with_column(

				'Ratio	BW/GD',	baby.column('Birth	

Weight')/baby.column('Gestational	Days')

)

ratios
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Birth	Weight Gestational	Days Ratio	BW/GD

120 284 0.422535

113 282 0.400709

128 279 0.458781

108 282 0.382979

136 286 0.475524

138 244 0.565574

132 245 0.538776

120 289 0.415225

143 299 0.478261

140 351 0.39886

...	(1164	rows	omitted)

Here	is	a	histogram	of	the	ratios.

ratios.select('Ratio	BW/GD').hist()

At	first	glance	the	histogram	looks	quite	symmetric,	with	the	density	at	its	maximum	over	the
interval	4	ounces	per	day	to	4.5	ounces	per	day.	But	a	closer	look	reveals	that	some	of	the
ratios	were	quite	large	by	comparison.	The	maximum	value	of	the	ratios	was	just	over	0.78
ounces	per	day,	almost	double	the	typical	value.

ratios.sort('Ratio	BW/GD',	descending=True).take(0)
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Birth	Weight Gestational	Days Ratio	BW/GD

116 148 0.783784

The	median	gives	a	sense	of	the	typical	ratio	because	it	is	unaffected	by	the	very	large	or
very	small	ratios.	The	median	ratio	in	the	sample	is	about	0.429	ounces	per	day.

np.median(ratios.column(2))

0.42907801418439717

But	what	was	the	median	in	the	population?	We	don't	know,	so	we	will	estimate	it.

Our	method	will	be	exactly	the	same	as	in	the	previous	section.	We	will	bootstrap	the
sample	5,000	times	resulting	in	5,000	estimates	of	the	median.	Our	95%	confidence	interval
will	be	the	"middle	95%"	of	all	of	our	estimates.

Recall	the	function		bootstrap_median		defined	in	the	previous	section.	We	will	call	this
function	and	construct	a	95%	confidence	interval	for	the	median	ratio	in	the	population.
Remember	that	the	table		ratios		contains	the	relevant	data	from	our	original	sample.

def	bootstrap_median(original_sample,	label,	replications):

				"""Returns	an	array	of	bootstrapped	sample	medians:

				original_sample:	table	containing	the	original	sample

				label:	label	of	column	containing	the	variable

				replications:	number	of	bootstrap	samples

				"""

				just_one_column	=	original_sample.select(label)

				medians	=	make_array()

				for	i	in	np.arange(replications):

								bootstrap_sample	=	just_one_column.sample()

								resampled_median	=	percentile(50,	

bootstrap_sample.column(0))

								medians	=	np.append(medians,	resampled_median)

				return	medians
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#	Generate	the	medians	from	5000	bootstrap	samples

bstrap_medians	=	bootstrap_median(ratios,	'Ratio	BW/GD',	5000)

#	Get	the	endpoints	of	the	95%	confidence	interval

left	=	percentile(2.5,	bstrap_medians)

right	=	percentile(97.5,	bstrap_medians)

make_array(left,	right)

array([	0.42545455,		0.43262411])

The	95%	confidence	interval	goes	form	about	0.425	ounces	per	day	to	about	0.433	ounces
per	day.	We	are	estimating	the	the	median	"birth	weight	to	gestational	days"	ratio	in	the
population	is	somewhere	in	the	interval	0.425	ounces	per	day	to	0.433	ounces	per	day.

The	estimate	of	0.429	based	on	the	original	sample	happens	to	be	exactly	half-way	in
between	the	two	ends	of	the	interval,	though	that	need	not	be	true	in	general.

To	visualize	our	results,	let	us	draw	the	empirical	histogram	of	our	bootstrapped	medians
and	place	the	confidence	interval	on	the	horizontal	axis.

resampled_medians	=	Table().with_column(

				'Bootstrap	Sample	Median',	bstrap_medians

)

resampled_medians.hist(bins=15)

plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=8);
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This	histogram	and	interval	resembles	those	we	drew	in	the	previous	section,	with	one	big
difference	–	there	is	no	red	dot	showing	where	the	parameter	is.	We	don't	know	where	that
dot	should	be,	or	whether	it	is	even	in	the	interval.

We	just	have	an	interval	of	estimates.	It	is	a	95%	confidence	interval	of	estimates,	because
the	process	that	generates	it	produces	a	good	interval	about	95%	of	the	time.	That	certainly
beats	guessing	at	random!

Keep	in	mind	that	this	interval	is	an	approximate	95%	confidence	interval.	There	are	many
approximations	involved	in	its	computation.	The	approximation	is	not	bad,	but	it	is	not	exact.

Confidence	Interval	for	a	Population	Mean:	Bootstrap
Percentile	Method¶

What	we	have	done	for	medians	can	be	done	for	means	as	well.	Suppose	we	want	to
estimate	the	average	age	of	the	mothers	in	the	population.	A	natural	estimate	is	the	average
age	of	the	mothers	in	the	sample.	Here	is	the	distribution	of	their	ages,	and	their	average
age	which	was	about	27.2	years.

baby.select('Maternal	Age').hist()
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np.mean(baby.column('Maternal	Age'))

27.228279386712096

What	was	the	average	age	of	the	mothers	in	the	population?	We	don't	know	the	value	of	this
parameter.

Let's	estimate	the	unknown	parameter	by	the	bootstrap	method.	To	do	this,	we	will	edit	the
code	for		bootstrap_median		to	instead	define	the	function		bootstrap_mean	.	The	code	is	the
same	except	that	the	statistics	are	means	instead	of	medians,	and	are	collected	in	an	array
called		means		instead	of		medians	
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def	bootstrap_mean(original_sample,	label,	replications):

				"""Returns	an	array	of	bootstrapped	sample	means:

				original_sample:	table	containing	the	original	sample

				label:	label	of	column	containing	the	variable

				replications:	number	of	bootstrap	samples

				"""

				just_one_column	=	original_sample.select(label)

				means	=	make_array()

				for	i	in	np.arange(replications):

								bootstrap_sample	=	just_one_column.sample()

								resampled_mean	=	np.mean(bootstrap_sample.column(0))

								means	=	np.append(means,	resampled_mean)

				return	means

#	Generate	the	means	from	5000	bootstrap	samples

bstrap_means	=	bootstrap_mean(baby,	'Maternal	Age',	5000)

#	Get	the	endpoints	of	the	95%	confidence	interval

left	=	percentile(2.5,	bstrap_means)

right	=	percentile(97.5,	bstrap_means)

make_array(left,	right)

array([	26.89778535,		27.55962521])

The	95%	confidence	interval	goes	from	about	26.9	years	to	about	27.6	years.	That	is,	we
are	estimating	that	the	average	age	of	the	mothers	in	the	population	is	somewhere	in	the
interval	26.9	years	to	27.6	years.

Notice	how	close	the	two	ends	are	to	the	average	of	about	27.2	years	in	the	original	sample.
The	sample	size	is	very	large	–	1,174	mothers	–	and	so	the	sample	averages	don't	vary
much.	We	will	explore	this	observation	further	in	the	next	chapter.

The	empirical	histogram	of	the	5,000	bootstrapped	means	is	shown	below,	along	with	the
95%	confidence	interval	for	the	population	mean.
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resampled_means	=	Table().with_column(

				'Bootstrap	Sample	Mean',	bstrap_means

)

resampled_means.hist(bins=15)

plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=8);

Once	again,	the	average	of	the	original	sample	(27.23	years)	is	close	to	the	center	of	the
interval.	That's	not	very	surprising,	because	each	bootstrapped	sample	is	drawn	from	that
same	original	sample.	The	averages	of	the	bootstrapped	samples	are	about	symmetrically
distributed	on	either	side	of	the	average	of	the	sample	from	which	they	were	drawn.

Notice	also	that	the	empirical	histogram	of	the	resampled	means	has	roughly	a	symmetric
bell	shape,	even	though	the	histogram	of	the	sampled	ages	was	not	symmetric	at	all:

baby.select('Maternal	Age').hist()
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This	is	a	consequence	of	the	Central	Limit	Theorem	of	probability	and	statistics.	In	later
sections,	we	will	see	what	the	theorem	says.

An	80%	Confidence	Interval¶

You	can	use	the	bootstrapped	sample	means	to	construct	an	interval	of	any	level	of
confidence.	For	example,	to	construct	an	80%	confidence	interval	for	the	mean	age	in	the
population,	you	would	take	the	"middle	80%"	of	the	resampled	means.	So	you	would	want
10%	of	the	disribution	in	each	of	the	two	tails,	and	hence	the	endpoints	would	be	the	10th
and	90th	percentiles	of	the	resampled	means.

left_80	=	percentile(10,	bstrap_means)

right_80	=	percentile(90,	bstrap_means)

make_array(left_80,	right_80)

array([	27.01192504,		27.439523		])

resampled_means.hist(bins=15)

plots.plot(make_array(left_80,	right_80),	make_array(0,	0),	

color='yellow',	lw=8);
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This	80%	confidence	interval	is	much	shorter	than	the	95%	confidence	interval.	It	only	goes
from	about	27.0	years	to	about	27.4	years.	While	that's	a	tight	set	of	estimates,	you	know
that	this	process	only	produces	a	good	interval	about	80%	of	the	time.

The	earlier	process	produced	a	wider	interval	but	we	had	more	confidence	in	the	process
that	generated	it.

To	get	a	narrow	confidence	interval	at	a	high	level	of	confidence,	you'll	have	to	start	with	a
larger	sample.	We'll	see	why	in	the	next	chapter.

Confidence	Interval	for	a	Population	Proportion:	Bootstrap
Percentile	Method¶

In	the	sample,	39%	of	the	mothers	smoked	during	pregnancy.

baby.where('Maternal	Smoker',	

are.equal_to(True)).num_rows/baby.num_rows

0.3909710391822828

For	what	follows	is	useful	to	observe	that	this	proportion	can	also	be	calculated	by	an	array
operation:

smoking	=	baby.column('Maternal	Smoker')

np.count_nonzero(smoking)/len(smoking)

0.3909710391822828
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What	percent	of	mothers	in	the	population	smoked	during	pregnancy?	This	is	an	unknown
parameter	which	we	can	estimate	by	a	bootstrap	confidence	interval.	The	steps	in	the
process	are	analogous	to	those	we	took	to	estimate	the	population	mean	and	median.

We	will	start	by	defining	a	function		bootstrap_proportion		that	returns	an	array	of
bootstrapped	sampled	proportions.	Once	again,	we	will	achieve	this	by	editing	our	definition
of		bootstrap_median	.	The	only	change	in	computation	is	in	replacing	the	median	of	the
resample	by	the	proportion	of	smokers	in	it.	The	code	assumes	that	the	column	of	data
consists	of	Boolean	values.	The	other	changes	are	only	to	the	names	of	arrays,	to	help	us
read	and	understand	our	code.

def	bootstrap_proportion(original_sample,	label,	replications):

				"""Returns	an	array	of	bootstrapped	sample	proportions:

				original_sample:	table	containing	the	original	sample

				label:	label	of	column	containing	the	Boolean	variable

				replications:	number	of	bootstrap	samples

				"""

				just_one_column	=	original_sample.select(label)

				proportions	=	make_array()

				for	i	in	np.arange(replications):

								bootstrap_sample	=	just_one_column.sample()

								resample_array	=	bootstrap_sample.column(0)

								resampled_proportion	=	

np.count_nonzero(resample_array)/len(resample_array)

								proportions	=	np.append(proportions,	

resampled_proportion)

				return	proportions

Let	us	use		bootstrap_proportion		to	construct	an	approximate	95%	confidence	interval	for
the	percent	of	smokers	among	the	mothers	in	the	population.	The	code	is	analogous	to	the
corresponding	code	for	the	mean	and	median.
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#	Generate	the	proportions	from	5000	bootstrap	samples

bstrap_props	=	bootstrap_proportion(baby,	'Maternal	Smoker',	

5000)

#	Get	the	endpoints	of	the	95%	confidence	interval

left	=	percentile(2.5,	bstrap_props)

right	=	percentile(97.5,	bstrap_props)

make_array(left,	right)

array([	0.36286201,		0.41908007])

The	confidence	interval	goes	from	about	36%	to	about	42%.	The	original	sample	percent	of
39%	is	very	close	to	the	center	of	the	interval,	as	you	can	see	below.

resampled_proportions	=	Table().with_column(

				'Bootstrap	Sample	Proportion',	bstrap_props

)

resampled_proportions.hist(bins=15)

plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=8);

Care	in	Using	the	Bootsrap¶
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The	bootstrap	is	an	elegant	and	powerful	method.	Before	using	it,	it	is	important	to	keep
some	points	in	mind.

Start	with	a	large	random	sample.	If	you	don't,	the	method	might	not	work.	Its	success	is
based	on	large	random	samples	(and	hence	also	resamples	from	the	sample)
resembling	the	population.	The	Law	of	Averages	says	that	this	is	likely	to	be	true
provided	the	random	sample	is	large.

To	approximate	the	probability	distribution	of	a	statistic,	it	is	a	good	idea	to	replicate	the
resampling	procedure	as	many	times	as	possible.	A	few	thousand	replications	will	result
in	decent	approximations	to	the	distribution	of	sample	median,	especially	if	the
distribution	of	the	population	has	one	peak	and	is	not	very	asymmetric.	We	used	5,000
replications	in	our	examples	but	would	recommend	10,000	in	general.

The	bootstrap	percentile	method	works	well	for	estimating	the	population	median	or
mean	based	on	a	large	random	sample.	However,	it	has	limitations,	as	do	all	methods
of	estimation.	For	example,	it	is	not	expected	to	do	well	in	the	following	situations.

The	goal	is	to	estimate	the	minimum	or	maximum	value	in	the	population,	or	a	very
low	or	very	high	percentile,	or	parameters	that	are	greatly	influenced	by	rare
elements	of	the	population.
The	probability	distribution	of	the	statistic	is	not	roughly	bell	shaped.
The	original	sample	is	very	small,	say	less	than	10	or	15.
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def	bootstrap_median(original_sample,	label,	replications):

				"""Returns	an	array	of	bootstrapped	sample	medians:

				original_sample:	table	containing	the	original	sample

				label:	label	of	column	containing	the	variable

				replications:	number	of	bootstrap	samples

				"""

				just_one_column	=	original_sample.select(label)

				medians	=	make_array()

				for	i	in	np.arange(replications):

								bootstrap_sample	=	just_one_column.sample()

								resampled_median	=	percentile(50,	

bootstrap_sample.column(0))

								medians	=	np.append(medians,	resampled_median)

				return	medians

def	bootstrap_mean(original_sample,	label,	replications):

				"""Returns	an	array	of	bootstrapped	sample	means:

				original_sample:	table	containing	the	original	sample

				label:	label	of	column	containing	the	variable

				replications:	number	of	bootstrap	samples

				"""

				just_one_column	=	original_sample.select(label)

				means	=	make_array()

				for	i	in	np.arange(replications):

								bootstrap_sample	=	just_one_column.sample()

								resampled_mean	=	np.mean(bootstrap_sample.column(0))

								means	=	np.append(means,	resampled_mean)

				return	means
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def	bootstrap_proportion(original_sample,	label,	replications):

				"""Returns	an	array	of	bootstrapped	sample	proportions:

				original_sample:	table	containing	the	original	sample

				label:	label	of	column	containing	the	Boolean	variable

				replications:	number	of	bootstrap	samples

				"""

				just_one_column	=	original_sample.select(label)

				proportions	=	make_array()

				for	i	in	np.arange(replications):

								bootstrap_sample	=	just_one_column.sample()

								resample_array	=	bootstrap_sample.column(0)

								resampled_proportion	=	

np.count_nonzero(resample_array)/len(resample_array)

								proportions	=	np.append(proportions,	

resampled_proportion)

				return	proportions

Using	Confidence	Intervals¶

A	confidence	interval	has	a	single	purpose	–	to	estimate	an	unknown	parameter	based	on
data	in	a	random	sample.	In	the	last	section,	we	said	that	the	interval	(36%,	42%)	was	an
approximate	95%	confidence	interval	for	the	percent	of	smokers	among	mothers	in	the
population.	That	was	a	formal	way	of	saying	that	by	our	estimate,	the	percent	of	smokers
among	the	mothers	in	the	population	was	somewhere	between	36%	and	42%,	and	that	our
process	of	estimation	is	correct	about	95%	of	the	time.

It	is	important	to	resist	the	impulse	to	use	confidence	intervals	for	other	purposes.	For
example,	recall	that	we	calculated	the	interval	(26.9	years,	27.6	years)	as	an	approximate
95%	confidence	interval	for	the	average	age	of	mothers	in	the	population.	A	dismayingly
common	misuse	of	the	interval	is	to	conclude	that	about	95%	of	the	women	were	between
26.9	years	and	27.6	years	old.	You	don't	need	to	know	much	about	confidence	intervals	to
see	that	this	can't	be	right	–	you	wouldn't	expect	95%	of	mothers	to	all	be	within	a	few
months	of	each	other	in	age.	Indeed,	the	histogram	of	the	sampled	ages	shows	quite	a	bit	of
variation.

baby	=	Table.read_table('baby.csv')
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baby.select('Maternal	Age').hist()

A	small	percent	of	the	sampled	ages	are	in	the	(26.9,	27.6)	interval,	and	you	would	expect	a
similar	small	percent	in	the	population.	The	interval	just	estimates	one	number:	the	average
of	all	the	ages	in	the	population.

However,	estimating	a	parameter	by	confidence	intervals	does	have	an	important	use
besides	just	telling	us	roughly	how	big	the	parameter	is.

Using	a	Confidence	Interval	to	Test	Hypotheses¶

Our	approximate	95%	confidence	interval	for	the	average	age	in	the	population	goes	from
26.9	years	to	27.6	years.	Suppose	someone	wants	to	test	the	following	hypotheses:

Null	hypothesis.	The	average	age	in	the	population	is	30	years.

Alternative	hypothesis.	The	average	age	in	the	population	is	not	30	years.

Then,	if	you	were	using	the	5%	cutoff	for	the	P-value,	you	would	reject	the	null	hypothesis.
This	is	because	30	is	not	in	the	95%	confidence	interval	for	the	population	average.	At	the
5%	level	of	significance,	30	is	not	a	plausible	value	for	the	population	average.

This	use	of	confidence	intervals	is	the	result	of	a	duality	between	confidence	intervals	and
tests:	if	you	are	testing	whether	or	not	the	population	mean	is	a	particular	value	x,	and	you
use	the	5%	cutoff	for	the	P-value,	then	you	will	reject	the	null	hypothesis	if	x	is	not	in	your
95%	confidence	interval	for	the	mean.

This	can	be	established	by	statistical	theory.	In	practice,	it	just	boils	down	to	checking
whether	or	not	the	value	specified	in	the	null	hypothesis	lies	in	the	confidence	interval.

Using	Confidence	Intervals

380



If	you	were	using	the	1%	cutoff	for	the	P-value,	you	would	have	to	check	if	the	value
specified	in	the	null	hypothesis	lies	in	a	99%	confidence	interval	for	the	population	mean.

To	a	rough	approximation,	these	statements	are	also	true	for	population	proportions,
provided	the	sample	is	large.

While	we	now	have	a	way	of	using	confidence	intervals	to	test	a	particular	kind	of
hypothesis,	you	might	wonder	about	the	value	of	testing	whether	or	not	the	average	age	in	a
population	is	equal	to	30.	Indeed,	the	value	isn't	clear.	But	there	are	some	situations	in	which
a	test	of	this	kind	of	hypothesis	is	both	natural	and	useful.

We	will	study	this	in	the	context	of	data	that	are	a	subset	of	the	information	gathered	in	a
randomized	controlled	trial	about	treatments	for	Hodgkin's	disease.	Hodgkin's	disease	is	a
cancer	that	typically	affects	young	people.	The	disease	is	curable	but	the	treatment	can	be
very	harsh.	The	purpose	of	the	trial	was	to	come	up	with	dosage	that	would	cure	the	cancer
but	minimize	the	adverse	effects	on	the	patients.

This	table		hodgkins		contains	data	on	the	effect	that	the	treatment	had	on	the	lungs	of	22
patients.	The	columns	are:

Height	in	cm
A	measure	of	radiation	to	the	mantle	(neck,	chest,	under	arms)
A	measure	of	chemotherapy
A	score	of	the	health	of	the	lungs	at	baseline,	that	is,	at	the	start	of	the	treatment;	higher
scores	correspond	to	more	healthy	lungs
The	same	score	of	the	health	of	the	lungs,	15	months	after	treatment

hodgkins	=	Table.read_table('hodgkins.csv')

hodgkins
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height rad chemo base month15

164 679 180 160.57 87.77

168 311 180 98.24 67.62

173 388 239 129.04 133.33

157 370 168 85.41 81.28

160 468 151 67.94 79.26

170 341 96 150.51 80.97

163 453 134 129.88 69.24

175 529 264 87.45 56.48

185 392 240 149.84 106.99

178 479 216 92.24 73.43

...	(12	rows	omitted)

We	will	compare	the	baseline	and	15-month	scores.	As	each	row	corresponds	to	one
patient,	we	say	that	the	sample	of	baseline	scores	and	the	sample	of	15-month	scores	are
paired	-	they	are	not	just	two	sets	of	22	values	each,	but	22	pairs	of	values,	one	for	each
patient.

At	a	glance,	you	can	see	that	the	15-month	scores	tend	to	be	lower	than	the	baseline	scores
–	the	sampled	patients'	lungs	seem	to	be	doing	worse	15	months	after	the	treatment.	This	is
confirmed	by	the	mostly	positive	values	in	the	column		drop	,	the	amount	by	which	the	score
dropped	from	baseline	to	15	months.

hodgkins	=	hodgkins.with_column(

				'drop',	hodgkins.column('base')	-	hodgkins.column('month15')

)

hodgkins
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height rad chemo base month15 drop

164 679 180 160.57 87.77 72.8

168 311 180 98.24 67.62 30.62

173 388 239 129.04 133.33 -4.29

157 370 168 85.41 81.28 4.13

160 468 151 67.94 79.26 -11.32

170 341 96 150.51 80.97 69.54

163 453 134 129.88 69.24 60.64

175 529 264 87.45 56.48 30.97

185 392 240 149.84 106.99 42.85

178 479 216 92.24 73.43 18.81

...	(12	rows	omitted)

hodgkins.select('drop').hist(bins=np.arange(-20,	81,	20))

np.mean(hodgkins.column('drop'))

28.615909090909096

But	could	this	be	the	result	of	chance	variation?	It	really	doesn't	seem	so,	but	the	data	are
from	a	random	sample.	Could	it	be	that	in	the	entire	population	of	patients,	the	average	drop
is	just	0?
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To	answer	this,	we	can	set	up	two	hypotheses:

Null	hypothesis.	In	the	population,	the	average	drop	is	0.

Alternative	hypothesis.	In	the	population,	the	average	drop	is	not	0.

To	test	this	hypothesis	with	a	1%	cutoff	for	the	P-value,	let's	construct	an	approximate	99%
confidence	interval	for	the	average	drop	in	the	population.

bstrap_means	=	bootstrap_mean(hodgkins,	'drop',	10000)

left	=	percentile(0.5,	bstrap_means)

right	=	percentile(99.5,	bstrap_means)

make_array(left,	right)

array([	17.25045455,		40.60136364])

resampled_means	=	Table().with_column(

				'Bootstrap	Sample	Mean',	bstrap_means

)

resampled_means.hist()

plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=8);

The	99%	confidence	interval	for	the	average	drop	in	the	population	goes	from	about	17	to
about	40.	The	interval	doesn't	contain	0.	So	we	reject	the	null	hypothesis.
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But	notice	that	we	have	done	better	than	simply	concluding	that	the	average	drop	in	the
population	isn't	0.	We	have	estimated	how	big	the	average	drop	is.	That's	a	more	useful
result	than	just	saying,	"It's	not	0."

A	note	on	accuracy.	Our	confidence	interval	is	quite	wide,	for	two	main	reasons:

The	confidence	level	is	high	(99%).
The	sample	size	is	relatively	small	compared	to	those	in	our	earlier	examples.

In	the	next	chapter,	we	will	examine	how	the	sample	size	affects	accuracy.	We	will	also
examine	how	the	empirical	distributions	of	sample	means	so	often	come	out	bell	shaped
even	though	the	distributions	of	the	underlying	data	are	not	bell	shaped	at	all.

Endnote¶

The	terminology	of	a	field	usually	comes	from	the	leading	researchers	in	that	field.	Brad
Efron,	who	first	proposed	the	bootstrap	technique,	used	a	term	that	has	American	origins.
Not	to	be	outdone,	Chinese	statisticians	have	proposed	their	own	method.
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Why	the	Mean	Matters¶

In	this	course	we	have	studied	several	different	statistics,	including	total	variation	distance,
the	maximum,	the	median,	and	also	the	mean.	Under	clear	assumptions	about	randomness,
we	have	drawn	empirical	distributions	of	all	of	these	statistics.	Some,	like	the	maximum	and
the	total	variation	distance,	have	distributions	that	are	clearly	skewed	in	one	direction	or	the
other.	But	the	empirical	distribution	of	the	sample	mean	has	almost	always	turned	out	close
to	bell-shaped,	regardless	of	the	population	being	studied.

If	a	property	of	random	samples	is	true	regardless	of	the	population,	it	becomes	a	powerful
tool	for	inference	because	we	rarely	know	much	about	the	data	in	the	entire	population.	The
distribution	of	the	mean	of	a	large	random	sample	falls	into	this	category	of	properties.	That
is	why	random	sample	means	are	extensively	used	in	data	science.

In	this	chapter,	we	will	study	means	and	what	we	can	say	about	them	with	only	minimal
assumptions	about	the	underlying	populations.	Question	that	we	will	address	include:

What	exactly	does	the	mean	measure?
How	close	to	the	mean	are	most	of	the	data?
How	is	the	sample	size	related	to	the	variability	of	the	sample	mean?
Why	do	empirical	distributions	of	random	sample	means	come	out	bell	shaped?
How	can	we	use	sample	means	effectively	for	inference?
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Properties	of	the	Mean¶

In	this	course,	we	have	used	the	words	"average"	and	"mean"	interchangeably,	and	will
continue	to	do	so.	The	definition	of	the	mean	will	be	familiar	to	you	from	your	high	school
days	or	even	earlier.

Definition.	The	average	or	mean	of	a	collection	of	numbers	is	the	sum	of	all	the	elements	of
the	collection,	divided	by	the	number	of	elements	in	the	collection.

The	methods		np.average		and		np.mean		return	the	mean	of	an	array.

not_symmetric	=	make_array(2,	3,	3,	9)

np.average(not_symmetric)

4.25

np.mean(not_symmetric)

4.25

Basic	Properties¶

The	definition	and	the	example	above	point	to	some	properties	of	the	mean.

It	need	not	be	an	element	of	the	collection.
It	need	not	be	an	integer	even	if	all	the	elements	of	the	collection	are	integers.
It	is	somewhere	between	the	smallest	and	largest	values	in	the	collection.
It	need	not	be	halfway	between	the	two	extremes;	it	is	not	in	general	true	that	half	the
elements	in	a	collection	are	above	the	mean.
If	the	collection	consists	of	values	of	a	variable	measured	in	specified	units,	then	the
mean	has	the	same	units	too.

We	will	now	study	some	other	properties	that	are	helpful	in	understanding	the	mean	and	its
relation	to	other	statistics.
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The	Mean	is	a	"Smoother"¶

You	can	think	of	taking	the	mean	as	an	"equalizing"	or	"smoothing"	operation.	For	example,
imagine	the	entries	in		not_symmetric		above	as	the	dollars	in	the	pockets	of	four	different
people.	To	get	the	mean,	you	first	put	all	of	the	money	into	one	big	pot	and	then	divide	it
evenly	among	the	four	people.	They	had	started	out	with	different	amounts	of	money	in	their
pockets	($2,	$3,	$3,	and	$9),	but	now	each	person	has	$4.25,	the	mean	amount.

Proportions	are	Means¶

If	a	collection	consists	only	of	ones	and	zeroes,	then	the	sum	of	the	collection	is	the	number
of	ones	in	it,	and	the	mean	of	the	collection	is	the	proportion	of	ones.

zero_one	=	make_array(1,	1,	1,	0)

sum(zero_one)

3

np.mean(zero_one)

0.75

You	can	replace	1	by	the	Boolean		True		and	0	by		False	:

np.mean(make_array(True,	True,	True,	False))

0.75

Because	proportions	are	a	special	case	of	means,	results	about	random	sample	means
apply	to	random	sample	proportions	as	well.

The	Mean	and	the	Histogram¶

The	mean	of	the	collection	{2,	3,	3,	9}	is	4.25,	which	is	not	the	"halfway	point"	of	the	data.	So
then	what	does	the	mean	measure?

To	see	this,	notice	that	the	mean	can	be	calculated	in	different	ways.
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The	last	expression	is	an	example	of	a	general	fact:	when	we	calculate	the	mean,	each
distinct	value	in	the	collection	is	weighted	by	the	proportion	of	times	it	appears	in	the
collection.

This	has	an	important	consequence.	The	mean	of	a	collection	depends	only	on	the	distinct
values	and	their	proportions,	not	on	the	number	of	elements	in	the	collection.	In	other	words,
the	mean	of	a	collection	depends	only	on	the	distribution	of	values	in	the	collection.

Therefore,	if	two	collections	have	the	same	distribution,	then	they	have	the	same
mean.

For	example,	here	is	another	collection	that	has	the	same	distribution	as		not_symmetric		and
hence	the	same	mean.

not_symmetric

array([2,	3,	3,	9])

same_distribution	=	make_array(2,	2,	3,	3,	3,	3,	9,	9)

np.mean(same_distribution)

4.25

The	mean	is	a	physical	attribute	of	the	histogram	of	the	distribution.	Here	is	the	histogram	of
the	distribution	of		not_symmetric		or	equivalently	the	distribution	of		same_distribution	.

Properties	of	the	Mean

389



Imagine	the	histogram	as	a	figure	made	out	of	cardboard	attached	to	a	wire	that	runs	along
the	horizontal	axis,	and	imagine	the	bars	as	weights	attached	at	the	values	2,	3,	and	9.
Suppose	you	try	to	balance	this	figure	on	a	point	on	the	wire.	If	the	point	is	near	2,	the	figure
will	tip	over	to	the	right.	If	the	point	is	near	9,	the	figure	will	tip	over	to	the	left.	Somewhere	in
between	is	the	point	where	the	figure	will	balance;	that	point	is	the	4.25,	the	mean.

The	mean	is	the	center	of	gravity	or	balance	point	of	the	histogram.

To	understand	why	that	is,	it	helps	to	know	some	physics.	The	center	of	gravity	is	calculated
exactly	as	we	calculated	the	mean,	by	using	the	distinct	values	weighted	by	their
proportions.

Because	the	mean	is	a	balance	point,	it	is	sometimes	displayed	as	a	fulcrum	or	triangle	at
the	base	of	the	histogram.

The	Mean	and	the	Median¶
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If	a	student's	score	on	a	test	is	below	average,	does	that	imply	that	the	student	is	in	the
bottom	half	of	the	class	on	that	test?

Happily	for	the	student,	the	answer	is,	"Not	necessarily."	The	reason	has	to	do	with	the
relation	between	the	average,	which	is	the	balance	point	of	the	histogram,	and	the	median,
which	is	the	"half-way	point"	of	the	data.

The	relationship	is	easy	to	see	in	a	simple	example.	Here	is	a	histogram	of	the	collection	{2,
3,	3,	4}	which	is	in	the	array		symmetric	.	The	distribution	is	symmetric	about	3.	The	mean
and	the	median	are	both	equal	to	3.

symmetric	=	make_array(2,	3,	3,	4)

np.mean(symmetric)

3.0

percentile(50,	symmetric)

3

In	general,	for	symmetric	distributions,	the	mean	and	the	median	are	equal.

What	if	the	distribution	is	not	symmetric?	Let's	compare		symmetric		and		not_symmetric	.
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The	blue	histogram	represents	the	original		symmetric		distribution.	The	gold	histogram	of
	not_symmetric		starts	out	the	same	as	the	blue	at	the	left	end,	but	its	rightmost	bar	has	slid
over	to	the	value	9.	The	brown	part	is	where	the	two	histograms	overlap.

The	median	and	mean	of	the	blue	distribution	are	both	equal	to	3.	The	median	of	the	gold
distribution	is	also	equal	to	3,	though	the	right	half	is	distributed	differently	from	the	left.

But	the	mean	of	the	gold	distribution	is	not	3:	the	gold	histogram	would	not	balance	at	3.	The
balance	point	has	shifted	to	the	right,	to	4.25.

In	the	gold	distribution,	3	out	of	4	entries	(75%)	are	below	average.	The	student	with	a	below
average	score	can	therefore	take	heart.	He	or	she	might	be	in	the	majority	of	the	class.

In	general,	if	the	histogram	has	a	tail	on	one	side	(the	formal	term	is	"skewed"),	then
the	mean	is	pulled	away	from	the	median	in	the	direction	of	the	tail.

Example¶

The	table		sf2015		contains	salary	and	benefits	data	for	San	Francisco	City	employees	in
2015.	As	before,	we	will	restrict	our	analysis	to	those	who	had	the	equivalent	of	at	least	half-
time	employment	for	the	year.

sf2015	=	

Table.read_table('san_francisco_2015.csv').where('Salaries',	

are.above(10000))

As	we	saw	earlier,	the	highest	compensation	was	above	$600,000	but	the	vast	majority	of
employees	had	compensations	below	$300,000.
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sf2015.select('Total	Compensation').hist(bins	=	np.arange(10000,	

700000,	25000))

This	histogram	is	skewed	to	the	right;	it	has	a	right-hand	tail.

The	mean	gets	pulled	away	from	the	median	in	the	direction	of	the	tail.	So	we	expect	the
mean	compensation	to	be	larger	than	the	median,	and	that	is	indeed	the	case.

compensation	=	sf2015.column('Total	Compensation')

percentile(50,	compensation)

110305.78999999999

np.mean(compensation)

114725.98411824222

Distributions	of	incomes	of	large	populations	tend	to	be	right	skewed.	When	the	bulk	of	a
population	has	middle	to	low	incomes,	but	a	very	small	proportion	has	very	high	incomes,
the	histogram	has	a	long,	thin	tail	to	the	right.

The	mean	income	is	affected	by	this	tail:	the	farther	the	tail	stretches	to	the	right,	the	larger
the	mean	becomes.	But	the	median	is	not	affected	by	values	at	the	extremes	of	the
distribution.	That	is	why	economists	often	summarize	income	distributions	by	the	median
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instead	of	the	mean.
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Interact

Variability¶

The	mean	tells	us	where	a	histogram	balances.	But	in	almost	every	histogram	we	have
seen,	the	values	spread	out	on	both	sides	of	the	mean.	How	far	from	the	mean	can	they	be?
To	answer	this	question,	we	will	develop	a	measure	of	variability	about	the	mean.

We	will	start	by	describing	how	to	calculate	the	measure.	Then	we	will	see	why	it	is	a	good
measure	to	calcualte.

The	Rough	Size	of	Deviations	from	Average¶

For	simplicity,	we	will	begin	our	calcuations	in	the	context	of	a	simple	array		any_numbers	
consisting	of	just	four	values.	As	you	will	see,	our	method	will	extend	easily	to	any	other
array	of	values.

any_numbers	=	make_array(1,	2,	2,	10)

The	goal	is	to	measure	roughly	how	far	off	the	numbers	are	from	their	average.	To	do	this,
we	first	need	the	average:

#	Step	1.	The	average.

mean	=	np.mean(any_numbers)

mean

3.75

Next,	let's	find	out	how	far	each	value	is	from	the	mean.	These	are	called	the	deviations
from	the	average.	A	"deviation	from	average"	is	just	a	value	minus	the	average.	The	table
	calculation_steps		displays	the	results.
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#	Step	2.	The	deviations	from	average.

deviations	=	any_numbers	-	mean

calculation_steps	=	Table().with_columns(

								'Value',	any_numbers,

								'Deviation	from	Average',	deviations

								)

calculation_steps

Value Deviation	from	Average

1 -2.75

2 -1.75

2 -1.75

10 6.25

Some	of	the	deviations	are	negative;	those	correspond	to	values	that	are	below	average.
Positive	deviations	correspond	to	above-average	values.

To	calculate	roughly	how	big	the	deviations	are,	it	is	natural	to	compute	the	mean	of	the
deviations.	But	something	interesting	happens	when	all	the	deviations	are	added	together:

sum(deviations)

0.0

The	positive	deviations	exactly	cancel	out	the	negative	ones.	This	is	true	of	all	lists	of
numbers,	no	matter	what	the	histogram	of	the	list	looks	like:	the	sum	of	the	deviations
from	average	is	zero.

Since	the	sum	of	the	deviations	is	0,	the	mean	of	the	deviations	will	be	0	as	well:

np.mean(deviations)

0.0
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Because	of	this,	the	mean	of	the	deviations	is	not	a	useful	measure	of	the	size	of	the
deviations.	What	we	really	want	to	know	is	roughly	how	big	the	deviations	are,	regardless	of
whether	they	are	positive	or	negative.	So	we	need	a	way	to	eliminate	the	signs	of	the
deviations.

There	are	two	time-honored	ways	of	losing	signs:	the	absolute	value,	and	the	square.	It
turns	out	that	taking	the	square	constructs	a	measure	with	extremely	powerful	properties,
some	of	which	we	will	study	in	this	course.

So	let's	eliminate	the	signs	by	squaring	all	the	deviations.	Then	we	will	take	the	mean	of	the
squares:

#	Step	3.	The	squared	deviations	from	average

squared_deviations	=	deviations	**	2

calculation_steps	=	calculation_steps.with_column(

			'Squared	Deviations	from	Average',	squared_deviations

				)

calculation_steps

Value Deviation	from	Average Squared	Deviations	from	Average

1 -2.75 7.5625

2 -1.75 3.0625

2 -1.75 3.0625

10 6.25 39.0625

#	Step	4.	Variance	=	the	mean	squared	deviation	from	average

variance	=	np.mean(squared_deviations)

variance

13.1875

Variance:	The	mean	squared	deviation	calculated	above	is	called	the	variance	of	the
values.

While	the	variance	does	give	us	an	idea	of	spread,	it	is	not	on	the	same	scale	as	the	original
variable	as	its	units	are	the	square	of	the	original.	This	makes	interpretation	very	difficult.
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So	we	return	to	the	original	scale	by	taking	the	positive	square	root	of	the	variance:

#	Step	5.

#	Standard	Deviation:				root	mean	squared	deviation	from	

average

#	Steps	of	calculation:			5				4						3							2													1

sd	=	variance	**	0.5

sd

3.6314597615834874

Standard	Deviation¶

The	quantity	that	we	have	just	computed	is	called	the	standard	deviation	of	the	list,	and	is
abbreviated	as	SD.	It	measures	roughly	how	far	the	numbers	on	the	list	are	from	their
average.

Definition.	The	SD	of	a	list	is	defined	as	the	root	mean	square	of	deviations	from	average.
That's	a	mouthful.	But	read	it	from	right	to	left	and	you	have	the	sequence	of	steps	in	the
calculation.

Computation.	The	five	steps	described	above	result	in	the	SD.	You	can	also	use	the
function		np.std		to	compute	the	SD	of	values	in	an	array:

np.std(any_numbers)

3.6314597615834874

Working	with	the	SD¶

To	see	what	we	can	learn	from	the	SD,	let's	move	to	a	more	interesting	dataset	than
	any_numbers	.	The	table		nba13		contains	data	on	the	players	in	the	National	Basketball
Association	(NBA)	in	2013.	For	each	player,	the	table	records	the	position	at	which	the
player	usually	played,	his	height	in	inches,	his	weight	in	pounds,	and	his	age	in	years.

nba13	=	Table.read_table('nba2013.csv')

nba13
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Name Position Height Weight Age	in	2013

DeQuan	Jones Guard 80 221 23

Darius	Miller Guard 80 235 23

Trevor	Ariza Guard 80 210 28

James	Jones Guard 80 215 32

Wesley	Johnson Guard 79 215 26

Klay	Thompson Guard 79 205 23

Thabo	Sefolosha Guard 79 215 29

Chase	Budinger Guard 79 218 25

Kevin	Martin Guard 79 185 30

Evan	Fournier Guard 79 206 20

...	(495	rows	omitted)

Here	is	a	histogram	of	the	players'	heights.

nba13.select('Height').hist(bins=np.arange(68,	88,	1))

It	is	no	surprise	that	NBA	players	are	tall!	Their	average	height	is	just	over	79	inches	(6'7"),
about	10	inches	taller	than	the	average	height	of	men	in	the	United	States.

mean_height	=	np.mean(nba13.column('Height'))

mean_height
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79.065346534653472

About	how	far	off	are	the	players'	heights	from	the	average?	This	is	measured	by	the	SD	of
the	heights,	which	is	about	3.45	inches.

sd_height	=	np.std(nba13.column('Height'))

sd_height

3.4505971830275546

The	towering	center	Hasheem	Thabeet	of	the	Oklahoma	City	Thunder	was	the	tallest	player
at	a	height	of	87	inches.

nba13.sort('Height',	descending=True).show(3)

Name Position Height Weight Age	in	2013

Hasheem	Thabeet Center 87 263 26

Roy	Hibbert Center 86 278 26

Tyson	Chandler Center 85 235 30

...	(502	rows	omitted)

Thabeet	was	about	8	inches	above	the	average	height.

87	-	mean_height

7.9346534653465284

That's	a	deviation	from	average,	and	it	is	about	2.3	times	the	standard	deviation:

(87	-	mean_height)/sd_height

2.2995015194397923

In	other	words,	the	height	of	the	tallest	player	was	about	2.3	SDs	above	average.
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At	69	inches	tall,	Isaiah	Thomas	was	one	of	the	two	shortest	NBA	players	in	2013.	His	height
was	about	2.9	SDs	below	average.

nba13.sort('Height').show(3)

Name Position Height Weight Age	in	2013

Isaiah	Thomas Guard 69 185 24

Nate	Robinson Guard 69 180 29

John	Lucas	III Guard 71 157 30

...	(502	rows	omitted)

(69	-	mean_height)/sd_height

-2.9169868288775844

What	we	have	observed	is	that	the	tallest	and	shortest	players	were	both	just	a	few	SDs
away	from	the	average	height.	This	is	an	example	of	why	the	SD	is	a	useful	measure	of
spread.	No	matter	what	the	shape	of	the	histogram,	the	average	and	the	SD	together	tell
you	a	lot	about	where	the	histogram	is	situated	on	the	number	line.

First	main	reason	for	measuring	spread	by	the	SD¶

Informal	statement.	In	all	numerical	data	sets,	the	bulk	of	the	entries	are	within	the	range
"average	 	a	few	SDs".

For	now,	resist	the	desire	to	know	exactly	what	fuzzy	words	like	"bulk"	and	"few"	mean.	We
wil	make	them	precise	later	in	this	section.	Let's	just	examine	the	statement	in	the	context	of
some	more	examples.

We	have	already	seen	that	all	of	the	heights	of	the	NBA	players	were	in	the	range	"average	
	3	SDs".

What	about	the	ages?	Here	is	a	histogram	of	the	distribution,	along	with	the	mean	and	SD	of
the	ages.

nba13.select('Age	in	2013').hist(bins=np.arange(15,	45,	1))
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ages	=	nba13.column('Age	in	2013')

mean_age	=	np.mean(ages)

sd_age	=	np.std(ages)

mean_age,	sd_age

(26.19009900990099,	4.3212004417203067)

The	average	age	was	just	over	26	years,	and	the	SD	was	about	4.3	years.

How	far	off	were	the	ages	from	the	average?	Just	as	we	did	with	the	heights,	let's	look	at	the
two	extreme	values	of	the	ages.

Juwan	Howard	was	the	oldest	player,	at	40.

nba13.sort('Age	in	2013',	descending=True).show(3)

Name Position Height Weight Age	in	2013

Juwan	Howard Forward 81 250 40

Marcus	Camby Center 83 235 39

Derek	Fisher Guard 73 210 39

...	(502	rows	omitted)

Howard's	age	was	about	3.2	SDs	above	average.

(40	-	mean_age)/sd_age
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3.1958482778922357

The	youngest	was	15-year-old	Jarvis	Varnado,	who	won	the	NBA	Championship	that	year
with	the	Miami	Heat.	His	age	was	about	2.6	SDs	below	average.

nba13.sort('Age	in	2013').show(3)

Name Position Height Weight Age	in	2013

Jarvis	Varnado Forward 81 230 15

Giannis	Antetokounmpo Forward 81 205 18

Sergey	Karasev Guard 79 197 19

...	(502	rows	omitted)

(15	-	mean_age)/sd_age

-2.5895811038670811

What	we	have	observed	for	the	heights	and	ages	is	true	in	great	generality.	For	all	lists,	the
bulk	of	the	entries	are	no	more	than	2	or	3	SDs	away	from	the	average.

Chebychev's	Bounds¶

The	Russian	mathematician	Pafnuty	Chebychev	(1821-1894)	proved	a	result	that	makes	our
rough	statements	precise.

For	all	lists,	and	all	numbers	 ,	the	proportion	of	entries	that	are	in	the	range	"average
	SDs"	is	at	least	 .

It	is	important	to	note	that	the	result	gives	a	bound,	not	an	exact	value	or	an	approximation.

What	makes	the	result	powerful	is	that	it	is	true	for	all	lists	–	all	distributions,	no	matter	how
irregular.

Specifically,	it	says	that	for	every	list:

the	proportion	in	the	range	"average	 	2	SDs"	is	at	least	1	-	1/4	=	0.75

the	proportion	in	the	range	"average	 	3	SDs"	is	at	least	1	-	1/9	 	0.89
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the	proportion	in	the	range	"average	 	4.5	SDs"	is	at	least	1	-	1/ 	 	0.95

As	we	noted	above,	Chebychev's	result	gives	a	lower	bound,	not	an	exact	answer	or	an
approximation.	For	example,	the	percent	of	entries	in	the	range	"average	 	SDs"	might
be	quite	a	bit	larger	than	75%.	But	it	cannot	be	smaller.

Standard	units¶

In	the	calculations	above,	the	quantity	 	measures	standard	units,	the	number	of	standard
deviations	above	average.

Some	values	of	standard	units	are	negative,	corresponding	to	original	values	that	are	below
average.	Other	values	of	standard	units	are	positive.	But	no	matter	what	the	distribution	of
the	list	looks	like,	Chebychev's	bounds	imply	that	standard	units	will	typically	be	in	the	(-5,	5)
range.

To	convert	a	value	to	standard	units,	first	find	how	far	it	is	from	average,	and	then	compare
that	deviation	with	the	standard	deviation.

As	we	will	see,	standard	units	are	frequently	used	in	data	analysis.	So	it	is	useful	to	define	a
function	that	converts	an	array	of	numbers	to	standard	units.

def	standard_units(numbers_array):

				"Convert	any	array	of	numbers	to	standard	units."

				return	(numbers_array	-	

np.mean(numbers_array))/np.std(numbers_array)				

Example¶

As	we	saw	in	an	earlier	section,	the	table		united		contains	a	column		Delay		consisting	of
the	departure	delay	times,	in	minutes,	of	over	thousands	of	United	Airlines	flights	in	the
summer	of	2015.	We	will	create	a	new	column	called		Delay	(Standard	Units)		by	applying
the	function		standard_units		to	the	column	of	delay	times.	This	allows	us	to	see	all	the	delay
times	in	minutes	as	well	as	their	corresponding	values	in	standard	units.
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united	=	Table.read_table('united_summer2015.csv')

united	=	united.with_column(

				'Delay	(Standard	Units)',	

standard_units(united.column('Delay'))

)

united

Date Flight	Number Destination Delay Delay	(Standard	Units)

6/1/15 73 HNL 257 6.08766

6/1/15 217 EWR 28 0.287279

6/1/15 237 STL -3 -0.497924

6/1/15 250 SAN 0 -0.421937

6/1/15 267 PHL 64 1.19913

6/1/15 273 SEA -6 -0.573912

6/1/15 278 SEA -8 -0.62457

6/1/15 292 EWR 12 -0.117987

6/1/15 300 HNL 20 0.0846461

6/1/15 317 IND -10 -0.675228

...	(13815	rows	omitted)

The	standard	units	that	we	can	see	are	consistent	with	what	we	expect	based	on
Chebychev's	bounds.	Most	are	of	quite	small	size;	only	one	is	above	6.

But	something	rather	alarming	happens	when	we	sort	the	delay	times	from	highest	to	lowest.
The	standard	units	that	we	can	see	are	extremely	high!

united.sort('Delay',	descending=True)
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Date Flight	Number Destination Delay Delay	(Standard	Units)

6/21/15 1964 SEA 580 14.269

6/22/15 300 HNL 537 13.1798

6/21/15 1149 IAD 508 12.4453

6/20/15 353 ORD 505 12.3693

8/23/15 1589 ORD 458 11.1788

7/23/15 1960 LAX 438 10.6722

6/23/15 1606 ORD 430 10.4696

6/4/15 1743 LAX 408 9.91236

6/17/15 1122 HNL 405 9.83637

7/27/15 572 ORD 385 9.32979

...	(13815	rows	omitted)

What	this	shows	is	that	it	is	possible	for	data	to	be	many	SDs	above	average	(and	for	flights
to	be	delayed	by	almost	10	hours).	The	highest	value	of	delay	is	more	than	14	in	standard
units.

However,	the	proportion	of	these	extreme	values	is	small,	and	Chebychev's	bounds	still	hold
true.	For	example,	let	us	calculate	the	percent	of	delay	times	that	are	in	the	range	"average	
	3	SDs".	This	is	the	same	as	the	percent	of	times	for	which	the	standard	units	are	in	the

range	(-3,	3).	That	is	about	98%,	as	computed	below,	consistent	with	Chebychev's	bound	of
"at	least	89%".

within_3_sd	=	united.where('Delay	(Standard	Units)',	

are.between(-3,	3))

within_3_sd.num_rows/united.num_rows

0.9790235081374322

The	histogram	of	delay	times	is	shown	below,	with	the	horizontal	axis	in	standard	units.	By
the	table	above,	the	right	hand	tail	continues	all	the	way	out	to	 	standard	units
(580	minutes).	The	area	of	the	histogram	outside	the	range	 	to	 	is	about	2%,
put	together	in	tiny	little	bits	that	are	mostly	invisible	in	the	histogram.

Variability

406



united.hist('Delay	(Standard	Units)',	bins=np.arange(-5,	15.5,	

0.5))

plots.xticks(np.arange(-6,	17,	3));
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The	SD	and	the	Normal	Curve¶

We	know	that	the	mean	is	the	balance	point	of	the	histogram.	Unlike	the	mean,	the	SD	is
usually	not	easy	to	identify	by	looking	at	the	histogram.

However,	there	is	one	shape	of	distribution	for	which	the	SD	is	almost	as	clearly	identifiable
as	the	mean.	That	is	the	bell-shaped	disribution.	This	section	examines	that	shape,	as	it
appears	frequently	in	probability	histograms	and	also	in	some	histograms	of	data.

A	Roughly	Bell-Shaped	Histogram	of	Data¶

Let	us	look	at	the	distribution	of	heights	of	mothers	in	our	familiar	sample	of	1,174	mother-
newborn	pairs.	The	mothers'	heights	have	a	mean	of	64	inches	and	an	SD	of	2.5	inches.
Unlike	the	heights	of	the	basketball	players,	the	mothers'	heights	are	distributed	fairly
symmetrically	about	the	mean	in	a	bell-shaped	curve.

baby	=	Table.read_table('baby.csv')

heights	=	baby.column('Maternal	Height')

mean_height	=	np.round(np.mean(heights),	1)

mean_height

64.0

sd_height	=	np.round(np.std(heights),	1)

sd_height

2.5

baby.hist('Maternal	Height',	bins=np.arange(55.5,	72.5,	1),	

unit='inch')

positions	=	np.arange(-3,	3.1,	1)*sd_height	+	mean_height

plots.xticks(positions);
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The	last	two	lines	of	code	in	the	cell	above	change	the	labeling	of	the	horizontal	axis.	Now,
the	labels	correspond	to	"average	 	 	SDs"	for	 ,	and	 .	Because	of	the
shape	of	the	distribution,	the	"center"	has	an	unambiguous	meaning	and	is	clearly	visible	at
64.

How	to	Spot	the	SD	on	a	Bell	Shaped	Curve¶

To	see	how	the	SD	is	related	to	the	curve,	start	at	the	top	of	the	curve	and	look	towards	the
right.	Notice	that	there	is	a	place	where	the	curve	changes	from	looking	like	an	"upside-
down	cup"	to	a	"right-way-up	cup";	formally,	the	curve	has	a	point	of	inflection.	That	point	is
one	SD	above	average.	It	is	the	point	 ,	which	is	"average	plus	1	SD"	=	66.5	inches.

Symmetrically	on	the	left-hand	side	of	the	mean,	the	point	of	inflection	is	at	 ,	that	is,
"average	minus	1	SD"	=	61.5	inches.

In	general,	for	bell-shaped	distributions,	the	SD	is	the	distance	between	the	mean	and
the	points	of	inflection	on	either	side.

The	standard	normal	curve¶

All	the	bell-shaped	histograms	that	we	have	seen	look	essentially	the	same	apart	from	the
labels	on	the	axes.	Indeed,	there	is	really	just	one	basic	curve	from	which	all	of	these	curves
can	be	drawn	just	by	relabeling	the	axes	appropriately.

To	draw	that	basic	curve,	we	will	use	the	units	into	which	we	can	convert	every	list:	standard
units.	The	resulting	curve	is	therefore	called	the	standard	normal	curve.

The	standard	normal	curve	has	an	impressive	equation.	But	for	now,	it	is	best	to	think	of	it	as
a	smoothed	outline	of	a	histogram	of	a	variable	that	has	been	measured	in	standard	units
and	has	a	bell-shaped	distribution.
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As	always	when	you	examine	a	new	histogram,	start	by	looking	at	the	horizontal	axis.	On
the	horizontal	axis	of	the	standard	normal	curve,	the	values	are	standard	units.

Here	are	some	properties	of	the	curve.	Some	are	apparent	by	observation,	and	others
require	a	considerable	amount	of	mathematics	to	establish.

The	total	area	under	the	curve	is	1.	So	you	can	think	of	it	as	a	histogram	drawn	to	the
density	scale.

The	curve	is	symmetric	about	0.	So	if	a	variable	has	this	distribution,	its	mean	and
median	are	both	0.

The	points	of	inflection	of	the	curve	are	at	-1	and	+1.

If	a	variable	has	this	distribution,	its	SD	is	1.	The	normal	curve	is	one	of	the	very	few
distributions	that	has	an	SD	so	clearly	identifiable	on	the	histogram.

Since	we	are	thinking	of	the	curve	as	a	smoothed	histogram,	we	will	want	to	represent
proportions	of	the	total	amount	of	data	by	areas	under	the	curve.

Areas	under	smooth	curves	are	often	found	by	calculus,	using	a	method	called	integration.	It
is	a	fact	of	mathematics,	however,	that	the	standard	normal	curve	cannot	be	integrated	in
any	of	the	usual	ways	of	calculus.

Therefore,	areas	under	the	curve	have	to	be	approximated.	That	is	why	almost	all	statistics
textbooks	carry	tables	of	areas	under	the	normal	curve.	It	is	also	why	all	statistical	systems,
including	a	module	of	Python,	include	methods	that	provide	excellent	approximations	to
those	areas.
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from	scipy	import	stats

The	standard	normal	"cdf"¶

The	fundamental	function	for	finding	areas	under	the	normal	curve	is		stats.norm.cdf	.	It
takes	a	numerical	argument	and	returns	all	the	area	under	the	curve	to	the	left	of	that
number.	Formally,	it	is	called	the	"cumulative	distribution	function"	of	the	standard	normal
curve.	That	rather	unwieldy	mouthful	is	abbreviated	as	cdf.

Let	us	use	this	function	to	find	the	area	to	the	left	of	 	under	the	standard	normal
curve.

The	numerical	value	of	the	shaded	area	can	be	found	by	calling		stats.norm.cdf	.

stats.norm.cdf(1)

0.84134474606854293

That's	about	84%.	We	can	now	use	the	symmetry	of	the	curve	and	the	fact	that	the	total
area	under	the	curve	is	1	to	find	other	areas.

The	area	to	the	right	of	 	is	about	100%	-	84%	=	16%.
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1	-	stats.norm.cdf(1)

0.15865525393145707

The	area	between	 	and	 	can	be	computed	in	several	different	ways.	It	is	the
gold	area	under	the	curve	below.

For	example,	we	could	calculate	the	area	as	"100%	-	two	equal	tails",	which	works	out	to
roughly	100%	-	2x16%	=	68%.

Or	we	could	note	that	the	area	between	 	and	 	is	equal	to	all	the	area	to	the
left	of	 ,	minus	all	the	area	to	the	left	of	 .

stats.norm.cdf(1)	-	stats.norm.cdf(-1)
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0.68268949213708585

By	a	similar	calculation,	we	see	that	the	area	between	 	and	2	is	about	95%.

stats.norm.cdf(2)	-	stats.norm.cdf(-2)

0.95449973610364158

In	other	words,	if	a	histogram	is	roughly	bell	shaped,	the	proportion	of	data	in	the	range
"average	 	2	SDs"	is	about	95%.

That	is	quite	a	bit	more	than	Chebychev's	lower	bound	of	75%.	Chebychev's	bound	is
weaker	because	it	has	to	work	for	all	distributions.	If	we	know	that	a	distribution	is	normal,
we	have	good	approximations	to	the	proportions,	not	just	bounds.

The	table	below	compares	what	we	know	about	all	distributions	and	about	normal
distributions.	Notice	that	when	 ,	Chebychev's	bound	is	correct	but	not	illuminating.

Percent	in
Range

All	Distributions:
Bound

Normal	Distribution:
Approximation

average	 	1	SD at	least	0% about	68%

average	 	2	SDs at	least	75% about	95%

average	 	3	SDs at	least	88.888...% about	99.73%

	

The	SD	and	the	Normal	Curve

413



The	SD	and	the	Normal	Curve

414



Interact

The	Central	Limit	Theorem¶

Very	few	of	the	data	histograms	that	we	have	seen	in	this	course	have	been	bell	shaped.
When	we	have	come	across	a	bell	shaped	distribution,	it	has	almost	invariably	been	an
empirical	histogram	of	a	statistic	based	on	a	random	sample.

The	examples	below	show	two	very	different	situations	in	which	an	approximate	bell	shape
appears	in	such	histograms.

Net	Gain	in	Roulette¶

In	an	earlier	section,	the	bell	appeared	as	the	rough	shape	of	the	total	amount	of	money	we
would	make	if	we	placed	the	same	bet	repeatedly	on	different	spins	of	a	roulette	wheel.

wheel

Pocket Color

0 green

00 green

1 red

2 black

3 red

4 black

5 red

6 black

7 red

8 black

...	(28	rows	omitted)

Recall	that	the	bet	on	red	pays	even	money,	1	to	1.	We	defined	the	function		red_winnings	
that	returns	the	net	winnings	on	one	$1	bet	on	red.	Specifically,	the	function	takes	a	color	as
its	argument	and	returns	1	if	the	color	is	red.	For	all	other	colors	it	returns	-1.
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def	red_winnings(color):

				if	color	==	'red':

								return	1

				else:

								return	-1

The	table		red		shows	each	pocket's	winnings	on	red.

red	=	wheel.with_column(

				'Winnings:	Red',	wheel.apply(red_winnings,	'Color')

				)

red

Pocket Color Winnings:	Red

0 green -1

00 green -1

1 red 1

2 black -1

3 red 1

4 black -1

5 red 1

6 black -1

7 red 1

8 black -1

...	(28	rows	omitted)

Your	net	gain	on	one	bet	is	one	random	draw	from	the		Winnings:	Red		column.	There	is	an
18/38	chance	making	$1,	and	a	20/38	chance	of	making	-$1.	This	probability	distribution	is
shown	in	the	histogram	below.

red.select('Winnings:	Red').hist(bins=np.arange(-1.5,	1.6,	1))
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Now	suppose	you	bet	many	times	on	red.	Your	net	winnings	will	be	the	sum	of	many	draws
made	at	random	with	replacement	from	the	distribution	above.

It	will	take	a	bit	of	math	to	list	all	the	possible	values	of	your	net	winnings	along	with	all	of
their	chances.	We	won't	do	that;	instead,	we	will	approximate	the	probability	distribution	by
simulation,	as	we	have	done	all	along	in	this	course.

The	code	below	simulates	your	net	gain	if	you	bet	$1	on	red	on	400	different	spins	of	the
roulette	wheel.

num_bets	=	400

repetitions	=	10000

net_gain_red	=	make_array()

for	i	in	np.arange(repetitions):

				spins	=	red.sample(num_bets)

				new_net_gain_red	=	spins.column('Winnings:	Red').sum()

				net_gain_red	=	np.append(net_gain_red,	new_net_gain_red)

results	=	Table().with_column(

				'Net	Gain	on	Red',	net_gain_red

				)

results.hist(bins=np.arange(-80,	50,	6))
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That's	a	roughly	bell	shaped	histogram,	even	though	the	distribution	we	are	drawing	from	is
nowhere	near	bell	shaped.

Center.	The	distribution	is	centered	near	-$20,	roughly.	To	see	why,	note	that	your	winnings
will	be	$1	on	about	18/38	of	the	bets,	and	-$1	on	the	remaining	20/38.	So	your	average
winnings	per	dollar	bet	will	be	roughly	-5.26	cents:

average_per_bet	=	1*(18/38)	+	(-1)*(20/38)

average_per_bet

-0.05263157894736842

So	in	400	bets	you	expect	that	your	net	gain	will	be	about	-$21:

400	*	average_per_bet

-21.052631578947366

For	confirmation,	we	can	compute	the	mean	of	the	10,000	simulated	net	gains:

np.mean(results.column(0))

-20.8992
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Spread.	Run	your	eye	along	the	curve	starting	at	the	center	and	notice	that	the	point	of
inflection	is	near	0.	On	a	bell	shaped	curve,	the	SD	is	the	distance	from	the	center	to	a	point
of	inflection.	The	center	is	roughly	-$20,	which	means	that	the	SD	of	the	distribution	is
around	$20.

In	the	next	section	we	will	see	where	the	$20	comes	from.	For	now,	let's	confirm	our
observation	by	simply	calculating	the	SD	of	the	10,000	simulated	net	gains:

np.std(results.column(0))

20.043159415621083

Summary.	The	net	gain	in	400	bets	is	the	sum	of	the	400	amounts	won	on	each	individual
bet.	The	probability	distribution	of	that	sum	is	approximately	normal,	with	an	average	and	an
SD	that	we	can	approximate.

Average	Flight	Delay¶

The	table		united		contains	data	on	departure	delays	of	13,825	United	Airlines	domestic
flights	out	of	San	Francisco	airport	in	the	summer	of	2015.	As	we	have	seen	before,	the
distribution	of	delays	has	a	long	right-hand	tail.

united	=	Table.read_table('united_summer2015.csv')

united.select('Delay').hist(bins=np.arange(-20,	300,	10))
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The	mean	delay	was	about	16.6	minutes	and	the	SD	was	about	39.5	minutes.	Notice	how
large	the	SD	is,	compared	to	the	mean.	Those	large	deviations	on	the	right	have	an	effect,
even	though	they	are	a	very	small	proportion	of	the	data.

mean_delay	=	np.mean(united.column('Delay'))

sd_delay	=	np.std(united.column('Delay'))

mean_delay,	sd_delay

(16.658155515370705,	39.480199851609314)

Now	suppose	we	sampled	400	delays	at	random	with	replacement.	You	could	sample
without	replacement	if	you	like,	but	the	results	would	be	very	similar	to	with-replacement
sampling.	If	you	sample	a	few	hundred	out	of	13,825	without	replacement,	you	hardly
change	the	population	each	time	you	pull	out	a	value.

In	the	sample,	what	could	the	average	delay	be?	We	expect	it	to	be	around	16	or	17,
because	that's	the	population	average;	but	it	is	likely	to	be	somewhat	off.	Let's	see	what	we
get	by	sampling.	We'll	work	with	the	table		delay		that	only	contains	the	column	of	delays.

delay	=	united.select('Delay')

np.mean(delay.sample(400).column('Delay'))

16.68

The	sample	average	varies	according	to	how	the	sample	comes	out,	so	we	will	simulate	the
sampling	process	repeatedly	and	draw	the	empirical	histogram	of	the	sample	average.	That
will	be	an	approximation	to	the	probability	histogram	of	the	sample	average.
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sample_size	=	400

repetitions	=	10000

means	=	make_array()

for	i	in	np.arange(repetitions):

				sample	=	delay.sample(sample_size)

				new_mean	=	np.mean(sample.column('Delay'))

				means	=	np.append(means,	new_mean)

results	=	Table().with_column(

				'Sample	Mean',	means

)

results.hist(bins=np.arange(10,	25,	0.5))

Once	again,	we	see	a	rough	bell	shape,	even	though	we	are	drawing	from	a	very	skewed
distribution.	The	bell	is	centered	somewhere	between	16	ad	17,	as	we	expect.

Central	Limit	Theorem¶

The	reason	why	the	bell	shape	appears	in	such	settings	is	a	remarkable	result	of	probability
theory	called	the	Central	Limit	Theorem.

The	Central	Limit	Theorem	says	that	the	probability	distribution	of	the	sum	or	average
of	a	large	random	sample	drawn	with	replacement	will	be	roughly	normal,	regardless
of	the	distribution	of	the	population	from	which	the	sample	is	drawn.
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As	we	noted	when	we	were	studying	Chebychev's	bounds,	results	that	can	be	applied	to
random	samples	regardless	of	the	distribution	of	the	population	are	very	powerful,	because
in	data	science	we	rarely	know	the	distribution	of	the	population.

The	Central	Limit	Theorem	makes	it	possible	to	make	inferences	with	very	little	knowledge
about	the	population,	provided	we	have	a	large	random	sample.	That	is	why	it	is	central	to
the	field	of	statistical	inference.

Proportion	of	Purple	Flowers¶

Recall	Mendel's	probability	model	for	the	colors	of	the	flowers	of	a	species	of	pea	plant.	The
model	says	that	the	flower	colors	of	the	plants	are	like	draws	made	at	random	with
replacement	from	{Purple,	Purple,	Purple,	White}.

In	a	large	sample	of	plants,	about	what	proportion	will	have	purple	flowers?	We	would
expect	the	answer	to	be	about	0.75,	the	proportion	purple	in	the	model.	And,	because
proportions	are	means,	the	Central	Limit	Theorem	says	that	the	distribution	of	the	sample
proportion	of	purple	plants	is	roughly	normal.

We	can	confirm	this	by	simulation.	Let's	simulate	the	proportion	of	purple-flowered	plants	in
a	sample	of	200	plants.

colors	=	make_array('Purple',	'Purple',	'Purple',	'White')

model	=	Table().with_column('Color',	colors)

model

Color

Purple

Purple

Purple

White
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props	=	make_array()

num_plants	=	200

repetitions	=	10000

for	i	in	np.arange(repetitions):

				sample	=	model.sample(num_plants)

				new_prop	=	np.count_nonzero(sample.column('Color')	==	

'Purple')/num_plants

				props	=	np.append(props,	new_prop)

results	=	Table().with_column('Sample	Proportion:	200',	props)

results.hist(bins=np.arange(0.65,	0.85,	0.01))

There's	that	normal	curve	again,	as	predicted	by	the	Central	Limit	Theorem,	centered	at
around	0.75	just	as	you	would	expect.

How	would	this	distribution	change	if	we	increased	the	sample	size?	Let's	run	the	code
again	with	a	sample	size	of	800,	and	collect	the	results	of	simulations	in	the	same	table	in
which	we	collected	simulations	based	on	a	sample	size	of	200.	We	will	keep	the	number	of
	repetitions		the	same	as	before	so	that	the	two	columns	have	the	same	length.
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props2	=	make_array()

num_plants	=	800

for	i	in	np.arange(repetitions):

				sample	=	model.sample(num_plants)

				new_prop	=	np.count_nonzero(sample.column('Color')	==	

'Purple')/num_plants

				props2	=	np.append(props2,	new_prop)

results	=	results.with_column('Sample	Proportion:	800',	props2)

results.hist(bins=np.arange(0.65,	0.85,	0.01))

Both	distributions	are	approximately	normal	but	one	is	narrower	than	the	other.	The
proportions	based	on	a	sample	size	of	800	are	more	tightly	clustered	around	0.75	than	those
from	a	sample	size	of	200.	Increasing	the	sample	size	has	decreased	the	variability	in	the
sample	proportion.

This	should	not	be	surprising.	We	have	leaned	many	times	on	the	intuition	that	a	larger
sample	size	generally	reduces	the	variability	of	a	statistic.	However,	in	the	case	of	a	sample
average,	we	can	quantify	the	relationship	between	sample	size	and	variability.

Exactly	how	does	the	sample	size	affect	the	variability	of	a	sample	average	or	proportion?
That	is	the	question	we	will	examine	in	the	next	section.
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The	Variability	of	the	Sample	Mean¶

By	the	Central	Limit	Theorem,	the	probability	distribution	of	the	mean	of	a	large	random
sample	is	roughly	normal.	The	bell	curve	is	centered	at	the	population	mean.	Some	of	the
sample	means	are	higher,	and	some	lower,	but	the	deviations	from	the	population	mean	are
roughly	symmetric	on	either	side,	as	we	have	seen	repeatedly.	Formally,	probability	theory
shows	that	the	sample	mean	is	an	unbiased	estimate	of	the	population	mean.

In	our	simulations,	we	also	noticed	that	the	means	of	larger	samples	tend	to	be	more	tightly
clustered	around	the	population	mean	than	means	of	smaller	samples.	In	this	section,	we
will	quantify	the	variability	of	the	sample	mean	and	develop	a	relation	between	the	variability
and	the	sample	size.

Let's	start	with	our	table	of	flight	delays.	The	mean	delay	is	about	16.7	minutes,	and	the
distribution	of	delays	is	skewed	to	the	right.

united	=	Table.read_table('united_summer2015.csv')

delay	=	united.select('Delay')

pop_mean	=	np.mean(delay.column('Delay'))

pop_mean

16.658155515370705
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Now	let's	take	random	samples	and	look	at	the	probability	distribution	of	the	sample	mean.
As	usual,	we	will	use	simulation	to	get	an	empirical	approximation	to	this	distribution.

We	will	define	a	function		simulate_sample_mean		to	do	this,	because	we	are	going	to	vary	the
sample	size	later.	The	arguments	are	the	name	of	the	table,	the	label	of	the	column
containing	the	variable,	the	sample	size,	and	the	number	of	simulations.

"""Empirical	distribution	of	random	sample	means"""

def	simulate_sample_mean(table,	label,	sample_size,	

repetitions):

				means	=	make_array()

				for	i	in	range(repetitions):

								new_sample	=	table.sample(sample_size)

								new_sample_mean	=	np.mean(new_sample.column(label))

								means	=	np.append(means,	new_sample_mean)

				sample_means	=	Table().with_column('Sample	Means',	means)

				#	Display	empirical	histogram	and	print	all	relevant	

quantities

				sample_means.hist(bins=20)

				plots.xlabel('Sample	Means')

				plots.title('Sample	Size	'	+	str(sample_size))

				print("Sample	size:	",	sample_size)

				print("Population	mean:",	np.mean(table.column(label)))

				print("Average	of	sample	means:	",	np.mean(means))

				print("Population	SD:",	np.std(table.column(label)))

				print("SD	of	sample	means:",	np.std(means))

Let	us	simulate	the	mean	of	a	random	sample	of	100	delays,	then	of	400	delays,	and	finally
of	625	delays.	We	will	perform	10,000	repetitions	of	each	of	these	process.	The		xlim		and
	ylim		lines	set	the	axes	consistently	in	all	the	plots	for	ease	of	comparison.	You	can	just
ignore	those	two	lines	of	code	in	each	cell.

simulate_sample_mean(delay,	'Delay',	100,	10000)

plots.xlim(5,	35)

plots.ylim(0,	0.25);
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Sample	size:		100

Population	mean:	16.6581555154

Average	of	sample	means:		16.662059

Population	SD:	39.4801998516

SD	of	sample	means:	3.90507237968

simulate_sample_mean(delay,	'Delay',	400,	10000)

plots.xlim(5,	35)

plots.ylim(0,	0.25);

Sample	size:		400

Population	mean:	16.6581555154

Average	of	sample	means:		16.67117625

Population	SD:	39.4801998516

SD	of	sample	means:	1.98326299651
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simulate_sample_mean(delay,	'Delay',	625,	10000)

plots.xlim(5,	35)

plots.ylim(0,	0.25);

Sample	size:		625

Population	mean:	16.6581555154

Average	of	sample	means:		16.68523712

Population	SD:	39.4801998516

SD	of	sample	means:	1.60089096006

You	can	see	the	Central	Limit	Theorem	in	action	–	the	histograms	of	the	sample	means	are
roughly	normal,	even	though	the	histogram	of	the	delays	themselves	is	far	from	normal.
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You	can	also	see	that	each	of	the	three	histograms	of	the	sample	means	is	centered	very
close	to	the	population	mean.	In	each	case,	the	"average	of	sample	means"	is	very	close	to
16.66	minutes,	the	population	mean.	Both	values	are	provided	in	the	printout	above	each
histogram.	As	expected,	the	sample	mean	is	an	unbiased	estimate	of	the	population	mean.

The	SD	of	All	the	Sample	Means¶

You	can	also	see	that	the	histograms	get	narrower,	and	hence	taller,	as	the	sample	size
increases.	We	have	seen	that	before,	but	now	we	will	pay	closer	attention	to	the	measure	of
spread.

The	SD	of	the	population	of	all	delays	is	about	40	minutes.

pop_sd	=	np.std(delay.column('Delay'))

pop_sd

39.480199851609314

Take	a	look	at	the	SDs	in	the	sample	mean	histograms	above.	In	all	three	of	them,	the	SD	of
the	population	of	delays	is	about	40	minutes,	because	all	the	samples	were	taken	from	the
same	population.

Now	look	at	the	SD	of	all	10,000	sample	means,	when	the	sample	size	is	100.	That	SD	is
about	one-tenth	of	the	population	SD.	When	the	sample	size	is	400,	the	SD	of	all	the	sample
means	is	about	one-twentieth	of	the	population	SD.	When	the	sample	size	is	625,	the	SD	of
the	sample	means	is	about	one-twentyfifth	of	the	population	SD.

It	seems	like	a	good	idea	to	compare	the	SD	of	the	empirical	distribution	of	the	sample
means	to	the	quantity	"population	SD	divided	by	the	square	root	of	the	sample	size."

Here	are	the	numerical	values.	For	each	sample	size	in	the	first	column,	10,000	random
samples	of	that	size	were	drawn,	and	the	10,000	sample	means	were	calculated.	The
second	column	contains	the	SD	of	those	10,000	sample	means.	The	third	column	contains
the	result	of	the	calculation	"population	SD	divided	by	the	square	root	of	the	sample	size."

The	cell	takes	a	while	to	run,	as	it's	a	large	simulation.	But	you'll	soon	see	that	it's	worth	the
wait.
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repetitions	=	10000

sample_sizes	=	np.arange(25,	626,	25)

sd_means	=	make_array()

for	n	in	sample_sizes:

				means	=	make_array()

				for	i	in	np.arange(repetitions):

								means	=	np.append(means,	

np.mean(delay.sample(n).column('Delay')))

				sd_means	=	np.append(sd_means,	np.std(means))

sd_comparison	=	Table().with_columns(

				'Sample	Size	n',	sample_sizes,

				'SD	of	10,000	Sample	Means',	sd_means,

				'pop_sd/sqrt(n)',	pop_sd/np.sqrt(sample_sizes)

)

sd_comparison

Sample	Size	n SD	of	10,000	Sample	Means pop_sd/sqrt(n)

25 7.95017 7.89604

50 5.53425 5.58334

75 4.54429 4.55878

100 3.96157 3.94802

125 3.51095 3.53122

150 3.23949 3.22354

175 3.00694 2.98442

200 2.74606 2.79167

225 2.63865 2.63201

250 2.51853 2.49695

...	(15	rows	omitted)

The	values	in	the	second	and	third	columns	are	very	close.	If	we	plot	each	of	those	columns
with	the	sample	size	on	the	horizontal	axis,	the	two	graphs	are	essentially	indistinguishable.
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sd_comparison.plot('Sample	Size	n')

There	really	are	two	curves	there.	But	they	are	so	close	to	each	other	that	it	looks	as	though
there	is	just	one.

What	we	are	seeing	is	an	instance	of	a	general	result.	Remember	that	the	graph	above	is
based	on	10,000	replications	for	each	sample	size.	But	there	are	many	more	than	10,000
samples	of	each	size.	The	probability	distribution	of	the	sample	mean	is	based	on	the	means
of	all	possible	samples	of	a	fixed	size.

Fix	a	sample	size.	If	the	samples	are	drawn	at	random	with	replacement	from	the
population,	then

This	is	the	standard	deviation	of	the	averages	of	all	the	possible	samples	that	could	be
drawn.	*It	measures	roughly	how	far	off	the	sample	means	are	from	the	population
mean.

The	Central	Limit	Theorem	for	the	Sample	Mean¶

If	you	draw	a	large	random	sample	with	replacement	from	a	population,	then,	regardless	of
the	distribution	of	the	population,	the	probability	distribution	of	the	sample	mean	is	roughly
normal,	centered	at	the	population	mean,	with	an	SD	equal	to	the	population	SD	divided	by
the	square	root	of	the	sample	size.

The	Accuracy	of	the	Sample	Mean¶
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The	SD	of	all	possible	sample	means	measures	how	variable	the	sample	mean	can	be.	As
such,	it	is	taken	as	a	measure	of	the	accuracy	of	the	sample	mean	as	an	estimate	of	the
population	mean.	The	smaller	the	SD,	the	more	accurate	the	estimate.

The	formula	shows	that:

The	population	size	doesn't	affect	the	accuracy	of	the	sample	mean.	The	population
size	doesn't	appear	anywhere	in	the	formula.
The	population	SD	is	a	constant;	it's	the	same	for	every	sample	drawn	from	the
population.	The	sample	size	can	be	varied.	Because	the	sample	size	appears	in	the
denominator,	the	variability	of	the	sample	mean	decreases	as	the	sample	size
increases,	and	hence	the	accuracy	increases.

The	Square	Root	Law¶

From	the	table	of	SD	comparisons,	you	can	see	that	the	SD	of	the	means	of	random
samples	of	25	flight	delays	is	about	8	minutes.	If	you	multiply	the	sample	size	by	4,	you'll	get
samples	of	size	100.	The	SD	of	the	means	of	all	of	those	samples	is	about	4	minutes.	That's
smaller	than	8	minutes,	but	it's	not	4	times	as	small;	it's	only	2	times	as	small.	That's
because	the	sample	size	in	the	denominator	has	a	square	root	over	it.	The	sample	size
increased	by	a	factor	of	4,	but	the	SD	went	down	by	a	factor	of	 .	In	other	words,	the
accuracy	went	up	by	a	factor	of	 .

In	general,	when	you	multiply	the	sample	size	by	a	factor,	the	accuracy	of	the	sample	mean
goes	up	by	the	square	root	of	that	factor.

So	to	increase	accuracy	by	a	factor	of	10,	you	have	to	multiply	sample	size	by	a	factor	of
100.	Accuracy	doesn't	come	cheap!
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Choosing	a	Sample	Size¶

Candidate	A	is	contesting	an	election.	A	polling	organization	wants	to	estimate	the	proportion
of	voters	who	will	vote	for	her.	Let's	suppose	that	they	plan	to	take	a	simple	random	sample
of	voters,	though	in	reality	their	method	of	sampling	would	be	more	complex.	How	can	they
decide	how	large	their	sample	should	be,	to	get	a	desired	level	of	accuracy?

We	are	now	in	a	position	to	answer	this	question,	after	making	a	few	assumptions:

The	population	of	voters	is	very	large	and	that	therefore	we	can	just	as	well	assume	that
the	random	sample	will	be	drawn	with	replacement.
The	polling	organization	will	make	its	estimate	by	constructing	an	approximate	95%
confidence	interval	for	the	percent	of	voters	who	will	vote	for	Candidate	A.
The	desired	level	of	accuracy	is	that	the	width	of	the	interval	should	be	no	more	than
1%.	That's	pretty	accurate!	For	example,	the	confidence	interval	(33.2%,	34%)	would	be
fine	but	(33.2%,	35%)	would	not.

We	will	work	with	the	sample	proportion	of	voters	for	Candidate	A.	Recall	that	a	proportion	is
a	mean,	when	the	values	in	the	population	are	only	0	(the	type	of	individual	you	are	not
counting)	or	1	(the	type	of	individual	you	are	counting).

Width	of	Confidence	Interval¶

If	we	had	a	random	sample,	we	could	go	about	using	the	bootstrap	to	construct	a	confidence
interval	for	the	percent	of	voters	for	Candidate	A.	But	we	don't	have	a	sample	yet	–	we	are
trying	to	find	out	how	big	the	sample	has	to	be	so	that	our	confidence	interval	is	as	narrow
as	we	want	it	to	be.

In	situations	like	this,	it	helps	to	see	what	theory	predicts.

The	Central	Limit	Theorem	says	that	the	probabilities	for	the	sample	proportion	are	roughly
normally	distributed,	centered	at	the	population	proportion	of	1's,	with	an	SD	equal	to	the	SD
of	the	population	of	0's	and	1's	divided	by	the	square	root	of	the	sample	size.

So	the	confidence	interval	will	still	be	the	"middle	95%"	of	a	normal	distribution,	even	though
we	can't	pick	off	the	ends	as	the	2.5th	and	97.5th	percentiles	of	bootstrapped	proportions.

Is	there	another	way	to	find	how	wide	the	interval	would	be?	Yes,	because	we	know	that	for
normally	distributed	variables,	the	interval	"center	 	2	SDs"	contains	95%	of	the	data.

The	confidence	interval	will	stretch	for	2	SDs	of	the	sample	proportion,	on	either	side	of	the
center.	So	the	width	of	the	interval	will	be	4	SDs	of	the	sample	proportion.
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We	are	willing	to	tolerate	a	width	of	1%	=	0.01.	So,	using	the	formula	developed	in	the	last
section,

So

The	SD	of	a	collection	of	0's	and	1's¶

If	we	knew	the	SD	of	the	population,	we'd	be	done.	We	could	calculate	the	square	root	of	the
sample	size,	and	then	take	the	square	to	get	the	sample	size.	But	we	don't	know	the	SD	of
the	population.	The	population	consists	of	1	for	each	voter	for	Candidate	A,	and	0	for	all
other	voters,	and	we	don't	know	what	proportion	of	each	kind	there	are.	That's	what	we're
trying	to	estimate.

So	are	we	stuck?	No,	because	we	can	bound	the	SD	of	the	population.	Here	are	histograms
of	two	such	distributions,	one	for	an	equal	proportion	of	1's	and	0's,	and	one	with	90%	1's
and	10%	0's.	Which	one	has	the	bigger	SD?

Remember	that	the	possible	values	in	the	population	are	only	0	and	1.

The	blue	histogram	(50%	1's	and	50%	0's)	has	more	spread	than	the	gold.	The	mean	is	0.5.
Half	the	deviations	from	mean	are	equal	to	0.5	and	the	other	half	equal	to	-0.5,	so	the	SD	is
0.5.

In	the	gold	histogram,	all	of	the	area	is	being	squished	up	around	1,	leading	to	less	spread.
90%	of	the	deviations	are	small:	0.1.	The	other	10%	are	-0.9	which	is	large,	but	overall	the
spread	is	smaller	than	in	the	blue	histogram.
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The	same	observation	would	hold	if	we	varied	the	proportion	of	1's	or	let	the	proportion	of	0's
be	larger	than	the	proportion	of	1's.	Let's	check	this	by	calculating	the	SDs	of	populations	of
10	elements	that	only	consist	of	0's	and	1's,	in	varying	proportions.	The	function		np.ones		is
useful	for	this.	It	takes	a	positive	integer	as	its	argument	and	returns	an	array	consisting	of
that	many	1's.

sd	=	make_array()

for	i	in	np.arange(1,	10,	1):

				#	Create	an	array	of	i	1's	and	(10-i)	0's

				population	=	np.append(np.ones(i),	1-np.ones(10-i))

				sd	=	np.append(sd,	np.std(population))

zero_one_sds	=	Table().with_columns(

				"Population	Proportion	of	1's",	np.arange(0.1,	1,	0.1),

				"Population	SD",	sd

)

zero_one_sds

Population	Proportion	of	1's Population	SD

0.1 0.3

0.2 0.4

0.3 0.458258

0.4 0.489898

0.5 0.5

0.6 0.489898

0.7 0.458258

0.8 0.4

0.9 0.3

Not	surprisingly,	the	SD	of	a	population	with	10%	1's	and	90%	0's	is	the	same	as	that	of	a
population	with	90%	1's	and	10%	0's.	That's	because	you	switch	the	bars	of	one	histogram
to	get	the	other;	there	is	no	change	in	spread.

More	importantly	for	our	purposes,	the	SD	increases	as	the	proportion	of	1's	increases,	until
the	proportion	of	1's	is	0.5;	then	it	starts	to	decrease	symmetrically.
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zero_one_sds.scatter("Population	Proportion	of	1's")

Summary:	The	SD	of	a	population	of	1's	and	0's	is	at	most	0.5.	That's	the	value	of	the	SD
when	50%	of	the	population	is	coded	1	and	the	other	50%	are	coded	0.

The	Sample	Size¶

We	know	that

and	that	the	SD	of	the	0-1	population	is	at	most	0.5,	regardless	of	the	proportion	of	1's	in	the
population.	So	it	is	safe	to	take

So	the	sample	size	should	be	at	least	 .	That's	an	enormous	sample!	But
that's	what	you	need	if	you	want	to	guarantee	great	accuracy	with	high	confidence	no	matter
what	the	population	looks	like.
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Prediction¶

An	important	aspect	of	data	science	is	to	find	out	what	data	can	tell	us	about	the	future.
What	do	data	about	climate	and	pollution	say	about	temperatures	a	few	decades	from	now?
Based	on	a	person's	internet	profile,	which	websites	are	likely	to	interest	them?	How	can	a
patient's	medical	history	be	used	to	judge	how	well	he	or	she	will	respond	to	a	treatment?

To	answer	such	questions,	data	scientists	have	developed	methods	for	making	predictions.
In	this	chapter	we	will	study	one	of	the	most	commonly	used	ways	of	predicting	the	value	of
one	variable	based	on	the	value	of	another.

The	foundations	of	the	method	were	laid	by	Sir	Francis	Galton.	As	we	saw	in	Section	7.1,
Galton	studied	how	physical	characteristics	are	passed	down	from	one	generation	to	the
next.	Among	his	best	known	work	is	the	prediction	of	the	heights	of	adults	based	on	the
heights	of	their	parents.	We	have	studied	the	dataset	that	Galton	collected	for	this.	The	table
	heights		contains	his	data	on	the	midparent	height	and	child's	height	(all	in	inches)	for	a
population	of	934	adult	"children".

#	Galton's	data	on	heights	of	parents	and	their	adult	children

galton	=	Table.read_table('galton.csv')

heights	=	Table().with_columns(

				'MidParent',	galton.column('midparentHeight'),

				'Child',	galton.column('childHeight')

				)

heights
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MidParent Child

75.43 73.2

75.43 69.2

75.43 69

75.43 69

73.66 73.5

73.66 72.5

73.66 65.5

73.66 65.5

72.06 71

72.06 68

...	(924	rows	omitted)

heights.scatter('MidParent')

The	primary	reason	for	collecting	the	data	was	to	be	able	to	predict	the	adult	height	of	a	child
born	to	parents	similar	to	those	in	the	dataset.	We	made	these	predictions	in	Section	7.1,
after	noticing	the	positive	association	between	the	two	variables.

Our	approach	was	to	base	the	prediction	on	all	the	points	that	correspond	to	a	midparent
height	of	around	the	midparent	height	of	the	new	person.	To	do	this,	we	wrote	a	function
called		predict_child		which	takes	a	midparent	height	as	its	argument	and	returns	the
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average	height	of	all	the	children	who	had	midparent	heights	within	half	an	inch	of	the
argument.

def	predict_child(mpht):

				"""Return	a	prediction	of	the	height	of	a	child	

				whose	parents	have	a	midparent	height	of	mpht.

				

				The	prediction	is	the	average	height	of	the	children	

				whose	midparent	height	is	in	the	range	mpht	plus	or	minus	

0.5	inches.

				"""

				close_points	=	heights.where('MidParent',	are.between(mpht-

0.5,	mpht	+	0.5))

				return	close_points.column('Child').mean()																								

We	applied	the	function	to	the	column	of		Midparent		heights,	visualized	our	results.

#	Apply	predict_child	to	all	the	midparent	heights

heights_with_predictions	=	heights.with_column(

				'Prediction',	heights.apply(predict_child,	'MidParent')

				)

#	Draw	the	original	scatter	plot	along	with	the	predicted	values

heights_with_predictions.scatter('MidParent')
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The	prediction	at	a	given	midparent	height	lies	roughly	at	the	center	of	the	vertical	strip	of
points	at	the	given	height.	This	method	of	prediction	is	called	regression.	Later	in	this
chapter	we	will	see	where	this	term	came	from.	We	will	also	see	whether	we	can	avoid	our
arbitrary	definitions	of	"closeness"	being	"within	0.5	inches".	But	first	we	will	develop	a
measure	that	can	be	used	in	many	settings	to	decide	how	good	one	variable	will	be	as	a
predictor	of	another.
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Correlation¶

In	this	section	we	will	develop	a	measure	of	how	tightly	clustered	a	scatter	diagram	is	about
a	straight	line.	Formally,	this	is	called	measuring	linear	association.

The	table		hybrid		contains	data	on	hybrid	passenger	cars	sold	in	the	United	States	from
1997	to	2013.	The	data	were	adapted	from	the	online	data	archive	of	Prof.	Larry	Winner	of
the	University	of	Florida.	The	columns:

	vehicle	:	model	of	the	car
	year	:	year	of	manufacture
	msrp	:	manufacturer's	suggested	retail	price	in	2013	dollars
	acceleration	:	acceleration	rate	in	km	per	hour	per	second
	mpg	:	fuel	econonmy	in	miles	per	gallon
	class	:	the	model's	class.

hybrid	=	Table.read_table('hybrid.csv')

hybrid

vehicle year msrp acceleration mpg class

Prius	(1st	Gen) 1997 24509.7 7.46 41.26 Compact

Tino 2000 35355 8.2 54.1 Compact

Prius	(2nd	Gen) 2000 26832.2 7.97 45.23 Compact

Insight 2000 18936.4 9.52 53 Two	Seater

Civic	(1st	Gen) 2001 25833.4 7.04 47.04 Compact

Insight 2001 19036.7 9.52 53 Two	Seater

Insight 2002 19137 9.71 53 Two	Seater

Alphard 2003 38084.8 8.33 40.46 Minivan

Insight 2003 19137 9.52 53 Two	Seater

Civic 2003 14071.9 8.62 41 Compact

...	(143	rows	omitted)

The	graph	below	is	a	scatter	plot	of		msrp		versus		acceleration	.	That	means		msrp		is
plotted	on	the	vertical	axis	and		accelaration		on	the	horizontal.
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hybrid.scatter('acceleration',	'msrp')

Notice	the	positive	association.	The	scatter	of	points	is	sloping	upwards,	indicating	that	cars
with	greater	acceleration	tended	to	cost	more,	on	average;	conversely,	the	cars	that	cost
more	tended	to	have	greater	acceleration	on	average.

The	scatter	diagram	of	MSRP	versus	mileage	shows	a	negative	association.	Hybrid	cars
with	higher	mileage	tended	to	cost	less,	on	average.	This	seems	surprising	till	you	consider
that	cars	that	accelerate	fast	tend	to	be	less	fuel	efficient	and	have	lower	mileage.	As	the
previous	scatter	plot	showed,	those	were	also	the	cars	that	tended	to	cost	more.

hybrid.scatter('mpg',	'msrp')
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Along	with	the	negative	association,	the	scatter	diagram	of	price	versus	efficiency	shows	a
non-linear	relation	between	the	two	variables.	The	points	appear	to	be	clustered	around	a
curve,	not	around	a	straight	line.

If	we	restrict	the	data	just	to	the	SUV	class,	however,	the	association	between	price	and
efficiency	is	still	negative	but	the	relation	appears	to	be	more	linear.	The	relation	between
the	price	and	acceleration	of	SUV's	also	shows	a	linear	trend,	but	with	a	positive	slope.

suv	=	hybrid.where('class',	'SUV')

suv.scatter('mpg',	'msrp')
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suv.scatter('acceleration',	'msrp')

You	will	have	noticed	that	we	can	derive	useful	information	from	the	general	orientation	and
shape	of	a	scatter	diagram	even	without	paying	attention	to	the	units	in	which	the	variables
were	measured.

Indeed,	we	could	plot	all	the	variables	in	standard	units	and	the	plots	would	look	the	same.
This	gives	us	a	way	to	compare	the	degree	of	linearity	in	two	scatter	diagrams.

Recall	that	in	an	earlier	section	we	defined	the	function		standard_units		to	convert	an	array
of	numbers	to	standard	units.

def	standard_units(any_numbers):

				"Convert	any	array	of	numbers	to	standard	units."

				return	(any_numbers	-	

np.mean(any_numbers))/np.std(any_numbers)		

We	can	use	this	function	to	re-draw	the	two	scatter	diagrams	for	SUVs,	with	all	the	variables
measured	in	standard	units.
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Table().with_columns(

				'mpg	(standard	units)',		standard_units(suv.column('mpg')),	

				'msrp	(standard	units)',	standard_units(suv.column('msrp'))

).scatter(0,	1)

plots.xlim(-3,	3)

plots.ylim(-3,	3);

Table().with_columns(

				'acceleration	(standard	units)',	

standard_units(suv.column('acceleration')),	

				'msrp	(standard	units)',									

standard_units(suv.column('msrp'))

).scatter(0,	1)

plots.xlim(-3,	3)

plots.ylim(-3,	3);
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The	associations	that	we	see	in	these	figures	are	the	same	as	those	we	saw	before.	Also,
because	the	two	scatter	diagrams	are	now	drawn	on	exactly	the	same	scale,	we	can	see
that	the	linear	relation	in	the	second	diagram	is	a	little	more	fuzzy	than	in	the	first.

We	will	now	define	a	measure	that	uses	standard	units	to	quantify	the	kinds	of	association
that	we	have	seen.

The	correlation	coefficient¶

The	correlation	coefficient	measures	the	strength	of	the	linear	relationship	between	two
variables.	Graphically,	it	measures	how	clustered	the	scatter	diagram	is	around	a	straight
line.

The	term	correlation	coefficient	isn't	easy	to	say,	so	it	is	usually	shortened	to	correlation	and
denoted	by	 .

Here	are	some	mathematical	facts	about	 	that	we	will	just	observe	by	simulation.

The	correlation	coefficient	 	is	a	number	between	 	and	1.
	measures	the	extent	to	which	the	scatter	plot	clusters	around	a	straight	line.

	if	the	scatter	diagram	is	a	perfect	straight	line	sloping	upwards,	and	 	if
the	scatter	diagram	is	a	perfect	straight	line	sloping	downwards.

The	function		r_scatter		takes	a	value	of	 	as	its	argument	and	simulates	a	scatter	plot	with
a	correlation	very	close	to	 .	Because	of	randomness	in	the	simulation,	the	correlation	is	not
expected	to	be	exactly	equal	to	 .

Call		r_scatter		a	few	times,	with	different	values	of	 	as	the	argument,	and	see	how	the
scatter	plot	changes.
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When	 	the	scatter	plot	is	perfectly	linear	and	slopes	upward.	When	 ,	the
scatter	plot	is	perfectly	linear	and	slopes	downward.	When	 ,	the	scatter	plot	is	a
formless	cloud	around	the	horizontal	axis,	and	the	variables	are	said	to	be	uncorrelated.

r_scatter(0.9)

r_scatter(0.25)

r_scatter(0)
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r_scatter(-0.55)

Calculating	 ¶

The	formula	for	 	is	not	apparent	from	our	observations	so	far.	It	has	a	mathematical	basis
that	is	outside	the	scope	of	this	class.	However,	as	you	will	see,	the	calculation	is
straightforward	and	helps	us	understand	several	of	the	properties	of	 .

Formula	for	 :

	is	the	average	of	the	products	of	the	two	variables,	when	both	variables	are
measured	in	standard	units.
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Here	are	the	steps	in	the	calculation.	We	will	apply	the	steps	to	a	simple	table	of	values	of	
and	 .

x	=	np.arange(1,	7,	1)

y	=	make_array(2,	3,	1,	5,	2,	7)

t	=	Table().with_columns(

								'x',	x,

								'y',	y

				)

t

x y

1 2

2 3

3 1

4 5

5 2

6 7

Based	on	the	scatter	diagram,	we	expect	that	 	will	be	positive	but	not	equal	to	1.

t.scatter(0,	1,	s=30,	color='red')

Step	1.	Convert	each	variable	to	standard	units.
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t_su	=	t.with_columns(

								'x	(standard	units)',	standard_units(x),

								'y	(standard	units)',	standard_units(y)

				)

t_su

x y x	(standard	units) y	(standard	units)

1 2 -1.46385 -0.648886

2 3 -0.87831 -0.162221

3 1 -0.29277 -1.13555

4 5 0.29277 0.811107

5 2 0.87831 -0.648886

6 7 1.46385 1.78444

Step	2.	Multiply	each	pair	of	standard	units.

t_product	=	t_su.with_column('product	of	standard	units',	

t_su.column(2)	*	t_su.column(3))

t_product

x y x	(standard	units) y	(standard	units) product	of	standard	units

1 2 -1.46385 -0.648886 0.949871

2 3 -0.87831 -0.162221 0.142481

3 1 -0.29277 -1.13555 0.332455

4 5 0.29277 0.811107 0.237468

5 2 0.87831 -0.648886 -0.569923

6 7 1.46385 1.78444 2.61215

Step	3.	 	is	the	average	of	the	products	computed	in	Step	2.

#	r	is	the	average	of	the	products	of	standard	units

r	=	np.mean(t_product.column(4))

r
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0.61741639718977093

As	expected,	 	is	positive	but	not	equal	to	1.

Properties	of	 ¶

The	calculation	shows	that:

	is	a	pure	number.	It	has	no	units.	This	is	because	 	is	based	on	standard	units.
	is	unaffected	by	changing	the	units	on	either	axis.	This	too	is	because	 	is	based	on

standard	units.
	is	unaffected	by	switching	the	axes.	Algebraically,	this	is	because	the	product	of

standard	units	does	not	depend	on	which	variable	is	called	 	and	which	 .
Geometrically,	switching	axes	reflects	the	scatter	plot	about	the	line	 ,	but	does
not	change	the	amount	of	clustering	nor	the	sign	of	the	association.

t.scatter('y',	'x',	s=30,	color='red')

The		correlation		function¶

We	are	going	to	be	calculating	correlations	repeatedly,	so	it	will	help	to	define	a	function	that
computes	it	by	performing	all	the	steps	described	above.	Let's	define	a	function
	correlation		that	takes	a	table	and	the	labels	of	two	columns	in	the	table.	The	function
returns	 ,	the	mean	of	the	products	of	those	column	values	in	standard	units.
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def	correlation(t,	x,	y):

				return	

np.mean(standard_units(t.column(x))*standard_units(t.column(y)))

Let's	call	the	function	on	the		x		and		y		columns	of		t	.	The	function	returns	the	same
answer	to	the	correlation	between	 	and	 	as	we	got	by	direct	application	of	the	formula	for	
.

correlation(t,	'x',	'y')

0.61741639718977093

As	we	noticed,	the	order	in	which	the	variables	are	specified	doesn't	matter.

correlation(t,	'y',	'x')

0.61741639718977093

Calling		correlation		on	columns	of	the	table		suv		gives	us	the	correlation	between	price
and	mileage	as	well	as	the	correlation	between	price	and	acceleration.

correlation(suv,	'mpg',	'msrp')

-0.6667143635709919

correlation(suv,	'acceleration',	'msrp')

0.48699799279959155

These	values	confirm	what	we	had	observed:

There	is	a	negative	association	between	price	and	efficiency,	whereas	the	association
between	price	and	acceleration	is	positive.
The	linear	relation	between	price	and	acceleration	is	a	little	weaker	(correlation	about

Correlation

453



0.5)	than	between	price	and	mileage	(correlation	about	-0.67).

Correlation	is	a	simple	and	powerful	concept,	but	it	is	sometimes	misused.	Before	using	 ,	it
is	important	to	be	aware	of	what	correlation	does	and	does	not	measure.

Association	is	not	Causation¶

Correlation	only	measures	association.	Correlation	does	not	imply	causation.	Though	the
correlation	between	the	weight	and	the	math	ability	of	children	in	a	school	district	may	be
positive,	that	does	not	mean	that	doing	math	makes	children	heavier	or	that	putting	on
weight	improves	the	children's	math	skills.	Age	is	a	confounding	variable:	older	children	are
both	heavier	and	better	at	math	than	younger	children,	on	average.

Correlation	Measures	Linear	Association¶

Correlation	measures	only	one	kind	of	association	–	linear.	Variables	that	have	strong	non-
linear	association	might	have	very	low	correlation.	Here	is	an	example	of	variables	that	have
a	perfect	quadratic	relation	 	but	have	correlation	equal	to	0.

new_x	=	np.arange(-4,	4.1,	0.5)

nonlinear	=	Table().with_columns(

								'x',	new_x,

								'y',	new_x**2

				)

nonlinear.scatter('x',	'y',	s=30,	color='r')
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correlation(nonlinear,	'x',	'y')

0.0

Correlation	is	Affected	by	Outliers¶

Outliers	can	have	a	big	effect	on	correlation.	Here	is	an	example	where	a	scatter	plot	for
which	 	is	equal	to	1	is	turned	into	a	plot	for	which	 	is	equal	to	0,	by	the	addition	of	just	one
outlying	point.

line	=	Table().with_columns(

								'x',	make_array(1,	2,	3,	4),

								'y',	make_array(1,	2,	3,	4)

				)

line.scatter('x',	'y',	s=30,	color='r')

correlation(line,	'x',	'y')

1.0
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outlier	=	Table().with_columns(

								'x',	make_array(1,	2,	3,	4,	5),

								'y',	make_array(1,	2,	3,	4,	0)

				)

outlier.scatter('x',	'y',	s=30,	color='r')

correlation(outlier,	'x',	'y')

0.0

Ecological	Correlations	Should	be	Interpreted	with	Care¶

Correlations	based	on	aggregated	data	can	be	misleading.	As	an	example,	here	are	data	on
the	Critical	Reading	and	Math	SAT	scores	in	2014.	There	is	one	point	for	each	of	the	50
states	and	one	for	Washington,	D.C.	The	column		Participation	Rate		contains	the	percent
of	high	school	seniors	who	took	the	test.	The	next	three	columns	show	the	average	score	in
the	state	on	each	portion	of	the	test,	and	the	final	column	is	the	average	of	the	total	scores
on	the	test.

sat2014	=	Table.read_table('sat2014.csv').sort('State')

sat2014
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State Participation
Rate

Critical
Reading Math Writing Combined

Alabama 6.7 547 538 532 1617

Alaska 54.2 507 503 475 1485

Arizona 36.4 522 525 500 1547

Arkansas 4.2 573 571 554 1698

California 60.3 498 510 496 1504

Colorado 14.3 582 586 567 1735

Connecticut 88.4 507 510 508 1525

Delaware 100 456 459 444 1359

District	of
Columbia 100 440 438 431 1309

Florida 72.2 491 485 472 1448

...	(41	rows	omitted)

The	scatter	diagram	of	Math	scores	versus	Critical	Reading	scores	is	very	tightly	clustered
around	a	straight	line;	the	correlation	is	close	to	0.985.

sat2014.scatter('Critical	Reading',	'Math')

correlation(sat2014,	'Critical	Reading',	'Math')
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0.98475584110674341

That's	an	extremely	high	correlation.	But	it's	important	to	note	that	this	does	not	reflect	the
strength	of	the	relation	between	the	Math	and	Critical	Reading	scores	of	students.

The	data	consist	of	average	scores	in	each	state.	But	states	don't	take	tests	–	students	do.
The	data	in	the	table	have	been	created	by	lumping	all	the	students	in	each	state	into	a
single	point	at	the	average	values	of	the	two	variables	in	that	state.	But	not	all	students	in
the	state	will	be	at	that	point,	as	students	vary	in	their	performance.	If	you	plot	a	point	for
each	student	instead	of	just	one	for	each	state,	there	will	be	a	cloud	of	points	around	each
point	in	the	figure	above.	The	overall	picture	will	be	more	fuzzy.	The	correlation	between	the
Math	and	Critical	Reading	scores	of	the	students	will	be	lower	than	the	value	calculated
based	on	state	averages.

Correlations	based	on	aggregates	and	averages	are	called	ecological	correlations	and	are
frequently	reported.	As	we	have	just	seen,	they	must	be	interpreted	with	care.

Serious	or	tongue-in-cheek?¶

In	2012,	a	paper	in	the	respected	New	England	Journal	of	Medicine	examined	the	relation
between	chocolate	consumption	and	Nobel	Prizes	in	a	group	of	countries.	The	Scientific
American	responded	seriously	whereas	others	were	more	relaxed.	You	are	welcome	to
make	your	own	decision!	The	following	graph,	provided	in	the	paper,	should	motivate	you	to
go	and	take	a	look.
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Interact

The	Regression	Line¶

The	correlation	coefficient	 	doesn't	just	measure	how	clustered	the	points	in	a	scatter	plot
are	about	a	straight	line.	It	also	helps	identify	the	straight	line	about	which	the	points	are
clustered.	In	this	section	we	will	retrace	the	path	that	Galton	and	Pearson	took	to	discover
that	line.

Galton's	data	on	the	heights	of	parents	and	their	adult	children	showed	a	linear	association.
The	linearity	was	confirmed	when	our	predictions	of	the	children's	heights	based	on	the
midparent	heights	roughly	followed	a	straight	line.

galton	=	Table.read_table('galton.csv')

heights	=	Table().with_columns(

				'MidParent',	galton.column('midparentHeight'),

				'Child',	galton.column('childHeight')

				)

def	predict_child(mpht):

				"""Return	a	prediction	of	the	height	of	a	child	

				whose	parents	have	a	midparent	height	of	mpht.

				

				The	prediction	is	the	average	height	of	the	children	

				whose	midparent	height	is	in	the	range	mpht	plus	or	minus	

0.5	inches.

				"""

				close_points	=	heights.where('MidParent',	are.between(mpht-

0.5,	mpht	+	0.5))

				return	close_points.column('Child').mean()			

heights_with_predictions	=	heights.with_column(

				'Prediction',	heights.apply(predict_child,	'MidParent')

				)

heights_with_predictions.scatter('MidParent')

The	Regression	Line
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Measuring	in	Standard	Units¶

Let's	see	if	we	can	find	a	way	to	identify	this	line.	First,	notice	that	linear	association	doesn't
depend	on	the	units	of	measurement	–	we	might	as	well	measure	both	variables	in	standard
units.

def	standard_units(xyz):

				"Convert	any	array	of	numbers	to	standard	units."

				return	(xyz	-	np.mean(xyz))/np.std(xyz)		

heights_SU	=	Table().with_columns(

				'MidParent	SU',	standard_units(heights.column('MidParent')),

				'Child	SU',	standard_units(heights.column('Child'))

)

heights_SU
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MidParent	SU Child	SU

3.45465 1.80416

3.45465 0.686005

3.45465 0.630097

3.45465 0.630097

2.47209 1.88802

2.47209 1.60848

2.47209 -0.348285

2.47209 -0.348285

1.58389 1.18917

1.58389 0.350559

...	(924	rows	omitted)

On	this	scale,	we	can	calculate	our	predictions	exactly	as	before.	But	first	we	have	to	figure
out	how	to	convert	our	old	definition	of	"close"	points	to	a	value	on	the	new	scale.	We	had
said	that	midparent	heights	were	"close"	if	they	were	within	0.5	inches	of	each	other.	Since
standard	units	measure	distances	in	units	of	SDs,	we	have	to	figure	out	how	many	SDs	of
midparent	height	correspond	to	0.5	inches.

One	SD	of	midparent	heights	is	about	1.8	inches.	So	0.5	inches	is	about	0.28	SDs.

sd_midparent	=	np.std(heights.column(0))

sd_midparent

1.8014050969207571

0.5/sd_midparent

0.27756111096536701

We	are	now	ready	to	modify	our	prediction	function	to	make	predictions	on	the	standard
units	scale.	All	that	has	changed	is	that	we	are	using	the	table	of	values	in	standard	units,
and	defining	"close"	as	above.
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def	predict_child_su(mpht_su):

				"""Return	a	prediction	of	the	height	(in	standard	units)	of	

a	child	

				whose	parents	have	a	midparent	height	of	mpht_su	in	standard	

units.

				"""

				close	=	0.5/sd_midparent

				close_points	=	heights_SU.where('MidParent	SU',	

are.between(mpht_su-close,	mpht_su	+	close))

				return	close_points.column('Child	SU').mean()			

heights_with_su_predictions	=	heights_SU.with_column(

				'Prediction	SU',	heights_SU.apply(predict_child_su,	

'MidParent	SU')

				)

heights_with_su_predictions.scatter('MidParent	SU')

This	plot	looks	exactly	like	the	plot	drawn	on	the	original	scale.	Only	the	numbers	on	the
axes	have	changed.	This	confirms	that	we	can	understand	the	prediction	process	by	just
working	in	standard	units.

Identifying	the	Line	in	Standard	Units¶
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Galton's	scatter	plot	has	a	football	shape	–	that	is,	it	is	roughly	oval	like	an	American
football.	Not	all	scatter	plots	are	football	shaped,	not	even	those	that	show	linear
association.	But	in	this	section	we	will	pretend	we	are	Galton	and	work	only	with	football
shaped	scatter	plots.	In	the	next	section,	we	will	generalize	our	analysis	to	other	shapes	of
plots.

Here	is	a	football	shaped	scatter	plot	with	both	variables	measured	in	standard	units.	The	45
degree	line	is	shown	in	red.

But	the	45	degree	line	is	not	the	line	that	picks	off	the	centers	of	the	vertical	strips.	You	can
see	that	in	the	figure	below,	where	the	vertical	line	at	1.5	standard	units	is	shown	in	black.
The	points	on	the	scatter	plot	near	the	blue	line	all	have	heights	roughly	in	the	-2	to	3	range.
The	red	line	is	too	high	to	pick	off	the	center.
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So	the	45	degree	line	is	not	the	"graph	of	averages."	That	line	is	the	green	one	shown
below.

Both	lines	go	through	the	origin	(0,	0).	The	green	line	goes	through	the	centers	of	the	vertical
strips	(at	least	roughly),	and	is	flatter	than	the	red	45	degree	line.
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The	slope	of	the	45	degree	line	is	1.	So	the	slope	of	the	green	"graph	of	averages"	line	is	a
value	that	is	positive	but	less	than	1.

What	value	could	that	be?	You've	guessed	it	–	it's	 .

The	Regression	Line,	in	Standard	Units¶

The	green	"graph	of	averages"	line	is	called	the	regression	line,	for	reasons	we	will	explain
shortly.	But	first,	let's	simulate	some	football	shaped	scatter	plots	with	different	values	of	 ,
and	see	how	the	line	changes.	In	each	case,	the	red	45	degree	line	has	been	drawn	for
comparison.

The	function	that	performs	the	simulation	is	called		regression_line		and	takes	 	as	its
argument.

regression_line(0.95)

regression_line(0.6)
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When	 	is	close	to	1,	the	scatter	plot,	the	45	degree	line,	and	the	regression	line	are	all	very
close	to	each	other.	But	for	more	moderate	values	of	 ,	the	regression	line	is	noticeably
flatter.

The	Regression	Effect¶

In	terms	of	prediction,	this	means	that	for	a	parents	whose	midparent	height	is	at	1.5
standard	units,	our	prediction	of	the	child's	height	is	somewhat	less	than	1.5	standard	units.
If	the	midparent	height	is	2	standard	units,	we	predict	that	the	child's	height	will	be
somewhat	less	than	2	standard	units.

In	other	words,	we	predict	that	the	child	will	be	somewhat	closer	to	average	than	the	parents
were.

This	didn't	please	Sir	Francis	Galton.	He	had	been	hoping	that	exceptionally	tall	parents
would	have	children	who	were	just	as	exceptionally	tall.	However,	the	data	were	clear,	and
Galton	realized	that	the	tall	parents	have	children	who	are	not	quite	as	exceptionally	tall,	on
average.	Frustrated,	Galton	called	this	phenomenon	"regression	to	mediocrity."

Galton	also	noticed	that	exceptionally	short	parents	had	children	who	were	somewhat	taller
relative	to	their	generation,	on	average.	In	general,	individuals	who	are	away	from	average
on	one	variable	are	expected	to	be	not	quite	as	far	away	from	average	on	the	other.	This	is
called	the	regression	effect.

The	Equation	of	the	Regression	Line¶
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In	regression,	we	use	the	value	of	one	variable	(which	we	will	call	 )	to	predict	the	value	of
another	(which	we	will	call	 ).	When	the	variables	 	and	 	are	measured	in	standard	units,
the	regression	line	for	predicting	 	based	on	 	has	slope	 	and	passes	through	the	origin.
Thus	the	equation	of	the	regression	line	can	be	written	as:

In	the	original	units	of	the	data,	this	becomes

The	slope	and	intercept	of	the	regression	line	in	original	units	can	be	derived	from	the
diagram	above.

The	three	functions	below	compute	the	correlation,	slope,	and	intercept.	All	of	them	take
three	arguments:	the	name	of	the	table,	the	label	of	the	column	containing	 ,	and	the	label
of	the	column	containing	 .

def	correlation(t,	label_x,	label_y):

				return	

np.mean(standard_units(t.column(label_x))*standard_units(t.column

(label_y)))

def	slope(t,	label_x,	label_y):

				r	=	correlation(t,	label_x,	label_y)

				return	r*np.std(t.column(label_y))/np.std(t.column(label_x))

def	intercept(t,	label_x,	label_y):

				return	np.mean(t.column(label_y))	-	slope(t,	label_x,	

label_y)*np.mean(t.column(label_x))
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The	Regression	Line	and	Galton's	Data¶

The	correlation	between	midparent	height	and	child's	height	is	0.32:

galton_r	=	correlation(heights,	'MidParent',	'Child')

galton_r

0.32094989606395924

We	can	also	find	the	equation	of	the	regression	line	for	predicting	the	child's	height	based	on
midparent	height.

galton_slope	=	slope(heights,	'MidParent',	'Child')

galton_intercept	=	intercept(heights,	'MidParent',	'Child')

galton_slope,	galton_intercept

(0.63736089696947895,	22.636240549589751)

The	equation	of	the	regression	line	is

This	is	also	known	as	the	regression	equation.	The	principal	use	of	the	regression	equation
is	to	predict	 	based	on	 .

For	example,	for	a	midparent	height	of	70.48	inches,	the	regression	equation	predicts	the
child's	height	to	be	67.56	inches.

galton_slope*70.48	+	galton_intercept

67.557436567998622

Our	original	prediction,	created	by	taking	the	average	height	of	all	children	who	had
midparent	heights	close	to	70.48,	came	out	to	be	pretty	close:	67.63	inches	compared	to	the
regression	line's	prediction	of	67.55	inches.
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heights_with_predictions.where('MidParent',	

are.equal_to(70.48)).show(3)

MidParent Child Prediction

70.48 74 67.6342

70.48 70 67.6342

70.48 68 67.6342

...	(5	rows	omitted)

Here	are	all	of	the	rows	in	Galton's	table,	along	with	our	original	predictions	and	the	new
regression	predictions	of	the	children's	heights.

heights_with_predictions	=	heights_with_predictions.with_column(

				'Regression	Prediction',	

galton_slope*heights.column('MidParent')	+	galton_intercept

)

heights_with_predictions

MidParent Child Prediction Regression	Prediction

75.43 73.2 70.1 70.7124

75.43 69.2 70.1 70.7124

75.43 69 70.1 70.7124

75.43 69 70.1 70.7124

73.66 73.5 70.4158 69.5842

73.66 72.5 70.4158 69.5842

73.66 65.5 70.4158 69.5842

73.66 65.5 70.4158 69.5842

72.06 71 68.5025 68.5645

72.06 68 68.5025 68.5645

...	(924	rows	omitted)

heights_with_predictions.scatter('MidParent')
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The	grey	dots	show	the	regression	predictions,	all	on	the	regression	line.	Notice	how	the	line
is	very	close	to	the	gold	graph	of	averages.	For	these	data,	the	regression	line	does	a	good
job	of	approximating	the	centers	of	the	vertical	strips.

Fitted	Values¶

The	predictions	all	lie	on	the	line	and	are	known	as	the	"fitted	values".	The	function		fit	
takes	the	name	of	the	table	and	the	labels	of	 	and	 ,	and	returns	an	array	of	fitted	values,
one	fitted	value	for	each	point	in	the	scatter	plot.

def	fit(table,	x,	y):

				"""Return	the	height	of	the	regression	line	at	each	x	

value."""

				a	=	slope(table,	x,	y)

				b	=	intercept(table,	x,	y)

				return	a	*	table.column(x)	+	b

It	is	easier	to	see	the	line	in	the	graph	below	than	in	the	one	above.

heights.with_column('Fitted',	fit(heights,	'MidParent',	

'Child')).scatter('MidParent')
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Another	way	to	draw	the	line	is	to	use	the	option		fit_line=True		with	the	Table	method
	scatter	.

heights.scatter('MidParent',	fit_line=True)

Units	of	Measurement	of	the	Slope¶

The	slope	is	a	ratio,	and	it	worth	taking	a	moment	to	study	the	units	in	which	it	is	measured.
Our	example	comes	from	the	familiar	dataset	about	mothers	who	gave	birth	in	a	hospital
system.	The	scatter	plot	of	pregnancy	weights	versus	heights	looks	like	a	football	that	has
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been	used	in	one	game	too	many,	but	it's	close	enough	to	a	football	that	we	can	justify
putting	our	fitted	line	through	it.	In	later	sections	we	will	see	how	to	make	such	justifications
more	formal.

baby	=	Table.read_table('baby.csv')

baby.scatter('Maternal	Height',	'Maternal	Pregnancy	Weight',	

fit_line=True)

slope(baby,	'Maternal	Height',	'Maternal	Pregnancy	Weight')

3.5728462592750558

The	slope	of	the	regression	line	is	3.57	pounds	per	inch.	This	means	that	for	two	women
who	are	1	inch	apart	in	height,	our	prediction	of	pregnancy	weight	will	differ	by	3.57	pounds.
For	a	woman	who	is	2	inches	taller	than	another,	our	prediction	of	pregnancy	weight	will	be

pounds	more	than	our	prediction	for	the	shorter	woman.

Notice	that	the	successive	vertical	strips	in	the	scatter	plot	are	one	inch	apart,	because	the
heights	have	been	rounded	to	the	nearest	inch.	Another	way	to	think	about	the	slope	is	to
take	any	two	consecutive	strips	(which	are	necessarily	1	inch	apart),	corresponding	to	two
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groups	of	women	who	are	separated	by	1	inch	in	height.	The	slope	of	3.57	pounds	per	inch
means	that	the	average	pregnancy	weight	of	the	taller	group	is	about	3.57	pounds	more
than	that	of	the	shorter	group.

Endnote¶

Even	though	we	won't	establish	the	mathematical	basis	for	the	regression	equation,	we	can
see	that	it	gives	pretty	good	predictions	when	the	scatter	plot	is	football	shaped.	It	is	a
surprising	mathematical	fact	that	no	matter	what	the	shape	of	the	scatter	plot,	the	same
equation	gives	the	"best"	among	all	straight	lines.	That's	the	topic	of	the	next	section.
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Interact

The	Method	of	Least	Squares¶

We	have	retraced	the	steps	that	Galton	and	Pearson	took	to	develop	the	equation	of	the
regression	line	that	runs	through	a	football	shaped	scatter	plot.	But	not	all	scatter	plots	are
football	shaped,	not	even	linear	ones.	Does	every	scatter	plot	have	a	"best"	line	that	goes
through	it?	If	so,	can	we	still	use	the	formulas	for	the	slope	and	intercept	developed	in	the
previous	section,	or	do	we	need	new	ones?

To	address	these	questions,	we	need	a	reasonable	definition	of	"best".	Recall	that	the
purpose	of	the	line	is	to	predict	or	estimate	values	of	 ,	given	values	of	 .	Estimates
typically	aren't	perfect.	Each	one	is	off	the	true	value	by	an	error.	A	reasonable	criterion	for	a
line	to	be	the	"best"	is	for	it	to	have	the	smallest	possible	overall	error	among	all	straight
lines.

In	this	section	we	will	make	this	criterion	precise	and	see	if	we	can	identify	the	best	straight
line	under	the	criterion.

Our	first	example	is	a	dataset	that	has	one	row	for	every	chapter	of	the	novel	"Little
Women."	The	goal	is	to	estimate	the	number	of	characters	(that	is,	letters,	spaces
punctuation	marks,	and	so	on)	based	on	the	number	of	periods.	Recall	that	we	attempted	to
do	this	in	the	very	first	lecture	of	this	course.

little_women	=	Table.read_table('little_women.csv')

little_women	=	little_women.move_to_start('Periods')

little_women.show(3)

Periods Characters

189 21759

188 22148

231 20558

...	(44	rows	omitted)

little_women.scatter('Periods',	'Characters')
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To	explore	the	data,	we	will	need	to	use	the	functions		correlation	,		slope	,		intercept	,
and		fit		defined	in	the	previous	section.

correlation(little_women,	'Periods',	'Characters')

0.92295768958548163

The	scatter	plot	is	remarkably	close	to	linear,	and	the	correlation	is	more	than	0.92.

Error	in	Estimation¶

The	graph	below	shows	the	scatter	plot	and	line	that	we	developed	in	the	previous	section.
We	don't	yet	know	if	that's	the	best	among	all	lines.	We	first	have	to	say	precisely	what
"best"	means.

lw_with_predictions	=	little_women.with_column('Linear	

Prediction',	fit(little_women,	'Periods',	'Characters'))

lw_with_predictions.scatter('Periods')
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Corresponding	to	each	point	on	the	scatter	plot,	there	is	an	error	of	prediction	calculated	as
the	actual	value	minus	the	predicted	value.	It	is	the	vertical	distance	between	the	point	and
the	line,	with	a	negative	sign	if	the	point	is	below	the	line.

actual	=	lw_with_predictions.column('Characters')

predicted	=	lw_with_predictions.column('Linear	Prediction')

errors	=	actual	-	predicted

lw_with_predictions.with_column('Error',	errors)

Periods Characters Linear	Prediction Error

189 21759 21183.6 575.403

188 22148 21096.6 1051.38

231 20558 24836.7 -4278.67

195 25526 21705.5 3820.54

255 23395 26924.1 -3529.13

140 14622 16921.7 -2299.68

131 14431 16138.9 -1707.88

214 22476 23358 -882.043

337 33767 34056.3 -289.317

185 18508 20835.7 -2327.69
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...	(37	rows	omitted)

We	can	use		slope		and		intercept		to	calculate	the	slope	and	intercept	of	the	fitted	line.	The
graph	below	shows	the	line	(in	light	blue).	The	errors	corresponding	to	four	of	the	points	are
shown	in	red.	There	is	nothing	special	about	those	four	points.	They	were	just	chosen	for
clarity	of	the	display.	The	function		lw_errors		takes	a	slope	and	an	intercept	(in	that	order)
as	its	arguments	and	draws	the	figure.

lw_reg_slope	=	slope(little_women,	'Periods',	'Characters')

lw_reg_intercept	=	intercept(little_women,	'Periods',	

'Characters')

print('Slope	of	Regression	Line:				',	np.round(lw_reg_slope),	

'characters	per	period')

print('Intercept	of	Regression	Line:',	

np.round(lw_reg_intercept),	'characters')

lw_errors(lw_reg_slope,	lw_reg_intercept)

Slope	of	Regression	Line:					87.0	characters	per	period

Intercept	of	Regression	Line:	4745.0	characters

Had	we	used	a	different	line	to	create	our	estimates,	the	errors	would	have	been	different.
The	graph	below	shows	how	big	the	errors	would	be	if	we	were	to	use	another	line	for
estimation.	The	second	graph	shows	large	errors	obtained	by	using	a	line	that	is	downright
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silly.

lw_errors(50,	10000)

lw_errors(-100,	50000)

Root	Mean	Squared	Error¶

The	Method	of	Least	Squares

479



What	we	need	now	is	one	overall	measure	of	the	rough	size	of	the	errors.	You	will	recognize
the	approach	to	creating	this	–	it's	exactly	the	way	we	developed	the	SD.

If	you	use	any	arbitrary	line	to	calculate	your	estimates,	then	some	of	your	errors	are	likely	to
be	positive	and	others	negative.	To	avoid	cancellation	when	measuring	the	rough	size	of	the
errors,	we	will	take	the	mean	of	the	sqaured	errors	rather	than	the	mean	of	the	errors
themselves.

The	mean	squared	error	of	estimation	is	a	measure	of	roughly	how	big	the	squared	errors
are,	but	as	we	have	noted	earlier,	its	units	are	hard	to	interpret.	Taking	the	square	root	yields
the	root	mean	square	error	(rmse),	which	is	in	the	same	units	as	the	variable	being	predicted
and	therefore	much	easier	to	understand.

Minimizing	the	Root	Mean	Squared	Error¶

Our	observations	so	far	can	be	summarized	as	follows.

To	get	estimates	of	 	based	on	 ,	you	can	use	any	line	you	want.
Every	line	has	a	root	mean	squared	error	of	estimation.
"Better"	lines	have	smaller	errors.

Is	there	a	"best"	line?	That	is,	is	there	a	line	that	minimizes	the	root	mean	squared	error
among	all	lines?

To	answer	this	question,	we	will	start	by	defining	a	function		lw_rmse		to	compute	the	root
mean	squared	error	of	any	line	through	the	Little	Women	scatter	diagram.	The	function	takes
the	slope	and	the	intercept	(in	that	order)	as	its	arguments.

def	lw_rmse(slope,	intercept):

				lw_errors(slope,	intercept)

				x	=	little_women.column('Periods')

				y	=	little_women.column('Characters')

				fitted	=	slope	*	x	+	intercept

				mse	=	np.mean((y	-	fitted)	**	2)

				print("Root	mean	squared	error:",	mse	**	0.5)

lw_rmse(50,	10000)

Root	mean	squared	error:	4322.16783177
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lw_rmse(-100,	50000)

Root	mean	squared	error:	16710.1198374

Bad	lines	have	big	values	of	rmse,	as	expected.	But	the	rmse	is	much	smaller	if	we	choose
a	slope	and	intercept	close	to	those	of	the	regression	line.

lw_rmse(90,	4000)
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Root	mean	squared	error:	2715.53910638

Here	is	the	root	mean	squared	error	corresponding	to	the	regression	line.	By	a	remarkable
fact	of	mathematics,	no	other	line	can	beat	this	one.

The	regression	line	is	the	unique	straight	line	that	minimizes	the	mean	squared
error	of	estimation	among	all	straight	lines.

lw_rmse(lw_reg_slope,	lw_reg_intercept)

Root	mean	squared	error:	2701.69078531
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The	proof	of	this	statement	requires	abstract	mathematics	that	is	beyond	the	scope	of	this
course.	On	the	other	hand,	we	do	have	a	powerful	tool	–	Python	–	that	performs	large
numerical	computations	with	ease.	So	we	can	use	Python	to	confirm	that	the	regression	line
minimizes	the	mean	squared	error.

Numerical	Optimization¶

First	note	that	a	line	that	minimizes	the	root	mean	squared	error	is	also	a	line	that	minimizes
the	squared	error.	The	square	root	makes	no	difference	to	the	minimization.	So	we	will	save
ourselves	a	step	of	computation	and	just	minimize	the	mean	squared	error	(mse).

We	are	trying	to	predict	the	number	of	characters	( )	based	on	the	number	of	periods	( )	in
chapters	of	Little	Women.	If	we	use	the	line

it	will	have	an	mse	that	depends	on	the	slope	 	and	the	intercept	 .	The	function		lw_mse	
takes	the	slope	and	intercept	as	its	arguments	and	returns	the	corresponding	mse.

def	lw_mse(any_slope,	any_intercept):

				x	=	little_women.column('Periods')

				y	=	little_women.column('Characters')

				fitted	=	any_slope*x	+	any_intercept

				return	np.mean((y	-	fitted)	**	2)
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Let's	check	that		lw_mse		gets	the	right	answer	for	the	root	mean	squared	error	of	the
regression	line.	Remember	that		lw_mse		returns	the	mean	squared	error,	so	we	have	to	take
the	square	root	to	get	the	rmse.

lw_mse(lw_reg_slope,	lw_reg_intercept)**0.5

2701.690785311856

That's	the	same	as	the	value	we	got	by	using		lw_rmse		earlier:

lw_rmse(lw_reg_slope,	lw_reg_intercept)

Root	mean	squared	error:	2701.69078531

You	can	confirm	that		lw_mse		returns	the	correct	value	for	other	slopes	and	intercepts	too.
For	example,	here	is	the	rmse	of	the	extremely	bad	line	that	we	tried	earlier.

lw_mse(-100,	50000)**0.5

16710.119837353752

And	here	is	the	rmse	for	a	line	that	is	close	to	the	regression	line.
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lw_mse(90,	4000)**0.5

2715.5391063834586

If	we	experiment	with	different	values,	we	can	find	a	low-error	slope	and	intercept	through
trial	and	error,	but	that	would	take	a	while.	Fortunately,	there	is	a	Python	function	that	does
all	the	trial	and	error	for	us.

The		minimize		function	can	be	used	to	find	the	arguments	of	a	function	for	which	the
function	returns	its	minimum	value.	Python	uses	a	similar	trial-and-error	approach,	following
the	changes	that	lead	to	incrementally	lower	output	values.

The	argument	of		minimize		is	a	function	that	itself	takes	numerical	arguments	and	returns	a
numerical	value.	For	example,	the	function		lw_mse		takes	a	numerical	slope	and	intercept	as
its	arguments	and	returns	the	corresponding	mse.

The	call		minimize(lw_mse)		returns	an	array	consisting	of	the	slope	and	the	intercept	that
minimize	the	mse.	These	minimizing	values	are	excellent	approximations	arrived	at	by
intelligent	trial-and-error,	not	exact	values	based	on	formulas.

best	=	minimize(lw_mse)

best

array([			86.97784117,		4744.78484535])

These	values	are	the	same	as	the	values	we	calculated	earlier	by	using	the		slope		and
	intercept		functions.	We	see	small	deviations	due	to	the	inexact	nature	of		minimize	,	but
the	values	are	essentially	the	same.

print("slope	from	formula:								",	lw_reg_slope)

print("slope	from	minimize:							",	best.item(0))

print("intercept	from	formula:				",	lw_reg_intercept)

print("intercept	from	minimize:			",	best.item(1))
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slope	from	formula:									86.9778412583

slope	from	minimize:								86.97784116615884

intercept	from	formula:					4744.78479657

intercept	from	minimize:				4744.784845352655

The	Least	Squares	Line¶

Therefore,	we	have	found	not	only	that	the	regression	line	minimizes	mean	squared	error,
but	also	that	minimizing	mean	squared	error	gives	us	the	regression	line.	The	regression	line
is	the	only	line	that	minimizes	mean	squared	error.

That	is	why	the	regression	line	is	sometimes	called	the	"least	squares	line."
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Least	Squares	Regression¶

In	an	earlier	section,	we	developed	formulas	for	the	slope	and	intercept	of	the	regression	line
through	a	football	shaped	scatter	diagram.	It	turns	out	that	the	slope	and	intercept	of	the
least	squares	line	have	the	same	formulas	as	those	we	developed,	regardless	of	the	shape
of	the	scatter	plot.

We	saw	this	in	the	example	about	Little	Women,	but	let's	confirm	it	in	an	example	where	the
scatter	plot	clearly	isn't	football	shaped.	For	the	data,	we	are	once	again	indebted	to	the	rich
data	archive	of	Prof.	Larry	Winner	of	the	University	of	Florida.	A	2013	study	in	the
International	Journal	of	Exercise	Science	studied	collegiate	shot	put	athletes	and	examined
the	relation	between	strength	and	shot	put	distance.	The	population	consists	of	28	female
collegiate	athletes.	Strength	was	measured	by	the	the	biggest	amount	(in	kilograms)	that	the
athlete	lifted	in	the	"1RM	power	clean"	in	the	pre-season.	The	distance	(in	meters)	was	the
athlete's	personal	best.

shotput	=	Table.read_table('shotput.csv')

shotput

Weight	Lifted Shot	Put	Distance

37.5 6.4

51.5 10.2

61.3 12.4

61.3 13

63.6 13.2

66.1 13

70 12.7

92.7 13.9

90.5 15.5

90.5 15.8

...	(18	rows	omitted)
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shotput.scatter('Weight	Lifted')

That's	not	a	football	shaped	scatter	plot.	In	fact,	it	seems	to	have	a	slight	non-linear
component.	But	if	we	insist	on	using	a	straight	line	to	make	our	predictions,	there	is	still	one
best	straight	line	among	all	straight	lines.

Our	formulas	for	the	slope	and	intercept	of	the	regression	line,	derived	for	football	shaped
scatter	plots,	give	the	following	values.

slope(shotput,	'Weight	Lifted',	'Shot	Put	Distance')

0.098343821597819972

intercept(shotput,	'Weight	Lifted',	'Shot	Put	Distance')

5.9596290983739522

Does	it	still	make	sense	to	use	these	formulas	even	though	the	scatter	plot	isn't	football
shaped?	We	can	answer	this	by	finding	the	slope	and	intercept	of	the	line	that	minimizes	the
mse.
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We	will	define	the	function		shotput_linear_mse		to	take	an	arbirtary	slope	and	intercept	as
arguments	and	return	the	corresponding	mse.	Then		minimize		applied	to
	shotput_linear_mse		will	return	the	best	slope	and	intercept.

def	shotput_linear_mse(any_slope,	any_intercept):

				x	=	shotput.column('Weight	Lifted')

				y	=	shotput.column('Shot	Put	Distance')

				fitted	=	any_slope*x	+	any_intercept

				return	np.mean((y	-	fitted)	**	2)

minimize(shotput_linear_mse)

array([	0.09834382,		5.95962911])

These	values	are	the	same	as	those	we	got	by	using	our	formulas.	To	summarize:

No	matter	what	the	shape	of	the	scatter	plot,	there	is	a	unique	line	that	minimizes	the
mean	squared	error	of	estimation.	It	is	called	the	regression	line,	and	its	slope	and
intercept	are	given	by

fitted	=	fit(shotput,	'Weight	Lifted',	'Shot	Put	Distance')

shotput.with_column('Best	Straight	Line',	

fitted).scatter('Weight	Lifted')
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Nonlinear	Regression¶

The	graph	above	reinforces	our	earlier	observation	that	the	scatter	plot	is	a	bit	curved.	So	it
is	better	to	fit	a	curve	than	a	straight	line.	The	study	postulated	a	quadratic	relation	between
the	weight	lifted	and	the	shot	put	distance.	So	let's	use	quadratic	functions	as	our	predictors
and	see	if	we	can	find	the	best	one.

We	have	to	find	the	best	quadratic	function	among	all	quadratic	functions,	instead	of	the	best
straight	line	among	all	straight	lines.	The	method	of	least	squares	allows	us	to	do	this.

The	mathematics	of	this	minimization	is	complicated	and	not	easy	to	see	just	by	examining
the	scatter	plot.	But	numerical	minimization	is	just	as	easy	as	it	was	with	linear	predictors!
We	can	get	the	best	quadratic	predictor	by	once	again	using		minimize	.	Let's	see	how	this
works.

Recall	that	a	quadratic	function	has	the	form

for	constants	 ,	 ,	and	 .

To	find	the	best	quadratic	function	to	predict	distance	based	on	weight	lifted,	using	the
criterion	of	least	squares,	we	will	first	write	a	function	that	takes	the	three	constants	as	its
arguments,	calculates	the	fitted	values	by	using	the	quadratic	function	above,	and	then
returns	the	mean	squared	error.

The	function	is	called		shotput_quadratic_mse	.	Notice	that	the	definition	is	analogous	to	that
of		lw_mse	,	except	that	the	fitted	values	are	based	on	a	quadratic	function	instead	of	linear.
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def	shotput_quadratic_mse(a,	b,	c):

				x	=	shotput.column('Weight	Lifted')

				y	=	shotput.column('Shot	Put	Distance')

				fitted	=	a*(x**2)	+	b*x	+	c

				return	np.mean((y	-	fitted)	**	2)

We	can	now	use		minimize		just	as	before	to	find	the	constants	that	minimize	the	mean
squared	error.

best	=	minimize(shotput_quadratic_mse)

best

array([	-1.04004838e-03,			2.82708045e-01,		-1.53182115e+00])

Our	prediction	of	the	shot	put	distance	for	an	athlete	who	lifts	 	kilograms	is	about

meters.	For	example,	if	the	athlete	can	lift	100	kilograms,	the	predicted	distance	is	16.33
meters.	On	the	scatter	plot,	that's	near	the	center	of	a	vertical	strip	around	100	kilograms.

(-0.00104)*(100**2)	+	0.2827*100	-	1.5318

16.3382

Here	are	the	predictions	for	all	the	values	of		Weight	Lifted	.	You	can	see	that	they	go
through	the	center	of	the	scatter	plot,	to	a	rough	approximation.

x	=	shotput.column(0)

shotput_fit	=	best.item(0)*(x**2)	+	best.item(1)*x	+	

best.item(2)

shotput.with_column('Best	Quadratic	Curve',	

shotput_fit).scatter(0)
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Visual	Diagnostics¶

Suppose	a	data	scientist	has	decided	to	use	linear	regression	to	estimate	values	of	a
response	variable	based	on	a	predictor.	To	see	how	well	this	method	of	estmation	performs,
the	data	scientist	must	how	far	off	the	estimates	are	from	the	actual	values.	These
differences	are	called	residuals.

A	residual	is	what's	left	over	–	the	residue	–	after	estimation.

Residuals	are	the	vertical	distances	of	the	points	from	the	regression	line.	There	is	one
residual	for	each	point	in	the	scatter	plot.	The	residual	is	the	difference	between	the
observed	value	of	 	and	the	fitted	value	of	 ,	so	fr	the	point	 ,

The	function		residual		calculates	the	residuals.	The	calculation	assumes	all	the	relevant
functions	we	have	already	defined:		standard_units	,		correlation	,		slope	,		intercept	,	and
	fit	.

def	residual(table,	x,	y):

				return	table.column(y)	-	fit(table,	x,	y)

Continuing	our	example	of	using	Galton's	data	to	estimate	the	heights	of	adult	children	(the
response)	based	on	the	midparent	height	(the	predictor),	let	us	calculate	the	fitted	values
and	the	residuals.

heights	=	heights.with_columns(

								'Fitted	Value',	fit(heights,	'MidParent',	'Child'),

								'Residual',	residual(heights,	'MidParent',	'Child')

				)

heights
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MidParent Child Fitted	Value Residual

75.43 73.2 70.7124 2.48763

75.43 69.2 70.7124 -1.51237

75.43 69 70.7124 -1.71237

75.43 69 70.7124 -1.71237

73.66 73.5 69.5842 3.91576

73.66 72.5 69.5842 2.91576

73.66 65.5 69.5842 -4.08424

73.66 65.5 69.5842 -4.08424

72.06 71 68.5645 2.43553

72.06 68 68.5645 -0.564467

...	(924	rows	omitted)

When	there	are	so	many	variables	to	work	with,	it	is	always	helpful	to	start	with	visualization.
The	function		scatter_fit		draws	the	scatter	plot	of	the	data,	as	well	as	the	regression	line.

def	scatter_fit(table,	x,	y):

				table.scatter(x,	y,	s=15)

				plots.plot(table.column(x),	fit(table,	x,	y),	lw=4,	

color='gold')

				plots.xlabel(x)

				plots.ylabel(y)

scatter_fit(heights,	'MidParent',	'Child')
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A	residual	plot	can	be	drawn	by	plotting	the	residuals	against	the	predictor	variable.	The
function		residual_plot		does	just	that.

def	residual_plot(table,	x,	y):

				x_array	=	table.column(x)

				t	=	Table().with_columns(

												x,	x_array,

												'residuals',	residual(table,	x,	y)

								)

				t.scatter(x,	'residuals',	color='r')

				xlims	=	make_array(min(x_array),	max(x_array))

				plots.plot(xlims,	make_array(0,	0),	color='darkblue',	lw=4)

				plots.title('Residual	Plot')

residual_plot(heights,	'MidParent',	'Child')
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The	midparent	heights	are	on	the	horizontal	axis,	as	in	the	original	scatter	plot.	But	now	the
vertical	axis	shows	the	residuals.	Notice	that	the	plot	appears	to	be	centered	around	the
horizontal	line	at	the	level	0	(shown	in	dark	blue).	Notice	also	that	the	plot	shows	no	upward
or	downward	trend.	We	will	observe	later	that	this	is	true	of	all	regressions.

Regression	Diagnostics¶

Residual	plots	help	us	make	visual	assessments	of	the	quality	of	a	linear	regression
analysis.	Such	assessments	are	called	diagnostics.	The	function
	regression_diagnostic_plots		draws	the	original	scatter	plot	as	well	as	the	residual	plot	for
ease	of	comparison.

def	regression_diagnostic_plots(table,	x,	y):

				scatter_fit(table,	x,	y)

				residual_plot(table,	x,	y)

regression_diagnostic_plots(heights,	'MidParent',	'Child')
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This	residual	plot	indicates	that	linear	regression	was	a	reasonable	method	of	estimation.
Notice	how	the	residuals	are	distributed	fairly	symmetrically	above	and	below	the	horizontal
line	at	0,	corresponding	to	the	original	scatter	plot	being	roughly	symmetrical	above	and
below.	Notice	also	that	the	vertical	spread	of	the	plot	is	fairly	even	across	the	most	common
values	of	the	children's	heights.	In	other	words,	apart	from	a	few	outlying	points,	the	plot	isn't
narrower	in	some	places	and	wider	in	others.

In	other	words,	the	accuracy	of	the	regression	appears	to	be	about	the	same	across	the
observed	range	of	the	predictor	variable.
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The	residual	plot	of	a	good	regression	shows	no	pattern.	The	residuals	look	about	the
same,	above	and	below	the	horizontal	line	at	0,	across	the	range	of	the	predictor
variable.

Detecting	Nonlinearity¶

Drawing	the	scatter	plot	of	the	data	usually	gives	an	indication	of	whether	the	relation
between	the	two	variables	is	non-linear.	Often,	however,	it	is	easier	to	spot	non-linearity	in	a
residual	plot	than	in	the	original	scatter	plot.	This	is	usually	because	of	the	scales	of	the	two
plots:	the	residual	plot	allows	us	to	zoom	in	on	the	errors	and	hence	makes	it	easier	to	spot
patterns.

Our	data	are	a	dataset	on	the	age	and	length	of	dugongs,	which	are	marine	mammals
related	to	manatees	and	sea	cows	(image	from	Wikimedia	Commons).	The	data	are	in	a
table	called		dugong	.	Age	is	measured	in	years	and	length	in	meters.	Because	dugongs	tend
not	to	keep	track	of	their	birthdays,	ages	are	estimated	based	on	variables	such	as	the
condition	of	their	teeth.

dugong	=	

Table.read_table('http://www.statsci.org/data/oz/dugongs.txt')

dugong	=	dugong.move_to_start('Length')

dugong
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Length Age

1.8 1

1.85 1.5

1.87 1.5

1.77 1.5

2.02 2.5

2.27 4

2.15 5

2.26 5

2.35 7

2.47 8

...	(17	rows	omitted)

If	we	could	measure	the	length	of	a	dugong,	what	could	we	say	about	its	age?	Let's	examine
what	our	data	say.	Here	is	a	regression	of	age	(the	response)	on	length	(the	predictor).	The
correlation	between	the	two	variables	is	substantial,	at	0.83.

correlation(dugong,	'Length',	'Age')

0.82964745549057139

High	correlation	notwithstanding,	the	plot	shows	a	curved	pattern	that	is	much	more	visible
in	the	residual	plot.

regression_diagnostic_plots(dugong,	'Length',	'Age')
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While	you	can	spot	the	non-linearity	in	the	original	scatter,	it	is	more	clearly	evident	in	the
residual	plot.

At	the	low	end	of	the	lengths,	the	residuals	are	almost	all	positive;	then	they	are	almost	all
negative;	then	positive	again	at	the	high	end	of	lengths.	In	other	words	the	regression
estimates	have	a	pattern	of	being	too	high,	then	too	low,	then	too	high.	That	means	it	would
have	been	better	to	use	a	curve	instead	of	a	straight	line	to	estimate	the	ages.

When	a	residual	plot	shows	a	pattern,	there	may	be	a	non-linear	relation	between	the
variables.

Detecting	Heteroscedasticity¶
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Heteroscedasticity	is	a	word	that	will	surely	be	of	interest	to	those	who	are	preparing	for
Spelling	Bees.	For	data	scientists,	its	interest	lies	in	its	meaning,	which	is	"uneven	spread".

Recall	the	table		hybrid		that	contains	data	on	hybrid	cars	in	the	U.S.	Here	is	a	regression	of
fuel	efficiency	on	the	rate	of	acceleration.	The	association	is	negative:	cars	that	accelearate
quickly	tend	to	be	less	efficient.

regression_diagnostic_plots(hybrid,	'acceleration',	'mpg')
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Notice	how	the	residual	plot	flares	out	towards	the	low	end	of	the	accelerations.	In	other
words,	the	variability	in	the	size	of	the	errors	is	greater	for	low	values	of	acceleration	than	for
high	values.	Uneven	variation	is	often	more	easily	noticed	in	a	residual	plot	than	in	the
original	scatter	plot.

If	the	residual	plot	shows	uneven	variation	about	the	horizontal	line	at	0,	the
regression	estimates	are	not	equally	accurate	across	the	range	of	the	predictor
variable.
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Numerical	Diagnostics¶

In	addition	to	visualization,	we	can	use	numerical	properties	of	residuals	to	assess	the
quality	of	regression.	We	will	not	prove	these	properties	mathematically.	Rather,	we	will
observe	them	by	computation	and	see	what	they	tell	us	about	the	regression.

All	of	the	facts	listed	below	hold	for	all	shapes	of	scatter	plots,	whether	or	not	they	are	linear.

Residual	Plots	Show	No	Trend¶

For	every	linear	regression,	whether	good	or	bad,	the	residual	plot	shows	no	trend.
Overall,	it	is	flat.	In	other	words,	the	residuals	and	the	predictor	variable	are
uncorrelated.

You	can	see	this	in	all	the	residual	plots	above.	We	can	also	calculate	the	correlation
between	the	predictor	variable	and	the	residuals	in	each	case.

correlation(heights,	'MidParent',	'Residual')

-2.7196898076470642e-16

That	doesn't	look	like	zero,	but	it	is	a	tiny	number	that	is	0	apart	from	rounding	error	due	to
computation.	Here	it	is	again,	correct	to	10	decimal	places.	The	minus	sign	is	because	of	the
rounding	that	above.

round(correlation(heights,	'MidParent',	'Residual'),	10)

-0.0

dugong	=	dugong.with_columns(

							'Fitted	Value',	fit(dugong,	'Length',	'Age'),

							'Residual',	residual(dugong,	'Length',	'Age')

)

round(correlation(dugong,	'Length',	'Residual'),	10)
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0.0

Average	of	Residuals¶

No	matter	what	the	shape	of	the	scatter	diagram,	the	average	of	the	residulas	is	0.

This	is	analogous	to	the	fact	that	if	you	take	any	list	of	numbers	and	calculate	the	list	of
deviations	from	average,	the	average	of	the	deviations	is	0.

In	all	the	residual	plots	above,	you	have	seen	the	horizontal	line	at	0	going	through	the
center	of	the	plot.	That	is	a	visualization	of	this	fact.

As	a	numerical	example,	here	is	the	average	of	the	residuals	in	the	regression	of	children's
heights	based	on	parents'	heights	in	Galton's	dataset.

round(np.mean(heights.column('Residual')),	10)

0.0

The	same	is	true	of	the	average	of	the	residuals	in	the	regression	of	the	age	of	dugongs	on
their	length.	The	mean	of	the	residuals	is	0,	apart	from	rounding	error.

round(np.mean(dugong.column('Residual')),	10)

0.0

SD	of	the	Residuals¶

No	matter	what	the	shape	of	the	scatter	plot,	the	SD	of	the	residuals	is	a	fraction	of
the	SD	of	the	response	variable.	The	fraction	is	 .

We	will	soon	see	how	this	measures	the	accuracy	of	the	regression	estimate.	But	first,	let's
confirm	it	by	example.

In	the	case	of	children's	heights	and	midparent	heights,	the	SD	of	the	residuals	is	about	3.39
inches.
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np.std(heights.column('Residual'))

3.3880799163953426

That's	the	same	as	 	times	the	SD	of	response	variable:

r	=	correlation(heights,	'MidParent',	'Child')

np.sqrt(1	-	r**2)	*	np.std(heights.column('Child'))

3.3880799163953421

The	same	is	true	for	the	regression	of	mileage	on	acceleration	of	hybrid	cars.	The	correlation

	is	negative	(about	-0.5),	but	 	is	positive	and	therefore	 	is	a	fraction.

r	=	correlation(hybrid,	'acceleration',	'mpg')

r

-0.5060703843771186

hybrid	=	hybrid.with_columns(

					'fitted	mpg',	fit(hybrid,	'acceleration',	'mpg'),

					'residual',	residual(hybrid,	'acceleration',	'mpg')

)

np.std(hybrid.column('residual')),	np.sqrt(1	-	

r**2)*np.std(hybrid.column('mpg'))

(9.4327368334302903,	9.4327368334302903)

Now	let	us	see	how	the	SD	of	the	residuals	is	a	measure	of	how	good	the	regression	is.
Remember	that	the	average	of	the	residuals	is	0.	Therefore	the	smaller	the	SD	of	the
residuals	is,	the	closer	the	residuals	are	to	0.	In	other	words,	if	the	SD	of	the	residuals	is
small,	the	overall	size	of	the	errors	in	regression	is	small.

The	extreme	cases	are	when	 	or	 .	In	both	cases,	 .	Therefore
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The	extreme	cases	are	when	 	or	 .	In	both	cases,	 .	Therefore
the	residuals	have	an	average	of	0	and	an	SD	of	0	as	well,	and	therefore	the	residuals	are
all	equal	to	0.	The	regression	line	does	a	perfect	job	of	estimation.	As	we	saw	earlier	in	this
chapter,	if	 ,	the	scatter	plot	is	a	perfect	straight	line	and	is	the	same	as	the
regression	line,	so	indeed	there	is	no	error	in	the	regression	estimate.

But	usually	 	is	not	at	the	extremes.	If	 	is	neither	 	nor	0,	then	 	is	a	proper
fraction,	and	the	rough	overall	size	of	the	error	of	the	regression	estimate	is	somewhere
between	0	and	the	SD	of	 .

The	worst	case	is	when	 .	Then	 ,	and	the	SD	of	the	residuals	is	equal
to	the	SD	of	 .	This	is	consistent	with	the	observation	that	if	 	then	the	regression	line
is	a	flat	line	at	the	average	of	 .	In	this	situation,	the	root	mean	square	error	of	regression	is
the	root	mean	squared	deviation	from	the	average	of	 ,	which	is	the	SD	of	 .	In	practical
terms,	if	 	then	there	is	no	linear	association	between	the	two	variables,	so	there	is	no
benefit	in	using	linear	regression.

Another	Way	to	Interpret	 ¶

We	can	rewrite	the	result	above	to	say	that	no	matter	what	the	shape	of	the	scatter	plot,

A	complentary	result	is	that	no	matter	what	the	shape	of	the	scatter	plot,	the	SD	of	the	fitted
values	is	a	fraction	of	the	SD	of	the	observed	values	of	 .	The	fraction	is	|r|.

To	see	where	the	fraction	comes	in,	notice	that	the	fitted	values	are	all	on	the	regression	line
whereas	the	observed	values	of	 	are	the	heights	of	all	the	points	in	the	scatter	plot	and	are
more	variable.

scatter_fit(heights,	'MidParent',	'Child')
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The	fitted	values	range	from	about	64	to	about	71,	whereas	the	heights	of	all	the	children	are
quite	a	bit	more	variable,	ranging	from	about	55	to	80.

To	verify	the	result	numerically,	we	just	have	to	calculate	both	sides	of	the	identity.

correlation(heights,	'MidParent',	'Child')

0.32094989606395924

Here	is	ratio	of	the	SD	of	the	fitted	values	and	the	SD	of	the	observed	values	of	birth	weight:

np.std(heights.column('Fitted	

Value'))/np.std(heights.column('Child'))

0.32094989606395957

The	ratio	is	equal	to	 ,	confirming	our	result.

Where	does	the	absolute	value	come	in?	First	note	that	as	SDs	can't	be	negative,	nor	can	a
ratio	of	SDs.	So	what	happens	when	 	is	negative?	The	example	of	fuel	efficiency	and
acceleration	will	show	us.

correlation(hybrid,	'acceleration',	'mpg')
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-0.5060703843771186

np.std(hybrid.column('fitted	mpg'))/np.std(hybrid.column('mpg'))

0.5060703843771186

The	ratio	of	the	two	SDs	is	 .

A	more	standard	way	to	express	this	result	is	to	recall	that

and	therefore,	by	squaring	both	sides	of	our	result,
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Inference	for	Regression¶

Thus	far,	our	analysis	of	the	relation	between	variables	has	been	purely	descriptive.	We
know	how	to	find	the	best	straight	line	to	draw	through	a	scatter	plot.	The	line	is	the	best	in
the	sense	that	it	has	the	smallest	mean	squared	error	of	estimation	among	all	straight	lines.

But	what	if	our	data	were	only	a	sample	from	a	larger	population?	If	in	the	sample	we	found
a	linear	relation	between	the	two	variables,	would	the	same	be	true	for	the	population?
Would	it	be	exactly	the	same	linear	relation?	Could	we	predict	the	response	of	a	new
individual	who	is	not	in	our	sample?

Such	questions	of	inference	and	prediction	arise	if	we	believe	that	a	scatter	plot	reflects	the
underlying	relation	between	the	two	variables	being	plotted	but	does	not	specify	the	relation
completely.	For	example,	a	scatter	plot	of	birth	weight	versus	gestational	days	shows	us	the
precise	relation	between	the	two	variables	in	our	sample;	but	we	might	wonder	whether	that
relation	holds	true,	or	almost	true,	for	all	babies	in	the	population	from	which	the	sample	was
drawn,	or	indeed	among	babies	in	general.

As	always,	inferential	thinking	begins	with	a	careful	examination	of	the	assumptions	about
the	data.	Sets	of	assumptions	are	known	as	models.	Sets	of	assumptions	about
randomness	in	roughly	linear	scatter	plots	are	called	regression	models.
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A	Regression	Model¶

In	brief,	such	models	say	that	the	underlying	relation	between	the	two	variables	is	perfectly
linear;	this	straight	line	is	the	signal	that	we	would	like	to	identify.	However,	we	are	not	able
to	see	the	line	clearly.	What	we	see	are	points	that	are	scattered	around	the	line.	In	each	of
the	points,	the	signal	has	been	contaminated	by	random	noise.	Our	inferential	goal,
therefore,	is	to	separate	the	signal	from	the	noise.

In	greater	detail,	the	regression	model	specifies	that	the	points	in	the	scatter	plot	are
generated	at	random	as	follows.

The	relation	between	 	and	 	is	perfectly	linear.	We	cannot	see	this	"true	line"	but	it
exists.
The	scatter	plot	is	created	by	taking	points	on	the	line	and	pushing	them	off	the	line
vertically,	either	above	or	below,	as	follows:

For	each	 ,	find	the	corresponding	point	on	the	true	line	(that's	the	signal),	and
then	generate	the	noise	or	error.
The	errors	are	drawn	at	random	with	replacement	from	a	population	of	errors	that
has	a	normal	distribution	with	mean	0.
Create	a	point	whose	horizontal	coordinate	is	 	and	whose	vertical	coordinate	is
"the	height	of	the	true	line	at	 ,	plus	the	error".

Finally,	erase	the	true	line	from	the	scatter,	and	display	just	the	points	created.

Based	on	this	scatter	plot,	how	should	we	estimate	the	true	line?	The	best	line	that	we	can
put	through	a	scatter	plot	is	the	regression	line.	So	the	regression	line	is	a	natural	estimate
of	the	true	line.

The	simulation	below	shows	how	close	the	regression	line	is	to	the	true	line.	The	first	panel
shows	how	the	scatter	plot	is	generated	from	the	true	line.	The	second	shows	the	scatter
plot	that	we	see.	The	third	shows	the	regression	line	through	the	plot.	The	fourth	shows	both
the	regression	line	and	the	true	line.

To	run	the	simulation,	call	the	function		draw_and_compare		with	three	arguments:	the	slope	of
the	true	line,	the	intercept	of	the	true	line,	and	the	sample	size.

Run	the	simulation	a	few	times,	with	different	values	for	the	slope	and	intercept	of	the	true
line,	and	varying	sample	sizes.	Because	all	the	points	are	generated	according	to	the	model,
you	will	see	that	the	regression	line	is	a	good	estimate	of	the	true	line	if	the	sample	size	is
moderately	large.
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#	The	true	line,

#	the	points	created,

#	and	our	estimate	of	the	true	line.

#	Arguments:	true	slope,	true	intercept,	number	of	points

draw_and_compare(4,	-5,	10)
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In	reality,	of	course,	we	will	never	see	the	true	line.	What	the	simulation	shows	that	if	the
regression	model	looks	plausible,	and	if	we	have	a	large	sample,	then	the	regression	line	is
a	good	approximation	to	the	true	line.
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Inference	for	the	True	Slope¶

Our	simulations	show	that	if	the	regression	model	holds	and	the	sample	size	is	large,	then
the	regression	line	is	likely	to	be	close	to	the	true	line.	This	allows	us	to	estimate	the	slope	of
the	true	line.

We	will	use	our	familiar	sample	of	mothers	and	their	newborn	babies	to	develop	a	method	of
estimating	the	slope	of	the	true	line.	First,	let's	see	if	we	believe	that	the	regression	model	is
an	appropriate	set	of	assumptions	for	describing	the	relation	between	birth	weight	and	the
number	of	gestational	days.

scatter_fit(baby,	'Gestational	Days',	'Birth	Weight')

correlation(baby,	'Gestational	Days',	'Birth	Weight')

0.40754279338885108

By	and	large,	the	scatter	looks	fairly	evenly	distributed	around	the	line,	though	there	are
some	points	that	are	scattered	on	the	outskirts	of	the	main	cloud.	The	correlation	is	0.4	and
the	regression	line	has	a	positive	slope.

Does	this	reflect	the	fact	that	the	true	line	has	a	positive	slope?	To	answer	this	question,	let
us	see	if	we	can	estimate	the	true	slope.	We	certainly	have	one	estimate	of	it:	the	slope	of
our	regression	line.	That's	about	0.47	ounces	per	day.

Inference	for	the	True	Slope
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slope(baby,	'Gestational	Days',	'Birth	Weight')

0.46655687694921522

But	had	the	scatter	plot	come	out	differently,	the	regression	line	would	have	been	different
and	might	have	had	a	different	slope.	How	do	we	figure	out	how	different	the	slope	might
have	been?

We	need	another	sample	of	points,	so	that	we	can	draw	the	regression	line	through	the	new
scatter	plot	and	find	its	slope.	But	from	where	will	get	another	sample?

You	have	guessed	it	–	we	will	bootstrap	our	original	sample.	That	will	give	us	a	bootstrapped
scatter	plot,	through	which	we	can	draw	a	regression	line.

Bootstrapping	the	Scatter	Plot¶

We	can	simulate	new	samples	by	random	sampling	with	replacement	from	the	original
sample,	as	many	times	as	the	original	sample	size.	Each	of	these	new	samples	will	give	us
a	scatter	plot.	We	will	call	that	a	bootstrapped	scatter	plot,	and	for	short,	we	will	call	the
entire	process	bootstrapping	the	scatter	plot.

Here	is	the	original	scatter	diagram	from	the	sample,	and	four	replications	of	the	bootstrap
resampling	procedure.	Notice	how	the	resampled	scatter	plots	are	in	general	a	little	more
sparse	than	the	original.	That	is	because	some	of	the	original	point	do	not	get	selected	in	the
samples.
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Estimating	the	True	Slope¶

We	can	bootstrap	the	scatter	plot	a	large	number	of	times,	and	draw	a	regression	line
through	each	bootstrapped	plot.	Each	of	those	lines	has	a	slope.	We	can	simply	collect	all
the	slopes	and	draw	their	empirical	histogram.	Recall	that	by	default,	the		sample		method
draws	at	random	with	replacement,	the	same	number	of	times	as	the	number	of	rows	in	the
table.	That	is,		sample		generates	a	bootstrap	sample	by	default.

slopes	=	make_array()

for	i	in	np.arange(5000):

				bootstrap_sample	=	baby.sample()

				bootstrap_slope	=	slope(bootstrap_sample,	'Gestational	

Days',	'Birth	Weight')

				slopes	=	np.append(slopes,	bootstrap_slope)

Table().with_column('Bootstrap	Slopes',	slopes).hist(bins=20)

We	can	then	construct	an	approximate	95%	confidence	interval	for	the	slope	of	the	true	line,
using	the	bootstrap	percentile	method.	The	confidence	interval	extends	from	the	2.5th
percentile	to	the	97.5th	percentile	of	the	5000	bootstrapped	slopes.

left	=	percentile(2.5,	slopes)

right	=	percentile(97.5,	slopes)

left,	right

(0.38209399211893086,	0.56014757838023777)
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An	approximate	95%	confidence	interval	for	the	true	slope	extends	from	about	0.38	ounces
per	day	to	about	0.56	ounces	per	day.

A	Function	to	Bootstrap	the	Slope¶

Let	us	collect	all	the	steps	of	our	method	of	estimating	the	slope	and	define	a	function
	bootstrap_slope		that	carries	them	out.	Its	arguments	are	the	name	of	the	table	and	the
labels	of	the	predictor	and	response	variables,	and	the	desired	number	of	bootstrap
replications.	In	each	replication,	the	function	bootstraps	the	original	scatter	plot	and
calculates	the	slope	of	the	resulting	regression	line.	It	then	draws	the	histogram	of	all	the
generated	slopes	and	prints	the	interval	consisting	of	the	"middle	95%"	of	the	slopes.
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def	bootstrap_slope(table,	x,	y,	repetitions):

				#	For	each	repetition:

				#	Bootstrap	the	scatter,	get	the	slope	of	the	regression	

line,

				#	augment	the	list	of	generated	slopes

				slopes	=	make_array()

				for	i	in	np.arange(repetitions):

								bootstrap_sample	=	table.sample()

								bootstrap_slope	=	slope(bootstrap_sample,	x,	y)

								slopes	=	np.append(slopes,	bootstrap_slope)

				#	Find	the	endpoints	of	the	95%	confidence	interval	for	the	

true	slope

				left	=	percentile(2.5,	slopes)

				right	=	percentile(97.5,	slopes)

				#	Slope	of	the	regression	line	from	the	original	sample

				observed_slope	=	slope(table,	x,	y)

				#	Display	results

				Table().with_column('Bootstrap	Slopes',	

slopes).hist(bins=20)

				plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=8);

				print('Slope	of	regression	line:',	observed_slope)

				print('Approximate	95%-confidence	interval	for	the	true	

slope:')

				print(left,	right)

When	we	call		bootstrap_slope		to	find	a	confidence	interval	for	the	true	slope	when	the
response	variable	is	birth	weight	and	the	predictor	is	gestational	days,	we	get	an	interval
very	close	to	the	one	we	obtained	earlier:	approximately	0.38	ounces	per	day	to	0.56	ounces
per	day.

bootstrap_slope(baby,	'Gestational	Days',	'Birth	Weight',	5000)
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Slope	of	regression	line:	0.466556876949

Approximate	95%-confidence	interval	for	the	true	slope:

0.378663152966	0.555005146304

Now	that	we	have	a	function	that	automates	our	process	of	estimating	the	slope	of	the	true
line	in	a	regression	model,	we	can	use	it	on	other	variables	as	well.

For	example,	let's	examine	the	relation	between	birth	weight	and	the	mother's	height.	Do
taller	women	tend	to	have	heavier	babies?

The	regression	model	seems	reasonable,	based	on	the	scatter	plot,	but	the	correlation	is	not
high.	It's	just	about	0.2.

scatter_fit(baby,	'Maternal	Height',	'Birth	Weight')
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correlation(baby,	'Maternal	Height',	'Birth	Weight')

0.20370417718968034

As	before,	we	can	use		bootstrap_slope		to	estimate	the	slope	of	the	true	line	in	the
regression	model.

bootstrap_slope(baby,	'Maternal	Height',	'Birth	Weight',	5000)

Slope	of	regression	line:	1.47801935193

Approximate	95%-confidence	interval	for	the	true	slope:

1.0403083964	1.91576886223

A	95%	confidence	interval	for	the	true	slope	extends	from	about	1	ounce	per	inch	to	about
1.9	ounces	per	inch.

Could	the	True	Slope	Be	0?¶

Suppose	we	believe	that	our	data	follow	the	regression	model,	and	we	fit	the	regression	line
to	estimate	the	true	line.	If	the	regression	line	isn't	perfectly	flat,	as	is	almost	invariably	the
case,	we	will	be	observing	some	linear	association	in	the	scatter	plot.

But	what	if	that	observation	is	spurious?	In	other	words,	what	if	the	true	line	was	flat	–	that	is,
there	was	no	linear	relation	between	the	two	variables	–	and	the	association	that	we
observed	was	just	due	to	randomness	in	generating	the	points	that	form	our	sample?
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Here	is	a	simulation	that	illustrates	why	this	question	arises.	We	will	once	again	call	the
function		draw_and_compare	,	this	time	requiring	the	true	line	to	have	slope	0.	Our	goal	is	to
see	whether	our	regression	line	shows	a	slope	that	is	not	0.

Remember	that	the	arguments	to	the	function		draw_and_compare		are	the	slope	and	the
intercept	of	the	true	line,	and	the	number	of	points	to	be	generated.

draw_and_compare(0,	10,	25)
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Run	the	simulation	a	few	times,	keeping	the	slope	of	the	true	line	0	each	time.	You	will	notice
that	while	the	slope	of	the	true	line	is	0,	the	slope	of	the	regression	line	is	typically	not	0.	The
regression	line	sometimes	slopes	upwards,	and	sometimes	downwards,	each	time	giving	us
a	false	impression	that	the	two	variables	are	correlated.

To	decide	whether	or	not	the	slope	that	we	are	seeing	is	real,	we	would	like	to	test	the
following	hypotheses:

Null	Hypothesis.	The	slope	of	the	true	line	is	0.

Alternative	Hypothesis.	The	slope	of	the	true	line	is	not	0.

We	are	well	positioned	to	do	this.	Since	we	can	construct	a	95%	confidence	interval	for	the
true	slope,	all	we	have	to	do	is	see	whether	the	interval	contains	0.

If	it	doesn't,	then	we	can	reject	the	null	hypothesis	(with	the	5%	cutoff	for	the	P-value).

If	the	confidence	interval	for	the	true	slope	does	contain	0,	then	we	don't	have	enough
evidence	to	reject	the	null	hypothesis.	Perhaps	the	slope	that	we	are	seeing	is	spurious.

Let's	use	this	method	in	an	example.	Suppose	we	try	to	estimate	the	birth	weight	of	the	baby
based	on	the	mother's	age.	Based	on	the	sample,	the	slope	of	the	regression	line	for
estimating	birth	weight	based	on	maternal	age	is	positive,	about	0.08	ounces	per	year.

slope(baby,	'Maternal	Age',	'Birth	Weight')

0.085007669415825132

Though	the	slope	is	positive,	it's	pretty	small.	The	regression	line	is	so	close	to	flat	that	it
raises	the	question	of	whether	the	true	line	is	flat.

scatter_fit(baby,	'Maternal	Age',	'Birth	Weight')
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We	can	use		bootstrap_slope		to	estimate	the	slope	of	the	true	line.	The	calculation	shows
that	an	approximate	95%	bootstrap	confidence	interval	for	the	true	slope	has	a	negative	left
end	point	and	a	positive	right	end	point	–	in	other	words,	the	interval	contains	0.

bootstrap_slope(baby,	'Maternal	Age',	'Birth	Weight',	5000)

Slope	of	regression	line:	0.0850076694158

Approximate	95%-confidence	interval	for	the	true	slope:

-0.104335243815	0.272791852339

Because	the	interval	contains	0,	we	cannot	reject	the	null	hypothesis	that	the	slope	of	the
true	linear	relation	between	maternal	age	and	baby's	birth	weight	is	0.	Based	on	this
analysis,	it	would	be	unwise	to	predict	birth	weight	based	on	the	regression	model	with
maternal	age	as	the	predictor.
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Prediction	Intervals¶

One	of	the	primary	uses	of	regression	is	to	make	predictions	for	a	new	individual	who	was
not	part	of	our	original	sample	but	is	similar	to	the	sampled	individuals.	In	the	language	of
the	model,	we	want	to	estimate	 	for	a	new	value	of	 .

Our	estimate	is	the	height	of	the	true	line	at	 .	Of	course,	we	don't	know	the	true	line.	What
we	have	as	a	substitute	is	the	regression	line	through	our	sample	of	points.

The	fitted	value	at	a	given	value	of	 	is	the	regression	estimate	of	 	based	on	that	value	of	
.	In	other	words,	the	fitted	value	at	a	given	value	of	 	is	the	height	of	the	regression	line	at

that	 .

Suppose	we	try	to	predict	a	baby's	birth	weight	based	on	the	number	of	gestational	days.	As
we	saw	in	the	previous	section,	the	data	fit	the	regression	model	fairly	well	and	a	95%
confidence	interval	for	the	slope	of	the	true	line	doesn't	contain	0.	So	it	seems	reasonable	to
carry	out	our	prediction.

The	figure	below	shows	where	the	prediction	lies	on	the	regression	line.	The	red	line	is	at	
.

The	height	of	the	point	where	the	red	line	hits	the	regression	line	is	the	fitted	value	at	300
gestational	days.

The	function		fitted_value		computes	this	height.	Like	the	functions		correlation	,		slope	,
and		intercept	,	its	arguments	include	the	name	of	the	table	and	the	labels	of	the	 	and	
columns.	But	it	also	requires	a	fourth	argument,	which	is	the	value	of	 	at	which	the
estimate	will	be	made.
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def	fitted_value(table,	x,	y,	given_x):

				a	=	slope(table,	x,	y)

				b	=	intercept(table,	x,	y)

				return	a	*	given_x		+	b

The	fitted	value	at	300	gestational	days	is	about	129.2	ounces.	In	other	words,	for	a
pregnancy	that	has	a	duration	of	300	gestational	days,	our	estimate	for	the	baby's	weight	is
about	129.2	ounces.

fit_300	=	fitted_value(baby,	'Gestational	Days',	'Birth	Weight',	

300)

fit_300

129.2129241703143

The	Variability	of	the	Prediction¶

We	have	developed	a	method	making	one	prediction	of	a	new	baby's	birth	weight	based	on
the	number	of	gestational	days,	using	the	data	in	our	sample.	But	as	data	scientists,	we
know	that	the	sample	might	have	been	different.	Had	the	sample	been	different,	the
regression	line	would	have	been	different	too,	and	so	would	our	prediction.	To	see	how	good
our	prediction	is,	we	must	get	a	sense	of	how	variable	the	prediction	can	be.

To	do	this,	we	must	generate	new	samples.	We	can	do	that	by	bootstrapping	the	scatter	plot
as	in	the	previous	section.	We	will	then	fit	the	regression	line	to	the	scatter	plot	in	each
replication,	and	make	a	prediction	based	on	each	line.	The	figure	below	shows	10	such
lines,	and	the	corresponding	predicted	birth	weight	at	300	gestational	days.
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The	predictions	vary	from	one	line	to	the	next.	The	table	below	shows	the	slope	and
intercept	of	each	of	the	10	lines,	along	with	the	prediction.

lines

slope intercept prediction	at	x=300

0.503931 -21.6998 129.479

0.53227 -29.5647 130.116

0.518771 -25.363 130.268

0.430556 -1.06812 128.099

0.470229 -11.7611 129.308

0.48713 -16.5314 129.608

0.51241 -23.2954 130.428

0.52473 -27.2053 130.214

0.409943 5.22652 128.21

0.468065 -11.6967 128.723

Bootstrap	Prediction	Interval¶

If	we	increase	the	number	of	repetitions	of	the	resampling	process,	we	can	generate	an
empirical	histogram	of	the	predictions.	This	will	allow	us	to	create	an	interval	of	predictions,
using	the	same	percentile	method	that	we	used	create	a	bootstrap	confidence	interval	for
the	slope.

Let	us	define	a	function	called		bootstrap_prediction		to	do	this.	The	function	takes	five
arguments:

the	name	of	the	table
the	column	labels	of	the	predictor	and	response	variables,	in	that	order
the	value	of	 	at	which	to	make	the	prediction
the	desired	number	of	bootstrap	repetitions

In	each	repetition,	the	function	bootstraps	the	original	scatter	plot	and	finds	the	predicted
value	of	 	based	on	the	specified	value	of	 .	Specifically,	it	calls	the	function		fitted_value	
that	we	defined	earlier	in	this	section	to	find	the	fitted	value	at	the	specified	 .

Finally,	it	draws	the	empirical	histogram	of	all	the	predicted	values,	and	prints	the	interval
consisting	of	the	"middle	95%"	of	the	predicted	values.	It	also	prints	the	predicted	value
based	on	the	regression	line	through	the	original	scatter	plot.
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#	Bootstrap	prediction	of	variable	y	at	new_x

#	Data	contained	in	table;	prediction	by	regression	of	y	based	

on	x

#	repetitions	=	number	of	bootstrap	replications	of	the	original	

scatter	plot

def	bootstrap_prediction(table,	x,	y,	new_x,	repetitions):

				#	For	each	repetition:

				#	Bootstrap	the	scatter;	

				#	get	the	regression	prediction	at	new_x;	

				#	augment	the	predictions	list

				predictions	=	make_array()

				for	i	in	np.arange(repetitions):

								bootstrap_sample	=	table.sample()

								bootstrap_prediction	=	fitted_value(bootstrap_sample,	x,	

y,	new_x)

								predictions	=	np.append(predictions,	

bootstrap_prediction)

				#	Find	the	ends	of	the	approximate	95%	prediction	interval

				left	=	percentile(2.5,	predictions)

				right	=	percentile(97.5,	predictions)

				#	Prediction	based	on	original	sample

				original	=	fitted_value(table,	x,	y,	new_x)

				#	Display	results

				Table().with_column('Prediction',	predictions).hist(bins=20)

				plots.xlabel('predictions	at	x='+str(new_x))

				plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=8);

				print('Height	of	regression	line	at	x='+str(new_x)+':',	

original)

				print('Approximate	95%-confidence	interval:')

				print(left,	right)
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bootstrap_prediction(baby,	'Gestational	Days',	'Birth	Weight',	

300,	5000)

Height	of	regression	line	at	x=300:	129.21292417

Approximate	95%-confidence	interval:

127.300774171	131.361729528

The	figure	above	shows	a	bootstrap	empirical	histogram	of	the	predicted	birth	weight	of	a
baby	at	300	gestational	days,	based	on	5,000	repetitions	of	the	bootstrap	process.	The
empirical	distribution	is	roughly	normal.

An	approximate	95%	prediction	interval	of	scores	has	been	constructed	by	taking	the
"middle	95%"	of	the	predictions,	that	is,	the	interval	from	the	2.5th	percentile	to	the	97.5th
percentile	of	the	predictions.	The	interval	ranges	from	about	127	to	about	131.	The
prediction	based	on	the	original	sample	was	about	129,	which	is	close	to	the	center	of	the
interval.

The	Effect	of	Changing	the	Value	of	the	Predictor¶

The	figure	below	shows	the	histogram	of	5,000	bootstrap	predictions	at	285	gestational
days.	The	prediction	based	on	the	original	sample	is	about	122	ounces,	and	the	interval
ranges	from	about	121	ounces	to	about	123	ounces.

bootstrap_prediction(baby,	'Gestational	Days',	'Birth	Weight',	

285,	5000)
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Height	of	regression	line	at	x=285:	122.214571016

Approximate	95%-confidence	interval:

121.177089926	123.291373304

Notice	that	this	interval	is	narrower	than	the	prediction	interval	at	300	gestational	days.	Let
us	investigate	the	reason	for	this.

The	mean	number	of	gestational	days	is	about	279	days:

np.mean(baby.column('Gestational	Days'))

279.10136286201021

So	285	is	nearer	to	the	center	of	the	distribution	than	300	is.	Typically,	the	regression	lines
based	on	the	bootstrap	samples	are	closer	to	each	other	near	the	center	of	the	distribution
of	the	predictor	variable.	Therefore	all	of	the	predicted	values	are	closer	together	as	well.
This	explains	the	narrower	width	of	the	prediction	interval.

You	can	see	this	in	the	figure	below,	which	shows	predictions	at	 	and	 	for
each	of	ten	bootstrap	replications.	Typically,	the	lines	are	farther	apart	at	 	than	at	

,	and	therefore	the	predictions	at	 	are	more	variable.
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Words	of	caution¶

All	of	the	predictions	and	tests	that	we	have	performed	in	this	chapter	assume	that	the
regression	model	holds.	Specifically,	the	methods	assume	that	the	scatter	plot	resembles
points	generated	by	starting	with	points	that	are	on	a	straight	line	and	then	pushing	them	off
the	line	by	adding	random	normal	noise.

If	the	scatter	plot	does	not	look	like	that,	then	perhaps	the	model	does	not	hold	for	the	data.
If	the	model	does	not	hold,	then	calculations	that	assume	the	model	to	be	true	are	not	valid.

Therefore,	we	must	first	decide	whether	the	regression	model	holds	for	our	data,	before	we
start	making	predictions	based	on	the	model	or	testing	hypotheses	about	parameters	of	the
model.	A	simple	way	is	to	do	what	we	did	in	this	section,	which	is	to	draw	the	scatter
diagram	of	the	two	variables	and	see	whether	it	looks	roughly	linear	and	evenly	spread	out
around	a	line.	We	should	also	run	the	diagnostics	we	developed	in	the	previous	section
using	the	residual	plot.
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Classification¶

David	Wagner	is	the	primary	author	of	this	chapter.

Machine	learning	is	a	class	of	techniques	for	automatically	finding	patterns	in	data	and	using
it	to	draw	inferences	or	make	predictions.	You	have	already	seen	linear	regression,	which	is
one	kind	of	machine	learning.	This	chapter	introduces	a	new	one:	classification.

Classification	is	about	learning	how	to	make	predictions	from	past	examples.	We	are	given
some	examples	where	we	have	been	told	what	the	correct	prediction	was,	and	we	want	to
learn	from	those	examples	how	to	make	good	predictions	in	the	future.	Here	are	a	few
applications	where	classification	is	used	in	practice:

For	each	order	Amazon	receives,	Amazon	would	like	to	predict:	is	this	order
fraudulent?	They	have	some	information	about	each	order	(e.g.,	its	total	value,
whether	the	order	is	being	shipped	to	an	address	this	customer	has	used	before,
whether	the	shipping	address	is	the	same	as	the	credit	card	holder's	billing	address).
They	have	lots	of	data	on	past	orders,	and	they	know	which	of	those	past	orders	were
fraudulent	and	which	weren't.	They	want	to	learn	patterns	that	will	help	them	predict,	as
new	orders	arrive,	whether	those	new	orders	are	fraudulent.

Online	dating	sites	would	like	to	predict:	are	these	two	people	compatible?	Will	they
hit	it	off?	They	have	lots	of	data	on	which	matches	they've	suggested	to	their	customers
in	the	past,	and	they	have	some	idea	which	ones	were	successful.	As	new	customers
sign	up,	they'd	like	to	make	predictions	about	who	might	be	a	good	match	for	them.

Doctors	would	like	to	know:	does	this	patient	have	cancer?	Based	on	the
measurements	from	some	lab	test,	they'd	like	to	be	able	to	predict	whether	the
particular	patient	has	cancer.	They	have	lots	of	data	on	past	patients,	including	their	lab
measurements	and	whether	they	ultimately	developed	cancer,	and	from	that,	they'd	like
to	try	to	infer	what	measurements	tend	to	be	characteristic	of	cancer	(or	non-cancer)	so
they	can	diagnose	future	patients	accurately.

Politicians	would	like	to	predict:	are	you	going	to	vote	for	them?	This	will	help	them
focus	fundraising	efforts	on	people	who	are	likely	to	support	them,	and	focus	get-out-
the-vote	efforts	on	voters	who	will	vote	for	them.	Public	databases	and	commercial
databases	have	a	lot	of	information	about	most	people:	e.g.,	whether	they	own	a	home
or	rent;	whether	they	live	in	a	rich	neighborhood	or	poor	neighborhood;	their	interests
and	hobbies;	their	shopping	habits;	and	so	on.	And	political	campaigns	have	surveyed
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some	voters	and	found	out	who	they	plan	to	vote	for,	so	they	have	some	examples
where	the	correct	answer	is	known.	From	this	data,	the	campaigns	would	like	to	find
patterns	that	will	help	them	make	predictions	about	all	other	potential	voters.

All	of	these	are	classification	tasks.	Notice	that	in	each	of	these	examples,	the	prediction	is	a
yes/no	question	--	we	call	this	binary	classification,	because	there	are	only	two	possible
predictions.

In	a	classification	task,	each	individual	or	situation	where	we'd	like	to	make	a	prediction	is
called	an	observation.	We	ordinarily	have	many	observations.	Each	observation	has	multiple
attributes,	which	are	known	(for	example,	the	total	value	of	the	order	on	Amazon,	or	the
voter's	annual	salary).	Also,	each	observation	has	a	class,	which	is	the	answer	to	the
question	we	care	about	(for	example,	fraudulent	or	not,	or	voting	for	you	or	not).

When	Amazon	is	predicting	whether	orders	are	fraudulent,	each	order	corresponds	to	a
single	observation.	Each	observation	has	several	attributes:	the	total	value	of	the	order,
whether	the	order	is	being	shipped	to	an	address	this	customer	has	used	before,	and	so	on.
The	class	of	the	observation	is	either	0	or	1,	where	0	means	that	the	order	is	not	fraudulent
and	1	means	that	the	order	is	fraudulent.	When	a	customer	makes	a	new	order,	we	do	not
observe	whether	it	is	fraudulent,	but	we	do	observe	its	attributes,	and	we	will	try	to	predict	its
class	using	those	attributes.

Classification	requires	data.	It	involves	looking	for	patterns,	and	to	find	patterns,	you	need
data.	That's	where	the	data	science	comes	in.	In	particular,	we're	going	to	assume	that	we
have	access	to	training	data:	a	bunch	of	observations,	where	we	know	the	class	of	each
observation.	The	collection	of	these	pre-classified	observations	is	also	called	a	training	set.
A	classification	algorithm	is	going	to	analyze	the	training	set,	and	then	come	up	with	a
classifier:	an	algorithm	for	predicting	the	class	of	future	observations.

Classifiers	do	not	need	to	be	perfect	to	be	useful.	They	can	be	useful	even	if	their	accuracy
is	less	than	100%.	For	instance,	if	the	online	dating	site	occasionally	makes	a	bad
recommendation,	that's	OK;	their	customers	already	expect	to	have	to	meet	many	people
before	they'll	find	someone	they	hit	it	off	with.	Of	course,	you	don't	want	the	classifier	to
make	too	many	errors	—	but	it	doesn't	have	to	get	the	right	answer	every	single	time.
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Nearest	Neighbors¶

In	this	section	we'll	develop	the	nearest	neighbor	method	of	classification.	Just	focus	on	the
ideas	for	now	and	don't	worry	if	some	of	the	code	is	mysterious.	Later	in	the	chapter	we'll
see	how	to	organize	our	ideas	into	code	that	performs	the	classification.

Chronic	kidney	disease¶

Let's	work	through	an	example.	We're	going	to	work	with	a	data	set	that	was	collected	to
help	doctors	diagnose	chronic	kidney	disease	(CKD).	Each	row	in	the	data	set	represents	a
single	patient	who	was	treated	in	the	past	and	whose	diagnosis	is	known.	For	each	patient,
we	have	a	bunch	of	measurements	from	a	blood	test.	We'd	like	to	find	which	measurements
are	most	useful	for	diagnosing	CKD,	and	develop	a	way	to	classify	future	patients	as	"has
CKD"	or	"doesn't	have	CKD"	based	on	their	blood	test	results.

ckd	=	Table.read_table('ckd.csv').relabeled('Blood	Glucose	

Random',	'Glucose')

ckd

Age Blood
Pressure

Specific
Gravity Albumin Sugar

Red
Blood
Cells

Pus	Cell Pus	Cell
clumps

48 70 1.005 4 0 normal abnormal present

53 90 1.02 2 0 abnormal abnormal present

63 70 1.01 3 0 abnormal abnormal present

68 80 1.01 3 2 normal abnormal present

61 80 1.015 2 0 abnormal abnormal notpresent

48 80 1.025 4 0 normal abnormal notpresent

69 70 1.01 3 4 normal abnormal notpresent

73 70 1.005 0 0 normal normal notpresent

73 80 1.02 2 0 abnormal abnormal notpresent

46 60 1.01 1 0 normal normal notpresent

...	(148	rows	omitted)
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Some	of	the	variables	are	categorical	(words	like	"abnormal"),	and	some	quantitative.	The
quantitative	variables	all	have	different	scales.	We're	going	to	want	to	make	comparisons
and	estimate	distances,	often	by	eye,	so	let's	select	just	a	few	of	the	variables	and	work	in
standard	units.	Then	we	won't	have	to	worry	about	the	scale	of	each	of	the	different
variables.

ckd	=	Table().with_columns(

				'Hemoglobin',	standard_units(ckd.column('Hemoglobin')),

				'Glucose',	standard_units(ckd.column('Glucose')),

				'White	Blood	Cell	Count',	standard_units(ckd.column('White	

Blood	Cell	Count')),

				'Class',	ckd.column('Class')

)

ckd

Hemoglobin Glucose White	Blood	Cell	Count Class

-0.865744 -0.221549 -0.569768 1

-1.45745 -0.947597 1.16268 1

-1.00497 3.84123 -1.27558 1

-2.81488 0.396364 0.809777 1

-2.08395 0.643529 0.232293 1

-1.35303 -0.561402 -0.505603 1

-0.413266 2.04928 0.360623 1

-1.28342 -0.947597 3.34429 1

-1.10939 1.87936 -0.409356 1

-1.35303 0.489051 1.96475 1

...	(148	rows	omitted)

Let's	look	at	two	columns	in	particular:	the	hemoglobin	level	(in	the	patient's	blood),	and	the
blood	glucose	level	(at	a	random	time	in	the	day;	without	fasting	specially	for	the	blood	test).

We'll	draw	a	scatter	plot	to	visualize	the	relation	between	the	two	variables.	Blue	dots	are
patients	with	CKD;	gold	dots	are	patients	without	CKD.	What	kind	of	medical	test	results
seem	to	indicate	CKD?
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color_table	=	Table().with_columns(

				'Class',	make_array(1,	0),

				'Color',	make_array('darkblue',	'gold')

)

ckd	=	ckd.join('Class',	color_table)

ckd.scatter('Hemoglobin',	'Glucose',	colors='Color')

Suppose	Alice	is	a	new	patient	who	is	not	in	the	data	set.	If	I	tell	you	Alice's	hemoglobin
level	and	blood	glucose	level,	could	you	predict	whether	she	has	CKD?	It	sure	looks	like	it!
You	can	see	a	very	clear	pattern	here:	points	in	the	lower-right	tend	to	represent	people	who
don't	have	CKD,	and	the	rest	tend	to	be	folks	with	CKD.	To	a	human,	the	pattern	is	obvious.
But	how	can	we	program	a	computer	to	automatically	detect	patterns	such	as	this	one?

A	Nearest	Neighbor	Classifier¶

There	are	lots	of	kinds	of	patterns	one	might	look	for,	and	lots	of	algorithms	for	classification.
But	I'm	going	to	tell	you	about	one	that	turns	out	to	be	surprisingly	effective.	It	is	called
nearest	neighbor	classification.	Here's	the	idea.	If	we	have	Alice's	hemoglobin	and	glucose
numbers,	we	can	put	her	somewhere	on	this	scatterplot;	the	hemoglobin	is	her	x-coordinate,
and	the	glucose	is	her	y-coordinate.	Now,	to	predict	whether	she	has	CKD	or	not,	we	find	the
nearest	point	in	the	scatterplot	and	check	whether	it	is	blue	or	gold;	we	predict	that	Alice
should	receive	the	same	diagnosis	as	that	patient.
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In	other	words,	to	classify	Alice	as	CKD	or	not,	we	find	the	patient	in	the	training	set	who	is
"nearest"	to	Alice,	and	then	use	that	patient's	diagnosis	as	our	prediction	for	Alice.	The
intuition	is	that	if	two	points	are	near	each	other	in	the	scatterplot,	then	the	corresponding
measurements	are	pretty	similar,	so	we	might	expect	them	to	receive	the	same	diagnosis
(more	likely	than	not).	We	don't	know	Alice's	diagnosis,	but	we	do	know	the	diagnosis	of	all
the	patients	in	the	training	set,	so	we	find	the	patient	in	the	training	set	who	is	most	similar	to
Alice,	and	use	that	patient's	diagnosis	to	predict	Alice's	diagnosis.

In	the	graph	below,	the	red	dot	represents	Alice.	It	is	joined	with	a	black	line	to	the	point	that
is	nearest	to	it	–	its	nearest	neighbor	in	the	training	set.	The	figure	is	drawn	by	a	function
called		show_closest	.	It	takes	an	array	that	represents	the	 	and	 	coordinates	of	Alice's
point.	Vary	those	to	see	how	the	closest	point	changes!	Note	especially	when	the	closest
point	is	blue	and	when	it	is	gold.

#	In	this	example,	Alice's	Hemoglobin	attribute	is	0	and	her	

Glucose	is	1.5.

alice	=	make_array(0,	1.5)

show_closest(alice)

Thus	our	nearest	neighbor	classifier	works	like	this:

Find	the	point	in	the	training	set	that	is	nearest	to	the	new	point.
If	that	nearest	point	is	a	"CKD"	point,	classify	the	new	point	as	"CKD".	If	the	nearest
point	is	a	"not	CKD"	point,	classify	the	new	point	as	"not	CKD".
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The	scatterplot	suggests	that	this	nearest	neighbor	classifier	should	be	pretty	accurate.
Points	in	the	lower-right	will	tend	to	receive	a	"no	CKD"	diagnosis,	as	their	nearest	neighbor
will	be	a	gold	point.	The	rest	of	the	points	will	tend	to	receive	a	"CKD"	diagnosis,	as	their
nearest	neighbor	will	be	a	blue	point.	So	the	nearest	neighbor	strategy	seems	to	capture	our
intuition	pretty	well,	for	this	example.

Decision	boundary¶

Sometimes	a	helpful	way	to	visualize	a	classifier	is	to	map	out	the	kinds	of	attributes	where
the	classifier	would	predict	'CKD',	and	the	kinds	where	it	would	predict	'not	CKD'.	We	end	up
with	some	boundary	between	the	two,	where	points	on	one	side	of	the	boundary	will	be
classified	'CKD'	and	points	on	the	other	side	will	be	classified	'not	CKD'.	This	boundary	is
called	the	decision	boundary.	Each	different	classifier	will	have	a	different	decision
boundary;	the	decision	boundary	is	just	a	way	to	visualize	what	criteria	the	classifier	is	using
to	classify	points.

For	example,	suppose	the	coordinates	of	Alice's	point	are	(0,	1.5).	Notice	that	the	nearest
neighbor	is	blue.	Now	try	reducing	the	height	(the	 -coordinate)	of	the	point.	You'll	see	that
at	around	 	the	nearest	neighbor	turns	from	blue	to	gold.

alice	=	make_array(0,	0.97)

show_closest(alice)

Here	are	hundreds	of	new	unclassified	points,	all	in	red.
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Each	of	the	red	points	has	a	nearest	neighbor	in	the	training	set	(the	same	blue	and	gold
points	as	before).	For	some	red	points	you	can	easily	tell	whether	the	nearest	neighbor	is
blue	or	gold.	For	others,	it's	a	little	more	tricky	to	make	the	decision	by	eye.	Those	are	the
points	near	the	decision	boundary.

But	the	computer	can	easily	determine	the	nearest	neighbor	of	each	point.	So	let's	get	it	to
apply	our	nearest	neighbor	classifier	to	each	of	the	red	points:

For	each	red	point,	it	must	find	the	closest	point	in	the	training	set;	it	must	then	change	the
color	of	the	red	point	to	become	the	color	of	the	nearest	neighbor.

The	resulting	graph	shows	which	points	will	get	classified	as	'CKD'	(all	the	blue	ones),	and
which	as	'not	CKD'	(all	the	gold	ones).
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The	decision	boundary	is	where	the	classifier	switches	from	turning	the	red	points	blue	to
turning	them	gold.

k-Nearest	Neighbors¶

However,	the	separation	between	the	two	classes	won't	always	be	quite	so	clean.	For
instance,	suppose	that	instead	of	hemoglobin	levels	we	were	to	look	at	white	blood	cell
count.	Look	at	what	happens:

ckd.scatter('White	Blood	Cell	Count',	'Glucose',	colors='Color')
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As	you	can	see,	non-CKD	individuals	are	all	clustered	in	the	lower-left.	Most	of	the	patients
with	CKD	are	above	or	to	the	right	of	that	cluster...	but	not	all.	There	are	some	patients	with
CKD	who	are	in	the	lower	left	of	the	above	figure	(as	indicated	by	the	handful	of	blue	dots
scattered	among	the	gold	cluster).	What	this	means	is	that	you	can't	tell	for	certain	whether
someone	has	CKD	from	just	these	two	blood	test	measurements.

If	we	are	given	Alice's	glucose	level	and	white	blood	cell	count,	can	we	predict	whether	she
has	CKD?	Yes,	we	can	make	a	prediction,	but	we	shouldn't	expect	it	to	be	100%	accurate.
Intuitively,	it	seems	like	there's	a	natural	strategy	for	predicting:	plot	where	Alice	lands	in	the
scatter	plot;	if	she	is	in	the	lower-left,	predict	that	she	doesn't	have	CKD,	otherwise	predict
she	has	CKD.

This	isn't	perfect	--	our	predictions	will	sometimes	be	wrong.	(Take	a	minute	and	think	it
through:	for	which	patients	will	it	make	a	mistake?)	As	the	scatterplot	above	indicates,
sometimes	people	with	CKD	have	glucose	and	white	blood	cell	levels	that	look	identical	to
those	of	someone	without	CKD,	so	any	classifier	is	inevitably	going	to	make	the	wrong
prediction	for	them.

Can	we	automate	this	on	a	computer?	Well,	the	nearest	neighbor	classifier	would	be	a
reasonable	choice	here	too.	Take	a	minute	and	think	it	through:	how	will	its	predictions
compare	to	those	from	the	intuitive	strategy	above?	When	will	they	differ?

Its	predictions	will	be	pretty	similar	to	our	intuitive	strategy,	but	occasionally	it	will	make	a
different	prediction.	In	particular,	if	Alice's	blood	test	results	happen	to	put	her	right	near	one
of	the	blue	dots	in	the	lower-left,	the	intuitive	strategy	would	predict	'not	CKD',	whereas	the
nearest	neighbor	classifier	will	predict	'CKD'.

There	is	a	simple	generalization	of	the	nearest	neighbor	classifier	that	fixes	this	anomaly.	It
is	called	the	k-nearest	neighbor	classifier.	To	predict	Alice's	diagnosis,	rather	than	looking	at
just	the	one	neighbor	closest	to	her,	we	can	look	at	the	3	points	that	are	closest	to	her,	and
use	the	diagnosis	for	each	of	those	3	points	to	predict	Alice's	diagnosis.	In	particular,	we'll
use	the	majority	value	among	those	3	diagnoses	as	our	prediction	for	Alice's	diagnosis.	Of
course,	there's	nothing	special	about	the	number	3:	we	could	use	4,	or	5,	or	more.	(It's	often
convenient	to	pick	an	odd	number,	so	that	we	don't	have	to	deal	with	ties.)	In	general,	we
pick	a	number	 ,	and	our	predicted	diagnosis	for	Alice	is	based	on	the	 	patients	in	the
training	set	who	are	closest	to	Alice.	Intuitively,	these	are	the	 	patients	whose	blood	test
results	were	most	similar	to	Alice,	so	it	seems	reasonable	to	use	their	diagnoses	to	predict
Alice's	diagnosis.

The	 -nearest	neighbor	classifier	will	now	behave	just	like	our	intuitive	strategy	above.

Nearest	Neighbors

543



Nearest	Neighbors

544



Interact

Training	and	Testing¶

How	good	is	our	nearest	neighbor	classifier?	To	answer	this	we'll	need	to	find	out	how
frequently	our	classifications	are	correct.	If	a	patient	has	chronic	kidney	disease,	how	likely
is	our	classifier	to	pick	that	up?

If	the	patient	is	in	our	training	set,	we	can	find	out	immediately.	We	already	know	what	class
the	patient	is	in.	So	we	can	just	compare	our	prediction	and	the	patient's	true	class.

But	the	point	of	the	classifier	is	to	make	predictions	for	new	patients	not	in	our	training	set.
We	don't	know	what	class	these	patients	are	in	but	we	can	make	a	prediction	based	on	our
classifier.	How	to	find	out	whether	the	prediction	is	correct?

One	way	is	to	wait	for	further	medical	tests	on	the	patient	and	then	check	whether	or	not	our
prediction	agrees	with	the	test	results.	With	that	approach,	by	the	time	we	can	say	how	likely
our	prediction	is	to	be	accurate,	it	is	no	longer	useful	for	helping	the	patient.

Instead,	we	will	try	our	classifier	on	some	patients	whose	true	classes	are	known.	Then,	we
will	compute	the	proportion	of	the	time	our	classifier	was	correct.	This	proportion	will	serve
as	an	estimate	of	the	proportion	of	all	new	patients	whose	class	our	classifier	will	accurately
predict.	This	is	called	testing.

Overly	Optimistic	"Testing"¶

The	training	set	offers	a	very	tempting	set	of	patients	on	whom	to	test	out	our	classifier,
because	we	know	the	class	of	each	patient	in	the	training	set.

But	let's	be	careful	...	there	will	be	pitfalls	ahead	if	we	take	this	path.	An	example	will	show
us	why.

Suppose	we	use	a	1-nearest	neighbor	classifier	to	predict	whether	a	patient	has	chronic
kidney	disease,	based	on	glucose	and	white	blood	cell	count.

ckd.scatter('White	Blood	Cell	Count',	'Glucose',	colors='Color')
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Earlier,	we	said	that	we	expect	to	get	some	classifications	wrong,	because	there's	some
intermingling	of	blue	and	gold	points	in	the	lower-left.

But	what	about	the	points	in	the	training	set,	that	is,	the	points	already	on	the	scatter?	Will
we	ever	mis-classify	them?

The	answer	is	no.	Remember	that	1-nearest	neighbor	classification	looks	for	the	point	in	the
training	set	that	is	nearest	to	the	point	being	classified.	Well,	if	the	point	being	classified	is
already	in	the	training	set,	then	its	nearest	neighbor	in	the	training	set	is	itself!	And	therefore
it	will	be	classified	as	its	own	color,	which	will	be	correct	because	each	point	in	the	training
set	is	already	correctly	colored.

In	other	words,	if	we	use	our	training	set	to	"test"	our	1-nearest	neighbor	classifier,	the
classifier	will	pass	the	test	100%	of	the	time.

Mission	accomplished.	What	a	great	classifier!

No,	not	so	much.	A	new	point	in	the	lower-left	might	easily	be	mis-classified,	as	we	noted
earlier.	"100%	accuracy"	was	a	nice	dream	while	it	lasted.

The	lesson	of	this	example	is	not	to	use	the	training	set	to	test	a	classifier	that	is	based	on	it.

Generating	a	Test	Set¶

Training	and	Testing

546



In	earlier	chapters,	we	saw	that	random	sampling	could	be	used	to	estimate	the	proportion
of	individuals	in	a	population	that	met	some	criterion.	Unfortunately,	we	have	just	seen	that
the	training	set	is	not	like	a	random	sample	from	the	population	of	all	patients,	in	one
important	respect:	Our	classifier	guesses	correctly	for	a	higher	proportion	of	individuals	in
the	training	set	than	it	does	for	individuals	in	the	population.

When	we	computed	confidence	intervals	for	numerical	parameters,	we	wanted	to	have	many
new	random	samples	from	a	population,	but	we	only	had	access	to	a	single	sample.	We
solved	that	problem	by	taking	bootstrap	resamples	from	our	sample.

We	will	use	an	analogous	idea	to	test	our	classifier.	We	will	create	two	samples	out	of	the
original	training	set,	use	one	of	the	samples	as	our	training	set,	and	the	other	one	for	testing.

So	we	will	have	three	groups	of	individuals:

a	training	set	on	which	we	can	do	any	amount	of	exploration	to	build	our	classifier;
a	separate	testing	set	on	which	to	try	out	our	classifier	and	see	what	fraction	of	times	it
classifies	correctly;
the	underlying	population	of	individuals	for	whom	we	don't	know	the	true	classes;	the
hope	is	that	our	classifier	will	succeed	about	as	well	for	these	individuals	as	it	did	for	our
testing	set.

How	to	generate	the	training	and	testing	sets?	You've	guessed	it	–	we'll	select	at	random.

There	are	158	individuals	in		ckd	.	Let's	use	a	random	half	of	them	for	training	and	the	other
half	for	testing.	To	do	this,	we'll	shuffle	all	the	rows,	take	the	first	79	as	the	training	set,	and
the	remaining	79	for	testing.

shuffled_ckd	=	ckd.sample(with_replacement=False)

training	=	shuffled_ckd.take(np.arange(79))

testing	=	shuffled_ckd.take(np.arange(79,	158))

Now	let's	construct	our	classifier	based	on	the	points	in	the	training	sample:

training.scatter('White	Blood	Cell	Count',	'Glucose',	

colors='Color')

plt.xlim(-2,	6)

plt.ylim(-2,	6);
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We	get	the	following	classification	regions	and	decision	boundary:
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Place	the	test	data	on	this	graph	and	you	can	see	at	once	that	while	the	classifier	got	almost
all	the	points	right,	there	are	some	mistakes.	For	example,	some	blue	points	of	the	test	set
fall	in	the	gold	region	of	the	classifier.
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Some	errors	notwithstanding,	it	looks	like	the	classifier	does	fairly	well	on	the	test	set.
Assuming	that	the	original	sample	was	drawn	randomly	from	the	underlying	population,	the
hope	is	that	the	classifier	will	perform	with	similar	accuracy	on	the	overall	population,	since
the	test	set	was	chosen	randomly	from	the	original	sample.
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Interact

Rows	of	Tables¶

Now	that	we	have	a	qualitative	understanding	of	nearest	neighbor	classification,	it's	time	to
implement	our	classifier.

Until	this	chapter,	we	have	worked	mostly	with	single	columns	of	tables.	But	now	we	have	to
see	whether	one	individual	is	"close"	to	another.	Data	for	individuals	are	contained	in	rows	of
tables.

So	let's	start	by	taking	a	closer	look	at	rows.

Here	is	the	original	table		ckd		containing	data	on	patients	who	were	tested	for	chronic
kidney	disease.

ckd	=	Table.read_table('ckd.csv').relabeled('Blood	Glucose	

Random',	'Glucose')

The	data	corresponding	to	the	first	patient	is	in	row	0	of	the	table,	consistent	with	Python's
indexing	system.	The	Table	method		row		accesses	the	row	by	taking	the	index	of	the	row	as
its	argument:

ckd.row(0)

Row(Age=48,	Blood	Pressure=70,	Specific	

Gravity=1.0049999999999999,	Albumin=4,	Sugar=0,	Red	Blood	

Cells='normal',	Pus	Cell='abnormal',	Pus	Cell	clumps='present',	

Bacteria='notpresent',	Glucose=117,	Blood	Urea=56,	Serum	

Creatinine=3.7999999999999998,	Sodium=111,	Potassium=2.5,	

Hemoglobin=11.199999999999999,	Packed	Cell	Volume=32,	White	

Blood	Cell	Count=6700,	Red	Blood	Cell	Count=3.8999999999999999,	

Hypertension='yes',	Diabetes	Mellitus='no',	Coronary	Artery	

Disease='no',	Appetite='poor',	Pedal	Edema='yes',	Anemia='yes',	

Class=1)

Rows	have	their	very	own	data	type:	they	are	row	objects.	Notice	how	the	display	shows	not
only	the	values	in	the	row	but	also	the	labels	of	the	corresponding	columns.
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Rows	are	in	general	not	arrays,	as	their	elements	can	be	of	different	types.	For	example,
some	of	the	elements	of	the	row	above	are	strings	(like		'abnormal'	)	and	some	are
numerical.	So	the	row	can't	be	converted	into	an	array.

However,	rows	share	some	characteristics	with	arrays.	You	can	use		item		to	access	a
particular	element	of	a	row.	For	example,	to	access	the	Albumin	level	of	Patient	0,	we	can
look	at	the	labels	in	the	printout	of	the	row	above	to	find	that	it's	item	3:

ckd.row(0).item(3)

4

Converting	Rows	to	Arrays	(When	Possible)¶

Rows	whose	elements	are	all	numerical	(or	all	strings)	can	be	converted	to	arrays.
Converting	a	row	to	an	array	gives	us	access	to	arithmetic	operations	and	other	nice	NumPy
functions,	so	it	is	often	useful.

Recall	that	in	the	previous	section	we	tried	to	classify	the	patients	as	'CKD'	or	'not	CKD',
based	on	two	attributes		Hemoglobin		and		Glucose	,	both	measured	in	standard	units.

ckd	=	Table().with_columns(

				'Hemoglobin',	standard_units(ckd.column('Hemoglobin')),

				'Glucose',	standard_units(ckd.column('Glucose')),

				'Class',	ckd.column('Class')

)

color_table	=	Table().with_columns(

				'Class',	make_array(1,	0),

				'Color',	make_array('darkblue',	'gold')

)

ckd	=	ckd.join('Class',	color_table)

ckd
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Class Hemoglobin Glucose Color

0 0.456884 0.133751 gold

0 1.153 -0.947597 gold

0 0.770138 -0.762223 gold

0 0.596108 -0.190654 gold

0 -0.239236 -0.49961 gold

0 -0.0304002 -0.159758 gold

0 0.282854 -0.00527964 gold

0 0.108824 -0.623193 gold

0 0.0740178 -0.515058 gold

0 0.83975 -0.422371 gold

...	(148	rows	omitted)

Here	is	a	scatter	plot	of	the	two	attributes,	along	with	a	red	point	corresponding	to	Alice,	a
new	patient.	Her	value	of	hemoglobin	is	0	(that	is,	at	the	average)	and	glucose	1.1	(that	is,
1.1	SDs	above	average).

alice	=	make_array(0,	1.1)

ckd.scatter('Hemoglobin',	'Glucose',	colors='Color')

plots.scatter(alice.item(0),	alice.item(1),	color='red',	s=30);
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To	find	the	distance	between	Alice's	point	and	any	of	the	other	points,	we	only	need	the
values	of	the	attributes:

ckd_attributes	=	ckd.select('Hemoglobin',	'Glucose')

ckd_attributes
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Hemoglobin Glucose

0.456884 0.133751

1.153 -0.947597

0.770138 -0.762223

0.596108 -0.190654

-0.239236 -0.49961

-0.0304002 -0.159758

0.282854 -0.00527964

0.108824 -0.623193

0.0740178 -0.515058

0.83975 -0.422371

...	(148	rows	omitted)

Each	row	consists	of	the	coordinates	of	one	point	in	our	training	sample.	Because	the	rows
now	consist	only	of	numerical	values,	it	is	possible	to	convert	them	to	arrays.	For	this,	we
use	the	function		np.array	,	which	converts	any	kind	of	sequential	object,	like	a	row,	to	an
array.	(Our	old	friend		make_array		is	for	creating	arrays,	not	for	converting	other	kinds	of
sequences	to	arrays.)

ckd_attributes.row(3)

Row(Hemoglobin=0.59610766482326683,	

Glucose=-0.19065363034327712)

np.array(ckd_attributes.row(3))

array([	0.59610766,	-0.19065363])

This	is	very	handy	because	we	can	now	use	array	operations	on	the	data	in	each	row.

Distance	Between	Points	When	There	are	Two	Attributes¶
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The	main	calculation	we	need	to	do	is	to	find	the	distance	between	Alice's	point	and	any
other	point.	For	this,	the	first	thing	we	need	is	a	way	to	compute	the	distance	between	any
pair	of	points.

How	do	we	do	this?	In	2-dimensional	space,	it's	pretty	easy.	If	we	have	a	point	at
coordinates	 	and	another	at	 ,	the	distance	between	them	is

(Where	did	this	come	from?	It	comes	from	the	Pythogorean	theorem:	we	have	a	right
triangle	with	side	lengths	 	and	 ,	and	we	want	to	find	the	length	of	the
hypotenuse.)

In	the	next	section	we'll	see	that	this	formula	has	a	straightforward	extension	when	there	are
more	than	two	attributes.	For	now,	let's	use	the	formula	and	array	operations	to	find	the
distance	between	Alice	and	the	patient	in	Row	3.

patient3	=	np.array(ckd_attributes.row(3))

alice,	patient3

(array([	0.	,		1.1]),	array([	0.59610766,	-0.19065363]))

distance	=	np.sqrt(np.sum((alice	-	patient3)**2))

distance

1.4216649188818471

We're	going	to	need	the	distance	between	Alice	and	a	bunch	of	points,	so	let's	write	a
function	called		distance		that	computes	the	distance	between	any	pair	of	points.	The
function	will	take	two	arrays,	each	containing	the	 	coordinates	of	a	point.	(Remember,
those	are	really	the	Hemoglobin	and	Glucose	levels	of	a	patient.)

def	distance(point1,	point2):

				"""Returns	the	Euclidean	distance	between	point1	and	point2.

				

				Each	argument	is	an	array	containing	the	coordinates	of	a	

point."""

				return	np.sqrt(np.sum((point1	-	point2)**2))
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distance(alice,	patient3)

1.4216649188818471

We	have	begun	to	build	our	classifier:	the		distance		function	is	the	first	building	block.	Now
let's	work	on	the	next	piece.

Using		apply		on	an	Entire	Row¶

Recall	that	if	you	want	to	apply	a	function	to	each	element	of	a	column	of	a	table,	one	way	to
do	that	is	by	the	call		table_name.apply(function_name,	column_label)	.	This	evaluates	to	an
array	consisting	of	the	values	of	the	function	when	we	call	it	on	each	element	of	the	column.
So	each	entry	of	the	array	is	based	on	the	corresponding	row	of	the	table.

If	you	use		apply		without	specifying	a	column	label,	then	the	entire	row	is	passed	to	the
function.	Let's	see	how	this	works	on	a	very	small	table		t		containing	the	information	about
the	first	five	patients	in	the	training	sample.

t	=	ckd_attributes.take(np.arange(5))

t

Hemoglobin Glucose

0.456884 0.133751

1.153 -0.947597

0.770138 -0.762223

0.596108 -0.190654

-0.239236 -0.49961

Just	as	an	example,	suppose	that	for	each	patient	we	want	to	know	how	unusual	their	most
unusual	attribute	is.	Concretely,	if	a	patient's	hemoglobin	level	is	further	from	the	average
than	her	glucose	level,	we	want	to	know	how	far	it	is	from	the	average.	If	her	glucose	level	is
further	from	the	average	than	her	hemoglobin	level,	we	want	to	know	how	far	that	is	from	the
average	instead.

That's	the	same	as	taking	the	maximum	of	the	absolute	values	of	the	two	quantities.	To	do
this	for	a	particular	row,	we	can	convert	the	row	to	an	array	and	use	array	operations.
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def	max_abs(row):

				return	np.max(np.abs(np.array(row)))

max_abs(t.row(4))

0.49961028259186968

And	now	we	can	apply		max_abs		to	each	row	of	the	table		t	:

t.apply(max_abs)

array([	0.4568837	,		1.15300352,		0.77013762,		0.59610766,		

0.49961028])

This	way	of	using		apply		will	help	us	create	the	next	building	block	of	our	classifier.

Alice's	 	Nearest	Neighbors¶

If	we	want	to	classify	Alice	using	a	k-nearest	neighbor	classifier,	we	have	to	identify	her	
nearest	neighbors.	What	are	the	steps	in	this	process?	Suppose	 .	Then	the	steps	are:

Step	1.	Find	the	distance	between	Alice	and	each	point	in	the	training	sample.
Step	2.	Sort	the	data	table	in	increasing	order	of	the	distances.
Step	3.	Take	the	top	5	rows	of	the	sorted	table.

Steps	2	and	3	seem	straightforward,	provided	we	have	the	distances.	So	let's	focus	on	Step
1.

Here's	Alice:

alice

array([	0.	,		1.1])

What	we	need	is	a	function	that	finds	the	distance	between	Alice	and	another	point	whose
coordinates	are	contained	in	a	row.	The	function		distance		returns	the	distance	between
any	two	points	whose	coordinates	are	in	arrays.	We	can	use	that	to	define
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	distance_from_alice	,	which	takes	a	row	as	its	argument	and	returns	the	distance	between
that	row	and	Alice.

def	distance_from_alice(row):

				"""Returns	distance	between	Alice	and	a	row	of	the	

attributes	table"""

				return	distance(alice,	np.array(row))

distance_from_alice(ckd_attributes.row(3))

1.4216649188818471

Now	we	can		apply		the	function		distance_from_alice		to	each	row	of		ckd_attributes	,	and
augment	the	table		ckd		with	the	distances.	Step	1	is	complete!

distances	=	ckd_attributes.apply(distance_from_alice)

ckd_with_distances	=	ckd.with_column('Distance	from	Alice',	

distances)

ckd_with_distances

Class Hemoglobin Glucose Color Distance	from	Alice

0 0.456884 0.133751 gold 1.06882

0 1.153 -0.947597 gold 2.34991

0 0.770138 -0.762223 gold 2.01519

0 0.596108 -0.190654 gold 1.42166

0 -0.239236 -0.49961 gold 1.6174

0 -0.0304002 -0.159758 gold 1.26012

0 0.282854 -0.00527964 gold 1.1409

0 0.108824 -0.623193 gold 1.72663

0 0.0740178 -0.515058 gold 1.61675

0 0.83975 -0.422371 gold 1.73862

...	(148	rows	omitted)
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For	Step	2,	let's	sort	the	table	in	increasing	order	of	distance:

sorted_by_distance	=	ckd_with_distances.sort('Distance	from	

Alice')

sorted_by_distance

Class Hemoglobin Glucose Color Distance	from	Alice

1 0.83975 1.2151 darkblue 0.847601

1 -0.970162 1.27689 darkblue 0.986156

0 -0.0304002 0.0874074 gold 1.01305

0 0.14363 0.0874074 gold 1.02273

1 -0.413266 2.04928 darkblue 1.03534

0 0.387272 0.118303 gold 1.05532

0 0.456884 0.133751 gold 1.06882

0 0.178436 0.0410639 gold 1.07386

0 0.00440582 0.025616 gold 1.07439

0 -0.169624 0.025616 gold 1.08769

...	(148	rows	omitted)

Step	3:	The	top	5	rows	correspond	to	Alice's	5	nearest	neighbors;	you	can	replace	5	by	any
other	positive	integer.

alice_5_nearest_neighbors	=	

sorted_by_distance.take(np.arange(5))

alice_5_nearest_neighbors

Class Hemoglobin Glucose Color Distance	from	Alice

1 0.83975 1.2151 darkblue 0.847601

1 -0.970162 1.27689 darkblue 0.986156

0 -0.0304002 0.0874074 gold 1.01305

0 0.14363 0.0874074 gold 1.02273

1 -0.413266 2.04928 darkblue 1.03534
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Three	of	Alice's	five	nearest	neighbors	are	blue	points	and	two	are	gold.	So	a	5-nearest
neighbor	classifier	would	classify	Alice	as	blue:	it	would	predict	that	Alice	has	chronic	kidney
disease.

The	graph	below	zooms	in	on	Alice	and	her	five	nearest	neighbors.	The	two	gold	ones	just
inside	the	circle	directly	below	the	red	point.	The	classifier	says	Alice	is	more	like	the	three
blue	ones	around	her.

We	are	well	on	our	way	to	implementing	our	k-nearest	neighbor	classifier.	In	the	next	two
sections	we	will	put	it	together	and	assess	its	accuracy.
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Interact

Implementing	the	Classifier¶

We	are	now	ready	to	impelment	a	 -nearest	neighbor	classifier	based	on	multiple	attributes.
We	have	used	only	two	attributes	so	far,	for	ease	of	visualization.	But	usually	predictions	will
be	based	on	many	attributes.	Here	is	an	example	that	shows	how	multiple	attributes	can	be
better	than	pairs.

Banknote	authentication¶

This	time	we'll	look	at	predicting	whether	a	banknote	(e.g.,	a	$20	bill)	is	counterfeit	or
legitimate.	Researchers	have	put	together	a	data	set	for	us,	based	on	photographs	of	many
individual	banknotes:	some	counterfeit,	some	legitimate.	They	computed	a	few	numbers
from	each	image,	using	techniques	that	we	won't	worry	about	for	this	course.	So,	for	each
banknote,	we	know	a	few	numbers	that	were	computed	from	a	photograph	of	it	as	well	as	its
class	(whether	it	is	counterfeit	or	not).	Let's	load	it	into	a	table	and	take	a	look.

banknotes	=	Table.read_table('banknote.csv')

banknotes

WaveletVar WaveletSkew WaveletCurt Entropy Class

3.6216 8.6661 -2.8073 -0.44699 0

4.5459 8.1674 -2.4586 -1.4621 0

3.866 -2.6383 1.9242 0.10645 0

3.4566 9.5228 -4.0112 -3.5944 0

0.32924 -4.4552 4.5718 -0.9888 0

4.3684 9.6718 -3.9606 -3.1625 0

3.5912 3.0129 0.72888 0.56421 0

2.0922 -6.81 8.4636 -0.60216 0

3.2032 5.7588 -0.75345 -0.61251 0

1.5356 9.1772 -2.2718 -0.73535 0

...	(1362	rows	omitted)

Let's	look	at	whether	the	first	two	numbers	tell	us	anything	about	whether	the	banknote	is
counterfeit	or	not.	Here's	a	scatterplot:
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color_table	=	Table().with_columns(

				'Class',	make_array(1,	0),

				'Color',	make_array('darkblue',	'gold')

)

banknotes	=	banknotes.join('Class',	color_table)

banknotes.scatter('WaveletVar',	'WaveletCurt',	colors='Color')

Pretty	interesting!	Those	two	measurements	do	seem	helpful	for	predicting	whether	the
banknote	is	counterfeit	or	not.	However,	in	this	example	you	can	now	see	that	there	is	some
overlap	between	the	blue	cluster	and	the	gold	cluster.	This	indicates	that	there	will	be	some
images	where	it's	hard	to	tell	whether	the	banknote	is	legitimate	based	on	just	these	two
numbers.	Still,	you	could	use	a	 -nearest	neighbor	classifier	to	predict	the	legitimacy	of	a
banknote.

Take	a	minute	and	think	it	through:	Suppose	we	used	 	(say).	What	parts	of	the	plot
would	the	classifier	get	right,	and	what	parts	would	it	make	errors	on?	What	would	the
decision	boundary	look	like?

The	patterns	that	show	up	in	the	data	can	get	pretty	wild.	For	instance,	here's	what	we'd	get
if	used	a	different	pair	of	measurements	from	the	images:

banknotes.scatter('WaveletSkew',	'Entropy',	colors='Color')
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There	does	seem	to	be	a	pattern,	but	it's	a	pretty	complex	one.	Nonetheless,	the	 -nearest
neighbors	classifier	can	still	be	used	and	will	effectively	"discover"	patterns	out	of	this.	This
illustrates	how	powerful	machine	learning	can	be:	it	can	effectively	take	advantage	of	even
patterns	that	we	would	not	have	anticipated,	or	that	we	would	have	thought	to	"program	into"
the	computer.

Multiple	attributes¶

So	far	I've	been	assuming	that	we	have	exactly	2	attributes	that	we	can	use	to	help	us	make
our	prediction.	What	if	we	have	more	than	2?	For	instance,	what	if	we	have	3	attributes?

Here's	the	cool	part:	you	can	use	the	same	ideas	for	this	case,	too.	All	you	have	to	do	is
make	a	3-dimensional	scatterplot,	instead	of	a	2-dimensional	plot.	You	can	still	use	the	 -
nearest	neighbors	classifier,	but	now	computing	distances	in	3	dimensions	instead	of	just	2.
It	just	works.	Very	cool!

In	fact,	there's	nothing	special	about	2	or	3.	If	you	have	4	attributes,	you	can	use	the	 -
nearest	neighbors	classifier	in	4	dimensions.	5	attributes?	Work	in	5-dimensional	space.	And
no	need	to	stop	there!	This	all	works	for	arbitrarily	many	attributes;	you	just	work	in	a	very
high	dimensional	space.	It	gets	wicked-impossible	to	visualize,	but	that's	OK.	The	computer
algorithm	generalizes	very	nicely:	all	you	need	is	the	ability	to	compute	the	distance,	and
that's	not	hard.	Mind-blowing	stuff!

For	instance,	let's	see	what	happens	if	we	try	to	predict	whether	a	banknote	is	counterfeit	or
not	using	3	of	the	measurements,	instead	of	just	2.	Here's	what	you	get:
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ax	=	plt.figure(figsize=(8,8)).add_subplot(111,	projection='3d')

ax.scatter(banknotes.column('WaveletSkew'),	

											banknotes.column('WaveletVar'),	

											banknotes.column('WaveletCurt'),	

											c=banknotes.column('Color'));

Awesome!	With	just	2	attributes,	there	was	some	overlap	between	the	two	clusters	(which
means	that	the	classifier	was	bound	to	make	some	mistakes	for	pointers	in	the	overlap).	But
when	we	use	these	3	attributes,	the	two	clusters	have	almost	no	overlap.	In	other	words,	a
classifier	that	uses	these	3	attributes	will	be	more	accurate	than	one	that	only	uses	the	2
attributes.

This	is	a	general	phenomenom	in	classification.	Each	attribute	can	potentially	give	you	new
information,	so	more	attributes	sometimes	helps	you	build	a	better	classifier.	Of	course,	the
cost	is	that	now	we	have	to	gather	more	information	to	measure	the	value	of	each	attribute,
but	this	cost	may	be	well	worth	it	if	it	significantly	improves	the	accuracy	of	our	classifier.

To	sum	up:	you	now	know	how	to	use	 -nearest	neighbor	classification	to	predict	the	answer
to	a	yes/no	question,	based	on	the	values	of	some	attributes,	assuming	you	have	a	training
set	with	examples	where	the	correct	prediction	is	known.	The	general	roadmap	is	this:
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1.	 identify	some	attributes	that	you	think	might	help	you	predict	the	answer	to	the	question.
2.	 Gather	a	training	set	of	examples	where	you	know	the	values	of	the	attributes	as	well	as

the	correct	prediction.
3.	 To	make	predictions	in	the	future,	measure	the	value	of	the	attributes	and	then	use	 -

nearest	neighbor	classification	to	predict	the	answer	to	the	question.

Distance	in	Multiple	Dimensions¶

We	know	how	to	compute	distance	in	2-dimensional	space.	If	we	have	a	point	at	coordinates
	and	another	at	 ,	the	distance	between	them	is

In	3-dimensional	space,	the	points	are	 	and	 ,	and	the	formula	for
the	distance	between	them	is

In	 -dimensional	space,	things	are	a	bit	harder	to	visualize,	but	I	think	you	can	see	how	the
formula	generalized:	we	sum	up	the	squares	of	the	differences	between	each	individual
coordinate,	and	then	take	the	square	root	of	that.

In	the	last	section,	we	defined	the	function		distance		which	returned	the	distance	between
two	points.	We	used	it	in	two-dimensions,	but	the	great	news	is	that	the	function	doesn't	care
how	many	dimensions	there	are!	It	just	subtracts	the	two	arrays	of	coordinates	(no	matter
how	long	the	arrays	are),	squares	the	differences	and	adds	up,	and	then	takes	the	square
root.	To	work	in	multiple	dimensions,	we	don't	have	to	change	the	code	at	all.

def	distance(point1,	point2):

				"""Returns	the	distance	between	point1	and	point2

				where	each	argument	is	an	array	

				consisting	of	the	coordinates	of	the	point"""

				return	np.sqrt(np.sum((point1	-	point2)**2))

Let's	use	this	on	a	new	dataset.	The	table		wine		contains	the	chemical	composition	of	178
different	Italian	wines.	The	classes	are	the	grape	species,	called	cultivars.	There	are	three
classes	but	let's	just	see	whether	we	can	tell	Class	1	apart	from	the	other	two.
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wine	=	Table.read_table('wine.csv')

#	For	converting	Class	to	binary

def	is_one(x):

				if	x	==	1:

								return	1

				else:

								return	0

wine	=	wine.with_column('Class',	wine.apply(is_one,	0))

wine

Class Alcohol Malic
Acid Ash Alcalinity

of	Ash Magnesium Total
Phenols Flavanoids

1 14.23 1.71 2.43 15.6 127 2.8 3.06

1 13.2 1.78 2.14 11.2 100 2.65 2.76

1 13.16 2.36 2.67 18.6 101 2.8 3.24

1 14.37 1.95 2.5 16.8 113 3.85 3.49

1 13.24 2.59 2.87 21 118 2.8 2.69

1 14.2 1.76 2.45 15.2 112 3.27 3.39

1 14.39 1.87 2.45 14.6 96 2.5 2.52

1 14.06 2.15 2.61 17.6 121 2.6 2.51

1 14.83 1.64 2.17 14 97 2.8 2.98

1 13.86 1.35 2.27 16 98 2.98 3.15

...	(168	rows	omitted)

The	first	two	wines	are	both	in	Class	1.	To	find	the	distance	between	them,	we	first	need	a
table	of	just	the	attributes:

wine_attributes	=	wine.drop('Class')
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distance(np.array(wine_attributes.row(0)),	

np.array(wine_attributes.row(1)))

31.265012394048398

The	last	wine	in	the	table	is	of	Class	0.	Its	distance	from	the	first	wine	is:

distance(np.array(wine_attributes.row(0)),	

np.array(wine_attributes.row(177)))

506.05936766351834

That's	quite	a	bit	bigger!	Let's	do	some	visualization	to	see	if	Class	1	really	looks	different
from	Class	0.

wine_with_colors	=	wine.join('Class',	color_table)

wine_with_colors.scatter('Flavanoids',	'Alcohol',	

colors='Color')
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The	blue	points	(Class	1)	are	almost	entirely	separate	from	the	gold	ones.	That	is	one
indication	of	why	the	distance	between	two	Class	1	wines	would	be	smaller	than	the
distance	between	wines	of	two	different	classes.	We	can	see	a	similar	phenomenon	with	a
different	pair	of	attributes	too:

wine_with_colors.scatter('Alcalinity	of	Ash',	'Ash',	

colors='Color')

But	for	some	pairs	the	picture	is	more	murky.

wine_with_colors.scatter('Magnesium',	'Total	Phenols',	

colors='Color')
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Let's	see	if	we	can	implement	a	classifier	based	on	all	of	the	attributes.	After	that,	we'll	see
how	accurate	it	is.

A	Plan	for	the	Implementation¶

It's	time	to	write	some	code	to	implement	the	classifier.	The	input	is	a		point		that	we	want	to
classify.	The	classifier	works	by	finding	the	 	nearest	neighbors	of		point		from	the	training
set.	So,	our	approach	will	go	like	this:

1.	 Find	the	closest	 	neighbors	of		point	,	i.e.,	the	 	wines	from	the	training	set	that	are
most	similar	to		point	.

2.	 Look	at	the	classes	of	those	 	neighbors,	and	take	the	majority	vote	to	find	the	most-
common	class	of	wine.	Use	that	as	our	predicted	class	for		point	.

So	that	will	guide	the	structure	of	our	Python	code.

def	closest(training,	p,	k):

				...

def	majority(topkclasses):

				...

def	classify(training,	p,	k):

				kclosest	=	closest(training,	p,	k)

				kclosest.classes	=	kclosest.select('Class')

				return	majority(kclosest)
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Implementation	Step	1¶

To	implement	the	first	step	for	the	kidney	disease	data,	we	had	to	compute	the	distance	from
each	patient	in	the	training	set	to		point	,	sort	them	by	distance,	and	take	the	 	closest
patients	in	the	training	set.

That's	what	we	did	in	the	previous	section	with	the	point	corresponding	to	Alice.	Let's
generalize	that	code.	We'll	redefine		distance		here,	just	for	convenience.

def	distance(point1,	point2):

				"""Returns	the	distance	between	point1	and	point2

				where	each	argument	is	an	array	

				consisting	of	the	coordinates	of	the	point"""

				return	np.sqrt(np.sum((point1	-	point2)**2))

def	all_distances(training,	new_point):

				"""Returns	an	array	of	distances

				between	each	point	in	the	training	set

				and	the	new	point	(which	is	a	row	of	attributes)"""

				attributes	=	training.drop('Class')

				def	distance_from_point(row):

								return	distance(np.array(new_point),	np.array(row))

				return	attributes.apply(distance_from_point)

def	table_with_distances(training,	new_point):

				"""Augments	the	training	table	

				with	a	column	of	distances	from	new_point"""

				return	training.with_column('Distance',	

all_distances(training,	new_point))

def	closest(training,	new_point,	k):

				"""Returns	a	table	of	the	k	rows	of	the	augmented	table

				corresponding	to	the	k	smallest	distances"""

				with_dists	=	table_with_distances(training,	new_point)

				sorted_by_distance	=	with_dists.sort('Distance')

				topk	=	sorted_by_distance.take(np.arange(k))

				return	topk
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Let's	see	how	this	works	on	our		wine		data.	We'll	just	take	the	first	wine	and	find	its	five
nearest	neighbors	among	all	the	wines.	Remember	that	since	this	wine	is	part	of	the	dataset,
it	is	its	own	nearest	neighbor.	So	we	should	expect	to	see	it	at	the	top	of	the	list,	followed	by
four	others.

First	let's	extract	its	attributes:

special_wine	=	wine.drop('Class').row(0)

And	now	let's	find	its	5	nearest	neighbors.

closest(wine,	special_wine,	5)

Class Alcohol Malic
Acid Ash Alcalinity

of	Ash Magnesium Total
Phenols Flavanoids

1 14.23 1.71 2.43 15.6 127 2.8 3.06

1 13.74 1.67 2.25 16.4 118 2.6 2.9

1 14.21 4.04 2.44 18.9 111 2.85 2.65

1 14.1 2.02 2.4 18.8 103 2.75 2.92

1 14.38 3.59 2.28 16 102 3.25 3.17

Bingo!	The	first	row	is	the	nearest	neighbor,	which	is	itself	–	there's	a	0	in	the		Distance	
column	as	expected.	All	five	nearest	neighbors	are	of	Class	1,	which	is	consistent	with	our
earlier	observation	that	Class	1	wines	appear	to	be	clumped	together	in	some	dimensions.

Implementation	Steps	2	and	3¶

Next	we	need	to	take	a	"majority	vote"	of	the	nearest	neighbors	and	assign	our	point	the
same	class	as	the	majority.
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def	majority(topkclasses):

				ones	=	topkclasses.where('Class',	are.equal_to(1)).num_rows

				zeros	=	topkclasses.where('Class',	are.equal_to(0)).num_rows

				if	ones	>	zeros:

								return	1

				else:

								return	0

def	classify(training,	new_point,	k):

				closestk	=	closest(training,	new_point,	k)

				topkclasses	=	closestk.select('Class')

				return	majority(topkclasses)

classify(wine,	special_wine,	5)

1

If	we	change		special_wine		to	be	the	last	one	in	the	dataset,	is	our	classifier	able	to	tell	that
it's	in	Class	0?

special_wine	=	wine.drop('Class').row(177)

classify(wine,	special_wine,	5)

0

Yes!	The	classifier	gets	this	one	right	too.

But	we	don't	yet	know	how	it	does	with	all	the	other	wines,	and	in	any	case	we	know	that
testing	on	wines	that	are	already	part	of	the	training	set	might	be	over-optimistic.	In	the	final
section	of	this	chapter,	we	will	separate	the	wines	into	a	training	and	test	set	and	then
measure	the	accuracy	of	our	classifier	on	the	test	set.
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The	Accuracy	of	the	Classifier¶

To	see	how	well	our	classifier	does,	we	might	put	50%	of	the	data	into	the	training	set	and
the	other	50%	into	the	test	set.	Basically,	we	are	setting	aside	some	data	for	later	use,	so	we
can	use	it	to	measure	the	accuracy	of	our	classifier.	We've	been	calling	that	the	test	set.
Sometimes	people	will	call	the	data	that	you	set	aside	for	testing	a	hold-out	set,	and	they'll
call	this	strategy	for	estimating	accuracy	the	hold-out	method.

Note	that	this	approach	requires	great	discipline.	Before	you	start	applying	machine	learning
methods,	you	have	to	take	some	of	your	data	and	set	it	aside	for	testing.	You	must	avoid
using	the	test	set	for	developing	your	classifier:	you	shouldn't	use	it	to	help	train	your
classifier	or	tweak	its	settings	or	for	brainstorming	ways	to	improve	your	classifier.	Instead,
you	should	use	it	only	once,	at	the	very	end,	after	you've	finalized	your	classifier,	when	you
want	an	unbiased	estimate	of	its	accuracy.

Measuring	the	Accuracy	of	Our	Wine	Classifier¶

OK,	so	let's	apply	the	hold-out	method	to	evaluate	the	effectiveness	of	the	 -nearest
neighbor	classifier	for	identifying	wines.	The	data	set	has	178	wines,	so	we'll	randomly
permute	the	data	set	and	put	89	of	them	in	the	training	set	and	the	remaining	89	in	the	test
set.

shuffled_wine	=	wine.sample(with_replacement=False)	

training_set	=	shuffled_wine.take(np.arange(89))

test_set		=	shuffled_wine.take(np.arange(89,	178))

We'll	train	the	classifier	using	the	89	wines	in	the	training	set,	and	evaluate	how	well	it
performs	on	the	test	set.	To	make	our	lives	easier,	we'll	write	a	function	to	evaluate	a
classifier	on	every	wine	in	the	test	set:
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def	count_zero(array):

				"""Counts	the	number	of	0's	in	an	array"""

				return	len(array)	-	np.count_nonzero(array)

def	count_equal(array1,	array2):

				"""Takes	two	numerical	arrays	of	equal	length

				and	counts	the	indices	where	the	two	are	equal"""

				return	count_zero(array1	-	array2)

def	evaluate_accuracy(training,	test,	k):

				test_attributes	=	test.drop('Class')

				def	classify_testrow(row):

								return	classify(training,	row,	k)

				c	=	test_attributes.apply(classify_testrow)

				return	count_equal(c,	test.column('Class'))	/	test.num_rows

Now	for	the	grand	reveal	--	let's	see	how	we	did.	We'll	arbitrarily	use	 .

evaluate_accuracy(training_set,	test_set,	5)

0.9213483146067416

The	accuracy	rate	isn't	bad	at	all	for	a	simple	classifier.

Breast	Cancer	Diagnosis¶

Now	I	want	to	do	an	example	based	on	diagnosing	breast	cancer.	I	was	inspired	by	Brittany
Wenger,	who	won	the	Google	national	science	fair	in	2012	a	17-year	old	high	school
student.	Here's	Brittany:
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Brittany's	science	fair	project	was	to	build	a	classification	algorithm	to	diagnose	breast
cancer.	She	won	grand	prize	for	building	an	algorithm	whose	accuracy	was	almost	99%.

Let's	see	how	well	we	can	do,	with	the	ideas	we've	learned	in	this	course.

So,	let	me	tell	you	a	little	bit	about	the	data	set.	Basically,	if	a	woman	has	a	lump	in	her
breast,	the	doctors	may	want	to	take	a	biopsy	to	see	if	it	is	cancerous.	There	are	several
different	procedures	for	doing	that.	Brittany	focused	on	fine	needle	aspiration	(FNA),
because	it	is	less	invasive	than	the	alternatives.	The	doctor	gets	a	sample	of	the	mass,	puts
it	under	a	microscope,	takes	a	picture,	and	a	trained	lab	tech	analyzes	the	picture	to
determine	whether	it	is	cancer	or	not.	We	get	a	picture	like	one	of	the	following:

Unfortunately,	distinguishing	between	benign	vs	malignant	can	be	tricky.	So,	researchers
have	studied	the	use	of	machine	learning	to	help	with	this	task.	The	idea	is	that	we'll	ask	the
lab	tech	to	analyze	the	image	and	compute	various	attributes:	things	like	the	typical	size	of	a
cell,	how	much	variation	there	is	among	the	cell	sizes,	and	so	on.	Then,	we'll	try	to	use	this
information	to	predict	(classify)	whether	the	sample	is	malignant	or	not.	We	have	a	training
set	of	past	samples	from	women	where	the	correct	diagnosis	is	known,	and	we'll	hope	that
our	machine	learning	algorithm	can	use	those	to	learn	how	to	predict	the	diagnosis	for	future
samples.

We	end	up	with	the	following	data	set.	For	the	"Class"	column,	1	means	malignant	(cancer);
0	means	benign	(not	cancer).
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patients	=	Table.read_table('breast-cancer.csv').drop('ID')

patients

Clump
Thickness

Uniformity
of	Cell
Size

Uniformity
of	Cell
Shape

Marginal
Adhesion

Single
Epithelial
Cell	Size

Bare
Nuclei

Bland
Chromatin

5 1 1 1 2 1 3

5 4 4 5 7 10 3

3 1 1 1 2 2 3

6 8 8 1 3 4 3

4 1 1 3 2 1 3

8 10 10 8 7 10 9

1 1 1 1 2 10 3

2 1 2 1 2 1 3

2 1 1 1 2 1 1

4 2 1 1 2 1 2

...	(673	rows	omitted)

So	we	have	9	different	attributes.	I	don't	know	how	to	make	a	9-dimensional	scatterplot	of	all
of	them,	so	I'm	going	to	pick	two	and	plot	them:

color_table	=	Table().with_columns(

				'Class',	make_array(1,	0),

				'Color',	make_array('darkblue',	'gold')

)

patients_with_colors	=	patients.join('Class',	color_table)

patients_with_colors.scatter('Bland	Chromatin',	'Single	

Epithelial	Cell	Size',	colors='Color')
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Oops.	That	plot	is	utterly	misleading,	because	there	are	a	bunch	of	points	that	have	identical
values	for	both	the	x-	and	y-coordinates.	To	make	it	easier	to	see	all	the	data	points,	I'm
going	to	add	a	little	bit	of	random	jitter	to	the	x-	and	y-values.	Here's	how	that	looks:

For	instance,	you	can	see	there	are	lots	of	samples	with	chromatin	=	2	and	epithelial	cell
size	=	2;	all	non-cancerous.

Keep	in	mind	that	the	jittering	is	just	for	visualization	purposes,	to	make	it	easier	to	get	a
feeling	for	the	data.	We're	ready	to	work	with	the	data	now,	and	we'll	use	the	original
(unjittered)	data.
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First	we'll	create	a	training	set	and	a	test	set.	The	data	set	has	683	patients,	so	we'll
randomly	permute	the	data	set	and	put	342	of	them	in	the	training	set	and	the	remaining	341
in	the	test	set.

shuffled_patients	=	patients.sample(683,	with_replacement=False)		

training_set	=	shuffled_patients.take(np.arange(342))

test_set		=	shuffled_patients.take(np.arange(342,	683))

Let's	stick	with	5	nearest	neighbors,	and	see	how	well	our	classifier	does.

evaluate_accuracy(training_set,	test_set,	5)

0.967741935483871

Over	96%	accuracy.	Not	bad!	Once	again,	pretty	darn	good	for	such	a	simple	technique.

As	a	footnote,	you	might	have	noticed	that	Brittany	Wenger	did	even	better.	What	techniques
did	she	use?	One	key	innovation	is	that	she	incorporated	a	confidence	score	into	her	results:
her	algorithm	had	a	way	to	determine	when	it	was	not	able	to	make	a	confident	prediction,
and	for	those	patients,	it	didn't	even	try	to	predict	their	diagnosis.	Her	algorithm	was	99%
accurate	on	the	patients	where	it	made	a	prediction	--	so	that	extension	seemed	to	help
quite	a	bit.
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Interact

Comparing	Two	Samples¶

The	nearest	neighbor	approach	to	classification	is	motivated	by	the	idea	that	an	individual	is
likely	to	resemble	its	nearest	neighbors.	Looking	at	this	another	way,	we	can	say	that
individuals	in	one	class	don't	resemble	individuals	in	another.	Machine	learning	gives	us	a
powerful	way	to	spot	this	lack	of	resemblance	and	use	it	to	classify.	It	illuminates	patterns
that	we	wouldn't	necessarily	be	able	to	spot	just	by	examining	one	or	two	attributes	at	at
time.

However,	there	is	much	that	we	can	learn	from	just	a	single	attribute.	To	see	this,	we	will
compare	the	distributions	of	the	attribute	in	the	two	classes.

Let's	take	a	look	at	Brittany	Wenger's	breast	cancer	data	and	see	whether	using	just	one
attribute	has	any	hope	of	producing	a	reasonable	classifier.	As	before,	we'll	do	our
exploration	on	a	randomly	chosen	training	set,	and	test	our	classifer	on	the	remaining	hold-
out	set.

patients	=	Table.read_table('breast-cancer.csv').drop('ID')

shuffled_patients	=	patients.sample(with_replacement=False)	

training_set	=	shuffled_patients.take(np.arange(341))

test_set		=	shuffled_patients.take(np.arange(341,	683))

training_set
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Clump
Thickness

Uniformity
of	Cell
Size

Uniformity
of	Cell
Shape

Marginal
Adhesion

Single
Epithelial
Cell	Size

Bare
Nuclei

Bland
Chromatin

5 1 1 1 2 1 2

5 1 1 1 1 1 1

4 1 1 1 2 1 1

5 1 2 1 2 1 3

4 10 8 5 4 1 10

7 2 4 1 3 4 3

9 4 5 10 6 10 4

3 1 1 1 2 2 3

3 2 1 1 2 1 2

6 3 3 5 3 10 3

...	(331	rows	omitted)

Let's	see	what	the	second	attribute,		Uniformity	of	Cell	Size	,	can	tell	us	about	a	patient's
class.

training_cellsize	=	training_set.select('Class',	'Uniformity	of	

Cell	Size').relabel(1,	'Uniformity')

training_cellsize

Class Uniformity

0 1

0 1

0 1

0 1

1 10

1 2

1 4

0 1

0 2

0 3
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...	(331	rows	omitted)

The		Class		and		Uniformity		columns	appear	numerical	but	they're	really	both	categorical.
The	classes	are	"cancerous"	(1)	and	"not	cancerous"	(0).	Uniformity	was	rated	on	a	scale	of
1	to	10,	but	those	labels	were	determined	by	humans,	and	they	could	just	as	well	have	been
ten	labels	like	"pretty	uniform",	"not	uniform	at	all",	and	so	on.	(A	2	isn't	necessarily	twice	as
uniform	as	a	1.)	So	we	are	comparing	two	categorical	distributions,	one	for	each	class.

For	each	class,	we	need	the	number	of	training	set	patients	who	had	each	uniformity	rating.
The		pivot		method	will	do	the	counting	for	us.

training_counts	=	training_cellsize.pivot('Class',	'Uniformity')

training_counts

Uniformity 0 1

1 181 3

2 21 2

3 16 15

4 4 18

5 0 17

6 0 8

7 0 8

8 1 13

9 1 4

10 0 29

We	now	have	something	resembling	a	distribution	of	uniformity	rating,	for	each	class.	And
the	two	look	rather	different.	However,	let's	be	careful	–	while	the	total	number	of	patients	in
the	two	classes	is	341	(the	size	of	the	training	set),	more	than	half	are	in	Class	0.

np.sum(training_counts.column('0'))

224
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So	to	compare	the	two	distributions	we	should	convert	the	counts	to	proportions	and	then
visualize.

def	proportions(array):

				return	array/np.sum(array)

training_dists	=	training_counts.select(0).with_columns(

			'0',	proportions(training_counts.column('0')),

				'1',	proportions(training_counts.column('1'))

)

training_dists.barh('Uniformity')

Those	two	distributions	don't	look	the	same	at	all!	In	fact	they	look	so	different	that	we
should	be	able	to	construct	a	perfectly	decent	classifier	based	on	a	very	straightforward
observation	about	the	difference.	A	simple	classification	rule	would	be,	"If	the	uniformity	is
bigger	than	3,	say	the	Class	is	1;	that	is,	the	cell	is	cancerous.	Otherwise	say	the	Class	is	0."

Can	something	so	crude	be	any	good?	Let's	try	it	out.	For	any	individual	in	the	test	set,	all
we	have	to	do	is	see	whether	or	not	the	uniformity	rating	is	bigger	than	3.	For	example,	for
the	first	4	patients	we'll	get	an	array	of	four	booleans:

test_set.take(np.arange(4)).column('Uniformity	of	Cell	Size')	>	

3
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array([	True,	False,	False,	False],	dtype=bool)

Remember	that		True		equals	1,	which	is	the	Class	we're	going	to	assign	if	the	uniformity	is
bigger	than	3.	So	to	measure	the	accuracy	of	our	crude	classifier,	all	we	have	to	do	is	find
the	proportion	of	test	set	patients	for	which	the	classification	is	the	same	as	the	patient's
known	class.	We'll	use	the		count_equal		function	we	wrote	in	the	previous	section.

classification	=	test_set.column('Uniformity	of	Cell	Size')	>	3

count_equal(classification,	

test_set.column('Class'))/test_set.num_rows

0.935672514619883

That's	pretty	accurate,	even	though	we're	only	using	a	one-attribute	one-line-of-code
classifier!

Does	that	mean	that	the	nearest	neighbor	methods	of	the	previous	chapter	are
unnecessary?	No,	because	those	are	even	more	accurate,	and	for	cancer	diagnoses	any
patient	would	want	as	accurate	a	method	as	possible.	But	it's	reassuring	to	see	that	simple
methods	aren't	bad.
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Two	Categorical	Distributions¶

To	see	how	two	quantitative	variables	are	related,	you	could	use	the	correlation	coefficient	to
measure	linear	association.	But	how	should	we	decide	whether	two	categorical	variables	are
related?	For	example,	how	can	we	decide	whether	a	attribute	is	related	to	an	individual's
class?	It's	an	important	question	to	answer,	because	if	it's	not	related	then	you	can	leave	it
out	of	your	classifier.

In	the	breast	cancer	data,	let's	see	if	mitotic	activity	is	related	to	the	class.	We	have	labeled
the	classes	"Cancer"	and	"Not	Cancer"	for	ease	of	reference	later.

classes	=	Table().with_columns(

				'Class',	make_array(0,	1),

				'Class	Label',	make_array('Not	Cancer',	'Cancer')

)

patients	=	Table.read_table('breast-

cancer.csv').drop('ID').join('Class',	classes)

patients	=	patients.drop('Class').relabel('Class	Label',	

'Class')

mitoses	=	patients.select('Class',	'Mitoses')

mitoses
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Class Mitoses

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 5

Not	Cancer 1

Not	Cancer 1

...	(673	rows	omitted)

We	can	use		pivot		and		proportions		(defined	in	the	previous	section)	to	visualize	the
distribution	of		Mitoses		in	the	two	classes.

counts	=	mitoses.pivot('Class',	'Mitoses')

counts

Mitoses Cancer Not	Cancer

1 132 431

2 27 8

3 31 2

4 12 0

5 5 1

6 3 0

7 8 1

8 7 1

10 14 0
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dists	=	counts.select(0).with_columns(

				'Cancer',	proportions(counts.column(1)),

				'Not	Cancer',	proportions(counts.column(2))

)

dists.barh(0)

The	distribution	of		Mitoses		for	the	'Cancer'	class	has	a	long	thin	tail	compared	to	the
distribution	for	the	'Not	Cancer'	class	which	is	overwhelmingly	at	the	lowest	rating.

So	it	looks	as	though	class	and	mitotic	activity	are	related.	But	could	this	be	just	due	to
chance?

To	understand	where	chance	comes	in,	remember	that	the	data	are	like	a	random	sample
from	a	larger	population	–	the	population	that	contains	the	new	individuals	whom	we	might
want	to	classify.	It	could	be	that	in	the	population,	class	and	mitosis	were	independent	of
each	other,	and	just	appear	to	be	related	in	the	sample	due	to	chance.

The	Hypotheses¶

Let's	try	to	answer	the	question	by	performing	a	test	of	the	following	hypotheses.

Null	Hypothesis.	In	the	population,	class	and	mitosis	ratings	are	independent	of	each	other;
in	other	words,	the	distribution	of	mitoses	is	the	same	for	the	two	classes.	The	distributions
are	different	in	the	sample	only	due	to	chance.

Alternative	Hypothesis.	In	the	population,	class	and	mitosis	ratings	are	related.
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To	see	how	to	test	this,	let's	look	at	the	data	again.

mitoses

Class Mitoses

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 1

Not	Cancer 5

Not	Cancer 1

Not	Cancer 1

...	(673	rows	omitted)

Random	Permutations¶

If	class	and	mitosis	ratings	are	unrelated,	then	it	doesn't	matter	in	what	order	the		Mitoses	
values	appear	–	since	they	are	not	related	to	the	values	in		Class	,	all	rearrangements
should	be	equally	likely.	This	is	the	same	as	the	approach	that	we	took	when	analyzing	the
football	Deflategate	data.

So	let's	shuffle	all	the		Mitoses		values	into	an	array	called		shuffled_mitoses	.	You	can	see
its	first	item	below,	but	it	contains	683	items	because	it	is	a	permutation	(that	is,	a
rearrangement)	of	the	entire		Mitoses		column.

shuffled_mitoses	=	

mitoses.select('Mitoses').sample(with_replacement=False).column(0

)

shuffled_mitoses.item(0)
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1

Let's	augment	the	table		mitoses		with	a	column	containing	the	shuffled	values.

mitoses	=	mitoses.with_column('Shuffled	Mitoses',	

shuffled_mitoses)

mitoses

Class Mitoses Shuffled	Mitoses

Not	Cancer 1 1

Not	Cancer 1 1

Not	Cancer 1 1

Not	Cancer 1 1

Not	Cancer 1 7

Not	Cancer 1 1

Not	Cancer 1 1

Not	Cancer 5 3

Not	Cancer 1 1

Not	Cancer 1 2

...	(673	rows	omitted)

Let's	look	at	the	distributions	of	mitoses	for	the	shuffled	data,	using	the	same	process	that
we	followed	with	the	original	data.

shuffled	=	mitoses.select('Class',	'Shuffled	Mitoses')

shuffled_counts	=	shuffled.pivot('Class',	'Shuffled	Mitoses')

shuffled_counts
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Shuffled	Mitoses Cancer Not	Cancer

1 199 364

2 12 23

3 12 21

4 5 7

5 2 4

6 0 3

7 3 6

8 3 5

10 3 11

The	distributions	of	the	shuffled	data	in	the	two	classes	can	be	visualized	in	bar	charts	just
as	the	original	data	were.

shuffled_dists	=	shuffled_counts.select(0).with_columns(

				'Cancer',	proportions(shuffled_counts.column(1)),

				'Not	Cancer',	proportions(shuffled_counts.column(2))

)

shuffled_dists.barh(0)

That	looks	a	bit	different	from	the	original	bar	charts,	shown	below	again	for	convenience.

dists.barh(0)
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A	Test	Statistic:	Total	Variation	Distance¶

We	need	a	test	statistic	that	measures	the	difference	between	the	blue	distribution	and	the
gold.	Recall	that	total	variation	distance	can	be	used	to	quantify	how	different	two	categorical
distributions	are.

def	tvd(dist1,	dist2):

				return	0.5*(np.sum(np.abs(dist1	-	dist2)))

In	the	original	sample,	the	total	variation	distance	between	the	distributions	of	mitoses	in	the
two	classes	was	about	0.4:

observed_tvd	=	tvd(dists.column(1),	dists.column(2))

observed_tvd

0.41841946549059517

But	in	the	shuffled	sample	it	was	quite	a	bit	smaller:

tvd(shuffled_dists.column(1),	shuffled_dists.column(2))

0.022173847487655045
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The	randomly	permuted	mitosis	ratings	and	the	original	ratings	don't	seem	to	be	behaving
the	same	way.	But	the	random	shuffle	could	come	out	differently	if	we	run	it	again.	Let's
reshuffle	and	redo	the	calculation	of	the	total	variation	distance.

shuffled_mitoses	=	

mitoses.select('Mitoses').sample(with_replacement=False).column(0

)

shuffled	=	mitoses.select('Class').with_column('Shuffled	

Mitoses',	shuffled_mitoses)

shuffled_counts	=	shuffled.pivot('Class',	'Shuffled	Mitoses')

tvd(proportions(shuffled_counts.column(1)),	

proportions(shuffled_counts.column(2)))

0.039937426966715643

The	total	variation	distance	is	still	quite	a	bit	smaller	than	the	0.42	we	got	from	the	original
data.	To	see	how	much	it	could	vary,	we	have	to	repeat	the	random	shuffling	procedure
many	times,	in	a	process	that	has	by	now	become	familiar.

Empirical	Distribution	of	the	TVD,	Under	the	Null
Hypothesis¶

If	the	null	hypothesis	were	true,	all	permutations	of	mitosis	ratings	would	be	equally	likely.
There	are	large	numbers	of	possible	permutations;	let's	do	5000	of	them	and	see	how	our
test	statistic	varies.	The	code	is	exactly	the	same	as	above,	except	that	now	we	will	collect
all	5000	distances	and	draw	their	empirical	histogram.
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repetitions	=	5000

tvds	=	make_array()

for	i	in	np.arange(repetitions):

				shuffled_mitoses	=	

mitoses.select('Mitoses').sample(with_replacement=False).column(0

)

				shuffled	=	mitoses.select('Class').with_column('Shuffled	

Mitoses',	shuffled_mitoses)

				shuffled_counts	=	shuffled.pivot('Class',	'Shuffled	

Mitoses')

				new_tvd	=	tvd(proportions(shuffled_counts.column(1)),	

proportions(shuffled_counts.column(2)))

				tvds	=	np.append(tvds,	new_tvd)

Table().with_column('TVD',	tvds).hist(bins=20)

plots.title('Empirical	Distribution	Under	the	Null')

print('Observed	TVD:',	observed_tvd)

Observed	TVD:	0.418419465491

The	observed	total	variation	distance	of	0.42	is	nowhere	near	the	distribution	generated
assuming	the	null	hypothesis	is	true.	The	data	support	the	alternative:	the	mitosis	ratings	are
related	to	class.
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Permutation	Test	for	the	Equality	of	Two	Categorical
Distributions¶

The	test	that	we	performed	above	is	called	a	permutation	test	of	the	null	hypothesis	that	the
two	samples	are	drawn	from	the	same	underlying	distribution.

To	define	a	function	that	performs	the	test,	we	can	just	copy	the	code	from	the	previous	cell
and	change	the	names	of	tables	and	columns.	The	function		permutation_test_tvd		takes	the
name	of	the	data	table,	the	label	of	the	column	containing	the	categorical	variable	whose
distribution	the	test	is	about,	the	label	of	the	column	containing	the	binary	class	variable,	and
the	number	of	random	permutations	to	run.

In	our	example	above,	we	didn't	compute	a	P-value	because	the	observed	value	was	far
away	from	the	null	distribution	of	the	statistic.	In	general,	however,	we	should	compute	the
P-value	as	the	statistic	might	not	be	so	extreme	in	other	examples.	The	P-value	is	the
chance,	assuming	that	the	null	is	true,	of	getting	a	distance	as	big	as	or	bigger	than	the
distance	that	was	observed,	because	the	alternative	hypothesis	predicts	larger	distances
than	the	null.

def	permutation_test_tvd(table,	variable,	classes,	repetitions):

				"""Test	whether	a	categorical	variable	is	independent	of	

classes:

				table:	name	of	table	containing	the	sample

				variable:	label	of	column	containing	categorical	variable	

whose	distribution	is	of	interest

				classes:	label	of	column	containing	binary	class	data

				repetitions:	number	of	random	permutations"""

				#	Find	the	tvd	between	the	distributions	of	variable	in	the	

two	classes

				counts	=	table.select(classes,	variable).pivot(classes,	

variable)

				observed_tvd	=	tvd(proportions(counts.column(1)),	

proportions(counts.column(2)))

				#	Assuming	the	null	is	true,	randomly	permute	the	variable	

and	collect	all	the	new	tvd's

				tvds	=	make_array()

				for	i	in	np.arange(repetitions):

								shuffled_var	=	
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table.select(variable).sample(with_replacement=False).column(0)

								shuffled	=	table.select(classes).with_column('Shuffled	

Variable',	shuffled_var)

								shuffled_counts	=	shuffled.pivot(classes,	'Shuffled	

Variable')

								new_tvd	=tvd(proportions(shuffled_counts.column(1)),	

proportions(shuffled_counts.column(2)))

								tvds	=	np.append(tvds,	new_tvd)

				#	Find	the	empirical	P-value:

				emp_p	=	np.count_nonzero(tvds	>=	observed_tvd)/repetitions

				#	Draw	the	empirical	histogram	of	the	tvd's	generated	under	

the	null,	

				#	and	compare	with	the	value	observed	in	the	original	sample

				Table().with_column('TVD',	tvds).hist(bins=20)

				plots.title('Empirical	Distribution	Under	the	Null')

				print('Observed	TVD:',	observed_tvd)

				print('Empirical	P-value:',	emp_p)

permutation_test_tvd(patients,	'Clump	Thickness',	'Class',	5000)

Observed	TVD:	0.638310905047

Empirical	P-value:	0.0
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Once	again,	the	observed	distance	of	0.64	is	very	far	away	from	the	distribution	predicted	by
the	null	hypothesis.	The	empirical	P-value	is	0,	so	the	exact	P-value	will	be	close	to	zero.
Thus	if	class	and	clump	thickness	were	unrelated,	the	observed	data	would	be	hugely
unlikely.

So	the	conclusion	is	that	clump	thickness	is	related	to	class,	not	just	in	the	sample	but	in	the
population.

We	have	use	permutation	tests	to	help	decide	whether	the	distribution	of	a	categorical
attribute	is	related	to	class.	In	general,	permutation	tests	can	be	used	in	this	way	to	decide
whether	two	categorical	distributions	were	randomly	sampled	from	the	same	underlying
distribution.
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Interact

A/B	Testing¶

We	have	used	random	permutations	to	see	whether	two	samples	are	drawn	from	the	same
underlying	categorical	distribution.	If	the	samples	are	numerical,	the	same	method	can	be
used;	the	choice	of	test	statistic	is	usually	simpler.	In	our	example	with	the	Deflategate	data,
we	used	the	difference	of	means	to	test	whether	the	Patriots'	and	Colts'	balls	came	from	the
same	underlying	distribution.

In	modern	data	analytics,	deciding	whether	two	numerical	samples	come	from	the	same
underlying	distribution	is	called	A/B	testing.	The	name	refers	to	the	labels	of	the	two
samples,	A	and	B.

Smokers	and	Nonsmokers¶

We	have	performed	many	different	analyses	on	our	random	sample	of	mothers	and	their
newborn	infants,	but	we	haven't	yet	looked	at	the	data	whether	the	mothers	smoked.	One	of
the	aims	of	the	study	was	to	see	whether	maternal	smoking	was	associated	with	birth
weight.

baby	=	Table.read_table('baby.csv')

baby

Birth
Weight

Gestational
Days

Maternal
Age

Maternal
Height

Maternal
Pregnancy
Weight

Maternal
Smoker

120 284 27 62 100 False

113 282 33 64 135 False

128 279 28 64 115 True

108 282 23 67 125 True

136 286 25 62 93 False

138 244 33 62 178 False

132 245 23 65 140 False

120 289 25 62 125 False

143 299 30 66 136 True

140 351 27 68 120 False
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...	(1164	rows	omitted)

We'll	start	by	selecting	just		Birth	Weight		and		Maternal	Smoker	.	There	are	715	non-
smokers	among	the	women	in	the	sample,	and	459	smokers.

weight_smoke	=	baby.select('Birth	Weight',	'Maternal	Smoker')

weight_smoke.group('Maternal	Smoker')

Maternal	Smoker count

False 715

True 459

The	first	histogram	below	displays	the	distribution	of	birth	weights	of	the	babies	of	the	non-
smokers	in	the	sample.	The	second	displays	the	birth	weights	of	the	babies	of	the	smokers.

nonsmokers	=	baby.where('Maternal	Smoker',	are.equal_to(False))

nonsmokers.hist('Birth	Weight',	bins=np.arange(40,	181,	5),	

unit='ounce')

smokers	=	baby.where('Maternal	Smoker',	are.equal_to(True))

smokers.hist('Birth	Weight',	bins=np.arange(40,	181,	5),	

unit='ounce')
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Both	distributions	are	approximately	bell	shaped	and	centered	near	120	ounces.	The
distributions	are	not	identical,	of	course,	which	raises	the	question	of	whether	the	difference
reflects	just	chance	variation	or	a	difference	in	the	distributions	in	the	population.

This	question	can	be	answered	by	a	test	of	hypotheses.

Null	hypothesis:	In	the	population,	the	distribution	of	birth	weights	of	babies	is	the	same	for
mothers	who	don't	smoke	as	for	mothers	who	do.	The	difference	in	the	sample	is	due	to
chance.

Alternative	hypothesis:	The	two	distributions	are	different	in	the	population.

Test	statistic:	Birth	weight	is	a	quantitative	variable,	so	it	is	reasonable	to	use	the	absolute
difference	between	the	means	as	the	test	statistic.

The	observed	value	of	the	test	statistic	is	about	9.27	ounces.

means_table	=	weight_smoke.group('Maternal	Smoker',	np.mean)

means_table

Maternal	Smoker Birth	Weight	mean

False 123.085

True 113.819

nonsmokers_mean	=	means_table.column(1).item(0)

smokers_mean	=	means_table.column(1).item(1)

nonsmokers_mean	-	smokers_mean
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9.266142572024918

A	Permutation	Test¶

To	see	whether	such	a	difference	could	have	arisen	due	to	chance	under	the	null
hypothesis,	we	will	use	a	permutation	test	just	as	we	did	in	the	previous	section.	All	we	have
to	change	is	the	code	for	the	test	statistic.	For	that,	we'll	compute	the	difference	in	means	as
we	did	above,	and	then	take	the	absolute	value.

Remember	that	under	the	null	hypothesis,	all	permutations	of	birth	weight	are	equally	likely
to	be	appear	with	the		Maternal	Smoker		column.	So,	just	as	before,	each	repetition	starts
with	shuffling	the	variable	being	compared.

def	permutation_test_means(table,	variable,	classes,	

repetitions):

				"""Test	whether	two	numerical	samples	

				come	from	the	same	underlying	distribution,	

				using	the	absolute	difference	between	the	means.

				table:	name	of	table	containing	the	sample

				variable:	label	of	column	containing	the	numerical	variable	

				classes:	label	of	column	containing	names	of	the	two	samples

				repetitions:	number	of	random	permutations"""

				t	=	table.select(variable,	classes)

				#	Find	the	observed	test	statistic

				means_table	=	t.group(classes,	np.mean)	

				obs_stat	=	abs(means_table.column(1).item(0)	-	

means_table.column(1).item(1))

				#	Assuming	the	null	is	true,	randomly	permute	the	variable	

				#	and	collect	all	the	generated	test	statistics

				stats	=	make_array()

				for	i	in	np.arange(repetitions):

								shuffled_var	=	

t.select(variable).sample(with_replacement=False).column(0)

								shuffled	=	t.select(classes).with_column('Shuffled	

Variable',	shuffled_var)

								m_tbl	=	shuffled.group(classes,	np.mean)
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								new_stat	=	abs(m_tbl.column(1).item(0)	-	

m_tbl.column(1).item(1))

								stats	=	np.append(stats,	new_stat)

				#	Find	the	empirical	P-value:

				emp_p	=	np.count_nonzero(stats	>=	obs_stat)/repetitions

				#	Draw	the	empirical	histogram	of	the	tvd's	generated	under	

the	null,	

				#	and	compare	with	the	value	observed	in	the	original	sample

				Table().with_column('Test	Statistic',	stats).hist(bins=20)

				plots.title('Empirical	Distribution	Under	the	Null')

				print('Observed	statistic:',	obs_stat)

				print('Empirical	P-value:',	emp_p)

permutation_test_means(baby,	'Birth	Weight',	'Maternal	Smoker',	

5000)

Observed	statistic:	9.266142572024918

Empirical	P-value:	0.0

The	observed	difference	in	the	original	sample	is	about	9.27	ounces,	which	is	inconsistent
with	this	distribution:	the	empirical	P-value	is	0,	implying	that	the	exact	P-value	is	very	small
indeed.	So	the	conclusion	of	the	test	is	that	in	the	population,	the	distributions	of	birth
weights	of	the	babies	of	non-smokers	and	smokers	are	different.

A/B	Testing

602



Bootstrap	Confidence	Interval	For	the	Difference¶

Our	A/B	test	has	concluded	that	the	two	distributions	are	different,	but	that's	a	little
unsatisfactory.	How	different	are	they?	Which	one	has	the	larger	mean?	These	are	natural
questions	that	the	test	can't	answer.

Recall	that	we've	had	this	discussion	before:	instead	of	just	asking	a	yes/no	question	about
whether	the	two	distributions	are	different,	we	might	learn	more	by	not	making	any
hypotheses	and	simply	estimating	the	difference	between	the	means.

The	observed	difference	(nonsmokers	 	smokers)	was	about	9.27	ounces;	the	positive	sign
says	that	the	non-smoking	mothers	had	larger	babies	on	average.	But	samples	could	have
come	out	differently	due	to	randomness.	To	see	how	different,	we	have	to	generate	more
samples;	to	generate	more	samples,	we'll	use	the	bootstrap	as	we	have	done	many	times
before.	The	bootstrap	makes	no	hypotheses	about	whether	or	not	the	two	distributions	are
the	same.	It	simply	replicates	the	original	random	sample	and	computes	new	values	of	the
statistic.

The	function		bootstrap_ci_means		returns	a	bootstrap	confidence	interval	for	the	difference
between	the	means	of	the	two	groups	in	the	population.	In	our	example,	the	confidence
interval	would	estimate	the	difference	between	the	average	birth	weights	of	babies	of
mothers	who	didn't	smoke	and	mothers	who	did,	in	the	entire	population.

the	name	of	the	table	that	contains	the	data	in	the	original	sample
the	label	of	the	column	containing	the	numerical	variable
the	label	of	the	column	containing	the	names	of	the	two	samples
the	number	of	bootstrap	repetitions

The	function	returns	an	approximate	95%	confidence	interval	for	the	difference	between	the
two	means,	using	the	bootstrap	percentile	method.
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def	bootstrap_ci_means(table,	variable,	classes,	repetitions):

				"""Bootstrap	approximate	95%	confidence	interval

				for	the	difference	between	the	means	of	the	two	classes

				in	the	population"""

				t	=	table.select(variable,	classes)

				mean_diffs	=	make_array()

				for	i	in	np.arange(repetitions):

								bootstrap_sample	=	t.sample()

								m_tbl	=	bootstrap_sample.group(classes,	np.mean)

								new_stat	=	m_tbl.column(1).item(0)	-	

m_tbl.column(1).item(1)

								mean_diffs	=	np.append(mean_diffs,	new_stat)

				left	=	percentile(2.5,	mean_diffs)

				right	=	percentile(97.5,	mean_diffs)

				#	Find	the	observed	test	statistic

				means_table	=	t.group(classes,	np.mean)	

				obs_stat	=	means_table.column(1).item(0)	-	

means_table.column(1).item(1)

				Table().with_column('Difference	Between	Means',	

mean_diffs).hist(bins=20)

				plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=8)

				print('Observed	difference	between	means:',	obs_stat)

				print('Approximate	95%	CI	for	the	difference	between	

means:')

				print(left,	'to',	right)

bootstrap_ci_means(baby,	'Birth	Weight',	'Maternal	Smoker',	

5000)
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Observed	difference	between	means:	9.266142572024918

Approximate	95%	CI	for	the	difference	between	means:

7.23940878698	to	11.3907887554

The	non-smoking	mothers	had	babies	that	were	about	7.2	ounces	to	11.4	ounces	heavier,
on	average,	than	the	babies	of	the	mothers	who	smoked.	This	is	a	more	useful	conclusion
than	"the	two	distributions	are	different."	And	because	the	confidence	interval	doesn't
contain	0,	it	also	tells	us	that	the	two	distributions	are	different.	So	the	confidence	interval
gives	us	an	estimate	of	the	difference	between	the	means	and	also	lets	us	decide	whether
or	not	the	two	underlying	distributions	are	the	same.

The	non-smoking	mothers	were	a	little	older,	on	average,	than	the	mothers	who	smoked.

bootstrap_ci_means(baby,	'Maternal	Age',	'Maternal	Smoker',	

5000)

Observed	difference	between	means:	0.8076725017901509

Approximate	95%	CI	for	the	difference	between	means:

0.154278698588	to	1.4701157656
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But	not	surprisingly,	the	evidence	doesn't	point	to	their	heights	being	any	different,	on
average,	than	those	of	the	mothers	who	didn't	smoke.	Zero	is	in	the	confidence	interval	for
the	difference	between	the	means.

bootstrap_ci_means(baby,	'Maternal	Height',	'Maternal	Smoker',	

5000)

Observed	difference	between	means:	0.09058914941267915

Approximate	95%	CI	for	the	difference	between	means:

-0.390841928035	to	0.204388297872

In	summary:

If	you	want	to	tell	whether	or	not	two	underlying	distributions	are	the	same,	you	can	use
a	permutation	test	with	an	appropriate	test	statistic.	We	used	the	total	variation	distance
when	the	distributions	were	categorical,	and	the	absolute	difference	between	means
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when	the	distributions	were	numerical.

To	compare	two	numerical	distributions,	it's	often	more	informative	to	replace
hypothesis	testing	by	estimation.	Just	estimate	a	difference,	such	as	the	difference
between	the	means	of	the	two	groups.	This	can	be	done	by	constructing	a	bootstrap
confidence	interval.	If	zero	is	not	in	the	interval,	you	can	conclude	that	the	two
distributions	are	different	and	you	also	have	an	estimate	of	how	different	the	means	are.
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Interact

Causality¶

Our	methods	for	comparing	two	samples	have	a	powerful	use	in	the	analysis	of	randomized
controlled	experiments.	Since	the	treatment	and	control	groups	are	assigned	randomly	in
such	experiements,	any	differences	in	their	outcomes	can	be	compared	to	what	would
happen	just	due	to	the	randomness	in	the	assignment	if	the	treatment	had	no	effect	at	all.	If
the	observed	differences	are	more	marked	than	what	we	would	predict	as	purely	due	to
chance,	we	will	have	evidence	of	causation.	Because	of	the	unbiased	assignment	of
individuals	to	the	treatment	and	control	groups,	differences	in	the	outcomes	of	the	two
groups	can	be	ascribed	to	the	treatment.

The	key	to	the	analysis	of	randomized	controlled	experiments	is	understanding	exactly	how
chance	enters	the	picture.	This	helps	us	set	up	clear	null	and	alternative	hypotheses.	Once
that's	done,	we	can	simply	use	the	methods	of	the	previous	section	to	complete	the	analysis.

Let's	see	how	to	do	this	in	an	example.

Treating	Chronic	Back	Pain:	An	RCT¶

Low-back	pain	in	adults	can	be	very	persistent	and	hard	to	treat.	Common	methods	run	the
gamut	from	corticosteroids	to	acupuncture.	A	randomized	controlled	trial	(RCT)	examined
the	effect	of	using	Botulinum	Toxin	A	as	a	treatment.	Botulinum	toxin	is	a	neurotoxic	protein
that	causes	the	disease	botulism;	Wikipedia	says	that	botulinum	"is	the	most	acutely	lethal
toxin	known."	There	are	seven	types	of	botulinum	toxin.	Botulinum	Toxin	A	is	one	of	the
types	that	can	cause	disease	in	humans,	but	it	is	also	used	in	medicine	to	treat	various
diseases	involving	the	muscles.	The	RCT	analyzed	by	Foster,	Clapp,	and	Jabbari	in	2001
examined	it	as	a	treatment	for	low	back	pain.

Thirty	one	patients	with	low-back	pain	were	randomized	into	treatment	and	control	groups,
with	15	in	treatment	and	16	in	control.	The	control	group	was	given	normal	saline,	and	the
trials	were	run	double-blind	so	that	neither	doctors	nor	patients	knew	which	group	they	were
in.

Eight	weeks	after	the	start	of	the	study,	nine	of	the	15	in	the	treatment	group	and	two	of	the
16	in	the	control	group	had	pain	relief	(defined	precisely	by	the	researchers).	These	data	are
in	the	table		bta		and	appear	to	show	that	the	treatment	has	a	clear	benefit.

bta	=	Table.read_table('bta.csv')

bta
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Group Result

Control 1

Control 1

Control 0

Control 0

Control 0

Control 0

Control 0

Control 0

Control 0

Control 0

...	(21	rows	omitted)

bta.group('Group',	np.mean)

Group Result	mean

Control 0.125

Treatment 0.6

In	the	treatment	group,	60%	of	the	patients	had	pain	relief,	compared	to	only	12.5%	in	the
control	group.	None	of	the	patients	suffered	any	side	effects.

So	the	indications	are	that	botolinum	toxin	A	did	better	than	the	saline.	But	the	conclusion
isn't	yet	a	slam-dunk.	The	patients	were	assigned	at	random	into	the	two	groups,	so	perhaps
the	difference	could	just	be	due	to	chance?

To	understand	what	this	means,	we	have	to	consider	the	possibility	that	among	the	31
people	in	the	study,	some	were	simply	better	able	to	recover	than	others,	even	without	any
help	from	the	treatment.	What	if	an	unusually	large	proportion	of	them	got	assigned	to	the
treatment	group,	just	by	chance?	Then	even	if	the	treatment	did	nothing	more	than	the
saline	in	the	control	group,	the	results	of	the	treatment	group	might	look	better	than	those	of
the	control	group.

To	account	for	this	possibility,	let's	start	by	carefully	setting	up	the	chance	model.

Potential	Outcomes¶
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Before	the	patients	are	randomized	into	the	two	groups,	our	minds	instinctively	imagine	two
possible	outcomes	for	each	patient:	the	outcome	that	the	patient	would	have	if	assigned	to
the	treatment	group,	and	the	outcome	that	the	same	patient	would	have	if	assigned	to	the
control	group.	These	are	called	the	two	potential	outcomes	of	the	patient.

Thus	there	are	31	potential	treatment	outcomes	and	31	potential	control	ouctomes.	The
question	is	about	the	distributions	of	these	two	sets	of	31	outcomes	each.	Are	they	the
same,	or	are	they	different?

We	can't	answer	this	just	yet,	because	we	don't	get	to	see	all	31	values	in	each	group.	We
just	get	to	see	a	randomly	selected	16	of	the	potential	control	outcomes,	and	the	treatment
outcomes	of	the	remaining	15	patients.

Here	is	a	good	way	to	visualize	the	setting.	Each	patient	has	a	two-sided	ticket:

After	the	randomization,	we	get	to	see	the	right	half	of	a	randomly	selected	set	of	tickets,
and	the	left	half	of	the	remaining	group.
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The	table		observed_outcomes		collects	the	information	about	every	patient's	potential
outcomes,	leaving	the	unobserved	half	of	each	"ticket"	blank.	(It's	just	another	way	of
thinking	about	the		bta		table,	carrying	the	same	information.)

observed_outcomes	=	Table.read_table("observed_outcomes.csv")

observed_outcomes.show()

Group Outcome	if	assigned	treatment Outcome	if	assigned	control

Control Unknown 1

Control Unknown 1

Control Unknown 0

Control Unknown 0

Control Unknown 0

Control Unknown 0

Control Unknown 0

Control Unknown 0

Control Unknown 0

Control Unknown 0

Control Unknown 0

Control Unknown 0

Control Unknown 0
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Control Unknown 0

Control Unknown 0

Control Unknown 0

Treatment 1 Unknown

Treatment 1 Unknown

Treatment 1 Unknown

Treatment 1 Unknown

Treatment 1 Unknown

Treatment 1 Unknown

Treatment 1 Unknown

Treatment 1 Unknown

Treatment 1 Unknown

Treatment 0 Unknown

Treatment 0 Unknown

Treatment 0 Unknown

Treatment 0 Unknown

Treatment 0 Unknown

Treatment 0 Unknown

A	Test	of	Hypotheses¶

The	question	is	whether	the	treatment	does	anything.	In	terms	of	the	table
	observed_outcomes	,	the	question	is	whether	the	distribution	of	the	31	"treatment"	values	in
column	2	(including	the	unknown	ones)	is	different	from	the	distribution	of	the	31	"control"
values	in	column	3	(again	including	the	unknown	ones).

Null	Hypothesis:	The	distribution	of	all	31	potential	"treatment"	outcomes	is	the	same	as
that	of	all	31	potential	"control"	outcomes.	The	treatment	does	nothing	different	from	the
control;	the	difference	in	the	two	samples	is	just	due	to	chance.

Alternative	Hypotheses:	The	distribution	of	31	potential	"treatment"	outcomes	is	different
from	that	of	the	31	control	outcomes.	The	treatment	does	something	different	from	the
control.

To	test	these	hypotheses,	notice	that	if	the	null	hypothesis	were	true,	then	all	assignments	of
the	31	observed	outcomes	to	a	group	of	16	outcomes	labeled	"control"	and	the	other	15
labeled	"treatment"	would	be	equally	likely.	So	we	can	simply	permute	the	values	and	see
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how	different	the	distributions	in	the	two	groups	are.	Even	more	simply,	since	the	data	are
numerical,	we	can	just	see	how	different	the	two	means	are.

That's	exactly	what	we	did	for	A/B	testing	in	the	previous	section.	Sample	A	is	now	the
control	group	and	Sample	B	the	treatment	group.	Our	test	statistic	is	the	absolute	difference
between	the	two	group	means.

Let's	run	our	permutation	test	for	the	difference	between	means.	There	are	only	31
observations,	so	we	can	run	a	large	number	of	permutations	without	having	to	wait	too	long
for	the	results.

def	permutation_test_means(table,	variable,	classes,	

repetitions):

				"""Test	whether	two	numerical	samples	

				come	from	the	same	underlying	distribution,	

				using	the	absolute	difference	between	the	means.

				table:	name	of	table	containing	the	sample

				variable:	label	of	column	containing	the	numerical	variable	

				classes:	label	of	column	containing	names	of	the	two	samples

				repetitions:	number	of	random	permutations"""

				t	=	table.select(variable,	classes)

				#	Find	the	observed	test	statistic

				means_table	=	t.group(classes,	np.mean)	

				obs_stat	=	abs(means_table.column(1).item(0)	-	

means_table.column(1).item(1))

				#	Assuming	the	null	is	true,	randomly	permute	the	variable	

				#	and	collect	all	the	generated	test	statistics

				stats	=	make_array()

				for	i	in	np.arange(repetitions):

								shuffled_var	=	

t.select(variable).sample(with_replacement=False).column(0)

								shuffled	=	t.select(classes).with_column('Shuffled	

Variable',	shuffled_var)

								m_tbl	=	shuffled.group(classes,	np.mean)

								new_stat	=	abs(m_tbl.column(1).item(0)	-	

m_tbl.column(1).item(1))

								stats	=	np.append(stats,	new_stat)
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				#	Find	the	empirical	P-value:

				emp_p	=	np.count_nonzero(stats	>=	obs_stat)/repetitions

				#	Draw	the	empirical	histogram	of	the	tvd's	generated	under	

the	null,	

				#	and	compare	with	the	value	observed	in	the	original	sample

				Table().with_column('Test	Statistic',	stats).hist()

				plots.title('Empirical	Distribution	Under	the	Null')

				print('Observed	statistic:',	obs_stat)

				print('Empirical	P-value:',	emp_p)

permutation_test_means(bta,	'Result',	'Group',	20000)

Observed	statistic:	0.475

Empirical	P-value:	0.00965

The	empirical	P-value	is	very	small	(the	study	reports	a	P-value	of	0.009,	which	is	consistent
with	our	calculation),	and	thus	the	evidence	points	to	the	alternative:	the	underlying
treatment	and	control	distributions	are	different.

This	is	evidence	that	the	treatment	causes	the	difference,	because	the	randomization
ensures	that	there	is	no	confounding	variable	that	could	affect	the	conclusion.

If	the	treatment	had	not	been	randomly	assigned,	our	test	would	still	point	toward	an
association	between	the	treatment	and	back	pain	outcomes	among	our	31	patients.	But
beware:	without	randomization,	this	association	would	not	imply	that	the	treatment	caused	a
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change	in	back	pain	outcomes.	For	example,	if	the	patients	themselves	had	chosen	whether
to	administer	the	treatment,	perhaps	the	patients	experiencing	more	pain	would	be	more
likely	to	choose	the	treatment	and	more	likely	to	experience	some	reduction	in	pain	even
without	medication.	Pre-existing	pain	would	then	be	a	confounding	factor	in	the	analysis.

A	Confidence	Interval	for	the	Effect¶

As	we	noted	in	the	previous	section,	it's	a	little	unsatisfactory	to	simply	conclude	that	the
treatment	does	something.	We're	left	wanting	to	know	what	it	does.

So	instead	of	performing	a	yes/no	test	of	hypotheses	about	the	two	underlying	distributions,
let's	simply	estimate	the	difference	between	their	means.	Specifically,	we	are	looking	at	the
mean	of	all	31	control	outcomes	minus	the	mean	of	all	31	treatment	outcomes.	That's	the
unknown	parameter.	It	is	unknown	because	we	only	have	16	of	the	control	values	and	15	of
the	treatment	values.

In	our	sample,	the	difference	between	the	means	is	-47.5%.	The	control	group	had	a	mean
of	12.5%	whereas	the	treatment	group	had	a	mean	of	60%.	The	negative	sign	of	the
difference	says	that	the	treatment	group	did	better.

group_means	=	bta.group('Group',	np.mean)

group_means

Group Result	mean

Control 0.125

Treatment 0.6

group_means.column(1).item(0)	-	group_means.column(1).item(1)

-0.475

But	this	is	just	the	result	in	one	sample;	the	sample	could	have	come	out	differently.	So	we
will	replicate	the	sample	using	the	bootstrap,	and	recompute	the	difference.	That's	exactly
what	we	did	in	the	previous	section.
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def	bootstrap_ci_means(table,	variable,	classes,	repetitions):

				"""Bootstrap	approximate	95%	confidence	interval

				for	the	difference	between	the	means	of	the	two	classes

				in	the	population"""

				t	=	table.select(variable,	classes)

				mean_diffs	=	make_array()

				for	i	in	np.arange(repetitions):

								bootstrap_sample	=	t.sample()

								m_tbl	=	bootstrap_sample.group(classes,	np.mean)

								new_stat	=	m_tbl.column(1).item(0)	-	

m_tbl.column(1).item(1)

								mean_diffs	=	np.append(mean_diffs,	new_stat)

				left	=	percentile(2.5,	mean_diffs)

				right	=	percentile(97.5,	mean_diffs)

				#	Find	the	observed	test	statistic

				means_table	=	t.group(classes,	np.mean)	

				obs_stat	=	means_table.column(1).item(0)	-	

means_table.column(1).item(1)

				Table().with_column('Difference	Between	Means',	

mean_diffs).hist(bins=20)

				plots.plot(make_array(left,	right),	make_array(0,	0),	

color='yellow',	lw=8)

				print('Observed	difference	between	means:',	obs_stat)

				print('Approximate	95%	CI	for	the	difference	between	

means:')

				print(left,	'to',	right)

bootstrap_ci_means(bta,	'Result',	'Group',	20000)
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Observed	difference	between	means:	-0.475

Approximate	95%	CI	for	the	difference	between	means:

-0.759090909091	to	-0.162393162393

An	approximate	95%	confidence	interval	for	the	difference	between	the	means	of	the
underlying	distributions	goes	from	about	-80%	to	-20%.	In	other	words,	the	treatment	group
did	better	by	about	20%	to	80%.

Notice	the	widely	varying	estimate.	That's	because	the	sample	size	is	only	about	15	in	each
group.	While	the	methods	work	for	such	numbers	without	further	assumptions,	the	results
aren't	very	precise.

A	Meta-Analysis¶

While	the	RCT	does	provide	evidence	that	the	botulinum	toxin	A	treatment	helped	patients,	a
study	of	31	patients	isn't	enough	to	establish	the	effectiveness	of	a	medical	treatment.	This
is	not	just	because	of	the	small	sample	size.	Our	results	in	this	section	are	valid	for	the	31
patients	in	the	study,	but	we	are	really	interested	in	the	population	of	all	possible	patients.	If
the	31	patients	were	a	random	sample	from	that	larger	population,	our	confidence	interval
would	be	valid	for	that	population.	But	they	were	not	a	random	sample.

In	2011,	a	group	of	researchers	performed	a	meta-analysis	of	the	studies	on	the	treatment.
That	is,	they	identified	all	the	available	studies	of	such	treatments	for	low-back	pain	and
summarized	the	collated	results.

There	were	several	studies	but	not	many	could	be	included	in	a	scientifically	sound	manner:
"We	excluded	evidence	from	nineteen	studies	due	to	non-randomisation,	incomplete	or
unpublished	data."	Only	three	randomized	controlled	trials	remained,	one	of	which	is	the	one
we	have	studied	in	this	section.	The	meta-analysis	gave	it	the	highest	assessment	among	all
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the	studies	(LBP	stands	for	low-back	pain):	"We	identified	three	studies	that	investigated	the
merits	of	BoNT	for	LBP,	but	only	one	had	a	low	risk	of	bias	and	evaluated	patients	with	non-
specific	LBP	(N	=	31)."

Putting	it	all	together,	the	meta-analysis	concluded,	"There	is	low	quality	evidence	that	BoNT
injections	improved	pain,	function,	or	both	better	than	saline	injections	and	very	low	quality
evidence	that	they	were	better	than	acupuncture	or	steroid	injections.	...	Further	research	is
very	likely	to	have	an	important	impact	on	the	estimate	of	effect	and	our	confidence	in	it.
Future	trials	should	standardize	patient	populations,	treatment	protocols	and	comparison
groups,	enlist	more	participants	and	include	long-term	outcomes,	cost-benefit	analysis	and
clinical	relevance	of	findings."

It	takes	a	lot	of	careful	work	to	establish	that	a	medical	treatment	has	a	beneficial	effect.
Knowing	how	to	analyze	randomized	controlled	trials	is	a	crucial	part	of	this	work.	Now	that
you	know	how	to	do	that,	you	are	well	positioned	to	help	medical	and	other	professions
establish	cause-and-effect	relations.
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Updating	Predictions¶

We	know	how	to	use	training	data	to	classify	a	point	into	one	of	two	categories.	Our
classification	is	just	a	prediction	of	the	class,	based	on	the	most	common	class	among	the
training	points	that	are	nearest	our	new	point.

Suppose	that	we	eventually	find	out	the	true	class	of	our	new	point.	Then	we	will	know
whether	we	got	the	classification	right.	Also,	we	will	have	a	new	point	that	we	can	add	to	our
training	set,	because	we	know	its	class.	This	updates	our	training	set.	So,	naturally,	we	will
want	to	update	our	classifier	based	on	the	new	training	set.

This	chapter	looks	at	some	simple	scenarios	where	new	data	leads	us	to	update	our
predictions.	While	the	examples	in	the	chapter	are	simple	in	terms	of	calculation,	the	method
of	updating	can	be	generalized	to	work	in	complex	settings	and	is	one	of	the	most	powerful
tools	used	for	machine	learning.
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A	"More	Likely	Than	Not"	Binary	Classifier¶

Let's	try	to	use	data	to	classify	a	point	into	one	of	two	categories,	choosing	the	category	that
we	think	is	more	likely	than	not.	To	do	this,	we	not	only	need	the	data	but	also	a	clear
description	of	how	chances	are	involved.

We	will	start	out	in	a	simple	artifical	setting	just	to	develop	the	main	technique,	and	then
move	to	a	more	intriguing	example.

Suppose	there	is	a	university	class	with	the	following	composition:

60%	of	the	students	are	Second	Years	and	the	remaining	40%	are	Third	Years
50%	of	the	Second	Years	have	declared	their	major
80%	of	the	Third	Years	have	declared	their	major

Now	suppose	I	pick	a	student	at	random	from	the	class.	Can	you	classify	the	student	as
Second	Year	or	Third	Year,	using	our	"more	likely	than	not"	criterion?

You	can,	because	the	student	is	picked	at	random	and	so	you	know	that	the	chance	that	the
student	is	a	Second	Year	is	60%.	That's	greater	than	the	40%	chance	of	being	a	Third	Year,
so	you	would	classify	the	student	as	Second	Year.

The	information	about	the	majors	is	irrelevant,	as	we	already	know	the	proportions	of
Second	and	Third	Years	in	the	class.

We	have	a	pretty	simple	classifier!	But	now	suppose	I	give	you	some	additional	information
about	the	student	who	was	picked:

The	student	has	declared	a	major.

Would	this	knowledge	change	your	classification?

Updating	the	Prediction	Based	on	New	Information¶

Now	that	we	know	the	student	has	declared	a	major,	it	becomes	important	to	look	at	the
relation	between	year	and	major	declaration.	It's	still	true	that	more	students	are	Second
Years	than	Third	Years.	But	it's	also	true	that	among	the	Third	Years,	a	much	higher	percent
have	declared	their	major	than	among	the	Second	Years.	Our	classifier	has	to	take	both	of
these	observations	into	account.

To	visualize	this,	we	will	use	a	table		students		that	consists	of	one	row	for	each	of	100
students	whose	years	and	majors	have	the	same	proportions	as	given	in	the	data.
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students.show(3)

Year Major

Second Undeclared

Second Undeclared

Second Undeclared

...	(97	rows	omitted)

To	check	that	the	proportions	are	correct,	let's	use		pivot		to	cross-classify	each	student
according	to	the	two	variables.

students.pivot('Major',	'Year')

Year Declared Undeclared

Second 30 30

Third 32 8

The	total	count	is	100	students,	of	whom	60	are	Second	Years	and	40	are	Third	Years.
Among	the	Second	Years,	50%	are	in	each	of	the	Major	categories.	Among	the	40	Third
Years,	20%	are	Undeclared	and	80%	Declared.	So	this	population	of	100	students	has	the
same	proportions	as	the	class	in	our	problem,	and	we	can	assume	that	our	student	has
been	picked	at	random	from	among	all	100	students.

We	have	to	pick	which	row	the	student	is	most	likely	to	be	in.	When	we	knew	nothing	more
about	the	student,	he	or	she	could	be	in	any	of	the	four	cells,	and	therefore	were	more	likely
to	be	in	the	top	row	(Second	Year)	because	that	contains	more	students.

But	now	we	know	that	the	student	has	declared	a	major,	so	the	space	of	possible	outcomes
has	decreased:	now	the	student	can	only	be	in	one	of	the	two	Declared	cells.

There	are	62	students	in	those	cells,	and	32	out	of	the	62	are	Third	Years.	That's	more	than
half,	even	though	not	by	much.

So,	in	the	light	of	the	new	information	about	the	student's	major,	we	have	to	update	our
prediction	and	now	classify	the	student	as	a	Third	Year.

What	is	the	chance	that	our	classification	is	correct?	We	will	be	right	for	all	the	32	Third
Years	who	are	Declared,	and	wrong	for	the	30	Second	Years	who	are	Declared.	The	chance
that	we	are	correct	is	therefore	about	0.516.
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In	other	words,	the	chance	that	we	are	correct	is	the	proportion	of	Third	Years	among	the
students	who	have	Declared.

32/(30+32)

0.5161290322580645

Tree	Diagram¶

The	proportion	that	we	have	just	calculated	was	based	on	a	class	of	100	students.	But
there's	no	reason	the	class	couldn't	have	had	200	students,	for	example,	as	long	as	all	the
proportions	in	the	cells	were	correct.	Then	our	calculation	would	just	have	been	64/(60	+	64)
which	is	0.516	as	before.

So	the	calculation	depends	only	on	the	proportions	in	the	different	categories,	not	on	the
counts.	The	proportions	can	be	visualized	in	a	tree	diagram,	shown	directly	below	the	pivot
table	for	ease	of	comparison.

students.pivot('Major',	'Year')

Year Declared Undeclared

Second 30 30

Third 32 8
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Like	the	pivot	table,	this	diagram	partitions	the	students	into	four	distinct	groups	known	as
"branches".	Notice	that	the	"Third	Year,	Declared"	branch	contains	the	proportion	0.4	x	0.8	=
0.32	of	the	students,	corresponding	to	the	32	students	in	the	"Third	Year,	Declared"	cell	of
the	pivot	table.	The	"Second	Year,	Declared"	branch	contains	0.6	x	0.5	=	0.3	of	the	students,
corresponding	to	the	30	in	the	"Second	Year,	Declared"	cell	of	the	pivot	table.

We	know	that	the	student	who	was	picked	belongs	to	a	"Declared"	branch;	that	is,	the
student	is	either	in	the	top	branch	or	the	third	from	top.	Those	two	branches	now	form	our
reduced	space	of	possibilities,	and	all	chances	have	to	be	calculated	relative	to	the	total
chance	of	this	reduced	space.

So,	given	that	the	student	is	Declared,	the	chance	of	them	being	a	Third	Year	can	be
calculated	directly	from	the	tree.	The	answer	is	the	proportion	in	the	"Third	Year,	Declared"
branch	relative	to	the	total	proportion	in	the	two	"Declared"	branches.

That	is,	the	answer	is	the	proportion	of	Third	Years	among	students	who	are	Declared,
as	before.

(0.4	*	0.8)/(0.6	*	0.5		+		0.4	*	0.8)

0.5161290322580645

Bayes'	Rule¶

The	method	that	we	have	just	used	is	due	to	the	Reverend	Thomas	Bayes	(1701-1761).	His
method	solved	what	was	called	an	"inverse	probability"	problem:	given	new	data,	how	can
you	update	chances	you	had	found	earlier?	Though	Bayes	lived	three	centuries	ago,	his
method	is	widely	used	now	in	machine	learning.

We	will	state	the	rule	in	the	context	of	our	population	of	students.	First,	some	terminology:

Prior	probabilities.	Before	we	knew	the	chosen	student's	major	declaration	status,	the
chance	that	the	student	was	a	Second	Year	was	60%	and	the	chance	that	the	student	was	a
Third	Year	was	40%.	These	are	the	prior	probabilities	of	the	two	categories.

Likelihoods.	These	are	the	chances	of	the	Major	status,	given	the	category	of	student;	thus
they	can	be	read	off	the	tree	diagram.	For	example,	the	likelihood	of	Declared	status	given
that	the	student	is	a	Second	Year	is	0.5.

Posterior	probabilities.	These	are	the	chances	of	the	two	Year	categories,	after	we	have
taken	into	account	information	about	the	Major	declaration	status.	We	computed	one	of
these:
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The	posterior	probability	that	the	student	is	a	Third	Year,	given	that	the	student	has
Declared,	is	denoted	 	and	is	calculated	as	follows.

The	other	posterior	probability	is

(0.6	*	0.5)/(0.6	*	0.5		+		0.4	*	0.8)

0.4838709677419354

That's	about	0.484,	which	is	less	than	half,	consistent	with	our	classification	of	Third	Year.

Notice	that	both	the	posterior	probabilities	have	the	same	denominator:	the	chance	of	the
new	information,	which	is	that	the	student	has	Declared.

Because	of	this,	Bayes'	method	is	sometimes	summarized	as	a	statement	about
proportionality:

Formulas	are	great	for	efficiently	describing	calculations.	But	in	settings	like	our	example
about	students,	it	is	simpler	not	to	think	in	terms	of	formulas.	Just	use	the	tree	diagram.
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Making	Decisions¶

A	primary	use	of	Bayes'	Rule	is	to	make	decisions	based	on	incomplete	information,
incorporating	new	information	as	it	comes	in.	This	section	points	out	the	importance	of
keeping	your	assumptions	in	mind	as	you	make	decisions.

Many	medical	tests	for	diseases	return	Positive	or	Negative	results.	A	Positive	result	means
that	according	to	the	test,	the	patient	has	the	disease.	A	Negative	result	means	the	test
concludes	that	the	patient	doesn't	have	the	disease.

Medical	tests	are	carefully	designed	to	be	very	accurate.	But	few	tests	are	accurate	100%	of
the	time.	Almost	all	tests	make	errors	of	two	kinds:

A	false	positive	is	an	error	in	which	the	test	concludes	Positive	but	the	patient	doesn't
have	the	disease.

A	false	negative	is	an	error	in	which	the	test	concludes	Negative	but	the	patient	does
have	the	disease.

These	errors	can	affect	people's	decisions.	False	positives	can	cause	anxiety	and
unnecessary	treatment	(which	in	some	cases	is	expensive	or	dangerous).	False	negatives
can	have	even	more	serious	consequences	if	the	patient	doesn't	receive	treatment	because
of	their	Negative	test	result.

A	Test	for	a	Rare	Disease¶

Suppose	there	is	a	large	population	and	a	disease	that	strikes	a	tiny	proportion	of	the
population.	The	tree	diagram	below	summarizes	information	about	such	a	disease	and
about	a	medical	test	for	it.
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Overall,	only	4	in	1000	of	the	population	has	the	disease.	The	test	is	quite	accurate:	it	has	a
very	small	false	positive	rate	of	5	in	1000,	and	a	somewhat	larger	(though	still	small)	false
negative	rate	of	1	in	100.

Individuals	might	or	might	not	know	whether	they	have	the	disease;	typically,	people	get
tested	to	find	out	whether	they	have	it.

So	suppose	a	person	is	picked	at	random	from	the	population	and	tested.	If	the	test
result	is	Positive,	how	would	you	classify	them:	Disease,	or	No	disease?

We	can	answer	this	by	applying	Bayes'	Rule	and	using	our	"more	likely	than	not"	classifier.
Given	that	the	person	has	tested	Positive,	the	chance	that	he	or	she	has	the	disease	is	the
proportion	in	the	top	branch,	relative	to	the	total	proportion	in	the	Test	Positive	branches.

(0.004	*	0.99)/(0.004	*	0.99		+		0.996*0.005	)

0.44295302013422816

Given	that	the	person	has	tested	Positive,	the	chance	that	he	or	she	has	the	disease	is
about	44%.	So	we	will	classify	them	as:	No	disease.

This	is	a	strange	conclusion.	We	have	a	pretty	accurate	test,	and	a	person	who	has	tested
Positive,	and	our	classification	is	...	that	they	don't	have	the	disease?	That	doesn't	seem	to
make	any	sense.

When	faced	with	a	disturbing	answer,	the	first	thing	to	do	is	to	check	the	calculations.	The
arithmetic	above	is	correct.	Let's	see	if	we	can	get	the	same	answer	in	a	different	way.
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The	function		population		returns	a	table	of	outcomes	for	100,000	patients,	with	columns	that
show	the		True	Condition		and		Test	Result	.	The	test	is	the	same	as	the	one	described	in
the	tree.	But	the	proportion	who	have	the	disease	is	an	argument	to	the	function.

We	will	call		population		with	0.004	as	the	argument,	and	then	pivot	to	cross-classify	each	of
the	100,000	people.

population(0.004).pivot('Test	Result',	'True	Condition')

True	Condition Negative Positive

Disease 4 396

No	Disease 99102 498

The	cells	of	the	table	have	the	right	counts.	For	example,	according	to	the	description	of	the
population,	4	in	1000	people	have	the	disease.	There	are	100,000	people	in	the	table,	so
400	should	have	the	disease.	That's	what	the	table	shows:	4	+	396	=	400.	Of	these	400,
99%	get	a	Positive	test	result:	0.99	x	400	=	396.

Among	the	Positives,	the	proportion	that	have	the	disease	is:

396/(396	+	498)

0.4429530201342282

That's	the	answer	we	got	by	using	Bayes'	Rule.	The	counts	in	the	Positives	column	show
why	it	is	less	than	1/2.	Among	the	Positives,	more	people	don't	have	the	disease	than	do
have	the	disease.

The	reason	is	that	a	huge	fraction	of	the	population	doesn't	have	the	disease	in	the	first
place.	The	tiny	fraction	of	those	that	falsely	test	Positive	are	still	greater	in	number	than	the
people	who	correctly	test	Positive.	This	is	easier	to	visualize	in	the	tree	diagram:
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The	proportion	of	true	Positives	is	a	large	fraction	(0.99)	of	a	tiny	fraction	(0.004)	of	the
population.
The	proportion	of	false	Positives	is	a	tiny	fraction	(0.005)	of	a	large	fraction	(0.996)	of
the	population.

These	two	proportions	are	comparable;	the	second	is	a	little	larger.

So,	given	that	the	randomly	chosen	person	tested	positive,	we	were	right	to	classify	them	as
more	likely	than	not	to	not	have	the	disease.

A	Subjective	Prior¶

Being	right	isn't	always	satisfying.	Classifying	a	Positive	patient	as	not	having	the	disease
still	seems	somehow	wrong,	for	such	an	accurate	test.	Since	the	calculations	are	right,	let's
take	a	look	at	the	basis	of	our	probability	calculation:	the	assumption	of	randomness.

Our	assumption	was	that	a	randomly	chosen	person	was	tested	and	got	a	Positive	result.
But	this	doesn't	happen	in	reality.	People	go	in	to	get	tested	because	they	think	they	might
have	the	disease,	or	because	their	doctor	thinks	they	might	have	the	disease.	People
getting	tested	are	not	randomly	chosen	members	of	the	population.

That	is	why	our	intuition	about	people	getting	tested	was	not	fitting	well	with	the	answer	that
we	got.	We	were	imagining	a	realistic	situation	of	a	patient	going	in	to	get	tested	because
there	was	some	reason	for	them	to	do	so,	whereas	the	calculation	was	based	on	a	randomly
chosen	person	being	tested.

So	let's	redo	our	calculation	under	the	more	realistic	assumption	that	the	patient	is	getting
tested	because	the	doctor	thinks	there's	a	chance	the	patient	has	the	disease.
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Here	it's	important	to	note	that	"the	doctor	thinks	there's	a	chance"	means	that	the	chance	is
the	doctor's	opinion,	not	the	proportion	in	the	population.	It	is	called	a	subjective	probability.
In	our	context	of	whether	or	not	the	patient	has	the	disease,	it	is	also	a	subective	prior
probability.

Some	researchers	insist	that	all	probabilities	must	be	relative	frequencies,	but	subjective
probabilities	abound.	The	chance	that	a	candidate	wins	the	next	election,	the	chance	that	a
big	earthquake	will	hit	the	Bay	Area	in	the	next	decade,	the	chance	that	a	particular	country
wins	the	next	soccer	World	Cup:	none	of	these	are	based	on	relative	frequencies	or	long	run
frequencies.	Each	one	contains	a	subjective	element.	All	calculations	involving	them	thus
have	a	subjective	element	too.

Suppose	the	doctor's	subjective	opinion	is	that	there	is	a	5%	chance	that	the	patient	has	the
disease.	Then	just	the	prior	probabilities	in	the	tree	diagram	will	change:

Given	that	the	patient	tests	Positive,	the	chance	that	he	or	she	has	the	disease	is	given	by
Bayes'	Rule.

(0.05	*	0.99)/(0.05	*	0.99		+		0.95	*	0.005)

0.9124423963133641

The	effect	of	changing	the	prior	is	stunning.	Even	though	the	doctor	has	a	pretty	low	prior
probability	(5%)	that	the	patient	has	the	disease,	once	the	patient	tests	Positive	the	posterior
probability	of	having	the	disease	shoots	up	to	more	than	91%.
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If	the	patient	tests	Positive,	it	would	be	reasonable	for	the	doctor	to	proceed	as	though	the
patient	has	the	disease.

Confirming	the	Answer¶

Though	the	doctor's	opinion	is	subjective,	we	can	generate	an	artificial	population	in	which
5%	of	the	people	have	the	disease	and	are	tested	using	the	same	test.	Then	we	can	count
people	in	different	categories	to	see	if	the	counts	are	consistent	with	the	answer	we	got	by
using	Bayes'	Rule.

We	can	use		population(0.05)		and		pivot		to	construct	the	corresponding	population	and
look	at	the	counts	in	the	four	cells.

population(0.05).pivot('Test	Result',	'True	Condition')

True	Condition Negative Positive

Disease 50 4950

No	Disease 94525 475

In	this	artificially	created	population	of	100,000	people,	5000	people	(5%)	have	the	disease,
and	99%	of	them	test	Positive,	leading	to	4950	true	Positives.	Compare	this	with	475	false
Positives:	among	the	Positives,	the	proportion	that	have	the	disease	is	the	same	as	what	we
got	by	Bayes'	Rule.

4950/(4950	+	475)

0.9124423963133641

Because	we	can	generate	a	population	that	has	the	right	proportions,	we	can	also	use
simulation	to	confirm	that	our	answer	is	reasonable.	The	table		pop_05		contains	a	population
of	100,000	people	generated	with	the	doctor's	prior	disease	probability	of	5%	and	the	error
rates	of	the	test.	We	take	a	simple	random	sample	of	size	10,000	from	the	population,	and
extract	the	table		positive		consisting	only	of	those	in	the	sample	that	had	Positive	test
results.
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pop_05	=	population(0.05)

sample	=	pop_05.sample(10000,	with_replacement=False)

positive	=	sample.where('Test	Result',	are.equal_to('Positive'))

Among	these	Positive	results,	what	proportion	were	true	Positives?	That's	the	proportion	of
Positives	that	had	the	disease:

positive.where('True	Condition',	

are.equal_to('Disease')).num_rows/positive.num_rows

0.9131205673758865

Run	the	two	cells	a	few	times	and	you	will	see	that	the	proportion	of	true	Positives	among
the	Positives	hovers	around	the	value	of	0.912	that	we	calculated	by	Bayes'	Rule.

You	can	also	use	the		population		function	with	a	different	argument	to	change	the	prior
disease	probability	and	see	how	the	posterior	probabilities	are	affected.
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