Table of Contents
Introduction 1.1
Unit 1. Get Started 1.2
Lesson 1: Build Your First App 1.2.1
1.1: Install Android Studio and Run Hello World 1.2.1.1
1.2A: Make Your First Interactive UI 1.2.1.2
1.2B: Using Layouts 1.2.1.3
1.3: Working with TextView Elements 1.2.1.4
1.4: Learning About Available Resources 1.2.1.5
Lesson 2: Activities 1.2.2
2.1: Create and Start Activities 1.2.2.1
2.2: Activity Lifecycle and State 1.2.2.2
2.3: Activities and Implicit Intents 1.2.2.3
Lesson 3: Testing, Debugging, and Using Support Libraries 1.2.3
3.1: Using the Debugger 1.2.3.1
3.2: Testing your App 1.2.3.2
3.3: Using Support Libraries 1.2.3.3
Unit 2. User Experience 1.3
Lesson 4: User Interaction 1.3.1
Lesson 5: Delightful User Experience 1.3.2
Lesson 6: Testing your UI 1.3.3
Unit 3. Working in the Background 1.4
Lesson 7: Background Tasks 1.4.1
Lesson 8: Triggering, Scheduling, and Optimizing Background Tasks 1.4.2
8.1: Notifications 1.4.2.1
8.2: Alarm Manager 1.4.2.2
8.3: Job Scheduler 1.4.2.3
Unit 4. All About Data 1.5
Lesson 9: Preferences and Settings 1.5.1
9.1: Shared Preferences 1.5.1.1
9.2: Adding Settings to an App 1.5.1.2
Lesson 10: Storing Data Using SQLite 1.5.2
10.1A: SQLite Database 1.5.2.1
10.1B: Searching a SQLite Database 1.5.2.2
Lesson 11: Sharing Data with Content Providers 1.5.3
Lesson 12: Loading Data Using Loaders 1.5.4
Appendix: Homework 1.6
Homework Lesson 1 1.6.1
Homework Lesson 2 1.6.2
Homework Lessons 3, 4 1.6.3
Homework Lessons 5, 6 1.6.4
Homework Lessons 7, 8 1.6.5
Homework Lessons 9, 10, 11 1.6.6
Appendix: Utilities 1.7
Android Developer Fundamentals Course – Practicals
Android Developer Fundamentals is a training course created by the Google Developer Training team. You learn basic Android programming concepts and build a variety of apps, starting with Hello World and working your way up to apps that use content providers and loaders.
Android Developer Fundamentals prepares you to take the exam for the Associate Android Developer Certification.
This course is intended to be taught in a classroom, but all the materials are online, so if you like to learn by yourself, go ahead!
Prerequisites
Android Developer Fundamentals is intended for new and experienced developers who already have Java programming experience and now want to learn to build Android apps.
Course materials
The course materials include:
What topics are covered?
Android Developer Fundamentals includes five teaching units, which are described in What does the course cover?
Developed by the Google Developer Training Team
Last updated: February 2017
This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License
1.1: Install Android Studio and Run Hello World
Contents:
Welcome to the practical exercises. You will learn to:
What you should already KNOW
For this practical you should be able to:
What you will NEED
For these practicals, you will need:
What you will LEARN
You will learn to:
What you will DO
App Overview
After you successfully install the Android Studio IDE, you will create, from a template, a new Android project for the 'Hello World' app. This simple app displays the string "Hello World" on the screen of the Android virtual or physical device.
Here's what the finished app will look like:
Task 1. Install Android Studio
Android Studio is Google's IDE for Android apps. Android Studio gives you an advanced code editor and a set of app templates. In addition, it contains tools for development, debugging, testing, and performance that make it faster and easier to develop apps. You can test your apps with a large range of preconfigured emulators or on your own mobile device, and build production APKs for publication.
Note: Android Studio is continually being improved. For the latest information on system requirements and installation instructions, refer to the documentation at developer.android.com.
To get up and running with Android Studio:
Android Studio is available for Windows, Mac, and Linux computers. The installation is similar for all platforms. Any differences will be noted in the sections below.
1.1. Installing the Java Development Kit
The output includes a line:
Java(™) SE Runtime Environment (build1.X.0_05-b13)
X is the version number to look at.
To download the Java Standard Edition () Development Kit (JDK):
Important: Do not go to the demos and samples (the menus look very similar, so make sure to read the heading at the top).
Windows:
See also: https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
Mac:
Linux:
See: https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
Important: Don't install Android Studio until after the Java JDK is installed. Without a working copy of Java, the rest of the process will not work. If you can't get the download to work, look for error messages, and search online to find a solution.
Basic Troubleshooting:
1.2. Installing Android Studio
Troubleshooting: If you run into problems with your installation, check the latest documentation, programming forums, or get help from you instructors.
Task 2: Create "Hello World" app
In this task, you will implement the "Hello World" app to verify that Android studio is correctly installed and learn the basics of developing with Android Studio.
2.1 Create the "Hello World" app
After these steps, Android Studio:
The Android Studio window should look similar to the following diagram:
You can look at the hierarchy of the files for your app in multiple ways.
Note: This book uses the Android view of the project files, unless specified otherwise.
Task 3: Explore the project structure
In this practical, you will explore how the project files are organized in Android Studio.
These steps assume that your Hello World project starts out as shown in the diagram above.
3.1 Explore the project structure and layout
In the Project > Android view of your previous task, there are three top-level folders below your app folder: manifests, java, and res.
Expand the manifests folder.
This folder contains AndroidManifest.xml. This file describes all of the components of your Android app and is read by the Android run-time system when your program is executed.
3.2 The Gradle build system
Android Studio uses Gradle as its build system. As you progress through these practicals, you will learn more about gradle and what you need to build and run your apps.
Task 4: Create a virtual device (emulator)
In this task, you will use the Android Virtual Device (AVD) manager to create a virtual device or emulator that simulates the configuration for a particular type of Android device.
Using the AVD Manager, you define the hardware characteristics of a device and its API level, and save it as a virtual device configuration.
When you start the Android emulator, it reads a specified configuration and creates an emulated device that behaves exactly like a physical version of that device , but it resides on your computer .
Why: With virtual devices, you can test your apps on different devices (tablets, phones) with different API levels to make sure it looks good and works for most users. You do not need to depend on having a physical device available for app development.
4.1 Create a virtual device
In order to run an emulator on your computer, you have to create a configuration that describes the virtual device.
Click the +Create Virtual Device…. (If you have created a virtual device before, the window shows all of your existing devices and the button is at the bottom.)
The Select Hardware screen appears showing a list of preconfigured hardware devices. For each device, the table shows its diagonal display size (Size), screen resolution in pixels (Resolution), and pixel density (Density).
For the Nexus 5 device, the pixel density is xxhdpi, which means your app uses the launcher icons in the xxhdpi folder of the mipmap folder. Likewise, your app will use layouts and drawables from folders defined for that density as well.
On the System Image screen, from the Recommended tab, choose which version of the Android system to run on the virtual device. You can select the latest system image.
There are many more versions available than shown in the Recommended tab. Look at the x86 Images and Other Images tabs to see them.
Verify your configuration, and click Finish. (If the Your Android Devices AVD Manager window stays open, you can go ahead and close it.)
Task 5. Run your app on an emulator
In this task, you will finally run your Hello World app.
5.1 Run your app on an emulator
The emulator starts and boots just like a physical device. Depending on the speed of your computer, this may take a while. Your app builds, and once the emulator is ready, Android Studio will upload the app to the emulator and run it.
You should see the Hello World app as shown in the following screenshot.
Note: When testing on an emulator, it is a good practice to start it up once, at the very beginning of your session. You should not close the emulator until you are done testing your app, so that your app doesn't have to go through the boot process again.
Coding challenge
Note: All coding challenges are optional, and are not requirements for subsequent practicals.
Challenge: You can fully customize your virtual devices.
You may notice that not all combinations of devices and system versions work when you run your app. This is because not all system images can run on all hardware devices.
Task 6. Add log statements to your app
In this practical, you will add log statements to your app, which are displayed in the logging window of the Android Monitor.
Why: Log messages are a powerful debugging tool that you can use to check on values, execution paths, and report exceptions.
The Android Monitor displays information about your app.
Click the Android Monitor button at the bottom of Android Studio to open the Android Monitor.
By default, this opens to the logcat tab, which displays information about your app as it is running. If you add log statements to your app, they are printed here as well.
You can also monitor the Memory, CPU, GPU, and Network performance of your app from the other tabs of the Android Monitor. This can be helpful for debugging and performance tuning your code.
Log statements that you add to your app code print a message specified by you in the logcat tab of the Android Monitor. For example:
Log.d("MainActivity", "Hello World");
The parts of the message are:
By convention, log tags are defined as constants:
private static final String LOG_TAG = MainActivity.class.getSimpleName();
6.1 Add log statements to your app
Log.d("MainActivity", "Hello World");
Solution Code:
package com.example.hello.helloworld;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.util.Log;
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Log.d("MainActivity", "Hello World");
}
}
Output Log Message
03-18 12:20:23.184 2983-2983/com.example.hello.helloworld D/MainActivity: Hello World
Coding challenge
Note: All coding challenges are optional and are not a prerequisite for the next chapter.
Challenge: A common use of the Log class is to log Java exceptions when they occur in your program. There are some useful methods in the Log class that you can use for this purpose. Use the Log class documentation to find out what methods you can use to include an exception with a log message. Then, write code in the MainActivity.java file to trigger and log an exception.
Task 7: Explore the AndroidManifest.xml file
Every app includes an Android Manifest file ( AndroidManifest.xml ).The manifest file contains essential information about your app and presents this information to the Android runtime system. Android must have this information before it can run any of your app's code.
In this practical you will find and read the AndroidManifest.xml file for the Hello World app.
Why: As your apps add more functionality and the user experience becomes more engaging and interactive, the AndroidManifest.xml file contains more and more information. In later lessons, you will modify this file to add features and feature permissions.
7.1 Explore the AndroidManifest.xml file
Annotated code:
<!-- XML version and character encoding -->
<?xml version="1.0" encoding="utf-8"?>
<!-- Required starting tag for the manifest -->
<manifest
<!-- Defines the android namespace. Do not change. -->
xmlns:android="http://schemas.android.com/apk/res/android"
<!-- Unique package name of your app. Do not change once app is
published. -->
package="com.example.hello.helloworld">
<!-- Required application tag -->
<application
<!-- Allow the application to be backed up and restored. –>
android:allowBackup="true"
<!-- Icon for the application as a whole,
and default icon for application components. –>
android:icon="@mipmap/ic_launcher"
<!-- User-readable for the application as a whole,
and default icon for application components. Notice that Android
Studio first shows the actual label "Hello World".
Click on it, and you will see that the code actually refers to a string
resource. Ctrl-click @string/app_name to see where the resource is
specified. This will be covered in a later practical . –>
android:label="@string/app_name"
<!-- Whether the app is willing to support right-to-left layouts.–>
android:supportsRtl="true"
<!-- Default theme for styling all activities. –>
android:theme="@style/AppTheme">
<!-- Declares an activity. One is required.
All activities must be declared,
otherwise the system cannot see and run them. –>
<activity
<!-- Name of the class that implements the activity;
subclass of Activity. –>
android:name=".MainActivity">
<!-- Specifies the intents that this activity can respond to.–>
<intent-filter>
<!-- The action and category together determine what
happens when the activity is launched. –>
<!-- Start activity as the main entry point.
Does not receive data. –>
<action android:name="android.intent.action.MAIN" />
<!-- Start this activity as a top-level activity in
the launcher . –>
<category android:name="android.intent.category.LAUNCHER" />
<!-- Closing tags –>
</intent-filter>
</activity>
</application>
</manifest>
Coding challenge
Note: All coding challenges are optional.
Challenge: There are many other elements that can be set in the Android Manifest. Explore the Android Manifest documentation and learn about additional elements in the Android Manifest.
Task 8. Explore the build.gradle file
Android Studio uses a build system called Gradle. Gradle does incremental builds, which allows for shorter edit-test cycles.
To learn more about Gradle, see:
In this task, you will explore the build.gradle file.
Why: When you add new libraries to your Android project, you may also have to update your build.gradle file. It's useful to know where it is and its basic structure.
8.1 Explore the build.gradle(Module app) file
Solution:
// Add Android-specific build tasks
apply plugin: 'com.android.application'
// Configure Android specific build options.
android {
// Specify the target SDK version for the build.
compileSdkVersion 23
// The version of the build tools to use.
buildToolsVersion "23.0.2"
// Core settings and entries. Overrides manifest settings!
defaultConfig {
applicationId "com.example.hello.helloworld"
minSdkVersion 15
targetSdkVersion 23
versionCode 1
versionName "1.0"
}
// Controls how app is built and packaged.
buildTypes {
// Another common option is debug, which is not signed by default.
release {
// Code shrinker. Turn this on for production along with
// shrinkResources.
minifyEnabled false
// Use ProGuard, a Java optimizer.
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
}
}
}
// This is the part you are most likely to change as you start using
// other libraries.
dependencies {
// Local binary dependency. Include any JAR file inside app/libs.
compile fileTree(dir: 'libs', include: ['*.jar'])
// Configuration for unit tests.
testCompile 'junit:junit:4.12'
// Remote binary dependency. Specify Maven coordinates of the Support
// Library needed. Use the SDK Manager to download and install such
// packages.
compile 'com.android.support:appcompat-v7:23.2.1'
}
Task 9. [Optional] Run your app on a device
In this final task, you will run your app on a physical mobile device such as a phone or tablet.
Why: Your users will run your app on physical devices. You should always test your apps on both virtual and physical devices.
What you need:
9.1 [Optional] Run your app on a device
To let Android Studio communicate with your device, you must turn on USB Debugging on your Android device. This is enabled in the Developer options settings of your device. Note this is not the same as rooting your device.
On Android 4.2 and higher, the Developer options screen is hidden by default. To show Developer options and enable USB Debugging:
Now you can connect your device and run the app from Android Studio.
Android Studio should install and runs the app on your device.
Troubleshooting
If you Android Studio does not recognize your device, try the following:
If your computer still does not find the device or declares it "unauthorized":
Unplug the device.
On the device, open Settings->Developer Options.
Tap Revoke USB Debugging authorizations.
Reconnect the device to your computer.
When prompted, grant authorizations.
Coding challenge
Note: All coding challenges are optional.
Challenge: Now that you are set up and familiar with the basic development workflow, do the following:
Summary
In this chapter, you learned to:
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
1.2A: Make Your First Interactive UI
Contents:
The user interface displayed on the screen of a mobile Android device consists of a hierarchy of "views". Views are Android's basic user interface building blocks. You specify the views in XML layout files. For example, views can be components that:
You can explore the view hierarchy of your app in the Layout Editor's Component Tree pane.
The Java code that displays and drives the user interface is contained in a class that extends Activity and contains methods to inflate views, that is, take the XML layout of views and display it on the screen. For example, the MainActivity in the Hello World app inflates a text view and prints Hello World. In more complex apps, an activity might implement click and other event handlers, request data from a database or the internet, or draw graphical content.
Android makes it straightforward to clearly separate UI elements and data from each other, and use the activity to bring them back together. This separation is an implementation of an MVP (Model-View-Presenter) pattern.
You will work with Activities and Views throughout this book.
What you should already KNOW
For this practical you should be familiar with:
What you will LEARN
You will learn:
What you will DO
In this practical, you will:
App Overview
The "Hello Toast" app will consist of two buttons and one text view. When you click on the first button, it will display a short message, or toast, on the screen. Clicking on the second button will increase a click counter; the total count of mouse clicks will be displayed in the text view.
Here's what the finished app will look like:
Task 1. Create a new "Hello Toast" project
In this practical, you will design and implement a project for the "Hello Toast" app.
1.1. Create the "Hello Toast" project
Start Android Studio and create a new project with the following parameters:
Attribute | Value |
Application Name | Hello Toast |
Company Name | com.example.android or your own domain |
Phone and Tablet Minimum SDK | API15: Android 4.0.3 IceCreamSandwich |
Template | Empty Activity |
Generate Layout file box | Checked |
Backwards Compatibility box | Checked |
Task 2: Add views to "Hello Toast" in the Layout Editor
In this task, you will create and configure a user interface for the "Hello Toast" app by arranging view UI components on the screen.
Why: Every app should start with the user experience, even if the initial implementation is very basic.
Views used for Hello Toast are:
Here is a rough sketch of the UI you will build in this exercise. Simple UI sketches can be very useful for deciding which views to use and how to arrange them, especially when your layouts become more sophisticated.
2.1 Explore the Layout Editor
Use the Layout Editor to create the layout of the user interface elements, and to preview your app using different devices and app themes, resolutions, and orientations.
Refer to the screenshot below to match
In the app > res > layout folder, open the activiy_main.xml file (1).
The Android Studio Screen should look similar to the screenshot below. If you see the XML code for the UI layout, click the Design tab below the Component Tree (8).
Use the selectors above the virtual device (3) to do the following:
Use the tooltips on the icons to help you discover their function.
See the Android Studio User Guide for the full Android Studio documentation.
Note: If you get an error about a missing App Theme, try File > Invalidate Caches / Restart or choose a theme that does not generate the error. Additional help can be found in this stackoverflow post.
2.2 Change the view group to a LinearLayout
The root of the view hierarchy is a view group, which as implied by the name, is a view that contains other views.
A vertical linear layout is one of the most common layouts. It is simple, fast, and always a good starting point. Change the view group to a vertical, LinearLayout as follows:
In the second line of the code, change the root view group to LinearLayout. The second line of code now looks something like this:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
Make sure the closing tag at the end of the code has changed to </LinearLayout> . If it hasn't changed automatically, change it manually.
The android:layout_height is defined as part of the template. The default layout orientation a horizontal row. To change the layout to be vertical, add the following code inside LinearLayout, below android:layout_height .
android:orientation="vertical"
From the menu bar, select: Code > Reformat Code…
It may say "No lines changed: code is already properly formatted".
Solution Code: Depending on your version of Android Studio, your code will look something like the following.
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context="hellotoast.android.example.com.hellotoast.MainActivity">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!" />
</LinearLayout>
2.3 Add views to the Linear Layout in the Layout Editor
In this task you will delete the current TextView (for practice), and add a new TextView and two buttons to the LinearLayout as shown in the UI sketch for this task. Refer to the UI diagram above, if necessary.
Add UI Elements
Adjust the UI Elements
To identify each view uniquely within an activity, each view needs a unique ID. And to be of any use, the buttons need labels and the text view needs to show some text. Double-click each element in the Component Tree to see its properties and change the text and ID strings as follows:
Element | Text | ID |
Top button | Toast | button_toast |
Text view | 0 | show_count |
Bottom button | Count | button_count |
Solution Layout:
There should be three Views on your screen. They won't match the image below, but as long as you have three Views in a vertical layout, you are doing fine!
Challenge: Think of an app you might want and create a project and layout for it using Layout Editor. Explore more of the features of Layout Editor. As mentioned before, the Layout Editor has a rich set of features and coding shortcuts. Check the Android Studio documentation to dive deeper.
Task 3: Edit the "Hello Toast" layout in XML
In this practical, you will edit the XML code for the Hello Toast app UI layout. You will also edit the properties of the views you have created. You can find the properties common to all views in the View class documentation.
Why: While the Layout Editor is a powerful tool, some changes are easier to make directly in the XML source code. It is a personal preference to use either the graphical LayoutEditor or edit the XML file directly.
Note that your code may not be an exact match, depending on what changes you made in the Layout Editor. Use the sample solutions as guidelines.
3.1 Examine LinearLayout properties
A LinearLayout is required to have these properties:
The layout_width and layout_height can take one of three values:
The orientation can be:
Change the LinearLayout of "Hello Toast" as follows:
Property | Value |
layout_width | match_parent (to fill the screen) |
layout_height | match_parent (to fill the screen) |
orientation | vertical |
3.2 Create string resources
Instead of hard-coding strings into the XML code, it is a best practice to use string resources, which represent the strings
Why: Having the strings in a separate file makes it easier to manage them, especially if you use these strings more than once. Also, string resources are mandatory for translating and localizing your app as you will create one string resource file for each language.
Set the Resource name to button_label_toast and click OK. (If you make a mistake, undo the change with Ctrl-Z.)
This creates a string resource in the values/res/string.xml file, and the string in your code is replaced with a reference to the resource,
@string/button_label_toast
Extract and name the remaining strings from the views as follows:
View | Resource Value / String | Resource name |
Button | Hello Toast! | button_label_toast |
TextView | 0 | count_initial_value |
Button | Count | button_label_count |
3.3 Resize
Similar to strings, it is a best practice to extract view dimensions from the main layout XML file into a dimensions resource located in a file.
Why: This makes it easier to manage dimensions, especially if you need to adjust your layout for different device resolutions. It also makes it easy to have consistent sizing, and change the size of multiple objects by changing one property.
Do the following:
If necessary, change the layout_width of all elements inside the LinearLayout to "match_parent".
If you want to use the graphical Layout Editor, click on the Design tab, select each element in the Component Tree pane and change the layout:width property in the Properties pane. If you want to directly edit the XML file, click on the Text tab, change the android:layout_width for the first Button, the TextView, and the last Button.
3.4 Set colors and backgrounds
Styles and colors are additional properties that can be extracted into resources. All views can have backgrounds that can be colors or images.
Why: Extracting styles and colors makes it easy to use them consistently throughout the app, and straightforward to change across all UI elements.
Experiment with the following changes:
android:textSize="160sp"
Extract the text size of the TextView as a dimension resource named count_text_size , as follows:
Click the Text tab to show the XML code, if you haven't already done so.
Place the cursor on " 160sp ".
Press Alt-Enter (Option-Enter on the Mac).
Click Extract dimension resource.
Set the Resource name to count_text_size , and click OK. (If you make a mistake, you can undo the change with Ctrl-Z).
In the Project view, navigate to values/dimens.xml to find your dimensions. The dimens.xml file applies to all devices. The dimens.xml file for w820dp applies only to devices that are wider than 820dp.
android:textStyle="bold"
Change the text color in the show_count text view to the primary color of the theme. Look at the colors.xml resource file to see how they are defined.
The colorPrimary is one of the predefined theme base colors and is used for the app bar. For example, In a production app, you could customize this to fit your brand. Using the base colors for other UI elements creates a uniform UI. See Using the Material Theme. You will learn more about app themes and material design in a later practical.
android:textColor="@color/colorPrimary"
android:background="@color/colorPrimary"
android:textColor="@android:color/white"
android:background="#FFFF00"
Using the colors in values/colors.xml as an example, add a resource named myBackgroundColor for your background color, and then use it to set the background of the text view.
<color name="myBackgroundColor">#FFF043</color>
3.5 Gravity and weight
Specifying gravity and weight properties gives you additional control over arranging views and content in linear layouts.
Do the following:
android:layout_weight="2"
Sample Solution: strings.xml
<resources>
<string name="app_name">Hello Toast</string>
<string name="button_label_count">Count</string>
<string name="button_label_toast">Toast</string>
<string name="count_initial_value">0</string>
</resources>
Sample Solution: dimens.xml
<resources>
<!-- Default screen margins, per the Android Design guidelines. -->
<dimen name="activity_horizontal_margin">16dp</dimen>
<dimen name="activity_vertical_margin">16dp</dimen>
<dimen name="count_text_size">160sp</dimen>
</resources>
Sample Solution: colors.xml
<resources>
<color name="colorPrimary">#3F51B5</color>
<color name="colorPrimaryDark">#303F9F</color>
<color name="colorAccent">#FF4081</color>
<color name="myBackgroundColor">#FFF043</color>
</resources>
Sample Solution: activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="hellotoast.android.example.com.hellotoast.MainActivity">
<Button
android:id="@+id/button_toast"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/button_label_toast"
android:background="@color/colorPrimary"
android:textColor="@android:color/white" />
<TextView
android:id="@+id/show_count"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center"
android:text="@string/count_initial_value"
android:textSize="@dimen/count_text_size"
android:textStyle="bold"
android:textColor="@color/colorPrimary"
android:background="@color/myBackgroundColor"
android:layout_weight="2" />
<Button
android:id="@+id/button_count"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/button_label_count"
android:background="@color/colorPrimary"
android:textColor="@android:color/white" />
</LinearLayout>
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later chapters.
Use an image as the background of the Hello Toast app. Add an image to the drawable folder, then set it as the background of the root view. For a deep dive into drawables, see the Drawable Resources documentation.
Task 4: Add onClick handlers for the buttons
In this task, you will add methods to your MainActivity that execute when the user clicks on each button.
Why: Interactive apps must respond to user input.
To connect a user action in a view to application code, you need to do two things:
4.1 Add an onClick property to a button
A click handler is a method that is invoked when the user clicks on a user interface element. In Android, you can specify the name of the click handler method for each view in the XML layout file with the android:onClick property.
android:onClick="showToast"
android:onClick="countUp"
This creates placeholder method stubs for the onClick methods in MainActivity.java.
Note: You can also add click handlers to views programmatically, which you will do in a later practical. Whether you add click handlers in XML or programmatically is largely a personal choice; though, there are situations where you can only do it programmatically.
Solution MainActivity.java:
package hellotoast.android.example.com.hellotoast;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
}
public void countUp(View view) {
// What happens when user clicks on the button_count Button goes here.
}
public void showToast(View view) {
// What happens when user clicks on the button_toast Button goes here.
}
}
4.2 Show a toast when the Toast button is clicked
A toast provides simple feedback about an operation in a small popup. It only fills the amount of space required for the message and the current activity remains visible and interactive. Toasts provide another way for you to test the interactivity of your app.
In MainActivity.java , add code to the showToast() method to show a toast message.
To create an instance of a Toast, you call the makeText() factory method on the Toast class, supplying a context (see below), the message to display, and the duration of display. You display the toast calling show() . This is a common pattern that you can reuse the code you are going to write.
Get the context of the application.
Displaying a Toast message requires a context. The context of an application contains global information about the application environment. Since a toast displays on top of the visible UI, the system needs information about the current activity. Context context = getApplicationContext();
When you are already in the context of the activity whose context you need, you can also use this as the shortcut to the context.
The length of a toast string can be either short or long, and you specify which one by using a Toast constant.
The actual lengths are about 3.5s for the long toast and 2s for the short toast. The values are specified in the Android source code. See this Stackoverflow post details.
Toast toast = Toast.makeText(context, "Hello Toast", Toast.LENGTH_LONG);
Extract the "Hello Toast" string into a string resource and call it toast_message .
Place the cursor on the string "Hello Toast!" .
Press Alt-Enter (Option-Enter on the Mac).
Select Extract string resources.
Set the Resource name to toast_message and click OK.
This will store "Hello World" as a string resource name toast_message in the string resources file res/values/string.xml. The string parameter in your method call is replaced with a reference to the resource.
Toast toast = Toast.makeText(context, R.string.toast_message, duration);
toast.show();
Solution:
/*
* When the TOAST button is clicked, show a toast.
*
* @param view The view that triggers this onClick handler.
* Since a toast always shows on the top, view is not used.
* */
public void showToast(View view) {
// Create a toast show it.
Toast toast = Toast.makeText(this, R.string.toast_message, Toast.LENGTH_LONG;);
toast.show();
}
4.3 Increase the count in the text view when the Count button is clicked
To display the current count in the text view:
Implement this as follows:
Get a reference to the text view using the ID you set in the layout file.
Views, like strings and dimensions, are resources that can have an id. The findViewById() call takes the ID of a view as its parameter and returns the view. Because the method returns a View, you have to cast the result to the view type you expect, in this case (TextView) .
In order to get this resource only once, use a member variable and set it in onCreate() .
mShowCount = (TextView) findViewById(R.id.show_count);
if (mShowCount != null)
mShowCount.setText(Integer.toString(mCount));
Solution:
Class definition and initializing count variable:
public class MainActivity extends AppCompatActivity {
private int mCount = 0;
private TextView mShowCount;
in onCreate():
mShowCount = (TextView) findViewById(R.id.show_count);
countUp Method:
public void countUp(View view) {
mCount++;
if (mShowCount != null)
mShowCount.setText(Integer.toString(mCount));
}
Resources:
Solution code
Android Studio project: HelloToast
Coding challenge
Note: All coding challenges are optional and are not a prerequisite for later chapters.
Challenge: Even a simple app like Hello Toast can be the foundation of many scoring or product ordering apps. Write one app that would be of use to you, or try one of these examples:
Summary
In this chapter, you:
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
1.2B: Using Layouts
Contents:
When you start an Android Studio project, the template you choose provides a basic layout with views. As you learned in a previous practical, you can line views up quickly and easily in a layout using LinearLayout, which is a view group that aligns child views within it horizontally or vertically.
This practical explores two other layout view groups:
What you should already KNOW
From the previous practicals, you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical you will:
App Overview
The Hello Toast app in a previous practical uses a LinearLayout to arrange the views in the activity layout, as shown in the figure below.
In order to practice using the layout editor, you will copy the Hello Toast app and call the new copy Hello Relative, in order to experiment with a RelativeLayout. You will use the layout editor to arrange the views in a different UI layout as shown below.
Finally, you will make another copy of the app and call it Hello Constraint, and replace LinearLayout with ConstraintLayout. ConstraintLayout offers more visual aids and positioning features in the layout editor. You will create an entirely different UI layout, and also layout variants for landscape orientation and larger displays, as shown below.
Android Studio project: HelloToast
Task 1: Change the layout to RelativeLayout
A RelativeLayout is a view grouping in which each view is positioned and aligned relative to other views within the group. In this task, you will investigate using RelativeLayout.
1.1 Copy and refactor the Hello Toast app
1.2 Change LinearLayout to RelativeLayout
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
1.3 Rearrange views with the Design tab
The editing pane should now look like the figure below, with the layout design and its blueprint. If you see only a layout design, or only a blueprint, click the Show Design + Blueprint button (#1 in the figure below).
With the change to RelativeLayout , the layout editor also changed some of the view attributes. For example:
Drag the button_count view (for the COUNT button) to an area below the show_count view (showing 0) , and then drag it up to the bottom of the show_count view until it snaps into place as shown below. Also drag the show_count view so that the top of the view snaps to the bottom of the button_toast view for the TOAST button.
Tip: When selecting a view in the layout, its properties appear in the Properties pane on the right side of the editing pane. These properties correspond to XML attributes in the XML code for the layout, which you will examine in the next step.
1.4 Examine the XML code in the Text tab
Follow these steps to see how the app looks:
<Button
android:id="@+id/button_count"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:background="@color/colorPrimary"
android:onClick="countUp"
android:text="@string/button_label_count"
android:textColor="@android:color/white"
android:layout_below="@+id/show_count"
android:layout_centerHorizontal="true" />
Two new XML attributes were automatically added by the layout editor after you moved the Button ( button_count ) in the layout:
android:layout_below="@+id/show_count"
android:layout_centerHorizontal="true"
The android:layout_below attribute places the button_count view directly below the show_count view. This attribute is one of several attributes for positioning views within a RelativeLayout — you place views in relation to The XML code for show_count view, which you also moved in the layout editor, is now in a position below the two buttons in the Text view. This is due to the change from LinearLayout to RelativeLayout. The show_count view also now includes the following attributes, as a result of moving the view in the layout editor:
android:layout_below="@+id/button_toast"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
The android:layout_alignParentLeft aligns the view to the left side of the RelativeLayout parent view group. While this attribute by itself is enough to align the view to the left side, you may want the view to align to the right side if the app is running on a device that is using a right-to-left language. Thus, the android:layout_alignParentStart attribute makes the "start" edge of this view match the start edge of the parent. The start is the left edge of the screen if the preference is left-to-right, or it is the right edge of the screen if the preference is right-to-left.
1.5 Rearrange elements in the RelativeLayout
Select the show_count view in the layout or the Component Tree, and change its layout_width in the Properties pane on the right side of the window to wrap_content as shown in the figure below.
The layout editor displays a thinner show_count view aligned to the left side of the parent view, as shown in the figure below.
android:layout_toRightOf="@+id/button_toast"
android:layout_toEndOf="@+id/button_toast"
android:layout_below="@+id/button_toast"
Tip: To learn more about how to position views in a RelativeLayout, see "Positioning Views" in the "Relative Layout" topic of the API Guide.
Solution code: Android Studio project: HelloRelative
Task 2: Change the layout to ConstraintLayout
ConstraintLayout is a view group available in the Constraint Layout library, which is included with Android Studio 2.2 and higher. The constraint-based layout lets a developer build complex layouts without having to nest view groups, which can improve the performance of the app. It is built into the layout editor, so that the constraining tools are accessible from the Design tab without having to edit the XML by hand.
In this task you will copy and refactor the Hello Toast app to create the Hello Constraint app. You will then change the root LinearLayout view group in the main layout to be ConstraintLayout . After changing the root view group, you will rearrange the views in the main layout to have constraints that govern their appearance.
2.1 Copy and refactor the Hello Toast app
2.2 Add ConstraintLayout to your project
Check to be sure that ConstraintLayout is available in your project:
Expand Support Repository and see if ConstraintLayout for Android and Solver for ConstraintLayout are already checked.
If "Not installed" appears, or "Update" appears:
Click the checkbox next to ConstraintLayout for Android and Solver for ConstraintLayout. A download icon should appear next to each checkbox.
Click one of the following:
After installing the components (and making other changes if needed), click Finish to finish using the SDK Manager.
2.3 Convert a layout to ConstraintLayout
Android Studio has a built-in converter to help you convert a layout to ConstraintLayout . Follow these steps:
The converter displays an alert with two checkboxes already checked. Don't uncheck them—make sure both options remain checked:
Flatten Layout Hierarchy: This option removes all other nested layouts in the hierarchy. The result is a single, flat layout, which may be more efficient for these purposes.
Don't flatten layouts referenced from other files: If a particular layout defines an android:id attribute that is referenced in your Java code, you may not want to flatten that layout because your code may no longer work. However, in HelloConstraint, you don't have an android:id attribute for a layout, only for views.
In the Add Project Dependency alert, click OK to add the constraint-layout library. Android Studio automatically copies the appropriate dependency to your project's build.gradle (Module: app) file and syncs the change for you. The layout editor reappears with ConstraintLayout as the root view group.
Note: If the layout editor has a problem with the change, you see a Rendering Problems warning. Click build in the message Tip: Try to build the project. This will re-sync your project's build.gradle (Module: app) file with the new dependency.
The layout editor's Component Tree pane now shows ConstraintLayout as the root view group for the layout with the other views beneath it, as shown in the figure below. Click the show_count view in the Component Tree pane. The show_count view is also selected in the blueprint, and its properties appear in the Properties pane on the right side.
2.4 Explore the layout editor
The layout editor offers more features in the Design tab when you use a ConstraintLayout, including more visual layout tools and a second row of icons for more tools.
The visual layout and blueprint offer handles for defining constraints. A constraint is a connection or alignment to another view, to the parent layout, or to an invisible guideline. Follow these steps to explore the constraints that Android Studio created when you converted the LinearLayout to ConstraintLayout :
Each constraint appears as a line extending from a circular handle. Each view has a circular constraint handle in the middle of each side. After selecting a view in the Component Tree pane or clicking on it in the layout, the view also shows resizing handles on each corner.
In the above figure:
The layout editor also offers a row of buttons that let you configure the appearance of the layout:
In the figure above:
Tip: To learn more about using the layout editor, see Build a UI with Layout Editor. To learn more about how to build a layout with ConstraintLayout, see Build a Responsive UI with ConstraintLayout.
2.5 Clear constraints
Android Studio automatically infers the constraints for layout elements when you convert a layout to use ConstraintLayout . However, the guesses may not be what you want. Follow these steps to clear the constraints in order to freely position the elements in the layout:
Right-click (or Control-click) ConstraintLayout in the Component Tree pane, and choose Clear All Constraints.
Tip: You can also delete a single constraint line by hovering the cursor over the constraint handle until a red circle appears, and then clicking the handle. The Clear All Constraints command is faster for removing all constraints.
2.6 Resize a view
The layout editor offers resizing handles on all four corners of a view to resize the view quickly. You can drag the handles on each corner of the view to resize it, but doing so hard-codes the width and height dimensions, which you should avoid for most views because hard-coded view dimensions cannot adapt to different content and screen sizes.
Instead, use the Properties pane on the right side of the layout editor to select a sizing mode that doesn't use hard-coded dimensions. The Properties pane includes a square sizing panel at the top. The symbols inside the square represent the height and width settings as follows:
In the above figure:
Follow these steps to resize the show_count view:
Click the horizontal view size control in the Properties pane. The straight lines change to spring coils, as shown in the figure below, which represents "any size". The layout_width property is set to zero because there is no set dimension, but the view can expand as much as possible to meet constraints and margin settings.
You will use this setting to anchor the size of the view to constraints, but first, continue to experiment with settings.
Click the horizontal view size control again (either left or right side), just to see what other choices you have. The spring coils change to angles, as shown in the figure below, indicating that the layout_width is set to wrap_content .
2.7 Add constraints to views
You will add a constraint to the show_count view so that it stretches to the right edge of the layout, and another constraint so that the view is positioned just below the top edge of the layout. Since the view was set to "any size" in the previous step, the view will expand as needed to match the constraints.
You will also move the two buttons into position on the left side of the show_count view, constrain the button_toast button to the top and left edges of the layout, and constrain the button_count button so that its text baseline matches the text baseline of the show_count view.
To create a right-side constraint for the show_count view, click the view in the layout, and then hover over the view to see its constraint handles. Click-and-hold the constraint handle on the right side of the view, and drag the constraint line that appears to the right edge of the layout, as shown in the figure below.
As you release from the click-and-hold, the constraint is made, and the show_count view jumps to the right edge of the layout.
Click-and-hold the constraint handle on the top side of the view, and drag the constraint line that appears to the top edge of the layout under the app bar, as shown in the figure below.
This constrains the view to the top edge. After dragging the constraint, the show_count view jumps to the top right edge of the layout, because it is anchored to both the top and right edges.
Click the button_toast view, and use the Properties panel as shown previously to resize the view to wrap_content for both the layout_width and layout_height . Also resize the button_count view to wrap_content for both the layout_width and layout_height .
You use wrap_content for the buttons so that if the button text is localized into a different language, the button will appear wider or thinner to accommodate the word in the different language.
To create a baseline constraint between the button_count view's text baseline and the show_count view's text baseline, select the button_count view, and then hover over the view's baseline handle for two seconds until the handle blinks white. Then click and drag the constraint line that appears to the baseline of the show_count view, as shown in the figure below.
You now have a layout in which each view is set to non-specific dimensions and constrained to the layout. One button's text is aligned to a TextView's baseline, so that if you move the TextView, the button moves with it.
Tip: If a view doesn't have at least two constraints, it appears at the top of the layout.
Solution code: Android Studio project: HelloConstraint
Task 3: Create layout variants
You can create variants of your layout for landscape orientation and larger displays. You will create an alternative version of the previous task's layout to optimize it for landscape orientation:
Click the Layout Variants icon in the second row of icons (refer to the figure in Task 2 Step 4) and choose Create Landscape Variation. The "land/activity_main.xml" tab appears showing the layout for the landscape (horizontal) orientation, as shown in the figure below.
You can change the layout for the landscape (horizontal) version without changing the original portrait (vertical) orientation, thereby taking advantage of the wider screen.
<Button
android:id="@+id/button_toast"
...
app:layout_constraintTop_toTopOf="parent"
...
Change this constraint so that the button_toast view's bottom edge is aligned to the top edge of the button_count view.
Hint: If the constraint to align the top of a view to another view is app:layout_constraintTop_toTopOf , what do you think the constraint is to align the bottom of a view to the top of another view? Answer:
app:layout_constraintBottom_toTopOf="@id/button_count"
Solution code
Android Studio project: HelloToast
Android Studio project: HelloRelative
Android Studio project: HelloConstraint
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later chapters.
Challenge: Add another layout variant for a large display. The layout variant should take advantage of the larger screen size to show larger elements.
Hint: Click the Layout Variants icon in the toolbar and choose Create layout-xlarge Variation. Resize and position the elements in the layout.
Summary
In this exercise you learned how to:
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
Other:
1.3: Working with TextView Elements
Contents:
The TextView class is a subclass of the View class that displays text on the screen. You can control how the text appears with TextView attributes in the XML layout file. This practical shows how to work with multiple TextView elements, including one in which the user can scroll its contents vertically.
If you have more information than fits on the device's display, you can create a scrolling view so that the user can scroll vertically by swiping up or down, or horizontally by swiping right or left.
You would typically use a scrolling view for news stories, articles, or any lengthy text that doesn't completely fit on the device display. You can also use a scrolling view to enable users to enter multiple lines of text, or to combine UI elements (such as a text field and a button) within a scrolling view.
The ScrollView class provides the layout for the scrolling view. ScrollView is a subclass of FrameLayout, and developers should place only one view as a child within it, where the child view contains the entire contents to scroll. This child view may itself be a view group (such as a layout manager like LinearLayout) with a complex hierarchy of objects. Note that complex layouts may suffer performance issues with child views such as images. A good choice for a view within a ScrollView is a LinearLayout that is arranged in a vertical orientation, presenting top-level items that the user can scroll through.
With a ScrollView, all of the views are in memory and in the view hierarchy even if they aren't displayed on screen. This makes ScrollView ideal for scrolling pages of free-form text smoothly, because the text is already in memory. However, ScrollView can use up a lot of memory, which can affect the performance of the rest of your app. To display long lists of items that users can add to, delete from, or edit, consider using a RecyclerView, which is described in a separate practical.
What you should already KNOW
From previous practicals, you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical, you will:
App overview
The Scrolling Text app demonstrates the ScrollView UI component. ScrollView is a view group that in this example contains a TextView. It shows a lengthy page of text—in this case, a music album review—that the user can scroll vertically to read by swiping up and down. A scroll bar appears in the right margin. The app shows how you can use text formatted with minimal HTML tags for setting text to bold or italic, and with new-line characters to separate paragraphs. You can also include active web links in the text.
In the above figure, the following appear:
Task 1: Add several text views
In this practical, you will create an Android project for the Scrolling Text app, add TextViews to the layout for an article title and subtitle, and change the existing "Hello World" TextView element to show a lengthy article. The figure below is a diagram of the layout.
You will make all these changes in the XML code and in the strings.xml file. You will edit the XML code for the layout in the Text pane, which you show by clicking the Text tab, rather than clicking the Design tab for the Design pane. Some changes to UI elements and attributes are easier to make directly in the Text pane using XML source code.
1.1 Create the project and TextView elements
In Android Studio create a new project with the following parameters:
Attribute | Value |
Application Name | Scrolling Text |
Company Name | android.example.com (or your own domain) |
Phone and Tablet Minimum SDK | API15: Android 4.0.3 IceCreamSandwich |
Template | Empty Activity |
Generate Layout File checkbox | Checked |
In the app > res > layout folder, open the activity_main.xml file, and click the Text tab to see the XML code if it is not already selected.
At the top, or root, of the view hierarchy is a view group such as ConstraintLayout. Change this view group to RelativeLayout. The second line of code now looks something like this:
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
RelativeLayout allows you to position its child Views relative to each other or relative to the parent RelativeLayout itself. The default "Hello World" TextView element that is created by the Empty Layout template is a child View within the RelativeLayout view group. For more information about using a RelativeLayout, see the Relative Layout API Guide.
Add a TextView element above the "Hello World" TextView . Add the following attributes to the TextView:
TextView #1 attribute | Value |
android:id | "@+id/article_heading" |
layout_width | "match_parent" |
layout_height | "wrap_content" |
android:background | "@color/colorPrimary" |
android:textColor | "@android:color/white" |
android:padding | "10dp" |
android:textAppearance | "@android:style/TextAppearance.Large" |
android:textStyle | "bold" |
android:text | "Article Title" |
Tip: The attributes for styling the text and background are summarized in the TextView class documentation.
Extract the string resource for the android:text attribute's hard-coded string "Article Title" in the TextView to create an entry for it in strings.xml.
Place the cursor on the hard-coded string, press Alt-Enter (Option-Enter on the Mac), and select Extract string resource. Then edit the resource name for the string value to article_title.
Tip: String resources are described in detail in the String Resources documentation.
Extract the dimension resource for the android:padding attribute's hard-coded string "10dp" in the TextView to create an entry in dimens.xml.
Place the cursor on the hard-coded string, press Alt-Enter (Option-Enter on the Mac), and select Extract dimension resource. Then edit the Resource name to padding_regular.
Add another TextView element above the "Hello World" TextView and below the TextView you created in the previous steps. Add the following attributes to the TextView :
TextView #2 Attribute | Value |
android:id | "@+id/article_subheading" |
layout_width | "match_parent" |
layout_height | "wrap_content" |
android:layout_below | "@id/article_heading" |
android:padding | "@dimen/padding_regular" |
android:textAppearance | "@android:style/TextAppearance" |
android:text | "Article Subtitle" |
Note that since you extracted the dimension resource for the "10dp" string to padding_regular in the previously created TextView , you can use "@dimen/padding_regular" for the android:padding attribute in this TextView .
Add the following TextView attributes to the "Hello World" TextView element, and change the android:text attribute:
TextView Attribute | Value |
android:id | "@+id/article" |
android:lineSpacingExtra | "5sp" |
android:layout_below | "@id/article_subheading" |
android:text | Change to "Article text" |
1.2 Add the text of the article
In a real app that accesses magazine or newspaper articles, the articles that appear would probably come from an online source through a content provider, or might be saved in advance in a database on the device.
For this practical, you will create the article as a single long string in the strings.xml resource.
Enter or copy and paste text for the article_text string.
Use the text provided for the article_text string in the strings.xml file of the finished ScrollingText app, or use your own generic text. You can copy and then paste the same sentence over and over, as long as the result is a long section of text that will not fit entirely on the screen. Keep in mind the following (refer to the figure below for an example):
As you enter or paste text in the strings.xml file, the text lines don't wrap around to the next line—they extend beyond the right margin. This is the correct behavior—each new line of text starting at the left margin represents an entire paragraph.
Enter \n to represent the end of a line, and another \n to represent a blank line.
Why? You need to add end-of-line characters to keep paragraphs from running into each other.
Tip: If you want to see the text wrapped in strings.xml, you can press Return to enter hard line endings, or format the text first in a text editor with hard line endings.
If you have an apostrophe (') in your text, you must escape it by preceding it with a backslash (\'). If you have a double-quote in your text, you must also escape it (\"). You must also escape any other non-ASCII characters.See the "Formatting and Styling" section of String Resources for more details.
Enter the HTML and </b> tags around words that should be in bold.
Enter the HTML and </i> tags around words that should be in italics. Note, however, that if you use curled apostrophes within an italic phrase, you should replace them with straight apostrophes.
You can combine bold and italics by combining the tags, as in ... words...</i></b>. Other HTML tags are ignored.
Enclose The entire text within <string name="article_text"> </string> in the strings.xml file.
Include a web link to test, such as www.google.com (the example below uses www.rockument.com ). Don't use an HTML tag—any HTML tags except the bold and italic tags will be ignored and presented as text, which is not what you want.
Run the app.
The article appears, and you can even scroll it, but the scrolling is not smooth and there is no scroll bar because you haven't yet included a ScrollView (which you will do in the next task). Note also that tapping a web link does not currently do anything. You will also fix that in the next task.
Solution code
Depending on your version of Android Studio, the activity_main.xml layout file will look something like the following:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.scrollingtext.MainActivity">
<TextView
android:id="@+id/article_heading"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@color/colorPrimary"
android:textColor="@android:color/holo_orange_light"
android:textColorHighlight="@color/colorAccent"
android:padding="10dp"
android:textAppearance="@android:style/TextAppearance.Large"
android:textStyle="bold"
android:text="@string/article_title"/>
<TextView
android:id="@+id/article_subheading"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/article_heading"
android:padding="10dp"
android:textAppearance="@android:style/TextAppearance"
android:text="@string/article_subtitle"/>
<TextView
android:id="@+id/article"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/article_subheading"
android:lineSpacingExtra="5sp"
android:text="@string/article_text"/>
</RelativeLayout>
Task 2: Add active Web links and a ScrollView
In the previous task you created the Scrolling Text app with TextViews for an article title, subtitle, and lengthy article text. You also included a web link, but the link is not yet active. You will add the code to make it active.
Also, the TextView by itself can't enable users to scroll the article text to see all of it. You will add a new view group called ScrollView to the XML layout that will make the TextView scrollable.
2.1 Add the autoLink attribute for active web links
Add the android:autoLink="web" attribute to the article TextView. The XML code for this TextView should now look like this:
<TextView
android:id="@+id/article"
...
android:autoLink="web"
... />
2.2 Add a ScrollView to the layout
To make a view (such as a TextView) scrollable, embed the view inside a ScrollView.
Add a ScrollView between the article_subheading TextView and the article TextView. As you enter <ScrollView, Android Studio automatically adds </ScrollView> at the end, and presents the android:layout_width and android:layout_height attributes with suggestions. Choose wrap_content from the suggestions for both attributes. The code should now look like this:
<TextView
android:id="@+id/article_subheading"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/article_heading"
android:padding="10dp"
android:textAppearance="@android:style/TextAppearance"
android:text="@string/article_subtitle"/>
<ScrollView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/article_subheading"></ScrollView>
<TextView
android:id="@+id/article"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/article_subheading"
android:lineSpacingExtra="5sp"
android:autoLink="web"
android:text="@string/article_text"/>
Move the ending </ScrollView> code after the article TextView so that the article TextView attributes are inside the ScrollView XML element.
Remove the following attribute from the article TextView, because the ScrollView itself will be placed below the article_subheading element, and this attribute for TextView would conflict with the ScrollView:
android:layout_below="@id/article_subheading"
The layout should now look like this:
Run the app.
Swipe up and down to scroll the article. The scroll bar appears in the right margin as you scroll.
Tap the web link to go to the web page. The android:autoLink attribute turns any recognizable URL in the TextView (such as www.rockument.com) into a web link.
In the above figure, the following appear:
Depending on your version of Android Studio, the activity_main.xml layout file will now look something like the following:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.scrollingtext.MainActivity">
<TextView
android:id="@+id/article_heading"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@color/colorPrimary"
android:textColor="@android:color/white"
android:paddingTop="10dp"
android:paddingBottom="10dp"
android:paddingLeft="10dp"
android:paddingRight="10dp"
android:textAppearance="@android:style/TextAppearance.Large"
android:textStyle="bold"
android:text="@string/article_title"/>
<TextView
android:id="@+id/article_subheading"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/article_heading"
android:paddingTop="10dp"
android:paddingBottom="10dp"
android:paddingLeft="10dp"
android:paddingRight="10dp"
android:textAppearance="@android:style/TextAppearance"
android:text="@string/article_subtitle"/>
<ScrollView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/article_subheading">
<TextView
android:id="@+id/article"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:lineSpacingExtra="5sp"
android:autoLink="web"
android:text="@string/article_text"/>
</ScrollView>
</RelativeLayout>
Solution code
Android Studio project: ScrollingText
Task 3: Scroll multiple elements
As noted before, the ScrollView view group can contain only one child view (such as the article TextView you created); however, that View can be another view group that contains Views, such as LinearLayout. You can nest a view group such as LinearLayout within the ScrollView view group, thereby scrolling everything that is inside the LinearLayout.
For example, if you want the subheading of the article to scroll along with the article, add a LinearLayout within the ScrollView, and move the subheading, along with the article, into the LinearLayout. The LinearLayout view group becomes the single child View in the ScrollView as shown in the figure below, and the user can scroll the entire view group: the subheading and the article.
3.1 Add a LinearLayout to the ScrollView
Add a LinearLayout above the article TextView in the ScrollView. As you enter <LinearLayout, Android Studio automatically adds </LinearLayout> to the end, and presents the android:layout_width and android:layout_height attributes with suggestions. Choose match_parent and wrap_content from the suggestions for its width and height, respectively. The code should now look like this:
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"></LinearLayout>
You use match_parent to match the width of the parent view group, and wrap_content to make the view group only big enough to enclose its contents and padding.
Add the android:orientation="vertical" attribute to the LinearLayout in order to set the orientation of the LinearLayout to vertical. The LinearLayout within the ScrollView should now look like this (choose Code > Reformat Code to indent the view groups correctly):
<ScrollView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/article_subheading">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<TextView
android:id="@+id/article"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:autoLink="web"
android:lineSpacingExtra="5sp"
android:text="@string/article_text" />
</LinearLayout>
</ScrollView>
Swipe up and down to scroll the article, and notice that the subheading now scrolls along with the article while the heading stays in place.
Solution code
Android Studio project: ScrollingText2
Coding challenge
Note: All coding challenges are optional and are not a prerequisite for later lessons.
Challenge: Add another UI element—a Button—to the LinearLayout view group that is contained within the ScrollView. Make the Button appear below the article. The user would have to scroll to the end of the article to see the button. Use the text "Add Comment" for the Button, for users to click to add a comment to the article. For this challenge, there is no need to create a button-handling method to actually add a comment; it is sufficient to just place the Button element in the proper place in the layout.
Challenge Solution code
Android Studio project: ScrollingText3
Summary
In this practical, you learned about Android Studio's view elements and how to scroll and nest code.You worked to:
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
Other:
1.4: Learning About Available Resources
Contents:
In this practical you will:
What you should already KNOW
From previous practicals, you should be able to:
What you will LEARN
Where to find developer resources:
What you will DO
In this practical you will:
App Overview
You will use the existing HelloToast app and add a launcher icon to it.
Task 1. Explore the official Android developer documentation
You can find the official Android developer documentation at:
http://developer.android.com/index.html
This documentation contains a wealth of information that is kept current by Google.
1.1. Explore the official Android documentation
Task 2. Use project templates
Android Studio provides templates for common and recommended app and activity designs. Using built-in templates saves time, and helps you follow design best practices.
Each template incorporates an skeleton activity and user interface. You've already used the Empty Activity template. The Basic Activity template has more features and incorporates recommended app features, such as the options menu.
2.1. Explore the Basic Activity architecture
The Basic Activity template is a versatile template provided by Android Studio to assist you in jump-starting your app development.
Identify the labelled parts on the screenshot and table below. Find their equivalents on your device or emulator screen.Architecture of the Basic Activity template
# | UI Description | Code reference |
1 | Status bar This bar is provided and controlled by the Android system. | Not visible in the template code. It's possible to access it from your activity. For example, you can hide the status bar, if necessary. |
2 | AppBarLayout > Toolbar App bar (also called Action bar) provides visual structure, standardized visual elements, and navigation. For backwards compatibility, the AppBarLayout in the template embeds a Toolbar widget with the same functionality. ActionBar class Challenge: App Bar Tutorial | activity_main.xml Look for android.support.v7.widget.Toolbar inside android.support.design.widget.AppBarLayout . Change the toolbar to change the appearance of its parent, the app bar. |
3 | Application name This is derived from your package name, but can be anything you choose. | AndroidManifest.xml android:label="@string/app_name" |
4 | Options menu overflow button Menu items for the activity, as well as global options, such as "Search" and "Settings" for the settings menu. Your app menu items go into this menu. | MainActivity.java onOptionsItemSelected() implements what happens when a menu item is selected. res > menu > menu_main.xml Resource that specifies the menu items for the options menu. |
5 | CoordinatorLayout CoordinatorLayout is a feature-rich layout that provides mechanisms for views to interact. Your app's user interface goes inside this view group. | activity_main.xml Notice that there are no views specified in this layout; rather, it includes another layout with <include layout="@layout/content_main" /> where the views are specified. This separates system views from the views unique to your app. |
6 | TextView In the example, used to display "Hello World". Replace this with the views for your app. | content_main.xml All your app's views are defined in this file. |
7 | Floating Action button (FAB) | activity_main.xml MainActivity.java > onCreate has a stub that sets an onClick listener on the FAB. |
Also inspect the corresponding Java code and XML configuration files.
Being familiar with the Java source code and XML files will help you extend and customize this template for your own needs.
See Accessing Resources for details on the XML syntax for accessing resources.
2.2. Explore how to add an activity using templates
For the practicals so far, you've used the Empty Activity and Basic Activity templates. In later lessons, the templates use will vary, depending on the task.
These activity templates are also available from inside your project, so that you can add more activities to your app after the initial project setup. (You will learn more about this this in a later chapter.)
Task 3. Learn from example code
Android Studio, as well as the Android documentation provide many code samples that you can study, copy, and incorporate with your projects.
3.1. Android code samples
You can explore hundreds of code samples directly from Android Studio.
Note: The samples contained here are meant as a starting point for further development. We encourage you to design and build your own ideas into them.
3.2. Use the SDK Manager to install offline documentation
Installing Android Studio also installs essentials of the Android SDK (Software Development Kit). However, additional libraries and documentation are available, and you can install them using the SDK Manager.
Task 4. Many more resources
4.1. Search on Stack Overflow using tags
In the search box, type [android].
The [] brackets indicate that you want to search for posts that have been tagged as being about Android.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
Code
Videos
2.1: Create and Start Activities
Contents:
An activity represents a single screen in your app with which your user can perform a single, focussed task such as dial the phone, take a photo, send an email, or view a map. Activities are usually presented to the user as full-screen windows.
An app usually consists of multiple activities that are loosely bound to each other. Typically, one activity in an application is specified as the "main" activity, which is presented to the user when the app is launched. Each activity can then start other activities in order to perform different actions.
Each time a new activity starts, the previous activity is stopped, but the system preserves the activity in a stack (the "back stack"). When a new activity starts, that new activity is pushed onto the back stack and takes user focus. The back stack abides to the basic "last in, first out" stack mechanism, so, when the user is done with the current activity and presses the Back button, that current activity is popped from the stack (and destroyed) and the previous activity resumes.
Android activities are started or activated with an intent. Intents are asynchronous messages that you can can use in your activity to request an action from another activity (or other app component). You use intents to start one activity from another and to pass data between activities.
There are two kinds of intents: explicit and implicit. An explicit intent is one in which you know the target of that intent, that is, you already know the fully-qualified class name of that specific activity. An implicit intent is one in which you do not have the name of the target component, but have a general action to perform. In this practical you'll learn about explicit intents. You'll find out about implicit intents in a later practical.
What you should already KNOW
From the previous practicals, you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical, you will:
App Overview
In this chapter you will create and build an app called TwoActivities that, unsurprisingly, contains two activities. This app will be built in three stages.
In the first stage, create an app whose main activity contains only one button (Send). When the user clicks this button, your main activity uses an intent to start the second activity.
In the second stage, you'll add an EditText view to the main activity. The user enters a message and clicks Send. The main activity uses an intent to both start the second activity, and to send the user's message to the that activity. The second activity displays the message it received.
In final stage of the TwoActivities app, add an EditText view and a Reply button to the second activity. The user can now type a reply message and click Reply, and the reply is displayed on the main activity. At this point, use an intent here to pass the reply message back from the second activity to the main activity.
Task 1. Create the TwoActivities project
In this task you'll set up the initial project with a main activity, define the layout, and define a skeleton method for the onClick button event.
1.1 Create the TwoActivities project
Start Android Studio and create a new Android Studio project.
Call your application "Two Activities" and change the company domain to "android.example.com." Choose the same Minimum SDK that you used in the previous projects.
1.2 Define the layout for the main activity
Switch to the XML Editor (click the Text tab) and modify these attributes in the Button:
Attribute | Value |
android:id | "@+id/button_main" |
android:layout_width | wrap_content |
android:layout_height | wrap_content |
android:layout_alignParentRight | "true" |
android:layout_alignParentBottom | "true" |
android:layout_alignParentEnd | "true" |
android:text | "Send" |
android:onClick | "launchSecondActivity" |
This may generate an error that "Method launchSecondActivity is missing in MainActivity." Please ignore this error for now. It will be addressed it in the next task.
Set the Resource name to button_main and click OK.
This creates a string resource in the values/res/string.xml file, and the string in your code is replaced with a reference to that string resource.
Solution code: Depending on your version of Android Studio, your code will look something like the following.
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.twoactivities.MainActivity">
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_main"
android:id="@+id/button_main"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"
android:layout_alignParentEnd="true"
android:onClick="launchSecondActivity"/>
</RelativeLayout>
1.3 Define the button action
In this task,you will implement the onClick method you defined in the layout.
Press Alt-Enter (Option-Enter on the Mac) and select Create 'launchSecondActivity(View)' in 'MainActivity.
The MainActivity.java files opens, and Android Studio generates a skeleton method for the onClick handler.
Inside launchSecondActivity , add a log statement that says "Button Clicked!"
Log.d(LOG_TAG, "Button clicked!");
LOG_TAG will show as red. The definitions for that variable will be added in a later step.
At the top of the class, add a constant for the LOG_TAG variable:
private static final String LOG_TAG =
MainActivity.class.getSimpleName();
This constant uses the name of the class itself as the tag.
Solution code:
package com.example.android.twoactivities;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
public class MainActivity extends AppCompatActivity {
private static final String LOG_TAG = MainActivity.class.getSimpleName();
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
}
public void launchSecondActivity(View view) {
Log.d(LOG_TAG, "Button clicked!");
}
}
Task 2. Create and launch the second activity
Each new activity you added to your project has its own layout and Java files, separate from those of the main activity. They also have their own <activity> elements in the Android manifest. As with the main activity, new activities you create in Android Studio also extend from the AppCompatActivity class.
All the activities in your app are only loosely connected with each other. However, you can define an activity as a parent of another activity in the AndroidManifest.xml file. This parent-child relationship enables Android to add navigation hints such as left-facing arrows in the title bar for each activity.
Activities communicate with each other (both in the same app and across different apps) with intents. There are two types of intents, explicit and implicit. An explicit intent is one in which the target of that intent is known, that is, you already know the fully-qualified class name of that specific activity. An implicit intent is one in which you do not have the name of the target component, but have a general action to perform. You'll learn about implicit intents in a later practical.
In this task you'll add a second activity to our app, with its own layout. You'll modify the Android manifest to define the main activity as the parent of the second activity. Then you'll modify the onClick event method in the main activity to include an intent that launches the second activity when you click the button.
2.1 Create the second activity
Click Finish. Android Studio adds both a new activity layout (activity_second) and a new Java file (SecondActivity) to your project for the new activity. It also updates the Android manifest to include the new activity.
2.2 Modify the Android manifest
<activity android:name=".SecondActivity"></activity>
Add these attributes to the <activity> element:
Attribute | Value |
android:label | "Second Activity" |
android:parentActivityName | ".MainActivity" |
The label attribute adds the title of the activity to the action bar.
The parentActivityName attribute indicates that the main activity is the parent of the second activity. This parent activity relationship is used for "upward" navigation within your app. By defining this attribute, the action bar for the second activity will appear with a left-facing arrow to enable the user to navigate "upward" to the main activity.
Add a <meta-data> element inside the <activity> element for the second activity. Use these attributes:
Attribute | Value |
android:name | "android.support.PARENT_ACTIVITY" |
android:value | "com.example.android.twoactivities.MainActivity" |
The <meta-data> element provides additional arbitrary information about the activity as key-value pairs. In this case these attributes accomplish the same thing as the android:parentActivityName attribute -- they define a relationship between two activities for the purpose of upward navigation. These attributes are required for older versions of Android. android:parentActivityName is only available for API levels 16 and higher.
Solution code:
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.android.twoactivities">
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".SecondActivity"
android:label="@string/activity2_name"
android:parentActivityName=".MainActivity">
<meta-data
android:name="android.support.PARENT_ACTIVITY"
android:value="com.example.android.twoactivities.MainActivity" />
</activity>
</application>
</manifest>
2.3 Define the layout for the second activity
Add a TextView ("Plain Textview" in the Layout Editor). Give the TextView these attributes:
Attribute | Value |
android:id | "@+id/text_header" |
android:layout_width | wrap_content |
android:layout_height | wrap_content |
android:layout_marginBottom | "@dimen/activity_vertical_margin" |
android:text | "Message Received" |
android:textAppearance | "?android:attr/textAppearanceMedium" |
android:textStyle | "bold" |
The value of textAppearance is a special Android theme attribute that defines basic font styles for small, medium, and large fonts. You'll learn more about themes in a later lesson.
Solution code: Depending on your version of Android Studio, your code will look something like the following.
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".SecondActivity">
<TextView
android:id="@+id/text_header"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="@dimen/activity_vertical_margin"
android:text="@string/text_header"
android:textAppearance="?android:attr/textAppearanceMedium"
android:textStyle="bold" />
</RelativeLayout>
2.4 Add an intent to the main activity
In this task you'll add an explicit intent to the main activity. This intent is used to activate the second activity when the Send button is clicked.
Create a new intent in the launchSecondActivity() method.
The Intent constructor takes two arguments for an explicit intent: an application Context and the specific component that will receive that intent. Here you should use this as the context, and SecondActivity.class as the specific class.
Intent intent = new Intent(this, SecondActivity.class);
startActivity(intent);
Run the app.
When you click the Send button the main activity sends the intent and the Android system launches the second activity. That second activity appears on the screen. To return to the main activity, click the Android Back button at the bottom left of the screen, or you can use the left arrow at the top of the second activity to return to the main activity.
Coding challenge
Note: All coding challenges are optional.
Challenge: What happens if you remove the android:parentActivityName and the <meta-data> elements from the manifest? Make this change and run your app.
Task 3. Send data from the main activity to the second activity
In the last task, you added an explicit intent to the main activity that activated the second activity. You can also use intents to send data from one activity to another.
In this task, you'll modify the explicit intent in the main activity to include additional data (in this case, a user-entered string) in the intent extras. You'll then modify the second activity to get that data back out of the intent extras and display it on the screen.
3.1 Add an EditText to the main activity layout
Add an EditText view (Plain Text in the Layout Editor.) Give the EditText these attributes:
Attribute | Value |
android:id | "@+id/editText_main" |
android:layout_width | match_parent |
android:layout_height | wrap_content |
android:layout_toLeftOf | "@+id/button_main" |
android:layout_toStartOf | "@+id/button_main" |
android:layout_alignParentBottom | "true" |
android:hint | "Enter Your Message Here" |
The new layout for the main activity looks like this:
Solution code: Depending on your version of Android Studio, your code will look something like the following.
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.twoactivities.MainActivity">
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_main"
android:id="@+id/button_main"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"
android:layout_alignParentEnd="true"
android:onClick="launchSecondActivity"/>
<EditText
android:id="@+id/editText_main"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_toLeftOf="@+id/button_main"
android:layout_toStartOf="@+id/button_main"
android:hint="@string/editText_main" />
</RelativeLayout>
3.2 Add a string to the main activity's intent extras
Your intent object can pass data to the target activity in two ways: in the data field, or in the intent extras. The intent's data is a URI indicating the specific data to be acted on. If the information you want to pass to an activity through an intent is not a URI, or you have more than one piece of information you want to send, you can put that additional information into the intent extras instead.
The intent extras are key/value pairs in a Bundle. A bundle is a collection of data, stored as key/value pairs. To pass information from one activity to another, you put keys and values into the intent extra bundle from the sending activity, and then get them back out again in the receiving activity.
public static final String EXTRA_MESSAGE =
"com.example.android.twoactivities.extra.MESSAGE";
private EditText mMessageEditText;
mMessageEditText = (EditText) findViewById(R.id.editText_main);
String message = mMessageEditText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);
Solution code:
package com.example.android.twoactivities;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.EditText;
public class MainActivity extends AppCompatActivity {
private static final String LOG_TAG = MainActivity.class.getSimpleName();
public static final String EXTRA_MESSAGE =
"com.example.android.twoactivities.extra.MESSAGE";
private EditText mMessageEditText;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mMessageEditText = (EditText) findViewById(R.id.editText_main);
}
public void launchSecondActivity(View view) {
Log.d(LOG_TAG, "Button clicked!");
Intent intent = new Intent(this, SecondActivity.class);
String message = mMessageEditText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);
startActivity(intent);
}
}
3.3 Add a TextView to the second activity for the message
Add a second TextView. Give the TextView these attributes:
Attribute | Value |
android:id | "@+id/text_message" |
android:layout_width | wrap_content |
android:layout_height | wrap_content |
android:layout_below | "@+id/text_header" |
android:layout_marginLeft | "@dimen/activity_horizontal_margin" |
android:layout_marginStart | "@dimen/activity_horizontal_margin" |
android:textSize | "?android:attr/textAppearanceMedium" |
The new layout for the second activity looks the same as it did in the previous task, because the new TextView does not (yet) contain any text, and thus does not appear on the screen.
Solution code: Depending on your version of Android Studio, your code will look something like the following.
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.twoactivities.SecondActivity">
<TextView
android:id="@+id/text_header"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/text_header"
android:layout_marginBottom="@dimen/activity_vertical_margin"
android:textAppearance="?android:attr/textAppearanceMedium"
android:textStyle="bold"/>
<TextView
android:id="@+id/text_message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/text_header"
android:layout_marginLeft="@dimen/activity_horizontal_margin"
android:layout_marginStart="@dimen/activity_horizontal_margin"
android:textAppearance="?android:attr/textAppearanceMedium" />
</RelativeLayout>
3.4 Modify the second activity to get the extras and display the message
Intent intent = getIntent();
String message =
intent.getStringExtra(MainActivity.EXTRA_MESSAGE);
TextView textView = (TextView) findViewById(R.id.text_message);
textView.setText(message);
Solution code:
package com.example.android.twoactivities;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.TextView;
public class SecondActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_second);
Intent intent = getIntent();
String message =
intent.getStringExtra(MainActivity.EXTRA_MESSAGE);
TextView textView = (TextView) findViewById(R.id.text_message);
textView.setText(message);
}
}
Task 4. Return data back to the main activity
Now that you have an app that launches a new activity and sends data to it, the final step is to return data from the second activity back to the main activity. You'll also use intents and intent extras for this task.
4.1 Add an EditText and a Button to the second activity layout
In the activity_second.xml file, modify the attribute values for both the Button and EditText views. Use these values:
Old attribute (Button) | New attribute (Button) |
android:id="@+id/button_main" | android:id="@+id/button_second" |
android:onClick= "launchSecondActivity" | android:onClick="returnReply" |
android:text= "@string/button_main" | android:text= "@string/button_second" |
Old attribute (EditText) | New attribute (EditText) |
android:id="@+id/editText_main" | android:id="@+id/editText_second" |
android:layout_toLeftOf= "@+id/button_main" | android:layout_toLeftOf= "@+id/button_second" |
android:layout_toStartOf= "@+id/button_main" | android:layout_toStartOf= "@+id/button_second" |
android:hint= "@string/editText_main" | android:hint= "@string/editText_second" |
<string name="button_second">Reply</string>
<string name="editText_second">Enter Your Reply Here</string>
In the XML layout editor, place the cursor on "returnReply" , press Alt-Enter (Option-Enter on the Mac) and select Create 'launchSecondActivity(View)' in 'SecondActivity'.
The SecondActivity.java files open, and Android Studio generates a skeleton method for the onClick handler. You will implement this method in the next task.
The new layout for the second activity looks like this:
Solution code: Depending on your version of Android Studio, your code will look something like the following.
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.twoactivities.SecondActivity">
<TextView
android:id="@+id/text_header"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/text_header"
android:layout_marginBottom="@dimen/activity_vertical_margin"
android:textAppearance="?android:attr/textAppearanceMedium"
android:textStyle="bold"/>
<TextView
android:id="@+id/text_message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/text_header"
android:layout_marginLeft="@dimen/activity_horizontal_margin"
android:layout_marginStart="@dimen/activity_horizontal_margin"
android:textAppearance="?android:attr/textAppearanceMedium" />
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_second"
android:id="@+id/button_second"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"
android:layout_alignParentEnd="true"
android:onClick="returnReply"/>
<EditText
android:id="@+id/editText_second"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_toLeftOf="@+id/button_second"
android:layout_toStartOf="@+id/button_second"
android:hint="@string/editText_second" />
</RelativeLayout>
4.2 Create a response intent in the second activity
public static final String EXTRA_REPLY =
"com.example.android.twoactivities.extra.REPLY";
private EditText mReply;
mReply = (EditText) findViewById(R.id.editText_second);
String reply = mReply.getText().toString();
Note: Do not reuse the intent object you received from the original request. Create a new intent for the response.
Intent replyIntent = new Intent();
replyIntent.putExtra(EXTRA_REPLY, reply);
setResult(RESULT_OK,replyIntent);
finish();
Solution code:
package com.example.android.twoactivities;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
public class SecondActivity extends AppCompatActivity {
public static final String EXTRA_REPLY =
"com.example.android.twoactivities.extra.REPLY";
private EditText mReply;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_second);
mReply = (EditText) findViewById(R.id.editText_second);
Intent intent = getIntent();
String message =
intent.getStringExtra(MainActivity.EXTRA_MESSAGE);
TextView textView = (TextView) findViewById(R.id.text_message);
textView.setText(message);
}
public void returnReply(View view) {
String reply = mReply.getText().toString();
Intent replyIntent = new Intent();
replyIntent.putExtra(EXTRA_REPLY, reply);
setResult(RESULT_OK, replyIntent);
finish();
}
}
4.3 Add TextViews to the main activity layout to display the reply
The main activity needs a way to display the reply sent back from the second activity. In this task you'll add TextViews to the main activity layout to display that reply. To make this easier, you will copy the TextViews you used in the second activity.
Modify the attribute values for both of these new TextViews. Use these values:
Old attribute (header TextView) | New attribute (header TextView) |
android:id="@+id/text_header" | android:id="@+id/text_header_reply" |
android:text="@string/text_header" | android:text= "@string/text_header_reply" |
Old attribute (message TextView) | New attribute (message TextView) |
android:id="@+id/text_message" | android:id="@+id/text_message_reply" |
android:layout_below= "@+id/text_header" | android:layout_below= "@+id/text_header_reply" |
android:visibility="invisible"
<string name="text_header_reply">Reply Received</string>
The layout for the main activity looks the same as it did in the previous task--although you have added two new TextViews to the layout. However, since you set the TextViews to invisible, they do not appear on the screen.
Solution code: Depending on your version of Android Studio, your code will look something like the following.
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.twoactivities.MainActivity">
<TextView
android:id="@+id/text_header_reply"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/text_header_reply"
android:visibility="invisible"
android:layout_marginBottom="@dimen/activity_vertical_margin"
android:textAppearance="?android:attr/textAppearanceMedium"
android:textStyle="bold"/>
<TextView
android:id="@+id/text_message_reply"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/text_header_reply"
android:visibility="invisible"
android:layout_marginLeft="@dimen/activity_horizontal_margin"
android:layout_marginStart="@dimen/activity_horizontal_margin"
android:textAppearance="?android:attr/textAppearanceMedium" />
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_main"
android:id="@+id/button_main"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"
android:layout_alignParentEnd="true"
android:onClick="launchSecondActivity"/>
<EditText
android:id="@+id/editText_main"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_toLeftOf="@+id/button_main"
android:layout_toStartOf="@+id/button_main"
android:hint="@string/editText_main" />
</RelativeLayout>
4.4 Get the reply from the intent extra and display it
When you use an explicit intent to start another activity, you may not expect to get any data back -- you're just activating that activity. In that case, you use startActivity() to start the new activity, as you did earlier in this lesson. If you want to get data back from the activated activity, however, you'll need to start it with startActivityFromResult().
In this task you'll modify the app to start the second activity and expect a result, to extract that return data from the intent, and to display that data in the TextViews you created in the last task.
public static final int TEXT_REQUEST = 1;
private TextView mReplyHeadTextView;
private TextView mReplyTextView;
mReplyHeadTextView = (TextView) findViewById(R.id.text_header_reply);
mReplyTextView = (TextView) findViewById(R.id.text_message_reply);
startActivityForResult(intent, TEXT_REQUEST);
public void onActivityResult(int requestCode, int resultCode,
Intent data) {}
super.onActivityResult(requestCode, resultCode, data);
if (requestCode == TEXT_REQUEST) {
if (resultCode == RESULT_OK) {
}
}
String reply = data.getStringExtra(SecondActivity.EXTRA_REPLY);
mReplyHeadTextView.setVisibility(View.VISIBLE);
mReplyTextView.setText(reply);
mReplyTextView.setVisibility(View.VISIBLE);
Run the app.
Now, when you send a message to the second activity and get a reply back, the main activity updates to display the reply.
Solution code:
package com.example.android.twoactivities;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
public class MainActivity extends AppCompatActivity {
private static final String LOG_TAG = MainActivity.class.getSimpleName();
public static final String EXTRA_MESSAGE =
"com.example.android.twoactivities.extra.MESSAGE";
public static final int TEXT_REQUEST = 1;
private EditText mMessageEditText;
private TextView mReplyHeadTextView;
private TextView mReplyTextView;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mMessageEditText = (EditText) findViewById(R.id.editText_main);
mReplyHeadTextView = (TextView) findViewById(R.id.text_header_reply);
mReplyTextView = (TextView) findViewById(R.id.text_message_reply);
}
public void launchSecondActivity(View view) {
Log.d(LOG_TAG, "Button clicked!");
Intent intent = new Intent(this, SecondActivity.class);
String message = mMessageEditText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);
startActivityForResult(intent, TEXT_REQUEST);
}
public void onActivityResult(int requestCode, int resultCode,
Intent data) {
super.onActivityResult(requestCode, resultCode, data);
if (requestCode == TEXT_REQUEST) {
if (resultCode == RESULT_OK) {
String reply =
data.getStringExtra(SecondActivity.EXTRA_REPLY);
mReplyHeadTextView.setVisibility(View.VISIBLE);
mReplyTextView.setText(reply);
mReplyTextView.setVisibility(View.VISIBLE);
}
}
}
}
Solution code
Android Studio project: TwoActivities
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Create an app with three buttons labelled: Text One, Text Two, and Text Three. When any of those buttons are clicked, launch a second activity. That second activity should contain a ScrollView that displays one of three text passages (you can include your choice of passages). Use intents to both launch the second activity and intent extras to indicate which of the three passages to display.
Summary
In this practical, you have learned that:
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
2.2: Activity Lifecycle and Instance State
Contents:
In this practical you'll learn more about the activity lifecycle. The activity lifecycle is the set of states an activity can be in during its entire lifetime, from the time it is initially created to when it is destroyed and the system reclaims that activity's resources. As a user navigates between activities in your app (as well as into and out of your app), those activities each transition between different states in the activity lifecycle.
Each stage in the lifecycle of an activity has a corresponding callback method (onCreate(), onStart(), onPause(), and so on). When an activity changes state, the associated callback method is invoked. You've already seen one of these methods: onCreate(). By overriding any of the lifecycle callback methods in your activity classes, you can change the default behavior of how your activity behaves in response to different user or system actions.
Changes to the activity state can also occur in response to device configuration changes such as rotating the device from portrait to landscape. These configuration changes result in the activity being destroyed and entirely recreated in its default state, which may cause the loss of information the user has entered in that activity. It's important to develop your app to prevent this to avoid user confusion. Later in this practical we'll experiment with configuration changes and learn how to preserve the state of your activities in response to device configuration changes or other Activity lifecycle events.
In this practical you'll add logging statements to the TwoActivities app and observe the lifecycle changes as you use the app in various ways. You will then begin working with these changes and exploring how to handle user input under these conditions..
What you should already KNOW
From the previous practicals, you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical, you will:
App Overview
For this practical you'll add onto the TwoActivities app. The app looks and behaves roughly the same as it did in the last section: with two activities and two messages you can send between them. The changes you make to the app in this practical will not affect its visible user behavior.
Task 1. Add Lifecycle Callbacks to TwoActivities
In this task you will implement all of the activity lifecycle callback methods to print messages to logcat when those methods are invoked. These log messages will allow you to see when the activity lifecycle changes state, and how those lifecycle state changes affect your app as it runs.
1.1 (Optional) Copy the TwoActivities Project
For the tasks in this practical, you will modify the existing TwoActivities project that you built in the last practical. If you'd prefer to keep the previous TwoActivities project intact, follow the steps in the Appendix to make a copy of the project.
1.2 Implement callbacks in to MainActivity
Log.d(LOG_TAG, "-------");
Log.d(LOG_TAG, "onCreate");
Add a new method for the onStart() callback, with a statement to the log for that event:
@Override
public void onStart(){
super.onStart();
Log.d(LOG_TAG, "onStart");
}
TIP: Select Code > Override Methods in Android Studio. A dialog appears with all of the possible methods you can override in your class. Choosing one or more callback methods from the list inserts a complete template for those methods, including the required call to the superclass.
Use the onStart() method as a template to implement the other lifecycle callbacks:
All the callback methods have the same signatures (except for the name). If you copy and paste onStart() to create these other callback methods, don't forget to update the contents to call the right method in the superclass, and to log the correct method.
Build and run your app.
Solution Code (not the entire class):
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Log.d(LOG_TAG, "-------");
Log.d(LOG_TAG, "onCreate");
mMessageEditText = (EditText) findViewById(R.id.editText_main);
mReplyHeadTextView = (TextView) findViewById(R.id.text_header_reply);
mReplyTextView = (TextView) findViewById(R.id.text_message_reply);
}
@Override
public void onStart(){
super.onStart();
Log.d(LOG_TAG, "onStart");
}
@Override
public void onRestart() {
super.onRestart();
Log.d(LOG_TAG, "onRestart");
}
@Override
public void onResume() {
super.onResume();
Log.d(LOG_TAG, "onResume");
}
@Override
public void onPause() {
super.onPause();
Log.d(LOG_TAG, "onPause");
}
@Override
public void onStop() {
super.onStop();
Log.d(LOG_TAG, "onStop");
}
@Override
public void onDestroy() {
super.onDestroy();
Log.d(LOG_TAG, "onDestroy");
}
1.3 Implement lifecycle callbacks in SecondActivity
Now that you've implemented the lifecycle callback methods for MainActivity, do the same for SecondActivity.
private static final String LOG_TAG =
SecondActivity.class.getSimpleName();
Log.d(LOG_TAG, "End SecondActivity");
Solution Code (not the entire class):
private static final String LOG_TAG = SecondActivity.class.getSimpleName();
public void returnReply(View view) {
String reply = mReply.getText().toString();
Intent replyIntent = new Intent();
replyIntent.putExtra(EXTRA_REPLY, reply);
setResult(RESULT_OK, replyIntent);
Log.d(LOG_TAG, "End SecondActivity");
finish();
}
@Override
protected void onStart() {
super.onStart();
Log.d(LOG_TAG, "onStart");
}
@Override
public void onRestart() {
super.onRestart();
Log.d(LOG_TAG, "onRestart");
}
@Override
public void onResume() {
super.onResume();
Log.d(LOG_TAG, "onResume");
}
@Override
public void onPause() {
super.onPause();
Log.d(LOG_TAG, "onPause");
}
@Override
public void onStop() {
super.onStop();
Log.d(LOG_TAG, "onStop");
}
@Override
public void onDestroy() {
super.onDestroy();
Log.d(LOG_TAG, "onDestroy");
}
1.4 Observe the log as the app runs
Type "Activity" in the Android Monitor search box.
The Android logcat can be very long and cluttered. Because the LOG_TAG variable in each class contains either the words MainActivity or SecondActivity, this keyword lets you filter the log for only the things you're interested in.
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Watch for onDestroy() in particular. Why is onDestroy() called sometimes (after clicking the back button, or on device rotation) and not others (manually stopping and restarting the app)?
Task 2. Save and restore the activity instance state
Depending on system resources and user behavior, the activities in your app may be destroyed and reconstructed far more frequently than you might think. You may have noticed this set of activities in the last section when you rotated the device or emulator. Rotating the device is one example of a device configuration change. Although rotation is the most common one, all configuration changes result in the current activity being destroyed and recreated as if it were new. If you don't account for this behavior in your code, when a configuration change occurs, your activity's layout may revert to its default appearance and initial values, and your user may lose their place, their data, or the state of their progress in your app.
The state of each activity is stored as a set of key/value pairs in a Bundle object called the activity instance state. The system saves default state information to instance state bundle just before the activity is stopped, and passes that bundle to the new activity instance to restore.
To keep from losing data in your activities when they are unexpectedly destroyed and recreated, you need to implement the onSaveInstanceState() method. The system calls this method on your activity (between onPause() and onStop()) when there is a possibility the activity may be destroyed and recreated.
The data you save in the instance state is specific to only this instance of this specific activity during the current app session. When you stop and restart a new app session, the activity instance state is lost and your activities will revert to their default appearance. If you need to save user data between app sessions, use shared preferences or a database. You'll learn about both of these in a later practical.
2.1 Save the activity instance state with onSaveInstanceState()
You may have noticed that rotating the device does not affect the state of the second activity at all. This is because the second activity's layout and state are generated from the layout and the intent that activated it. Even if the activity is recreated, the intent is still there and the data in that intent is still used each time the second activity's onCreate() is called.
In addition, you may notice that in both activities, any text you typed into message or reply EditTexts is retained even when the device is rotated. This is because the state information of some of the views in your layout are automatically saved across configuration changes, and the current value of an EditText is one of those cases.
The only activity states you're interested in are the TextViews for the reply header and the reply text in the main activity. Both TextViews are invisible by default; they only appear once you send a message back to the main activity from the second activity.
In this task you'll add code to preserve the instance state of these two TextViews using onSaveInstanceState().
@Override
public void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
}
Check to see if the header is currently visible, and if so put that visibility state into the state bundle with the putBoolean() method and the key "reply_visible".
if (mReplyHeadTextView.getVisibility() == View.VISIBLE) {
outState.putBoolean("reply_visible", true);
}
Remember that the reply header and text are marked invisible until there is a reply from the second activity. If the header is visible, then there is reply data that needs to be saved. We're only interested in that visibility state -- the actual text of the header doesn't need to be saved, because that text never changes.
Inside that same check, add the reply text into the bundle.
outState.putString("reply_text", mReplyTextView.getText().toString());
If the header is visible you can assume that the reply message itself is also visible. You don't need to test for or save the current visibility state of the reply message. Only the actual text of the message goes into the state bundle with the key "reply_text".
We only save the state of those views that might change after the activity is created.
The other views in your app (the EditText, the Button) can be recreated from the default layout at any time.
Note: The system will save the state of some views, such as the contents of the EditText.
Solution Code (not the entire class):
@Override
public void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
// If the heading is visible, we have a message that needs to be saved.
// Otherwise we're still using default layout.
if (mReplyHeadTextView.getVisibility() == View.VISIBLE) {
outState.putBoolean("reply_visible", true);
outState.putString("reply_text", mReplyTextView.getText().toString());
}
}
2.2 Restore the activity instance state in onCreate()
Once you've saved the activity instance state, you also need to restore it when the activity is recreated. You can do this either in onCreate(), or by implementing the onRestoreInstanceState() callback, which is called after onStart() after the activity is created.
Most of the time the better place to restore the activity state is in onCreate(), to ensure that your user interface including the state is available as soon as possible. It is sometimes convenient to do it in onRestoreInstanceState() after all of the initialization has been done, or to allow subclasses to decide whether to use your default implementation.
In the onCreate() method, add a test to make sure the bundle is not null.
if (savedInstanceState != null) {
}
When your activity is created, the system passes the state bundle to onCreate() as its only argument. The first time onCreate() is called and your app starts, the bundle is null - there's no existing state the first time your app starts. Subsequent calls to onCreate() have a bundle populated with any the data you stored in onSaveInstanceState().
if (savedInstanceState != null) {
boolean isVisible =
savedInstanceState.getBoolean("reply_visible");
}
Add a test below that previous line for the isVisible variable.
if (isVisible) {
}
If there's a reply_visible key in the state bundle (and isVisible is thus true), we will need to restore the state.
mReplyHeadTextView.setVisibility(View.VISIBLE);
mReplyTextView.setText(savedInstanceState.getString("reply_text"));
mReplyTextView.setVisibility(View.VISIBLE);
Solution Code (not the entire class):
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Log.d(LOG_TAG, "-------");
Log.d(LOG_TAG, "onCreate");
// Initialize all the view variables.
mMessageEditText = (EditText) findViewById(R.id.editText_main);
mReplyHeadTextView = (TextView) findViewById(R.id.text_header_reply);
mReplyTextView = (TextView) findViewById(R.id.text_message_reply);
// Restore the saved state. See onSaveInstanceState() for what gets saved.
if (savedInstanceState != null) {
boolean isVisible = savedInstanceState.getBoolean("reply_visible");
// Show both the header and the message views. If isVisible is
// false or missing from the bundle, use the default layout.
if (isVisible) {
mReplyHeadTextView.setVisibility(View.VISIBLE);
mReplyTextView.setText(savedInstanceState.getString("reply_text"));
mReplyTextView.setVisibility(View.VISIBLE);
}
}
}
Solution code
Android Studio Project: TwoActivitiesLifecycle
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Create a simple shopping list builder app with two activities. The main activity contains the list itself, which is made up of ten (empty) text views. A button on the main activity labelled "Add Item" launches a second activity that contains a list of common shopping items (Cheese, Rice, Apples, and so on). Use Buttons to display the items. Choosing an item returns you to the main activity, and updates an empty TextView to include the chosen item.
Use intents to pass information between the two activities. Make sure that the current state of the shopping list is saved when you rotate the device.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
2.3: Start Activities with Implicit Intents
Contents:
In a previous section you learned about explicit intents -- activating a specific activity in your app or a different app by sending an intent with the fully-qualified class name of that activity. In this section you'll learn more about implicit intents, and how you can use them to activate activities as well.
Implicit intents allow you to activate an activity if you know the action, but not the specific app or activity that will handle that action. For example, if you want your app to take a photo, or send email, or display a location on a map, you typically do not care which specific app or activity actually performs these actions.
Conversely, your activities can declare one or more intent filters in the Android manifest that advertise that activity's ability to accept implicit intents and to define the particular type of intents it will accept.
To match your request with a specific app installed on the device, the Android system matches your implicit intent with an activity whose intent filters indicate that they can perform that action. If there are multiple apps installed that match, the user is presented with an app chooser that lets them select which app they want to use to handle that intent.
In this practical you'll build an app that sends three implicit intents: to open a URL in a web browser, to open a location on a map, and to share a bit of text. Sharing -- sending a piece of information to other people through email or social media -- is a common and popular feature in many apps. For the sharing action we'll use the ShareCompat.IntentBuilder class, which makes it easy to build intents for sharing data.
Finally, we'll create a simple intent receiver app that accepts implicit intents for a specific action.
What you should already KNOW
From the previous practicals, you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical you will:
App overview
In this section you'll create a new app with one activity and three options for actions: open a web site, open a location on a map, and share a snippet of text. All of the text fields are editable (EditText), but contain default values.
Task 1. Create new project and layout
For this exercise, you'll create a new project and app called Implicit Intents with a new layout.
1.1 Create the project
1.2 Create the layout
In this task, create the layout for the app. Use a LinearLayout, three Buttons, and three EditTexts, like this:
Edit res/values/strings.xml to include these string resources:
<string name="edittext_uri">http://developer.android.com</string>
<string name="button_uri">Open Website</string>
<string name="edittext_loc">Golden Gate Bridge</string>
<string name="button_loc">Open Location</string>
<string name="edittext_share">\'Twas brillig and the slithy toves</string>
<string name="button_share">Share This Text</string>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.implicitintents.MainActivity"
android:orientation="vertical">
Add an EditText and a Button to the layout for the Open Website function. Use these attribute values:
Attribute (EditText) | Value (EditText) |
android:id | "@+id/website_edittext" |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:text | "@string/edittext_uri" |
Attribute (Button) | Value (Button) |
android:id | "@+id/open_website_button" |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:layout_marginBottom | "24dp" |
android:text | "@string/button_uri" |
android:onClick | "openWebsite" |
Use the same attributes as those in the previous step, but modify these attributes as noted below:
Attribute (EditText) | Value (EditText) |
android:id | "@+id/location_edittext" |
android:text | "@string/edittext_loc" |
Attribute (Button) | Value (Button) |
android:id | "@+id/open_location_button" |
android:text | "@string/button_loc" |
android:onClick | "openLocation" |
Add a third EditText and a Button for the Share This function. Make these changes:
Attribute (EditText) | Value (EditText) |
android:id | "@+id/share_edittext" |
android:text | "@string/edittext_share" |
Attribute (Button) | Value (Button) |
android:id | "@+id/share_text_button" |
android:text | "@string/button_share" |
android:onClick | "shareText" |
Solution code:
Depending on your version of Android Studio, your code will look something like the following.
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.implicitintents.MainActivity"
android:orientation="vertical">
<EditText
android:id="@+id/website_edittext"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/edittext_uri" />
<Button
android:id="@+id/open_website_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="24dp"
android:onClick="openWebsite"
android:text="@string/button_uri" />
<EditText
android:id="@+id/location_edittext"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/edittext_loc" />
<Button
android:id="@+id/open_location_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="24dp"
android:onClick="openLocation"
android:text="@string/button_loc" />
<EditText
android:id="@+id/share_edittext"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/edittext_share" />
<Button
android:id="@+id/share_text_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="24dp"
android:onClick="shareText"
android:text="@string/button_share" />
</LinearLayout>
Task 2. Implement "open website"
In this task you'll implement the on-click handler method for the first button in the layout ("Open Website.") This action uses an implicit intent to send the given URI to an activity that can handle that Implicit Intent (such as a web browser).
2.1 Define the openWebsite method
private EditText mWebsiteEditText;
mWebsiteEditText = (EditText) findViewById(R.id.website_edittext);
public void openWebsite(View view) { }
String url = mWebsiteEditText.getText().toString();
Uri webpage = Uri.parse(url);
Create a new Intent with Intent.ACTION_VIEW as the action and the URI as the data:
Intent intent = new Intent(Intent.ACTION_VIEW, webpage);
This intent constructor is different from the one you used to create an explicit intent. In your previous constructor, you specified the current context and a specific component (activity class) to send the intent. In this constructor you specify an action and the data for that action. Actions are defined by the Intent class and can include ACTION_VIEW (to view the given data), ACTION_EDIT (to edit the given data), or ACTION_DIAL (to dial a phone number). In this case the action is ACTION_VIEW because we want to open and view the web page specified by the URI in the webpage variable.
Use the resolveActivity() and the Android package manager to find an activity that can handle your implicit intent. Check to make sure the that request resolved successfully.
if (intent.resolveActivity(getPackageManager()) != null) {
}
This request that matches your intent action and data with the intent filters for installed applications on the device to make sure there is at least one activity that can handle your requests.
startActivity(intent);
} else {
Log.d("ImplicitIntents", "Can't handle this!");
}
Solution code (not the entire class):
public void openWebsite(View view) {
// Get the URL text.
String url = mWebsiteEditText.getText().toString();
// Parse the URI and create the intent.
Uri webpage = Uri.parse(url);
Intent intent = new Intent(Intent.ACTION_VIEW, webpage);
// Find an activity to hand the intent and start that activity.
if (intent.resolveActivity(getPackageManager()) != null) {
startActivity(intent);
} else {
Log.d("ImplicitIntents", "Can't handle this intent!");
}
}
Task 3. Implement "open location"
In this task you'll implement the on-click handler method for the second button in the UI ("Open Location.") This method is almost identical to the openWebsite() method. The difference is the use of a geo URI to indicate a map location. You can use a geo URI with latitude and longitude, or use a query string for a general location. In this example we've used the latter.
3.1 Define the openLocation method
private EditText mLocationEditText;
mLocationEditText = (EditText) findViewById(R.id.location_edittext);
String loc = mLocationEditText.getText().toString();
Uri addressUri = Uri.parse("geo:0,0?q=" + loc);
Intent intent = new Intent(Intent.ACTION_VIEW, addressUri);
if (intent.resolveActivity(getPackageManager()) != null) {
startActivity(intent);
} else {
Log.d("ImplicitIntents", "Can't handle this intent!");
}
Solution code (not the entire class):
public void openLocation(View view) {
// Get the string indicating a location. Input is not validated; it is
// passed to the location handler intact.
String loc = mLocationEditText.getText().toString();
// Parse the location and create the intent.
Uri addressUri = Uri.parse("geo:0,0?q=" + loc);
Intent intent = new Intent(Intent.ACTION_VIEW, addressUri);
// Find an activity to handle the intent, and start that activity.
if (intent.resolveActivity(getPackageManager()) != null) {
startActivity(intent);
} else {
Log.d("ImplicitIntents", "Can't handle this intent!");
}
}
Task 4. Implement share this text
Sharing actions are an easy way for users to share items in your app with social networks and other apps. Although you could build a share action in your own app using implicit intents, Android provides the ShareCompat.IntentBuilder helper class to make implementing sharing easy. You can use ShareCompat.IntentBuilder to build an intent and launch a chooser to let the user choose the destination app for sharing.
In this final task we'll implement sharing a bit of text in a text edit with the ShareCompat.IntentBuilder class.
4.1 Implement the shareText method
private EditText mShareTextEditText;
mShareTextEditText = (EditText) findViewById(R.id.share_edittext);
String txt = mShareTextEditText.getText().toString();
String mimeType = "text/plain";
Call ShareCompat.IntentBuilder with these methods:
ShareCompat.IntentBuilder
.from(this)
.setType(mimeType)
.setChooserTitle("Share this text with: ")
.setText(txt)
.startChooser();
This call to ShareCompat.IntentBuilder uses these methods:
</tr> </table> This format, with all the builder's setter methods strung together in one statement, is an easy shorthand way to create and launch the intent. You can add any of the additional methods to this list.
Method | Description |
from() | The activity that launches this share intent (this). |
setType() | The MIME type of the item to be shared. |
setChooserTitle() | The title that appears on the system app chooser. |
setText() | The actual text to be shared |
startChooser() | Show the system app chooser and send the intent. |
Solution code (not the entire class):
public void shareText(View view) {
String txt = mShareTextEditText.getText().toString();
String mimeType = "text/plain";
ShareCompat.IntentBuilder
.from(this)
.setType(mimeType)
.setChooserTitle("Share this text with: ")
.setText(txt)
.startChooser();
}
Task 5. Receive implicit intents
So far, you've created apps that use both explicit and implicit intents in order to launch some other app's activity. In this task we'll look at the problem from the other way around: allowing an activity in your app to respond to implicit intents sent from some other app.
Activities in your app can always be activated from inside or outside your app with explicit intents. To allow an activity to receive implicit intents, you define an intent filter in your manifest to indicate which implicit intents your activity is interested in handling.
To match your request with a specific app installed on the device, the Android system matches your implicit intent with an activity whose intent filters indicate that they can perform that action. If there are multiple apps installed that match, the user is presented with an app chooser that lets them select which app they want to use to handle that intent.
When an app on the device sends an implicit intent, the Android system matches that intent's action and data with available activities that include the right intent filters. If your activity's intent filters match the intent, your activity can either handle the intent itself (if it is the only matching activity), or (if there are multiple matches) an app chooser appears to allow the user to pick which app they'd prefer to execute that action.
In this task you'll create a very simple app that receives implicit intents to open the URI for a web page. When activated by an implicit intent, that app displays the requested URI as a string in a TextView.
5.1 Create the project and layout
Change the existing ("Hello World") TextView these attributes:
Attribute | Value |
android:id | "@+id/text_uri_message" |
android:layout_width | wrap_content |
android:layout_height | wrap_content |
android:textSize | "18sp" |
android:textStyle | "bold" |
5.2 Modify the Android manifest to add an intent filter
Note that the main activity already has this intent filter:
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
This intent filter, which is part of the default project manifest, indicates that this activity is the main entry point for your app (it has an intent action of "android.intent.action.MAIN"), and that this activity should appear as a top-level item in the launcher (its category is "android.intent.category.LAUNCHER")
Add a second <intent-filter> tag inside <activity> , and include these elements :
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="http" android:host="developer.android.com" />
These lines define an intent filter for the activity, that is, the kind of intents that the activity can handle. This intent filter declares these elements:
Filter type | Value | Matches |
action | "android.intent.action.VIEW" | All intents with view actions. |
category | "android.intent.category.DEFAULT" | All implicit intents. This category must be included for your activity to receive any implicit intents. |
category | "android.intent.category.BROWSABLE" | Requests for browsable links from web pages, email, or other sources. |
data | android:scheme="http" android:host="developer.android.com" | URIs that contain a scheme of http AND a host name of developer.android.com. |
Note that the data filter has a restriction on both the kind of links it will accept and the hostname for those URIs. If you'd prefer your receiver to be able to accept any links, you can leave the <data> element out altogether.
Solution code
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.android.implicitintentsreceiver">
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="http"
android:host="developer.android.com" />
</intent-filter>
</activity>
</application>
</manifest>
5.3 Process the intent
In the onCreate() method for your activity, you process the incoming intent for any data or extras it includes. In this case, the incoming implicit intent has the URI stored in the Intent data.
Intent intent = getIntent();
Uri uri = intent.getData();
if (uri != null) {
String uri_string = "URI: " + uri.toString();
}
TextView textView = (TextView) findViewById(R.id.text_uri_message);
textView.setText(uri_string);
Run the receiver app.
Running the app on its own shows a blank activity with no text. This is because the activity was activated from the system launcher, and not with an intent from another app.
Run the ImplicitIntents app, and click Open Website with the default URI.
An app chooser appears asking if you want to use the default browser or the ImplicitIntentsReceiver app. Choose "Just Once" for the receiver app. The ImplicitIntentsReceiver app launches and the message shows the URI from the original request.
Tap the back button and enter a different URI. Click Open Website.
The receiver app has a very restrictive intent filter that matches only exact URI protocol (http) and host (developer.android.com). Any other URI opens in the default web browser.
Solution code
Android Studio project: ImplicitIntents
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: In the last section's challenge you created a shopping list app builder with two activities: one to display the list, and one to pick an item. Add an EditText and a Button to the shopping list activity to locate a particular store on a map.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
3.1 P: Using the Debugger
Contents:
In previous practicals you used the Log class to print information to the system log (logcat) when your app runs. Adding logging statements to your app is one way to find errors and improve your app's operation. Another way is to use the debugger built into Android Studio.
In this practical you'll learn how to debug your app in an emulator and on the device, set and view breakpoints, step through your code, and examine variables.
What you should already KNOW
From the previous practicals you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical, you will:
App Overview
The SimpleCalc app has two edit texts and four buttons. When you enter two numbers and click a button, the app performs the calculation for that button and displays the result.
Task 1. Create the SimpleCalc Project and App
For this practical you won't build the SimpleCalc app yourself. The complete project is available at SimpleCalc. In this task you will open the SimpleCalc project into Android Studio and explore some of the app's key features.
1.1 Download and Open the SimpleCalc Project
Navigate to the folder for SimpleCalc, select that folder file, and click OK.
The SimpleCalc project builds. Open the project view if it is not already open.
Warning: This app contains errors that you will find and fix. If you run the app on a device or emulator you might run into unexpected behavior which may include crashes in the app.
1.2 Explore the Layout
1.3 Explore the app code
Examine the stack trace in Android Studio when the app reports an error.
If the stack trace is not visible, click the Android Monitor button at the bottom of the Android Studio, and then click logcat.
If one or both of the EditText views in SimpleCalc is empty, the app reports "Error" and the system log displays the state of the execution stack at the time the app produced the error. The stack trace usually provides important information about why an error occurred.
Coding Challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Examine the stack trace and try to figure out what caused the error (but don't fix it yet.)
Task 2. Run SimpleCalc in the Debugger
In this task you'll get an introduction to the debugger in Android Studio, and learn how to run your app in debug mode.
2.1 Start and Run your app in debug mode
In Android Studio, select Run > Debug app or click the Debug iconin the toolbar.
If your app is already running, you will be asked if you want to restart your app in debug mode. Click Restart app.
Android Studio builds and runs your app on the emulator or on the device. Debugging is the same in either case. While Android Studio is initializing the debugger, you may see a message that says "Waiting for debugger" on the device before you can use your app.
If the Debug view does not automatically appear in Android Studio, click the Debug tab at the bottom of the screen, and then the Debugger tab.
Click in the left gutter of the editor window at that line, next to the line numbers. A red dot appears at that line, indicating a breakpoint.
You can also use Run > Toggle Line Breakpoint or Control-F8 (Command-F8 on OS X) to set or clear a breakpoint at a line.
In the SimpleCalc app on a device, enter numbers in the EditText views and click one of the calculate buttons.
The execution of your app stops when it reaches the breakpoint you set, and the debugger shows the current state of your app at that breakpoint.
Resume your app's execution with Run > Resume Program or click the Resumeicon on the left side of the debugger window.
The SimpleCalc app continues running, and you can interact with the app until the next time code execution arrives at the breakpoint.
2.2 Debug a running app
If your app is already running on a device or emulator, and you decide you want to debug that app, you can switch an already running app to debug mode.
Select your app's process from the dialog that appears. Click OK.
The Debug window appears, and you can now debug your app as if you had started it in debug mode.
Note: If the Debug window does not automatically appear, click the Debug tab at the bottom of the screen, and then the Debugger tab.
Task 3. Explore Debugger Features
In this task we'll explore the various features in the Android Studio debugger, including executing your app line by line, working with breakpoints, and examining variables.
3.1 Step through your app's execution
After a breakpoint, you can use the debugger to execute each line of code in your app one at a time, and examine the state of variables as the app runs.
In the app, enter numbers in both EditText views and click the Add button.
Your app's execution stops at the breakpoint that you set earlier, and the debugger shows the current state of the app. The current line is highlighted in your code.
Click the Step Overbutton at the top of the debugger window.
The debugger executes the current line in the compute() method (where the breakpoint is, the assignment for operandOne), and the highlight moves to the next line in the code (the assignment for operandTwo). The Variables panel updates to reflect the new execution state, and the current values of variables also appears after each line of your source code in italics.
You can also use Run > Step Over, or F8, to step over your code.
At the next line (the assignment for operandTwo), click the Step Intoicon.
Step Into jumps into the execution of a method call in the current line (versus just executing that method and remaining on the same line). In this case, because that assignment includes a call to getOperand(), the debugger scrolls the MainActivity code to that method definition.
When you step into a method, the Frames panel updates to indicate the new frame in the call stack (here, getOperand()), and the Variables panel shows the available variables in the new method scope. You can click any of the lines in the Frames panel to see the point in the previous stack frame where the method was invoked.
You can also use Run > Step Into, or F7, to step into a method.
Click Step Into.
The debugger executes the appropriate method defined in the Calculator class, opens the Calculator.java file, and scrolls to the execution point in that class. Again, the various panels update to reflect the new state.
Use the Step Outicon to execute the remainder of that calculation method and pop back out to the compute() method in MainActivity. You can then continue debugging the compute() method from where you left off.
You can also use Run > Step Out or Shift-F8 to step out of a method execution.
3.2 Work with Breakpoints
Use breakpoints to indicate where in your code you want to interrupt your app's execution to debug that portion of that app.
(operandOne == 42)||(operandTwo == 42)
Click Done.
This second breakpoint is a conditional breakpoint. The execution of your app will only stop at this breakpoint if the test in the condition is true. In this case, the expression is only true if one or the other operands you entered is 42. You can enter any Java expression as a condition as long as it returns a boolean.
Right click the first breakpoint and uncheck Enabled. Click Done. Observe that the breakpoint icon now has a green dot with a red border.
Disabling a breakpoint enables you to temporarily "mute" that breakpoint without actually removing it from your code. If you remove a breakpoint altogether you also lose any conditions you created for that breakpoint, so disabling it is often a better choice.
You can also mute all breakpoints in your app at once with the Mute Breakpointsicon.
Click the View Breakpointsicon on the left edge of the debugger window. The Breakpoints window appears.
The Breakpoints window enables you to view all the breakpoints in your app, enable or disable individual breakpoints, and add additional features of breakpoints including conditions, dependencies on other breakpoints, and logging.
3.3 Examine and modify variables
The Android Studio debugger lets you examine the state of the variables in your app as that app runs.
In the app, enter two numbers, one of them 42, and click the Add button.
The first breakpoint in compute() is still muted. Execution stops at the second breakpoint (at the switch statement), and the debugger appears.
Click the Evaluate Expressionicon, or select Run > Evaluate Expression. The Evaluate Code Fragment window appears. You can also right-click on any variable and choose Evaluate Expression.
Use Evaluate Expression to explore the state of variables and objects in your app, including calling methods on those objects. You can enter any code into this window.
The Evaluate Expression window updates with the result of that expression. The hint for this EditText is the string "Type Operand 1", as was originally defined in the XML for that EditText.
The result you get from evaluating an expression is based on the app's current state. Depending on the values of the variables in your app at the time you evaluate expressions, you may get different results.
Note also that if you use Evaluate Expression to change the values of variables or object properties, you change the running state of the app.
Coding challenge
Note: All coding challenges are optional and not prerequisites for later lessons.
Challenge: In Task 1.3, you tried running the SimpleCalc app with no values in either of the EditText views, resulting in an error message. Use the debugger to step through the execution of the code and determine precisely why this error occurs. Fix the bug that causes this error.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
3.2: Testing Apps With Unit Tests
Contents:
Testing your code can help you catch bugs early on in development — when they are the least expensive to address — and improve the robustness of your code as your app gets larger and more complex. With tests in your code, you can exercise small portions of your app in isolation, and in an automatable and repeatable manner.
Android Studio and the Android Testing Support Library support several different kinds of tests and testing frameworks. In this practical you'll explore Android Studio's built-in functionality for testing, and learn how to write and run local unit tests.
Local unit tests are tests that are compiled and run entirely on your local machine with the Java Virtual Machine (JVM). Use local unit tests to test the parts of your app (such as the internal logic) that do not need access to the Android framework or an Android device or emulator, or those for which you can create fake ("mock" or stub) objects that pretend to behave like the framework equivalents. Unit tests are written with JUnit, a common unit testing framework for Java.
What you should already KNOW
From the previous practicals you should be familiar with:
What you will LEARN
What you will DO
App Overview
This practical uses the same SimpleCalc app from the last practical. You can modify that app in place, or copy your project into a new app.
Task 1. Explore and run SimpleCalc in Android Studio
You both write and run your tests (both unit tests and instrumented tests ) inside Android Studio, alongside the code for your app. Every new Android project includes basic sample classes for testing that you can extend or replace for your own uses.
In this task we'll return to the SimpleCalc app, which includes a basic unit testing class.
1.1 Explore source sets and SimpleCalc
Source sets are a collection of related code in your project that are for different build targets or other "flavors" of your app. When Android Studio creates your project, it creates three source sets:
In this task you'll explore how source sets are displayed in Android Studio, examine the gradle configuration for testing, and run the unit tests for the SimpleCalc app. You'll use the androidTest source set in more detail in a later practical.
Open the Project view, and expand the app and java folders.
The java folder in the Android view lists all the source sets in the app by package name (com.android.example.simplecalc), with test and androidTest shown in parentheses after the package name. In the SimpleCalc app, only the main and test source sets are used.
Expand the com.android.example.simplecalc (test) folder.
This folder is where you put your app's local unit tests. Android Studio creates a sample test class for you in this folder for new projects, but for SimpleCalc the test class is called CalculatorTest.
Examine the code and note the following:
1.2 Run tests in Android Studio
In this task you'll run the unit tests in the test folder and view the output for both successful and failed tests.
In the project view, right-click the CalculatorTest class and select Run 'CalculatorTest'.
The project builds, if necessary, and the testing view appears at the bottom of the screen. At the top of the screen, the dropdown (for available execution configurations) also changes to CalculatorTest.
All the tests in the CalculatorTest class run, and if those tests are successful, the progress bar at the top of the view turns green. (In this case, there is currently only the one test.) A status message in the footer also reports "Tests Passed."
assertThat(resultAdd, is(equalTo(3d)));
In the run configurations dropdown at the top of the screen, select CalculatorTest (if it is not already selected) and click Run.
The test runs again as before, but this time the assertion fails (3 is not equal to 1 + 1.) The progress bar in the run view turns red, and the testing log indicates where the test (assertion) failed and why.
Task 2. Add more unit tests to CalculatorTest
With unit testing, you take a small bit of code in your app such as a method or a class, and isolate it from the rest of your app, so that the tests you write makes sure that one small bit of the code works in the way you'd expect. Typically unit tests call a method with a variety of different inputs, and verifies that the particular method does what you expect and returns what you expect it to return.
In this task you'll learn more about how to construct unit tests. You'll write additional unit tests for the methods in the Calculator utility methods in the SimpleCalc app, and run those tests to make sure they produce the output you expect.
Note: Unit testing, test-driven development and the JUnit 4 API are all large and complex topics and outside the scope of this course. See the Resources for links to more information.
2.1 Add more tests for the add() method
Although it is impossible to test every possible value that the add() method may ever see, it's a good idea to test for input that might be unusual. For example, consider what happens if the add() method gets arguments:
In this task we'll add more unit tests for the add() method to test different kinds of inputs.
Add a new method to CalculatorTest called addTwoNumbersNegative(). Use this skeleton:
@Test
public void addTwoNumbersNegative() {
}
This test method has a similar structure to addTwoNumbers: it is a public method, with no parameters, that returns void. It is annotated with the @Test annotation, which indicates it is a single unit test.
Why not just add more assertions to addTwoNumbers? Grouping more than one assertion into a single method can make your tests harder to debug if only one assertion fails, and obscures the tests that do succeed. The general rule for unit tests is to provide a test method for every individual assertion.
Run all tests in CalculatorTests, as before.
In the test window both addTwoNumbers and addTwoNumbersNegative are listed as available (and passing) tests in the left panel. The addTwoNumbersNegative test still passes even though it doesn't contain any code -- a test that does nothing is still considered a successful test.
Add a line to invoke the add() method in the Calculator class with a negative operand.
double resultAdd = mCalculator.add(-1d, 2d);
The "d" notation after each operand indicates that these are numbers of type double. Since the add() method is defined with double parameters, floats or ints will also work. Indicating the type explicitly enables you to test other types separately, if you need to.
Add an assertion with assertThat().
assertThat(resultAdd, is(equalTo(1d)));
The assertThat() method is a JUnit4 assertion that claims the expression in the first argument is equal to the one in the second argument. Older versions of JUnit used more specific assertion methods (assertEquals(), assertNull(), assertTrue()), but assertThat() is a more flexible, more debuggable and often easier to read format.
The assertThat() method is used with matchers. Matchers are the chained method calls in the second operand of this assertion (is(equalto()). The available matchers you can use to build an assertion are defined by the hamcrest framework (Hamcrest is an anagram for matchers.) Hamcrest provides many basic matchers for most basic assertions. You can also define your own custom matchers for more complex assertions.
In this case the assertion is that the result of the add() operation (-1 + 2) is equal to 1.
Add a new unit test to CalculatorTest for floating-point numbers:
@Test
public void addTwoNumbersFloats() {
double resultAdd = mCalculator.add(1.111f, 1.111d);
assertThat(resultAdd, is(equalTo(2.222d)));
}
Again, a very similar test to the previous test method, but with one argument to add() that is explicitly type float rather than double. The add() method is defined with parameters of type double, so you can call it with a float type, and that number is promoted to a double.
Click Runto run all the tests again.
This time the test failed, and the progress bar is red. This is the important part of the error message:
java.lang.AssertionError:
Expected: is <2.222>
but: was <2.2219999418258665>
Arithmetic with floating-point numbers is inexact, and the promotion resulted in a side effect of additional precision. The assertion in the test is technically false: the expected value is not equal to the actual value.
The question here is: when you have a precision problem with promoting float arguments is that a problem with your code, or a problem with your test? In this particular case both input arguments to the add() method from the Calculator app will always be type double, so this is an arbitrary and unrealistic test. However, if your app was written such that the input to the add() method could be either double or float and you only care about some precision, you need to provide some wiggle room to the test so that "close enough" counts as a success.
Change the assertThat() method to use the closeTo() matcher:
assertThat(resultAdd, is(closeTo(2.222, 0.01)));
For this test, rather that testing for exact equality you can test for equality within a specific delta. In this case the closeTo() matcher method takes two arguments: the expected value and the amount of delta. Here that delta is just two decimal points of precision.
2.2 Add unit tests for the other calculation methods
Use what you learned in the previous task to fill out the unit tests for the Calculator class.
Challenge: Add a unit test called divByZero() that tests the div() method with a second argument of 0. Hint: Try this in the app first to see what the result is.
Solution Code:
@Test
public void addTwoNumbers() {
double resultAdd = mCalculator.add(1d, 1d);
assertThat(resultAdd, is(equalTo(2d)));
}
@Test
public void addTwoNumbersNegative() {
double resultAdd = mCalculator.add(-1d, 2d);
assertThat(resultAdd, is(equalTo(1d)));
}
@Test
public void addTwoNumbersFloats() {
double resultAdd = mCalculator.add(1.111f, 1.111d);
assertThat(resultAdd, is(closeTo(2.222, 0.01)));
}
@Test
public void subTwoNumbers() {
double resultSub = mCalculator.sub(1d, 1d);
assertThat(resultSub, is(equalTo(0d)));
}
@Test
public void subWorksWithNegativeResult() {
double resultSub = mCalculator.sub(1d, 17d);
assertThat(resultSub, is(equalTo(-16d)));
}
@Test
public void mulTwoNumbers() {
double resultMul = mCalculator.mul(32d, 2d);
assertThat(resultMul, is(equalTo(64d)));
}
@Test
public void divTwoNumbers() {
double resultDiv = mCalculator.div(32d,2d);
assertThat(resultDiv, is(equalTo(16d)));
}
@Test
public void divTwoNumbersZero() {
double resultDiv = mCalculator.div(32d,0);
assertThat(resultDiv, is(equalTo(Double.POSITIVE_INFINITY)));
}
Solution code
Android Studio project: SimpleCalcTest
Coding challenges
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge 1: Dividing by zero is always worth testing for, because it a special case in arithmetic. If you try to divide by zero in the current version of the SimpleCalc app, it behaves the way Java defined: Dividing a number by returns the "Infinity" constant (Double.POSITIVE_INFINITY). Dividing 0 by 0 returns the not a number constant (Double.NaN). Although these values are correct for Java, they're not necessarily useful values for the user in the app itself. How might you change the app to more gracefully handle divide by zero? To accomplish this challenge, start with the test first -- consider what the right behavior is, and then write the tests as if that behavior already existed. Then change or add to the code so that it makes the tests come up green.
Challenge 2: Sometimes it's difficult to isolate a unit of code from all of its external dependencies. Rather than artificially organize your code in complicated ways just so it can be more easily tested, you can use a mock framework to create fake ("mock") objects that pretend to be dependencies. Research the Mockito framework, and learn how to set it up in Android Studio. Write a test class for the calcButton() method in SimpleCalc, and use Mockito to to simulate the Android context in which your tests will run.
Summary
Related Concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn More
3.3: Using The Android Support Libraries
Contents:
The Android SDK includes several libraries collectively called the Android support library. These libraries provide a number of features that are not built into the Android framework, including:
What you should already KNOW
From the previous practicals you should be familiar with:
What you will LEARN
What you will DO
In this practical, you will:
App Overview
In this practical you'll create an app called HelloCompat with one textview that displays "Hello World" on the screen, and one button, that changes the color of the text. There are 20 possible colors, defined as resources in the color.xml file, and each button click randomly picks one of those colors.
The methods to get a color value from the app's resources have changed with different versions for the Android framework. This example uses the ContextCompat class, part of the Android support library, which allows you to use a method that works for all versions.
Task 1. Set up the project
For this task you'll set up a new project for the HelloCompat app and implement the layout and basic behavior.
1.1 Verify that the Android Support Library is available
The Android support libraries are downloaded as part of the Android SDK, and available in the Android SDK manager. In Android Studio, you'll use the Android Support Repository—the local repository for the support libraries—to get access to the library from within your gradle build files. In this task you'll verify that the Android Support Repository is downloaded and available for your projects.
In Android Studio, select Tools > Android > SDK Manager, or click the SDK Managericon.
The SDK Manager preference pane appears.
1.2 Set up the Project and examine build.gradle
Create a new project called HelloCompat, and choose the Empty Activity template.
On the Target Android Devices page, note that API 15: Android 4.0.3 (IceCreamSandwich) is selected for the minimum SDK. As you've learned in previous lessons, this is the oldest version of the Android platform your app will support.
Expand Gradle Scripts, if necessary, and open the build.gradle (Module: app) file.
Note that build.gradle for the overall project (build.gradle (Project: app_name) is a different file from the build.gradle for the app module.
Locate the compileSdkVersion line near the top of the file.
compileSdkVersion 24
The compile version is the Android framework version your app is compiled with in Android Studio. For new projects the compile version is the most recent set of framework APIs you have installed. This value affects only Android Studio itself and the warnings or errors you get in Android Studio if you use older or newer APIs.
Locate the minSdkVersion line in the defaultConfig section a few lines down.
minSdkVersion 15
The minimum version is the oldest Android API version your app runs under. It's the same number you chose in Step 1 when you created your project. The Google Play store uses this number to make sure your app can run on a given user's device. Android Studio also uses this number to warn you about using deprecated APIs.
Locate the targetSdkVersion line in the defaultConfig section.
targetSdkVersion 24
The target version indicates the API version your app is designed and tested for. If the API of the Android platform is higher than this number (that is, your app is running on a newer device), the platform may enable compatibility behaviors to make sure your app continues to work the way it was designed to. For example, Android 6.0 (API 23) provides a new runtime permissions model. If your app targets a lower API level, the platform falls back to the older install-time permissions model.
Although the target SDK can be the same number as the compile SDK, it is often a lower number that indicates the most recent version of the API for which you have tested your app.
Locate the dependencies section of build.gradle, near the end of the file.
dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
androidTestCompile(
'com.android.support.test.espresso:espresso-core:2.2.2', {
exclude group: 'com.android.support',
module: 'support-annotations'
})
compile 'com.android.support:appcompat-v7:24.2.1'
testCompile 'junit:junit:4.12'
}
The dependencies section for a new project includes several dependencies to enable testing with Espresso, JUnit, as well as the v7 appcompat support library. Note that the version numbers for these libraries in your project may be different than those shown here.
The v7 appcompat support library provides backward-compatibility for older versions of Android all the way back to API 9. It includes the v4 compat library as well, so you don't need to add both as a dependency.
Update the version numbers, if necessary.
If the current version number for a library is lower than the currently available library version number, Android Studio will highlight the line and warn you that a new version is available. ("a newer version of com.android. support:appcompat-v7 is available"). Edit the version number to the updated version.
Tip: : You can also click anywhere in the highlight line and type **Alt-Enter** (**Option-Enter** on the Mac). Select "Change to XX.X.X" from the menu, where XX.X.X is the most up to date version available.
Update the compileSdkVersion number, if necessary.
The major version number of the support library (the first number) must match your compileSdkVersion. When you update the support library version you may also need to update compileSdkVersion to match.
Install missing SDK platform files, if necessary.
If you update compileSdkVersion you may need to install the SDK platform components to match. Click Install missing platform(s) and sync project to start this process.
1.3 Add the layout and colors
In this task, modify the layout for the app.
Modify the TextView element to have these attributes:
Attribute | Value |
android:id | "@+id/hello_textview" |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:padding | "@dimen/activity_horizontal_margin" |
android:gravity | "center" |
android:textSize | "100sp" |
android:textStyle | "bold" |
android:text | "Hello World!" |
Add a Button view under the TextView, and add these attributes:
Attribute | Value |
android:id | "@+id/color_button" |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:layout_alignParentBottom | "true" |
android:paddingTop | "@dimen/activity_vertical_margin" |
android:text | "Change Color" |
android:onClick | "changeColor" |
<color name="red">#F44336</color>
<color name="pink">#E91E63</color>
<color name="purple">#9C27B0</color>
<color name="deep_purple">#673AB7</color>
<color name="indigo">#3F51B5</color>
<color name="blue">#2196F3</color>
<color name="light_blue">#03A9F4</color>
<color name="cyan">#00BCD4</color>
<color name="teal">#009688</color>
<color name="green">#4CAF50</color>
<color name="light_green">#8BC34A</color>
<color name="lime">#CDDC39</color>
<color name="yellow">#FFEB3B</color>
<color name="amber">#FFC107</color>
<color name="orange">#FF9800</color>
<color name="deep_orange">#FF5722</color>
<color name="brown">#795548</color>
<color name="grey">#9E9E9E</color>
<color name="blue_grey">#607D8B</color>
<color name="black">#000000</color>
These color values and names come from the recommended color palettes for Android apps defined at Material Design - Style - Color. The codes indicate color RGB values in hexadecimal.
Solution Code (activity_main.xml)
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/activity_main"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.hellocompat.MainActivity">
<TextView
android:id="@+id/hello_textview"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center"
android:padding="@dimen/activity_horizontal_margin"
android:text="@string/hello_text_string"
android:textSize="100sp"
android:textStyle="bold" />
<Button
android:id="@+id/color_button"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:onClick="changeColor"
android:paddingTop="@dimen/activity_vertical_margin"
android:text="@string/button_label" />
</RelativeLayout>
1.4 Add behavior to MainActivity
In this task you'll finish setting up the project by adding private variables and implementing onCreate() and onSaveInstanceState().
private TextView mHelloTextView;
Add the following color array just after the private variable:
private String[] mColorArray = {"red", "pink", "purple", "deep_purple",
"indigo", "blue", "light_blue", "cyan", "teal", "green",
"light_green", "lime", "yellow", "amber", "orange", "deep_orange",
"brown", "grey", "blue_grey", "black"
};
Each of these color names correspond to the names of the color resources from color.xml.
mHelloTextView = (TextView) findViewById(R.id.hello_textview);
// restore saved instance state (the text color)
if (savedInstanceState != null) {
mHelloTextView.setTextColor(savedInstanceState.getInt("color"));
}
Add the onSaveInstanceState() method to MainActivity to save the text color:
@Override
public void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
// save the current text color
outState.putInt("color", mHelloTextView.getCurrentTextColor());
}
Solution Code (not the whole class)
// Text view for Hello World.
private TextView mHelloTextView;
// array of color names, these match the color resources in color.xml
private String[] mColorArray = {"red", "pink", "purple", "deep_purple",
"indigo", "blue", "light_blue", "cyan", "teal", "green",
"light_green", "lime", "yellow", "amber", "orange", "deep_orange",
"brown", "grey", "blue_grey", "black"
};
...
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// Initialize the main text view
mHelloTextView = (TextView) findViewById(R.id.hello_textview);
// restore saved instance state (the text color)
if (savedInstanceState != null) {
mHelloTextView.setTextColor(savedInstanceState.getInt("color"));
}
}
...
@Override
public void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
// save the current text color
outState.putInt("color", mHelloTextView.getCurrentTextColor());
}
Task 2. Implement button behavior
The Change Color button in the HelloCompat app picks one of the 20 colors from the color.xml resource file at random and sets the color of the text to that color. In this task you'll implement the onClick() behavior for this handler.
2.1 Add the changeButton() onClick handler
Choose MainActivity and click OK.
This creates a placeholder method stub for the changeColor() method in MainActivity.java.
2.2 Implement the button action
In the changeColor() method, create a random number object.
Random random = new Random();
Use the Random class (a Java class) to generate simple random numbers.
Use the random instance to pick a random color from the mColorArray array:
String colorName = mColorArray[random.nextInt(20)];
The nextInt() method with the argument 20 gets another random integer between 0 and 19. Use that integer as the index of the array to get a color name.
Get the resource identifier (an integer) for the color name out of the resources:
int colorResourceName = getResources().getIdentifier(colorName,
"color", getApplicationContext().getPackageName());
When your app is compiled, the Android system converts the definitions in your XML files into resources with internal integer IDs. There are separate IDs for both the names and the values. This line matches the color strings from the colorName array with the corresponding color name IDs in the XML resource file. The getResources() method gets all the resources for your app. The getIdentifier() method looks up the color name (the string) in the color resources ("color") for the current package name.
Get the integer ID for the actual color from the resources and assign it to a colorRes variable:
int colorRes = getResources().getColor(colorResourceName);
The getResources() method gets the set of resources for your app, and the getColor() method retrieves a specific color from those resources by the ID of the color name.
Note that the getColor() method appears with a strikethrough in the Android Studio editor. If you hover your mouse over getColor(), the error "getColor(int) is deprecated" appears. In API 23, the getColor() method was modified to include a second argument for the app's theme. Since your app has a compileSdkVersion of 24 (or higher), Android Studio provides this warning that you're using an older, deprecated method.
You can still compile your app and it would still run on both new and old Android devices -- the deprecation warning is a warning, not an error. But it's best not to ignore warnings where they exist, as deprecated methods can result in unexpected behavior.
Change the colorRes assignment line to include the second argument to getColor():
int colorRes =
getResources().getColor(colorResourceName, this.getTheme());
You can use the getTheme() method to get the theme for the current application context. Only now with this change you'll note that getColor() has a red underlined highlight. If you hover over getColor() Android Studio reports: "Call requires API 23 (current min is 15)". Since your minSdkVersion is 15, you'll get this message if you try to use any APIs that were introduced after API 15. You can still compile your app, but because this new version of getColor() with two arguments is not available on devices prior to API 23, your app will crash when the user taps the Change button.
At this stage you could check for the platform version and use the right version of getColor() depending on where the app is running. (you will still get a warning for both calls in Android Studio). The better way to support both older and newer Android APIs without warnings is to use one of the compatibility classes in the support library.
Change the colorRes assignment line to use the ContextCompat class:
int colorRes = ContextCompat.getColor(this, colorResourceName);
ContextCompat provides many compatibility methods to address API differences in the application context and app resources. The getColor() method in ContextCompat takes two arguments: the current context (here, the activity instance, this), and the name of the color.
The implementation of this method in the support library hides the implementation differences in different versions of the API. You can call this method regardless of your compile SDK or minimum SDK versions with no warnings, errors, or crashes.
mHelloTextView.setTextColor(colorRes);
Compile and run the app on a device or emulator.
The Change Color button should now change the color of the text in Hello World.
Solution Code (changeColor() method only)
public void changeColor(View view) {
// get a random color name from the color array (20 colors)
Random random = new Random();
String colorName = mColorArray[random.nextInt(20)];
// get the color identifier that matches the color name
int colorResourceName = getResources().getIdentifier(colorName, "color",
getApplicationContext().getPackageName());
// get the color ID from the resources
int colorRes = ContextCompat.getColor(this, colorResourceName);
// Set the text color
mHelloTextView.setTextColor(colorRes);
}
Solution code
Android Studio project: HelloCompat
Coding Challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Instead of using ContextCompat for to get the color resource, use a test of the values in the Build class to perform a different operation if the app is running on a device that supports less than API 23.
Summary
In this practical, you learned that:
Related Concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn More
4.1: Using Keyboards, Input Controls, Alerts, and Pickers
Contents:
You can customize input methods to make entering data easier for users.
In this practical, you'll learn to:
What you should already KNOW
For this practical you should be able to:
What you will LEARN
In this practical, you will learn to:
What you will DO
App Overview
In this practical, you'll create and build a new app called Keyboard Samples for experimenting with the android:inputType attribute for the EditText UI element. You will change the keyboard so that it suggests spelling corrections and capitalizes each new sentence, as shown on the left side of the figure below. To keep the app simple, you'll display the entered text in a toast message, shown on the right side of the figure below.
You will also change the keyboard to one that offers the "@" symbol in a prominent location for entering email addresses, and to a phone keypad for entering phone numbers, as shown on the left side and in the center of the figure below. As a challenge, you will implement a listener for the action key in the keyboard in order to send an implicit intent to another app to dial the phone number.
You will then copy the app to create Phone Number Spinner that offers a spinner input control for selecting the label (Home, Work, Other, Custom) for the phone number, as shown on the right side of the figure below.
The figure above shows the following:
You'll also create Alert Sample to experiment with an alert dialog, shown on the left side of the figure below, and Date Time Pickers to experiment with a date picker and a time picker, shown in the center and on the right side of the figure below, and use the time and date selections in your app.
The last tasks involve creating an app from the Basic Activity template that lets a user tap image buttons to launch an activity, as shown on the left side of the figure below, and choose a single delivery option from radio-button choices for a food order, as shown on the right side of the figure below.
Task 1. Experiment with text entry keyboard attributes
Touching an EditText editable text field places the cursor in the text field and automatically displays the on-screen keyboard. You will change attributes of the text entry field so that the keyboard suggests spelling corrections while you type, and automatically starts each new sentence with capital letters. For example:
1.1 Create the main layout and the showText method
You will add a Button, and change the TextView element to an EditText element so that the user can enter text. The app's layout will look like the following figure.
Button Attribute | New Value |
android:id | "@+id/button_main" |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:layout_alignParentBottom | "true" |
android:layout_alignParentRight | "true" |
android:onClick | "showText" |
android:text | "Show" |
Extract the string resource for the android:text attribute value to create and entry for it in strings.xml: Place the cursor on "Show", press Alt-Enter (Option-Enter on the Mac), and select Extract string resources. Then change the Resource name for the string value to show.
You extract string resources because it makes the app project more flexible for changing strings. The string resource assignments are stored in the strings.xml file (under app > res > values). You can edit this file to change the string assignments so that the app can be localized with a different language. For example, the "Show" value for the resource named show could be changed to "Montrer" for the French version of the app.
EditText Attribute | TextView Old Value | EditText New Value |
android:id | "@+id/editText_main" | |
android:layout_width | "wrap_content" | "match_parent" |
android:layout_height | "wrap_content" | "wrap_content" |
android:layout_alignParentBottom | "true" | |
android:layout_toLeftOf | "@id/button_main" | |
android:hint | "Enter a message" |
Extract the string resource for the android:hint attribute value "Enter a message" to the resource name enter. The activity_main.xml layout file should now look like the following:
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.keyboardsamples.MainActivity">
<Button
android:id="@+id/button_main"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"
android:onClick="showText"
android:text="@string/show" />
<EditText
android:id="@+id/editText_main"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_toLeftOf="@id/button_main"
android:hint="@string/enter" />
</RelativeLayout>
public void showText(View view) {
EditText editText = (EditText) findViewById(R.id.editText_main);
if (editText != null) {
String showString = editText.getText().toString();
Toast.makeText(this, showString, Toast.LENGTH_SHORT).show();
}
}
Tapping the Show button shows the toast message of the text entry.
To close the on-screen keyboard, tap the down-pointing arrow in the bottom row of icons.
In the standard keyboard layout, a checkmark icon in a green circle, shown below, appears in the lower right corner of the keypad. This is known as the Return (or Enter) key, and it is used to enter a new line:
With the default attributes for the EditText element, tapping the Return key adds another line of text. In the next section, you will change the keyboard so that it capitalizes sentences as you type. As a result of setting the android:inputType attribute, the default attribute for the Return key changes to shift focus away from the EditText element and close the keyboard.
1.2 Set the keyboard to capitalize sentences
android:inputType="textCapSentences"
Capital letters will now appear on the keyboard at the beginning of sentences. When you tap the Return key on the keyboard, the keyboard closes and your text entry is finished. You can still tap the text entry field to add more text or edit the text. Tap Show to show the text in a toast message.
For details about the android:inputType attribute, see Specifying the Input Method Type.
1.3 Set the keyboard to hide a password when entering it
android:inputType="textPassword"
The characters the user enters turn into dots to conceal the entered password. For help, see Text Fields.
Solution code:
Android Project: KeyboardSamples
Task 2. Change the keyboard type
Every text field expects a certain type of text input, such as an email address, phone number, password, or just plain text. It's important to specify the input type for each text field in your app so that the system displays the appropriate soft input method, such as:
2.1 Use an email keyboard
Modify the main activity's EditText element to show an email keyboard rather than a standard keyboard:
android:inputType="textEmailAddress"
2.2 Use a phone keypad
Modify the main activity's EditText element to show a phone keypad rather than a standard keyboard:
android:inputType="phone"
Tapping the field now brings up the on-screen phone keypad in place of the standard keyboard.
Note: When running the app on the emulator, the field will still accept text rather than numbers if you type on the computer's keyboard. However, when run on the device, the field only accepts the numbers of the keypad.
Task 3. Add a spinner input control for selecting a phone label
Input controls are the interactive components in your app's user interface. Android provides a wide variety of controls you can use in your UI, such as buttons, seek bars, checkboxes, zoom buttons, toggle buttons, spinners, and many more. (For more information about input controls, see Input Controls.)
A spinner provides a quick way to select one value from a set. Touching the spinner displays a drop-down list with all available values, from which the user can select one. If you are providing only two or three choices, you might want to use radio buttons for the choices if you have room in your layout for them; however, with more than three choices, a spinner works very well, scrolls as needed to display items, and takes up little room in your layout.
For more information about spinners, see Spinners.
To provide a way to select a label for a phone number (such as Home, Work, Mobile, and Other), you can add a spinner to the layout to appear right next to the phone number field.
3.1 Copy the KeyboardSamples project and modify the layout
Use the following figure as as a guide for the main activity's layout:
In the above figure:
Follow these steps:
Enclose the existing EditText and Button elements from the previous lesson within a LinearLayout with a horizontal orientation, placing the EditText element above the Button :
<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_marginTop="@dimen/activity_vertical_margin"
android:orientation="horizontal">
<EditText
…
<Button
…
</LinearLayout>
EditText Attribute | Value |
android:layout_width | "wrap_content" |
android:inputType | "phone" |
android:hint | "Enter phone number" |
Add a Spinner element between the EditText element and the Button element:
<Spinner
android:id="@+id/label_spinner"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
</Spinner>
The Spinner element provides the drop-down list. In the next task you will add code that will fill the spinner list with values. The layout code for the EditText , Spinner , and Button elements within the LinearLayout should now look like this:
<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_marginTop="@dimen/activity_vertical_margin"
android:orientation="horizontal">
<EditText
android:id="@+id/editText_main"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:inputType="phone"
android:hint="Enter phone number" />
<Spinner
android:id="@+id/label_spinner"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
</Spinner>
<Button
android:id="@+id/button_main"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:onClick="showText"
android:text="Show" />
</LinearLayout>
Add another LinearLayout below the LinearLayout you just created, with a horizontal orientation to enclose two TextView elements side-by-side — a text description, and a text field to show the phone number and the phone label — and align the LinearLayout to the parent's bottom (refer to the figure above):
<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:layout_alignParentBottom="true">
<TextView
…
<TextView
…
</LinearLayout>
TextView Attribute | Value |
android:id | "@+id/title_phonelabel" |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Phone Number: " |
TextView Attribute | Value |
android:id | "@+id/text_phonelabel" |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Nothing entered." |
Element | String | String resource |
EditText | "Enter phone number" | "@string/hint_phonenumber" |
Button | "Show" | "@string/show_button" |
TextView | "Phone Number: " | "@string/phonenumber_label" |
TextView | "Nothing entered." | "@string/nothing_entered" |
3.2 Add code to activate the spinner and its listener
The choices for this phone label spinner are well-defined static strings ("Home", "Work", etc), so you can use a text array defined in strings.xml to hold the values for it.
To activate the spinner and its listener, implement the AdapterView.OnItemSelectedListener interface, which requires also adding the onItemSelected() and onNothingSelected() callback methods.
<string-array name="labels_array">
<item>Home</item>
<item>Work</item>
<item>Mobile</item>
<item>Other</item>
</string-array>
As you type AdapterView. in the above statement, Android Studio automatically imports the AdapterView widget. The reason why you need the AdapterView is because you need an adapter—specifically an ArrayAdapter—to assign the array to the spinner. An adapter connects your data—in this case, the array of spinner items—to the spinner view. You will learn more about this pattern of using an adapter to connect data in another lesson. This line should appear in your block of import statements:public class MainActivity extends AppCompatActivity implements
AdapterView.OnItemSelectedListener {
After typing OnItemSelectedListener in the above statement, wait a few seconds for a red light bulb to appear in the left margin.import android.widget.AdapterView;
Click the bulb and choose Implement methods. The onItemSelected() and onNothingSelected() methods, which are required for OnItemSelectedListener , should already be highlighted, and the "Insert @Override" option should be checked. Click OK.
This step automatically adds empty onItemSelected() and onNothingSelected() callback methods to the bottom of the MainActivity class. Both methods use the parameter AdapterView<?> . The <?> is a Java type wildcard, enabling the method to be flexible enough to accept any type of AdapterView as an argument.
@Override
protected void onCreate(Bundle savedInstanceState) {
...
// Create the spinner.
Spinner spinner = (Spinner) findViewById(R.id.label_spinner);
if (spinner != null) {
spinner.setOnItemSelectedListener(this);
}
...
The simple_spinner_item layout used in this step, and the simple_spinner_dropdown_item layout used in the next step, are the default pre-defined layouts provided by Android in the R.layout class. You should use these layouts unless you want to define your own layouts for the items in the spinner and the spinner's appearance....
// Create ArrayAdapter using the string array and default spinner layout.
ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,
R.array.labels_array, android.R.layout.simple_spinner_item);
...
...
// Specify the layout to use when the list of choices appears.
adapter.setDropDownViewResource
(android.R.layout.simple_spinner_dropdown_item);
// Apply the adapter to the spinner.
if (spinner != null) {
spinner.setAdapter(adapter);
}
...
3.3 Add code to respond to the user's selections
When the user selects an item in the spinner, the Spinner object receives an on-item-selected event. To handle this event, you already implemented the AdapterView.OnItemSelectedListener interface in the previous step, adding empty onItemSelected() and onNothingSelected() callback methods.
In this step you will first declare mSpinnerLabel as the string to hold the selected item. You will then fill in the code for the onItemSelected() method to retrieve the selected item in the spinner, using getItemAtPosition() , and assign the item to mSpinnerLabel :
public class MainActivity extends AppCompatActivity implements
AdapterView.OnItemSelectedListener {
private String mSpinnerLabel = "";
...
}
Add code to the empty onItemSelected() callback method, as shown below, to retrieve the user's selected item using getItemAtPosition , and assign it to mSpinnerLabel . You can also add a call to the showText() method you already added to the previous version of the app:
public void onItemSelected(AdapterView<?> adapterView, View view, int
i, long l) {
mSpinnerLabel = adapterView.getItemAtPosition(i).toString();
showText(view);
}
Tip: By adding the showText() method to the above onItemSelected() method, you have enabled the spinner selection listener to display the spinner choice along with the phone number, so that you no longer need the Show button that called the showText() method.
Add code to the empty onNothingSelected() callback method, as shown below, to display a logcat message if nothing is selected:
public void onNothingSelected(AdapterView<?> adapterView) {
Log.d(TAG, "onNothingSelected: ");
}
The TAG in the above statement is in red because it hasn't been defined.
Extract the string resource for "onNothingSelected: " to nothing_selected .
Click TAG, click the red light bulb, and choose Create constant field 'TAG' from the pop-up menu. Android Studio adds the following under the MainActivity class declaration:
private static final String TAG = ;
private static final String TAG = MainActivity.class.getSimpleName();
String showString = (editText.getText().toString() + " - " + mSpinnerLabel);
The spinner appears next to the phone entry field and shows the first choice (Home). Tapping the spinner reveals all the choices, as shown on the left side of the figure below. After entering a phone number and choosing a spinner item, a message appears at the bottom of the screen with the phone number and the selected spinner item, as shown on the right side of the figure below. (You can also tap the Show button to show both the phone number and the spinner item, but since this is redundant, you can now remove the Show button.)
Solution Code:
Android Studio project: PhoneNumberSpinner
Task 4. Use a dialog for an alert requiring a decision
You can provide a dialog for an alert to require users to make a decision. A dialog is a window that appears on top of the display or fills the display, interrupting the flow of activity.
For example, an alert dialog might require the user to click Continue after reading it, or give the user a choice to agree with an action by clicking a positive button (such as OK or Accept), or to disagree by clicking a negative button (such as Cancel). In Android, you use the AlertDialog subclass of the Dialog class to show a standard dialog for an alert.
Tip: Use dialogs sparingly as they interrupt the user's work flow. Read the Dialogs design guide for best design practices, and Dialogs in the Android developer documentation for code examples.
In this practical, you will use a button to trigger a standard alert dialog. In a real world app, you might trigger an alert dialog based on some condition, or based on the user tapping something.
Android Studio project: AlertSample
4.1 Create a new project with a layout to show an alert dialog
In this exercise, you'll build an alert with OK and Cancel buttons, which will be triggered by the user clicking a button.
TextView Attribute | Value |
android:id | "@+id/top_message" |
android:text | "Tap to test the alert:" |
Button Attribute | Value |
android:id | "@+button1" |
android:layout_width | wrap_content |
android:layout_height | wrap_content |
android:layout_below | "@id/top_message" |
android:layout_marginTop | "36dp" |
android:text | "Alert" |
android:onClick | "onClickShowAlert" |
The dimension resource assignments are stored in the dimens.xml file (under app > res > values > dimens). You can edit this file to change the assignments so that the app can be changed for different display sizes.
4.2 Add an alert dialog to the main activity
The builder design pattern makes it easy to create an object from a class that has a lot of required and optional attributes and would therefore require a lot of parameters to build. Without this pattern, you would have to create constructors for combinations of required and optional attributes; with this pattern, the code is easier to read and maintain. For more information about the builder design pattern, see Builder pattern.
The builder class is usually a static member class of the class it builds. You use AlertDialog.Builder to build a standard alert dialog, using setTitle to set its title, setMessage to set its message, and setPositiveButton and setNegativeButton to set its buttons.
To make the alert, you need to make an object of AlertDialog.Builder. You will add the onClickShowAlert() method, which makes this object as its first order of business.
Note: To keep this example simple to understand, the alert dialog is created in the onClickShowAlert() method. This occurs only if the onClickShowAlert() method is called, which is what happens when the user clicks the button. This means the app builds a new dialog only when the button is clicked, which is useful if the dialog is seen only rarely (when the user takes a certain path through the app). However, if the dialog appears often, you may want to build the dialog once in the onCreate() method, and then invoke the dialog in the onClickShowAlert() method.
Add the onClickShowAlert() method to MainActivity.java as follows:
public void onClickShowAlert(View view) {
AlertDialog.Builder myAlertBuilder = new
AlertDialog.Builder(MainActivity.this);
Note: If AlertDialog.Builder is not recognized as you enter it, click the red light bulb icon, and choose the support library version (android.support.v7.app.AlertDialog) for importing into your activity.
Set the title and the message for the alert dialog inside onClickShowAlert() after the code in the previous step:
...
// Set the dialog title.
myAlertBuilder.setTitle("Alert");
// Set the dialog message.
myAlertBuilder.setMessage("Click OK to continue, or Cancel to stop:");
...
...
// Set the dialog title.
myAlertBuilder.setTitle(R.string.alert_title);
// Set the dialog message.
myAlertBuilder.setMessage(R.string.alert_message);
...
Add the OK button to the alert with setPositiveButton() and using onClickListener() :
...
// Add the buttons.
myAlertBuilder.setPositiveButton("OK", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
// User clicked OK button.
Toast.makeText(getApplicationContext(), "Pressed OK",
Toast.LENGTH_SHORT).show();
}
});
...
You set the positive (OK) and negative (Cancel) buttons using the setPositiveButton() and setNegativeButton() methods. After the user taps the OK button in the alert, you can grab the user's selection and use it in your code. In this example, you display a toast message if the OK button is clicked.
Extract the string resource for "OK" and for "Pressed OK" . The statement should now be:
...
// Add the buttons.
myAlertBuilder.setPositiveButton(R.string.ok, new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
// User clicked OK button.
Toast.makeText(getApplicationContext(), R.string.pressed_ok,
Toast.LENGTH_SHORT).show();
}
});
...
...
myAlertBuilder.setNegativeButton("Cancel", new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
// User cancelled the dialog.
Toast.makeText(getApplicationContext(), "Pressed Cancel",
Toast.LENGTH_SHORT).show();
}
});
...
...
myAlertBuilder.setNegativeButton(R.string.cancel, new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
// User cancelled the dialog.
Toast.makeText(getApplicationContext(), R.string.pressed_cancel,
Toast.LENGTH_SHORT).show();
}
});
...
Add show() , which creates and then displays the alert dialog, to the end of onClickShowAlert() :
...
// Create and show the AlertDialog.
myAlertBuilder.show();
}
Tip: To learn more about onClickListener and other listeners, see User Interface: Input Events.
Run the app.
You should be able to tap the Alert button, shown on the left side of the figure below, to see the alert dialog, shown in the center of the figure below. The dialog shows OK and Cancel buttons, and a toast message appears showing which one you pressed, as shown on the right side of the figure below.
Solution code:
Android Studio project: AlertSample
Task 5. Use a picker for user input
Android provides ready-to-use dialogs, called pickers, for picking a time or a date. You can use them to ensure that your users pick a valid time or date that is formatted correctly and adjusted to the user's local time and date. Each picker provides controls for selecting each part of the time (hour, minute, AM/PM) or date (month, day, year). You can read all about setting up pickers in Pickers.
In this task you'll create a new project, and add the date picker and time picker. You will also learn how to use fragments. A fragment is a behavior or a portion of user interface within an activity. It's like a mini-activity within the main activity, with its own own lifecycle, and it's used for building a picker. All the work is done for you. To learn about fragments, see Fragments in the API Guide.
One benefit of using fragments for the pickers is that you can isolate the code sections for managing the date and the time for various locales that display date and time in different ways. The best practice to show a picker is to use an instance of DialogFragment, which is a subclass of Fragment. A DialogFragment displays a dialog window floating on top of its activity's window. In this exercise, you'll add a fragment for each picker dialog and use DialogFragment to manage the dialog lifecycle.
Tip: Another benefit of using fragments for the pickers is that you can implement different layout configurations, such as a basic dialog on handset-sized displays or an embedded part of a layout on large displays.
5.1 Create the main activity layout
To start this task, create the main activity layout to provide buttons to access the time and date pickers. Refer to the XML layout code below:
TextView Attribute | Old Value | New Value |
android:text | "Hello World" | "@string/choose_datetime" |
TextView Attribute | Old Value | New Value |
android:textSize | "@dimen/text_size" |
First Button Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:id | "@+id/button_date" |
android:layout_marginTop | "12dp" |
android:text | "Date" |
android:onClick | "showDatePickerDialog" |
Second Button Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:id | "@+id/button_time" |
android:layout_marginTop | "@dimen/button_top_margin" |
android:layout_alignBottom | "@id/button_date" |
android:layout_toRightOf | "@id/button_date" |
android:text | "Time" |
android:onClick | "showTimePickerDialog" |
Solution code for the main layout:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.DateTimePickers.MainActivity">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="@dimen/text_size"
android:text="@string/choose_datetime"/>
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="match_parent">
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/button_date"
android:layout_marginTop="@dimen/button_top_margin"
android:text="@string/date_button"
android:onClick="showDatePickerDialog"/>
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/button_time"
android:layout_marginTop="@dimen/button_top_margin"
android:layout_alignBottom="@id/button_date"
android:layout_toRightOf="@id/button_date"
android:text="@string/time_button"
android:onClick="showTimePickerDialog"/>
</RelativeLayout>
</LinearLayout>
5.2 Create a new fragment for the date picker
In this exercise, you'll add a fragment for the date picker. A fragment is like a mini-activity within the main activity, with its own own lifecycle.
As you type DialogFragment and DatePickerDialog.OnDateSetListener Android Studio automatically adds the following in the import block at the top:public class DatePickerFragment extends DialogFragment
implements DatePickerDialog.OnDateSetListener {
In addition, a red bulb icon appears in the left margin after a few seconds.import android.app.DatePickerDialog;
import android.support.v4.app.DialogFragment;
The onDateSet() method's parameters should be int year , int month , and int dayOfMonth . Change the dayOfMonth parameter to day for brevity:import android.widget.DatePicker;
public void onDateSet(DatePicker view, int year, int month, int day)
@NonNull
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
...
}
Add the following code to onCreateDialog() to initialize the year , month , and day from Calendar , and return the dialog and these values to the main activity. As you enter Calendar , specify the import to be java.util.Calendar .
@NonNull
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
// Use the current date as the default date in the picker.
final Calendar c = Calendar.getInstance();
int year = c.get(Calendar.YEAR);
int month = c.get(Calendar.MONTH);
int day = c.get(Calendar.DAY_OF_MONTH);
// Create a new instance of DatePickerDialog and return it.
return new DatePickerDialog(getActivity(), this, year, month, day);
}
Solution code for DatePickerFragment:
public class DatePickerFragment extends DialogFragment
implements DatePickerDialog.OnDateSetListener {
@NonNull
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
// Use the current date as the default date in the picker.
final Calendar c = Calendar.getInstance();
int year = c.get(Calendar.YEAR);
int month = c.get(Calendar.MONTH);
int day = c.get(Calendar.DAY_OF_MONTH);
// Create a new instance of DatePickerDialog and return it.
return new DatePickerDialog(getActivity(), this, year, month, day);
}
public void onDateSet(DatePicker view, int year, int month, int day) {
// Do something with the date chosen by the user.
}
}
5.3 Create a new fragment for the time picker
Add a fragment to the DateTimePickers project for the time picker:
public void onTimeSet(TimePicker view,
int hourOfDay, int minute) {
// Do something with the time chosen by the user.
}
Note: As you make the changes, Android Studio automatically adds the following in the import block at the top:
import android.support.v4.app.DialogFragment;
import android.app.TimePickerDialog;
import android.widget.TimePicker;
import java.util.Calendar;
Solution code for TimePickerFragment:
public class TimePickerFragment extends DialogFragment
implements TimePickerDialog.OnTimeSetListener {
@NonNull
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
// Use the current time as the default values for the picker.
final Calendar c = Calendar.getInstance();
int hour = c.get(Calendar.HOUR_OF_DAY);
int minute = c.get(Calendar.MINUTE);
// Create a new instance of TimePickerDialog and return it.
return new TimePickerDialog(getActivity(), this, hour, minute,
DateFormat.is24HourFormat(getActivity()));
}
public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
// Do something with the time chosen by the user.
}
}
5.4 Modify the main activity
While much of the code in the main activity stays the same, you need to add methods that create instances of FragmentManager to manage each fragment and show each picker.
<string name="date_picker">datePicker</string>
<string name="time_picker">timePicker</string>
Add the showDatePickerDialog() and showTimePickerDialog() methods, referring to the code below. It creates an instance of FragmentManager to manage the fragment automatically, and to show the picker. For more information about fragments, see Fragments.
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
}
public void showDatePickerDialog(View v) {
DialogFragment newFragment = new DatePickerFragment();
newFragment.show(getSupportFragmentManager(),
getString(R.string.date_picker));
}
public void showTimePickerDialog(View view) {
DialogFragment newFragment = new TimePickerFragment();
newFragment.show(getSupportFragmentManager(),
getString(R.string.time_picker));
}
}
5.5 Use the chosen date and time
In this exercise you'll pass the date and time back to MainActivity, and convert the date and time to strings that you can show in a toast message.
public void processDatePickerResult(int year, int month, int day) {
}
String month_string = Integer.toString(month+1);
String day_string = Integer.toString(day);
String year_string = Integer.toString(year);
Tip: The month integer returned by the date picker starts counting at 0 for January, so you need to add 1 to it to start show months starting at 1.
String dateMessage = (month_string + "/" +
day_string + "/" + year_string);
Toast.makeText(this, "Date: " + dateMessage,
Toast.LENGTH_SHORT).show();
public void processDatePickerResult(int year, int month, int day) {
String month_string = Integer.toString(month + 1);
String day_string = Integer.toString(day);
String year_string = Integer.toString(year);
// Assign the concatenated strings to dateMessage.
String dateMessage = (month_string + "/" +
day_string + "/" + year_string);
Toast.makeText(this, getString(R.string.date) + dateMessage,
Toast.LENGTH_SHORT).show();
}
You use getActivity() which, when used in a fragment, returns the activity the fragment is currently associated with. You need this because you can't call a method in MainActivity without the context of MainActivity (you would have to use an intent instead, as you learned in a previous lesson). The activity inherits the context, so you can use it as the context for calling the method (as in activity.processDatePickerResult ).public void onDateSet(DatePicker view, int year, int month, int day) {
// Set the activity to the Main Activity.
MainActivity activity = (MainActivity) getActivity();
// Invoke Main Activity's processDatePickerResult() method.
activity.processDatePickerResult(year, month, day);
}
public void processTimePickerResult(int hourOfDay, int minute) {
}
String hour_string = Integer.toString(hourOfDay);
String minute_string = Integer.toString(minute);
String timeMessage = (hour_string + ":" + minute_string);
Toast.makeText(this, "Time: " + timeMessage,
Toast.LENGTH_SHORT).show();
public void processTimePickerResult(int hourOfDay, int minute) {
// Convert time elements into strings.
String hour_string = Integer.toString(hourOfDay);
String minute_string = Integer.toString(minute);
// Assign the concatenated strings to timeMessage.
String timeMessage = (hour_string + ":" + minute_string);
Toast.makeText(this, getString(R.string.time) + timeMessage,
Toast.LENGTH_SHORT).show();
}
public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
// Set the activity to the Main Activity.
MainActivity activity = (MainActivity) getActivity();
// Invoke Main Activity's processTimePickerResult() method.
activity.processTimePickerResult(hourOfDay, minute);
}
Solution Code:
Android Studio project: DateTimePickers
Task 6: Use image views as buttons
You can make a view clickable, as a button, by adding the android:onClick attribute in the XML layout. For example, you can make an image act like a button by adding android:onClick to the ImageView.
Tip: If you are using multiple images as clickable images, arrange them in a viewgroup so that they are grouped together.
In this task you'll create a prototype of an app for ordering desserts from a café. After starting a new project based on the Basic Activity template, you'll modify the "Hello World" TextView with appropriate text, and add images to use for the "Add to order" buttons.
6.1 Start the new project
<string id="intro_text">Droid Desserts</string>
TextView Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:padding | "@dimen/padding_regular" |
android:id | "@+id/choose_dessert" |
android:layout_below | "@id/textintro" |
android:text | "Choose a dessert." |
6.2 Add the images
ImageView Attribute for donut | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:padding | "@dimen/padding_regular" |
android:id | "@+id/donut" |
android:layout_below | "@id/choose_dessert" |
android:contentDescription | "Donuts are glazed and sprinkled with candy." |
android:src | "@drawable/donut_circle" |
TextView Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:padding | "35dp" |
android:layout_below | "@+id/choose_dessert" |
android:layout_toRightOf | "@id/donut" |
android:text | "@string/donuts" |
ImageView Attribute for ice_cream | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:padding | "@dimen/padding_regular" |
android:id | "@+id/ice_cream" |
android:layout_below | "@id/donut" |
android:contentDescription | "Ice cream sandwiches have chocolate wafers and vanilla filling." |
android:src | "@drawable/icecream_circle" |
TextView Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:padding | "@dimen/padding_wide" |
android:layout_below | "@+id/donut" |
android:layout_toRightOf | "@id/ice_cream" |
android:text | "@string/ice_cream_sandwiches" |
ImageView Attribute for ice_cream | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:padding | "@dimen/padding_regular" |
android:id | "@+id/froyo" |
android:layout_below | "@id/ice_cream" |
android:contentDescription | "FroYo is premium self-serve frozen yogurt." |
android:src | "@drawable/froyo_circle" |
TextView Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:padding | "@dimen/padding_wide" |
android:layout_below | "@+id/ice_cream" |
android:layout_toRightOf | "@id/froyo" |
android:text | "@string/froyo" |
6.3 Add onClick methods for the image views
You can add the android:onClick attribute to any View to make it clickable as a button. In this step you will add android:onClick to the images in the content_main.xml layout. You need to also add a method for the android:onClick attribute to call. The method, for this task, displays a toast message showing which image was tapped. (In a later task, you will modify the method to launch another activity called OrderActivity.)
<string name="donut_order_message">You ordered a donut.</string>
<string name="ice_cream_order_message">You ordered an ice cream sandwich.</string>
<string name="froyo_order_message">You ordered a FroYo.</string>
public void displayToast(String message) {
Toast.makeText(getApplicationContext(), message,
Toast.LENGTH_SHORT).show();
}
/**
* Displays a toast message for the food order
* and starts the OrderActivity activity.
* @param message Message to display.
*/
public void showFoodOrder(String message) {
displayToast(message);
}
Tip: The first four lines are a comment in the Javadoc format, which makes the code easier to understand and also helps generate documentation for your code if you use Javadoc. It is a best practice to add such a comment to every new method you create. For more information about how to write comments, see How to Write Comments for the Javadoc Tool.
Although you could have added this method in any position within MainActivity, it is best practice to put your own methods below the methods already provided in MainActivity by the template.
Add the following methods to the end of MainActivity (you can add them before showFoodOrder() ):
/**
* Shows a message that the donut image was clicked.
*/
public void showDonutOrder(View view) {
showFoodOrder(getString(R.string.donut_order_message));
}
/**
* Shows a message that the ice cream sandwich image was clicked.
*/
public void showIceCreamOrder(View view) {
showFoodOrder(getString(R.string.ice_cream_order_message));
}
/**
* Shows a message that the froyo image was clicked.
*/
public void showFroyoOrder(View view) {
showFoodOrder(getString(R.string.froyo_order_message));
}
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="10dp"
android:id="@+id/donut"
android:layout_below="@id/choose_dessert"
android:contentDescription="@string/donut"
android:src="@drawable/donut_circle"
android:onClick="showDonutOrder"/>
. . .
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="10dp"
android:id="@+id/ice_cream"
android:layout_below="@id/donut"
android:contentDescription="@string/ice_cream_sandwich"
android:src="@drawable/icecream_circle"
android:onClick="showIceCreamOrder"/>
. . .
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="10dp"
android:id="@+id/froyo"
android:layout_below="@id/ice_cream"
android:contentDescription="@string/froyo"
android:src="@drawable/froyo_circle"
android:onClick="showFroyoOrder"/>
Run the app.
Clicking the donut, ice cream sandwich, or froyo image displays a toast message about the order, as shown in the figure below.
Task 7: Use radio buttons
Radio buttons are input controls that are useful for selecting only one option from a set of options. You should use radio buttons if you want the user to see all available options side-by-side. If it's not necessary to show all options side-by-side, you may want to use a spinner instead.
Later in this practical you will add another activity and screen layout for setting the delivery options for a food order, and use radio buttons for the delivery choices.
For an overview and more sample code for radio buttons, see Radio Buttons.
7.1 Add another activity
As you learned in a previous lesson, an activity represents a single screen in your app in which your user can perform a single, focused task. You already have one activity, MainActivity.java. You will now add another activity for setting the delivery options for an order, and use an explicit intent to launch the second activity.
Right-click the com.example.android.droidcafe folder in the left column and choose New > Activity > Empty Activity. Edit the Activity Name to be OrderActivity, and the Layout Name to be activity_order. Leave the other options alone, and click Finish.
The OrderActivity class should now be listed under MainActivity in the java folder, and activity_order.xml should now be listed in the layout folder. The Empty Activity template added these files.
public void showFoodOrder(String message) {
displayToast(message);
Intent intent = new Intent(this, OrderActivity.class);
startActivity(intent);
}
7.2 Add the layout for radio buttons
To create each radio button option, you will create RadioButton elements in the activity_order.xml layout file, which is linked to OrderActivity . After editing the layout file, the layout for the radio buttons in OrderActivity should look like the figure below.
Since radio button selections are mutually exclusive, you will group them together inside a RadioGroup. By grouping them together, the Android system ensures that only one radio button can be selected at a time.
Note: The order in which you list the `RadioButton ` elements determines the order that they appear on the screen.
TextView Attribute | Value |
android:id | "@+id/order_intro_text" |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:layout_marginTop | "24dp" |
android:layout_marginBottom | "6dp" |
android:textSize | "18sp" |
android:text | "Choose a delivery method:" |
<RadioGroup
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
android:layout_below="@id/order_intro_text">
</RadioGroup>
RadioButton #1 Attribute | Value |
android:id | "@+id/sameday" |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Same day messenger service" |
android:onClick | "onRadioButtonClicked" |
RadioButton #2 Attribute | Value |
android:id | "@+id/nextday" |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Next day ground delivery" |
android:onClick | "onRadioButtonClicked" |
RadioButton #3 Attribute | Value |
android:id | "@+id/pickup" |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Pick up" |
android:onClick | "onRadioButtonClicked" |
7.3 Add the radio button click handler
The android:onClick attribute for each radio button element specifies the onRadioButtonClicked() method to handle the click event. Therefore, you need to add a new onRadioButtonClicked() method in the OrderActivity class.
Ordinarily your app would display some message regarding which type of delivery was chosen. You will accomplish this with a toast message by creating a method called displayToast() in OrderActivity .
In the onRadioButtonClicked() method you will use a switch case block to check if a radio button has been clicked. At the end of the switch case block, you will add a default statement that displays a log message if none of the radio buttons were checked.
private static final String TAG_ACTIVITY =
OrderActivity.class.getSimpleName();
public void displayToast(String message) {
Toast.makeText(getApplicationContext(), message,
Toast.LENGTH_SHORT).show();
}
public void onRadioButtonClicked(View view) {
// Is the button now checked?
boolean checked = ((RadioButton) view).isChecked();
// Check which radio button was clicked
switch(view.getId()) {
case R.id.sameday:
if (checked)
// Same day service
displayToast(getString(R.string.chosen) +
getString(R.string.same_day_messenger_service));
break;
case R.id.nextday:
if (checked)
// Next day delivery
displayToast(getString(R.string.chosen) +
getString(R.string.next_day_ground_delivery));
break;
case R.id.pickup:
if (checked)
// Pick up
displayToast(getString(R.string.chosen) +
getString(R.string.pick_up));
break;
default:
Log.d(TAG_ACTIVITY, getString(R.string.nothing_clicked));
break;
}
}
Solution code
Android Studio project: DroidCafe Part 1
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: You can also perform an action directly from the keyboard and replace the Return (Enter) key with a "send" key, such as for dialing a phone number:
For this challenge, use the android:imeOptions attribute for the EditText component with the actionSend value:
android:imeOptions="actionSend"
In the onCreate() method for this main activity, you can use setOnEditorActionListener() to set the listener for the EditText view to detect if the key is pressed:
EditText editText = (EditText) findViewById(R.id.editText_main);
if (editText != null)
editText.setOnEditorActionListener(new TextView.OnEditorActionListener() {
...
});
For help setting the listener, see "Specifying the Input Action" in Handling Keyboard Input and "Specifying Keyboard Actions" in Text Fields.
The next step is to override onEditorAction() and use the IME_ACTION_SEND constant in the EditorInfo class to respond to the pressed key. In the example below, the key is used to call the dialNumber() method to dial the phone number:
@Override
public boolean onEditorAction(TextView textView, int actionId, KeyEvent keyEvent) {
boolean mHandled = false;
if (actionId == EditorInfo.IME_ACTION_SEND) {
dialNumber();
mHandled = true;
}
return mHandled;
}
To finish the challenge, create the dialNumber() method, which uses an implicit intent with ACTION_DIAL to pass the phone number to another app that can dial the number. It should look like this:
private void dialNumber() {
EditText editText = (EditText) findViewById(R.id.editText_main);
String mPhoneNum = null;
if (editText != null) mPhoneNum = "tel:" + editText.getText().toString();
Log.d(TAG, "dialNumber: " + mPhoneNum);
Intent intent = new Intent(Intent.ACTION_DIAL);
intent.setData(Uri.parse(mPhoneNum));
if (intent.resolveActivity(getPackageManager()) != null) {
startActivity(intent);
} else {
Log.d("ImplicitIntents", "Can't handle this!");
}
}
*Summary
In this practical, you learned how to:
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
4.2: Using an Options Menu
Contents:
The app bar (also called the action bar) is a dedicated space at the top of each activity screen. When you create an activity from a template (such as Basic Activity Template), an app bar is automatically included for the activity in a CoordinatorLayout root view group at the top of the view hierarchy.
The options menu in the app bar provides navigation to other activities in the app, or the primary options that affect using the app itself—but not ones that perform an action on an element on the screen. For example, your options menu might provide the user choices for navigating to other activities, such as placing an order, or for actions that have a global impact on the app, such as changing settings or profile information.
In this practical you'll learn about setting up the app bar and options menu in your app (shown in the figure below).
In the above figure:
Options menu items appear in the options overflow menu (see figure above). However, you can place some items as icons—as many as can fit—in the app bar. Using the app bar for the options menu makes your app consistent with other Android apps, allowing users to quickly understand how to operate your app and have a great experience.
Tip: To provide a familiar and consistent user experience, you should use the Menu APIs to present user actions and other options in your activities. See Menus for details.
What you should already KNOW
From the previous chapters, you should be familiar with how to do the following:
What you will LEARN
What you will DO
App Overview
In the previous practical you created an app called Droid Cafe, shown in the figure below, using the Basic Activity template. This template also provides a skeletal options menu in the app bar at the top of the screen. You will learn how to:
For this exercise you are using the v7 appcompat support library's Toolbar as an app bar. There are other ways to implement an app bar. For example, some themes set up an ActionBar as an app bar by default. But using the appcompat Toolbar makes it easy to set up an app bar that works on the widest range of devices, and also gives you room to customize your app bar later on as your app develops.
To read more about design considerations for using the app bar, see App Bar in the Material Design Specification.
To start the project from where you left off in the previous practical, download:
Android Studio project: DroidCafe Part 1
Task 1. Add items to the options menu
You will open the Droid Cafe project from the previous practical, and add menu items to the options menu in the app bar at the top of the screen.
1.1 Examine the app bar code
Open the Droid Cafe project from the previous practical. The project includes the following layout files in the res > layout folder:
activity_main.xml: The main layout for MainActivity, the first screen the user sees.
content_main.xml: The layout for the content of the MainActivity screen, which (as you will see shortly) is included within activity_main.xml.
activity_order.xml: The layout for OrderActivity, which you added in the previous practical.
Open content_main.xml. In the previous practical, you added a some TextViews and ImageViews to the root view group, which is a RelativeLayout .
The layout behavior for the RelativeLayout is set to @string/appbar_scrolling_view_behavior , which controls the scrolling behavior of the screen in relation to the app bar at the top. Right-click (Control-click) this string resource and choose Go To > Declaration to see the string resource's actual value, which is defined in a file called "values.xml". This file is generated by Android Studio, not visible in the Project: Android view and should not be edited. The actual value of @string/appbar_scrolling_view_behavior in values.xml is "android.support.design.widget.AppBarLayout$ScrollingViewBehavior" .
For more about scrolling behavior, see the Android Design Support Library blog entry in the Android Developers Blog. For design practices involving scrolling menus, see Scrolling Techniques in the Material Design Specification.
Open activity_main.xml to see the main layout, which uses a CoordinatorLayout layout with an embedded AppBarLayout layout. The CoordinatorLayout and the AppBarLayout tags require fully qualified names that specify android.support.design , which is the Android Design Support Library.
AppBarLayout is a vertical LinearLayout which uses the Toolbar class in the support library, instead of the native ActionBar, to implement an app bar. The app bar is a section at the top of the display that can display the activity title, navigation, and other interactive items. The native ActionBar behaves differently depending on the version of Android running on the device. For this reason, if you are adding an options menu, you should use the v7 appcompat support library's Toolbar as an app bar. Using the Toolbar makes it easy to set up an app bar that works on the widest range of devices, and also gives you room to customize your app bar later on as your app develops. Toolbar includes the most recent features, and works for any device that can use the support library.
The Toolbar within this layout has the id toolbar , and is also specified, like the AppBarLayout, with a fully qualified name ( android.support.v7.widget ):
<android.support.design.widget.AppBarLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:theme="@style/AppTheme.AppBarOverlay">
<android.support.v7.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="?attr/actionBarSize"
android:background="?attr/colorPrimary"
app:popupTheme="@style/AppTheme.PopupOverlay" />
</android.support.design.widget.AppBarLayout>
For more details about the AppBarLayout class, see AppBarLayout in the Android Developer Reference. For more details about toolbars, see Toolbar in the Android Developer Reference.
Tip: The activity_main.xml layout also uses an include layout statement to include the entire layout defined in content_main.xml. This separation of layout definitions makes it easier to change the layout's content apart from the layout's toolbar definition and coordinator layout. This is a best practice for separating your content (which may need to be translated) from the format of your layout.
Examine the AndroidManifest.xml file. The .MainActivity activity is set to use the NoActionBar theme:
android:theme="@style/AppTheme.NoActionBar"
The NoActionBar theme is defined in the styles.xml file (expand app > res >values > styles.xml to see it). Styles are covered in another lesson, but you can see that the NoActionBar theme sets the windowActionBar attribute to false (no window action bar), and the windowNoTitle attribute to true (no title).
The reason these values are set is because you are defining the app bar in your layout (activity_main.xml) with AppBarLayout , rather than using an ActionBar. Using one of the NoActionBar themes prevents the app from using the native ActionBar class to provide the app bar. The native ActionBar class behaves differently depending on what version of the Android system a device is using. By contrast, the most recent features are added to the support library's version of Toolbar and available on any device that can use the support library. For this reason, you should use the support library's Toolbar class to implement your activities' app bars instead of ActionBar. Using the support library's Toolbar ensures that your app has consistent behavior across the widest range of devices.
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar(toolbar);
...
After setting the content view to the activity_main.xml layout, the onCreate() method sets toolbar to be the Toolbar defined in the activity_main.xml layout. It then calls the activity's setSupportActionBar() method, and passes toolbar to it, setting the toolbar defined in activity_main.xml as the app bar for the activity.
For best practices about adding the app bar to your app, see Adding the App Bar in Best Practices for User Interface.
1.2 Add more menu items to the options menu
You will add the following menu items to the options menu of the Droid Cafe app:
Android provides a standard XML format to define menu items. Instead of building a menu in your activity's code, you can define a menu and all of its menu items in an XML menu resource. You can then inflate the menu resource (load it as a Menu object) in your activity or fragment:
Take a look at menu_main.xml (expand res > menu in the Project view). It defines menu items with the <item> </item> tag within the <menu> </menu> block. The only menu item provided from the template is action_settings (the Settings choice), which is defined as:
<item
android:id="@+id/action_settings"
android:orderInCategory="100"
android:title="@string/action_settings"
app:showAsAction="never" />
In Android Studio, the android:title attribute shows the string value "Settings" even though the string is defined as a resource. Android Studio displays the value so that you can see at-a-glance what the value is without having to open the strings.xml resource file. If you click on this string, it changes to show the string resource "@string/action_settings" .
Attribute | Value |
android:id | "@+id/action_contact" |
android:title | "Contact" |
app:showAsAction | "never" |
Attribute | Value |
android:id | "@+id/action_order" |
android:orderInCategory | "10" |
android:title | "Order" |
app:showAsAction | "never" |
Status Item Attribute | Value |
android:id | "@+id/action_status" |
android:orderInCategory | "20" |
android:title | "Status" |
app:showAsAction | "never" |
Favorites Item Attribute | Value |
android:id | "@+id/action_favorites" |
android:orderInCategory | "40" |
android:title | "Favorites" |
app:showAsAction | "never" |
<string name="action_order_message">You selected Order.</string>
<string name="action_status_message">You selected Status.</string>
<string name="action_favorites_message">You selected Favorites.</string>
<string name="action_contact_message">You selected Contact.</string>
if (id == R.id.action_order)
Run the app, and tap the action overflow icon, shown on the left side of the figure below, to see the options menu, shown on the right side of the figure below. You will soon add callbacks to respond to items selected from this menu.
In the above figure:
Notice the order of items in the options menu. You used the android:orderInCategory attribute to specify the priority of the menu items in the menu: The Order item is 10, followed by Status (20) and Favorites (40), and Contact is last (100). The following table shows the priority of items in the menu:
Menu Item | orderInCategory attribute |
Order | 10 |
Status | 20 |
Favorites | 40 |
Contact | 100 |
Task 2. Add icons for menu items
Whenever possible, you want to show the most frequently used actions using icons in the app bar so the user can click them without having to first click the overflow icon. In this task, you'll add icons for some of the menu items, and show some of menu items in the app bar at the top of the screen as icons.
In this example, let's assume the Order and Status actions are considered the most frequently used. Favorites is occasionally used, and Contact is the least frequently used. You can set icons for these actions, and specify the following:
2.1 Add icons for menu items
To specify icons for actions, you need to first add the icons as image assets to the drawable folder.
2.2 Show the menu items as icons in the app bar
To show menu items as icons in the app bar, use the app:showAsAction attribute in menu_main.xml. The following values for the attribute specify whether or not the action should appear in the app bar as an icon:
Follow these steps to show some of the menu items as icons:
Order Item Attribute | Old Value | New Value |
android:icon | "@drawable/ic_order_white" | |
app:showAsAction | "never" | "always" |
Status Item Attribute | Old Value | New Value |
android:icon | "@drawable/ic_status_white" | |
app:showAsAction | "never" | "always" |
Favorites Item Attribute | Old Value | New Value |
android:icon | "@drawable/ic_favorites_white" | |
app:showAsAction | "never" | "ifRoom" |
Tip: How many action buttons will fit in the app bar? It depends on the orientation and the size of the device screen. Fewer buttons appear in a vertical orientation, as shown on the left side of the figure below, compared to a horizontal orientation as shown on the right side of the figure below. Action buttons may not occupy more than half of the main app bar's width.
Coding Challenge #1
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge 1: When you click the floating action button with the email icon that appears at the bottom of the screen, the code in MainActivity displays a drawer that opens and closes, called a snackbar. A snackbar provides feedback about an operation—it shows a brief message at the bottom of the screen on a smartphone, or in the lower left corner on larger devices. For more information, see Snackbar.
Look at how other apps implement the floating action button. For example, the Gmail app provides a floating action button to create a new email message, and the Contacts app provides one to create a new contact. For more information about floating action buttons, see FloatingActionButton.
Now that you know how to add icons for menu items, use the same technique to add another icon, and assign that icon to the floating action button, replacing the email icon. For example, you might want the floating action button to start a chat session; in which case you might want to use an icon showing a human.
Hint: The floating action button is defined in activity_main.xml.
While adding the icon, also change the text that appears in the snackbar after tapping the floating action button. You will find this text in the Snackbar.make statement in the main activity. Extract the string resource for this text to be snackbar_text .
Task 3. Handle the selected menu item
In this task, you'll add a method to display a message about which menu item is tapped, and use the onOptionsItemSelected() method to determine which menu item was tapped.
3.1 Create a method to display the menu choice
public void displayToast(String message) {
Toast.makeText(getApplicationContext(), message,
Toast.LENGTH_SHORT).show();
}
The displayToast() method gets the message from the appropriate string (such as action_contact_message ).
3.2 Use the onOptionsItemSelected event handler
The onOptionsItemSelected() method handles selections from the options menu. You will add a switch case block to determine which menu item was selected, and what message to create for each selected item. (Rather than creating a message for each item, you could implement an event handler for each item that performs an action, such as starting another activity, as shown later in this lesson.)
@Override
public boolean onOptionsItemSelected(MenuItem item) {
int id = item.getItemId();
if (id == R.id.action_order) {
return true;
}
return super.onOptionsItemSelected(item);
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.action_order:
displayToast(getString(R.string.action_order_message));
return true;
case R.id.action_status:
displayToast(getString(R.string.action_status_message));
return true;
case R.id.action_favorites:
displayToast(getString(R.string.action_favorites_message));
return true;
case R.id.action_contact:
displayToast(getString(R.string.action_contact_message));
return true;
default:
// Do nothing
}
return super.onOptionsItemSelected(item);
}
In the above figure:
Solution code (includes coding challenge #1)
Android Studio project: DroidCafe Part 2
Coding Challenge #2
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge 2: In the previous challenge, you changed the icon for the floating action button that appears at the bottom of the MainActivity screen in your app.
For this challenge:
<string name="google_mtv_coord_zoom12">geo:37.422114,-122.086744?z=12</string>
public void displayMap() {
Intent intent = new Intent();
intent.setAction(Intent.ACTION_VIEW);
// Using the coordinates for Google headquarters.
String data = getString(R.string.google_mtv_coord_zoom12);
intent.setData(Uri.parse(data));
if (intent.resolveActivity(getPackageManager()) != null) {
startActivity(intent);
}
}
For examples of implicit intents, including opening the Maps app, see Common Implicit Intents on github.
After tapping the floating action button to go to the Maps app, as shown in the figure below, the user can tap the Back button below the screen to return to your app.
Solution code (includes coding challenge #2)
Android Studio Project: DroidCafe Part 3
You will finish the DroidCafe app in the next lesson.
Summary
In this practical, you learned how to do the following:
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
4.3: Using the App Bar and Tabs for Navigation
Contents:
In the early stages of developing an app, you should determine the paths users should take through your app in order to do something, such as placing an order or browsing through content. Each path enables users to navigate across, into, and back out from the different tasks and pieces of content within the app.
In this practical, you'll learn how to add an Up button (a left-facing arrow) to the app bar of your app, as shown below, to navigate from a child screen up to the parent screen.
The Up button is always used to navigate to the parent screen in the hierarchy. It differs from the Back button (the triangle at the bottom of the screen), which provides navigation to whatever screen the user viewed previously.
This practical also introduces tab navigation, in which tabs appear across the top of a screen, providing navigation to other screens. Tab navigation is a very popular solution for lateral navigation from one child screen to another child screen that is a sibling, as shown in the diagram below. Tabs provide navigation to and from the sibling screens Top Stories, Tech News, and Cooking without having to navigate up to the parent. Tabs can also provide navigation to and from stories, which are sibling screens under the Top Stories parent.
Tabs are most appropriate for four or fewer sibling screens. The user can tap a tab to see a different screen, or swipe left or right to see a different screen.
In the above figure:
What you should already KNOW
From the previous chapters, you should be able to:
What you will LEARN
In this practical, you will learn to:
What you will DO
App Overview
In the previous practical you created an app called Droid Cafe in three parts, using the Basic Activity template. This template also provides an app bar at the top of the screen. You will learn how to add an Up button (a left-facing arrow) to the app bar for up navigation from the second activity ( OrderActivity ) to the main activity ( MainActivity ). This will complete the Droid Cafe app.
To start the project from where you left off in the previous practical, download the Android Studio project DroidCafe Part 3.
The second app you will create for tab navigation will show three tabs below the app bar to navigate to sibling screens. As the user taps a tab, the screen shows a content screen depending on which tab is tapped. The user can also swipe left and right to visit the content screens. Swiping views is handled automatically by the ViewPager class.
Task 1. Add an Up button for ancestral navigation
Your app should make it easy for users to find their way back to the app's main screen, which is the parent activity. One way to do this is to provide an Up button on the app bar for all activities that are children of the parent activity.
The Up button provides ancestral "up" navigation, enabling the user to go up from a child page to the parent page. The Up button is the left-facing arrow on the left side of the app bar, as shown on the left side of the figure below.
When the user touches the Up button, the app navigates to the parent activity. The diagram on the right side of the figure below shows how the Up button is used to navigate within an app based on the hierarchical relationships between screens.
In the above figure:
Tip: The Back button (the triangle at the bottom of the screen) differs from the Up button. The Back button provides navigation to whatever screen you viewed previously. If you have several child screens that the user can navigate through using a lateral navigation pattern (as described in the next section), the Back button would send the user back to the previous child screen, not to the parent screen. Use an Up button if you want to provide ancestral navigation from a child screen back to the parent screen. For more information about Up navigation, see Providing Up Navigation.
As you learned previously, when adding activities to an app, you can add Up-button navigation to a child activity such as OrderActivity by declaring the activity's parent to be MainActivity in the AndroidManifest.xml file. You can also set the android:label attribute for a title for the activity screen, such as "Order Activity" :
<activity android:name=".OrderActivity"
android:label="Order Activity"
android:parentActivityName="com.example.android.
droidcafe.MainActivity">
<meta-data
android:name="android.support.PARENT_ACTIVITY"
android:value=".MainActivity"/>
</activity>
The Order Activity screen now includes the Up button (highlighted in the figure below) in the app bar to navigate back to the parent activity.
Solution code:
Android Studio project: DroidCafe
Task 2. Use tab navigation with swipe views
With lateral navigation, you enable the user to go from one sibling to another (at the same level in a multitier hierarchy). For example, if your app provides several categories of stories (such as Top Stories, Tech News, and Cooking, as shown in the figure below), you would want to provide your users the ability to navigate from one category to the next, without having to navigate back up to the parent screen. Another example of lateral navigation is the ability to swipe left or right in a Gmail conversation to view a newer or older one in the same Inbox.
In the above figure:
You can implement lateral navigation with tabs that represent each screen. Tabs appear across the top of a screen, as shown on the left side of the figure above, in order to provide navigation to other screens. Tab navigation is a very popular solution for lateral navigation from one child screen to another child screen that is a sibling—in the same position in the hierarchy and sharing the same parent screen. Tab navigation is often combined with the ability to swipe child screens left-to-right and right-to-left.
The primary class used for displaying tabs is TabLayout in the Android Design Support Library. It provides a horizontal layout to display tabs. You can show the tabs below the app bar, and use the PagerAdapter class to populate screens "pages" inside of a ViewPager. ViewPager is a layout manager that lets the user flip left and right through screens. This is a common pattern for presenting different screens of content within an activity—use an adapter to fill the content screen to show in the activity, and a layout manager that changes the content screens depending on which tab is selected.
You supply an implementation of a PagerAdapter to generate the screens that the view shows. ViewPager is most often used in conjunction with Fragment. By using fragments, you have a convenient way to manage the lifecycle of each screen "page".
To use classes in the Android Support Library, add com.android.support:design:xx.xx.x (in which xx.xx.x is the newest version) to the build.gradle (Module: app) file.
The following are standard adapters for using fragments with the ViewPager:
2.1 Create the layout for tab navigation
Edit the build.gradle (Module: app) file, and add the following lines (if they are not already added) to the dependencies section:
compile 'com.android.support:design:25.0.1'
compile 'com.android.support:support-v4:25.0.1'
If Android Studio suggests a version with a higher number, edit the above lines to update the version. Also, if Android Studio suggests a newer version of compileSdkVersion , buildToolsVersion , and/or targetSdkVersion , edit them to update the version.
In order to use a Toolbar rather than an action bar and app title, add the following statements to the res > values > styles.xml file to hide the action bar and the title:
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
...
<item name="windowActionBar">false</item>
<item name="windowNoTitle">true</item>
</style>
In the activity_main.xml layout, remove the TextView supplied by the template, and add a Toolbar , a TabLayout , and a ViewPager within the root layout. The layout should look like the code below.
As you type the app:popupTheme attribute for Toolbar as shown below, app will be in red if you didn't add the following statement to RelativeLayout :
<RelativeLayout xmlns:app="http://schemas.android.com/apk/res-auto"
You can click on app and press Option-Return, and Android Studio automatically adds the statement.
Solution code:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:id="@+id/activity_main"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.tabexperiment.MainActivity">
<android.support.v7.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:background="?attr/colorPrimary"
android:minHeight="?attr/actionBarSize"
android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"
app:popupTheme="@style/ThemeOverlay.AppCompat.Light"/>
<android.support.design.widget.TabLayout
android:id="@+id/tab_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/toolbar"
android:background="?attr/colorPrimary"
android:minHeight="?attr/actionBarSize"
android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"/>
<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="fill_parent"
android:layout_below="@id/tab_layout"/>
</RelativeLayout>
2.2 Create a layout and class for each fragment
Add a fragment representing each tabbed screen: TabFragment1, TabFragment2, and TabFragment3. To add each fragment:
Click com.example.android.tabexperiment in the project view.
Choose File > New > Fragment > Fragment (Blank).
Name the fragment TabFragment1.
Check the "Create layout XML?" option, and change the Fragment Layout Name for the XML file to tab_fragment1.
Uncheck the "Include fragment factory methods?" and the "include interface callbacks?" options. You don't need these methods.
Click Finish.
Repeat the above steps, using TabFragment2 and TabFragment3 for Step C, and tab_fragment2 and tab_fragment3 for Step D.
Each fragment (TabFragment1, TabFragment2, and TabFragment3) is created with its class definition set to extend Fragment . Also, each fragment inflates the layout associated with the screen ( tab_fragment1 , tab_fragment2 , and tab_fragment3 ), using the familiar resource-inflate design pattern you learned in a previous chapter with the options menu.
For example, TabFragment1 looks like this:
public class TabFragment1 extends Fragment {
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) {
return inflater.inflate(R.layout.tab_fragment1, container, false);
}
}
Android Studio automatically includes the following import statements:
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
Edit each fragment layout XML file (tab_fragment1, tab_fragment2, and tab_fragment3):
Change the Root Tag to RelativeLayout .
Add a TextView with text such as "These are the top stories".
Set the text appearance with android:textAppearance="?android:attr/textAppearanceLarge" .
Repeat the above steps for each fragment layout XML file, entering different text for the TextView in step B.
Examine each fragment layout XML file. For example, tab_fragment1 should look like this:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="These are the top stories:"
android:textAppearance="?android:attr/textAppearanceLarge"/>
</RelativeLayout>
2.3 Add a PagerAdapter
The adapter-layout manager pattern lets you provide different screens of content within an activity—use an adapter to fill the content screen to show in the activity, and a layout manager that changes the content screens depending on which tab is selected.
Add a new PagerAdapter class to the app that extends FragmentStatePagerAdapter and defines the number of tabs ( mNumOfTabs ):
public class PagerAdapter extends FragmentStatePagerAdapter {
int mNumOfTabs;
public PagerAdapter(FragmentManager fm, int NumOfTabs) {
super(fm);
this.mNumOfTabs = NumOfTabs;
}
}
While entering the above code, Android Studio automatically imports:
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentStatePagerAdapter;
If FragmentManager in the above code is in red, a red lightbulb icon should appear when you click on it. Click the lightbulb icon and choose Import class. Import choices appear. Select the following import choice:
FragmentManager (android.support.v4)
Choosing the above imports the following:
import android.support.v4.app.FragmentManager;
Also, Android Studio underlines the class definition for PagerAdapter and, if you click on PagerAdapter, displays a red bulb icon. Click the icon and choose Implement Methods, and then click OK to implement the already selected getItem() and getCount() methods.
@Override
public Fragment getItem(int position) {
switch (position) {
case 0:
return new TabFragment1();
case 1:
return new TabFragment2();
case 2:
return new TabFragment3();
default:
return null;
}
}
@Override
public int getCount() {
return mNumOfTabs;
}
2.4 Inflate the Toolbar and TabLayout
Since you are using tabs that fit underneath the app bar, you have set up the app bar and Toolbar in the activity_main.xml layout in the first step of this task. Now you need to inflate the Toolbar (using the same method described in a previous chapter about the options menu), and create an instance of TabLayout to position the tabs.
Inflate the Toolbar in the onCreate() method in MainActivity.java:
@Override
protected void onCreate(Bundle savedInstanceState) {
...
Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar(toolbar);
// Create an instance of the tab layout from the view.
...
}
In the above code, Toolbar is in red, and a red lightbulb icon should appear. Click the icon and choose Import class. Import choices appear. Select Toolbar (android.support.v7.widget.Toolbar), and the following import statement appears in your code:
import android.support.v7.widget.Toolbar;
<string name="tab_label1">Top Stories</string>
<string name="tab_label2">Tech News</string>
<string name="tab_label3">Cooking</string>
At the end of the onCreate() method, create an instance of the tab layout from the tab_layout element in the layout, and set the text for each tab using addTab():
...
// Create an instance of the tab layout from the view.
TabLayout tabLayout = (TabLayout) findViewById(R.id.tab_layout);
// Set the text for each tab.
tabLayout.addTab(tabLayout.newTab().setText(R.string.tab_label1));
tabLayout.addTab(tabLayout.newTab().setText(R.string.tab_label2));
tabLayout.addTab(tabLayout.newTab().setText(R.string.tab_label3));
// Set the tabs to fill the entire layout.
tabLayout.setTabGravity(TabLayout.GRAVITY_FILL);
// Use PagerAdapter to manage page views in fragments.
...
2.5 Use PagerAdapter to manage screen views
...
// Using PagerAdapter to manage page views in fragments.
// Each page is represented by its own fragment.
// This is another example of the adapter pattern.
final ViewPager viewPager = (ViewPager) findViewById(R.id.pager);
final PagerAdapter adapter = new PagerAdapter
(getSupportFragmentManager(), tabLayout.getTabCount());
viewPager.setAdapter(adapter);
// Setting a listener for clicks.
...
At the end of the onCreate() method, set a listener (TabLayoutOnPageChangeListener) to detect if a tab is clicked, and create the onTabSelected() method to set the ViewPager to the appropriate tabbed screen. The code should look as follows:
...
// Setting a listener for clicks.
viewPager.addOnPageChangeListener(new
TabLayout.TabLayoutOnPageChangeListener(tabLayout));
tabLayout.addOnTabSelectedListener(new TabLayout.OnTabSelectedListener() {
@Override
public void onTabSelected(TabLayout.Tab tab) {
viewPager.setCurrentItem(tab.getPosition());
}
@Override
public void onTabUnselected(TabLayout.Tab tab) {
}
@Override
public void onTabReselected(TabLayout.Tab tab) {
}
});
}
Solution code
Android Studio Project: Tab Experiment (including coding challenge 1)
Android Studio Project: NavDrawer Experiment Experiment (coding challenge 2)
Coding challenges
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge 1: When you created the layout for tab navigation in the first step of the previous lesson, you established a Toolbar for the app bar in the activity_main.xml layout file. Add an options menu to the app bar as a challenge.
To start, you will want to create the menu_main.xml file, and add menu items for the options menu. You must add at least one menu item, such as Settings.
You can inflate the options menu in the Toolbar by adding the onCreateOptionsMenu() method, as you did in a previous lesson on using the options menu.
Finally you can detect which options menu item is checked by using the onOptionsItemSelected() method.
Challenge 2: Create a new app with a navigation drawer. When the user taps a navigation drawer choice, close the drawer and display a toast message showing which choice was selected.
A navigation drawer is a panel that usually displays navigation options on the left edge of the screen, as shown on the right side of the figure below. It is hidden most of the time, but is revealed when the user swipes a finger from the left edge of the screen or touches the navigation icon in the app bar, as shown on the left side of the figure below.
In the above figure:
To make a navigation drawer in your app, you need to do the following:
To create a navigation drawer layout, use the DrawerLayout APIs available in the Support Library. For design specifications, follow the design principles for navigation drawers in the Navigation Drawer design guide.
To add a navigation drawer, use a DrawerLayout as the root view of your activity's layout. Inside the DrawerLayout , add one view that contains the main content for the screen (your primary layout when the drawer is hidden) and another view, typically a NavigationView, that contains the contents of the navigation drawer.
Tip: To make your layouts simpler to understand, use the include tag to include an XML layout within another XML layout. The figure below is a visual representation of the activity_main.xml layout and its included XML layouts:
In the above figure:
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
4.4: Create a Recycler View
Contents:
Displaying and manipulating a scrollable list of similar data items, as you did in the scrolling view practical, is a common feature of apps. For example, contacts, playlists, photos, dictionaries, shopping lists, an index of documents, or a listing of saved games are all examples of scrollable lists.
Earlier in this class, you used ScrollView to perform scrolling of other Views. ScrollView is easy to use, but it is not recommended for production use, especially for long lists of scrollable items.
RecyclerView is a subclass of ViewGroup and is a more resource-efficient way to display scrollable lists. Instead of creating a view for each item, whether or not it's visible, RecyclerView creates a limited number of list items and reuses them for visible content.
In this series of practicals you will use a RecyclerView to:
What you should already KNOW
For this practical you should be familiar with how to:
What you will LEARN
In this practical, you will learn to:
What you will DO
Create a new application that uses a RecyclerView to display a list of items as a scrollable list and associate click behavior with the list items. Use a floating action button to let the user add items to the RecyclerView.
App Overview
The "RecyclerView" app will display a long list of words.
Task 1. Create and configure a new project
In this task, you will create and configure a new project for the RecyclerView sample app.
1.1. Create the project
Attribute | Value |
Application Name | RecyclerView |
Company Name | com.example.android or your own domain |
Phone and Tablet Minimum SDK | API15: Android 4.0.3 IceCreamSandwich |
Template | Empty Activity |
Generate Layout file box | Checked |
1.2. Add support libraries to the build file
In order to use the RecyclerView and the floating action button (FAB), you need to add the respective Android Support Libraries to your build.
Why: Android Support libraries provide backward-compatible versions of Android framework APIs, additional UI components and a set of useful utilities. The RecyclerView class is located in the Android Support package; two dependencies must be included in the Gradle build process to use it.
Follow these steps and refer to the screenshot:
compile 'com.android.support:recyclerview-v7:23.1.1'
compile 'com.android.support:design:23.1.1'
Solution:
This is an example of the dependencies section of the build.gradle file. Your file may be slightly different and your entries may have a different version number.
dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
testCompile 'junit:junit:4.12'
compile 'com.android.support:appcompat-v7:23.1.1'
compile 'com.android.support:recyclerview-v7:23.1.1'
compile 'com.android.support:design:23.1.1'
}
Task 2. Create a dataset
Before you can display anything, you need data to display. In a more sophisticated app, your data could come from internal storage (a file, SQLite database, saved preferences), from another app (Contacts, Photos), or from the internet (cloud storage, Google Sheets, or any data source with an API). For this exercise, you will simulate data by creating it in the main activities onCreate() method.
Why: Storing and retrieving data is a topic of its own covered in the data storage chapter. You will have an opportunity to extend your app to use real data in that later lesson.
2.1. Add code to create data
In this task you will dynamically create a linked list of twenty word strings that end in increasing numbers, such that ["Word 1", "Word 2", "Word 3", …. ].
You must use a LinkedList for this practical. Refer to the solution code, if you need help.
The app UI has not changed, but you should see a list of log messages in logcat, such as: android.example.com.wordlist D/WordList: Word 1
Solution:
Class variables:
private final LinkedList<String> mWordList = new LinkedList<>();
private int mCount = 0;
In the onCreate method of MainActivity:
for (int i = 0; i < 20; i++) {
mWordList.addLast("Word " + mCount++);
Log.d("WordList", mWordList.getLast());
}
Task 3. Create a RecyclerView
In this practical, you will display data in a RecyclerView. Since there are several parts to creating a working RecyclerView, make sure you immediately fix any errors that you see in Android Studio.
To display your data in a RecyclerView, you need the following parts:
The diagram below shows the relationship between the data, the adapter, the view holder, and the layout manager.
Implementation steps overview
To implement these pieces, you will need to:
3.1. Create the main layout in activity_main.xml
In the previous apps, you used LinearLayout to arrange your views. In order to accommodate the RecyclerView and the floating action button that you will add later, you need to use a different view group called a coordinator layout. CoordinatorLayout is more flexible than LinearLayout when arranging views. For example, views like the floating action button can overlay other views.
In main_activity.xml, replace the code created by the Empty Activity with code for a CoordinatorLayout, and then add a RecyclerView:
compile 'com.android.support:recyclerview-v7:24.1.1'
<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
</android.support.design.widget.CoordinatorLayout>
<android.support.v7.widget.RecyclerView>
</android.support.v7.widget.RecyclerView>
Attribute | Value |
android:id | "@+id/recyclerview" |
android:layout_width | match_parent |
android:layout_height | match_parent |
Solution:
<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<android.support.v7.widget.RecyclerView
android:id="@+id/recyclerview"
android:layout_width="match_parent"
android:layout_height="match_parent">
</android.support.v7.widget.RecyclerView>
</android.support.design.widget.CoordinatorLayout>
3.2. Create the layout for one list item
The adapter needs the layout for one item in the list. All the items use the same layout. You need to specify that list item layout in a separate layout resource file, because it is used by the adapter, separately from the RecyclerView.
Create a simple word item layout using a vertical LinearLayout with a TextView:
Attribute | Value |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:orientation | "vertical" |
android:padding | "6dp" |
Attribute | Value |
android:id | "@+id/word" |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:textSize | "24sp" |
android:textStyle | "bold" |
3.3 Create a style from the TextView attributes
You can use styles to allow elements to share groups of display attributes. An easy way to create a style is to extract the style of a UI element that you already created. Extract the style information for the word text view:
Solution:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
android:padding="6dp">
<TextView
android:id="@+id/word"
style="@style/word_title" />
</LinearLayout>
3.4. Create an adapter with a view holder
Android uses adapters (from the Adapter class) to connect data with their views. There are many different kinds of adapters available. You can also write your own custom adapters. In this task you will create an adapter that associates your list of words with word list item views.
To connect data with views, the adapter needs to know about the views into which it will place the data. Therefore, the adapter contains a view holder (from the ViewHolder class) that describes an item view and its position within the RecyclerView.
In this task you will build an adapter with a view holder that bridges the gap between the data in your word list and the RecyclerView that displays it.
WordListAdapter extends a generic adapter for RecyclerView to use a view holder that is specific for your app and defined inside WordListAdapter. WordViewHolder shows an error, because you have not defined it yet.public class WordListAdapter extends
RecyclerView.Adapter<WordListAdapter.WordViewHolder> {}
3.5 Create the view holder
class WordViewHolder extends RecyclerView.ViewHolder {}
public final TextView wordItemView;
final WordListAdapter mAdapter;
public WordViewHolder(View itemView, WordListAdapter adapter) {
super(itemView);
wordItemView = (TextView) itemView.findViewById(R.id.word);
this.mAdapter = adapter;
}
3.6 Storing your data in the adapter
private final LinkedList<String> mWordList;
Next, WordListAdapter needs a constructor that initializes the word list from the data. To create a view for a list item, the WordListAdapter needs to inflate the XML for a list item. You use a layout inflater for that job. A LayoutInflator reads a layout XML description and converts it into the corresponding views.@Override
public int getItemCount() {
return mWordList.size();
}
private LayoutInflater mInflater;
public WordListAdapter(Context context, LinkedList<String> wordList) {
mInflater = LayoutInflater.from(context);
this.mWordList = wordList;
}
@Override
public WordViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
View mItemView = mInflater.inflate(R.layout.wordlist_item, parent, false);
return new WordViewHolder(mItemView, this);
}
@Override
public void onBindViewHolder(WordViewHolder holder, int position) {
String mCurrent = mWordList.get(position);
holder.wordItemView.setText(mCurrent);
}
3.7. Create the RecyclerView in the Main Activity
Now that you have an adapter with a view holder, you can finally create a RecyclerView and connect all the pieces to display your data.
private RecyclerView mRecyclerView;
private WordListAdapter mAdapter;
// Get a handle to the RecyclerView.
mRecyclerView = (RecyclerView) findViewById(R.id.recyclerview);
// Create an adapter and supply the data to be displayed.
mAdapter = new WordListAdapter(this, mWordList);
// Connect the adapter with the RecyclerView.
mRecyclerView.setAdapter(mAdapter);
// Give the RecyclerView a default layout manager.
mRecyclerView.setLayoutManager(new LinearLayoutManager(this));
Task 4. Make the list interactive
Looking at lists of items is interesting, but it's a lot more fun and useful if your user can interact with them.
To see how the RecyclerView can respond to user input, you will programmatically attach a click handler to each item. When the item is tapped, the click handler is executed, and that item's text will change.
4.1. Make items respond to clicks
class WordViewHolder extends RecyclerView.ViewHolder implements View.OnClickListener
// Get the position of the item that was clicked.
int mPosition = getLayoutPosition();
// Use that to access the affected item in mWordList.
String element = mWordList.get(mPosition);
// Change the word in the mWordList.
mWordList.set(mPosition, "Clicked! " + element);
// Notify the adapter, that the data has changed so it can
// update the RecyclerView to display the data.
mAdapter.notifyDataSetChanged();
itemView.setOnClickListener(this);
Solution code: WordListAdapter.java and MainActivity.java
Task 5. Add a FAB to insert items
There are multiple ways in which you can add additional behaviors to the list and list items. One way is to use a floating action button (FAB). For example, in Gmail, the FAB is used to compose a new email. In this task you will implement a FAB to add an item to the word list.
Why? You have already seen that you can change the content of list items. The list of items that a RecyclerView displays can be modified dynamically-- it's not just a static list of items.
For this practical, you will generate a new word to insert into the list. For a more useful application, you would get data from your users.
5.1. Add a Floating Action Button (FAB)
The FAB is a standard control from the Material Design Specification and is part of the Android Design Support Library. You will learn more in the chapter about Material Design. These UI controls have predefined properties. To create a FAB for your app, add the following code inside the coordinator layout of activity_main.xml.
<android.support.design.widget.FloatingActionButton
android:id="@+id/fab"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom|end"
android:layout_margin="16dp"
android:clickable="true"
android:src="@drawable/ic_add_24dp" />
Note the following:
Android provides an icon library for standard Android icons. ic_add_black_24dp is one of the standard icons. You have to add it to your drawable resources to use it.
Note: Because this is a vector drawing, it is stored as an XML file. Vector drawings are automatically scaled, so you do not need to keep around a bitmap for each screen resolution. Learn more: Android Vector Asset Studio.
5.2. Add behavior to the FAB
In this task you'll add to the FAB an onClick listener that does the following:
// Add a floating action click handler for creating new entries.
FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
fab.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
int wordListSize = mWordList.size();
// Add a new word to the end of the wordList.
mWordList.addLast("+ Word " + wordListSize);
// Notify the adapter, that the data has changed so it can
// update the RecyclerView to display the data.
mRecyclerView.getAdapter().notifyItemInserted(wordListSize);
// Scroll to the bottom.
mRecyclerView.smoothScrollToPosition(wordListSize);
}
});
Solution code
Android Studio project: RecyclerView
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Creating a click listener for each item in the list is easy, but it can hurt the performance of your app if you have a lot of data. Research how you could implement this more efficiently. This is an advanced challenge. Start by thinking about it conceptually, and then search for an implementation example.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
5.1: Drawables, Styles, and Themes
Contents:
In this chapter, you will learn how to reduce your code, increase its readability and ease of maintenance by applying common styles to your views, use drawable resources, and apply themes to your application.
What you should already KNOW
From the previous chapters you should be familiar with basic concepts of the Activity lifecycle, and how to:
What you will LEARN
In this practical, you will learn to:
What you will DO
App Overview
The "Scorekeeper" application consists of two sets of buttons and two text views used to keep track of the score for any point-based game with two players.
Task 1: Create The Scorekeeper App
In this section, you will create your Android Studio project, modify the layout, and add onClick functionality to its buttons.
1.1 Create the "Scorekeeper" Project
1.2 Create the layout for the main activity
Define the root view:
Attribute | Value |
android:orientation | "vertical" |
Define the score containers:
Attribute | Value |
android:layout_width | "match_parent" |
android:layout_height | "0dp" |
android:layout_weight | "1" |
Add views to your UI
Add vector assets
Add attributes to your views
android:src="@drawable/ic_minus"
android:contentDescription="Minus Button"
android:src="@drawable/ic_plus"
android:contentDescription="Plus Button"
Solution Code:
Note: Your code may be a little different as there are multiple ways to achieve the same layout.
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.android.scorekeeper.MainActivity">
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:text="@string/team_1"/>
<ImageButton
android:id="@+id/decreaseTeam1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_centerVertical="true"
android:contentDescription="@string/minus_button"
android:src="@drawable/ic_minus" />
<TextView
android:id="@+id/score_1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/initial_count"/>
<ImageButton
android:id="@+id/increaseTeam1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentEnd="true"
android:layout_alignParentRight="true"
android:layout_centerVertical="true"
android:contentDescription="@string/plus_button"
android:src="@drawable/ic_plus"/>
</RelativeLayout>
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:text="@string/team_2"/>
<ImageButton
android:id="@+id/decreaseTeam2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_centerVertical="true"
android:contentDescription="@string/minus_button"
android:src="@drawable/ic_minus"/>
<TextView
android:id="@+id/score_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/initial_count"/>
<ImageButton
android:id="@+id/increaseTeam2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentEnd="true"
android:layout_alignParentRight="true"
android:layout_centerVertical="true"
android:contentDescription="@string/plus_button"
android:src="@drawable/ic_plus"/>
</RelativeLayout>
</LinearLayout>
1.3 Initialize your TextViews and score count variables
In order to keep track of the scores, you will need two things:
1.4 Implement the onClick functionality for your buttons
In your MainActivity implement two onClick methods: increaseScore() and decreaseScore() .
Note: onClick methods all have the same signature - they return void and take a View as an argument.
The left buttons should decrement the score TextView, while the right ones should increment it.
Solution Code:
Note: You must also add the android:onClick attribute to every button in the activity_main.xml file. You can identify which button was clicked by calling view.getId() in the onClick methods.
/**
* Method that handles the onClick of both the decrement buttons
* @param view The button view that was clicked
*/
public void decreaseScore(View view) {
//Get the ID of the button that was clicked
int viewID = view.getId();
switch (viewID){
//If it was on Team 1
case R.id.decreaseTeam1:
//Decrement the score and update the TextView
mScore1--;
mScoreText1.setText(String.valueOf(mScore1));
break;
//If it was Team 2
case R.id.decreaseTeam2:
//Decrement the score and update the TextView
mScore2--;
mScoreText2.setText(String.valueOf(mScore2));
}
}
/**
* Method that handles the onClick of both the increment buttons
* @param view The button view that was clicked
*/
public void increaseScore(View view) {
//Get the ID of the button that was clicked
int viewID = view.getId();
switch (viewID){
//If it was on Team 1
case R.id.increaseTeam1:
//Increment the score and update the TextView
mScore1++;
mScoreText1.setText(String.valueOf(mScore1));
break;
//If it was Team 2
case R.id.increaseTeam2:
//Increment the score and update the TextView
mScore2++;
mScoreText2.setText(String.valueOf(mScore2));
}
}
Task 2: Create a Drawable resource
You now have a functioning scorekeeper application! However, the layout is dull and does not communicate the function of the buttons. In order to make it more clear, the standard grey background of the buttons can be changed.
In Android, graphics are often handled by a resource called a Drawable. In the following exercise you will learn how to create a certain type of drawable called a ShapeDrawable, and apply it to your buttons as a background.
For more information on Drawables, see Drawable Resource Documentation.
2.1 Create a Shape Drawable
A ShapeDrawable is a primitive geometric shape defined in an xml file by a number of attributes including color, shape, padding and more. It defines a vector graphic, which can scale up and down without losing any definition.
<?xml version="1.0" encoding="utf-8"?>
<shape
xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="oval">
<stroke
android:width="2dp"
android:color="@color/colorPrimary"/>
</shape>
2.2 Apply the shape drawable as a background
android:layout_width="70dp"
android:layout_height="70dp"
Task 3: Style your views
As you continue to add views and attributes to your layout, your code will start to become large and repetitive, especially when you apply the same attributes to many similar elements. A style can specify common properties such as padding, font color, font size, and background color. Attributes that are layout-oriented such as height, width and relative location should remain in the layout resource file.
In the following exercise, you will learn how to create styles and apply them to multiple views and layouts, allowing common attributes to be updated simultaneously from one location.
Note: Styles are meant for attributes that modify the look of the view. Layout parameters such as height, weight and relative location should stay in the layout file.
3.1 Create button styles
In Android, styles can inherit properties from other styles. You can declare a parent for your style using an optional "parent" parameter and has the following properties:
For example, all four buttons in this example share a common background drawable but with different icons for plus and minus. Furthermore, the two increment buttons share the same icon, as do the two decrement buttons. You can therefore create 3 styles:
These styles are represented in the figure below.
Do the following:
Note the "parent" attribute, which is how you specify your parent style using XML. The name attribute, in this case "AppTheme", defines the name of the style. The parent attribute, in this case "Theme.AppCompat.Light.DarkActionBar", declares the parent style attributes which "AppTheme" inherits. In this case it is the Android default theme, with a light background and a dark action bar. A theme is a style that is applied to an entire activity or application, instead of a single view. This allows for a consistent style throughout an entire activity or application (such as a consistent look and feel for the App Bar in every part of your application).<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<style name="ScoreButtons" parent="Widget.AppCompat.Button">
<item name="android:background">@drawable/button_background</item>
</style>
Create the style for the plus buttons by extending the "ScoreButtons" style:
<style name="PlusButtons" parent="ScoreButtons">
<item name="android:src">@drawable/ic_plus</item>
<item name="android:contentDescription">@string/plus_button</item>
</style>
Note: The contentDescription attribute is for visually impaired users. It acts as a label that certain accessibility devices use to read out loud to provide some context about the meaning of the UI element.
Create the style for the minus buttons:
<style name="MinusButtons" parent="ScoreButtons">
<item name="android:src">@drawable/ic_minus</item>
<item name="android:contentDescription">@string/minus_button</item>
</style>
style="@style/MinusButtons"
style="@style/PlusButtons"
Note: The style attribute does not use the "android:" namespace, because it is part of the default XML attributes.
3.2 Create TextView styles
The team name and score display text views can also be styled since they have common colors and fonts. Do the following:
android:textAppearance="@style/TextAppearance.AppCompat.Headline"
Solution Code:
styles.xml
<resources>
<!-- Base application theme. -->
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
</style>
<style name="ScoreButtons" parent="AppTheme">
<item name="android:background">@drawable/button_background</item>
</style>
<style name="PlusButtons" parent="ScoreButtons">
<item name="android:src">@drawable/ic_plus</item>
<item name="android:contentDescription">@string/plus_button</item>
</style>
<style name="MinusButtons" parent="ScoreButtons">
<item name="android:src">@drawable/ic_minus</item>
<item name="android:contentDescription">@string/minus_button</item>
</style>
<style name="ScoreText">
<item name="android:textAppearance">@style/TextAppearance.AppCompat.Headline</item>
</style>
</resources>
activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
android:weightSum="2"
tools:context="com.example.android.scorekeeper.MainActivity">
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1">
<TextView
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:text="@string/team_1"
style="@style/ScoreText" />
<ImageButton
android:id="@+id/decreaseTeam1"
android:layout_height="@dimen/button_size"
android:layout_width="@dimen/button_size"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_centerVertical="true"
android:onClick="decreaseScore"
style="@style/MinusButtons"/>
<TextView
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
android:id="@+id/score_1"
android:text="@string/initial_count"
style="@style/ScoreText" />
<ImageButton
android:id="@+id/increaseTeam1"
android:layout_height="@dimen/button_size"
android:layout_width="@dimen/button_size"
android:layout_alignParentRight="true"
android:layout_alignParentEnd="true"
android:layout_centerVertical="true"
android:onClick="increaseScore"
style="@style/PlusButtons"/>
</RelativeLayout>
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1">
<TextView
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:text="@string/team_2"
style="@style/ScoreText" />
<ImageButton
android:id="@+id/decreaseTeam2"
android:layout_height="@dimen/button_size"
android:layout_width="@dimen/button_size"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_centerVertical="true"
android:onClick="decreaseScore"
style="@style/MinusButtons"/>
<TextView
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
android:id="@+id/score_2"
android:text="@string/initial_count"
style="@style/ScoreText" />
<ImageButton
android:id="@+id/increaseTeam2"
android:layout_height="@dimen/button_size"
android:layout_width="@dimen/button_size"
android:layout_alignParentRight="true"
android:layout_alignParentEnd="true"
android:layout_centerVertical="true"
android:onClick="increaseScore"
style="@style/PlusButtons"/>
</RelativeLayout>
</LinearLayout>
3.3 Updating the styles
The power of using styles becomes apparent when you want to make changes to several elements of the same style. You can make the text bigger, bolder and brighter, and change the icons to the color of the button backgrounds.
Make the following changes in your styles.xml file:
Add or modify each of the following attributes in the specified style block:
Attribute | Style Block |
@color/colorPrimary | ScoreButtons |
@style/TextAppearance.AppCompat.Display3 | ScoreText |
Note: The colorPrimary value is automatically generated by Android Studio when you create the project and can be found in the values/colors.xml file. The TextAppearance.AppCompat.Display3 attribute is a predefined text style supplied by Android.
Create a new style called "TeamText" with the following attribute:
<item name="android:textAppearance">@style/TextAppearance.AppCompat.Display1</item>
Task 4: Themes and Final Touches
You've seen that views with similar characteristics can be styled together in the "styles.xml" file. But what if you want to define styles for an entire activity, or even application? It's possible to accomplish this by using "Themes". To set a theme for an Activity or set of Activities, you need to modify the AndroidManifest.xml file.
In this task, you will add the "night mode" theme to your app, which will allow the users to use a low contrast version of your app that is easier on the eyes at night time, as well as make a few polishing touches to the User Interface.
4.1 Explore themes
In the Android manifest file, find the <application> tag and change the android:theme attribute to:
android:theme="@style/Theme.AppCompat.Light.NoActionBar"
This is a predefined theme that removes the action bar from your activity.
Run your app. The toolbar disappears!
To apply a theme to an activity instead of the entire application, place the theme attribute in the activity tag instead of the application tag. For more information on Themes and Styles, see the Style and Theme Guide.
4.2 Add theme button to the menu
One use for setting a theme for your application is to provide an alternate visual experience for browsing at night. In such conditions, it is often better to have a low contrast, dark layout. The Android framework provides a theme that is designed exactly for this: The DayNight theme. This theme has several built in options that allow you to control the colors in your app programmatically: either by setting it to change automatically by time, or by user command.
In this exercise you will add a menu button that will toggle the application between the regular theme and a "night-mode" theme.
<item
android:id="@+id/night_mode"
android:title="@string/night_mode"/>
<string name="night_mode">Night Mode</string>
<string name="day_mode">Day Mode</string>
getMenuInflater().inflate(R.menu.main_menu, menu);
4.3 Change the theme from the menu
The DayNight theme uses the AppCompatDelegate class to set the night mode options in your activity. To learn more about this theme, visit this blog post.
@Override
public boolean onOptionsItemSelected(MenuItem item) {
//Check if the correct item was clicked
if(item.getItemId()==R.id.night_mode){}
}
//Get the night mode state of the app
int nightMode = AppCompatDelegate.getDefaultNightMode();
//Set the theme mode for the restarted activity
if(nightMode == AppCompatDelegate.MODE_NIGHT_YES) {
AppCompatDelegate.setDefaultNightMode(AppCompatDelegate.MODE_NIGHT_NO);
}
else {
AppCompatDelegate.setDefaultNightMode(AppCompatDelegate.MODE_NIGHT_YES);
}
Add the following code in the onCreateOptionsMenu method:
@Override
public boolean onCreateOptionsMenu(Menu menu) {
//Inflate the menu from XML
getMenuInflater().inflate(R.menu.main_menu, menu);
//Change the label of the menu based on the state of the app
int nightMode = AppCompatDelegate.getDefaultNightMode();
if(nightMode == AppCompatDelegate.MODE_NIGHT_YES){
menu.findItem(R.id.night_mode).setTitle(R.string.day_mode);
} else{
menu.findItem(R.id.night_mode).setTitle(R.string.night_mode);
}
return true;
}
4.4 SaveInstanceState
You learned in previous lessons that you must be prepared for your activity to be destroyed and recreated at unexpected times, for example when your screen is rotated. In this application, the TextViews containing the scores are reset to the initial value of 0 when the device is rotated. To fix this, Do the following:
@Override
protected void onSaveInstanceState(Bundle outState) {
//Save the scores
outState.putInt(STATE_SCORE_1, mScore1);
outState.putInt(STATE_SCORE_2, mScore2);
super.onSaveInstanceState(outState);
}
In the onCreate() method of MainActivity.java, check if there is a savedInstanceState. If there is, restore the scores to the text views:
if (savedInstanceState != null) {
mScore1 = savedInstanceState.getInt(STATE_SCORE_1);
mScore2 = savedInstanceState.getInt(STATE_SCORE_2);
//Set the score text views
mScoreText1.setText(String.valueOf(mScore1));
mScoreText2.setText(String.valueOf(mScore2));
}
That's it! Congratulations, you now have a styled Scorekeeper Application.
Solution code
Android Studio project: Scorekeeper
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Right now, your buttons do not behave intuitively because they do not change their appearance when they are pressed. Android has another type of drawable called StateListDrawable which allows for a different graphic to be used depending on the state of the object.
For this challenge problem, create a drawable resource that changes the background of the button to the same color as the border when the state of the button is "pressed". You should also set the color of the text inside the buttons to a selector that makes it white when the button is "pressed".
Summary
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
Videos
5.2: Material Design: Lists, Cards and Colors
Contents:
This chapter introduces concepts from Google's Material Design guidelines, a series of best practices for creating visually appealing and intuitive applications. You will learn how to add and use the CardView and Floating Action Button Views, efficiently use images, as well as employ design best practices to make your user's experience delightful.
What you should already KNOW
From the previous chapters you should be able to:
What you will LEARN
What you will DO
App Overview
The "Material Me!" app is a mock sports news application with very poor design implementation. You will fix it up to meet the design guidelines to create a delightful user experience! Below are some screenshots of the app before and after the Material Design improvements.
Task 1: Download the starter code
The complete starter app project for this practical is available at MaterialMe-Starter. In this task you will load the project into Android Studio and explore some of the app's key features.
1.1 Open and Run the Material Me Project
The app shows a list of sports names with some placeholder news text for each sport. The current layout and style of the app makes it nearly unusable: each row of data is not clearly separated and there is no imagery or color to engage the user.
1.2 Explore the App
Before making modifications to the app, explore its current structure. It contains the following elements:
Sport.java
This class represents the data model for each row of data in the RecyclerView. Right now it contains a field for the title of the sport and a field for some information about the sport.
SportsAdapter.java
This is the adapter for the RecyclerView. It uses an ArrayList of Sport objects as its data and populates each row with this data.
MainActivity.java
The MainActivity initializes the RecyclerView and adapter, and creates the data from resource files.
strings.xml
This resource file contains all of the data for the application, including the titles and information for each sport.
list_item.xml
This layout file defines each row of the RecyclerView. It consists of three TextViews, one for each piece of data (the title and the info for each sport) and one used as a label.
Task 2: Add a CardView and Images
One of the fundamental principles of Material Design is the use of bold imagery to enhance the user experience. Adding images to the RecyclerView list items is a good start for creating a dynamic and captivating user experience.
When presenting information that has mixed media (like images and text), the Material Design guidelines recommend using a CardView, which is a FrameLayout with some extra features (such as elevation and rounded corners) that give it a consistent look and feel across many different applications and platforms. CardView is a UI component found in the Android Support Libraries.
In this section, you will move each list item into a CardView and add an Image to make the app comply with Material guidelines.
2.1 Add the CardView
CardView is not included in the default Android SDK, so you must be add it as a build.gradle dependency. Do the following:
In your app level build.gradle file, add the following line to the dependencies block:
compile 'com.android.support:cardview-v7:24.1.1'
Note: The version of the support library may have changed since the writing of this practical. Update it to it's most current version and sync your gradle files.
In the list_item.xml file, surround the root LinearLayout with a CardView with the following attributes:
Attribute | Value |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:layout_margin | "8dp" |
Note: You will need to move the schema declaration ( xmlns:android="http://schemas.android.com/apk/res/android" ) from the LinearLayout to the Cardview which is now the top level View of your layout file.
Run the app. Now each row item is contained inside a CardView, which is elevated above the bottom layer and casts a shadow.
2.2 Download the images
The CardView is not intended to be used exclusively with plain text: it is best for displaying a mixture of content. You have is a good opportunity to make this sports information app more exciting by adding banner images to every row!
Using images is resource intensive for your app: the Android framework has to load the entire image into memory at full resolution, even if the app only displays a small thumbnail of the image.
In this section you will learn how to use the Glide library to load large images efficiently, without draining your resources or even crashing your app due to 'Out of Memory' exceptions.
You will need an array with the path to each image so that you can include it in the Sports java object. To do this:Note: Copy the files using your file explorer, not Android Studio. Navigate to the directory where all your Android Projects are stored (It's called /AndroidStudioProjects), and go to MaterialMe/app/src/main/res/drawable and paste the images here.
<array name="sports_images">
<item>@drawable/img_baseball</item>
<item>@drawable/img_badminton</item>
<item>@drawable/img_basketball</item>
<item>@drawable/img_bowling</item>
<item>@drawable/img_cycling</item>
<item>@drawable/img_golf</item>
<item>@drawable/img_running</item>
<item>@drawable/img_soccer</item>
<item>@drawable/img_swimming</item>
<item>@drawable/img_tabletennis</item>
<item>@drawable/img_tennis</item>
</array>
2.3 Modify the Sport object
The Sport.java object will need to include the drawable resource that correpsonds to the sport. To achieve that:
private final int imageResource;
public Sport(String title, String info, int imageResource) {
this.title = title;
this.info = info;
this.imageResource = imageResource;
}
public int getImageResource() {
return imageResource;
}
2.4 Fix the initializeData() method
In MainActivity.java, the initializeData() method is now broken, because the constructor for the Sport object demands the image resource as the third parameter.
A convenient data structure to use would be a TypedArray. A TypedArray allows you to store an array of other XML resources. By using a TypedArray, you will be able to obtain the image resources as well as the sports title and information by using indexing in the same loop.
You can access an element at index i in the TypedArray by using the appropriate "get" method, depending on the type of resource in the array. In this specific case, it contains resource ID's, so you use the getResourceId() method.TypedArray sportsImageResources =
getResources().obtainTypedArray(R.array.sports_images);
for(int i=0;i<sportsList.length;i++){
mSportsData.add(new Sport(sportsList[i],sportsInfo[i],
sportsImageResources.getResourceId(i,0)));
}
sportsImageResources.recycle();
2.5 Add an ImageView to the list items
Attribute | Value |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:id | "@+id/sportsImage" |
android:adjustViewBounds | "true" |
TextView id: title | Attribute | Value |
android:layout_alignBottom | "@id/sportsImage" | |
android:theme | "@style/ThemeOverlay.AppCompat.Dark" | |
TextView id: newsTitle | Attribute | Value |
android:layout_below | "@id/sportsImage" | |
android:textColor | "?android:textColorSecondary" | |
TextView id: subTitle | android:layout_below | "@id/newsTitle" |
Note: The question mark in the above textColor attribute ("?android:textColorSecondary") means that the framework will apply the value from the currently applied theme. In this case, this attribute is inherited from the "Theme.AppCompat.Light.DarkActionBar" theme, which defines it as a light gray color, often used for subheadings.
2.6 Load the images using Glide
After downloading the images and setting up the ImageView, the next step is to modify the SportsAdapter to load an image into the ImageView in onBindViewHolder() . If you take this approach, you will find that your app crashes due to "Out of Memory" errors. The Android framework has to load the image into memory each time at full resolution, no matter what the display size of the ImageView is.
There are a number of ways to reduce the memory consumption when loading images, but one of the easiest approaches is to use an Image Loading Library like Glide, which you will do in this step. Glide uses background processing, as well some other complex processing, to reduce the memory requirements of loading images. It also includes some useful features like showing placeholder images while the desired images are loaded.
Note: You can learn more about reducing memory consumption in your app in the Displaying Bitmaps guide.
compile 'com.github.bumptech.glide:glide:3.5.2'
mSportsImage = (ImageView) itemView.findViewById(R.id.sportsImage);
That's all takes to load an image with Glide. Glide also has several additional features that let you resize, transform and load images in a variety of ways. Head over to the Glide github page to learn more.Glide.with(mContext).load(currentSport.getImageResource()).into(holder.mSportsImage);
Task 3: Make your CardView swipeable, movable and clickable
When users see cards in an app, they have expectations about the way the cards behave. The Material Design guidelines say that:
You will now implement these behaviors in your app.
3.1 Implement swipe to dismiss
The Android SDK includes a class called ItemTouchHelper that is used to define what happens to RecyclerView list items when the user performs various touch actions, such as swipe, or drag and drop. Some of the common use cases are already implemented in a set of methods in ItemTouchHelper.SimpleCallback.
ItemTouchHelper.SimpleCallback lets you define which directions are supported for swiping and moving list items, and implement the swiping and moving behavior.
Do the following:
Create a new ItemTouchHelper object, in the onCreate() method of MainActivity.java. For its argument, create a new instance of ItemTouchHelper.SimpleCallback and press Enter to make Android Studio fill in the required methods: onMove() and onSwiped() .
Note: If the required methods were not automatically added, click on the red light bulb and select Implement methods.
The SimpleCallback constructor will be underlined in red because you have not yet provided the required parameters: the direction that you plan to support for moving and swiping list items, respectively.
Because we are only implementing swipe to dismiss at the moment, you should pass in 0 for the supported move directions and ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT for the supported swipe directions:
ItemTouchHelper helper = new ItemTouchHelper(new ItemTouchHelper
.SimpleCallback(0, ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT) {}
mSportsData.remove(viewHolder.getAdapterPosition());
mAdapter.notifyItemRemoved(viewHolder.getAdapterPosition());
helper.attachToRecyclerView(mRecyclerView);
3.2 Implement drag and drop
You can also implement drag and drop functionality using the same SimpleCallback. The first argument of the SimpleCallback determines which directions the ItemTouchHelper supports for moving the objects around. Do the following:
ItemTouchHelper helper = new ItemTouchHelper(new ItemTouchHelper
.SimpleCallback(ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT |
ItemTouchHelper.DOWN | ItemTouchHelper.UP, ItemTouchHelper.LEFT |
ItemTouchHelper.RIGHT) {}
int from = viewHolder.getAdapterPosition();
int to = target.getAdapterPosition();
Collections.swap(mSportsData, from, to);
mAdapter.notifyItemMoved(from, to);
3.3 Implement the detail view
According to Material Design guidelines, a card is used to provide an entry point to more detailed information. You may find yourself tapping on the cards to see more information about the sports, because that is how you expect cards to behave. In this section, you will add a detail activity that will be launched when any list item is pressed. For this practical, the detail activity will contain the name and image of the list item you clicked, but will contain only generic placeholder detail text, so you don't have to create custom detail for each list item.
Wrap the entire activity_detail.xml in a ScrollView and change the layout_height attribute of the RelativeLayout to "wrap_content".
Note: The attributes for the ScrollView might appear red at first. This is because you must first add an attribute that defines the Android namespace. This is the attribute that shows up in all of your layout files by default: xmlns:android="http://schemas.android.com/apk/res/android" .
Simply move this declaration to the top level view and the red should go away.
In the SportsAdapter class, make the ViewHolder inner class implement View.OnClickListener, and implement the required method ( onClick() ).
itemView.setOnClickListener(this);
Sport currentSport = mSportsData.get(getAdapterPosition());
Intent detailIntent = new Intent(mContext, DetailActivity.class);
detailIntent.putExtra("title", currentSport.getTitle());
detailIntent.putExtra("image_resource", currentSport.getImageResource());
TextView sportsTitle = (TextView)findViewById(R.id.titleDetail);
ImageView sportsImage = (ImageView)findViewById(R.id.sportsImageDetail);
sportsTitle.setText(getIntent().getStringExtra("title"));
Glide.with(this).load(getIntent().getIntExtra("image_resource",0))
.into(sportsImage);
Task 4: Add the FAB and choose a Material Color Palette
One of the principles behind Material Design is using consistent elements across applications and platforms so that users recognize patterns and know how to use them. You have already used one such element: the Floating Action Button. The FAB is a circular button that floats above the rest of the UI. It is used to promote a particular action to the user, one that is very likely to be used in a given activity. In this task, you will create a FAB that resets the dataset to it's original state.
4.1 Add the FAB
The Floating Action Button is part of the Design Support Library.
compile 'com.android.support:design:24.2.1'
Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:layout_alignParentBottom | "true" |
android:layout_alignParentRight | "true |
android:layout_margin | "16dp" |
android:src | "@drawable/ic_reset" |
android:onClick | resetSports |
Note: Because the activity is destroyed and recreated when the configuration changes, rotating the device resets the data in this implementation. In order for the changes to be persistent (as in the case of reordering or removing data), you would have to implement onSaveInstanceState() or write the changes to a persistent source (like a database or SharedPreferences).
4.2 Choose a Material Palette
If you run your app you may notice that the FAB has a color that you didn't define anywhere. Also, the App bar (the bar that contains the title of your app) has a color that you did not explicitly set. Where are these colors defined?
Note: If you want to change the color of the FAB to something other than theme colors, use the app:backgroundTint attribute. Note that this uses the app: namespace and Android Studio will prompt you to add a statement to define the namespace.
Solution code
Android Studio project: MaterialMe
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge 1: This challenge consists of several small improvements to your application:
Challenge 2: Create an application with 4 images arranged in a grid in the center of your layout. Make the first three solid colored backgrounds with different shapes (square, circle, line), and the fourth the Android Material Design Icon. Make each of these images respond to clicks as follows:
Note: You must set your minimum SDK level to 21 or higher in order to implement shared element transitions.
Summary
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
5.3: Supporting Landscape, Multiple Screen Sizes and Localization
Contents:
After using the Material Me! application you created in the last practical, you may notice that it is not optimized for use when the orientation for the device is rotated from portrait mode to landscape mode. Likewise, if you are testing on a tablet, the font-sizes are too small and the space is not used efficiently. The Android framework has a way to solve both of these issues. Resource qualifiers allow the Android Runtime to use alternate resource files (.xml) depending on the device configuration, such as, the orientation, the locale and other "qualifiers". For a full list of available qualifiers, visit the Providing Resources guide. In this practical you will optimize the use of space in the Material sports app so that your app works well in landscape mode, as well as on a tablet.
What you should already KNOW
From the previous chapters you should be able to:
What you will LEARN
In this practical, you will learn to:
What you will DO
In this practical you will:
App Overview
The improved Material Me! application will include improved layouts when used in landscape mode, on a tablet, and offer localized content for users outside of the US.
This practical builds on the "Material Me!" app from the previous practical.
Task 1: Support Landscape Orientation
You may recall that when the user changes the orientation of the device, the Android framework destroys and recreates the current activity. The new orientation often has different layout requirements than the original one. For example, the Material Me! application looks good in portrait mode, but does not make optimal use of the screen in landscape mode. With the larger width in landscape mode, the image in each list item overwhelms the text providing a poor user experience.
In this task, you will create an alternative resource file that will change the appearance of the app when it is used in landscape orientation.
1.1 Change to a GridLayoutManager
Layouts that contain list items often look unbalanced in landscape mode when the list items include full-width images. One good solution is to use a grid, instead of a linear list when displaying the CardViews in landscape mode. Recall that the items in a RecyclerView list are placed using a LayoutManager; until now, you have been using the LinearLayoutManager which lays out each item in a vertical or horizontal scrolling list. GridLayoutManager is another layout manager that displays items in a grid, rather than a list. When you create a GridLayoutManager, you supply two parameters: the application context, and an integer representing the number of columns. You can change the number of columns programmatically, which gives you flexibility in designing responsive layouts. In this case, the number of columns integer should be 1 in portrait orientation (single column) and 2 when in landscape mode. Notice when the number of columns is 1, a GridLayoutManager behaves similar to a LinearLayoutManager.
<integer name="grid_column_count">1</integer>
Create another values resource file, again called integers.xml but with different characteristics.
Note the "Available qualifiers" option in the dialog for creating the resource file. These characteristics are called "resource qualifiers" and are used to label resource configurations for various situations.
You should now have two individual integers.xml files. In the "Android" project view in Android Studio, these should be grouped into an "integers.xml" folder, with each file inside labeled with the qualifier you selected ("land" in this case).
1.2 Modify MainActivity
In onCreate() in MainActivity, get the integer from the integers.xml resource file:
int gridColumnCount = getResources().getInteger(R.integer.grid_column_count);
The Android Runtime will take care of deciding which integers.xml file to use, depending on the state of the device.
mRecyclerView.setLayoutManager(new GridLayoutManager(this, gridColumnCount));
When using the application in landscape mode, you will notice that the swipe to dismiss functionality is no longer intuitive, since the items are now in a grid and not a list. You can use the gridColumnCount variable to disable the swipe action when there is more than one column:
int swipeDirs;
if(gridColumnCount > 1){
swipeDirs = 0;
} else {
swipeDirs = ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT;
}
ItemTouchHelper helper = new ItemTouchHelper(new ItemTouchHelper.SimpleCallback
(ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT | ItemTouchHelper.DOWN
| ItemTouchHelper.UP, swipeDirs)
Task 2 : Support Tablets
Although you have modified the app to look better in landscape mode, running it on a tablet with physically larger dimensions results in all the text appearing too small. Also when the device is in landscape orientation, the screen is not used efficiently; 3 columns would be more appropriate for a tablet-sized screen in landscape mode. In this task, you will add additional resource qualifiers to change the appearance of the app when used on tablets.
2.1 Make the Layout Adapt to Tablets
In this step, you will create different resource qualifiers to maximize screen use for tablet sized devices, increasing the column count to 2 for portrait orientation and 3 for landscape orientation. The resource qualifier you need depends on your specific requirements. There are several qualifiers that you can use to select the correct conditions:
To start this task:
Create a third integers.xml file that includes both the smallest screen width of 600dp qualifier, and the landscape orientation qualifier. Android uses this file when the app runs on a tablet in landscape mode.
Note: Android will look for the resource file with the most specific resource qualifier first, then move on to a more generic one. For example, if a value is defined in the integers.xml file with both the landscape and smallest width qualifier, it will override the value in the integers.xml file with just the landscape qualifier. For more information about resource qualifiers, visit the Providing Resources Guide.
Change the grid_column_count variable to 3 in the landscape, tablet integers.xml file.
2.2 Update the tablet list item styles
At this point, your app changes the number of columns in a GridLayoutManager to fit the orientation of the device and maximize the use of the screen. However, all the TextViews that appeared correctly-sized on a phone's screen now appear too small for the larger screen of a tablet. To fix this, you will extract the TextAppearance styles from the layout resource files into the styles resource file. You will also create additional styles.xml files for tablets using resource qualifiers.
Note: You could also create alternative layout files with the proper resource qualifiers, and change the styles of the TextViews in those. However, this would require more code duplication, since most of the layout information is the same no matter what device you use, so you will only extract the attributes that will change.
Create the Styles
Name | Parent |
SportsTitle | TextAppearance.AppCompat.Headline |
SportsDetailText | TextAppearance.AppCompat.Subhead |
Create a styles.xml file for tablets
Now you will create the file where you will define styles for tablets.
The Android pre-defined Display1 style uses the textColorSecondary value from the current theme (ThemeOverlay.AppCompat.Dark), which in this case is a light gray color. The light gray color does not show up well on the banner images in your app. To correct this add an "android:textColor" attribute to the "SportsTitle" style and set it to "?android:textColorPrimary" .'
Note: The question mark tells Android Runtime to find the value in the theme applied to the View. In this example the theme is ThemeOverlay.AppCompat.Dark in which the textColorPrimary attribute is white.
Change the parent of "SportsDetailText" style to "TextAppearance.AppCompat.Headline" .
Update the style of the text views in list_item.xml
2.3 Update the tablet sports detail styles
You have now fixed the display for the MainActivity, which lists all the Sports CardViews. The DetailActivity still has the same font sizes on tablets and phones.
styles.xml (sw600dp) | |
Name | Parent |
SportsDetailTitle | TextAppearance.AppCompat.Display3 |
styles.xml (not qualified) | |
Name | Parent |
SportsDetailTitle | TextAppearance.AppCompat.Headline |
Task 3: Localize your App
A "locale" represents a specific geographic, political or cultural region of the world. Resource qualifiers can be used to provide alternate resources based on the users' locale. Just as for orientation and screen width, Android provides the ability to include separate resource files for different locales. In this step, you will modify your strings.xml file to be a little more international.
3.1 Add a localized strings.xml file
You may have noticed that the sports information contained in this app is designed for users from the US. It uses the term "soccer" to represent a sport known as "football" everywhere else in the world. In order to make your app more internationalized, you can provide a locale specific strings.xml file to the US users which uses "soccer", while all other locales will use "football".
Note: To change the locale setting on your device, go to the device settings, then choose Language & input and change the Language setting. If you pick English (United States) the app will have "Soccer" as the string, otherwise it will say "Football".
Solution code
Android Studio project: MaterialMe-Resource
Coding challenges
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge 1: It turns out that several countries other than the US use "soccer" instead of "football". Research these countries and add localized strings resources for them.
Challenge 2: Use the localization techniques you learned in Task 3 in combination with Google translate to translate all of the strings in your app into a different language.
Summary
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
6.1: Use Espresso to test your UI
Contents:
When you, as a developer, test user interactions within your app, it helps to ensure that your app's users don't encounter unexpected results or have a poor experience when interacting with your app.
You can test the user interface for a complex app manually by running the app and trying the user interface. But you can't possibly cover all permutations of user interactions and all of the app's functionality. You would also have to repeat these manual tests on many different device configurations in an emulator, and on many different hardware devices.
When you automate tests of UI interactions, you free yourself up for other work. You can use suites of automated tests to perform all of the UI interactions automatically, which makes it easier to run tests for different device configurations. It is a good idea to get into the habit of creating user interface (UI) tests as you code to verify that the UI of your app is functioning correctly.
Espresso is a testing framework for Android that makes it easy to write reliable user interface (UI) tests for an app. The framework, which is part of the Android Support Repository, provides APIs for writing UI tests to simulate user interactions within the app—everything from clicking buttons and navigating views to choosing menu selections and entering data.
What you should already KNOW
You should be able to:
What you will LEARN
During this practical, you will learn to:
What you will DO
In this practical application you will:
App Overview
You will modify the TwoActivities project to set up Espresso in the project for testing. You will then test the app’s functionality, which enables a user to enter text into a text field and click the Send button, as shown on the left side of the figure below, and view that text in a second activity, as shown on the right side of the figure below.
Tip: For an introduction to testing Android apps, see Test Your App.
Android Studio project: TwoActivities
Task 1: Set up Espresso in your project
To use Espresso, you must already have the Android Support Repository installed with Android Studio. You must also configure Espresso in your project.
In this task you check to see if the repository is installed. If it is not, you will install it. You then will configure Espresso in the TwoActivities project created previously.
1.1 Check for the Android Support Repository
Click the SDK Tools tab, and look for the Support Repository.
If "Not installed" appears, or an update is available:
Click the checkbox next to Android Support Repository. A download icon should appear next to the checkbox.
Click one of the following:
1.2 Configure Espresso for the project
When you start a project for the phone and tablet form factor using API 15: Android 4.0.3 (Ice Cream Sandwich) as the minimum SDK, Android Studio version 2.2 and newer automatically includes the dependencies you need to use Espresso.To execute tests, Espresso and UI Automator use JUnit as their testing fraework. JUnit is the most popular and widely-used unit testing framework for Java. Your test class using Espresso or UI Automator should be written as a JUnit 4 test class. If you do not have JUnit, you can get it at http://junit.org/junit4/.
Note: The most current Junit revision is JUnit 5. However for the purposes of using Espresso or UI Automator, version 4.12 is recommended.
If you have created your project in a previous version of Android Studio, you may have to add the dependencies and instrumentation yourself. To add the dependencies yourself, follow these steps:
Open your build.gradle (Module: app) file.
Note: Do not make changes to the build.gradle (Project: yourappname) file.
Check if the following is included (along with other dependencies) in the dependencies section of the project's build.gradle (Module: app) file:
androidTestCompile
('com.android.support.test.espresso:espresso-core:2.2.2', {
exclude group: 'com.android.support', module: 'support-annotations'
})
testCompile 'junit:junit:4.12'
Note: If the file doesn't include the above dependency statements, enter them into the dependencies section.
Android Studio 2.2 also adds the following instrumentation statement to the end of the defaultConfig section of a new project:
testInstrumentationRunner
"android.support.test.runner.AndroidJUnitRunner"
Note: If the file doesn't include the above instrumentation statement, enter it at the end of the defaultConfig section.
Instrumentation is a set of control methods, or hooks, in the Android system. These hooks control an Android component independently of the component's normal lifecycle. They also control how Android loads apps. Using instrumentation makes it possible for tests to invoke methods in the app, and modify and examine fields in the app, independently of the app's normal lifecycle.
1.3 Turn off animations on your test device
To let Android Studio communicate with your device, you must first turn on USB Debugging on your device, as described in an earlier chapter.
Android phones and tablets display animations when moving between apps and screens. The animations are attractive when using the device, but they slow down performance, and may also cause unexpected results or may lead your test to fail. So it's a good idea to turn off animations on your physical device. To turn off animations on your test device, tap on the Settings icon on your physical device. Look for Developer Options. Now look for the Drawing section. In this section, turn off the following options:
Tip: You should also keep in mind that instrumenting a system, such as in executing unit tests, can alter the timing of specific functions. For this reason, it is useful to keep unit testing and actual debugging separate. Unit testing uses an API based Espresso Framework with hooks for instrumentation. Debugging uses breakpoints and other methods in the actual coding statements within your app's code, as described in a previous lesson. </div>
Task 2: Test for switching activities and entering text
You write Espresso tests based on what a user might do while interacting with your app. The Espresso tests are classes that are separate from your app's code. You can create as many tests as you need, in order to interact with the views in your UI that you want to test.
The Espresso test is like a robot that must be told what to do. It must find the view you want it to find on the screen, and it must interact with it, such as clicking the view, and checking the contents of the view. If it fails to do any of these things properly, or if the result is not what you expected, the test fails.
With Espresso, you create what is essentially a script of actions to take on each view and check against expected results. The key concepts are locating and then interacting with UI elements. These are the basic steps:
Hamcrest (an anagram of "matchers") is a framework that assists writing software tests in Java. To create a test, you create a method within the test class that uses Hamcrest expressions.
Tip: For more information about the Hamcrest matchers, see The Hamcrest Tutorial.
With Espresso you use the following types of Hamcrest expressions to help find views and interact with them:
The following shows how all three expressions work together:
onView(withId(R.id.my_view))
.perform(click())
.check(matches(isDisplayed()));
The following shows how the above expressions are used together in a statement:
onView(withId(R.id.my_view))
.perform(click())
.check(matches(isDisplayed()));
2.1 Define a class for a test and set up the activity
Android Studio creates a blank Espresso test class for you in the src/androidTest/java/com.example.package folder:
public class ActivityInputOutputTest
@RunWith(AndroidJUnit4.class)
public class ActivityInputOutputTest {
@Rule
public ActivityTestRule mActivityRule = new ActivityTestRule<>(
MainActivity.class);
}
The class definition now includes several annotations:
In the above statement, ActivityTestRule may turn red at first, but then Android Studio adds the following import statement automatically:
import android.support.test.rule.ActivityTestRule;
2.2 Test switching activities
The TwoActivities app has two activities:
When you have an app that switches activities, you should test that capability. The Two Activities app provides a text entry field and a Send button (the button_main id). Clicking Send launches the Second activity with the entered text shown in the text_header view of the Second activity.
But what happens if no text is entered? Will the Second activity still appear?
The ActivityInputOutputTest class of tests will show that the views appear regardless of whether text is entered. Follow these steps to add your tests to ActivityInputOutputTest :
Add an activityLaunch() method to ActivityInputOutputTest to test whether the views appear when clicking the buttons, and include the @Test notation on a line immediately above the method:
@Test
public void activityLaunch() { … }
The @Test annotation tells JUnit that the public void method to which it is attached can be run as a test case. A test method begins with the @Test annotation and contains the code to exercise and verify a single function in the component that you want to test.
Add a combined ViewMatcher and ViewAction expression to the activityLaunch() method to locate the view containing the button_main button, and include a ViewAction expression to perform a click:
onView(withId(R.id.button_main)).perform(click());
The onView() method lets you use ViewMatcher arguments to find views. It searches the view hierarchy to locate a corresponding View instance that meets some given criteria—in this case, the button_main view. The .perform(click()) expression is a ViewAction expression that performs a click on the view.
Add another ViewMatcher expression to the activityLaunch() method to find the text_header view (which is in the Second activity), and a ViewAction expression to perform a check to see if the view is displayed:
onView(withId(R.id.text_header)).check(matches(isDisplayed()));
This statement uses the onView() method to locate the text_header view for the Second activity and check to see if it is displayed after clicking the button_main view.
onView(withId(R.id.button_second)).perform(click());
onView(withId(R.id.text_header_reply)).check(matches(isDisplayed()));
@Test
public void activityLaunch() {
onView(withId(R.id.button_main)).perform(click());
onView(withId(R.id.text_header)).check(matches(isDisplayed()));
onView(withId(R.id.button_second)).perform(click());
onView(withId(R.id.text_header_reply)).check(matches(isDisplayed()));
}
As the test runs, watch the test automatically start the app and click the button. The Second activity's view appears. The test then clicks the Second activity's button, and the Main activity view appears.
The Run window (the bottom pane of Android Studio) shows the progress of the test, and when finishes, it displays "Tests ran to completion." In the left column Android Studio displays "All Tests Passed".
2.3 Test text input and output
Write a test for text input and output. The TwoActivities app uses the editText_main view for input, the button_main button for sending the input to the Second activity, and the Second activity view that shows the output in the field with the id text_message .
Add another @Test annotation and a new textInputOutput() method to the ApplicationTest class to test text input and output:
@Test
public void textInputOutput() {
onView(withId(R.id.editText_main)).perform(typeText("This is a test."));
onView(withId(R.id.button_main)).perform(click());
}
The above method uses a ViewMatcher to locate the view containing the editText_main view, and a ViewAction to enter the text "This is a test." It then uses another ViewMatcher to find the view with the button_main button, and another ViewAction to click the button.
onView(withId(R.id.text_message)).check(matches(withText("This is a test.")));
Run the test.
As the test runs, the app starts and the text is automatically entered as input; the button is clicked, and the text appears on the second activity's screen.
The bottom pane of Android Studio shows the progress of the test, and when finished, it displays "Tests ran to completion." In the left column Android Studio displays "All Tests Passed". You have successfully tested the text input field, the Send button, and the text output field.
Solution code:
Android Studio Project: TwoActivitiesEspressoTest
See ActivityInputOutputTest.java.
2.4 Introduce an error to show a test failing
Introduce an error in the test to see what a failed test looks like.
onView(withId(R.id.text_message)).check(matches(withText("This is a failing test.")));
android.support.test.espresso.base.DefaultFailureHandler$AssertionFailedWithCauseError: 'with text: is "This is a failing test."' doesn't match the selected view.
Expected: with text: is "This is a failing test."
Got: "AppCompatTextView{id=2131427417, res-name=text_message ...
Other fatal error messages appear after the above, due to the cascading effect of a failure leading to other failures. You can safely ignore them and fix the test itself.
Task 3: Test the display of spinner selections
The Espresso onView() method finds a view that you can test. This method will find a view in the current view hierarchy. But you need to be careful—in an AdapterView such as a spinner, the view is typically dynamically populated with child views at runtime. This means there is a possibility the view that you want to test may not be in the view hierarchy at that time.
The Espresso API handles this problem by providing a separate onData() entry point, which is able to first load the adapter item and bring it into focus prior to locating and performing actions on any of its children.
PhoneNumberSpinner is an app from a previous lesson that shows a spinner, with the id label_spinner , for choosing the label of a phone number (Home, Work, Mobile, and Other). The app displays the choice in a text field, concatenated with the entered phone number.
The goal of this test is to open the spinner, click each item, and then verify that the TextView text_phonelabel contains the item. The test demonstrates that the code retrieving the spinner selection is working properly, and the code displaying the text of the spinner item is also working properly. You will write the test using string resources and iterate through the spinner items so that the test works no matter how many items are in the spinner, or how those items are worded; for example, the words could be in a different language.
Android Studio Project: PhoneNumberSpinner
3.1 Create the test method
@RunWith(AndroidJUnit4.class)
public class SpinnerSelectionTest {
@Rule
public ActivityTestRule mActivityRule = new ActivityTestRule<>(
MainActivity.class);
}
3.2 Access the array used for the spinner items
You want the test to click each item in the spinner based on the number of elements in the array. But how do you access the array?
Assign the array used for the spinner items to a new array to use within the iterateSpinnerItems() method:
public void iterateSpinnerItems() {
String[] myArray =
mActivityRule.getActivity().getResources()
.getStringArray(R.array.labels_array);
}
In the statement above, the test accesses the application's array (with the id labels_array ) by establishing the context with the getActivity() method of the ActivityTestRule class, and getting a resources instance in the application's package using getResources() .
int size = myArray.length;
for (int i=0; i<size; i++) {
}
3.3 Locate spinner items and click on them
Add an onView() statement within the for loop to find the spinner and click on it:
// Find the spinner and click on it.
onView(withId(R.id.label_spinner)).perform(click());
A user must click the spinner itself in order click any item in the spinner, so your test must also click the spinner first before clicking the item.
Write an onData() statement to find and click a spinner item:
// Find the spinner item and click on it.
onData(is(myArray[i])).perform(click());
The above statement matches if the object is a specific item in the spinner, as specified by the myArray[i] array element.
If onData appears in red, click the word, and then click the red light bulb icon that appears in the left margin. Choose the following in the pop-up menu:
Static import method 'android.support.test.espresso.Espresso.onData'
If is appears in red, click the word, and then click the red light bulb icon that appears in the left margin. Choose the following in the pop-up menu:
Static import method…> Matchers.is (org.hamcrest)
Add two more onView() statements to the for loop:
// Find the Submit button and click on it.
onView(withId(R.id.button_main)).perform(click());
// Find the text view and check that the spinner item
// is part of the string.
onView(withId(R.id.text_phonelabel))
.check(matches(withText(containsString(myArray[i]))));
The first statement locates the button_main and clicks it. The second statement checks to see if the resulting text_phonelabel matches the spinner item specified by myArray[i] .
If containsString appears in red, click the word, and then click the red light bulb icon that appears in the left margin. Choose the following in the pop-up menu:
Static import method…> Matchers.containsString (org.hamcrest)
The test runs the app, clicks the spinner, and "exercises" the spinner—it clicks each spinner item from top to bottom, checking to see if the item appears in the text field. It doesn't matter how many spinner items are defined in the array, or what language is used for the spinner's items—the test performs all of them and checks their output against the array.
The bottom pane of Android Studio shows the progress of the test, and when finished, it displays "Tests ran to completion." In the left column Android Studio displays "All Tests Passed".
Solution code:
Android Studio project: PhoneNumberSpinnerEspressoTest
See SpinnerSelectionTest.java.
Task 4: Record a test of a RecyclerView
You learned how to create a RecyclerView in a previous chapter. Like an AdapterView (such as a spinner), a RecyclerView dynamically populates child views at runtime. But a RecyclerView is not an AdapterView, so you can't use onData() to interact with list items as you did in the previous task with a spinner. What makes a RecyclerView complicated from the point of view of Espresso is that onView() can't find the child view if it is off the screen.
Fortunately, you have two handy tools to circumvent these complications:
Recording Espresso tests, rather than coding the tests by hand, ensures that your app gets UI test coverage on areas that might take too much time or be too difficult to code by hand.
Solution code:
Android Studio project: RecyclerView
4.1 Open and run the app
The app lets you scroll a list of words. When you click on a word such as Word 15 the word in the list changes to "Clicked! Word 15".
4.2 Record the test
The following is the test, as recorded in the RecyclerViewTest.java file:
@RunWith(AndroidJUnit4.class)
public class RecyclerViewTest {
@Rule
public ActivityTestRule<MainActivity> mActivityTestRule =
new ActivityTestRule<>(MainActivity.class);
@Test
public void recyclerViewTest() {
ViewInteraction recyclerView = onView(
allOf(withId(R.id.recyclerview), isDisplayed()));
recyclerView.perform(actionOnItemAtPosition(15, click()));
ViewInteraction textView = onView(
allOf(withId(R.id.word), withText("Clicked! Word 15"),
childAtPosition(
childAtPosition(
withId(R.id.recyclerview),
11),
0),
isDisplayed()));
textView.check(matches(withText("Clicked! Word 15")));
}
private static Matcher<View> childAtPosition(
final Matcher<View> parentMatcher, final int position) {
return new TypeSafeMatcher<View>() {
@Override
public void describeTo(Description description) {
description.appendText("Child at position " + position + " in parent ");
parentMatcher.describeTo(description);
}
@Override
public boolean matchesSafely(View view) {
ViewParent parent = view.getParent();
return parent instanceof ViewGroup && parentMatcher.matches(parent)
&& view.equals(((ViewGroup) parent).getChildAt(position));
}
};
}
}
The test uses a RecyclerView object of the ViewInteraction class, which is the primary interface for performing actions or assertions on views, providing both check() and perform() methods. Examine the test code to see how it works:
ViewInteraction recyclerView = onView(
allOf(withId(R.id.recyclerview), isDisplayed()));
recyclerView.perform(actionOnItemAtPosition(15, click()));
Check whether it matches the assertion: The code below checks to see if the clicked item matches the assertion that it should be "Clicked! Word 15" :
ViewInteraction textView = onView(
allOf(withId(R.id.word), withText("Clicked! Word 15"),
childAtPosition(
childAtPosition(
withId(R.id.recyclerview),
11),
0),
isDisplayed()));
textView.check(matches(withText("Clicked! Word 15")));
The code above uses a method called childAtPosition() , which is defined as a custom Matcher :
private static Matcher<View> childAtPosition(
final Matcher<View> parentMatcher, final int position) {
// TypeSafeMatcher() returned
...
}
Implement a custom matcher: The custom matcher extends the abstract TypeSaveMatcher class and requires that you implement the following:
...
// TypeSafeMatcher() returned
return new TypeSafeMatcher<View>() {
@Override
public void describeTo(Description description) {
description.appendText("Child at position "
+ position + " in parent ");
parentMatcher.describeTo(description);
}
@Override
public boolean matchesSafely(View view) {
ViewParent parent = view.getParent();
return parent instanceof ViewGroup &&
parentMatcher.matches(parent)
&& view.equals(((ViewGroup)
parent).getChildAt(position));
}
};
}
}
You can record multiple interactions with the UI in one recording session. You can also record multiple tests, and edit the tests to perform more actions, using the recorded code as a snippet to copy, paste, and edit.
Solution code
Android Studio project: RecyclerViewEspressoTest
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Write an Espresso text for the Scorekeeper app from a previous lesson that tests whether the Day Mode button appears after clicking Night Mode, and whether the Night Mode button appears after clicking Day Mode.
Summary
In this practical, you learned how to do the following:
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Android Studio Documentation:
Android Developer Documentation:
Android Testing Support Library:
Videos
Other:
7.1: Create an AsyncTask
Contents:
A thread is an independent path of execution in a running program. When an Android program is launched, the Android Runtime system creates a thread called the "Main" thread. As your program runs, each line of code is executed in a serial fashion, line by line. This main thread is how your application interacts with components from the Android UI Toolkit, and it's why the main thread is sometimes called the "UI thread". However, sometimes an application needs to perform resource-intensive work, such as downloading files, database queries, playing media, or computing complex analytics. This type of intensive work can block the UI thread if all of the code executes serially on a single thread. When the app is performing resources intensive work, the app does not respond to the user or draw on the screen because it is waiting for that work to be done. This can yield poor performance, which negatively affects the user experience. Users may get frustrated and uninstall your Android app if the performance of the app is slow.
To keep the user experience (UX) running smoothly and responding quickly to user gestures, the Android Framework provides a helper class called AsyncTask which processes work off of the UI thread. An AsyncTask is an abstract Java class that provides one way to move this intensive processing onto a separate thread, thereby allowing the UI thread to remain very responsive. Since the separate thread is not synchronized with the calling thread, it is called an asynchronous thread. An AsyncTask also contains a callback that allows you to display the results of the computation back in the UI thread.
In this practical, you will learn how to add a background task to your Android app using an AsyncTask.
What you should already KNOW
You should be able to:
What you will LEARN
During this practical, you will learn to:
What you will DO
During this practical, you will:
App Overview
You will build an app that has one TextView and one button. When the user clicks the button, the app sleeps for a random amount of time, and then displays a message in the TextView when it wakes up.
Here's what the finished app will look like:
Task 1. Setup the SimpleAsyncTask Project
The SimpleAsyncTask UI is straightforward. It contains a button that launches the AsyncTask, and a TextView that displays the status of the application.
1.1 Create the layout
Add the following essential UI elements to the layout for the MainActivity:
View | Attributes | Values |
LinearLayout | android:orientation | vertical |
TextView | android:text android:id | I am ready to start work! @+id/textView1 |
Button | android:text android:onClick | Start Task startTask |
Note: You can set the layout height and width of each view to whatever you want, as long the views remain on the screen independent of the screen size (using wrap_content ensures that this is the case).
The onClick attribute for the button will be highlighted in yellow, since the startTask() method is not yet implemented in the MainActivity. Place your cursor in the highlighted text, press Alt + Enter (Option + Enter on a Mac) and choose Create 'startTask(View) in 'MainActivity' to create the method stub in MainActivity.
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
android:paddingBottom="@dimen/activity_vertical_margin"
android:orientation="vertical">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/ready_to_start"
android:id = "@+id/textView1"
android:textSize="24sp"/>
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/start_task"
android:id="@+id/button"
android:layout_marginTop="56dp"
android:onClick="startTask" />
</LinearLayout>
Task 2. Create the AsyncTask subclass
Since AsyncTask is an abstract class, you need to subclass it in order to use it. In this example the AsyncTask will execute a very simple background task: it just sleeps for a random amount of time. In a real app, the background task could perform all sorts of work, from querying a database, to connecting to the Internet, to calculating the next Go move so that you can beat the current Go champion.
An AsyncTask has the following methods for performing work off of the main thread:
Note: A background or worker thread is any thread which is not the main or UI thread.
When you create an AsyncTask, you may need to give it information about the work which it is to perform, whether and how to report its progress, and in what form to return the result.
In this exercise you will use an AsyncTask subclass to define work that will run in a different thread than the UI thread, which will avoid any performance issues.
When you create an AsyncTask, you can configure it using these parameters:
For example, an AsyncTask with the following class declaration would take a String as a parameter in doInBackground() (to use in a query, for example), an Integer for onProgressUpdate() (percentage of job complete), and a Bitmap for the the result in onPostExecute() (the query result):
public class MyAsyncTask extends AsyncTask <String, Integer, Bitmap>{}
2.1 Subclass the AsyncTask
In your first AsyncTask implementation, the AsyncTask subclass will be very simple. It does not require a query parameter or publish its progress. You will only be using the doInBackground() and onPostExecute() methods.
public class SimpleAsyncTask extends AsyncTask <Void, Void, String>{}
The AsyncTask will need to update the TextView once it has completed sleeping. The constructor will then need to include the TextView, so that it can be updated in onPostExecute() .Note: The class declaration will be underlined in red, since the required method doInBackground() has not yet been implemented.
public SimpleAsyncTask(TextView tv) {
mTextView = tv;
}
2.2 Implement doInBackground()
@Override
protected String doInBackground(Void... voids) {
return null;
}
Implement doInBackground() to:
Return the String "Awake at last after xx milliseconds" (where xx is the number of milliseconds the app slept)
@Override
protected String doInBackground(Void... voids) {
// Generate a random number between 0 and 10
Random r = new Random();
int n = r.nextInt(11);
// Make the task take long enough that we have
// time to rotate the phone while it is running
int s = n * 200;
// Sleep for the random amount of time
try {
Thread.sleep(s);
} catch (InterruptedException e) {
e.printStackTrace();
}
// Return a String result
return "Awake at last after sleeping for " + s + " milliseconds!";
}
2.3 Implement onPostExecute()
When the doInBackground() method completes, the return value is automatically passed to the onPostExecute() callback.
protected void onPostExecute(String result) {
mTextView.setText(result);
}
Note: You can update the UI in onPostExecute() because it is run on the main (UI) thread. You cannot call mTextView.setText() in doInBackground() , because that method is executed on a separate thread.
Task 3. Implement the Final Steps
3.1 Implement the method that starts the AsyncTask
Your app now has an AsyncTask that performs work in the background (or it would if you didn't call sleep() as the simulated work.) You can now implement the method that gets called when the Start Task button is clicked, to trigger the background task.
private TextView mTextView;
Call execute() on that SimpleAsyncTask instance.
Note: The execute() method is where you pass in the parameters (separated by commas) that are then passed into doInBackground() by the system. Since this AsyncTask has no parameters, you will leave it blank.
Update the TextView to show the text "Napping…"
public void startTask (View view) {
// Put a message in the text view
mTextView.setText("Napping... ");
// Start the AsyncTask.
// The AsyncTask has a callback that will update the text view.
new SimpleAsyncTask(mTextView).execute();
}
Solution Code for MainActivity:
package android.example.com.simpleasynctask;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.TextView;
public class MainActivity extends AppCompatActivity {
// The TextView where we will show results
TextView mTextView;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// Initialize mTextView
mTextView = (TextView) findViewById(R.id.textView1);
}
public void startTask (View view) {
// Put a message in the text view
mTextView.setText("Napping... ");
// Start the AsyncTask.
// The AsyncTask has a callback that will update the text view.
new SimpleAsyncTask(mTextView).execute();
}
}
3.2 Implement onSaveInstanceState()
Click the Start Task button again, and while the app is napping, rotate the device. If the background task completes before you can rotate the phone, try again. Alternatively, you can update the code and make it sleep for a longer time period.
Note: You'll notice that when the device is rotated, the TextView resets to its initial content and the AsyncTask doesn't seem able to update the TextView.
There are several things going on here:
For these reasons, AsyncTasks are not well suited to tasks which may be interrupted by the destruction of the Activity. In use cases where this is critical you can use a different type of class called a Loader, which you will implement in a later practical.
In order to prevent the TextView from resetting to the initial string, you need to save its state. You've already learned how to maintain the state of views in a previous practical, using the SavedInstanceState class.
You will now implement onSaveInstanceState() to preserve the content of your TextView when the activity is spontaneously destroyed.
Note: Not all uses of AsyncTask require you to handle the state of the views on rotation. This app uses a TextView to display the results of the app, so preserving the state is useful. In other cases, such as uploading a file, you may not need any persistent information in the UI, so retaining the state is not critical.
Override the onSaveInstanceState() method in MainActivity to preserve the text inside the TextView when the activity is destroyed:
outState.putString(TEXT_STATE, mTextView.getText().toString());
// Restore TextView if there is a savedInstanceState
if(savedInstanceState!=null){
mTextView.setText(savedInstanceState.getString(TEXT_STATE));
}
Solution Code for MainActivity:
package android.example.com.simpleasynctask;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.TextView;
/**
* The SimpleAsyncTask app contains a button that launches an AsyncTask
* which sleeps in the asynchronous thread for a random amount of time.
*/
public class MainActivity extends AppCompatActivity {
//Key for saving the state of the TextView
private static final String TEXT_STATE = "currentText";
// The TextView where we will show results
private TextView mTextView = null;
/**
* Initializes the activity.
* @param savedInstanceState The current state data
*/
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// Initialize mTextView
mTextView = (TextView) findViewById(R.id.textView1);
// Restore TextView if there is a savedInstanceState
if(savedInstanceState!=null){
mTextView.setText(savedInstanceState.getString(TEXT_STATE));
}
}
/**`
* Handles the onCLick for the "Start Task" button. Launches the AsyncTask
* which performs work off of the UI thread.
*
* @param view The view (Button) that was clicked.
*/
public void startTask (View view) {
// Put a message in the text view
mTextView.setText(R.string.napping);
// Start the AsyncTask.
// The AsyncTask has a callback that will update the textview.
new SimpleAsyncTask(mTextView).execute();
}
/**
* Saves the contents of the TextView to restore on configuration change.
* @param outState The bundle in which the state of the activity is saved when it is spontaneously destroyed.
*/
@Override
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
// Save the state of the TextView
outState.putString(TEXT_STATE, mTextView.getText().toString());
}
}
Solution code
Android Studio project: SimpleAsyncTask
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: AsyncTask provides another very useful override method: onProgressUpdate() , which allows you to update the UI while the AsyncTask is running. Use this method to update the UI with the current sleep time. Look to the AsyncTask documentation to see how onProgressUpdate() is properly implemented. Remember that in the class definition of your AsyncTask, you will need to specify the data type to be used in the onProgressUpdate() method.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Android Developer Documentation
Other resources
Videos
7.2: Connect to the Internet with AsyncTask and AsyncTaskLoader
Contents:
In this practical you will use an AsyncTask to start a background task which gets data from the Internet using a simple REST API. You will use the Google API Explorer to learn how to query the Book Search API, implement this query in a worker thread using AsyncTask, and display the result in your UI. Then you will reimplement the same background task using AsyncTaskLoader, which will be more efficient in updating your UI, handling performance issues, and improving the overall UX.
What you should already KNOW
From the previous practicals you should be able to:
What you will LEARN
In this practical, you will learn to:
What you will DO
In this practical, you will:
App Overview
You will build an app that contains an EditText field and a Button. The user enters the name of the book in the EditText field and clicks the button. The button executes an AsyncTask which queries the Google Book Search API to find the author and title of the book the user is looking for. The results are retrieved and displayed in a TextView field below the button. Once the app is working, you will then modify the app to use AsyncTaskLoader instead of the AsyncTask class.
Task 1. Explore the Books API
In this practical you will use the Google Books API to search for information about a book, such as the author(s) and the title. The Google Books API provides programmatic access to the Google Book Search service using REST APIs. This is the same service used behind the scenes when you manually execute a search on Google Books. You can use the Google API Explorer and Google Book Search in your browser to verify that your Android app is getting the expected results.
1.1 Send a Books API Request
The Request field is an example of a Uniform Resource Identifier (URI). A URI is a string that names or locates a particular resource. URLs are a certain type of URI for identifying and locating a web resource. For the Books API, the request is a URL that contains your search as a parameter (following the q parameter). Notice the API key field after the query field. For security reasons, when accessing a public API, you usually need to get an API key and include it in your Request. However, this specific API does not require a key, so you can leave out that portion of the Request URI in your app.
1.2 Analyze the Books API Response
Towards the bottom of the page you can see the Response to the query. The response uses the JSON format, which is a common format for API query responses. In the API Explorer web page, the JSON code is nicely formatted so that it is human readable. In your application, the JSON response will be returned from the API service as a single string, and you will need to parse that string to extract the information you need.
Task 2. Create the "Who Wrote It?" App
Now that you are familiar with the Books API method that you will be using, it's time to set up the layout of your application.
2.1 Create the project and user interface
View | Attributes | Values |
TextView | android:layout_width android:layout_height android:id android:text android:textAppearance | wrap_content wrap_content @+id/instructions @string/instructions @style/TextAppearance.AppCompat.Title |
EditText | android:layout_width android:layout_height android:id android:inputType android:hint | match_parent wrap_content @+id/bookInput text @string/input_hint |
Button | android:layout_width android:layout_height android:id android:text android:onClick | wrap_content wrap_content @+id/searchButton @string/button_text searchBooks |
TextView | android:layout_width android:layout_height android:id android:textAppearance | wrap_content wrap_content @+id/titleText @style/TextAppearance.AppCompat.Headline |
TextView | android:layout_width android:layout_height android:id android:textAppearance | wrap_content wrap_content @+id/authorText @style/TextAppearance.AppCompat.Headline |
<string name="instructions">Enter a book name, or part of a
book name, or just some text from a book to find
the full book title and who wrote the book!</string>
<string name="button_text">Search Books</string>
<string name="input_hint">Enter a Book Title</string>
2.2 Set up the Main Activity
To query the Books API, you need to get the user input from the EditText.
String queryString = mBookInput.getText().toString();
Note: mBookInput.getText() returns an "Editable" datatype which needs to be converted into a string.
2.3 Create an empty AsyncTask
You are now ready to connect to the Internet and use the Book Search REST API. Network connectivity can be sometimes be sluggish or experience delays. This may cause your app to behave erratically or become slow, so you should not make a network connection on the UI thread. If you attempt a network connection on the UI thread, the Android Runtime may raise a NetworkOnMainThreadException to warn you that it's a bad idea.
Use an AsyncTask to make network connections:
Create a new Java class called FetchBook in app/java that extends AsyncTask . An AsyncTask requires three arguments:
The generic type parameters for the task will be <String, Void, String> since the AsyncTask takes a String as the first parameter (the query), Void since there is no progress update, and String since it returns a string as a result (the JSON response).
Solution code for FetchBook:
public class FetchBook extends AsyncTask<String,Void,String>{
private TextView mTitleText;
private TextView mAuthorText;
public FetchBook(TextView mTitleText, TextView mAuthorText) {
this.mTitleText = mTitleText;
this.mAuthorText = mAuthorText;
}
@Override
protected String doInBackground(String... params) {
return null;
}
@Override
protected void onPostExecute(String s) {
super.onPostExecute(s);
}
}
2.4 Create the NetworkUtils class and build the URI
In this step, you will open an Internet connection and query the Books API. This section has quite a lot of code, so remember to visit the developer documentation for Connecting to the Network if you get stuck. You will write the code for connecting to the internet in a helper class called NetworkUtils.
private static final String LOG_TAG = NetworkUtils.class.getSimpleName();
static String getBookInfo(String queryString){}
HttpURLConnection urlConnection = null;
BufferedReader reader = null;
Create another local variable at the end of getBookInfo() to contain the raw response from the query and return it:
String bookJSONString = null;
return bookJSONString;
If you remember the request from the Books API webpage, you will notice that all the requests begin with the same URI. To specify the type of resource, you append query parameters to the base URI. It is common practice to separate all of these query parameters into constants, and combine them using a Uri.Builder so they can be reused for different URI's. The Uri class has a convenient method, Uri.buildUpon() that returns a URI.Builder that we can use.
For this application, you will limit the number and type of results returned to increase the query speed. To restrict the query, you will only look for books that are printed.
private static final String BOOK_BASE_URL = "https://www.googleapis.com/books/v1/volumes?"; // Base URI for the Books API
private static final String QUERY_PARAM = "q"; // Parameter for the search string
private static final String MAX_RESULTS = "maxResults"; // Parameter that limits search results
private static final String PRINT_TYPE = "printType"; // Parameter to filter by print type
try {
...
} catch (Exception ex) {
...
} finally {
return bookJSONString;
}
//Build up your query URI, limiting results to 10 items and printed books
Uri builtURI = Uri.parse(BOOK_BASE_URL).buildUpon()
.appendQueryParameter(QUERY_PARAM, queryString)
.appendQueryParameter(MAX_RESULTS, "10")
.appendQueryParameter(PRINT_TYPE, "books")
.build();
URL requestURL = new URL(builtURI.toString());
2.5 Make the Request
It is fairly common to make an API request via the internet. Since you will probably use this functionality again, you may want to create a utility class with this functionality or develop a useful subclass for your own convenience. This API request uses the HttpURLConnection class in combination with an InputStream and a StringBuffer to obtain the JSON response from the web. If at any point the process fails and InputStream or StringBuffer are empty, it returns null signifying that the query failed.
urlConnection = (HttpURLConnection) requestURL.openConnection();
urlConnection.setRequestMethod("GET");
urlConnection.connect();
InputStream inputStream = urlConnection.getInputStream();
StringBuffer buffer = new StringBuffer();
if (inputStream == null) {
// Nothing to do.
return null;
}
reader = new BufferedReader(new InputStreamReader(inputStream));
String line;
while ((line = reader.readLine()) != null) {
/* Since it's JSON, adding a newline isn't necessary (it won't affect
parsing) but it does make debugging a *lot* easier if you print out the
completed buffer for debugging. */
buffer.append(line + "\n");
}
if (buffer.length() == 0) {
// Stream was empty. No point in parsing.
return null;
}
bookJSONString = buffer.toString();
catch (IOException e) {
e.printStackTrace();
return null;
}
Close both the urlConnection and the reader variables in the finally block:
finally {
if (urlConnection != null) {
urlConnection.disconnect();
}
if (reader != null) {
try {
reader.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
Note: Each time the connection fails, this code returns null. This means that onPostExecute() will have to check its input parameter for a null string and let the user know the connection failed. This error handling strategy is simplistic, as the user has no idea why the connection failed. A better solution for a production application would be to handle each point of failure differently so that the user can get the appropriate feedback.
Log the value of the bookJSONString variable before returning it. You are now done with the getBookInfo() method.
Log.d(LOG_TAG, bookJSONString);
return NetworkUtils.getBookInfo(params[0]);
new FetchBook(mTitleText, mAuthorText).execute(mQueryString);
Caused by: java.lang.SecurityException: Permission denied (missing INTERNET permission?)
This error indicates that you have not included the permission to access the internet in your AndroidManifest.xml file. Connecting to the internet introduces new security concerns, which is why your apps do not have connectivity by default. You must add permissions manually in the form of a <uses-permission> ; tag in the AndroidManifest.xml.
2.6 Add the Internet permissions
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
2.7 Parse the JSON string
Now that you have the correct response to your query, you must parse the results to extract the information you want to display in the UI. Fortunately, Java has existing classes that aids in the parsing and handling of JSON type data. This process, as well as updating the UI, will happen in the onPostExecute() method.
There is chance that the doInBackground() method might not return the expected JSON string. For example, the try catch might fail and throw an exception, the network might time out or other unhandled errors might occur. In those cases, the Java JSON methods will fail to parse the data and will throw exceptions. This is why you have to do the parsing in the try block, and the catch block must handle the case where incorrect or incomplete data is returned.
To parse the JSON data and handle possible exceptions, do the following:
JSONObject jsonObject = new JSONObject(s);
JSONArray itemsArray = jsonObject.getJSONArray("items");
Iterate through the itemsArray , checking each book for title and author information. If both are not null, exit the loop and update the UI; otherwise continue looking through the list. This way, only entries with both a title and authors will be displayed.
//Iterate through the results
for(int i = 0; i<itemsArray.length(); i++){
JSONObject book = itemsArray.getJSONObject(i); //Get the current item
String title=null;
String authors=null;
JSONObject volumeInfo = book.getJSONObject("volumeInfo");
try {
title = volumeInfo.getString("title");
authors = volumeInfo.getString("authors");
} catch (Exception e){
e.printStackTrace();
}
//If both a title and author exist, update the TextViews and return
if (title != null && authors != null){
mTitleText.setText(title);
mAuthorText.setText(authors);
return;
}
}
Solution code:
//Method for handling the results on the UI thread
@Override
protected void onPostExecute(String s) {
super.onPostExecute(s);
try {
JSONObject jsonObject = new JSONObject(s);
JSONArray itemsArray = jsonObject.getJSONArray("items");
for(int i = 0; i<itemsArray.length(); i++){
JSONObject book = itemsArray.getJSONObject(i);
String title=null;
String authors=null;
JSONObject volumeInfo = book.getJSONObject("volumeInfo");
try {
title = volumeInfo.getString("title");
authors = volumeInfo.getString("authors");
} catch (Exception e){
e.printStackTrace();
}
if (title != null && authors != null){
mTitleText.setText(title);
mAuthorText.setText(authors);
return;
}
}
mTitleText.setText("No Results Found");
mAuthorText.setText("");
} catch (Exception e){
mTitleText.setText("No Results Found");
mAuthorText.setText("");
e.printStackTrace();
}
}
Task 3. Implement UI Best Practices
You now have a functioning app that uses the Books API to execute a book search. However, there are a few things that to do not behave as expected:
You will fix these issues in the following section.
3.1 Hide the Keyboard and Update the TextView
The user experience of searching is not intuitive. When the button is pushed, the keyboard remains visible and there is no way to know that the query is in progress. One solution is to programmatically hide the keyboard and update one of the result TextViews to read "Loading…" while the query is being performed. To use this solution, you can:
InputMethodManager inputManager = (InputMethodManager)
getSystemService(Context.INPUT_METHOD_SERVICE);
inputManager.hideSoftInputFromWindow(getCurrentFocus().getWindowToken(),
InputMethodManager.HIDE_NOT_ALWAYS);
3.2 Manage the network state and the empty search field case
Whenever your application uses the network, it needs to handle the possibility that a network connection is unavailable. Before attempting to connect to the network in your AsyncTask or AsyncTaskLoader, your app should check the state of the network connection.
Solution code:
public void searchBooks(View, view) {
String queryString = mBookInput.getText().toString();
InputMethodManager inputManager = (InputMethodManager)
getSystemService(Context.INPUT_METHOD_SERVICE);
inputManager.hideSoftInputFromWindow(getCurrentFocus().getWindowToken(),
InputMethodManager.HIDE_NOT_ALWAYS);
ConnectivityManager connMgr = (ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
if (networkInfo != null && networkInfo.isConnected() && queryString.length()!=0) {
new FetchBook(mTitleText, mAuthorText).execute(queryString);
mAuthorText.setText("");
mTitleText.setText(R.string.loading);
}
else {
if (queryString.length() == 0) {
mAuthorText.setText("");
mTitleText.setText("Please enter a search term");
} else {
mAuthorText.setText("");
mTitleText.setText("Please check your network connection and try again.");
}
}
}
Task 4. Migrate to AsyncTaskLoader
When using an AsyncTask, it cannot update the UI if a configuration change occurs while the background task is running. To address this situation, the Android SDK provides a set of classes called loaders designed specifically for loading data into the UI asynchronously. If you use a loader, you don't have to worry about the loader losing the ability to update the UI in the activity that initially created it. The Loader framework does the work for you by reassociating the loader with the appropriate Activity when the device changes its configuration. This means that if you rotate the device while the task is still running, the results will be displayed correctly in the Activity once the data is returned.
In this task you will use a specific loader called an AsyncTaskLoader. An AsyncTaskLoader is an abstract subclass of Loader and uses an AsyncTask to efficiently load data in the background.
Note: When you used an AsyncTask, you implemented the onPostExecute() method in the AsyncTask to display the results on the screen. When you use an AsyncTaskLoader, you define callback methods in the Activity to display the results.
Loaders provide a lot of additional functionality beyond just running tasks and reconnecting to the Activity. For example, you can attach a loader to a data source and have it automatically update the UI elements when the underlying data changes. Loaders can also be programmed to resume loading if interrupted.
So why should you use an AsyncTask if an AsyncTaskLoader is so much more useful? The answer is that it depends on the situation. If the background task is likely to finish before any configuration changes occur, and it is not crucial that it updates the UI, an AsyncTask may be sufficient. The Loader framework actually uses an AsyncTask behind the scenes to work its magic.
A good rule of thumb is to use an AsyncTaskLoader instead of an AsyncTask if the user might rotate the screen while the job is running, or when it's critical to update the UI when the job finishes.
In this exercise you will learn how to use a AsyncTaskLoader instead of an AsyncTask to run your Books API query. You will learn more about the uses of other loaders in a later lesson.
Implementing a Loader requires the following components:
The LoaderManager automatically moves the loader through its lifecycle depending on the state of the data and the Activity. For example, the LoaderManager calls onStartLoading() when the loader is initialized and destroys the loader when the Activity is destroyed.
The LoaderManager.LoaderCallbacks are a set of methods in the Activity that are called by the LoaderManager when loader is being created, when the data has finished loading, and when the loader is reset. The LoaderCallbacks can take the results of the task and pass them back to the Activity's UI.
The Loader subclass contains the details of loading the data, usually overriding at least onStartLoading() . It can also contain additional features such as observing the data source for changes and caching data locally.
Your Loader subclass implements Loader lifecycle callback methods such as onStartLoading() , onStopLoading() and onReset() . The loader subclass also contains the forceLoad() method which initiates the loading of the data. This method is not called automatically when the loader is started because some setup is usually required before a load is performed. The simplest implementation would call forceLoad() in onStartLoading() which results in a load every time the LoaderManager starts the loader.
4.1 Create an AsyncTaskLoader
Define onStartLoading()
Define loadInBackground()
@Override
public String loadInBackground() {
return NetworkUtils.getBookInfo(mQueryString);
}
4.2 Modify MainActivity
You must now implement the Loader Callbacks in your MainActivity to handle the results of the loadInBackground() AsyncTaskLoader method.
public class MainActivity extends AppCompatActivity
implements LoaderManager.LoaderCallbacks<String>{
Note: If the imports for Loader and LoaderManager in MainActivity do not match the import for the AsyncTaskLoader for the BookLoader class, you will have some type errors in the callbacks. Make sure that all imports are from the Android Support Library.
Loaders use the Bundle class to pass information from the calling activity to the LoaderCallbacks. You can add primitive data to a bundle with the appropriate putType() method.
To start a loader, you have two options:
Both of these methods are defined in the LoaderManager, which manages all the Loader instances used in an Activity (or Fragment). Each Activity has exactly one LoaderManager instance that is responsible for the lifecycle of the Loaders that it manages.
Currently, the FetchBook AsyncTask is triggered when the user presses the button. You'll want to start your loader with a new Bundle each time the button is pressed. To do this, you need to edit the onClick method for the button.
In the searchBooks() method, which is the onClick method for the button, replace the call to execute the FetchBook task with a call to restartLoader() , passing in the query string you got from the EditText in the Bundle:
Bundle queryBundle = new Bundle();
queryBundle.putString("queryString", queryString);
getSupportLoaderManager().restartLoader(0, queryBundle,this);
The restartLoader() method takes three arguments:
Examine the Override methods in the LoaderCallbacks class. These methods are:
You will only be defining the first two methods, since your current data model is a simple string that does not need extra care when the loader is reset.
Implement onCreateLoader()
return new BookLoader(this, args.getString("queryString"));
Implement onLoadFinished()
Run your app.
You should have the same functionality as before, but now in a Loader! One thing still does not work. When the device is rotated, the View data is lost. That is because when the Activity is created (or recreated), the Activity does not know there is a loader running. An initLoader() method is needed in onCreate() of MainActivity to reconnect to the loader.
Add the following code in onCreate() to reconnect to the Loader if it already exists:
if(getSupportLoaderManager().getLoader(0)!=null){
getSupportLoaderManager().initLoader(0,null,this);
}
Note: If the loader exists, initialize it. You only want to reassociate the loader to the Activity if a query has already been executed. In the initial state of the app, no data is loaded so there is none to preserve.
Run your app again and rotate the device. The LoaderManager now preserves your data across device configurations!
Solution code
Android Studio project: WhoWroteItLoader
Coding challenges
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge 1: Explore the the specific API you are using in greater detail and find a search parameter that restricts the results to books that are downloadable in the epub format. Add this parameter to your request and view the results.
Challenge 2: The response from the Books API contains as many results as you set with the maxResults parameter, but in this implementation you are only returning the first valid Book result. Modify your app so that the data is displayed in a RecyclerView that has a maxResults amount of entries.
Summary
An AsyncTask is a class that allows you to run tasks in the background, asynchronously, instead of on the UI thread.
Whenever an AsyncTask is executed, it goes through the following 4 steps:
You must configure network permissions in the Android manifest file to connect to the Internet:
<uses-permission android:name="android.permission.INTERNET">
Use the built in Java JSON classes ( JSONObject and JSONArray ) to create and parse JSON strings.
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Android Developer Documentation
Guides
Reference
7.3: Broadcast Receivers
Contents:
Certain events that can happen in the Android system might affect the functionality of applications installed on the device. For example, if the system has finished booting, you might like your weather app to update its information. The Android framework handles this by sending out system broadcasts containing Intents that are meant to be received using BroadcastReceivers. A BroadcastReceiver is the base class for code that will receive Intents sent by sendBroadcast() . There are two major classes of broadcasts that can be received:
Even in the case of normal broadcasts, the system may in some situations revert to delivering the broadcast one receiver at a time. In particular, for receivers that may require the creation of a process, only one will be run at a time to avoid overloading the system with new processes. In this situation, however, the non-ordered semantics hold: these receivers still cannot return results or abort their broadcast.
Additionally, you can create Intents with custom actions and broadcast them yourself from your application using the sendBroadcast() method. The broadcast will be received by all applications with a BroadcastReceiver registered for that action. To learn more about broadcast Intents and Broadcast receivers, visit the Intent documentation.
It is useful to note that while the Intent class is used for sending and receiving broadcasts, the Intent broadcast mechanism is completely separate from Intents that are used to start Activities.
In this practical, you'll create an app that responds to a change in the charging state of your device, as well as sends and receives a custom Broadcast Intent.
What you should already KNOW
Prior to this practical, you should be able to:
What you will LEARN
During this practical, you will learn to:
What you will DO
In this practical, you will:
App overview
The PowerReceiver application will register a BroadcastReceiver that displays a Toast message when the device is connected or disconnected from power. It will also send and receive a custom Broadcast Intent to display a different Toast message.
Task 1. Set up the PowerReceiver Project
1.1 Create the Project
Name the class CustomReceiver and make sure "Exported" and "Enabled" are checked.
Note: The "Exported" feature allows your application to respond to outside broadcasts, while "Enabled" allows it to be instantiated by the system.
Navigate to your Android manifest file. Note that Android Studio automatically generates a <receiver> tag with your chosen options as attributes. BroadcastReceivers can also be registered programmatically, but it is easiest to define them in the manifest.
1.2 Register your Receiver for system broadcasts
In order to receive any broadcasts, you must first determine which broadcast intents you are interested in. In the Intent documentation, under "Standard Broadcast Actions", you can find some of the common broadcast intents sent by the system. In this app, you will be interested in two particular broadcasts: ACTION_POWER_CONNECTED and ACTION_POWER_DISCONNECTED . BroadcastReceivers register for broadcast the same way you registered your activities for implicit Intents: you use an intent filter. You learned about implicit intents in an earlier practical.
<intent-filter>
<action android:name="android.intent.action.ACTION_POWER_CONNECTED"/>
<action android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>
</intent-filter>
1.3 Implement onReceive() in your BroadcastReceiver
Once the BroadcastReceiver intercepts a broadcast that it is registered for, the Intent is delivered to the receiver's onReceive() method, along with the context in which the receiver is running.
@Override
public void onReceive(Context context, Intent intent) {
String intentAction = intent.getAction();
}
switch (intentAction){
case Intent.ACTION_POWER_CONNECTED:
break;
case Intent.ACTION_POWER_DISCONNECTED:
break;
}
Toast.makeText(context, toastMessage, Toast.LENGTH_SHORT).show();
Note: If you are using an emulator, you can toggle the power connection state by selecting the ellipses icon for the menu, choose Battery on the left bar, and toggle using the Charger connection setting.
1.4 Restrict your Broadcast Receiver
Broadcast Receivers are always active, and therefore your app does not even need to be running for its onReceive() method to be called.
Go ahead, try it out: close your app, and plug or unplug your device.
The toast message is still displayed!
There is a lot of responsibility on you, as the developer, to not overwhelm your user with notifications or unwanted functionality every time a broadcast occurs. In this example, having a Toast message pop up every time the power state changes could quickly annoy the user. To limit this, you will add some code to ensure that the broadcast receiver is only active when the app is showing.
The PackageManager class is responsible for enabling and disabling a particular android component (such as a service, activity or broadcast receiver). This is accomplished using the setComponentEnabledSetting() method which takes three arguments:
For the broadcast receiver to only be active when the app is showing, enable it in onStart() and disable it in onStop() .
Initialize both of them in onCreate() .
Instantiate the PackageManager with getPackageManager() . The constructor for ComponentName takes the application context and the class name of the component:
mReceiverComponentName = new ComponentName(this, CustomReceiver.class);
mPackageManager = getPackageManager();
@Override
protected void onStart() {
super.onStart();
}
@Override
protected void onStop() {
super.onStop();
}
mPackageManager.setComponentEnabledSetting
(mReceiverComponentName, PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
PackageManager.DONT_KILL_APP);
mPackageManager.setComponentEnabledSetting
(mReceiverComponentName, PackageManager.COMPONENT_ENABLED_STATE_DISABLED,
PackageManager.DONT_KILL_APP);
Task 2. Send and Receive a Custom Broadcast
In addition to responding to system broadcasts, your application can also send and receive custom Broadcast Intents. A custom broadcast intent is exactly the same a system one except you must define your own Intent action for it (a unique string) and it's delivered using the sendBroadcast() method. In this task, you will add a button to your activity that sends a custom Broadcast Intent, which will be registered by your receiver and displayed in a Toast message.
2.1 Define your custom Broadcast Action string
Both the sender and receiver of a custom broadcast must agree on a unique action string for the Broadcast Intent. It is a common practice to create unique action strings by prepending your Action Name with your package name.
private static final String ACTION_CUSTOM_BROADCAST =
"com.example.android.powerreceiver.ACTION_CUSTOM_BROADCAST";
2.2 Add a "Send Custom Broadcast" Button
Attribute | Value |
android:id | "@+id/sendBroadcast" |
android:layout_width | wrap_content |
android:layout_height | wrap_content |
android:text | "Send Custom Broadcast" |
android:layout_margin | "8dp" |
android:onClick | "sendCustomBroadcast" |
2.3 Implement sendCustomBroadcast()
Because this broadcast is meant to be used solely by your application, you should use LocalBroadcastManager to manage the broadcasts in your application. LocalBroadcastManager is a class that allows you to register for and send broadcasts of Intents to local objects within your app. By keeping broadcasts local, your application data will not be shared with other Android applications, keeping your information more secure and maintaining system efficiency.
Intent customBroadcastIntent = new Intent(ACTION_CUSTOM_BROADCAST);
2.4 Register your Custom Broadcast
For system broadcasts, you registered your receiver in the AndroidManifest.xml file. It is also possible to register your receiver for specific actions programmatically. For broadcasts sent using LocalBroadcastManager, static registrations in the manifest is not allowed.
If you programmatically register the broadcast receiver, you must also unregister the receiver when it is no longer needed. In your application, the receiver will only need to respond to the custom broadcast when it is running, so we can therefore register the action in onCreate() and unregister it in onDestroy() .
private CustomReceiver mReceiver = new CustomReceiver();
LocalBroadcastManager.getInstance(this)
.registerReceiver(mReceiver, new IntentFilter(ACTION_CUSTOM_BROADCAST));
@Override
protected void onDestroy() {
LocalBroadcastManager.getInstance(this).unregisterReceiver(mReceiver);
super.onDestroy();
}
2.5 Respond to the Custom Broadcast
case ACTION_CUSTOM_BROADCAST:
toastMessage = context.getString(R.string.custom_broadcast_toast);
break;
Note: Broadcast Receivers that are registered programmatically are not affected by the enabling or disabling done by the PackageManager class, which is meant for components listed in the Android Manifest file. Enabling or disabling such receivers is done by registering or unregistering them, respectively. In this case, turning off the "Receiver Enabled" toggle will stop the power connected or disconnected toast messages, but not the Custom Broadcast Intent Toast messages.
That's it! Your app now delivers custom Broadcast intents and is able to receive both system and custom Broadcasts.
Solution code
Android Studio project: PowerReceiver
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: A common pattern for broadcast receivers is starting some update or action once the device has booted. Implement a Broadcast Receiver that will show a toast message half an hour after the device has booted.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Android Developer Documentation
Guides
Reference
8.1: Notifications
Contents:
Until now, the apps you have built used UI elements that are visible only when your app is running. The only exception to this is the BroadcastReceiver you implemented that showed a Toast message when the device was connected or disconnected from power. There are many times when you want to show your user information even when your application is not running. For example, you might let them know that new content is available, or update them on their favorite team score. The Android framework provides a mechanism for your app to notify users even when the app is not in the foreground: the Notification framework.
A Notification is a message you can display to the user outside of your application's normal UI. When Android issues a notification, it will first appear as an icon in the notification area of the device. To see the specific details of the notification, the user opens the notification drawer. Both the notification area and the notification drawer are system-controlled areas that the user can view at any time.
In this practical you'll create an app that triggers a notification when a button is pressed and provides the ability to update the notification or cancel it.
What you should already KNOW
For this practical, you should be able to:
What you will LEARN
During this practical, you will learn to:
What you will DO
In this practical, you will:
App overview
Notify Me! is an application that can trigger, update and cancel a notification. It also experiments with notification styles, actions and priorities.
Task 1. Create a basic notification
1.1 Create the project
Attribute | Value |
android:id | "@+id/notify" |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Notify Me!" |
android:layout_margin | "4dp" |
public void sendNotification() {}
mNotifyButton = (Button) findViewById(R.id.notify);
mNotifyButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
}
});
1.2 Build your first notification
Notifications are created using the NotificationCompat.Builder class, which allows you to set the content and behavior of the Notification. A notification must contain the following elements:
An Android Notification is deployed by the NotificationManager. If you need to update or cancel the notification in the future, you should associate a notification ID with your Notification.
Create the Notification Icon
private NotificationManager mNotifyManager;
private static final int NOTIFICATION_ID = 0;
mNotifyManager = (NotificationManager) getSystemService(NOTIFICATION_SERVICE);
NotificationCompat.Builder notifyBuilder = new NotificationCompat.Builder(this)
Note: Make sure the NotificationCompat class is imported from the v4 support library.
NotificationCompat.Builder notifyBuilder = new NotificationCompat.Builder(this)
.setContentTitle("You've been notified!")
.setContentText("This is your notification text.")
.setSmallIcon(R.drawable.ic_android);
Notification myNotification = notifyBuilder.build();
mNotifyManager.notify(NOTIFICATION_ID, myNotification);
1.3 Add a content intent
In order to improve your notification, you will add a few more features available through the NotificationCompat.Builder class:
Tapping a notification launches an Intent. Content Intents for notifications are very similar to the Intents you've been using throughout this course. They can be explicit intents to launch an activity, implicit intents to perform an action, or broadcast intents to notify the system of a system or custom event. The major difference with an Intent in a notification is that it must be wrapped in a PendingIntent, which allows the notification to perform the action even if your application is not running. A PendingIntent is given to an external component (e.g. NotificationManager) which allows the external application to use your application's permissions to execute a predefined piece of code. In effect, it authorizes the notification to send the intent on the application's behalf.
For this example, the content intent of the notification (that is, the intent that is launched when the notification is pressed) will launch the MainActivity of the application (if you are already in the application this will have no effect).
Intent notificationIntent = new Intent(this, MainActivity.class);
PendingIntent notificationPendingIntent = PendingIntent.getActivity(this,
NOTIFICATION_ID, notificationIntent, PendingIntent.FLAG_UPDATE_CURRENT);
Add the PendingIntent to the Notification using setContentIntent() in the NotificationCompat.Builder:
.setContentIntent(notificationPendingIntent)
Run the app. Click the Notify Me! button to send the notification. Quit the app. Now view the notification and click it. Notice the app will open back up at the MainActivity.
1.4 Add priority and defaults to your notification
When your user clicks the "Notify Me!" button, the notification is issued but the only visual that the user sees is the icon in the notification bar. In order to catch the user's attention, the notification defaults and priority must be properly set.
Priority is an integer value from PRIORITY_MIN (-2) to PRIORITY_MAX (2) that represents how important your notification is to the user. Notifications with a higher priority will be sorted above lower priority ones in the notification drawer. HIGH or MAX priority notifications will be delivered as "Heads - Up" Notifications, which drop down on top of the user's active screen.
.setPriority(NotificationCompat.PRIORITY_HIGH)
.setDefaults(NotificationCompat.DEFAULT_ALL)
Note: The high priority notification will not drop down in front of the active screen unless both the priority and the defaults are set. The priority alone is not enough.
Task 2. Update and cancel your notification
After issuing a notification, it is useful to be able to update or cancel the notification if the information changes or becomes no longer relevant.
In this task, you will learn how to update and cancel your notification.
2.1 Add update and cancel buttons
public void updateNotification() {}
public void cancelNotification() {}
2.2 Implement the cancel and update notification methods
Cancel the Notification
Canceling a notification is straightforward: call cancel() on the NotificationManager, passing in the notification ID:
mNotifyManager.cancel(NOTIFICATION_ID);
Update the Notification
Updating a notification is more complex. Android notifications come with alternative styles that can help condense information or represent it more efficiently. For example, the Gmail app uses "InboxStyle" notifications if there is more than a single unread message, condensing the information into a single notification.
In this example, you will update your notification to use the BigPictureStyle notification, which allows you to include an image in your notification.
Bitmap androidImage = BitmapFactory
.decodeResource(getResources(),R.drawable.mascot_1);
Change the style of your notification in the same NotificationCompat.Builder, setting the image and the "Big Content Title":
.setStyle(new NotificationCompat.BigPictureStyle()
.bigPicture(androidImage)
.setBigContentTitle("Notification Updated!"));
Note: The BigPictureStyle is a subclass of NotificationCompat.Style which provides alternative layouts for notifications. See the documentation for other defined subclasses.
Change the priority of the Builder to the default, so that you don't get another heads up notification when it is updated (heads up notifications can only be shown in the default style).
.setPriority(NotificationCompat.PRIORITY_DEFAULT)
mNotifyManager.notify(NOTIFICATION_ID, notifyBuilder.build());
2.3 Toggle the button state
In this application, the user can get confused because the state of the notification is not tracked inside the activity. For example, the user may tap "Cancel Me!" when no notification is showing. You can fix this by enabling and disabling the various buttons depending on the state of the notification. When the app is first run, the "Notify Me!" button should be the only one enabled as there is no notification yet to update or cancel. After a notification is sent, the cancel and update buttons should be enabled, and the notification button should disabled since the notification has already been delivered. After the notification is updated, the update and notify buttons should be disabled, leaving only the cancel button enabled. Finally, if the notification is cancelled, the buttons should return to the initial condition with the notify button being the only one enabled.
Here is the enabled state toggle code for each method:
onCreate():
mNotifyButton.setEnabled(true);
mUpdateButton.setEnabled(false);
mCancelButton.setEnabled(false);
sendNotification():
mNotifyButton.setEnabled(false);
mUpdateButton.setEnabled(true);
mCancelButton.setEnabled(true);
updateNotification():
mNotifyButton.setEnabled(false);
mUpdateButton.setEnabled(false);
mCancelButton.setEnabled(true);
cancelNotification():
mNotifyButton.setEnabled(true);
mUpdateButton.setEnabled(false);
mCancelButton.setEnabled(false);
Task 3. Add notification actions
Sometimes, a notification requires immediate interaction: snoozing an alarm, replying to a text message, and so on. When these types of notifications occur, the user might tap your notification to respond to the event. Android then loads the proper Activity in your application for the user to respond. To avoid opening your application, the notification framework lets you embed a notification action directly in the notification itself. This allows the user to act on the notification without opening your application.
The components needed for an action are:
For this example, you will add two actions to your notification. First you'll add a "Learn More" action with an implicit intent that launches a web page, then an "Update" action with a broadcast intent that updates your notification without launching the application.
3.1 Implement the "Learn More" action
As a first example of notification actions, you will implement one that launches an implicit intent to open a website.
Intent learnMoreIntent = new Intent(Intent.ACTION_VIEW, Uri
.parse(NOTIFICATION_GUIDE_URL));
PendingIntent learnMorePendingIntent = PendingIntent.getActivity
(this,NOTIFICATION_ID,learnMoreIntent,PendingIntent.FLAG_ONE_SHOT);
.addAction(R.drawable.ic_learn_more,"Learn More", learnMorePendingIntent);
3.2 Implement the "Update" action
You've seen that a notification action uses a PendingIntent to respond to user interaction. In the last step, you added an action that uses a PendingIntent created using the getActivity() method. You can also create a PendingIntent which delivers a broadcast intent by calling getBroadcast() on the PendingIntent class. Broadcast Intents are very useful in notifications, since a broadcast receiver can register its interest in the intent and respond accordingly, entirely without launching a specific activity.
You will now implement a Broadcast Receiver that will call the updateNotification() method when the "Update" action in the notification is pressed. It is a common pattern to add functionality to a notification that already exists in the app, so the user does not need to launch any app to perform the action.
Subclass a BroadcastReceiver as an inner class in MainActivity and override the onReceive() method. Don't forget to include an empty constructor:
public class NotificationReceiver extends BroadcastReceiver {
public NotificationReceiver() {
}
@Override
public void onReceive(Context context, Intent intent) {
}
}
private static final String ACTION_UPDATE_NOTIFICATION =
"com.example.android.notifyme.ACTION_UPDATE_NOTIFICATION";
registerReceiver(mReceiver,new IntentFilter(ACTION_UPDATE_NOTIFICATION));
@Override
protected void onDestroy() {
unregisterReceiver(mReceiver);
super.onDestroy();
}
Note: In this example you are registering your Broadcast Receiver programmatically because your receiver is defined as an inner class. When receivers are defined this way, they cannot be registered in the Android Manifest since they are dynamic and have the possibility of changing during the life of the application.
It may seem the broadcast sent by the notification only concerns your app and should be delivered with a LocalBroadcastManager. However, the use of PendingIntents delegates the responsibility of delivering the notification to the Android Framework. Because the Android runtime is handling the broadcast, LocalBroadcastManager can not be used.
Create the Update Action
Intent updateIntent = new Intent(ACTION_UPDATE_NOTIFICATION);
PendingIntent updatePendingIntent = PendingIntent.getBroadcast
(this, NOTIFICATION_ID, updateIntent, PendingIntent.FLAG_ONE_SHOT);
.addAction(R.drawable.ic_update, "Update", updatePendingIntent)
Solution code
Android Studio project: NotifyMe
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Enabling and disabling the various buttons is a common way to ensure the user does not perform any actions that are not supported in the current state of the app (think of disabling a "Sync" button when there is no network"). In this application, however, there is one use case in which the state of your buttons does not match the state of the application: when a user dismisses a notification by swiping it away or clearing the whole notification drawer. In this case, your app has no way of knowing that the notification was cancelled, and that the button state must be changed.
Create another broadcast intent that will let the application know that the user has dismissed the notification, and toggle the button states accordingly.
Hint: Check out the NotificationCompat.Builder class for a method that delivers an Intent when the notification has been dismissed by the user.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Guides
Reference
8.2: Alarm Manager
Contents:
In your previous practicals, you've learned how to make your app respond to user interaction by pushing a button or tapping a notification. You've also learned how to make your app respond to system events using BroadcastReceivers. But what if your app needs to take action at a specific time, such as is the case with a calendar notification? In that case, you would use AlarmManager, a class that allows you to launch and repeat a PendingIntent at a specific time and interval.
In this practical, you will create a timer that will remind you to stand up if you have been sitting for too long.
What you should already KNOW
From previous practicals, you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical, you will:
App Overview
Stand Up! is an app that helps you stay healthy by reminding you to stand up and walk around every fifteen minutes. It uses a notification to let you know when fifteen minutes have passed. The app includes a toggle button that can turn the Alarm on and off.
Task 1. Setup the Stand Up! Project and Views
1.1 Create the Stand Up! Project layout
TextView | Attribute | Value |
| android:layout_width | "wrap_content" |
| android:layout_height | "wrap_content" |
| android:layout_above | "@+id/alarmToggle" |
| android:layout_centerHorizontal | "true" |
| android:layout_margin | "8dp" |
| android:text | "Stand Up Alarm" |
| android:textAppearance | "@style/TextAppearance.AppCompat.Headline" |
ToggleButton | Attribute | Value |
| android:id | "@+id/alarmToggle" |
| android:layout_width | "wrap_content" |
| android:layout_height | "wrap_content" |
| android:layout_centerHorizontal | "true" |
| android:layout_centerVertical | "true" |
1.2 Setup the setOnCheckedChangeListener() method
The Stand Up! app includes a toggle button that is used to set and cancel the alarm, as well as visibly represent the alarm's current status. To set the alarm when the toggle is turned on, you will use the onCheckedChangeListener() method:
Call setOnCheckedChangeListener() on the toggle button instance, and begin typing " new OnCheckedChangeListener ". Android Studio will autocomplete the method for you, including the required onCheckedChanged() override method. This method has two parameters: the CompoundButton that was clicked (in this case it's the Alarm Toggle button), and a boolean representing the current state of the Toggle Button (i.e., whether the toggle is now set on or off.
alarmToggle.setOnCheckedChangeListener(
new CompoundButton.OnCheckedChangeListener() {
@Override
public void onCheckedChanged(CompoundButton compoundButton,
boolean isChecked) {
}
});
It is useful for the user to have some feedback other than the toggle button being turned on and off to indicate the alarm was indeed set (you haven't implemented the alarm yet, you will do that in a further section). Set up an if/else block using the boolean parameter in the onCheckedChanged() method that delivers a toast message to tell the user if the Alarm was turned on or off. Don't forget to extract your string resources.
String toastMessage;
if(isChecked){
//Set the toast message for the "on" case
toastMessage = getString(R.string.alarm_on_toast);
} else {
//Set the toast message for the "off" case
toastMessage = getString(R.string.alarm_off_toast);
}
//Show a toast to say the alarm is turned on or off
Toast.makeText(MainActivity.this, toastMessage, Toast.LENGTH_SHORT)
.show();
Task 2. Set up the Notification
The next step is to create the notification that will remind the user to stand up every fifteen minutes. For now, the notification will be delivered immediately when the toggle is set.
2.1 Create the notification
In this step, you will create a deliverNotification() method that will post the reminder to stand up and walk around.
mNotificationManager = (NotificationManager) getSystemService(NOTIFICATION_SERVICE);
private void deliverNotification(Context context) {}
Note: Notification ID's are used to distinguish notifications within your application. The NotificationManager will only be able to cancel notifications delivered from your app so you can use the same ID in in different applications.
Notification Content Intent
Intent contentIntent = new Intent(context, MainActivity.class);
PendingIntent contentPendingIntent = PendingIntent.getActivity
(context, NOTIFICATION_ID, contentIntent, PendingIntent.FLAG_UPDATE_CURRENT);
Note: PendingIntent flags tell the system how to handle the situation when multiple instances of the same PendingIntent are created (meaning they contain the same intent). The FLAG_UPDATE_CURRENT flag tells the system to use the old Intent but replace the extras data. Since you don't have any extras in this Intent, you reuse the same PendingIntent over and over.
Notification Title and Text
Notification Icon
Build the notification
NotificationCompat.Builder builder = new NotificationCompat.Builder(context)
.setSmallIcon(R.drawable.ic_stand_up)
.setContentTitle(context.getString(R.string.notification_title))
.setContentText(context.getString(R.string.notification_text))
.setContentIntent(contentPendingIntent)
.setPriority(NotificationCompat.PRIORITY_HIGH)
.setAutoCancel(true)
.setDefaults(NotificationCompat.DEFAULT_ALL);
Deliver the notification
mNotificationManager.notify(NOTIFICATION_ID, builder.build());
Call cancelAll() on the NotificationManager if the toggle is turned off to remove the notification.
if(isChecked){
deliverNotification(MainActivity.this);
//Set the toast message for the "on" case
toastMessage = getString(R.string.alarm_on_toast);
} else {
//Cancel notification if the alarm is turned off
mNotificationManager.cancelAll();
//Set the toast message for the "off" case
toastMessage = getString(R.string.alarm_off_toast);
}
At this point there is no alarm at all: the notification is immediately delivered when the alarm toggle is turned on. In the next section you will implement the AlarmManager to schedule and deliver the notification every 15 minutes.
Task 3. Create the Repeating Alarm
Now that your app can send a notification it is time to implement the main component of your application: the AlarmManager. This is the class that will be responsible for periodically delivering the reminder to stand up. AlarmManager has many kinds of alarms built into it, both one-time and periodic, exact and inexact. To learn more about the different kinds of alarms, look into this guide.
AlarmManager, like notifications, uses a PendingIntent that it delivers with the specified options. Because of this, it can deliver the Intent even when the application is no longer running. In this application, your PendingIntent will deliver an Intent broadcast with a custom "Notify" action.
The broadcast intent will be received by a broadcast receiver that takes the appropriate action (delivers the notification).
The AlarmManager can trigger one-time or recurring events which occur even when the device is in deep sleep or your application is not running. Events may be scheduled with your choice of currentTimeMillis() when using the real time version (RTC) or elapsedRealtime() when using the elapsed time version (ELAPSED_REALTIME), and deliver a PendingIntent when they occur. For more information on the different clocks available and information on how to control the timing of events, please refer to the SystemClock Developer Reference.
3.1 Set up the broadcast pending intent
The AlarmManager is responsible for delivering your PendingIntent at a specified interval. This PendingIntent will deliver a broadcast intent letting the application know it is time to update the remaining time in the notification.
Create a string constant as a member variable in MainActivity to be used as the broadcast intent action which will deliver the notification:
private static final String ACTION_NOTIFY =
"com.example.android.standup.ACTION_NOTIFY";
Note: use the fully-qualified package name for the Intent string, to ensure that your Broadcast is unique, and can not accidentally be used by other applications with similar actions.
Create an Intent called notifyIntent in onCreate() with the custom string as its action:
Intent notifyIntent = new Intent(ACTION_NOTIFY);
PendingIntent notifyPendingIntent = PendingIntent.getBroadcast
(this, NOTIFICATION_ID, notifyIntent, PendingIntent.FLAG_UPDATE_CURRENT);
3.2 Set the repeating alarm
You will now use the AlarmManager to deliver this broadcast Intent every 15 minutes. For this task, the appropriate type of alarm is an inexact, repeating alarm that uses elapsed time and will wake the device up if it is asleep. The real time clock is not relevant here, since we want to deliver the notification every fifteen minutes.
AlarmManager alarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);
The PendingIntent to be delivered. You created the PendingIntent in the previous task.
long triggerTime = SystemClock.elapsedRealtime()
+ AlarmManager.INTERVAL_FIFTEEN_MINUTES;
long repeatInterval = AlarmManager.INTERVAL_FIFTEEN_MINUTES;
//If the Toggle is turned on, set the repeating alarm with a 15 minute interval
alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
triggerTime, repeatInterval, notifyPendingIntent);
Note: Because you are accessing the AlarmManager and notifyPendingIntent instances from an anonymous inner class, Android Studio may make these instances final. If it doesn't, you have to make them final yourself.
Remove the call to deliverNotification() in the onCheckedChanged() method.
Keep the call to cancelAll() on the NotificationManager, since turning the toggle off should still remove any existing notification.alarmManager.cancel(notifyPendingIntent);
The AlarmManager will now start delivering your Broadcast Intent starting fifteen minutes from when the Alarm was set, and every fifteen minutes after that. Your application needs to be able to respond to these intents by delivering the notification. In the next step you will subclass a BroadcastReceiver to receive the broadcast intents and deliver the notification.
3.3 Create the Broadcast Receiver
The Broadcast Receiver is responsible for receiving the broadcast intents from the AlarmManager and reacting appropriately.
<intent-filter>
<action android:name="com.example.android.standup.ACTION_NOTIFY" />
</intent-filter>
NotificationManager notificationManager = (NotificationManager)
context.getSystemService(Context.NOTIFICATION_SERVICE);
You now have an app that can schedule and perform a repeated operation, even if the application is no longer running. Go ahead, exit the application completely, the notification will still be delivered. There is one final component missing that would ensure a proper user experience: if the application is exited, the toggle button will reset to the off state, even if the alarm has already been set. To fix this, you will need to check the state of the alarm every time the application is launched.
3.5 Check the State of the Alarm
To track the state of the alarm, you will need a boolean variable that is true if the Alarm already exists, and false otherwise. To set this boolean, you can call PendingIntent.getBroadcast() with the FLAG_NO_CREATE PendingIntent flag. In this case, the PendingIntent is returned if it already exists, otherwise the call returns null. This is extremely useful for checking whether the alarm has already been set.
Note: When you create a PendingIntent, the system uses the Intent.filterEquals() method to determine if a PendingIntent with the same Intent already exists. This means that to have two distinct PendingIntents, the contained Intents have to differ in one of action, data, type, class, or categories. Intent extras are not included in the comparison. The PendingIntent flag determines what happens when a PendingIntent whose Intent matches the one you are trying to create already exists. In the case of the NO_CREATE flag, it will return null unless a PendingIntent with a matching Intent already exists.
boolean alarmUp = (PendingIntent.getBroadcast(this, NOTIFICATION_ID, notifyIntent,
PendingIntent.FLAG_NO_CREATE) != null);
This ensures that the toggle will always be turned on if the Alarm is set, and off otherwise. That's it, You now have a repeated scheduled alarm to remind you to stand up every fifteen minutes.alarmToggle.setChecked(alarmUp);
Solution code
**Android Studio project: StandUp
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
The AlarmManager class also handles alarm clocks in the usual sense, the kind that wake you up in the morning. On devices running API 21+, you can get information about the next alarm clock of this kind by calling getNextAlarmClock() on the alarm manager.
Add a button to your application that displays the time of next alarm clock that the user has set in a Toast message.
Summary
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Android Developer Documentation
Guides
Reference
Other Web resources
8.3: Job Scheduler
Contents:
You've seen that you can trigger events based on the real-time clock, or the elapsed time since boot using the AlarmManager class. Most tasks, however, do not require an exact time, but should be scheduled based on a combination of system and user requirements. For example, a news app might like to update the news in the morning, but could wait until the device is charging and connected to wifi to update the news, to preserve the user's data and system resources.
The JobScheduler class is meant for this kind of scheduling; it allows you to set the conditions, or parameters of running your task. Given these conditions, the JobScheduler calculates the best time to schedule the execution of the job. Some examples of these parameters are: persistance of the job across reboots, the interval that the job should run at, whether or not the device is plugged in, or whether or not the device is idle.
The task to be run is implemented as a JobService subclass and executed according to the specified constraints.
JobScheduler is only available on devices running API 21+, and is currently not available in the support library. For backward compatibility, use the GcmNetworkManager (soon to be FirebaseJobDispatcher).
In this practical, you will create an app that schedules a notification to be posted when the parameters set by the user are fulfilled, and the system requirements are met.
What you should already KNOW
From the previous practicals, you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical, you will:
App Overview
For this practical you will create an app called "Notification Scheduler". Your app will demonstrate the JobScheduler framework by allowing the user to select constraints and schedule a job. When that job is executed, it will post a notification (in this app, your notification is effectively your "job").
To use the JobScheduler, you need two additional parts: JobService and JobInfo. A JobInfo object contains the set of conditions that will trigger the job to run. A JobService is the implementation of the job that is to run under those conditions.
Task 1. Implement a JobService
To begin with, you must create a service that will be run at the time determined by the conditions. The JobService is automatically executed by the system, and the only parts you need to implement are:
onStartJob() callback
Note: onStartJob() is executed on the main thread, and therefore any long-running tasks must be offloaded to a different thread. In this case, you are simply posting a notification, which can be done safely on the main thread.
onStopJob() callback
1.1 Create the Project and the NotificationJobService
Verify that the minimum SDK you are using is API 21. Prior to API 21, JobScheduler does not work, as it is missing some of the required APIs.
<service
android:name=".NotificationJobService"
android:permission="android.permission.BIND_JOB_SERVICE"/>
1.2 Implement onStartJob()
Attribute | Title |
---|---|
Content Title | "Job Service" |
Content Text | "Your Job is running!" |
Content Intent | contentPendingIntent |
Small Icon | R.drawable.ic_job_running |
Priority | NotificationCompat.PRIORITY_HIGH |
Defaults | NotificationCompat.DEFAULT_ALL |
AutoCancel | true |
@Override
public boolean onStartJob(JobParameters jobParameters) {
//Set up the notification content intent to launch the app when clicked
PendingIntent contentPendingIntent = PendingIntent.getActivity
(this, 0, new Intent(this, MainActivity.class),
PendingIntent.FLAG_UPDATE_CURRENT);
NotificationManager manager =
(NotificationManager) getSystemService(NOTIFICATION_SERVICE);
NotificationCompat.Builder builder = new NotificationCompat.Builder(this)
.setContentTitle(getString(R.string.job_service))
.setContentText(getString(R.string.job_running))
.setContentIntent(contentPendingIntent)
.setSmallIcon(R.drawable.ic_job_running)
.setPriority(NotificationCompat.PRIORITY_HIGH)
.setDefaults(NotificationCompat.DEFAULT_ALL)
.setAutoCancel(true);
manager.notify(0, builder.build());
return false;
}
Task 2. Implement the job conditions
Now that you have your JobService, it is time to identify the criteria for running the job. For this, use the JobInfo component. You will create a series of parameterized conditions for running a job using a variety of network connectivity types and device status.
To begin, you will create a group of radio buttons to determine the network type required for this job.
2.1 Implement the network constraint
One of the possible conditions for running a Job is the status of your device's network connectivity. You can limit the JobService to be executed only when certain network conditions are met. The options are:
Create the layout for your app
Create the layout for your app to show the buttons for the user to choose the network criteria.
Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Network Type Required: " |
android:textAppearance | "@style/TextAppearance.AppCompat.Subhead" |
android:layout_margin | "4dp" |
Add a RadioGroup container element below the TextView with the following attributes:
Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:orientation | "horizontal" |
android:id | "@+id/networkOptions" |
android:layout_margin | "4dp" |
Note: Using a radio group ensures that only one of its children can be selected at a time. For more information on Radio Buttons see this guide.
Add three RadioButtons as children to the RadioGroup with their layout height and width set to "wrap_content" and the following attributes:
RadioButton 1 | |
android:text | "None" |
android:id | "@+id/noNetwork" |
android:checked | true |
RadioButton 2 | |
android:text | "Any" |
android:id | "@+id/anyNetwork" |
RadioButton 3 | |
android:text | "Wifi" |
android:id | "@+id/wifiNetwork" |
Button 1 | |
android:text | "Schedule Job" |
android:onClick | "scheduleJob" |
android:layout_gravity | "center_horizontal" |
android:layout_margin | "4dp" |
Button 2 | |
android:text | "Cancel Jobs" |
android:onClick | "cancelJobs" |
android:layout_gravity | "center_horizontal" |
android:layout_margin | "4dp" |
Get the selected network option
int selectedNetworkID = networkOptions.getCheckedRadioButtonId();
int selectedNetworkOption = JobInfo.NETWORK_TYPE_NONE;
switch(selectedNetworkID){
case R.id.noNetwork:
break;
case R.id.anyNetwork:
break;
case R.id.wifiNetwork:
break;
}
switch(selectedNetworkID){
case R.id.noNetwork:
selectedNetworkOption = JobInfo.NETWORK_TYPE_NONE;
break;
case R.id.anyNetwork:
selectedNetworkOption = JobInfo.NETWORK_TYPE_ANY;
break;
case R.id.wifiNetwork:
selectedNetworkOption = JobInfo.NETWORK_TYPE_UNMETERED;
break;
}
Create the JobScheduler and the JobInfo object
mScheduler = (JobScheduler) getSystemService(JOB_SCHEDULER_SERVICE);
ComponentName serviceName = new ComponentName(getPackageName(),
NotificationJobService.class.getName());
JobInfo.Builder builder = new JobInfo.Builder(JOB_ID, serviceName)
.setRequiredNetworkType(selectedNetworkOption);
JobInfo myJobInfo = builder.build();
mScheduler.schedule(myJobInfo);
if (mScheduler!=null){
mScheduler.cancelAll();
mScheduler = null;
Toast.makeText(this, "Jobs Canceled", Toast.LENGTH_SHORT).show();
}
You may notice that if you do not change the network constraint to either "Any" or "Wifi", the app will crash with the following exception:
java.lang.IllegalArgumentException:
You're trying to build a job with no constraints, this is not allowed.
This is because the "No Network Required" condition is the default and does not actually count as a constraint. The JobScheduler needs at least one constraint to properly schedule the JobService. In the following section you will create a conditional that is true when at least one constraint is set, and false otherwise. You will then schedule the task if it's true , and show a Toast to tell the user to set a constraint if it isn't.
2.2 Check for constraints
JobScheduler requires at least one constraint to be set. In this task you will create a boolean that will track if this requirement has been met, so that you can notify the user to set at least one constraint if they haven't already. As you create additional options in the further steps, you will need to modify this boolean so it is always true if at least one constraint is set, and false otherwise.
boolean constraintSet = selectedNetworkOption != JobInfo.NETWORK_TYPE_NONE;
if(constraintSet) {
//Schedule the job and notify the user
JobInfo myJobInfo = builder.build();
mScheduler.schedule(myJobInfo);
Toast.makeText(this, R.string.job_scheduled, Toast.LENGTH_SHORT).show();
} else {
Toast.makeText(this, R.string.no_constraint_toast, Toast.LENGTH_SHORT).show();
}
2.3 Implement the Device Idle and Device Charging constraints
JobScheduler includes the ability to wait until the device is charging, or in an idle state (the screen is off, and the CPU has gone to sleep) to execute your JobService. You will now add switches to your app to toggle these constraints on your JobService.
Add the UI elements for the new constraints
Switch 1 | |
android:text | "Device Idle" |
android:id | "@+id/idleSwitch" |
Switch 2 | |
android:text | "Device Charging" |
android:id | "@+id/chargingSwitch" |
Add the code for the new constraints
builder.setRequiresDeviceIdle(mDeviceIdle.isChecked());
builder.setRequiresCharging(mDeviceCharging.isChecked());
boolean constraintSet = (selectedNetworkOption != JobInfo.NETWORK_TYPE_NONE)
|| mDeviceChargingSwitch.isChecked() || mDeviceIdleSwitch.isChecked();
Waiting until the device is idle and plugged in is a common pattern for battery intensive tasks such as downloading or uploading large files.
2.4 Implement the Override Deadline constraint
Up to this point, there is no way to know precisely when the framework will execute your task. The system takes into account effective resource management which may delay your task depending on the state of the device, and does not guarantee that your task will run on time. For example, a news app may want to download the latest news only when wifi is available and the device is plugged in and charging; but a user may inadvertently forget to enable their wifi or charge their device. If you don't add a time parameter to your scheduled Job, that user will be disappointed when they wake up to yesterday's news. For this reason, the JobScheduler API includes the ability to set a hard deadline that will override the previous constraints.
Add the new UI for setting the deadline to run the task
In this step you will use a new UI component, a Seekbar, to allow the user to set a deadline between 0 and 100 seconds to execute your task.
The user sets the value by dragging the SeekBar.
TextView 1 | |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Override Deadline: " |
android:id | "@+id/seekBarLabel" |
android:textAppearance | "@style/TextAppearance.AppCompat.Subhead" |
TextView 2 | |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Not Set" |
android:id | "@+id/seekBarProgress" |
android:textAppearance | "@style/TextAppearance.AppCompat.Subhead" |
Attribute | Value |
android:layout_width | "match_parent" |
android:layout_height | "wrap_content" |
android:id | "@+id/seekBar" |
android:layout_margin | "4dp" |
Write the code for adding the deadline
mSeekBar = (SeekBar) findViewById(R.id.seekBar);
final TextView label = (TextView) findViewById(R.id.seekBarLabel);
final TextView seekBarProgress = (TextView) findViewById(R.id.seekBarProgress);
In onCreate() , call setOnSeekBarChangeListener() on the SeekBar, passing in a new OnSeekBarChangeListener (Android Studio should generate the required methods):
mSeekBar.setOnSeekBarChangeListener(new SeekBar.OnSeekBarChangeListener() {
@Override
public void onProgressChanged(SeekBar seekBar, int i, boolean b) {}
@Override
public void onStartTrackingTouch(SeekBar seekBar) {}
@Override
public void onStopTrackingTouch(SeekBar seekBar) {}
});
if (i > 0){
mSeekBarProgress.setText(String.valueOf(i) + " s");
}
else {
mSeekBarProgress.setText("Not Set");
}
int seekBarInteger = mSeekBar.getProgress();
boolean seekBarSet = seekBarInteger > 0;
if (seekBarSet) {
builder.setOverrideDeadline(seekBarInteger * 1000);
}
boolean constraintSet = selectedNetworkOption != JobInfo.NETWORK_TYPE_NONE
|| mDeviceChargingSwitch.isChecked() || mDeviceIdleSwitch.isChecked()
|| seekBarSet;
2.5 Implement the Periodic constraint
JobScheduler also allows you to schedule a repeated task, much like AlarmManager. This option has a few caveats:
Add the Periodic Switch to the layout
You will add a Switch to allow the user to switch between having the job run once or repeatedly at periodic intervals.
Attribute | Value |
android:layout_width | "wrap_content" |
android:layout_height | "wrap_content" |
android:text | "Periodic" |
android:id | "@+id/periodicSwitch" |
android:layout_margin | "4dp" |
mPeriodicSwitch = (Switch) findViewById(R.id.periodicSwitch);
Write the code to use the Periodic Switch
The override deadline and periodic constraints are mutually exclusive. You will use the switch to toggle the functionality and label of the SeekBar to represent either the override deadline, or the periodic interval.
mPeriodicSwitch.setOnCheckedChangeListener(
new CompoundButton.OnCheckedChangeListener() {
@Override
public void onCheckedChanged(CompoundButton compoundButton, boolean isChecked) {
if (isChecked){
label.setText(R.string.periodic_interval);
} else {
label.setText(R.string.override_deadline);
}
}
});
All that remains now is to implement the logic in the scheduleJob() method to properly set the constraints on the JobInfo object.
If the periodic option is on:
If the periodic option is off:
if (mPeriodicSwitch.isChecked()){
if (seekBarSet){
builder.setPeriodic(seekBarInteger * 1000);
} else {
Toast.makeText(MainActivity.this,
"Please set a periodic interval", Toast.LENGTH_SHORT).show();
}
} else {
if (seekBarSet){
builder.setOverrideDeadline(seekBarInteger * 1000);
}
}
Solution code
Android Studio project: NotificationScheduler
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge: Up until now, your tasks scheduled by the JobService focused on delivering a notification. Most of the time, however, JobScheduler is used for more robust background tasks such as updating the weather or syncing with a database. Since background tasks can be more complex in nature, both from a programmatic and from a functionality standpoint, the job of notifying the framework when the task is complete falls on the developer. Fortunately, the developer can do this by calling jobFinished() .
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Android Developer Documentation
Reference
9.1: Shared Preferences
Contents:
Shared preferences allow you to read and write small amounts of primitive data (as key/value pairs) to a file on the device storage. The SharedPreference class provides APIs for getting a handle to a preference file and for reading, writing, and managing this data. The shared preferences file itself is managed by the Android framework, and accessible to (shared with) all the components of your app. That data is not, however, shared with or accessible to any other apps.
The data you save to shared preferences is different from the data in the saved activity state you learned about in an earlier chapter. The data in the activity instance state is retained across activity instances in the same user session. Shared preferences persist across user sessions, even if your app is killed and restarted or if the device is rebooted.
Use shared preferences only when you need to save a small amount data as simple key/value pairs. To manage larger amounts of persistent app data use the other methods such as SQL databases, which you will learn about in a later chapter.
What you should already KNOW
From the previous practicals you should be familiar with:
What you will LEARN
You will learn to:
What you will DO
In this practical, you will:
App Overview
The HelloSharedPrefs app is another variation of the HelloToast app you created in Lesson 1. It includes buttons to increment the number, to change the background color, and to reset both the number and color to their defaults. The app also uses themes and styles to define the buttons.
You'll start with the starter app in this practical and add shared preferences to the main activity code. You'll also add a reset button that sets both the count and the background color to the default, and clears the preferences file.
Task 1. Explore HelloSharedPrefs
The complete starter app project for this practical is available at HelloSharedPrefs-Start. In this task you will load the project into Android Studio and explore some of the app's key features.
1.1 Open and Run the HelloSharedPrefs Project
Re-run the app.
The app restarts with the default appearance -- the count is 0, and the background color is grey.
1.2 Explore the Activity code
Task 2. Save and restore data to a shared preferences file
In this task you'll save the state of the app to a shared preferences file, and read that data back in when the app is restarted. Because the state data you're saving to the shared preferences (the current count and color) are the same data you preserve in the instance state, you don't have to do it twice -- you can replace the instance state altogether with the shared preference state.
2.1 Initialize the preferences
Add member variables to the MainActivity class to hold the name of the shared preferences file, and a reference to a SharedPreferences object.
private SharedPreferences mPreferences;
private String sharedPrefFile = "com.example.android.hellosharedprefs";
You can name your shared preferences file anything you want to, but conventionally it has the same name as the package name of your app.
In the onCreate() method, initialize the shared preferences. Make sure you insert this code before the if statement.:
mPreferences = getSharedPreferences(sharedPrefFile, MODE_PRIVATE);
The getSharedPreferences() method opens the file at the given file name (sharedPrefFile) with the mode MODE_PRIVATE.
Note: Older versions of Android had other modes that allowed you to create a world-readable or world-writable shared preferences file. These modes were deprecated in API 17, and are now strongly discouraged for security reasons. If you need to share data with other apps, use a service or a content provider.
Solution Code (Main Activity - partial)
public class MainActivity extends AppCompatActivity {
private int mCount = 0;
private TextView mShowCount;
private int mCurrentColor;
private SharedPreferences mPreferences;
private String sharedPrefFile = "com.example.android.hellosharedprefs";
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mShowCount = (TextView) findViewById(R.id.textview);
mCurrentColor = ContextCompat.getColor(this, R.color.default_background);
mPreferences = getSharedPreferences(sharedPrefFile, MODE_PRIVATE);
// …
}
}
2.2 Save preferences in onPause()
Saving preferences is a lot like saving the instance state -- both operations set aside the data to a Bundle object as a key/value pair. For shared preferences, however, you save that data in the onPause() lifecycle callback, and you need a shared editor object (SharedPreferences.Editor) to write to the shared preferences object.
Type "onPause", select the method signature for the onPause() method, and click OK.
A skeleton onPause() method is added to the insertion point.
Get an editor for the SharedPreferences object:
SharedPreferences.Editor preferencesEditor = mPreferences.edit();
A shared preferences editor is required to write to the shared preferences object. Add this line to onPause() after the call to super.onPause().
Use the putInt() method to put both the mCount and mCurrentColor integers into the shared preferences with the appropriate keys:
preferencesEditor.putInt(COUNT_KEY, mCount);
preferencesEditor.putInt(COLOR_KEY, mCurrentColor);
The SharedPreferences.Editor class includes multiple put methods for different data types, including putInt() and putString().
Call apply() to save the preferences:
preferencesEditor.apply();
The apply() method saves the preferences asynchronously, off of the UI thread. The shared preferences editor also has a commit() method to synchronously save the preferences. The commit() method is discouraged as it can block other operations.
Solution Code (MainActivity - onPause() method)
@Override
protected void onPause(){
super.onPause();
SharedPreferences.Editor preferencesEditor = mPreferences.edit();
preferencesEditor.putInt(COUNT_KEY, mCount);
preferencesEditor.putInt(COLOR_KEY, mColor);
preferencesEditor.apply();
}
2.3 Restore preferences in onCreate()
As with the instance state, your app reads any saved shared preferences in the onCreate() method. Again, since the shared preferences contain the same data as the instance state, we can replace the state with the preferences here as well. Every time onCreate() is called -- when the app starts, on configuration changes -- the shared preferences are used to restore the state of the view.
if (savedInstanceState != null) {
mCount = savedInstanceState.getInt(COUNT_KEY);
if (mCount != 0) {
mShowCountTextView.setText(String.format("%s", mCount));
}
mColor = savedInstanceState.getInt(COLOR_KEY);
mShowCountTextView.setBackgroundColor(mColor);
}
In the onCreate() method, in the same spot where the save instance state code was, get the count from the preferences with the COUNT_KEY key and assign it to the mCount variable.
mCount = mPreferences.getInt(COUNT_KEY, 0);
When you read data from the preferences you don't need to get a shared prefrences editor. Use any of the get methods on a shared preferences object to retrieve preference data.
Note that the getInt() method takes two arguments: one for the key, and the other for the default value if the key cannot be found. In this case the default value is 0, which is the same as the initial value of mCount.
mShowCountTextView.setText(String.format("%s", mCount));
Get the color from the preferences with the COLOR_KEY key and assign it to the mColor variable.
mColor = mPreferences.getInt(COLOR_KEY, mColor);
As before, the second argument to getInt() is the default value to use in case the key doesn't exist in the shared preferences. In this case you can just reuse the value of mColor, which was just initialized to the default background further up in the method.
mShowCountTextView.setBackgroundColor(mColor);
Solution Code (Main Activity - onCreate())
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// Initialize views, color, preferences
mShowCountTextView = (TextView) findViewById(R.id.count_textview);
mColor = ContextCompat.getColor(this, R.color.default_background);
mPreferences = getSharedPreferences(mSharedPrefFile, MODE_PRIVATE);
// Restore preferences
mCount = mPreferences.getInt(COUNT_KEY, 0);
mShowCountTextView.setText(String.format("%s", mCount));
mColor = mPreferences.getInt(COLOR_KEY, mColor);
mShowCountTextView.setBackgroundColor(mColor);
}
2.4 Reset preferences in the reset() click handler
The reset button in the starter app resets both the count and color for the activity to their default values. Since the preferences hold the state of the activity, it's important to also clear the preferences at the same time.
SharedPreferences.Editor preferencesEditor = mPreferences.edit();
preferencesEditor.clear();
preferencesEditor.apply();
Solution Code (reset() method) :
public void reset(View view) {
// Reset count
mCount = 0;
mShowCountTextView.setText(String.format("%s", mCount));
// Reset color
mColor = ContextCompat.getColor(this, R.color.default_background);
mShowCountTextView.setBackgroundColor(mColor);
// Clear preferences
SharedPreferences.Editor preferencesEditor = mPreferences.edit();
preferencesEditor.clear();
preferencesEditor.apply();
}
Solution code
Android Studio project: HelloSharedPrefs
Coding challenge
Note: All coding challenges are optional and not prerequisite for the material in the next chapter.
Challenge: Modify the HelloSharedPrefs app so that instead of automatically saving the state to the preferences file, add a second activity to change, reset, and save those preferences. Add a button to the app named Settings to launch that activity. Include toggle buttons and spinners to modify the preferences, and Save and Reset buttons for saving and clearing the preferences.
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
9.2: Adding Settings to an App
Contents:
Apps often include settings that allow users to modify app features and behaviors. For example, some apps allow users to set their home locations, default units for measurements, dining options, and other settings that apply to the entire app. Settings are usually accessed infrequently, because once a user changes a setting, such as a home location, they rarely need to go back and change it again.
Users expect to navigate to app settings by tapping Settings in side navigation, such as a navigation drawer as shown on the left side of the figure below, or in the options menu in the app bar, shown on the right side of the figure below.
In the figure above:
In this practical you will add a settings activity to an app. Users will be able to navigate to the app settings by tapping Settings, which will be located in the options menu in the app bar.
What you should already KNOW
From the previous practicals, you should be able to:
What you will LEARN
You will learn to:
What you will DO
In this practical, you will:
App overview
Android Studio provides a shortcut for setting up an options menu with Settings. If you start an Android Studio project for a smartphone or tablet using the Basic Activity template, the new app includes Settings as shown below:
The template also includes a floating action button in the lower right corner of the screen with an envelope icon. You can ignore this button for this practical, as you won't be using it.
You'll start by creating an app named AppWithSettings using the Basic Activity template, and add a settings activity that provides one toggle switch setting that the user can turn on or off:
You will add code to read the setting and perform an action based on its value. For the sake of simplicity, the action will be to display a toast message with the value of the setting.
In the second task, you will add the standard Settings Activity template provided by Android Studio to the DroidCafe app you created in a previous lesson. The Settings Activity template is pre-populated with settings you can customize for an app, and provides a different layout for smartphones and tablets:
Smartphones: A main Settings screen with a header link for each group of settings, such as General for general settings, as shown below.
Tablets: A master/detail screen layout with a header link for each group on the left (master) side, and the group of settings on the right (detail) side, as shown in the figure below.
All you need to do to customize the template is change the headers, setting titles, setting descriptions, and values for the settings, and write the code you would normally write to use the values of the settings.
The Droid Cafe app was created in a previous lesson from the Basic Activity template, which provides an options menu in the app bar for placing the Settings option. You will customize the supplied Settings Activity template by changing a single setting's title, description, values, and default values. You will add code to read the setting's value after the user changes it, and display that value.
Task 1: Add a switch setting to an app
In this task, you will:
1.1 Create the project and add the xml directory and resource file
Attribute | Value |
Application Name | AppWithSettings |
Company Name | android.example.com (or your own domain) |
Phone and Tablet Minimum SDK | API15: Android 4.0.3 IceCreamSandwich |
Use a Fragment? | Leave unchecked |
Template | Basic Activity |
In the figure above:
1.2 Add the XML preference and attributes for the setting
Drag a SwitchPreference from the Palette pane on the left side to the top of the layout, as shown in the figure below.
Change the values in the Properties pane on the right side of the layout editor as follows (refer to the figure below):
Click the Text tab at the bottom of the layout editor to edit the XML code:
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
<SwitchPreference
android:defaultValue="true"
android:title="Settings option"
android:key="example_switch"
android:summary="Turn this option on or off" />
</PreferenceScreen>
The Properties values you entered represent XML attributes:
Extract the string resources for the android:title and android:summary attribute values to @string/switch_title and @string/switch_summary .
Change <SwitchPreference in the code to <android.support.v7.preference.SwitchPreferenceCompat :
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
<android.support.v7.preference.SwitchPreferenceCompat
... />
</PreferenceScreen>
In order to use the PreferenceFragmentCompat version of PreferenceFragment, you must also use the android.support.v7 version of SwitchPreference ( SwitchPreferenceCompat ).
The SwitchPreferenceCompat line above may show a yellow light bulb icon with a warning, but you can ignore it.
Open the styles.xml file, and add the following preferenceTheme declaration to the AppTheme :
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
...
<item name="preferenceTheme">@style/PreferenceThemeOverlay</item>
</style>
In order to use the PreferenceFragmentCompat version of PreferenceFragment, you must also declare preferenceTheme with the PreferenceThemeOverlay style to the app theme.
dependencies {
...
compile 'com.android.support:preference-v7:25.0.1'
}
The above adds the android.support:preference-v7 library in order to use the PreferenceFragmentCompat version of PreferenceFragment.
1.3 Add an activity for settings and a fragment for a specific setting
In order to create a Settings activity that provides a UI for settings, add an Empty Activity to the app:
The result is the following class definition in SettingsActivity:
public class SettingsActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
}
}
Add a blank fragment for a group of similar settings (without a layout, factory methods, or interface callbacks) to the app, in order to swap them into the Settings activity screen when needed:
The result is the following class definition in SettingsFragment:
public class SettingsFragment extends Fragment {
public SettingsFragment() {
// Required empty public constructor
}
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) {
TextView textView = new TextView(getActivity());
textView.setText(R.string.hello_blank_fragment);
return textView;
}
}
Change the class definition of SettingsFragment to extend PreferenceFragmentCompat :
public class SettingsFragment extends PreferenceFragmentCompat {
...
}
You use a specialized Fragment subclass to display a list of settings. The best practice is to use a regular Activity that hosts a PreferenceFragment that displays the app settings. Fragments like PreferenceFragment provide a more flexible architecture for your app, compared to using activities alone. A fragment is like a modular section of an activity—it has its own lifecycle and receives its own input events, and you can add or remove a fragment while the activity is running.
Use the PreferenceFragmentCompat version of PreferenceFragment with an activity that extends AppCompatActivity. In order to extend the fragment, you may have to add the following import statement:
import android.support.v7.preference.PreferenceFragmentCompat;
Replace the entire onCreateView() method in the fragment with this onCreate() method:
@Override
public void onCreatePreferences(Bundle savedInstanceState,
String rootKey) {
}
The reason why you replace onCreateView() with onCreatePreferences() in SettingsFragment is because you will be adding this fragment to the existing SettingsActivity to display preferences, rather than showing a separate fragment screen. Adding it to the existing activity makes it easy to add or remove a fragment while the activity is running. The preference fragment is rooted at the PreferenceScreen using rootKey .
You can safely remove the empty constructor from the fragment as well, since the fragment is not displayed by itself:
public SettingsFragment() {
// Required empty public constructor
}
At the end of the onCreatePreferences() method in SettingsFragment, you need to associate with this fragment the preferences.xml settings resource you just created. Add a call to setPreferencesFromResource() passing the id of the XML file ( R.xml.preferences) and the rootKey to identify the preference root in PreferenceScreen :
setPreferencesFromResource(R.xml.preferences, rootKey);
The onCreatePreferences() method should now look like this:
@Override
public void onCreatePreferences(Bundle savedInstanceState,
String rootKey) {
setPreferencesFromResource(R.xml.preferences, rootKey);
}
Add the following code to the end of the SettingsActivity onCreate() method so that the fragment is displayed as the main content:
getSupportFragmentManager().beginTransaction()
.replace(android.R.id.content, new SettingsFragment())
.commit();
The above code is the typical pattern used to add a fragment to an activity so that the fragment appears as the main content of the activity. You use:
The entire onCreate() method in SettingsActivity should now look like the following:
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
getSupportFragmentManager().beginTransaction()
.replace(android.R.id.content, new SettingsFragment())
.commit();
}
1.4 Connect the Settings menu item to the settings activity
Use an intent to launch the SettingsActivity from the MainActivity.
if (id == R.id.action_settings) {
return true;
}
if (id == R.id.action_settings) {
Intent intent = new Intent(this, SettingsActivity.class);
startActivity(intent);
return true;
}
<activity android:name=".SettingsActivity"></activity>
<activity android:name=".SettingsActivity"
android:label="Settings"
android:parentActivityName=".MainActivity">
<meta-data
android:name="android.support.PARENT_ACTIVITY"
android:value=".MainActivity"/>
</activity>
1.5 Save the default values in shared preferences
Although the default value for the toggle switch setting has already been set in the android:defaultValue attribute (in Step 1.2 of this task), the app must save the default value in the SharedPreferences file for each setting when the user first opens the app. Follow these steps to set the default value for the toggle switch:
In MainActivity, add the following to the end of the existing onCreate() method:
protected void onCreate(Bundle savedInstanceState) {
...
PreferenceManager.setDefaultValues(this, R.xml.preferences, false);
}
The above code ensures that the settings are properly initialized with their default values. The setDefaultValues() method takes three arguments:
1.6 Read the changed settings value from shared preferences
When the app starts, the MainActivity's onCreate() method can read setting values that have changed, and use the changed values rather than the default values.
Each setting is identified using a key-value pair. The Android system uses this key-value pair when saving or retrieving settings from a SharedPreferences file for your app. When the user changes a setting, the system updates the corresponding value in the SharedPreferences file. To use the value of the setting, the app can use the key to get the setting from the SharedPreferences file.
Follow these steps to add that code:
public class SettingsActivity extends AppCompatActivity {
public static final String
KEY_PREF_EXAMPLE_SWITCH = "example_switch";
...
}
In the onCreate() method in MainActivity, and add the following at end of the method:
protected void onCreate(Bundle savedInstanceState) {
...
SharedPreferences sharedPref =
PreferenceManager.getDefaultSharedPreferences(this);
Boolean switchPref = sharedPref.getBoolean
(SettingsActivity.KEY_PREF_EXAMPLE_SWITCH, false);
}
The above code snippet uses
Add a Toast.makeText() method to onCreate() that displays the value of the switchPref setting in a toast:
Toast.makeText(this, switchPref.toString(), Toast.LENGTH_SHORT).show();
Whenever the MainActivity starts or restarts, the onCreate() method should read the setting values in order to use them in the app. The Toast.makeText() method would be replaced with a method that initializes the settings.
You now have a working settings activity in your app.
Solution code:
Android Studio project: AppWithSettings
Task 2: Using the Settings Activity template
If you need to build several sub-screens of settings and you want to take advantage of tablet-sized screens as well as maintain compatibility with older versions of Android for tablets, Android Studio provides a shortcut: the Settings Activity template.
In the previous task you learned how to use an empty settings activity and a blank fragment in order to add a setting to an app. Task 2 will now show you how to use the Settings Activity template supplied with Android Studio to:
In a previous practical you created an app called Droid Cafe using the Basic Activity template, which provides an options menu in the app bar as shown below.
In the above figure:
Android Studio project: To start the project from where you left off in the previous practical, download the Android Studio project DroidCafe.
2.1 Explore the Settings Activity template
To include the Settings Activity template in your app project in Android Studio, follow these steps:
The Settings Activity template not only provides layouts for smartphone-sized and tablet-sized screens, but also provides the function of listening to a settings change, and changing the summary to reflect the settings change. For example, if you change the "Add friends to messages" setting (the choices are Always, When possible, or Never), the choice you make appears in the summary underneath the setting:
In general, you need not change the Settings Activity template code in order to customize the activity for the settings you want in your app. You can customize the settings titles, summaries, possible values, and default values without changing the template code, and even add more settings to the groups that are provided.
You use the Settings Activity template code as-is. To make it work for your app, add code to the Main Activity to set the default settings values, and to read and use the settings values, as shown later in this task.
The Settings Activity template creates the following for you:
XML files in the res > xml directory, which you can add to or customize for the settings you want.
The above XML layouts use various subclasses of the Preference class rather than View objects, and direct subclasses provide containers for layouts involving multiple settings. For example, PreferenceScreen represents a top-level Preference that is the root of a Preference hierarchy. The above files use PreferenceScreen at the top of each screen of settings. Other Preference subclasses for settings provide the appropriate UI for users to change the setting. For example:
Tip: You can edit the XML files to change the default settings to settings you need for your app.
String resources in the strings.xml file in the res > values directory, which you can customize for the settings you want.
All strings used in the Settings Activity, such as the titles for settings, string arrays for lists, and descriptions for settings, are defined as string resources at the end of this file. They are marked by comments such as <!-- Strings related to Settings --> and <!-- Example General settings --> .
Tip: You can edit these strings to customize the settings you need for your app.
SettingsActivity in the java > com.example.android.projectname directory, which you can use as is.
This is the activity that displays the settings. SettingsActivity extends AppCompatPreferenceActivity for maintaining compatibility with older versions of Android.
AppCompatPreferenceActivity in the java > com.example.android.projectname directory, which you use as is.
This activity is a helper class that SettingsActivity uses to maintain backwards compatibility with previous versions of Android.
2.2 Add the Settings menu item and connect it to the activity
As you learned in a previous practical, you can edit the menu_main.xml file in the res > menu directory for the options menu to add or remove menu items.
Edit the menu_main.xml file to add another menu item called Settings with the new resource id action_settings :
<item
android:id="@+id/action_settings"
android:orderInCategory="50"
android:title="Settings"
app:showAsAction="never" />
Specify "never" for the app:showAsAction attribute so that Settings appears only in the overflow options menu and not in the app bar itself, since it should not be used often.
Specify "50" for the android:orderInCategory attribute so that Settings appears below Favorites (set to "40" ) but above Contact (set to "100" ).
In MainActivity, find the switch-case block in the onOptionsItemSelected() method which handles the tap on items in the options menu:
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.action_order:
displayToast(getString(R.string.action_order_message));
return true;
case R.id.action_status:
displayToast(getString(R.string.action_status_message));
return true;
case R.id.action_favorites:
displayToast(getString(R.string.action_favorites_message));
return true;
case R.id.action_contact:
displayToast(getString(R.string.action_contact_message));
return true;
}
return super.onOptionsItemSelected(item);
}
Use an intent to launch the SettingsActivity from the MainActivity. Add the intent to the end of the switch case block:
...
case R.id.action_settings:
Intent intent = new Intent(this, SettingsActivity.class);
startActivity(intent);
return true;
}
return super.onOptionsItemSelected(item);
}
Run the app using a smartphone or smartphone emulator so that you can see how the Settings Activity template handles the smartphone screen size, and follow these steps:
Tap the overflow icon for the options menu, and tap Settings to see the settings activity, as shown on the left side of the figure below.
Tap each setting header (General, Notifications, and Data & sync), as shown in the center of the figure below, to see the group of settings on each child screen of the Settings screen, shown on the right side of the figure below.
Tap the Up button in the settings activity to return to the main activity.
2.3 Customize the settings provided by the template
To customize the settings provided by the Settings Activity template, edit the string and string array resources in the strings.xml file and the layout attributes for each setting in the files in the xml directory. In this step you will change the "Data & sync" settings.
Open the strings.xml file in the res > values directory, and scroll the contents to the <!-- Example settings for Data & Sync --> comment:
<!-- Example settings for Data & Sync -->
<string name="pref_header_data_sync">Data & sync</string>
<string name="pref_title_sync_frequency">Sync frequency</string>
<string-array name="pref_sync_frequency_titles">
<item>15 minutes</item>
<item>30 minutes</item>
<item>1 hour</item>
<item>3 hours</item>
<item>6 hours</item>
<item>Never</item>
</string-array>
<string-array name="pref_sync_frequency_values">
<item>15</item>
<item>30</item>
<item>60</item>
<item>180</item>
<item>360</item>
<item>-1</item>
</string-array>
...
Refactor the resource name by following these steps (the app will still work without refactoring the names, but refactoring makes the code easier to understand):
Edit the pref_title_sync_frequency string resource (which is set to Sync frequency ) to Market.
<string-array name="pref_market_titles">
<item>United States</item>
<item>Canada</item>
<item>United Kingdom</item>
<item>India</item>
<item>Japan</item>
<item>Other</item>
</string-array>
<string-array name="pref_market_values">
<item>US</item>
<item>CA</item>
<item>UK</item>
<item>IN</item>
<item>JA</item>
<item>-1</item>
</string-array>
<ListPreference
android:defaultValue="180"
android:entries="@array/pref_market_titles"
android:entryValues="@array/pref_market_values"
android:key="sync_frequency"
android:negativeButtonText="@null"
android:positiveButtonText="@null"
android:title="@string/pref_title_account" />
android:defaultValue="US"
Since the key for this setting preference ( "sync_frequency" ) is hard-coded elsewhere in the Java code, don't change the android:key attribute—keep using "sync_frequency" as the key for this setting in this example. If you are thoroughly customizing the settings for a real-world app, you would spend the time changing the hard-coded keys throughout the code.
Note: Why not use a string resource for the key? Because string resources can be localized for different languages using multiple-language XML files, and the key string might be inadvertently translated along with the other strings, which would cause the app to crash.
2.4 Add code to set the default values for the settings
Find the onCreate() method in MainActivity, and add the following PreferenceManager.setDefaultValues statements at the end of the method:
@Override
protected void onCreate(Bundle savedInstanceState) {
...
PreferenceManager.setDefaultValues(this, R.xml.pref_general, false);
PreferenceManager.setDefaultValues(this, R.xml.pref_notification, false);
PreferenceManager.setDefaultValues(this, R.xml.pref_data_sync, false);
}
The default values are already specified in the XML file with the android:defaultValue attribute, but the above statements ensure that the Shared Preferences file is properly initialized with the default values. The setDefaultValues() method takes three arguments:
2.5 Add code to read values for the settings
Add the following code at the end of the MainActivity onCreate() method. You can add it immediately after the code you added in the previous step to set the defaults for the settings:
...
SharedPreferences sharedPref =
PreferenceManager.getDefaultSharedPreferences(this);
String marketPref = sharedPref.getString("sync_frequency", "-1");
Toast.makeText(this, marketPref, Toast.LENGTH_SHORT).show();
}
As you learned in the previous task, you use PreferenceManager.getDefaultSharedPreferences(this) to get the setting as a SharedPreferences object ( marketPref ). You then use getString() to get the string value of the setting that uses the key ( sync_frequency ) and assign it to marketPref . If there is no value for the key, the getString() method sets the setting value of marketPref to -1 , which is the value of Other in the pref_market_values array.
Tap the Up button in the app bar to return to the Settings screen, and tap it again to return to the main screen. You should see a toast message with "CA" (for Canada):
You have successfully integrated the Settings Activity with the Droid Cafe app.
Solution code
Android Studio project: DroidCafeWithSettings (Includes coding challenge #1.)
Android Studio project: DroidCafeWithSettingsChallenge (Includes coding challenge #2.)
Coding challenges
Note: All coding challenges are optional and not prerequisite for the material in the next chapter.
Challenge 1: Add code to DroidCafeWithSettings that reads the value of the toggle switch "Enable social recommendations" on the General child screen of Settings, and displays its value along with the "Market" setting in the same toast message on the main screen.
Hint: Use a Boolean variable with shared.Pref.getBoolean and the key "example_switch" .
Challenge 2: The DroidCafeWithSettings app displays the settings on a tablet-sized screen properly, but the Up button in the app bar doesn't return the user to the MainActivity as it does on a smartphone-sized screen. This is due to the onOptionsItemSelected() method in each fragment in SettingsActivity. It uses the following to restart the SettingsActivity when the user taps the Up button:
startActivity(new Intent(getActivity(), SettingsActivity.class));
The above is the appropriate action on smartphone screens in which Settings headers (General, Notifications, and Account) appear in a separate screen. After changing a setting, you want the user's tap on the Up button to take them back to the Settings headers.
However, on a tablet, the headers are always visible in the left pane (while the settings are in the right pane). As a result, tapping the Up button doesn't take the user to MainActivity.
Find a way to make the Up button work properly in SettingsActivity on tablet-sized screens.
Hint: There are several ways to fix this problem. Consider the following:
<resources>
<bool name="isTablet">true</bool>
</resources>
<bool name="isTablet">false</bool>
Summary
In this practical you learned to:
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
10.1A: SQLite Database
Contents:
A SQLite database is a good storage solution when you have structured data that you need to store persistently and access, search, and change frequently.
When you use a SQLite database, all interactions with the database are through an instance of the SQLiteOpenHelper class which executes your requests and manages your database for you.
In this practical, you will create a SQLite database for a set of data, display retrieved data in a RecyclerView, add functionality to add, delete, and edit the data in the RecyclerView and store it in the database.
Note: A database that persistently stores your data and abstracts your data into a data model is sufficient for small Android apps with minimal complexity. In later chapters, you will learn to architect your app using loaders and content providers to further separate data from the user interface. These classes will help to move work off the UI thread to assist in making the user's experience as smooth and natural as possible. In addition to improving the user experience by removing a potential performance issue, they improve your ability to extend and maintain your app.
Important: In this practical, the SQLiteOpenHelper executes database operations in the main thread. In a production app, where database operations might take quite some time, you would perform these operations on a background thread, for example, using a loader such as AsyncTaskLoader and CursorLoader.
What you should already KNOW
For this practical you should be familiar with:
You also need a basic understanding of SQL databases, how they are organized into tables of rows and columns, and the SQL language. See the SQLite Primer
What you will LEARN
In this practical you will learn to:
What you will DO
You start with an app that is the same as the RecyclerView word list app you created previously, with additional user interface elements already added for you, so that you can focus on the database code.
You will extend and modify the base app to:
App Overview
Starting from a skeleton app, you will add functionality to:
Minimum SDK Version is API15: Android 4.0.3 IceCreamSandwich and *target* SDK is the current version of Android (version 23 as of the writing of this book).
Task 0. Download and run the starter code
In order to save you some work, in particular writing database-unrelated activities and user interface code, you need to get the starter code for this practical.
Download the WordListSqlStarterCode starter code.
Open the app in Android Studio.
Task 1. Extend SQLiteOpenHelper to create and populate a database
Android apps can use standard SQLite databases to store data. This practical does not teach SQLite, but shows how to use it in an Android app. For info on learning about SQLite, see the SQL Primer in the previous chapter.
SQLOpenHelper is a utility class in the Android SDK for interacting with a SQLite database object. It includes onCreate() and onUpdate() methods that you must implement, and insert, delete, update, and query convenience methods for all your database interactions.
The SQLOpenHelper class takes care of opening the database if it exists, creating it if it does not, and upgrading it as necessary.
Note: You can have more than one database per app, and more than one open helper managing them. However consider creating multiple tables in the same database instead of using multiple databases for performance and architectural simplicity
1.1 Create a skeleton WordListOpenHelper class
The first step in adding a database to your code is always to create a subclass of SQLiteOpenHelper and implement its methods.
public class WordListOpenHelper extends SQLiteOpenHelper {}
public WordListOpenHelper(Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);
}
1.2. Add database constants to WordListOpenHelper
At the top of the WordListOpenHelper class, define the constants for the tables, rows, and columns as shown in the code below. This should get rid of all the errors.
// It's a good idea to always define a log tag like this.
private static final String TAG = WordListOpenHelper.class.getSimpleName();
// has to be 1 first time or app will crash
private static final int DATABASE_VERSION = 1;
private static final String WORD_LIST_TABLE = "word_entries";
private static final String DATABASE_NAME = "wordlist";
// Column names...
public static final String KEY_ID = "_id";
public static final String KEY_WORD = "word";
// ... and a string array of columns.
private static final String[] COLUMNS = { KEY_ID, KEY_WORD };
1.3. Build the SQL query and code to create the database
SQL queries can become quite complex. It is a best practice to construct the queries separately from the code that uses them. This increases code readability and helps with debugging.
Continue adding code to WordListOpenHelper.java:
// Build the SQL query that creates the table.
private static final String WORD_LIST_TABLE_CREATE =
"CREATE TABLE " + WORD_LIST_TABLE + " (" +
KEY_ID + " INTEGER PRIMARY KEY, " +
// id will auto-increment if no value passed
KEY_WORD + " TEXT );";
private SQLiteDatabase mWritableDB;
private SQLiteDatabase mReadableDB;
@Override
public void onCreate(SQLiteDatabase db) {
db.execSQL(WORD_LIST_TABLE_CREATE);
}
1.4 Create the database in onCreate of the MainActivity
To create the database, create an instance of the WordListOpenHelper class you just wrote.
private WordListOpenHelper mDB;
mDB = new WordListOpenHelper(this);
1.5 Add data to the database
The list of words for your app could come from many sources. It could be completely user created, or downloaded from the internet, or generated from a file that's part of your APK. For this practical, you will seed your database with a small amount of hard-coded data.
Note that acquiring, creating, and formatting data is a whole separate topic that is not covered in this course.
In onCreate, after creating the database, add a function call to
fillDatabaseWithData(db);
Next, implement the fillDatabaseWithData() method in WordListOpenHelper.
Implement the method stub.
private void fillDatabaseWithData(SQLiteDatabase db){}
String[] words = {"Android", "Adapter", "ListView", "AsyncTask",
"Android Studio", "SQLiteDatabase", "SQLOpenHelper",
"Data model", "ViewHolder","Android Performance",
"OnClickListener"};
// Create a container for the data.
ContentValues values = new ContentValues();
for (int i=0; i < words.length; i++) {
// Put column/value pairs into the container.
// put() overrides existing values.
values.put(KEY_WORD, words[i]);
db.insert(WORD_LIST_TABLE, null, values);
}
Task 2. Create a data model for a single word
A data model is a class that encapsulates a complex data structure and provides an API for accessing and manipulating the data in that structure. You need a data model to pass data retrieved from the database to the UI.
For this practical, the data model only contains the word and its id. While the unique id will be generated by the database, you need a way of passing the id to the user interface. This will identify the word the user is changing.
2.1. Create a data model for your word data
private int mId;
private String mWord;
Solution:
public class WordItem {
private int mId;
private String mWord;
public WordItem() {}
public int getId() {return this.mId;}
public String getWord() {return this.mWord;}
public void setId(int id) {this.mId = id;}
public void setWord(String word) {this.mWord = word;}
}
Task 3. Implement the query() method in WordListOpenHelper
The query() method retrieves rows from the database as selected by a SQL query.
For this sample, in order to display words in the RecyclerView, we need to get them from the database, one at a time, as needed. The word needed is identified by its position in the view.
As such, the query method has a parameter for the requested position and returns a WordItem.
3.1. Implement the query() method
public WordItem query(int position) {
}
String query = "SELECT * FROM " + WORD_LIST_TABLE +
" ORDER BY " + KEY_WORD + " ASC " +
"LIMIT " + position + ",1";
Instantiate a Cursor variable to null to hold the result from the database.
Cursor cursor = null;
The SQLiteDatabase always presents the results as a Cursor in a table format that resembles of a SQL database.
A cursor is a pointer into a row of structured data. You can think of it as an array of rows. The Cursor class provides methods for moving the cursor through that structure, and methods to get the data from the columns of each row.
WordItem entry = new WordItem();
try {} catch (Exception e) {} finally {}
Inside the try block,
get a readable database if it doesn't exist.
if (mReadableDB == null) {
mReadableDB = getReadableDatabase();
}
send a raw query to the database and store the result in a cursor.
cursor = mReadableDB.rawQuery(query, null);
The open helper query method can construct a SQL query string and send it as a rawQuery to the database which returns a cursor. If your data is supplied by your app, and under your full control, you can use raw query().
Move the cursor to the first item.
cursor.moveToFirst();
Set the the id and word of the WordItem entry to the values returned by the cursor.
entry.setId(cursor.getInt(cursor.getColumnIndex(KEY_ID)));
entry.setWord(cursor.getString(cursor.getColumnIndex(KEY_WORD)));
Log.d(TAG, "EXCEPTION! " + e);
cursor.close();
return entry;
Solution:
public WordItem query(int position) {
String query = "SELECT * FROM " + WORD_LIST_TABLE +
" ORDER BY " + KEY_WORD + " ASC " +
"LIMIT " + position + ",1";
Cursor cursor = null;
WordItem entry = new WordItem();
try {
if (mReadableDB == null) {
mReadableDB = getReadableDatabase();
}
cursor = mReadableDB.rawQuery(query, null);
cursor.moveToFirst();
entry.setId(cursor.getInt(cursor.getColumnIndex(KEY_ID)));
entry.setWord(cursor.getString(cursor.getColumnIndex(KEY_WORD)));
} catch (Exception e) {
Log.d(TAG, "QUERY EXCEPTION! " + e.getMessage());
} finally {
cursor.close();
return entry;
}
}
3.2. The onUpgrade method
Every SQLiteOpenHelper must implement the onUpgrade() method, which determines what happens if the database version number changes. This may happen if you have existing users of your app that use an older version of the database. This method is triggered when a database is first opened. The customary default action is to delete the current database and recreate it.
Important: While it's OK to drop the table in a sample app, In a production app you need to carefully migrate the user's valuable data.
You can use the code below to implement the onUpgrade() method for this sample.
Boilerplate code for onUpgrade():
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
Log.w(WordListOpenHelper.class.getName(),
"Upgrading database from version " + oldVersion + " to "
+ newVersion + ", which will destroy all old data");
db.execSQL("DROP TABLE IF EXISTS " + WORD_LIST_TABLE);
onCreate(db);
}
Task 4. Display data in the RecyclerView
You now have a database, with data. Next, you will update the WordListAdapter and MainActivity to fetch and display this data.
4.1. Update WordListAdapter to display WordItems
WordItem current = mDB.query(position);
holder.wordItemView.setText(current.getWord());
WordListOpenHelper mDB;
Assign the value of the parameter to mDB. Your constructor should look like this:
public WordListAdapter(Context context, WordListOpenHelper db) {
mInflater = LayoutInflater.from(context);
mContext = context;
mDB = db;
}
This generates an error in MainActivity, because you added an argument to the WordListAdapter constructor.
mAdapter = new WordListAdapter (this, mDB);
Task 5. Add new words to the database
When the user clicks the FAB, an activity opens that lets them enter a word that gets added to the database when they click save.
The starter code provides you with the click listener and the EditWordActivity started by clicking the FAB. You will add the database specific code and tie the pieces together, from the bottom up, like you just did with the query method.
5.1. Write the insert() method
In WordListOpenHelper:
public long insert(String word){}
long newId = 0;
ContentValues values = new ContentValues();
values.put(KEY_WORD, word);
try {} catch (Exception e) {}
if (mWritableDB == null) {
mWritableDB = getWritableDatabase();
}
newId = mWritableDB.insert(WORD_LIST_TABLE, null, values);
Log.d(TAG, "INSERT EXCEPTION! " + e.getMessage());
return newId;
Solution:
public long insert(String word){
long newId = 0;
ContentValues values = new ContentValues();
values.put(KEY_WORD, word);
try {
if (mWritableDB == null) {
mWritableDB = getWritableDatabase();
}
newId = mWritableDB.insert(WORD_LIST_TABLE, null, values);
} catch (Exception e) {
Log.d(TAG, "INSERT EXCEPTION! " + e.getMessage());
}
return newId;
}
5.2. Get the word to insert from the user and update the database
The starter code comes with an EditWordActivity that gets a word from the user and returns it to the main activity. In MainActivity, you just have to fill in the onActivityResult() method.
if (requestCode == WORD_EDIT) {
if (resultCode == RESULT_OK) {
String word = data.getStringExtra(EditWordActivity.EXTRA_REPLY);
if (!TextUtils.isEmpty(word)) {
int id = data.getIntExtra(WordListAdapter.EXTRA_ID, -99);
if (id == WORD_ADD) {
mDB.insert(word);
}
mAdapter.notifyDataSetChanged();
} else {
Toast.makeText(
getApplicationContext(),
R.string.empty_not_saved,
Toast.LENGTH_LONG).show();
}
}
}
Solution:
if (requestCode == WORD_EDIT) {
if (resultCode == RESULT_OK) {
String word = data.getStringExtra(EditWordActivity.EXTRA_REPLY);
// Update the database
if (!TextUtils.isEmpty(word)) {
int id = data.getIntExtra(WordListAdapter.EXTRA_ID, -99);
if (id == WORD_ADD) {
mDB.insert(word);
}
// Update the UI
mAdapter.notifyDataSetChanged();
} else {
Toast.makeText(
getApplicationContext(),
R.string.empty_not_saved,
Toast.LENGTH_LONG).show();
}
}
}
5.3. Implement getItemCount()
In order for the new items to be displayed properly, getItemCount in WordListAdapter has to return the actual number of entries in the database instead of the number of words in the starter list of words.
return (int) mDB.count();
public long count(){
if (mReadableDB == null) {
mReadableDB = getReadableDatabase();
}
return DatabaseUtils.queryNumEntries(mReadableDB, WORD_LIST_TABLE);
}
Task 6. Delete words from the database
To implement the delete functionality you need to:
6.1. Write the delete() method
You use the delete() method on SQLiteDatabase to delete an entry in the database.
Add a method delete to the WordListOpenHelper that:
public int delete(int id) {}
int deleted = 0;
try {} catch (Exception e) {}
if (mWritableDB == null) {
mWritableDB = getWritableDatabase();
}
deleted = mWritableDB.delete(WORD_LIST_TABLE,
KEY_ID + " = ? ", new String[]{String.valueOf(id)});
Log.d (TAG, "DELETE EXCEPTION! " + e.getMessage());
return deleted;
Solution:
public int delete(int id) {
int deleted = 0;
try {
if (mWritableDB == null) {
mWritableDB = getWritableDatabase();
}
deleted = mWritableDB.delete(WORD_LIST_TABLE, //table name
KEY_ID + " =? ", new String[]{String.valueOf(id)});
} catch (Exception e) {
Log.d (TAG, "DELETE EXCEPTION! " + e.getMessage());
}
return deleted;
}
6.2. Add a click handler to DELETE button
You can now add a click handler to the DELETE button that calls the delete() method you just wrote.
Take a look at the MyButtonOnClickListener class in your starter code. The MyButtonOnClickListener class implements a click listener that stores the id, and the word that you need to make changes to the database.
Each view holder, when attached (bound) to the RecyclerView in the onBindViewHolder method of WordListAdapter, needs to also attach a click listener to the DELETE button, passing the id, and word to the MyButtonOnClickListener constructor. These values are then used by the onClick handler to delete the correct item and notify the adapter, which item has been removed.
Note that you cannot use the position argument passed into onBindViewHolder, because it may be stale by the time the click handler is called. You have to keep a reference to the view holder and get the position with getAdapterPosition().
Solution:
// Keep a reference to the view holder for the click listener
final WordViewHolder h = holder; // needs to be final for use in callback
// Attach a click listener to the DELETE button.
holder.delete_button.setOnClickListener(
new MyButtonOnClickListener(current.getId(), null) {
@Override
public void onClick(View v ) {
int deleted = mDB.delete(id);
if (deleted >= 0)
notifyItemRemoved(h.getAdapterPosition());
}
});
Task 7. Update words in the database
To update existing words you have to:
7.1. Write the update() method
You use the update() method on SQLiteDatabase to update an existing entry in the database.
public int update(int id, String word)
int mNumberOfRowsUpdated = -1;
if (mWritableDB == null) {
mWritableDB = getWritableDatabase();
}
ContentValues values = new ContentValues();
values.put(KEY_WORD, word);
mNumberOfRowsUpdated = db.update(WORD_LIST_TABLE,
values, // new values to insert
// selection criteria for row (the _id column)
KEY_ID + " = ?",
//selection args; value of id
new String[]{String.valueOf(id)});
Log.d (TAG, "UPDATE EXCEPTION: " + e.getMessage());
return mNumberOfRowsUpdated;
Solution:
public int update(int id, String word) {
int mNumberOfRowsUpdated = -1;
try {
if (mWritableDB == null) {
mWritableDB = getWritableDatabase();
}
ContentValues values = new ContentValues();
values.put(KEY_WORD, word);
mNumberOfRowsUpdated = mWritableDB.update(WORD_LIST_TABLE,
values,
KEY_ID + " = ?",
new String[]{String.valueOf(id)});
} catch (Exception e) {
Log.d (TAG, "UPDATE EXCEPTION! " + e.getMessage());
}
return mNumberOfRowsUpdated;
}
7.2. Add a click listener to the EDIT button
And here is the code for the Edit click listener when we bind the View in the onBindViewHolder method of WordListAdapter. This listener has nothing database specific. It starts the EditWordActivity Activity using an Intent and passes it the current id, position, and word in the Extras.
If you get an error on the EXTRA_POSITION constant, add it with a value of "POSITION",
Solution:
// Attach a click listener to the EDIT button.
holder.edit_button.setOnClickListener(new MyButtonOnClickListener(
current.getId(), current.getWord()) {
@Override
public void onClick(View v) {
Intent intent = new Intent(mContext, EditWordActivity.class);
intent.putExtra(EXTRA_ID, id);
intent.putExtra(EXTRA_POSITION, h.getAdapterPosition());
intent.putExtra(EXTRA_WORD, word);
// Start an empty edit activity.
((Activity) mContext).startActivityForResult(
intent, MainActivity.WORD_EDIT);
}
});
7.3. Add updating to onActivityResult
As implemented, clicking edit starts an activity that shows the user the current word, and they can edit it. To make the update happen,
else if (id >= 0) {
mDB.update(id, word);
}
7.4. Design and error considerations
Solution code
Android Studio project: WordListSql finished
Coding challenges
Note: All coding challenges are optional and are not prerequisites for later lessons.
Challenge 1: Extend the app to have an editable definition for each word in the database.
Challenge 2: Add a confirmation dialog to the delete functionality.
Summary
In this chapter, you learned how to
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
10.1B: Searching a SQLite Database
Contents:
What you should already KNOW
For this practical you should be familiar with:
What you will LEARN
You will learn to:
What you will DO
In this practical you will add an item to the options menu for searching the database, and an activity that allows users to enter a search string and displays the result of the search in a text view.
Why: Users should always be able to search the data on their own terms.
Note: The focus of this practical is not optimizing the UX of the search request, but showing you how to query the database.
App Overview
You will make a copy of the finished WordListSQLInteractive app (or WordListSqlStarterCode if you didn't rename it; from a previous practical), call it WordListSQLInteractiveWithSearch, and add an activity that lets users search for partial and full words in the database. For example, entering "Android" will return all entries that contain the substring "Android".
Task 0. Download and run the base code
In order to save you some work, this practical will build on an app you have already built. In a production environment, building on existing application code is a common developer task to add features or fix problems.
1. Create your project
Download the WordListSQL finished app.
You can use your own app, or download the base app. As long as the app uses a SQLite database, you can use these instructions to extend it.
Task 1. Add Search
1.1. Add an Options Menu with Search item
Use the OptionsMenuSample code from your previous practicals if you need an example of how to do this.
Create a menu with one item Search. Reference the code snippet for values.
<menu
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app = "http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
tools:context="com.android.example.wordlistsqlsearchable.MainActivity">
<item
android:id="@+id/action_search"
android:title="Search..."
android:orderInCategory="1"
app:showAsAction="never" />
</menu>
@Override
public boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.menu_main, menu);
return true;
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.action_search:
return true;
}
return super.onOptionsItemSelected(item);
}
1.2. Create the layout for the search activity
This layout is similar to activity_edit_word, so you can take advantage of existing code and copy it.
1.3. Add an Activity for searching
In onCreate, initialize mTextView and mEditWordView to their respective views.
public class SearchActivity extends AppCompatActivity {
private static final String TAG = EditWordActivity.class.getSimpleName();
private TextView mTextView;
private EditText mEditWordView;
private WordListOpenHelper mDB;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_search);
mEditWordView = ((EditText) findViewById(R.id.search_word));
mTextView = ((TextView) findViewById(R.id.search_result));
mDB = new WordListOpenHelper(this);
}
}
<activity
android:name="com.android.example.wordlistsqlsearchable.SearchActivity">
</activity>
1.4. Trigger SearchActivity from the menu
Intent intent = new Intent(getBaseContext(), SearchActivity.class);
startActivity(intent);
1.5. Implement the onClick handler for the Search button in the SearchActivity
Your app crashed, because the onClick handler set for the Search button in the XML code doesn't exist yet. So you will build showResult next.
When the Search button is pressed, several things need to happen:
"Search term: " + word
Cursor cursor = mDB.search(word);
To process the cursor, you need to do do the following:
Make sure the cursor is not null.
Move the cursor to the first entry.
Iterate over the cursor processing the current entry, then advancing the cursor.
Extract the word.
Display the word in the text view.
Check the annotated code for additional details.
public void showResult(View view){
String word = mEditWordView.getText().toString();
mTextView.setText("Result for " + word + ":\n\n");
// Search for the word in the database.
Cursor cursor = mDB.search(word);
// Only process a non-null cursor with rows.
if (cursor != null & cursor.getCount() > 0) {
// You must move the cursor to the first item.
cursor.moveToFirst();
int index;
String result;
// Iterate over the cursor, while there are entries.
do {
// Don't guess at the column index.
// Get the index for the named column.
index = cursor.getColumnIndex(WordListOpenHelper.KEY_WORD);
// Get the value from the column for the current cursor.
result = cursor.getString(index);
// Add result to what's already in the text view.
mTextView.append(result + "\n");
} while (cursor.moveToNext()); // Returns true or false
cursor.close();
} // You should add some handling of null case. Right now, nothing happens.
}
Your app will not run without at least a stub for search() implemented. Android Studio will create the stub for you. In the light bulb, choose create method.
1.6. Implement the search method in WordListOpenHelper
The final step is to implement the actual searching of the database.
Inside the search() method, you need to build a query with the search string and send the query to the database.
A more secure way to do this is by using parameters for each part of the query.
WHY: In the previous practical, for the query in WordListOpenHelper, you could build the query string directly and submit it as a rawQuery(), because you had full control over the contents of the query. As soon as you are handling user input, you must assume that it could be malicious.
Important: For security reasons, you should always validate user input before you build your query!
You will learn more about security in the Security chapter and Security Tips.
The SQL query for searching for all entries in the wordlist matching a substring has this form:
SELECT * FROM WORD_LIST_TABLE WHERE KEY_WORD LIKE %searchString%;
The parametrized form of the query method you will call looks like this:
Cursor query (String table, // The table to query
String[] columns, // The columns to return
String selection, // WHERE statement
String[] selectionArgs, // Arguments to WHERE
String groupBy, // Grouping filter. Not used.
String having, // Additional condition filter. Not used.
String orderBy) // Ordering. Setting to null uses default.
See the SQLite Database Android and the documentation for various query()) methods.
For the query in the search() method, you need to assign only the first four arguments.
String[] columns = new String[]{KEY_WORD};
searchString = "%" + searchString + "%";
String where = KEY_WORD + " LIKE ?";
String[] whereArgs = new String[]{searchString};
In a try/catch block.
Get a readable database if mReadable is not set yet.
Query the database using the above form of the query. Pass null for the unused parameters.
Handle the exception. You can just log it.
Here is the solution for the complete method:
public Cursor search (String searchString) {
String[] columns = new String[]{KEY_WORD};
searchString = "%" + searchString + "%";
String where = KEY_WORD + " LIKE ?";
String[]whereArgs = new String[]{searchString};
Cursor cursor = null;
try {
if (mReadableDB == null) {mReadableDB = getReadableDatabase();}
cursor = mReadableDB.query(WORD_LIST_TABLE, columns, where, whereArgs, null, null, null);
} catch (Exception e) {
Log.d(TAG, "SEARCH EXCEPTION! " + e);
}
return cursor;
}
Solution code
Android Studio project: WordListSqlSearchable
Coding challenges
Note: All coding challenges are optional and are not prerequisites for later lessons.
Most of the code samples use the default AppBar that comes with the Empty Template. In some of the previous chapters, you learned about the Toolbar, for example, when using the Basic Template.
Change the app to use the Toolbar and SearchView and show the search icon on the toolbar.
https://developer.android.com/training/search/setup.html
https://developer.android.com/training/appbar/setting-up.html
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
11.1A: Implement a Minimalist Content Provider
Contents:
A content provider is a component that securely manages access to a shared repository of data. It provides a consistent interface for applications to access the shared data. Applications do not access the provider directly but use a content resolver object that provides an interface to and manages the connection with the content provider.
Content providers are useful because:
Note: If your app does not share data with other apps, then your app does not require a content provider. However, because the content provider cleanly separates the implementation of your backend from the user interface, it can also be useful for architecting more complex applications.
The following diagram summarizes the parts of the content provider architecture.
Data: The app that creates the content provider owns the data and specifies what permissions other apps have to work with the data.
The data is often stored in a SQLite database, but this is not mandatory. Typically, the data is made available to the content provider as tables, similar to database tables, where each row represents one entry, and each column represents an attribute for that entry. For example, each row in a contact database contains one entry and that entry may have columns for email addresses and phone numbers.
ContentProvider: The content provider provides a public and secure interface to the data, so that other apps can access the data with the appropriate permissions.
ContentResolver: Used by the Activity to query the content provider. The content resolver returns data as a Cursor object which can then be used, for example, by an adapter, to display the data.
Contract class (not shown): The contract is a public class that exposes important information about the content provider to other apps. This usually includes the URIs to access the data, important constants, and the structure of the data that will be returned.
Apps send requests to the content provider using content Uniform Resource Identifiers or URIs. A content URI for content providers has this general form:
scheme://authority/path-to-data/dataset-name
The following URI could be used to request all the entries in the "words" table:
content://com.android.example.wordcontentprovider.provider/words
Designing URI schemes is a topic in and of itself and is not covered in this course.
Content Resolver: The ContentResolver object provides query(), insert(), update(), and delete() methods for accessing data from a content provider and manages all interaction with the content provider for you. In most situations, you can just use the default content resolver provided by the Android system.
In this practical, you will build a basic content provider from scratch. You will create and process mock data so that you can focus on understanding content provider architecture. Likewise, the user interface to display the data is minimal. In the next practical, you will add a content provider to the WordList app, using this minimalist app as your template.
What you should already KNOW
For this practical you should understand how to:
What you will LEARN
You will learn:
What you will DO
App Overview
Note: Minimum SDK Version is API15: Android 4.0.3 IceCreamSandwich and target SDK is the current version of Android (version 23 as of the writing of this book).
Task 1. Create the MinimalistContentProvider project
1.1. Create a project within the given constraints
Create an app with one activity that shows one text view and two buttons. One button shows the first word in our data (the list), and the other button will list all words. Both buttons call onClickDisplayEntries() when they are clicked. For now, this method will use a switch statement to just display a statement that a particular button was clicked. Use the table below as a guideline for setting up your project.
App name | MinimalistContentProvider |
One Activity | Empty Activity template
Name: MainActivity private static final String TAG = MainActivity.class.getSimpleName(); public void onClickDisplayEntries (View view){Log.d (TAG, "Yay, I was clicked!");} |
TextView | @+id/textview android:text="response" |
Button | @+id/button_display_all android:text="List all words" android:onClick="onClickDisplayEntries" |
Button | @+id/button_display_first android:text="List first word" android:onClick="onClickDisplayEntries" |
1.2. Complete the basic setup
Complete the basic setup of the user interface:
Your MainActivity should be similar to this solution.
Solution:
package android.example.com.minimalistcontentprovider;
[... imports]
public class MainActivity extends AppCompatActivity {
private static final String TAG = MainActivity.class.getSimpleName();
TextView mTextView;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mTextView = (TextView) findViewById(R.id.textview);
}
public void onClickDisplayEntries(View view) {
Log.d (TAG, "Yay, I was clicked!");
switch (view.getId()) {
case R.id.button_display_all:
Log.d (TAG, "Yay, " + R.id.button_display_all + " was clicked!");
break;
case R.id.button_display_first:
Log.d (TAG, "Yay, " + R.id.button_display_first + " was clicked!");
break;
default:
Log.d (TAG, "Error. This should never happen.");
}
mTextView.append("Thus we go! \n");
}
}
Task 2. Create a Contract class, a URI, and mock data
The contract contains information about the data that apps need to build queries.
2.1. Create the Contract class
public final class Contract {}
private Contract() {}
2.2. Create the URI
A content URI for content providers has this general form:
scheme://authority/path/id
The following URI could be used to request all the entries in the "words" table:
content://com.android.example.wordcontentprovider.provider/words
The URI for accessing the content provider is defined in the Contract so that it is available to any app that wants to query this content provider. Customarily, this is done by defining constants for AUTHORITY, CONTENT_PATH, and CONTENT_URI.
Create a constant for the CONTENT_URI. This is a content:// style URI that points to one set of data. If you have multiple "data containers" in the backend, you would create a content URI for each.
Uri is a helper class for building and manipulating URIs. Since it is a never changing string for all instances of the Contract class, you can initialize it statically. public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + CONTENT_PATH);
2.3. Add the MIME Type
Content providers provide content, and you need to specify what type of content they provide. Apps need to know the structure and format of the returned data, so that they can properly handle it.
MIME types are of the form type/subtype, such as text/html for HTML pages. For your content provider, you need to define a vendor-specific MIME type for the kind of data your content provider returns. The type of vendor-specific Android MIME types is always:
The subtype can be anything, but it is a good practice to make it informative. For example:
Read Implementing ContentProvider MIME types for details.
static final String SINGLE_RECORD_MIME_TYPE = "vnd.android.cursor.item/vnd.com.example.provider.words";
static final String MULTIPLE_RECORD_MIME_TYPE = "vnd.android.cursor.dir/vnd.com.example.provider.words";
2.4. Create the mock data
The content provider always presents the results as a Cursor in a table format that resembles a SQL database. This is independent of how the data is actually stored. This app uses a string array of words.
In strings.xml, add a short list of words:
<string-array name="words">
<item>Android</item>
<item>Activity</item>
<item>ContentProvider</item>
<item>ContentResolver</item>
</string-array>
Task 3. Implement the MiniContentProvider class
3.1. Create the MiniContentProvider class
public String[] mData;
@Override
public boolean onCreate() {
Context context = getContext();
mData = context.getResources().getStringArray(R.array.words);
return true;
}
Log.e(TAG, "Not implemented: update uri: " + uri.toString());
3.2. Publish the content provider by adding it to the Android manifest
In order to access the content provider, your app and other apps need to know that it exists. Add a declaration for the content provider to the Android manifest inside a <provider> tag.
The declaration contains the name of the content provider and the authorities (its unique identifier).
<provider
android:name=".MiniContentProvider"
android:authorities="com.android.example.minimalistcontentprovider.provider" />
3.3. Set up URI matching
A ContentProvider needs to respond to data requests from apps using a number of different URIs. To take appropriate action depending on a particular request URI, the content provider needs to analyze the URI to see if it matches. UriMatcher is a helper class that you can use for processing the accepted URI schemes for a given content provider.
Basic steps to use UriMatcher:
Make the following changes in the MiniContentProvider class.
In the MiniContentProvider class, create a private static variable for a new UriMatcher.
The argument to the constructor specifies the value to return if there is no match. As a best practice, use UriMatcher.NO_MATCH.
private static UriMatcher sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
private void initializeUriMatching(){}
In the initializeUriMatching() method, add the URIs that your content provider accepts to the matcher and assign them an integer code. These are the URIs based on the authority and content paths specified in the contract.
The # symbol matches a string of numeric characters of any length. In this app, it refers to the index of the word in the string array. In a production app, this could be the id of an entry in a database. Assign this URI a numeric value of 1.
sUriMatcher.addURI(Contract.AUTHORITY, Contract.CONTENT_PATH + "/#", 1);
Note that if your app is more complex and uses more URIs, use named constants for the codes, as shown in the UriMatcher documentation.
Solution:
private void initializeUriMatching(){
sUriMatcher.addURI(Contract.AUTHORITY, Contract.CONTENT_PATH + "/#", 1);
sUriMatcher.addURI(Contract.AUTHORITY, Contract.CONTENT_PATH, 0);
}
3.4. Implement the getType() method
The getType() method of the content provider returns the MIME type for each of the specified URIs.
Unless you are doing something special in your code, this method implementation is going to be very similar for any content provider. It does the following:
Learn more in the UriMatcher documentation.
Solution:
public String getType(Uri uri) {
switch (sUriMatcher.match(uri)) {
case 0:
return Contract.MULTIPLE_RECORD_MIME_TYPE;
case 1:
return Contract.SINGLE_RECORD_MIME_TYPE;
default:
// Alternatively, throw an exception.
return null;
}
}
3.5 Implement the query() method
The purpose of the query() method is to match the URI, convert it to a your internal data access mechanism (for example a SQlite query), execute your internal data access code, and return the result in a Cursor object.
The query() method
The query method has the following signature:
public Cursor query(Uri uri, String[] projection, String selection,String[] selectionArgs, String sortOrder){}
The arguments to this method represent the parts of a SQL query. Even if you are using another kind of data storage mechanism, you must still accept a query in this style and handle the arguments appropriately. (In the next task you will build a query in the MainActivity to see how the arguments are used.) The method returns a Cursor of any kind.
uri | The complete URI. This cannot be null. |
projection | Indicates which columns/attributes to access. |
selection | Indicates which rows/records of the objects to access. |
selectionArgs | The binding parameters to the previous selection argument. For security reasons, the arguments are processed separately. |
sortOrder | Whether to sort, and if so, whether ascending, descending or by . If this is null, the default sort or no sort is applied.
|
Analyze the query() method
Identify the following processing steps in the query() method code shown below in the solutions section.
Query processing always consists of these steps:
Match the URI.
Switch on the returned code.
Process the arguments and build a query appropriate for the backend.
Get the data and (if necessary) drop it into a Cursor.
Return the cursor.
Identify portions of the code that need to be different in a real-world application.
The query implementation for this basic app takes some shortcuts.
Note: You will get an error for the populateCursor() method, and will address this in the next step.
Annotated Solution Code for the query() method in MiniContentProvider.java
@Nullable
@Override
public Cursor query(Uri uri, String[] projection, String selection, String[] selectionArgs, String sortOrder) {
int id = -1;
switch (sUriMatcher.match(uri)) {
case 0:
// Matches URI to get all of the entries.
id = Contract.ALL_ITEMS;
// Look at the remaining arguments
// to see whether there are constraints.
// In this example, we only support getting
//a specific entry by id. Not full search.
// For a real-life app, you need error-catching code;
// here we assume that the
// value we need is actually in selectionArgs and valid.
if (selection != null){
id = parseInt(selectionArgs[0]);
}
break;
case 1:
// The URI ends in a numeric value, which represents an id.
// Parse the URI to extract the value of the last,
// numeric part of the path,
// and set the id to that value.
id = parseInt(uri.getLastPathSegment());
// With a database, you would then use this value and
// the path to build a query.
break;
case UriMatcher.NO_MATCH:
// You should do some error handling here.
Log.d(TAG, "NO MATCH FOR THIS URI IN SCHEME.");
id = -1;
break;
default:
// You should do some error handling here.
Log.d(TAG, "INVALID URI - URI NOT RECOGNIZED.");
id = -1;
}
Log.d(TAG, "query: " + id);
return populateCursor(id);
}
3.6. Implement the populateCursor() method
Once the query() method has identified the URI, it calls your populateCursor() with the last segment of the path, which is the id (index) of the word to retrieve. The populateCursor() method separates the query matching from getting the data and creating the result cursor. This is a good practice as in a real app, the query() method can become very large.
The query method must return a Cursor type, so the populateCursor() method has to create, fill in, and return a cursor.
The populateCursor() method does the following:
private Cursor populateCursor(int id) {
MatrixCursor cursor = new MatrixCursor(new String[] { Contract.CONTENT_PATH });
// If there is a valid query, execute it and add the result to the cursor.
if (id == Contract.ALL_ITEMS) {
for (int i = 0; i < mData.length; i++) {
String word = mData[i];
cursor.addRow(new Object[]{word});
}
} else if (id >= 0) {
// Execute the query to get the requested word.
String word = mData[id];
// Add the result to the cursor.
cursor.addRow(new Object[]{word});
}
return cursor;
}
Task 4. Use a ContentResolver to get data
With the content provider in place, the onClickDisplayEntries() method in the MainActivity can be expanded to query and display data to the UI. This requires the following steps:
4.1. Get the content resolver
The content resolver interacts with the content provider on your behalf.
The content resolver expects a parsed Content URI along with query parameters that assist in retrieving the data.
You don't have to create your own content resolver. You can use the one provided in your application context by the Android framework by calling getContentResolver().
Cursor cursor = getContentResolver().query(Uri.parse(queryUri), projection, selectionClause, selectionArgs, sortOrder);
Note: the arguments to getContentResolver.query() are identical to the parameters of ContentProvider.query().
Next you must define the arguments to getContentResolver.query().
4.2. Define the query arguments
In order for getContentResolver.query() to work, you need to declare and assign values to all its arguments.
String queryUri = Contract.CONTENT_URI.toString();
String selectionClause;
IMPORTANT: It is security best practices to always separate selection and selectionArgs.
String selectionArgs[];
// For this example, accept the order returned by the response.
String sortOrder = null;
4.3. Decide on selection criteria
The selectionClause and selectionArgs values depend on which button was pressed in our UI.
switch (view.getId()) {
case R.id.button_display_all:
selectionClause = null;
selectionArgs = null;
break;
case R.id.button_display_first:
selectionClause = Contract.WORD_ID + " = ?";
selectionArgs = new String[] {"0"};
break;
default:
selectionClause = null;
selectionArgs = null;
}
4.4. Process the Cursor
After getting the content resolver, you have to process the result from the Cursor.
if (cursor != null) {
if (cursor.getCount() > 0) {
cursor.moveToFirst();
int columnIndex = cursor.getColumnIndex(projection[0]);
do {
String word = cursor.getString(columnIndex);
mTextView.append(word + "\n");
} while (cursor.moveToNext());
} else {
Log.d(TAG, "onClickDisplayEntries " + "No data returned.");
mTextView.append("No data returned." + "\n");
}
cursor.close();
} else {
Log.d(TAG, "onClickDisplayEntries " + "Cursor is null.");
mTextView.append("Cursor is null." + "\n");
}
Solution code
Android Studio project: MinimalistContentProvider
Coding challenges
Note: All coding challenges are optional and are not prerequisites for later lessons.
Implement missing methods
Coding Challenge 1: Implement the insert, delete, and update methods for the MinimalistContentProvider app. Provide the user with a way to insert, delete, and update data.
Hint: If you don't want to build out the user interface, create a button for each action and hardwire the data that is inserted, updated, and deleted. The point of this exercise is to work on the content provider, not the user interface.
Why: You will implement the fully functioning content provider with UI in the next practical, when you will add a content provider to the WordListSQL app.
Add Unit Tests for the content provider
Coding Challenge 2: After you implemented the content provider, there was no way for you to know whether or not the code would work. In this sample, you built out the front-end and by watching it work, assumed the app worked correctly. In a real-life app, this is not sufficient, and you may not even have access to a front-end. The appropriate way for determining that each method acts as expected, write a set of unit tests for MiniContentProvider.
Summary
In this chapter, you learned
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
11.1B: Add a content provider to your database
Contents:
Content providers in real apps are more complex than the basic version you built in the previous practical.
In the real world:
You will rarely build an app from scratch. More often, you will debug, refactor, or extend an existing application.
In this practical, you will take the WordListSQL app and refactor and extend it to use a content provider as a layer between the SQL database and the RecyclerView.
You can go about this in two ways.
The practical will demonstrate how to refactor the existing WordListSQL app, because it's what you are more likely to encounter on the job.
What you should already KNOW
For this practical you should be familiar with how to:
What you will LEARN
You will learn how to:
What you will DO
This practical requires setup that is more typical for real-word app development.
You start with the WordListSQLInteractive app you created in a previous practical, which displays words from a SQLite database in a RecyclerView, and users can create, edit, and delete words.
You will extend and modify this app:
App Overview
The completed WordListSQLWithContentProvider app will have the following features:
Your app will look that same as at the end of the data storage practical.
App component overview
The following diagram shows an overview of the components of an app that uses a SQLiteDatabase with a content provider. The only difference from the minimal content provider app is that the content provider fetches the data from a database through an open helper.
The diagram below shows the architecture of the WorldListSQLInteractive app with a content provider added; this is the WordListSQLWithContentProvider app that you will build in this practical.
See the concepts chapter for a detailed explanation of all the components and how they interact.
Changes overview
This is a summary of the changes you will make to WordListInteractive to add a content provider.
Task 1. Download and run the base code
This practical builds on the WordListSQLInteractive and MinimalistContentProvider apps that you built previously. You will extend a copy of WordListSQLInteractive. You can start from your own code, or download the apps.
MinimalistContentProvider
Make a copy of WordListSQLInteractive and load it into Android Studio.
Task 2. Add a Contract class to WordListSQLInteractive
You will start by creating a contract class that defines public database constants, URI constants, and the MIME types. You will use these constants in all the other classes.
2.1 Add a Contract class
Add a new public final class to your project and call it Contract.
This Contract class contains all the information that another app needs to use your app's content provider. You could name the class anything, but it is customarily called "Contract".
public final class Contract {}
To prevent the Contract class from being instantiated, add a private, empty constructor.
This is a standard pattern for classes that are used to hold meta information and constants for an app.
private Contract() {}
2.2 Move database constants into Contract
Move the constants for the database that another app would need to know out of WordListOpenHelper into the contract and make them public.
Move DATABASE_NAME and make it public.
public static final String DATABASE_NAME = "wordlist";
Create a static abstract inner class for each table with the column names. This inner class commonly implements the BaseColumns interface. By implementing the BaseColumns interface, your class can inherit a primary key field called _ID that some Android classes, such as cursor adapters, expect to exist. These inner classes are not required, but can help your database work well with the Android framework.
public static abstract class WordList implements BaseColumns {
}
Use File > Settings > Editor > General > Auto Import on Windows/Linux or Android Studio > Preferences >Editor >General > Auto Import on Mac to configure automated imports.)
2.3 Define URI Constants
Declare the URI scheme for your content provider.
Using the Contract in MinimalistContentProvider as an example, declare AUTHORITY, CONTENT_PATH. Add CONTENT_PATH_URI to return all items, and ROW_COUNT_URI that returns the number of entries. In the AUTHORITY, use your app's name.
public static final int ALL_ITEMS = -2;
public static final String COUNT = "count";
public static final String AUTHORITY =
"com.android.example.wordlistsqlwithcontentprovider.provider";
public static final String CONTENT_PATH = "words";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + CONTENT_PATH);
public static final Uri ROW_COUNT_URI =
Uri.parse("content://" + AUTHORITY + "/" + CONTENT_PATH + "/" + COUNT);
2.4 Declare the MIME types
The MIME type describes the type and format of data. The MIME types is used to process the data appropriately. Common MIME types include text/html for web pages, and application/json . Read more about MIME types for content providers in the Android documentation.
static final String SINGLE_RECORD_MIME_TYPE =
"vnd.android.cursor.item/vnd.com.example.provider.words";
static final String MULTIPLE_RECORDS_MIME_TYPE =
"vnd.android.cursor.item/vnd.com.example.provider.words";
Task 3. Create a Content Provider
In this task you will create a content provider, implement its query method, and hook it up with the WordListAdapter and the WordListOpenHelper. Instead of querying the WordListOpen Helper, the WordListAdapter will use a content resolver to query the content provider, which in turn will query WordListOpenHelper which will query the database.
3.1 Create a WordListContentProvider class
Declare a UriMatcher.
This content provider uses an UriMatcher, a utility class that maps URIs to numbers, so you can switch on them.
private static UriMatcher sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
private WordListOpenHelper mDB;
Declare the codes for the URI matcher as constants.
This puts the codes in one place and makes them easy to change. Use tens, so that inserting additional codes is straightforward.
private static final int URI_ALL_ITEMS_CODE = 10;
private static final int URI_ONE_ITEM_CODE = 20;
private static final int URI_COUNT_CODE = 30;
@Override
public boolean onCreate() {
mDB = new WordListOpenHelper(getContext());
initializeUriMatching();
return true;
}
In initializeUriMatching(), add URIs to the matcher for getting all items, one item, and the count.
Refer to the Contract and use the initializeUriMatching() method in the MinimalistContentProver app as a template.
Solution:
private void initializeUriMatching(){
sUriMatcher.addURI(Contract.AUTHORITY, Contract.CONTENT_PATH, URI_ALL_ITEMS_CODE);
sUriMatcher.addURI(Contract.AUTHORITY, Contract.CONTENT_PATH + "/#", URI_ONE_ITEM_CODE);
sUriMatcher.addURI(Contract.AUTHORITY, Contract.CONTENT_PATH + "/" + Contract.COUNT, URI_COUNT_CODE );
}
3.2 Implement WordListContentProvider.query()
Use the MiniContentProvider as a template to implement the query() method.
Notice how assigning the results from mDB.query() to a cursor, generates an error, because WordListOpenHelper.query() returns a WordItem.
Notice how assigning the results from mDB.count() to a cursor generates an error, because WordListOpenHelper.count() returns a long.
You will fix both these errors next.
Solution:
@Nullable
@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
Cursor cursor = null;
switch (sUriMatcher.match(uri)) {
case URI_ALL_ITEMS_CODE:
cursor = mDB.query(ALL_ITEMS);
break;
case URI_ONE_ITEM_CODE:
cursor = mDB.query(parseInt(uri.getLastPathSegment()));
break;
case URI_COUNT_CODE:
cursor = mDB.count();
break;
case UriMatcher.NO_MATCH:
// You should do some error handling here.
Log.d(TAG, "NO MATCH FOR THIS URI IN SCHEME: " + uri);
break;
default:
// You should do some error handling here.
Log.d(TAG, "INVALID URI - URI NOT RECOGNIZED: " + uri);
}
return cursor;
}
3.3 Fix WordListOpenHelper.query() to return a Cursor and handle returning all items
Since the content provider works with cursors, you can simplify the WordListOpenHelper.query() method to return a cursor.
Simplify WordListOpenHelper.query() to return a cursor.
This fixes the error in WordListContentProvider.query().
However, this breaks WordListAdapter.OnBindViewHolder(), which expects a WordItem from WordListOpenHelper.
To resolve this, WordListAdapter.onBindViewHolder() needs to use a content resolver instead of calling the database directly, which you will do after fixing WordListContentProvider.count().
Note: This kind of cascading errors and fixes is typical for working with real-life applications. If an app you are working with is well architected, you can fix the errors one by one.
Solution:
/**
* Queries the database for an entry at a given position.
*
* @param position The Nth row in the table.
* @return a WordItem with the requested database entry.
*/
public Cursor query(int position) {
String query;
if (position != ALL_ITEMS) {
position++; // Because database starts counting at 1.
query = "SELECT " + KEY_ID + "," + KEY_WORD + " FROM "
+ WORD_LIST_TABLE
+" WHERE " + KEY_ID + "=" + position + ";";
} else {
query = "SELECT * FROM " + WORD_LIST_TABLE
+ " ORDER BY " + KEY_WORD + " ASC ";
}
Cursor cursor = null;
try {
if (mReadableDB == null) {
mReadableDB = this.getReadableDatabase();
}
cursor = mReadableDB.rawQuery(query, null);
} catch (Exception e) {
Log.d(TAG, "QUERY EXCEPTION! " + e);
} finally {
return cursor;
}
}
3.4 Fix WordListOpenHelper.count() to return a Cursor
Since the content provider works with cursors, you must also change the WordListOpenHelper.count() method to return a cursor.
Use a MatrixCursor, which is a cursor of changeable rows and columns.
Solution:
public Cursor count(){
MatrixCursor cursor = new MatrixCursor(new String[] {Contract.CONTENT_PATH});
try {
if (mReadableDB == null) {
mReadableDB = getReadableDatabase();
}
int count = (int) DatabaseUtils.queryNumEntries(mReadableDB, WORD_LIST_TABLE);
cursor.addRow(new Object[]{count});
} catch (Exception e) {
Log.d(TAG, "EXCEPTION " + e);
}
return cursor;
}
This fixes the error in WordListContentProvider.count(), but breaks WordListAdapter.getItemCount(), which expects a long from WordListOpenHelper.
In WordListAdapter.onBindViewHolder(), instead of calling the database directly, you will have to use content resolvers, which you will do next.
3.5 Fix WordListAdapter.onBindViewHolder() to use a content resolver
Next, you will fix WordListAdapter.onBindViewHolder() to use a content resolver instead of calling the WordListOpenHelper directly.
Add instance variables for the query parameters since they will be used more than once.
The content resolver takes a query parameter, which you must build. The query is similarly structured to a SQL query, but instead of a selection statement, it uses a URI. Query parameters are very similar to SQL queries.
private String queryUri = Contract.CONTENT_URI.toString(); // base uri
private static final String[] projection = new String[] {Contract.CONTENT_PATH}; //table
private String selectionClause = null;
private String selectionArgs[] = null;
private String sortOrder = "ASC";
Create a content resolver with the specified query parameters and store the results in a Cursor called cursor. (See MainActivity of MinimalistContentProvider app for an example.)
String word = "";
int id = -1;
Cursor cursor = mContext.getContentResolver().query(Uri.parse(
queryUri), null, null, null, sortOrder);
if (cursor != null) {
if (cursor.moveToPosition(position)) {
int indexWord = cursor.getColumnIndex(Contract.WordList.KEY_WORD);
word = cursor.getString(indexWord);
holder.wordItemView.setText(word);
int indexId = cursor.getColumnIndex(Contract.WordList.KEY_ID);
id = cursor.getInt(indexId);
} else {
holder.wordItemView.setText(R.string.error_no_word);
}
cursor.close();
} else {
Log.e (TAG, "onBindViewHolder: Cursor is null.");
}
Fix the parameters for the click listeners for the two buttons:
The updated click listener for the DELETE button looks like this:
@Override
public void onClick(View v) {
selectionArgs = new String[]{Integer.toString(id)};
int deleted = mContext.getContentResolver().delete(
Contract.CONTENT_URI, Contract.CONTENT_PATH,selectionArgs);
if (deleted > 0) {
// Need both calls
notifyItemRemoved(h.getAdapterPosition());
notifyItemRangeChanged(
h.getAdapterPosition(), getItemCount());
} else {
Log.d (TAG, mContext.getString(R.string.not_deleted) + deleted);
}
}
selectionArgs = new String[]{Integer.toString(id)};
int deleted = mContext.getContentResolver().delete(
Contract.CONTENT_URI, Contract.CONTENT_PATH, selectionArgs);
3.6 Change WordListAdapter.getItemCount() to use a content resolver
Instead of requesting the count from the database, getItemCount() has to connect to the content resolver and request the count. In the Contract, you defined a URI for getting that count:
public static final String COUNT = "count";
public static final Uri ROW_COUNT_URI =
Uri.parse("content://" + AUTHORITY + "/" + CONTENT_PATH + "/" + COUNT
Change WordListAdaptergetItemCount() to:
Use the code you just wrote for onBindViewHolder as a guideline.
Solution:
@Override
public int getItemCount() {
Cursor cursor = mContext.getContentResolver().query(
Contract.ROW_COUNT_URI, new String[] {"count(*) AS count"},
selectionClause, selectionArgs, sortOrder);
try {
cursor.moveToFirst();
int count = cursor.getInt(0);
cursor.close();
return count;
} catch (Exception e){
Log.d(TAG, "EXCEPTION getItemCount: " + e);
return -1;
}
}
3.7 Add the content provider to the Android Manifest
<provider
android:name=".WordListContentProvider" android:authorities="com.android.example.wordlistsqlwithcontentprovider.provider">
</provider>
Your app should run and be fully functional. If it is not, compare your code to the supplied solution code, and use the debugger and logging to find the problem.
3.8 What's next?
With the infrastructure you have built, implementing the remaining methods will be a lot less work.
Task 4. Implement Content Provider methods
4.1 getType()
The getType() method is called by other apps that want to use this content provider, to discover what kind of data your app returns.
Use a switch statement to return the appropriate MIME types.
Solution:
@Nullable
@Override
public String getType(Uri uri) {
switch (sUriMatcher.match(uri)) {
case URI_ALL_ITEMS_CODE:
return MULTIPLE_RECORDS_MIME_TYPE;
case URI_ONE_ITEM_CODE:
return SINGLE_RECORD_MIME_TYPE;
default:
return null;
}
}
Challenge: How can you test this method, as it is not called by your app. Can you think of three different ways of testing that this method works correctly?
4.2 Call the content provider to insert and update words in MainActivity
To fix insert operations MainActivity().onActivityResult needs to call the content provider instead of the database for inserting and updating words.
In OnActivityResult()
Inserting:
Updating:
Solution snippet:
// Update the database
if (word.length() != 0) {
ContentValues values = new ContentValues();
values.put(Contract.WordList.KEY_WORD, word);
int id = data.getIntExtra(WordListAdapter.EXTRA_ID, -99);
if (id == WORD_ADD) {
getContentResolver().insert(Contract.CONTENT_URI, values);
} else if (id >=0) {
String[] selectionArgs = {Integer.toString(id)};
getContentResolver().update(Contract.CONTENT_URI, values, Contract.WordList.KEY_ID, selectionArgs
);
}
// Update the UI
mAdapter.notifyDataSetChanged();
4.3 Implement insert() in the content provider
The insert() method in the content provider is a pass-through. So you
Android Studio reports an error for the values parameter, which you will fix in the next steps.
Solution:
public Uri insert(Uri uri, ContentValues values) {
long id = mDB.insert(values);
return Uri.parse(CONTENT_URI + "/" + id);
}
4.4 Fix insert() in WordListOpenHelper
Android Studio reports an error for the values parameter.
4.5 Implement update() in the content provider
Fix the update methods in the same way as you fixed the insert methods.
return mDB.update(parseInt(selectionArgs[0]),
values.getAsString(Contract.WordList.KEY_WORD));
4.6 Implement delete() in the content provider
In WordListContentProvider, Implement the delete() method by calling the delete() method in WordListOpenHelper with the id of the word to delete.
return mDB.delete(parseInt(selectionArgs[0]));
4.7 Run your app
Yup. That's it. Run your app and make sure everything works.
And if your app still doesn't work, you should correct any issues. You will need the working code in a later practical. In that lesson you will write an app that uses this content provider to load word list data into its user interface.
Solution code
Android Studio project: word_list_sql_with_content_provider
Coding challenge
Note: All coding challenges are optional and are not prerequisites for later lessons.
Summary
Related concepts
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
Videos:
11.1C: Sharing content with other apps
Contents:
To protect app and user data, apps cannot share data with other apps directly. However, apps can make data available to other apps by using a content provider. Client apps can then use a content resolver to access the data via the content provider's public interface.
The following diagram shows how a hat wholesaler might use a content provider to share information about its inventory to apps that sell hats.
In this practical you will modify WordListSQLWithContentProvider to allow other apps to access the data in its content provider. Then you will create a second app, WordListClient, that has no data of its own, but instead, fetches data from WordListSQLWithContentProvider's content provider.
What you should already KNOW
For this practical you should be familiar with:
What you will LEARN
You will learn how to:
What you will DO
You will:
Apps Overview
You will use two apps in this practical.
Task 1. Make your content provider available to other apps
By default, apps cannot access the data of other apps.
To make your content provider available to other apps, you must specify permissions in the AndroidManifest of your app. This is true for any app that has a content provider. Each content provider needs permissions specified in its AndroidManifest.
Permissions are not covered in detail in these practicals. You can learn more in Implementing Content Provider Permissions.
1.1. Modify WordListWithContentProvider to allow apps access
android:exported="true"
At the top level, inside the <manifest> tag add a permission for the content provider.
It is good practice to use your unique package name in order to keep the permission unique.
<permission
android:name="com.android.example.wordlistsqlwithcontentprovider.PERMISSION" />
Run the app to make sure there are no errors, and leave it installed on the device.
In order for another app to access WordListWithContentProvider's content provider, the app with the content provider has to be installed on the device. It is not necessary for it to be running.
You now have a content provider on your device that another app can access. Next, you are going to build an app, WordListClient, that gets words from the content provider and displays them.
1.2. Create the WordListClient app
Instead of building a client app from scratch, you will create WordListClient from a copy of WordListSQLWithContentProvider. You will keep the user interface and the adapter to display the data. You will remove the content provider and the database, and instead get data from the content provider of WordListSQLWithContentProvider.
<uses-permission android:name = "com.android.example.wordlistsqlwithcontentprovider.PERMISSION"/>
In the previous hat store example, the warehouse owner can update the hat inventory with new red or fancy hats, and the store apps will immediately be able to show these new hats to their customers. And if the red hat store sells all the red fancy hats, the fancy hat store will know that the inventory of fancy red hats is sold out.
Solution code
Android Studio project: WordListClient
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Developer Documentation:
12.1: Load and display data fetched from a content provider
Contents:
In this practical you will learn how to load data provided by another app's content provider in the background and display it to the user, when it is ready.
Asking a ContentProvider for data you want to display may take time. If you request data from the content provider from an Activity (and run it on the UI thread), the app may get blocked long enough to cause a visible delay for the user, and the system may even issue an "Application Not Responding" message. Therefore, you should load data on a separate thread, in the background, and display the results after loading is finished.
To run a query on a separate thread, you use loader that runs asynchronously in the background and reconnects to the Activity when finished. Specifically, CursorLoader runs a query in the background, and automatically re-runs it when data associated with the query changes.
You have used an AsyncTaskLoader in a previous practical. CursorLoader extends AsyncTaskLoader to work with content providers.
At a high level, you need the following pieces to use a loader to display data from a content provider:
The following diagram shows a complete app architecture with a loader.
What you should already KNOW
For this practical you should be able to:
What you will LEARN
You will learn to:
What you will DO
App Overview
Using WordListClient from the previous practical as a source for some of the code, you will create a new app, WordListLoader that loads and displays data from the content provider for WordListSQLWithContentProvider. The following screenshot shows how the finished app will display the words.
IMPORTANT:
Task 1. Create the base app for WordListLoader
In this task you will create a project and parts of the app that are not specific to loaders. You need the WordListClient app loaded in Android Studio, so you can copy code from it.
1.1 Create a project with Contract and WordListItem classes and layout files
<uses-permission android:name =
"com.android.example.wordlistsqlwithcontentprovider.PERMISSION"/>
1.2 Add a RecyclerView to MainActivity
To display the data, add a RecyclerView to your MainActivity. You can do this on your own, or reuse code from WordListClient.
compile 'com.android.support:recyclerview-v7:24.1.1'
compile 'com.android.support:design:24.1.1'
import android.support.v7.widget.LinearLayoutManager;
import android.support.v7.widget.RecyclerView;
// Create recycler view.
mRecyclerView = (RecyclerView) findViewById(R.id.recyclerview);
// Create an adapter and supply the data to be displayed.
mAdapter = new WordListAdapter(this);
// Connect the adapter with the recycler view.
mRecyclerView.setAdapter(mAdapter);
// Give the recycler view a default layout manager.
mRecyclerView.setLayoutManager(new LinearLayoutManager(this));
1.3 Create WordListAdapter
Use WorldListAdapter from WordListClient and the snippets below as a reference for creating this adapter. If you need a refresher, revisit the RecyclerView chapter of this course.
Create a new Java class WordListAdapter that extends Recyclerview.Adapter.
public class WordListAdapter
extends RecyclerView.Adapter<WordListAdapter.WordViewHolder> {}
Using WordListAdapter as a reference, add the following:
Add an inner ViewHolder class with one TextView, called wordItemView and inflate it from the text view with the id "word".
class WordViewHolder extends RecyclerView.ViewHolder {
public final TextView wordItemView;
public WordViewHolder(View itemView) {
super(itemView);
wordItemView = (TextView) itemView.findViewById(word);
}
}
private static final String TAG = WordListAdapter.class.getSimpleName();
private final LayoutInflater mInflater;
private Context mContext;
public WordListAdapter(Context context) {
mInflater = LayoutInflater.from(context);
this.mContext = context;
}
@Override
public WordViewHolder onCreateViewHolder(
ViewGroup parent, int viewType) {
View mItemView = mInflater.inflate(
R.layout.wordlist_item, parent, false);
return new WordViewHolder(mItemView);
}
Task 2. MainActivity: Adding a LoaderManager and LoaderCallbacks
When you use a loader to load your data for you, you use a loader manager to take care of the details of running the loader.
The LoaderManager is a convenience class that manages all your loaders. You only need one loader manager per activity. For example, the loader manager takes care of registering an observer with the content provider, which receives callbacks when data in the content provider changes.
2.1 Add the Loader Manager
public class MainActivity extends AppCompatActivity implements LoaderManager.LoaderCallbacks<Cursor>
getSupportLoaderManager().initLoader(0, null, this);
2.2 Implement onCreateLoader()
The LoaderManager calls the onCreateLoader() method to create the loader, if it does not already exist.
You create a loader by supplying it with a context, and the URI from which to load data—in this case, for content provider of WordListSQLWithContentProvider, the URI specified in the Contract.
@Override
public Loader<Cursor> onCreateLoader(int id, Bundle args) {
String queryUri = Contract.CONTENT_URI.toString();
String[] projection = new String[] {Contract.CONTENT_PATH};
return new CursorLoader(this, Uri.parse(queryUri), projection, null, null, null);
}
2.3 Implement onLoadFinished()
When loading has finished, you need to send the data to the adapter.
@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
mAdapter.setData(data);
}
2.4 Implement onLoaderReset()
On resetting the loader, let the adapter know that the data has become unavailable by passing null to setData().
@Override
public void onLoaderReset(Loader<Cursor> loader) {
mAdapter.setData(null);
}
Task 3. WordListAdapter: Implement setData(), getItemCount(), and onBindViewHolder()
As your final tasks, you need to implement the setData() method referenced above, and implement onBindViewHolder() to work with the loader to display the data. Here is how this happens:
3.1. Implement setData()
You need a way to set and store the latest loaded version of the data with the adapter. For this app, the loader returns data as a cursor, so you need to create a Cursor member variable mCursor that will always hold the latest data set.
The setData() method is called by the loader when it finished loading or is reset, and it needs to update mCursor.
public void setData(Cursor cursor) {
mCursor = cursor;
notifyDataSetChanged();
}
3.2. Implement getItemCount()
Instead of 0, getItemCount() needs to return the number of items in mCursor. If mCursor is null, return -1.
@Override
public int getItemCount() {
if (mCursor != null) {
return mCursor.getCount();
} else {
return -1;
}
}
3.3 Implement onBindViewHolder()
In WordListClient, the onBindViewHolder() method uses a content resolver to fetch data from WordListSQLWithContentProvider's content provider. In this app, onBindViewHolder() uses the data provided by the loader and stored in mCursor.
In onBindViewHolder, handle the following situations.
Otherwise, get the column index for the "word" column (you cannot assume the column is in a fixed location in the cursor's row), and using the index, retrieve the word. Set the text of the text view to the word.
@Override
public void onBindViewHolder(WordViewHolder holder, int position) {
String word = "";
if (mCursor != null) {
if (mCursor.moveToPosition(position)) {
int indexWord = mCursor.getColumnIndex(Contract.WordList.KEY_WORD);
word = mCursor.getString(indexWord);
holder.wordItemView.setText(word);
} else {
holder.wordItemView.setText(R.string.error_no_word);
}
} else {
Log.e (TAG, "onBindViewHolder: Cursor is null.");
}
}
3.4 Run and test your app
Your WordListLoader app should exactly work the same as the WordListClient app for displaying a list of words. To test your app, do the following.
Solution code
Android Studio project: WordListLoader
Summary
Related concept
The related concept documentation is in Android Developer Fundamentals: Concepts.
Learn more
Appendix: Homework Assignments
This appendix lists possible homework assignments that students can complete at the end of each practical. It is the instructor's responsibility to:
Instructors can use these suggestions as little or as much as they want, and should feel free to assign any other homework they feel is appropriate.
Homework Assignments: Lesson 1
Contents:
1.1: Install Android Studio and Run Hello World
Build and run an app
Answer these questions
Question 1
What is the name of the layout file for the main activity?
Question 2
What is the name of the string resource that specifies the application's name?
Question 3
Which tool do you use to create a new emulator?
Question 4
Which devices have the following specifications? You can see the different device specifications while creating a new device emulator.
What is device 1?
What is device 2?
Question 5
Assume that your app includes this logging statement:
Log.i("MainActivity", "MainActivity layout is complete");
You see the statement "MainActivity layout is complete" in the logcat console if the Log level menu is set to which of the following? (Hint: multiple answers are OK.)
Question 6
If your app logs the message "XX Activity layout is complete" each time a new activity is displayed, how can you make the logcat console display ONLY statements that include "layout is complete?"
Submit your app for grading
No app to submit for this homework assignment.
1.2 A, B: Make Your First Interactive UI / Using Layouts
Build and run an app
Open the HelloConstraint app that you created in the Using Layouts lesson.
Answer these questions
Question 1
What are the layout constraint attributes on the Zero button to position it vertically equal distance between the other two buttons?
Question 2
What is the layout constraint attribute on the Zero button to position it horizontally in alignment with the other two buttons?
Question 3
Which of the following operations can you perform to include the Zero button in the xlarge (tablet) and land (landscape) layouts that have already been created?
Question 4
What is the correct signature for a method used as the value of the android:onClick XML attribute?
Question 5
The click handler for the Count button starts with the following method signature:
public void countUp(View view)
Which of the following techniques is more efficient to use within this handler to change the button's background color? Choose one:
Submit your app for grading
Guidance for graders
Check that the app has the following features:
1.3: Text and Scrolling Views
Build and run an app
Open the ScrollingText2 app that you created in the Working with TextView Elements lesson.
Answer these questions
Question 1
How many Views can a ScrollView contain? Choose one:
Question 2
Which XML attribute do you use in a LinearLayout to show views side-by-side? Choose one:
Question 3
Which XML attribute do you use to define the width of the LinearLayout inside the scrolling view? Choose one:
Submit your app for grading
Guidance for graders
Check that the app has the following features:
1.4: Resources
Load and run an existing app, explore resources
Answer these questions
Question 1
In Android Studio, what is menu command to open the list of sample apps?
Question 2
What did you look up, and what are the URLs to the documentation you found?
Question 3
What are 2 differences between the kind of information you find in the Android Developer documentation and on Stackoverflow? When would you use the Android Developer documentation? When would you use Stackoverflow?
Question 4
What is the URL to the Android Studio Playlist or video that you watched? What did you learn?
Submit your app for grading
Guidance for graders
No app to submit for this homework assignment.
Homework Assignments: Lesson 2
Contents:
2.1: Create and Start Activities
Build and run an app
Open the HelloToast app that you created in the Make Your First Interactive UI lesson.
Answer these questions
Question 1
What menu command do you use to add a new activity to your app?
Question 2
What files are added when you add a new activity called HelloActivity to your app? What changes are made to existing files?
Question 3
Which constructor method do you use to create a new explicit intent?
Question 4
How do you add the current value of the count to the intent?
Question 5
How do you update the count in HelloActivity to display the current count?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
2.2: The Activity Lifecycle and Managing State
Build and run an app
Answer these questions
Question 1
When you rotate the device (before you implement onSaveInstanceState() ), the counter is reset to 0 but the contents of the edit text is preserved. Why?
Question 2
What Activity lifecycle methods are called when a device-configuration change (such as rotation) occurs?
Question 3
When in the Activity lifecycle is onSaveInstanceState() called?
Question 4
Which is the correct method signature for onSaveInstanceState() :
Question 5
What is the difference between restoring your activity state in onCreate() versus in onRestoreInstanceState() ?
Question 6
If you quit and restart your app, what happens to the Activity state?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
2.3: Start Activities with Implicit Intents
Build and run an app
Open the ImplicitIntents app that you created in the Start Activities with Implicit Intents lesson.
Note: If you use the Android emulator to test the camera, open the emulator configuration in the Android AVD manager, choose Advanced Settings, and then choose "Emulated" for both front and back cameras. Restart your emulator if necessary.
Answer these questions
Question 1
Which constructor method do you use to create an implicit intent to launch a camera app?
Question 2
Which intent action do you use to request a camera app?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
Homework Assignments: Lesson 3 & 4
Contents:
3.1: Debugging
Build and run an app
Open the SimpleCalc app from the Using the Debugger lesson.
Answer these questions
Question 1
What is the difference between Step Over and Step Into?
Question 2
How does each part of the debugger view change when you step into a new method?
Submit your app for grading
Guidance for graders
No app to submit for this homework assignment.
3.2: Testing
Build and run an app
Open the SimpleCalcTest app that you created in the Testing Apps with Unit Tests lesson. You're going to add an POW button to the layout. This button calculates the first operand raised to the power of the second operand. For example, given operands of 5 and 4, the app calculates 5 raised to the power of 4, or 625.
BEFORE you write the implementation of your power button, consider the kind of tests you might want to perform with this calculation. What unusual values may occur in this calculation?
Answer these questions
No questions.
Submit your app for grading
Guidance for graders
Check that the app has the following features:
3.3: Support Libraries and Backwards Compatibility
Run an app
Open the HelloCompat app created in the Using the Android Support Libraries lesson.
int colorRes = ContextCompat.getColor(this, colorResourceName);
Run the app in debug mode on a device or emulator that's running an API version 23 or higher. Step into the getColor() method, following the method calls deeper into the stack. Examine how the ContextCompat class determines how to get the color from the resources, and which other framework classes it uses.
Note: Some classes may produce a warning that the "source code does not match the bytecode." Click Step Out to return to a known source file, or keep clicking Step Into until the debugger returns on its own.
Repeat the previous step for a device or emulator running an API version lower than 23. Note the different paths that the framework takes to accomplish getting the color.
Answer these questions
Question 1
Based on your exploration in the debugger, how does the Android platform decide which implementation to use in the Compat classes?
Question 2
Besides the differences in the method signatures, what is the difference between the implementations? Why is a compatibility class required at all?
Submit your app for grading
Guidance for graders
No app to submit for this homework assignment.
4.1: User Input Controls
Build and run an app
Answer these questions
Question 1
What's the most important difference between checkboxes and a RadioGroup of radio buttons? Choose one:
Question 2
Which layout group is the preferred way to align a set of CheckBox elements vertically? Choose one:
Question 3
What method of the Checkable interface do you use to check the state of a checkbox (that is, whether it has been checked or not)?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
4.2: Menus
Build and run an app
Open the ScrollingText app that you created in the Working with TextView Elements lesson.
Answer these questions
Question 1
What is the name and location of the file in which you create context menu items?
Question 2
What happens when a long tap (also known as a long click) occurs? Choose one:
Question 3
Where do you register a context menu for a view? Choose one:
Question 4
Where do you inflate the context menu using MenuInflater? Choose one:
Submit your app for grading
Guidance for graders
Check that the app has the following features:
4.3: Screen Navigation
Build and run an app
Create an app with a main activity and at least three other activities. All activities have a basic Options menu and use the v7 appcompat support library Toolbar as the app bar, as shown below.
Answer these questions
Question 1
Which template provides an activity with an options menu, the Up button, and the v7 appcompat support library Toolbar as the app bar?
Question 2
Why would you use a GridLayout compared to a LinearLayout or a RelativeLayout to provide navigation using images?
Question 3
Where do you put the GridLayout of images? Choose one:
Question 4
Where do you define the app's activities and parent activity to provide Up navigation? Choose one:
Question 5
Which technique do you use to launch another activity from a navigation image? Choose one:
Submit your app for grading
Guidance for graders
Check that the app has the following features:
4.4: RecyclerView
Build and run an app
The screenshot below shows an example for a simple implementation. Your app can look very different, as long as it has the required functionality.
Answer these questions
Question 1
What are the primary components you need to display the recipes list? Check all that apply.
Question 2
What class do you need to implement in order to listen and respond to user clicks?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
Homework Assignments: Lesson 5 & 6
Contents:
5.1: Drawables, Themes, Styles
Build and run an app
Create an app that displays an ImageView and plus and minus buttons, as shown below. The ImageView contains a level list drawable that is a battery level indicator. Pressing the plus or minus button changes the level of the indicator. Use the battery icons from the Vector Asset Studio to represent 7 different values for the battery level.
The app has the following properties:
Answer these questions
Question 1
What two types of drawables do you use to create a button that displays text, where the button has one background when it is active and a different background when it is disabled, and both backgrounds are stretched when the size of the button is larger than the text it contains?
Question 2
Suppose you create an app that has a dark background and light text, and the app doesn't need an ActionBar. Which base style does your application style inherit from?
Submit your app for grading
Guidance for graders
5.2: Material Design
Build and run an app
Open the MaterialMe app that you created in the LessonSupporting Landscape, Multiple Screen Sizes and Localization lesson.
Answer these questions
Question 1
Which color attribute in your style defines the color of the status bar?
Question 2
Which support library does the Floating Action Button belong to?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
5.3: Providing Resources for Adaptive Layouts
Build and run an app
Open the RecyclerView app that you created in the Create a Recycler View lesson. Modify the app to use a GridLayoutManager with the following column counts:
For a phone:
1 column in portrait
2 columns in landscape
For a tablet:
2 columns in portrait
3 columns in landscape![]()
![]()
Answer these questions
Question 1
What resource qualifier is used to specify resources to be used when your app is in night mode?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
6.1: Testing the User Interface
Write an Espresso test for the DroidCafe app (created in Chapter 4.3P) that tests the images in the main activity to make sure that they take the user to the second activity.
Build and run an app
Open the DroidCafe app that you created in previous lessons.
Create a test for each image in the MainActivity that:
Clicks the image.
Checks to see if the Order Activity appears.
Answer these questions
Question 1
Which steps do you perform to test an interaction, and in what order? Enter a number for each step, from 1 to 3, to specify the order:
Question 2
Which of the following annotations enables an instrumented JUnit 4 test class? Choose one:
Question 3
Which of the following annotations establishes the context for the testing code? Choose one:
Question 4
In this assignment, you need to test each image view used for navigation on the DroidCafe app main screen by clicking it. Would you use onView() to find each image view, or onData() , and why? Choose one:
Submit your app for grading
Guidance for graders
Check that the app has the following features:
Homework Assignments: Lesson 7 & 8
Contents:
7.1: Create an AsyncTask
Build and run an app
Open the SimpleAsyncTask app that you created in the Create an AsyncTask lesson. Add a ProgressBar that displays the percentage of sleep time completed. The progress bar fills up as the AsyncTask thread sleeps from a value of 0 to 100 (percent).
Hint: Break up the sleep time into chunks.
AsyncTask reference: developer.android.com/reference/android/os/AsyncTask.html
Answer these questions
Question 1
For a ProgressBar :
Question 2
If an AsyncTask is defined as follows:
private class DownloadFilesTask extends AsyncTask<URL, Integer, Long>
Question 3
To report progress of the work executed by an AsyncTask, what callback method do you implement, and what method do you call in your AsyncTask subclass?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
7.2: Connect to the Internet
Build and run an app
Create an app that retrieves and displays the contents of a web page at a URL. The app displays:
Use an AsyncTaskLoader to retrieve the source code of the web page at the URL. You need to implement a subclass of AsyncTaskLoader.
If connection to the Internet is not available when the user clicks the button, the app must show the user an appropriate response. For example, it might display a message such as "Check your Internet connection and try again."
The display must contain a TextView in a ScrollView that displays the source code, but the exact appearance of the interface is up to you. Your screen can look different from the screenshots below. You can use a pop-up menu, spinner, or checkboxes to allow the user to select HTTP or HTTPS.
The image on the left shows the starting screen, with a pop-up menu for the protocol. The image on the right shows an example of the results of retrieving the page source for given URL.
Answer these questions
Question 1
What permissions does your app need to connect to the Internet?
Question 2
How does your app check that Internet connectivity is available?
In the manifest:
In the code:
Question 3
Where do you implement the loader callback method that's triggered when the loader finishes executing its task?
Question 4
When the user rotates the device, how do AsyncTask and AsyncTaskLoader behave differently if they are in the process of running a task in the background?
Question 5
How do you initialize an AsyncTaskLoader to perform the steps, such as initializing variables, that must be done before the loader starts performing its background task?
Question 6
What methods must an AsyncTaskLoader implement?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
7.3: Broadcast Receivers
Build and run an app
Answer these questions
Question 1
What are the differences between registering a broadcast receiver statically or dynamically?
Question 2
True or false? If a broadcast receiver is registered statically, it responds to broadcast events even if your app is not running.
Question 3
Which class is used to mitigate the security risks of BroadcastReceivers when the broadcasts are not cross-application (that is, they are sent and received by the same app)?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
8.1: Notifications
Build and run an app
Open the NotifyMe app that you created in the Notifications lesson. Change the updated notification in the app to use the InboxStyle expanded layout instead of BigPictureStyle. Use fake string data for each line and summary text.
Note: The notification might look a little different, depending on the API level of the device.
Answer these questions
Question 1
Suppose you create an application that downloads a work of art every day. Once the artwork is available, the app shows a notification to the user, and the user can either download or skip the day's work of art. What PendingIntent method would you use to start a service to download the image?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
8.2: Alarm Manager
Build and run an app
Make an app that delivers a notification when the time is 11:11 (AM). The screen displays a toggle switch that turns the alarm on and off.
Note: The notification might look a little different, depending on the API level of the device.
Answer these questions
Question 1
In which API level did inexact timing become the default for AlarmManager? (All set() methods use inexact timing, unless explicitly stated.)
Submit your app for grading
Guidance for graders
Check that the app has the following features:
8.3: JobScheduler
Build and run an app
Create an app that simulates a large download scheduled with battery and data consumption in mind. It contains a button that says "Download Now" and has the following features:
Hint :Define the JobService class as an inner class. That way, the Download Now button and the JobService can call the same method to deliver the notification.
Note: The notification might look a little different, depending on the API level of the device.
Answer these questions
Question 1
What class do you use if you want features like the ones provided by JobScheduler, but you want the features to work for devices running API level 20 and below?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
Homework Assignments: Lesson 9 & 10 & 11
Contents:
9.1: Shared Preferences
Build and run an app
Open the ScoreKeeper app that you created in the Drawables, Styles, and Themes lesson.
Answer these questions
Question 1
In which lifecycle method do you save the app state to shared preferences?
Question 2
In which lifecycle method do you restore the app state?
Question 3
Can you think of a case where it makes sense to have both shared preferences and instance state?
Submit your app for grading
Guidance for graders
Check that the app has the following features:
9.2: App Settings
Build and run an app
Open the DroidCafeWithSettings app that you created in the Adding Settings to an App lesson.
Answer these questions
Question 1
In which file do you define the array of entries and the array of values for the ListPreference? Choose one:
Question 2
In which file do you use the array of entries and the array of values in setting up the ListPreference, and also set the ListPreference key and default value? Choose one:
Question 3
How do you set the default values for settings the first time an activity runs?
Question 4
For an app that supports Android 3.0 and newer versions, the best practice for settings is to use a Settings Activity that extends Activity, and a fragment for each preference XML file that extends PreferenceFragment. But how do you remain compatible with the v7 appcompat library when extending an Activity with AppCompatActivity?
Question 5
When using the SharedPreferences interface for accessing and modifying preference data such as settings, the following statement reads the setting preference defined by the delivery key:
String deliveryPref = sharedPref.getString("delivery", "1");
Submit your app for grading
Guidance for graders
Check that the app has the following features:
10.1: SQLite Database
README: In the next group of homework assignments (10.1, 11.1, 11.2), you build 2 apps. They relate to each other in the same way as the apps you built in the corresponding practicals, as follows:
Build and run an app that uses a SQLite database
Create an app called TODO with a SQLite database where the user can create and edit to-do list items that are stored in the database.
Features:
Tips:
Answer these questions
Question 1
How much code were you able to reuse from other apps? How much time do you think that saved you? How much did using another app as an example help you structure your app? There are no right or wrong answers.
Question 2
What are some of the benefits of using a SQLiteOpenHelper class? Check all that apply.
Question 3
Which of the following are benefits of using a SQLite database to store your data? Check all that apply.
Submit your app for grading
Guidance for graders
There are no right or wrong answers to Question 1. It's important that students reflect and realize the benefits of building on their own and others' work.
The UI that the student chooses isn't a factor for grading, as long as the app demonstrates database functionality. Students have a lot of freedom in how to implement this functionality.
Check that the app has the following features:
11.1: Content Providers
Extend the TODO list app from homework 10.1 to use a content provider.
Features:
Tips:
Answer these questions
Question 1
What are the primary purposes of a content provider?
Question 2
What are some of the benefits of using a Contract class?
Question 3
Why does the content provider need to be declared in the Android Manifest?
Submit your app for grading
Guidance for graders
The UI that the student chooses is not a factor for grading, as long as it demonstrates app functionality.
Check that the app implements the following:
11.2: Loaders
Build and run an app called ShowToDoItems that uses a loader to fetch and display data from the content provider that you used in the TODO app from homework 11.1.
Features:
Tips:
Answer these questions
Question 1
Which of the following are benefits of using loaders?
Question 2
In building the ShowToDoItems app, why don't you have to implement a content observer?
Submit your app for grading
Guidance for graders
The UI that the student chooses is not a factor for grading, as long as it demonstrates app functionality.
Check that the app has the following features:
Appendix: Utilities
Table of Contents:
This appendix is a collection of tasks you may need to do during development of the apps in the practicals. They are not specific to one practical.
Copy and rename a project
For some lessons, you will need to make a copy of a project before making new changes. You may also want to copy a project to use some of its code in a new project. In either case you can copy the existing project (ExistingProject), and then rename and refactor the new project's (NewProject) components to use the new project's name. (In the instructions below, substitute your actual project names for ExistingProject and NewProject.
1. Copy the project
2. Rename and refactor the project components
The old name of the project, ExistingProject, still appears throughout the packages and files in the new copy of your project. Change the file and the package references in your app to the new name, as follows:
3. Update the build.gradle and AndroidManifest.xml files
Each app you create must have a unique application ID, as defined in the app's build.gradle file. Even though the above steps should have changed the build.gradle file, you should check it to make sure, and also sync the project with the gradle file:
Tip: You can also choose Tools > Android > Sync Project with Gradle File to sync your gradle files.
In addition, some apps include the app name in readable form (such as "New Project" rather than newproject) as a label in the AndroidManifest.xml file.
android:label="@string/app_name"
Delete a project
All the files for an Android project are contained in the project's folder on the computer's file system. To delete a project, delete its folder.
Android Studio also keeps a list of recent projects that you have opened. You can delete a project from the list of recent projects in Android Studio. (Deleting a project from the recent projects list does not affect the actual project files.)
To remove a project from the recent projects list, do one of the following:
Extract Strings and Dimensions
Extracting Strings
In order for your app to be translatable into multiple languages you must keep all of your string resources in the res/values/strings.xml file.
Creating string resources
There are several ways to create string resources:
<string name="string_name">String Value</string>
Wherever the string will be used, such as the text attribute of a TextView:
Type in the desired name for a string resource in the following format: @string/string_name. It will be highlighted in red since the resource does not yet exist.
Make sure your cursor is in the highlighted text.
Press Alt + Enter and select Create string value resource.
Enter your desired string and press OK and he string gets added to your strings.xml file.
Accessing string resources:
2. Extract Dimensions
Dimensions should in general not be hard-coded but kept in the dimens.xml file. This allows for you to specify different dimensions using resource qualifiers.
Extract dimensions in the same way as strings (Alt-Enter), and they will be stored in the dimens.xml.
3. Extract Styles
If you have several elements that share attributes, you can create a style in the style.xml file. To learn more about styles, see the Styles and Themes lesson.
To extract existing attributes into a style, do the following:
Add Android support libraries to the build file
Android Support Libraries provide backward-compatible versions of Android framework APIs, additional UI components and a set of useful utilities.
For example, to use the RecyclerView class, which is located in the Android Support package, you must include two dependencies in your project's build.gradle file. The process is the same for other support library components.
Follow these steps and refer to the screenshot below:
compile 'com.android.support:recyclerview-v7:23.1.1'
compile 'com.android.support:design:23.1.1'
compile 'com.android.support:appcompat-v7:23.1.1'
The following is an example of the dependencies section of the build.gradle file with support libraries added.
dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
testCompile 'junit:junit:4.12'
compile 'com.android.support:appcompat-v7:23.1.1'
compile 'com.android.support:recyclerview-v7:23.1.1'
compile 'com.android.support:design:23.1.1'
}
Create images in Asset Studio
Use Image Asset Studio to create and add a launcher icon.
Right-click the res folder of your project and select New > Image Asset from menu.
This opens the Image Asset Studio window, where you can create a text icon, choose from available clipart, or add your own custom icon.
Note that the panel on the top-left is scrollable; scroll to see additional customizations.
To add a custom text icon:
android:icon="@mipmap/ic_launcher_text"
To add a clipart icon:
Follow the previous steps except:
To add a custom icon:
Follow the previous steps except:
Compare custom objects
Whenever your data model calls for objects to be sorted, it becomes necessary to define how these objects can be compared to each other.
The Comparable interface allows you to specify how to compare two objects and determine whether one is biggers, smaller, or the same as the other.
The Comparable interface requires that you implement a single method: compareTo(<T> another) where is the parameterized type you implemented Comparable with, and the type of object you are comparing to (i.e if you want to compare your Foobar instance to other Foobar instances, you would implement Comparable<Foobar> and your compareTo method would take Foobar as a parameter).
The compare method should do the following:
For example, to compare a list of books by publication date:
@Override
public int compareTo(Book book) {
if (this.publication == book.publication) { return 0; }
else { return this.publication > book.publication ? 1 : -1;}
}
Save state of custom objects
In Android, you will frequently create custom objects to represent your particular data model. In order to preserve the state of these objects, you must be able to pass them into the savedInstanceState bundle. In order to do so, your custom class must implement the Parcelable interface. This allows for primitive types (int, string, byte, etc) to be saved in the savedInstanceState callback.
Do the following:
Table of Contents
Homework Lesson 1
Homework Lesson 2
Homework Lessons 3, 4
Homework Lessons 5, 6
Homework Lessons 7, 8
Homework Lessons 9, 10, 11