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ESEETINY

1. Introduction

Inland lakes are indicators of climate change and environmental deterioration [1,2].
As a unique ecosystem unit, an inland lake is one of the basic places for human survival
and development. In recent years, with the rapid development of regional societies and
economies, the ecological environment of inland lakes has been rapidly degraded by
human activities under the influence of large-scale water and soil exploitation activities,
leading to massive deterioration of the ecological environment of lakes [3]. Therefore, lake
ecological restoration and water quality monitoring under the coupling effect of climate
change and human activities are the key to lake protection and management. In recent
years, remote sensing has played an increasingly important role in the monitoring of the
terrestrial water cycle.

Remote sensing technology has been applied in many fields, such as the monitoring
and management of water storage, water quality, water levels, and hydrodynamics [4].
Remote sensing technology has been applied to water bodies since the 1970s [5]. Over
time, the technology and theory of lake water color remote sensing monitoring have
gradually matured, and an integrated lake remote sensing monitoring system of “Satellite-
UAV-Ground” has been developed. In addition, the rapid development of computer and
artificial intelligence technology in recent years provides a powerful algorithm support
for the intelligent remote sensing observation of lakes. Therefore, the explosive growth of
remote sensing data applications is driven by the coupling of multisource remote sensing
data and the expansion of new modeling technology.

This Special Issue presents a review and recent advances of general interest in the use
of remote sensing (RS) and geographic information systems (GIS) on inland lakes, with
a focus on monitoring inland lakes (e.g., water storage, water quality, water levels, and
hydrodynamics) and water resource management.

2. Overview of the Contributions

The call for papers was announced in July 2021, and after a rigorous peer-review
process, a total of 11 papers were published [6-16]. To gain a better insight into the essence
of the Special Issue, we will focus on the summary and analysis of these articles that mainly
include four themes: (1) remote sensing monitoring of lake water quality; (2) remote sensing
extraction and analysis of water area and water volume based on novel algorithms; and (3)
remote sensing simulation and analysis of the watershed water environment.

2.1. Remote Sensing Monitoring of Lake Water Quality in Lakes and Reservoirs

Lakes (including reservoirs) have attracted more and more attention as the main
drinking water source for more than 85% of the population in China. Remote sensing, as
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the only means to achieve large-scale, periodic, and operational monitoring, has played
an important role in lake monitoring and research. Lake remote sensing, as a branch
and cross-subject of lake science, remote sensing science, and other disciplines, enables
researchers to learn from and promote each other. Zhang et al. [6] analyzed the response
relationship between the water quality index and water reflectance, and used remote
sensing technology to establish a water quality index monitoring model to monitor water
quality in the Ebinur Lake watershed, producing a demonstration project for the use of
remote sensing technology in lake monitoring in arid areas. Aranha et al. [7] used Sentinel-2
MSI TOA Level 1C reflectance images and analyzed the concentration of chlorophyll-a
(Chl-a) in water bodies of five reservoirs located in the semi-arid region of northeastern
Brazil. The model has a strong observation ability and high accuracy. Luo et al. [8]
developed an online water quality assessment early warning system that integrates a
high-frequency monitoring system (HFMS) and data quality control technology, which was
applied in the Qiandao Lake region, China. The Early Warning System (EWS) focuses on
data availability, quality control methods, statistical analysis methods, and data application,
but not on the technical aspects of the detector, wireless data transmission, and interface
software development. The development of this system provides a strong support for the
automatic monitoring of lake water quality and three-dimensional lake hydrodynamic
and ecosystem prediction. Together, these papers contribute to the development of the
continuous monitoring of water quality in small and large reservoirs based on remote
satellite-based analysis. Such an analysis is a strategic resource for promoting regional
water security, and the future goal is to implement large-scale, intelligent remote sensing
technology for the observation of water quality in lakes and rivers.

2.2. Remote Sensing Extraction and Analysis of Water Area and Water Volume Based on
Novel Algorithms

The observation and monitoring of surface water area is of great significance for water
resource management as well as ecological protection in a basin. Using remote sensing or
hydrological model estimation methods can quickly obtain long time series of a water area,
make up for the lack of data in a scarce-data area, and provide a basis for further research
on surface water.

Li et al. [9] based their work on the GEE (Google Earth Engine) cloud platform and
studied the effect of nine kinds of water indexes on the surface water extraction in Bosten
Lake Basin by adding a slope mask to remove misclassified pixels to find the best extraction
method for surface water extraction in the basin by means of accuracy verification and
visual discrimination through a continuous iteration of the index threshold and slope mask
threshold. The results show that when the threshold value is —0.25 and the slope mask is
8 degrees, the index WI12019 has the best effect on the surface water information extraction
of Bosten Lake Basin, effectively eliminating the interference of shadow and snow. The
extraction accuracy of surface water by remote sensing is improved, and provides a more
accurate and convenient method for the extraction of surface water area under complex
terrain. Chen et al. [10] adopted a spatial downscaling model for mapping lake water
at a 10 m resolution by integrating Sentinel-2 and Landsat data, which was applied to
map the water extent of Qinghai Lake from 1991 to 2020. This was further combined
with the Hydroweb water-level dataset to establish an area-level relationship to acquire
the 30-year data on water levels and water volumes. Then, the driving factors of the
water dynamics were analyzed based on the grey system theory. The results were of great
significance for local sustainable development and ecological protection. Zhang et al. [11]
used DYRESM to estimate the water volume entering Waihai, part of Lake Dianchi, from
2007 to 2019 without historical hydrological observation data. Then, they combined this
information with the monthly monitoring data of water quality to calculate the annual
external loading. This method effectively solves the problem of the limited accuracy in
the statistical results of lake water volume and external load estimation caused by a lack
of data. Salama et al. [12] used remote sensing techniques and a geographic information
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system to analyze different satellite images, including multi-looking Sentinel-2, Landsat-9,
and Sentinel-1 (SAR), to monitor the changes in the volume of water from 21 July 2020
to 28 August 2022. The volume of Nile water during and after the first, second, and third
filling was estimated for the Grand Ethiopian Renaissance Dam’s (GERD) reservoir lake,
with comparisons for future hazards and environmental impacts. There are great challenges
in the extraction of fine water based on remote sensing images. Future research will focus
on developing water extraction algorithms suitable for multiple complex scenes (including
highly heterogeneous urban scenes, cloudy and foggy scenes, and high-altitude mountain
scenes), developing artificial intelligence algorithms with high accuracy, and developing
fully automated extraction algorithms.

2.3. Remote Sensing Simulation and Analysis of Watershed Water Environment

The combination of the space in which people live in and the water body that can
directly or indirectly affect human life and development is called the water environment.
This water environment is applied to all kinds of natural factors and related social factors.
Increasingly, the global watershed environment is facing more and more destruction, the
inherent allocation mechanism of various elements of the natural environment is being
maladjusted, and the environmental quality is deteriorating. Therefore, the observation
and simulation methods and technologies of the watershed water environment need to be
improved urgently, and remote sensing technology fills this gap fittingly. Tripp et al. [13]
demonstrated their ability to monitor spatial and temporal changes in the playa water inun-
dation area on sub-monthly time scales in West Texas, USA, using 10 m spatial resolution
imagery from the Sentinel-2A /B satellites. The study developed a faster and more accurate
method to cover a relatively small area compared with traditional monitoring methods.
The methods provide a strong support for identification of small playas and ecological
applications. Tang et al. [14] investigated the dynamics of the mid-channel bars (MCBs) in
the Three Gorges Reservoir (TGR) using the Gravity Center Shifting Model. The number
and area of MCBs changed dramatically with water-level changes, and the changes were
dominated by MCBs. The study helped to reveal the mechanisms for the development of
MCBs in the TGR. It also offers a scientific basis for the planning, optimal utilization, and
ecological restoration of the MCBs in the TGR. Li et al. [15] used the Soil and Water As-
sessment Tool (SWAT) model in combination with the GCM model to address the separate
and combined impacts of changes in climate and land use/land cover on the hydrological
processes and sediment yield in the Xin’anjiang Reservoir Basin (XRB). The SWAT model
simulation shows that climate change will exert a much larger influence on the sediment
yield than land use/land cover (LULC) alteration in the XRB. These studies provide a
deeper understanding of the sediment response to climate-driven forces and LULC changes
in the XRB, which is beneficial for water quality protection and bloom prevention in the
reservoirs in the East Asian monsoonal region. The watershed water environment is the
main link to human activities in the basin. Large-scale, real-time remote sensing monitoring
and simulation is the theme that needs undivided attention in the future.

3. Conclusions

The 11 papers summarized above contribute to the increasing interest in the study of
monitoring lake water based on multisource remote sensing and novel modeling techniques.
The Guest Editors hope that readers will be inspired by this Special Issue and will continue
to study and innovate in the field of remote sensing observation of lake water color. In
particular, the era of “big data” and “artificial intelligence (AI)” has arrived, which will
usher in new development opportunities for the remote sensing observation of lake water
color. In the future, with remote sensing and Al algorithms as the core methods, this field
and others will focus on the miniaturization of spectral sensing devices, ease of use, lake
water quality monitoring, and watershed water environment regulation. The dynamic
monitoring of the integration of “heaven, earth, air and water” monitoring is a realistic
requirement to promote the construction of an ecological civilization. Using space-based,
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ground-based, buoy-based, hand-held, and other methods to conduct all-weather and
multidimensional monitoring and data analysis of water environments with a large spatial
scope and long-time span and the ability to upload data analyses and results to online
monitoring platforms through 4G/5G networks is anticipated to become the focal research
topic in the future.
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Abstract: The surface water extraction algorithm based on satellite remote sensing images is advanta-
geous as it is able to obtain surface water information in a relatively short time. However, when it
is used to extract information on surface water in large-scale, long-time series and complex terrain
areas, there will be a large number of misclassified pixels, and a large amount of image preprocessing
work is required. The accuracy verification is time-consuming and laborious, and the results may not
be accurate. The complex climatic and topographic conditions in Bosten Lake Basin make it more
difficult to monitor and control surface water bodies. Therefore, based on the GEE (Google Earth
Engine) cloud platform, and the studies of the effect of nine kinds of water indexes on the surface
water extraction in Bosten Lake Basin, this paper adds a slope mask to remove misclassified pixels
and finds the best extraction method of surface water extraction in the basin by means of accuracy
verification and visual discrimination through continuous iteration of index threshold and slope mask
threshold. The results show that when the threshold value is —0.25 and the slope mask is 8 degrees,
the index W12019 has the best effect on the surface water information extraction of Bosten Lake Basin,
effectively eliminating the interference of shadow and snow. The effect of water extraction in the
long-time series is discussed and it was found that the precision of water extraction in the long-time
series is also better than other indexes. The effects of various indexes on surface water extraction
under complex terrain are compared. It can quickly and accurately realize the long-time series of
surface water extraction under large-area complex terrain and provides useful guiding significance
for water resources management and allocation as well as a water resources ecological assessment of
Bosten Lake Basin.

Keywords: water extraction; water index; optimal threshold; Google Earth engine; slope mask

1. Introduction

There is no life without water. Water plays a vital role in the survival of human
beings and other creatures as well as the rise of civilization and development of human
society. Surface water generally includes rivers, lakes, glaciers, and swamps. It is the
main component of freshwater resources on earth, which is irreplaceable in maintaining
the ecological balance of river basins as well as meeting human demands, including
power, water supply, irrigation, industrial needs and others. Interestingly, changes in
surface water area can reflect and characterize the impact of climate change and human
activities on surface water. Quickly and accurately extracting surface water information and
grasping the spatial distribution of surface water have important practical significance for
flood and drought disaster research, water resources monitoring research, water resources
management research, etc. [1,2]. The surface water in arid and semi-arid environments
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is threatened by both natural and anthropogenic pressures. Mapping the distribution of
surface water bodies is essential for managing and addressing degradation of both water
quantity and quality [3]. Before the application of remote sensing technology in mapping
water resources, most of the water was extracted based on manual measurement. This
manual method has low precision, a massive heavy workload, a large cost and poor macro
and continuous and real-time monitoring effect, all of which are impediments in meeting
the requirements spatially and temporally. On the other hand, remote sensing technology
has the advantages of macro scale data collection, dynamic monitoring and low cost. The
use of remote sensing images to extract water information can accurately grasp the spatial
distribution status and changing trend of water bodies in basins, and provide basic data for
comprehensive management of basins, flood monitoring and water resources protection
and conservation, all of which are of great importance [4-6].

At present, there are many algorithms for extracting water information from remote
sensing images. In general, these methods can be roughly divided into several cate-
gories: single band method [7,8], spectral relationship method [4,9], image classification
method [10] and water index method. Among them, the water index method is a popular
index widely used by researchers. The most influential water index algorithms mainly
include Normalized difference water index (NDWI), which weakens the influence of non-
watery factors such as vegetation and soil. It is generally effective in extracting water
from large lakes and reservoirs, but it still contains a lot of interference information in
urban water extraction [11]. The modified normalized difference water index (MNDWTI)
is proposed on the basis of NDWI method, using Landsat TM short wave infrared (TM5)
instead of near-infrared (TM4). MNDWI can weaken the impact of soil and buildings,
but has a good effect on the removal of building shadows in urban areas [12]. The water
index WI2006 uses the natural pairs of each band of landsat7 ETM+ images to reflect the
reflection coefficient and interaction conditions and is used to extract wetlands covering
eastern Australia [13]. The enhanced water index (EWI) is constructed by using the green
light band (TM2), a near-infrared band (TM4) and mid-infrared band (TM5) of TM images,
and this method is used to extract the water system information of semi-arid areas. This
index allows the researcher to ignore the influence of atmospheric factors [14].

By analyzing the creation process of enhanced water index EWI, it is verified that
the surface water can be extracted well whether the remote sensing image has been atmo-
spherically corrected or not [15]. The modified normalized difference water index RNDWI
(revised normalized difference water index) is constructed on the basis of analyzing the
spectral characteristics of three ground feature types, viz. water, vegetation and soil. It can
eliminate the influence of mountain shadows and accurately extract the water and land
boundaries of Miyun Reservoir by using this index [16]. The new water index NWI (new
water index) is proposed in combination with the strong absorption of water in the near-
infrared and mid-infrared bands. NWI can partially eliminate the impact of solar altitude
angle, terrain, shadow and atmospheric conditions, and its accuracy is very high [17]. The
new water index NEW is a band ratio algorithm constructed by using the blue-green band
(TM1) and mid-infrared band (TM?) of tm/etm+ images. This index can not only extract
natural water but also eliminate the impact of terrain differences, thus solving the problem
of shadow in water information [18].

In recent years, more new water indexes have been created with good verification
results. For example, the automatic water extraction index AWEI is proposed based on TM
image data. The main goal of AWEI is to separate water and nonwater pixels to the greatest
extent by subtracting and adding between bands and assigning different coefficients to
bands. It has been verified that AWEI has higher accuracy than MNDWTI in extracting
water information [19]. Another new index, Water index WI2015, is a water extraction
algorithm based on linear discriminant analysis proposed on the basis of WI2006. The index
uses linear discriminate anti-analysis classification (LDAC) to determine the coefficient of
the best classification of the training area, which improves the classification accuracy [20].
The multi-band water index MBWI (multi-band water index) can weaken the impact of
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mountain shadows and dark pixels of buildings, and reduce the seasonal impact caused
by changes in solar conditions [21]. Finally, the water index wi2019 (water index2019) is
constructed on the basis of the analysis of the light break characteristics of water and snow,
which improves the differentiation between water and snow in the classification process.

Among the numerous water remote sensing information extraction technologies, the
one based on water remote sensing index is undoubtedly the most widely used. At present,
the global and regional surface water distribution mapping is almost inseparable from
the water remote sensing index. Some scholars carried out early high-resolution remote
sensing mapping of global land surface water bodies [22], in which NDWI (normalized
difference water index) and MNDWI (modified NDWI) water index were used as the main
technologies. Taking MNDWTI as a key algorithm, the global river distribution range and
area can be calculated [23]. With the continuous construction and improvement of water
index, many water indexes have been developed and often used to compare the effects
of surface water extraction in the process of extracting surface water in different regions
and are now widely used for surface water extraction in inland water bodies, wetlands,
delta areas, coastal areas, dry, arid and semi-arid and other complex terrains [23-29]. These
studies have achieved good water extraction results in the study area. Different water
indexes have different advantages in surface water information extraction. The construction
of new water indexes is based on the spectral information difference of typical ground object
sample points in study area. They often achieve high extraction accuracy and differentiation
effect within a study area. When selecting other study areas for verification, the extraction
effect tends to decline, with the threshold value of extracted surface water also changing
greatly [20,30,31]. When the threshold value is too small, it cannot effectively eliminate the
misclassification of pixels, whereas too large a domain value will cause the loss of surface
water information. In the specific application process, the automatic optimal threshold
selection method often cannot achieve the best water extraction effect [32]. Therefore, it
is necessary to optimize the water index and find the optimal threshold when using the
water index to explore the change in water area in the study area [33].

Various water indexes have different effects when they are used to distinguish be-
tween water bodies and nonwater bodies. Shadows, ice, snow and clouds are the main
misclassification types of water bodies. Through preliminary research, water indexes
AWEI, g, and WI2019 can more effectively remove the effects of shadows and dark surfaces
on surface water differentiation in the study area than other water indexes, but the effect
on distinguishing ice, snow and water bodies is poor. Although WI2019 can effectively
distinguish ice, snow and water bodies, the effect of distinguishing shadows is not good.
Snow and ice in the region are mainly distributed in mountainous areas with high altitudes
and large slopes. The shadow is also caused by the slope due to the land’s topography. In
places with a large slope, it is difficult to retain water bodies. Some scholars have tried to
apply topographic factors to the process of surface water extraction and achieved good
results [9,34]. Therefore, using slope data as a mask can effectively eliminate snow and
shadow areas that are mistakenly classified as water pixels. Using the GEE cloud platform
to call remote sensing images in the database can avoid a lot of image and processing work.
Recently, many scholars have used the GEE platform to extract large-scale, long-time series
surface water bodies and achieved good extraction results [35-40]. During the iteration
of water index threshold and slope, the effect of the water extraction image and accuracy
verification results can be observed synchronously to drive the final results. Theoretically,
the GEE platform can be used to explore the optimal method of water extraction in any
image area, and this greatly increases the work efficiency. Furthermore, it can realize the
comparison of regional long-time water extraction effects under the GEE platform. The
purpose of this paper is: (1) To realize the calculation and display of the water index under
the GEE platform, and to explore the applicability of various water indexes under complex
terrain; (2) By iterating the water index threshold and slope mask threshold, the most
suitable water index method and the best threshold for water extraction in Bosten Lake
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Basin are determined; (3) To realize the water extraction in the long-time series within the
watershed and discuss the stability of different indexes in the long-time series.

2. Materials and Methodology
2.1. Study Area

In this paper, the boundaries of seven county and city level administrative divisions
are merged as the research boundary of Bosten Lake Basin (Figure 1). Bosten Lake Basin,
also known as the Kaidu River-Kongque River Basin, is located in the inland arid area
of Xinjiang, China. Its geographical coordinates are 85°20'~87°25' E, 41°10'~43°30" N.
Although Bosten Lake basin is mainly composed of Kaidu River Basin and Kongque River
Basin, it also includes Yangi Basin and its surrounding mountainous areas, and most areas
to the north of the lower reaches of the Tarim River. Bosten Lake Basin is adjacent to
Tianshan Mountains in the north and Tarim Basin in the south. The terrain is high in the
northwest and low in the southeast. The geomorphic division belongs to the Tianshan
Mountains region, including three small areas of Tianshan Mountains, Youledus basin and
Yangi Basin. The entire basin has a total area of 7.7 x 10* km?, accounting for 45.06% of
the drainage area. The basin is not totally mountainous as the plain area is 4.26 x 10* km?,
accounting for 55.32% of the drainage area. The landform in the area is complex as Bosten
Lake Basin is surrounded by mountains on three sides. The overall terrain is high in the
north and south, West and low in the East. The geomorphic units in the basin can be divided
into intermountain basin landform, canyon landform and alluvial proluvial basin landform,
of which the large and small Yudus basins belong to intermountain basin landform. The
reach from the source of Kaidu River to the river canyon in the north of Yanqi basin is
canyon landform, and the terrain height is obviously graded. The Kaidu River enters the
Yangi Basin from the east of Dashankou. The terrain is relatively flat and open, showing the
geomorphic characteristics of an alluvial proluvial basin. The Yangi basin is a local faulted
basin formed between the main vein of the eastern Tianshan Mountains and its branches.
Bosten Lake is in the southeast of the Yangi Basin. There are a large number of relatively
small wetland lakes in the southwest and northwest of Bosten Lake. Bayinbuluk grassland
also contains many wetland water bodies, and a large number of snow mountains are
distributed in the region, with the terrain fluctuating greatly. There are many seasonal
rivers and lakes supplied by snow melt under the snow mountain terrain. As the longest
river in the region, the Kaidu River flows through the main cities, mountains, deserts,
wetlands, and other landforms in the region. These complex landforms jointly increase the
difficulty of surface water monitoring and regulation in Bosten Lake Basin.

Legend

[ Boundary of Bosten Lake Basin
["] Boundary of province
[0 Boundary of Xinjiang
DEM

- 7617
— 225

Figure 1. Schematic diagram of study area.
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2.2. Data Resources

The data used in this paper mainly include Landsat8 OLI, Landsat7 ETM, Bosten Lake Basin
vector boundary, and Google Earth high-resolution image and (JAXA/ALOS/AW3D30_V1_1)
elevation data in GEE platform database.

The image used for the optimal water index threshold and slope and discussion selects
the USGS Landsat 8 Collection 1 Tier 1TOA Reflection (“LANDSAT /LC08/C01/T1/TOA")
data with cloud cover less than 8% from May to August 2021. In order to explore the
surface water extraction effect of various indexes in the long-term academic column, a
total of 108 images with less than 8% cloud cover in the USGS Landsat 8 Collection 1 Tier
1 TOA Reflection (“LANDSAT/LC08/C01/T1/TOA”) from 2013 to 2021 in the Google
Earth engine database are used, and 156 images with less than 8% cloud cover in the USGS
Landsat 7 Collection 1 Tier 1 TOA Reflection (“LANDSAT/LE07/C01/T1/TOA”) from
2000 to 2012 are used (Figure 2), and the elevation data call JAXA/ALOS/AW3D30_V1_1)
is used, including the latest 2021 Google Earth high-resolution image images provided by
Google Earth Pro and Ovey Interactive Maps to compare the extraction effect.

Figure 2. Image availability analysis in the study area.

2.3. Methodology
2.3.1. Remote Sensing Image

The ee.ImageCollection function calls the USGS Landsat 8 Collectionl Tierl TOA
Reflection dataset in the GEE database and sets the time interval from May to July 2021.
The image BQA band is used for traffic screening and cloud removal. The image ‘B6’, ‘B7’,
and ‘B4’ bands are set to the red, green and blue channels, respectively. Map.addlayer
function performs false color synthetic display of images, highlighting the differences
between water bodies and other ground objects, and serves as the basis for sample point
selection and one of the bases for surface water extraction effect.

2.3.2. Selection of Sample Points for Accuracy Verification

Based on the GEE platform, the Configure geometry import tool was used to create six
categories of ground objects. In combination with Google Earth satellite images and land-
sat8 false color composite images, 1283 water sample points (Figure 3) and 1538 nonwater
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sample points were selected in the study area, including 436 vegetation sample points,
228 building sample points, 189 wetland sample points, 218 bare land sample points and
220 snow sample points. Additionally, 247 shadow sample points are used as the basis for
verification of water extraction accuracy and supervision and classification.
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Figure 3. Selection of typical feature sample points in the study area.

In order to reflect the correctness of sample point selection, the sampleRegions function
is used on the GEE platform to extract the reflectance values of all bands under each sample
point of various ground objects, and the average value is obtained to prepare the spectral
characteristic curve of typical ground objects in Bosten Lake Basin (Figure 4). It can be seen
from the figure that the spectral reflectance characteristics of ground objects in the flow
domain conform to the spectral characteristics of typical ground objects, which proves the
correctness of sample point selection.
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Figure 4. Spectral reflectance characteristics of typical ground objects in the study area.

2.3.3. Selection of Water Index and Realization of Index Calculation

By consulting the relevant literature on the construction of the water index, the water
index suitable for Landsat series images is selected (Table 1). The normalized difference
and expression functions are used to calculate the index band on the GEE platform, and
Map.addLayer function shows the result of the exponential operation. The reclassification

10
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judgment formula is used to calculate the water index. A pixel greater than 0 in the grid
image is assigned as 1 as the surface water pixel, whereas a pixel less than 0 is assigned as
0 as the nonsurface water pixel, so as to distinguish the surface water and nonsurface water
with 0 as the threshold. The Map.addLayer function displays the exponential operation
results by using Export.image. to drive function exports of the final water extraction grid
image to Google cloud disk and downloads it locally. Arcmap10.8 is used to further display
and analyze the results.

Table 1. Main water index calculation formula.

Index Name Index Formula Reference

PGREEN —PNIR

NDWI PGREENTPNIR [11]

MNDWI PGREEN —PSWIR1 [12]
PGREEN TOSWIRL

AWEIgp, 4 % (pGreEN — Pswirt) = (0.25 X pNIR +2.75 X pswira) [19]

AWEILg, PBLUE + 2.5 X pereEN — 1.5 X (oNIR + pswir1) — 025 X pswira [19]

PBLUE —PRED —PNIR
EWI 0 +p PBLL;)F‘FPRF’;)‘FPN’IJR 0 [14]
BLUE+PGREEN TORED —PNIR —PSWIR1 —PSWIR2
ANWI OBLUETPGREEN +ORED +ONIR +PSWIR1 +PSWIR2 [41]
NWI PBLUE —PNIR —PSWIR1 —PSWIR2 [17]
PBLUETPNIR+PSWIRI+PSWIR2
WI2015 1.7204 + 171pGRreen + 3prED — 70pNIR — 450swirR1 — 71pswirz [20]
WI2019 1.750GreEN —PprRED —1.08p5W1R1 [42]

PGREEN +PSWIR1
Note: where ¢ Represents the band reflectance value, the band reflectance subscript corresponds to the corre-
sponding band of different remote sensing images.

2.3.4. Use of Slope Mask and Determination of Optimum Threshold of Surface Water

In order to further eliminate the interference of snow and shadow and improve the
accuracy of surface water extraction, slope factor judgment conditions are added to the
index calculation results, and areas with excessive slope are divided into nonwater bodies.
The constructed sample points are used as the verification basis. The Terrain.slope function
converts (JAXA/ALOS/AW3D30_V1_1) DEM data into slope data, sets the data type of
sample points to FeatureCollection, sets the Property of water extraction sample points to
Class1 and the value to 1 and sets various nonwater sample points to FeatureCollection
after fusion, with the Property set to class2 and the value set to 0. The Validation.filter
function, which outputs the confusion matrix, overall accuracy, user accuracy, producer
accuracy and kappa coefficient, are used as the basis for accuracy determination. The
change of water extraction accuracy was observed by iterating the index threshold and
slope mask. On the basis of threshold iteration, various indices are set at t (threshold) =0,
s (slope) = 0; t =0, b = 10; t = b (best value), s = 0; water extraction is carried out in the four
cases of t =b and s = b, and compared with Google Earth HD image to further identify the
effect of water extraction.

2.3.5. Discussion on Extraction Methods of Other Water Bodies

In the process of extraction by the GEE window shows and satellite image layer,
preliminary extraction results found that although the various indexes of regional water
extraction effects are not the same, the water main area can be extracted by a large number of
falsely divided bodies of water feature category, mainly for the mountain shadow and snow
body city shadow, wetlands and other false points such as pixels compared to the previous
two kinds or types. In order to discuss the classification details, LibSVM, SmileCart and
MininumDistance classifiers were used for supervised classification using water sample
points and non-water sample points on the GEE platform, and 10 typical water areas were
selected in the study area for further visual discrimination of water extraction effect.

2.3.6. Validation of Water Extraction Accuracy in Long-Time Series

The third method of accuracy verification was to verify the stability of the water
extraction effect in a long-time series by using the difference between water areas in dry

11
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and wet seasons. Therefore, to further explore the water extraction effect of various water
indexes in the long-time series under the optimal water index and the optimal slope mask
threshold, May—-August and September-October were taken as the dry season and the wet
season, respectively, in Bosten Lake Basin, and Landsat7 ETM and Landsat8 OLI were used
to calculate the water area of various water indexes in the dry season and wet season from
2000 to 2021. The pixel value of surface water is set as 1 and that of non-surface water is set
as 0. The pixel value of 1 multiplied by them is defined as the permanent surface water.
Formula (1) is used to calculate the misdivided area of surface water in a long-time series.
The surface water existing in both the dry season and wet season should be close to the one
with the smaller area of the two. The reason why the permanent surface water is smaller is
that the misdifferentiated pixels are removed during the superposition operation of surface
water results in the dry and wet seasons. Therefore, the smaller the difference value is, the
fewer misdifferentiated pixels are and the higher the surface water extraction accuracy is,
which can be used as the basis for judging the surface water extraction effect.

n
Y min(Agg, Aws) — Ap
i=1

E=" . )

Note: in the formula, E represents the annual average misclassified area, A;; represents
the extracted area of water in dry season, A represents the extracted area of water in wet
season, and A, represents the permanent water area.

3. Results and Analysis
3.1. Extraction Effect of Surface Water with Water Index 0 as Threshold Value

It can be seen from Figures 5 and 6 that a large number of non-water pixels are
misclassified into water pixels when various indices are used as the threshold of 0 for
water extraction. According to the results, WI2019 and EWT have the best water extraction
effect, whereas AWEIy,, MNDWI and WI2015 have poor extraction effects. The water
index extraction effect is compared in detail with Sitel-lake, Site2-wetland, Site3-river,
Site4-small surface water, Site5-city surface water, Site6-mountain surface water and the
snow mountain surface water region corresponding to Figure 1 in the region. Results
showed that the water index in lakes, rivers and the urban area obtained good results of
water extraction, but in complex areas, WI2019 distinguishes better between snow and
water effect. However, AWEI,y, is better than that of WI2019 for distinguishing shadow
and water bodies, as most of the shadow is divided into surface water and the snow pixels,
and the slope is the main cause of shadow, where a large amount of snow is also distributed
on hills at higher altitudes. Therefore, a slope mask based on index WI2019 can further
remove the misclassification pixels caused by mountain snow and mountain shadows.

12
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Figure 5. Each water index takes 0 as the threshold value to extract surface water results.
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Google earth image

R

Figure 6. WI2019 and AWEI, gy, surface water extraction details.

3.2. Changes of Extraction Accuracy under Water Index Threshold and Slope Iteration

The slope mask is added on the basis of the optimization of water index threshold.
Through the continuous iteration of nine water index thresholds and slope thresholds, the
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accuracy of water extraction results by different methods is evaluated based on the overall
accuracy, user accuracy, producer accuracy and kappa coefficient generated by the selected
surface feature sample points in the study area, as shown in Table 2.

Table 2. Evaluation table of accuracy of water extraction results of different methods.

Cla;\s/ls;:l;:gon Threshold Slope Land Cover Class Aoczzizlcly Aclcjlite‘:cy II;rcl:ﬂl:::; Kappa
WI2019 0.00 0.00 water 0.669 0.274 0.994 0.29
nonwater 0.999 0.623
—0.25 0.00 water 0.679 0.299 0.984 0.31
nonwater 0.996 0.630
0.00 10.00 water 0.908 0.807 0.989 0.81
nonwater 0.992 0.861
—0.15 8.00 water 0.940 0.912 0.954 0.89
nonwater 0.964 0.929
AWEInsh 0.00 0.00 water 0.680 0.299 0.990 0.31
nonwater 0.997 0.630
—0.1 0.00 water 0.682 0.306 0.987 0.319
nonwater 0.997 0.632
0.00 10.00 water 0.901 0.944 0.853 0.80
nonwater 0.865 0.949
—0.09 5.00 water 0.937 0.926 0.935 0.87
nonwater 0.946 0.939
AWEIsh 0.00 0.00 water 0.676 0.305 0.949 0.31
nonwater 0.986 0.630
0.15 0.00 water 0.668 0.274 0.986 0.288
nonwater 0.997 0.622
0.00 10.00 water 0.882 0.973 0.807 0.77
nonwater 0.806 0.973
0.08 5.00 water 0.922 0.899 0.926 0.84
nonwater 0.940 0.918
MNDWI 0.00 0.00 water 0.681 0.307 0.973 0.32
nonwater 0.993 0.632
0.15 0.00 water 0.682 0.305 0.989 0.32
nonwater 0.997 0.632
0.00 10.00 water 0.903 0.976 0.837 0.81
nonwater 0.841 0.977
0.00 5.00 water 0.931 0.935 0.915 0.86
nonwater 0.928 0.945
NDWI 0.00 0.00 water 0.675 0.289 0.987 0.30
nonwater 0.997 0.627
0.15 0 water 0.674 0.300 0.946 0.30
nonwater 0.986 0.268
0.00 10.00 water 0.907 0.880 0.913 0.81
nonwater 0.930 0.903
0.03 9.00 water 0.916 0.859 0.951 0.83
nonwater 0.963 0.891
EWI 0.00 0.00 water 0.657 0.248 0.991 0.26
nonwater 0.998 0.614
—0.15 0.00 water 0.669 0.275 0.989 0.290
nonwater 0.997 0.623
0.00 10.00 water 0.845 0.694 0.954 0.68
nonwater 0.972 0.792
—0.35 4.00 water 0.927 0.894 0.942 0.85
nonwater 0.954 0.915
ANWI 0.00 0.00 water 0.657 0.248 0.991 0.26
nonwater 0.998 0.614
—0.15 0.00 water 0.667 0.272 0.989 0.287
nonwater 0.997 0.622
0.00 10.00 water 0.839 0.670 0.964 0.67
nonwater 0.979 0.781
0.1 6.00 water 0.930 0.901 0.943 0.86
nonwater 0.954 0.920
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Table 2. Cont.

Cla]\s/[s;fllf:gon Threshold Slope Land Cover Class A(i‘cls::lcly Aclcjlile':cy };‘:Zi:::; Kappa
NWI 0.00 0.00 water 0.657 0.248 0.991 0.26
nonwater 0.998 0.614
—0.4 0.00 water 0.682 0.305 0.985 0.319
nonwater 0.996 0.632
0.00 10.00 water 0.839 0.670 0.964 0.67
nonwater 0.979 0.781
—0.40 4.00 water 0.930 0.901 0.943 0.86
nonwater 0.954 0.920
WI2015 0.00 0.00 water 0.682 0.306 0.980 0.32
nonwater 0.995 0.632
0.05 0 water 0.681 0.306 0.980 0.319
nonwater 0.995 0.632
0.00 10.00 water 0.904 0.973 0.840 0.81
nonwater 0.973 0.975
0.00 5.00 water 0.932 0.932 0.920 0.86
nonwater 0.932 0.943
SmileCart 0.931 0.88
LibSVM 0.894 0.79
MinimumDistance 0.864 0.87

It can be seen from Table 2 that when the threshold value is 0 and slope is 0 for expo-
nential water extraction, the overall accuracy is between 0.6-0.7 and the kappa coefficient
is between 0.25-0.35. The user accuracy and producer accuracy of surface water and non-
surface water are very different, with one being higher and the other being lower. With 0 as
the threshold index calculation, results for the distinction between water and the water effect
is poorer. However, with zero as the slope, and through iteration to find the best threshold
value of various index, it was found that all kinds of indexes under the best threshold
and under the extraction accuracy, in comparison with 0 as the threshold of the extraction,
will only slightly improve accuracy when the threshold value is 0, and the slope for water
extraction is 10. When each index of the extraction of the overall accuracy reached 0.8 or
more, the user accuracy and producer accuracy exceeded 0.8, and when the gap is not big,
the kappa coefficient reached 0.8 above, which can greatly improve the wetland information
extraction effect and can effectively remove the water pixels. On the basis of the water
index, iteration threshold and the slope, it was found that WI2019 and AWEI,g}, achieved the
highest accuracy with the best threshold and slope threshold. When the threshold of WI2019
was —0.15 and the slope mask threshold was 8, the overall accuracy reached 0.94 and the
kappa coefficient reached 0.89. When the AWEI g}, threshold is —0.09 and the slope is 5,
the overall accuracy reaches 0.937 and the kappa coefficient is 0.87. The three supervised
classification methods also achieve high extraction accuracies. Therefore, complex terrain is
further selected for visual discrimination of the water extraction effect.

3.3. Comparison of Water Extraction Effects under Complex Terrains

It can be seen from Figure 7 that although water pixels can be effectively extracted under
complex terrain (site7-10), a large number of snow and mountain shadows are misclassified into
water pixels. When water is extracted with the optimal slope threshold of 0, the misclassified
pixel area is further increased. WI2019, AWEIg, and other indexes show the same results.
The reason is that although the overall accuracy and kappa coefficients have achieved great
results using sample points for accuracy evaluation, there is a large difference between the
user accuracy and producer accuracy of water and nonwater bodies, and the threshold value
is small. Therefore, the classification results using this threshold value have produced many
misclassification pixels. When WI12019 optimal threshold value and slope were used for water
extraction, the best water extraction effect was achieved, and snow and mountain shadow
misclassification pixels were excluded to the maximum extent, compared with the supervised
classification results, and there are still a small number of snow and shadow pixels that are
mistakenly classified as water bodies, and the effect is poor.
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Figure 7. Comparison of extraction effects of different water extraction methods in more complex
terrains.

3.4. Effect Analysis of Long Time Series Water Extraction

Landsat series remote sensing images of GEE platform from 2000 to 2021 were used to
extract surface water in Bosten Lake Basin using various water indexes under the optimal
index threshold and slope mask threshold, and the annual average water error area under
different methods was respectively counted, as shown in Table 3.
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Table 3. Annual average extraction error area of each water index from 2000 to 2021.

Water Index

WI2019

AWEL,, AWEL, MNDWI  NDWI EWI ANWI NWI  WI2015

Error area (km?)

140.5183

183.524 145.4784 391.2709 194.1482 266.785 177.5806 210.056  350.6671

The average annual extraction error of WI2019 under the optimal index threshold and
slope mask threshold is 140.5183 km?, which is still the optimal extraction effect. The error
area of other water indices on long-term series is also small. For example, the average
annual error area of AWEIL,, ANWI and NDWI is only 145.478 km?2, 177.5806 km? and
194.1482 km?, respectively, indicating that although its water extraction effect is not as good
as WI2019, its extraction effect has good stability, which can be considered as a backup
scheme for water extraction in other regions.

4. Discussion and Conclusions
4.1. Discussion
4.1.1. The Relationship between the Optimal Threshold of Water Index and Water
Extraction Effect

When slope mask is not used to search for the optimal threshold of surface water, the
optimal threshold obtained by using sample points to verify the accuracy of surface water
extraction is often too small. In a visual interpretation, it is found that a large number of
non-surface water pixels were misclassified into surface water pixels and that surface water
extraction was carried out only with the optimal water index threshold. Good results can
be achieved in areas with large continuous water areas or relatively flat terrain [3,43-45].
However, the results may be unreliable in large areas or areas with a complex geographical
pattern. In the process of water extraction with water index, it is found that although
the water index has its own advantages, the threshold value is the most critical factor to
determine the effect of water extraction, whereas the structure of water index is secondary.
Similar conclusions have been drawn in related studies on the optimal threshold value of
water index [46,47].

4.1.2. The Optimal Threshold Value of Slope Mask Can Reflect the Effect of Water Index to
Distinguish Shadows

The optimal slope mask of index wi2019 is 8, which is greater than the optimal slope
mask threshold of water indexes such as AWEIy, and AWEI,q,. In the actual process of
surface water, the distinguishing effect of water indexes such as AWEI, and AWEI, g, on
shadow and surface water without slope mask is better than that of wi2019, indicating
that the slope in the optimal threshold slope can reflect the shadow removal effect of water
index. This is consistent with the comparison result that the AWEI index is better than
other water indexes in the practical application of water index in relevant studies [48,49].

4.1.3. Commonality of Water Extraction Methods

This paper does not validate the water extraction method in other areas because the
water extraction method proposed in this paper does not have a fixed index or threshold
and can carry out the same workflow in different areas to find the optimal results. When
judging the effect of water extraction in the long-time series, the water area in dry seasons
in very few years is larger than that in wet seasons. According to the display effect of GEE
in the extraction process, the reason is not only the extraction error but also the complex
terrain and climate conditions in the region, which have little impact on the water extraction
in the long-time series. The slope mask has achieved a good effect in distinguishing water
bodies in areas with mountainous shadows and more snow, but it may not be applicable in
areas with flat terrain. Although this method has achieved a good effect in extracting water
bodies, there are still pixels incorrectly divided into water bodies, and the image resolution
has a great impact on the extraction of small water bodies. Therefore, it is necessary to
explore the applicability of this method in high-resolution images in future work and
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increase the comparison of more water extraction methods. The results of this study with a
slope of 8 as a threshold are only applicable to specific RS imagery (Landsat series for this
study) restricted by specific transit times and specific scanning angles. For example, when
the hill slope and aspect are stable, the shadow area at noon must be smaller than that in
the morning and evening. Therefore, there may be errors when using this method to extract
water area from different remote sensing images. In addition, there is a certain difference in
the spectral characteristics between the water pixels under shadow and those under light,
and the spectral difference between them is smaller than that between the two. Although
the difference between different bands enables the shadow water pixels to be extracted to a
certain extent by the exponential method, water pixels, however, cannot be extracted in
areas where the reflectance is too low or the water is completely shaded. Although there
are few such water pixels, the loss of water pixels will still occur.

Although this method aims to get the higher precision of water extraction, and im-
plements the long time series of water extraction, the prediction about the future of the
water area of change need comprehensive consideration of many driving factors. Hence,
under the premise of remote sensing image in the future, the lack of basic data is difficult
to achieve, but the set of methods can be used in the future the extraction of remote sensing
data for water. Previous water extraction results can provide historical data for water
resource management and decision making in the region.

4.2. Conclusions

In this study, on the premise of preliminary discussion on various water indexes,
the water index is used to extract the surface water of Bosten Lake Basin under the GEE
platform. The surface water extraction effects of different water indexes are compared
in three ways: sample accuracy verification, visual discrimination, and misclassification
of area under long-time series. A method for surface water extraction in complex terrain
areas is proposed by adding a slope mask. The interference of slope and snow cover
is effectively removed, and the high-precision extraction of surface water in the region
is realized through threshold iterative optimization. This method can be applied to the
extraction of long-time series water in the region.

The index threshold has been optimized in previous studies on water information
extraction using the water index. In this paper, when trying to extract water in the Bosten
Lake basin with 0 as the threshold, various water indexes have achieved good water
extraction results in lakes, wetlands, cities, and rivers, but the extraction effect in the whole
region is generally poor. Therefore, taking 0 as the threshold for water extraction can reflect
the advantages and disadvantages of the water extraction effect to a certain extent, but
the water extraction result is not reliable, and it is still necessary to improve the water
extraction effect through threshold optimization. The accuracy of water extraction has been
significantly improved after slope masking of various water indexes. In Bosten Lake Basin,
the ground feature types that affect the water extraction effect are mainly shadow and
snow. The index wi2019 has a better distinguishing effect on water and snow than other
water indexes. Adding the slope mask can further remove the interference of shadow and
mountain snow on water extraction. The water index WI2019 takes —0.15 as the threshold
and the slope of 8 as the mask, achieving the highest water extraction accuracy and the
best visual discrimination effect in the study area, and it is better than the water extraction
results of supervised classification. The error area of water extraction in the long-time series
is smaller than in other indexes. It can achieve high-precision water extraction in the region
under the condition of large topographic relief and more snow. It is of certain significance
for monitoring and managing the dynamic changes of surface water in the region.
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Abstract: Ethiopia began constructing the Grand Ethiopian Renaissance Dam (GERD) in 2011 on
the Blue Nile near the borders of Sudan for electricity production. The dam was constructed as a
roller-compacted concrete (RCC) gravity-type dam, comprising two power stations, three spillways,
and the Saddle Dam. The main dam is expected to be 145 m high and 1780 m long. After filling of
the dam, the estimated volume of Nile water to be bounded is about 74 billion m. The first filling
of the dam reservoir started in July 2020. It is crucial to monitor the newly impounded lake and its
size for the water security balance for the Nile countries. We used remote sensing techniques and a
geographic information system to analyze different satellite images, including multi-looking Sentinel-
2, Landsat-9, and Sentinel-1 (SAR), to monitor the changes in the volume of water from 21 July 2020
to 28 August 2022. The volume of Nile water during and after the first, second, and third filling
was estimated for the Grand Ethiopian Renaissance Dam (GERD) Reservoir Lake and compared for
future hazards and environmental impacts. The proposed monitoring and early warning system of
the Nile Basin lakes is essential to act as a confidence-building measure and provide an opportunity
for cooperation between the Nile Basin countries.

Keywords: Grand Ethiopian Dam; GIS; the first, second and third storages; satellite data

1. Introduction

The construction of massive hydraulic infrastructures, such as big dams, has expanded
to an unprecedented level around the world in the 20th century. With their influence
on social and political relations, they are also shaped by political, social, and cultural
conditions [1,2]. The downstream countries in the main world river system are generally
opposed to the upstream project dams [3,4]. These dam projects cause many concerns
in the downstream countries because of their possible social and environmental impacts,
including droughts, water salinity, and water flow effects. In the Euphrates Basin, the
downstream countries of Iraq and Syria were affected by four droughts in 2000, 2006,
2008, and 2009, which are a cascading effect of climate change and a large number of
dams being constructed along the Euphrates River, which is known as the Southeastern
Anatolia (GAP) Project [5,6]. The GAP project includes the construction of 22 dams and
19 hydraulic power plants for irrigation and the generation of electricity on the Euphrates
and the Tigris rivers and their tributaries [2,5]. The Three Gorges Dam (TGD) was con-
structed in China in the Yangtze River, affecting the sediment discharge and regulation
of the flow process in the downstream provinces, which resulted in severe scouring and
changes in the hydrogeological regime [7]. Dam projects were established along the Mekong
River from 1965 to 2019 in northeastern Thailand, China, Vietnam, Loas, and Cambodia for
power electricity generation [8]. These dam projects have environmental, economic, river
hydrogeology, biological, and sediment transfer effects in Myanmar, Laos, Thailand, China,
Cambodia, and Vietnam [9].

In April 2011, Ethiopia started the construction of the Grand Ethiopian Renaissance Dam
(GERD). Understanding the context of the dam and its position relative to other dams on the
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Blue Nile is essential. The newly built dam is located downstream of the Tana Lake, a highland
lake at an average altitude of 1800 m a.s.l,, with a surface area of 3060 km? at an average lake
level of 1786 m a.s.l. This lake has a maximum depth of 15 m [10]. Four major tributaries feed
the Tana Lake sub-basin, the Gelgel Abay in the south, Rib and Gomera in the east, and Megech
in the north (Figure 1). The GERD is a gravity roller-compacted concrete dam with a target
height of 145 m and length of 1780 m. The dam’s crest is supposed to be at a height of 655 m
above sea level, with the prospective to impound a lake with a capacity of 74 billion m3 [11].
About 116 km upstream of the GERD, the Rosaries Dam is located in Sudan, constructed in
1961 and heightened in 2013, with a current storage capacity of 7.4 billion m? (Nile Basin Atlas
Program) [12]. About 100 km downstream of Rosaries, the Sennar Dam was constructed in
1926 with a capacity of about 390 million m® (Nile Basin Atlas Program) [12]. Further north
in Sudan is the Meroe Dam, with an impoundment capacity of about 12.3 billion m3. Further
to the north in the very south of Egypt, the Aswan High Dam was constructed in 1970 and is
considered to bee the last dam near the mouth of the Blue Nile. The total capacity of the Aswan
High Dam is 164 billion m>. It consists of dead storage of 31.6 billion m?, active storage of
90 billion m?® (BCM), and emergency storage for flood protection of 41 billion m* (Nile Basin
Atlas Program) [12].
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Figure 1. The location map of the studied area, which includes the location of the main artificial and
proposed future dams in Africa. Data sourced from Wheeler et al. [13].

The Eastern Nile Basin is affected by historical complex hydropolitics over the use
of the Nile water [14,15]. In the summer of 2020, the first phase of construction of the
GERD was finished, and shortly after, the first filling of the GERD Lake started. During this
season, the Sudanese dams, especially of Rosaries and Sennar, were confusedly operated
due to a lack of prior information about the size and timing of the filling (reported by the
Sudanese Minister of Irrigation Yasser Abbas on 26 August 2021 Daily News [16]. This may
be due to the frozen agreement of the Eastern Nile Basin Initiative (NBI) activities [14,15].
This resulted in a shortage in freshwater during June and July, the filling months, in the
capital Khartoum and many other cities after Sudanese water treatment stations went out
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of service due to low river levels. Later, in the same season, after the end of filling, Sudan
faced a vast flood as the level of the Nile reached 17.48 m on 27 August 2020 at Khartoum,
which was considered the second-highest level after the 1912 flood according to Prime
Minister Abdalla Hamdouk [17] (Guardian Journal; date 5 September 2020). Ninety-nine
people were killed in this flood as mentioned by the state of emergency in Sudan. Ramadan
et al. [18] referred to the negative impacts, including environmental, economic, and social
problems, on Egyptian countries by applying different scenarios along 2, 3, and 6 years of
the filling of the GERD under different flow conditions. Omran and Negm [19] considered
the different filling scenarios and indicated that Egypt and Sudan would experience severe
impacts during the filling phase of GERD in some scenarios.

Remote sensing has been used to estimate and monitor the volume of lakes worldwide
in various case studies. The key parameters controlling the water quantity of small or large
lakes are the area and top level [20-22]. The spatial and temporal changes in the volume
of water bodies can be calculated by several methods depending on the availability of
morphometric and areal data. Amitrano et al. [21] used DEM (9 to 15 m resolution obtained
from SAR data) to estimate the depth. They analyzed both Sentinel-1 and COSMO-SkyMed
imagery to obtain more accurate results to extract the boundary of the basin as the water
level increased, reflected by increases in the contour, to estimate the reservoir surface
volume and retained water volume of the reservoir in the Labaa Basin in Ghana region.
Xiaoqi et al. [23] used STRM DEM of the above lake level to construct the relationship
between the elevation and the area to estimate the volume of the Namsto Lake in China.
Pipitone et al. [22] used both optical (Landsat 5 TM, Landsat 8 OLI-TIRS and ASTER images)
and synthetic aperture radar (SAR) images to monitor the water surface and the level of the
Castello Dam Reservoir. They defined the displacement using the global navigation satellite
system (GNSS) to detect the relationship between the water level and dam deformation in
Castello Dam on Magazzolo Reservoir in south Italy. Ahmed et al. [24] used the time series
of Landsat images of 2001, 2011, and 2019 to extract the modified normalized difference
water index and combined it with field observation water level data to calculate the lake
volume from 2001 to 2019 in Deeper Beel, which is situated in the southwestern part of
Guwahati, Assam in India. Jiang et al. [25] used the average annual coefficients of the
VH backscatter for Sentinel-1A and the normalized difference water index (NDWI) of
Sentinel-2 to map small water bodies in the mountain region in China for water-related
environment monitoring and resource management. In the Nile Basin, Hossen et al. [26]
built bathymetric and water capacity relationships based on Sentinel-3 optical and radar
data for Aswan High Dam Lake, Egypt. Kansara et al. [27] used an analysis of multi-source
satellite imagery and Sentinel-1 SAR imagery to display the number of classified water
pixels in the GERD from early June 2017 to September 2020, indicating a contrasting trend
in August and September 2020 for all upstream/downstream water bodies using a Google
Earth Engine (GEE). Their results show that upstream of the dam rises steeply while it
decreases downstream.

In the last 20 years, multispectral remote sensing and Sentinel (SAR-1) data have been
widely used for surface water monitoring to overcome the limitations and lack of field
observations for monitoring of the storage volume of water reservoirs [19,21,23,28]. The
dynamic volume change in GERD Lake is essential for all Blue Nile countries, including
Ethiopia, Sudan, and Egypt, to understand the balance of the water security

2. Methods and Materials
2.1. Depth Estimations

The depth of the GERD Lake was estimated using Shuttle Radar Topography Mission
(SRTM) data, which map the topography of the Earth’s surface using radar interferometry.
The Shuttle Radar Topography Mission (SRTM) is an international project spearheaded by
the National Geospatial-Intelligence Agency and NASA, whose objective is to obtain the
most complete high-resolution digital topographic database of the Earth. We downloaded
the SRTM 1 arc per second data courtesy of the U.S. Geological Survey from https://
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earthexplorer.usgs.gov/ accessed on 21 June 2020. It was measured on 11 March 2000. It
was used in the study of the GERD Lake to obtain the elevation difference obtained through
interferometry, which was transformed into a 3D digital elevation model (DEM), which
was used as the GERD Basin Reservoir depth before the filling process.

2.2. Satellite Data Processing and Water Level Estimation

In this study, we tracked changes in the water capacity level boundary for the GERD
Lake using the multi-optical satellite data and Sentinel 1A (SAR). We acquired the multi
optical Sentinel 2A and Landsat-8 with time series from 21 July 2020 to 3 July 2021 courtesy
of the U.S. Geological Survey, https:/ /ers.cr.usgs.gov/ website accessed on 21 June 2020
while the Landsat-9 and Sentinel-1 (SAR) with time series were from 16 July 2021 to 28
August 2022. The sentinel-1 (SAR) was obtained from Copernicus Open Access Hub
https://scihub.copernicus.eu/ website accessed on 29 August 2022. The Sentinel-2 data
was characterized by higher spatial and spectral resolutions in the near-infrared region.
The Sentinel-2 sensor, the EO satellite of the Copernicus program, has 12 bands with spatial
resolutions of 10 (four visible and near-infrared bands), 20 (six red-edge and shortwave
infrared bands), and 60 m (three atmospheric correction bands) [29]. Recently, the Landsat-9
satellite was launched on 27 September 2021. It is similar to Landsat-8 and characterized
by four visible spectral bands, one near-infrared spectral band, three shortwave-infrared
spectral bands at a 30 m spatial resolution, plus one panchromatic band at a 15 m spatial
resolution, and two thermal bands at a 100 m spatial resolution. The problem of dense
cloud cover is encountered in some optical satellite imagery, which masks the lake in rainy
seasons, especially in June and July each year. We used a filter to remove cloud pixels,
using the threshold to identify the pixel range as cloud using ArcGIS 10.8 software [30]. We
found incomplete filter-out cloud in some multi-optical satellite images. We instead used
Sentinel-1 SAR to obtain the water level boundary, especially in the cloud periods, which
mask the GERD Lake boundaries. SAR sentinel-1 (Synthetic Aperture Radar (5-1 SAR)
data are insensitive to cloud. However, Sentinel-1 SAR data are characterized by speckle
noise and have some difficulties in detecting the water surface of water bodies. This can be
solved by applying several techniques such as aggregation of the brightness pixels, which
was proposed by Pipitone et al. [22].

The analysis scheme used to estimate the water volume in the GERD Lake is summa-
rized in Figure 2 for optical multispectral and SAR data analysis, which was applied in
this study. We used ArcMap 10.8 [30] for multioptical satellites (i.e., LandSat-8 and -9 and
Sentinel-2) to separate the shape of the GERD Lake using the normalized difference water
index (NDWI) as it enhances the presence of water bodies, a method introduced by Mcfeed-
ers [31]. NDWI uses reflected near-infrared radiation and visible green light to enhance
the presence of water bodies such as lakes and rivers. This method is characterized by its
ability to eliminate the presence of soil and terrestrial vegetation features. The equation
depends on the use of bands with a relatively high reflectance of the water green band
(band-3) and one with low or no reflectance near-infrared (NIR) (i.e., band-8 in the case of
multispectral Sentinel-2 and band-5 in the case of Landsat-8 and -9) as follows:

Band 3 — Band 8 or 5 (NIR)

NDWI'= gnd5+ Band 8 or 5 (NIR)

)

The preprocessing of the workflow of Sentinel SAR-1 was applied by the Sentinel
Application Platform (SNAP) [32], an open-source software version of 8.0.9 (http:/ /step.
esa.int/main/toolboxes/snap/ accessed on 1 October 2020), as follows: (a) a subset tool
was used to delineate the area of the study. (b) The orbit file was applied, which allows
updating of the orbit state vectors for each SAR scene, providing accurate satellite position
and velocity information. (c) The thermal to noise removal algorithm was used to remove
and reduce noise effects in the inter-sub-swath texture and normalize the backscatter for
scenes in multi-swath acquisition modes. (d) Calibration equation was used to convert the
image intensity values to sigma nought values in which the digital pixel was converted to
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radiometrically calibrated SAR backscatter concerning the nominally horizontal plane of
Sentinel-1 GRD. (e) Terrain corrections were used to compensate for some distortions related
to the side-looking geometry to be close to the real world. (f) We used coregistration with
an average stack of two time series images per month to obtain a single image. We applied
coregistration instead of a speckle filter to remove noise without affecting the resolution of
the optical image of Sentinel SAR-1, which may result from temporal decorrelation effects.
The final step was to convert it to linear transformations and apply the band math equation
depending on the image histogram. The water lake was delineated using this equation
in which the thresholding values range between —1, which refers to land, and +1, which
refers to water bodies.
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Figure 2. Workflow explaining the steps of satellite image analysis carried out in this study to
calculate the volume of the GERD Lake.

2.3. Water Level Validations

The water levels were collected for Nasser, Tana, and GERD lakes in Egypt and
Ethiopia, respectively. The in situ water level data was recorded by the gauging station at
Nasser Lake and obtained from the Nile Research Institute (NRI) database. The other water
level data was collected at virtual stations from a satellite altimetry set obtained from the
“Global Reservoirs and Lakes Monitor (G-REALM) project” of the U.S. Foreign Agricultural
Service [33] and the level contour was extracted by optical multispectral satellite data in
this study. Then, we calculated the average water level uncertainty as shown in Table 1.

Table 1. Water level for the Aswan, Tana, and GERD lakes.

Location of Virtual Water

Water Level from Virtual Stations Water Level Extracted by

Name Lake “;;“;:; egf;tfi?“m Obtained from Satellite Altimeter Level Station Sentinel-2 Boundary lelflerinces
Data from G-REALM) Project “m” Long. Lat. “m” in This Study
Eassef lake, 180.5 181.93 3257 228 181 143
swan Egypt
Tana Lake, - 1789.31 373 12,0 1787.81 16
Ethiopian
CERD Lake, - 581.38 10579 10552 580 14
thiopian
Average calculated water level uncertainty +1.45

3. Results and Volume Calculation

The required parameters needed to compute the volume of the GERD Lake were as
follows: (a) the input surface (i.e., 3D depth of the lake), which was established from the
digital elevation model. (b) The second parameter required is the “Z” value, which was
defined as the plane surface height of the water level top boundary in which the lake
polygons were extracted from an optical satellite image or Sentinel 1A-SAR. The volume
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equation was calculated using the ARCGIS10.8 volume tool, which was dependent on the
empirical formula of the volume. The volume equation is as follows:

The volume of water bodies = average depth (d) of the Lake X Area of the lake (A) (2)

The computation of the DEM raster surface was evaluated using the extent of the
center point of each cell as opposed to the extent of the entire cell area. The resulting
analysis will decrease the data area of the raster by half a cell relative to the data area
displayed for the raster according to the manual of ARCGIS10.8.

The average volume uncertainty was calculated with the average uncertainty in
volume (Figures 3 and 4) depending on the water level uncertainty £ 1.45 calculated in
the previous section. The lakes’ polygons’ boundaries were extracted from a multi-optical
satellite image and Sentinel SAR-1 to reflect the water area storage morphology in the
GERD Lake (Figure 3). A chart of the average volume for the GERD Lake with the time
series obtained every month from 21 July 2020 to 28 August 2022 is shown in Figure 4.
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Figure 4. Chart showing the water volume capacity of the GERD Lake with the calculated volume
uncertainty values in orange color from 21 July 2020 to 28 August 2022.

The volume of the GERD Lake in the first storage reached its maximum level, which
appeared in the satellite images taken on 21 July 2020, with an area of 250.16 km? and a
volume of 5.75 & 0.25 billion m® (Figure 4). Although, there was a receding of the water in
the GERD Lake in the next three months in August, September, and October in the year
2020, with an average water volume of 4.2 + 0.3 billion m? (Figure 4). From November
2020 to 30 March 2021, the second receding of water storage in the GERD Lake reached
an average volume of 3.75 £ 0.3 billion m?, calculated from the satellite images. On 28
July 2021, the GERD Lake showed an increase in the polygon area extracted from the Sen-
tinel SAR-1 satellite image of 316.54 km? and an average volume of 8.45 + 0.45 billion m?
(Figures 3 and 4). The average volume of storage of the GERD Lake increased in August
and September 2021, with a maximum of 9.4 4 0.5 billion m® during August 2021 after the
second storage was carried out. Receding of the water of the lake was observed during
October and November 2021 to an average volume of 7.3 4 0.45 billion m® (Figure 4), with
a slight increase in December 2021 to 8.0 + 0.45 billion m3. From January to 29 May 2022,
the capacity of the reservoir lake decreased to 5.56 & 0.45. Then, the third filling storage
was reached by 23 July 2022, with an increase in the total capacity of 9.25 & 0.25 billion m?
and a significant large capacity of 17.4 = 0.45 billion m® was reached on 28 August 2022
(Figures 3 and 4).

The Ethiopian government carried out the first storage in July 2020 while July 2021
and July 2022 represent the second and third storage stages. During the storage stages and
closing of the GERD Dam gates, the GERD Lake was charged by rainfall and Tana Lake,
which is considered the major source of the Blue Nile [10].

The water level was observed from satellite images to be on the lower limit of the
saddle dam in the third filling on 28 August 2022. This saddle dam was built with a
5-km-long concrete face rockfall and 50 m high to maintain the required water surface
elevation and depth at a relatively flat dam site. The saddle dam increases the natural
features from 600 to 646 m asl, increasing the reservoir water level to the design level [34].
An emergency gated 300-m-wide spillway is located between the main dam and the saddle
dam. The spillway, at a crest elevation of 624.9 m, is to be used for extreme flood conditions,
releasing through a gully into the river downstream of the dam.

4. Discussion

The application of remote sensing and GIS to monitor GERD Lake volume changes
provides critical information about the GERD Reservoir Lake water level and storage
capacity. This will be very important for downstream countries in the case of a limitation
or lack of information resulting from a stumble in negotiations between Ethiopia and
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the downstream countries Egypt and Sudan. Water safety is essential for both upstream
and downstream countries. One of the most controversial debuts in GERD negotiations
is the number of years for the initial reservoir filling, as a shorter filling time requires
greater flow reduction and a higher investment return from the dam. A longer filling
time requires lower flow reduction and lower investment return from the dam [34]. The
water level shown by satellite data in this study was 600 + 1.45 a.s.] on August 28 August
2022 in the lower level of the saddle dam. This level corresponds to 24.3% of the full
storage capacity of 74 billion cubic meters. It was considered as more than the minimum
reservoir fill rates, which is beneficial for hydroelectric generation without having an effect
on stream flow into Egypt and Sudan as stated by Keith et al. [35]. King and Block [36]
refer to the 25% filling policy, which can reduce the average downstream flow by more than
10 BCM per year. Hegay et al. [37] proposed numerous actions and mitigation strategies
that could secure Egypt’s water demands by minimizing the effects of the GERD project.
These strategies should include the present-day operation of the AHD hydropower plant
to mitigate imminent water shortages in combination with the increase in groundwater
withdrawal as a backstop choice to quickly sustain the water demand. Water conservation
strategies should additionally be integrated, mainly inside the agriculture sectors, by
switching the countrywide production to crops that require less water.

Previous studies have investigated the possible future multi-environmental and hazard
impacts on downstream countries. Wheeler et al. [38] described a post-filling period that
includes severe multi-year droughts after filling of the dam with the uncertainty of the exact
start and end time, which will require careful coordination to minimize possible harmful
impacts on downstream countries. Donia and Negm [39] modeled three scenarios of the
storage capacity of the GERD Lake. The storage capacity of the three models was estimated
assuming 18 billion m® for the initial design storage capacity and 35 and 74 billion m® for
the middle and final storage. Their results from scenario-3 of the full filling of GERD Lake
in 5 years show a negative impact on agriculture due to the loss of silt, which is a result
of restricting the water flowing to the Aswan High Dam in Egypt. Abulnaga’s [40] study
refers to scooping out accumulated mud and silts through dredging and the construction
of onshore sediment ponds that are used for agricultural purposes due to the construction
of the dam in Ethiopia. From an engineering point of view, EL Askary et al. [41] showed a
deformation pattern associated with different sections of the GERD Lake and Saddle Dam
(main dam and embankment dam) using 109 descending mode scenes from Sentinel-1 SAR
imagery from December 2016 to July 2021. This may result in a dam failure flood, which
will have harmful impacts in Sudan and Egypt.

In summary, the environmental impacts and other socio-political considerations of GERD
extend across a diverse spectrum of issues from population growth, economic development,
and water rights to sedimentation and/or changing flood regimes and the shock of climate
change. It is necessary to examine the complex social and environmental values of water
resources and the policies governing the use of water resources. A water cooperation policy
is the best choice for the cooperative Nile basin initiative to overcome any debate on the
remnant years of fillings [42]. Informal diplomacy has been successfully used to manage
transboundary waters in a similar case in the Mekong River Dam [43]. The waterscape of the
Mekong Dam issues has been extended to security actors that are not water experts within
domestic politics. For this, the analysis could be extended to examine in more detail the
knowledge channels within multiple tracks of diplomacy and how harms and inequalities are
understood, beyond mere metrics of economic impacts and water quantities. This method of
informal diplomacy can help change the frozen negotiation situations between Ethiopia and
Egypt. Thus, understanding water diplomacy requires scrutiny of how power, knowledge,
and the political economy of river basin development intersect.

5. Conclusions

The combination of open-source satellite optical and radar images with DEM provided
a robust tool to estimate the water volume in the artificial GERD Lake during the initial
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phases of filling. The water level measured from satellite data refers to the consequent
increase in the stored water volume of the GERD Reservoir Lake. Three stored water stages
of the initial filling were considered for the lake, corresponding to volumes of 5.75 £ 0.25,
9.4 + 0.5, and 17.4 + 0.45 billion m® during 21 July 2020, 28 July 2021, and 28 August 2022,
respectively.

Data collected from open sources combined with technical knowledge could provide
very useful information that can be used to monitor the filling process and support informal
diplomacy with transparent and trustful independent information that could possibly lead
to a future agreement between all Nile basin countries. The authors believe that this work
is a milestone in building a scientific initiative to utilize open-source data for the benefit
of the community and to build a common agreement on the importance of investment
in knowledge for sustaining water resources and their management. Further work is
needed to extend this work to better understand the impact of the current filling process
and its impact on the ecosystem and boost the knowledge and data exchange between
riparian countries for integrated management plans for the Nile. An integrated database
that combines ground- and satellite-based observations could utilize modern scientific
techniques to integrate the dam'’s operation process and mitigate natural disasters and
climate change’s impact on the sustainable development in Nile Basin countries. Such an
initiative could work as a confidence-building measure between Nile Basin countries and
provide leveraging for science diplomacy to bridge cooperation and integration in an era
of divergence and competition.
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Abstract: There are many rivers flowing from complex paths into Lake Dianchi. At present, there is a
lack of inflow and water quality monitoring data for some rivers, resulting in limited accuracy of
statistical results regarding water volume and external loading estimations. In this study, we used
DYRESM to estimate the water volume entering Waihai of Lake Dianchi from 2007 to 2019 without
historical hydrological observation data. Then, we combined this information with the monthly
monitoring data of water quality to calculate the annual external loading. Our results showed that:
(1) DYRESM could effectively capture the extreme changes of water level at Waihai, showing its
reliable applicability to Lake Dianchi. (2) The average annual inflow of rivers entering Waihai was
about 6.69 x 108 m3. The fitting relationship between river inflow and precipitation was significant
on annual scale (r = 0.74), with a higher inner-annual fitting coefficient between them (r = 0.98),
thus suggesting that precipitation and its caused river inflows are the main water source for Waihai.
(3) From 2007 to 2010, the river loadings remained at a high level. They decreased to 2445.44 t (total
nitrogen, TN) and 106.53 t (total phosphorus, TP) due to a followed drought in 2011. (4) The river
loading had annual variation characteristics. The contribution rates of TN and TP loading in the rainy
season were 63% and 67% respectively. (5) Panlong River, Daqging River, Jinjia River, Xinbaoxiang
River, Cailian River and Hai River were the main inflow rivers. Their loadings accounted for 81.3%
(TN) and 80.3% (TP) of the total inputs. (6) River loadings have gradually reduced and the water
quality of Waihai has continually improved. However, Pearson analysis results showed that the water
quality parameters were not significantly correlated with their corresponding external loading at
Waihai, indicating that there might be other factors influencing the water quality. (7) The contribution
rates of internal release to the total loads of TN and TP at Waihai were estimated to be 7.6% and
8.9% respectively, suggesting that the reductions of both external and internal loading should be
considered in order to significantly improve the water quality at Waihai of Lake Dianchi.

Keywords: Lake Dianchi; eutrophication; DYRESM; inflow volume; external loading

1. Introduction

A lake is a key node at the intersection of terrestrial ecosystem elements, playing roles
in freshwater supply, flood storage and species conservation in the geosphere. Lakes are a
valuable resource that human beings depend on to improve productivity through functions
such as regulating runoff, developing irrigation and conducting shipping [1,2]. With the
rapid growth of the global population and the gradual advancement of industrialization,
urbanization and modern agriculture, a large amount of anthropogenic pollutants have
been discharged into lakes, increasing the harm of eutrophication [3,4]. Lake eutrophication
refers to a large increase in essential plant nutrients, such as nitrogen (1) and phosphorus (p),
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in a lake, causing significant increases in the primary productivity of water ecosystems and
resulting in the appearance of algal blooms, lower dissolved oxygen (DO) concentrations,
reduced transparency, the death of aquatic animals, reduced biodiversity and damage to the
normal habitat and function of the lake [5,6]. Studies [7,8] have found that eutrophication
of a lake under natural conditions takes a long time to evolve, but disturbances from
human activity can significantly accelerate the eutrophication process, shortening it from
the original timeline of thousands of years to decades or even less. At the end of the 1990s,
61% of lakes worldwide were eutrophic [9], and the eutrophication rate of global inland
waters had increased to 63% by 2012 [10]. The percentage of eutrophic lakes (reservoirs)
among 110 important Chinese lakes (reservoirs) was 29% in 2020 [11]. The eutrophication
of lakes has proven to be a threat to the sustainable development of human society.

Lake Dianchi is the largest freshwater lake on the Yunnan-Guizhou Plateau, playing
key roles in the social and scientific development of Yunnan New Area [12]. However,
it is in a moderate or severe eutrophic state all year round, and cyanobacterial blooms
occur frequently, causing hidden dangers to the water environment and water safety of
surrounding residents [13]. Guo et al. [14] found that 7 and P loadings from urban sewage
and agricultural runoff are the main sources of pollution in Lake Dianchi. Ma et al. [15]
considered the hydrological characteristics of highland lakes, and they concluded that
the long retention time of water bodies, weak exchange capacity and excessive nutrient
loading have led to a faster rate of eutrophication in Lake Dianchi. Dong [16] found that
soil erosion highly contributed to non-point source pollution in Lake Dianchi Basin and
pointed out that rainfall, agricultural structure or rural population changes were conducive
to increases in non-point source pollution loadings; because it could be concluded that
external loading is the main root of eutrophication in Lake Dianchi, controlling external
loading may be the first step to address eutrophication. As the links between a lake and
terrestrial ecosystem in a basin, rivers are the key intermediate links for external loading
control because land-based pollutants enter lakes by rivers, causing the deterioration of
lake water and ecosystem quality [17]. About 70-80% of the annual water supplementation
to Lake Dianchi comes from river inflow [18], and the average annual river total nitrogen
(TN) and total phosphorus (TP) input can account for 80.2% and 78.8%, respectively, of the
total external loading in Lake Dianchi [19], so accurate statistics regarding external loading
by rivers is important for eutrophication management. However, there are more than
120 rivers flowing through complex paths into Lake Dianchi, resulting in poor statistics
regarding water input and external loading [20]. Therefore, how to effectively invert the
missing water volume and calculate external loading was the focus of this study.

A water balance equation is constructed by describing different hydrological processes
in a basin as continuous water saving and flow processes, mainly using relevant factors,
such as precipitation, temperature and runoff, as input in the water quantity inversion [21].
Zhang et al. [22] combined water deficit measurements (small ditches and rivers leading
into the lake, farmland drainage entering the lake and groundwater infiltration and exfil-
tration) into an uncertain incoming water term, and then they established a water balance
equation for Lake Bosten with the incoming river flow, outgoing river flow and lake and
evaporation consumption. Qin et al. [23] integrated incoming and outgoing flow, reservoir
precipitation and evaporation and the loss of seepage from the reservoir to establish a water
balance equation in Guanting Reservoir Station. Zan et al. [24] constructed a water balance
equation for the Aral Sea based on regional rainfall, total evaporation and the amount
of water entering and leaving the lake, and then they conducted a rough assessment of
the total amount of groundwater data missing from monitoring. However, the authors
of these articles mainly used historical data to build up simple mathematical equations,
which are not computationally adequate for the dynamics of long-term time-series data.
With the development of technology, researchers have effectively improved flood process
forecasting accuracy by the machine learning method [25,26], and hydrological models
have been widely applied to estimating variations of lake volume [27,28]. At present, the
calculation principle of external loading is clear, mainly calculated through flow and water
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quality concentration [29]. Therefore, the authors of this study used the computationally
powerful hydrodynamic model DYRESM (Dynamic Reservoir Simulation Model) to calcu-
late the elements of water balance in Lake Dianchi [30]. The DYRESM is a one-dimensional
hydrodynamic model with the advantages of simple profile and convenient parameter-rate
determination; it has been used in many domestic and international hydrological stud-
ies [31-33]. In this study, we first inverted the incoming water volume of Lake Dianchi
from 2007 to 2019 and then calculated the external loading by combining the volume
information with river water quality monitoring data in order to provide a scientific basis
and reasonable suggestions for the management and ecological restoration of Lake Dianchi,
as well as to provide reference methods for similar studies.

2. Materials and Methods
2.1. Study Site

Lake Dianchi is located in the southwestern part of the urban area of Kunming, the
capital of Yunnan Province (Figure 1). It is one of the four major fractured tectonic lakes
in China, and the only sewage-receiving body of the lakes in Kunming [34]. The Lake
Dianchi Basin covers an area of 2920 km?, accounting for about 0.75% of the land area of
Yunnan Province but carrying nearly 23% of the province’s gross domestic product (GDP)
and 8% of the population [35]. With the development of urbanization and agriculture
in Kunming, the nutrient loading of basin has significantly increased, resulting in the
perennial deterioration of Lake Dianchi’s water quality. The water area of Lake Dianchi is
309.5 km? (at an elevation of 1887.4 m), with a storage capacity of 1.56 x 108 m? and an
average depth of 5.3 m [36,37]. The southern part is called Waihai, which is the major part
of Lake Dianchi, with a water area of 298.7 km? and average water resources that account
for more than 90% of the total water resources of Lake Dianchi [37].
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Figure 1. Distribution of meteorological stations, hydrological stations and main tributaries of
Lake Dianchi.

Lake Dianchi Basin has a typical subtropical highland monsoon climate, with the
mountains in the north blocking the northern cold streams in the winter, which allows the
basin to have “four seasons like spring” all year round. The basin maintains a multi-year
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average temperature between 14.6 °C and 15.9 °C and an annual temperature difference
of about 12 °C. The lowest annual temperature occurs in January, and the highest annual
temperature occurs in July [38]. The average multi-year rainfall is 986 mm, which can be
divided into distinct dry and rainy seasons. The rainy season occurs from May to October
each year, with rainfall accounting for more than 85% of the annual total, while the dry
season occurs from November to next April, with rainfall accounting for only 15% or
less of the annual total. The average multi-year evaporation is about 1871 mm, which is
significantly higher than the average annual rainfall [39]. There are many rivers entering
Lake Dianchi with a characteristic of “short flow near the source”, and the special functions
of transport, migration and sink determine the prominent position and role of rivers in
the Lake Dianchi ecosystem [19]. In order to meet the ecological water demand, partial
tailwater of Kunming urban sewage is discharged into Lake Dianchi after purification and
treatment [40]. At present, there are artificially controlled outlets for Caohai and Waihai,
which are the Xiyuan Tunnel at the northwest water area and the Zhongtan Gate at the
southwest water area, respectively [41]. In addition, to support the urban development of
Kunming and to meet the production and living water needs in the basin, Lake Dianchi’s
water resources are developed and utilized to 90%; furthermore, the total water supply
in the basin was 8.20 x 10% m? in 2015, of which 1.36 x 10® m® was supplied by Lake
Dianchi, indicating that water supply is also an important outflow pathway [42]. Since
Waihai is the major body of Lake Dianchi, the annual volume of water in and out of
the lake and the external loading are absolutely dominant in the total volume of Lake
Dianchi [43], so the authors of this paper selected Waihai as the study area. The multi-year
distance level changes in chlorophyll 2 (Chl—a), TN and TP concentrations in Waihai are
shown in Figure 2, indicating that the water quality has significantly improved after years
of treatment.
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Figure 2. Annual anomalies of Chl—a (green), TN (blue) and TP (brown) at Waihai from 2000 to 2019.
2.2. Data Source

To ensure the accuracy of our results regarding water inversion and external load-
ing, data of detailed hydrological, water quality, meteorological, topographical and river
channels at Waihai were collected in this study. They are presented in Table 1 below.

Due to equipment failure and condition restriction, some monthly monitoring data of
TN and TP in river channels were missing. When the monitoring data were missing for
less than three months, a linear interpolation method was used to supplement. When the
data were missing for more than three consecutive months, they were supplemented by
calculating the monthly mean data of the previous and following years.
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Table 1. Data information.

Data Type Data Period Data Content Data Source
Topograph \ Water contour Kunming Dianchi & Plateau
pography (elevation of Lake Dianchi bottom-area generation) Lakes Institute
Meteorology 2007-2019 Daily data of weather station at Kunming The China M? teorological Data
Service Center
2007-2019 Monthly monitoring values of TN and TP Dianchi Administration Bureau
Inflow river o - of Kunming
2007-2019 Monthly monitoring values of river flow
Yearly data of municipal treated sewage in Kunming; Kuggi:ifﬁvg?:xﬁ?tal
Tail water inflow 2007-2020 proportion of tail water discharged into Waihai after . o
. Administration Bureau
treatment in 2020 (31.08%) .
of Kunming
Yearly urban water supply of Kunming; in 2015,
. urban water supply accounted for 54.24% of whole . _—
Urban water supply 2007-2019 basin, and Lake Dianchi water supply accounted for Kunming Statistical Yearbook [42]
16.59% of basin water supply
Water regimen 2007-2019 Average daily water level of Waihai Dianchi Admlmstr.atlon Bureau
of Kunming
Water quality 2000-2019 Monthly monitoring values of water quality at Waihai Kunming Mun1c1p al Ecology and
Environment Bureau
Water outflow 2007-2019 Daily measured flow of Haikou River Dianchi Administration Bureau

of Kunming

There are 24 major input rivers around Waihai, and some of them presented a small
amount of missing monthly water quality data that could be supplemented by using statis-
tical methods. However, we found a large amount of missing data regarding instantaneous
monthly river flow, which made it difficult to invert the water inflow volume. Therefore,
the authors of this study collected measured data of river inflow, obtained the average
values of historical flow for each river from January to December and then calculated the
proportion of each river in the total annual flow after summing up the annual flow, which
was used to allocate the inverse water volume. The percentage of missing measured data
and each river flow in the total inflow volume from 2007 to 2019 are shown in Table 2.

Table 2. Information of rivers.

Proportion of Proportion of

Proportion of Proportion of

River II\{/[aitsl:izf River Flow in River Flow in River II\{/[aitslsoiI?f River Flow in in River Flow
Data (o/g) Total Volume Total Volume Data (D/g) Total Volume Total Volume
° (Before 2012) (After 2012) ° (Before 2012) (After 2012)
Cailian River 9.6 53 5.3 Luolong River 11.5 42 42
Jinjia River 59.6 8.6 8.6 Laoyu River 9.0 3.3 3.3
Panlong River 635 39.6 39.8 Naﬁ‘fvhe‘;“g 19.9 06 0.6
Dagqing River 122 11.2 113 Yuni River 244 14 14
Hai River 12.2 3.1 3.1 Chai River 154 1.5 1.5
Livjiabaoxiang 333 04 Cutoff Baiyu River 45 27 27
River

Xiaoging River 72.4 1.1 11 Cixiang River 77 13 14
W“";?f:g;“ang 35.0 0.1 Cutoff Dongda River 122 20 2.0
Xiaba River 62.2 1.8 19 Hucheng River 6.4 13 13
Laobaoxiang River 53.9 0.4 0.4 Gucheng River 19 0.4 0.4
Xinbaoxiang River 21.2 7.3 74 Gua“é%‘;fag"u 231 09 09
Maliao River 20.5 0.9 0.9 Yaoan River 78.9 0.6 0.6
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2.3. Model Description

DYRESM is a one-dimensional hydrodynamic model developed by the Centre for
Water Research at the University of Western Australia that is mainly used for the simulation
of lakes and reservoirs [30]. The model is capable of running alone to complete simulations
of water temperature and salinity in the vertical direction of lakes and reservoirs, and it
can be coupled with the CAEDYM (Computational Aquatic Ecosystem Dynamic Model)
ecological model to simulate water quality and life processes of biological organisms in
water areas, such as phytoplankton, fish and benthos, as well as the exchange of nutrients
between water bodies and sediments [44].

The basic data required by DYRESM contained: (1) topographic basin data, such as
the water surface area corresponding to different water depths that was calculated from
the elevation—area relationship at the bottom of Lake Dianchi; we stratified the water body
of Lake Dianchi at 0.1 m of water depth, with the maximum water depth being 11.5 m, and
then separately calculated the water surface area at each depth. (2) The number of inflow
channels, outflow channels and the elevation of the river entrance.

The DYRESM boundary conditions included: (1) meteorological files containing the
daily data of solar short-wave radiation (W/m?), air temperature (°C), water vapor pressure
(hPa), average wind speed (m/s), cloudiness (0-1) or solar long-wave radiation (W/ m?2),
rainfall (m) and snowfall (m, set to 0 for areas without snowfall); (2) inflow and outflow
files, with inflow files including daily inflow volume and water quality to the lake (m3) and
the outflow file mainly including daily outflow data md).

The initial conditions of DYRESM were the water quality’s distribution information in
the vertical direction at the starting moment of simulation. The main physical parameters
in the model and configuration files were debugged by drawing on the range of values
provided in the literature for each parameter. The specific parameter values are shown
in Table 3.

Table 3. Key parameters of DYRESM.

Parameter Value Range Unit Value in This Paper
Bulk aerodynamic momentum transport coefficient 1.3 x 1073-1.9 x 1073 [45,46] \ 1.3 x 1073

Mean albedo of water 0.07-0.084 [47,48] \ 0.075

Emissivity of water surface 0.94-0.96 [30,48] \ 0.96

Critical wind speed 3-6.5 [45,48] m/s 5.00

Shear production efficiency 0.06-0.084 [45,48] \ 0.08
Potential energy mixing efficiency 0.15-0.29 [48,49] \ 0.2
Wind-stirring efficiency 0.06-0.9 [32,50] \ 0.2
Extinction coefficient 0.2-0.8 [32,49] m! 0.8

Vertical mixing coefficient 200-2500 [32,51] \ 200

2.4. Calculation Principle of Lake Volume Variation

The heat consumed by the evaporation of a lake surface is calculated according to
following equation [52]:

. 0.622
Qp = min |0, TCLPALEua(ea —es(Ts))At 1)

where Qj; (quantity of latent heat) refers to the heat (J/ m?) consumed by the evaporation
of the water surface during At, P is the atmospheric pressure (hPa), Cy, is the latent heat
conduction coefficient (1.3 x 10~%) of wind speed at a 10 m reference height, 4 is the air
density (kg/m?), Lg (2.453 x 10° J/kg) is the latent heat of water evaporation [47], U, is
the wind speed at a 10 m reference altitude (m/s), ¢, is the vapor pressure of air (hPa), es
(saturation vapor pressure) is the saturated vapor pressure (hPa) under the condition of
water surface temperature (Ts) and At is the calculated time step of model, which is set to
3600 s [52].
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The formula for calculating the mass change (kg) of the Nth-layer in a lake caused by
evaporation is as follows [52]:
—QuAN

() _
amy = =

@
where AMg\I]h) represents the mass changes of water (kg) caused by evaporation in the
Nth-layer (N > 1, N = 1 means the surface layer of the water column), Ay is the surface
area of Nth-layer and other variables are as mentioned above.

The calculation formula of water level rise (m) caused by precipitation is as follows [52]:

At
= Rhﬁd 3

where 1, is the water level changes (m) of the Nth-layer caused by precipitation, Ry, is the
total daily rainfall (m) and Nj is the duration of daily rainfall (s).

The calculation formula of water mass change (kg) in different layers by precipitation
is as follows [52]:

AMUT™ = oy Anry @)

where AMS\r]ain) is the mass changes (kg) caused by precipitation of the Nth-layer, py is the
water density (kg/m?) and other variables are as mentioned above.
The formula for calculating the total water mass change in the Nth-layer of the lake
caused by evaporation and precipitation is as follows [52]:
AMy =AM 1 am(em) ®)
According to the five above-described formulas, DYRESM can automatically calculate
the daily evaporation of a lake surface and the corresponding water level variation.

2.5. Calculation Principle of Water Compensation Method

The principle of our water compensation method is shown in Figure 3. After con-
figuring the original inflow and outflow files of DYRESM, considering the influence of
lake precipitation and evaporation on the storage capacity, the daily simulated water level
was obtained by model using the area and volume data corresponding to different depths
provided in the underwater topographic map (scale 1:2000). The water level storage ca-
pacity curve of Lake Dianchi was constructed by linear fitting. The used fitting equation
was y = 2.89x — 5435.77, where y is storage capacity (x 108 m?), x is water level (m) and
correlation coefficient (r) = 0.99. Based on the water level-storage capacity curve, the model
was able to calculate the daily simulated storage capacity and measured storage capacity,
respectively. Then, the difference between the storage capacity of the next day and that of
the previous day was calculated, allowing us to obtain daily simulated storage capacity
difference and the measured storage capacity difference data.

The daily compensation value was obtained in the model by subtracting the differ-
ence between daily measured storage capacity difference and simulated storage capacity
difference. If the compensation value was positive, simulated storage capacity was lower
than measured storage capacity, meaning that inflow volume in the model needed to be
increased; we set a virtual river channel in the inflow file to supplement increased inflow
into the virtual river channel. A negative value indicated that the outflow of model needed
to be increased. Taking the absolute value of the compensation value and adding it to the
outflow flow to complete the primary water volume compensation calculation, this was
followed by a comparison of the simulated water level results with the measured water
level. If the error could be ignored, the calculation was stopped. If the error was obvious,
water compensation began again. Then, the new inflow and outflow compensation values
were calculated so that the inflow (outflow) could be accordingly modified. Following
water compensation, the daily water volume of the virtual river was close enough to the
daily total inflow of real rivers to be used in subsequent work.
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Figure 3. Flowchart of water compensation method for DYRESM.

2.6. Original Inflow and Outflow Files of DYRESM

According to Table 2, river inflow data were seriously missing and could not be
configured for the model inflow file. Statistics regarding urban sewage treatment capacity
over the years were obtained from the Kunming Environmental Statement. The annual
tail water inflow could be calculated based on the proportion of tailwater flow into Waihai
after sewage treatment in 2020. The tail water inflow was distributed every day to obtain
original inflow profiles containing the tail water data. The original outflow document
included the daily measured discharge of Haikou River and the daily water supply of Lake
Dianchi. The calculation steps of daily water supply were as follows: First, the urban water
supply of Kunming over the years was counted. Second, according to the proportion of
urban water supply in Lake Dianchi Basin in 2015, the water supply of basin over the years
was obtained. Finally, based on the proportion of Lake Dianchi water supply in the basin
water supply in 2015, the water supply of Lake Dianchi over the years was calculated, and
the daily water supply in the year was found to be equally distributed. At the same time,
since only the water level change was considered, the water quality concentration in and
out of the lake was set to 0.

2.7. Evaluation Standard of Model Error

The model error was verified by calculating the root mean square error (RMSE)
between the measured and model-simulated values, and the Nash efficiency coefficient
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(NSE) and correlation coefficient (r) between measured and simulation values [48]. RMSE
and NSE were calculated as follows:

RMSE = l N(S,_OV)Z (6)
Ni:l ' !
N (c._ 0.2

NSE=1— M ”
N1 (0;-0)

where O; is the measured value, S; is the simulated value, O refers to the arithmetic average
of measurements and N is the number of data. RMSE results can explain the dispersion
degree of samples; the smaller the value, the better the simulation effect. The NSE is a
dimensionless statistical parameter that is commonly used to describe the fitting accuracy
of models (NSE < 1); NSE = 1 indicates a complete fit, and NSE < 0 indicates that the fitting
degree is very poor. When the NSE is positive, the simulated value can better express the
law of the measured value than the average of the measured value. The closer the NSE
value is to 1, the better the fitting degree and the better the simulation effect.

2.8. Calculation Method of External Loading by River

The dry and rainy seasons are distinct in Lake Dianchi Basin, and the discharge into
Waihai of each month significantly varies. Therefore, we allocated the yearly retrieved
water volume according to the annual inflow proportion of each river, distributing the
annual water volume of each river to the month according to the proportion of historical
monthly inflow. We used the monthly measured values of TN and TP of each river as the
monthly concentration to obtain the external loading of each river channel, and the total
external loading input by river channel was obtained by adding external loading.

3. Results
3.1. Waihai Water Level Simulation

We implemented a water balance analysis from January 2007 to December 2019. After
this calculation, the simulated water level clearly agreed well with the observed water level
(Figure 4). Before the calculation, the simulated water level at Waihai continued to decline
because the annual evaporation in Lake Dianchi Basin is greater than its precipitation [39].
The DYRESM accurately reproduced the water level, with a high coefficient of determina-
tion and small relative error values (RMSE = 0.0072 m; NSE = 0.99; r = 0.99). The maximum
measured water level was 1887.56 m on 11 August 2015, and the simulated water level on
that day was 1887.57 m. The lowest water level occurred on 24 May 2010 (1886.35 m), and
the simulated water level was also 1886.35 m. This showed that the DYRESM could reflect
fine variations and extreme conditions in measured water levels well after calculation.
From 2009 to 2010, the water level at Waihai significantly decreased, which was completely
different from other periods and probably because of the drought in Yunnan Province in
2009 [53].

3.2. Retrieval Results of Water Inflow

We calculated the total annual inflow by river (Figure 5a). River flow is closely related
to rainfall in the basin [54], so the annual total lake inflow was fitted with the annual total
rainfall to verify the accuracy of the calculation results, which are shown in Figure 5b.
The correlation coefficient between annual total runoff and annual total rainfall was 0.74
(Figure 5b), indicating a significant relationship between inversion water volume and
precipitation, consequently demonstrating that the DYRESM's inversion water amount was
feasible. From 2007 to 2019, the annual total lake inflow by river was consistent with the
changing trend of the annual total precipitation (Figure 5a). During the study period, the
annual average inflow volume of Waihai was about 6.69 x 108 m3, which was consistent
with the annual average land water inflow of 6.97 x 108 m> of Lake Dianchi [55]. The
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inflow volume significantly decreased after 2009, and it reached the lowest level of only
3.24 x 10% m? in 2011. According to the Kunming Statistical Yearbook, 2011 was the third
consecutive year of drought relief in Kunming, with a total precipitation of 697.80 mm,
29 cut-off river channels and an accordingly decreased inflow volume. In 2017, the lake
inflow was as high as 10.16 x 108 m53, and the total annual precipitation was 1186.4 mm,
both of which were the highest values from 2007 to 2019.
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Figure 4. Simulated and measured daily water levels from 2007 to 2019: (a) before water compensat-
ing; (b) after water compensating.

3.3. Variation within the Year of Water Inflow

The simulated and calculated changes in inflow and precipitation with the year
showed a single-peak trend of first rising and then decreasing. The water inflow was
as high as 1.15 x 10% m® in July, and the average precipitation was 212 mm, both of which
were first within the year. In the following August, the average inflow volume and precipi-
tation were 1.01 x 10® m® and 200.44 mm, respectively. These results are consistent with
the viewpoint summarized by Chen that “Flood season in Lake Dianchi Basin is mainly
concentrated in July and August” [56]. Through fitting calculation, it was found that there
was a close relationship between retrieval inflow and precipitation in the year (Figure 6b;
r = 0.98), which proves the important significance of precipitation forecast in the flood
control and waterlogging work of Lake Dianchi.

3.4. Calculation Results of External Loading by Riverway

To verify the accuracy of the river external loading calculated by simulated volume
and measured water quality, we collected TN and TP loading data from inflow rivers
during the study period and analyzed them with the calculated loading. The specific data
are shown in the following table.
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In some publications, only the basin emissions of TN and TP or the total amount of
external loading of Lake Dianchi (including Caohai) have been studied. Therefore, in this
study, we used the calculation coefficients of TN loading (the total external loading of Lake
Dianchi accounted for 64% of the whole basin and the total amount of Waihai accounted
for 73% of the total external loading of Lake Dianchi) and TP loading (the total amount of
external loading of Lake Dianchi accounted for 60% of the whole basin and the total amount
of Waihai accounted for 90% of the total external loading of Lake Dianchi) according to
the specific values given in the “The 14th Five-Year Plan period for water environmental
protection and governance in Lake Dianchi Basin”. Additionally, the abovementioned
coefficients were used to calculate the total amounts of TN and TP in Waihai.

From the data in Table 4, it can be seen that the calculation amount of river loading
before 2011 was often higher than the actual amount. This was due to the fact that the
loading calculation coefficients were based on Waihai data in 2009, resulting in a reduction
effect in external loading before “The 12th Five-Year Plan period” being higher than in
reality. However, the change trend of river loading and the total amount of Waihai remained
roughly the same. During the study period, the average annual TN loading input by the
river channel was 5480 t, and the average annual input loading of TP was 295 t. In 2011,
due to a drought in the basin, the amount of water entering Waihai was significantly
reduced, resulting in input loadings of TN and TP by the river channel of 2616 t and 107
t, respectively, which were minimum values in the calendar year. From the perspective
of time scale, the river loadings of TN and TP declined year by year: the TN loading into
Waihai in 2007 was 9080 t and the loading fell to 3728 t in 2019, with a reduction rate of
59%. The TP loadings into Waihai in 2007 and 2019 were 713 t and 115 t, respectively, and
the reduction rate was as high as 84%.

Table 4. Annual external loading of Waihai from 2007 to 2019.

TN Loading by Total External Loading TP Loading by Total External Loading
Year Riverway (Calculated of TN (Literature Riverway (Calculated of TP (Literature Data Source
Value, Ton) Value, Ton) Value, Ton) Value, Ton)
2007 9080 7452 713 782 [20]
2008 8290 4990 772 294 [57]
2009 8782 6231 512 697 [58]
2010 6265 4268 284 390 [59]
2011 2616 \ 107 \ \
2012 3948 4299 161 370 [60]
2013 4145 3978 197 331 [61]
2014 4167 5358 207 538 [62]
Lake Dianchi Protection
2015 4235 5656 179 495 and Governance Plan
(2016-2020)
Lake Dianchi Protection
and Governance
2016 5602 6590 203 566 Three-year Tackling
Action Implementation
Plan (2018-2020)
Lake Dianchi Protection
2017 5906 3842 205 390 Plan (2018-2035)
2018 4472 5109 183 450 [63]
The 14th Five-Year Plan
for Water Environment
2019 3728 3884 115 397 Protection and

Management of Lake
Dianchi Basin
(2021-2025)
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The TN and TP loadings of rivers showed regular changes with the year (Figure 7).
TN loading by rivers reached high values of 1035 t and 687 t in July and August, respec-
tively, accounting for 19% and 13% of the whole year’s loading, which were similar to
the proportions of total inflow volume in July and August. The TN loadings by rivers in
the rainy season (May-October) and the dry season were 3473 t and 2007 t, respectively,
accounting for 63% and 37% of the annual loading. The TP loadings in the rainy and dry
seasons were 197 t and 98 t, respectively, accounting for 67% and 33% of the annual loading.
These results show that the river loading has distinct annual distribution characteristics. In
the rainy season, with the significant increase in river inflow, the external loading of the
river significantly increases. Therefore, different measures should be taken to control the
loading of river in the rainy and dry seasons.
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Figure 7. Intra-annual variation of TN and TP loadings for inflow rivers.

In order to clarify the focus of river management, the authors of this study calculated
the multi-year proportion of 24 rivers’ loading in the total pollutants and highlighted
the main external input channels (Figure 8). Panlong River, Daqing River, Jinjia River,
Xinbaoxiang River, Cailian River and Haihe River were found to account for more than
5% of the total input of TN and TP at Waihai. Panlong River was found to be the most
important source of external loading, with TN and TP loadings accounting for 32.7% and
23.8%, respectively, due to the fact that the amount of water entering Panlong River is
about 2.50 x 108 m® and the abundant water volume provides convenient conditions for
receiving the basin’s pollutants [64]. The proportions of the total TN and TP loading by
river in Daging River were second only to Panlong River at 18.1% and 20.4%, respectively,
but the inflow volume of Daging River was found to account for only 11.3%, indicating
that the water quality of Daqing River is poor. This is because the upstream tributary called
Mingtong River belongs to the sewage channel and the terminal sewage interception gate
has the risk of overturning the weir in the rainy season, thus causing Daqing River to face
risks of deteriorating water quality. Haihe River was shown to be similar to Daging River,
with an inflow rate of only 3.10%, but it was found to carry 6.1% of TN loading and 11.2%
of TP loading, indicating that the water quality of Haihe River is worse than that of Daging
River. This water quality issue is possibly due to the incomplete diversion of rainwater
and sewage in the drainage system of river basins, which allows the domestic sewage of
villages to easily overflow into the river during the rainy season.

3.5. River Loading and Water Quality

From Figure 2, it can be seen that the water quality of Waihai was significantly im-
proved after treatment. Compared to 2007, the improvement rates of TN and TP of Waihai
in 2019 were 68.8% and 50%, so the pollution of the water body was mitigated. There was
no obvious trend in the change in Chl—a concentration, which indicated that there are
differences in the influencing factors of Chl—a and other water quality indicators and that
more targeted treatment measures are needed. A Pearson correlation analysis of yearly
data between river loading and Waihai water quality from 2007 to 2019 was performed,
and the results are shown in Table 5.
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Figure 8. Proportion of external loadings of TN (a) and TP (b) in the main inflow rivers.

Table 5. Pearson’s correlation between river loadings and water quality parameters from 2007 to 2019.

Indicators Chl—a (mg/L) TN (mg/L) TP (mg/L) n
TN loading (t) 0.008 0.44 0.13 13
TP loading (t) —0.13 0.54 0.12 13

This table shows that there was no significant correlation between external loading by
river and water quality index of Waihai, indicating that there are other influencing factors
of water quality besides river loading, implying that the influence of loading input by river
is not yet possible without deeper research.

3.6. Effects of Different Pollution Sources

Lake pollution is divided into two types (internal source and external source), and
external inputs are dominated by river loading, although atmospheric deposition also has
a significant impact on lake pollution that is more significant in highland lakes [65]. The
tailwater discharged after sewage treatment also carries certain pollutants. In this study,
TN and TP data of Waihai regarding different pollution sources in 2014 were compiled
based on the literature, and the results are shown in Table 6.

Table 6. TN and TP loadings from different sources at Waihai in 2014.

Data Type TN Loading (t) TP Loading (t) Data Source
River loading 4167 207 Calculation result
Tail water loading 1953.18 65.11 Calculated by tail water inflow and
water quality mission standards
Atmospheric 407.73 3451 [66]
deposition
Int 1 volluti 539.84 29.88 Basic investigation report on total
nternal potiution ! ’ volume control at Dianchi Basin

River loading was found to account for 59% and 61.5% of the total TN and TP, respec-
tively, due to the significantly higher population density in Lake Dianchi Basin (which is
close to twice that of Lake Chaohu) that has enabled the river loading and pollution absorp-
tion pressure in Lake Dianchi to become more prominent [67]. Over the years, in order to
collect and treat point source sewage and surface source sewage, Kunming has vigorously
promoted the construction of urban domestic sewage treatment plants, but there is still a
large gap between sewage discharge standards and surface water environmental quality
standards that has resulted in a large tailwater loading. Lake Dianchi Basin is also an
important flower and vegetable production base, with fertilizer use nearly 2.5 times higher
than the national level [68]. Because of low rainfall in the dry season, n and p particulates
from biomass burning, industrial production emissions and fertilizer application losses
are enriched over Lake Dianchi; in the rainy season, they enter the lake with precipitation
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and increase the lake pollution [66]. Lake characteristics largely determine the nutrient
change pattern of Lake Dianchi, and dynamic disturbances and wind and wave processes
in shallow lakes are likely to cause sediment suspension and internal pollution release [69],
so the exchange of internal pollutants at the water-sediment interface will accelerate water
quality deterioration or seriously affect nutrient loading reduction [70].

4. Discussion
4.1. Analysis of Water Quantity Retrieval and External Loading Results

The inversion of river volume by the DYRESM was a lake water balance model based
on the core principle that the increase in lake water over a certain period is equal to all
the water entering the lake minus all the water discharging from the lake, so the inversion
data at Waihai also contained some groundwater-dominated uncertainty. Groundwater
is often regarded as an important recharge source [22], but there are no major rivers
transiting Kunming, and the regional water recharge mainly relies on seasonal rainfall,
with a groundwater resource of about 1.98 x 108 m® [71]. With the development of society,
groundwater levels in seven water-rich blocks in the Kunming area continued to decline
from 2004 to 2013, accompanied by water level decreases ranging from 0.2 m to 12.6 m [72],
so the groundwater recharge to Lake Dianchi could be ignored in this study. The fit
verification between river inflow and Kunming precipitation on monthly or yearly scales
showed that there was a strong connection between inverse inflow and precipitation, thus
proving that precipitation is the fundamental water source of Lake Dianchi and providing
a basis for flood prevention through precipitation forecasting. This analysis shows that
the results of total inflow by the DYRESM inversion were reliable, and it is reasonable to
consider all the total inflow as the river flow in Lake Dianchi Basin.

The measured flow data of river channels were seriously missing (Table 2), meaning
the vacant values could not be replaced with statistical methods. Therefore, the authors of
this study calculated the annual flow and monthly flow percentage of each river channel
to allocate the inverse water volume. Although this method has errors, the real river flow
should have distinctive monthly characteristics because precipitation is the main recharge
source of the river channel (Figure 6), so the allocation method of this study reflected the
monthly changes, and the error value was reduced. In addition, the authors of this paper
used the monthly monitoring values of river water quality to represent the daily water
quality in each month, which may have led to errors in external loading results. Because
the main inflow rivers are located in the northeastern shore and pass through the main
human activity area, the basin’s pollutants tend to sink into rivers in the rainy season
with short-term heavy rainfall, causing the temporary elevation of TN and TP in rivers.
Therefore, the accuracy of using river water quality in extreme weather to represent the
prevailing conditions in those months was limited. In summary, the frequency of water
quality monitoring should be increased to solve this problem in the future.

4.2. Analysis of Water Quantity Retrieval and External Loading Results

Due to the difficulty of “Three rivers and Three lakes” in the key national governance,
the governance process of Lake Dianchi is significant. After years of investment, the
pollution degree of Lake Dianchi has been effectively alleviated. From 1993 to 2015, the
water quality of Lake Dianchi was always deteriorating in the inferior V class, but the
water quality changed to V class in 2016 and remained stable in IV class in 20182019 [43].
These changes demonstrate the gradual emergence of the treatment effect, a result that
is consistent with the trends of water quality and river loading in Figure 2 and Table 3.
Although TN and TP loadings declined from 2007 to 2010, they remained high. During the
period of the “11th Five-Year Plan”, Kunming began conducting engineering governance
of inflow rivers, but the river situated at the north shore of Lake Dianchi flows through
a main urban area with a large amount of urban sewage and rainwater pollution [18],
resulting in limited reduction in river loading [18]. Due to the drought situation, the inflow
volume was low in 2011, so external loading in that year was low. In addition, the local
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government implemented regulations on river management of Kunming in 2010, ensuring
the effect of comprehensive regulation in the system while also increasing the investment in
river treatment, which laid a solid economic foundation for comprehensive regulation [18].
In conclusion, effective lake environmental management requires long-term system and
economic support. During the “12th Five-Year Plan period”, Lake Dianchi Basin water
pollution control and eutrophication comprehensive control technology were included in a
special water project oriented to the whole basin. Accordingly, comprehensive control was
enacted and industrial point source pollution was controlled. Attention to inflow river and
internal pollution treatment have kept increasing since then. Six major projects, including
pollution interception around the lake, agricultural and rural non-point source treatment
and ecological restoration construction, have been fully implemented, and the pollution
loading into Lake Dianchi has been significantly reduced [61]. During the “13th Five-Year
Plan period”, the water quality of Lake Dianchi improved as a whole, and cyanobacteria
blooms have continued to improve. However, due to temporal and spatial instability,
non-point source pollution, internal source release and soil erosion have replaced point
source pollution and become the main loading sources [43]. Therefore, river loading has
remained at a low level after 2016, but the improvement effect of lake water quality has
shown partial hysteresis.

4.3. Influence of Internal Pollution on Waihai Water Quality and Control Measures

Pearson’s test results showed that there are other factors besides river loading affecting
water quality at Waihai. According to Table 6, internal pollution was found to account for
7.6% and 8.9% of the total TN and TP loadings, respectively, suggesting that the role of
internal pollution on the water quality of Lake Dianchi should not be ignored. Sediment
nutrients can enter shallow lakes through not only molecular diffusion or concentration
gradient diffusion (static diffusion) but also sediment resuspension and changes in con-
ditions at the water-sediment interface; turbulent diffusion causes much higher internal
release than static diffusion [73]. Zhu et al. concluded that a wind speed of above 8 m/s
may cause a large amount of suspension of sediments in Lake Taihu, and the concentration
of dissolved TP may increase up to 100% during strong winds [74]. Luo et al. used field
investigations combined with data and mathematical interpolation methods to calculate
that, when the wind speed reached 20 m/s, it could result in the suspension of about
2.75 x 108 m® of sediment in the upper 30 cm of Lake Taihu [75]. Zhang simulated water
body changes in the middle of Lake Chaohu during the sediment resuspension period
through laboratory experiments and concluded that the different intensities and durations
of external disturbance directly affected the suspended state of sediment particles [76].
Lake Dianchi is a shallow lake with a low water-exchange rate, and a large number of
pollutants are deposited at the bottom. When external loading is controlled, sediments
in the lake will continue to affect the water quality [77]. In 2012, 6800 t of TN from the
basin’s non-point source was loaded into Lake Dianchi, and sediment n comprised nearly
67.5% of non-point pollution loading, showing that sediments of internal pollution are
very serious [78], as well as leading to external loading reduction benefits that can only be
offset to some extent with truncated external loading measures to reduce the trophic level
of Lake Dianchi in a short time. The bottom mud of Lake Dianchi contains a variety of
humus and organic matter, so Kunming enacted the measures of “environmental protection
dredging” and complete reduction through harmless resource treatment of the bottom mud.
By 2018, Kunming had cleared 15.17 x 10° m? of sediment and used the dredged sediment
for ecological basement restoration and ecological forest construction in the low-land area
around Lake Dianchi [60,79].

Over the years, local government and civil society have invested huge amounts of
resources into river management and ecological restoration, but the restoration of Lake
Dianchi has always been a long-term and systematic process. In this study, the amount of
inflow volume entering Waihai was analyzed through model inversion. There are many
tiny ditches around Lake Dianchi that are not included in the monitoring range, and
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the accumulation of pollutants in these ditches represents external loadings that cannot
be ignored. Therefore, in the next stage of research, a circumnavigation survey of Lake
Dianchi will be attempted, small intakes, including ditches, will be counted and water
quality monitoring will be regularly carried out to obtain more accurate data regarding
inflow volume and external loading.

5. Conclusions

1.  The DYRESM can effectively capture extreme changes in water levels with an RMSE
value of 0.0072 m between simulated and measured water levels and an NSE as high
as 0.99.

2. During the period of 20072019, the multi-year average annual water inflow to Waihai
was about 6.69 x 108 m3, and there is a good fit between water inflow and precipitation
in Kunming on an annual scale (r = 0.74), with a higher fitting coefficient between
intra-annual inflow and precipitation (r = 0.98).

3. The external loading by rivers has decreased year by year, although river loading
remained at a high level from 2007 to 2010. In 2011, the TN loading dropped to 2616
t and the TP loading dropped to 107 t due to a drought in the basin, and the river
loading in subsequent years basically remained at a low level.

4. River loading was found to have clear intra-annual variation characteristics, and the
contributions of TN and TP river loadings in the rainy season were 63% and 67% of
the annual amount, respectively, indicating that river management should focus more
on loading reduction in the rainy season.

5. Panlong River, Daqing River, Jinjia River, Xinbaoxiang River, Cailian River and Hai
River are the focuses of treatment, and the sum of the loading of these rivers was
found to account for 81.3% (TN) and 80.3% (TP) of the total river input.

6.  Pearson’s analysis results showed that there was no significant correlation between
annual external loading and Waihai water quality, indicating the existence of other
factors that influence water quality besides source input.

7. The contribution rates of internal pollution to the total amount of TN and TP were
found to be 7.6% and 8.9%, respectively, indicating that the internal control of Lake
Dianchi should not be ignored.
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Abstract: This research addresses the separate and combined impacts of changes in climate and land
use/land cover on the hydrological processes and sediment yield in the Xin’anjiang Reservoir Basin
(XRB) in the southeast of China by using the soil and water assessment tool (SWAT) hydrological
model in combination with the downscaled general circulation model (GCM) projection outputs. The
SWAT model was run under a variety of prescribed scenarios including three climate changes, two
land use changes, and three combined changes for the future period (2068-2100). The uncertainty
and attribution of the sediment yield variations to the climate and land use/land cover changes at the
monthly and annual scale were analyzed. The responses of the sediment yield to changes in climate
and land use/land cover were considered. The results showed that all scenarios of climate changes,
land use/land cover alterations, and combined changes projected an increase in sediment yield in
the basin. Under three representative concentration pathways (RCP), climate change significantly
increased the annual sediment yield (by 41.03-54.88%), and deforestation may also increase the
annual sediment yield (by 1.1-1.2%) in the future. The comprehensive influence of changes in climate
and land use/land cover on sediment yield was 97.33-98.05% (attributed to climate change) and
1.95-2.67% (attributed to land use/land cover change) at the annual scale, respectively. This means
that during the 2068-2100 period, climate change will exert a much larger influence on the sediment
yield than land use/land cover alteration in XRB if the future land use/land cover remains unchanged
after 2015. Moreover, climate change impacts alone on the spatial distribution of sediment yield
alterations are projected consistently with those of changes in the precipitation and water yield. At
the intra-annual scale, the mean monthly transported sediment exhibits a significant increase in
March-May, but a slight decrease in June-August in the future. Therefore, the adaptation to climate
change and land use/land cover change should be considered when planning and managing water
environmental resources of the reservoirs and catchments.

Keywords: climate change; land use/land cover change; sediment response; multiple scenarios; modeling

1. Introduction

Catchment sediment yield is mainly controlled by soil properties, topography, climate
condition, and land use/land cover types [1-4]. In contrast, the soil properties and topogra-
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phy are relatively stable, while climate and land use/land cover are variable over a specific
time period [5,6]. Climate change, mainly in the form of temperature and precipitation, has
a direct impact on runoff and an indirect impact on sediment by changing the process of
the water cycle in the basin, and further influences the phytoplankton community [7-9].
Land use/land cover changes caused by anthropogenic activities may re-distribute the
rainfall-runoff by changing the processes of infiltration, evapotranspiration, and ground-
water recharge, which has a profound impact on the water and sediment production
mechanism [10,11].

The impacts of climate change on streamflow and sediment yield have been investi-
gated in a number of studies [12-18]. A previous study indicated that the runoff increased
by 1.3% and the sediment yield increased by 2% for every 1% increase in rainfall in eight
large Chinese catchments [12]. Similarly, a preliminary study of a watershed in Spain
showed that higher precipitation is usually associated with more runoff and soil loss [13].
This is not only because precipitation increases soil moisture, but also because it saturates
soil moisture or produces soil crusts [14]. In contrast, Zhao et al. showed that the reduction
in precipitation was one of the main factors, leading to the sharp reduction in the discharge
and sediment yield in the middle reaches of the Yellow River [15]. However, the impacts
of precipitation change on soil erosion are complicated and are not always negative. In-
creasing rainfall may increase the plant biomass and vegetation canopy, thus reducing
the runoff and erosion [16]. In addition to precipitation, temperature is also one of the
important meteorological factors affecting the sediment of the basin [17,18]. For example,
Syvitski divided the watersheds into climatic zones according to different temperatures,
and found that the average temperature of the watershed has an important impact on
sediment transport [18].

On the other hand, the joint effects of climate variability and vegetation change
on hydrological process have been a key research point. Such synergistic influences on
hydrological processes and sediment yields are complex [19]. Some studies have found
that sediment alteration was dominantly influenced by land use/land cover changes,
while some showed that climate variability was a more important impact factor [20]. It is
essential to accurately distinguish and quantify the effects of climate variability /climate
change on streamflow and sediment for catchment and reservoir management in the future
under different conditions [21-24]. Compared to the influence on streamflow, few works
have concerned the sediment spatial and temporal changes in response to combining the
variations in the land use/land cover with climate change for an uncertain future. Therefore,
a thorough study on the impacts of multiple climatic conditions and land use/land cover
scenarios on sediment is needed [25].

An IPCC Special Report stated that a global warming of 1.5 °C above pre-industrial
levels has significantly affected the hydrological process including the quality and quantity
of water resources in many regions [26,27]. Until now, numerous studies on assessing the
response of hydrological circles to climate-driven force have widely applied the general
circulation model (GCM) projections of the coupled model inter-comparison project phase
5 (CMIP5) [4,28]. A tentative conclusion is that RCP2.6, RCP4.5, RCP6.0, and RCP 8.5 are
responsible for a 16.3%, 14.3%, 36.7%, and 71.4% increase in future streamflow, and a 16.5%,
32.4%, 81.8%, and 170% increase in future sediment yield, respectively, in northeastern
China [4]. An increase in monthly streamflow (maximum increases by 52-170% under
different RCP scenarios) was reported, along with a monthly average decrease in sediment
concentrations of 10% projected in southwest Iran in the future [28]. Although GCM
outputs have been extensively employed to study the impacts of climate change on the
hydrological process in many locations, it is problematic to use GCM outputs directly in
hydrological models at regional and local scales because of the low resolution of GCM
projections [29]. Therefore, downscaling methods are often applied to obtain regional
scale analysis of meteorological variables from coarse-scale GCM outcomes to allow the
conclusions on streamflow and sediment regime changes to be more reliable [30].
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The Xin’anjiang Reservoir, which is the largest reservoir in the Yangtze River Delta in
China, plays quite an important role in the local water supply, fishery, water transportation,
and crop irrigation [31]. The Xin’anjiang Reservoir is famous for its excellent water quality;
however, the pressure of water environment protection in the reservoir is increasing year
by year [32]. The Jiekou section, located in the estuary area of the Xin’anjiang Reservoir, in
particular, is facing the problem of a decrease in water transparency and the risk of algal
blooms [33]. This might be related to the climate variability and land use/land cover change
in the basin. Previous studies have noted that the annual streamflow through the Jiekou
section, accounting for over 60% of the total inflows of the Xin’anjiang Reservoir, showed an
obvious increasing trend in the last few decades caused by rainstorms [34,35]. However, few
studies have attempted to identify how climate variability and land use/land cover change
affect sediment yield. In this study, we focused on identifying and quantifying the effects of
climate change and land use/land cover change on the sediment yield using a hydrological
modeling approach. With the help of our research results, a deeper understanding of
sediment response to climate-driven forcing and land use/land cover changes in XRB
would be beneficial for water quality protection and bloom prevention of the reservoir in
the East Asian monsoonal region.

2. Data and Methods
2.1. Study Area

The Xin’anjiang River drains into the Xin’anjiang Reservoir, Chun’an, Zhejiang Province,
southeast China, situated within a watershed that spans an area of roughly 10,442 km?
(Figure 1) [36]. The reservoir has a surface area of 573 km? and a water storage capacity of
178.4 x 10® m® when the normal water storage level is 108 m asl [37]. The longest path of
the river is over 370 km, and two river gauging stations are located at Tunxi and Yuliang,
respectively. The basin is dominated by a typical subtropical humid monsoon climate and
enters the East Asian rainy season, also known as the plum rain, in June and July every
year [38]. For the last 50 years, the mean annual precipitation has been about 1621 mm, the
mean annual runoff is about 1018 mm, and the mean annual air temperature has ranged
from 16.7 °C to 18.9 °C. Approximately 42% of the annual precipitation is contributed by
monsoons (June-September), and the maximum humidity is recorded as 100% in June
and July.

Jiekou is the main entrance for the streamflow and sediment of the Xin’anjiang River
to Xin’anjiang Reservoir by controlling around 60% of the area of the whole basin [39]. The
elevation of the basin varies from —1 m to 1764 m from the mean sea level. The terrain is
complex and diverse with mainly a geomorphic type of mountains. The zonal soil types
of the basin are mainly red soil, yellow soil, and yellow brown soil, which are distributed
vertically according to the altitude. The area is covered with dense forests, which is the
most widely distributed land-use type. The cultivated land is concentrated at the periphery
of urban land [40].

2.2. Data Description
2.2.1. Hydrometeorological Data

Daily meteorological data recorded including air temperature (°C), precipitation (mm),
relative humidity (%), solar radiation (MJ/m?/day), and wind speed (m/s) from 1973 to
2018 at two meteorological stations (Figure 1) were downloaded from the website of the
National Meteorological Information Center (China Meteorological Administration, CMA)
(http://data.cma.cn/en (accessed on 1 January 2019)) [41]. The observed daily streamflow
data for the period of 2001-2014 at two hydrological stations (Figure 1) were collected
from the Hydrological Data Yearbook published by the Ministry of Water Resources of the
People’s Republic of China (MWR) [42]. The mean sediment transport rate investigated
from 2006 to 2014 was obtained from the same data source. The time series above was
checked for outliers and errors in order to be used in hydrological modeling.
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Figure 1. The location of the Xin’anjiang Reservoir Basin, China.

2.2.2. Geospatial Data

The basic geospatial datasets required to construct the model include a digital elevation
model (DEM)), a soil classification map, and land use information. The DEM map with a
90 m spatial resolution used for watershed delineation and sub-basin discretization was
downloaded by the Geospatial Data Cloud of China. The 1 km resolution soil map was
originally derived from the Harmonized World Soil Database (HWSD), which is produced
by the Food and Agriculture Organization of the United Nations [43]. The soil data over
China were derived from the results of the Second National Land Survey organized by
China’s State Council from 2007 to 2009. This was produced by the Institute of Soil Science,
Chinese Academy of Sciences.

To estimate the effect of land use/land cover change, two land use/land cover maps
with a spatial resolution of 30 m for XRB were interpreted from Landsat imagery in
1987 and 2015, respectively. The cloud was masked based on the pixel_qa band of the
Landsat surface reflectance data (https://developpers.google.com/earth-engine/datasets/
catalog/LANDSAT_LC08_C01_T1_SR (accessed on 1 May 2020)) after the images were
obtained. A median imagery was output by calculating the median value at each pixel
of all images in one collection (https://developers.google.com/earth-engine/reducers_
image_collection (accessed on 1 May 2020)). For each median imagery, the land use/land
cover information was extracted with a support vector machine classification algorithm in
the ENVI (version 5.3). The land use/land cover here is classified into five classes for the
SWAT model, namely forest, water body, cultivated land, urban land, and bare land [44].

2.2.3. RCP Data

Representative concentration pathways (RCPs) including a stringent mitigation sce-
nario (RCP2.6), an intermediate scenario (RCP4.5), and one scenario with very high GHG
emissions (RCP8.5) [45] were used to estimate the impacts of climate change. Eighteen
datasets obtained from a coupled model inter-comparison project phase 5 (CMIP5) GCM
for XRB were downloaded from the website of the World Climate Research Program
(https:/ /esgf-node.llnl.gov/search/cmip5/ (accessed on 1 February 2020)). The Taylor
diagram method was adopted to assess the performance of datasets from CMIP5 GCMs
in simulating the historical meteorological elements [46]. Four assessment criteria—the
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correlation coefficient (r), root mean square error (RMSE), standard deviation of observed
values (0p), and standard deviation of simulated values (cs)—were used to identify the
most applicable dataset. More detailed information about the Taylor diagram method can
be found in Taylor [46].

The selected CMIP5 datasets comprise three meteorological elements (daily air tem-
perature and precipitation) for a historical period (1901-2005) and a projection period
(20062100, RCP2.6, RCP4.5, and RCP8.5 scenarios). The original resolution data were
downscaled into 0.5° x 0.5° by the China Meteorological Data Service Center (CMDC)
using a statistical downscaling method.

2.3. Methodology

An integrated framework was designed to evaluate the effect of climate change and
land use/land cover change on the streamflow and sediment yield using XRB as a case
study. To set up the structure of this approach, we (1) assessed the accuracy and availability
of the downscaled GCM data, and the interpreted land use/land cover map from remote
sensing imagery; (2) designed individual and combined climate and land use/land cover
change scenarios; (3) modeled streamflow and sediment yield response under uncertainty;
and (4) evaluated the streamflow and sediment variation under climate change and land
use/land cover cha