Table of Contents
Introduction 1.1
Unit 1. Get started 1.2
Lesson 1: Build your first app 1.2.1
1.0: Introduction to Android 1.2.1.1
1.1: Create Your First Android App 1.2.1.2
1.2: Layouts, Views and Resources 1.2.1.3
1.3: Text and Scrolling Views 1.2.1.4
1.4: Resources to Help You Learn 1.2.1.5
Lesson 2: Activities 1.2.2
Lesson 3: Testing, debugging, and using support libraries 1.2.3
3.1: The Android Studio Debugger 1.2.3.1
3.2: Testing your App 1.2.3.2
3.3: The Android Support Library 1.2.3.3
Unit 2. User experience 1.3
Lesson 4: User interaction 1.3.1
4.1: User Input Controls 1.3.1.1
4.2: Menus 1.3.1.2
4.3: Screen Navigation 1.3.1.3
4.4: RecyclerView 1.3.1.4
Lesson 5: Delightful user experience 1.3.2
5.1: Drawables, Styles, and Themes 1.3.2.1
5.2: Material Design 1.3.2.2
5.3: Providing Resources for Adaptive Layouts 1.3.2.3
Lesson 6: Testing your UI 1.3.3
6.1: Testing the User Interface 1.3.3.1
Unit 3. Working in the background 1.4
Lesson 7: Background Tasks 1.4.1
7.1: AsyncTask and AsyncTaskLoader 1.4.1.1
7.2: Connect to the Internet 1.4.1.2
7.3: Broadcast Receivers 1.4.1.3
7.4: Services 1.4.1.4
Lesson 8: Triggering, scheduling and optimizing background tasks 1.4.2
8.1: Notifications 1.4.2.1
8.2: Scheduling Alarms 1.4.2.2
8.3: Transferring Data Efficiently 1.4.2.3
Unit 4. All about data 1.5
Lesson 9: Preferences and Settings 1.5.1
9.0: Storing Data 1.5.1.1
9.1: Shared Preferences 1.5.1.2
9.2: App Settings 1.5.1.3
Lesson 10: Storing data using SQLite 1.5.2
10.0: SQLite Primer 1.5.2.1
10.1: SQLite Database 1.5.2.2
Lesson 11: Sharing data with content providers 1.5.3
Lesson 12: Loading data using loaders 1.5.4
12.1: Loaders 1.5.4.1
Unit 5. What's Next? 1.6
Lesson 13: Permissions, Performance and Security 1.6.1
Lesson 14: Firebase and AdMob 1.6.2
14.1: Firebase and AdMob 1.6.2.1
Lesson 15: Publish! 1.6.3
15.1: Publish! 1.6.3.1
Android Developer Fundamentals Course – Concepts
Android Developer Fundamentals is a training course created by the Google Developer Training team. You learn basic Android programming concepts and build a variety of apps, starting with Hello World and working your way up to apps that use content providers and loaders.
Android Developer Fundamentals prepares you to take the exam for the Associate Android Developer Certification.
This course is intended to be taught in a classroom, but all the materials are online, so if you like to learn by yourself, go ahead!
Prerequisites
Android Developer Fundamentals is intended for new and experienced developers who already have Java programming experience and now want to learn to build Android apps.
Course materials
The course materials include:
What topics are covered?
Android Developer Fundamentals includes five teaching units, which are described in What does the course cover?
Developed by the Google Developer Training Team
Last updated: February 2017
This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License
1.0: Introduction to Android
Contents:
What is Android?
Android is an operating system and programming platform developed by Google for smartphones and other mobile devices (such as tablets). It can run on many different devices from many different manufacturers. Android includes a software development kit for writing original code and assembling software modules to create apps for Android users. It also provides a marketplace to distribute apps. All together, Android represents an ecosystem for mobile apps.
Why develop apps for Android?
Apps are developed for a variety of reasons: addressing business requirements, building new services, creating new businesses, and providing games and other types of content for users. Developers choose to develop for Android in order to reach the majority of mobile device users.
Most popular platform for mobile apps
As the world's most popular mobile platform, Android powers hundreds of millions of mobile devices in more than 190 countries around the world. It has the largest installed base of any mobile platform and is still growing fast. Every day another million users power up their Android devices for the first time and start looking for apps, games, and other digital content.
Best experience for app users
Android provides a touch-screen user interface (UI) for interacting with apps. Android's user interface is mainly based on direct manipulation, using touch gestures such as swiping, tapping and pinching to manipulate on-screen objects. In addition to the keyboard, there’s a customizable virtual keyboard for text input. Android can also support game controllers and full-size physical keyboards connected by Bluetooth or USB.
The Android home screen can contain several pages of app icons, which launch the associated apps, and widgets, which display live, auto-updating content such as the weather, the user's email inbox or a news ticker. Android can also play multimedia content such as music, animation, and video. The figure above shows app icons on the home screen (left), playing music (center), and displaying widgets (right). Along the top of the screen is a status bar, showing information about the device and its connectivity. The Android home screen may be made up of several pages, between which the user can swipe back and forth.
Android is designed to provide immediate response to user input. Besides a fluid touch interface, the vibration capabilities of an Android device can provide haptic feedback. Internal hardware such as accelerometers, gyroscopes and proximity sensors, are used by many apps to respond to additional user actions. These sensors can detect rotation of the screen from portrait to landscape for a wider view or it can allow the user to steer a virtual vehicle in a racing game by rotating the device as if it were a steering wheel.
The Android platform, based on the Linux kernel, is designed primarily for touchscreen mobile devices such as smartphones and tablets. Since Android devices are usually battery-powered, Android is designed to manage processes to keep power consumption at a minimum, providing longer battery use.
Easy to develop apps
Use the Android software development kit (SDK) to develop apps that take advantage of the Android operating system and UI. The SDK includes a comprehensive set of development tools including a debugger, software libraries of prewritten code, a device emulator, documentation, sample code, and tutorials. Use these tools to create apps that look great and take advantage of the hardware capabilities available on each device.
To develop apps using the SDK, use the Java programming language for developing the app and Extensible Markup Language (XML) files for describing data resources. By writing the code in Java and creating a single app binary, you will have an app that can run on both phone and tablet form factors. You can declare your UI in lightweight sets of XML resources, one set for parts of the UI that are common to all form factors, and other sets for features specific to phones or tablets. At runtime, Android applies the correct resource sets based on its screen size, density, locale, and so on.
To help you develop your apps efficiently, Google offers a full Java Integrated Development Environment (IDE) called Android Studio, with advanced features for developing, debugging, and packaging Android apps. Using Android Studio, you can develop on any available Android device, or create virtual devices that emulate any hardware configuration.
Android provides a rich development architecture. You don’t need to know much about the components of this architecture, but it is useful to know what is available in the system for your app to use. The following diagram shows the major components of the Android stack — the operating system and development architecture.
In the figure above:
Many distribution options
You can distribute your Android app in many different ways: email, website or an app marketplace such as Google Play. Android users download billions of apps and games from the Google Play store each month (shown in the figure below). Google Play is a digital distribution service, operated and developed by Google, that serves as the official appstore for Android, allowing consumers to browse and download apps developed with the Android SDK and published through Google.
Android versions
Google provides major incremental upgrades to the Android operating system every six to nine months, using confectionery-themed names. The latest major release is Android 7.0 "Nougat".
Code name | Version number | Initial release date | API level |
N/A | 1.0 | 23 September 2008 | 1 |
N/A | 1.1 | 9 February 2009 | 2 |
1.5 | 27 April 2009 | 3 | |
1.6	15 September 2009	4
2.0 – 2.1	26 October 2009	5–7
2.2 – 2.2.3	20 May 2010	8
2.3 – 2.3.7	6 December 2010	9–10
3.0 – 3.2.6	22 February 2011	11–13
4.0 – 4.0.4	18 October 2011	14–15
4.1 – 4.3.1	9 July 2012	16–18
4.4 – 4.4.4	31 October 2013	19–20
5.0 – 5.1.1	12 November 2014	21–22
6.0 – 6.0.1	5 October 2015	23
7.0	22 August 2016	24
See previous versions and their features at The Android Story.
The Dashboard for Platform Versions is updated regularly to show the distribution of active devices running each version of Android, based on the number of devices that visit the Google Play Store. It's a good practice to support about 90% of the active devices, while targeting your app to the latest version.
Note: To provide the best features and functionality across Android versions, use the Android Support Library in your app. This support library allows your app to use recent platform APIs on older devices.
The challenges of Android app development
While the Android platform provide rich functionality for app development, there are still a number of challenges you need to address, such as:
Building for a multi-screen world
Android runs on billions of handheld devices around the world, and supports various form factors including wearable devices and televisions. Devices can come in different sizes and shapes that affect the screen designs for UI elements in your apps.
In addition, device manufacturers may add their own UI elements, styles, and colors to differentiate their products. Each manufacturer offers different features with respect to keyboard forms, screen size, or camera buttons. An app running on one device may look a bit different on another. The challenge for many developers is to design UI elements that can work on all devices It is also the developer’s responsibility to provide an app’s resources such as icons, logos, other graphics, and text styles to maintain uniformity of appearance across different devices.
Maximizing app performance
An app's performance—how fast it runs, how easily it connects to the network, and how well it manages battery and memory usage—is affected by factors such as battery life, multimedia content, and Internet access. You must be aware of these limitations and write code in such a way that the resource utilization is balanced and distributed optimally. For example, you will have to balance the background services by enabling them only when necessary; this will save battery life of the user’s device.
Keeping your code and your users secure
You need to take precautions to secure your code and the user’s experience when using your app. Use tools such as ProGuard (provided in Android Studio), which detects and removes unused classes, fields, methods, and attributes, and encrypt all of your app's code and resources while packaging the app. To protect your user's critical information such as logins and passwords, you must secure the communication channel to protect data in transit (across the Internet) as well as data at rest (on the device).
Remaining compatible with older platform versions
Consider how to add new Android platform version features to an app, while ensuring that the app can still run on devices with older platform versions. It is impractical to focus only on the most recent Android version, as not all users may have upgraded or may be able to upgrade their devices.
Learn more
1.1: Create Your First Android App
Contents:
This chapter describes how to develop applications using the Android Studio Integrated Development Environment (IDE).
The development process
An Android app project begins with an idea and a definition of the requirements necessary to realize that idea. As the project progresses, it goes through design, development, and testing.
The above diagram is a high-level picture of the development process, with the following steps:
Using Android Studio
Android Studio provides tools for the testing, and publishing phases of the development process, and a unified development environment for creating apps for all Android devices. The development environment includes code templates with sample code for common app features, extensive testing tools and frameworks, and a flexible build system.
Starting an Android Studio project
After you have successfully installed the Android Studio IDE, double-click the Android Studio application icon to start it. Choose Start a new Android Studio project in the Welcome window, and name the project the same name that you want to use for the app.
When choosing a unique Company Domain, keep in mind that apps published to the Google Play must have a unique package name. Since domains are unique, prepending the app's name with your name, or your company's domain name, should provide an adequately unique package name. If you are not planning to publish the app, you can accept the default example domain. Be aware that changing the package name later is extra work.
Choosing target devices and the minimum SDK
When choosing Target Android Devices, Phone and Tablet are selected by default, as shown in the figure below. The choice shown in the figure for the Minimum SDK — API 15: Android 4.0.3 (IceCreamSandwich) — makes your app compatible with 97% of Android devices active on the Google Play Store.
Different devices run different versions of the Android system, such as Android 4.0.3 or Android 4.4. Each successive version often adds new APIs not available in the previous version. To indicate which set of APIs are available, each version specifies an API level. For instance, Android 1.0 is API level 1 and Android 4.0.3 is API level 15.
The Minimum SDK declares the minimum Android version for your app. Each successive version of Android provides compatibility for apps that were built using the APIs from previous versions, so your app should always be compatible with future versions of Android while using the documented Android APIs.
Choosing a template
Android Studio pre-populates your project with minimal code for an activity and a screen layout based on a template. A variety of templates are available, ranging from a virtually blank template (Add No Activity) to various types of activities.
You can customize the activity after choosing your template. For example, the Empty Activity template provides a single activity accompanied by a single layout resource for the screen. You can choose to accept the commonly used name for the activity (such as MainActivity) or change the name on the Customize the Activity screen. Also, if you use the Empty Activity template, be sure to check the following if they are not already checked:
Android Studio creates a folder for the newly created project in the AndroidStudioProjects folder on your computer.
Android Studio window panes
The Android Studio main window is made up of several logical areas, or panes, as shown in the figure below.
In the above figure:
Tip: You can organize the main window to give yourself more screen space by hiding or moving panes. You can also use keyboard shortcuts to access most features. See Keyboard Shortcuts for a complete list.
Exploring a project
Each project in Android Studio contains the AndroidManifest.xml file, component source-code files, and associated resource files. By default, Android Studio organizes your project files based on the file type, and displays them within the Project: Android view in the left tool pane, as shown below. The view provides quick access to your project's key files.
To switch back to this view from another view, click the vertical Project tab in the far left column of the Project pane, and choose Android from the pop-up menu at the top of the Project pane, as shown in the figure below.
In the figure above:
1
Viewing the Android Manifest
Before the Android system can start an app component, the system must know that the component exists by reading the app's AndroidManifest.xml file. The app must declare all its components in this file, which must be at the root of the app project directory.
To view this file, expand the manifests folder in the Project: Android view, and double-click the file (AndroidManifest.xml). Its contents appear in the editing pane as shown in the figure below.
Android namespace and application tag
The Android Manifest is coded in XML and always uses the Android namespace:
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.android.helloworld">
The package expression shows the unique package name of the new app. Do not change this once the app is published.
<application
...
</application>
The <application tag, with its closing </application> tag, defines the manifest settings for the entire app.
Automatic backup
The android:allowBackup attribute enables automatic app data backup:
...
android:allowBackup="true"
...
Setting the android:allowBackup attribute to true enables the app to be backed up automatically and restored as needed. Users invest time and effort to configure apps. Switching to a new device can cancel out all that careful configuration. The system performs this automatic backup for nearly all app data by default, and does so without the developer having to write any additional app code.
For apps whose target SDK version is Android 6.0 (API level 23) and higher, devices running Android 6.0 and higher automatically create backups of app data to the cloud because the android:allowBackup attribute defaults to true if omitted. For apps < API level 22 you have to explicitly add the android:allowBackup attribute and set it to true .
Tip: To learn more about the automatic backup for apps, see Configuring Auto Backup for Apps.
The app icon
The android:icon attribute sets the icon for the app:
...
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
...
The android:icon attribute assigns an icon in the mipmap folder (inside the res folder in Project: Android view) to the app. The icon appears in the Launcher for launching the app. The icon is also used as the default icon for app components.
App label and string resources
As you can see in the previous figure, the android:label attribute shows the string "Hello World" highlighted. If you click on this string, it changes to show the string resource @string/app_name :
...
android:label="@string/app_name"
...
Tip: Ctrl-click or right-click app_name in the edit pane to see the context menu. Choose Go To > Declaration to see where the string resource is declared: in the strings.xml file. When you choose Go To > Declaration or open the file by double-clicking strings.xml in the Project: Android view (inside the values folder), its contents appear in the editing pane.
After opening the strings.xml file, you can see that the string name app_name is set to Hello World . You can change the app name by changing the Hello World string to something else. String resources are described in a separate lesson.
The app theme
The android:theme attribute sets the app's theme, which defines the appearance of user interface elements such as text:
...
android:theme="@style/AppTheme">
...
The theme attribute is set to the standard theme AppTheme . Themes are described in a separate lesson.
Declaring the Android version
Different devices may run different versions of the Android system, such as Android 4.0 or Android 4.4. Each successive version can add new APIs not available in the previous version. To indicate which set of APIs are available, each version specifies an API level. For instance, Android 1.0 is API level 1 and Android 4.4 is API level 19.
The API level allows a developer to declare the minimum version with which the app is compatible, using the <uses-sdk> manifest tag and its minSdkVersion attribute. For example, the Calendar Provider APIs were added in Android 4.0 (API level 14). If your app can't function without these APIs, declare API level 14 as the app's minimum supported version like this:
<manifest ... >
<uses-sdk android:minSdkVersion="14" android:targetSdkVersion="19" />
...
</manifest>
The minSdkVersion attribute declares the minimum version for the app, and the targetSdkVersion attribute declares the highest (newest) version which has been optimized within the app. Each successive version of Android provides compatibility for apps that were built using the APIs from previous versions, so the app should always be compatible with future versions of Android while using the documented Android APIs.
The targetSdkVersion attribute does not prevent an app from being installed on Android versions that are higher (newer) than the specified value, but it is important because it indicates to the system whether the app should inherit behavior changes in newer versions. If you don't update the targetSdkVersion to the latest version, the system assumes that your app requires some backward-compatibility behaviors when running on the latest version. For example, among the behavior changes in Android 4.4, alarms created with the AlarmManager APIs are now inexact by default so that the system can batch app alarms and preserve system power, but the system will retain the previous API behavior for an app if your target API level is lower than "19" .
Viewing and editing Java code
Components are written in Java and listed within module folders in the java folder in the Project: Android view. Each module name begins with the domain name (such as com.example.android) and includes the app name.
The following example shows an activity component:
At the very top of the MainActivity.java file is a package statement that defines the app package. This is followed by an import block condensed in the above figure, with " ... ". Click the dots to expand the block to view it. The import statements import libraries needed for the app, such as the following, which imports the AppCompatActivity library:
import android.support.v7.app.AppCompatActivity;
Each activity in an app is implemented as a Java class. The following class declaration extends the AppCompatActivity class to implement features in a way that is backward-compatible with previous versions of Android:
public class MainActivity extends AppCompatActivity {
...
}
As you learned earlier, before the Android system can start an app component such as an activity, the system must know that the activity exists by reading the app's AndroidManifest.xml file. Therefore, each activity must be listed in the AndroidManifest.xml file.
Viewing and editing layouts
Layout resources are written in XML and listed within the layout folder in the res folder in the Project: Android view. Click res > layout and then double-click activity_main.xml to see the layout file in the editing pane.
Android Studio shows the Design view of the layout, as shown in the figure below. This view provides a Palette pane of user interface elements, and a grid showing the screen layout.
Understanding the build process
The Android application package (APK) is the package file format for distributing and installing Android mobile apps. The build process involves tools and processes that automatically convert each project into an APK.
Android Studio uses Gradle as the foundation of the build system, with more Android-specific capabilities provided by the Android Plugin for Gradle. This build system runs as an integrated tool from the Android Studio menu.
Understanding build.gradle files
When you create a project, Android Studio automatically generates the necessary build files in the Gradle Scripts folder in Project: Android view. Android Studio build files are named build.gradle as shown below:
Each project has the following:
build.gradle (Project: apptitle)
This is the top-level build file for the entire project, located in the root project directory, which defines build configurations that apply to all modules in your project. This file, generated by Android Studio, should not be edited to include app dependencies.
build.gradle (Module: app)
Android Studio creates separate build.gradle (Module: app) files for each module. You can edit the build settings to provide custom packaging options for each module, such as additional build types and product flavors, and to override settings in the manifest or top-level build.gradle file. This file is most often the file to edit when changing app-level configurations, such as declaring dependencies in the dependencies section. The following shows the contents of a project's build.gradle (Module: app) file:
apply plugin: 'com.android.application'
android {
compileSdkVersion 24
buildToolsVersion "24.0.1"
defaultConfig {
applicationId "com.example.android.helloworld2"
minSdkVersion 15
targetSdkVersion 24
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
}
}
}
dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {
exclude group: 'com.android.support', module: 'support-annotations'
})
compile 'com.android.support:appcompat-v7:24.2.1'
testCompile 'junit:junit:4.12'
}
The build.gradle files use Gradle syntax. Gradle is a Domain Specific Language (DSL) for describing and manipulating the build logic using Groovy, which is a dynamic language for the Java Virtual Machine (JVM). You don't need to learn Groovy to make changes, because the Android Plugin for Gradle introduces most of the DSL elements you need.
Tip: To learn more about the Android plugin DSL, read the DSL reference documentation.
Plugin and Android blocks
In the above build.gradle (Module: app) file, the first statement applies the Android-specific Gradle plug-in build tasks:
apply plugin: 'com.android.application'
android {
...
}
The android { } block specifies the following for the build:
compileSdkVersion 24
buildToolsVersion "24.0.1"
The defaultConfig block
Core settings and entries for the app are specified in a defaultConfig { } block within the android { } block:
...
defaultConfig {
applicationId "com.example.hello.helloworld"
minSdkVersion 15
targetSdkVersion 23
versionCode 1
versionName "1.0"
testInstrumentationRunner
"android.support.test.runner.AndroidJUnitRunner"
}
...
The minSdkVersion and targetSdkVersion settings override any AndroidManifest.xml settings for the minimum SDK version and the target SDK version. See "Declaring the Android version" previously in this chapter for background information on these settings.
The testInstrumentationRunner statement adds the instrumentation support for testing the user interface with Espresso and UIAutomator. These are described in a separate lesson.
Build types
Build types for the app are specified in a buildTypes { } block, which controls how the app is built and packaged.
...
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
}
}
...
The build type specified is release for the app's release. Another common build type is debug . Configuring build types is described in a separate lesson.
Dependencies
Dependencies for the app are defined in the dependencies { } block, which is the part of the build.gradle file that is most likely to change as you start developing code that depends on other libraries. The block is part of the standard Gradle API and belongs outside the android { } block.
...
dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {
exclude group: 'com.android.support', module: 'support-annotations'
})
compile 'com.android.support:appcompat-v7:24.2.0'
testCompile 'junit:junit:4.12'
}
In the above snippet, the statement compile fileTree(dir: 'libs', include: ['*.jar']) adds a dependency of all ".jar" files inside the libs directory. The compile configuration compiles the main application — everything in it is added to the compilation classpath, and also packaged into the final APK.
Syncing your project
When you make changes to the build configuration files in a project, Android Studio requires that you sync the project files so that it can import the build configuration changes and run some checks to make sure the configuration won't create build errors.
To sync the project files, click Sync Now in the notification bar that appears when making a change, or click Sync Project from the menu bar. If Android Studio notices any errors with the configuration — for example, if the source code uses API features that are only available in an API level higher than the compileSdkVersion — the Messages window appears to describe the issue.
Running the app on an emulator or a device
With virtual device emulators, you can test an app on different devices such as tablets or smartphones — with different API levels for different Android versions — to make sure it looks good and works for most users. Although it's a good idea, you don't have to depend on having a physical device available for app development.
The Android Virtual Device (AVD) manager creates a virtual device or emulator that simulates the configuration for a particular type of Android device. Use the AVD Manager to define the hardware characteristics of a device and its API level, and to save it as a virtual device configuration. When you start the Android emulator, it reads a specified configuration and creates an emulated device on your computer that behaves exactly like a physical version of that device.
Creating a virtual device
To run an emulator on your computer, use the AVD Manager to create a configuration that describes the virtual device. Select Tools > Android > AVD Manager, or click the AVD Manager icon in the toolbar.
The "Your Virtual Devices" screen appears showing all of the virtual devices created previously. Click the +Create Virtual Device button to create a new virtual device.
You can select a device from a list of predefined hardware devices. For each device, the table shows its diagonal display size (Size), screen resolution in pixels (Resolution), and pixel density (Density). For example, the pixel density of the Nexus 5 device is xxhdpi , which means the app uses the icons in the xxhdpi folder of the mipmap folder. Likewise, the app will use layouts and drawables from folders defined for that density as well.
You also choose the version of the Android system for the device. The Recommended tab shows the recommended systems for the device. More versions are available under the x86 Images and Other Images tabs.
Running the app on the virtual device
To run the app on the virtual device you created in the previous section, follow these steps:
The emulator starts and boots just like a physical device. Depending on the speed of your computer, this may take a while. The app builds, and once the emulator is ready, Android Studio uploads the app to the emulator and runs it.
You should see the app created from the Empty Activity template ("Hello World") as shown in the following figure, which also shows Android Studio's Run pane that displays the actions performed to run the app on the emulator.
Note: When testing on an emulator, it is good practice to start it up once at the very beginning of your session, and not to close it until done so that it doesn't have to go through the boot process again.
In the above figure:
Running the app on a physical device
Always test your apps on physical device, because users will use the app on physical devices. While emulators are quite good, they can't show all possible device states, such as what happens if an incoming call occurs while the app is running. To run the app on a physical device, you need the following:
To let Android Studio communicate with a device, turn on USB Debugging on the Android device. On Android version 4.2 and newer, the Developer options screen is hidden by default. Follow these steps to turn on USB Debugging:
Tap the Build number information seven times.
You read that correctly: Tap it seven times.
Now, connect the device and run the app from Android Studio.
Troubleshooting the device connection
If Android Studio does not recognize the device, try the following:
If your computer still does not find the device or declares it "unauthorized":
Disconnect the device from your computer.
On the device, choose Settings > Developer Options.
Tap Revoke USB Debugging authorizations.
Reconnect the device to your computer.
When prompted, grant authorizations.
Using the log
The log is a powerful debugging tool you can use to look at values, execution paths, and exceptions. After you add logging statements to an app, your log messages appear along with general log messages in the logcat tab of the Android Monitor pane of Android Studio.
To see the Android Monitor pane, click the Android Monitor button at the bottom of the Android Studio main window. The Android Monitor offers two tabs:
Adding logging statements to your app
Logging statements add whatever messages you specify to the log. Adding logging statements at certain points in the code allows the developer to look at values, execution paths, and exceptions.
For example, the following logging statement adds "MainActivity" and "Hello World" to the log:
Log.d("MainActivity", "Hello World");
The following are the elements of this statement:
private static final String LOG_TAG =
MainActivity.class.getSimpleName();
Log.d(LOG_TAG, "Hello World");
Viewing your log messages
The Run pane appears in place of the Android Monitor pane when you run the app on an emulator or a device. After starting to run the app, click the Android Monitor button at the bottom of the main window, and then click the logcat tab in the Android Monitor pane if it is not already selected.
In the above figure:
By default, the log display is set to Verbose in the drop-down menu at the top of the logcat display to show all messages. You can change this to Debug to see messages that start with Log.d , or change it to Error to see messages that start with Log.e , and so on.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
1.2: Layouts, Views and Resources
Contents:
This chapter describes the screen's user interface layout and other resources you create for your app, and the code you would use to respond to a user's tap of a user interface element.
The model-view-presenter pattern
Linking an activity to a layout resource is an example of part of the model-view-presenter (MVP) architecture pattern. The MVP pattern is a well-established way to group app functions:
Views
The UI consists of a hierarchy of objects called views — every element of the screen is a view. The View class represents the basic building block for all UI components, and the base class for classes that provide interactive UI components such as buttons, checkboxes, and text entry fields.
A view has a location, expressed as a pair of left and top coordinates, and two dimensions, expressed as a width and a height. The unit for location and dimensions is the device-independent pixel (dp).
The Android system provides hundreds of predefined views, including those that display:
You can define a view to appear on the screen and respond to a user tap. A view can also be defined to accept text input, or to be invisible until needed.
You can specify the views in XML layout resource files. Layout resources are written in XML and listed within the layout folder in the res folder in the Project: Android view.
View groups
Views can be grouped together inside a view group (ViewGroup), which acts as a container of views. The relationship is parent-child, in which the parent is a view group, and the child is a view or view group within the group. The following are common view groups:
Layout view groups
The views for a screen are organized in a hierarchy. At the root of this hierarchy is a ViewGroup that contains the layout of the entire screen. The view group's child screens can be other views or other view groups as shown in the following figure.
In the above figure:
Some view groups are designated as layouts because they organize child views in a specific way and are typically used as the root view group. Some examples of layouts are:
Tip: Learn more about different layout types in Common Layout Objects.
A simple example of a layout with child views is the Hello Toast app in one of the early lessons. The view for the Hello Toast app appears in the figure below as a diagram of the layout file (activity_main.xml), along with a hierarchy diagram (top right) and a screenshot of the actual finished layout (bottom right).
In the figure above:
The view hierarchy can grow to be complex for an app that shows many views on a screen. It's important to understand the view hierarchy, as it affects whether views are visible and efficiently they are drawn.
Tip: You can explore the view hierarchy of your app using Hierarchy Viewer. It shows a tree view of the hierarchy and lets you analyze the performance of views on an Android device. Performance issues are covered in a subsequent chapter.
You define views in the layout editor, or by entering XML code. The layout editor shows a visual representation of XML code.
Using the layout editor
Use the layout editor to edit the layout file. You can drag and drop view objects into a graphical pane, and arrange, resize, and specify properties for them. You immediately see the effect of changes you make.
To use the layout editor, open the XML layout file. The layout editor appears with the Design tab at the bottom highlighted. (If the Text tab is highlighted and you see XML code, click the Design tab.) For the Empty Activity template, the layout is as shown in the figure below.
In the figure above:
Design toolbar. The design pane toolbar provides buttons to configure your layout appearance in the design pane and to edit the layout properties. See the figure below for details.
Tip: Hover over each icon to view a tooltip that summarizes its function.
The layout editor's design toolbar offers a row of buttons that let you configure the appearance of the layout:
In the figure above:
The layout editor offers more features in the Design tab when you use a ConstraintLayout, including handles for defining constraints. A constraint is a connection or alignment to another view, to the parent layout, or to an invisible guideline. Each constraint appears as a line extending from a circular handle. Each view has a circular constraint handle in the middle of each side. After selecting a view in the Component Tree pane or clicking on it in the layout, the view also shows resizing handles on each corner.
In the above figure:
Using XML
It is sometimes quicker and easier to edit the XML code directly, especially when copying and pasting the code for similar views.
To view and edit the XML code, open the XML layout file. The layout editor appears with the Design tab at the bottom highlighted. Click the Text tab to see the XML code. The following shows an XML code snippet of a LinearLayout with a Button and a TextView:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
... >
<Button
android:id="@+id/button_toast"
android:layout_width="@dimen/my_view_width"
android:layout_height="wrap_content"
... />
<TextView
android:id="@+id/show_count"
android:layout_width="@dimen/my_view_width"
android:layout_height="@dimen/counter_height"
... />
...
</LinearLayout>
XML attributes (view properties)
Views have properties that define where a view appears on the screen, its size, how the view relates to other views, and how it responds to user input. When defining views in XML, the properties are referred to as attributes.
For example, in the following XML description of a TextView, the android:id , android:layout_width , android:layout_height , android:background , are XML attributes that are translated automatically into the TextView's properties:
<TextView
android:id="@+id/show_count"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@color/myBackgroundColor"
android:textStyle="bold"
android:text="@string/count_initial_value"
/>
Attributes generally take this form:
android:attribute_name="value"
The attribute_name is the name of the attribute. The value is a string with the value for the attribute. For example:
android:textStyle="bold"
If the value is a resource, such as a color, the @ symbol specifies what kind of resource. For example:
android:background="@color/myBackgroundColor"
The background attribute is set to the color resource identified as myBackgroundColor , which is declared to be #FFF043 . Color resources are described in "Style-related attributes" in this chapter.
Every view and view group supports its own variety of XML attributes. Some attributes are specific to a view (for example, TextView supports the textSize attribute), but these attributes are also inherited by any views that may extend the TextView class. Some are common to all views, because they are inherited from the root View class (like the android:id attribute). For descriptions of specific attributes, see the overview section of the View class documentation.
Identifying a view
To uniquely identify a view and reference it from your code, you must give it an id. The android:id attribute lets you specify a unique id — a resource identifier for a view.
For example:
android:id="@+id/button_count"
The "@+id/button_count" part of the above attribute creates a new id called button_count for the view. You use the plus (+) symbol to indicate that you are creating a new id .
Referencing a view
To refer to an existing resource identifier, omit the plus (+) symbol. For example, to refer to a view by its id in another attribute, such as android:layout_toLeftOf (described in the next section) to control the position of a view, you would use:
android:layout_toLeftOf="@id/show_count"
In the above attribute, "@id/show_count" refers to the view with the resource identifier show_count . The attribute positions the view to be "to the left of" the show_count view.
Positioning views
Some layout-related positioning attributes are required for a view, and automatically appear when you add the view to the XML layout, ready for you to add values.
LinearLayout positioning
For example, LinearLayout is required to have these attributes set:
The android:layout_width and android:layout_height attributes can take one of three values:
The android:orientation can be:
Other layout-related attributes include:
android:layout_gravity="center_horizontal"
In the figure above:
A view's size includes its padding. The following are commonly used padding attributes:
Tip: To see all of the XML attributes for a LinearLayout, see the Summary section of the LinearLayout reference in the Developer Guide. Other root layouts, such as RelativeLayout and AbsoluteLayout, list their XML attributes in the Summary sections.
RelativeLayout Positioning
Another useful view group for layout is RelativeLayout, which you can use to position child views relative to each other or to the parent. The attributes you can use with RelativeLayout include the following:
For a complete list of attributes for views in a RelativeLayout, see RelativeLayout.LayoutParams.
Style-related attributes
You specify style attributes to customize the view's appearance. Views that don't have style attributes, such as android:textColor , android:textSize , and android:background , take on the styles defined in the app's theme.
The following are style-related attributes used in the XML layout example in the previous section:
Resource files
Resource files are a way of separating static values from code so that you don't have to change the code itself to change the values. You can store all the strings, layouts, dimensions, colors, styles, and menu text separately in resource files.
Resource files are stored in folders located in the res folder, including:
The syntax to reference a resource in an XML layout is as follows:
@package_name:resource_type/resource_name
For example, the following XML layout statement sets the android:text attribute to a string resource:
android:text="@string/button_label_toast"
Another example: this XML layout statement sets the android:background attribute to a color resource, and since the resource is defined in the project (in the colors.xml file), the package_name is not specified:
android:background="@color/colorPrimary"
In the following example, the XML layout statement sets the android:textColor attribute to a color resource. However, the resource is not defined in the project but supplied by Android, so the package_name android must also be specified, followed by a colon:
android:textColor="@android:color/white"
Tip: For more information about accessing resources from code, see Accessing Resources. For Android color constants, see the Android standard R.color resources.
Values resource files
Keeping values such as strings and colors in separate resource files makes it easier to manage them, especially if you use them more than once in your layouts.
For example, it is essential to keep strings in a separate resource file for translating and localizing your app, so that you can create a string resource file for each language without changing your code. Resource files for images, colors, dimensions, and other attributes are handy for developing an app for different device screen sizes and orientations.
Strings
String resources are located in the strings.xml file in the values folder inside the res folder when using the Project: Android view. You can edit this file directly by opening it:
<resources>
<string name="app_name">Hello Toast</string>
<string name="button_label_count">Count</string>
<string name="button_label_toast">Toast</string>
<string name="count_initial_value">0</string>
</resources>
The name (for example, button_label_count) is the resource name you use in your XML code, as in the following attribute:
android:text="@string/button_label_count"
The string value of this name is the word (Count) enclosed within the <string></string> tags (you don't use quotation marks unless the quotation marks should be part of the string value.)
Extracting strings to resources
You should also extract hard-coded strings in an XML layout file to string resources. To extract a hard-coded string in an XML layout, follow these steps (refer to the figure):
You can then use the resource name in your XML code. Use the expression "@string/resource_name" (including quotation marks) to refer to the string resource:
android:text="@string/button_label_count"
Colors
Color resources are located in the colors.xml file in the values folder inside the res folder when using the Project: Android view. You can edit this file directly:
<resources>
<color name="colorPrimary">#3F51B5</color>
<color name="colorPrimaryDark">#303F9F</color>
<color name="colorAccent">#FF4081</color>
<color name="myBackgroundColor">#FFF043</color>
</resources>
The name (for example, colorPrimary) is the resource name you use in your XML code:
android:textColor="@color/colorPrimary"
The color value of this name is the hexadecimal color value (#3F51B5) enclosed within the <color></color> tags. The hexadecimal value specifies red, green, and blue (RGB) values. The value always begins with a pound (#) character, followed by the Alpha-Red-Green-Blue information. For example, the hexadecimal value for black is #000000, while the hexadecimal value for a variant of sky blue is #559fe3. Base color values are listed in the Color class documentation.
The colorPrimary color is one of the predefined base colors and is used for the app bar. In a production app, you could, for example, customize this to fit your brand. Using the base colors for other UI elements creates a uniform UI.
Tip: For the material design specification for Android colors, see Style and Using the Material Theme. For common color hexadecimal values, see Color Hex Color Codes. For Android color constants, see the Android standard R.color resources.
You can see a small block of the color choice in the left margin next to the color resource declaration in colors.xml, and also in the left margin next to the attribute that uses the resource name in the layout XML file.
Tip: To see the color in a popup, turn on the Autopopup documentation feature. Choose Android Studio > Preferences > Editor > General > Code Completion, and check the "Autopopup documentation in (ms)" option. You can then hover your cursor over a color resource name to see the color.
Dimensions
Dimensions should be separated from the code to make them easier to manage, especially if you need to adjust your layout for different device resolutions. It also makes it easy to have consistent sizing for views, and to change the size of multiple views by changing one dimension resource.
Dimension resources are located in a dimens.xml file in the values folder inside the res folder when using the Project: Android view. The dimens.xml shown in the view can be a folder holding more than one dimens.xml file for different device resolutions. For example, the app created from the Empty Activity template provides a second dimens.xml file for 820dp.
You can edit this file directly by opening it:
<resources>
<!-- Default screen margins, per the Android Design guidelines. -->
<dimen name="activity_horizontal_margin">16dp</dimen>
<dimen name="activity_vertical_margin">16dp</dimen>
<dimen name="my_view_width">300dp</dimen>
<dimen name="count_text_size">200sp</dimen>
<dimen name="counter_height">300dp</dimen>
</resources>
The name (for example, activity_horizontal_margin) is the resource name you use in the XML code:
android:paddingLeft="@dimen/activity_horizontal_margin"
The value of this name is the measurement (16dp) enclosed within the <dimen></dimen> tags.
You can extract dimensions in the same way as strings::
Device-independent pixels (dp) are independent of screen resolution. For example, 10px (10 fixed pixels) will look a lot smaller on a higher resolution screen, but Android will scale 1 0dp (10 device-independent pixels) to look right on different resolution screens. Text sizes can also be set to look right on different resolution screens using scaled-pixel (sp) sizes.
Tip: For more information about dp and sp units, see Supporting Different Densities.
Styles
A style is a resource that specifies common attributes such as height, padding, font color, font size, background color. Styles are meant for attributes that modify the look of the view.
Styles are defined in the styles.xml file in the values folder inside the res folder when using the Project: Android view. You can edit this file directly. Styles are covered in a later chapter, along with the Material Design Specification.
Other resource files
Android Studio defines other resources that are covered in other chapters:
Responding to view clicks
A click event occurs when the user taps or clicks a clickable view, such as a Button, ImageButton, ImageView (tapping or clicking the image), or FloatingActionButton.
The model-view-presenter pattern is useful for understanding how to respond to view clicks. When an event occurs with a view, the presenter code performs an action that affects the model code. In order to make this pattern work, you have to:
The onClick attribute
Android Studio provides a shortcut for setting up a clickable view, and for associating an event handler with the view: use the android:onClick attribute with the clickable view's element in the XML layout.
For example, the following XML expression in the layout file for a Button sets showToast() as the event handler:
android:onClick="showToast"
When the b utton is tapped, its android:onClick attribute calls the showToast() method.
Write the event handler, such as showToast() referenced in the XML code above, to call other methods that implement the app's model logic:
public void showToast(View view) {
// Do something in response to the button click.
}
In order to work with the android:onClick attribute, the showToast() method must be public , return void , and require a view parameter in order to know which view called the method.
Android Studio provides a shortcut for creating an event handler stub (a placeholder for the method that you can fill in later) in the Java code for the activity associated with the XML layout. Follow these steps:
Updating views
To update a view's contents, such as replacing the text in a TextView, your code must first instantiate an object from the view. Your code can then update the object, thereby updating the view.
To refer to the view in your code, use the findViewById() method of the View class, which looks for a view based on the resource id . For example, the following statement sets mShowCount to be the TextView with the resource id show_count :
mShowCount = (TextView) findViewById(R.id.show_count);
From this point on, your code can use mShowCount to represent the TextView, so that when you update mShowCount , the view is updated.
For example, when the following button with the android:onClick attribute is tapped, onClick calls the countUp() method:
android:onClick="countUp"
You can implement countUp() to increment the count, convert the count to a string, and set the string as the text for the mShowCount object:
public void countUp(View view) {
mCount++;
if (mShowCount != null)
mShowCount.setText(Integer.toString(mCount));
}
Since you had already associated mShowCount with the TextView for displaying the count, the mShowCount.setText() method updates the text view on the screen.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
1.3: Text and Scrolling Views
Contents:
This chapter describes one of the most often used views in apps: the TextView, which shows textual content on the screen. A TextView can be used to show a message, a response from a database, or even entire magazine-style articles that users can scroll. This chapter also shows how you can create a scrolling view of text and other elements.
TextView
One view you may use often is the TextView class, which is a subclass of the View class that displays text on the screen. You can use TextView for a view of any size, from a single character or word to a full screen of text. You can add a resource id to the TextView, and control how the text appears using attributes in the XML layout file.
You can refer to a TextView view in your Java code by using its resource id , and update the text from your code. If you want to allow users to edit the text, use EditText, a subclass of TextView that allows text input and editing. You learn all about EditText in another chapter.
TextView attributes
You can use XML attributes to control:
For example, to set the width, height, and position within a LinearLayout:
<TextView
...
android:layout_width="match_parent"
android:layout_height="wrap_content"
… />
To set the initial text value of the view, use the android:text attribute:
android:text="Hello World!"
You can extract the text string into a string resource (perhaps called hello_world) that's easier to maintain for multiple-language versions of the app, or if you need to change the string in the future. After extracting the string, use the string resource name with @string/ to specify the text:
android:text="@string/hello_world"
The most often used attributes with TextView are the following:
android:autoLink: Controls whether links such as URLs and email addresses are automatically found and converted to clickable (touchable) links. Use one of the following:
For example, to set the attribute to match web URLs, use this:
android:autoLink="web"
Using embedded tags in text
In an app that accesses magazine or newspaper articles, the articles that appear would probably come from an online source or might be saved in advance in a database on the device. You can also create text as a single long string in the strings.xml resource.
In either case, the text may contain embedded HTML tags or other text formatting codes. To properly display in a text view, text must be formatted following these rules:
To create a long string of text in the strings.xml file, enclose the entire text within <string name="your_string_name"></string> in the strings.xml file (your_string_name is the name you provide the string resource, such as article_text).
Text lines in the strings.xml file don't wrap around to the next line — they extend beyond the right margin. This is the correct behavior. Each new line of text starting at the left margin represents an entire paragraph.
Enter \n to represent the end of a line, and another \n to represent a blank line. If you don't add end-of-line characters, the paragraphs will run into each other when displayed on the screen.
Tip: If you want to see the text wrapped in strings.xml, you can press Return to enter hard line endings, or format the text first in a text editor with hard line endings. The endings will not be displayed on the screen.
Referring to a TextView in code
To refer to a TextView in your Java code, use its resource id . For example, to update a TextView with new text, you would:
Find the TextView (with the id show_count) and assign it to a variable. You use the findViewById() method of the View class, and refer to the view you want to find using this format:
R.id.view_id
In which view_id is the resource identifier for the view:
mShowCount = (TextView) findViewById(R.id.show_count);
mShowCount.setText(mCount_text);
Scrolling views
If the information you want to show in your app is larger than the device's display, you can create a scrolling view that the user can scroll vertically by swiping up or down, or horizontally by swiping right or left.
You would typically use a scrolling view for news stories, articles, or any lengthy text that doesn't completely fit on the display. You can also use a scrolling view to combine views (such as a TextView and a Button) within a scrolling view.
Creating a layout with a ScrollView
The ScrollView class provides the layout for a vertical scrolling view. (For horizontal scrolling, you would use HorizontalScrollView.) ScrollView is a subclass of FrameLayout, which means that you can place only one view as a child within it; that child contains the entire contents to scroll.
Even though you can place only one child view inside a ScrollView, the child view could be a view group with a hierarchy of child views, such as a LinearLayout. A good choice for a view within a ScrollView is a LinearLayout that is arranged in a vertical orientation.
ScrollView and performance
With a ScrollView, all of your views are in memory and in the view hierarchy even if they aren't displayed on screen. This makes ScrollView useful for smoothly scrolling pages of free-form text, because the text is already in memory. However, ScrollView can use up a lot of memory, which can affect the performance of the rest of your app.
Using nested instances of LinearLayout can also lead to an excessively deep view hierarchy, which can slow down performance. Nesting several instances of LinearLayout that use the android:layout_weight attribute can be especially expensive as each child view needs to be measured twice. Consider using flatter layouts such as RelativeLayout or GridLayout to improve performance.
Complex layouts with ScrollView may suffer performance issues, especially with child views such as images. We recommend that you not use images with a ScrollView. To display long lists of items, or images, consider using a RecyclerView. Also, using AsyncTask provides a simple way to perform work outside the main thread, such as loading images in a background thread, then applying them to the UI once finished. AsyncTask is covered in another chapter.
ScrollView with a TextView
To show a scrollable magazine article on the screen, you might use a RelativeLayout for the screen that includes a separate TextView for the article heading, another for the article subheading, and a third TextView for the scrolling article text (see figure below), set within a ScrollView. The only part of the screen that would scroll would be the ScrollView with the article text.
ScrollView with a LinearLayout
The ScrollView view group can contain only one view; however, that view can be a view group that contains views, such as LinearLayout. You can nest a view group such as LinearLayout within the ScrollView view group, thereby scrolling everything that is inside the LinearLayout.
For example, if you want the subheading of an article to scroll along with the article even if they are separate TextViews, you can add a LinearLayout within the ScrollView, and move the subheading TextView, along with the article TextView, into the LinearLayout. The LinearLayout view group becomes the single child view in the ScrollView as shown in the figure below, and the user can scroll the entire view group: the subheading and the article.
When adding a LinearLayout inside a ScrollView, use match_parent for the LinearLayout's android:layout_width attribute to match the width of the parent view group (the ScrollView), and use wrap_content for the LinearLayout's android:layout_height attribute to make the view group only big enough to enclose its contents and padding.
Since ScrollView only supports vertical scrolling, you must set the LinearLayout orientation to vertical (by using the android:orientation="vertical" attribute), so that the entire LinearLayout will scroll vertically. For example, the following XML layout scrolls the article TextView along with the article_subheading TextView:
<ScrollView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/article_heading">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<TextView
android:id="@+id/article_subheading"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="@dimen/padding_regular"
android:text="@string/article_subtitle"
android:textAppearance="@android:style/TextAppearance" />
<TextView
android:id="@+id/article"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:autoLink="web"
android:lineSpacingExtra="@dimen/line_spacing"
android:text="@string/article_text" />
</LinearLayout>
</ScrollView>
Related practicals
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
1.4: Resources to Help You Learn
Contents:
This chapter describes resources available for Android developers, and how to use them.
Exploring Android developer documentation
The best place to learn about Android development and to keep informed about the newest Android development tools is to browse the official Android developer documentation.
Home page
This documentation contains a wealth of information kept current by Google. To start exploring, click the following links on the home page:
The home page also offers links for Android developers to preview their apps for the newest version of Android, and to join the Google Play developer program:
Android Studio page
After clicking Get Android Studio on the home page, the Android Studio page, shown above, appears with the following useful links:
Android Studio documentation
The following are links into the Android Studio documentation that are useful for this training:
Design, Develop, Distribute, and Preview
The Android documentation is accessible through the following links from the home page:
Installing offline documentation
To access to documentation even when you are not connected to the internet, install the Software Development Kit (SDK) documentation using the SDK Manager. Follow these steps:
Watching developer videos
In addition to the Android documentation, the Android Developer YouTube channel is a great source of tutorials and tips. You can subscribe to the channel to receive notifications of new videos by email. To subscribe, click the red Subscribe button in the upper right corner as shown below.
The following are popular videos referred to in this training:
In addition, Udacity offers online Android development courses.
Exploring code samples in the Android SDK
You can explore hundreds of code samples directly in Android Studio. Choose Import an Android code sample from the Android Studio welcome screen, or choose File > New > Import Sample if you have already opened a project. The Browse Samples window appears as shown below.
Choose a sample and click Next. Accept or edit the Application name and Project location, and click Finish. The app project appears as shown below, and you can run the app in the emulator provided with Android Studio, or on a connected device.
Note: The samples are meant to be a starting point for further development. We encourage you to design and build your own ideas into them.
Using activity templates
Android Studio provides templates for common and recommended activity designs. Using templates saves time, and helps you follow best practices for developing activities.
Each template incorporates an skeleton activity and user interface. You choose an activity template for the main activity when starting an app project. You can also add an activity template to an existing project. Right-click the java folder in the Project: Android view and choose New > Activity > Gallery.
Browsing the Android developer blog
The Android Developers Blog provides a wealth of articles on Android development.
The following are popular blog posts:
Other sources of information
Google and third parties offer a wide variety of helpful tips and techniques for Android development. The following are sources of information referenced by this training:
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
2.1: Understanding Activities and Intents
Contents:
In this chapter you'll learn about activities, the major building blocks of your app's user interface, as well as using intents to communicate between activities.
About activities
An activity represents a single screen in your app with an interface the user can interact with. For example, an email app might have one activity that shows a list of new emails, another activity to compose an email, and another activity for reading individual messages. Your app is a collection of activities that you either create yourself, or that you reuse from other apps.
Although the activities in your app work together to form a cohesive user experience in your app, each one is independent of the others. This enables your app to start activities in other apps, and other apps can start your activities (if your app allows it). For example, a messaging app you write could start an activity in a camera app to take a picture, and then start the activity in an email app to let the user share that picture in email.
Typically, one activity in an app is specified as the "main" activity, which is presented to the user when launching the application for the first time. Each activity can then start other activities in order to perform different actions.
Each time a new activity starts, the previous activity is stopped, but the system preserves the activity in a stack (the "back stack"). When the user is done with the current activity and presses the Back button, it is popped from the stack (and destroyed) and the previous activity resumes.
When an activity is stopped because a new activity starts, the first activity is notified of that change with the activity's lifecycle callback methods. The Activity lifecycle is the set of states an activity can be in, from when it is first created, to each time it is stopped or resumed, to when the system destroys it. You'll learn more about the activity lifecycle in the next chapter.
Creating activities
To implement an activity in your app, do the following:
When you create a new project for your app, or add a new activity to your app, in Android Studio (with File > New > Activity), template code for each of these tasks is provided for you.
Create the activity class
Activities are subclasses of the Activity class, or one of its subclasses. When you create a new project in Android Studio, your activities are, by default, subclasses of the AppCompatActivity class. The AppCompatActivity class is a subclass of Activity that lets you to use up-to-date Android app features such as the action bar and material design, while still enabling your app to be compatible with devices running older versions of Android.
Here is a skeleton subclass of AppCompatActivity:
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
}
}
The first task for you in your activity subclass is to implement the standard activity lifecycle callback methods (such as OnCreate()) to handle the state changes for your activity. These state changes include things such as when the activity is created, stopped, resumed, or destroyed. You'll learn more about the activity lifecycle and lifecycle callbacks in the next chapter.
The one required callback your app must implement is the onCreate() method. The system calls this method when it creates your activity, and all the essential components of your activity should be initialized here. Most importantly, the OnCreate() method calls setContentView() to create the primary layout for the activity.
You typically define the user interface for your activity in one or more XML layout files. When the setContentView() method is called with the path to a layout file, the system creates all the initial views from the specified layout and adds them to your activity. This is often referred to as inflating the layout.
You may often also want to implement the onPause() method in your activity class. The system calls this method as the first indication that the user is leaving your activity (though it does not always mean the activity is being destroyed). This is usually where you should commit any changes that should be persisted beyond the current user session (because the user might not come back). You'll learn more about onPause() and all the other lifecycle callbacks in the next chapter.
In addition to lifecycle callbacks, you may also implement methods in your activity to handle other behavior such as user input or button clicks.
Implement a user interface
the user interface for an activity is provided by a hierarchy of views, which controls a particular space within the activity's window and can respond to user interaction.
The most common way to define a user interface using views is with an XML layout file stored as part of your app's resources. Defining your layout in XML enables you to maintain the design of your user interface separately from the source code that defines the activity's behavior.
You can also create new views directly in your activity code by inserting new view objects into a ViewGroup, and then passing the root ViewGroup to setContentView(). After your layout has been inflated -- regardless of its source -- you can add more views in Java anywhere in the view hierarchy.
Declare the activity in the manifest
Each activity in your app must be declared in the Android app manifest with the <activity> element, inside <application> . When you create a new project or add a new activity to your project in Android Studio, your manifest is created or updated to include skeleton activity declarations for each activity. Here's the declaration for the main activity.
<activity android:name=".MainActivity" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
The <activity> element includes a number of attributes to define properties of the activity such as its label, icon, or theme. The only required attribute is android:name, which specifies the class name for the activity (such as "MainActivity"). See the <activity> element reference for more information on activity declarations.
The <activity> element can also include declarations for intent filters. The intent filters specify the kind of intents your activity will accept.
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
Intent filters must include at least one <action> element, and can also include a <category> and optional <data> . The main activity for your app needs an intent filter that defines the "main" action and the "launcher" category so that the system can launch your app. Android Studio creates this intent filter for the main activity in your project:
The <action> element specifies that this is the "main" entry point to the application. The <category> element specifies that this activity should be listed in the system's application launcher (to allow users to launch this activity).
Other activities in your app can also declare intent filters, but only your main activity should include the "main" action.. You'll learn more about implicit intents and intent filters in a later section.
Add more activities to your project
The main activity for your app and its associated layout file comes with your project when you create it. You can add new activities to your project in Android Studio with the File > New > Activity menu. Choose the activity template you want to use, or open the Gallery to see all the available templates.
When you choose an activity template, you'll see the same set of screens for creating the new activity that you did when you initially created the project. Android Studio provides these three things for each new activity in your app:
About intents
All Android activities are started or activated with an intent. Intents are message objects that make a request to the Android runtime to start an activity or other app component in your app or in some other app. You don't start those activities yourself;
When your app is first started from the device home screen, the Android runtime sends an intent to your app to start your app's main activity (the one defined with the MAIN action and the LAUNCHER category in the Android Manifest). To start other activities in your app, or request that actions be performed by some other activity available on the device, you build your own intents with the Intent class and call the startActivity() method to send that intent.
In addition to starting activities, intents are also used to pass data between activities. When you create an intent to start a new activity, you can include information about the data you want that new activity to operate on. So, for example, an email activity that displays a list of messages can send an intent to the activity that displays that message. The display activity needs data about the message to display, and you can include that data in the intent.
In this chapter you'll learn about using intents with activities, but intents are also used to start services and broadcast receivers. You'll learn about both those app components later on in the book.
Intent types
There are two types of intents in Android:
Intent objects and fields
An Intent object is an instance of the Intent class. For explicit intents, the key fields of an intent include the following:
For implicit intents, you may need to also define the intent action and category. You'll learn more about intent actions and categories in section 2.3.
Starting an activity with an explicit intent
To start a specific activity from another activity, use an explicit intent and the startActivity() method. Explicit intents include the fully-qualified class name for the activity or other component in the Intent object. All the other intent fields are optional, and null by default.
For example, if you wanted to start the ShowMessageActivity to show a specific message in an email app, use code like this.
Intent messageIntent = new Intent(this, ShowMessageActivity.class);
startActivity(messageIntent);
The Intent constructor takes two arguments for an explicit intent.
Use the startActivity() method with the new intent object as the only argument. The startActivity() method sends the intent to the Android system, which launches the ShowMessageActivity class on behalf of your app. The new activity appears on the screen, and the originating activity is paused.
The started activity remains on the screen until the user taps the back button on the device, at which time that activity closes and is reclaimed by the system, and the originating activity is resumed. You can also manually close the started activity in response to a user action (such as a button click) with the finish() method:
public void closeActivity (View view) {
finish();
}
Passing data between activities with intents
In addition to simply starting one activity from another, you also use intents to pass information between activities. The intent object you use to start an activity can include intent data (the URI of an object to act on), or intent extras, which are bits of additional data the activity might need.
In the first (sending) activity, you:
In the second (receiving) activity, you:
When to use intent data or intent extras
You can use either intent data and intent extras to pass data between the activities. There are several key differences between data and extras that determine which you should use.
The intent data can hold only one piece of information. A URI representing the location of the data you want to operate on. That URI could be a web page URL (http://), a telephone number (tel://), a goegraphic location (geo://) or any other custom URI you define.
Use the intent data field:
Intent extras are for any other arbitrary data you want to pass to the started activity. Intent extras are stored in a Bundle object as key and value pairs. Bundles are a map, optimized for Android, where the keys are strings, and the values can be any primitive or object type (objects must implement the Parcelable interface). To put data into the intent extras you can use any of the Intent class's putExtra() methods, or create your own bundle and put it into the intent with putExtras().
Use the intent extras:
Intent data and extras are not exclusive; you can use data for a URI and extras for any additional information the started activity needs to process the data in that URI.
Add data to the intent
To add data to an explicit intent from the originating activity, create the intent object as you did before:
Intent messageIntent = new Intent(this, ShowMessageActivity.class);
Use the setData() method with a Uri object to add that URI to the intent. Some examples of using setData() with URIs:
// A web page URL
messageIntent.setData(Uri.parse("http://www.google.com"));
// a Sample file URI
messageIntent.setData(Uri.fromFile(new File("/sdcard/sample.jpg")));
// A sample content: URI for your app's data model
messageIntent.setData(Uri.parse("content://mysample.provider/data"));
// Custom URI
messageIntent.setData(Uri.parse("custom:" + dataID + buttonId));
Keep in mind that the data field can only contain a single URI; if you call setData() multiple times only the last value is used. Use intent extras to include additional information (including URIs.)
After you've added the data, you can start the activity with the intent as usual.
startActivity(messageIntent);
Add extras to the intent
To add intent extras to an explicit intent from the originating activity:
The Intent class includes several intent extra keys you can use, defined as constants that begin with the word EXTRA_. For example, you could use Intent.EXTRA_EMAIL to indicate an array of email addresses (as strings), or Intent.EXTRA_REFERRER to specify information about the originating activity that sent the intent.
You can also define your own intent extra keys. Conventionally you define intent extra keys as static variables with names that begin with EXTRA_. To guarantee that the key is unique, the string value for the key itself should be prefixed with your app's fully qualified class name. For example:
public final static String EXTRA_MESSAGE = "com.example.mysampleapp.MESSAGE";
public final static String EXTRA_POSITION_X = "com.example.mysampleapp.X";
public final static String EXTRA_POSITION_Y = "com.example.mysampleapp.Y";
Create an intent object (if one does not already exist):
Intent messageIntent = new Intent(this, ShowMessageActivity.class);
Use a putExtra() method with a key to put data into the intent extras. The Intent class defines many putExtra() methods for different kinds of data:
messageIntent.putExtra(EXTRA_MESSAGE, "this is my message");
messageIntent.putExtra(EXTRA_POSITION_X, 100);
messageIntent.putExtra(EXTRA_POSITION_Y, 500);
Alternately, you can create a new bundle and populate that bundle with your intent extras. Bundle defines many "put" methods for different kinds of primitive data as well as objects that implement Android's Parcelable interface or Java's Serializable.
Bundle extras = new Bundle();
extras.putString(EXTRA_MESSAGE, "this is my message");
extras.putInt(EXTRA_POSITION_X, 100);
extras.putInt(EXTRA_POSITION_Y, 500);
After you've populated the bundle, add it to the intent with the putExtras() method (note the "s" in Extras):
messageIntent.putExtras(extras);
Start the activity with the intent as usual:
startActivity(messageIntent);
Retrieve the data from the intent in the started activity
When you start an activity with an intent, the started activity has access to the intent and the data it contains.
To retrieve the intent the activity (or other component) was started with, use the getIntent() method:
Intent intent = getIntent();
Use getData() to get the URI from that intent:
Uri locationUri = getData();
To get the extras out of the intent, you'll need to know the keys for the key/value pairs. You can use the standard Intent extras if you used those, or you can use the keys you defined in the originating activity (if they were defined as public.)
Use one of the getExtra() methods to extract extra data out of the intent object:
String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);
int positionX = intent.getIntExtra(MainActivity.EXTRA_POSITION_X);
int positionY = intent.getIntExtra(MainActivity.EXTRA_POSITION_Y);
Or you can get the entire extras bundle from the intent and extract the values with the various Bundle methods:
Bundle extras = intent.getExtras();
String message = extras.getString(MainActivity.EXTRA_MESSAGE);
Getting data back from an activity
When you start an activity with an intent, the originating activity is paused, and the new activity remains on the screen until the user clicks the back button, or you call the finish() method in a click handler or other function that ends the user's involvement with this activity.
Sometimes when you send data to an activity with an intent, you would like to also get data back from that intent. For example, you might start a photo gallery activity that lets the user pick a photo. In this case your original activity needs to receive information about the photo the user chose back from the launched activity.
To launch a new activity and get a result back, do the following steps in your originating activity:
You'll learn about each of these steps in the following sections.
Use startActivityForResult() to launch the activity
To get data back from a launched activity, start that activity with the startActivityForResult() method instead of startActivity().
startActivityForResult(messageIntent, TEXT_REQUEST);
The startActivityForResult() method, like startActivity(), takes an intent argument that contains information about the activity to be launched and any data to send to that activity. The startActivityForResult() method, however, also needs a request code.
The request code is an integer that identifies the request and can be used to differentiate between results when you process the return data. For example, if you launch one activity to take a photo and another to pick a photo from a gallery, you'll need different request codes to identify which request the returned data belongs to.
Conventionally you define request codes as static integer variables with names that include REQUEST. Use a different integer for each code. For example:
public static final int PHOTO_REQUEST = 1;
public static final int PHOTO_PICK_REQUEST = 2;
public static final int TEXT_REQUEST = 3;
Return a response from the launched activity
The response data from the launched activity back to the originating activity is sent in an intent, either in the data or the extras. You construct this return intent and put the data into it in much the same way you do for the sending intent. Typically your launched activity will have an onClick or other user input callback method in which you process the user's action and close the activity. This is also where you construct the response.
To return data from the launched activity, create a new empty intent object.
Intent returnIntent = new Intent();
Note: To avoid confusing sent data with returned data, use a new intent object rather than reusing the original sending intent object.
Return result intents do not need a class or component name to end up in the right place. The Android system directs the response back to the originating activity for you.
Add data or extras to the intent the same way you did with the original intent. You may need to define keys for the return intent extras at the start of your class.
public final static String EXTRA_RETURN_MESSAGE =
"com.example.mysampleapp.RETURN_MESSAGE";
Then put your return data into the intent as usual. Here the return message is an intent extra with the key EXTRA_RETURN_MESSAGE.
messageIntent.putExtra(EXTRA_RETURN_MESSAGE, mMessage);
Use the setResult() method with a response code and the intent with the response data:
setResult(RESULT_OK,replyIntent);
The response codes are defined by the Activity class, and can be
You'll use the result code in the originating activity.
Finally, call finish() to close the activity and resume the originating activity:
finish();
Read response data in onActivityResult()
Now that the launched activity has sent data back to the originating activity with an intent, that first activity must handle that data. To handle returned data in the originating activity, implement the onActivityResult() callback method. Here is a simple example.
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);
if (requestCode == TEXT_REQUEST) {
if (resultCode == RESULT_OK) {
String reply =
data.getStringExtra(SecondActivity.EXTRA_RETURN_MESSAGE);
// process data
}
}
}
The three arguments to the onActivityResult() contain all the information you need to handle the return data.
The example method shown above shows the typical logic for handling the request and response codes. The first test is for the TEXT_REQUEST request, and that the result was successful. Inside the body of those tests you extract the return information out of the intent. Use getData() to get the intent data, or getExtra() to retrieve values out of the intent extras with a specific key.
Activity navigation
Any app of any complexity that you build will include multiple activities, both designed and implemented by you, and potentially in other apps as well. As your users move around your app and between activities, consistent navigation becomes more important to the app's user experience. Few things frustrate users more than basic navigation that behaves in inconsistent and unexpected ways. Thoughtfully designing your app's navigation will make using your app predictable and reliable for your users.
Android system supports two different forms of navigation strategies for your app.
Back navigation, tasks, and the back stack
Back navigation allows your users to return to the previous activity by tapping the device back button . Back navigation is also called temporal navigation because the back button navigates the history of recently viewed screens, in reverse chronological order.
The back stack is the set of activities that the user has visited and that can be returned to by the user with the back button. Each time a new activity starts, it is pushed onto the back stack and takes user focus. The previous activity is stopped but is still available in the back stack. The back stack operates on a "last in, first out" mechanism, so when the user is done with the current activity and presses the Back button, that activity is popped from the stack (and destroyed) and the previous activity resumes.
Because an app can start activities both inside and outside a single app, the back stack contains all the activities that have been launched by the user in reverse order. Each time the user presses the Back button, each activity in the stack is popped off to reveal the previous one, until the user returns to the Home screen.
Android provides a back stack for each task. A task is an organizing concept for all the activities the user interacts with when performing an operation, whether they are inside your app or across multiple apps. Most tasks start from the Android home screen, and tapping an app icon starts a task (and a new back stack) for that app. If the user uses an app for a while, taps home, and starts a new app, that new app launches in its own task and has its own back stack. If the user returns to the first app, that first task's back stack returns. Navigating with the back button only returns to the activities in the current task, not for all tasks running on the device. Android enables the user to navigate between tasks with the overview or recent tasks screen, accessible with the square button on lower right corner of the device .
In most cases you don't have to worry about managing either tasks or the back stack for your app—the system keeps track of these things for you, and the back button is always available on the device.
There may, however, be times where you may want to override the default behavior for tasks or for the back stack. For example, if your screen contains an embedded web browser where users can navigate between web pages, you may wish to use the browser's default back behavior when users press the device's Back button, rather than returning to the previous activity. You may also need to change the default behavior for your app in other special cases such as with notifications or widgets, where activities deep within your app may be launched as their own tasks, with no back stack at all. You'll learn more about managing tasks and the back stack in a later section.
Up navigation
Up navigation, sometimes referred to as ancestral or logical navigation, is used to navigate within an app based on the explicit hierarchical relationships between screens. With Up navigation, your activities are arranged in a hierarchy, and "child" activities show a left-facing arrow in the action bar that returns the user to the "parent" activity. The topmost activity in the hierarchy is usually your main activity, and the user cannot go up from there.
For instance, if the main activity in an email app is a list of all messages, selecting a message launches a second activity to display that single email. In this case the message activity would provide an Up button that returns to the list of messages.
The behavior of the Up button is defined by you in each activity based on how you design your app's navigation. In many cases, Up and Back navigation may provide the same behavior: to just return to the previous activity. For example, a Settings activity may be available from any activity in your app, so "up" is the same as back -- just return the user to their previous place in the hierarchy.
Providing Up behavior for your app is optional, but a good design practice, to provide consistent navigation for the activities in your app.
Implement up navigation with parent activities
With the standard template projects in Android Studio, it's straightforward to implement Up navigation. If one activity is a child of another activity in your app's activity hierarchy, specify that activity's parent in the Android Manifest.
Beginning in Android 4.1 (API level 16), declare the logical parent of each activity by specifying the android:parentActivityName attribute in the <activity> element. To support older versions of Android, include <meta-data> information to define the parent activity explicitly. Use both methods to be backwards-compatible with all versions of Android.
Here are the skeleton definitions for both a main (parent) activity and a second (child) activity:
<application ... >
<!-- The main/home activity (it has no parent activity) -->
<activity
android:name=".MainActivity" ...>
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<!-- A child of the main activity -->
<activity android:name=".SecondActivity"
android:label="@string/activity2_name"
android:parentActivityName=".MainActivity">
<meta-data
android:name="android.support.PARENT_ACTIVITY"
android:value="com.example.android.twoactivities.MainActivity" />
</activity>
</application>
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
2.2: The Activity Lifecycle and Managing State
Contents:
In this chapter you'll learn about the activity lifecycle, the callback events you can implement to perform tasks in each stage of the lifecycle, and how to handle activity instance states throughout the activity lifecycle.
About the activity lifecycle
The activity lifecycle is the set of states an activity can be in during its entire lifetime, from the time it is initially created to when it is destroyed and the system reclaims that activity's resources. As the user interacts with your app and other apps on the device, the different activities move into different states.
For example, when you start an app, the app's main activity (Activity 1) is started, comes to the foreground, and receives the user focus. When you start a second activity (Activity 2), that new activity is also created and started, and the main activity is stopped. When you're done with the second activity and navigate back, the first activity resumes. The second activity stops and is no longer needed; if the user does not resume the second activity, it is eventually destroyed by the system.
Activity states and lifecycle callback methods
When an activity transitions into and out of the different lifecycle states as it runs, the Android system calls several lifecycle callback methods at each stage. All of the callback methods are hooks that you can override in each of your Activity classes to define how that activity behaves when the user leaves and re-enters the activity. Keep in mind that the lifecycle states (and callbacks) are per activity, not per app, and you may implement different behavior at different points in the lifecycle for different activities in your app.
This figure shows each of the activity states and the callback methods that occur as the activity transitions between different states:
Depending on the complexity of your activity, you probably don't need to implement all the lifecycle callback methods in your activities. However, it's important that you understand each one and implement those that ensure your app behaves the way users expect. Managing the lifecycle of your activities by implementing callback methods is crucial to developing a strong and flexible application.
Activity created (onCreate() method)
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// The activity is being created.
}
Your activity enters into the created state when it is started for the first time. When an activity is first created the system calls the onCreate() method to initialize that activity. For example, when the user taps your app icon from the Home screen to start that app, the system calls the onCreate() method for the activity in your app that you've declared to be the "launcher" or "main" activity. In this case the main activity's onCreate() method is analogous to the main() method in other programs.
Similarly, if your app starts another activity with an intent (either explicit or implicit), the system matches your intent request with an activity and calls onCreate() for that new activity.
The onCreate() method is the only required callback you must implement in your activity class. In your onCreate() method you perform basic application startup logic that should happen only once, such as setting up the user interface, assigning class-scope variables, or setting up background tasks.
Created is a transient state; the activity remains in the created state only as long as it takes to run onCreate(), and then the activity moves to the started state.
Activity started (onStart() method)
@Override
protected void onStart() {
super.onStart();
// The activity is about to become visible.
}
After your activity is initialized with onCreate(), the system calls the onStart() method, and the activity is in the started state. The onStart() method is also called if a stopped activity returns to the foreground, such as when the user clicks the back or up buttons to navigate to the previous screen. While onCreate() is called only once when the activity is created, the onStart() method may be called many times during the lifecycle of the activity as the user navigates around your app.
When an activity is in the started state and visible on the screen, the user cannot interact with it until onResume() is called, the activity is running, and the activity is in the foreground.
Typically you implement onStart() in your activity as a counterpart to the onStop() method. For example, if you release hardware resources (such as GPS or sensors) when the activity is stopped, you can re-register those resources in the onStart() method.
Started, like created, is a transient state. After starting the activity moves into the resumed (running) state.
Activity resumed/running (onResume() method)
@Override
protected void onResume() {
super.onResume();
// The activity has become visible (it is now "resumed").
}
Your activity is in the resumed state when it is initialized, visible on screen, and ready to use. The resumed state is often called the running state, because it is in this state that the user is actually interacting with your app.
The first time the activity is started the system calls the onResume() method just after onStart(). The onResume() method may also be called multiple times, each time the app comes back from the paused state.
As with the onStart() and onStop() methods, which are implemented in pairs, you typically only implement onResume() as a counterpart to onPause(). For example, if in the onPause() method you halt any onscreen animations, you would start those animations again in onResume().
The activity remains in the resumed state as long as the activity is in the foreground and the user is interacting with it. From the resumed state the activity can move into the paused state.
Activity paused (onPause() method)
@Override
protected void onPause() {
super.onPause();
// Another activity is taking focus
// (this activity is about to be "paused").
}
The paused state can occur in several situations:
The system calls the onPause() method when the activity moves into the paused state. Because the onPause() method is the first indication you get that the user may be leaving the activity, you can use onPause() to stop animation or video playback, release any hardware-intensive resources, or commit unsaved activity changes (such as a draft email).
The onPause() method should execute quickly. Don't use onPause() for for CPU-intensive operations such as writing persistent data to a database. The app may still be visible on screen as it passed through the paused state, and any delays in executing onPause() can slow the user's transition to the next activity. Implement any heavy-load operations when the app is in the stopped state instead.
Note that in multi-window mode (API 24), your paused activity may still fully visible on the screen. In this case you do not want to pause animations or video playback as you would for a partially visible activity. You can use the inMultiWindowMode() method in the Activity class to test whether your app is running in multiwindow mode.
Your activity can move from the paused state into the resumed state (if the user returns to the activity) or to the stopped state (if the user leaves the activity altogether).
Activity stopped (onStop() method)
@Override
protected void onStop() {
super.onStop();
// The activity is no longer visible (it is now "stopped")
}
An activity is in the stopped state when it is no longer visible on the screen at all. This is usually because the user has started another activity, or returned to the home screen. The system retains the activity instance in the back stack, and if the user returns to that activity it is restarted again. Stopped activities may be killed altogether by the Android system if resources are low.
The system calls the onStop() method when the activity stops. Implement the onStop() method to save any persistent data and release any remaining resources you did not already release in onPause(), including those operations that may have been too heavyweight for onPause().
Activity destroyed (onDestroy() method)
@Override
protected void onDestroy() {
super.onDestroy();
// The activity is about to be destroyed.
}
When your activity is destroyed it is shut down completely, and the Activity instance is reclaimed by the system. This can happen in several cases:
Use onDestroy() to fully clean up after your activity so that no component (such as a thread) is running after the activity is destroyed.
Note that there are situations where the system will simply kill the activity's hosting process without calling this method (or any others), so you should not rely on onDestroy() to save any required data or activity state. Use onPause() or onStop() instead.
Activity restarted (onRestart() method)
@Override
protected void onRestart() {
super.onRestart();
// The activity is about to be restarted.
}
The restarted state is a transient state that only occurs if a stopped activity is started again. In this case the onRestart() method is called in between onStop() and onStart(). If you have resources that need to be stopped or started you typically implement that behavior in onStop() or onStart() rather than onRestart().
Configuration changes and activity state
Earlier in the section onDestroy() you learned that your activities may be destroyed when the user navigates back, by you with the finish() method, or by the system when it needs to free resources. The fourth time your activities are destroyed is when the device undergoes a configuration change.
Configuration changes occur on the device, in runtime, and invalidate the current layout or other resources in your activity The most common form of a configuration change is when the device is rotated. When the device rotates from portrait to landscape, or vice versa, the layout for your app also needs to change. The system recreates the activity to help that activity adapt to the new configuration by loading alternative resources (such as a landscape-specific layout).
Other configuration changes can include a change in locale (the user chooses a different system language), or the user enters multi-window mode (Android 7). In multi-window mode, if you have configured your app to be resizeable, Android recreates your activities to use a layout definition for the new, smaller activity size.
When a configuration change occurs Android system shuts down your activity (calling onPause(), onStop(), and onDestroy()), and then starts it over again from the start (calling onCreate(), onStart(), and onResume()).
Activity instance state
When an activity is destroyed and recreated, there are implications for the runtime state of that activity. When an activity is paused or stopped, the state of the activity is retained because that activity is still held in memory. When an activity is recreated, the state of the activity and any user progress in that activity is lost, with these exceptions:
The activity state is stored as a set of key/value pairs in a Bundle object called the activity instance state. The system saves default state information to instance state bundle just before the activity is stopped, and passes that bundle to the new activity instance to restore.
You can add your own instance data to the instance state bundle by overriding the onSaveInstanceState() callback. The state bundle is passed to the onCreate() method, so you can restore that instance state data when your activity is created. There is also a corresponding onRestoreInstanceState() callback you can use to restore the state data.
Because device rotation is a common use case for you app, make sure you test that your activity behaves correctly in response to this configuration change, and implement instance state if you need to.
Note: The activity instance state is particular to a specific instance of an activity, running in a single task. If the user force-quits the app, reboots the device, or if the Android system shuts down the entire app process to preserve memory, the activity instance state is lost. To keep state changes across app instances and device reboots, you need to write that data to shared preferences. You'll learn more about shared preferences in a later chapter.
Saving activity instance state
To save information to the instance state bundle, use the onSaveInstanceState() callback. This is not a lifecycle callback method, but it is called when the user is leaving your activity (sometime before the onStop() method).
@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
super.onSaveInstanceState(savedInstanceState);
// save your state data to the instance state bundle
}
The onSaveInstanceState() method is passed a Bundle object (a collection of key/value pairs) when it is called. This is the instance state bundle to which you will add your own activity state information.
You learned about bundles in a previous chapter when you added keys and values to the intent extras. Add information to the instance state bundle in the same way, with keys you define and the various "put" methods defined in the Bundle class:
@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
super.onSaveInstanceState(savedInstanceState);
// Save the user's current game state
savedInstanceState.putInt("score", mCurrentScore);
savedInstanceState.putInt("level", mCurrentLevel);
}
Don't forget to call through to the superclass, to make sure the state of the view hierarchy is also saved to the bundle.
Restoring activity instance state
Once you've saved the activity instance state, you also need to restore it when the activity is recreated. You can do this one of two places:
Most of the time the better place to restore the activity state is in onCreate(), to ensure that your user interface including the state is available as soon as possible.
To restore the saved instances state in onCreate(), test for the existence of a state bundle before you try to get data out of it. When your activity is started for the first time there will be no state and the bundle will be null.
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState); // Always call the superclass first
// Check whether we're recreating a previously destroyed instance
if (savedInstanceState != null) {
// Restore value of members from saved state
mCurrentScore = savedInstanceState.getInt("score");
mCurrentLevel = savedInstanceState.getInt("level");
} else {
// Probably initialize members with default values for a new instance
}
...
}
Related Practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn More
2.3: Activities and Implicit Intents
Contents:
In a previous chapter you learned about intents, and how to launch specific activities in your app with explicit intents. In this chapter you'll learn how to send and receive implicit intents, where you declare a general action to perform in the intent, and the system matches your request with a specific activity. Additionally, you'll learn more about Android tasks, and how you can configure your apps to associate new activities with different tasks.
About implicit intents
In an earlier chapter you learned about explicit intents, where you can start one activity from another by specifying the class name of that activity. This is the most basic way to use intents, to start an activity or other app component and pass data to it (and sometimes pass data back.)
A more flexible use of intents is the implicit intent. With implicit intents you do not specify the exact activity (or other component) to run—instead, you include just enough information in the intent about the task you want to perform. The Android system matches the information in your request intent with activities available on the device that can perform that task. If there's only one activity that matches, that activity is launched. If there are multiple matching activities, the user is presented with an app chooser that enables them to pick which app they would like to perform the task.
For example, you have an app that lists available snippets of video. If the user touches an item in the list, you want to play that video snippet. Rather than implementing an entire video player in your own app, you can launch an intent that specifies the task as "play an object of type video." The Android system then matches your request with an activity that has registered itself to play objects of type video.
Activities register themselves with the system as being able to handle implicit intents with intent filters, declared in the Android manifest. For example, the main activity (and only the main activity) for your app has an intent filter that declares it the main activity for the launcher category. This intent filter is how the Android system knows to start that specific activity in your app when the user taps the icon for your app on the device home screen.
Intent actions, categories, and data
Implicit intents, like explicit intents, are instances of the Intent class. In addition to the parts of an intent you learned about in an earlier chapter (such as the intent data and intent extras), these fields are used by implicit intents:
Intent actions, categories, and data types are used both by the Intent object you create in your sending activity, as well as in the intent filters you define in the Android manifest for the receiving activity. The Android system uses this information to match an implicit intent request with an activity or other component that can handle that intent.
Sending implicit intents
Starting activities with implicit intents, and passing data between those activities, works much the same way as it does for explicit intents:
When you create an implicit Intent object, you:
Create implicit Intent objects
To use an implicit intent, create an Intent object as you did for an explicit intent, only without the specific component name.
Intent sendIntent = new Intent();
You can also create the Intent object with a specific action:
Intent sendIntent = new Intent(Intent.ACTION_VIEW);
Once you have an Intent object you can add other information (category, data, extras) with the various Intent methods. For example, this code creates an implicit Intent object, sets the intent action to ACTION_SEND, defines an intent extra to hold the text, and sets the type of the data to the MIME type "text/plain".
Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);
sendIntent.setType("text/plain");
Resolve the activity before starting it
When you define an implicit intent with a specific action and/or category, there is a possibility that there won't be any activities on the device that can handle your request. If you just send the intent and there is no appropriate match, your app will crash.
To verify that an activity or other component is available to receive your intent, use the resolveActivity() method with the system package manager like this:
if (sendIntent.resolveActivity(getPackageManager()) != null) {
startActivity(chooser);
}
If the result of resolveActivity() is not null, then there is at least one app available that can handle the intent, and it's safe to call startActivity(). Do not send the intent if the result is null.
If you have a feature that depends on an external activity that may or may not be available on the device, a best practice is to test for the availability of that external activity before the user tries to use it. If there is no activity that can handle your request (that is, resolveActivity() returns null), disable the feature or provide the user an error message for that feature.
Show the app chooser
To find an activity or other component that can handle your intent requests, the Android system matches your implicit intent with an activity whose intent filters indicate that they can perform that action. If there are multiple apps installed that match, the user is presented with an app chooser that lets them select which app they want to use to handle that intent.
In many cases the user has a preferred app for a given task, and they will select the option to always use that app for that task. However, if multiple apps can respond to the intent and the user might want to use a different app each time, you can choose to explicitly show a chooser dialog every time. For example, when your app performs a "share this" action with the ACTION_SEND action, users may want to share using a different app depending on the current situation.
To show the chooser, you create a wrapper intent for your implicit intent with the createChooser() method, and then resolve and call startActivity() with that wrapper intent. The createChooser() method also requires a string argument for the title that appears on the chooser. You can specify the title with a string resource as you would any other string.
For example:
// The implicit Intent object
Intent sendIntent = new Intent(Intent.ACTION_SEND);
// Always use string resources for UI text.
String title = getResources().getString(R.string.chooser_title);
// Create the wrapper intent to show the chooser dialog.
Intent chooser = Intent.createChooser(sendIntent, title);
// Resolve the intent before starting the activity
if (sendIntent.resolveActivity(getPackageManager()) != null) {
startActivity(chooser);
}
Receiving implicit intents
If you want an activity in your app to respond to implicit intents (from your own app or other apps), declare one or more intent filters in the Android manifest. Each intent filter specifies the type of intents it accepts based on the intent's action, data, and category. The system will deliver an implicit intent to your app component only if that intent can pass through one of your intent filters.
Note: An explicit intent is always delivered to its target, regardless of any intent filters the component declares. Conversely, if your activities do not declare any intent filters, they can only be launched with an explicit intent.
Once your activity is successfully launched with an implicit intent you can handle that intent and its data the same way you did an explicit intent, by:
Intent filters
Define intent filters with one or more <intent-filter> elements in the app's manifest file, nested in the corresponding <activity> element. Inside <intent-filter> , specify the type of intents your activity can handle. The Android system matches an implicit intent with an activity or other app component only if the fields in the Intent object match the intent filters for that component.
An intent filter may contain these elements, which correspond to the fields in the Intent object described above:
For example, the main activity for your app includes this <intent-filter> element, which you saw in an earlier chapter:
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
This intent filter has the action MAIN and the category LAUNCHER. The <action> element specifies that this is the "main" entry point to the application. The <category> element specifies that this activity should be listed in the system's application launcher (to allow users to launch this activity). Only the main activity for your app should have this intent filter.
Here's another example for an implicit intent to share a bit of text. This intent filter matches the implicit intent example from the previous section:
<activity android:name="ShareActivity">
<intent-filter>
<action android:name="android.intent.action.SEND"/>
<category android:name="android.intent.category.DEFAULT"/>
<data android:mimeType="text/plain"/>
</intent-filter>
</activity>
You can specify more than one action, data, or category for the same intent filter, or have multiple intent filters per activity to handle different kinds of intents.
The Android system tests an implicit intent against an intent filter by comparing the parts of that intent to each of the three intent filter elements (action, category, and data). The intent must pass all three tests or the Android system won't deliver the intent to the component. However, because a component may have multiple intent filters, an intent that does not pass through one of a component's filters might make it through on another filter.
Actions
An intent filter can declare zero or more <action> elements for the intent action. The action is defined in the name attribute, and consists of the string "android.intent.action." plus the name of the intent action, minus the ACTION_ prefix. So, for example, an implicit intent with the action ACTION_VIEW matches an intent filter whose action is android.intent.action.VIEW.
For example, this intent filter matches either ACTION_EDIT and ACTION_VIEW:
<intent-filter>
<action android:name="android.intent.action.EDIT" />
<action android:name="android.intent.action.VIEW" />
...
</intent-filter>
To get through this filter, the action specified in the incoming Intent object must match at least one of the actions. You must include at least one intent action for an incoming implicit intent to match.
Categories
An intent filter can declare zero or more <category> elements for intent categories. The category is defined in the name attribute, and consists of the string "android.intent.category." plus the name of the intent category, minus the CATEGORY prefix.
For example, this intent filter matches either CATEGORY_DEFAULT and CATEGORY_BROWSABLE:
<intent-filter>
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
...
</intent-filter>
Note that all activities that you want to accept implicit intents must include the android.intent.category.DEFAULT intent-filter. This category is applied to all implicit Intent objects by the Android system.
Data
An intent filter can declare zero or more <data> elements for the URI contained in the intent data. As the intent data consists of a URI and (optionally) a MIME type, you can create an intent filter for various aspects of that data, including:
For example, this intent filter matches data intents with a URI scheme of http and a MIME type of either "video/mpeg" or "audio/mpeg".
<intent-filter>
<data android:mimeType="video/mpeg" android:scheme="http" />
<data android:mimeType="audio/mpeg" android:scheme="http" />
...
</intent-filter>
Sharing data with ShareCompat.IntentBuilder
Share actions are an easy way for users to share items in your app with social networks and other apps. Although you can build a share action in your own app using implicit intents with the ACTION_SEND action, Android provides the ShareCompat.IntentBuilder helper class to easily implement sharing in your app.
Note: For apps that target Android releases after API 14, you can use the ShareActionProvider class for share actions instead of ShareCompat.IntentBuilder. The ShareCompat class is part of the V4 support library, and allows you to provide share actions in apps in a backward-compatible fashion. ShareCompat provides a single API for sharing on both old and new Android devices. You'll learn more about the Android support libraries in a later chapter.
With the ShareCompat.IntentBuilder class you do not need to create or send an implicit intent for the share action. Use the methods in ShareCompat.IntentBuilder to indicate the data you want to share as well as any additional information. Start with the from() method to create a new intent builder, add other methods to add more data, and end with the startChooser() method to create and send the intent. You can chain the methods together like this:
ShareCompat.IntentBuilder
.from(this) // information about the calling activity
.setType(mimeType) // mime type for the data
.setChooserTitle("Share this text with: ") //title for the app chooser
.setText(txt) // intent data
.startChooser(); // send the intent
Managing tasks and activities
In a previous chapter you learned about tasks and the back stack, in which the task for your app contains its own stack for the activities the user has visited while they use your app. As the user navigates around your app, activity instances for that task are pushed and popped from the stack for that task.
Most of the time the user's navigation from activity to activity and back again through the stack is straightforward. Depending on the design and navigation of your app there may be complications, especially with activities that are started from other apps and other tasks.
For example, say you have an app with three activities: A, B, and C. A launches B with an intent, and B launches C. C, in turn sends an intent to launch A. In this case the system creates a second instance of A on the top of the stack, rather than bringing the already-running instance to the foreground. Depending on how you implement your activities, the two instances of A can get out of sync and provide a confusing experience for the user as they navigate back through the stack.
Or, say your activity C can be launched from a second app with an implicit intent. The user runs the second app, which has its own task and its own back stack. If that app uses an implicit intent to launch your activity C, a new instance of C is created and placed on the back stack for that second app's task. Your app still has its own task, its own back stack, and its own instance of C.
Much of the time the Android's default behavior for tasks and activities works fine and you don't have to worry about how your activities are associated with tasks, or how they exist in the back stack. If you want to change the normal behavior, Android provides a number of ways to manage tasks and the activities within those tasks, including:
Activity Launch Modes
Use activity launch modes to indicate how new activities should be treated when they're launched—that is, if they should be added to the current task, or launched into a new task. Define launch modes for the activity with attributes on the <activity> element of the Android manifest, or with flags set on the intent that starts that activity.
Activity attributes
To define a launch mode for an activity add the android:launchMode attribute to the <activity> element in the Android manifest. This example uses a launch mode of "standard", which is the default.
<activity
android:name=".SecondActivity"
android:label="@string/activity2_name"
android:parentActivityName=".MainActivity"
android:launchMode="standard">
...
</activity>
There are four launch modes available as part of the <activity> element:
The vast majority of apps will only use the standard or single top launch modes. See the launchMode attribute documentation for more detailed information on launch modes.
Intent flags
Intent flags are options that specify how the activity (or other app component) that receives the intent should handle that intent. Intent flags are defined as constants in the Intent class and begin with the word FLAG_. You add intent flags to an Intent object with setFlag() or addFlag().
Three specific intent flags are used to control activity launch modes, either in conjunction with the launchMode attribute or in place of it. Intent flags always take precedence over the launch mode in case of conflicts.
See the Intent class for more information about other available intent flags.
Handle new intents
When the Android system routes an intent to an existing activity instance, the system calls the onNewIntent() callback method (usually just before the onResume() method). The onNewIntent() method includes an argument for the new intent that was routed to the activity. Override the onNewIntent() method in your class to to handle the information from that new intent.
Note that the getIntent() method—to get access to the intent that launched the activity—always retains the original intent that launched the activity instance. Call setIntent() in the onNewIntent() method:
@Override
public void onNewIntent(Intent intent) {
super.onNewIntent(intent);
// Use the new intent, not the original one
setIntent(intent);
}
Any call to getIntent() after this returns the new intent.
Task Affinities
Task affinities indicate which task an activity prefers to belong to when that activity instance is launched. By default all activities belong to the app that launched them. Activities from outside an app launched with implicit intents belong to the app that sent the implicit intent.
To define a task affinity, add the android:taskAffinity attribute to the <activity> element in the Android manifest. The default task affinity is the package name for the app (declared in . The new task name should be unique and different from the package name. This example uses "com.example.android.myapp.newtask" for the affinity name.
<activity
android:name=".SecondActivity"
android:label="@string/activity2_name"
android:parentActivityName=".MainActivity"
android:taskAffinity="com.example.android.myapp.newtask">
...
</activity>
Task affinities are often used in conjunction with the singleTask launch mode or the FLAG_ACTIVITY_NEW_TASK intent flag to place a new activity in its own named task. If the new task already exists, the intent is routed to that task and that affinity.
Another use of task affinities is reparenting, which enables a task to move from the activity in which it was launched to the activity it has an affinity for. To enable task reparenting, add a task affinity attribute to the <activity> element and set android:allowTaskReparenting to true.
<activity
android:name=".SecondActivity"
android:label="@string/activity2_name"
android:parentActivityName=".MainActivity"
android:taskAffinity="com.example.android.myapp.newtask"
android:allowTaskReparenting="true" >
...
</activity>
Related Practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn More
3.1: The Android Studio Debugger
Contents:
In this chapter you'll learn about debugging your apps in Android Studio.
About debugging
Debugging is the process of finding and fixing errors (bugs) or unexpected behavior in your code. All code has bugs, from incorrect behavior in your app, to behavior that excessively consumes memory or network resources, to actual app freezing or crashing.
Bugs can result for many reasons:
Use the debugging, testing, and profiling capabilities in Android Studio to help you reproduce, find, and resolve all of these problems. Those capabilities include:
In this chapter you'll learn how to debug your app with the Android Studio debugger, set and view breakpoints, step through your code, and examine variables.
Running the debugger
Running an app in debug mode is similar to just running that app. You can either run an app in debug mode, or attach the debugger to an already-running app.
Run your app in debug mode
To start debugging, click Debug in the toolbar. Android Studio builds an APK, signs it with a debug key, installs it on your selected device, then runs it and opens the Debug window.
Debug a running app
If your app is already running on a device or emulator, start debugging that app with these steps:
In the Choose Process dialog, select the process to which you want to attach the debugger.
By default, the debugger shows the device and app process for the current project, as well as any connected hardware devices or virtual devices on your computer. Select Show all processes to show all processes on all devices.
Resume or Stop Debugging
To resume executing an app after debugging it, select Run > Resume Program or click the Resume icon.
To stop debugging your app, select Run > Stop or click the Stop icon in the toolbar.
Using Breakpoints
A breakpoint is a place in your code where you want to pause the normal execution of your app to perform other actions such as examining variables or evaluating expressions, or executing your code line by line to determine the causes of runtime errors.
Add breakpoints
To add a breakpoint to a line in your code, use these steps:
Click in the left gutter of the editor window at that line, next to the line numbers. A red dot appears at that line, indicating a breakpoint.
You can also use Run > Toggle Line Breakpoint or Control-F8 (Command-F8 on OS X) to set a breakpoint at a line.
If your app is already running, you don't need to update it to add the breakpoint.
When your code execution reaches the breakpoint, Android Studio pauses execution of your app. You can then use the tools in the Android debugger to view the state of the app and debug that app as it runs.
View and configure breakpoints
To view all the breakpoints you've set and configure breakpoint settings, click the View Breakpoints icon on the left edge of the debugger window. The Breakpoints window appears.
In this window all the breakpoints you have set appear in the left pane, and you can enable or disable each breakpoint with the check boxes. If a breakpoint is disabled, Android Studio does not pause your app when execution reaches that breakpoint.
Select a breakpoint from the list to configure its settings. You can configure a breakpoint to be disabled at first and have the system enable it after a different breakpoint is encountered. You can also configure whether a breakpoint should be disabled after it has been reached.
To set a breakpoint for any exception, select Exception Breakpoints in the list of breakpoints.
Disable (Mute) all breakpoints
Disabling a breakpoint enables you to temporarily "mute" that breakpoint without removing it from your code. If you remove a breakpoint altogether you also lose any conditions or other features you created for that breakpoint, so disabling it can be a better choice.
To mute all breakpoints, click the Mute Breakpoints icon. Click the icon again to enable (unmute) all breakpoints.
Use conditional breakpoints
Conditional breakpoints are breakpoints that only stop execution of your app if the test in the condition is true. To define a test for a conditional breakpoint, use these steps:
Right click on a breakpoint icon, and enter a test in the Condition field.
You can also use the Breakpoints window to enter a breakpoint condition.
The test you enter in this field can be any Java expression as long as it returns a boolean value. You can use variable names from your app as part of the expression.
Stepping through code
After your app's execution has stopped because a breakpoint has been reached, you can execute your code from that point one line at a time with the Step Over, Step Into, and Step Out functions.
To use any of the step functions:
Begin debugging your app. Pause the execution of your app with a breakpoint.
Your app's execution stops, and the debugger shows the current state of the app. The current line is highlighted in your code.
Click the Step Overicon, select Run > Step Over, or type F8.
Step Over executes the next line of the code in the current class and method, executing all of the method calls on that line and remaining in the same file.
Click the Step Intoicon, select Run > Step Into, or type F7.
Step Into jumps into the execution of a method call on the current line (versus just executing that method and remaining on the same line). The Frames view (which you'll learn about in the next section) updates to show the new stack frame (the new method). If the method call is contained in another class, the file for that class is opened and the current line in that file is highlighted. You can continue stepping over lines in this new method call, or step deeper into other methods.
Click the Step Outicon, select Run > Step Out, or type Shift-F8.
Step Out finishes executing the current method and returns to the point where that method was called.
Viewing execution stack frames
The Frames view of the debugger window allows you to inspect the execution stack and the specific frame that caused the current breakpoint to be reached.
The execution stack shows all the classes and methods (frames) that are being executed up to this point in the app, in reverse order (most recent frame first). As execution of a particular frame finishes, that frame is popped from the stack and execution returns to the next frame.
Clicking a line for a frame in the Frames view opens the associated source in the editor and highlights the line where that frame was initially executed. The Variables and Watches views also update to reflect the state of the execution environment when that frame was last entered.
Inspecting and modifying variables
The Variables view of the debugger window allows you to inspect the variables available at the current stack frame when the system stops your app on a breakpoint. Variables that hold objects or collections such as arrays can be expanded to view their components.
The Variables pane also allows you to evaluate expressions on the fly using static methods and/or variables available within the selected frame.
If the Variables view is not visible, click the Restore Variables View icon .
To modify variables in your app as it runs:
Enter a new value for the variable, and type Return.
The value you enter must be of the appropriate type for that variable, or Android Studio returns a "type mismatch" error.
Setting watches
The Watches view provides similar functionality to the Variables view except that expressions added to the Watches pane persist between debugging sessions. Add watches for variables and fields that you access frequently or that provide state that is helpful for the current debugging session.
To use watches:
In the Watches pane, click the plus (+) button.
In the text box that appears, type the name of the variable or expression you want to watch and then press Enter.
Remove an item from the Watches list by selecting the item and then clicking the minus (-) button.
Change the order of the elements in the Watches list by selecting an item and then clicking the up or down icons.
Evaluating expressions
Use Evaluate Expression to explore the state of variables and objects in your app, including calling methods on those objects. To evaluate an expression:
Click the Evaluate Expressionicon, or select Run > Evaluate Expression. You can also right-click on any variable and choose Evaluate Expression.
The Evaluate Expression window appears.
Enter any expression into the Expression window and click Evaluate.
The Evaluate Expression window updates with the result of the execution. Note that the result you get from evaluating an expression is based on the app's current state. Depending on the values of the variables in your app at the time you evaluate expressions, you may get different results. Changing the values of variables in your expressions also changes the current running state of the app.
More tools for debugging
Android Studio and the Android SDK include a number of other tools to help you find and correct issues in your code. These tools include:
Trace logging and the Android manifest
There are multiple types of debugging available to you beyond setting breakpoints and stepping through code. You can also use logging and tracing to find issues with your code. When you have a trace log file (generated by adding tracing code to your application or by DDMS), you can load the log files in Traceview, which displays the log data in two panels:
Likewise, you can set android:debuggable in the <application> tag of the Android Manifest to "true" , which sets whether or not the application can be debugged, even when running on a device in user mode. By default, this value is set to "false" .
You can create and configure build types in the module-level build.gradle file inside the android {} block. When you create a new module, Android Studio automatically creates the debug and release build types for you. Although the debug build type doesn't appear in the build configuration file, Android Studio configures it with debuggable true. This allows you to debug the app on secure Android devices and configures APK signing with a generic debug keystore. You can add the the debug build type to your configuration if you want to add or change certain settings.
All these changes made for debugging must be removed from your code before release because they can impact the execution and performance production code.
When you prepare your app for release, you must remove all the extra code in your source files that you wrote for testing purposes.
In addition to prepping the code itself, there are a few other tasks you need to complete in order to get your app ready to publish. These include:
Remove all debug tracing calls from your source code files such as startMethodTracing() and stopMethodTracing().
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
3.2: Testing your App
Contents:
In this chapter you'll get an overview of Android testing, and about creating and running local unit tests in Android Studio with JUnit.
About testing
Even though you have an app that compiles and runs and looks the way you want it to on different devices, you must make sure that your app will behave the way you expect it to in every situation, especially as your app grows and changes. Even if you try to manually test your app every time you make a change — a tedious prospect at best — you might miss something or not anticipate what end users might do with your app to cause it to fail.
Writing and running tests is a critical part of the software development process. "Test-Driven Development" (TDD) is a popular software development philosophy that places tests at the core of all software development for an application or service.This does not negate the need for further testing, it merely gives you a solid baseline to work with.
Testing your code can help you catch issues early in development—when they are the least expensive to address — and improve the robustness of your code as your app gets larger and more complex. With tests in your code, you can exercise small portions of your app in isolation, and in an automatable and repeatable manner. Because….the code you write to test your app doesn't end up in the production version of your app; it lives only on your development machine, alongside your app's code in Android Studio.
Types of tests
Android supports several different kinds of tests and testing frameworks. Two basic forms of testing Android Studio supports are local unit tests and instrumented tests.
Local unit tests are tests that are compiled and run entirely on your local machine with the Java Virtual Machine (JVM). Use local unit tests to test the parts of your app (such as the internal logic) that do not need access to the Android framework or an Android device or emulator, or those for which you can create fake ("mock" or stub) objects that pretend to behave like the framework equivalents.
Instrumented tests are tests that run on an Android device or emulator. These tests have access to the Android framework and to Instrumentation information such as the app's Context. You can use instrumented tests for unit testing, user interface (UI) testing, or integration testing, making sure the components of your app interact correctly with other apps. Most commonly, you use instrumented tests for UI testing, which allows you to test that your app behaves correctly when a user interacts with your app's activities or enters a specific input.
For most forms of user interface testing, you use the Espresso framework, which allows you to write automated UI tests. You'll learn about instrumented tests and Espresso in a later chapter.
Unit Testing
Unit tests should be the fundamental tests in your app testing strategy. By creating and running unit tests against your code, you can verify that the logic of individual functional code areas or units is correct. Running unit tests after every build helps you catch and fix problems introduced by code changes to your app.
A unit test generally exercises the functionality of the smallest possible unit of code (which could be a method, class, or component) in a repeatable way. Create unit tests when you need to verify the logic of specific code in your app. For example, if you are unit testing a class, your test might check that the class is in the right state. For a method, you might test its behavior for different values of its parameters, especially null.Typically, the unit of code is tested in isolation; your test monitors changes to that unit only. A mocking framework such as Mockito can be used to isolate your unit from its dependencies.You can also write your unit tests for Android in JUnit 4, a common unit testing framework for Java code.
The Android Testing Support Library
The Android Testing Support Library provides the infrastructure and APIs for testing Android apps, including support for JUnit 4. With the testing support library you can build and run test code for your apps.
You may already have the Android Testing Support Library installed with Android Studio. To check for the Android Support Repository, follow these steps:
The Android Testing Support Library classes are located under the android.support.test package. There are also older testing APIs in android.test. You should use the support libraries first, when given a choice between the support libraries and the older APIs, as the support libraries help build and distribute tests in a cleaner and more reliable fashion than directly coding against the API itself.
Setting up testing
To prepare your project for testing in Android Studio, you need to:
Android Studio source sets
Source sets are a collection of related code in your project that are for different build targets or other "flavors" of your app. When Android Studio creates your project, it creates three source sets for you:
Source sets appear in the Android Studio Android view under the package name for your app. The main source set includes just the package name. The test and androidTest source sets have the package name followed by (test) or (androidTest), respectively.
These source sets correspond to folders in the src directory for your project. For example, the files for the test source set are located in src/test/java.
Configure Gradle for test dependencies
To use the unit testing APIs, you need to configure the dependencies for your project. The default gradle build file for your project includes some of these dependencies by default, but you may need to add more dependencies for additional testing features such as matching or mocking frameworks.
In your app's top-level build.gradle file, specify these libraries as dependencies. Note that the version numbers for these libraries may have changed. If Android Studio reports a newer library, update the number to reflect the current version.
dependencies {
// Required -- JUnit 4 framework
testCompile 'junit:junit:4.12'
// Optional -- hamcrest matchers
testCompile 'org.hamcrest:hamcrest-library:1.3'
// Optional -- Mockito framework
testCompile 'org.mockito:mockito-core:1.10.19'
}
After you add dependencies to your build.gradle file you may have to sync your project to continue. Click Sync Now in Android Studio when prompted.
Configure a test runner
A test runner is a library or set of tools that enables testing to occur and the results to be printed to a log. Your Android project has access to a basic JUnit test runner as part of the JUnit4 APIs. The Android test support library includes a test runner for instrumented and Espresso tests, AndroidJUnitRunner , which also supports Junit 3 and 4.
This chapter only demonstrates the default runner for unit tests. To set AndroidJUnitRunner as the default test runner in your Gradle project, add the following dependency to your build.gradle file. There may already be dependencies in the defaultConfig section. If so, add the testInstrumentationRunner line to that section.
android {
defaultConfig {
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
}
}
Creating and running unit tests
Create your unit tests as a generic Java file using the JUnit 4 APIs, and store those tests in the test source set. Each Android Studio project template includes this source set and a sample Java test file called ExampleUnitTest.
Create a new test class
To create a new test class file, add a Java file to the test source set for your project. Test class files for unit testing are typically named for the class in your app that you are testing, with "Test" appended. For example, if your have a class called Calculator in your app, the class for your unit tests would be CalculatorTest.
To add a new test class file, use these steps:
Write your tests
Use JUnit 4 syntax and annotations to write your tests. For example, the test class shown below includes the following annotations:
For more information on JUnit Annotations, see the JUnit Reference documentation.
@RunWith(JUnit4.class)
@SmallTest
public class CalculatorTest {
private Calculator mCalculator;
// Set up the environment for testing
@Before
public void setUp() {
mCalculator = new Calculator();
}
// test for simple addition
@Test
public void addTwoNumbers() {
double resultAdd = mCalculator.add(1d, 1d);
assertThat(resultAdd, is(equalTo(2d)));
}
}
The addTwoNumbers() method is the only actual test. The key part of a unit test is the assertion, which is defined here by the assertThat() method. Assertions are expressions that must evaluate and result in a value of true for the test to pass. JUnit 4 provides a number of assertion methods, but assertThat() is the most flexible, as it allows for general-purpose comparison methods called matchers. The Hamcrest framework is commonly used for matchers ("Hamcrest" is an anagram for matchers). Hamcrest includes a large number of comparison methods as well as enabling you to write your own.
For more information on assertions, see the JUnit reference documentation for the Assert class. For more information on the hamcrest framework, see the Hamcrest Tutorial.
Note that the addTwoNumbers() method in this example includes only one assertion. The general rule for unit tests is to provide a separate test method for every individual assertion. Grouping more than one assertion into a single method can make your tests harder to debug if only one assertion fails, and obscures the tests that do succeed.
Run your tests
To run your local unit tests, use these steps:
The project builds, if necessary, and the testing view appears at the bottom of the screen. If all the tests you ran are successful, the progress bar at the top of the view turns green. A status message in the footer also reports "Tests Passed."
Related Practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn More
3.3: The Android Support Library
Contents:
In this chapter you'll explore the Android Support Library, part of the Android SDK tools. You can use the Android Support Library for backward-compatible versions of new Android features and for additional UI elements and features not included in the standard Android framework.
About the Android Support Library
The Android SDK tools include a number libraries collectively called the Android Support Library. This package of libraries provides several features that are not built into the standard Android framework, and provides backward compatibility for older devices. Include any of these libraries in your app to incorporate that library's functionality.
Note: The Android Support library is a different package from the Android Testing Support library you learned about in a previous chapter. The testing support library provides tools and APIs just for testing, whereas the more general support library provides features of all kinds (but no testing).
Features
The features of the Android Support Library include:
Backward Compatibility
Support libraries allow apps running on older versions of the Android platform to support features made available on newer versions of the platform. For example, an app running on a version of Android lower than 5.0 (API level 21) that relies on framework classes cannot display Material Design elements, as that version of the Android framework doesn't support Material Design. However, if the app incorporates the v7 appcompat library, that app has access to many of the features available in API level 21, including support for Material Design. As a result, your app can deliver a more consistent experience across a broader range of platform versions.
The support library APIs also provide a compatibility layer between different versions of the framework APIs. This compatibility layer transparently intercepts API calls and changes either the arguments passed, handles the operation itself, or redirects the operation. In the case of the support libraries, by using the compatibility layer's methods, you can ensure interoperability between older and newer Android releases. Each new release of Android adds new classes and methods, and possibly deprecates some older classes and methods. The support libraries include compatibility classes that can be used for backward compatibility.You can identify these classes by their name as thier names include "Compat" (such as ActivityCompat).
When an app calls one of the support class's methods, the behavior of that method depends on the underlying Android version. If the device includes the necessary framework functionality, the support library uses the framework. If the device is running an older version of Android, the support library makes an attempt to implement similar compatible behavior with the APIs it has available.
For most cases you do not need to write complex code that checks the version of Android and performs different operations based on that version. You can rely on the support library to do those checks and choose appropriate behavior.
When in doubt, choose a support library compatibility class over the framework class.
Versions
Each package in the support library has a version number in three parts (X.Y.Z) that corresponds to an Android API level, and to a particular revision of that library. For example, a support library version number of 22.3.4 is version 3.4 of the support library for API 22.
As a general rule, use the most recent version of the support library for the API your app is compiled and targeted for, or a newer version. For example, if your app targets API 25, use the version 25.X.X of the support library.
You can always use a newer support library than the one for your targeted API. For example, if your app targets API 22 you can use version 25 or higher of the support library. The reverse is not true—you cannot use an older support library with a newer API. As a general rule, you should try to use the most up-to-date API and support libraries in your app.
API Levels
In addition to the actual version number, the name of the support library itself indicates the API level that the library is backward-compatible with. You cannot use a support library in your app for an API higher than the minimum API your app supports. For example, if the minimum API your app supports is 10, you cannot use the v13 support library or v14 preferences support library in your app. If your app uses multiple support libraries, your minimum API must be higher than the largest number -- that is, if you include support libraries for v7, v13, and v14 your minimum API must be at least 14.
All of the support libraries, including the v4 and v7 libraries, require a minimum SDK of API 9.
Support libraries and features
This section describes the important features provided by the libraries in the Android Support Library. You'll learn about many of the features described in this section in a later chapter.
v4 support library
The v4 support libraries include the largest set of APIs compared to the other libraries, including support for application components, user interface features, accessibility, data handling, network connectivity, and programming utilities.
The v4 support libraries include these specific components:
v7 support library
The v7 support library includes both compatibility libraries and additional features.
The v7 support library includes all the v4 support libraries, so you don't have to add those separately. A dependency on the v7 support library is included in every new Android Studio project, and new activities in your project extend from AppCompatActivity.
The v7 support libraries include these specific components:
Other libraries
Setting up and using the Android Support Library
The Android Support Library package is part of the Android SDK, and available to download in the Android SDK manager. To set up your project to use any of the support libraries, use these steps:
Download the support library
In Android Studio, you'll use the Android Support Repository—the repository in the SDK manager for all support libraries—to get access to the library from within your project.
You may already have the Android support libraries downloaded and installed with Android Studio. To verify that you have the support libraries available, follow these steps:
In Android Studio, select Tools > Android > SDK Manager, or click the SDK Managericon.
The SDK Manager preference pane appears.
Find a library dependency statement
To provide access to a support library from your project, you add that library to your gradle build file as a dependency. Dependency statements have a specific format that includes the name and version number of the library.
Copy the dependency statement shown at the end of the section. For example, the dependency for the design support library looks like this:
com.android.support:design:23.3.0
The version number at the end of the line may vary from the one shown above. You will update the version number when you add the dependency to the build.gradle file in the next step.
Add the dependency to your build.gradle file
The gradle scripts for your project manage how your app is built, including specifying the dependencies your app has on other libraries. To add a support library to your project, modify your gradle build files to include the dependency to that library you found in the previous section.
Expand Gradle Scripts, if necessary, and open the build.gradle (Module: app) file.
Note that build.gradle for the overall project (build.gradle (Project: app_name) is a different file from the build.gradle for the app module.
Locate the dependencies section of build.gradle, near the end of the file.
The dependencies section for a new project may already include dependencies several other libraries.
compile 'com.android.support:design:23.3.0'
Update the version number, if necessary.
If the version number you specified is lower than the currently available library version number, Android Studio will warn you that an updated version is available. ("a newer version of com.android.support:design is available"). Edit the version number to the updated version, or type Shift+Enter and choose "Change to XX.X.X" where XX.X.X is the updated version number.
Using the support library APIs
All the support library classes are contained in the android.support packages, for example, android.support.v7.app.AppCompatActivity is the fully-qualified name for the AppCompatActivity class, from which all of your activities extend.
Support Library classes that provide support for existing framework APIs typically have the same name as framework class but are located in the android.support class packages. Make sure that when you import those classes you use the right package name for the class you're interested in. For example, when applying the ActionBar class, use one of:
The support library also includes several View classes used in XML layout files. In the case of the views, you must always use the fully-qualified name of that view in the XML element for that view:
<android.support.design.widget.CoordinatorLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
</android.support.design.widget.CoordinatorLayout>
Note: You'll learn about CoordinatorLayout in a later chapter.
Checking system versions
Although the support library can help you implement single apps that work across Android platform versions, there may be times when you need to check for the version of Android your app is running on, and provide the correct code for that version.
Android provides a unique code for each platform version in the Build constants class. Use these codes within your app to test for the version and to ensure that the code that depends on higher API levels is executed only when those APIs are available on the system.
private void setUpActionBar() {
// Make sure we're running on Honeycomb or higher to use ActionBar APIs
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
ActionBar actionBar = getActionBar();
actionBar.setDisplayHomeAsUpEnabled(true);
} else { // do something else }
}
Related Practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn More
4.1: User Input Controls
Interaction design for user input
The reason you design an app is to provide some function to a user, and in order to use it, there must be a way for the user to interact with it. For an Android app, interaction typically includes tapping, pressing, typing, or talking and listening. And the framework provides corresponding user interface (UI) elements such as buttons, menus, keyboards, text entry fields, and a microphone.
In this chapter you will learn how to design an app's user interaction—the buttons needed for triggering actions, and the text entry fields for user input. In your design you need to anticipate what users might need to do, and ensure that the UI has elements that are easy to access, understand, and use. When your app needs to get data from the user, make it easy and obvious. Give the user whatever assistance possible to provide any input data, such as anticipating the source of the data, minimizing the number of user gestures (such as taps and swipes), and pre-filling forms if possible.
Make sure your app is intuitive; that is, your app should perform as your users expect it to perform. When you rent a car, you expect the steering wheel, gear shift, headlights, and indicators to be in a certain place. When you enter a room, you expect the light switch to be in a certain place. When a user starts an app, the user expects buttons to be clickable, spinners to show a drop-down menu, and text editing fields to show the onscreen keyboard when tapping inside them. Don't violate the established expectations, or you'll make it harder for your users to use your app.
Note: Android users have become familiar with UI elements acting in a certain way, so it is important to be consistent with the experience of other Android apps, and predictable in your choices and their layout. Doing so helps you make apps that satisfy your customers.
This chapter introduces the Android input controls, which are the interactive components in your app's user interface. You can use a wide variety of input controls in your UI, such as text fields, buttons, checkboxes, radio buttons, toggle buttons, spinners, and more.
In the above figure:
For a brief description of each input control, see Input Controls in the developer documentation.
Input controls and view focus
Android applies a common programmatic abstraction to all input controls called a view. The View class represents the basic building block for UI components, including input controls. In previous chapters, we have learned that View is the base class for classes that provide support for interactive UI components, such as buttons, text fields, and layout managers.
If there are many UI input components in your app, which one gets input from the user first? For example, if you have several TextView objects and an EditText object in your app, which UI component (that is, which View) receives text typed by the user first?
The View that "has the focus" will be the component that receives user input.
Focus indicates which view is currently selected to receive input. Focus can be initiated by the user by touching a View, such as a TextView or an EditText object. You can define a focus order in which the user is guided from UI control to UI control using the Return key, Tab key, or arrow keys. Focus can also be programmatically controlled; a programmer can requestFocus() on any View that is focusable.
Another attribute of an input control is clickable. If this attribute is (boolean) true , then the View can react to click events. As it is with focus, clickable can be programmatically controlled.
The difference between clickable and focusable is that clickable means the view can be clicked or tapped, while focusable means that the view is allowed to gain focus from an input device such as a keyboard. Input devices like keyboards can't determine which view to send their input events to, so they send them to the view that has focus.
Android device input methods are becoming quite diverse: directional pads, trackballs, touch screens, keyboards, and more. Some devices, like tablets and smartphones, are primarily navigated by touch. Others, like the Google TV, have no touch screen whatsoever and rely upon input devices such as those with a directional pad (d-pad). When a user is navigating through a user interface with an input device such as directional keys or a trackball, it is necessary to:
Fortunately, in most cases you don't need to control focus yourself, unless you want to provide a set of text input fields and you want the user to be able to move from one field to the next by tapping the Return or Tab key. Android provides "touch mode" for devices that can be touched, such as smartphones and tablets. When the user begins interacting with the interface by touching it, only Views with isFocusableInTouchMode() set to true are focusable, such as text input fields. Other Views that are touchable, such as buttons, do not take focus when touched. If the user hits a directional key or scrolls with a trackball, the device exits "touch mode" and finds a view to take focus.
Focus movement is based on an algorithm that finds the nearest neighbor in a given direction:
You can influence the way Android handles focus by arranging input controls such as EditText elements in a certain layout from left to right and top to bottom, so that focus shifts from one to the other in the sequence you want.
If the algorithm does not give you what you want, you can override it by adding the nextFocusDown , nextFocusLeft , nextFocusRight , and nextFocusUp XML attributes to your layout file.
<LinearLayout
android:orientation="vertical"
... >
<Button android:id="@+id/top"
android:nextFocusUp="@+id/bottom"
... />
<Button android:id="@+id/bottom"
android:nextFocusDown="@+id/top"
... />
</LinearLayout>
Ordinarily in a vertical LinearLayout , navigating up from the first Button would not go anywhere, nor would navigating down from the second Button . But in the above example, the top Button has defined the bottom button as the nextFocusUp (and vice versa), so the navigation focus will cycle from top-to-bottom and bottom-to-top.
If you'd like to declare a View as focusable in your UI (when it is traditionally not), add the android:focusable XML attribute to the View in the layout, and set its value to true . You can also declare a View as focusable while in "touch mode" with android:focusableInTouchMode set to true .
You can also explicitly set the focus or find out which view has focus by using the following methods:
Understanding focus with respect to input controls is essential for understanding how the on-screen keyboard works with text editing views. For example, depending on which attributes you use with an EditText view, tapping the Return key in the keyboard can either enter a new line, or advance the focus to the next view. You'll learn more about focus with text editing views later in this chapter.
Using buttons
People like to press buttons. Show someone a big red button with a message that says "Do not press" and the person will likely press it for the sheer pleasure of pressing a big red button (that the button is forbidden is also a factor).
You can make a Button using:
When touched or clicked, a button performs an action. The text and/or icon provides a hint of that action. It is also referred to as a "push-button" in Android documentation.
A button is a rectangle or rounded rectangle, wider than it is tall, with a descriptive caption in its center. Android buttons follow the guidelines in the the Android Material Design Specification—you will learn more about that in a later lesson.
Android offers several types of buttons, including raised buttons and flat buttons as shown in the figure below. These buttons have three states: normal, disabled, and pressed.
In the above figure:
Designing raised buttons
A raised button is a rectangle or rounded rectangle that appears lifted from the screen—the shading around it indicates that it is possible to touch or click it. The raised button can show text or an icon, or show both text and an icon.
To use raised buttons that conform to the Material Design Specification, follow these steps:
In your build.gradle (Module: app) file, add the newest appcompat library to the dependencies section:
compile 'com.android.support:appcompat-v7:x.x.x.'
In the above, x.x.x. is the version number. If the version number you specified is lower than the currently available library version number, Android Studio will warn you ("a newer version is available"). Update the version number to the one Android Studio tells you to use.
public class MainActivity extends AppCompatActivity {
...
}
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
... />
Use raised buttons to give more prominence to actions in layouts with a lot of varying content. Raised buttons add dimension to a flat layout—they emphasize functions on busy or wide spaces. Raised buttons show a background shadow when touched (pressed) or clicked, as shown below.
In the above figure:
Creating a raised button with text
Some raised buttons are best designed as text, without an icon, such as a "Save" button, because an icon by itself might not convey an obvious meaning. To create a raised button with text, use the Button class, which extends the TextView class.
To create a raised button with just text, use the Button class in your XML layout as follows:
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_text"
... />
The best practice with text buttons is to define a very short word as a string resource (button_text in the above example), so that the string can be translated. For example, "Save" could be translated into French as "Enregistrer" without changing any of the code.
Creating a raised button with an icon and text
While a button usually displays text that tells the user what the button is for, raised buttons can also display icons along with text.
Choosing an icon
To choose images of a standard icon that are resized for different displays, follow these steps:
Vector images of a standard icon are automatically resized for different sizes of device displays. To choose vector images, follow these steps:
Adding the button with text and icon to the layout
To create a button with text and an icon as shown in the figure below, use a Button in your XML layout. Add the android:drawableLeft attribute to draw the icon to the left of the button's text, as shown in the figure below:
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_text"
android:drawableLeft="@drawable/button_icon"
... />
Creating a raised button with only an icon
If the icon is universally understood, you may want to use it instead of text.
To create a raised button with just an icon or image (no text), use the ImageButton class, which extends the ImageView class. You can add an ImageButton to your XML layout as follows:
<ImageButton
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/button_icon"
... />
Changing the style and appearance of raised buttons
The simplest way to show a more prominent raised button is to use a different background color for the button. You can specify the android:background attribute with a drawable or color resource:
android:background="@color/colorPrimary"
The appearance of your button—the background color and font—may vary from one device to another, because devices by different manufacturers often have different default styles for input controls. You can control exactly how your buttons and other input controls are styled using a theme that you apply to your entire app.
For instance, to ensure that all devices that can run the Holo theme will use the Holo theme for your app, declare the following in the <application> element of the AndroidManifest.xml file:
android:theme="@android:style/Theme.Holo"
After adding the above declaration, the app will be displayed using the theme.
Apps designed for Android 4.0 and higher can also use the DeviceDefault public theme family. DeviceDefault themes are aliases for the device's native look and feel. The DeviceDefault theme family and widget style family offer ways for developers to target the device's native theme with all customizations intact.
For Android apps running on 4.0 and newer, you have the following options:
If you're not already familiar with Android's style and theme system, you should read Styles and Themes. The blog post "Holo Everywhere" provides information about using the Holo theme while supporting older devices.
For a guide on styling and customizing buttons using XML, see Buttons (in the "User Interface" section of the Android developer guide). For a comprehensive guide to designing buttons, see "Components - Buttons" in the Material Design Specification.
Designing flat buttons
A flat button, also known as a borderless button, is a text-only button that appears flat on the screen without a shadow. The major benefit of flat buttons is simplicity — they minimize distraction from content. Flat buttons are useful when you have a dialog, as shown in the figure below, which requires user input or interaction. In this case, you would want to have the same font and style as the text surrounding the button. This keeps the look and feel the same across all elements within the dialog.
Flat buttons, shown below, resemble basic buttons except that they have no borders or background, but still change appearance during different states. A flat button shows an ink shade around it when pressed (touched or clicked).
In the above figure:
Note: If you use a flat button within a layout, be sure to use padding to set it off from the surrounding text, so that the user can easily see it.
To create a flat button, use the Button class. Add a Button to your XML layout, and apply "?android:attr/borderlessButtonStyle" as the style attribute:
<Button
android:id="@+id/button_send"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_send"
android:onClick="sendMessage"
style="?android:attr/borderlessButtonStyle" />
Designing images as buttons
You can turn any View, such as an ImageView, into a button by adding the android:onClick attribute in the XML layout. The image for the ImageView must already be stored in the drawables folder of your project.
Note: To bring images into your Android Studio project, create or save the image in JPEG format, and copy the image file into the app > src > main > res > drawables folder of your project. For more information about drawable resources, see Drawable Resources in the App Resources section of the Android Developer Guide.
If you are using multiple images as buttons, arrange them in a viewgroup so that they are grouped together. For example, the following images in the drawable folder (icecream_circle.jpg, donut_circle.jpg, and froyo_circle.jpg) are defined for ImageViews that are grouped in a LinearLayout set to a horizontal orientation so that they appear side-by-side:
<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
android:layout_marginTop="260dp">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/icecream_circle"
android:onClick="orderIcecream"/>
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/donut_circle"
android:onClick="orderDonut"/>
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/froyo_circle"
android:onClick="orderFroyo"/>
</LinearLayout>
Designing a floating action button
A floating action button, shown below as #1 in the figure below, is a circular button that appears to float above the layout.
You should use a floating action button only to represent the primary action for a screen. For example, the primary action for the Contacts app's main screen is adding a contact, as shown in the figure above. A floating action button is the right choice if your app requires an action to be persistent and readily available on a screen. Only one floating action button is recommended per screen.
The floating action button uses the same type of icons that you would use for a button with an icon, or for actions in the app bar at the top of the screen. You can add an icon as described previously in "Choosing an icon for the button".
To use a floating action button in your Android Studio project, you must add the following statement to your build.gradle (Module: app) file in the dependencies section:
compile 'com.android.support:design:23.4.0'
Note: The version number at the end of the statement may change; use the newest version suggested by Android Studio.
To create a floating action button, use the FloatingActionButton class, which extends the ImageButton class. You can add a floating action button to your XML layout as follows:
<android.support.design.widget.FloatingActionButton
android:id="@+id/fab"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom|end"
android:layout_margin="@dimen/fab_margin"
android:src="@drawable/ic_fab_chat_button_white" />
Floating action buttons, by default, are 56 x 56 dp in size. It is best to use the default size unless you need the smaller version to create visual continuity with other screen elements.
You can set the mini size (30 x 40 dp) with the app:fabSize attribute:
app:fabSize="mini"
To set it back to the default size (56 x 56 dp):
app:fabSize="normal"
For more design instructions involving floating action buttons, see Components– Buttons: Floating Action Button in the Material Design Spec.
Responding to button-click events
Use an event listener called OnClickListener, which is an interface in the View class, to respond to the click event that occurs when the user taps or clicks a clickable object, such as a Button, ImageButton, or FloatingActionButton. For more information on event listeners, or other types of UI events, read the Input Events section of the Android Developer Documentation.
Adding onClick to the layout element
To set up an OnClickListener for the clickable object in your Activity code and assign a callback method, use the android:onClick attribute with the clickable object's element in the XML layout. For example:
<Button
android:id="@+id/button_send"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_send"
android:onClick="sendMessage" />
In this case, when a user clicks the button, the Android system calls the Activity's sendMessage() method:
public void sendMessage(View view) {
// Do something in response to button click
}
The method you declare as the android:onClick attribute must be public , return void , and define a View as its only parameter (this will be the view that was clicked). Use the method to perform a task or call other methods as a response to the button click.
Using the button-listener design pattern
You can also handle the click event programmatically using the button-listener design pattern (see figure below). For more information on the "listener" design pattern, see Creating Custom Listeners.
Use the event listener View.OnClickListener, which is an interface in the View class that contains a single callback method, onClick(). The method is called by the Android framework when the view is triggered by user interaction.
The event listener must already be registered to the view in order to be called for the event. Follow these steps to register the listener and use it (refer to the figure below the steps):
Button button = (Button) findViewById(R.id.button_send);
button.setOnClickListener(new View.OnClickListener() {
...
public void onClick(View v) {
// Do something in response to button click
}
To set the click listener programmatically instead of with the onClick attribute, customize the View.OnClickListener class and override its onClick() handler to perform some action, as shown below:
fab.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
// Add a new word to the wordList.
}
});
Using the event listener interface for other events
Other events can occur with UI elements, and you can use the callback methods already defined in the event listener interfaces to handle them. The methods are called by the Android framework when the view—to which the listener has been registered—is triggered by user interaction. You therefore must set the appropriate listener to use the method. The following are some of the listeners available in the Android framework and the callback methods associated with each one:
Using input controls for making choices
Android offers ready-made input controls for the user to select one or more choices:
Checkboxes
Use checkboxes when you have a list of options and the user may select any number of choices, including no choices. Each checkbox is independent of the other checkboxes in the list, so checking one box doesn't uncheck the others. (If you want to limit the user's selection to only one item of a set, use radio buttons.) A user can also uncheck an already checked checkbox.
Users expect checkboxes to appear in a vertical list, like a to-do list, or side-by-side horizontally if the labels are short.
Each checkbox is a separate instance of the CheckBox class. You create each checkbox using a CheckBox element in your XML layout. To create multiple checkboxes in a vertical orientation, use a vertical LinearLayout:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<CheckBox android:id="@+id/checkbox1_chocolate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/chocolate_syrup" />
<CheckBox android:id="@+id/checkbox2_sprinkles"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/sprinkles" />
<CheckBox android:id="@+id/checkbox3_nuts"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/crushed_nuts" />
</LinearLayout>
Typically programs retrieve the state of checkboxes when a user touches or clicks a Submit or Done button in the same activity, which uses the android:onClick attribute to call a method such as onSubmit() :
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/submit"
android:onClick="onSubmit"/>
The callback method— onSubmit() in the above Button example—must be public , return void , and define a View as a parameter (the view that was clicked). In this method you can determine if a checkbox is selected by using the isChecked() method (inherited from CompoundButton). The isChecked() method will return a (boolean) true if there is a checkmark in the box. For example, the following statement assigns the boolean value of true or false to checked depending on whether the checkbox is checked:
boolean checked = ((CheckBox) view).isChecked();
The following code snippet shows how the onSubmit() method might check to see which checkbox is selected, using the resource id for the checkbox element:
public void onSubmit(View view){
StringBuffer toppings = new
StringBuffer().append(getString(R.string.toppings_label));
if (((CheckBox) findViewById(R.id.checkbox1_chocolate)).isChecked()) {
toppings.append(getString(R.string.chocolate_syrup_text));
}
if (((CheckBox) findViewById(R.id.checkbox2_sprinkles)).isChecked()) {
toppings.append(getString(R.string.sprinkles_text));
}
if (((CheckBox) findViewById(R.id.checkbox3_nuts)).isChecked()) {
toppings.append(getString(R.string.crushed_nuts_text));
}
...
}
Tip: To respond quickly to a checkbox—such as display a message (like an alert), or show a set of further options—you can use the android:onClick attribute in the XML layout for each checkbox to declare the callback method for that checkbox, which must be defined within the activity that hosts this layout.
For more information about checkboxes, see Checkboxes in the User Interface section of the Android Developer Documentation.
Radio buttons
Use radio buttons when you have two or more options that are mutually exclusive—the user must select only one of them. (If you want to enable more than one selection from the set, use checkboxes.)
Users expect radio buttons to appear as a vertical list, or side-by-side horizontally if the labels are short.
Each radio button is an instance of the RadioButton class. Radio buttons are normally used together in a RadioGroup. When several radio buttons live inside a radio group, checking one radio button unchecks all the others. You create each radio button using a RadioButton element in your XML layout within a RadioGroup view group:
<RadioGroup
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
android:layout_below="@id/orderintrotext">
<RadioButton
android:id="@+id/sameday"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/same_day_messenger_service"
android:onClick="onRadioButtonClicked"/>
<RadioButton
android:id="@+id/nextday"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/next_day_ground_delivery"
android:onClick="onRadioButtonClicked"/>
<RadioButton
android:id="@+id/pickup"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/pick_up"
android:onClick="onRadioButtonClicked"/>
</RadioGroup>
Use the android:onClick attribute for each radio button to declare the click event handler method for the radio button, which must be defined within the activity that hosts this layout. In the above layout, clicking any radio button calls the same onRadioButtonClicked() method in the activity, but you could create separate methods in the activity and declare them in each radio button's android:onClick attribute.
The click event handler method must be public , return void , and define a View as its only parameter (the view that was clicked). The following shows one method, onRadioButtonClicked() , for all radio buttons, using switch case statements to check the resource id for the radio button element to determine which one was checked:
public void onRadioButtonClicked(View view) {
// Check to see if a button has been clicked.
boolean checked = ((RadioButton) view).isChecked();
// Check which radio button was clicked.
switch(view.getId()) {
case R.id.sameday:
if (checked)
// Same day service
break;
case R.id.nextday:
if (checked)
// Next day delivery
break;
case R.id.pickup:
if (checked)
// Pick up
break;
}
}
Tip: To give users a chance to review their radio button selection before the app responds, you could implement a Submit or Done button as shown previously with checkboxes, and remove the android:onClick attributes from the radio buttons. Then add the onRadioButtonClicked() method to the android:onClick attribute for the Submit or Done button.
For more information about radio buttons, see "Radio Buttons" in the User Interface section of the Android Developer Documentation.
Toggle buttons and switches
A toggle input control lets the user change a setting between two states. Android provides the ToggleButton class, which shows a raised button with "OFF" and "ON".
Examples of toggles include the On/Off switches for Wi-Fi, Bluetooth, and other options in the Settings app.
Android also provides the Switch class, which is a short slider that looks like a rocker switch offering two states (on and off). Both are extensions of the CompoundButton class.
Using a toggle button
Create a toggle button by using a ToggleButton element in your XML layout:
<ToggleButton
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/my_toggle"
android:text="
android:onClick="onToggleClick"/>
Tip: The android:text attribute does not provide a text label for a toggle button—the toggle button always shows either "ON" or "OFF". To provide a text label next to (or above) the toggle button, use a separate TextView .
To respond to the toggle tap, declare an android:onClick callback method for the ToggleButton . The method must be defined in the activity hosting the layout, and it must be public , return void , and define a View as its only parameter (this will be the view that was clicked). Use CompoundButton.OnCheckedChangeListener() to detect the state change of the toggle. Create a CompoundButton.OnCheckedChangeListener object and assign it to the button by calling setOnCheckedChangeListener() . For example, the onToggleClick() method checks whether the toggle is on or off, and displays a toast message:
public void onToggleClick(View view) {
ToggleButton toggle = (ToggleButton) findViewById(R.id.my_toggle);
toggle.setOnCheckedChangeListener(new
CompoundButton.OnCheckedChangeListener() {
public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
StringBuffer onOff = new StringBuffer().append("On or off? ");
if (isChecked) { // The toggle is enabled
onOff.append("ON ");
} else { // The toggle is disabled
onOff.append("OFF ");
}
Toast.makeText(getApplicationContext(), onOff.toString(),
Toast.LENGTH_SHORT).show();
}
});
}
Tip: You can also programmatically change the state of a ToggleButton using the setChecked(boolean) method. Be aware, however, that the method specified by the android:onClick() attribute will not be executed in this case.
Using a switch
A switch is a separate instance of the Switch class, which extends the CompoundButton class just like ToggleButton. Create a toggle switch by using a Switch element in your XML layout:
<Switch
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/my_switch"
android:text="@string/turn_on_or_off"
android:onClick="onSwitchClick"/>
The android:text attribute defines a string that appears to the left of the switch, as shown below:
To respond to the switch tap, declare an android:onClick callback method for the Switch —the code is basically the same as for a ToggleButton . The method must be defined in the activity hosting the layout, and it must be public , return void , and define a View as its only parameter (this will be the view that was clicked). Use CompoundButton.OnCheckedChangeListener() to detect the state change of the switch. Create a CompoundButton.OnCheckedChangeListener object and assign it to the button by calling setOnCheckedChangeListener() . For example, the onSwitchClick() method checks whether the switch is on or off, and displays a toast message:
public void onSwitchClick(View view) {
Switch aSwitch = (Switch) findViewById(R.id.my_switch);
aSwitch.setOnCheckedChangeListener(new
CompoundButton.OnCheckedChangeListener() {
public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
StringBuffer onOff = new StringBuffer().append("On or off? ");
if (isChecked) { // The switch is enabled
onOff.append("ON ");
} else { // The switch is disabled
onOff.append("OFF ");
}
Toast.makeText(getApplicationContext(), onOff.toString(),
Toast.LENGTH_SHORT).show();
}
});
}
Tip: You can also programmatically change the state of a Switch using the setChecked(boolean) method. Be aware, however, that the method specified by the android:onClick() attribute will not be executed in this case.
For more information about toggles, see "Toggle Buttons" in the User Interface section of the Android Developer Documentation.
Spinners
A spinner provides a quick way to select one value from a set. Touching the spinner displays a drop-down list with all available values, from which the user can select one.
If you have a long list of choices, a spinner may extend beyond your layout, forcing the user to scroll it. A spinner scrolls automatically, with no extra code needed. However, scrolling a long list (such as a list of countries) is not recommended as it can be hard to select an item.
To create a spinner, use the Spinner class, which creates a view that displays individual spinner values as child views, and lets the user pick one. Follow these steps:
Create the spinner UI element
To create a spinner in your XML layout, add a Spinner element, which provides the drop-down list:
<Spinner
android:id="@+id/label_spinner"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
</Spinner>
Specify the values for the spinner
You add an adapter that fills the spinner list with values. An adapter is like a bridge, or intermediary, between two incompatible interfaces. For example, a memory card reader acts as an adapter between the memory card and a laptop. You plug the memory card into the card reader, and plug the card reader into the laptop, so that the laptop can read the memory card.
The spinner-adapter pattern takes the data set you've specified and makes a view for each item in the data set, as shown in the figure below.
The SpinnerAdapter class, which implements the Adapter class, allows you to define two different views: one that shows the data values in the spinner itself, and one that shows the data in the drop-down list when the spinner is touched or clicked.
The values you provide for the spinner can come from any source, but must be provided through a SpinnerAdapter, such as an ArrayAdapter if the values are available in an array. The following shows a simple array called labels_array of predetermined values in the strings.xml file:
<string-array name="labels_array">
<item>Home</item>
<item>Work</item>
<item>Mobile</item>
<item>Other</item>
</string-array>
Tip: You can use a CursorAdapter if the values could come from a source such as a stored file or a database. You learn more about stored data in another chapter.
Create the spinner and its adapter
Create the spinner, and set its listener to the activity that implements the callback methods. The best place to do this is when the view is created in the onCreate() method. Follow these steps (refer to the full onCreate() method at the end of the steps):
Sets the onItemSelectedListener to whichever activity implements the callbacks (this) using the setOnItemSelectedListener() method.
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// Create the spinner.
Spinner spinner = (Spinner) findViewById(R.id.label_spinner);
if (spinner != null) {
spinner.setOnItemSelectedListener(this);
}
}
Also in the onCreate() method, add a statement that creates the ArrayAdapter with the string array:
// Create ArrayAdapter using the string array and default spinner layout.
ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,
R.array.labels_array, android.R.layout.simple_spinner_item);
As shown above, you use the createFromResource() method, which takes as arguments:
The layout for each spinner item (layout.simple_spinner_item).
Tip: You should use the simple_spinner_item default layout, unless you want to define your own layout for the items in the spinner.
Specify the layout the adapter should use to display the list of spinner choices by calling the setDropDownViewResource() method of the ArrayAdapter class. For example, you can use simple_spinner_dropdown_item as your layout:
// Specify the layout to use when the list of choices appears.
adapter.setDropDownViewResource
(android.R.layout.simple_spinner_dropdown_item);
Tip: You should use the simple_spinner_dropdown_item default layout, unless you want to define your own layout for the spinner's appearance.
// Apply the adapter to the spinner.
spinner.setAdapter(adapter);
The full code for the onCreate() method is shown below:
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// Create the spinner.
Spinner spinner = (Spinner) findViewById(R.id.label_spinner);
if (spinner != null) {
spinner.setOnItemSelectedListener(this);
}
// Create ArrayAdapter using the string array and default spinner layout.
ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,
R.array.labels_array, android.R.layout.simple_spinner_item);
// Specify the layout to use when the list of choices appears.
adapter.setDropDownViewResource
(android.R.layout.simple_spinner_dropdown_item);
// Apply the adapter to the spinner.
if (spinner != null) {
spinner.setAdapter(adapter);
}
}
Implement the OnItemSelectedListener interface in the Activity
To define the selection callback for the spinner, update the Activity that uses the spinner to implement the AdapterView.OnItemSelectedListener interface:
public class MainActivity extends AppCompatActivity implements
AdapterView.OnItemSelectedListener {
Android Studio automatically imports the AdapterView widget. Implement the AdapterView.OnItemSelectedListener interface in order to have the onItemSelected() and onNothingSelected() callback methods to use with the spinner object.
When the user chooses an item from the spinner's drop-down list, here's what happens and how you retrieve the item:
Retrieve the selected item in the spinner menu using the getItemAtPosition() method of the AdapterView class:
public void onItemSelected(AdapterView<?> adapterView, View view, int
pos, long id) {
String spinner_item = adapterView.getItemAtPosition(pos).toString();
}
The arguments for onItemSelected() are as follows:
parent AdapterView | The AdapterView where the selection happened |
view View | The view within the AdapterView that was clicked |
int pos | The position of the view in the adapter |
long id | The row id of the item that is selected |
For more information about spinners, see Spinners in the "User Interface" section of the Android Developer Documentation.
Text input
Use the EditText class to get user input that consists of textual characters, including numbers and symbols. EditText extends the TextView class, to make the TextView editable.
Customizing an EditText object for user input
In the Layout Manager of Android Studio, create an EditText view by adding an EditText to your layout with the following XML:
<EditText
android:id="@+id/edit_simple"
android:layout_height="wrap_content"
android:layout_width="match_parent">
</EditText>
Enabling multiple lines of input
By default, the EditText view allows multiple lines of input as shown in the figure below, and suggests spelling corrections. Tapping the Return (also known as Enter) key on the on-screen keyboard ends a line and starts a new line in the same EditText view.
Note: In the above figure, #1 is the Return (also known as Enter) key.
Enabling Return to advance to the next view
If you add the android:inputType attribute to the EditText view with a value such as "textCapCharacters" (to change the input to all capital letters) or "textAutoComplete" (to enable spelling suggestions as the user types), tapping the Return key closes the on-screen keyboard and advances the focus to the next view. This behavior is useful if you want the user to fill out a form consisting of EditText fields, so that the user can advance quickly to the next EditText view.
Attributes for customizing an EditText view
Use attributes to customize the EditText view for input. For example:
For a list of EditText attributes, including inherited TextView attributes, see the "Summary" of the EditText class description.
Getting the user's input
Enabling the user to input text is only useful if you can use that text in some way in your app. To use the input, you must first get it from the EditText view in the XML layout. The steps you follow to set up the EditText view and get user input from it are:
android:id="@+id/editText_main"
EditText editText = (EditText) findViewById(R.id.editText_main);
String showString = editText.getText().toString();
Tip: You can use the valueOf() method of the Integer class to convert the string to an integer if the input is an integer.
Changing keyboards and input behaviors
The Android system shows an on-screen keyboard—known as a soft input method—when a text field in the UI receives focus. To provide the best user experience, you can specify characteristics about the type of input the app expects, such as whether it's a phone number or email address. You can also specify how the input method should behave, such as whether or not it shows spelling suggestions or provides capital letters for the beginning of a sentence. You can change the soft input method to a numeric keypad for entering only numbers, or even a phone keypad for phone numbers.
Android also provides an extensible framework for advanced programmers to develop and install their own Input Method Editors (IME) for speech input, specific types of keyboard entry, and other applications.
Declare the input method by adding the android:inputType attribute to the EditText view. For example, the following attribute sets the on-screen keyboard to be a phone keypad:
android:inputType="phone"
Use the android:inputType attribute with the following values:
Tip: You can use the pipe (|) character (Java bitwise OR) to combine attribute values for the android:inputType attribute:
android:inputType="textAutoCorrect|textCapSentences"
For details about the android:inputType attribute, see Specifying the Input Method Type in the developer documentation. For a complete list of constant values for android:inputType, see the "android:inputType" section of the TextView documentation.
Changing the "action" key in the keyboard
On Android devices, the "action" key is the Return key. This key is normally used to enter another line of text for an EditText element that allows multiple lines. If you set an android:inputType attribute for the EditText view with a value such as "textCapCharacters" (to change the input to all capital letters) or "textAutoComplete" (to enable spelling suggestions as the user types), the Return key closes the on-screen keyboard and advances the focus to the next view.
If you want the user to enter something other than text, such as a phone number, you may want to change the "action" key to an icon for a Send key, and change the action to be dialing a phone number. Follow these steps:
Use the android:inputType attribute to set an input type for the keyboard:
<EditText
android:id="@+id/phone_number"
android:inputType="phone"
... >
</EditText>
The android:inputType attribute, in the above example, sets the keyboard type to phone , which forces one line of input (for a phone number).
EditText editText = (EditText) findViewById(R.id.phone_number);
editText.setOnEditorActionListener(new
TextView.OnEditorActionListener() {
// Add onEditorAction() method
}
@Override
public boolean onEditorAction(TextView textView,
int actionId, KeyEvent keyEvent) {
boolean handled = false;
if (actionId == EditorInfo.IME_ACTION_SEND) {
dialNumber();
handled = true;
}
return handled;
});
Note: For help setting the listener, see "Specifying the Input ActionSpecifying Keyboard Actions" in Text Fields. For more information about the EditorInfo class, see the EditorInfo documentation.
Using dialogs and pickers
A dialog is a window that appears on top of the display or fills the display, interrupting the flow of activity. Dialogs inform users about a specific task and may contain critical information, require decisions, or involve multiple tasks.
For example, you would typically use a dialog to show an alert that requires users to tap a button make a decision, such as OK or Cancel. In the figure below, the left side shows an alert with Disagree and Agree buttons, and the center shows an alert with Cancel and Discard buttons.
You can also use a dialog to provide choices in the style of radio buttons, as shown on the right side of the figure below.
The base class for all dialog components is a Dialog. There are several useful Dialog subclasses for alerting the user on a condition, showing status or progress, displaying information on a secondary device, or selecting or confirming a choice, as shown on the left side of the figure below. The Android SDK also provides ready-to-use dialog subclasses such as pickers for picking a time or a date, as shown on the right side of the figure below. Pickers allow users to enter information in a predetermined, consistent format that reduces the chance for input error.
Dialogs always retain focus until dismissed or a required action has been taken.
Tip: Best practices recommend using dialogs sparingly as they interrupt the user's work flow. Read the Dialogs design guide for additional best design practices, and Dialogs in the Android developer documentation for code examples.
The Dialog class is the base class for dialogs, but you should avoid instantiating Dialog directly unless you are creating a custom dialog. For standard Android dialogs, use one of the following subclasses:
Showing an alert dialog
Alerts are urgent interruptions, requiring acknowledgement or action, that inform the user about a situation as it occurs, or an action before it occurs (as in discarding a draft). You can provide buttons in an alert to make a decision. For example, an alert dialog might require the user to click Continue after reading it, or give the user a choice to agree with an action by clicking a positive button (such as OK or Accept), or to disagree by clicking a negative button (such as Disagree or Cancel).
Use the AlertDialog subclass of the Dialog class to show a standard dialog for an alert. The AlertDialog class allows you to build a variety of dialog designs. An alert dialog can have the following regions (refer to the diagram below):
Building the AlertDialog
The AlertDialog.Builder class uses the builder design pattern, which makes it easy to create an object from a class that has a lot of required and optional attributes and would therefore require a lot of parameters to build. Without this pattern, you would have to create constructors for combinations of required and optional attributes; with this pattern, the code is easier to read and maintain. For more information about the builder design pattern, see Builder pattern.
Use AlertDialog.Builder to build a standard alert dialog and set attributes on the dialog. Use setTitle() to set its title, setMessage() to set its message, and setPositiveButton() and setNegativeButton() to set its buttons.
Note: If AlertDialog.Builder is not recognized as you enter it, you may need to add the following import statements to MainActivity.java:
import android.content.DialogInterface;
import android.support.v7.app.AlertDialog;
The following creates the dialog object (myAlertBuilder) and sets the title (the string resource called alert_title) and message (the string resource called alert_message):
AlertDialog.Builder myAlertBuilder = new
AlertDialog.Builder(MainActivity.this);
myAlertBuilder.setTitle(R.string.alert_title);
myAlertBuilder.setMessage(R.string.alert_message);
Setting the button actions for the alert dialog
Use the setPositiveButton() and setNegativeButton() methods of the AlertDialog.Builder class to set the button actions for the alert dialog. These methods require a title for the button (supplied by a string resource) and the DialogInterface.OnClickListener class that defines the action to take when the user presses the button:
myAlertBuilder.setPositiveButton("OK", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
// User clicked OK button.
}
});
myAlertBuilder.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
// User clicked the CANCEL button.
}
});
You can add only one of each button type to an AlertDialog. For example, you can't have more than one "positive" button.
Tip: You can also set a "neutral" button with setNeutralButton(). The neutral button appears between the positive and negative buttons. Use a neutral button, such as "Remind me later", if you want the user to be able to dismiss the dialog and decide later.
Displaying the dialog
To display the dialog, call its show() method:
alertDialog.show();
Date and time pickers
Android provides ready-to-use dialogs, called pickers, for picking a time or a date. Use them to ensure that your users pick a valid time or date that is formatted correctly and adjusted to the user's locale. Each picker provides controls for selecting each part of the time (hour, minute, AM/PM) or date (month, day, year).
When showing a picker, you should use an instance of DialogFragment, a subclass of Fragment, which displays a dialog window floating on top of its activity's window. A fragment is a behavior or a portion of user interface within an activity. It's like a mini-activity within the main activity, with its own individual lifecycle. A fragment receives its own input events, and you can add or remove it while the main activity is running. You might combine multiple fragments in a single activity to build a multiple-pane user interface, or reuse a fragment in multiple activities. To learn about fragments, see Fragments in the API Guide.
One benefit of using fragments for the pickers is that you can isolate the code sections for managing the date and the time after the user selects them from the pickers. You can also use DialogFragment to manage the dialog lifecycle.
Tip: Another benefit of using fragments for the pickers is that you can implement different layout configurations, such as a basic dialog on handset-sized displays or an embedded part of a layout on large displays.
Adding a fragment
To add a fragment for the date picker, create a blank fragment (DatePickerFragment) without a layout XML, and without factory methods or interface callbacks:
Extending DialogFragment for the picker
The next step is to create a standard picker with a listener. Follow these steps:
Edit the DatePickerFragment class definition to extend DialogFragment, and implement DatePickerDialog.OnDateSetListener to create a standard date picker with a listener:
public class DatePickerFragment extends DialogFragment
implements DatePickerDialog.OnDateSetListener {
...
}
Android Studio automatically adds the following in the import block at the top:
import android.app.DatePickerDialog.OnDateSetListener;
import android.support.v4.app.DialogFragment;
Android Studio also shows a red light bulb icon in the left margin, prompting you to implement methods. Click the icon and, with onDateSet already selected and the "Insert @Override" option checked, click OK to create the empty onDateSet() method.
Android Studio then automatically adds the following in the import block at the top:
import android.widget.DatePicker;
Replace onCreateView() with onCreateDialog() :
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
}
When you extend DialogFragment , you should override the onCreateDialog() callback method, rather than onCreateView . You use your version of the callback method to initialize the year , month , and day for the date picker.
Setting the defaults and returning the picker
To set the default date in the picker and return it as an object you can use, follow these steps:
Add the following code to the onCreateDialog() method to set the default date for the picker:
// Use the current date as the default date in the picker.
final Calendar c = Calendar.getInstance();
int year = c.get(Calendar.YEAR);
int month = c.get(Calendar.MONTH);
int day = c.get(Calendar.DAY_OF_MONTH);
As you enter Calendar , you are given a choice of which Calendar library to import. Choose this one:
import java.util.Calendar;
The Calendar class sets the default date as the current date—it converts between a specific instant in time and a set of calendar fields such as YEAR , MONTH , DAY_OF_MONTH , HOUR , and so on. Calendar is locale-sensitive, and its class method getInstance() returns a Calendar object whose calendar fields have been initialized with the current date and time.
return new DatePickerDialog(getActivity(), this, year, month, day);
Showing the picker
In the Main Activity, you need to create a method to show the date picker. Follow these steps:
public void showDatePickerDialog(View v) {
DialogFragment newFragment = new DatePickerFragment();
newFragment.show(getSupportFragmentManager(), "datePicker");
}
<Button
android:id="@+id/button_date"
...
android:onClick="showDatePickerDialog"/>
Processing the user's picker choice
The onDateSet() method is automatically called when the user makes a selection in the date picker, so you can use this method to do something with the chosen date. Follow these steps:
public void onDateSet(DatePicker view, int year, int month, int day) {
public void processDatePickerResult(int year, int month, int day) {
}
Add the following code to the processDatePickerResult() method to convert the month , day , and year to separate strings:
String month_string = Integer.toString(month+1);
String day_string = Integer.toString(day);
String year_string = Integer.toString(year);
Note: The month integer returned by the date picker starts counting at 0 for January, so you need to add 1 to it to start show months starting at 1.
Add the following after the above code to concatenate the three strings and include slash marks for the U.S. date format:
String dateMessage = (month_string + "/" +
day_string + "/" + year_string);
Toast.makeText(this, "Date: " + dateMessage,
Toast.LENGTH_SHORT).show();
public void processDatePickerResult(int year, int month, int day) {
String month_string = Integer.toString(month + 1);
String day_string = Integer.toString(day);
String year_string = Integer.toString(year);
// Assign the concatenated strings to dateMessage.
String dateMessage = (month_string + "/" +
day_string + "/" + year_string);
Toast.makeText(this, getString(R.string.date) + dateMessage,
Toast.LENGTH_SHORT).show();
}
Open DatePickerFragment, and add the following to the onDateSet() method to invoke the processDatePickerResult() method in MainActivity and pass it the year , month , and day :
public void onDateSet(DatePicker view, int year, int month, int day) {
// Set the activity to the Main Activity.
MainActivity activity = (MainActivity) getActivity();
// Invoke Main Activity's processDatePickerResult() method.
activity.processDatePickerResult(year, month, day);
}
You use getActivity() which, when used in a fragment, returns the activity the fragment is currently associated with. You need this because you can't call a method in MainActivity without the context of MainActivity (you would have to use an intent instead, as you learned in a previous lesson). The activity inherits the context, so you can use it as the context for calling the method (as in activity.processDatePickerResult) .
Using the same procedures for the time picker
Follow the same procedures outlined above for a date picker:
public class TimePickerFragment extends DialogFragment
implements TimePickerDialog.OnTimeSetListener {
Add with @Override a blank onTimeSet() method:
Android Studio also shows a red light bulb icon in the left margin, prompting you to implement methods. Click the icon and, with onTimeSet already selected and the "Insert @Override" option checked, click OK to create the empty onTimeSet() method. Android Studio then automatically adds the following in the import block at the top:
import android.widget.TimePicker;
Use onCreateDialog() to initialize the time and return the dialog:
public Dialog onCreateDialog(Bundle savedInstanceState) {
// Use the current time as the default values for the picker.
final Calendar c = Calendar.getInstance();
int hour = c.get(Calendar.HOUR_OF_DAY);
int minute = c.get(Calendar.MINUTE);
// Create a new instance of TimePickerDialog and return it.
return new TimePickerDialog(getActivity(), this, hour, minute,
DateFormat.is24HourFormat(getActivity()));
}
Show the picker: Open MainActivity and create a method to instantiate the date picker dialog fragment:
public void showDatePickerDialog(View v) {
DialogFragment newFragment = new DatePickerFragment();
newFragment.show(getSupportFragmentManager(), "datePicker");
}
Use showDatePickerDialog() with the android:onClick attribute for a button or other input control:
<Button
android:id="@+id/button_date"
...
android:onClick="showDatePickerDialog"/>
public void processTimePickerResult(int hourOfDay, int minute) {
// Convert time elements into strings.
String hour_string = Integer.toString(hourOfDay);
String minute_string = Integer.toString(minute);
// Assign the concatenated strings to timeMessage.
String timeMessage = (hour_string + ":" + minute_string);
Toast.makeText(this, getString(R.string.time) + timeMessage,
Toast.LENGTH_SHORT).show();
}
public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
// Set the activity to the Main Activity.
MainActivity activity = (MainActivity) getActivity();
// Invoke Main Activity's processTimePickerResult() method.
activity.processTimePickerResult(hourOfDay, minute);
}
You can read all about setting up pickers in Pickers.
Recognizing gestures
A touch gesture occurs when a user places one or more fingers on the touch screen, and your app interprets that pattern of touches as a particular gesture, such as a long touch, double-tap, fling, or scroll.
Android provides a variety of classes and methods to help you create and detect gestures. Although your app should not depend on touch gestures for basic behaviors (since the gestures may not be available to all users in all contexts), adding touch-based interaction to your app can greatly increase its usefulness and appeal.
To provide users with a consistent, intuitive experience, your app should follow the accepted Android conventions for touch gestures. The Gestures design guide shows you how to design common gestures in Android apps. For more code samples and details, see Using Touch Gestures in the Android developer documentation.
Detecting common gestures
If your app uses common gestures such as double tap, long press, fling, and so on, you can take advantage of the GestureDetector class for detecting common gestures. Use GestureDetectorCompat, which is provided as a compatibility implementation of the framework's GestureDetector class which guarantees the newer focal point scrolling behavior from Jellybean MR1 on all platform versions. This class should be used only with motion events reported for touch devices—don't use it for trackball or other hardware events.
GestureDetectorCompat lets you detect common gestures without processing the individual touch events yourself. It detects various gestures and events using MotionEvent objects, which report movements by a finger (or mouse, pen, or trackball).
The following snippets show how you would use GestureDetectorCompat and the GestureDetector.SimpleOnGestureListener class.
To use GestureDetectorCompat, create an instance (mDetector in the snippet below) of the GestureDetectorCompat class, using the onCreate() method in the activity (such as MainActivity):
public class MainActivity extends Activity {
private GestureDetectorCompat mDetector;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mDetector = new GestureDetectorCompat(this, new
MyGestureListener());
}
...
}
When you instantiate a GestureDetectorCompat object, one of the parameters it takes is a class you must create— MyGestureListener in the above snippet—that does one of the following:
Create the class MyGestureListener as a separate activity (MyGestureListener) to extend GestureDetector.SimpleOnGestureListener , and override the onFling() and onDown() methods to show log statements about the event:
class MyGestureListener
extends GestureDetector.SimpleOnGestureListener {
private static final String DEBUG_TAG = "Gestures";
@Override
public boolean onDown(MotionEvent event) {
Log.d(DEBUG_TAG,"onDown: " + event.toString());
return true;
}
@Override
public boolean onFling(MotionEvent event1, MotionEvent event2,
float velocityX, float velocityY) {
Log.d(DEBUG_TAG, "onFling: " +
event1.toString()+event2.toString());
return true;
}
}
@Override
public boolean onTouchEvent(MotionEvent event){
this.mDetector.onTouchEvent(event);
return super.onTouchEvent(event);
}
Detecting all gestures
To detect all types of gestures, you need to perform two essential steps:
The gesture starts when the user first touches the screen, continues as the system tracks the position of the user's finger(s), and ends by capturing the final event of the user's fingers leaving the screen. Throughout this interaction, an object of the MotionEvent class is delivered to onTouchEvent(), providing the details of every interaction. Your app can use the data provided by the MotionEvent to determine if a gesture it cares about happened.
For example, when the user first touches the screen, the onTouchEvent() method is triggered on the view that was touched, and a MotionEvent object reports movement by a finger (or mouse, pen, or trackball) in terms of:
The individual fingers or other objects that generate movement traces are referred to as pointers. Some devices can report multiple movement traces at the same time. Multi-touch screens show one movement trace for each finger. Motion events contain information about all of the pointers that are currently active even if some of them have not moved since the last event was delivered. Based on the interpretation of the MotionEvent object, the onTouchEvent() method triggers the appropriate callback on the GestureDetector.OnGestureListener interface.
Each MotionEvent pointer has a unique id that is assigned when it first goes down (indicated by ACTION_DOWN or ACTION_POINTER_DOWN) . A pointer id remains valid until the pointer eventually goes up (indicated by ACTION_UP or ACTION_POINTER_UP) or when the gesture is canceled (indicated by ACTION_CANCEL). The MotionEvent class provides methods to query the position and other properties of pointers, such as getX(int), getY(int), getAxisValue(int), getPointerId(int), and getToolType(int).
The interpretation of the contents of a MotionEvent varies significantly depending on the source class of the device. On touch screens, the pointer coordinates specify absolute positions such as view X/Y coordinates. Each complete gesture is represented by a sequence of motion events with actions that describe pointer state transitions and movements.
A gesture starts with a motion event with ACTION_DOWN that provides the location of the first pointer down. As each additional pointer goes down or up, the framework generates a motion event with ACTION_POINTER_DOWN or ACTION_POINTER_UP accordingly. Pointer movements are described by motion events with ACTION_MOVE . A gesture ends when the final pointer goes up as represented by a motion event with ACTION_UP , or when the gesture is canceled with ACTION_CANCEL .
To intercept touch events in an activity or view, override the onTouchEvent() callback as shown in the snippet below. You can use the getActionMasked() method of the MotionEventCompat class to extract the action the user performed from the event parameter. (MotionEventCompat is a helper for accessing features in a MotionEvent, which was introduced after API level 4 in a backwards compatible fashion.) This gives you the raw data you need to determine if a gesture you care about occurred:
public class MainActivity extends Activity {
...
// This example shows an Activity, but you would use the same approach if
// you were subclassing a View.
@Override
public boolean onTouchEvent(MotionEvent event){
int action = MotionEventCompat.getActionMasked(event);
switch(action) {
case (MotionEvent.ACTION_DOWN) :
Log.d(DEBUG_TAG,"Action was DOWN");
return true;
case (MotionEvent.ACTION_MOVE) :
Log.d(DEBUG_TAG,"Action was MOVE");
return true;
case (MotionEvent.ACTION_UP) :
Log.d(DEBUG_TAG,"Action was UP");
return true;
case (MotionEvent.ACTION_CANCEL) :
Log.d(DEBUG_TAG,"Action was CANCEL");
return true;
case (MotionEvent.ACTION_OUTSIDE) :
Log.d(DEBUG_TAG,"Movement occurred outside bounds " +
"of current screen element");
return true;
default :
return super.onTouchEvent(event);
}
}
You can then do your own processing on these events to determine if a gesture occurred.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
4.2: Menus
Contents:
Types of menus
A menu is a set of options the user can select from to perform a function, such as searching for information, saving information, editing information, or navigating to a screen. Android offers the following types of menus, which are useful for different situations (refer to the figure below):
The app bar and options menu
The app bar (also called the action bar) is a dedicated space at the top of each activity screen. When you create an activity from a template (such as Empty Template), an app bar is automatically included for the activity in a CoordinatorLayout root view group at the top of the view hierarchy.
The app bar by default shows the app title, or the name defined in AndroidManifest.xml by the android:label attribute for the activity. It may also include the Up button for navigating up to the parent activity, which is described in the next chapter.
The options menu in the app bar provides navigation to other activities in the app, or the primary options that affect using the app itself — but not ones that perform an action on an element on the screen. For example, your options menu might provide the user choices for navigating to other activities, such as placing an order, or for actions that have a global impact on the app, such as changing settings or profile information.
The options menu appears in the right corner of the app bar. The app bar is split into four different functional areas that apply to most apps:
Frequently-used options menu items should appear as icons in the app bar. The overflow options menu shows the rest of the menu:
In the above figure:
Adding the app bar
Each activity that uses the default theme also has an ActionBar as its app bar. Some themes also set up an ActionBar as an app bar by default. When you start an app from a template such as Empty Activity, an ActionBar appears as the app bar.
However, as features were added to the native ActionBar over various Android releases, the native ActionBar behaves differently depending on the version of Android running on the device. For this reason, if you are adding an options menu, you should use the v7 appcompat support library's Toolbar as an app bar. Using the Toolbar makes it easy to set up an app bar that works on the widest range of devices, and also gives you room to customize your app bar later on as your app develops. Toolbar includes the most recent features, and works for any device that can use the support library.
In order to use Toolbar as the app bar (rather than the default ActionBar) for an activity, do one of the following:
Adding the support libraries
If you start an app project using the Basic Activity template, the template adds the following support libraries for you, so you can skip this step.
If you are not using the Basic Activity template, add the appcompat support library (current version is v7) for the Toolbar class, and the design library for the NoActionBar themes, to your project:
compile 'com.android.support:appcompat-v7:23.4.0'
compile 'com.android.support:design:23.4.0'
Note: Update the version numbers for dependencies if necessary. If the version number you specified is lower than the currently available library version number, Android Studio will warn you ("a newer version of com.android.support:design is available"). Update the version number to the one Android Studio tells you to use.
Using themes to design the app bar
If you start an app project using the Basic Activity template, the template adds the theme to replace the ActionBar with a Toolbar , so you can skip this step.
If you are not using the Basic Activity template, you can use the Toolbar class for the app bar by turning off the default ActionBar using a NoActionBar theme for the activity. Themes in Android are similar to styles, except that they are applied to an entire app or activity rather than to a specific view.
When you create a new project in Android Studio, an app theme is automatically generated for you. For example, if you start an app project with the Empty Activity or Basic Activity template, the AppTheme theme is provided in styles.xml in the res > values directory.
Tip: You learn more about themes in the chapter on drawables, styles and themes.
You can modify the theme to provide a style for the app bar and app background so that the app bar is visible and stands out against the background. Follow these steps:
Open the styles.xml file. You should already have the following in the file:
<resources>
<!-- Base application theme. -->
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
</style>
...
</resources>
AppTheme "inherits"—takes on all the styles—from a parent them called Theme.AppCompat.Light.DarkActionBar , which is a standard theme supplied with Android. However, you can override an inherited style with another style by adding the other style to styles.xml.
Add the AppTheme.NoActionBar , AppTheme.AppBarOverlay , and AppTheme.PopupOverlay styles under the AppTheme style, as shown below. These styles will override the style attributes with the same names in AppTheme , affecting the appearance of the app bar and the app's background:
<resources>
<!-- Base application theme. -->
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
...
</style>
<style name="AppTheme.NoActionBar">
<item name="windowActionBar">false</item>
<item name="windowNoTitle">true</item>
</style>
<style name="AppTheme.AppBarOverlay"
parent="ThemeOverlay.AppCompat.Dark.ActionBar" />
<style name="AppTheme.PopupOverlay"
parent="ThemeOverlay.AppCompat.Light" />
...
</resources>
<activity
...
android:theme="@style/AppTheme.NoActionBar">
</activity>
Adding AppBarLayout and a Toolbar to the layout
If you start an app project using the Basic Activity template, the template adds the AppBarLayout and Toolbar for you, so you can skip this step.
If you are not using the Basic Activity template, you can include the Toolbar in an activity's layout by adding an AppBarLayout and a Toolbar element. AppBarLayout is a vertical LinearLayout which implements many of the features of the material designs app bar concept, such as scrolling gestures. Keep in mind the following:
<android.support.design.widget.CoordinatorLayout
... >
<android.support.design.widget.AppBarLayout
...>
<android.support.v7.widget.Toolbar
...
/>
</android.support.design.widget.AppBarLayout>
...
</android.support.design.widget.CoordinatorLayout>
<include layout="@layout/content_main" />
You need to set the content sibling's scrolling behavior, as shown below with the RelativeLayout group, to be an instance of AppBarLayout.ScrollingViewBehavior :
<RelativeLayout
...
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_behavior="@string/appbar_scrolling_view_behavior"
... >
</RelativeLayout>
The layout behavior for the RelativeLayout is set to the string resource @string/appbar_scrolling_view_behavior , which controls the scrolling behavior of the screen in relation to the app bar at the top. This string resource represents the following string, which is defined in the values.xml file that should not be edited:
android.support.design.widget.AppBarLayout$ScrollingViewBehavior
This behavior is defined by the AppBarLayout.ScrollingViewBehavior class. This behavior should be used by Views which can scroll vertically—it supports nested scrolling to automatically scroll any AppBarLayout siblings.
Adding code to set up the app bar
If you start an app project using the Basic Activity template, the template adds the code needed to set up the app bar, so you can skip this step.
If you are not using the Basic Activity template, you can follow these steps to set up the app bar in the activity:
public class MyActivity extends AppCompatActivity {
...
}
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar(toolbar);
}
The activity now shows the app bar. By default, the app bar contains just the name of the app.
Adding the options menu
Android provides a standard XML format to define options menu items. Instead of building the menu in your activity's code, you can define the menu and all its items in an XML menu resource. A menu resource defines an application menu (options menu, context menu, or popup menu) that can be inflated with MenuInflater, which loads the resource as a Menu object in your activity or fragment.
If you start an app project using the Basic Activity template, the template adds the menu resource for you and inflates the options menu with MenuInflater, so you can skip this step and go right to "Defining how menu items appear".
If you are not using the Basic Activity template, use the resource-inflate design pattern, which makes it easy to create an options menu. Follow these steps (refer to the figure below):
Creating an XML resource for the menu
Follow these steps to add the menu items to an XML menu resource:
Add the first options menu item using the <item … /> tag. In this example, the item is Settings:
<menu xmlns:android="http://schemas.android.com/apk/res/android"
...>
<item
android:id="@+id/action_settings"
android:title="@string/settings" />
</menu>
After setting up and inflating the XML resource in the activity or fragment code, the overflow icon in the app bar, when clicked, would show the options menu with just one option (Settings):
Defining how menu items appear
If you start an app project using the Basic Activity template, the template adds the options menu with one option: Settings.
To add more options menu items, add more <item … /> tags in the menu_main.xml file. For example, in the following snippet, two options menu items are defined: @string/settings (Settings) and @string/action_order (Order):
<menu xmlns:android="http://schemas.android.com/apk/res/android"
...>
<item
android:id="@+id/action_settings"
android:title="@string/settings" />
<item
android:id="@+id/action_order"
android:icon="@drawable/ic_order_white"
android:title="@string/action_order"/>
</menu>
Within each <item … /> tag you can add the attributes to define how the menu item appears, such as the order of its appearance relative to the other items, and whether the item can appear as an icon in the app bar. Any item you set to not appear in the app bar (or that can't fit in the app bar given the display orientation) is placed in order in the overflow menu).
Whenever possible, you want to show the most frequently used actions using icons in the app bar so that the user can click them without having to first click the overflow button.
Adding icons for menu items
To specify icons for actions, you need to first add the icons as image assets to the drawable folder by following these steps (see Image Asset Studio for a complete description):
Icon and appearance attributes
Use the following attributes to govern the menu item's appearance:
<item
android:id="@+id/action_order"
android:icon="@drawable/ic_order_white"
android:title="@string/action_order"/>
Position attributes
Use the android:orderInCategory attribute to specify the order in which the menu items appear in the menu, with the lowest number appearing higher in the menu. This is usually the order of importance of the item within the menu. For example, if you want Order to be first, followed by Status, Favorites, and Contact, the following table shows the priority of these items in the menu:
Menu Item | orderInCategory attribute |
Order | 10 |
Status | 20 |
Favorites | 40 |
Contact | 100 |
Note: While the numbers 1, 2, 3, and 4 would also work in the above example, the numbers 10, 20, 40, and 100 leave room for additional menu items to be added later between them.
Use the app:showAsAction attribute to show menu items as icons in the app bar, with the following values:
For example, the following menu item's icon appears in the app bar only if there is room for it:
<item
android:id="@+id/action_favorites"
android:icon="@drawable/ic_favorites_white"
android:orderInCategory="40"
android:title="@string/action_favorites"
app:showAsAction="ifRoom" />
In the above figure:
Inflating the menu resource
If you start an app project using the Basic Activity template, the template adds the code for inflating the options menu with MenuInflater, so you can skip this step.
If you are not using the Basic Activity template, inflate the menu resource in your activity by using the onCreateOptionsMenu() method (with the Override annotation) with the getMenuInflater() method of the Activity class.
The getMenuInflater() method returns a MenuInflater, which is a class used to instantiate menu XML files into Menu objects. The MenuInflater class provides the inflate() method, which takes as a parameter the resource id for an XML layout resource to load (R.menu.menu_main in the following example), and the Menu to inflate into (menu in the following example):
@Override
public boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.menu_main, menu);
return true;
}
Handling the menu item click
As with a button, the android:onClick attribute defines a method to call when this menu item is clicked. You must declare the method in the activity as public and accept a MenuItem as its only parameter, which indicates the item clicked.
For example, you could define the Favorites item in the menu resource file to use the android:onClick attribute to call the onFavoritesClick() method:
<item
android:id="@+id/action_favorites"
android:icon="@drawable/ic_favorites_white"
android:orderInCategory="40"
android:title="@string/action_favorites"
app:showAsAction="ifRoom"
android:onClick="onFavoritesClick" />
You would declare the onFavoritesClick() method in the activity:
public void onFavoritesClick(MenuItem item) {
// The item parameter indicates which item was clicked.
// Add code to handle the Favorites click.
}
However, the onOptionsItemSelected() method of the Activities class can handle all the menu item clicks in one place, and determine which menu item was clicked, which makes your code easier to understand. The Basic Activity template provides an implementation of the onOptionsItemSelected() method with a switch case block to call the appropriate method (such as showOrder) based on the menu item's id , which you can retrieve using the getItemId() method of the Adapter class:
@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.action_order:
showOrder();
return true;
case R.id.action_status:
showStatus();
return true;
case R.id.action_contact:
showContact();
return true;
default:
// Do nothing
}
return super.onOptionsItemSelected(item);
}
Contextual menu
Use a contextual menu to allow users to take an action on a selected view. You can provide a context menu for any View, but they are most often used for items in a RecyclerView, GridView, or other view collections in which the user can perform direct actions on each item.
Android provides two kinds of contextual menus:
Floating context menu
The familiar resource-inflate design pattern is used to create a floating context menu, modified to include registering (associating) the context menu with a view:
Follow these steps to create a floating context menu for one or more view elements (refer to figure above):
Creating the XML resource file
Create the XML menu resource directory and file by following the steps in the previous section. Use a suitable name for the file, such as menu_context . Add the context menu items (in this example, the menu items are Edit, Share, and Delete):
<item
android:id="@+id/context_edit"
android:title="@string/edit"
android:orderInCategory="10"/>
<item
android:id="@+id/context_share"
android:title="@string/share"
android:orderInCategory="20"/>
<item
android:id="@+id/context_delete"
android:title="@string/delete"
android:orderInCategory="30"/>
Registering a view to the context menu
Register a view to the context menu by calling the registerForContextMenu() method and passing it the view. Registering a context menu for a view sets the View.OnCreateContextMenuListener on the view to this activity, so that onCreateContextMenu() will be called when it is time to show the context menu. (You implement onCreateContextMenu in the next section.)
For example, in the onCreate() method for the activity, add the registerForContextMenu() statement:
...
// Registering the context menu to the text view of the article.
TextView article_text = (TextView) findViewById(R.id.article);
registerForContextMenu(article_text);
...
Multiple views can be registered to the same context menu. If you want each item in a ListView or GridView to provide the same context menu, register all items for a context menu by passing the ListView or GridView to registerForContextMenu().
Implementing the onCreateContextMenu() method
When the registered view receives a long-click event, the system calls the onCreateContextMenu() method, which you can override in your activity or fragment. This is where you define the menu items, usually by inflating a menu resource.
For example:
@Override
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
super.onCreateContextMenu(menu, v, menuInfo);
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.menu_context, menu);
}
In the above code:
The MenuInflater class provides the inflate() method, which takes as a parameter the resource id for an XML layout resource to load (menu_context in the above example), and the Menu to inflate into (menu in the above example).
Implementing the onContextItemSelected() method
When the user clicks on a menu item, the system calls the onContextItemSelected() method. You override this method in your activity or fragment in order to determine which menu item was clicked, and for which view the menu is appearing. You also use it to implement the appropriate action for the menu items, such as editNote() and shareNote() below for the Edit and Share menu items. For example:
@Override
public boolean onContextItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.context_edit:
editNote();
return true;
case R.id.context_share:
shareNote();
return true;
default:
return super.onContextItemSelected(item);
}
}
The above example uses the getItemId() method to get the id for the selected menu item, and uses it in a switch case block to determine which action to take. The id is the android:id attribute assigned to the menu item in the XML menu resource file.
When the user performs a long-click on the article in the text view, the floating context menu appears and the user can click a menu item.
If you are using the menuInfo information for a RecyclerView or GridView, you would add a statement before the switch case block to gathers the specific information about the selected view (for info) by using AdapterView.AdapterContextMenuInfo:
AdapterView.AdapterContextMenuInfo info =
(AdapterView.AdapterContextMenuInfo) item.getMenuInfo();
Contextual action bar
A contextual action bar appears at the top of the screen to present actions the user can perform on a view after long-clicking the view, as shown in the figure below.
In the above figure:
The contextual action bar appears only when contextual action mode, a system implementation of ActionMode, occurs as a result of the user performing a long-click on the View.
ActionMode represents a user interface (UI) mode for providing alternative interaction, replacing parts of the normal UI until finished. For example, text selection is implemented as an ActionMode, as are contextual actions that work on a selected item on the screen. Selecting a section of text or long-clicking a view triggers ActionMode.
While this mode is enabled, the user can select multiple items (if your app allows it), deselect items, and continue to navigate within the activity. The action mode is disabled and the contextual action bar disappears when the user deselects all items, presses the Back button, or taps Done (left-arrow icon) on the left side of the bar.
Follow these steps to create a contextual action bar (refer to the figure below):
Creating the XML resource file
Create the XML menu resource directory and file by following the steps in a previous section. Use a suitable name for the file, such as menu_context . Add icons for the context menu items (in this example, the menu items are Edit, Share, and Delete). For example, the Edit menu item would have these attributes:
<item
android:id="@+id/context_edit"
android:orderInCategory="10"
android:icon="@drawable/ic_action_edit_white"
android:title="@string/edit" />
The standard contextual action bar has a dark background. Use a light or white color for the icons. If you are using clip art icons, choose HOLO_DARK for the Theme drop-down menu when creating the new image asset.
Setting the long-click listener
Use setOnLongClickListener() to set a long-click listener to the View that should trigger the contextual action bar. Add the code to set the long-click listener to the activity class (such as MainActivity) using the activity's onCreate() method. Follow these steps:
Declare the member variable mActionMode in the class definition for the activity:
private ActionMode mActionMode;
You will call startActionMode() to enable ActionMode, which returns the ActionMode created. By saving this in a member variable (mActionMode), you can make changes to the contextual action bar in response to other events.
@Override
protected void onCreate(Bundle savedInstanceState) {
...
View articleView = findViewById(article);
articleView.setOnLongClickListener(new View.OnLongClickListener() {
...
// Add method here to start ActionMode after long-click.
...
});
}
Implementing the ActionMode.Callback interface
Before you can add the code to onCreate() to start ActionMode, you must implement the ActionMode.Callback interface to manage the action mode lifecycle. In its callback methods, you can specify the actions for the contextual action bar, and respond to clicks on action items.
public ActionMode.Callback mActionModeCallback = new
ActionMode.Callback() {
...
// Add code to create action mode here.
...
}
Add the onCreateActionMode() code within the brackets of the above method to create action mode (the full code is provided at the end of this section):
@Override
public boolean onCreateActionMode(ActionMode mode, Menu menu) {
// Inflate a menu resource providing context menu items
MenuInflater inflater = mode.getMenuInflater();
inflater.inflate(R.menu.menu_context, menu);
return true;
}
The onCreateActionMode() method inflates the menu using the same pattern used for a floating context menu. But this inflation occurs only when ActionMode is created, which is when the user performs a long-click. The MenuInflater class provides the inflate() method, which takes as a parameter the resource id for an XML layout resource to load (menu_context in the above example), and the Menu to inflate into (menu in the above example).
Add the onActionItemClicked() method with your handlers for each menu item:
@Override
public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
switch (item.getItemId()) {
case R.id.context_edit:
editNote();
mode.finish();
return true;
case R.id.context_share:
shareNote();
mode.finish();
return true;
default:
return false;
}
The above code above uses the getItemId() method to get the id for the selected menu item, and uses it in a switch case block to determine which action to take. The id in each case statement is the android:id attribute assigned to the menu item in the XML menu resource file.
The actions shown are the editNote() and shareNote() methods, which you can create in the same activity. After the action is picked, you use the mode.finish() method to close the contextual action bar.
Add the onPrepareActionMode() and onDestroyActionMode() methods, which manage the ActionMode lifecycle:
@Override
public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
return false; // Return false if nothing is done.
}
The onPrepareActionMode() method shown above is called each time ActionMode occurs, and is always called after onCreateActionMode() .
@Override
public void onDestroyActionMode(ActionMode mode) {
mActionMode = null;
}
The onDestroyActionMode() method shown above is called when the user exits ActionMode by clicking Done in the contextual action bar, or clicking on a different view.
Review the full code for the ActionMode.Callback interface implementation:
public ActionMode.Callback mActionModeCallback = new
ActionMode.Callback() {
@Override
public boolean onCreateActionMode(ActionMode mode, Menu menu) {
// Inflate a menu resource providing context menu items
MenuInflater inflater = mode.getMenuInflater();
inflater.inflate(R.menu.menu_context, menu);
return true;
}
// Called each time ActionMode is shown. Always called after
// onCreateActionMode.
@Override
public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
return false; // Return false if nothing is done
}
// Called when the user selects a contextual menu item
@Override
public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
switch (item.getItemId()) {
case R.id.context_edit:
editNote();
mode.finish();
return true;
case R.id.context_share:
shareNote();
mode.finish();
return true;
default:
return false;
}
}
// Called when the user exits the action mode
@Override
public void onDestroyActionMode(ActionMode mode) {
mActionMode = null;
}
};
Starting ActionMode
You use startActionMode() to start ActionMode after the user performs a long-click.
To start ActionMode, add the onLongClick() method within the brackets of the setOnLongClickListener method in onCreate() :
@Override
protected void onCreate(Bundle savedInstanceState) {
...
articleView.setOnLongClickListener(new View.OnLongClickListener() {
// Called when the user long-clicks on articleView
public boolean onLongClick(View view) {
if (mActionMode != null) return false;
// Start the contextual action bar
// using the ActionMode.Callback.
mActionMode =
MainActivity.this.startActionMode(mActionModeCallback);
view.setSelected(true);
return true;
}
});
}
The above code first ensures that the ActionMode instance is not recreated if it's already active by checking whether mActionMode is null before starting the action mode:
if (mActionMode != null) return false;
When the user performs a long-click, the call is made to startActionMode() using the ActionMode.Callback interface, and the contextual action bar appears at the top of the display. The setSelected() method changes the state of this view to selected (set to true).
Review the code for the onCreate() method in the activity, which now includes setOnLongClickListener() and startActionMode() :
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// set up the contextual action bar listener
View articleView = findViewById(article);
articleView.setOnLongClickListener(new View.OnLongClickListener() {
// Called when the user long-clicks on articleView
public boolean onLongClick(View view) {
if (mActionMode != null) return false;
// Start the contextual action bar
// using the ActionMode.Callback.
mActionMode =
MainActivity.this.startActionMode(mActionModeCallback);
view.setSelected(true);
return true;
}
});
}
Popup menu
A PopupMenu is a vertical list of items anchored to a View. It appears below the anchor view if there is room, or above the view otherwise.
A popup menu is typically used to provide an overflow of actions (similar to the overflow action icon for the options menu) or the second part of a two-part command. Use a popup menu for extended actions that relate to regions of content in your activity. Unlike a context menu, a popup menu is anchored to a Button (View), is always available, and it's actions generally do not affect the content of the View.
For example, the Gmail app uses a popup menu anchored to the overflow icon in the app bar when showing an email message. The popup menu items Reply, Reply All, and Forward are related to the email message, but don't affect or act on the message. Actions in a popup menu should not directly affect the corresponding content (use a contextual menu to directly affect selected content). As shown below, a popup can be anchored to the overflow action button in the action bar.
Creating a pop-up menu
Follow these steps to create a popup menu (refer to figure below):
Creating the XML resource file
Create the XML menu resource directory and file by following the steps in a previous section. Use a suitable name for the file, such as menu_popup .
Adding an ImageButton for the icon to click
Use an ImageButton in the activity layout for the icon that triggers the popup menu. Popup menus are anchored to a view in the activity, such as an ImageButton. The user clicks it to see the menu.
<ImageButton
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/button_popup"
android:src="@drawable/@drawable/ic_action_popup"/>
Assigning onClickListener to the button
public class MainActivity extends AppCompatActivity {
private ImageButton mButton;
...
}
@Override
protected void onCreate(Bundle savedInstanceState) {
...
mButton = (ImageButton) findViewById(R.id.button_popup);
mButton.setOnClickListener(new View.OnClickListener() {
...
// define onClick here
...
});
Inflating the popup menu
As part of the setOnClickListener() method within onCreate() , add the onClick() method to inflate the popup menu and register it with PopupMenu.OnMenuItemClickListener:
@Override
public void onClick(View v) {
//Creating the instance of PopupMenu
PopupMenu popup = new PopupMenu(MainActivity.this, mButton);
//Inflating the Popup using xml file
popup.getMenuInflater().inflate(R.menu.menu_popup, popup.getMenu());
//registering popup with OnMenuItemClickListener
popup.setOnMenuItemClickListener(new
PopupMenu.OnMenuItemClickListener() {
...
// Add onMenuItemClick here
...
// Perform action here
...
}
After instantiating a PopupMenu object (popup in the above example), the method uses the MenuInflater class and its inflate() method, which takes as parameters:
The code then registers the popup with the listener, PopupMenu.OnMenuItemClickListener.
Implementing onMenuItemClick
To perform an action when the user selects a popup menu item, implement the onMenuItemClick() callback within the above setOnClickListener() method, and finish the method with popup.show to show the popup menu:
public boolean onMenuItemClick(MenuItem item) {
// Perform action here
return true;
}
});
popup.show(); //show the popup menu
}
});// close the setOnClickListener method
Putting these pieces together, the entire onCreate() method should now look like this:
private ImageButton mButton;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
...
// popup button setup
mButton = (ImageButton) findViewById(R.id.button_popup);
mButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
//Creating the instance of PopupMenu
PopupMenu popup = new PopupMenu(MainActivity.this, mButton);
//Inflating the Popup using xml file
popup.getMenuInflater().inflate(R.menu.menu_popup, popup.getMenu());
//registering popup with OnMenuItemClickListener
popup.setOnMenuItemClickListener(new PopupMenu.OnMenuItemClickListener() {
public boolean onMenuItemClick(MenuItem item) {
// Perform action here
return true;
}
});
popup.show();//show the popup menu
}
});//close the setOnClickListener method
}
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
4.3: Screen Navigation
Contents:
Providing users with a path through your app
In the early stages of developing an app, you should determine the paths users should take through your app in order to do something, such as placing an order or browsing through content. Each path enables users to navigate across, into, and back out from the different tasks and pieces of content within the app.
In many cases you will need several different paths through your app that offer the following types of navigation:
Back-button navigation
Back-button navigation—navigation back through the history of screens—is deeply rooted in the Android system. Android users expect the Back button in the bottom left corner of every screen to take them to the previous screen. The set of historical screens always starts with the user's Launcher (the device's Home screen), as shown in the figure below. Pressing Back enough times should return the user back to the Launcher.
In the above figure:
You don't have to manage the Back button in your app. The system handles tasks and the back stack—the list of previous screens—automatically. The Back button by default simply traverses this list of screens, removing the current screen from the list as the user presses it.
There are, however, cases where you may want to override the behavior for the Back button. For example, if your screen contains an embedded web browser in which users can interact with page elements to navigate between web pages, you may wish to trigger the embedded browser's default back behavior when users press the device's Back button.
The onBackPressed() method of the Activity class is called whenever the activity detects the user's press of the Back key. The default implementation simply finishes the current activity, but you can override this to do something else:
@Override
public void onBackPressed() {
// Add the Back key handler here.
return;
}
If your code triggers an embedded browser with its own behavior for the Back key, you should return the Back key behavior to the system's default behavior if the user uses the Back key to go beyond the beginning of the browser's internal history.
Hierarchical navigation patterns
To give the user a path through the full range of an app's screens, the best practice is to use some form of hierarchical navigation. An app's screens are typically organized in a parent-child hierarchy, as shown in the figure below:
In the figure above:
You can enable the user to navigate up to and down from a parent, and sideways among siblings:
You can use a main activity (as a parent screen) and then other activities or fragments to implement a hierarchy of screens within an app.
Main activity with other activities
If the first-level child screen siblings have another level of child screens under them, you should implement the first-level screens as activities, so that their lifecycles are managed properly before calling any second-level child screens.
For example, in the figure above, the parent screen is most likely the main activity. An app's main activity (usually MainActivity.java) is typically the parent screen for all other screens in your app, and you implement a navigation pattern in the main activity to enable the user to go to other activities or fragments. For example, you can implement navigation using an Intent that starts an activity.
Tip: Using an Intent in the current activity to start another activity adds the current activity to the call stack, so that the Back button in the other activity (described in the previous section) returns the user to the current activity.
As you learned previously, the Android system initiates code in an Activity instance with callback methods that manage the activity's lifecycle for you. (A previous lesson covers the activity lifecycle; for more information, see "Managing the Activity Lifecycle" in the Training section of the Android Developer Develop guide.)
The hierarchy of parent and child activities is defined in the AndroidManifest.xml file. For example, the following defines OrderActivity as a child of the parent MainActivity :
<activity android:name=".OrderActivity"
android:label="@string/title_activity_order"
android:parentActivityName=
"com.example.android.droidcafe.MainActivity">
<meta-data
android:name="android.support.PARENT_ACTIVITY"
android:value=".MainActivity"/>
</activity>
Main activity with fragments
If the child screen siblings do not have another level of child screens under them, you can implement them as fragments. A Fragment represents a behavior or portion of a user interface within in an activity. Think of a fragment as a modular section of an activity which has its own lifecycle, receives its own input events, and which you can add or remove while the activity is running.
You can combine multiple fragments in a single activity. For example, in a section sibling screen showing a news story and implemented as an activity, you might have a child screen for a video clip implemented as a fragment. You would implement a way for the user to navigate to the video clip fragment, and then back to the activity showing the story.
Ancestral navigation (the Up button)
With ancestral navigation in a multitier hierarchy, you enable the user to go up from a section sibling to the collection sibling, and then up to the parent screen.
In the above figure:
The Up button is used to navigate within an app based on the hierarchical relationships between screens. For example (referring to the figure above):
Tip: The Back button below the screen differs from the Up button. The Back button provides navigation to whatever screen you viewed previously. If you have several children screens that the user can navigate through using a lateral navigation pattern (as described later in this chapter), the Back button would send the user back to the previous child screen, not to the parent screen. Use an Up button if you want to provide ancestral navigation from a child screen back to the parent screen. For more information about Up navigation, see Providing Up Navigation.
See the "Menus" concept chapter for details on how to implement the app bar. To provide the Up button for a child screen activity, declare the activity's parent to be MainActivity in the AndroidManifest.xml file. You can also set the android:label to a title for the activity screen, such as "Order Activity" (extracted into the string resource title_activity_order in the code below). Follow these steps to declare the parent in AndroidManifest.xml:
<activity android:name=".OrderActivity"
android:label="@string/title_activity_order"
android:parentActivityName=
"com.example.android.optionsmenuorderactivity.MainActivity">
<meta-data
android:name="android.support.PARENT_ACTIVITY"
android:value=".MainActivity"/>
</activity>
The child ("Order Activity") screen now includes the Up button in the app bar (highlighted in the figure below), which the user can tap to navigate back to the parent screen.
Descendant navigation
With descendant navigation, you enable the user to go from the parent screen to a first-level child screen, and from a first-level child screen down to a second-level child screen.
In the above figure:
Buttons or targets
The best practice for descendant navigation from the parent screen to collection siblings is to use buttons or simple targets such as an arrangement of images or iconic buttons (also known as a dashboard). When the user touches a button, the collection sibling screen opens, replacing the current context (screen) entirely.
Tip: Buttons and simple targets are rarely used for navigating to section siblings within a collection. See lists, carousels, and cards in the next section.
In the figure above:
A dashboard usually has either two or three rows and columns, with large touch targets to make it easy to use. Dashboards are best when each collection sibling is equally important. You can use a LinearLayout, RelativeLayout, or GridLayout. See Layouts for an overview of how layouts work.
Navigation drawer
A navigation drawer is a panel that usually displays navigation options on the left edge of the screen, as shown on the right side of the figure below. It is hidden most of the time, but is revealed when the user swipes a finger from the left edge of the screen or touches the navigation icon in the app bar, as shown on the left side of the figure below.
In the above figure:
A good example of a navigation drawer is in the Gmail app, which provides access to the Inbox, labelled email folders, and settings. The best practice for employing a navigation drawer is to provide descendant navigation from the parent activity to all of the other activities or fragments in an app. It can display many navigation targets at once—for example, it could contain buttons (like a dashboard), tabs, or a list of items (like the Gmail drawer).
To make a navigation drawer in your app, you need to do the following:
Creating the navigation drawer layout
To create a navigation drawer layout, use the DrawerLayout APIs available in the Support Library. For design specifications, follow the design principles for navigation drawers in the Navigation Drawer design guide.
To add a navigation drawer, use a DrawerLayout as the root view of your activity's layout. Inside the DrawerLayout , add one view that contains the main content for the screen (your primary layout when the drawer is hidden) and another view, typically a NavigationView, that contains the contents of the navigation drawer.
Tip: To make your layouts simpler to understand, use the include tag to include an XML layout within another XML layout.
For example, the following layout uses:
Refer to the figure below that corresponds to this layout:
activity_main.xml:
<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.widget.DrawerLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/drawer_layout"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:fitsSystemWindows="true"
tools:openDrawer="start">
<include
layout="@layout/app_bar_main"
android:layout_width="match_parent"
android:layout_height="match_parent" />
<android.support.design.widget.NavigationView
android:id="@+id/nav_view"
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:layout_gravity="start"
android:fitsSystemWindows="true"
app:headerLayout="@layout/nav_header_main"
app:menu="@menu/activity_main_drawer" />
</android.support.v4.widget.DrawerLayout>
In the above figure:
Note the following in the activity_main.xml layout:
android:layout_gravity="start"
The navigation drawer header
The NavigationView specifies the layout for the header of the navigation drawer with the attribute app:headerLayout="@layout/nav_header_main" . The nav_header_main.xml file defines the layout of this header to include an ImageView and a TextView , which is typical for a navigation drawer, but you could also include other Views.
Tip: The header's height should be 160dp, which you should extract into a dimension resource (nav_header_height).
nav_header_main.xml:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="@dimen/nav_header_height"
android:background="@drawable/side_nav_bar"
android:gravity="bottom"
android:orientation="vertical"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
android:theme="@style/ThemeOverlay.AppCompat.Dark">
<ImageView
android:id="@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingTop="@dimen/nav_header_vertical_spacing"
android:src="@android:drawable/sym_def_app_icon" />
<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:paddingTop="@dimen/nav_header_vertical_spacing"
android:text="@string/my_app_title"
android:textAppearance="@style/TextAppearance.AppCompat.Body1" />
</LinearLayout>
The app bar layout
The include tag in the activity_main layout includes the app_bar_main layout, which uses a CoordinatorLayout as its root. The app_bar_main.xml layout file defines the app bar layout with the Toolbar class as shown previously in the chapter about menus. It also defines a floating action button, and uses an include tag to include the content_main (content_main.xml) layout:
app_bar_main.xml:
<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:fitsSystemWindows="true"
tools:context="com.example.android.navigationexperiments.MainActivity">
<android.support.design.widget.AppBarLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:theme="@style/AppTheme.AppBarOverlay">
<android.support.v7.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="?attr/actionBarSize"
android:background="?attr/colorPrimary"
app:popupTheme="@style/AppTheme.PopupOverlay" />
</android.support.design.widget.AppBarLayout>
<include layout="@layout/content_main" />
<android.support.design.widget.FloatingActionButton
android:id="@+id/fab"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom|end"
android:layout_margin="@dimen/fab_margin"
android:src="@android:drawable/ic_dialog_email" />
</android.support.design.widget.CoordinatorLayout>
Note the following:
The content layout for the main activity screen
The above layout uses an include tag to include the content_main layout, which defines the layout of the main activity screen (content_main.xml). In the example layout below, the main activity screen shows a TextView that displays the string "Hello World!":
content_main.xml:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
app:layout_behavior="@string/appbar_scrolling_view_behavior"
tools:context="com.example.android.navigationexperiments.MainActivity"
tools:showIn="@layout/app_bar_main">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hello_world" />
</RelativeLayout>
Note the following:
Populating the navigation drawer menu
The NavigationView in the activity_main layout specifies the menu items for the navigation drawer using the following statement:
app:menu="@menu/activity_main_drawer"
The menu items are defined in the activity_main_drawer.xml file, which is located under app > res > menu. The <group></group> tag defines a menu group—a collection of items that share traits, such as whether they are visible, enabled, or checkable. A group must contains one or more <item></> elements and be a child of a <menu> element, as shown below. In addition to defining each menu item's title with the android:title attribute, the file also defines each menu item's icon with the android:icon attribute.
The group is defined with the android:checkableBehavior attribute. This attribute lets you put interactive elements within the navigation drawer, such as toggle switches that can be turned on or off, and checkboxes and radio buttons that can be selected. The choices for this attribute are:
none : No items are checkable.
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<group android:checkableBehavior="none">
<item
android:id="@+id/nav_camera"
android:icon="@drawable/ic_menu_camera"
android:title="@string/import_camera" />
<item
android:id="@+id/nav_gallery"
android:icon="@drawable/ic_menu_gallery"
android:title="@string/gallery" />
<item
android:id="@+id/nav_slideshow"
android:icon="@drawable/ic_menu_slideshow"
android:title="@string/slideshow" />
<item
android:id="@+id/nav_manage"
android:icon="@drawable/ic_menu_manage"
android:title="@string/tools" />
</group>
<item android:title="@string/communicate">
<menu>
<item
android:id="@+id/nav_share"
android:icon="@drawable/ic_menu_share"
android:title="@string/share" />
<item
android:id="@+id/nav_send"
android:icon="@drawable/ic_menu_send"
android:title="@string/send" />
</menu>
</item>
</menu>
Setting up the navigation drawer and item listeners
To use a listener for the navigation drawer's menu items, the activity hosting the navigation drawer must implement the OnNavigationItemSelectedListener interface:
Implement NavigationView.OnNavigationItemSelectedListener in the class definition:
public class MainActivity extends AppCompatActivity
implements NavigationView.OnNavigationItemSelectedListener {
...
}
This interface offers the onNavigationItemSelected() method, which is called when an item in the navigation drawer menu item is tapped. As you enter OnNavigationItemSelectedListener , the red warning bulb appears on the left margin.
Click the red warning bulb, choose Implement methods, and choose the onNavigationItemSelected(item:MenuItem):boolean method.
Android Studio adds a stub for the method:
@Override
public boolean onNavigationItemSelected(MenuItem item) {
return false;
}
}
You learn how to use this stub in the next section.
Before setting up the navigation item listener, add code to the activity's onCreate() method to instantiate the DrawerLayout and NavigationView objects (drawer and navigationView in the code below):
@Override
protected void onCreate(Bundle savedInstanceState) {
. . .
DrawerLayout drawer = (DrawerLayout)
findViewById(R.id.drawer_layout);
ActionBarDrawerToggle toggle =
new ActionBarDrawerToggle(this, drawer, toolbar,
R.string.navigation_drawer_open,
R.string.navigation_drawer_close);
if (drawer != null) {
drawer.addDrawerListener(toggle);
}
toggle.syncState();
NavigationView navigationView = (NavigationView)
findViewById(R.id.nav_view);
if (navigationView != null) {
navigationView.setNavigationItemSelectedListener(this);
}
}
The above code instantiates an ActionBarDrawerToggle, which substitutes a special drawable for the activity's Up button in the app bar, and links the activity to the DrawerLayout. The special drawable appears as a "hamburger" navigation icon when the drawer is closed, and animates into an arrow as the drawer opens.
Note: Be sure to use the ActionBarDrawerToggle in support-library-v7.appcompact, not the version in support-library-v4.
Tip: You can customize the animated toggle by defining the drawerArrowStyle in your ActionBar theme (for more detailed information about the ActionBar theme, see Adding the App Bar in the Android Developer documentation.
The above code implements addDrawerListener() to listen for drawer open and close events, so that when the user taps custom drawable button, the navigation drawer slides out.
You must also use the syncState() method of ActionBarDrawerToggle to synchronize the state of the drawer indicator. The synchronization must occur after the DrawerLayout's instance state has been restored, and any other time when the state may have diverged in such a way that the ActionBarDrawerToggle was not notified.
The above code ends by setting a listener, setNavigationItemSelectedListener() , to the navigation drawer to listen for item clicks.
<string name="navigation_drawer_open">Open navigation drawer</string>
<string name="navigation_drawer_close">Close navigation drawer</string>
Handling navigation menu item selections
Write code in the onNavigationItemSelected() method stub to handle menu item selections. This method is called when an item in the navigation drawer menu is tapped.
It uses if statements to take the appropriate action based on the menu item's id , which you can retrieve using the getItemId() method:
@Override
public boolean onNavigationItemSelected(MenuItem item) {
DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);
// Handle navigation view item clicks here.
switch (item.getItemId()) {
case R.id.nav_camera:
// Handle the camera import action (for now display a toast).
drawer.closeDrawer(GravityCompat.START);
displayToast(getString(R.string.chose_camera));
return true;
case R.id.nav_gallery:
// Handle the gallery action (for now display a toast).
drawer.closeDrawer(GravityCompat.START);
displayToast(getString(R.string.chose_gallery));
return true;
case R.id.nav_slideshow:
// Handle the slideshow action (for now display a toast).
drawer.closeDrawer(GravityCompat.START);
displayToast(getString(R.string.chose_slideshow));
return true;
case R.id.nav_manage:
// Handle the tools action (for now display a toast).
drawer.closeDrawer(GravityCompat.START);
displayToast(getString(R.string.chose_tools));
return true;
case R.id.nav_share:
// Handle the share action (for now display a toast).
drawer.closeDrawer(GravityCompat.START);
displayToast(getString(R.string.chose_share));
return true;
case R.id.nav_send:
// Handle the send action (for now display a toast).
drawer.closeDrawer(GravityCompat.START);
displayToast(getString(R.string.chose_send));
return true;
default:
return false;
}
}
After the user taps a navigation drawer selection or taps outside the drawer, the DrawerLayout closeDrawer() method closes the drawer.
Lists and carousels
Use a scrolling list, such as a RecyclerView, to provide navigation targets for descendant navigation. Vertically scrolling lists are often used for a screen that lists stories, with each list item acting as a button to each story. For more visual or media-rich content items such as photos or videos, you may want to use a horizontally-scrolling list (also known as a carousel). These UI elements are good for presenting items in a collection (for example, a list of news stories).
You learn all about RecyclerView in the next chapter.
Master/detail navigation flow
In a master/detail navigation flow, a master screen contains a list of items, and a detail screen shows detailed information about a specific item. Descendant navigation is usually implemented by one of the following:
Smartphones are best suited for displaying one screen at a time—such as a master screen (on the left side of the figure below) and a detail screen (on the right side of the figure below).
On the other hand, tablet displays, especially when viewed in the landscape orientation, are best suited for showing multiple content panes at a time: the master on the left, and the detail to the right, as shown below.
Options menu in the app bar
The app bar typically contains the options menu, which is most often used for navigation patterns for descendant navigation. It may also contain an Up icon for ancestral navigation, a nav icon for opening a navigation drawer, and a filter icon to filter page views. You learned how to set up the options menu and the app bar in a previous chapter.
Lateral navigation with tabs and swipes
With lateral navigation, you enable the user to go from one sibling to another (at the same level in a multitier hierarchy). For example, if your app provides several categories of stories (such as Top Stories, Tech News, and Cooking, as shown in the figure below), you would want to provide your users the ability to navigate from one category to the next, or from one top story to the next, without having to navigate back up to the parent screen.
In the above figure:
Another example of lateral navigation is the ability to swipe left or right in a Gmail conversation to view a newer or older email in the same Inbox.
You can implement lateral navigation with tabs that represent each screen. Tabs appear across the top of a screen, as shown on the left side of the above figure, providing navigation to other screens. Tab navigation is a common solution for lateral navigation from one child screen to another child screen that is a sibling—in the same position in the hierarchy and sharing the same parent screen.
Tabs are most appropriate for small sets (four or fewer) of sibling screens. You can combine tabs with swipe views, so that the user can swipe across from one screen to another as well as tap a tab.
Tabs offer two benefits:
Keep in mind the following best practices when using tabs:
The key steps for implementing tabs are:
There are standard adapters for using fragments with the ViewPager:
Defining tab layout
To use a TabLayout, you can design the main activity's layout to use a Toolbar for the app bar, a TabLayout for the tabs below the app bar, and a ViewPager within the root layout to switch child views. The layout should look similar to the following, assuming each child view fills the screen:
<android.support.v7.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:background="?attr/colorPrimary"
android:minHeight="?attr/actionBarSize"
android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"
app:popupTheme="@style/ThemeOverlay.AppCompat.Light"/>
<android.support.design.widget.TabLayout
android:id="@+id/tab_layout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/toolbar"
android:background="?attr/colorPrimary"
android:minHeight="?attr/actionBarSize"
android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"/>
<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="fill_parent"
android:layout_below="@id/tab_layout"/>
For each child view, create a layout file such as tab_fragment1.xml, tab_fragment2.xml, tab_fragment3.xml, and so on.
Implementing each fragment
A fragment is a behavior or a portion of user interface within an activity. It's like a mini-activity within the main activity, with its own own lifecycle. To learn about fragments, see Fragments in the API Guide.
Add a class for each fragment (such as TabFragment1.java, TabFragment2.java, and TabFragment3.java) representing a screen the user can visit by clicking a tab. Each class should extend Fragment and inflate the layout associated with the screen (tab_fragment1 , tab_fragment2 , and tab_fragment3). For example, TabFragment1.java looks like this:
public class TabFragment1 extends Fragment {
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) {
return inflater.inflate(R.layout.tab_fragment1, container, false);
}
}
Adding a pager adapter
Add a PagerAdapter that extends FragmentStatePagerAdapter and:
public class PagerAdapter extends FragmentStatePagerAdapter {
int mNumOfTabs;
public PagerAdapter(FragmentManager fm, int NumOfTabs) {
super(fm);
this.mNumOfTabs = NumOfTabs;
}
@Override
public Fragment getItem(int position) {
switch (position) {
case 0:
return new TabFragment1();
case 1:
return new TabFragment2();
case 2:
return new TabFragment3();
default:
return null;
}
}
@Override
public int getCount() {
return mNumOfTabs;
}
}
Creating an instance of the tab layout
In the onCreate() method of the main activity, create an instance of the tab layout from the tab_layout element in the layout, and set the text for each tab using addTab():
@Override
protected void onCreate(Bundle savedInstanceState) {
...
// Create an instance of the tab layout from the view.
TabLayout tabLayout = (TabLayout) findViewById(R.id.tab_layout);
// Set the text for each tab.
tabLayout.addTab(tabLayout.newTab().setText("Top Stories"));
tabLayout.addTab(tabLayout.newTab().setText("Tech News"));
tabLayout.addTab(tabLayout.newTab().setText("Cooking"));
// Set the tabs to fill the entire layout.
tabLayout.setTabGravity(TabLayout.GRAVITY_FILL);
// Use PagerAdapter to manage page views in fragments.
...
}
Extract string resources for the tab text set by setText() :
Managing screen views in fragments and set a listener
Use PagerAdapter in the main activity's onCreate() method to manage screen ("page") views in the fragments. Each screen is represented by its own fragment. You also need to set a listener to determine which tab is tapped. The following code should appear after the code from the previous section in the onCreate() method:
@Override
protected void onCreate(Bundle savedInstanceState) {
...
// Use PagerAdapter to manage page views in fragments.
// Each page is represented by its own fragment.
// This is another example of the adapter pattern.
final ViewPager viewPager = (ViewPager) findViewById(R.id.pager);
final PagerAdapter adapter = new PagerAdapter
(getSupportFragmentManager(), tabLayout.getTabCount());
viewPager.setAdapter(adapter);
// Setting a listener for clicks.
viewPager.addOnPageChangeListener(new
TabLayout.TabLayoutOnPageChangeListener(tabLayout));
tabLayout.addOnTabSelectedListener(new TabLayout.OnTabSelectedListener() {
@Override
public void onTabSelected(TabLayout.Tab tab) {
viewPager.setCurrentItem(tab.getPosition());
}
@Override
public void onTabUnselected(TabLayout.Tab tab) {
}
@Override
public void onTabReselected(TabLayout.Tab tab) {
}
});
}
Using ViewPager for swipe views (horizontal paging)
The ViewPager is a layout manager that lets the user flip left and right through "pages" (screens) of content. ViewPager is most often used in conjunction with Fragment, which is a convenient way to supply and manage the lifecycle of each "page". ViewPager also provides the ability to swipe "pages" horizontally.
In the previous example, you used a ViewPager within the root layout to switch child screens. This provides the ability for the user to swipe from one child screen to another. Users are able to navigate to sibling screens by touching and dragging the screen horizontally in the direction of the desired adjacent screen.
Swipe views are most appropriate where there is some similarity in content type among sibling pages, and when the number of siblings is relatively small. In these cases, this pattern can be used along with tabs above the content region to indicate the current page and available pages, to aid discoverability and provide more context to the user.
Tip: It's best to avoid horizontal paging when child screens contain horizontal panning surfaces (such as maps), as these conflicting interactions may deter your screen's usability.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
4.4: RecyclerView
Contents:
When you display a large number of items in a scrollable list, most items are not visible. For example, in a long list of words or many news headlines, the user only sees a small number of list items at a time.
Or you may have a dataset that changes as the user interacts with it. If you create a new view every time the data changes, that's also a lot of views, even for a small dataset.
From a performance perspective, you want to minimize the number of views kept around at any given point (Memory), and the number of views you have to create (Time). Both of these goals can be accomplished by creating somewhat more views than the user can see on the screen, and cache and reuse previously created views with different data as they scroll in and out of view.
The RecyclerView class is a more advanced and flexible version of ListView. It is a container for displaying large data sets that can be scrolled very efficiently by maintaining a limited number of views.
Use the RecyclerView widget when you need to display a large amount of scrollable data, or data collections whose elements change at runtime based on user action or network events.
RecyclerView components
To display your data in a RecyclerView, you need the following parts:
A RecyclerView. The scrolling list that contains the list items.
An instance of RecyclerView as defined in your activity's layout file to act as the container for the views.
A layout manager. The layout manager handles the organization (layout) of user interface components in a view. All view groups have layout managers. For the LinearLayout, the Android system handles the layout for you. RecyclerView requires an explicit layout manager to manage the arrangement of list items contained within it. This layout could be vertical, horizontal, or a grid.
The layout manager is an instance of Recyclerview.LayoutManager to organize the layout of the items in the RecyclerView
An adapter. The adapter connects your data to the RecyclerView. It prepares the data and how will be displayed in a view holder. When the data changes, the adapter updates the contents of the respective list item view in the RecyclerView.
And an adapter is an extension of RecyclerView.Adapter. The adapter uses a ViewHolder to hold the views that constitute each item in the RecyclerView, and to bind the data to be displayed into the views that display it.
A view holder. The view holder extends the ViewHolder class. It contains the view information for displaying one item from the item's layout.
A view holder used by the adapter to supply data, which is an extension of RecyclerView.ViewHolder
The diagram below shows the relationship between these compoments.
Data
Any displayable data can be shown in a RecyclerView.
Data can come from any source.
RecyclerView
A RecyclerView is:
Item Layout
The layout for a list item is kept in a separate file so that the adapter can create item views and edit their contents independently from the layout of the activity.
Layout Manager
A layout manager positions item views inside a view group, such as the RecyclerView and determines when to reuse item views that are no longer visible to the user. To reuse (or recycle) a view, a layout manager may ask the adapter to replace the contents of the view with a different element from the dataset. Recycling views in this manner improves performance by avoiding the creation of unnecessary views or performing expensive findViewById() lookups.
RecyclerView provides these built-in layout managers:
To create a custom layout manager, extend the RecyclerView.LayoutManager class.
Animations
Animations for adding and removing items are enabled by default in RecyclerView. To customize these animations, extend the RecyclerView.ItemAnimator class and use the RecyclerView.setItemAnimator() method.
Adapter
An Adapter helps two incompatible interfaces to work together. In the RecyclerView, the adapter connects data with views. It acts as an intermediary between the data and the view. The Adapter receives or retrieves the data, does any work required to make it displayable in a view, and places the data in a view.
For example, the adapter may receive data from a database as a Cursor object, extract the the word and its definition, convert them to strings, and place the strings in an item view that has two text views, one for the word and one for the definition. You will learn more about cursors in a later chapter.
The RecyclerView.Adapter implements a view holder, and must override the following callbacks:
View holder
A RecyclerView.ViewHolder describes an item view and metadata about its place within the RecyclerView. Each view holder holds one set of data. The adapter adds data to view holders for the layout manager to display.
You define your view holder layout in an XML resource file. It can contain (almost) any type of view, including clickable elements.
Implementing a Recycler View
Implementing a RecyclerView requires the following steps:
1. Add the dependency to app/build.gradle
Add the recycler view library to your app/build.gradle file as a dependency. Look at the chapter on support libraries or the RecyclerView practical, if you need detailed instructions.
dependencies {
...
compile 'com.android.support:recyclerview-v7:24.1.1'
...
}
2. Add a RecyclerView to your activity's layout
Add the RecyclerView in your activity's layout file.
<android.support.v7.widget.RecyclerView
android:id="@+id/recyclerview"
android:layout_width="match_parent"
android:layout_height="match_parent">
</android.support.v7.widget.RecyclerView>
Use the recycler view from the support library to be compatible with older devices. The only required attributes are the id, along with the width and height. Customize the items, not this view group.
3. Create the layout for one item
Create an XML resource file and specify the layout of one item. This will be used by the adapter to create the view holder.
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
android:padding="6dp">
<TextView
android:id="@+id/word"
style="@style/word_title" />
</LinearLayout>
The text view has a @style element. A style is a collection of properties that specifies the look of a view. You can use styles to share display attributes with multiple views. An easy way to create a style is to extract the style of a UI element that you already created. For example, after styling a TextView, Right-click > Refactor > Extract > Style on the element and follow the dialog prompts. More details on styles are in the practical and in a later chapter.
4. Create an adapter with a view holder
Extend RecyclerView.Adapter and implement the onCrateViewHolder and onBindViewHolder methods.
Create a new Java class with the following signature:
public class WordListAdapter extends RecyclerView.Adapter<WordListAdapter.WordViewHolder> {}
In the constructor, get an inflater from the current contex, and your data.
public WordListAdapter(Context context, LinkedList<String> wordList) {
mInflater = LayoutInflater.from(context);
this.mWordList = wordList;
}
For this adapter, you have to implement 3 methods.
@Override
public WordViewHolder onCreateViewHolder(ViewGroup parent, int viewType){
// Inflate an item view.
View mItemView = mInflater.inflate(R.layout.wordlist_item, parent, false);
return new WordViewHolder(mItemView, this);
}
@Override
public void onBindViewHolder(WordViewHolder holder, int position) {
// Retrieve the data for that position
String mCurrent = mWordList.get(position);
// Add the data to the view
holder.wordItemView.setText(mCurrent);
}
@Override
public int getItemCount() {
return mWordList.size();
}
5. Implement the view holder class
Extend RecyclerView.ViewHolder to create a view holder for your item layout. You can add click behavior by overriding the onClick method.
This class is usually defined as an inner class to the adapter and extends RecyclerView.ViewHolder.
class WordViewHolder extends RecyclerView.ViewHolder {}
If you want to add click handling, you need to implement a click listener. One way to do this is to have the view holder implement the click listener methods.
// Extend the signature of WordVewHolder to implement a click listener.
class WordViewHolder extends RecyclerView.ViewHolder implements View.OnClickListener {}
In its constructor, the view holder has to inflate its layout, associate with its adapter, and, if applicable, set a click listener.
public WordViewHolder(View itemView, WordListAdapter adapter) {
super(itemView);
wordItemView = (TextView) itemView.findViewById(R.id.word);
this.mAdapter = adapter;
itemView.setOnClickListener(this);
}
And, if you implementing onClickListener, you also have to implement onClick().
@Override
public void onClick(View v) {
wordItemView.setText ("Clicked! "+ wordItemView.getText());
}
Note that to attach click listeners to other elements of the view holder, you do that dynamically in onBindViewHolder. (You will do this a later practical, when you will be extending the recycler view code from the practical.)
6. Create the RecyclerView
Finally, to tie it all together, in your activity's onCreate() method:
mRecyclerView = (RecyclerView) findViewById(R.id.recyclerview);
mAdapter = new WordListAdapter(this, mWordList);
mRecyclerView.setAdapter(mAdapter);
mRecyclerView.setLayoutManager(new LinearLayoutManager(this));
RecyclerView is an efficient way for displaying scrolling list data. It uses the adapter pattern to connect data with list item views. To implement a RecyclerView you need to create an adapter and a view holder, and the methods that take the data and add it to the list items.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
5.1: Drawables, Styles, and Themes
Table of Contents:
In this chapter you learn how to use drawables, which are compiled images that you can use in your app. Android provides classes and resources to help you include rich images in your application with a minimal impact to your app's performance.
You also learn how to use styles and themes to provide a consistent appearance to all the elements in your app while reducing the amount of code.
Drawables
A drawable is a graphic that can be drawn to the screen. You retrieve drawables using APIs such as getDrawable(int) , and you apply a drawable to an XML resource using attributes such as android:drawable and android:icon .
Android includes several types of drawables, most of which are covered in this chapter.
Covered in this chapter:
| Not covered in this chapter:
|
Using drawables
To display a drawable, use the ImageView class to create a View. In the <ImageView> element in your XML file, define how the drawable is displayed and where the drawable file is located. For example, this ImageView displays an image called "birthdaycake.png":
<ImageView
android:id="@+id/tiles"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/birthdaycake" />
About the <ImageView> attributes:
To represent a drawable in your app, use the Drawable class or one of its subclasses. For example, this code retrieves the birthdaycake.png image as a Drawable :
Resources res = getResources();
Drawable drawable = res.getDrawable(R.drawable.birthdaycake);
Image files
An image file is a generic bitmap file. Android supports image files in several formats: WebP (preferred), PNG (preferred), and JPG (acceptable). GIF and BMP formats are supported, but discouraged.
The WebP format is fully supported from Android 4.2. WebP compresses better than other formats for lossless and lossy compression, potentially resulting in images more than 25% smaller than JPEG formats. You can convert existing PNG and JPEG images into WebP format before upload. For more about WebP, see the WebP documentation.
Store image files in the res/drawable folder. Use them with the android:src attribute for an ImageView and its descendants, or to create a BitmapDrawable class in Java code.
Be aware that images look different on screens with different pixel densities and aspect ratios. For information on supporting different screen sizes, see Speeding up your app, below, and the screen sizes guide.
Note: Always use appropriately sized images, because images can use up a lot of disk space and affect your app's performance.
Nine-patch files
A 9-patch is a PNG image in which you define stretchable regions. Use a 9-patch as the background image for a View to make sure the View looks correct for different screen sizes and orientations.
For example, in a View that has layout_width set to "wrap_content" , the View stays big enough to enclose its content (plus padding). If you use a normal PNG image as the background image for the View, the image might be too small for the for the View on some devices, because the View stretches to accommodate the content inside it. If you use a 9-patch image instead, the 9-patch stretches as the View stretches.
Android's standard Button widget is an example of a View that uses a 9-patch as its background image. The 9-patch stretches to accommodate the text or image inside the button.
Save 9-patch files with a .9.png extension and store them in the res/drawable folder. Use them with the android:src attribute for an ImageView and its descendants, or to create a NinePatchDrawable class in Java code.
To create a 9-patch, use the Draw 9-Patch tool in Android Studio. The tool lets you start with a regular PNG and define a 1-pixel border around the image in places where it's okay for the Android system to stretch the image if needed. To use the tool:
#
Border to indicate which regions are okay to stretch for width (horizontally).
For example, in a View that is wider than the image, the green stripes on the left- and right-hand sides of this 9-patch can be stretched to fill the View. Places that can stretch are marked with black. Click to turn pixels black.
Tip: Make sure that stretchable regions are at least 2x2 pixels in size. Otherwise, they may disappear when the image is scaled down.
For a more detailed discussion about how to create a 9-patch file with stretchable regions, see the 9-patch guide.
Layer list drawables
In Android you can build up an image by layering other images together, just as you can in Gimp and other image-manipulation programs. Each layer is represented by an individual drawable. The drawables that make up a single image are organized and managed in a <layer-list> element in XML. Within the <layer-list> , each drawable is represented by an <item> element.
Layers are drawn on top of each other in the order defined in the XML file, which means that the last drawable in the list is drawn on top. For example, this layer list drawable is made up of three drawables superimposed on each other:
In the following XML, which defines this layer list, the android_blue image is defined last, so it's drawn last and shown on top:
<?xml version="1.0" encoding="utf-8"?>
<layer-list xmlns:android="http://schemas.android.com/apk/res/android">
<item>
<bitmap android:src="@drawable/android_red"
android:gravity="center" />
</item>
<item android:top="10dp" android:left="10dp">
<bitmap android:src="@drawable/android_green"
android:gravity="center" />
</item>
<item android:top="20dp" android:left="20dp">
<bitmap android:src="@drawable/android_blue"
android:gravity="center" />
</item>
</layer-list>
A LayerDrawable is a drawable object that manages an array of other drawables. For more information about how to use a layer list drawable, see the layer list guide.
Shape drawables
A shape drawable is a rectangle, oval, line, or ring that you define in XML. You specify the size and style of the shape using XML attributes.
For example, this XML file creates a rectangle with rounded corners and a color gradient. The rectangle's fill color shifts from white (#000000) in the lower left corner to blue (#0000dd) in the upper right corner. The angle attribute determines how the gradient is tilted:
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
<corners android:radius="8dp" />
<gradient
android:startColor="#000000"
android:endColor="#0000dd"
android:angle="45"/>
<padding android:left="7dp"
android:top="7dp"
android:right="7dp"
android:bottom="7dp" />
</shape>
Assuming that the shape drawable XML file is saved at res/drawable/gradient_box.xml, the following layout XML applies the shape drawable as the background to a View:
<TextView
android:background="@drawable/gradient_box"
android:layout_height="wrap_content"
android:layout_width="wrap_content" />
The following code shows how to programmatically get the shape drawable and use it as the background for a View, as an alternative to defining the background attribute in XML:
Resources res = getResources();
Drawable shape = res. getDrawable(R.drawable.gradient_box);
TextView tv = (TextView)findViewByID(R.id.textview);
tv.setBackground(shape);
You can set other attributes for a shape drawable. The complete syntax is as follows:
<?xml version="1.0" encoding="utf-8"?>
<shape
xmlns:android="http://schemas.android.com/apk/res/android"
android:shape=["rectangle" | "oval" | "line" | "ring"] >
<!-- If it's a line, the stroke element is required. -->
<corners
android:radius="integer"
android:topLeftRadius="integer"
android:topRightRadius="integer"
android:bottomLeftRadius="integer"
android:bottomRightRadius="integer" />
<gradient
android:angle="integer"
<!-- The angle must be 0 or a multiple of 45 -->
android:centerX="float"
android:centerY="float"
android:centerColor="integer"
android:endColor="color"
android:gradientRadius="integer"
android:startColor="color"
android:type=["linear" | "radial" | "sweep"]
android:useLevel=["true" | "false"] />
<padding
android:left="integer"
android:top="integer"
android:right="integer"
android:bottom="integer" />
<size
android:width="integer"
android:height="integer" />
<solid
android:color="color" />
<stroke
android:width="integer"
android:color="color"
android:dashWidth="integer"
android:dashGap="integer" />
</shape>
For details about these attributes, see the shape drawable reference.
State list drawables
A StateListDrawable is a drawable object that uses a different image to represent the same object, depending on what state the object is in. For example, a Button widget can exist in one of several states (pressed, focused on, hovered over, or none of these). Using a state list drawable, you can provide a different background image for each state.
You describe the state list in an XML file. Each graphic is represented by an <item> element inside a single <selector> element. Each <item> uses a state_ attribute to indicate the situation in which the graphic is used.
During each state change, Android traverses the state list from top to bottom. The first item that matches the current state is used, which means that the selection is not based on the "best match," but is simply the first item that meets the minimum criteria of the state.
The state list in the following example defines which image is shown for a button when the button is in different states. When the button is pressed—that is, when state_pressed="true" —the app shows an image named button_pressed. When the button is in focus (state_focused="true"), or when the button is being hovered over (state_hovered="true"), the app shows different buttons.
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state_pressed="true"
android:drawable="@drawable/button_pressed" /> <!-- pressed -->
<item android:state_focused="true"
android:drawable="@drawable/button_focused" /> <!-- focused -->
<item android:state_hovered="true"
android:drawable="@drawable/button_focused" /> <!-- hovered -->
<item android:drawable="@drawable/button_normal" /> <!-- default -->
</selector>
Other available states include android:state_selected, android:state_checkable, android:state_checked , and others. For details about all the options, see the state list guide.
Level list drawables
A level list drawable defines alternate drawables, each assigned a maximum numerical value. To select which drawable to use, call the setLevel() method, passing in an integer that is matched against the maximum level integer defined in XML. The resource with the lowest maximum level greater than or equal to the integer passed into setLevel() is selected.
For example, the following XML defines a level list that includes two alternate drawables, status_off and status_on :
<?xml version="1.0" encoding="utf-8"?>
<level-list xmlns:android="http://schemas.android.com/apk/res/android" >
<item
android:drawable="@drawable/status_off"
android:maxLevel="0" />
<item
android:drawable="@drawable/status_on"
android:maxLevel="1" />
</level-list>
To select the status_off drawable, call setLevel(0) . To select the status_on drawable, call setLevel(1) .
An example use of a LevelListDrawable is a battery level indicator icon that uses different images to indicate different current battery levels.
Transition drawables
A TransitionDrawable is a drawable that cross-fades between two other drawables. To define a transition drawable in XML, use the <transition> element. Each drawable is represented by an <item> element inside the <transition> element. No more than two <item> elements are supported.
For example, this drawable cross-fades between an "on" state and an "off" state drawable:
<transition xmlns:android="http://schemas.android.com/apk/res/android">
<item android:drawable="@drawable/on" />
<item android:drawable="@drawable/off" />
</transition>
To transition forward, meaning to shift from the first drawable to the second, call startTransition(). To transition in the other direction, call reverseTransition(). Each of these methods takes an argument of type int , representing the number of milliseconds for the transition.
Vector drawables
In Android 5.0 (API Level 21) and above, you can define vector drawables, which are images that are defined by a path. Vector drawables scale without losing definition. Most vector drawables use SVG files, which are plain text files or compressed binary files that include two-dimensional coordinates for how the image is drawn on the screen.
Because SVG files are text, they are more space efficient than most other image files. Also, you only need one file for a vector image instead of a file for each screen density, as is the case for bitmap images.
To bring an existing vector image or a Material Design icon into your Android Studio project as a vector drawable:
To create a vector image, define the details of the shape inside a <vector> XML element. For example, the following code defines the shape of a heart and fills it with a red color (#f00):
<vector xmlns:android="http://schemas.android.com/apk/res/android"
<!-- intrinsic size of the drawable -->
android:height="256dp"
android:width="256dp"
<!-- size of the virtual canvas -->
android:viewportWidth="32"
android:viewportHeight="32">
<!-- draw a path -->
<path android:fillColor="#f00"
android:pathData="M20.5,9.5
c-1.955,0,-3.83,1.268,-4.5,3
c-0.67,-1.732,-2.547,-3,-4.5,-3
C8.957,9.5,7,11.432,7,14
c0,3.53,3.793,6.257,9,11.5
c5.207,-5.242,9,-7.97,9,-11.5
C25,11.432,23.043,9.5,20.5,9.5z" />
</vector>
Android Studio shows a preview of vector drawables, for example, here's the result of creating the XML file described above:
If you already have an image in SVG format, there are several ways to get the image's pathData information:
Vector images are represented in Android as VectorDrawable objects. For details about the pathData syntax, see the SVG Path reference. To learn how to animate the properties of vector drawables, see Animate Vector Drawables.
Images
Images, from launcher icons to banner images, are used in many ways in Android. Each use case has different requirements for image resolution, scalability and simplicity. In this section you learn about the different ways to generate images and include them in your app.
Creating icons
Every app requires at least a launcher icon, and apps often include icons for action bar actions, notifications, and other use cases.
There are two approaches to creating icons:
Image Asset Studio
Android Studio includes a tool called Image Asset Studio that helps you generate your own app icons from Material Design icons, custom images, and text strings. It generates a set of icons at the appropriate resolution for each generalized screen density that your app supports. Image Asset Studio places the newly generated icons in density-specific folders under the res/ folder in your project. At runtime, Android uses the appropriate resource based on the screen density of the device your app is running on.
Image Asset Studio helps you generate the following icon types:
To use Image Asset Studio, right-click on the res/ folder in Android Studio and select New > Image Asset. The Configure Asset Studio wizard opens and guides you through the process.
For more about Image Asset Studio, see the Image Asset Studio guide.
Vector Asset Studio
Starting with API 21, you can use vector drawables instead of image files for your icons.
Advantages of using vector drawables as icons:
Disadvantages of using vector drawables as icons:
To use vector drawables on devices running API level 20 or below, you have to decide between two methods of backward-compatibility:
Vector Asset Studio is a tool that helps you add Material Design icons and vector drawables to your Android project. To use it, right-click on the res/ folder in Android Studio and select New > Vector Asset. The Configure Asset Studio wizard opens and guides you through the process.
For more information on using the Vector Asset Studio and supporting backward compatibility, refer to the Vector Asset Studio guide.
Creating other images
Banner images, user profile pictures, and other images come in all shapes and sizes. In many cases they are larger than they need to be for a typical application user interface (UI). For example, the system Gallery app displays photos taken using an Android device's camera, and these photos are typically much higher resolution than the screen density of the device. Android devices have finite memory, so ideally, you want to load only a lower resolution version of a photo in memory. The lower resolution version should match the size of the UI component that displays it. An image with a higher resolution doesn't provide any visible benefit, but still takes up precious memory and adds additional performance overhead due to additional on-the-fly scaling.
You can load resized images manually, but several third party libraries have been created to help with loading, scaling and caching images.
Using image-loading libraries
Image-loading libraries like Glide and Picasso can handle image sizing, caching, and display. These third-party libraries are optimized for mobile, and they are well-documented.
Glide supports fetching, decoding, and displaying video stills, images, and animated GIFs. You can use Glide to load images from Web APIs, as well as ones located in your resource files. Glide includes features such as loading placeholder images (for loading more detailed images), cross-fade animations, and automatic caching.
To use Glide:
You can use Glide to load any image into a UI element. The following example loads an image from a URL into an ImageView :
ImageView imageView = (ImageView) findViewById(R.id.my_image_view);
Glide.with(this).load("URL").into(imageView);
In the code snippet, this refers to the context of the application. Replace "URL" with the URL of the image's location. By default, the image is stored in a local cache and accessed from there the next time it's called.
Testing image rendering
Images render differently on different devices. To avoid surprises, use the Android Virtual Device (AVD) manager to create virtual devices that simulate screens of different sizes and densities. Use these AVDs to test all your images.
Speeding up your app
Fetching and caching images
When your app fetches an image, it can use a lot of data. To conserve data, make sure your request starts out as small as possible. Define and store pre-sized images on the server side, then request images that are already sized to the View.
Cache your images so that each image only needs to travel over the network once. When an image is requested, check your cache first. Only request the image over the network if the image is not in the cache. Use an image-loading library like Glide or Picasso to handle caching. These libraries also manage the size of the cache, getting rid of old or unused images. For more about libraries, see the libraries section of this chapter.
To maximize performance in different contexts, set conditional rules for how your app handles images, depending on connection type and stability. Use ConnectivityManager to determine the connection type and status, then set conditional rules accordingly. For example, when a user is on a data connection (not WiFi), downgrade the requested image resolution to less than screen resolution. Upgrade the requested screen resolution again when the user is on WiFi.
When your app is fetching images over a network, a slow connection might leave your user waiting. Here are ways to keep your app feeling fast, even if images load slowly:
If you display placeholder colors, you want the look of your app to stay consistent while the app loads images. Use the Palette library to select a placeholder color based on the requested image's color balance. First, include the Palette library in your build.gradle file:
dependencies: {
compile 'com.android.support:palette-v7:24.2.1'
}
Pull the dominant color for the image you want and set it as the background color in your ImageView . If you fetch the image using a library, put the following code after you've defined the URL to load into the ImageView :
Palette palette = Palette.from(tiles).generate(new PaletteAsyncListener(){
Public void onGenerated(Pallet pallette) {
Palette.Swatch background = palette.getDominantSwatch();
if (background != null) {
ImageView.setBackgroundColor(background.getRgb());
}
}
}
Serving images over a network
To save bandwidth and keep your app moving fast, use WebP formats to serve and send images.
Another way to save bandwidth is to serve and cache custom-sized images. To do this, allow clients to specify the resolution and size required for their device and View, then generate and cache the needed image on the server side before you send it.
For example, a news feed landing page might request only a thumbnail image. Instead of sending a full-sized image, send only the thumbnail specified by that ImageView . You can further reduce the size of the thumbnail by producing images at different resolutions.
Tip: Use the Activity.isLowRamDevice() method to find out whether a device defines itself as "low RAM." If the method returns true , send low-resolution images so that your app uses less on-device memory.
Styles
In Android, a style is a collection of attributes that define the look and format of a View. You can apply the same style to any number of Views in your app; for example, several TextViews might have the same text size and layout. Using styles allows you to keep these common attributes in one location and apply them to each TextView using a single line of code in XML.
You can define styles yourself or use one of the platform styles that Android provides.
Defining and applying styles
To create a style, add a <style> element inside a <resources> element in any XML file located in the res/values/ folder. When you create a project in Android Studio, a res/values/styles.xml file is created for you.
A <style> element includes the following:
This example creates a style that formats text to use a light gray monospace typeface so it looks like code:
<resources>
<style name="CodeFont">
<item name="android:typeface">monospace</item>
<item name="android:textColor">#D7D6D7</item>
</style>
</resources>
The following XML applies the new CodeFont style to a View:
<TextView
style="@style/CodeFont"
android:text="@string/code_string" />
Inheritance
A new style can inherit the properties of an existing style. When you create a style that inherits properties, you define only the properties that you want to change or add. You can inherit properties from platform styles and from styles that you create yourself. To inherit a platform style, use the parent attribute to specify the resource ID of the style you want to inherit. For example, here's how to inherit the Android platform's default text appearance (the TextAppearance style) and change its color:
<style name="GreenText" parent="@android:style/TextAppearance">
<item name="android:textColor">#00FF00</item>
</style>
To apply this style, use @style/GreenText . To inherit a style that you created yourself, use the name of the style you want to inherit as the first part of the new style's name, and separate the parts with a period:
name="StyleToInherit.Qualifier"
For example, to create a style that inherits the CodeFont style defined above, use CodeFont as the first part of the new style's name:
<style name="CodeFont.RedLarge">
<item name="android:textColor">#FF0000</item>
<item name="android:textSize">34sp</item>
</style>
This example includes the typeface attribute from the original CodeFont style, overrides the original textColor attribute with red, and adds a new attribute, textSize . To apply this style, use @style/CodeFont.RedLarge .
Themes
You create a theme the same way you create a style, which is by adding a <style> element inside a <resources> element in any XML file located in the res/values/ folder.
What's the difference between a style and a theme?
Any style can be used as a theme. For example, you could apply the CodeFont style as a theme for an Activity, and all the text inside the Activity would use gray monospace font.
Applying themes
To apply a theme to your app, declare it inside an <application> element inside the AndroidManifest.xml file. This example applies the AppTheme theme to the entire application:
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.exampledomain.myapp">
<application
...
android:theme="@style/AppTheme">
</application>
...
To apply a theme to an Activity, declare it inside an <activity> element in the AndroidManifest.xml file. In this example, the android:theme attribute applies the Theme_Dialog platform theme to the Activity:
<activity android:theme="@android:style/Theme.Dialog">
Default theme
When you create a new project in Android Studio, a default theme is defined for you within the styles.xml file. For example, this code might be in your styles.xml file:
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
</style>
In this example, AppTheme inherits from Theme.AppCompat.Light.DarkActionBar , which is one of the many Android platform themes available to you. (You'll learn about the color attributes in the unit on Material Design.)
Platform styles and themes
The Android platform provides a collection of styles and themes that you can use in your app. To find a list of all of them, you need to look in two places:
The style and theme names include underscores. To use them in your code, replace the underscores with periods. For example, here's how to apply the Theme_NoTitleBar theme to an activity:
<activity android:theme="@android:style/Theme.NoTitleBar"
And here's how to apply the AlertDialog_AppCompat style to a View:
<TextView
style="@style/AlertDialog.AppCompat"
android:text="@string/code_string" />
The documentation doesn't describe all the styles and themes in detail, but you can infer things about them from their names. For example, in Theme.AppCompat.Light.DarkActionBar
Another useful theme is Theme.AppCompat.DayNight , which enables the user to browse in a low-contrast "night mode" at night. It automatically changes the theme from Theme.AppCompat.Light to Theme.AppCompat , based on the time of day. To learn more about the DayNight theme, read Chris Banes's blog post.
To learn more about using platform styles and themes, visit the styles and themes guide.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
5.2: Material Design
Table of Contents:
Material Design is a visual design philosophy that Google created in 2014. The aim of Material Design is a unified user experience across platforms and device sizes. Material Design includes a set of guidelines for style, layout, motion, and other aspects of app design. The complete guidelines are available in the Material Design Spec.
Material Design is for desktop web applications as well as for mobile apps. This chapter focuses only on Material Design for mobile apps on Android.
Principles of Material Design
The "material" metaphor
In Material Design, elements in your Android app behave like real world materials: they cast shadows, occupy space, and interact with each other.
Bold, graphic, intentional
Material Design involves deliberate color choices, edge-to-edge imagery, large-scale typography, and intentional white space that create a bold and graphic interface.
Emphasize user actions in your app so that the user knows right away what to do, and how to do it. For example, highlight things that users can interact with, such as buttons, EditText fields, and switches.
Meaningful motion
Make animations and other motions in your app meaningful, so they don't happen at random. Use motions to reinforce the idea that the user is the app's primary mover. For example, design your app so that most motions are initiated by the user's actions, not by events outside the user's control. You can also use motion to focus the user's attention, give the user subtle feedback, or highlight an element of your app.
When your app presents an object to the user, make sure the motion doesn't break the continuity of the user's experience. For example, the user shouldn't have to wait for an animation or transition to complete.
The Motion section in this chapter goes into more detail about how to use motion in your app.
Colors
Material Design color palette
Material Design principles include the use of bold color. The Material Design color palette contains colors to choose from, each with a primary color and shades labeled from 50 to 900:
When you create an Android project in Android Studio, a sample Material Design color scheme is selected for you and applied to your theme. In values/colors.xml, three <color> elements are defined, colorPrimary , colorPrimaryDark , and colorAccent :
<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="colorPrimary">#3F51B5</color>
<!-- Indigo. -->
<color name="colorPrimaryDark">#303F9F</color>
<!-- A darker shade of indigo. -->
<color name="colorAccent">#FF4081</color>
<!-- A shade of pink. -->
</resources>
In values/styles.xml, the three defined colors are applied to the default theme, which applies the colors to some app elements by default:
In the screenshot below, the background of the action bar uses colorPrimary (indigo), the status bar uses colorPrimaryDark (a darker shade of indigo), and the switch in the "on" position uses colorAccent (a shade of pink).
In summary, here's how to use the Material Design color palette in your Android app:
If you need more colors, create additional <color> elements in the colors.xml file. For example, you could pick a lighter version of indigo and create an additional <color> element named colorPrimaryLight . (The name is up to you.)
<color name="colorPrimaryLight">#9FA8DA</color>
<!-- A lighter shade of indigo. -->
To use this color, reference it as @color/colorPrimaryLight .
Changing the values in colors.xml automatically changes the colors of the Views in your app, because the colors are applied to the theme in styles.xml.
Contrast
Make sure all the text in your app's UI contrasts with its background. Where you have a dark background, make the text on top of it a light color, and vice versa. This kind of contrast is important for readability and accessibility, because not all people see colors the same way.
If you use a platform theme such as Theme.AppCompat , contrast between text and its background is handled for you. For example:
Use color contrast to create visual separation among the elements in your app. Use your colorAccent color to to call attention to key UI elements such as floating action buttons and switches in the "on" position.
Opacity
Your app can display text with different degrees of opacity to convey the relative importance of information. For example, text that's less important might be nearly transparent (low opacity).
Set the android:textColor attribute using any of these formats: "#rgb" , "#rrggbb" , "#argb" , or "#aarrggbb" . To set the opacity of text, use the "#argb" or "#aarrggbb" format and include a value for the alpha channel. The alpha channel is the a or the aa at the start of the textColor value.
The maximum opacity value, FF in hex, makes the color completely opaque. The minimum value, 00 in hex, makes the color complete transparent.
To determine what hex number to use in the alpha channel:
In the following XML code, the background of the text is dark, and the color of the primary text is 87% white (deffffff). The first two numbers of the color code (de) indicate the opacity.
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
android:textSize="45dp"
android:background="@color/colorPrimaryDark"
android:textColor="#deffffff"/>
Typography
Typeface
Roboto is the standard Material Design typeface on Android. Roboto has six weights: Thin, Light, Regular, Medium, Bold, and Black.
Font styles
The Android platform provides predefined font styles and sizes that you can use in your app. These styles and sizes were developed to balance content density and reading comfort under typical conditions. Type sizes are specified with sp (scaleable pixels) to enable large type modes for accessibility.
Be careful not to use too many different type sizes and styles together in your layout.
To use one of these predefined styles in a View, set the android:textAppearance attribute. This attribute defines the default appearance of the text: its color, typeface, size, and style. Use the backward-compatible TextAppearance.AppCompat style.
For example, to make a TextView appear in the Display 3 style, add the following attribute to the TextView in XML:
android:textAppearance="@style/TextAppearance.AppCompat.Display3"
For more information on styling text, view the Typography Material Design guidelines.
Layout
Metrics and keylines
Components in the Material Design templates that are meant for mobile, tablet, and desktop devices align to an 8dp square grid. A dp is a density-independent pixel, an abstract unit based on screen density. A dp is similar to an sp, but sp is also scaled by the user's font size preference. That's why sp is preferred for accessibility. For more about units of measurement, refer to the Layouts, Views, and Resources unit.
The 8dp square grid guides the placement of elements in your layout. Every square in the grid is 8dp x 8dp, so the height and width of every element in the layout is a multiple of 8dp.
Iconography in toolbars align to a 4dp square grid instead of an 8dp square grid, so the dimensions of icons in the toolbar are multiples of 4dp.
Keylines are outlines in a layout grid that determine the placement of text and icons. For example, keylines mark the edges of the margins in a layout.
Material Design typography aligns to a 4dp baseline grid, which is a grid made up only of horizontal lines.
The Material Design guide provides downloadable templates for commonly used UI screens. To learn more about metrics and keylines in Material Design, visit the metrics and keylines guide.
Components and patterns
Buttons and many other Views used in Android conform by default to Material Design principles. The Material Design guide includes components and patterns that you can build on to help your users intuit how the elements in your UI work, even if users are new to your app.
Use Material Design components to guide the specs and behavior of buttons, chips, cards, and many other UI elements. Use Material Design patterns to guide how you format dates and times, gestures, the navigation drawer, and many other aspects of your UI.
This section teaches you about the Design Support Library and some of the components and patterns that are available to you. For complete documentation about all the components and patterns that you can use, see the Material Design guide.
Design Support Library
The Design package provides APIs to support adding Material Design components and patterns to your apps. The Design Support Library adds support for various Material Design components and patterns for you to build on. To use the library, include the following dependency in your build.gradle file:
compile 'com.android.support:design:25.0.1'
To make sure you have the most recent version number for the Design Support Library, check the Support Library page.
Floating action buttons (FABs)
Use a floating action button (FAB) for actions you want to encourage users to take. A FAB is a circled icon that floats "above" the UI. On focus it changes color slightly, and it appears to lift up when selected. When tapped, it can contain related actions.
To implement a FAB, use the FloatingActionButton widget and set the FAB's attributes in your layout XML. For example:
<android.support.design.widget.FloatingActionButton
android:id="@+id/addNewItemFAB"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ic_plus_sign"
app:fabSize="normal"
app:elevation="10%" />
The fabSize attribute sets the FAB's size. It can be "normal" (56dp), "mini" (40dp), or "auto" , which changes based on the window size.
The FAB's elevation is the distance between its surface and the depth of its shadow. You can set the elevation attribute as a reference to another resource, a string, a Boolean, or several other ways.
To learn about all the attributes you can set for a FAB including clickable , rippleColor , and backgroundTint , see FloatingActionButton. To make sure you're using FABs as intended, check the extensive FAB usage information in the Material Design guide.
Navigation drawers
A navigation drawer is a panel that slides in from the left and contains navigation destinations for your app. A navigation drawer spans the height of the screen, and everything behind it is visible, but darkened.
To implement a navigation drawer, use the DrawerLayout APIs available in the Support Library.
In your XML, use a DrawerLayout object as the root view of your layout. Inside it, add two views, one for your primary layout when the drawer is hidden, and one for the contents of the drawer.
For example, the following layout has two child views: a FrameLayout to contain the main content (populated by a Fragment at runtime), and a ListView for the navigation drawer.
<android.support.v4.widget.DrawerLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/drawer_layout"
android:layout_width="match_parent"
android:layout_height="match_parent">
<!-- The main content view -->
<FrameLayout
android:id="@+id/content_frame"
android:layout_width="match_parent"
android:layout_height="match_parent" />
<!-- The navigation drawer -->
<ListView android:id="@+id/left_drawer"
android:layout_width="240dp"
android:layout_height="match_parent"
android:layout_gravity="start"
android:choiceMode="singleChoice"
android:divider="@android:color/transparent"
android:dividerHeight="0dp"
android:background="#111"/>
</android.support.v4.widget.DrawerLayout>
For more information, see Creating a Navigation Drawer and the usage information in the Material Design guide.
Snackbars
A snackbar provides brief feedback about an operation through a message in a horizontal bar on the screen. It contains a single line of text directly related to the operation performed. A snackbar can contain a text action, but no icons.
Snackbars automatically disappear after a timeout or after a user interaction elsewhere on the screen. You can associate a snackbar with any kind of view (any object derived from the View class). However, if you associate the snackbar with a CoordinatorLayout , the snackbar gains additional features:
To create a Snackbar object, use the Snackbar.make() method. Specify the ID of the CoordinatorLayout view to use for the snackbar, the message that the snackbar displays, and the length of time to show the message. For example, this Java statement creates the snackbar and calls show() to show the snackbar to the user:
Snackbar.make(findViewById(R.id.myCoordinatorLayout), R.string.email_sent,
Snackbar.LENGTH_SHORT).show;
For more information, see Building and Displaying a Pop-Up Message and the Snackbar reference. To make sure you're using snackbars as intended, see the snackbar usage information in the Material Design guide.
Tip: A toast is similar to a snackbar, but toasts are usually used for system messaging, and toasts can't be swiped off the screen.
Tabs
Use tabs to organize content at a high level. For example, the user might use tabs to switch between Views, data sets, or functional aspects of an app. Present tabs as a single row above their associated content. Make tab labels short and informative.
You can you use tabs with swipe views in which users navigate between tabs with a horizontal finger gesture (horizontal paging). If your tabs use swipe views, don't pair the tabs with content that also supports swiping.
For information on implementing tabs, see Creating Swipe Views with Tabs. To make sure you're using tabs as intended, see the extensive tab usage information in the Material Design guide.
Cards
A card is a sheet of material that serves as an entry point to more detailed information. Each card covers only one subject. A card may contain a photo, text, and a link. It can display content containing elements of varying size, such as photos with captions of variable length.
A card collection is a layout of cards on the same plane.
The CardView widget is included as part of the v7 support library. To use it, add the following dependency to your build.gradle file:
compile 'com.android.support:cardview-v7:24.2.1'
For more information on using the CardView widget, visit the card guide.
Lists
A list is a single continuous column of rows of equal width. Each row functions as a container for a tile. Tiles hold content, and can vary in height within a list.
To create a list, use the RecyclerView widget. Include the following dependency in your build.gradle file.
compile 'com.android.support:recyclerview-v7:24.2.1'
For more information on creating lists in Android, see the creating lists guide.
Motion
Motion in the world of Material Design is used to describe spatial relationships, functionality, and intention with beauty and fluidity. Motion shows how an app is organized and what it can do.
Motion in Material Design must be:
To put these principles into practice in Android, use animations and transitions.
Animations
There are three ways you can create animation in your app:
For complete details about these three types for animation, see the Animation and Graphics Overview.
The Material Design theme provides some default animations for touch feedback and activity transitions. The animation APIs let you create custom animations for touch feedback in UI controls, changes in view state, and activity transitions.
Touch feedback
Touch feedback provides instant visual confirmation at the point of contact when a user interacts with a UI element. The default touch feedback animations for buttons use the RippleDrawable class, which transitions between different states with a ripple effect.
In this example, ripples of ink expand outward from the point of touch to confirm user input. The card "lifts" and casts a shadow to indicate an active state:
In most cases, you apply ripple functionality in your view XML by specifying the view background as follows:
Note: The selectableItemBackgroundBorderless attribute was introduced in API level 21.
Alternatively, you can define a RippleDrawable as an XML resource using the <ripple> element.
You can assign a color to RippleDrawable objects. To change the default touch feedback color, use the theme's android:colorControlHighlight attribute.
For more information, see the API reference for the RippleDrawable class.
Circular reveal
A reveal animation shows or hides a group of UI elements by animating a view's clipping boundaries. In circular reveal, you reveal or hide a view by animating a clipping circle. (A clipping circle is a circle that crops or hides the part of an image that's outside the circle.)
To animate a clipping circle, use the ViewAnimationUtils.createCircularReveal() method. For example, here's how to reveal a previously invisible view using circular reveal:
// previously invisible view
View myView = findViewById(R.id.my_view);
// get the center for the clipping circle
int cx = myView.getWidth() / 2;
int cy = myView.getHeight() / 2;
// get the final radius for the clipping circle
float finalRadius = (float) Math.hypot(cx, cy);
// create the animator for this view (the start radius is zero)
Animator anim =
ViewAnimationUtils.createCircularReveal(myView, cx, cy, 0, finalRadius);
// make the view visible and start the animation
myView.setVisibility(View.VISIBLE);
anim.start();
Here's how to hide a previously visible view using circular reveal:
// previously visible view
final View myView = findViewById(R.id.my_view);
// get the center for the clipping circle
int cx = myView.getWidth() / 2;
int cy = myView.getHeight() / 2;
// get the initial radius for the clipping circle
float initialRadius = (float) Math.hypot(cx, cy);
// create the animation (the final radius is zero)
Animator anim =
ViewAnimationUtils.createCircularReveal(myView, cx, cy, initialRadius, 0);
// make the view invisible when the animation is done
anim.addListener(new AnimatorListenerAdapter() {
@Override
public void onAnimationEnd(Animator animation) {
super.onAnimationEnd(animation);
myView.setVisibility(View.INVISIBLE);
}
});
// start the animation
anim.start();
Activity transitions
Activity transitions are animations that provide visual connections between different states in your UI. You can specify custom animations for enter and exit transitions, and for transitions of shared elements between activities.
To use these transitions, set transition attributes in a <style> element in your XML. The following example creates a theme named BaseAppTheme that inherits one of the Material Design themes. The BaseAppTheme theme uses all three types of activity transitions:
<style name="BaseAppTheme" parent="android:Theme.Material">
<!-- enable window content transitions -->
<item name="android:windowActivityTransitions">true</item>
<!-- specify enter and exit transitions -->
<item name="android:windowEnterTransition">@transition/explode</item>
<item name="android:windowExitTransition">@transition/explode</item>
<!-- specify shared element transitions -->
<item name="android:windowSharedElementEnterTransition">
@transition/change_image_transform</item>
<item name="android:windowSharedElementExitTransition">
@transition/change_image_transform</item>
</style>
The change_image_transform transition in this example is defined as follows:
<!-- res/transition/change_image_transform.xml -->
<!-- (see also Shared Transitions below) -->
<transitionSet xmlns:android="http://schemas.android.com/apk/res/android">
<changeImageTransform/>
</transitionSet>
The changeImageTransform element corresponds to the ChangeImageTransform class. For more information, see the API reference for Transition .
To enable window content transitions in your Java code instead, call the Window.requestFeature() method:
// inside your activity (if you did not enable transitions in your theme)
getWindow().requestFeature(Window.FEATURE_CONTENT_TRANSITIONS);
// set an exit transition
getWindow().setExitTransition(new Explode());
To specify transitions in your code, call the following methods with a Transition object:
For details about these methods, see the Window reference documentation .
To start an activity that uses transitions, use the ActivityOptions.makeSceneTransitionAnimation() method.
For more about implementing transitions in your app, see the activity transitions guide.
Curved motion
In Android 5.0 (API level 21) and above, you can define custom timing curves and curved motion patterns for animations. To do this, use the PathInterpolator class, which interpolates an object's path based on a Bézier curve or a Path object. The interpolator specifies a motion curve in a 1x1 square, with anchor points at (0,0) and (1,1) and control points that you specify using the constructor arguments. You can also define a path interpolator as an XML resource:
<pathInterpolator xmlns:android="http://schemas.android.com/apk/res/android"
android:controlX1="0.4"
android:controlY1="0"
android:controlX2="1"
android:controlY2="1"/>
The system provides XML resources for the three basic curves in the material design specification:
To use a PathInterpolator object, pass it to the Animator.setInterpolator() method.
The ObjectAnimator class has constructors you can use to animate coordinates along a path using two or more properties at once. For example, the following Java code uses a Path object to animate the X and Y properties of a view:
ObjectAnimator mAnimator;
mAnimator = ObjectAnimator.ofFloat(view, View.X, View.Y, path);
...
mAnimator.start();
Other custom animations
Other custom animations are possible, including animated state changes (using the StateListAnimator class) and animated vector drawables (using the AnimatedVectorDrawable class). For complete details, see Defining Custom Animations.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
5.3: Providing Resources for Adaptive Layouts
Table of Contents:
An adaptive layout is a layout that works well for different screen sizes and orientations, different devices, different locales and languages, and different versions of Android.
In this chapter you learn how to create an adaptive layout by externalizing and grouping resources, providing alternative resources, and providing default resources in your app.
Externalizing resources
When you externalize resources, you keep them separate from your application code. For example, instead of hard-coding a string into your code, you name the string and add it to the res/values/strings.xml file.
Always externalize resources such as drawables, icons, layouts, and strings. Here's why it's important:
Grouping resources
Store all your resources in the res/ folder. Organize resources by type into folders under /res. You must use standardized names for these folders.
For example, the screenshot below shows the file hierarchy for a small project, as seen in the "Android" Project view in Android Studio. The folders that contain this project's default resources use standardized names: drawable , layout , menu , mipmap (for icons), and values .
Table 1 lists the standard resource folder names. The types are described more fully in the Providing Resources guide.
Table 1: Standard Resource Folder Names
Name | Resource Type |
animator/ | XML files that define property animations. |
anim/ | XML files that define tween animations. |
color/ | XML files that define "state lists" of colors. (This is different from the colors.xml file in the values/ folder.) See Color State List Resource. |
drawable/ | Bitmap files (WebP, PNG, 9-patch, JPG, GIF) and XML files that are compiled into drawables. See Drawable Resources. |
mipmap/ | Drawable files for different launcher icon densities. See Projects Overview. |
layout/ | XML files that define user interface layouts. See Layout Resource. |
menu/ | XML files that define application menus. See Menu Resource. |
raw/ | Arbitrary files saved in raw form. To open these resources with a raw InputStream, call Resources.openRawResource() with the resource ID, which is R.raw.filename . If you need access to original file names and file hierarchy, consider saving resources in the assets/ folder instead of res/raw/. Files in assets/ are not given a resource ID, so you can read them only using AssetManager. |
values/ | XML files that contain simple values, such as strings, integers, and colors. For clarity, place unique resource types in different files. For example, here are some filename conventions for resources you can create in this folder:
See String Resources, Style Resource, and More Resource Types. |
xml/ | Arbitrary XML files that can be read at runtime by calling Resources.getXml(). Various XML configuration files, such as a searchable configuration, must be saved here, along with preference settings. |
Alternative resources
Most apps provide alternative resources to support specific device configurations. For example, your app should include alternative drawable resources for different screen densities, and alternative string resources for different languages. At runtime, Android detects the current device configuration and loads the appropriate resources.
If no resources are available for the device's specific configuration, Android uses the default resources that you include in your app—the default drawables, which are in the res/drawable/ folder, the default text strings, which are in the res/values/strings.xml file, and so on.
Like default resources, alternative resources are kept in folders inside res/. Alternative-resource folders use the following naming convention:
<resource_name>-<config_qualifier>
<config_qualifier> specifies a device configuration for which these resources are used. The possible qualifiers are shown in Table 2.
To add multiple qualifiers to one folder name, separate the qualifiers with a dash. If you use multiple qualifiers for a resource folder, you must list them in the order they are listed in Table 2.
Examples with one qualifier:
Example with multiple qualifiers:
In the "Android" view in Android Studio, the qualifier is not appended to the end of the folder. Instead, the qualifier is shown as a label on the right side of the file in parentheses. For example, in the "Android" view shown below, the res/values/dimens.xml/ folder shows two files:
In the "Project" view in Android Studio, the same information is presented differently, as shown in the screenshot below.
Table 2 shows the configuration qualifiers that Android supports. They are listed in the order you must use when you combine multiple qualifiers in one folder name. For example in res/layout-ldrtl-night/ , the qualifier for layout direction is listed before the qualifier for night mode, because layout direction is listed before night mode in the table.
These qualifiers are described in detail in Providing Alternative Resources.
Table 2: Qualifiers for Naming Alternative Resources
Precedence | Qualifier | Description |
1 | MCC and MNC | The mobile country code (MCC), optionally followed by mobile network code (MNC) from the SIM card in the device. For example, mcc310 is U.S. on any carrier, mcc310-mnc004 is U.S. on Verizon, and mcc208-mnc00 is France on Orange. |
2 | Localization | Language, or language and region. Examples: en , en-rUS , fr-rFR , fr-rCA . Described in Localization, below. |
3 | Layout direction | The layout direction of your application. Possible values include ldltr (layout direction left-to-right, which is the default) and ldrtl (layout direction right-to-left). To enable right-to-left layout features, set supportsRtl to "true" and set targetSdkVersion to 17 or higher. |
4 | Smallest width | Fundamental screen size as indicated by the shortest dimension of the available screen area. Example: sw320dp . Described in Smallest width, below. |
5 | Available width | Minimum available screen width at which the resource should be used. Specified in dp units. The format is wdp , for example, w720dp and w1024dp . |
6 | Available height | Minimum available screen height at which the resource should be used. Specified in dp units. The format is hdp , for example, h720dp and h1024dp . |
7 | Screen size | Possible values:
|
8 | Screen aspect | Possible values include long (for screens such as WQVGA, WVGA, FWVGA) and notlong (for screens such as QVGA, HVGA, and VGA). |
9 | Round screen | Possible values include round (for screens such as those on round wearable devices) and notround (for rectangular screens such as phones). |
10 | Screen orientation | Possible values: port, land. Described in Screen orientation, below. |
11 | UI mode | Possible values:
|
12 | Night mode | Possible values:
|
13 | Screen pixel density | Possible values:
Note: Using a density qualifier doesn't imply that the resources are only for screens of that density. If you don't provide alternative resources with qualifiers that better match the current device configuration, the system may use whichever resources are the best match. |
14 | Touchscreen type | Possible values include notouch (device doesn't have a touchscreen) and finger (device has a touchscreen). |
15 | Keyboard availability | Possible values:
|
16 | Primary text input method | Possible values:
|
17 | Navigation key availability | Possible values include navexposed (navigation keys are available to the user) and navhidden (navigation keys are not available, for example they're behind a closed lid). |
18 | Primary non-touch navigation method | Possible values:
|
19 | Platform version (API level) | The API level supported by the device. Described in Platform version, below. |
Creating alternative resources
To create alternative resource folders most easily in Android Studio, use the "Android" view in the Project tool window.
To use Android Studio to create a new configuration-specific alternative resource folder in res/:
If you can't see the new folder in the Project tool window in Android Studio, switch to the "Project" view, as shown in the screenshot below. If you don't see these options, make sure the Project tool window is visible by selecting View > Tool Windows > Project.
Save alternative resources in the new folder. The alternative resource files must be named exactly the same as the default resource files, for example "styles.xml" or "dimens.xml".
For the complete documentation about alternative resources, see Providing Alternative Resources.
Common alternative-resource qualifiers
This section describes a few commonly used qualifiers. Table 2 gives the complete list.
Screen orientation
The screen-orientation qualifier has two possible values:
If the user rotates the screen while your app is running, and if alternative resources are available, Android automatically reloads your app with alternative resources that match the new device configuration. For information about controlling how your app behaves during a configuration change, see Handling Runtime Changes.
To create variants of your layout XML file for landscape orientation and larger displays, use the layout editor. To use the layout editor:
A layout for a different landscape orientation appears, and a new XML file is created for you. For example, you might now have a file named "activity_main.xml (land)" along with your original "activity_main.xml" file. You can use the editor to change the new layout without changing the original layout.
See the previous practical about layouts for an example of layout design.
Smallest width
The smallest-width qualifier specifies the minimum width of the device. It is the shortest of the screen's available height and width, the "smallest possible width" for the screen. The smallest width is a fixed screen-size characteristic of the device, and it does not change when the screen's orientation changes.
Specify smallest width in dp units, using the following format:
sw<N>dp
where <N> is the minimum width. For example, resources in a file named res/values-sw320dp/styles.xml are used if the device's screen is always at least 320dp wide.
You can use this qualifier to ensure that a certain layout won't be used unless it has at least <N> dps of width available to it, regardless of the screen's current orientation.
Some values for common screen sizes:
When your application provides multiple resource folders with different values for the smallest-width qualifier, the system uses the one closest to (without exceeding) the device's smallest width.
Example:
res/values-sw600dp/dimens.xml contains dimensions for images. When the app runs on a device with a smallest width of 600dp or higher (such as a tablet), Android uses the images in this folder.
Platform version
The platform-version qualifier specifies the minimum API level supported by the device. For example, use v11 for API level 11 (devices with Android 3.0 or higher). See the Android API levels document for more information about these values.
Use the platform-version qualifier when you use resources for functionality that's unavailable in prior versions of Android.
For example, WebP images require API level 14 (Android 4.0) or higher, and for full support they require API level 17 (Android 4.2) or higher. If you use WebP images:
Localization
The localization qualifier specifies a language and, optionally, a region. This qualifier is a two-letter ISO 639-1 language code, optionally followed by a two letter ISO 3166-1-alpha-2 region code (preceded by lowercase r).
You can specify a language alone, but not a region alone. Examples:
res/values-fr-rFR/strings.xml
Strings in this file are used on devices that are configured for the French language and have their region set to France.
res/mipmap-fr-rCA/
Icons in this folder are used on devices that are configured for the French language and have their region set to Canada.
res/layout-ja/content_main.xml
This layout is used on devices that are configured for the Japanese language.
If the user changes the language or region in the device's system settings while your app is running, and if alternative resources are available, Android automatically reloads your app with alternative resources that match the new device configuration. For information about controlling how your app behaves during a configuration change, see Handling Runtime Changes.
For a full guide on localization, see Localizing with Resources.
Providing default resources
Default resources specify the default design and content for your application. For example, when the app runs in a locale for which you have not provided locale-specific text, Android loads the default strings from res/values/strings.xml. If this default file is absent, or if it is missing even one string that your application needs, then your app doesn't run and shows an error.
Default resources have standard resource folder names (values , for example) without any qualifiers in the folder name or in parentheses after the file names.
Tip: Always provide default resources, because your app might run on a device configuration that you don't anticipate.
Sometimes new versions of Android add configuration qualifiers that older versions don't support. If you use a new resource qualifier and maintain code compatibility with older versions of Android, then when an older version of Android runs your app, the app crashes unless default resources are available. This is because the older version of Android can't use the alternative resources that are named with the new qualifier.
For example, assume your minSdkVersion is set to 4 and you qualify all your drawable resources using night mode, meaning that you put all your drawable resources in res/drawable-night/ and res/drawable-notnight/ . In this example:
In this example, you probably want notnight to be your default case. To solve the problem, exclude the notnight qualifier and put your drawable resources in res/drawable/ and res/drawable-night/ . With this solution:
To provide the best device compatibility, provide default resources for every resource that your application needs. After your default resources are in place, create alternative resources for specific device configurations using the alternative-resource configuration qualifiers shown in Table 2.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
6.1: Testing the User Interface
Contents:
Properly testing a user interface
Writing and running tests are important parts of the Android app development cycle. Well-written tests can help you catch bugs early in your development cycle, where they are easier to fix, and helps give you confidence in your code.
User interface (UI) testing focuses on testing aspects of the user interface and interactions with users. Recognizing and acting on user input is a high priority in user interface testing and validation. You need to make sure that your app not only recognizes the type of input but also acts accordingly. As a developer, you should get into the habit of testing user interactions to ensure that users don't encounter unexpected results or have a poor experience when interacting with your app. User interface testing can help you recognize the input controls where unexpected input should be handled gracefully or should trigger input validation.
Note: We strongly encourage you to use Android Studio for building your test apps, because it provides project setup, library inclusion, and packaging conveniences. You can run UI tests on a variety of physical or virtual Android devices, and you can then analyze the results and make changes to your code without leaving the development environment.
The UI contains views with graphical elements such as buttons, menus, and text fields, each with a set of properties. To properly test the UI, you need to:
In addition to functionality, UI testing evaluates design elements such as layout, colors, fonts, font sizes, labels, text boxes, text formatting, captions, buttons, lists, icons, links, and content.
Manual Testing
As the developer of an app, you probably test each UI component manually as you add the component to the app's UI. As development continues, one approach to UI testing is to simply have a human tester perform a set of user operations on the target app and verify that it is behaving correctly.
However, this manual approach can be time-consuming, tedious, and error-prone. By manually testing a UI for a complex app, you can't possibly cover all permutations of user interactions. You would also have to manually perform these repetitive tests on many different device configurations in an emulator, and on many different devices. To summarize, the problems inherent with manual testing fall into two categories:
Automated testing
When you automate tests of user interactions, you free yourself and your resources for other work. To generate a set of test cases, test designers attempt to cover all of the functionality of the system and fully exercise the UI. Performing all of the UI interactions automatically makes it easier to run tests for different device states (such as orientations) and different configurations.
For testing Android apps, you typically create these types of automated UI tests:
Using Espresso for tests that span a single app
The Espresso testing framework in the Android Testing Support Library provides APIs for writing UI tests to simulate user interactions within a single app. Espresso tests run on actual device or emulator and behave as if an actual user is using the app.
You can use Espresso to create UI tests to automatically verify the following:
A key benefit of using Espresso is that it has access to instrumentation information, such as the context for the app, so that you can monitor all of the interaction the Android system has with the app. Another key benefit is that it automatically synchronizes test actions with the app's UI. Espresso detects when the main thread is idle, so it is able to run your test at the appropriate time, improving the reliability of your tests. This capability also relieves you from having to add any timing workarounds, such as a sleep period, in your test code.
The Espresso testing framework works with the AndroidJUnitRunner test runner and requires instrumentation, which is described later in this section. Espresso tests can run on devices running Android 2.2 (API level 8) and higher.
Using UI Automator for tests that span multiple apps
The UI Automator testing framework in the Android Testing Support Library can help you verify the correct behavior of interactions between different user apps or between user apps and system apps. It can also show you what is happening on the device before and after an app is launched.
The UI Automator APIs let you interact with visible elements on a device. Your test can look up a UI component by using descriptors such as the text displayed in that component or its content description. A viewer tool provides a visual interface to inspect the layout hierarchy and view the properties of UI components that are visible on the foreground of the device.
The following are important functions of UI Automator:
The UI Automator testing framework works with the AndroidJUnitRunner test runner and requires instrumentation, which is described in the next section. UI Automator tests can run on devices running Android 4.3 (API level 18) or higher.
What is instrumentation?
Android instrumentation is a set of control methods, or hooks, in the Android system, which control Android components and how the Android system loads apps.
Normally the system runs all the components of an app in the same process. You can allow some components, such as content providers, to run in a separate process, but you typically can't force an app onto the same process as another running app.
Instrumentation tests, however, can load both a test package and the app into the same process. Since the app components and their tests are in the same process, your tests can invoke methods in the components, and modify and examine fields in the components.
Instrumentation allows you to monitor all of the interaction the Android system has with the application, and makes it possible for tests to invoke methods in the app, and modify and examine fields in the app, independently of the app's normal lifecycle.
Normally, an Android component runs in a lifecycle that the system determines. For example, an Activity object's lifecycle starts when an Intent activates the Activity. The system calls the object's onCreate() method, and then the onResume() method. When the user starts another app, the system calls the onPause() method. If the Activity code calls the finish() method, the system calls the onDestroy() method.
The Android framework API does not provide a way for your app's code to invoke these callback methods directly, but you can do so using an Espresso or UI Automator test with instrumentation.
Setting up your test environment
To use the Espresso and UI Automator frameworks, you need to store the source files for instrumented tests at module-name/src/androidTests/java/. This directory already exists when you create a new Android Studio project. In the Project view of Android Studio, this directory is shown in app > java as module-name (androidTest).
You also need to do the following:
Installing the Android Support Repository and Testing Support Library
You may already have the Android Support Repository and its Android Testing Support Library installed with Android Studio. To check for the Android Support Repository, follow these steps:
Adding the dependencies
When you start a project for the Phone and Tablet form factor using API 15: Android 4.0.3 (Ice Cream Sandwich) as the minimum SDK, Android Studio version 2.2 and newer automatically includes the dependencies you need to use Espresso. To ensure that you have these dependencies, follow these steps:
androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {
exclude group: 'com.android.support', module: 'support-annotations'
})
testCompile 'junit:junit:4.12'
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
Note: If you created your project in a previous version of Android Studio, you may have to add the above dependencies and instrumentation statement yourself.
Setting up the test rules and annotations
To write tests, Espresso and UI Automator use JUnit as their testing framework. JUnit is the most popular and widely-used unit testing framework for Java. Your test class using Espresso or UI Automator should be written as a JUnit 4 test class. If you do not have JUnit, you can get it at http://junit.org/junit4/.
Note: The most current JUnit revision is JUnit 5. However for the purposes of using Espresso or UI Automator, version 4.12 is recommended.
To create a basic JUnit 4 test class, create a Java class for testing in the directory specified at the beginning of this section. It should contain one or more methods and behavior rules defined by JUnit annotations.
For example, the following snippet shows a test class definition with annotations:
@RunWith(AndroidJUnit4.class)
public class RecyclerViewTest {
@Rule
public ActivityTestRule<MainActivity> mActivityTestRule =
new ActivityTestRule<>(MainActivity.class);
@Test
public void recyclerViewTest() {
...
}
}
The following annotations are useful for testing:
@RunWith
To create an instrumented JUnit 4 test class, add the @RunWith(AndroidJUnit4.class) annotation at the beginning of your test class definition, which indicates the runner that will be used to run the tests in this class. A test runner is a library or set of tools that enables testing to occur and the results to be printed to a log.
@SmallTest, @MediumTest, and @LargeTest
The @SmallTest , @MediumTest , and @LargeTest Android annotations provide some clarity about what resources and features the test uses. For example, the @SmallTest annotation tells you that the test doesn't interact with any file system or network.
The following summarizes what they mean:
Feature | Small | Medium | Large |
Network access | No | localhost only | Yes |
Database | No | Yes | Yes |
File system access | No | Yes | Yes |
Use external systems | No | Discouraged | Yes |
Multiple threads | No | Yes | Yes |
Sleep statements | No | Yes | Yes |
System properties | No | Yes | Yes |
Time limit (seconds) | 60 | 300 | 900+ |
For a description of the Android @SmallTest , @MediumTest , and @LargeTest annotations, see "Test Sizes" in the Google Testing Blog. For a summary of JUnit annotations, see Package org.junit.
@Rule
Before declaring the test methods, use the @Rule annotation, such as ActivityTestRule or ServiceTestRule. The @Rule establishes the context for the testing code. For example:
@Rule
public ActivityTestRule mActivityRule = new ActivityTestRule<>(
MainActivity.class);
This rule uses an ActivityTestRule object, which provides functional testing of a single Activity—in this case, MainActivity.class .
ServiceTestRule is a JUnit rule that provides a simplified mechanism to start and shutdown your service before and after the duration of your test. It also guarantees that the service is successfully connected when starting (or binding to) a service.
@Test
A test method begins with the @Test annotation and contains the code to exercise and verify a single function in the component that you want to test:
@Test
public void testActivityLaunch() { … }
The activity under test will be launched before each test annotated with @Test . During the duration of the test you will be able to manipulate your Activity directly.
@Before and @After
In certain rare cases you may need to set up variables or execute a sequence of steps before or after performing the user interface test. You can specify methods to run before running a @Test method, using the @Before annotation, and methods to run after, using the @After annotation.
@Before : The @Test method will execute after the methods designated by the @Before annotation. The @Before methods terminate prior to the execution of the @Test method.
@After : The @Test method will execute before the methods designated by the @After annotation.
Using Espresso for tests that span a single app
When writing tests it is sometimes difficult to get the balance right between over-specifying the test or not specifying enough. Over-specifying the test can make it brittle to changes, while under-specifying may make the test less valuable, since it continues to pass even when the UI element and its code under test is broken.
To make tests that are balanced, it helps to have a tool that allows you to pick out precisely the aspect under test and describe the values it should have. Such tests fail when the behavior of the aspect under test deviates from the expected behavior, yet continue to pass when minor, unrelated changes to the behavior are made. The tool available for Espresso is the Hamcrest framework.
Hamcrest (an anagram of "matchers") is a framework that assists writing software tests in Java. The framework lets you create custom assertion matchers, allowing match rules to be defined declaratively.
Tip: To learn more about Hamcrest, see The Hamcrest Tutorial.
Writing Espresso tests with Hamcrest Matchers
You write Espresso tests based on what a user might do while interacting with your app. The key concepts are locating and then interacting with UI elements. These are the basic steps:
To create a test method, you use the following types of Hamcrest expressions to help find views and interact with them:
onView(withId(R.id.my_view))
onView(allOf(withId(R.id.word),
withText("Clicked! Word 15"), isDisplayed()))
.perform(click())
.check(matches(isDisplayed()))
You would typically combine a ViewMatcher and a ViewAction in a single statement, followed by a ViewAssertion expression in a separate statement or included in the same statement.
You can see how all three expressions work in the following statement, which combines a ViewMatcher to find a view, a ViewAction to perform an action, and a ViewAssertion to check if the result of the action matches an assertion:
onView(withId(R.id.my_view)) // withId(R.id.my_view) is a ViewMatcher
.perform(click()) // click() is a ViewAction
.check(matches(isDisplayed())); // matches(isDisplayed()) is a ViewAssertion
Why is the Hamcrest framework useful for tests? A simple assertion, such as assert (x == y) , lets you assert during a test that a particular condition must be true. If the condition is false, the test fails. But the simple assertion provides no useful error message. With a family of assertions, you can produce more useful error messages, but this leads to an explosion in the number of assertions.
With the Hamcrest framework, it is possible to define operations that take matchers as arguments and return them as results, leading to a grammar that can generate a huge number of possible matcher expressions from a small number of primitive matchers.
For a Hamcrest tutorial, see The Hamcrest Tutorial. For a quick summary of Hamcrest matcher expressions, see the Espresso cheat sheet.
Testing an AdapterView
In an AdapterView such as a spinner, the view is dynamically populated with child views at runtime. If the target view you want to test is inside a spinner, the onView() method might not work because only a subset of the views may be loaded in the current view hierarchy.
Espresso handles this by providing a separate onData() method, which is able to first load the adapter item and bring it into focus prior to operating on it or any of its children views. The onData() method uses a DataInteraction object and its methods, such as atPosition() , check() , and perform() to access the target view. Espresso handles loading the target view element into the current view hierarchy, scrolling to the target child view, and putting that view into focus.
For example, the following onView() and onData() statements test a spinner item click:
onView(withId(R.id.spinner_simple)).perform(click());
onData(allOf(is(instanceOf(String.class)),
is("Americano"))).perform(click());
As you can see in the above statement, matcher expressions can be combined to create flexible expressions of intent:
The following example illustrates how you would test a spinner using a combination of onView() and onData() methods:
@RunWith(AndroidJUnit4.class)
public class SpinnerSelectionTest {
@Rule
public ActivityTestRule mActivityRule = new ActivityTestRule<>(
MainActivity.class);
@Test
public void iterateSpinnerItems() {
String[] myArray = mActivityRule.getActivity().getResources()
.getStringArray(R.array.labels_array);
// Iterate through the spinner array of items.
int size = myArray.length;
for (int i=0; i<size; i++) {
// Find the spinner and click on it.
onView(withId(R.id.label_spinner)).perform(click());
// Find the spinner item and click on it.
onData(is(myArray[i])).perform(click());
// Find the button and click on it.
onView(withId(R.id.button_main)).perform(click());
// Find the text view and check that the spinner item
// is part of the string.
onView(withId(R.id.text_phonelabel))
.check(matches(withText(containsString(myArray[i]))));
}
}
}
The test clicks each spinner item from top to bottom, checking to see if the item appears in the text field. It doesn't matter how many spinner items are defined in the array, or what language is used for the spinner's items—the test performs all of them and checks their output against the array.
The following is a step-by-step description of the above test:
The iterateSpinnerItems() method begins by getting the array used for the spinner items:
public void iterateSpinnerItems() {
String[] myArray =
mActivityRule.getActivity().getResources()
.getStringArray(R.array.labels_array);
...
In the statement above, the test accesses the application's array (with the id labels_array) by establishing the context with the getActivity() method of the ActivityTestRule class, and getting a resources instance in the application's package using getResources() .
...
int size = myArray.length;
for (int i=0; i<size; i++) {
// Find the spinner and click on it.
...
...
// Find the spinner and click on it.
onView(withId(R.id.label_spinner)).perform(click());
...
The onData() statement finds and clicks a spinner item:
...
// Find the spinner item and click on it.
onData(is(myArray[i])).perform(click());
...
The spinner is populated from the myArray array, so myArray[i] represents a spinner element from the array. As the for loop iterates for (int i=0; i<size; i++) , it performs a click on each spinner element (myArray[i]) it finds.
...
onView(withId(R.id.text_phonelabel))
.check(matches(withText(containsString(myArray[i]))));
...
Using RecyclerViewActions for a Recycler View
A RecyclerView is useful when you have data collections with elements that change at runtime based on user action or network events. RecyclerView is a UI component designed to render a collection of data, but is not a subclass of AdapterView but of ViewGroup. This means that you can't use onData() , which is specific to AdapterView, to interact with list items.
However, there is a class called RecyclerViewActions that exposes a small API to operate on a RecyclerView. For example, the following test clicks on an item from the list by position:
onView(withId(R.id.recyclerView))
.perform(RecyclerViewActions.actionOnItemAtPosition(0, click()));
The following test class demonstrates how to use RecyclerViewActions to test a RecyclerView. The app lets you scroll a list of words. When you click on a word such as Word 15 the word in the list changes to "Clicked! Word 15":
@RunWith(AndroidJUnit4.class)
public class RecyclerViewTest {
@Rule
public ActivityTestRule<MainActivity> mActivityTestRule =
new ActivityTestRule<>(MainActivity.class);
@Test
public void recyclerViewTest() {
ViewInteraction recyclerView = onView(
allOf(withId(R.id.recyclerview), isDisplayed()));
recyclerView.perform(actionOnItemAtPosition(15, click()));
ViewInteraction textView = onView(
allOf(withId(R.id.word), withText("Clicked! Word 15"),
childAtPosition(
childAtPosition(
withId(R.id.recyclerview),
11),
0),
isDisplayed()));
textView.check(matches(withText("Clicked! Word 15")));
}
private static Matcher<View> childAtPosition(
final Matcher<View> parentMatcher, final int position) {
return new TypeSafeMatcher<View>() {
@Override
public void describeTo(Description description) {
description.appendText("Child at position "
+ position + " in parent ");
parentMatcher.describeTo(description);
}
@Override
public boolean matchesSafely(View view) {
ViewParent parent = view.getParent();
return parent instanceof ViewGroup &&
parentMatcher.matches(parent)
&& view.equals(((ViewGroup)
parent).getChildAt(position));
}
};
}
}
The test uses a recyclerView object of the ViewInteraction class, which is the primary interface for performing actions or assertions on views, providing both check() and perform() methods. Each interaction is associated with a view identified by a view matcher:
ViewInteraction recyclerView = onView(
allOf(withId(R.id.recyclerview), isDisplayed()));
recyclerView.perform(actionOnItemAtPosition(15, click()));
ViewInteraction textView = onView(
allOf(withId(R.id.word), withText("Clicked! Word 15"),
childAtPosition(
childAtPosition(
withId(R.id.recyclerview),
11),
0),
isDisplayed()));
textView.check(matches(withText("Clicked! Word 15")));
private static Matcher<View> childAtPosition(
final Matcher<View> parentMatcher, final int position) {
// TypeSafeMatcher() returned
...
}
The custom matcher extends the abstract TypeSaveMatcher class and requires that you implement the following:
The describeTo() method to define how Espresso describes the output's matcher in the Run pane at the bottom of Android Studio if a failure occurs.
...
// TypeSafeMatcher() returned
return new TypeSafeMatcher<View>() {
@Override
public void describeTo(Description description) {
description.appendText("Child at position "
+ position + " in parent ");
parentMatcher.describeTo(description);
}
@Override
public boolean matchesSafely(View view) {
ViewParent parent = view.getParent();
return parent instanceof ViewGroup &&
parentMatcher.matches(parent)
&& view.equals(((ViewGroup)
parent).getChildAt(position));
}
};
}
}
Recording a test
An Android Studio feature (in version 2.2 and newer) lets you record an Espresso test, creating the test automatically.
After choosing to record a test, use your app as a normal user would. As you click through the app UI, editable test code is generated for you. Add assertions to check if a view holds a certain value.
You can record multiple interactions with the UI in one recording session. You can also record multiple tests, and edit the tests to perform more actions, using the recorded code as a snippet to copy, paste, and edit.
Follow these steps to record a test, using the RecyclerView app as an example:
Android Studio Project: RecyclerView
Using UI Automator for tests that span multiple apps
UI Automator is a set of APIs that can help you verify the correct behavior of interactions between different user apps, or between user apps and system apps. It lets you interact with visible elements on a device. A viewer tool provides a visual interface to inspect the layout hierarchy and view the properties of UI components that are visible on the foreground of the device. Like Espresso, UI Automator has access to system interaction information so that you can monitor all of the interaction the Android system has with the app.
To use UI Automator, you must already have set up your test environment in the same way as for Espresso:
androidTestCompile
'com.android.support.test.uiautomator:uiautomator-v18:2.1.2'
Use UI Automator Viewer to Inspect the UI on a device
UI Automator Viewer (uiautomatorviewer) provides a convenient visual interface to inspect the layout hierarchy and view the properties of UI components that are visible on the foreground of the device.
To launch the uiautomatorviewer tool, follow these steps:
To ensure that your UI Automator tests can access the app's UI elements, check that the elements have visible text labels, android:contentDescription values, or both. You can view the properties of a UI element by following these steps (refer to the figure below):
In the above figure:
In the app shown above, the red floating action button launches the Maps app. Follow these steps to test the action performed by the floating action button:
Using the viewer, you can determine which UI elements are accessible to the UI Automator framework.
Setup: Ensuring that UI elements are accessible
The UI Automator framework depends on the accessibility features of the Android framework to look up individual UI elements. Implement view properties as follows:
Include the android:contentDescription attribute in your XML layout to label the ImageButton, ImageView, CheckBox, and other user input controls. The following shows the android:contentDescription attribute added to a RadioButton using the same string resource tused for the android:text attribute:
<RadioButton
android:id="@+id/sameday"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/same_day_messenger_service"
android:contentDescription="@string/same_day_messenger_service"
android:onClick="onRadioButtonClicked"/>
Tip: You can make input controls more accessible for the sight-impaired by using the android:contentDescription XML layout attribute. The text in this attribute does not appear on screen, but if the user enables accessibility services that provide audible prompts, then when the user navigates to that control, the text is spoken.
As a developer, you should implement the above minimum optimizations to support your users as well as UI Automator.
Creating a test class
A UI Automator test class generally follows this programming model:
mDevice = UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());
UiObject okButton = mDevice.findObject(new UiSelector()
.text("OK"))
.className("android.widget.Button"));
Perform an action: Simulate a specific user interaction to perform on that UI element by calling a UiObject method. For example:
if(okButton.exists() && okButton.isEnabled()) {
okButton.click();
}
You may want to call setText() to edit a text field, or performMultiPointerGesture() to simulate a multi-touch gesture.
You can repeat steps 2 and 3 as needed to test more complex user interactions that involve multiple UI components or sequences of user actions.
UiObject result = mDevice.findObject(By.res(CALC_PACKAGE, "result"));
assertEquals("5", result.getText());
Accessing the device
The UiDevice class provides the methods for accessing and manipulating the state of the device. Unlike Espresso, UI Automator can verify the correct behavior of interactions between different user apps, or between user apps and system apps. It lets you interact with visible elements on a device. In your tests, you can call UiDevice methods to check for the state of various properties, such as current orientation or display size. Your test can use the UiDevice object to perform device-level actions, such as forcing the device into a specific rotation, pressing D-pad hardware buttons, and pressing the Home button.
It's a good practice to start your test from the Home screen of the device. From the Home screen you can call the methods provided by the UI Automator API to select and interact with specific UI elements. The following code snippet shows how your test can get an instance of UiDevice, simulate a Home button press, and launch the app:
import org.junit.Before;
import android.support.test.runner.AndroidJUnit4;
import android.support.test.uiautomator.UiDevice;
import android.support.test.uiautomator.By;
import android.support.test.uiautomator.Until;
...
@RunWith(AndroidJUnit4.class)
@SdkSuppress(minSdkVersion = 18)
public class ChangeTextBehaviorTest {
private static final String BASIC_SAMPLE_PACKAGE
= "com.example.android.testing.uiautomator.BasicSample";
private static final int LAUNCH_TIMEOUT = 5000;
private static final String STRING_TO_BE_TYPED = "UiAutomator";
private UiDevice mDevice;
@Before
public void startMainActivityFromHomeScreen() {
// Initialize UiDevice instance
mDevice =
UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());
// Start from the home screen
mDevice.pressHome();
// Wait for launcher
final String launcherPackage = mDevice.getLauncherPackageName();
assertThat(launcherPackage, notNullValue());
mDevice.wait(Until.hasObject(By.pkg(launcherPackage).depth(0)),
LAUNCH_TIMEOUT);
// Launch the app
Context context = InstrumentationRegistry.getContext();
final Intent intent = context.getPackageManager()
.getLaunchIntentForPackage(BASIC_SAMPLE_PACKAGE);
// Clear out any previous instances
intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);
context.startActivity(intent);
// Wait for the app to appear
mDevice.wait(Until.hasObject(By.pkg(BASIC_SAMPLE_PACKAGE).depth(0)),
LAUNCH_TIMEOUT);
}
}
The @SdkSuppress(minSdkVersion = 18) annotation ensures that tests will only run on devices with Android 4.3 (API level 18) or higher, as required by the UI Automator framework.
Accessing a UI element
Use the findObject() method of the UiObject class to retrieve a UiObject instance that represents a UI element matching a given selector criteria. To access a specific UI element, use the UiSelector class, which represents a query for specific elements in the currently displayed UI.
You can reuse the UiObject instances that you created in other parts of your app testing. The UI Automator test framework searches the current display for a match every time your test uses a UiObject instance to click on a UI element or query an attribute.
The following shows how your test might construct UiObject instances using findObject() with a UiSelector that represent a Cancel button, and one that represents an OK button:
UiObject cancelButton = mDevice.findObject(new UiSelector()
.text("Cancel"))
.className("android.widget.Button"));
UiObject okButton = mDevice.findObject(new UiSelector()
.text("OK"))
.className("android.widget.Button"));
If more that one element matches, the first matching element in the layout hierarchy (found by moving from top to bottom, left to right) is returned as the target UiObject. When constructing a UiSelector, you can chain together multiple attributes and properties to refine your search. If no matching UI element is found, an exception (UiAutomatorObjectNotFoundException) is thrown.
To nest multiple UiSelector instances, use the childSelector() method of the UiSelector class. For example, the following shows how your test might specify a search to find the first ListView in the currently displayed UI, then search within that ListView to find a UI component with the android:text attribute "List Item 14" :
UiObject appItem = new UiObject(new UiSelector()
.className("android.widget.ListView")
.instance(1)
.childSelector(new UiSelector()
.text("List Item 14")));
While it may be useful to refer to the android:text attribute of an element of a ListView or RecycleView because there is no resource id (android:id attribute) for such an element, it is best to use a resource id when specifying a selector rather than the android:text or android:contentDescription attributes. Not all elements have a text attribute (for example, icons in a toolbar). Tests might fail if there are minor changes to the text of a UI component, and the tests would not be usable for apps translated into other languages because your text selectors would not match the translated string resources.
Performing actions
Once your test has retrieved a UiObject object, you can call the methods in the UiObject class to perform user interactions on the UI component represented by that object. For example, the constructed UiObject instances in the previous section for the OK and Cancel buttons can be used to perform a click:
// Simulate a user-click on the OK button, if found.
if(okButton.exists() && okButton.isEnabled()) {
okButton.click();
}
You can use UiObject methods to perform actions such as:
Sending an intent or launching an activity
The UI Automator testing framework enables you to send an Intent or launch an Activity without using shell commands, by getting a Context object through the getContext() method. For example, the following shows how your test can use an Intent to launch the app under test:
public void setUp() {
...
// Launch a simple calculator app
Context context = getInstrumentation().getContext();
Intent intent = context.getPackageManager()
.getLaunchIntentForPackage(CALC_PACKAGE);
intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);
// Clear out any previous instances
context.startActivity(intent);
mDevice.wait(Until.hasObject(By.pkg(CALC_PACKAGE).depth(0)), TIMEOUT);
}
Performing actions on collections
Use the UiCollection class if you want to simulate user interactions on a collection of UI elements (for example, song titles or emails in a list). To create a UiCollection object, specify a UiSelector that searches for a UI container or a wrapper of other child UI elements, such as a layout group that contains child UI elements.
The following shows how a test can use a UiCollection to represent a video album that is displayed within a FrameLayout:
UiCollection videos = new UiCollection(new UiSelector()
.className("android.widget.FrameLayout"));
// Retrieve the number of videos in this collection:
int count = videos.getChildCount(new UiSelector()
.className("android.widget.LinearLayout"));
// Find a specific video and simulate a user-click on it
UiObject video = videos.getChildByText(new UiSelector()
.className("android.widget.LinearLayout"), "Cute Baby Laughing");
video.click();
// Simulate selecting a checkbox that is associated with the video
UiObject checkBox = video.getChild(new UiSelector()
.className("android.widget.Checkbox"));
if(!checkBox.isSelected()) checkbox.click();
Performing actions on scrollable views
Use the UiScrollable class to simulate vertical or horizontal scrolling across a display. This technique is helpful when a UI element is positioned off-screen and you need to scroll to bring it into view. For example, the following code snippet shows how to simulate scrolling down the Settings menu and clicking on the About phone option:
UiScrollable settingsItem = new UiScrollable(new UiSelector()
.className("android.widget.ListView"));
UiObject about = settingsItem.getChildByText(new UiSelector()
.className("android.widget.LinearLayout"), "About phone");
about.click();
Verifying results
You can use standard JUnit Assert methods to test that UI components in the app return the expected results. For example, you can use assertFalse() to assert that a condition is false in order to test if the condition truly is false as a result. Use assertEquals() to test if a floating point number result is equal to the assertion:
assertEquals("5", result.getText());
The following shows how your test can locate several buttons in a calculator app, click on them in order, then verify that the correct result is displayed:
private static final String CALC_PACKAGE = "com.myexample.calc";
public void testTwoPlusThreeEqualsFive() {
// Enter an equation: 2 + 3 = ?
mDevice.findObject(new UiSelector()
.packageName(CALC_PACKAGE).resourceId("two")).click();
mDevice.findObject(new UiSelector()
.packageName(CALC_PACKAGE).resourceId("plus")).click();
mDevice.findObject(new UiSelector()
.packageName(CALC_PACKAGE).resourceId("three")).click();
mDevice.findObject(new UiSelector()
.packageName(CALC_PACKAGE).resourceId("equals")).click();
// Verify the result = 5
UiObject result = mDevice.findObject(By.res(CALC_PACKAGE, "result"));
assertEquals("5", result.getText());
}
Running instrumented tests
To run a single test, right-click (or Control-click) the test in Android Studio, and choose Run from the pop-up menu.
To test a method in a test class, right-click the method in the test file and click Run.
To run all tests in a directory, right-click on the directory and select Run tests.
Android Studio displays the results of the test in the Run window.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
Android Studio Documentation:
Android Developer Documentation:
Android Testing Support Library:
Videos
Other:
7.1: AsyncTask and AsyncTaskLoader
Contents:
There are two ways to do background processing in Android: using the AsyncTask class, or using the Loader framework, which includes an AsyncTaskLoader class that uses AsyncTask . In most situations you'll choose the Loader framework, but it's important to know how AsyncTask works so you can make a good choice.
In this chapter you'll learn why it's important to process some tasks in the background, off the UI thread. You'll learn how to use AsyncTask , when not to use AsyncTask , and the basics of using loaders.
The UI thread
When an Android app starts, it creates the main thread, which is often called the UI thread. The UI thread dispatches events to the appropriate user interface (UI) widgets, and it's where your app interacts with components from the Android UI toolkit (components from the android.widget and android.view packages).
Android's thread model has two rules:
1. Do not block the UI thread.
The UI thread needs to give its attention to drawing the UI and keeping the app responsive to user input. If everything happened on the UI thread, long operations such as network access or database queries could block the whole UI. From the user's perspective, the application would appear to hang. Even worse, if the UI thread were blocked for more than a few seconds (about 5 seconds currently) the user would be presented with the "application not responding" (ANR) dialog. The user might decide to quit your application and uninstall it.
To make sure your app doesn't block the UI thread:
2. Do UI work only on the UI thread.
Don't use a background thread to manipulate your UI, because the Android UI toolkit is not thread-safe.
AsyncTask
Use the AsyncTask class to implement an asynchronous, long-running task on a worker thread. (A worker thread is any thread which is not the main or UI thread.) AsyncTask allows you to perform background operations and publish results on the UI thread without manipulating threads or handlers.
When AsyncTask is executed, it goes through four steps:
For complete details on these methods, see the AsyncTask reference. Below is a diagram of their calling order.
AsyncTask usage
To use the AsyncTask class, define a subclass of AsyncTask that overrides the doInBackground(Params...) method (and usually the onPostExecute(Result) method as well). This section describes the parameters and usage of AsyncTask , then shows a complete example.
AsyncTask parameters
In your subclass of AsyncTask , provide the data types for three kinds of parameters:
Specify a data type for each of these parameter types, or use Void if the parameter type will not be used. For example:
public class MyAsyncTask extends AsyncTask <String, Void, Bitmap>{}
In this class declaration:
Example of an AsyncTask
private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
protected Long doInBackground(URL... urls) {
int count = urls.length;
long totalSize = 0;
for (int i = 0; i < count; i++) {
totalSize += Downloader.downloadFile(urls[i]);
publishProgress((int) ((i / (float) count) * 100));
// Escape early if cancel() is called
if (isCancelled()) break;
}
return totalSize;
}
protected void onProgressUpdate(Integer... progress) {
setProgressPercent(progress[0]);
}
protected void onPostExecute(Long result) {
showDialog("Downloaded " + result + " bytes");
}
}
The example above goes through three of the four basic AsyncTask steps:
The parameter types used in this example are:
Executing an AsyncTask
After you define a subclass of AsyncTask , instantiate it on the UI thread. Then call execute() on the instance, passing in any number of parameters. (These parameters correspond to the "Params" parameter type discussed above).
For example, to execute the DownloadFilesTask task defined above, use the following line of code:
new DownloadFilesTask().execute(url1, url2, url3);
Cancelling an AsyncTask
You can cancel a task at any time, from any thread, by invoking the cancel() method.
Limitations of AsyncTask
AsyncTask is impractical for some use cases:
Changes to device configuration cause problems.
When device configuration changes while an AsyncTask is running, for example if the user changes the screen orientation, the activity that created the AsyncTask is destroyed and re-created. The AsyncTask is unable to access the newly created activity, and the results of the AsyncTask aren't published.
Old AsyncTask objects stay around, and your app may run out of memory or crash.
If the activity that created the AsyncTask is destroyed, the AsyncTask is not destroyed along with it. For example, if your user exits the application after the AsyncTask has started, the AsyncTask keeps using resources unless you call cancel() .
When to use AsyncTask :
For all other situations, use AsyncTaskLoader , which is part of the Loader framework described next.
Loaders
Background tasks are commonly used to load data such as forecast reports or movie reviews. Loading data can be memory intensive, and you want the data to be available even if the device configuration changes. For these situations, use loaders, which are a set of classes that facilitate loading data into an activity.
Loaders use the LoaderManager class to manage one or more loaders. LoaderManager includes a set of callbacks for when the loader is created, when it's done loading data, and when it's reset.
Starting a loader
Use the LoaderManager class to manage one or more Loader instances within an activity or fragment. Use initLoader() to initialize a loader and make it active. Typically, you do this within the activity's onCreate() method. For example:
// Prepare the loader. Either reconnect with an existing one,
// or start a new one.
getLoaderManager().initLoader(0, null, this);
If you're using the Support Library, make this call using getSupportLoaderManager() instead of getLoaderManager() . For example:
getSupportLoaderManager().initLoader(0, null, this);
The initLoader() method takes three parameters:
The initLoader() call has two possible outcomes:
Note: Whether initLoader() creates a new loader or reuses an existing one, the given LoaderCallbacks implementation is associated with the loader and is called when the loader's state changes. If the requested loader exists and has already generated data, then the system calls onLoadFinished() immediately (during initLoader()), so be prepared for this to happen.
Put the call to initLoader() in onCreate() so that the activity can reconnect to the same loader when the configuration changes. That way, the loader doesn't lose the data it has already loaded.
Restarting a loader
When initLoader() reuses an existing loader, it doesn't replace the data that the loader contains, but sometimes you want it to. For example, when you use a user query to perform a search and the user enters a new query, you want to reload the data using the new search term. In this situation, use the restartLoader() method and pass in the ID of the loader you want to restart. This forces another data load with new input data.
About the restartLoader() method:
LoaderManager callbacks
The LoaderManager object automatically calls onStartLoading() when creating the loader. After that, the LoaderManager manages the state of the loader based on the state of the activity and data, for example by calling onLoadFinished() when the data has loaded.
To interact with the loader, use one of the LoaderManager callbacks in the activity where the data is needed:
The subclass of the Loader is responsible for actually loading the data. Which Loader subclass you use depends on the type of data you are loading, but one of the most straightforward is AsyncTaskLoader , described next. AsyncTaskLoader uses an AsyncTask to perform tasks on a worker thread.
AsyncTaskLoader
AsyncTaskLoader is the loader equivalent of AsyncTask . AsyncTaskLoader provides a method, loadInBackground() , that runs on a separate thread. The results of loadInBackground() are automatically delivered to the UI thread, by way of the onLoadFinished() LoaderManager callback.
AsyncTaskLoader usage
To define a subclass of AsyncTaskLoader , create a class that extends AsyncTaskLoader<D> , where D is the data type of the data you are loading. For example, the following AsyncTaskLoader loads a list of strings:
public static class StringListLoader extends AsyncTaskLoader<List<String>> {}
Next, implement a constructor that matches the superclass implementation:
public StringListLoader(Context context, String queryString) {
super(context);
mQueryString = queryString;
}
To perform the load, use the loadInBackground() override method, the corollary to the doInBackground() method of AsyncTask. For example:
@Override
public List<String> loadInBackground() {
List<String> data = new ArrayList<String>;
//TODO: Load the data from the network or from a database
return data;
}
Implementing the callbacks
Use the constructor in the onCreateLoader() LoaderManager callback, which is where the new loader is created. For example, this onCreateLoader() callback uses the StringListLoader constructor defined above:
@Override
public Loader<List<String>> onCreateLoader(int id, Bundle args) {
return new StringListLoader(this, args.getString("queryString"));
}
The results of loadInBackground() are automatically passed into the onLoadFinished() callback, which is where you can display the results in the UI. For example:
public void onLoadFinished(Loader<List<String>> loader, List<String> data) {
mAdapter.setData(data);
}
The onLoaderReset() callback is only called when the loader is being destroyed, so you can leave onLoaderReset() blank most of the time, because you won't try to access the data after the loader is destroyed.
When you use AsyncTaskLoader , your data survives device-configuration changes. If your activity is permanently destroyed, the loader is destroyed with it, with no lingering tasks that consume system resources.
Loaders have other benefits too, for example they let you monitor data sources for changes and reload the data if a change occurs. You learn more about the specifics of loaders in a future lesson.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
7.2: Connect to the Internet
Contents:
Most Android applications have some data that the user interacts with; it might be news articles, weather information, contacts, game data, user information, and more. Often, this data is provided over the network by a web API.
In this lesson you learn about network security and how to make network calls, which involves these tasks:
Network security
Network transactions are inherently risky, because they involve transmitting data that could be private to the user. People are increasingly aware of these risks, especially when their devices perform network transactions, so it's very important that your app implement best practices for keeping user data secure at all times.
Security best practices for network operations:
For more best practices and security tips, take a look at the Security Tips article.
Including permissions in the manifest
Before your app can make network calls, you need to include a permission in your AndroidManifest.xml file. Add the following tag inside the <manifest> tag:
<uses-permission android:name="android.permission.INTERNET" />
When using the network, it's a best practice to monitor the network state of the device so that you don't attempt to make network calls when the network is unavailable. To access the network state of the device, your app needs an additional permission:
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
Performing network operations on a worker thread
Always perform network operations on a worker thread, separate from the UI. For example, in your Java code you could create an AsyncTask (or AsyncTaskLoader) implementation that opens a network connection and queries an API. Your main code checks whether a network connection is active. If so, it runs the AsyncTask in a separate thread, then displays the results in the UI.
Note: If you run network operations on the main thread instead of on a worker thread, you receive an error.
Making an HTTP connection
Most network-connected Android apps use HTTP and HTTPS to send and receive data over the network. For a refresher on HTTP, visit this Learn HTTP tutorial.
Note: If a web server offers HTTPS, you should use it instead of HTTP for improved security.
The HttpURLConnection Android client supports HTTPS, streaming uploads and downloads, configurable timeouts, IPv6, and connection pooling. To use the HttpURLConnection client, build a URI (the request's destination). Then obtain a connection, send the request and any request headers, download and read the response and any response headers, and disconnect.
Building your URI
To open an HTTP connection, you need to build a request URI. A URI is usually made up of a base URL and a collection of query parameters that specify the resource in question. For example to search for the first five book results for "Pride and Prejudice" in the Google Books API, use the following URI:
https://www.googleapis.com/books/v1/volumes?q=pride+prejudice&maxResults=5&printType=books
To construct a request URI programmatically, use the URI.parse() method with the buildUpon() and appendQueryParameter() methods. The following code builds the complete URI shown above:
// Base URL for the Books API.
final String BOOK_BASE_URL = "https://www.googleapis.com/books/v1/volumes?";
final String QUERY_PARAM = "q"; // Parameter for the search string
final String MAX_RESULTS = "maxResults"; // Parameter to limit search results.
final String PRINT_TYPE = "printType"; // Parameter to filter by print type
// Build up the query URI, limiting results to 5 items and printed books.
Uri builtURI = Uri.parse(BOOK_BASE_URL).buildUpon()
.appendQueryParameter(QUERY_PARAM, "pride+prejudice")
.appendQueryParameter(MAX_RESULTS, "5")
.appendQueryParameter(PRINT_TYPE, "books")
.build();
To convert the URI to a string, use the toString() method:
String myurl = builtURI.toString();
Connect and download data
In the worker thread that performs your network transactions, for example within your override of the doInBackground() method in an AsyncTask , use the HttpURLConnection class to perform an HTTP GET request and download the data your app needs. Here's how:
To obtain a new HttpURLConnection , call URL.openConnection() using the URI that you've built. Cast the result to HttpURLConnection .
The URI is the primary property of the request, but request headers can also include metadata such as credentials, preferred content types, and session cookies.
These steps are shown in the Request example, below.
If you're posting data over the network and not just receiving data, you need to upload a request body, which holds the data to be posted. To do this:
For more about posting data to the network, see "Posting Content" in the HttpURLConnection documentation.
Note: All network calls must be performed in a worker thread and not on the UI thread.
Request example
The following example sends a request to the URL built in the Building your URI section, above. The request obtains a new HttpURLConnection , opens an input stream, reads the response, converts the response into a string, and closes the connection.
private String downloadUrl(String myurl) throws IOException {
InputStream inputStream = null;
// Only display the first 500 characters of the retrieved
// web page content.
int len = 500;
try {
URL url = new URL(myurl);
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setReadTimeout(10000 /* milliseconds */);
conn.setConnectTimeout(15000 /* milliseconds */);
// Start the query
conn.connect();
int response = conn.getResponseCode();
Log.d(DEBUG_TAG, "The response is: " + response);
inputStream = conn.getInputStream();
// Convert the InputStream into a string
String contentAsString = convertInputToString(inputStream, len);
return contentAsString;
// Close the InputStream and connection
} finally {
conn.disconnect();
if (inputStream != null) {
inputStream.close();
}
}
}
Converting the InputStream to a string
An InputStream is a readable source of bytes. Once you get an InputStream , it's common to decode or convert it into the data type you need. In the example above, the InputStream represents plain text from the web page located at https://www.googleapis.com/books/v1/volumes?q=pride+prejudice&maxResults=5&printType=books.
The convertInputToString method defined below converts the InputStream to a string so that the activity can display it in the UI. The method uses an InputStreamReader instance to read bytes and decode them into characters:
// Reads an InputStream and converts it to a String.
public String convertInputToString(InputStream stream, int len)
throws IOException, UnsupportedEncodingException {
Reader reader = null;
reader = new InputStreamReader(stream, "UTF-8");
char[] buffer = new char[len];
reader.read(buffer);
return new String(buffer);
}
Note: If you expect a long response, wrap your InputStreamReader inside a BufferedReader for more efficient reading of characters, arrays, and lines. For example:
reader = new BufferedReader(new InputStreamReader(stream, "UTF-8"));
Parsing the results
When you make web API queries, the results are often in JSON format.
Below is an example of a JSON response from an HTTP request. It shows the names of three menu items in a popup menu and the methods that are triggered when the menu items are clicked:
{"menu": {
"id": "file",
"value": "File",
"popup": {
"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}
]
}
}
To find the value of an item in the response, use methods from the JSONObject and JSONArray classes. For example, here's how to find the "onclick" value of the third item in the "menuitem" array:
JSONObject data = new JSONObject(responseString);
JSONArray menuItemArray = data.getJSONArray("menuitem");
JSONObject thirdItem = menuItemArray.getJSONObject(2);
String onClick = thirdItem.getString("onclick");
Managing the network state
Making network calls can be expensive and slow, especially if the device has little connectivity. Being aware of the network connection state can prevent your app from attempting to make network calls when the network isn't available.
Sometimes it's also important for your app to know what kind of connectivity the device has: Wi-Fi networks are typically faster than data networks, and data networks are often metered and expensive. To control when certain tasks are performed, monitor the network state and respond appropriately. For example, you may want to wait until the device is connected to Wi-Fi to perform a large file download.
To check the network connection, use the following classes:
The following code snippet tests whether Wi-Fi and mobile are connected. In the code:
private static final String DEBUG_TAG = "NetworkStatusExample";
ConnectivityManager connMgr = (ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo networkInfo = connMgr.getNetworkInfo(ConnectivityManager.TYPE_WIFI);
boolean isWifiConn = networkInfo.isConnected();
networkInfo = connMgr.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);
boolean isMobileConn = networkInfo.isConnected();
Log.d(DEBUG_TAG, "Wifi connected: " + isWifiConn);
Log.d(DEBUG_TAG, "Mobile connected: " + isMobileConn);
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
7.3: Broadcast Receivers
Contents:
Explicit intents are used to start specific, fully qualified activities, as well as to pass information between activities in your app. Implicit intents are used to start activities based on registered components that the system is aware of, for example general functionality.
In this lesson you learn about broadcast intents, which don't start activities but instead are delivered to broadcast receivers.
Broadcast intents
The intents you've seen up to now always resulted in an activity being launched, either a specific activity from your application or an activity from a different application that could fulfill the requested action. But sometimes an intent doesn't have a specific recipient, and sometimes you don't want an activity to be launched in response to an intent. For example, when your app receives a system intent indicating that the network state of a device has changed, you probably don't want to launch an activity, but you may want to disable some functionality of your app.
For this reason there's a third type of intent that can be delivered to any interested application: the broadcast intent. Although broadcast intents are defined the same way as implicit intents, each type of intent has important distinguishing characteristics:
There are two types of broadcast intents, those delivered by the system (system broadcast intents), and those that your app delivers (custom broadcast intents).
System broadcast intents
The system delivers a system broadcast intent when a system event occurs that might interest your app. For example:
ACTION_DEVICE_STORAGE_LOW is a sticky broadcast, which means that the broadcast value is held in a cache. If you need to know whether your broadcast receiver is processing a value that's in the cache (sticky) or a value that's being broadcast in the present moment, use isInitialStickyBroadcast().
For more about common system broadcasts, visit the Intent reference.
To receive system broadcast intents, you need to create a broadcast receiver.
Custom broadcast intents
Custom broadcast intents are broadcast intents that your application sends out. Use a custom broadcast intent when you want your app to take an action without launching an activity, for example when you want to let other apps know that data has been downloaded to the device and is available for them to use.
To create a custom broadcast intent, create a custom intent action. To deliver a custom broadcast to other apps, pass the intent to sendBroadcast() , sendOrderedBroadcast() , or sendStickyBroadcast() . (For details about these methods, see the Context reference documentation.)
For example, the following method creates an intent and broadcasts it to all interested broadcast receivers:
public void sendBroadcastIntent() {
Intent intent = new Intent();
intent.setAction("com.example.myproject.ACTION_SHOW_TOAST");
sendBroadcast(intent);
}
Note: When you specify the action for the intent, use your unique package name (com.example.myproject in the example) to make sure your intent doesn't conflict with an intent that is broadcast from a different app or from the system.
Broadcast receivers
Broadcast intents aren't targeted at specific recipients. Instead, interested apps register a component to "listen" for these kind of intents. This listening component is called a broadcast receiver.
Use broadcast receivers to respond to messages that are broadcast from other apps or from the system. To create a broadcast receiver:
Register the broadcast receiver either dynamically in Java, or statically in your app's manifest file.
As part of this step, use an intent filter to specify which kinds of broadcast intents you're interested in receiving.
These steps are described below.
Define a subclass of BroadcastReceiver
To create a broadcast receiver, define a subclass of the BroadcastReceiver class. This subclass is where intents are delivered (if they match the intent filters you set when you register the subclass, which happens in a later step).
Within your subclass definition:
Example: Create a broadcast receiver
In this example, the AlarmReceiver subclass of BroadcastReceiver shows a Toast message if the incoming broadcast intent has the action ACTION_SHOW_TOAST :
private class AlarmReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
if (intent.getAction().equals(ACTION_SHOW_TOAST)) {
CharSequence text = "Broadcast Received!";
int duration = Toast.LENGTH_SHORT;
Toast toast = Toast.makeText(context, text, duration);
toast.show();
}
}
}
Note: Don't use asynchronous operations in your onReceive() implementation, because once your code returns from onReceive() , the system considers the BroadcastReceiver object to be finished. If onReceive() were to start an asynchronous operation, the system would kill the BroadcastReceiver process before the asynchronous operation had a chance to complete.
If you need a long-running operation that doesn't require a UI, use a Service launched from the broadcast receiver. In particular:
Registering your broadcast receiver and setting intent filters
There are two ways to register your broadcast receiver: statically in the manifest, or dynamically in your activity.
Static registration
To register your broadcast receiver statically, add a <receiver> element to your AndroidManifest.xml file. Within the <receiver> element:
Example: Static registration and intent filter for a custom broadcast intent
The following code snippet is an example of static registration for a broadcast receiver that listens for a custom broadcast intent with " ACTION_SHOW_TOAST " in the name of its action:
<receiver
android:name="com.example.myproject.AlarmReceiver"
android:exported="false">
<intent-filter>
<action android:name="com.example.myproject.intent.action.ACTION_SHOW_TOAST"/>
</intent-filter>
</receiver>
Intent filters
When the system receives an implicit intent to start an activity, it searches for the best activity for the intent by comparing it to intent filters, based on three aspects:
Example: Intent filter for a system broadcast intent
This example shows an intent filter for a receiver that listens for the device to finish booting:
<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED"/>
</intent-filter>
To learn more about using intent filters to select intents, see the Intent Resolution section of the intent guide.
If no intent filters are specified, the broadcast receiver can only be activated with an explicit broadcast intent that names the component by name. (This is similar to how you launch activities by their class name with explicit intents.)
If you use static registration for your broadcast receiver, the Android system creates a new process to run your broadcast receiver if no processes associated with your application are running. This means that the receiver will respond, even if your app is not running.
Dynamic registration and unregistration
You can also register a broadcast receiver dynamically, which ties its operation to the lifecycle of your activity. To register your receiver dynamically, call registerReceiver() and pass in the BroadcastReceiver object and an intent filter. For example:
IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction(ACTION_SHOW_TOAST);
mReceiver = new AlarmReceiver();
registerReceiver(mReceiver, intentFilter);
Note: If you register your receiver to receive only local broadcasts, you must register it dynamically; static registration isn't an option.
You also need to unregister the receiver by calling unregisterReceiver() and passing in your BroadcastReceiver object. For example:
unregisterReceiver(mReceiver);
Where you call these methods depends on the desired lifecycle of your BroadcastReceiver object:
Security guidelines
When you use broadcast intents and broadcast receivers, information is sent between applications, which creates security risks. To avoid these risks, you can use LocalBroadcastManager (described below), or you can follow these guidelines:
Either the sender or receiver of a broadcast can enforce access permissions:
To enforce a permission when sending a broadcast, supply a non-null permission argument to sendBroadcast() .
Only receivers who have been granted this permission (by requesting it with the <uses-permission> tag in their AndroidManifest.xml) can receive the broadcast.
To enforce a permission when receiving a broadcast, supply a non-null permission when registering your receiver either when calling registerReceiver() or in the static <receiver> tag in your AndroidManifest.xml.
Only broadcasters who have been granted this permission (by requesting it with the <uses-permission> tag in their AndroidManifest.xml) will be able to send an intent to the receiver. The receiver has to request permission in the manifest, regardless of whether the sender is registered statically or dynamically.
LocalBroadcastManager
To avoid having to manage the security aspects described in the Security guidelines, use the LocalBroadcastManager class. LocalBroadcastManager lets you send and receive broadcasts within a single process and a single application, which means you don't have to worry about cross-application security.
Sending local broadcasts
To send a broadcast using LocalBroadcastManager :
For example:
LocalBroadcastManager.getInstance(this).sendBroadcast(customBroadcastIntent);
Registering your receiver for local broadcasts
To register your receiver to receive only local broadcasts:
For example:
LocalBroadcastManager.getInstance(this).registerReceiver
(mReceiver, new IntentFilter(CustomReceiver.ACTION_CUSTOM_BROADCAST));
To unregister the broadcast receiver:
LocalBroadcastManager.getInstance(this).unregisterReceiver(mReceiver);
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
7.4: Services
Contents:
In this chapter you learn about the different types of services, how to use them, and how to manage their lifecycles within your app.
What is a service?
A service is an application component that performs long-running operations, usually in the background. A service doesn't provide a user interface (UI). (An activity, on the other hand, provides a UI.)
A service can be started, bound, or both:
A started service is a service that an application component starts by calling startService() .
Use started services for tasks that run in the background to perform long-running operations. Also use started services for tasks that perform work for remote processes.
A bound service is a service that an application component binds to itself by calling bindService() .
Use bound services for tasks that another app component interacts with to perform interprocess communication (IPC). For example, a bound service might handle network transactions, perform file I/O, play music, or interact with a content provider.
Note: A service runs in the main thread of its hosting process—the service doesn't create its own thread and doesn't run in a separate process unless you specify that it should.
If your service is going to do any CPU-intensive work or blocking operations (such as MP3 playback or networking), create a new thread within the service to do that work. By using a separate thread, you reduce the risk of Application Not Responding (ANR) errors, and the application's main thread can remain dedicated to user interaction with your activities.
To implement any kind of service in your app:
Declaring services in the manifest
As with activities and other components, you must declare all services in your application's manifest file. To declare a service, add a <service> element as a child of the <application> element. For example:
<manifest ... >
...
<application ... >
<service android:name="ExampleService"
android:exported="false" />
...
</application>
</manifest>
To block access to a service from other applications, declare the service as private. To do this, set the android:exported attribute to false . This stops other apps from starting your service, even when they use an explicit intent.
Started services
How a service starts:
Once started, a service can run in the background indefinitely, even if the component that started it is destroyed. Usually, a started service performs a single operation and does not return a result to the caller. For example, it might download or upload a file over the network. When the operation is done, the service should stop itself by calling stopSelf() , or another component can stop it by calling stopService() .
For instance, suppose an activity needs to save data to an online database. The activity starts a companion service by passing an Intent to startService() . The service receives the intent in onStartCommand() , connects to the Internet, and performs the database transaction. When the transaction is done, the service uses stopSelf() to stop itself and is destroyed. (This is an example of a service you want to run in a worker thread instead of the main thread.)
IntentService
Most started services don't need to handle multiple requests simultaneously, and if they did it could be a dangerous multi-threading scenario. For this reason, it's probably best if you implement your service using the IntentService class.
IntentService is a useful subclass of Service :
To implement IntentService :
Here's an example implementation of IntentService :
public class HelloIntentService extends IntentService {
/**
* A constructor is required, and must call the super IntentService(String)
* constructor with a name for the worker thread.
*/
public HelloIntentService() {
super("HelloIntentService");
}
/**
* The IntentService calls this method from the default worker thread with
* the intent that started the service. When this method returns, IntentService
* stops the service, as appropriate.
*/
@Override
protected void onHandleIntent(Intent intent) {
// Normally we would do some work here, like download a file.
// For our sample, we just sleep for 5 seconds.
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
// Restore interrupt status.
Thread.currentThread().interrupt();
}
}
}
Bound services
A service is "bound" when an application component binds to it by calling bindService() . A bound service offers a client-server interface that allows components to interact with the service, send requests, and get results, sometimes using interprocess communication (IPC) to send and receive information across processes. A bound service runs only as long as another application component is bound to it. Multiple components can bind to the service at once, but when all of them unbind, the service is destroyed.
A bound service generally does not allow components to start it by calling startService() .
Implementing a bound service
To implement a bound service, define the interface that specifies how a client can communicate with the service. This interface, which your service returns from the onBind() callback method, must be an implementation of IBinder.
To retrieve the IBinder interface, a client application component calls bindService() . Once the client receives the IBinder , the client interacts with the service through that interface.
There are multiple ways to implement a bound service, and the implementation is more complicated than a started service. For complete details about bound services, see Bound Services.
Binding to a service
To bind to a service that is declared in the manifest and implemented by an app component, use bindService() with an explicit Intent .
Caution: Do not use an implicit intent to bind to a service. Doing so is a security hazard, because you can't be certain what service will respond to your intent, and the user can't see which service starts. Beginning with Android 5.0 (API level 21), the system throws an exception if you call bindService() with an implicit Intent .
Service lifecycle
The lifecycle of a service is simpler than that of an activity. However, it's even more important that you pay close attention to how your service is created and destroyed. Because a service has no UI, services can continue to run in the background with no way for the user to know, even if the user switches to another application. This consumes resources and drains battery.
Like an activity, a service has lifecycle callback methods that you can implement to monitor changes in the service's state and perform work at the appropriate times. The following skeleton service demonstrates each of the lifecycle methods:
public class ExampleService extends Service {
int mStartMode; // indicates how to behave if the service is killed
IBinder mBinder; // interface for clients that bind
boolean mAllowRebind; // indicates whether onRebind should be used
@Override
public void onCreate() {
// The service is being created
}
@Override
public int onStartCommand(Intent intent, int flags, int startId) {
// The service is starting, due to a call to startService()
return mStartMode;
}
@Override
public IBinder onBind(Intent intent) {
// A client is binding to the service with bindService()
return mBinder;
}
@Override
public boolean onUnbind(Intent intent) {
// All clients have unbound with unbindService()
return mAllowRebind;
}
@Override
public void onRebind(Intent intent) {
// A client is binding to the service with bindService(),
// after onUnbind() has already been called
}
@Override
public void onDestroy() {
// The service is no longer used and is being destroyed
}
}
Lifecycle of started services vs. bound services
A bound service exists only to serve the application component that's bound to it, so when no more components are bound to the service, the system destroys it. Bound services don't need to be explicitly stopped the way started services do (using stopService() or stopSelf()).
The diagram below shows a comparison between the started and bound service lifecycles.
Foreground services
While most services run in the background, some run in the foreground. A foreground service is a service that the user is aware of, so it's not a candidate for the system to kill when low on memory.
For example, a music player that plays music from a service should be set to run in the foreground, because the user is aware of its operation. The notification in the status bar might indicate the current song and allow the user to launch an activity to interact with the music player.
To request that a service run in the foreground, call startForeground() instead of startService() . This method takes two parameters: an integer that uniquely identifies the notification and the Notification for the status bar. This notification is ongoing, meaning that it can't be dismissed. It stays in the status bar until the service is stopped or removed from the foreground.
For example:
NotificationCompat.Builder mBuilder =
new NotificationCompat.Builder(this)
.setSmallIcon(R.drawable.notification_icon)
.setContentTitle("My notification")
.setContentText("Hello World!");
startForeground(ONGOING_NOTIFICATION_ID, mBuilder.build());
Note: The integer ID you give to startForeground() must not be 0.
To remove the service from the foreground, call stopForeground() . This method takes a boolean, indicating whether to remove the status bar notification. This method doesn't stop the service. However, if you stop the service while it's still running in the foreground, then the notification is also removed.
Scheduled services
For API level 21 and higher, you can launch services using the JobScheduler API. To use JobScheduler , you need to register jobs and specify their requirements for network and timing. The system schedules jobs for execution at appropriate times.
The JobScheduler interface provides many methods to define service-execution conditions. For details, see the JobScheduler reference.
Learn more
8.1: Notifications
Contents:
In this chapter you learn how to create, deliver, and reuse notifications, and how to make them compatible for different Android versions.
What is a notification?
A notification is a message your app displays to the user outside your application's normal UI. When you tell the system to issue a notification, the notification first appears to the user as an icon in the notification area, on the left side of the status bar.
To see the details of the notification, the user opens the notification drawer, or views the notification on the lock screen if the device is locked. The notification area, the lock screen, and the notification drawer are system-controlled areas that the user can view at any time.
The screenshot shows an "open" notification drawer. The the status bar isn't visible, because the notification drawer is open.
This process is described below.
Creating notifications
You create a notification using the NotificationCompat.Builder class. (Use NotificationCompat for the best backward compatibility. For more information, see Notification compatibility.) The builder classes simplify the creation of complex objects.
To create a NotificationCompat.Builder , pass the application context to the constructor:
NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this);
Setting notification components
When using NotificationCompat.Builder, you must assign a small icon, text for a title, and the notification message. You should keep the notification message shorter than 40 characters and not repeat what's in the title. For example:
NotificationCompat.Builder mBuilder =
new NotificationCompat.Builder(this)
.setSmallIcon(R.drawable.notification_icon)
.setContentTitle("Dinner is ready!")
.setContentText("Lentil soup, rice pilaf, and cake for dessert.");
You also need to set an Intent that determines what happens when the user clicks the notification. Usually this Intent results in your app launching an Activity.
To make sure the system delivers the Intent even when your app isn't running when the user clicks the notification, wrap the Intent in a PendingIntent object, which allows the system to deliver the Intent regardless of the app state.
To instantiate a PendingIntent , use one of the following methods, depending on how you want the contained Intent to be delivered:
Each of these PendingIntent methods take the following arguments:
For example:
Intent contentIntent = new Intent(this, ExampleActivity.class);
PendingIntent pendingContentIntent = PendingIntent.getActivity(this, 0,
contentIntent, PendingIntent.FLAG_UPDATE_CURRENT);
mBuilder.setContentIntent(pendingContentIntent);
To learn more about PendingIntent , see the PendingIntent documentation.
Optional components
You can use various options with notifications, including:
For other options you can use with notifications, see the NotificationCompat.Builder reference.
Notification actions
A notification action is an action that the user can take on the notification. The action is made available via an action button on the notification. Like the Intent that determines what happens when the user clicks the notification, a notification action uses a PendingIntent to complete the action. The Android system usually displays a notification action as a button adjacent to the notification content. Starting with Android 4.1 (API level 16), notifications support icons embedded below the content text, as shown in the screenshot below.
To add a notification action, use the addAction() method with the NotificationCompat.Builder object. Pass in the icon, the title string and the PendingIntent to trigger when the user taps the action. For example:
mBuilder.addAction(R.drawable.car, "Get Directions", mapPendingIntent);
To ensure that an action button's functionality is always available, follow the instructions in the Notification compatibility section, below.
Notification priority
Android allows you to assign a priority level to each notification to influence how the Android system will deliver it. Notifications have a priority between MIN (-2) and MAX (2) that corresponds to their importance. The following table shows the available priority constants defined in the Notification class.
Priority Constant | Use |
PRIORITY_MAX | For critical and urgent notifications that alert the user to a condition that is time-critical or needs to be resolved before they can continue with a time-critical task. |
PRIORITY_HIGH | Primarily for important communication, such as messages or chats. |
PRIORITY_DEFAULT | For all notifications that don't fall into any of the other priorities described here. |
PRIORITY_LOW | For information and events that are valuable or contextually relevant, but aren't urgent or time-critical. |
PRIORITY_MIN | For nice-to-know background information. For example, weather or nearby places of interest. |
To change the priority of a notification, use the setPriority() method on the NotificationCompat.Builder object, passing in one of the above constants.
mBuilder.setPriority(Notification.PRIORITY_HIGH);
Notifications can be intrusive. Using notification priority correctly is the first step in making sure that your users don't uninstall your app because it's too distracting.
Peeking
Notifications with a priority of HIGH or MAX can peek, which means they slide briefly into view on the user's current screen, no matter what apps the user is using. Note that on devices running Android 6.0 and higher, users can block peeking by changing the device's "App notification" settings. This means you can't rely on notifications peeking, even if you set them up that way.
To create a notification that can peek:
NotificationCompat.Builder mBuilder =
new NotificationCompat.Builder(this)
.setSmallIcon(R.drawable.notification_icon)
.setContentTitle("My notification")
.setContentText("Hello World!")
.setPriority(PRIORITY_HIGH)
.setDefaults(DEFAULTS_ALL);
Expanded view layouts
Notifications in the notification drawer appear in two main layouts, normal view (which is the default) and expanded view. Expanded view notifications were introduced in Android 4.1. Use them sparingly, because they take up more space and attention than normal view layouts.
To create notifications that appear in an expanded layout, use one of these helper classes:
For example, here's how you'd set the BigPictureStyle on a notification:
NotificationCompat notif = new NotificationCompat.Builder(mContext)
.setContentTitle("New photo from " + sender.toString())
.setContentText(subject)
.setSmallIcon(R.drawable.new_post)
.setLargeIcon(aBitmap)
.setStyle(new NotificationCompat.BigPictureStyle()
.bigPicture(aBigBitmap)
.setBigContentTitle("Large Notification Title"))
.build();
To learn more about implementing expanded styles, see the NotificationCompat.Style documentation.
Ongoing notifications
Ongoing notifications are notifications that can't be dismissed by the user. Your app must explicitly cancel them by calling cancel() or cancelAll() . Creating multiple ongoing notifications is a nuisance to your users since they are unable to cancel the notification. Use ongoing notifications sparingly.
To make a notification ongoing, set setOngoing() to true . Use ongoing notifications to indicate background tasks that the user actively engages with (such as playing music) or tasks that occupy the device (such as file downloads, sync operations, and active network connections).
Delivering notifications
Use the NotificationManager class to deliver notifications:
The following example creates a NotificationManager instance, then builds and delivers a notification:
mNotifyManager = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);
//Builds the notification with all the parameters
NotificationCompat.Builder notifyBuilder = new NotificationCompat.Builder(this)
.setContentTitle(getString(R.string.notification_title))
.setContentText(getString(R.string.notification_text))
.setSmallIcon(R.drawable.ic_android)
.setContentIntent(notificationPendingIntent)
.setPriority(NotificationCompat.PRIORITY_HIGH)
.setDefaults(NotificationCompat.DEFAULT_ALL);
//Delivers the notification
mNotifyManager.notify(NOTIFICATION_ID, notifyBuilder.build());
Reusing notifications
When you need to issue a notification multiple times for the same type of event, you can update a previous notification by changing some of its values, adding to it, or both.
To reuse an existing notification:
Important: If the previous notification is still visible, the system updates it from the contents of the Notification object. If the previous notification has been dismissed, a new notification is created.
Clearing notifications
Notifications remain visible until one of the following happens:
Because ongoing notifications can't be dismissed by the user, your app must cancel them by calling cancel() or cancelAll() .
Notification compatibility
To ensure the best compatibility, create notifications with NotificationCompat and its subclasses, particularly NotificationCompat.Builder.
Keep in mind that not all notification features are available for every Android version, even though the methods to set them are in the support library class NotificationCompat.Builder . For example, expanded view layouts for notifications are only available on Android 4.1 and higher, but action buttons depend on expanded view layouts. This means that if you use notification action buttons, they don't show up on devices running anything before Android 4.1.
To solve this:
Don't rely on notification action buttons to carry out a notification's action; instead make the action available in an Activity. You may want to add a new Activity to do this.
For example, if you set a notification action that provides a control to stop and start media playback, first implement this control in an Activity in your app.
Have the Activity start when users click the notification. To do this:
Create a PendingIntent for the Activity.
Call setContentIntent() to add the PendingIntent to the notification.
Notification design guidelines
Notifications always interrupt the user. As such they must be short, timely, and most of all, relevant.
Give users the power to choose:
In addition to these basic principles, notifications have their own design guidelines:
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
Guides
Reference
8.2: Scheduling Alarms
Contents:
You already know how to use broadcast receivers to make your app respond to system events even when your app isn't running. In this chapter, you'll learn how to use alarms to schedule tasks for specific times, whether or not your app is running at the time the alarm is set to go off. Alarms can either be single use or repeating. For example, you can use a repeating alarm to schedule a download every day at the same time.
To create alarms, you use the AlarmManager class. Alarms in Android have the following characteristics:
When not to use an alarm:
Alarm types
There are two general types of alarms in Android: elapsed real-time alarms and real-time clock (RTC) alarms, and both use PendingIntent objects.
Elapsed real-time alarms
Elapsed real-time alarms use the time, in milliseconds, since the device was booted. Elapsed real-time alarms aren't affected by time zones, so they work well for alarms based on the passage of time. For example, use an elapsed real-time alarm for an alarm that fires every half hour.
The AlarmManager class provides two types of elapsed real-time alarm:
Real-time clock (RTC) alarms
Real-time clock (RTC) alarms are clock-based alarms that use Coordinated Universal Time (UTC). Only choose an RTC alarm in these types of situations:
Apps with clock-based alarms might not work well across locales, because they might fire at the wrong times. And if the user changes the device's time setting, it could cause unexpected behavior in your app.
The AlarmManager class provides two types of RTC alarm:
Alarm best practices
Alarms affect how your app uses (or abuses) system resources. For example, imagine a popular app that syncs with a server. If the sync operation is based on clock time and every instance of the app connects to the server at the same time, the load on the server could result in delayed response times or even a "denial of service" condition.
To avoid this problem and others, follow these best practices:
Scheduling an alarm
The AlarmManager class gives you access to the Android system alarm services. AlarmManager lets you broadcast an Intent at a scheduled time, or after a specific interval.
To schedule an alarm:
All the AlarmManager.set...() methods include these two arguments:
Scheduling a single-use alarm
To schedule a single alarm, use one of the following methods on the AlarmManager instance:
Here's an example of using set() to schedule a single-use alarm:
alarmMgr.set(AlarmManager.ELAPSED_REALTIME,
SystemClock.elapsedRealtime() + 1000*300,
alarmIntent);
In this example:
Note: For timing operations like ticks and timeouts, and events that happen more often than once a minute, it's easier and more efficient to use a Handler rather than an alarm.
Doze and App Standby
API 23+ devices sometimes enter Doze or App Standby mode to save power:
To use alarms with Doze and App Standby:
Scheduling a repeating alarm
You can also use the AlarmManager to schedule repeating alarms, using one of the following methods:
To decrease possible battery drain:
Note: while setInexactRepeating() is an improvement over setRepeating() , it can still overwhelm a server if every instance of an app hits the server around the same time. Therefore, for network requests, add some randomness to your alarms, as described in Alarm best practices.
If you really need exact repeating alarms on API 19+, set a single-use alarm with setExact() and set the next alarm once that alarm has triggered. This second alarm is set by whatever component receives the PendingIntent —usually either a service or a broadcast receiver.
Here's an example of using setInexactRepeating() to schedule a repeating alarm:
alarmMgr.setInexactRepeating(AlarmManager.RTC_WAKEUP,
calendar.getTimeInMillis(),
AlarmManager.INTERVAL_FIFTEEN_MINUTES,
alarmIntent);
In this example:
After the first occurrence, the alarm is sent approximately every 15 minutes.
If the method were setRepeating() instead of setInexactRepeating() , and if the device were running an API version lower than 19, the alarm would be sent exactly every 15 minutes.
Possible values for this argument are INTERVAL_DAY , INTERVAL_FIFTEEN_MINUTES , INTERVAL_HALF_DAY , INTERVAL_HALF_HOUR , INTERVAL_HOUR .
Checking for an existing alarm
It's often useful to check whether an alarm is already set. For example, you may want to disable the ability to set another alarm if one already exists.
To check for an existing alarm:
Create a PendingIntent that contains the same Intent used to set the alarm, but this time use the FLAG_NO_CREATE flag.
With FLAG_NO_CREATE , a PendingIntent is only created if one with the same Intent already exists. Otherwise, the request returns null .
For example, the following code returns true if the alarm contained in alarmIntent already exists:
boolean alarmExists =
(PendingIntent.getBroadcast(this, 0,
alarmIntent,
PendingIntent.FLAG_NO_CREATE) != null);
Canceling an alarm
To cancel an alarm, use cancel() and pass in the PendingIntent . For example:
alarmManager.cancel(alarmIntent);
User-visible alarms ("alarm clocks")
For API 21+ devices, you can set a user-visible alarm clock by calling setAlarmClock(). Apps can retrieve the next user-visible alarm clock that's set to go off by calling getNextAlarmClock() .
Alarms clocks set with setAlarmClock() work even when the device or app is idle (similar to setExactAndAllowWhileIdle()), which gets you as close to an exact wake up call as possible.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
8.3: Transferring Data Efficiently
Contents:
Transferring data is an essential part of most Android applications, but it can negatively affect battery life and increase data usage costs. Using the wireless radio to transfer data is potentially one of your app's most significant sources of battery drain.
Users care about battery drain because they would rather use their mobile device without it connected to the charger. And users care about data usage, because every bit of data transferred can cost them money.
In this chapter, you learn how your app's networking activity affects the device's radio hardware so you can minimize the battery drain associated with network activity. You also learn how to wait for the proper conditions to accomplish resource-intensive tasks.
Wireless radio state
A fully active wireless radio consumes significant power. To conserve power when not in use, the radio transitions between different energy states. However, there is a trade-off between conserving power and the time it takes to power up when needed.
For a typical 3G network the radio has these three energy states:
While the low and standby states use much less battery, they also introduce latency to network requests. Returning to full power from the low state takes around 1.5 seconds, while moving from standby to full can take over 2 seconds.
Android uses a state machine to determine how to transition between states. To minimize latency, the state machine waits a short time before it transitions to the lower energy states.
The radio state machine on each device, particularly the associated transition delay ("tail time") and startup latency, vary based on the wireless radio technology employed (2G, 3G, LTE, etc.) and is defined and configured by the carrier network over which the device is operating.
This chapter describes a representative state machine for a typical 3G wireless radio, based on data provided by AT&T. However, the general principles and resulting best practices are applicable for all wireless radio implementations.
As with any best practices, there are trade-offs that you need to consider for your own app development.
Bundling network transfers
Every time you create a new network connection, the radio transitions to the full power state. In the case of the 3G radio state machine described above, it remains at full power for the duration of your transfer, followed by 5 seconds of tail time, followed by 12 seconds at the low energy state before turning off. So, for a typical 3G device, every data transfer session causes the radio to draw power for almost 20 seconds.
What this means in practice:
The second example allows the radio to be idle for 40 seconds out of every minute, resulting in a massive reduction in battery consumption.
It's important to bundle and queue up your data transfers. You can bundle transfers that are due to occur within a time window and make them all happen simultaneously, ensuring that the radio draws power for as little time as possible.
Prefetching
To prefetch data means that your app takes a guess at what content or data the user will want next, and fetches it ahead of time. For example, when the user looks at the first part of an article, a good guess is to prefetch the next part. Or, if a user is watching a video, fetching the next minutes of the video is also a good guess.
Prefetching data is an effective way to reduce the number of independent data transfer sessions. Prefetching allows you to download all the data you are likely to need for a given time period in a single burst, over a single connection, at full capacity. This reduces the number of radio activations required to download the data. As a result, you not only conserve battery life, but also improve latency for the user, lower the required bandwidth, and reduce download times.
Prefetching has trade-offs. If you download too much or the wrong data, you might increase battery drain. And if you download at the wrong time, users may end up waiting. Optimizing prefetching data is an advanced topic not covered in this course, but the following guidelines cover common situations.
How aggressively you prefetch depends on the size of the data being downloaded and the likelihood of it being used. As a rough guide, based on the state machine described above, for data that has a 50% chance of being used within the current user session, you can typically prefetch for around 6 seconds (approximately 1-2 Mb) before the potential cost of downloading unused data matches the potential savings of not downloading that data to begin with.
Generally speaking, it's good practice to prefetch data such that you only need to initiate another download every 2 to 5 minutes, and on the order of 1 to 5 megabytes.
Following this principle, large downloads—such as video files—should be downloaded in chunks at regular intervals (every 2 to 5 minutes), effectively prefetching only the video data likely to be viewed in the next few minutes.
Prefetching example
Many news apps attempt to reduce bandwidth by downloading headlines only after a category has been selected, full articles only when the user wants to read them, and thumbnails just as they scroll into view.
Using this approach, the radio is forced to remain active for the majority of a news-reading session as users scroll headlines, change categories, and read articles. Not only that, but the constant switching between energy states results in significant latency when switching categories or reading articles.
Here's a better approach:
Monitor connectivity state
Devices can network using different types of hardware:
Perform data transfers when connected over Wi-Fi whenever possible.
You can use the ConnectivityManager to determine the active wireless radio and modify your prefetching routines depending on network type:
ConnectivityManager cm =
(ConnectivityManager)getSystemService(Context.CONNECTIVITY_SERVICE);
TelephonyManager tm =
(TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE);
NetworkInfo activeNetwork = cm.getActiveNetworkInfo();
int PrefetchCacheSize = DEFAULT_PREFETCH_CACHE;
switch (activeNetwork.getType()) {
case (ConnectivityManager.TYPE_WIFI):
PrefetchCacheSize = MAX_PREFETCH_CACHE; break;
case (ConnectivityManager.TYPE_MOBILE): {
switch (tm.getNetworkType()) {
case (TelephonyManager.NETWORK_TYPE_LTE |
TelephonyManager.NETWORK_TYPE_HSPAP):
PrefetchCacheSize *= 4;
break;
case (TelephonyManager.NETWORK_TYPE_EDGE |
TelephonyManager.NETWORK_TYPE_GPRS):
PrefetchCacheSize /= 2;
break;
default: break;
}
break;
}
default: break;
}
The system sends out broadcast intents when the connectivity state changes, so you can listen for these changes using a BroadcastReceiver.
Monitor battery state
To minimize battery drain, monitor the state of your battery and wait for specific conditions before initiating a battery-intensive operation.
The BatteryManager broadcasts all battery and charging details in a broadcast Intent that includes the charging status.
To check the current battery status, examine the broadcast intent:
IntentFilter ifilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
Intent batteryStatus = context.registerReceiver(null, ifilter);
// Are we charging / charged?
int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
boolean isCharging = status == BatteryManager.BATTERY_STATUS_CHARGING ||
status == BatteryManager.BATTERY_STATUS_FULL;
// How are we charging?
int chargePlug = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);
boolean usbCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_USB;
boolean acCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_AC;
If you want to react to changes in the battery charging state, use a BroadcastReceiver registered for the battery status actions:
<receiver android:name=".PowerConnectionReceiver">
<intent-filter>
<action android:name="android.intent.action.ACTION_POWER_CONNECTED"/>
<action android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>
</intent-filter>
</receiver>
Broadcast intents are also delivered when the battery level changes in a significant way:
"android.intent.action.BATTERY_LOW"
"android.intent.action.BATTERY_OKAY"
JobScheduler
Constantly monitoring the connectivity and battery status of the device can be a challenge, and it requires using components such as broadcast receivers, which can consume system resources even when your app isn't running. Because transferring data efficiently is such a common task, the Android SDK provides a class that makes this much easier: JobScheduler.
Introduced in API level 21, JobScheduler allows you to schedule a task around specific conditions (rather than a specific time as with AlarmManager).
JobScheduler has three components:
Note: JobScheduler is only available from API 21+. There is no backwards compatible version for prior API releases. If your app targets devices with earlier API levels, you might find the FirebaseJobDispatcher a useful alternative.
1. JobInfo
Set the job conditions by constructing a JobInfo object using the JobInfo.Builder class. The JobInfo.Builder class is instantiated from a constructor that takes two arguments: a job ID (which can be used to cancel the job), and the ComponentName of the JobService that contains the task. Your JobInfo.Builder must set at least one, non-default condition for the job. For example:
JobScheduler scheduler = (JobScheduler) getSystemService(JOB_SCHEDULER_SERVICE);
ComponentName serviceName = new ComponentName(getPackageName(),
NotificationJobService.class.getName());
JobInfo.Builder builder = new JobInfo.Builder(JOB_ID, serviceName);
builder.setRequiredNetworkType(NETWORK_TYPE_UNMETERED);
JobInfo jobInfo = builder.build();
Note: See the related practical for a complete example.
The JobInfo.Builder class has many set() methods that allow you to determine the conditions of the task. Below is a list of available constraints with their respective set() methods and class constants:
2. JobService
Once the conditions for a task are met, the framework launches a subclass of JobService, which is where you implement the task itself. The JobService runs on the UI thread, so you need to offload blocking operations to a worker thread.
Declare the JobService subclass in the Android Manifest, and include the BIND_JOB_SERVICE permission:
<service android:name="MyJobService"
android:permission="android.permission.BIND_JOB_SERVICE" />
In your subclass of JobService , override two methods, onStartJob() and onStopJob() .
onStartJob()
The system calls onStartJob() and automatically passes in a JobParameters object, which the system creates with information about your job. If your task contains long-running operations, offload the work onto a separate thread. The onStartJob() method returns a boolean: true if your task has been offloaded to a separate thread (meaning it might not be completed yet) and false if there is no more work to be done.
Use the jobFinished() method from any thread to tell the system that your task is complete. This method takes two parameters: the JobParameters object that contains information about the task, and a boolean that indicates whether the task needs to be rescheduled, according to the defined backoff policy.
onStopJob()
The system calls onStopJob() if it determines that you must stop execution of your job even before you've call jobFinished() . This happens if the requirements that you specified when you scheduled the job are no longer met.
Examples:
You're responsible for how your app behaves when it receives onStopJob() , so don't ignore it. This method returns a boolean, indicating whether you'd like to reschedule the job based on the defined backoff policy, or drop the task.
3. JobScheduler
The final part of scheduling a task is to use the JobScheduler class to schedule the job. To obtain an instance of this class, call getSystemService(JOB_SCHEDULER_SERVICE) . Then schedule a job using the schedule() method, passing in the JobInfo object you created with the JobInfo.Builder . For example:
mScheduler.schedule(myJobInfo);
The framework is intelligent about when you receive callbacks, and it attempts to batch and defer them as much as possible. Typically, if you don't specify a deadline on your job, the system can run it at any time, depending on the current state of the JobScheduler object's internal queue; however, it might be deferred as long as until the next time the device is connected to a power source.
To cancel a job, call cancel() , passing in the job ID from the JobInfo.Builder object, or call cancelAll() . For example:
mScheduler.cancelAll();
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
9.0: Storing Data
Contents:
Android provides several options for you to save persistent application data. The solution you choose depends on your specific needs, such as whether the data should be private to your application or accessible to other applications (and the user) and how much space your data requires.
Your data storage options are the following:
Shared preferences
Using shared preferences is a way to read and write key-value pairs of information persistently to and from a file.
Note: By default these key-value pairs are neither shared nor preferences, so do not confuse them with the Preference APIs.
Shared Preferences is covered in its ">own chapter.
Files
Android uses a file system that's similar to disk-based file systems on other platforms such as Linux. File-based operations should be familiar to anyone who has used use Linux file I/O or the java.io package.
All Android devices have two file storage areas: "internal" and "external" storage. These names come from the early days of Android, when most devices offered built-in non-volatile memory (internal storage), plus a removable storage medium such as a micro SD card (external storage).
Today, some devices divide the permanent storage space into "internal" and "external" partitions, so even without a removable storage medium, there are always two storage spaces and the API behavior is the same whether the external storage is removable or not. The following lists summarize the facts about each storage space.
Internal storage | External storage |
Always available. | Not always available, because the user can mount the external storage as USB storage and in some cases remove it from the device. |
Only your app can access files. Specifically, your app's internal storage directory is specified by your app's package name in a special location of the Android file system. Other apps cannot browse your internal directories and do not have read or write access unless you explicitly set the files to be readable or writable. | World-readable. Any app can read. |
When the user uninstalls your app, the system removes all your app's files from internal storage. | When the user uninstalls your app, the system removes your app's files from here only if you save them in the directory from getExternalFilesDir(). |
Internal storage is best when you want to be sure that neither the user nor other apps can access your files. | External storage is the best place for files that don't require access restrictions and for files that you want to share with other apps or allow the user to access with a computer. |
Internal storage
You don't need any permissions to save files on the internal storage. Your application always has permission to read and write files in its internal storage directory.
You can create files in two different directories:
To create a new file in one of these directories, you can use the File() constructor, passing the File provided by one of the above methods that specifies your internal storage directory. For example:
File file = new File(context.getFilesDir(), filename);
Alternatively, you can call openFileOutput() to get a FileOutputStream that writes to a file in your internal directory. For example, here's how to write some text to a file:
String filename = "myfile";
String string = "Hello world!";
FileOutputStream outputStream;
try {
outputStream = openFileOutput(filename, Context.MODE_PRIVATE);
outputStream.write(string.getBytes());
outputStream.close();
} catch (Exception e) {
e.printStackTrace();
}
Or, if you need to cache some files, instead use createTempFile(). For example, the following method extracts the filename from a URL and creates a file with that name in your app's internal cache directory:
public File getTempFile(Context context, String url) {
File file;
try {
String fileName = Uri.parse(url).getLastPathSegment();
file = File.createTempFile(fileName, null, context.getCacheDir());
} catch (IOException e) {
// Error while creating file
}
return file;
}
External storage
Use external storage for files that should be permanently stored, even if your app is uninstalled, and be available freely to other users and apps, such as pictures, drawings, or documents made by your app.
Some private files that are of no value to other apps can also be stored on external storage. Such files might be additional downloaded app resources, or temporary media files. Make sure you delete those when your app is uninstalled.
Obtain permissions for external storage
To write to the external storage, you must request the WRITE_EXTERNAL_STORAGE permission in your manifest file. This implicitly includes permission to read.
<manifest ...>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
...
</manifest>
If your app needs to read the external storage (but not write to it), then you will need to declare the READ_EXTERNAL_STORAGE permission.
<manifest ...>
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
...
</manifest>
Always check whether external storage is mounted
Because the external storage may be unavailable—such as when the user has mounted the storage to a PC or has removed the SD card that provides the external storage—you should always verify that the volume is available before accessing it. You can query the external storage state by calling getExternalStorageState(). If the returned state is equal to MEDIA_MOUNTED, then you can read and write your files. For example, the following methods are useful to determine the storage availability:
/* Checks if external storage is available for read and write */
public boolean isExternalStorageWritable() {
String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state)) {
return true;
}
return false;
}
/* Checks if external storage is available to at least read */
public boolean isExternalStorageReadable() {
String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state) ||
Environment.MEDIA_MOUNTED_READ_ONLY.equals(state)) {
return true;
}
return false;
}
Public and private external storage
External storage is very specifically structured and used by the Android system. There are public directories, and private directories specific to your app. Each of these file trees has directories identified by system constants.
For example, any files that you store into the public ringtone directory DIRECTORY_RINGTONES are available to all other ringtone apps.
On the other hand, any files you store in a private ringtone directory DIRECTORY_RINGTONES can, by default, only be seen by your app and are deleted along with your app.
See list of public directories for the full listing.
Getting file descriptors
To access a public external storage directory, get a path and create a file calling getExternalStoragePublicDirectory().
File path = Environment.getExternalStoragePublicDirectory(
Environment.DIRECTORY_PICTURES);
File file = new File(path, "DemoPicture.jpg");
To access a private external storage directory, get a path and create a file calling getExternalFilesDir().
File file = new File(getExternalFilesDir(null), "DemoFile.jpg");
Querying storage space
If you know ahead of time how much data you're saving, you can find out whether sufficient space is available without causing an IOException by calling getFreeSpace() or getTotalSpace(). These methods provide the current available space and the total space in the storage volume, respectively.
You aren't required to check the amount of available space before you save your file. You can instead try writing the file right away, then catch an IOException if one occurs. You may need to do this if you don't know exactly how much space you need.
Deleting files
You should always delete files that you no longer need. The most straightforward way to delete a file is to have the opened file reference call delete()on itself.
myFile.delete();
If the file is saved on internal storage, you can also ask the Context to locate and delete a file by calling deleteFile():
myContext.deleteFile(fileName);
As a good citizen, you should also regularly delete cached files that you created with getCacheDir().
Interacting with files summary
Once you have the file descriptors, use standard java.io file operators or streams to interact with the files. This is not Android-specific and not covered here.
SQLite database
Saving data to a database is ideal for repeating or structured data, such as contact information. Android provides an SQL-like database for this purpose.
The following chapters and practical will teach you in depth how to use SQLite databases with your Android apps:
Other storage options
Android provides additional storage options that are beyond the scope of this introductory course. If you'd like to explore them, see the resources below.
Network connection
You can use the network (when it's available) to store and retrieve data on your own web-based services. To do network operations, use classes in the following packages:
Backing up app data
Users often invest significant time and effort creating data and setting preferences within apps. Preserving that data for users if they replace a broken device or upgrade to a new one is an important part of ensuring a great user experience.
Auto backup for Android 6.0 (API level 23) and higher
For apps whose target SDK version is Android 6.0 (API level 23) and higher, devices running Android 6.0 and higher automatically backup app data to the cloud. The system performs this automatic backup for nearly all app data by default, and does so without your having to write any additional app code.
When a user installs your app on a new device, or reinstalls your app on one (for example, after a factory reset), the system automatically restores the app data from the cloud. The automatic backup feature preserves the data your app creates on a user device by uploading it to the user's Google Drive account and encrypting it. There is no charge to you or the user for data storage, and the saved data does not count towards the user's personal Google Drive quota. Each app can store up to 25MB. Once its backed-up data reaches 25MB, the app no longer sends data to the cloud. If the system performs a data restore, it uses the last data snapshot that the app had sent to the cloud.
Automatic backups occur when the following conditions are met:
You can customize and configure auto backup for your app. See Configuring Auto Backup for Apps.
Backup for Android 5.1 (API level 22) and lower
For users with previous versions of Android, you need to use the Backup API to implement data backup. In summary, this requires you to:
More information and sample code:
Firebase
Firebase is a mobile platform that helps you develop apps, grow your user base, and earn more money. Firebase is made up of complementary features that you can mix-and-match to fit your needs.
Some features are Analytics, Cloud Messaging, Notifications, and the Test Lab.
For data management, Firebase offers a Realtime Database.
See the Firebase home for more information.
Learn more
Files
Backup
Shared Preferencss
Firebase
9.1: Shared Preferences
Contents:
Shared preferences allow you to read and write small amounts of primitive data as key/value pairs to a file on the device storage. The SharedPreference class provides APIs for getting a handle to a preference file and for reading, writing, and managing this data. The shared preferences file itself is managed by the framework and accessible to (shared with) all the components of your app. That data is not shared with or accessible to any other apps.
For managing large amounts of data, use a SQLite database or other suitable storage option, which will be discussed in a later chapter.
Shared preferences vs. saved instance state
In a previous chapter you learned about preserving state using saved instance states. Here is a comparison between the two.
Shared Preferences | Saved instance state |
Persists across user sessions, even if your app is killed and restarted, or the device is rebooted. | Preserves state data across activity instances in the same user session. |
Data that should be remembered across sessions, such as a user's preferred settings or their game score. | Data that should not be remembered across sessions, such as the currently selected tab, or any current state of an activity. |
Small number of key/value pairs. | Small number of key/value pairs. |
Data is private to the application. | Data is private to the application. |
Common use is to store user preferences. | Common us is to recreate state after the device has been rotated. |
Note: The SharedPreference APIs are also different from the Preference APIs. The Preference APIs can be used to build user interface for a settings page, and they do use shared preferences for their underlying implementation. See Settings for more information on settings and the Preference APIs.
Creating a shared preferences file
You need only one shared preferences file for your app, and it is customarily named with the package name of your app. This makes its name unique and easily associated with your app.
You create the shared preferences file in the onCreate() method of your main activity and store it in a member variable.
private String sharedPrefFile = "com.example.android.hellosharedprefs";
mPreferences = getSharedPreferences(sharedPrefFile, MODE_PRIVATE);
The mode argument is required, because older versions of Android had other modes that allowed you to create a world-readable or world-writable shared preferences file. These modes were deprecated in API 17, and are now strongly discouraged for security reasons. If you need to share data with other apps, use a service or a content provider.
Saving shared preferences
You save preferences in the onPause() state of the activity lifecycle using tge SharedPreferences.Editor interface.
Call apply() to write out your changes. The apply() method saves the preferences asynchronously, off of the UI thread. The shared preferences editor also has a commit() method to synchronously save the preferences. The commit() method is discouraged as it can block other operations. As SharedPreferences instances are singletons within a process, it's safe to replace any instance of commit() with apply() if you were already ignoring the return value.
You don't need to worry about Android component lifecycles and their interaction with apply() writing to disk. The framework makes sure in-flight disk writes from apply() complete before switching states.
@Override
protected void onPause() {
super.onPause();
SharedPreferences.Editor preferencesEditor = mPreferences.edit();
preferencesEditor.putInt("count", mCount);
preferencesEditor.putInt("color", mCurrentColor);
preferencesEditor.apply();
}
Restoring shared preferences
You restore shared preferences in the onCreate() method of your activity. The get() methods take two arguments—one for the key and one for the default value if the key cannot be found. Using the default argument, you don't have to test whether the preference exists in the file.
mPreferences = getSharedPreferences(sharedPrefFile, MODE_PRIVATE);
if (savedInstanceState != null) {
mCount = mPreferences.getInt("count", 1);
mShowCount.setText(String.format("%s", mCount));
mCurrentColor = mPreferences.getInt("color", mCurrentColor);
mShowCount.setBackgroundColor(mCurrentColor);
} else { … }
Clearing shared preferences
To clear all the values in the shared preferences file, call the clear() method on the shared preferences editor and apply the changes.
SharedPreferences.Editor preferencesEditor = mPreferences.edit();
preferencesEditor.putInt("number", 42);
preferencesEditor.clear();
preferencesEditor.apply();
You can combine calls to put and clear. However, when applying the preferences, the clear is always done first, regardless of whether you called clear before or after the put methods on this editor.
Listening for preference changes
There are several reasons you might want to be notified as soon as the user changes one of the preferences. In order to receive a callback when a change happens to any one of the preferences, implement the SharedPreference.OnSharedPreferenceChangeListener interface and register the listener for the SharedPreferences object by calling registerOnSharedPreferenceChangeListener().
The interface has only one callback method, onSharedPreferenceChanged(), and you can implement the interface as a part of your activity.
public class SettingsActivity extends PreferenceActivity
implements OnSharedPreferenceChangeListener {
public static final String KEY_PREF_SYNC_CONN = "pref_syncConnectionType";
...
public void onSharedPreferenceChanged(SharedPreferences sharedPreferences,
String key) {
if (key.equals(KEY_PREF_SYNC_CONN)) {
Preference connectionPref = findPreference(key);
// Set summary to be the user-description for the selected value
connectionPref.setSummary(sharedPreferences.getString(key, ""));
}
}
}
In this example, the method checks whether the changed setting is for a known preference key. It calls findPreference() to get the Preference object that was changed so it can modify the item's summary to be a description of the user's selection.
For proper lifecycle management in the activity, register and unregister your SharedPreferences.OnSharedPreferenceChangeListener during the onResume() and onPause() callbacks, respectively:
@Override
protected void onResume() {
super.onResume();
getPreferenceScreen().getSharedPreferences()
.registerOnSharedPreferenceChangeListener(this);
}
@Override
protected void onPause() {
super.onPause();
getPreferenceScreen().getSharedPreferences()
.unregisterOnSharedPreferenceChangeListener(this);
}
Hold a reference to the listener
When you call registerOnSharedPreferenceChangeListener(), the preference manager does not currently store a reference to the listener. You must hold onto a reference to the listener, or it will be susceptible to garbage collection. Keep a reference to the listener in the instance data of an object that will exist as long as you need the listener.
SharedPreferences.OnSharedPreferenceChangeListener listener =
new SharedPreferences.OnSharedPreferenceChangeListener() {
public void onSharedPreferenceChanged(SharedPreferences prefs, String key) {
// listener implementation
}
};
prefs.registerOnSharedPreferenceChangeListener(listener);
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
Stackoverflow
9.2: App Settings
Contents:
This chapter describes app settings that let users indicate their preferences for how an app or service should behave.
Determining appropriate setting controls
Apps often include settings that allow users to modify app features and behaviors. For example, some apps allow users to specify whether notifications are enabled, or how often the application syncs data with the cloud.
The controls that belong in the app's settings should capture user preferences that affect most users or provide critical support to a minority of users. For example, notification settings affect all users, while a currency setting for a foreign market provides critical support for the users in that market.
Settings are usually accessed infrequently, because once users change a setting, they rarely need to go back and change it again. If the control or preference you are providing the user is something that needs to be frequently accessed, consider moving it to the app bar's options menu, or to a side navigation menu such as a navigation drawer.
Set defaults for your setting controls that are familiar to users and make the app experience better. The initial default value for a setting should:
Tip: If the setting contains information about the app, such as a version number or licensing information, move these to a separately-accessed Help screen.
Providing navigation to Settings
Users should be able to navigate to app settings by tapping Settings, which should be located in side navigation, such as a navigation drawer, as shown on the left side of the figure below, or in the options menu in the app bar, as shown on the right side of the figure below.
In the figure above:
Follow these design guidelines for navigating to settings:
Note: Use the word Settings in the app's navigation to access the settings. Do not use synonyms such as "Options" or "Preferences."
Tip: Android Studio provides a shortcut for setting up an options menu with Settings. If you start an Android Studio project for a smartphone or tablet using the Basic Activity template, the new app includes Settings as shown below:
The Settings UI
Settings should be well-organized, predictable, and contain a manageable number of options. A user should be able to quickly understand all available settings and their current values. Follow these design guidelines:
Building the settings
Build an app's settings using various subclasses of the Preference class rather than using View objects. This class provides the View to be displayed for each setting, and associates with it a SharedPreferences interface to store/retrieve the preference data.
Each Preference appears as an item in a list. Direct subclasses provide containers for layouts involving multiple settings. For example:
For example, to provide dividers with headings between groups of settings (as shown in the previous figure for 7-15 settings), place each group of Preference objects inside a PreferenceCategory. To use separate screens for groups, place each group of Preference objects inside a PreferenceScreen.
Other Preference subclasses for settings provide the appropriate UI for users to change the setting. For example:
Define your list of settings in XML, which provides an easy-to-read structure that's simple to update. Each Preference subclass can be declared with an XML element that matches the class name, such as <CheckBoxPreference> .
XML attributes for settings
The following example from the Settings Activity template defines a screen with three settings as shown in the figure below: a toggle switch (at the top of the screen on the left side), a text entry field (center), and a list of radio buttons (right):
The root of the settings hierarchy is a PreferenceScreen layout:
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
. . .
</PreferenceScreen>
Inside this layout are three settings:
SwitchPreference : Show a toggle switch to disable or enable an option.
The setting has the following attributes:
<SwitchPreference
android:defaultValue="true"
android:key="example_switch"
android:summary="@string/pref_description_social_recommendations"
android:title="@string/pref_title_social_recommendations" />
<EditTextPreference
android:capitalize="words"
android:defaultValue="@string/pref_default_display_name"
android:inputType="textCapWords"
android:key="example_text"
android:maxLines="1"
android:selectAllOnFocus="true"
android:singleLine="true"
android:title="@string/pref_title_display_name" />
<ListPreference
android:defaultValue="-1"
android:entries="@array/pref_example_list_titles"
android:entryValues="@array/pref_example_list_values"
android:key="example_list"
android:negativeButtonText="@null"
android:positiveButtonText="@null"
android:title="@string/pref_title_add_friends_to_messages" />
Save the XML file in the res/xml/ directory. Although you can name the file anything you want, it's traditionally named preferences.xml.
If you are using the support v7 appcompat library and extending the Settings Activity with AppCompatActivity and the fragment with PreferenceFragmentCompat, as shown in the next section, change the setting's XML attribute to use the support v7 appcompat library version. For example, for a SwitchPreference setting, change <SwitchPreference in the code to:
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
<android.support.v7.preference.SwitchPreferenceCompat
... />
</PreferenceScreen>
Displaying the settings
Use a specialized Activity or Fragment subclass to display a list of settings.
Fragments like PreferenceFragment provide a more flexible architecture for your app, compared to using activities alone. A fragment is like a modular section of an activity—it has its own lifecycle and receives its own input events, and you can add or remove a fragment while the activity is running. Use PreferenceFragment to control the display of your settings instead of PreferenceActivity whenever possible.
However, to create a two-pane layout for large screens when you have multiple groups of settings, you can use an activity that extends PreferenceActivity and also use PreferenceFragment to display each list of settings. You will see this pattern with the Settings Activity template as described later in this chapter in "Using the Settings Activity template".
The following examples show you how to remain compatible with the v7 appcompat library by extending the Settings Activity with AppCompatActivity, and extending the fragment with PreferenceFragmentCompat. To use this library and the PreferenceFragmentCompat version of PreferenceFragment, you must also add the android.support:preference-v7 library to the build.gradle (Module: app) file's dependencies section:
dependencies {
...
compile 'com.android.support:preference-v7:25.0.1'
}
You also need to add the following preferenceTheme declaration to the AppTheme in the styles.xml file:
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
...
<item name="preferenceTheme">@style/PreferenceThemeOverlay</item>
</style>
Using a PreferenceFragment
The following shows how to use a PreferenceFragment to display a list of settings, and how to add a PreferenceFragment to an activity for settings. To remain compatible with the v7 appcompat library, extend the Settings Activity with AppCompatActivity, and extend the fragment with PreferenceFragmentCompat for each preferences XML file.
Replace the automatically generated onCreate() method with the onCreatePreferences() method to load a preferences file with setPreferencesFromResource() :
public static class SettingsFragment extends PreferenceFragment {
@Override
public void onCreatePreferences(Bundle savedInstanceState,
String rootKey) {
setPreferencesFromResource(R.xml.preferences, rootKey);
}
}
As shown in the code above, you associate an XML layout of settings with the fragment during the onCreatePreferences() callback by calling setPreferencesFromResource() with two arguments:
setPreferencesFromResource(R.xml.preferences, rootKey);
You can then create an Activity for settings (named SettingsActivity) that extends AppCompatActivity, and add the settings fragment to it:
public class SettingsActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// Display the fragment as the main content.
getSupportFragmentManager().beginTransaction()
.replace(android.R.id.content, new SettingsFragment())
.commit();
...
}
}
The above code is the typical pattern used to add a fragment to an activity so that the fragment appears as the main content of the activity. You use:
For more information about fragments, see Fragment.
To set Up navigation for the settings activity, be sure to declare the Settings Activity's parent to be MainActivity in the AndroidManifest.xml file.
Calling the settings activity
If you implement the options menu with the Settings item, use the following intent to call the Settings activity from with the onOptionsItemSelected() method when the user taps Settings (using action_settings for the Settings menu resource id):
@Override
public boolean onOptionsItemSelected(MenuItem item) {
int id = item.getItemId();
// ... Handle other options menu items
if (id == R.id.action_settings) {
Intent intent = new Intent(this, SettingsActivity.class);
startActivity(intent);
return true;
}
return super.onOptionsItemSelected(item);
}
If you implement a navigation drawer with the Settings item, use the following intent to call the Settings activity from with the onNavigationItemSelected() method when the user taps Settings (using action_settings for the Settings menu resource id):
@Override
public boolean onNavigationItemSelected(MenuItem item) {
int id = item.getItemId();
if (id == R.id.action_settings) {
Intent intent = new Intent(this, SettingsActivity.class);
startActivity(intent);
} else if ...
// ... Handle other navigation drawer items
return true;
}
Setting the default values for settings
When the user changes a setting, the system saves the changes to a SharedPreferences file. As you learned in another lesson, shared preferences allow you to read and write small amounts of primitive data as key/value pairs to a file on the device storage.
The app must initialize the SharedPreferences file with default values for each setting when the user first opens the app. Follow these steps:
...
<SwitchPreference
android:defaultValue="true"
... />
...
...
PreferenceManager.setDefaultValues(this,
R.xml.preferences, false);
...
Step 2 ensures that the app is properly initialized with default settings. The setDefaultValues() method takes three arguments:
Reading the settings values
Each Preference you add has a corresponding key-value pair that the system uses to save the setting in a default SharedPreferences file for your app's settings. When the user changes a setting, the system updates the corresponding value in the SharedPreferences file for you. The only time you should directly interact with the associated SharedPreferences file is when you need to read the value in order to determine your app's behavior based on the user's setting.
All of an app's preferences are saved by default to a file that is accessible from anywhere within the app by calling the static method PreferenceManager.getDefaultSharedPreferences(). This method takes the context and returns the SharedPreferences object containing all the key-value pairs that are associated with the Preference objects.
For example, the following code snippet shows how you can read one of the preference values from the main activity's onCreate() method:
...
SharedPreferences sharedPref =
PreferenceManager.getDefaultSharedPreferences(this);
Boolean switchPref = sharedPref
.getBoolean("example_switch", false);
...
The above code snippet uses PreferenceManager.getDefaultSharedPreferences(this) to get the settings as a SharedPreferences object (sharedPref).
It then uses getBoolean() to get the boolean value of the preference that uses the key "example_switch" . If there is no value for the key, the getBoolean() method sets the value to false .
Listening for a setting change
There are several reasons why you might want to set up a listener for a specific setting:
To listen to a setting, use the Preference.OnPreferenceChangeListener interface, which includes the onPreferenceChange() method that returns the new value of the setting.
In the following example, the listener retrieves the new value after the setting is changed, and changes the summary of the setting (which appears below the setting in the UI) to show the new value. Follow these steps:
public class SettingsFragment extends PreferenceFragment {
private SharedPreferences mPreferences;
private String sharedPrefFile = "com.example.android.settingstest";
...
}
@Override
public void onCreate(Bundle savedInstanceState) {
...
mPreferences =
this.getActivity()
.getSharedPreferences(sharedPrefFile, MODE_PRIVATE);
Preference preference = this.findPreference("example_switch");
preference.setSummary(mPreferences.getString("summary",
getString(R.string.option_on)));
...
}
Add the following code to onCreate() after the code in the previous step:
...
preference.setOnPreferenceChangeListener(new
Preference.OnPreferenceChangeListener() {
@Override
public boolean onPreferenceChange(Preference preference,
Object newValue) {
if ((Boolean) newValue == true) {
preference.setSummary(R.string.option_on);
SharedPreferences.Editor preferencesEditor =
mPreferences.edit();
preferencesEditor.putString("summary",
getString(R.string.option_on)).apply();
} else {
preference.setSummary(R.string.option_off);
SharedPreferences.Editor preferencesEditor =
mPreferences.edit();
preferencesEditor.putString("summary",
getString(R.string.option_off)).apply();
}
return true;
}
});
...
The code does the following:
Listens to a change in the switch setting using onPreferenceChange(), and returns true :
@Override
public boolean onPreferenceChange(Preference preference,
Object newValue) {
...
return true;
}
Determines the new boolean value (newValue) for the setting after the change (true or false):
if ((Boolean) newValue == true) {
...
} else {
...
}
Edits the Shared Preferences file (as described in a previous practical) using SharedPreferences.Editor:
...
preference.setSummary(R.string.option_on);
SharedPreferences.Editor preferencesEditor =
mPreferences.edit();
...
Puts the new value as a string in the summary using putString() and applies the change using apply():
...
preferencesEditor.putString("summary",
getString(R.string.option_on)).apply();
...
Using the Settings Activity template
If you need to build several sub-screens of settings and you want to take advantage of tablet-sized screens as well as maintain compatibility with older versions of Android for tablets, Android Studio provides a shortcut: the Settings Activity template.
The Settings Activity template is pre-populated with settings you can customize for an app, and provides a different layout for smartphones and tablets:
Smartphones: A main Settings screen with a header link for each group of settings, such as General for general settings, as shown below.
Tablets: A master/detail screen layout with a header link for each group on the left (master) side, and the group of settings on the right (detail) side, as shown in the figure below.
The Settings Activity template also provides the function of listening to a settings change, and changing the summary to reflect the settings change. For example, if you change the "Add friends to messages" setting (the choices are Always, When possible, or Never), the choice you make appears in the summary underneath the setting:
In general, you need not change the Settings Activity template code in order to customize the activity for the settings you want in your app. You can customize the settings titles, summaries, possible values, and default values without changing the template code, and even add more settings to the groups that are provided. To customize the settings, edit the string and string array resources in the strings.xml file and the layout attributes for each setting in the files in the xml directory.
You use the Settings Activity template code as-is. To make it work for your app, add code to the Main Activity to set the default settings values, and to read and use the settings values, as shown later in this chapter.
Including the Settings Activity template in your project
To include the Settings Activity template in your app project in Android Studio, follow these steps:
The Settings Activity template creates the XML files in the res > xml directory, which you can add to or customize for the settings you want:
pref_notification.xml: PreferenceScreen layout for "Notifications" settings.
The above XML layouts use various subclasses of the Preference class rather than View objects, and direct subclasses provide containers for layouts involving multiple settings. For example, PreferenceScreen represents a top-level Preference that is the root of a Preference hierarchy. The above files use PreferenceScreen at the top of each screen of settings. Other Preference subclasses for settings provide the appropriate UI for users to change the setting. For example:
The Settings Activity template also provides the following:
String resources in the strings.xml file in the res > values directory, which you can customize for the settings you want.
All strings used in the Settings Activity, such as the titles for settings, string arrays for lists, and descriptions for settings, are defined as string resources at the end of this file. They are marked by comments such as <!-- Strings related to Settings --> and <!-- Example General settings --> .
Tip: You can edit these strings to customize the settings you need for your app.
SettingsActivity in the java > com.example.android.projectname directory, which you can use as is.
The activity that displays the settings. SettingsActivity extends AppCompatPreferenceActivity for maintaining compatibility with older versions of Android.
AppCompatPreferenceActivity in the java > com.example.android.projectname directory, which you use as is.
This activity is a helper class that SettingsActivity uses to maintain backwards compatibility with previous versions of Android.
Using preference headers
The Settings Activity template shows preference headers on the main screen that separate the settings into categories (General, Notifications, and Data & sync). The user taps a heading to access the settings under that heading. On larger tablet displays (see previous figure), the headers appear in the left pane and the settings for each header appears in the right pane.
To implement the headers, the template provides the pref_headers.xml file:
<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">
<header
android:fragment=
"com.example.android.droidcafe.SettingsActivity$GeneralPreferenceFragment"
android:icon="@drawable/ic_info_black_24dp"
android:title="@string/pref_header_general" />
<header
android:fragment=
"com.example.android.droidcafe.SettingsActivity$NotificationPreferenceFragment"
android:icon="@drawable/ic_notifications_black_24dp"
android:title="@string/pref_header_notifications" />
<header
android:fragment=
"com.example.android.droidcafe.SettingsActivity$DataSyncPreferenceFragment"
android:icon="@drawable/ic_sync_black_24dp"
android:title="@string/pref_header_data_sync" />
</preference-headers>
The XML headers file lists each preferences category and declares the fragment that contains the corresponding preferences.
To display the headers, the template uses the following onBuildHeaders() method:
@Override
@TargetApi(Build.VERSION_CODES.HONEYCOMB)
public void onBuildHeaders(List<Header> target) {
loadHeadersFromResource(R.xml.pref_headers, target);
}
The above code snippet uses the loadHeadersFromResource() method of the PreferenceActivity class to load the headers from the XML resource (pref_headers.xml). The TargetApi annotation tells Android Studio's Lint code scanning tool that the class or method is targeting a particular API level regardless of what is specified as the min SDK level in manifest. Lint would otherwise produce errors and warnings when using new functionality that is not available in the target API level.
Using PreferenceActivity with fragments
The Settings Activity template provides an activity (SettingsActivity) that extends PreferenceActivity to create a two-pane layout to support large screens, and also includes fragments within the activity to display lists of settings. This is a useful pattern if you have multiple groups of settings and need to support tablet-sized screens as well as smartphones.
The following shows how to use an activity that extends PreferenceActivity to host one or more fragments (PreferenceFragment) that display app settings. The activity can host multiple fragments, such as GeneralPreferenceFragment and NotificationPreferenceFragment , and each fragment definition uses addPreferencesFromResource to load the settings from the XML preferences file:
public class SettingsActivity extends AppCompatPreferenceActivity {
...
public static class GeneralPreferenceFragment extends
PreferenceFragment {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.pref_general);
...
}
public static class NotificationPreferenceFragment extends
PreferenceFragment {
...
}
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
10.0: SQLite Primer
Contents:
This course assumes that you are familiar with databases in general, SQL databases in particular, and the SQL language used to interact with them. This chapter is a refresher and quick reference only.
SQL databases
Think of it as a spreadsheet with rows, columns, and cells, where cells can contain data, references to other cells, and links to other sheets.
SQLite
SQLite is a software library that implements SQL database engine that is:
SQLite is the most widely deployed database engine in the world. The source code for SQLite is in the public domain.
For details of the SQLite database, see the SQLite website.
Example table
SQLite stores data in tables.
Assume the following:
After inserting the words "alpha" and "beta", where alpha has two definitions, the table might look like this:
DATABASE_NAME
WORD_LIST_TABLE |
|
|
_id | word | definition |
1 | "alpha" | "first letter" |
2 | "beta" | "second letter" |
3 | "alpha" | "particle" |
You can find what's in a specific row using the _id, or you can retrieve rows by formulating queries that select rows from the table be specifying constraints. You use the SQL query language discussed below to create queries.
Transactions
A transaction is a sequence of operations performed as a single logical unit of work. A logical unit of work must exhibit four properties, called the atomicity, consistency, isolation, and durability (ACID) properties, to qualify as a transaction.
All changes within a single transaction in SQLite either occur completely or not at all, even if the act of writing the change out to the disk is interrupted by
Examples of transactions:
ACID
Query language
You use a special SQL query language to interact with the database. Queries can be very complex, but the basic operations are
On Android, the database object provides convenient methods for inserting, deleting, and updating the database. You only need to understand SQL for retrieving data.
Full description of the query language.
Query structure
A SQL query is highly structured and contains the following basic parts:
Generic version of sample query:
Parts:
Sample queries
1 | SELECT * FROM WORD_LIST_TABLE | Get the whole table. |
2 | SELECT word, definition FROM WORD_LIST_TABLE WHERE _id > 2 | Returns [["alpha", "particle"]] |
3 | SELECT _id FROM WORD_LIST_TABLE WHERE word="alpha" AND definition LIKE "%art%" | Return the id of the word alpha with the substring "art" in the definition. [["3"]] |
4 | SELECT * FROM WORD_LIST_TABLE ORDER BY word DESC LIMIT 1 | Sort in reverse and get the first item. This gives you the last item per sort order. Sorting is by the first column, in this case, the _id. [["3", "alpha", "particle"]] |
5 | SELECT * FROM WORD_LIST_TABLE LIMIT 2,1 | Returns 1 item starting at position 2. Position counting starts at 1 (not zero!). Returns [["2", "beta", "second letter"]] |
You can practice creating and querying databases at this Fiddle website and HeadFirst Labs.
Queries for Android SQLite
You can send queries to the SQLite database of the Android system as raw queries or as parameters.
The following table shows how the first two queries from above would look as raw queries.
1 | String query = "SELECT * FROM WORD_LIST_TABLE"; rawQuery(query, null); |
2 | query = "SELECT word, definition FROM WORD_LIST_TABLE WHERE _id> ? "; String[] selectionArgs = new String[]{"2"} rawQuery(query, selectionArgs) ; |
Here's a query showing how to fill in the arguments:
SELECT * FROM WORD_LIST_TABLE
WHERE word="alpha"
ORDER BY word ASC
LIMIT 2,1;
Returns:
[["alpha", "particle"]]
String table = "WORD_LIST_TABLE"
String[] columns = new String[]{"*"};
String selection = "word = ?"
String[] selectionArgs = new String[]{"alpha"};
String groupBy = null;
String having = null;
String orderBy = "word ASC"
String limit = "2,1"
query(table, columns, selection, selectionArgs, groupBy, having, orderBy, limit);
Note that in real code, you wouldn't create variables for null values. See the SQLiteDatabase documentation for versions of this method with different parameters.
Cursors
Queries always return a Cursor object. A Cursor is an object interface that provides random read-write access to the result set returned by a database query. It points to the first element in the result of the query.
A cursor is a pointer into a row of structured data. You can think of it as a pointer to table rows.
The Cursor class provides methods for moving the cursor through that structure, and methods to get the data from the columns of each row.
When a method returns a Cursor object, you iterate over the result, extract the data, do something with the data, and finally close the cursor to release the memory.
You will learn more about cursors in the following chapters.
Learn more
10.1: SQLite Database
Contents:
This chapter discusses the Android framework's SQLiteDatabase and SQLiteOpenHelper classes. It is not an introduction to SQLite or SQL databases.The chapter assumes that you are familiar with SQL databases in general, and basic SQL query building. Check out the SQL Primer chapter if you need a refresher.
Of the many storage options discussed, using a SQLite database is one of the most versatile, and straightforward to implement.
When you use an SQLite database, represented as an SQLiteDatabase object, all interactions with the database are through an instance of the SQLiteOpenHelper class which executes your requests and manages your database for you. Your app should only interact with the SQLiteOpenHelper, which will be described below.
There are two data types associated with using SQLite databases in particular, Cursor and ContentValues.
Cursor
The SQLiteDatabase always presents the results as a Cursor in a table format that resembles that of a SQL database.
You can think of the data as an array of rows. A cursor is a pointer into one row of that structured data. The Cursor class provides methods for moving the cursor through the data structure, and methods to get the data from the fields in each row.
The Cursor class has a number of subclasses that implement cursors for specific types of data.
Some common operations on cursor are:
Processing cursors
When a method call returns a cursor, you iterate over the result, extract the data, do something with the data, and finally, you must close the cursor to release the memory. Failing to do so can crash your app when it runs out of memory.
The cursor starts before the first result row, so on the first iteration you move the cursor to the first result if it exists. If the cursor is empty, or the last row has already been processed, then the loop exits. Don't forget to close the cursor once you're done with it. (This cannot be repeated too often.)
// Perform a query and store the result in a Cursor
Cursor cursor = db.rawQuery(...);
try {
while (cursor.moveToNext()) {
// Do something with the data
}
} finally {
cursor.close();
}
When you use a SQL database, you can implement your SQLiteOpenHelper class to return the cursor to the calling activity or adapter, or you can convert the data to a format that is more suitable for the adapter. The advantage of the latter is that managing the cursor (and closing it) is handled by the open helper, and your user interface is independent of what happens at the backend. See the SQLite Database practical for an implementation example.
ContentValues
Similar to how extras stores data, an instance of ContentValues stores data as key-value pairs, where the key is the name of the column and the value is the value for the cell. One instance of ContentValues represents one row of a table.
The insert() method for the database requires that the values to fill a row are passed as an instance of ContentValues.
ContentValues values = new ContentValues();
// Insert one row. Use a loop to insert multiple rows.
values.put(KEY_WORD, "Android");
values.put(KEY_DEFINITION, "Mobile operating system.");
db.insert(WORD_LIST_TABLE, null, values);
Implementing an SQLite database
To implement a database for your Android app, you need to do the following.
Subclass SQLiteOpenHelper
Use constants for table names and database creation query
Implement onCreate to create the SQLiteDatabase with tables for your data
Implement onUpgrade()
Implement optional methods
Caveats:
Data model
It is a good practice to create a class that represents your data with getters and setters.
For an SQLite database, an instance of this class could represent one record, and for a simple database, one row in a table.
public class WordItem {
private int mId;
private String mWord;
private String mDefinition;
// Getters and setters and more
}
Subclass SQLiteOpenHelper
Any open helper you create must extend SQLiteOpenHelper.
public class WordListOpenHelper extends SQLiteOpenHelper {
public WordListOpenHelper(Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);
Log.d(TAG, "Construct WordListOpenHelper");
}
}
Define constants for table names
While not required, it is customary to declare your table, column, and row names as constants. This makes your code a lot more readable, makes it easier to change names, and your queries will end up looking a lot more like SQL. You can do this in the open helper class, or in a separate public class; you will learn more about this in the chapter about content providers.
private static final int DATABASE_VERSION = 1;
// has to be 1 first time or app will crash
private static final String WORD_LIST_TABLE = "word_entries";
private static final String DATABASE_NAME = "wordlist";
// Column names...
public static final String KEY_ID = "_id";
public static final String KEY_WORD = "word";
// ... and a string array of columns.
private static final String[] COLUMNS = {KEY_ID, KEY_WORD};
Define query for creating database
You need a query that creates a table to create a database. This is also customarily defined as a string constant. This basic example creates one table with a column for an auto-incrementing id and a column to hold words.
private static final String WORD_LIST_TABLE_CREATE =
"CREATE TABLE " + WORD_LIST_TABLE + " (" +
KEY_ID + " INTEGER PRIMARY KEY, " +
// will auto-increment if no value passed
KEY_WORD + " TEXT);";
Implement onCreate() and create the database
The onCreate method is only called if there is no database. Create your tables in the method, and optionally add initial data.
@Override
public void onCreate(SQLiteDatabase db) { // Creates new database
db.execSQL(WORD_LIST_TABLE_CREATE); // Create the tables
fillDatabaseWithData(db); // Add initial data
// Cannot initialize mWritableDB and mReadableDB here, because
// this creates an infinite loop of on Create()
// being repeatedly called.
}
Implement onUpgrade()
This is a required method.
If your database acts only as a cache for data that is also stored online, you can drop the the tables and recreate them after the upgrade is complete.
Note: If your database is the main storage, you must preserve the user's data before you do this as this operation destroys all the data. See the chapter on Storing Data.
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
// SAVE USER DATA FIRST!!!
Log.w(WordListOpenHelper.class.getName(),
"Upgrading database from version " + oldVersion + " to "
+ newVersion + ", which will destroy all old data");
db.execSQL("DROP TABLE IF EXISTS " + WORD_LIST_TABLE);
onCreate(db);
}
Optional methods
The open helper class provides additional methods that you can override as needed.
Database operations
While you can call your methods in the open helper anything you want and have them return anything you choose to the calling activity, it is a good idea to go with the standardized query(), insert(), delete(), update(), count() methods that match the API of the database and content providers. Using this format will make it easier to add a content provider or loader in the future, and it makes it easier for other people to understand your code.
The following diagram shows how the different API's should be designed for consistency and clarity.
query()
The query method that you implement in your open helper class can take and return any data type that your user interface needs.
Since the open helper provides convenience methods for inserting, deleting, and updating rows, your query method does not need to be generic and support these operations.
In general, your query method should only allow queries that are needed by your app and not be general purpose.
The database provides two methods for sending queries: SQLiteDatabase.rawQuery() and SQLiteDatabase.query(), with several options for the arguments.
SQLiteDatabase.rawQuery().rawQuery()
The open helper query method can construct an SQL query and send it as a rawQuery to the database which returns a cursor. If your data is supplied by your app, and under your full control, you can use rawQuery().
rawQuery(String sql, String[] selectionArgs)
cursor = mReadableDB.rawQuery(queryString, selectionArgs);
SQLiteDatabase.query()
If you are processing user-supplied data, even after validation, it is more secure to construct a query and use a version of the SQLiteDatabase.query() method for the database. The arguments are what you'd expect in SQL and are documented in the SQLiteDatabase documentation.
Cursor query (boolean distinct, String table, String[] columns, String selection,
String[] selectionArgs, String groupBy, String having,
String orderBy,String limit)
Here is a basic example:
String[] columns = new String[]{KEY_WORD};
String where = KEY_WORD + " LIKE ?";
searchString = "%" + searchString + "%";
String[] whereArgs = new String[]{searchString};
cursor = mReadableDB.query(WORD_LIST_TABLE, columns, where, whereArgs, null, null, null);
Example of complete open helper query()
public WordItem query(int position) {
String query = "SELECT * FROM " + WORD_LIST_TABLE +
" ORDER BY " + KEY_WORD + " ASC " +
"LIMIT " + position + ",1";
Cursor cursor = null;
WordItem entry = new WordItem();
try {
if (mReadableDB == null) {mReadableDB = getReadableDatabase();}
cursor = mReadableDB.rawQuery(query, null);
cursor.moveToFirst();
entry.setId(cursor.getInt(cursor.getColumnIndex(KEY_ID)));
entry.setWord(cursor.getString(cursor.getColumnIndex(KEY_WORD)));
} catch (Exception e) {
Log.d(TAG, "EXCEPTION! " + e);
} finally {
// Must close cursor and db now that we are done with it.
cursor.close();
return entry;
}
}
insert()
The open helper's insert() method calls SQLiteDatabase.insert(), which is a SQLiteDatabase convenience method to insert a row into the database. (It's a convenience method, because you do not have to write the SQL query yourself.)
Format
long insert(String table, String nullColumnHack, ContentValues values)
Example
newId = mWritableDB.insert(WORD_LIST_TABLE, null, values);
delete()
The open helper delete method calls the databases delete() method, which is a convenience method so that you do not have to write the full SQL query.
Format
int delete (String table, String whereClause, String[] whereArgs)
You can delete using any criteria, and the method returns the number of items that were actually deleted, which the open helper should return also.
Example
deleted = mWritableDB.delete(WORD_LIST_TABLE,
KEY_ID + " =? ", new String[]{String.valueOf(id)});
update()
The open helper update method calls the database's update() method, which is a convenience method so that you do not have to write the full SQL query. The arguments are familiar from previous methods, and the onUpdate returns the number of rows updated.
Format
int update(String table, ContentValues values,
String whereClause, String[] whereArgs)
Example
ContentValues values = new ContentValues();
values.put(KEY_WORD, word);
mNumberOfRowsUpdated = mWritableDB.update(WORD_LIST_TABLE,
values, // new values to insert
KEY_ID + " = ?",
new String[]{String.valueOf(id)});
count()
The count() method returns the number of entries in the database. If you are using a RecyclerView.Adapter, it has to implement getItemCount(), which needs to get the number of rows from the open helper which needs to get it from the database.
In adapter
@Override
public int getItemCount() {
return (int) mDB.count();
}
In the open helper
public long count(){
if (mReadableDB == null) {mReadableDB = getReadableDatabase();}
return DatabaseUtils.queryNumEntries(mReadableDB, WORD_LIST_TABLE);
}
queryNumEntries()) is a method in the public DatabaseUtils class, which provides many convenience methods for working with cursors, databases, and also content providers.
Instantiate Open Helper
To get a handle to the database, In MainActivity, in onCreate, call:
mDB = new WordListOpenHelper(this);
Working with the database
It is a common pattern to combine a SQLiteDatabase backend with a RecyclerView to display the data.
For example:
Transactions
Use transactions
Transactions can be nested, and the SQLiteDatabase class provides additional methods to manage nested transactions. See SQLiteDatabase references documentation.
Transaction idiom
db.beginTransaction();
try {
...
db.setTransactionSuccessful();
} finally {
db.endTransaction();
}
Backing up databases
It is a good idea to back up your app's database.
You can do so using the Cloud Backup options discussed in the Storage Options chapter.
Shipping a database with your app
Sometimes you may want to include a populated database with your app. There are several ways in which to do that, and there are trade-offs for each.
The SQLiteAssetHelper class, which you can download from Github, extends SQLiteOpenHelper to help you do this. And this Stackoverflow post discusses this topic in more detail.
Note that for a larger database, populating the database should be done in the background, and your app should not crash if there is no database yet, or the database is empty.
Related practical
The related practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
11.1: Share Data Through Content Providers
Contents:
What is a Content Provider?
A ContentProvider is a component that interacts with a repository. The app doesn't need to know where or how the data is stored, formatted, or accessed.
A content provider:
What is a Content Resolver?
To get data and interact with a content provider, an app uses a ContentResolver to send requests to the content provider.
The ContentResolver object provides query(), insert(), update(), and delete() methods for accessing data from a content provider.
Each request consists of a URI and a SQL-like query, and the response is a Cursor object.
Note: You learned about cursors in the Data Storage chapters, and there is a recap later in this chapter.
The following diagram shows the query flow from an activity using a content resolver to the content provider to data in a SQL database, and back. Note that storing the data in a SQLite database is common, but not required.
Example of an app sharing data using a Content Provider
Consider an app that keeps an inventory of hats and makes it available to other apps that want to sell hats. The app that owns the data manages the inventory, but does not have a customer-facing interface. Two apps, one that sells red hats and one that sells fancy hats, access the inventory repository, and each fetch data relevant for their shopping apps.
What Content Providers are good for
Content providers are useful for apps that want to make data available to other apps.
Note: If your app is the only one using the data, and you are developing all of it by yourself, you probably don't need a content provider.
App Architecture with a Content Provider
Architecturally, the content provider is a layer between the content-providing app's data storage backend and the rest of the app, separating the data and the interface.
To give you a picture of the whole content provider architecture, this section shows and summarizes all the parts of the implemented content provider architecture, as shown in the following diagram. Each part will be discussed in detail next.
Data and Open Helper: The data repository. The data could be in a database, a file, on the internet, generated dynamically, or even a mix of these. For example, if you had a dictionary app, the base dictionary could be stored in a SQLite database on the user's device. If a definition is not in the database, it could get fetched from the internet, and if that fails, too, the app could ask the user to provide a definition or check their spelling.
Data used with content providers is commonly stored in SQLite databases, and the content provider API mirrors this assumption.
Contract: The contract is a public class that exposes important information about the content provider to other apps. This usually includes the URI schemes, important constants, and the structure of the data that will be returned. For example, for the hat inventory app, the contract could expose the names of the columns that contain the price and name of a product, and the URI for retrieving an inventory item by part number.
Content Provider: The content provider extends the ContentProvider class and provides query(), insert(), update(), and delete() methods for accessing the data. In addition, it provides a public and secure interface to the data, so that other apps can access the data with the appropriate permissions. For example, to get inventory information from your app's database, the retail hat app would connect to the content provider, not to the database directly, as that is not permitted.
The app that owns the data specifies what permissions other apps need to have to work with the content provider. For example, if you have an app that provides inventory to retail stores, your app owns the data and determines the access permissions of other apps to the data. Permissions are specified in the Android Manifest.
Content Resolver: Content providers are always accessed through a content resolver. Think of the content resolver as a helper class that manages all the details of connecting to a content provider for you. Mirroring the content provider's API, the ContentResolver object provides you with query(), insert(), update(), and delete() methods for accessing data of a content provider. For example, to get get all the inventory items that are red hats, a hat store app would build a query for red hats, and use a content resolver to send that query to the content provider.
Implementing a Content Provider
Referring to the previous diagram, to implement a content provider you need:
Let's take a look at each of these components.
Data
The data is often stored in a SQLite database, but this is not mandatory. Data could be stored in a file or file system, on the internet, or created dynamically. Or even a mix of these options. To the app, the content resolver the fetched data always as a Cursor object, as if it all came from the same source and in the same format.
The content provider might access the data directly in the case of files, or it might do so through a helper class. For example, apps typically use an open helper to interact with a SQLite database, and the content provider interacts with the open helper to get the data.
Typically, the data is presented to the content provider by the data store as tables, similar to database tables, where each row represents one entry, and each column represents an attribute for that entry. For example, each row contains one contact, and may have columns for email addresses and phone numbers. The structure of the tables is exposed in the contract.
Note: If you are just working with files, you can use the predefined FileProvider class.
Contract
The contract is a public class that exposes important information about an app's content provider so that other apps know how to access and use the content provider.
Using a contract separates public from private app information, design from implementation, and gives other apps one place to get all the information they need to work with a content provider. While the underlying app may change, a contract defines an API that ideally does not change once the app is published.
The contract for a content provider typically includes:
Note: Contracts are not limited to content providers. You can use a contract anytime you want to share constants across classes of your app or make information about your app available to other apps.
URI Scheme & Content URI
Apps send requests to the content provider using Uniform Resource Identifiers or URIs.
A content URI for content providers has this general form:
scheme://authority/path/ID
For example, the following URI could be used to request all the entries in the "words" table:
content://com.android.example.wordcontentprovider.provider/words
The URI scheme for a content provider is defined in the Contract so that it is available to any app that wants to query this content provider. Customarily, this is done defining constants for AUTHORITY, CONTENT_PATH, and CONTENT_URI.
In code, this might look as follows:
public static final String AUTHORITY =
"com.android.example.minimalistcontentprovider.provider";
public static final String CONTENT_PATH = "words";
public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY +
"/" + CONTENT_PATH);
Tables in the Contract
A common way of organizing a contract class is to put definitions that are global to your database into the root level of the class. Usually, this is the name of the database.
Create a static abstract inner class for each table with the column names. This inner class commonly implements the BaseColumns interface. By implementing the BaseColumns interface, your class can inherit a primary key field called _ID that some Android classes, such as cursor adapters, expect to exist. This is not required, but can help your database work harmoniously with the Android framework.
Your code in the contract might look like this:
public static final String DATABASE_NAME = "wordlist";
public static abstract class WordList implements BaseColumns {
public static final String WORD_LIST_TABLE = "word_entries";
// Column names...
public static final String KEY_ID = "_id";
public static final String KEY_WORD = "word"
}
MIME Type
The MIME type tells an app, what type and format received data is in, so that it can process the data appropriately. Common MIME types include text/html for web pages, and application/json . If your content provider returns data in either of those standard formats, you should use the standard MIME types. A full list of these standard types is available on the IANA MIME Media Types website.
However, your content provider probably returns data specific to your app. In that case, you will need to specify a custom MIME type.
For content URIs that point to a row or rows of table data, and that are thus unique to your app, the MIME type should be in Android's vendor-specific MIME format. The general format is:
type.subtype/provider-specific-part
Where the parts should be:
For example, if a provider's authority is com.example.app.provider, and it exposes a table named "words", the MIME type for multiple rows in "words" is:
vnd.android.cursor.dir/vnd.com.example.provider.words
For a single row of "words", the MIME type is:
vnd.android.cursor.item/vnd.com.example.provider.words
And you would specify it in your contract as:
static final String SINGLE_RECORD_MIME_TYPE =
"vnd.android.cursor.item/vnd.com.example.provider.words";
static final String MULTIPLE_RECORDS_MIME_TYPE =
"vnd.android.cursor.item/vnd.com.example.provider.words";
An app can call the getType() method of a content provider to find out what type of data to expect. Your getType() method might look like this:
@Override
public String getType(Uri uri) {
switch (sUriMatcher.match(uri)) {
case URI_ALL_ITEMS_CODE:
return MULTIPLE_RECORDS_MIME_TYPE;
case URI_ONE_ITEM_CODE:
return SINGLE_RECORD_MIME_TYPE;
default:
return null;
}
}
Read more about MIME types for content providers in the Android developer documentation.
Note: The MIME type does not tell the clients how to process that data. As such, the custom MIME type only provides a hint, and the contract should provide additional information to the client as to what the expected data formats are.
Methods: insert, delete, update, query
The content resolver makes available query, insert, delete, and update methods, and the content provider implements those same methods to access the data.
As such, it is a good practice to keep the names, method arguments, and return values consistent between all components. This makes implementation and maintenance a lot easier.
The following diagram shows the APIs between the conceptual building blocks of an app that uses a content provider to access data. Note in particular:
When you create a content provider by extending the ContentProvider class, you need to implement the insert, delete, update, and query methods. If you follow the principle of making the method signatures the same across components, passing data back and forth does not require a lot of code.
Here is are sample methods in a content provider. Note that the content provider receives the values to insert in the correct type, as ContentValues, calls the database, and builds and returns the required Uri for the content resolver.
Insert method
/**
* Inserts one row.
*
* @param uri Uri for insertion.
* @param values Container for Column/Row key/value pairs.
* @return URI for the newly created entry.
*/
@Override
public Uri insert(Uri uri, ContentValues values) {
long id = mDB.insert(values);
return Uri.parse(CONTENT_URI + "/" + id);
}
Delete method
/**
* Deletes records(s) specified by selectionArgs.
*
* @param uri URI for deletion.
* @param selection Where clause.
* @param selectionArgs Where clause arguments.
* @return Number of records affected.
*/
@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {
return mDB.delete(parseInt(selectionArgs[0]));
}
Update method
/**
* Updates records(s) specified by selection/selectionArgs combo.
*
* @param uri URI for update.
* @param values Container for Column/Row key/value pairs.
* @param selection Where clause.
* @param selectionArgs Where clause arguments.
* @return Number of records affected.
*/
@Override
public int update(Uri uri, ContentValues values, String selection, String[] selectionArgs) {
return mDB.update(parseInt(selectionArgs[0]), values.getAsString("word"));
}
query() method
The query method in the content provider has the following signature:
public Cursor query(Uri uri, String[] projection, String selection,String[] selectionArgs, String sortOrder){}
The arguments represent the parts of an SQL query and are discussed below. The query method of the content provider must parse the URI argument and determine the appropriate action.
URI Matching
It is a good practice to use an instance of the UriMatcher class to match the URIs. UriMatcher is a helper class for matching URIs for content providers.
private static UriMatcher sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
/**
* Defines the accepted Uri schemes for this content provider.
* Calls addURI() for all of the content URI patterns that the provider should recognize.
*/
private void initializeUriMatching() {
// Matches a URI that is just the authority + the path,
// triggering the return of all words.
sUriMatcher.addURI(AUTHORITY, CONTENT_PATH, URI_ALL_ITEMS_CODE);
// Matches a URI that references one word in the list by its index.
sUriMatcher.addURI(AUTHORITY, CONTENT_PATH + "/#", URI_ONE_ITEM_CODE);
// Matches a URI that returns the number of rows in the table.
sUriMatcher.addURI(AUTHORITY, CONTENT_PATH + "/" + COUNT, URI_COUNT_CODE);
}
The query method switches on the matching URI to query the database for all items, one item, or an item count, as shown in this example code.
@Override
public Cursor query(Uri uri, String[] projection, String selection, String[] selectionArgs,
String sortOrder) {
Cursor cursor = null;
// Determine integer code from the URI matcher and switch on it.
switch (sUriMatcher.match(uri)) {
case URI_ALL_ITEMS_CODE:
cursor = mDB.query(ALL_ITEMS);
Log.d(TAG, "case all items " + cursor);
break;
case URI_ONE_ITEM_CODE:
cursor = mDB.query(parseInt(uri.getLastPathSegment()));
Log.d(TAG, "case one item " + cursor);
break;
case URI_COUNT_CODE:
cursor = mDB.count();
Log.d(TAG, "case count " + cursor);
break;
case UriMatcher.NO_MATCH:
// You should do some error handling here.
Log.d(TAG, "NO MATCH FOR THIS URI IN SCHEME: " + uri);
break;
default:
// You should do some error handling here.
Log.d(TAG, "INVALID URI - URI NOT RECOGNIZED: " + uri);
}
return cursor;
}
Using a Content Resolver
The ContentResolver object provides methods to query(), insert(), delete(), and update() data. Thus, the content resolver mirrors the content providers API and manages all interaction with the content provider for you. In most situations, you can use the default content resolver provided by the Android system.
Cursors
The content provider always presents the query results as a Cursor in a table format that resembles of a SQL database. This is independent of how the data is actually stored.
A cursor is a pointer into a row of structured data. You can think of it as a linked list of rows. The Cursor class provides methods for moving the cursor through that structure, and methods to get the data from the columns of each row.
When a method returns a cursor, you iterate over the result, extract the data, do something with the data, and finally close the cursor to release the memory.
If you use a SQL database, as shown above, you can implement your open helper to return a cursor, and then again, the content provider returns a cursor via the content resolver. If your data storage returns data in a different format, you will have to convert it into a cursor, usually a MatrixCursor.
The query() method
To make a query to the content provider:
The query method has the following signature:
public Cursor query(Uri uri, String[] projection, String selection,String[] selectionArgs, String sortOrder){}
The arguments to this method represent the parts of a SQL query. Even if you are using another kind of backend, you must still accept a query in this style and handle the arguments appropriately.
uri | The complete content URI queried. This cannot be null. You get the information for the correct URI from the contract. For example: String queryUri = Contract.CONTENT_URI.toString(); |
projection | A string array with the names of the columns to return for each row. Setting this to null returns all columns. For example: String[] projection = new String[] {Contract.CONTENT_PATH}; |
selection | Indicates which rows/records of the objects you want to access. This is a WHERE clause excluding the actual where. For example: String where = KEY_WORD + " LIKE ?"; |
selectionArgs | Argument values for the selection criteria. If you include ?s in selection, they are replaced by values from selectionArgs, in the order that they appear. IMPORTANT: It is a best security practice to always separate selection and selectionArgs. For example: String[]whereArgs = new String[]{searchString}; |
sortOrder | The order in which to sort the results. Formatted as an SQL ORDER BY clause (excluding the ORDER BY keyword). Usually ASC or DESC; null requests the default sort order, which could be unordered. |
And you make a query to to the content provider like this:
Cursor cursor = getContentResolver().query(Uri.parse(queryUri), projection, selectionClause, selectionArgs, sortOrder);
Note: The insert, delete, and update methods are provided for convenience and clarity. Technically, the query method could handle all requests, including those to insert, delete, and update data.
Permissions for sharing
By default, apps cannot access the data of other apps. Both apps involved in sharing data need to have permission to do so.
Permissions in from the content provider
To make your content provider visible and available to other apps, you need to declare in the AndroidManifest of the provider.
<provider android:name=".WordListContentProvider" android:authorities="com.android.example.wordlistsqlwithcontentprovider.provider" android:exported="true"/>
The android:exported property makes it explicit that other apps can use this content provider.
With no permissions set explicitly, any other app can access the content provider for reading and writing. To limit and make explicit access constraints, set permissions inside the provider tag of the content provider, where myapp is the unique name of your app:
android:readPermission="com.android.example.wordlistsqlwithcontentpfonrovider.PERMISSION"
android:writePermission="com.android.example.wordlistsqlwithcontentprovider.PERMISSION"
Permissions client app requests from user
In order to access the content provider, the client app needs to declare permissions in the Android Manifest for that content provider.
<uses-permission android:name = "com.android.example.wordlistsqlwithcontentprovider.PERMISSION"/>
Permissions are not covered in detail in these concepts.
You can learn more in Declaring Permissions, System Permissions, and Implementing Content Provider Permissions.
Related practical
The related practicals documentation is in Android Developer Fundamentals: Practicals.
Learn more
Developer Documentation:
Videos:
12.1: Loaders
Contents:
One of the major reasons users abandon apps is startup time. Research shows that if an app or page takes more than 3 seconds to load, 40% of users will abandon it. This number varies somewhat depending on the study, but the overwhelming fact is that user retention is strongly tied to app loading speed.
App load time is directly related to whatever happens on the UI thread. The less work your UI thread has to do, the faster your users will see the page. There are many factors that affect app startup time, and you will learn more about app performance in a later chapter. One of the big, obvious actions that affect performance is how long it takes for your app to load its data.
If you know exactly where your data is coming from, you can potentially optimize by loading it yourself. If your data is supplied by a content provider, you may not know what the backend is, and you may not know whether for any given user, there will be a small or large amount of data.
The solution is to load most or all of your data in the background, while you show your users relevant information that you have stored locally. For example, you could show them the latest cached weather information, until you have retrieved new data that shows the current weather for the current location.
Loaders are special purpose classes that manage loading and reloading updated data asynchronously in the background using AsyncTask.
Introduced in Android 3.0, loaders have these characteristics:
In a previous chapter you learned about AsyncTask as a general purpose class for doing work in the background, and you used an AsyncTaskLoader to keep data available to your users through configuration changes.
While you can create custom loaders by subclassing the Loader class, the Android framework provides CursorLoader that is straightforward to use and applies to many use cases. The CursorLoader extends AsyncTaskLoader to specifically work with content providers, saving you a lot of work.
Note that it is entirely possible to build custom loaders. But since the Android system provides you with an elegant solution that saves you a lot of work, consider how you can use it as given before implementing your own solution from scratch. Before writing your own loader, always consider whether you can improve your app design to work with a CursorLoader.
Loader architecture
As shown in the diagram below, the loader replaces the content resolvers query call to the content provider. The diagram shows a simplified version of app architecture with a loader. The loader performs querying for items in the background. It observes the data for you, and if the data changes, it automatically gets a new set of data and hands it to the adapter.
Implementing a CursorLoader
An application that uses loaders typically includes the following:
LoaderManager
The LoaderManager is a convenience class that manages all your loaders. You only need one loader manager per activity and typically get it in onCreate() of your activity, where you also register the loaders you are going to use.
The loader manager takes care of registering an observer with the content provider, which receives callbacks when data in the content provider changes.
The only calls to the loader manager you need to make are for registering a loader, and restarting it when you need to discard all the loaded data. The first parameter is the ID of the loader, the second is optional arguments, and the third is the context where the callbacks are defined.
getLoaderManager().initLoader(0, null, this);
getLoaderManager().restartLoader(0, null, this);
LoaderManager.LoaderCallbacks
In order to interact with the loader, you activity has to implement a set of callbacks specified in the LoaderCallbacks interface of the LoaderManager. When the state of the loader changes, these methods are called accordingly. The methods are:
To implement these callbacks, you need to implement LoaderManager callbacks for the type of loader you have. For a cursor loader, change the signature of your activity as follows, then implement the callbacks.
public class MainActivity extends AppCompatActivity implements LoaderManager.LoaderCallbacks<Cursor>
This callback instantiates and returns a new loader instance of the desired type. Since the loader manager can be managing multiple loaders, an ID argument identifies the loader to instantiate. Once created, the loader will start loading data, and it will observe your date for changes, and reload as necessary.
To create CursorLoader, you need:
@Override
public Loader<Cursor> onCreateLoader(int id, Bundle args) {
String queryUri = CONTENT_URI.toString();
String[] projection = new String[] {CONTENT_PATH};
return new CursorLoader(this, Uri.parse(queryUri),
projection, null, null, null);
}
Notice how this is very similar to initiating a content resolver:
Cursor cursor = mContext.getContentResolver().query(Uri.parse(uri),
projection, selectionClause, selectionArgs, sortOrder);
Specify what happens with the data once the loader has acquired it. In this function you should:
The cursor loader monitors the data for you, so you do not, should not under any circumstances, do it yourself.
The loader also cleans up after itself, so there is no need for you to close the cursor.
If you are using a RecyclerView to display the data, all you need to do is hand the data over to the adapter whenever loading or reloading has finished.
@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
mAdapter.setData(cursor);
}
Called when a previously created loader is being reset, and thus making its data unavailable. You should clean all references to the data at this point. Again, if you are passing the data to an adapter for display in a RecyclerView, the adapter does the actual work, you just have to instruct it to do so.
@Override
public void onLoaderReset(Loader<Cursor> loader) {
mAdapter.setData(null);
}
Using the data returned by the loader
In the practicals, you are using a RecyclerView that is driven by an adapter to display the data fetched by the loader. Once the loader receives the data, it hands the data over to the adapter through, for example, a setData() call. The setData() method updates an instance variable in the adapter that holds the most current data set, and notifies the adapter that there is fresh data.
public void setData(Cursor cursor) {
mCursor = cursor;
notifyDataSetChanged();
}
The benefits of cursors
You may have noticed that the database uses cursors, the content provider uses cursors, and the loader uses cursors. Using the same data type throughout your backend, and only unpacking it in the adapter, where the contents of the cursor are prepared for display, makes for a uniform backend with clean interfaces. This makes it easier to write the code, easier to test, and easier to debug. It also makes the code simpler and shorter.
Complete app with methods
The following diagram shows the methods and data types that connect the different parts of an application that uses:
The green colored boxes show the call stack and journey of the cursor through the layers of the application for a query(). Note how inserting, deleting, and updating are still handled by the content resolver. However, the loader will notice any changes made by insert, delete, or update operations, and will reload the data as necessary.
Related practical
The related exercises and practical documentation is in Android Developer Fundamentals: Practicals.
Learn more
Developer Documentation:
13.1: Permissions, Performance and Security
Contents:
You've now learned the fundamental core skills you need to build Android applications. This lesson discusses best practices as they relate to permissions, performance and security. This lesson does not have a corresponding practical.
Permissions
As you have worked through the practicals, there were times when your app needed to get permission to do something, including when it needed to:
This section gives a brief overview of permissions so that you understand how and when your app needs to ask for permission before it can perform and action.
Ask permission if it isn't yours
An app is free to use any resources or data that it creates, but must get permission to use anything—data, resources, hardware, software—that does not belong to it. For example, your app must get permission to read the user's Contacts data, or to use the device's camera. It makes sense that an app needs permission to read a user's Contacts, but you might wonder why it needs permission to use the camera. It is because the camera hardware does not belong to the app, and your app must always get permission to use anything that is not part of the app itself.
Requesting permission
To request permission, add the <uses-permission> attribute to the Android manifest file, along with the name of the requested permission. For example, to get permission to use the camera:
<uses-permission android:name="android.permission.CAMERA"/>
Examples of permissions
The Android framework provides more than 100 predefined permissions. These include some obvious things including permission to access or write the user's personal data such as:
Some of the other pre-defined permissions are less obvious, such as permission to collect battery statistics, permission to connect to the internet, and permission to use hardware such as the camera or fingerprint hardware.
Android includes pre-defined permissions for initiating a phone call without requiring the user to confirm it, reading the call log, capturing video output, rebooting the device, changing the date and time zone, and many more.
You can see all the system-defined permissions at https://developer.android.com/reference/android/Manifest.permission.html.
Normal and dangerous permissions
Android classifies permissions as normal or dangerous.
A normal permission is for actions that do not affect user privacy or user data, such as connecting to the Internet.
A dangerous permission is for an action that does affect user privacy or user data, such as permission to write to the user's voicemail.
Android automatically grants normal permissions but asks the user to explicitly grant dangerous permissions.
Note: Apps must list all permissions they use in the Android manifest, even normal permissions.
How users grant and revoke permissions
The way users grant and revoke permissions depends on:
Before Marshmallow (Android 6.0)
If an app was created for a version of Android before 6.0 (Marshmallow) or it is running on a device that uses a version of Android before Marshmallow, Google Play asks the user to grant required dangerous permissions before installing the app.
If the user changes their mind and wants to deny permissions to the app after it is installed, the only thing they can do is to uninstall the app.
Marshmallow onwards
If an app was created for a version of Android from Android 6.0 (Marshmallow) onwards and it is running on a device that uses a version of Android from Marshmallow onwards, then Google Play does not ask the user to grant dangerous permissions to the app before installing it. Instead, when the user starts to do something in the app that needs that level of permission, Android shows a dialog box asking the user to grant permission.
The user can grant or revoke individual permissions at any time. They do this by going to the Settings App, choosing Apps, and selecting the relevant app. In the Permissions section, they can enable or disable any of the permissions that the app uses.
How differences in the permissions models affect developers
In the "old" permissions model, Google Play and the Android Framework worked together to get permission from the user. All that the developer needed to do was to make sure that the app listed the permissions it needed in the Android manifest file. The developer could assume that if the app was running, then the user had granted permission. The developer did not need to write code to check if permission had been granted or not.
In the "new" permissions model, you can no longer assume that if the app is running, then the user has granted the needed permissions. The user could grant permission the first time they run the app, then, at any time, change their mind and revoke any or all of the permissions that the app needs.
So, the app must check whether it still has permission every time it does something that requires permission. The Android SDK includes APIs for checking if permission has been granted. Here is a code snippet that checks if the app has permission to write to the user's calendar:
// Assume thisActivity is the current activity
int permissionCheck = ContextCompat.checkSelfPermission(thisActivity,
Manifest.permission.WRITE_CALENDAR);
The Android framework for Android 6.0 (API level 23) includes methods for checking for and requesting permissions. The Support Library also includes methods for checking for and requesting permission.
We recommend that you use the support library methods for handling permissions, because the permission methods in the support library take care of checking which version of Android your app is running on, and taking the appropriate action. For example, if the user's device is running an older version, then the checkSelfPermission() method in the support library checks if the user already granted permission at runtime, but if the device is running Marshmallow or later, then it checks if permission is still granted, and if not, shows the dialog to the user to ask for permission.
This lesson does not go into detail on how to use the APIs for handling permissions. See Requesting Permission at Runtime for details.
Best practices for permissions
When an app asks for too many permissions, users get suspicious. Make sure your app only requests permission for features and tasks it really needs, and make sure the user understands why they are needed.
Wherever possible, use an Intent instead of asking for permission to do it yourself. For example, if your app needs to use the camera, send an Intent to the camera app, and that way the camera app will do all your work for you and your app does not need to get permission to use the camera (and it will be much easier for you to write the code than if you accessed the camera APIs directly).
Learn more about Permissions in Android
Performance
You have made your app as useful, interesting, and beautiful as possible. However, to make it stand out from the crowd, you should also make it as small, fast, and efficient as possible. Consider the impact your app might have on the device's battery, memory, and disc space. And most of all, be considerate of users' data-plans. The following recommendations are only the tip of the iceberg where performance is concerned, but they give you an idea on where to start.
Important: Maximizing performance is all about balance, finding and making the best trade-offs between app complexity, functionality, and visuals, to give users the best possible experience with your app.
Keep long-running tasks off the main thread
This course has already talked about moving work off the main thread into the background to help keep the UI smooth and responsive for the user. The hardware that renders the display to the screen typically updates the screen every 16 milliseconds, so if the main thread is doing work that takes longer than 16 milliseconds, the app might skip frames, stutter or hang, all of which are likely to annoy your users.
You can check how well your app does at rendering screens within the 16 millisecond limit by using the Profile GPU Rendering tool on your Android device.
Immediately you will start seeing colored bars on your screen.
Note: You can run the tool on an emulator, just to try it, but the data is not indicative of how your app would perform on a real device.
Open your own app, and watch the colored bars.
One bar represents one screen rendered. If a bar goes above the green line, it took more than 16 ms to render. The colors in the bar represent the different stages in rendering the screen.
Read about how to interpret the results and what the different stages mean at Analyzing with Profile GPU Rendering. If you spend time using the Profile GPU rendering tool on your app, it will help you identify which parts of the UI interaction are slower than might be expected, and then you can take action to improve the speed of your app's UI.
For example, if the green Input portion of the bar is large, your app spends a lot of time handling input events, that is, executing code called as a result of input event callbacks. To fix this, consider when and how you request user input, and whether you can handle it more efficiently.
Simplify your UI
This course has talked about how to make your apps interesting and visually compelling using material design guidelines, and it's taught you how to use the Layout Editor to create your layouts. You've learned that you can create nested hierarchies of layouts. You've learned how to use drawables as background elements for your views. These elements allow you to create complex nested layouts with diverse backgrounds and views overlapping each other throughout your app.
However, your layouts will draw faster and use less power and battery if you spend time designing them in the most efficient way.
Try to avoid:
Simplify layouts
Make sure your layouts include only the views and functionality your app needs. Simple layouts are generally more visually appealing to users, and they draw faster, giving you a double win.
Flatten your layouts as much possible, which means reducing the number of nested levels in your app's view hierarchy. For example, if your layout contains a LinearLayout inside a LinearLayout inside a LinearLayout, you may be able to arrange all the views inside a single ConstraintLayout.
See the guide Optimizing your UI for more information on improving the performance of your app's UI.
Minimize overlapping views
Imagine that you are painting the door of your house in red. They you paint it again in green. Then you paint it again in blue. In the end, the only color you see is blue, but you wasted a lot of energy painting the door multiple times.
Each layout in your app is like the door. Every time your app "paints" (draws) a pixel, it takes time. If your layout has overlapping views, then your app is using time and resources drawing pixels that it then draws over again. Try to reduce the amount of times your app overdraws pixels, by reducing overlapping views. Be careful about using drawable backgrounds on overlapping views and only use them when they are visible.
See the guide Reducing Overdraw for more information.
Monitor the performance of your running app
Android Studio has tools to measure your app's memory usage, GPU, CPU, and Network performance. App crashes are often related to memory leaks, which is when your app allocates memory and does not release it. If your app leaks memory, or uses more memory than the devices makes available, it will eventually use up all the available memory on the device. Use the Memory Monitor tool that comes with Android Studio to observe how your app uses memory.
The monitors are:
Read the Android Monitor page to learn more about using the monitors.
Learn more about improving your app's performance
Overdraw:
Tools:
Security best practices
Much of the burden of building secure apps is handled for you by the Android Framework. For example, apps are isolated from each other so they can't access each other or use each other's data without permission.
However, as an app developer, you have the responsibility to make sure your app treats the user's data safely and with integrity. Your app is also responsible for keeping its own data safe.
Handling user data
This lesson has already discussed how Android uses permissions to make sure apps cannot access the user's personal data without their permission. But even if the user gives your app permission to access their private data, do not do so unless absolutely necessary. And if you do, treat the data with integrity and respect. For example, just because the user gives your app permission to update their calendar does not mean you have permission to delete all their calendar entries.
Android apps operate on a foundation of implied trust. The users trust that the apps will use their data in a way that makes sense within the context of the app.
If your app is a messaging app, it's likely that the user will grant it permission to read their contacts. That does not mean your app is allowed to read all the user's contacts and send everyone a spam message.
Your app must only read and write the user's data when absolutely necessary, and only in a way that the user would expect the app to do so. Once your app has read any private data, you must keep it safe and prevent any leakage. Do not share private data with other apps.
Depending on how your app uses user data, you might also need to provide a written statement regarding privacy practices when you publish your app in the Google Play store.
Be aware that any data that the user acquires, downloads, or buys in your app belongs to them, and your app must store it in a way that the user still has access to it even if they uninstall your app.
Important: Logs are a shared resource across all apps. Any app that has the READ_LOGS permission can read all the logs. Do not write any of the user's private data to the logs.
Public Wi-Fi
Many people use mobile apps over public Wi-Fi. When did you last access the Internet from your mobile phone over the public Wi-Fi at a coffee shop, an airport, or a railway station?
Design your app to protect your user's data when they are connected on public Wi-Fi. Use https rather than http whenever possible to connect to websites. Encrypt any user data that gets transmitted, even data that might seem innocent like their name.
For transmitting sensitive data, implement authenticated, encrypted socket-level communication using the SSLSocket class. This class adds a layer of security protections over the underlying network transport protocol. Those protections include protection against modifications of messages by a wiretapper, enhanced authentication with the server, and increased privacy protection.
Validating user input
If your app accepts input (and almost every app does!) you need to make sure that the input does not bring anything harmful in with it.
If your app uses native code, reads data from files, receives data over the network, or receives data from any external source, it has the potential to introduce a security issue. The most common problems are buffer overflows, dangling pointers, and off-by-one errors. Android provides a number of technologies that reduce the exploitability of these errors, but they do not solve the underlying problem. You can prevent these vulnerabilities by carefully handling pointers and managing buffers.
If your app allows users to enter queries that are submitted to an SQL database or a content provider, you must guard against SQL injection. This is a technique where malicious users can inject SQL commands into a SQL statement by entering data in a field. Injected SQL commands can alter SQL statement and compromise the security of the application and the database.
Read about using parameterized queries to defend against SQL injections in the content providers section of the Security Tips guide.
Another thing you can do to limit the risk of SQL injection is to use or grant either the READ_ONLY or WRITE_ONLY permission for content providers.
WebViews
One of the View classes in Android is WebView, which displays a web page.
This course has not discussed WebView, but you might have found it and tried it out for yourself. We are mentioning it here because even though it is very cool to quickly display a web page in your app, WebView does come with security concerns.
Because WebView consumes web content that can include HTML and JavaScript, it can introduce common web security issues such as cross-site-scripting (JavaScript injection).
By default, a WebView provides no browser-like widgets, does not enable JavaScript, and ignores web page errors. If your goal is only to display some HTML as a part of your UI, this is acceptable as the user won't need to interact with the web page beyond reading it, and the web page won't need to interact with the user. If you want a fully functional web browser, invoke the Browser application with a URL Intent rather than showing the page with a WebView. This is also a more secure option than extending the WebView class and enabling features such JavaScript.
Security, like performance, is a large topic that cannot be covered in a few paragraphs. It is your responsibility to treat user data with care and keep it safe at all times. Use the resources below to learn as much as you can about treating your users and their data with the highest regard.
Learn more about security best practices
14.1: Firebase and AdMob
Contents:
This lesson covers three topics:
Firebase
Firebase is a set of tools for app developers, but not just for Android app developers. It is for iOS app developers and web app developers too. However, since this is a course about Android development, this lesson only talks about how to use Firebase with Android apps.
As an Android developer, you use Android Studio to build your app, but you can use Firebase to add features to your app, get a wider audience for your app, test your app, earn revenue from your app, and get analytics on the usage of your app.
This chapter does not discuss everything about Firebase, but it introduces Firebase, helps you get started using it, and highlights important features that you might want to use.
Get started with Firebase
To use Firebase, go to the Firebase console at https://console.firebase.google.com/. You will need to have a Google account.
The first time you go to the Firebase you see a welcome screen that includes a button to create a new project.
To use Firebase features with your Android app, first create a Firebase project and then add your Android app to the Firebase project.
A project is a container for your apps across platforms: Android, iOS, and web. You can name your project anything you want; it does not have to match the name of any apps.
Add your Android app to your Firebase project
The next step is to associate your Android application with your Firebase project. First though, get the information you will need. To connect Firebase to your Android app, you need to know the package name used in your app. It's best to have your app open in Android Studio before you start the process.
To connect your Firebase project and your Android app to each other:
Make sure you have the latest Google Play services installed.
Tools > Android SDK Manager > SDK Tools tab > Google Play services.
Note the package of the source code in your Android app.
In Android Studio, update the project-level build.gradle (Project: app) file with the latest version of the google-services package (where x.x.x are the numbers for the latest version. See the Android setup guide for the latest version.)
buildscript {
dependencies {
// Add this line
classpath 'com.google.gms:google-services:x.x.x'
}
}
In Android Studio, in the app-level build.gradle (Module: app) file, at the bottom, apply the google-services plugin.
// Add to the bottom of the file apply plugin: 'com.google.gms.google-services'
In Android Studio, sync the Gradle files.
Your Android app and your Firebase project are now connected to each other.
Firebase Analytics
You can enable Firebase Analytics in your app to see data about how and where your app is used. You will be able to see data such as how many people use your app over time and where in the world they use it.
All the data that your app sends to Firebase is anonymized, so you never see the actual identity of who used your app.
To get usage data about your app, add the firebase-core library to your app as follows:
In Android Studio, make sure you have the latest Google Play services installed.
Tools > Android SDK Manager > SDK Tools tab > Google Play services
Add the dependency for firebase-core to your app-level build.gradle (Module: app) file:
compile 'com.google.firebase:firebase-core:x.x.x'
After you add the firebase-core library to your app, it will automatically send usage data when people use your app. Without having to add any more code, you will get a default set of data about how, when, and where people use your app. Not only do you not have to add any code to generate default usage data, you don't even have to publish your app or do anything else to it other than use it.
When someone does something in your app, such as click a button or go to another activity, the app will log an Analytics event. This means that the app will package up the data about the event that happened, and put it in the queue to send to Firebase.
Check to see if the analytics event occurs
Android sends Analytics events in batches to minimize battery and network usage, as explained in this blog post. Generally speaking, Analytics events are sent approximately every hour or so to the server, but it also takes additional time for the Analytics servers to process the data and make it available to reports in the Firebase console.
While you are developing and testing your app, you don't have to wait for the data to show up in the Analytics dashboard to check that your app is logging Analytics events. As you use your app, make sure your logcat is displaying "Debug" messages. Look in the log for statements such as:
Logging event (FE): _e, Bundle[{_o=auto, _et=5388, _sc=SecondActivity, ...}]
These kinds of log messages indicate that an Analytics event has been generated. In this example, an Analytics event was generated when the SecondActivity started.
View reports in the Firebase Analytics dashboard
To see the Analytics reports, open the Firebase Console and select Analytics. The dashboard opens showing reports for your app for the last 30 days.
Note: The end date is always Yesterday by default. To see the usage statistics including Today, change the default date range to Today. Look for the calendar icon towards the top right of the screen and change the date range.
Default Analytics
The analytics information you get by default includes:
For a full list of the available reports see the Firebase help for the Dashboard.
Here's an example of a report showing the number of people who used an app in the past 30 days:
And here's an example of a report showing the users' locations:
Other kinds of Analytics data
To see usage data for your app beyond the default reports, you need to add code to your app to send an "Analytics event" at the appropriate point in your app.
In your app's main activity, define a variable for the instance of FirebaseAnalytics for your app.
FirebaseAnalytics mFirebaseAnalytics;
In the main activity's onCreate() , get the instance of FirebaseAnalytics .
mFirebaseAnalytics = FirebaseAnalytics.getInstance(this);
You can log Analytics events either for pre-defined events or for your own custom events. The predefined events include:
and many more.
For example, to send an Analytics event when a user goes to the next level in your app, you could use code such as:
mFirebaseAnalytics.logEvent(LEVEL_UP, null);
The second argument is a Bundle that contains information describing the event.
You can explore the predefined events and parameters in the FirebaseAnalytics.Event and FirebaseAnalytics.Param reference documentation.
Read more about logging Analytics events in the Logging Analytics Events guide.
Firebase Notifications
You learned in a previous lesson how to enable your app to send notifications to the user. Using the Firebase console, you can send notifications to all your users, or to a subset of your users.
Type the message in the Notifications section of the console, select the the audience segment to send the message to, and then send the message.
To send the message to all users of your app, set the User Segment to App, and select the package for your app.
Behind the scenes, Firebase uses Firebase Cloud Messaging to send the notification to the targeted devices where the selected app is installed.
Best practices for sending notifications
The same kind of best practices are true for sending notifications from the Firebase console as they are for sending notifications from the app. Be considerate of the user. Send only notifications that are important. Do not irritate your users by sending too many notifications or notifications with unhelpful or annoying content.
Firebase Realtime Database
In this course, you learned the different ways your app can save data. You used SharedPreferences to save data as key-value pairs, and you saved data in Android's built-in SQLite database. You created a content provider to provide an interface to access stored data, regardless of how it is stored, and also to share data with other apps.
But how do you share data across multiple clients such as different devices and apps, including Android, iOS and web apps, and allow them to update the data and all stay synchronized with the data in realtime? For this, you need a central cloud-based data repository.
Firebase offers a database that provides cloud-based data storage, allowing clients to all stay in sync as the data changes. If an app goes offline, the data remains available. When the app reconnects to the Internet, the data is synced to the latest state of the database.
For more information, see the Firebase database guide at:
How data is stored
The Firebase Realtime Database is a NoSQL database. Data is stored as JSON objects. (You used JSON in the lesson about connecting to the Internet.)
You can think of the database as a cloud-hosted JSON tree. Unlike a SQL database, there are no tables or records. When you add data to the JSON tree, it becomes a node in the existing JSON structure with an associated key.
Here's an example of a JSON tree of data storing data about books and movies:
{
"books": {
"book one": {
"title": "How to develop Android apps",
"author": "Jane Developer"
},
"book two": {
"title": "How to use Firebase",
"author": "Adam Writer"
},
"book three": {
"title": "How to search Google",
"author": "Ava Searcher"
}
},
"movies": {
"movie one": {
"title": "Saving the world",
"main role": "Super man"
},
"movie two": {
"title": "Saving the moon",
"main role": "Bat girl"
},
"movie three": {
"title": "Saving Mars",
"main role": "Martian dog"
}
}
}
Here's an example of how this data appears in the Firebase Database console:
When you write code to access data in the database, you retrieve data items by their location. The location of the data is constructed by traversing the tree.
For example, the location to:
Get and set data
You can use the Firebase console to view and update data in the database. Your app can use API calls to get and set data in the database.
Viewing and writing data in the Firebase console
In the Firebase console, you can add, edit and delete data.
You can also import and export data in the console. To import data, you must format the data as JSON and save it in a file with a .json extension.
Be aware that if you import a JSON file, it overwrites any data nodes that are defined in the file that already exist in the database.
Reading and writing data in your app
To use a Firebase database in your app, add the firebase-database library to your app, and then use methods on DatabaseReference :
The easiest way to construct and handle the data is to create a Java object that represents that data. For example, you could create the Book class:
public class Book {
public String title;
public String author;
public Book() {
// Default constructor is required
}
public Book(String title, String author) {
this.title = title;
this.author = author;
}
}
To access the data from your Android app, use the methods in the DatabaseReference class to access, create, and update data. The DatabaseReference class represents a reference to a data item.
For example:
To create a new data node:
For example, suppose that you want to add a new book to the database with the following details:
To add this new book to the example data set shown previously, create an instance of DatabaseReference , and initialize it in the main activity's onCreate() method:
private DatabaseReference mDbBooksRef;
@Override
protected void onCreate(Bundle savedInstanceState) {
// Create a new reference to the "books" node
mDbBooksRef = FirebaseDatabase.getInstance().getReference("books");
// rest of onCreate() …
}
Define a method to create a new Book object and add it to the database under the "books" node:
private void addNewBook(String bookId, String title, String author) {
// Create a new Book object with the relevant details
Book book = new Book(title, author);
// mDbBooksRef is a reference to the "books" node
// Create a child node whose key is bookId
// and set its value to the new book
mDbBooksRef.child(bookId).setValue(book);
}
Invoke the addBook() method as follows to create the new data item in the database:
addNewBook("book four", "How to edit data", "Ann Editor");
To learn more about reading and writing Firebase data in your app, see:
Access control
Firebase provides a set of rules to determine who is allowed to view and update data in a Firebase database. Learn how to create the rules in Get Started with Database rules.
Firebase Test Lab
The Firebase Test Lab lets you test your app on a range of different devices hosted in Google's data centers and get reports on the results.
The Test Lab creates tests called robo tests for you, and you can also create and run your own tests. To run your app in the Test Lab:
Locate the APK in your computer's file system. It will likely be in app/build/apk or app/build/outputs/apk in the directory where the Android Studio project is saved.
On Mac, you can click Reveal in Finder to see the location of the APK.
In the Firebase console select Test Lab > Run a Test.
As well as running the auto-generated "robo" tests, you can also run your own instrumentation tests, which are tests you have written specifically to test your app. For example, you can run Espresso tests in the Test Lab.
When you write instrumentation tests, you create a second APK to upload to Test Lab along with the APK for your app.
Learn more at Firebase Test Lab for Android Overview.
Firebase Demo
There is a public Firebase demo project that you can use to explore the Firebase console. The Firebase demo project is a standard Firebase project with fully functioning analytics, crash reporting, test lab, and more. Anyone with a Google account can access it. It's a great way to look at real app data and explore the Firebase feature set.
You cannot send notifications from the demo project, because you do not have owner access to it. Nor can you see and modify data in the database.
The data in the demo project is real data from an app called Flood-It. You can download this app and use it to contribute to the data yourself. Flood-It is a simple game, where you see how quickly you can cover the board with a single color. Flood-It was created by Lab Pixies, which is now a Google company.
Go ahead and download and play Flood-It if you want, but don't forget to come back and keep learning! Get the Flood-It app from Google Play here.
Learn how to access the Firebase demo in the Firebase help center.
More Firebase features
Firebase has many more tools to help you develop your app and help it reach your audiences. However, our goal in discussing Firebase in this course is to introduce you to Firebase and make you aware of its features, and to inspire you to learn more about Firebase on your own.
To get started learning on your own about Firebase:
Learn more about Firebase
Get started with Firebase
Firebase Analytics
Firebase Notifications
Firebase Database
Firebase Test Lab
Make money from your app
It's exciting to build an app and see it run. But how do you make money from your app?
First, you need to create an app that works well, is fast enough, doesn't crash, and is useful or entertaining. It must be compelling so users will not only want to install and use it, but will want to keep on using it.
Assuming your app is robust and provides features that are useful, entertaining, or interesting, there are various ways for you to make money from your app.
Ways to make money
The monetization models are:
Premium apps
Users pay up front to download premium apps. For an app that provides desirable functionality to a small, highly targeted audience, attaching a price to your app can provide a source of revenue. Be aware that some users will refuse to download an app if they have to pay for it, or if they cannot try it first free of charge. If users can find other similar apps that are available free or at a lower cost, they might prefer to download and try those other apps.
Freemium apps
A "freemium" app is a compromise between a completely free app and one that charges a fee to install. The app is available for installation free of charge either with limited functionality or for a limited duration. Your goal for a freemium app should be to convince users of the value of your app, so that after they have used it for a while, they are willing to pay to keep using it or to upgrade for more features. Have you ever downloaded a free app and then paid for the upgraded functionality? What was it you liked about the app that made you want to pay for it?
Another way to make money from a freemium app is to provide in-app purchases. For a game, your app might offer new content levels in the game, or new items to make the game more fun. Think about the mobile games you have played. Which ones have offered in-app purchases and what for? Have you ever made in-app purchases on a mobile app?
Subscriptions
With the subscription model, users pay a recurring fee to use the app. This is very similar to the premium model, except that users pay at regular billing cycles rather than once at installation time. You can set up subscriptions so that users pay either monthly or annually. If you provide your app on a subscription basis, consider offering regular content updates or some other service that warrants a recurring fee.
If you decide to offer your app on the subscription model, it's a good idea to let users have a free trial. Many users will refuse to install an app that makes them pay before they have even tried it to see if it suits their needs.
Ads
One common monetization strategy is to provide your app free of charge but run ads in it. The user can use your app as much as they like, but the app will show them ads occasionally.
If your app displays ads, always be considerate of the user. If your app shows so many ads that it annoys the user, they might stop using it or uninstall it.
Adding ads to your app is straightforward. The best way to incorporate ads into your app is to use AdMob.
AdMob
Google provides tools for advertisers to create ads and define the targeting criteria for their ads. For an example of targeting criteria, an ad might be targeted to be shown to people in a specific location. Google has a huge inventory of ads to display on both websites and mobile apps. You can display ads from this inventory in your app by using AdMob (which stands for Ads on Mobile).
To display an ad in your app, add an AdView in the layout of an activity and write a small amount of boilerplate code to load the ad. When a user runs your app and goes to that activity, an ad appears in the AdView . You do not need to worry about finding an ad to display because Google handles that for you.
How ads help you make money
Google pays you when users click ads in your app. The exact amount you get paid depends on the ads that get shown, and how much the advertisers were willing to pay for their ads. The total amount paid by the advertisers is distributed between Google and the publisher of the website or app where the ad appears.
Don't click on ads in your own app
Google has policies that prevent website publishers and app publishers from clicking ads in their own websites and apps. The advertisers pay when people click their ads, so it would not be fair for you to display an ad in your app, then click the ad, and cause the advertiser to pay you for clicking the ad in your own app.
Read more about AdMob policies in the AdMob help center.
Create an AdMob account
Before you can experiment with running ads in your app, you need to enable AdMob for that app. To enable AdMob use these steps:
You will be re-directed to the AdMob console.
To display an ad in your app, you need your AdMob app ID and an ad unit ID. You can get both of these in the AdMob console.
Implement AdMob in your app
To display an ad in your app:
Get ready to run test ads
While you are developing and testing your app, you can display and test ads to make sure your app is setup correctly to display ads. When testing ads you need:
Add the AdView to display the ad
In the activity's layout file where you want the ad to appear, add an AdView :
<com.google.android.gms.ads.AdView
android:id="@+id/adView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="16dp"
android:layout_centerHorizontal="true"
ads:adSize="BANNER"
ads:adUnitId="@string/banner_ad_unit_id">
</com.google.android.gms.ads.AdView>
You also need to add the ads namespace to the root view of the layout:
<RootLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:ads="http://schemas.android.com/apk/res-auto"
…>
Here's an example of a layout with an AdView in the Layout Editor:
When the app runs, the AdView is replaced by an ad.
Initialize MobileAds
The MobileAds class provides methods for initializing AdMob ads in your app. Call MobileAds.initialize() in the onCreate() method of your main activity, passing the context and your app ID (which you get from the AdMob console).
// Initialize AdMob
MobileAds.initialize(this, "ca-app-pub-1234");
Write the code to load the ad
In the onCreate() method of the activity that displays the ad, write the code to load the ad.
While you are developing and testing your app you can display ads in test mode by specifying specific test devices. To show ads on your own device, you need to device ID (IMEI), which you can get from Settings > About phone > Status> IMEI or by dialling *#06#.
To load an ad:
Here's the code to write in onCreate() in the activity:
// Get the AdView
AdView mAdView = (AdView) findViewById(R.id.adView);
// Create an AdRequest
AdRequest adRequest = new AdRequest.Builder()
// allow emulators to show ads
.addTestDevice(AdRequest.DEVICE_ID_EMULATOR)
// allow your device to show ads
.addTestDevice("1234") // your device id
.build();
// Load the ad into the AdView
mAdView.loadAd(adRequest);
When you are ready to run ads for real, you'll need to make some changes to how you create the AdRequest object. See Get Started with Android AdMob for more information on what you need to do.
Learn more about AdMob
15.1: Publish!
Contents:
In previous practicals you learned how to build and test your app, and now it's time to learn how publish it. So, what do you have to do to publish your app? This chapter covers the the high-level steps for publishing your Android app to the Google Play store, and it introduces the Google Play developer console, where you can upload your app to Google Play. It does not teach you everything there is to know about the Google Play developer console. We hope, though, that after you read this chapter you will be excited to upload your app and investigate all the different features of the console.
This chapter has two main sections:
Prepare your app for release
The main goal when preparing your app for release is to make sure it is really ready. Android users expect high-quality apps that look great and work well. There will always be more features that you want to add to your app, or more features that your users ask for. There's a big difference, however, between a great app that could be made even better versus an app that breaks often, provides an incomplete experience, has navigation paths that go nowhere, or does not have a way to get to the important parts of the app.
Think about your own favorite apps. What do you like about them?
Think about apps that you have uninstalled or hardly ever use. What didn't you like about them? Think about apps that you were excited to get but then were disappointed when you started using them. What caused that disappointment for you?
The high level tasks for publishing your app to the Google Play store are:
This chapter takes a high-level look at each of these tasks.
What is an APK?
An APK is a zip file that contains everything your app needs to run on a user's device. It always has the .apk extension. You need an APK to publish your app in the Google Play store.
You can use Android Studio to create the APK for your app. Before you generate the APK for your app, you need to do everything you can to make your app successful, including:
When your app is completely ready, then you can generate a signed APK to upload to the Google Play store.
Take a look at the launch checklist in the Android developer documentation.
Test your app thoroughly
As you develop your app, test it on your own Android device and in Android Studio's emulator. Make sure you test the app for different screen sizes and orientations. Also check that the app works properly on older devices.
Share your app with your developer friends. Make a zip file and send it to other developers. Then they can load your app into Android Studio and run it.
You know how your app is supposed to work, after all; you designed and built it. You know the "right way" to use your app. However, users have a really creative way of trying to use apps that you never would have believed, let alone considered. They might try to use your app or its features in ways you had not thought of, or might test it in ways you had not tested it. Encourage your testers to try out your app in different ways, to try to achieve different goals, and to take different paths navigating through the activities. This will help catch errors, inconsistencies, or functionality failures that you were not able to find, because you are too familiar with how the app is supposed to work.
Make sure you run formal tests on your app, including unit and Espresso tests. These tests should cover both the core features of your app, and the main integration points where your app calls out to another API or retrieves data from the web. These are points that are critical to your app, and they are the areas of code likely to break.
Use Firebase Test Lab to run your app on a range of real devices in Google's data centers. This way you can verify both the functionality and the compatibility of your app across many different kinds and versions of devices before to releasing your app to a broader audience.
Read about Firebase Test Lab for Android at firebase.google.com/docs/test-lab/.
Make sure your app has the right filters
When a user searches or browses for apps in the Google Play store, the results include only apps that are compatible with the user's device. For example, if a person uses a phone that has a small screen, Google Play's search results do not include apps that require a large TV-sized screen.
Make sure your app specifies the appropriate requirements to ensure that it reaches the right audience. For example, if your app requires biometric hardware for reading fingerprints, then add the requirement in the Android manifest.
<uses-feature android:name="android.hardware.fingerprint"/>
However, specifying that your app needs a fingerprint reader limits the audience for your app to people who have devices with a fingerprint reader. You should think carefully before adding restrictions to the manifest that might limit who can see and download your app.
If your app really does need a particular attribute to be present on the user's device, then make sure to include that restriction in the manifest, to ensure that everyone who can find and download your app can actually run it. People are very likely to give your app a bad review if they install it only to find that it does not run on their device.
Hardware filters
You can specify that your app uses hardware features, such as:
<uses-feature android:name="android.hardware.sensor.light" />
<uses-feature android:name="android.hardware.gamepad" />
<uses-feature android:name="android.hardware.sensor.stepcounter" />
See the full list at developer.android.com/guide/topics/manifest/uses-feature-element.html.
Software filters
You can specify that your app requires the device to have software features such as:
<uses-library android:name="com.google.android.maps"/>
<uses-sdk android:minSdkVersion="19">
Countries
In the process of uploading your app to Google Play, you can select the countries where your app will be available. If you specify this, then only users in those countries will be able to find and download your app.
Add a launcher icon to your app
A launcher icon is a graphic that represents your application. The launcher icon for your app appears in the Google Play store listing. When users search the Google Play store, the icon for your app appears in the search results.
When a user has installed the app, the launcher icon appears on the device in various places including:
Read the Launcher Icons design guide for advice on designing your launcher app to encourage users to use your app.
Add an Application ID
The Application ID uniquely identifies an application. Make sure your app has an Application ID that will always be unique from all other applications that a user might install on their device.
When you create a project for an Android application, Android Studio automatically gives your project an Application ID. The value is initially the same as the package for the app. The Application ID is defined in the build.gradle file. For example:
defaultConfig {
applicationId "com.example.android.materialme"
minSdkVersion 15
targetSdkVersion 24
versionCode 1
versionName "1.0"
}
You can change your app's Application ID. It does not have to be the same as your app's package name. At times as you worked through the practicals in this course, you created a copy of an Android Studio project. After copying the project, you changed the Application ID to make sure that it was unique when you installed the app on your device.
When you are getting ready to publish your app, review the Application ID. The Application ID defines your application's identity. If you change it, then the app becomes a different application and users of the previous app will not be able to update to the new app.
Specify API Level targets and version number
When you create a project for an Android app in Android Studio, you select the minimum and target API levels for your app.
You can set these values in the Android manifest file, and also in the app-level build.gradle file.
Note: The value in build.gradle overrides the value in the manifest file. To prevent confusion, we recommend you put the values in build.gradle, and remove them from the manifest file,. Setting these attributes in build.gradle also allows you to specify different values for different versions of your app.
When you get your app ready for release, review API level targets and version number values and make sure they are correct. People will not be able to find your app in the Google Play store if they are using devices whose SdkVersion is below the value specified in your app.
Here's an example of setting these attribute values in build.gradle:
android {
...
defaultConfig {
...
minSdkVersion 14
targetSdkVersion 24
}
Note: The values of minSdkVersion and targetSdkVersion are the level of the API, not the version number of the Android OS.
Codename |
| Version | Release Date | API Level |
Honeycomb |
| 3.0 - 3.2.6 | Feb 2011 | 11 - 13 |
Ice Cream Sandwich | | 4.0 - 4.0.4 | Oct 2011 | 14 - 15 |
Jelly Bean | | 4.1 - 4.3.1 | July 2012 | 16 - 18 |
KitKat | | 4.4 - 4.4.4 | Oct 2013 | 19 - 20 |
Lollipop | | 5.0 - 5.1.1 | Nov 2014 | 21 - 22 |
Marshmallow | | 6.0 - 6.0.1 | Oct 2015 | 23 |
Nougat | | 7.0 | Sept 2016 | 24 |
Version number
You need to specify a version number for your app. As you improve your app to add new features, you will need to update the version number each time you release a new version to the Google Play store. Read more in the Android Version guide.
Product Flavors
You can generate different "product flavors" for your app. A product flavor is a customized version of the application build. For example, you could have a demo version and a production version. Here's an example of how to define product flavors in build.gradle:
android {
...
productFlavors {
demo {
applicationId "com.example.myapp.demo"
versionName "1.0-demo"
}
full {
applicationId "com.example.myapp.full"
versionName "1.0-full"
}
}
}
Read more about product flavors in the Build Configuration developer guide.
Reduce your app's size
The size of your APK affects:
The bigger the size of your app's APK, the more likely it is that some users will not download it because of size limitations on their device or connectivity limitations. Users who have pay-by-the-byte plans will be particularly concerned about how long an app takes to download. If your app takes up too much space, users will be more likely to uninstall it when they need space for other apps or files.
Take a look at the apps on your own Android phone now. Which apps take up the most space? If you ran out of space on your Android phone, which of the apps that you downloaded would you uninstall?
There's no magic to minimizing the size of your app's APK, most of what you need to do is common sense. For example:
Clean up your project folders
The first step in making your app as small as possible is to clean up your project folders so that when you create the APK, Android Studio includes only the files that your app needs.
An APK file consists of a ZIP archive that contains all the files that comprise your app. These files include Java class files, resource files, and a file containing compiled resources.
The high level project folders in your project are:
Note: While you are developing your app, it can be easy to create additional resources that your app ends up not using, so be sure to check for and remove unused resources.
Disable logging and debugging and check production URLs
While you are developing your app, you are no doubt testing it carefully, perhaps adding unit tests, showing toasts, and writing logging statements. When you prepare your app for release, you need to remove all the extra code.
To disable logging and debugging:
Also, make sure that if your application accesses remote servers or services, it uses the production URL or path for the server or service and not a test URL or path. Likewise, many companies with public APIs have test permissions and production level permissions. Make sure that your security or passwords for accessing these servers are production level as well.
Reduce the size of your app's images
Reducing the size of the images in your app can go a long way to reducing the size of the APK file.
Read more about how to reduce the size of your app in the Reduce APK size guide.
Note: Drawable objects are defined in XML. Android draws them when the app needs to display them, which means your app does not need to store images for them. However, because Android generates them as needed, it can take longer for the images to appear on screen, so it's best to use Drawable objects for smaller images such as icons and logos. Drawable objects do not support the same complexity and detail that you can get with bitmaps.
In Android 5.0 (API Level 21) and above, you can define vector drawables, which are images that are defined by a path. Vector drawables scale without losing definition. Most vector drawables use SVG files, which are plain text files, or compressed binary files that include two-dimensional coordinates for how the image is drawn on the screen. Because SVG files are text, they use less space than most other image files. Also, you only need one file for a vector image instead of a file for each screen density.
Consider the use case for your images, and use Drawable objects and 9-patch files wherever it makes sense. See the Drawable, Styles and Themes lesson in this course for more information.
Generate the signed APK for release
When your app is ready to upload to Google Play, you must generate and sign the APK for your app. Android Studio has tools for generating your APK and signing it with a digital certificate.
When Android Studio signs the app, it creates a public certificate and a private key. It attaches the public certificate to the APK. You must securely store the private key in a keystore
The public-key certificate serves as as a "fingerprint" that uniquely associates the APK to you and your corresponding private key. This helps Android ensure that any future updates to your APK are authentic and come from you, the original author.
For information about digital certificates, storing your private key, and generating the digitally-signed APK, see the guide Sign Your App.
Publish your app!
When you've tested your app, cleaned it up, reduced its size, and generated the APK, you are ready to publish it to Google Play.
After you upload your app to Google Play, you can run alpha and beta tests before releasing it to the public. Running alpha and beta tests lets you share your app with real users, and get feedback from them. This feedback does not appear as reviews in Google Play.
Run alpha tests while you are developing your app. Use alpha tests for early experimental versions of your app that might contain incomplete or unstable functionality. Running alpha tests is also a good way to share your app with friends and family.
Run beta tests with limited number of real users, to do final testing before your app goes public.
Once your app is public, users can give reviews. So, make sure you test it thoroughly before putting it out on Google Play for anyone to download.
For more information on alpha and beta tests see:
Create an account in the Google Play Developer Console
Whether you want to run alpha and beta tests, or publish your app to the public on Google Play, you need to upload your APK in the Google Play developer console.
Go to the console at play.google.com/apps/publish/.
To begin, get a Google Play developer account. You will need to pay for the account. The high-level steps are:
When you have set up your account, you can upload your APK. In the Google Play Developer console interface, choose:
Then you can browse for the APK to upload, or drag and drop it to the console.
You need to satisfy the following requirements before you can publish your app to the public:
This list might seem long, but the Google Play developer console helps you figure out if your app is ready to launch. Click the "Why can't I publish?" link to find out what else you need to do to publish your app.
Run pre-launch reports
After you upload your APK, you can run pre-launch reports to identify crashes, display issues and security issues. During the pre-launch check, test devices automatically launch and crawl your app for several minutes.
The crawl performs basic actions every few seconds on your app, such as typing, tapping, and swiping. The pre-launch tests use Firebase Cloud Test Lab.
For more information on pre-launch supports, see the Google Play Help center article Use pre-launch reports to identify issues.
Review criteria for publishing
Your app must comply with Google Play policies, which ensure that all apps on Google Play provide a safe experience for everyone.
There are policies governing
Learn more at play.google.com/about/developer-content-policy/
Restricted content
Google Play does not allow apps that are sexually-explicit, hateful, racist, encourage bullying or violence, or facilitate gambling.
https://play.google.com/about/restricted-content/
Intellectual property, deception and spam
Google Play does not allow apps that are not honest. In other words, they pretend to be other apps or pretend to come from other companies or impersonate other brands. Google Play does not allow apps that attempt to deceive users. Google Play does not allow apps that spam users such as apps that send users unsolicited messages. Google Play does not allow apps that are duplicative or of low-quality.
https://play.google.com/about/ip-deception-spam/
Privacy and security
Google Play requires that your app treats users' data safely and keeps private user information secret. If your app accesses or transmits private data, it must publish a statement about how it uses users' data.
Google Play does not allow apps that damage or subversively access the user's device, other apps, servers, networks, or anything that it should not. Basically, your app should not interfere with anything else, or cause any damage to anything, or try to access anything that it does not have authorization to access.
Google Play does not allow apps that steal data, secretly monitor or harm users, or are otherwise malicious.
https://play.google.com/about/privacy-security/
Monetization and Ads
Google Play has rules regarding accepting payment for in-store and in-app purchases.
Google Play does not allow apps that contain deceptive or disruptive ads.
https://play.google.com/about/monetization-ads/
Store Listing and Promotion
Publishers must not attempt to promote their own apps unfairly. For example, you are not allowed to get 100,000 of your closest friends to give your app a 5 star rating so that it appears with very favorable reviews. Your app's icon, title, description and screenshot must all fairly represent your app, and not make any exaggerated or misleading claims.
In other words, don't cheat to get a better Google Play rating or placement.
https://play.google.com/about/storelisting-promotional/
Submit your app for publishing
When you upload your app for production, Google checks your app. Google runs both automatic and manual checking on your app.
If your app is rejected, fix the problem and try again!
Final summary
You have reached the end of this course. We hope you have enjoyed the journey and that you feel ready to go build your own Android apps. We look forward to seeing your apps in the Google Play store!
Learn more
Preparing your app
Google Play Developer Console
Alpha and Beta testing
Table of Contents
1.1: Create Your First Android App
1.2: Layouts, Views and Resources
1.4: Resources to Help You Learn
2.1: Understanding Activities and Intents
2.2: The Activity Lifecycle and Managing State
2.3: Activities and Implicit Intents
3.1: The Android Studio Debugger
3.3: The Android Support Library
5.1: Drawables, Styles, and Themes
5.3: Providing Resources for Adaptive Layouts
6.1: Testing the User Interface
7.1: AsyncTask and AsyncTaskLoader
8.3: Transferring Data Efficiently
11.1: Share Data Through Content Providers
13.1: Permissions, Performance and Security