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Editorial

Editorial for the Special Issue “Torsion-Gravity and Spinors in
Fundamental Theoretical Physics”

Luca Fabbri

DIME, Sez. Metodi e Modelli Matematici, Università di Genova, Via all’Opera Pia 15, 16145 Genova, Italy;
luca.fabbri@edu.unige.it

The Einsteinian theory of gravitation is among the best-established theories ever
conceived in physics. Based on the geometrical idea that the energy density of matter could
curve space-time, Einstein’s field equations embrace conceptual simplicity, mathematical
elegance and predictive power like few others.

One of the few cases of synthesis between simplicity, elegance and power is Maxwell’s
equations in electrodynamics, and they, too, are based on a similar geometrical idea, that
the current density of matter curves the gauge potential. The electromagnetic tensor Fµν

in fact can be seen as the curvature of the gauge bundle in the same way in which the
Riemann tensor Rαρµν is the curvature of the frame bundle.

However, now, the quick student or the attentive reader would raise the following
question: given that the material Lagrangian generates energy, current and spin densities
then, in the same spirit followed above, what does the spin density curve? The answer is that,
hidden in the deep recesses of differential geometry, if care is taken to look attentively, there
actually is an object whose curvature can be tied to the spin density: torsion.

Torsion, the antisymmetric part (in holonomic coordinates) of the most general con-
nection, is a natural attribute of the geometric background in which Einsteinian gravity
is built. With it, the torsional completion of Einsteinian gravity is the theory in which the
space-time curvature couples to energy in the same manner in which the space-time torsion
couples to spin, and in the same manner in which the gauge strength couples to the current.

Because the matter field that has both energy and spin, as well as current, is the spin
fluid or the spinor field, use of the Weyssenhoff or Dirac theories becomes essential. As a
consequence, the torsion field is expected to acquire a considerable prominence whenever
spin effects might be important.

Of course this brings us, first of all, to quantum mechanics. But it may also bring us,
perhaps not surprisingly, to the cosmology of black holes or of the early Universe, or in all
those situations where the spin density is dominant.

The present collection brings together various experts in the field to make the present
status of torsion in gravity and spin in quantum field theory a little clearer.

There are ten papers in this collection, split into two sections: The first is the review
section and consists of three papers. The first, and largest of all, is Fundamental Theory of
Torsion Gravity [1], written by myself with the aim of providing a basic reference for all
following papers, as well as some historical introductions that readers might find interesting.
The other two papers are Some Mathematical Aspects of f (R)-Gravity with Torsion: Cauchy
Problem and Junction Conditions [2] by S. Vignolo and On the Mathematics of Coframe
Formalism and Einstein-Cartan Theory–A Brief Review [3] by M. Tecchiolli, complementing
the introduction with mathematical details on the structure of the differential equations of
the theory and the presentation of the tetradic formulation.

The second is the research section and contains seven articles. Torsionally-Induced
Stability in Spinors [4] deals with the problem of showing how torsion, creating a back-
reaction between the spinor field and its spin, can quench the tendency to form singularities,
whether they are gravitational, such as for the Hawking–Penrose theorem, or material, such
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as those encountered in quantum field theory. Detailed analyses are provided in Quantum
Hydrodynamics of Spinning Particles in Electromagnetic and Torsion Fields [5] and Search
for Manifestations of Spin-Torsion Coupling [6] by M. Trukhanova and co-workers, where
axial vector spin–torsion coupling is investigated in general contexts, and additional effects
of the torsion field are presented. A similarly general approach is also followed by C. Di-
ether III and J. Christian in On the Role of Einstein-Cartan Gravity in Fundamental Particle
Physics [7], where the authors examine the way in which torsion induces self-interactions
for spinors that could balance the repulsive electrostatic forces of fermions. On the op-
posite side of the spectrum of applications, G. Milton in A Possible Explanation of Dark
Matter and Dark Energy Involving a Vector Torsion Field [8] presents a model of torsion in
gravity that could explain the dark sector of our Universe. Along the very same line, A.
Ivanov and M. Wellenzohn tackle the problem of identifying the scalar field responsible
for dark energy with the chameleon field in Can a Chameleon Field Be Identified with
Quintessence? [9]. Finally, P. Asimakis and co-workers compare non-standard theories,
such as types of teleparallel gravity against nucleosynthesis, in Big Bang Nucleosynthesis
Constraints on f (T, TG)-Gravity [10].

With the last three papers on the dark sector and the previous three about the effects
of torsion in particle physics, it is difficult to point to the direction in which torsion might
make itself manifest. Every direction is open, and each is worthy of attention. For the
purist, however, a spin density that is given by the Dirac field constitutes a very natural
paradigm, and therefore I would be inclined to say that the phenomenologist might find the
applications to quantum mechanics and particle physics to be those with higher discovery
potential. However, as I said, every direction is open.

If, instead, you are a mathematical physicist, you may find Quantum Hydrodynamics
of Spinning Particles in Electromagnetic and Torsion Fields [5] quite intriguing in its way
of re-writing the full spinor theory in a form that is more suitable for formal manipulation,
since in it the Dirac field is interpreted as a special type of spin fluid.

Those of you who are not new to torsion gravity may remember that a quarter of a
century ago there was another Special Issue on torsion published by the Annales de la
Fondation Louis de Broglie [11]. I authored a paper in that Special Issue and it pleases
me immensely to be the Editor of the present Special Issue. However, for all the rest,
the authorship has completely changed. Aside for me, not a single author from then has
contributed now and this pleases me greatly too. It means that the torsion community is in
constant renewal, with more ideas coming out afresh every year. It is my hope that younger
generations will fuel the debate more than ever before.

But enough with the summary—you now know what you need to find the article that
tickles your curiosity...

... Or just read them all to have a fair overview of the current state of torsion today.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In this work, we present the general differential geometry of a background in which the
space–time has both torsion and curvature with internal symmetries being described by gauge fields,
and that is equipped to couple spinorial matter fields having spin and energy as well as gauge
currents: torsion will turn out to be equivalent to an axial-vector massive Proca field and, because the
spinor can be decomposed in its two chiral projections, torsion can be thought as the mediator that
keeps spinors in stable configurations; we will justify this claim by studying some limiting situations.
We will then proceed with a second chapter, where the material presented in the first chapter will be
applied to specific systems in order to solve problems that seems to affect theories without torsion:
hence the problem of gravitational singularity formation and positivity of the energy are the most
important, and they will also lead the way for a discussion about the Pauli exclusion principle and
the concept of macroscopic approximation. In a third and final chapter, we are going to investigate,
in the light of torsion dynamics, some of the open problems in the standard models of particles and
cosmology which would not be easily solvable otherwise.

Keywords: torsion-gravity; electrodynamics; spinors

1. Introduction

In fundamental theoretical physics, there are a number of principles that are assumed,
and, among them, one of the most important is the principle of covariance, stating that the
form of physical laws must be independent from the coordinate system employed to write
them. Covariance is mathematically translated into the instruction that such physical laws
have to be written in tensorial forms.

On the other hand, because physical laws describe the shape and evolution of fields,
differential operators must be used; because of covariance, all derivatives in the field
equations have to be covariant: thus covariant derivatives must be defined. In its most
general form, the covariant derivative of, say, a vector, is given by

DαVν =∂αVν+VσΓν
σα

where the object Γα
νσ is called connection, it is defined in terms of the transformation law

needed for the derivative to be fully covariant, and it has three indices: the upper index
and the lower index on the left are the indices involved in the shuffling of the components
of the vector, whereas the lower index on the right is the index related to the coordinate
with respect to which the derivative is calculated eventually. Hence, there appears to
be a clear distinction in the roles played by the left and the right of the lower indices,
and therefore the connection cannot be taken to have any kind of symmetry property for
indices transposition involving the two lower indices at all.

The fact that, in the most general case, the connection has no specific symmetry implies
that the antisymmetric part of the connection is not zero, and it turns out to be a tensor:
this is what is known as torsion tensor.

The circumstance for which the torsion tensor is not zero does not follow from ar-
guments of generality alone, but also from explicit examples: for instance, torsion does
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describe some essential properties of Lie groups, as it was discussed by Cartan [1–4]. Car-
tan has been the first who pioneered into the study of torsion, and this is the reason why
today torsion is also known as the Cartan tensor.

When back at the end of the 19th century, Ricci-Curbastro and Levi–Civita developed
absolute differential calculus, or tensor calculus, they did it by assuming zero torsion to
simplify computations, and the geometry they eventually obtained was entirely based on
the existence of a Riemann metric: this is what we call Riemann geometry. Nothing in this
geometry is spoiled by letting torsion take its place in it, the only difference being that now
the metric would be accompanied by torsion as the fundamental objects of the geometry:
the final setting is what is called Riemann–Cartan geometry.

Granted that, from a general mathematical perspective, torsion is present, one may
wonder if there can be physical reasons for torsion to be zero. Physical arguments to prove
that torsion must equal zero were indeed proposed in the past. However, none of them
appeared to be free of fallacies or logical inconsistencies. A complete list with detailed
reasons for their failure can be found in [5].

That torsion should not be equal to zero even in physical contexts is again quite
general. In fact, by writing the RC geometry in anholonomic bases, the torsion can be seen
as the strength of the potential arising from gauging the translation group, much in the
same way in which the curvature is the strength of the potential arising from gauging the
rotation group, as shown by Sciama and Kibble [6,7]. What Sciama and Kibble proved
was that torsion is not just a tensor that could be added, but a tensor that must be added,
besides curvature, in order to have the possibility to completely describe translations,
besides rotations, in a full Poincaré gauge theory of physics [8].

At the beginning of the 20th century, when Einstein developed his theory of gravity,
he did it by assuming zero torsion because, when torsion vanishes, the Ricci tensor is
symmetric and therefore it can be consistently coupled to the symmetric energy tensor,
realizing the identification between the space–time curvature, and its energy content
expressed by Einstein field equations: this is the basic spirit of Einstein gravity. Today, we
know that in physics there is also another quantity of interest called spin, and that, in its
presence, the energy is no longer symmetric, so nowadays having a non-symmetric Ricci
tensor besides a Cartan tensor would allow for a more exhaustive coupling in gravity, where
the curvature would still be coupled to the energy but now torsion would be coupled to
the spin: such a scheme would realize the identification between the space–time curvature
and its energy content expressed by Einstein field equations and the identification between
space–time torsion and its spin content expressed by the Sciama–Kibble field equations as
the Einstein–Sciama–Kibble torsion gravity.

The ESK theory of gravity is thus the most complete theory describing the dynamics
of the space–time, and, because torsion is coupled to the spin in the same spirit in which
curvature is coupled to energy, then it is the theory of space–time in which the coupling
to its matter content is achieved most exhaustively. The central point of the situation is
therefore brought to the question asking whether there actually exists something possessing
both spin and energy as a form of matter, which can profit from the setting that is provided
by the ESK gravity.

As a matter of fact, such a theory not only exists, but it is also very well known,
the Dirac spinorial field theory.

With so much insight, it is an odd circumstance that there be still such a controversy
about the role of torsion besides that of curvature in gravity, and there may actually be
several reasons for it. The single most important one may be that Einstein gravity was first
published in the year 1916 when no spin was known and, despite being then insightful
to set the torsion tensor to zero, when Dirac came with a theory of spinors comprising an
intrinsic spin in 1928, the successes of Einstein theory of gravity were already too great to
make anyone wonder about the possibility of modifying it.

Of course, this is no scientific reason to hinder research, but, sociologically, it can
be easy to understand why one would not lightly go to look beyond something good,
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especially today that the successes of the Einstein theory of gravitation have become
practically complete.

In the present report, we would like to change this tendency by considering torsion in
gravity coupled to spinor fields and showing all advantages that we can get, from theoreti-
cal consistency, to phenomenological applications.

Thus, in a second chapter, we will investigate the theoretical advantages obtained from
the torsion–spin interactions. These will span from the revision of the Hawking–Penrose
theorem about the inevitability of gravitational singularity formation to some discussion
about the positivity of the energy, passing through the Pauli exclusion principle and the
concept of macroscopic approximation.

In a third and final chapter, we are going to employ the presented theory to assess
some of the known open problems in the standard models of particles and cosmology.

One: Fundamental Theory

The first chapter will be about presenting the fundamental theory, and it will be
divided into three sections: in the first section, we will define all the kinematic quantities
and see how they can be dynamically coupled. It will be followed by a second section in
which we will deepen the study about what is torsion and the spinor fields and the way
they interact. A third section will be about studying limiting situations that can allow us to
get even more information about the torsion–spin coupling.

2. Torsion Gravity for Spinor Fields

In this first section, we introduce the physical theory that will be our reference throughout
the entire work: we start with the most general geometric introduction of the kinematic
quantities. In addition, we will continue by establishing their link in terms of dynamical
field equations.

2.1. Geometry and Its Matter Content

To build the geometric background on which to define kinematic fields, we start
with the symmetry principle at the basis of any theory in physics: covariance under the
most general transformation of coordinates. We will see in what way from such a general
environment a natural definition of matter field will spontaneously emerge.

2.1.1. Tensor and Gauge Fields

The principle of covariance under the most general transformation of coordinates is
possible one of the most self-evident principles in all of physics: it states that our way of
writing equations might a priori be conditioned in principle by the coordinates we choose,
but observable properties should not feel affected by coordinate artifacts brought by us.
This means that of all possible manners we have to write physics, there must be one that is
not influenced by any choice of coordinates, or in other words, this specific way of writing
physics has to be invariant between different coordinate systems.

To see how this is possible, we start with the following definition. Suppose that a
certain physical quantity can be described in terms of the object Tα...σ

ρ...ζ such that it is written
as Tα...σ

ρ...ζ (x) with respect to coordinates x, and it is written as T′α...σ
ρ...ζ (x′) with respect to

coordinates x′ in general, and suppose that

T′α...σ
ρ...ζ =

∂xβ

∂x′ρ
...

∂xθ

∂x′ζ
∂x′α

∂xν
...

∂x′σ

∂xτ
Tν...τ

β...θ

where x′= x′(x) determines the passage from the first to the second system of coordinates.
If this happens, such a quantity is called a tensor. Now, suppose that one specific property
of this quantity be described as

Tν...τ
β...θ =0

7
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in the first system of coordinates. According to the above definition, then, we have that

T′α...σ
ρ...ζ = ∂xβ

∂x′ρ ... ∂xθ

∂x′ζ
∂x′α
∂xν ... ∂x′σ

∂xτ Tν...τ
β...θ =

= ∂xβ

∂x′ρ ... ∂xθ

∂x′ζ
∂x′α
∂xν ... ∂x′σ

∂xτ 0≡0

and thus

T′α...σ
ρ...ζ =0

showing that the same property pertains to that quantity also in the second system of
coordinates as well. In this way, we have that, if the property of a quantity is encoded
as the vanishing of a tensor, then we can be certain that such a property pertains to that
quantity regardless of the system of coordinates. In addition, this is just covariance.

The principle of covariance is therefore implemented in the geometry by the straight-
forward requirement that this geometry be written in terms of tensors. Therefore, let
be given two systems of coordinates as x and x′ related by the most general coordinate
transformation x′= x′(x) and a set of functions of these coordinates written with respect
to the first and the second system of coordinates as T(x) and T′(x′) and such that, for a
coordinate transformation, they are related by

T′α...σ
ρ...ζ =sign det

(
∂x′
∂x

)
∂xβ

∂x′ρ ... ∂xθ

∂x′ζ
∂x′α
∂xν ... ∂x′σ

∂xτ Tν...τ
β...θ (1)

Then, this quantity is called tensor or pseudo-tensor, according to whether the sign of the
determinant of such a transformation is positive or negative. For a tensor with at least two
upper or two lower indices, we might switch the two indices obtaining a tensor called
transposition of the original tensor in those two indices, and if it happens to be equal to
the initial tensor up to the sign plus or minus, we say that the tensor is symmetric or
antisymmetric in those two indices, respectively. Given a tensor with at least one upper
and one lower index, we can consider one of the upper and one of the lower indices
forcing them to have the same value and performing the sum over every possible value
of those indices obtaining a tensor called contraction in those indices, and this process can
be repeated until we reach a tensor whose contraction is zero, called irreducible. Particular
cases are tensors having one index called vectors, while tensors without any index are called
scalars. Tensors with the same index configuration can be summed and any two tensors can
be multiplied in a component-by-component way, according to the usual rules of algebraic
calculus as they are well known.

There is therefore no need to spend more time in the algebraic properties of tensors.
However, differential properties of tensors need some deepening. The problem with differ-
entiation applied to the case of tensors is that such an operation spoils the transformation
law of a tensor in very general circumstances. Thus, if we want to construct an operation
that is able to generalize the usual derivative up to a derivative that respects covariance,
we must begin by noticing that, because a tensor is a set of fields, in general, it will have
two types of variations: the first is due to the fact that tensors fields are fields, coordinates
dependent, and so a local structure must be present as

local∆T
α1...αj

β1...βi
= T

α1...αj

β1...βi
(x′)− T

α1...αj

β1...βi
(x) =

= ∂µT
α1...αj

β1...βi
(x)δxµ

8
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at the first order infinitesimal; the second is due to the fact that tensors fields are tensors,
so a system of components, and thus a re-shuffling of the different components must be
allowed according to

structure∆T
α1...αj

β1...βi
= T

′α1...αj

β1...βi
− T

α1...αj

β1...βi
=

= [(δΓ
α1
θ T

θ...αj

β1...βi
+...+δΓ

αj

θ Tα1...θ
β1...βi

)−

−(δΓθ
β1

T
α1...αj

θ...βi
+...+δΓθ

βi
T

α1...αj

β1...θ )]

as the most general form in which this can be done while respecting the fact that the
differential structure requires the linearity and the Leibniz rule, and again at the first order
of infinitesimal. In full, we have

∆T
α1...αj

β1...βi
= local∆T

α1...αj

β1...βi
+ structure∆T

α1...αj

β1...βi
=

= ∂µT
α1...αj

β1...βi
(x)δxµ +

+[(δΓ
α1
θ T

θ...αj

β1...βi
+ ... + δΓ

αj

θ Tα1...θ
β1...βi

)−

−(δΓθ
β1

T
α1...αj

θ...βi
+ ... + δΓθ

βi
T

α1...αj

β1...θ )]

at the first order infinitesimal. Thus, defining δΓα
β =Γα

βµδxµ and dividing by δxµ, we obtain
that

DµT
α1...αj

β1...βi
=∂µT

α1...αj

β1...βi
+

+(Γα1
θµT

θ...αj

β1...βi
+ ... + Γ

αj

θµTα1...θ
β1...βi

)−

−(Γθ
β1µT

α1...αj

θ...βi
+ ... + Γθ

βiµ
T

α1...αj

β1...θ )

after taking the limit. This is the most general form of potential covariant derivative. To see
that this derivative is indeed covariant, we have to require that Γα

βµ transforms with a
specific non-tensorial transformation law such as to compensate for the non-tensorial
transformation law of the partial derivative. In the simplest case of one tensorial index, we
have that the derivative is

DιV
α = ∂ιV

α + VβΓα
βι

whose transformation law is given by

∂xβ

∂x′β′
∂x′α

′

∂xα (∂βVα + VρΓα
ρβ) =

∂xβ

∂x′β′
∂x′α

′

∂xα DβVα =

= (DβVα)′=(∂βVα+VρΓα
ρβ)

′=∂β′V
α′+Vρ′Γ′α′

ρ′β′ =

= ∂xθ

∂x′β′
∂

∂xθ

(
∂x′α

′

∂xα Vα
)
+ ∂x′ρ

′

∂xρ VρΓ′α′
ρ′β′ =

= ∂xθ

∂x′β′
∂x′α

′

∂xα
∂Vα

∂xθ + ∂xθ

∂x′β′
∂

∂xθ
∂x′α

′

∂xα Vα + ∂x′ρ
′

∂xρ VρΓ′α′
ρ′β′

in which terms with the derivatives disappear. Then,

∂xβ

∂x′β′
∂x′α

′

∂xα VρΓα
ρβ = ∂xθ

∂x′β′
∂

∂xθ
∂x′α

′

∂xα Vα + ∂x′ρ
′

∂xρ VρΓ′α′
ρ′β′

and since this has to hold for any vector

∂xβ

∂x′β′
∂x′α

′

∂xα Γα
ρβ = ∂xθ

∂x′β′
∂

∂xθ
∂x′α

′

∂xρ + ∂x′ρ
′

∂xρ Γ′α′
ρ′β′

9
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which is the non-tensorial transformation that the set of coefficients Γα
ρβ must have to

ensure that the full derivative transforms as a tensor in this very specific case with a vector
field. However, quite remarkably, the very same non-tensorial transformation of Γα

ρβ can
be used for each term in the most general form of derivative for a generic tensor, and so
the obtained result is completely general.

The set of coefficients Γα
ρβ have no specific symmetry properties in the lower indices,

and consequently we have that we can write

Γα
µν ≡ 1

2 (Γ
α
µν+Γα

νµ)+
1
2 (Γ

α
µν−Γα

νµ)

where the transformation properties of the full object is inherited by the first part, which is
symmetric in the two lower indices, and it can be indicated as

Λα
µν =

1
2 (Γ

α
µν+Γα

νµ)

while the second part

Qα
µν = Γα

µν − Γα
νµ

transforms as a tensor such that Qα
µν = −Qα

νµ, meaning that it is antisymmetric in its
second pair of indices. Thus,

Γα
µν =Λα

µν+
1
2 Qα

µν

in the most general case. As in the covariant derivatives, the connection enters linearly, and
the splitting in symmetric and antisymmetric parts sums up to a linear combination of the
tensor Qα

µν plus the terms linear in the symmetric connection, which therefore forms yet
another type of covariant derivative that is defined according to

∇µT
α1...αj

β1...βi
=∂µT

α1...αj

β1...βi
+

+(Λα1
θµT

θ...αj

β1...βi
+ ... + Λ

αj

θµTα1...θ
β1...βi

)−

−(Λθ
β1µT

α1...αj

θ...βi
+ ... + Λθ

βiµ
T

α1...αj

β1...θ )

and in it the fact that the symmetric connection is indeed symmetric allows for particularly
simplified expressions in some special cases. For instance, taking the symmetric covariant
derivative of a tensor with all lower indices gives

∇µTβ1...βi
=∂µTβ1...βi

−Λθ
β1µTθ...βi

− ... − Λθ
βiµ

Tβ1...θ

which is particularly interesting because we see that the symmetric connection always
saturates the same index in the upper position, so that, if we further specialize onto the
case in which the tensor is completely antisymmetric, we obtain that

∇[µTβ...ρ]=∇µTβ...ρ−∇βTµ...ρ+...−∇ρTβ...µ =

= ∂µTβ...ρ−Λσ
βµTσ...ρ − ... − Λσ

ρµTβ...σ −
−∂βTµ...ρ+Λσ

µβTσ...ρ + ... + Λσ
ρβTµ...σ + ...

... − ∂ρTβ...µ+Λσ
βρTσ...µ + ... + Λσ

µρTβ...σ =

= ∂µTβ...ρ−∂βTµ...ρ+...−∂ρTβ...µ =∂[µTβ...ρ]

where all symmetric connections cancelled off leaving an expression written only in terms
of partial derivatives but that is a completely antisymmetric covariant derivative in the
most general case. This is a very peculiar property of tensors having all lower indices and
being completely antisymmetric in all of these indices, and there is an entire domain related
to this type of tensors and covariant derivatives, in which tensors are known as forms and

10
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the covariant derivatives are part of what is known as exterior calculus. Nevertheless, we
will not discuss it here because we do not want to introduce even further mathematical
concepts and after all forms and exterior derivatives are nothing but a specific type of
tensors. We encourage the interested readers to study this domain on their own.

Thus, to summarize what we have done, we have that the set of functions Γ
ρ
αβ trans-

forming as

Γ
′ρ
στ =

(
Γα

µν− ∂xα

∂x′κ
∂2x′κ

∂xν∂xµ

)
∂x′ρ
∂xα

∂xµ

∂x′σ
∂xν

∂x′τ (2)

is called connection, and it can be decomposed as

Γ
ρ
αβ =Λ

ρ
αβ+

1
2 Q

ρ
αβ (3)

where Λ
ρ
αβ is a set of functions transforming according to the law of a connection but which

are symmetric in the two lower indices called symmetric connection and

Q
ρ

αβ = Γ
ρ
αβ−Γ

ρ
βα (4)

which is a tensor antisymmetric in the two lower indices called torsion tensor. In terms of
the connection, we may write the covariant derivative in the most general case as

DµT
α1...αj

β1...βi
=∂µT

α1...αj

β1...βi
+∑

k=j
k=1 Γ

αk
σµT

α1...σ...αj

β1...βi
−

−∑
k=i
k=1 Γσ

βkµT
α1...αj

β1...σ...βi
(5)

decomposing as

DµT
α1...αj

β1...βi
=∇µT

α1...αj

β1...βi
+ 1

2 ∑
k=j
k=1 Q

αk
σµT

α1...σ...αj

β1...βi
−

− 1
2 ∑

k=i
k=1 Qσ

βkµT
α1...αj

β1...σ...βi
(6)

with spurious terms linear in the torsion tensor and

∇µT
α1...αj

β1...βi
=∂µT

α1...αj

β1...βi
+∑

k=j
k=1 Λ

αk
σµT

α1...σ...αj

β1...βi
−

−∑
k=i
k=1 Λσ

βkµT
α1...αj

β1...σ...βi
(7)

which is the covariant derivative calculated with respect to the symmetric connection. If we
apply the last definition to the particular case of tensors with all lower indices and being
completely antisymmetric, we get

∇[νTα...σ]=∂[νTα...σ]≡ (∂T)να...σ, (8)

which is still a tensor and such that it is completely antisymmetric called a covariant curl of
the tensor field. When in the covariant derivative of a tensor with at least one upper index
we contract the index of derivation with an upper index of the tensor field, we get what is
known as covariant divergence in that index of the tensor field.

When we have introduced the concept of tensor, it naturally emerged that, in the
definition, two types of indices were present, upper and lower, reflecting the fact that a
tensor could transform according to two type of transformations, direct and inverse. How-
ever, these two types of transformation are two different forms of the same transformation,
and so one should expect that the two types of indices be two different arrangements of
the same system of components. Thus, there should be no difference in content if we move
a given index up or down at will.

What this implies is that it should be possible to move indices up and down without
losing or adding anything to the information content: this can be done by considering the

11
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Kronecker tensor δα
ν and postulating the existence of two tensors gαν and gαν in general.

Then, we can define the operation of raising and lowering of tensorial indices by consider-
ing that Aπ gπν and Aπ gπν are tensors that are related to the initial ones but with the index
lowered and raised, respectively, and so we may define these two tensors as Aπ gπν ≡ Aν

and Aπ gπν ≡ Aν as the same tensors but with the index moved in a different position with
respect to the initial one. While it is certainly useful to have the possibility to perform such
an operation, we also have to consider that such an operation has a two-fold ambiguity
concerning the fact that, besides the contractions Aπ gπν ≡ Aν and Aπ gπν ≡ Aν, we may
have the contractions Aπ gνπ ≡ Aν and Aπ gνπ ≡ Aν too. In addition, we may decide to
raise the previously lowered index to the initial position or lower the previously raise index
to the initial position, so that the above ambiguity becomes four-fold with Aπ gπνgσν ≡ Aσ

and Aπ gνπ gσν ≡ Aσ as well as Aπ gπνgνσ ≡ Aσ and Aπ gνπ gνσ ≡ Aσ as equally good
possibilities that may be considered. On the other hand, requiring that raising one index up
and then lowering that index down give back the initial tensor in all of the four possibilities
leads to the following relationships

Aµ(gµσgσκ − δ
µ
κ ) = 0 Aµ(gσµgσκ − δ

µ
κ ) = 0

Aµ(gµσgκσ − δ
µ
κ ) = 0 Aµ(gσµgκσ − δ

µ
κ ) = 0

for any possible tensor Aµ, so that

(gµσgσκ − δ
µ
κ ) = 0 (gσµgσκ − δ

µ
κ ) = 0

(gµσgκσ − δ
µ
κ ) = 0 (gσµgκσ − δ

µ
κ ) = 0

identically. Taking the differences

gµσ(gσκ − gκσ) = 0 (gσµ − gµσ)gσκ = 0

gσµ(gσκ − gκσ) = 0 (gσµ − gµσ)gκσ = 0,

we may work out that

gακ = gκα

gακ = gκα

together with the condition

gσµgκσ =δ
µ
κ

meaning that, seen as matrices, they are symmetric and one the inverse of the other, and so,
in particular, they are non-degenerate, as it has been demonstrated in [9]. This implies
that what has been introduced to raise lower or lower upper indices has all the features
of a metric and therefore these two tensors can also be identified with the metric of the
space–time. We remark that this is exactly the opposite to the normal approach, where the
metric is postulated, and then it is realized that it can be used to move up and down indices
of tensors. The equivalence of these two a priori unrelated operations looks profound.

The metric determinant det(gµν)= g can never be zero, but it follows the transforma-
tion law

g′ = det
∣∣∣ ∂x

∂x′

∣∣∣
2
g

which is not the transformation law for a tensor. However, it can still be used to form a
very important tensor as in the following. Consider in fact the non-tensorial quantity that
is given by ǫi1i2i3i4 such that it is equal to the unity for an even permutation of (1234) and
minus the unity for an odd permutation of (1234) and zero for a sequence that is not a
permutation of (1234) at all. As this set of coefficients is completely antisymmetric with a

12
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number of indices that is equal to the dimension, we have that it has only one independent
component, transforming as

∂xi1

∂x
′i′1

∂xi2

∂x
′i′2

∂xi3

∂x
′i′3

∂xi4

∂x
′i′4

ǫi1i2i3i4 = ǫi′1i′2i′3i′4
α

for a given α function to be determined. In addition, because the determinant of any generic
matrix can always be written in terms of these coefficients according to the expression
given by detM = Σij

ǫi1i2i3i4 M1i1 M2i2 M3i3 M4i4 , then

det ∂x
∂x′ =

∂xi1

∂x′1
∂xi2

∂x′2
∂xi3

∂x′3
∂xi4

∂x′4 ǫi1i2i3i4 = ǫ1234α = α

furnishing the α function. Thus, we have

ǫi′1i′2i′3i′4
= det ∂x′

∂x
∂xi1

∂x
′i′1

∂xi2

∂x
′i′2

∂xi3

∂x
′i′3

∂xi4

∂x
′i′4

ǫi1i2i3i4

which is non-tensorial, but its non-tensoriality perfectly matches that of the determinant of
the metric. Therefore, we have that they compensate in the combined form

(g
1
2 ǫανστ)′=sign det

∣∣∣ ∂x′
∂x

∣∣∣∂xβ

∂x′α
∂xµ

∂x′ν
∂xθ

∂x′σ
∂xρ

∂x′τ(g
1
2 ǫβµθρ),

which is in fact the transformation that defines a pseudo-tensorial field. Notice, however,
that, if we were to define the tensor with all lower indices as

εανστ = ǫανστ |g|
1
2

the correspondent tensor with all upper indices would be given according to the following
expression:

εανστ = ǫανστ |g|− 1
2

in order for it to be consistently defined. This difference is necessary, as it can be seen from
the fact that the quantity

εi1i2i3i4 ε j1 j2 j3 j4 = −det

∣∣∣∣∣∣∣∣∣∣

δ
i1
j1

δi2
j1

δi3
j1

δ
i4
j1

δ
i1
j2

δi2
j2

δi3
j2

δ
i4
j2

δ
i1
j3

δi2
j3

δi3
j3

δ
i4
j3

δ
i1
j4

δi2
j4

δi3
j4

δ
i4
j4

∣∣∣∣∣∣∣∣∣∣

as it is very easy to check by performing a straightforward substitution and making all the
direct calculations.

To summarize, the object δ
β
α that is unity or zero according to whether the value of

its indices is equal or not is the unity tensor mentioned. We assume the existence of two
tensors gακ and gακ symmetric and such that

gσµgκσ =δ
µ
κ (9)

called metric tensors. In addition, we define

δ
i0i1i2i3
j0 j1 j2 j3

= det

∣∣∣∣∣∣∣∣∣∣

δi0
j0

δ
i1
j0

δi2
j0

δi3
j0

δi0
j1

δ
i1
j1

δi2
j1

δi3
j1

δi0
j2

δ
i1
j2

δi2
j2

δi3
j2

δi0
j3

δ
i1
j3

δi2
j3

δi3
j3

∣∣∣∣∣∣∣∣∣∣

(10)
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as a completely antisymmetric unity tensor. The quantity given by ǫi0i1i2i3 equal to the unity,
minus unity, or zero according to whether (i0i1i2i3) is an even, odd, or not a permutation
of (0123) can be taken with the determinant of the metric det(gµν)= g to define

εανστ = ǫανστ |g|− 1
2 (11)

as well as

εανστ = ǫανστ |g|
1
2 (12)

which are completely antisymmetric and such that

εi0i1i2i3 ε j0 j1 j2 j3 = −δ
i0i1i2i3
j0 j1 j2 j3

(13)

called completely antisymmetric pseudo-tensors. When a tensor with at least one index is
multiplied by the metric tensor and the index is contracted with one index of the metric
tensor, the result is a tensor in which the index has been vertically moved. In particular,
if a tensor that is completely antisymmetric in k indices is multiplied by the completely
antisymmetric pseudo-tensors and the k indices of the tensor are contracted with k indices of
the completely antisymmetric pseudo-tensors, the result is a pseudo-tensor antisymmetric
in (4 − k) indices called dual.

We are now at a point where we have defined for tensors a covariant operation that
respects all rules of differentiation as well as the tensorial structure and an operation for the
vertical re-configuration of tensorial indices, and we may wonder what happens when both
operations are taken in parallel. More precisely, if the vertical index configuration cannot
change the information content of a tensor, then this must be true for any tensor, and, in
particular, if the tensor is the covariant derivative of some other tensor. Consequently, it
must be possible to define

gαβDµT
ν...ζ
βρσ...θ =DµT

αν...ζ
ρσ...θ

which therefore implies

DµT
αν...ζ
ρσ...θ =Dµ(gαβT

ν...ζ
βρσ...θ)=DµgαβT

ν...ζ
βρσ...θ +

+gαβDµT
ν...ζ
βρσ...θ

so that we are left with the equation

DµgαβT
ν...ζ
βρσ...θ = 0

for any tensor, implying Dµgαβ =0 as well. This means that the metric tensor is covariantly
constant. Conditions of vanishing of the covariant derivative of the metric tensor mean
that the irrelevance of the indices disposition must be valid regardless of the differential
order of the tensor. If we were to follow the common approach defining the metric first,
these conditions would mean that the metric structure and the local structure will have
to be independent. This is reasonable since, if a vector is constant, its norm should be
constant too. It is interesting to notice that, since we have two types of covariant derivatives
and because the present arguments hold, regardless of the specific covariant derivative,
then we have to assume that both covariant derivatives of the metric tensor vanish as
Dµgαβ =∇µgαβ = 0 in general. In particular, we have that Dθεαβµν =∇θεαβµν = 0 hold as
well. If we are insisting that this happen, then there are very remarkable consequences that
follow. To see this, expand

0 = Dρgαβ = ∂ρgαβ−gαµΓ
µ
βρ−gµβΓ

µ
αρ

14
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and take the three different indices permutations combined together with the definition of
torsion to get

Γ
ρ
αβ =

1
2 Q

ρ
αβ+

1
2 (Q

ρ
αβ +Q

ρ
βα ) +

+ 1
2 gρµ

(
∂βgαµ+∂αgµβ−∂µgαβ

)

in which Qρασ is the torsion tensor antisymmetric in the two lower indices, while (Qαβρ+
Qβαρ) is a tensor symmetric in those indices, whereas the remaining coefficients written in
terms of the partial derivatives of the metric tensor transform as a connection and they are
symmetric in those very indices. This expression shows that the most general connection
can be decomposed in terms of the torsion plus a symmetric connection, as we already
knew from expression (3), but, in addition, it tells us the explicit form of Λ

ρ
αβ as given by a

symmetric combination of two torsions plus a symmetric connection entirely written in
terms of the metric. It is essential to note that, if we want all possible connections to give
rise to covariant derivatives, which, once applied onto the metric, give zero, then we have
to restrict the torsion to verify

Qαβρ = −Qβαρ

spelling its complete antisymmetry [10]. The condition of metric-compatible connection
extended to all connections implies the torsion to be completely antisymmetric, once
again establishing a link between two structures that are a priori unrelated. The complete
antisymmetry of torsion is equivalent to the existence of a single symmetric part of the
connection, and therefore to the existence of a unique connection writable in terms of the
metric alone. It is a remarkable fact that the torsion tensor could be reduced to be com-
pletely antisymmetric by employing a number of unrelated arguments as those presented
in [11–14] and, although torsion might well not display such a symmetry, it is certainly
intriguing to argue what the consequences are of this condition. We will see that some of
these consequence are of paramount importance next.

Thus, we summarize by saying that the torsion tensor with all lower indices is taken
to be completely antisymmetric and therefore it is possible to write it according to

Qασν =
1
6 Wµεµασν (14)

in terms of the Wµ pseudo-vector, therefore called the torsion pseudo-vector, while the
connection

Λ
ρ
αβ = 1

2 gρµ
(
∂βgαµ + ∂αgµβ − ∂µgαβ

)
(15)

is symmetric and written entirely in terms of the partial derivatives of the metric tensor
and, for this reason called the metric connection, so that

Γ
ρ
αβ =

1
2 gρµ

[
(∂βgαµ+∂αgµβ−∂µgαβ)+

1
6 Wνενµαβ

]
(16)

is the most general connection and such a decomposition is equivalent to the validity of
the following conditions:

∇θεαβµν ≡Dθεαβµν =0 (17)

∇µgαβ ≡Dµgαβ =0 (18)

called metric-compatibility conditions for the connection.
Thus far, we have defined tensors and the properties compatible with the derivation.

It is now the time to see what happens when we go to a following order derivative.
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We may proceed to calculate the commutator of two derivatives, which in the particu-
lar case of vectors is

[Dα, Dβ]T
σ = (Γ

ρ
αβ − Γ

ρ
βα)DρTσ +

+(∂αΓσ
κβ − ∂βΓσ

κα + Γ
ρ
κβΓσ

ρα − Γ
ρ
καΓσ

ρβ)T
κ

with no second derivatives. The only derivative term left is proportional to the torsion
tensor Q

ρ
µα plus another

Gσ
καβ = ∂αΓσ

κβ − ∂βΓσ
κα + Γ

ρ
κβΓσ

ρα − Γ
ρ
καΓσ

ρβ

which, although written in terms of the connection alone, is a tensor. With these expressions,
we have

[Dα, Dβ]T
σ = Q

ρ
αβDρTσ + Gσ

καβTκ

giving the commutator of vectors in particular. As it has been done for the connection and
the most general covariant derivative, the interesting thing is that the definition of tensor
Gσ

καβ can be used in the most general case of the commutator of covariant derivatives. We
also have

(∂∂T)αβρ...µ =∂[α(∂T)βρ...µ]=∂[α∂[βTρ...µ]] =

= ∂[α∂βTρ...µ]=0

because partial derivatives always commute and therefore their commutator is always
zero.Before we have had the opportunity to briefly talk about external calculus, where
the external derivatives are used to calculate the border of a manifold, and the above
expression refers to the fact that the border has a border that vanishes, or that there is
no border of a border. Once again, apart from curiosity, there is no need to deepen these
concepts in the following.

To summarize, from the connection, we may calculate

Gσ
καβ = ∂αΓσ

κβ − ∂βΓσ
κα + Γσ

ραΓ
ρ
κβ − Γσ

ρβΓ
ρ
κα (19)

which is a tensor antisymmetric in the last two indices and verifying the following cyclic
permutation condition

DκQ
ρ

µν+DνQ
ρ

κµ+DµQ
ρ

νκ +

+Qπ
νκQ

ρ
µπ+ Qπ

µνQ
ρ

κπ+ Qπ
κµQ

ρ
νπ − (20)

−G
ρ
κνµ − G

ρ
µκν − G

ρ
νµκ ≡ 0

called the curvature tensor and decomposable as

Gσ
καβ =Rσ

καβ+
1
2 (∇αQσ

κβ−∇βQσ
κα) +

+ 1
4 (Q

σ
ραQ

ρ
κβ−Qσ

ρβQ
ρ

κα) (21)

in terms of torsion and

Rσ
καβ = ∂αΛσ

κβ − ∂βΛσ
κα + Λσ

ραΛ
ρ
κβ − Λσ

ρβΛ
ρ
κα (22)

as a tensor antisymmetric in the last two indices and such that it verifies the cyclic permu-
tation condition

R
ρ

κνµ + R
ρ

µκν + R
ρ

νµκ ≡ 0 (23)
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called metric curvature tensor. By employing torsion and curvature, it is possible to demon-
strate that we have

[Dµ, Dν]T
α1...αj

β1...βi
=Q

η
µνDηT

α1...αj

β1...βi
+

+∑
k=j
k=1 G

αk
σµνT

α1...σ...αj

β1...βi
− (24)

−∑
k=i
k=1 Gσ

βkµνT
α1...αj

β1...σ...βi

as the expression for commutator of covariant derivatives of the tensor field. In particular, we
have that

∂∂T = 0 (25)

which is valid in the most general circumstance.
We have the validity of the following decomposition

Rκραµ =
1
2 (∂α∂ρgµκ−∂µ∂ρgκα+∂µ∂κ gαρ−∂κ∂αgµρ) +

+ 1
4 gσν[(∂ρgαν+∂αgρν−∂νgρα)(∂κ gµσ+∂µgκσ−∂σgκµ)− (26)

−(∂ρgµν+∂µgρν−∂νgρµ)(∂κ gασ+∂αgκσ−∂σgκα)]

showing the antisymmetry also in the first two indices as well as the symmetry involving
all four indices

Rρκµν =Rµνρκ (27)

and, as a consequence, the metric curvature tensor has one independent contraction
Rµσ =R

ρ
µρσ, which is symmetric and called Ricci metric curvature tensor with contraction

R=Rµσgµσ called Ricci metric curvature scalar, so that, with torsion, we can write

Gκραµ =
1
2 (∂α∂ρgµκ−∂µ∂ρgκα+∂µ∂κ gαρ−∂κ∂αgµρ) +

+ 1
4 gσν[(∂ρgαν+∂αgρν−∂νgρα)(∂κ gµσ+∂µgκσ−∂σgκµ)−
−(∂ρgµν+∂µgρν−∂νgρµ)(∂κ gασ+∂αgκσ−∂σgκα)] + (28)

+ 1
12∇ηWσ(gαηεσκρµ−gµηεσκρα)+

1
144 [WσWσ(gµρgακ−gµκ gαρ) +

+(WαWρgµκ−WµWρgακ+WµWκ gαρ−WαWκ gµρ)]

showing the antisymmetry in the first two indices, and, as a consequence, it has one inde-
pendent contraction chosen as Gµσ =G

ρ
µρσ called Ricci curvature tensor whose contraction

G=Gµσgµσ is called Ricci curvature scalar.
In addition, finally, we may consider the cyclic permutation of commutator of com-

mutators of covariant derivatives and see that the results are geometric identities.
In general, we have that we can write

DµGν
ικρ + DκGν

ιρµ + DρGν
ιµκ +

+Gν
ιβµQ

β
ρκ + Gν

ιβκQ
β

µρ + Gν
ιβρQ

β
κµ ≡ 0 (29)

for torsion and curvature valid as a geometric identity.
Thus far, we have introduced the concept of tensor and the way to move its indices,

which we recall were coordinate indices. Coordinate indices are important since they are
the type of indices involved in differentiation. However, on the other hand, tensors in
coordinate indices always feel the specificity of the coordinate system. Tensorial equations
do remain formally the same in all coordinate system, but the tensors themselves change
in content while changing the coordinate system. The only types of tensors which, also in
content, remain the same in all of the coordinate systems are the tensors that are identically
equal to zero and the scalars. Zero tensors offer little information, but scalars can be
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used to build a formalism in which tensors can be rendered, both in form and in content,
completely invariant. This formalism is known as Lorentz formalism.

In Lorentz formalism, the idea is that of introducing a basis of vectors ξα
a having two

types of indices: one type of indices (Greek) is the usual coordinate index referring to
the component of the vector, whereas the other type of indices (Latin) is a new Lorentz
index referring to which vector of the basis we are considering. Under the point of view
of coordinate transformations, the coordinate index ensures the transformation law of a
vector, but clearly the other index ensures some different type of transformation that we
will next find to be a Lorentz transformation.

Consider, for example, the tensor given by Tασ and multiply it by two of the vectors
ξα

a of the basis contracting the coordinate indices together: so Tασξα
a ξσ

s =Tas is an object that
according to a coordinate transformation law does not transform at all, thus it is completely
invariant, and this is exactly what we wanted. For one tensor with upper indices, the
procedure would be the same but just made in terms of the covectors ξa

α as clear. Converting
a coordinate index to a Lorentz index and then back to the coordinate index requires that
ξα

b ξc
α = δc

b and ξα
k ξk

σ = δα
σ as a simple consistency condition. Finally, the operation

for moving Lorentz indices is performed in terms of the metric tensor in Lorentz form
gασξα

a ξσ
s = gas, but, because we can always ortho-normalize the basis, the metric tensor in

Lorentz form is just the Minkowskian matrix gas =ηas as it is well known indeed. Once the
basis ξσ

a is assigned, we may pass to another basis ξ ′σa linked to the initial according to the
transformation ξ ′σa =Λb

aξσ
b with Λb

a chosen as to preserve the structure of the Minkowskian
matrix and so such that it has to yield η =ΛηΛT known as Lorentz transformation and
justifying the name of the formalism.

In conclusion, after that, the coordinate tensors are converted into the Lorentz tensors,
they are scalars under a general coordinate transformation but tensors under the Lorentz
transformations. In doing so, we have converted the most general formalism into an
equivalent formalism in which, however, the structure of the transformation now is very
specific, and it can be made explicit. It is, in fact, known from the theory of Lie groups that
any continuous transformation is writable according to

Λ = e
1
2 σabθab

in which θab = −θba are the parameters while σab = −σba are the generators and which
verify specific commutation relationships that depend on the specific transformation alone.
In the case of Lorentz transformation, it is known that we have six parameters and six
generators given by

(σab)
i
j =δi

aηjb−δi
bηja

and verifying

[σab, σcd]=ηadσbc−ηacσbd+ηbcσad−ηbdσac

in general. While the generators are peculiar of this so-called real representation, the com-
mutations relationship are meant to be a general character of the Lorentz transformation.
As such, they will always be the same for any representation of Lorentz transformations.
This shall be the Lorentz transformation that we will employ next.

We may condense everything into the following statements, starting from the fact that
given a Lorentz transformation Λ the set of functions T

a1...ai
r1...rj

transforming as

T
′a′1...a′m
r′1...r′n

=(Λ−1)r1
r′1

...(Λ−1)rn

r′n
(Λ)

a′1
a1 ...(Λ)

a′m
am Ta1...am

r1...rn (30)

is a tensor in Lorentz formalism. Compared to the coordinate formalism, symmetry properties
and contractions, as well as all algebraic operations, are given analogously.
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However, again, Lorentz transformations can be local and so differential operations
must be defined by introducing a connection. As we have done before, the connection
must be introduced in general in terms of its transformation.

Therefore, once again, we summarize by saying that the set of functions Ωa
bµ such that,

under a general coordinate transformation, transforming as a lower Greek index vector
and under a Lorentz transformation transforming as

Ω′a′
b′ν = Λa′

a

[
Ωa

bν − (Λ−1)a
k(∂νΛ)k

b

]
(Λ−1)b

b′ (31)

is called spin connection, and no decomposition nor in particular any torsion can be defined
as no transposition of indices of different types is defined. With it, we have

DµT
a1...ai
r1...rj

= ∂µT
a1...ai
r1...rj

+∑
k=i
k=1 Ω

ak
pµT

a1...p...ai
r1...rj

−

−∑
k=j
k=1 Ω

p
rkµT

a1...ai
r1...p...rj

(32)

as covariant derivative of tensors in Lorentz formalism.
As we have anticipated, the passage to this formalism is done with the ξa

σ and ξσ
a

vectors while the vertical movement of Latin indices is done with the ηab matrix.
Thus, the passage from general coordinate formalism to the Lorentz formalism is

made via the introduction of the bases of vectors ξa
σ and ξσ

a dual of one another

ξa
µξ

µ
r = δa

r (33)

ξa
µξ

ρ
a = δ

ρ
µ (34)

called tetrad fields and such that they verify the pair of ortho-normality conditions given by

gασξa
αξb

σ = ηab (35)

gασξα
a ξσ

b = ηab (36)

as η are the Minkowskian matrices, preserved by Lorentz transformations. With the dual
bases, ortho-normal with respect to the Minkowskian matrices, we can take a tensor in
coordinate formalism with at least one Greek index and multiply it by the basis contracting
one Greek index with the Greek index of the bases therefore obtaining the tensor in Lorentz
formalism with a Latin index, and with a vertical movement of Latin indices which is
performed in terms of the Minkowskian matrix as it is expected.

Notice that, if these two formalisms are perfectly equivalent, then their covariant
derivatives should be equivalent and in particular we should be able from the most general
connection to derive the spin connection. Upon requiring that Dµξα

a =0 as well as Dµηab =0,
we have exactly this.

In fact, in terms of the most general coordinate connection and tetrad fields, we can
always write

Ωa
bµ = ξν

b ξa
ρ

(
Γ

ρ
νµ − ξ

ρ
k ∂µξk

ν

)
(37)

antisymmetric in the Lorentz indices and such that, from it, we can derive the torsion
tensor according to

Qa
µν =−(∂µξa

ν−∂νξa
µ+ξb

νΩa
bµ−ξb

µΩa
bν) (38)

as it is easy to see, and we have that conditions (37) and Ωabµ =−Ωbaµ are respectively
equivalent to

Dµξr
α = 0 (39)

Dµηab = 0 (40)
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as general coordinate-Lorentz compatibility conditions.
In Lorentz formalism, from the spin connection, we get

Ga
bαβ = ∂αΩa

bβ − ∂βΩa
bα + Ωa

kαΩk
bβ − Ωa

kβΩk
bα (41)

as the curvature tensor. Then, we have that

[Dµ, Dν]T
r1...rj =Q

η
µνDηTr1...rj +

+∑
k=j
k=1G

rk
pµνTr1...p...rj (42)

is the general coordinate covariant commutator of covariant derivatives of the tensor field in
Lorentz formalism.

As it should be expected by now, we have that

Ga
bµν = ξa

αξ
β
b Gα

βµν (43)

showing that the curvature tensor in Lorentz formalism is antisymmetric both in coordinate
indices and in Lorentz indices, and so as a consequence the curvature also in this formalism
has the same independent contractions which are therefore Gbσ = Ga

bρσξ
ρ
a for the Ricci

curvature tensor and G=Gaσξσ
pηap for the Ricci curvature scalar.

After index renaming, we get

DµGa
jκρ+DκGa

jρµ+DρGa
jµκ +

+Ga
jβµQ

β
ρκ+Ga

jβκQ
β

µρ+Ga
jβρQ

β
κµ ≡ 0 (44)

with curvature in Lorentz form as a geometric identity.
In this way, we conclude the introduction of the most general covariant formalism

with the further conversion into the specific Lorentz formalism, in which the Lorentz
transformation has been made explicit in terms of its real representation. We will soon see
that another representation is possible. However, before this, we introduce gauge fields.

Our main goal is going to be focusing on the fact that fields may be complex, and so
it makes sense to ask what symmetries can be established for these fields: if a field is
complex, there arises the issue of phase transformations and, correspondingly, it is possible
to construct a calculus that is in all aspects analogous to the one we just built.

Thus, given a real function α, we have that a complex field that transforms according
to the transformation

φ′ = eiqαφ (45)

is called gauge field of q charge, with algebraic operations defined as for geometric tensors.
Let it be given a covector field Aν such that, for a phase transformation, it transforms

according to the law

A′
ν = Aν − ∂να (46)

then this vector is called gauge potential. With it,

Dµφ = ∂µφ + iqAµφ (47)

is said to be the gauge derivative of the gauge field.
For the gauge fields, we may introduce the operation of complex conjugation without

the necessity of introducing any additional structure, and hence, for a gauge field of q
charge, the complex conjugate gauge field has −q charge.

There is no decomposition of the gauge potential into more fundamental elements.
In fact, complex conjugation is compatible with gauge derivatives automatically.

20



Universe 2021, 7, 305

From the gauge connection, we define

Fαβ = ∂α Aβ − ∂β Aα (48)

that is such that F = ∂A and so it is a tensor which is antisymmetric and invariant by a
gauge transformation called gauge strength. With it, we have that

[Dµ, Dν]φ = iqFµνφ (49)

is the commutator of gauge derivatives of gauge fields.
Clearly, the gauge strength cannot be decomposed in terms of more fundamental

underlying structures.
Furthermore, we have that

∂νFασ + ∂σFνα + ∂αFσν = 0 (50)

or equivalently ∂F = 0 as a gauge geometric identity.
There is a point that needs to be elucidated regarding the definition of the Maxwell

strength. As this expression can be generalized up to

Fαβ = ∇α Aβ −∇β Aα,

then one may wonder if some non-minimal coupling could be invoked to write it as

F′
αβ = Dα Aβ − Dβ Aα =∇α Aβ −∇β Aα+Qαβρ Aρ

which would violate gauge invariance. Therefore, which one between Fαβ and F′
αβ should

be considered? The answer is actually quite simple conceptually, and it is that, in a theory
of electrodynamics established within a purely geometric context, the Maxwell strength is
not just a curl of a vector but the specific curl of a vector that comes as the formal expression
of the curvature of two covariant derivatives. In this sense, it is clear that F′

αβ as compared
to Fαβ has a lesser geometric meaning. Moreover, the form Fαβ is also the one for which the
geometric identities (50) called Cauchy identities are valid. In addition, so this is the only
form that will interest us in the following.

This concludes the introduction of gauge fields, based on a parallel with geometric
tensor. We shall now move to a following part in which these two formalisms will be
merged into a single one known as spinorial formalism.

2.1.2. Spinorial Fields

In the previous parts, we have introduced tensor fields and the way to pass from
coordinate into Lorentz indices, specifying that, with such a conversion, we also had
the conversion of the most general coordinate transformation into the specific Lorentz
transformation: the advantage of this specific Lorentz transformation is that, although it
had been introduced in real representation, nevertheless, it can also be written in other
representations like most notably the complex representation. In such representation, we
will see that gauge fields find place naturally.

In order to find a Lorentz transformation in complex representation, we specify that
these transformations are classified by semi-integer labels known as spin, and here we
consider the simplest 1

2 -spin case: so, for the complex generators, we select those whose
irreducible form is given in terms of two-dimensional matrices. General results from the
theory of Lie groups tell us that the Lorentz transformation can be written according to the
following form:

Λ = e
1
2 σabθab
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where θab =−θba are the parameters as given above and σab =−σba are the generators
verifying

[σab, σcd] = ηadσbc − ηacσbd + ηbcσad − ηbdσac

as commutation relationships. The actual form for these Lorentz generators in the case of
the complex irreducible two-dimensional matrices is known to be given in terms of the Pauli
matrices

σ1=

(
0 1
1 0

)
σ2=

(
0 −i
i 0

)
σ3=

(
1 0
0 −1

)

according to

σ0A
± =± 1

2 σA

σAB =− i
2 εABCσC

as a straightforward check would demonstrate. We notice that, in the passage from real to
complex representation, a two-fold multiplicity has arisen since two opposite expressions
are possible for the boosts and thus for the Lorentz transformation in full. This ambiguity
can be overcome by having these two irreducible two-dimensional generators merged into
a single reducible four-dimensional generators

σ0A = 1
2

(
−σA 0

0 σA

)

σAB =− i
2 εABC

(
σC 0
0 σC

)

which still verify the Lorentz commutation algebra. Such a merging also has the advantage
that, with four-dimensional matrices, it is possible to introduce

(
0 I

I 0

)
=γ0

(
0 σK

−σK 0

)
=γK

in terms of which the four-dimensional generators are

σab = 1
4

[
γa,γb

]

and where

{γa,γb} = 2ηab
I

in terms of the Minkowskian matrix. This way of writing four-dimensional matrices
constitutes an advantage because we can see a manifest (1 + 3)-dimensional space–time
form in the last two expressions. Then, it is possible to employ these last two expressions
to derive a whole list of useful identities involving these matrices. To begin, we have

σab = − i
2 εabcdπσcd

which implicitly defines the π matrix. This matrix is the one usually indicated like a
gamma with an index five as originally it was used to study five-dimensional theories,
but, because we will always be in the space–time, the index five for us has no meaning and
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so we will use a notation with no index at all. Notice that, with this definition, we have
extinguished all possible matrices since the matrices

I γa σab γaπ π

are 16 linearly independent matrices spanning the space of four-dimensional matrices,
and so they form a basis for such a space. These matrices are called Clifford matrices and
they will have great importance. We have that

γ0γ†
a γ0=γa

γ0σ†
abγ0=−σab

π† =π

specifying the behavior of the Clifford matrices under conjugation. By direct inspection,
one can easily see that

γaγb =ηabI+2σab

as well as

γiγjγk = γiηjk − γjηik + γkηij + iεijkqπγ
q

showing that products of, however, many gamma matrices can always be reduced to the
product of at most two of them. Therefore, there is no need to compute the product of three
or more gamma matrices. Because ε0123=1, we have π= iγ0γ1γ2γ3 and so

{π, γa} = 0

[π, σab] = 0

as expected. In fact, this representation is reducible, and then Schur’s lemma ensures
us that there must exist one matrix different from the identity commuting with all the
generators of the group. By working with all the previous identities, one can find

[γi, σjk]=γkηij−γjηik

{γi, σjk}= iεijkqπγq

and similarly

{σab, σcd}= 1
2 (ηadηbcI−ηacηbdI+iεabcdπ)

[σab, σcd] = ηadσbc−ηacσbd+ηbcσad−ηbdσac

as other fundamental identities. The list may go on, but, for our purposes, there is no need
to reach products with more gamma matrices. The last identity tells us that the σab matrices
are the generators of the Lorentz algebra as expected. As already said, the parameters are the
same we had in the Lorentz formalism since real and complex representations are merely two
different forms of the same transformation. This transformation is thus given by

Λ= e
1
2 σabθab

in its most general form. However, in view of studying complex fields, we know that the
complex phase transformation eiqα must also be introduced. Therefore, we have

Λeiqα = e(
1
2 σabθab+iqαI)=S

as the Lorentz-phase transformation in its most complete form possible. This form is also
called spinorial transformation. It is what we will employ to define the spinorial fields ψ as
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the column of four complex functions that are scalars for coordinate transformations while
transforming according to ψ′=Sψ under the spinorial transformations.

We may now summarize by saying that, given the most general spinorial transforma-
tion S, the column and row of complex scalars ψ and ψ transforming as

ψ′ = Sψ ψ
′
= ψS−1 (51)

are called spinorial fields. Operations of sum and product respect spinor transformation.
As above, the transformation S is local and so we have to introduce the spinorial

connection defined in terms of the transformation law that guarantees the derivative to be
covariant for general spinorial transformations.

Therefore, we have that the coefficients Ων transforming according to

Ω
′
ν = S

(
Ων − S−1∂νS

)
S−1 (52)

are called spinorial connection. Once the spinorial connection is assigned, we have that

Dµψ= ∂µψ+Ωµψ Dµψ= ∂µψ−ψΩµ (53)

are the covariant derivatives of the spinorial fields.
We now give a list of properties of the Clifford matrices.
We have that the Clifford matrices γa such that

Λγb
Λ

−1≡ (Λ−1)b
aγa (54)

verify the anticommutation relationships

{γa, γb} = 2ηabI (55)

so that we can define the matrices σab as

σab = 1
4 [γa, γb] (56)

and

σab = − i
2 εabcdπσcd (57)

for the π matrix to be implicitly defined. Then,

γ0γ†
a γ0=γa (58)

γ0σ†
abγ0=−σab (59)

π† =π (60)

alongside the square properties

γaγa =4I (61)

σabσab =−3I (62)

π2= I (63)

together with the anticommutation properties

{π, γa} = 0 (64)

{γi, σjk} = iεijkqπγq (65)
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and the commutation properties

[π, σab] = 0 (66)

[γa, σbc] = ηabγc−ηacγb (67)

[σab, σcd] = ηadσbc−ηacσbd+ηbcσad−ηbdσac (68)

as well as

γaγb =ηabI+2σab (69)

γiγjγk = γiηjk − γjηik + γkηij + iεijkqπγq (70)

all being spinorial identities. Employing γ0, we can define

ψ=ψ†γ0 γ0ψ
†
=ψ (71)

as the spinor conjugation. In particular, we have

πL =
1
2 (I−π) (72)

πR =
1
2 (I+π) (73)

as left-handed/right-handed chiral projectors. They verify

π†
L =πL (74)

π†
R =πR (75)

alongside

π2
L =πL (76)

π2
R =πR (77)

together with

πLπR =πRπL =0 (78)

and such that

πL+πR = I (79)

in general. We can also define

πLψ=ψL ψπR =ψL (80)

πRψ=ψR ψπL =ψR (81)

and

ψL+ψR =ψ ψL+ψR =ψ (82)

as left-handed/right-handed chiral parts. With the pair of conjugate spinors, we define the
bi-linear spinorial quantities according to
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2ψσabπψ=Σab (83)

2iψσabψ=Mab (84)

ψγaπψ=Sa (85)

ψγaψ=Ua (86)

iψπψ=Θ (87)

ψψ=Φ (88)

such that they are all real tensor quantities. From them,

ψψ≡ 1
4 ΦI+ 1

4 Uaγa+ i
8 Mabσab −

− 1
8 Σabσabπ− 1

4 Saγaπ− i
4 Θπ (89)

from which we get the relationships

2UµSνσµνπψ+U2ψ=0 (90)

iΘSµγµψ+ΦSµγµπψ+U2ψ = 0 (91)

and

Uaγaψ=−Saγaπψ=(ΦI+iΘπ)ψ (92)

as well as the relationships

Σab =− 1
2 εabij Mij (93)

Mab = 1
2 εabijΣij (94)

and

MabΦ−ΣabΘ=U jSkε jkab (95)

MabΘ+ΣabΦ=U[aSb] (96)

with

MikUi = ΘSk (97)

ΣikUi =ΦSk (98)

MikSi = ΘUk (99)

ΣikSi =ΦUk (100)

and also

1
2 Mab Mab =− 1

2 ΣabΣab =Φ2−Θ2 (101)

UaUa =−SaSa =Θ2+Φ2 (102)
1
2 MabΣab =−2ΘΦ (103)

UaSa = 0 (104)

called Fierz re-arrangements of spinor fields. If both scalars Θ and Φ do not vanish identically,
we can always find a special frame where the most general spinor is written as
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ψ=φe−
i
2 βπe−iα




1
0
1
0


 (105)

up to the reversal of the third axis and up to the discrete transformation ψ→πψ and called
polar form. From this, we can write

Σab =2φ2(cos βu[asb]−sin βujskεjkab) (106)

Mab =2φ2(cos βujskεjkab+sin βu[asb]) (107)

in terms of

Sa =2φ2sa (108)

Ua =2φ2ua (109)

and

Θ=2φ2 sin β (110)

Φ=2φ2 cos β (111)

showing that the fields φ and β are a scalar and a pseudo-scalar, respectively. Then,

uaua =−sasa =1 (112)

uasa =0 (113)

showing that the normalized velocity vector ua and the normalized spin axial-vector sa

possess three independent components each. This means that φ and β are the only true
real scalar degrees of freedom and called module and Yvon–Takabayashi angle. The reader
interested in details for all these statements can have a look at [15].

The conditions of compatibility now read Dµγa =0 in general: if the spinorial matrix
also has a tensorial index, the covariant derivative is to be completed to the form

DµBa =∂µBa−BbΩb
aµ+[Ωµ, Ba]

which can be taken for the gamma matrix and hence implementing the above condition,
and recalling that these matrices in Lorentz indices are constants, yields

−γbΩb
aµ+[Ωµ, γa]=0

as a relation among connections. By writing a general

Ωµ = aΩ
ij

µσij+Aµ

and plugging it into the above relation, we obtain that

−γbΩb
kµ+aΩ

ij
µ[σij, γk]+[Aµ, γk]=0

and with [σij, γk] = ηkjγi−ηkiγj we get a=1/2 and

[Aµ, γs]=0
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telling that Aµ must commute with all gamma matrices, and thus, with all possible matrices,
implying that it must be proportional to the identity matrix. Writing it as

Aµ =(pCµ+ibAµ)I,

it is possible to see that, for b = q, it is possible to interpret the vector Aµ as the gauge
potential. Because the other term is related to conformal transformations, which are not
symmetries in our case, we set p=0 in general. Then, we have that, all considered, we may
write the expression

Ωµ =
1
2 Ω

ij
µσij+iqAµI

as the most general form of spinorial connection.
To summarize, we have that the most general spinorial connection is given by

Ωµ = 1
2 Ωabµσab+iqAµI (114)

in terms of the generator-valued spin connection and the gauge potential, and this is
equivalent to the fact that the spinorial covariant derivatives of the gamma matrices are

Dµγa =0 (115)

vanishing identically, as it is quite straightforward to see.
We have that, from the spinorial connection, we define

Fαβ = ∂αΩβ − ∂βΩα + [Ωα, Ωβ] (116)

as the spinorial curvature. With it,

[Dµ, Dν]ψ = Qα
µνDαψ + Fµνψ (117)

as commutator of covariant derivatives of spinor fields.
Correspondingly, the curvature is decomposable as

Fµν = 1
2 Gabµνσab + iqFµνI (118)

with the curvature tensor and gauge strength.
For a final step, we have

DµFκρ + Dκ Fρµ + DρFµκ +

+FβµQ
β

ρκ + FβκQ
β

µρ + FβρQ
β

κµ ≡ 0 (119)

as spinorial geometrical identities holding in general.
We conclude with some fundamental comments: the first and most important one

is about the fact that so far we have encountered three types of transformation laws: the
first type was the most general coordinate transformation; the second type was the gauge
transformation; the third type was the specific Lorentz transformation, which was given
in real representation for tensors and complex representation for spinors. The coordinate
transformation is known as passive transformation; the Lorentz transformation in real repre-
sentation as well as the Lorentz transformation in complex representation merged with
the gauge transformation that is the spinor transformation, are known altogether as active
transformations. Because they have the very same parameters, we then have that both active
transformations have to be performed simultaneously.

Another interesting comment is on the connections and how they are built: the torsion
tensor, when the metric tensor is used, gives the connection (16); this connection, when the
dual bases of tetrad fields are employed, gives the spin connection (37); this spin connection,
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when the gamma matrices and their commutators are considered, with the gauge potential,
when multiplied by the identity matrix, give the spinorial connection (114). Remarkably,
all fields fit within the most general spinorial connection, with no room for anything else:
this circumstance can be seen as a sort of geometric unification of all the physical fields
that are involved. On the other hand, however, in order to see it that way, we have to wait
until we interpret these geometric quantities.

A final comment regards the structure of the covariant commutator (117), in which,
by interpreting the covariant derivative as the covariant generators of translations, one
sees that the completely antisymmetric torsion plays the role that in Lie group theory is
played by the completely antisymmetric structure coefficients; we also recall to the reader
that, in the curvature, there appear sigma matrices which are the generators of the Lorentz
transformations and therefore of the space–time rotations. An additional interpretation
that can be assigned to the covariant commutator is that, when a field is moved around,
it would fail to go back to the starting point and have the initial orientation. A position
mismatch is measured by torsion and a directional mismatch is measured by curvature,
and this is why torsion is also said to describe the dislocations while curvature is also said
to describe the disclinations of a round trip. This shows intuitively that both torsion and
curvature have to be accounted for the most general description of space–time.

For some introduction to the general theory of spinors and their classifications, we
refer the readers to [16,17].

Geometry and Matter in Interaction

Now that, in terms of general symmetry arguments, we have completed the definitions
of all geometric quantities for the kinematic background, the next step is to have them
coupled to one another in order to assign their dynamics.

2.1.3. Covariant Field Equations

When in 1916 Einstein wanted to construct the theory of gravitation, the idea he
wished to follow was inspired geometrically, based on the principle of equivalence.

The principle of equivalence states the equivalence at a local level between inertia
and gravitation, in the sense that locally inertial and gravitational forces can simulate one
another so well that, when both present, their effects can be made to cancel: it can be
stated by saying that one can always find a system of coordinates in which locally the
accelerations due to gravitation are negligible.

On the other hand, one can demonstrate a theorem originally due to Weyl whose
statement sounds analogous: it states that one can always find a system of coordinates in
which in a point the symmetric part of the connection vanishes.

In the previous sections, we have discussed in what way the condition of complete
antisymmetry of torsion gives rise to a unique symmetric part of the connection, thus
removing any possible ambiguity in the implementation of Weyl theorem: hence, for a
completely antisymmetric torsion, the Weyl theorem is the mathematical implementation of
the principle of equivalence insofar as the acceleration due to gravitation is encoded within
the symmetric connection. A unique symmetric connection corresponds to a uniquely
defined gravitational field as our physical intuition would suggest. Furthermore, the
single symmetric connection is entirely written in terms of the derivatives of the metric,
and therefore, if the gravitational field is encoded within the symmetric connection, then
the gravitational potential is encoded within the metric tensor.

The metric tensor is a tensor, but it cannot vanish and none of its derived scalar is
non-trivial, and the connection is not a tensor, so they will always depend on the choice
of coordinates: hence, the information about gravity will always be intertwined with
inertial information, which is not a surprise, since after all we know, they are locally
indistinguishable. On the other hand, we wish to have a way to tell gravity apart from
inertial information, and, to do that, it is necessary to take a less local level, then considering
the Riemann curvature tensor: if gravity is contained in the metric tensor as well as in
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the connection, then it is contained in the Riemann curvature tensor too, but the Riemann
curvature tensor is a tensor from which non-trivial scalars can be derived or which can
be vanished, and this is what makes it able to discriminate gravity from inertial forces.
If the metric is Minkowskian and the connection is zero, we cannot know whether this is
because gravity is absent or compensated by inertial forces, and, similarly, if the metric is
not Minkowskian and the connection is not zero, we cannot know whether this is because
gravity is present or simulated by inertial forces as above. However, if the Riemann
curvature tensor is zero, we know it is because gravity is absent, and, if the Riemann
curvature tensor is not zero, we know gravity is present in general terms. This has to be so,
as there can not be any compensation due to inertial forces since there can be no inertial
forces, within the Riemann curvature tensor.

Therefore, the principle of equivalence is the manifestation of the interpretative princi-
ple telling that gravitation is geometrized, and this is so as a consequence of the fact that
gravity alone is contained in the Riemann curvature.

This statement has to be taken into account together with the parallel fact that, in
Einstein relativity, the mass is a form of energy, as it is very well known indeed.

Putting the two things together, it becomes clear that the gravitational field equations
that were given in terms of a second-order differential operator of the gravitational potential
proportional to the mass density have to be considered as an approximated form of a more
general set of gravitational field equations given by a certain linear combination of the
curvature proportional to the energy.

The energy density is a tensor having two indices and therefore the curvature we are
looking for must have two indices as well, which tells that we need the contraction of the
Riemann curvature given by the Ricci curvature.

In 1916, all matter forms that were known consisted of macroscopic fluids, scalars, and
electro-dynamic fields, all of which have an energy density symmetric in the two indices.
This may be a problem as the Ricci curvature is not symmetric.

In addition, this is where Einstein assumption of the vanishing torsion came about:
assuming torsion to be equal to zero meant that a specific linear combination of the Ricci
curvatures were symmetric, and thus proportional to the energy.

To see this, consider identity (29) in the case in which torsion vanishes. Its full
contraction gives, in the most general case, the following identity:

∇µ(Rµν− 1
2 gµνR−gµνΛ)=0

where the object in parenthesis is symmetric indeed, and so it can be taken to be propor-
tional to the energy density.

Now, Einstein geometrical insight is expressed by the gravitational field equations

Rµν− 1
2 gµνR−gµνΛ= 1

2 kEµν (120)

called Einstein field equations: from them, it follows that the energy density verifies
Eµν =Eνµ and ∇µEµν =0 as is well known.

Therefore, Einstein field equations are the most general linear combination of curva-
tures for which geometric identities imply the validity of the symmetry and conservation
law for the energy of matter. In this sense, the field equations are established on the bases
of their conservation laws, themselves obtained from geometric identities, and this is
what represents the Einstein spirit of geometrization—at least in the most general case
without torsion.

Then, one might wonder what happens if torsion were not neglected.
The first thing we would have to keep in mind is that, in this case, geometry would

provide both a curvature and a torsion tensor. The second point to be retained is that the
Einsteinian gravitational theory is based on the fact that the curvature tensor is sourced
by the energy. Putting things together, we should expect in the presence of torsion that
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there be another conserved quantity in parallel to the energy and another field equation
coupling such a conserved quantity to the torsion tensor itself.

Such a quantity, however, is already at hand.
In 1928, Dirac was the first to describe a system of matter fields, named spinors, which

possessed an energy together with a spin, and this is the quantity we are seeking.
In a torsional completion of the theory of gravitation, matter fields described by

both an energy and a spin can naturally find a place when the spin is coupled to torsion
much in the same way in which the energy is coupled to curvature. For such a theory,
the full system of field equations is given by the spin–torsion field equations, which simply
spell the proportionality between torsion and spin, called Sciama–Kibble field equations,
alongside the curvature–energy field equations, which are formally the same as in Einstein
gravity, and therefore still called Einstein field equations. Altogether, they are known under
the name of Einstein–Sciama–Kibble ESK field equations [18–20].

However, contrary to what is believed, the ESK field equations are actually not the
most general either because, while torsion and gravitation are independent, their field
equations have the same coupling constant, and this accounts for an arbitrary restriction.

If we want independent fields to have independent coupling to their independent
sources, we must find a way to obtain the ESK field equations generalized so that the two
coupling constants are different.

We will not spend time on the mathematical details of this generalization, but the
interested reader can find such generalized system of field equations in the case of two
different coupling constants in [21].

However, then again, this is not still the most general system of field equations
because the torsion tensor enters algebraically in its coupling to the spin density tensor.

As mentioned, the above system of field equations has the feature that torsion and
spin are algebraically related and this constitutes a conceptual problem because in the case
in which the spin density were to vanish, then torsion would vanish too, with no possibility
to propagate, and hence the torsion tensor would be unphysical.

That the torsion–spin coupling is algebraic might not be seen as a problem because also
the curvature–energy coupling is algebraic, but there are reasons for this situation not be to
entirely analogous: the most important is that the torsion that enters in the field equations
is the general Cartan torsion, with the consequence that, if the spin density were to be
vanishing everywhere the Cartan torsion would be vanishing as well, but the curvature that
enters the field equations is the Ricci curvature and not the Riemann curvature, with the
consequence that, even if the energy density were to be vanishing everywhere, the Ricci
curvature would also be vanishing, but this would not imply that the Riemann curvature
would be equal to zero, and gravity may still be present.

In addition, the curvature has an internal structure given in terms of first-order
derivatives of the connection and thus in terms of second-order derivatives of the metric
tensor, so that there exists a dynamics for the gravitational field, unlike for torsion.

If we desire that the torsion dynamics be implemented in the theory, then we have
to look for dynamical terms in the torsion–spin field equations, and also for torsional
contribution in all of the other field equations as well.

We specify that our main goal is following the Einstein spirit of geometrization, and, in
order to do so, we are going to obtain the field equations for the theory in a genuinely
geometric way by finding the most general form of the field equations that is compatible
with the constraints given by underlying geometric identities.

In order to construct the most general system of field equations, we are going to start
by distinguishing them into two different types: the field equations for the geometry–
matter coupling, which shall be written in the form of second-order derivatives of the
metric and torsion and also gauge potentials equal to sources given by the energy and
spin and also the current of fields; and the matter field equations, which will be written
in the form of a first-order differential operator containing metric and torsion and gauge
potentials acting on the spinor field and equalling the spinor field itself. This discrimination
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comes from the fact that, on the one hand, it is possible to employ spinors to construct
sources for the tensor and gauge field equations, but, on the other hand, it is not possible to
use tensor and gauge fields to build sources of the spinorial field equations. In the spinorial
field equations, the derivatives of the spinor field must be proportional to the spinor field
itself. This discrimination between the form of geometric and matter field equations is
therefore intrinsic to the structure of the fields we use.

We start by considering the fact that field equations for the metric have to be in
the form of some derivative of the metric equal to some source: because the covariant
derivative of the metric tensor vanishes identically, then any dynamics of the metric can
only be described in terms of the partial derivatives of the metric, or, equivalently, by
the metric connection (15). Again, the metric connection is not a tensor, and the only
way we have from the symmetric connection to form a tensor is to take another partial
derivative, therefore forming the metric curvature tensor as given by (22). As Equation (27)
shows, the metric curvature tensor is one peculiar combination of second-order partial
derivatives of the metric, that is, arguments of symmetry under the most general coordinate
transformations force at least second-order derivatives of the metric in the differential field
equations. Then, arguments of simplicity would require that we do not take any further
differential structure. In the following, we will see that second-order derivatives in the
metric field equations endow them with a character that no other field equation will have,
rendering them somewhat peculiar indeed.

For the moment, what we have established is that the metric field equations will have
to be given in the form of some combination of the metric curvature tensor, and to see what
combination, we start from considering that, if the leading term were to be given by the
Riemann metric curvature tensor Rατσν, then the vacuum equations would reduce to the
condition of vanishing of Riemann metric curvature tensor, so that they would imply that
there only be the trivial metric. Hence, if we want non-trivial metrics to be possible in
vacuum, then the Riemann metric curvature tensor must appear contracted as the Ricci
metric curvature tensor Rαµ for leading term, and of course we may have contractions such
as the Ricci metric curvature scalar Rgαµ or even Λgαµ as sub-leading terms in general: as
we have already seen above, the most general form of linear combination of curvatures in
the field equations is given by (120), in which the only constant Λ is still undetermined,
and it will remain undetermined since there is no way to fix it on geometrical grounds.
Thus, we might well think of it as a generic integration constant, which can always be
added and whose value cannot be fixed.

We now turn our attention to the other field equations, for which the covariant
derivatives of the fields will not be identically zero.

The field equations for the torsion have to be in the form of covariant derivatives of
the torsion axial-vector equal to some source: taking covariant derivatives of the torsion
axial-vector implies that we will have to write the field equation in the form of the covariant
divergence of the torsion axial-vector equal to a source constituted by a pseudo-scalar field,
but the temporal derivative will be specified for the temporal component of the torsion
axial-vector solely. In addition, thus, we must take two covariant derivatives of the torsion
axial-vector as a leading term.

To assess what are the most general field equations for the torsion axial-vector, we
consider that the leading term given in the form of two covariant derivatives of the torsion
axial-vector ∇σ∇αWρ is to be such that one of the indices of the derivatives has to be
contracted yielding the two forms ∇σ∇σWρ and ∇ρ∇σWσ as leading terms: sub-leading
terms may be added eventually and so we may establish the most general form of field
equations as

2Π∇σ∇σWη−2H∇η∇ρWρ −
−V∇αWνWρεανρη−UWαWαWη −
−2LRηρWρ+2NRWη+PWη =κSη
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where Sα will have to be fixed on general grounds.
This general field equation can be restricted with the Velo–Zwanziger method [22,23].

Thus, taking its divergence

2(Π−H)∇η∇η∇ρWρ +

+V∇η∇αWνWρεηανρ +

+V∇αWν∇ηWρεηανρ −
−2[UWρWη+(L−Π)Rηρ]∇ηWρ +

+(2N−L+Π)∇η RWη −
−(UWαWα−2NR−P)∇ηWη =κ∇ηSη ,

it becomes possible to see that there appears a third-order time derivative for the temporal
component of the torsion axial-vector implying that the constraint obtained from the field
equations would actually determine the time evolution of some components of the torsion
axial-vector field. Since this would spoil a balance between the number of independent
field equations and the amount of degrees of freedom of a given field, then no higher-order
derivative terms must be produced in the constraints and thus we set Π= H identically.
Once this is done, there is no second-order derivative in time for any components of the
field in the constraint, which is thus a true constraint, which substituted back into the field
equations gives

2H∇σ∇σWη−2H(UWαWα−2NR−P)−1 ·
·∇η [V∇τ∇αWνWρετανρ+V∇αWν∇τWρετανρ −

−2[UWρWτ+(L−H)Rτρ]∇τWρ +

+(2N−L+H)∇τ RWτ−κ∇τSτ ] +

+2H∇η(UWαWα−2NR)(UWαWα−2NR−P)−2 ·
·[V∇τ∇αWνWρετανρ+V∇αWν∇τWρετανρ −

−2[UWρWτ+(L−H)Rτρ]∇τWρ +

+(2N−L+H)∇τ RWτ−κ∇τSτ ]−
−V∇αWνWρεανρη−UWαWαWη −
−2LRηρWρ+2NRWη+PWη =κSη

which contains second-order time derivatives of all components of the torsion axial-vector,
and therefore this is a true field equation. To check the propagation properties of the field,
we consider its characteristic determinant

(UWαWα−2NR−P)n2+2[UWτWν+(L−H)Rτν]nτnν =0

and, by following the general discussion of Velo and Zwanziger, one can see that, in general,
acausality may be possible unless we have L = H and N = U = 0 identically, in which
case n2=0 and thus causality is ensured. Notice that there are no constraints on V, which
remains a free parameter.

Placing all constraints together gives field equations

4∇ρ(∂W)ρη−VWρ(∂W)ανερανη+2PWη =2κSη

because H can be reabsorbed within a redefinition of all the other constants.
To proceed, we notice that, for the metric field equations, the source contribution

from the torsion axial-vector field has to be built with no quartic torsion term because they
would correspond to what in the torsion field equations are cubic torsion terms, which are
absent, and no second derivatives of torsion because they would give rise to curvatures,
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which cannot be present since they are already addressed. Thus, it is possible to come to
the most general form of this contribution as the one given by

Eµν = aWµWν+bW2gµν+z(WνWρ(∂W)ασερασµ +

+WµWρ(∂W)ασερασν)+y(∇σWµ(∂W)σν+∇σWν(∂W)σµ)+x∇µWσ∇νWσ +

+w∇σWµ∇σWν+v∇αWσ∇αWσgµν+u(∂W)νσ(∂W)
µ

σ+t(∂W)2gµν

in terms of ten constants: because we know that ∇νEνµ = 0 and because in vacuum the
divergence of the torsion field equations gives

4P∇·W+V(∂W)ηρ(∂W)ανεηραν = 0,

then one can easily see that it must be V = z= v=0 with x= y=−w and x+u=−4t and
together with a=−2b=2tP which must hold identically.

We also notice that we must have P= 2M2 because this is just the mass term of the
torsion axial-vector field as it is well known.

The field equations for the gauge field are also in the form of covariant derivatives
of the gauge potential equal to some source: nevertheless, taking derivatives of the gauge
potential means that that we have to consider the gauge strength because this is the only
term that is differential in the potential and which is still gauge invariant, but, since this is
irreducible, any contraction of the gauge strength vanishes and therefore these terms alone
cannot be not enough. Hence, we have to take one more covariant derivative of the gauge
strength as a leading term.

The most general field equations for the gauge fields have a leading term in the form
∇σFαρ and, after contraction, we get ∇σFσρ as the leading term: then, we get

∇σFση− 1
12 BFανWρεανρη =qJη

in which the source Jα will have to be fixed as well.
The contribution from the gauge field is similarly built in terms of squares of the

gauge strength strength, since any other term would violate gauge symmetry. Thus,

Eµν =αFµρFν
ρ+βFαπ Fαπ gµν

in terms of two constants: again, because ∇νEνµ =0 and using the form of the electrody-
namic field equations, we can see that B=0 and α=−4β identically.

In the metric field equation, the contributions due to torsion and gauge fields are
analogous, and torsion and gauge fields are independent, so we may normalize torsion
and gauge fields with no loss of generality in order to have the two constants t and β with
the same value, and it is still without losing generality that they can be reabsorbed in the k
constant. We notice that, in reabsorbing within a renaming of the constant k the values of
the constants t and β, we did not lose any generality in their absolute value, but, in order
not to lose any generality also for the sign, all constants would have to be positive, and this
in general may not be the case: the reason why we did it anyway is that those constants
are in front of torsion and gauge fields’ energy contributions, which are positive defined.
Of course, we might have assumed those constants to possess a generic sign, but, in the
final form of the field equations, we would have discovered that those signs were positive,
and thus we can assume this immediately with no loss of generality.

To proceed with the inclusion of matter fields, it is fundamental to notice that spinor
fields are defined in terms of gamma matrices that can also be used in building fundamental
quantities, whose employment allows for lowering the order of derivatives in all such
quantities because every time covariance demands for a single covariant index to be present,
and one gamma matrix can be used instead of one spinorial derivative.

34



Universe 2021, 7, 305

The most general field equations for the spinor field have a leading term containing ∇µψ
so that, after multiplying by the matrix γν, it is possible to contract the indices getting γµ∇µψ
as a leading term: therefore, we may establish the most general form of field equations as

iγµ∇µψ−XWσγσπψ−mψ=0

where the imaginary unit has been placed because, in free cases, iγµ∇µψ−mψ=0 so that
taking the square of the derivative gives ∇2ψ+m2ψ=0, and m can be interpreted as the
mass term, which is what is expected. That is, the imaginary unit has to be interpreted as
what ensures the mass of the field will behave as to provide non-imaginary contribution to
the dynamics of the free field equations.

Then, we have to write the general form of their contribution in the metric field
equations, and this can be constructed by employing no more than one spinorial derivative
of the spinor field, since gamma matrices can be used to saturate indices: eventually,

Eρσ = ζ[∇ρ(ψγσψ)+∇σ(ψγρψ)] +

+iξ(ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ) +

+χ∇α(ψγαψ)gρσ+λi(ψγα∇αψ−∇αψγαψ)gρσ +

+τ(Wσψγρπψ+Wρψγσπψ)+υWαψγαπψgσρ+µψψgρσ

in general; the contribution as a source of the torsion field equations is the spin density of
the material field, and it can be taken without any spinorial derivative at all when gamma
matrices are considered, therefore obtaining that

Sµ =ωψγµπψ

also in general; the contribution as source of the gauge field equations is the current density
of the material field, and similarly it is given according to

Jρ = pψγρψ

again in the most general case: by considering again the divergences of all field equations
and with the same reasoning as before, one can eventually see that ζ = 0 as well as
µ=−2λm and p=4ξ with τ=−2ξX and υ=−2λX and also κω=2ξX identically.

Finally, we notice that, without affecting the metric or the torsion or the gauge fields,
the spinor field may be renormalized in such a way that, without losing generality, we can
always set 4ξ = 1 and, as a consequence, it is possible to see that the full system of field
equations has been completely determined.

It is constituted by the metric field equations given according to the expression

Rρσ− 1
2 Rgρσ− k

2 [
1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α]−

− k
2 (

1
4 F2gρσ−FραFσ

α)− k
2 M2(WρWσ− 1

2 W2gρσ)−
−Λgρσ = 1

2 k[ i
4 (ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)−
− 1

2 X(Wσψγρπψ+Wρψγσπψ)]

and the torsion field equations given according to

∇ρ(∂W)ρµ+M2Wµ =Xψγµπψ

with gauge field equations given by

∇σFσµ =qψγµψ
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as the form that is usually known, while the matter field equations are

iγµ∇µψ−XWσγσπψ−mψ=0

with parameters Λ and M and also m describing intrinsic properties of metric and torsion
and also spinor fields, while parameters k, X, and q are the constants that measure the
strength with which metric, torsion, and gauge fields couple to energy, spin, and current.

It is possible to write the above system of coupled field equations into the system of
coupled field equations with respect to which all the torsionless derivatives and curvatures
are the torsionful derivatives and curvatures.

Thus, we can give the full system of field equations as the torsion–spin and the
curvature–energy field equations as

D[ρDσQµν]σ+Qη[µνGρ]σgση−Gσ[ρQµν]η gση+M2Qρµν =
1
12 Sρµν (121)

and

Gρσ− 1
2 Ggρσ−18k[ 1

3 DαD[αDπQρσ]π− 1
3 DαDηQηπ[αQρσ]νgνπ −

− 1
3 QρηϕD[σDπQηϕ]π − 1

3 QσηϕD[ρDπQηϕ]π+ 1
2 Dπ DτQτµνQπµνgρσ +

+ 1
4 DπQπµνDτQτµνgρσ−DπQπµρDτQ

σ
τµ − 1

3 DηQηπαDαQ
ρσ

π + (122)

+ 1
3 (Q

ρηϕDτQτπσ+QσηϕDτQτπρ)Q
ηϕ

π ]− 1
2 k( 1

4 F2gρσ−FραFσ
α)−

−(12kM2+1)( 1
2 DαQαρσ− 1

4 QραπQσ
απ+

1
8 Q2gρσ)−Λgρσ = 1

2 kTρσ

called Sciama–Kibble field equations and Einstein field equations and they come alongside the
gauge-current field equations

DσFσµ+ 1
2 FανQανµ = Jµ (123)

called Maxwell field equations, where the sources are given by the spin and the energy

Sρµν =−8X i
4 ψ{γρ, σµν}ψ (124)

and

Tρσ = i
2 (ψγρDσψ−Dσψγρψ)+(8X+1)Dα(

i
4 ψ{γα, σρσ}ψ) +

+ 1
2 (8X+1)Qρµν i

4 ψ{γσ, σµν}ψ−(8X+1)Qσµν i
4 ψ{γρ, σµν}ψ (125)

alongside the current

Jµ =qψγµψ (126)

given in terms of the matter field. They come alongside the spinorial field equation

iγµDµψ−i(X+ 1
8 )Qνταγνγτγαψ−mψ=0 (127)

called Dirac spinorial field equations, which decompose according to

i
2 (ψγµDµψ−Dµψγµψ)−(X+ 1

8 )Q
πτηSσεπτησ−mΦ=0 (128)

DµUµ =0 (129)

i
2 (ψγµπDµψ−Dµψγµπψ)−(X+ 1

8 )Q
πτηUσεπτησ =0 (130)
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DµSµ−2mΘ=0 (131)

i(ψDαψ−Dαψψ)−Dµ Mµα+(2X+ 1
4 )επτησQπτηΣσα−2mUα =0 (132)

DαΦ−2(ψσµαDµψ−Dµψσµαψ)+(2X+ 1
4 )ΘQπτηεπτηα =0 (133)

DνΘ−2i(ψσµνπDµψ−Dµψσµνπψ)−(2X+ 1
4 )ΦQπτηεπτην+2mSν =0 (134)

(Dαψπψ−ψπDαψ)+DµΣµα+(2X+ 1
4 )ε

πτηµQπτη Mµα =0 (135)

DµSρεµραν+i(ψγ[αDν]ψ−D[νψγα]ψ)+(2X+ 1
4 )Q

πτηεπτη[αSν]=0 (136)

D[αUν]−iεανµρ(Dµψγρπψ−ψγρπDµψ)−(12X+ 3
2 )Q

ανρUρ−2mMαν =0 (137)

which are altogether equivalent to the Dirac spinor field equations and called Gordon
decompositions. Spin, energy, and current verify

DρSρµν+ 1
2 T[µν] ≡ 0 (138)

and

DµTµν+TρβQρβν−SµρβGµρβν+ JρFρν ≡ 0 (139)

alongside

Dρ Jρ = 0 (140)

satisfied in the most general case.
Intriguingly, we notice that, in the spinor field equations, the mass appears linearly,

and thus it may be positive as well as negative, and therefore it is possible to have two
different types of spinor field equations. Such possibility is clear because, if m →−m is
accompanied by the discrete transformation ψ→πψ, then the system of field equations
is invariant, and, consequently, any solutions of the first are also a solution of the second.
The fact that we may have two different spinor field equations is translated into the fact
that we may have two different solutions linked by ψ→πψ in general.

The full system of field equations is invariant under the transformation of parity
reflection [24], and it is the most general under the restriction of being at the least-order
differential form [25]. What this means is that arguments of compatibility with covariance,
generality, and having field equations at their least-order derivative are enough to lead
to the above physical field equations. In addition, this is true regardless of the principle
of equivalence. The principle of equivalence might have been a guide for Einstein from a
historical perspective, but mathematically there is no need for it. Its role is reduced to that of
an interpretative principle telling us that the metric is what encodes the information about
gravitation. Moreover, it is common knowledge of Einsteinian gravity that, when Einstein
field equations are linearized and taken in the static case and for small velocities, they
reduce to Newton equations, in which the time–time component of the metric is witnessed
to be the Newtonian gravitational potential. Henceforth, the principle of equivalence can be
abandoned. Certainly, this principle may give important insights, but it can be equally well
disregarded, as the interpretation of gravity within the metric tensor naturally emerges from
specific limits of the Einstein field equations and these come from arguments of simplicity,
generality, and compatibility with identities proper to the underlying geometric structure.
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3. Torsion-Spin Interactions

In this second section, we will consider the above physical field equations in order to
investigate their properties: the idea will be to write them in an equivalent but somewhat
clearer manner. We will end with general remarks about the interaction of geometry with
its material content.

3.1. Torsion and Spinor Decomposition

To have the physical field equations converted in more manageable forms, we will
decompose all quantities that can be decomposed into more fundamental ones: we will
separate torsion from all torsionless quantities in all the covariant derivatives and curvature
tensors. Finally, the spinor field will also be decomposed into its two irreducible chiral
projections and elementary degrees of freedom.

3.1.1. Torsion as Axial-Vector Massive Field

Among all geometric fields, torsion has a special property indeed. The gauge potential
is a gauge field for phase transformations, and the metric tensor can be considered a gauge
field for coordinate transformations, so both are always depending on the phase or the
coordinate system, while torsion is a tensor that does not have any relation with such
properties. Thus, torsion can be split from gauge and metric connections, with all the
covariant derivatives and curvatures being written as covariant derivatives and curvatures
with no torsion but with all the torsion terms appearing as independent.

To have the most general connection decomposed into the simplest symmetric connec-
tion plus torsion terms, we only need to substitute (16) in (37), and this in (114).

Thus, the system of field equations reduces to

∇ρ(∂W)ρµ+M2Wµ =Xψγµπψ (141)

and

Rρσ− 1
2 Rgρσ−Λgρσ = k

2 [
1
4 F2gρσ−FραFσ

α +

+ 1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α+M2(WρWσ− 1

2 W2gρσ) + (142)

+ i
4 (ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)−

− 1
2 X(Wσψγρπψ+Wρψγσπψ)]

for the torsion–spin and curvature–energy coupling, and

∇σFσµ =qψγµψ (143)

for the gauge–current coupling. Then, we also have that

iγµ∇µψ−XWσγσπψ−mψ=0 (144)

for the spinor field equations.
If we take the divergence of (141) and contract (142), we obtain the constraints

M2∇µWµ =2Xmiψπψ (145)

and

2
k R+ 8

k Λ−M2W2=−mψψ (146)

where (144) has been used.
It is now possible to interpret torsion: just a quick look at the torsion–spin and

curvature–energy field equations simply reveals that torsion is an axial-vector massive field
verifying Proca field equations with corresponding energy and torsional-spin coupling
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within the gravitational field equations [26]. With this insight, one might now wonder
if there really was the necessity to go through the trouble of insisting on the presence of
torsion if all comes to the presence of an axial-vector massive field, asking why we could
not simply impose torsion equal to zero and then allowing an axial-vector massive field to
be included into the theory. The answer is that, although mathematically it is equivalent
to follow both approaches, conceptually the former approach is the most straightforward
construction in which all quantities are defined and all relationships are built in the most
general manner, while, on the other hand, the latter approach would be afflicted by a
number of arbitrary assumptions. If this latter approach were the one to be followed,
we would have to justify why torsion albeit in general present should be removed, why,
among all fields that could be included, we pick precisely a vector field with pseudo-
tensorial properties, and why it would have to be massive, and hence resulting into an
approach having three unjustified assumptions in alternative to the other approach in
which assumptions are either justified or not assumed at all. In order to avoid this high
degree of arbitrariness, we prefer to follow the approach that we actually followed here.
This leads after all to the presence of an axial-vector massive field. Then, if in some part
of the theory, there were to appear new physics that could somehow be reconducted to
an axial-vector massive field, we would know that these effects would emerge from the
existence of torsion. In fact, such effects might be something that we have already observed,
even if we ignored that they could come from the torsion tensor.

Spinors as Sum of Chiral Parts

Analogously to the covariant decomposition of torsion, there is also a perfectly covari-
ant split of the spinor field into its two chiral parts according to (80) and (81) and therefore
in its degrees of freedom as expressed by (105).

When (105) is plugged into the Gordon decompositions, we obtain the polar forms of
the Gordon decompositions, among which we find the following two equations:

−XWµ− 1
4 gµνενρσα∂ρξk

σξ
j
αηjk−(∇α − qA)ιu[ιsµ]+sµm cos β+ 1

2∇µβ=0

and

sµm sin β−(∇α − qA)ρuνsαεµρνα+
1
2 |ξ|−1ξk

µ∂α(|ξ|ξα
k )+∇µ ln φ=0

which are very special since we can show that these two expressions imply the spinor field
Equations (144): in fact, by employing the above pair of equations, we have that

iγµ∇µψ−XWσγσπψ−mψ =

= (∇α − qA)ι(iγµuνsαεµινα+u[ιsµ]γ
µπ+γι)ψ −

−m(isµγµ sin β+sµγµπ cos β+I)ψ

and then, using (90, 91), we get

iγµ∇µψ−XWσγσπψ−mψ=0

which is the Dirac spinor field Equation (144) as expected.
Therefore, we may summarize by saying that the Dirac spinorial field equation are

equivalent to the equations

∇µβ−2XWµ− 1
2 gµνενρσα∂ρξk

σξ
j
αηjk−2(∇α − qA)ιu[ιsµ]+2msµ cos β=0 (147)

and

∇µ ln φ2+|ξ|−1ξk
µ∂α(|ξ|ξα

k )−2(∇α − qA)ρuνsαεµρνα+2msµ sin β=0 (148)

in the most general case that is possible.
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Thus, we interpret spinor fields in this way: despite being fundamental, spinor fields
are reducible, constituted from two chiral parts. Their independence is measured by the Yvon–
Takabayashi angle describing internal dynamics of the spinor field. The module describes the overall
matter distribution. These are the two degrees of freedom of the spinor field, with all
space–time derivatives of these two degrees of freedom specified by (147) and (148) [27].

3.2. Torsion–Spinor Interactions

We now have all elements to deepen the investigation about the interaction between
geometry and matter.

3.2.1. Torsion–Spinor Binding

In the recent parts, we have seen that (145) and (146) provide very simply links
between geometrical structures and the bi-linear spinorial scalars. In addition, (147) and
(148) constitute some form of dynamical conditions upon such spinorial scalars.

We have in fact that (145) and (146) can be written as

M2∇µWµ =4Xmφ2 sin β (149)

and

2
k R+ 8

k Λ−M2W2=−2mφ2 cos β (150)

linking torsion and curvature to Yvon–Takabayashi angle and module, these last being
subject to

∇µβ−2XWµ− 1
2 gµνενρσα∂ρξk

σξ
j
αηjk−2(∇α − qA)ιu[ιsµ]+2msµ cos β=0 (151)

and

∇µ ln φ2+|ξ|−1ξk
µ∂α(|ξ|ξα

k )−2(∇α − qA)ρuνsαεµρνα+2msµ sin β=0 (152)

as dynamical conditions. Therefore, by solving these last equations, we can always integrate
spinor fields as all their degrees of freedom can be tied to torsion and curvature.

This is remarkable because it shows that formally the spinorial degrees of freedom
can always be replaced by quantities related to the underlying geometric structure.

To conclude this part, we will give a few more results starting from the introduction
of the potentials

Kµ =2XWµ+
1
2 gµνενρσα∂ρξk

σξ
j
αηjk+2(∇α − qA)ιu[ιsµ] (153)

and

Gµ =−|ξ|−1ξk
µ∂α(|ξ|ξα

k )+2(∇α − qA)ρuνsαεµρνα, (154)

in terms of which we have

∇µβ−Kµ+sµ2m cos β=0 (155)

and

∇µ ln φ2−Gµ+sµ2m sin β=0 (156)

as the Dirac equations in polar form. From these, we get

∣∣∣∇ β
2

∣∣∣
2
−m2−φ−1∇2φ+ 1

2 (∇G+ 1
2 G2− 1

2 K2)=0 (157)
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and

∇µ(φ2∇µ β
2 )− 1

2 (∇K+KG)φ2=0 (158)

as a Hamilton–Jacobi equation and a continuity equation.
Alternatively, we may define

1
2 (∇µβ−2XWµ− 1

2 gµνενρσα∂ρξk
σξ

j
αηjk)=Yµ (159)

and

− 1
2 [∇µ ln φ2+|ξ|−1ξk

µ∂α(|ξ|ξα
k )]=Zµ (160)

in terms of which

Yµ−(∇α − qA)ιu[ιsµ]+msµ cos β=0 (161)

and

Zµ − (∇α − qA)ρuνsαεµρνα+msµ sin β=0 (162)

as Dirac equations in polar form. Then, defining

Pν =∇να−qAν (163)

as the momentum, we have that

Pν =m cos βuν+Yµu[µsν]+Zµsρuσεµρσν (164)

giving its explicit form in terms of mass and velocity but also in terms of the Yvon–
Takabayashi angle and spin as well as the potentials given in the (159) and (160) above.

There is a very important point to be clarified regarding the spinorial active transfor-
mations acting on spinorial fields. Consider the rotations around the third axis and the
spinors in polar form (105): despite the fact that these spinors are aligned along the axis
around which we perform the above rotation, that rotation does not leave them unchanged
(as we have for vectors). This might already sound problematic, but, in addition, we also
have that, when such a rotation is given for an angle θ = 2π, it is Λ =−I implying that
the spinor would not go back to the initial configuration (as we have when we perform
a passive rotation). This too sounds peculiar. Thus, we might ask, is there any intuitive
way to see things under which these odd behaviors would look natural? First of all, we
have to take into account the fact that the rotation is an active rotation, and therefore an
operation that, keeping fixed the space–time, moves the spinor. Then, we have to keep
in mind that spinors are more sensitive than vectors to the structure of the space–time,
as if anchored instead of being free to slide in it. Thus, for a given active rotation around a
certain axis, a vector behaves like a pole, and, if aligned to the axis of rotation, it would be
left unchanged as a whole. For the same active rotation, however, spinors would behave as
a pole with a flag, so, even if aligned to the axis of rotation, they would be left unchanged
almost fully but not quite entirely. They would indeed behave as if the rotation was taking
place on a Möbius band. One way to picture them would be that of the belt trick, or the
spinning plates, as described in [28].

We have shown that there is a duplicity in the spinorial structure made clear from the
fact that spinors were defined up to the ψ→πψ discrete transformation, or from the fact
that the combined ψ→πψ and m→−m is one symmetry of the physical field equations.
Such duplicity may suggest a form of matter/antimatter duality [29,30].

Physical effects and phenomenological implications provided by a torsion tensor with
a dynamical axial-vector field have also been recently presented in [31].
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4. Limiting Situations

In this third section, we will consider the above theory in some specific cases so to
deepen their examination: we will first consider what happens as a consequence of the
fact that torsion is an axial-vector field with mass and in addition we will discuss what
happens as a consequence of the fact that also the spinor field is massive. Eventually, we
will see what happens in the complementary situation in which masslessness will allow
another symmetry.

4.1. Massive Cases

We start from the analysis of the consequences of massive torsion: assuming also
that the torsion mass is quite large, we will study the effective approximation. Finally,
some comments about low-speed conditions will be given from the perspective of the
non-relativistic limit.

4.1.1. Effective Approximation

To begin our investigation, we remark that torsion had a first property that was unlike
what any other space–time or gauge fields had, and that it comes as a general feature of
the geometry and not from a symmetry principle, with the consequence that there is no
symmetry protecting it from being massive. Thus, the torsional field Equations (141) are
such that, in the presence of a massive field, they can be taken in the approximation in
which the dynamical term is negligible compared to the mass term. Thus, we may write

M2Wµ ≈Xψγµπψ (165)

yielding an algebraic equation that can be used to have torsion substituted in all other
field equations in terms of the spin of the spinor, so that all torsional contributions can
effectively be converted into spin–spin interactions.

This is the so-called effective approximation.
Let us now move back to the physical field equations, which consist of expressions

(141)–(144). These equations, by employing the variational formalism, can be derived from
a dynamical action whose Lagrangian is

L =− 1
4 (∂W)2+ 1

2 M2W2− 1
k R− 2

k Λ− 1
4 F2 +

+iψγµ∇µψ−XψγµπψWµ−mψψ (166)

where torsion is already decomposed. Equivalently,

L =− 1
4 (∂W)2+ 1

2 M2W2− 1
k R− 2

k Λ− 1
4 F2 +

+iψLγµ∇µψL+iψRγµ∇µψR + (167)

+XψLγµψLWµ−XψRγµψRWµ −
−mψRψL−mψLψR

in which the chiral split is already done.
In effective approximation, the Lagrangian becomes

Leffective=− 1
k R− 2

k Λ− 1
4 F2 +

+iψγµ∇µψ+ 1
2

X2

M2 ψγµψψγµψ−mψψ (168)
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where (102) was used. Equivalently,

Leffective=− 1
k R− 2

k Λ− 1
4 F2 +

+iψLγµ∇µψL+iψRγµ∇µψR + (169)

+ X2

M2 ψLγµψLψRγµψR −
−mψRψL−mψLψR

which is exactly the Lagrangian of the Nambu–Jona–Lasinio model [32,33].
As (102) shows, it is precisely the axial-vector nature of the field that produces the

inversion of the sign of the potential, making the contact interaction attractive.
In addition, as it is clear, such an interaction takes place between two chiral projections.
In fact, general knowledge of the NJL model shows that the torsionally-induced

spin–spin contact interaction is an attraction between the two chiral parts of the spinor.
We recall that the role of the Higgs boson is analogous.
This is not surprising since the torsion–spin coupling is the axial-vector analog of the

scalar Yukawa coupling. In fact, if the effective Lagrangian (168) is further re-arranged in
terms of (102), it can be put in the form

L
spinor

effective= iψγµ∇µψ +

+ 1
2

X2

M2 (|ψψ|2+|iψπψ|2)−mψψ (170)

as the Lagrangian of the spinor field complemented with the torsionally-induced spin-
contact interactions. On the other hand, in the standard model of particle physics [34],
we might take into account the Lagrangian for the electron in the presence of the Higgs
interaction alone. If the Higgs is taken in effective approximation, we have

M2H≈−Y
2 ee (171)

which is analogous to (165) in scalar form. Plugging it into the standard model Lagrangian gives

L electron
effective = ieγµ∇µe+ Y2

4M2 |ee|2−mee (172)

for the electronic field with the Higgs-induced interaction. The comparison between (170)
and (172) shows that

V
spinor

effective=− 1
2

X2

M2 (|ψψ|2+|iψπψ|2) (173)

V electron
effective =− Y2

4M2 |ee|2 (174)

meaning that torsion gives a self-interaction with a scalar part and a pseudo-scalar part, so
spin dependent, while the Higgs gives rise to a scalar self-interaction only. Apart from this,
they are both attractive and occur between the chiral parts.

From the Lagrangian (170), we extract the potential

V =− X2

2M2

(
|ψψ|2+|iψπψ|2

)
(175)

which is negative, as expected for attractive interactions, and so the energy is the kinetic
energy plus the potential energy, given by the general expression according to

E =K − X2

2M2

(
|ψψ|2+|iψπψ|2

)
(176)

and we recall that all quantities are densities. In fact, a straightforward dimensional
analysis shows that we have

E=K− X2

2M2
1
V (177)
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having interpreted |ψψ|2+|iψπψ|2=V−2 as inverse volume, which is reasonable at least on
dimensional grounds. On the other hand, it is possible to compute what turns out to be the
expression for the internal energy of a van der Waals gas with negative pressure, given by

U=T−C2 1
V (178)

in terms of a generic constant C, as it is known from general thermodynamic arguments.
Because thermodynamically the kinetic energy can be interpreted as the temperature,

and of course the energy is the internal energy, then the formal similarities of these two
apparently unrelated expressions are striking.

In this thermodynamic analogy, we have that the single spinor field can be seen as a
matter distribution behaving in the same way in which a van der Waals attractive gas with
attractive intermolecular forces would [35].

Consider now the pair of second-order derivative Equations (157) and (158) with
Kµ ≈2XWµ and Gµ ≈0 and implement the torsion effective approximation: (157) becomes

∇2φ−4X4M−4φ5+2X2M−2K·sφ3 −
−|∇β/2|2φ+m2φ =0 (179)

with a quintic potential. We see that such a nonlinear potential is attractive.
Summarizing, in the effective approximation, torsional interactions give rise to a

contact force much in the same way in which the Higgs field would, with these two forces
being similarly attractive and chiral. In addition, we have seen that the torsional potential
would also be analogous to the internal energy of an attractive van der Waals gas.

Consequently, insofar as this effective approximation holds, there is a clear indication
that torsion is a sort of internal binding force, a tension, localizing the spinor.

4.1.2. Non-Relativistic Limit

In the initial section in which we introduced kinematic quantities, it was clear that
tensors and gauge fields were characterized by general definition while spinors were de-
fined in a way that was strongly dependent on the background being a (1 + 3)-dimensional
space–time. Therefore, in such a space–time, the spinorial transformation law has a total of
six parameters while spinor fields defined in terms of this transformation have a total of
eight real components, and we have seen how to remove six components from the spinor
field leaving it with two physical degrees of freedom.

However, now one might wonder what would happen when we consider the non-
relativistic limit. In such a limit of small velocities, boosts can no longer be viable trans-
formation laws and so time gets frozen, reducing the background to effectively be a
three-dimensional space. In this case, spinorial transformation laws would possess a total
of three parameters while spinor fields defined by this transformation would have four
real components, so that we could remove three of the components from the spinor, hence
leaving it with only one physical degree of freedom and nothing more.

To be mathematically precise, in the (1 + 3)-dimensional space–time, the spinor can
always be written as (105) like

ψ=φe−iα




e
i
2 β

0
e−

i
2 β

0


 (180)

in the representation we used throughout this presentation, called chiral representation,
with Yvon–Takabayashi angle expressed in terms of imaginary exponentials. It is, however,
possible to introduce another representation in which the Yvon–Takabayashi is expressed
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in terms of real circular functions, called standard representation, obtained via the unitary
transformation

U = 1√
2

(
I I

−I I

)
(181)

which operates on gamma matrices to give

γ0=

(
I 0
0 −I

)
(182)

γK =

(
0 σK

−σK 0

)
(183)

so that

σ0A = 1
2

(
0 σA

σA 0

)
(184)

σAB =− i
2 εABC

(
σC 0
0 σC

)
(185)

and on spinors to give

ψ=
√

2φe−iα




cos β
2

0
−i sin β

2
0


 (186)

in general. In (1 + 3)-dimensional space–times, spinors can always be written as above.
In three-dimensional space, the spinor can always be written according to

ψ=φe−iα

(
1
0

)
(187)

and the representation is unique.
Upon comparison, it becomes easy to see that the non-relativistic limit requires a small

spatial part of the velocity ua but also a small Yvon–Takabayashi angle β and, when this is
accomplished, we have that, in standard representation, the spinor reduces to the form

ψ=
√

2φe−iα




1
0
0
0


 (188)

where the lower component has vanished, and the upper component has reduced to

ψ=φe−iα

(
1
0

)
(189)

up to an overall constant, which is irrelevant.
It is also worth noticing that, so far, we have been able to obtain a procedure of non-

relativistic limit that involves no definition of momentum. However, if the momentum in
(163) is considered, we would see that only in the case in which all spin contributions are
negligible can the explicit form of the momentum (164) reduce to

Pν ≈m cos βuν (190)

so that the non-relativistic limit is given as a small spatial part of Pa as commonly used.
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Therefore, we have that the non-relativistic limit is implemented by the requirement
that, when written in standard representation, the spinor loses its lower component

ψ→
√

2φe−iα




1
0
0
0


 (191)

and this is why this component is called small component.
Equivalently, we have that the conditions

ua →




1
0
0
0


 (192)

β→0 (193)

are what implements the non-relativistic limit.
In addition, additionally, if the spin is negligible, then

Pa →




m

0
0
0


 (194)

is the final form of non-relativistic limit, and the one that is normally employed.
We notice that, because ua is the velocity and, as we said, β is already linked to the

internal dynamics, then, in a non-relativistic limit, the spinor loses both the overall and the
internal motions, which is intuitive. In addition, it is remarkable that the spinorial lower
component is connected to Zitterbewegung effects which are yet another signature of internal
dynamics [36]. There seems to be a very tight relation linking the Yvon–Takabayashi angle
with effects of Zitterbewegung as manifestations of internal dynamics for the Dirac spinorial
matter fields in general [37].

4.2. Massless Case

In this part, we will study the complementary situation given when both torsion and
spinors are massless.

Ultra-Relativistic Limit

Let us now consider what happens when torsion as well as the Dirac spinor are both
massless. The torsional field Equations (141) become

∇ρ(∂W)ρµ =Xψγµπψ (195)

which are analogous to the electro-dynamic field equations apart from the fact that these
above are parity-odd. This aside, both are vector field equations in a massless case, and, as
such, we should expect some symmetry to be present. The full Lagrangian in the case of
masslessness also for the spinor field is given by the following:

Lmassless=− 1
4 (∂W)2− 1

k R− 2
k Λ− 1

4 F2 +

+iψLγµ∇µψL+iψRγµ∇µψR + (196)

+XψLγµψLWµ−XψRγµψRWµ

as it is straightforward to see.
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This is invariant for the transformation

W ′
ν = Wν − ∂νω (197)

with

ψ′
L = e−iXωψL ψ′

R = eiXωψR (198)

or in compact form

ψ′ = eiXωπψ (199)

known as chiral gauge transformation.
Additionally, expression (105) can also be written as

ψ=φe−iαe−
i
2 βπ




1
0
1
0


 (200)

and, from this expression, it is clear that it is always possible to perform a chiral gauge
transformation taking the local parameter to be β=2Xω and leaving

ψ′=φe−iα




1
0
1
0


 (201)

in terms of the module alone: this has to be expected, as symmetries come with redundant
information that can be removed by reducing the fields, and because in this case the chiral
symmetry is an additional symmetry with one parameter, we have to expect that one
degree of freedom be removed. It is clear that the only degree of freedom to remain is the
one that cannot be removed in any way whatsoever that is the module.

Because in the massless approximation the two chiral Lagrangians become separable,
the two chiral projections are independent, and therefore the Yvon–Takabayashi angle can
be vanished, since it carries no information.

This is yet another fact that supports the evidence for which the Yvon–Takabayashi
angle can be related to internal dynamics and Zitterbewegung for spinor fields.

In addition, this is possible because of the attractiveness that characterizes the axial-
vector massive torsion mediation of the chiral mutual interaction within the spinor field.

If torsion were not an axial-vector, the chiral interaction would not be attractive, and,
if such an attraction were not massive enough, it would not be sufficiently strong to grant
stability for the bound-state spinorial field itself.

4.3. Two: Basic Applications

This second chapter will be about applying the above theory to solve or discuss
fundamental problems in modern physics: in the first section, we will tackle the problem
of gravitational singularity formation. In the second section, we will discuss the problem
of positivity of energy.

5. Consequences of Spin

In this first section, our main goal is to take into account the problem of the formation of
gravitational singularities and face it in terms of the modifications brought by the presence
of torsion interacting with spinors. Some comments on the Pauli exclusion principle will
be made.
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5.1. Singularity Avoidance

If we consider Einstein gravity on its own, it is remarkably difficult to overestimate its
success. From planetary precession, through gravitational waves, to black holes, there is
not a single prediction that has not been corroborated yet. In fact, if Dark Matter is just
another form of matter, there is not a single effect, whether predicted or not, that has never
been confirmed so far. Nevertheless, there is a black spot, theoretically.

The Hawking–Penrose theorem is a very general result showing how, under very
general conditions on energy, gravitationally-induced singularities form. If true, such a
result would constitute an indication that Einstein gravitation has to be generalized, or at
least included in an extended framework. There are, in fact, several attempts at extended
models, whether they are simple extensions of Einstein gravity, or major revisions of all
Einstein concepts of a geometric theory in itself. All these models and theories are certainly
worth our attention. However, at times, the solution to a given puzzle might well be much
closer than expected. If we wish to try a solution that is based on the physics we already
have, the most straightforward possibility is to use the torsion tensor.

Employing torsion to solve this problem has already been done [38]. However, con-
trary to the expectation that torsion could solve or at least alleviate this issue, Kerlick found
that the issue was actually worsened. This way was then abandoned.

Nevertheless, to a more attentive examination, we may find a possible way out.
A closer look at the reasons why torsion would enhance the formation of singularities
will reveal that the gravitational field is increased because, in the energy density, there
are positive contributions coming from the fact that torsional effects for the spin contact
interaction of spinors are taken to be repulsive.

This happens to be the case because Kerlick considers the simplest generalization of
Einstein gravity, the original Einstein–Sciama–Kibble theory, where torsion is tied to the
spin in terms of the Newton gravitational constant.

However, as discussed above, a more general theory of torsion would, first of all,
involve a torsion–spin coupling that is not the Newton gravitational constant, but which
can be any possible constant and in particular a constant with the opposite sign. In
addition, secondly, in the most general case in which torsion propagates, in the effective
approximation, the torsion–spin coupling constant has an opposite sign necessarily.

In fact, in this case, in effective approximation, we found that we do have an attractive
torsion effect, resulting in a negative potential in the energy density, decreasing gravitation
and making the singularity formation avoidable.

Indeed, the torsional contribution could provide such a negative potential that the
whole energy may turn negative, the gravitational field may turn repulsive, and singularity
formation would be avoided necessarily.

To put words into expressions, take (142) contracted as

−R−4Λ= k
2 (−M2W2+mΦ) (202)

and plug this back into the original equations to get

Rρσ+Λgρσ = k
2 [

1
4 F2gρσ−FραFσ

α+
1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α+M2WρWσ +

+ i
4 (ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)− (203)

− 1
2 X(WσSρ+WρSσ)− 1

2 mΦgρσ]

equivalent to those in the original form. For the singularity theorem in Einstein gravity, we
have that the condition

Rρσuρuσ>0 (204)
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must be verified, and, when this is the case, then singularity formation will become
inevitable. With no cosmological constant and neglecting electro-dynamics, we obtain that
the condition to have singularity formation reads

[ 1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α+

i
2 (ψγρ∇σψ−∇σψγρψ) +

+M2WρWσ−XWσSρ− 1
2 mΦgρσ]uρuσ>0 (205)

and this is what we have to study.
In effective approximation, it becomes

i
2 (ψγ0∇0ψ−∇0ψγ0ψ)− 1

2 mΦ>0 (206)

and because (144) in the effective approximation is

iγ0∇0ψ+i~γ·~∇ψ− X2

M2 Sσγσπψ−mψ=0 (207)

we may use this in the above to get

i
2 (
~∇ψ·~γψ−ψ~γ·~∇ψ)+ X2

M2 SσSσ+ 1
2 mΦ>0 (208)

whose structure is similar to the condition of Kerlick but with the sign of the nonlinear
interaction inverted. We may now follow Kerlick argument by neglecting the derivative
term, and, by employing (102), we get that

−4 X2

M2 φ4+mφ2 cos β>0 (209)

which for for large densities are be violated, and quite easily too.
Therefore, because of the torsion–spin coupling, the energy condition is not verified

and gravitational singularity formation is no longer a necessity [39].
We already said that torsion in effective approximation generates interactions which,

without the spin-dependent part, are similar to what we would get by using the Higgs
potential. Therefore, it is not surprising that singularity avoidance could be achieved also
by the Higgs [40]. The difference is in the mass scale: the Higgs potential can only be used
to avoid singularities in black holes, as it does not work before symmetry breaking, while
torsion can be used to avoid singularities for black holes and the big bang, since torsion is
always a massive field even prior to any mass generation mechanism.

Notice that this mechanism is proper to the Einsteinian gravitation. In fact, in order
for this mechanism to work, one must have a theory in which gravitation can become
repulsive if the energy density switches sign and in which the energy density is allowed to
switch its overall sign. None of this would ever be possible in a theory of gravitation in
which the source is not the energy but the mass, since the mass can never be negative.

5.2. Pauli Exclusion

The above-commented mechanism with which one may avoid the formation of singu-
larity at a gravitational level is reminiscent of the degeneracy pressure encountered in the
usual treatment of neutron stars. Consequently, the correlated Pauli exclusion principle
comes to the mind. Such a principle stems from the fact that, in the construction of elec-
tronic levels, obtained by solving the non-relativistic matter field equations in a Coulomb
potential, the solutions are given in terms of a quantum number n giving the energy level of
the external shell, accounting for a total of n2 electrons. However, the number of observed
electrons 2n2 and hence there must be a two-fold degeneracy. This means that solutions of
the matter field equation come in pairs of two, so that each electronic shell can be filled
twice by the same state. The exclusion principle presented in this way is the original form
by Pauli. Pauli’s initial idea to assign a two-fold degeneracy was most straightforwardly
that of introducing the concept of spin: the connection is very simple, based on the fact
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that irreducible representations of particles of spin s have exactly d=2s+1 independent
components. For particles of spin s=1/2, this means d=2/2+1=2 components, so that
it is possible to think that these two components be precisely the two states that account
for the double state of multiplicity. Mathematically, this can be seen from the fact that the
spinor field has, for each chiral part, two components. Indeed, recalling (105), we have that
spinor fields can be written as

ψ=φe−iαe−
i
2 βπ




1
0
1
0


 and ψ=φe−iαe−

i
2 βπ




0
1
0
1


 (210)

where the first is a spin-up (spin +1/2) eigenstate while the second is a spin-down (spin
−1/2) eigenstate. These are the two opposite-spin eigenvalues of the same eigenspinor.
As a consequence of this structure, superposition of two opposite-spin spinors is allowed
and thus, if the two initial spinors are solutions, then also their superposition is another
solution. This mechanism is indeed what happens in the hydrogen atom.

Nevertheless, the Pauli exclusion principle is not only this. Such a principle must
also include a mechanism for which no more than two states can superpose. Quantum
mechanics does not solve this problem. In quantum field theory, however, a solution is
proposed, and the commonly accepted paradigm is described by the spin-statistic theorem:
this theorem says that in a theory that is Lorentz covariance and causal, with positive
norms and energies, half-integer spin particles cannot occupy more than one state at a time
(while integer spin particles can). However, for this result to take place, the theorem must
engage, and this is subject to the conditions granted by its hypotheses. In a classical theory
of fields, Lorentz covariance and causality are ensured, but positive norms and energies
are not. In fact, we have seen that negative energies are not only possible but also needed
to ensure the mechanism to avoid the formation of singularities.

It so appears that the exclusion principle and singularity avoidance can not both be
implemented in the same framework. In addition, usually, the common behavior is that of
implementing the spin-statistic theorem and leaving the singularity formation unsolved.
However, one can instead consider the complementary position of ensuring singularity
avoidance and leave the Pauli exclusion open.

However, in a theory where spinors interact with torsion, we have seen that, in
effective approximation, the torsionally-induced spin–contact interactions of the spinor
give rise to self-interactions for the spinor field. These nonlinear contributions in the matter
field equations are enough to ensure that no superposition of two identical solutions can
also be a solution. This entails the exclusion principle.

Notice that, in case the two solutions are not identical, that is, if the two solutions
correspond to opposite spins, their superposition is allowed by the double-valuedness that
characterizes the spinorial fields in general cases.

6. Conditions on Energy

In this second section, we intend to deepen the investigation of the problem of the
positive energies. We conclude with comments on the macroscopic approximation.

6.1. Positive Energy

In the development of field theories, it is not uncommon for some properties to
be present in a given approximation but not in the full theory. Thus, particles behave
in a certain manner in classical mechanics and very differently in quantum mechanics,
and quantum particles behave in a given way in quantum mechanics and rather differently
in the relativistic version of quantum mechanics.

Following a bottom-up approach in terms of successive generalizations, fewer and
fewer properties will be found within the most general theory that is possible. There is,
however, a property that does not appear to follow such a pattern, which is the energy.
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From classical mechanics to quantum mechanics, to relativistic quantum mechanics, to rel-
ativistic quantum mechanics of spinning fields, the energy of a particle is always taken to
be positive, either because it is proven positive, or because we force it to be positive by
correcting the theory in an appropriate way.

Forcing the energy to be positive does have a number of consequences, not only for the
interpretation, but also to obtain results like the spin-statistic theorem as discussed above.
However, we have seen that the exclusion principle can also be entailed in a different
manner, and there should be no surprise in finding a generalization of field the theory in
which some energies happen to be negative after all.

Allowing negative energies has considerable advantages too, not only for the fact that
the mathematics tells us that they are possible, but also to obtain results like the avoidance
of singularities as we had discussed before.

Just the same, even assuming that energies can be negative, we have that they will
have to turn out to be positive in those approximations in which we know they are.

To see this is in fact the case, let us consider the energy given as the right-hand side of
(142), and that is

Tρσ = 1
4 F2gρσ−FραFσ

α +

+ 1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α +

+M2(WρWσ− 1
2 W2gρσ) + (211)

+ i
4 (ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)−

− 1
2 X(Wσψγρπψ+Wρψγσπψ)

in general. In particular, as the electro-dynamic and torsional contributions are positive,
we will consider only

Eρσ = i
4 (ψγρ∇σψ−∇σψγρψ +

+ψγσ∇ρψ−∇ρψγσψ)− (212)

− 1
2 X(Wσψγρπψ+Wρψγσπψ)

as pure spinorial contribution and which is not positive.
To better see this, we go in the frame where the spinor assumes the polar form (105)

in which

Eρσ =φ2[Pσuρ+Pρuσ+

+[ 1
4 (Ω

ij
σερijk+Ω

ij
ρεσijk)η

ka + (213)

+ξa
ρ(∇β/2−XW)σ+ξa

σ(∇β/2−XW)ρ]sa

]

whose time-time component is not positive defined as the straightforward check would
immediately show.

In it, the momentum is given by (164) as

Pν =m cos βuν+Yµu[µsν]+Zµsρuσεµρσν (214)

whose time component is also not positive defined.
However, if we could justify the assumption in terms of which we neglect all contribu-

tions coming from the spin, then the energy would reduce to

E00=2φ2P0u0 (215)

for the time-time component.
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The momentum becomes

P0=m cos βu0 (216)

for the time component.
Therefore, if now the Yvon–Takabayashi angle vanishes, then the energy is ensured to

be positive defined.
Summarizing, we can say that, if

β→0 (217)

sa →0 (218)

then the energy of spinor fields is necessarily positive [41].
These two conditions together condense a very simple situation, as we are going to

discuss in what follows.

6.2. Macroscopic Limit

In the previous part, we have discussed how the energy is positive if β→0 and sa →0
happen to occur.

To understand the meaning of these conditions, let us consider again the field equa-
tions for the gravitational field and for electro-dynamics (142) and (143) and compute the
divergences: they are respectively given by

∇ρ[
1
4 F2gρσ−FραFσ

α +

+ 1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α +

+M2(WρWσ− 1
2 W2gρσ) + (219)

+ i
4 (ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)−

− 1
2 X(Wσψγρπψ+Wρψγσπψ)]=0

and

∇µ(ψγµψ)=0 (220)

identically, as we already know from the first chapter.
By substituting the polar form (105) and implementing the above conditions β→ 0

and sa →0, we get

∇ρ(
1
4 F2gρσ−FραFσ

α+2mφ2uρuσ)=0 (221)

and

∇µ(2φ2uµ)=0 (222)

as it is straightforward to see.
Evaluating the divergence of the former and employing the latter, we obtain the expression

−2qφ2uαFσ
α+2mφ2uρ∇ρuσ =0 (223)

having used the Maxwell field equations.
After the necessary simplifications, we get

muρ∇ρuσ =qFσαuα (224)

which is just the Newton law in the presence of Lorentz force.
This is what we have in macroscopic approximation.
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Thus, we can interpret β→0 and sa →0 as the conditions that implement the known
macroscopic approximation.

This is reasonable because vanishing the internal dynamics and all information about
internal structures essentially means that we are considering situations where internal
contributions are concealed within the spinorial field, which means we are in macro-
scopic approximation.

Spinor fields have energy density that can be negative as a consequence of all con-
tributions of spin and internal dynamics, and it is only when these are hidden that the
positivity of the energy density is also ensured for spinors.

6.3. Three: Special Models

This third and last chapter will be about the application of the above theory for
phenomenological cases: we will in fact consider what the effects are of torsion for the two
standard models of particles and cosmology.

7. Particles and Cosmology

In the first chapter, we have encountered the theorem of the polar form, which speci-
fied that, if both scalars Θ and Φ do not vanish identically, then we can always find special
frames where the most general spinor is as in (105).

However, what if Θ = Φ ≡ 0 everywhere? The answer to this question has already
been given in [15], and it is that we could still find a special frame in which the most general
spinor can be written in some type of polar form.

Specifically, if Θ = Φ ≡ 0, then we can always find special frames where the most
general spinor is given by

ψ= 1√
2
(I cos α

2 −π sin α
2 )




1
0
0
1


 (225)

up to the reversal of the third axis.
Spinor fields undergoing these constraints are called flag-dipoles, and they contain

two special cases: one with constraint Sa =0 and called flagpoles, written as

ψ= 1√
2




1
0
0
1


 (226)

up to the reversal of the third axis and extinguishing the class of Majorana spinors; the
other with a constraint given by Mab =0 and called dipoles, written as

ψ=




1
0
0
0


 (227)

up to the reversal of the third axis and the switch between chiral parts and accounting for
the Weyl spinors.

Therefore, as it can be seen quite clearly, Majorana as well as Weyl spinors can always
be Lorentz transformed into a frame in which they remain with a fixed structure, and,
consequently, they have no degree of freedom at all.

This may sound surprising, and thus we are going to give a direct proof of this
statement for the Weyl spinors.
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To do that, consider a general Weyl spinor, for instance left-handed, in the form

ψ=




aeiα

beiβ

0
0




where the two complex components have been written in polar form. Consider now as
Lorentz transformation the rotation of angle θ around the second axis given by

ΛR2 =




cos θ/2 − sin θ/2 0 0
sin θ/2 cos θ/2 0 0

0 0 cos θ/2 − sin θ/2
0 0 sin θ/2 cos θ/2




followed by the rotation of angle ϕ around the third axis

ΛR3 =




eiϕ/2 0 0 0
0 e−iϕ/2 0 0
0 0 eiϕ/2 0
0 0 0 e−iϕ/2




applied to the spinor. The results are given by expression

ψ′=




cos θ/2 − sin θ/2 0 0
sin θ/2 cos θ/2 0 0

0 0 cos θ/2 − sin θ/2
0 0 sin θ/2 cos θ/2


 ·

·




eiϕ/2 0 0 0
0 e−iϕ/2 0 0
0 0 eiϕ/2 0
0 0 0 e−iϕ/2







aeiα

beiβ

0
0




and that is

ψ′=




a cos θ/2eiϕ/2eiα−b sin θ/2e−iϕ/2eiβ

a sin θ/2eiϕ/2eiα+b cos θ/2e−iϕ/2eiβ

0
0




after multiplication. The spin-down component is zero if

a sin θ/2eiϕ/2eiα+b cos θ/2e−iϕ/2eiβ =0

which can be worked out to be

a

b
ei(α−β)=−e−iϕ cot θ/2

splitting into

cot θ/2=−a/b

ϕ=β − α
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for the two angles. Thus, we can always find a combination of two rotations that brings the
spin-down component to vanish identically. When this is done, we have

ψ′=
√

a2 + b2ei(β+α)/2




1
0
0
0




for spin-up Weyl spinors. With another rotation of angle ζ = β+α around the third axis
given as the above

ΛR3 =




e−iζ/2 0 0 0
0 eiζ/2 0 0
0 0 e−iζ/2 0
0 0 0 eiζ/2




the phase can also be vanished. Thus, we have

ψ′′=
√

a2 + b2




1
0
0
0




and employing a boost of rapidity η= ln |a2 + b2| along the third axis given by

ΛB3 =




e−η/2 0 0 0
0 eη/2 0 0
0 0 eη/2 0
0 0 0 e−η/2




the module is also removed, and we get

ψ′′′=




1
0
0
0




for the final form of the Weyl spinor. Obviously, the same would be true if we intended to
keep only the spin-down component. In addition, of course, the same remains true for the
right-handed case. This result for Weyl spinors is general.

Although more calculations would be needed, it would still be straightforward to see
that, by employing exactly the same method, we would obtain exactly the same result also
if we were to consider the Majorana spinors.

Such a result may be surprising, but it is a mathematical consequence of the definition
of Majorana and Weyl spinors alone and therefore it is true in full generality.

Thus, these spinors do not have degrees of freedom.
If we take this to conclude that these spinors cannot be physical, then we are bound to

accept that such spinors cannot form the matter content of any theory, in particular, the
standard model of particle physics as we know.

This leaves us with a remarkable consequence: if these spinors, and in particular Weyl
spinors, cannot be used in physics, and in particular in the standard model of particle
physics, then we cannot employ neutrinos as defined at the moment. Neutrinos need be
right-handed too, and, after the symmetry breaking, they must get a Dirac mass.

Because the charge count of the standard model cannot change, neutrinos are sterile.
We will next try to see what happens when sterile neutrinos with a Dirac mass term

are then included. Of course, the first application is neutrino oscillations.
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We now try to see what the effects of torsion can be. However, in order to do so, we
have first to make one little digression in order to generalize the theory.

Throughout the entire presentation, we have been considering single spinor fields,
but clearly the treatment of two spinor fields, or even more spinor fields, is doable, and it
is achieved by replicating the spinor field Lagrangian as many times as the number of
independent spinor fields.

For instance, in the case of two spinor fields, we have

L =− 1
4 (∂W)2+ 1

2 M2W2− 1
k R− 2

k Λ− 1
4 F2 +

+iψ1γµ∇µψ1+iψ2γµ∇µψ2 + (228)

−X1ψ1γµπψ1Wµ−X2ψ2γµπψ2Wµ +

−m1ψ1ψ1−m2ψ2ψ2

as it is reasonable to expect.
Taking the variation with respect to torsion gives

∇ν(∂W)νµ+M2Wµ =X1ψ1γµπψ1 +

+X2ψ2γµπψ2 (229)

as the torsion field equations with two sources.
In effective approximation, we obtain expressions

M2Wµ ≈X1ψ1γµπψ1+X2ψ2γµπψ2 (230)

which can be plugged back into the Lagrangian giving

L =− 1
k R− 2

k Λ− 1
4 F2+iψ1γµ∇µψ1+iψ2γµ∇µψ2 +

+ 1
2

∣∣∣X1
M

∣∣∣
2
ψ1γµψ1ψ1γµψ1+

1
2

∣∣∣X2
M

∣∣∣
2
ψ2γµψ2ψ2γµψ2 − (231)

−X1
M

X2
M ψ1γµπψ1ψ2γµπψ2−m1ψ1ψ1−m2ψ2ψ2

in which each spinor has self-interaction and between spinors there is mutual interaction.
The extension to three spinor fields, or n spinor fields, is similar: there are n self-

interactions, always attractive, and 1
2 n(n−1) mutual interactions, being either attractive or

repulsive according to XiXj being positive or negative.
This extension is interesting for n=3 because this is the situation we have for neutri-

nos. By neglecting all the interactions apart from the effective interactions, and in them
neglecting the self-interaction so to have only the mutual interactions, one may calculate
the Hamiltonian

H =∑
ij

νi(Uij−XiXjγ
µ

πνiνjπγµ)νj (232)

where the Latin indices run over the three labels associated with the three different flavors
of neutrinos. Hence, the matrix Uij−XiXjγ

µπνiνjπγµ is the combination of the constant
matrix Uij describing kinematic phases that arise from the mass terms, as usual, plus the
field-dependent matrix XiXjγ

µπνiνjπγµ describing the dynamical phases that arise from
the torsionally-induced nonlinear potentials, those of the present theory.

Dealing with the nonlinear potentials is problematic, but, in reference [42], this prob-
lem is solved by taking neutrinos dense enough to make the torsion field background
homogeneous and thus constant. The phase difference is

∆Φ≈
(

∆m2

2E
+

1
4
|W0−W3|

)
L (233)
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having assumed W1=W2=0 and where L is the length of the oscillations. In [43], it was
seen that (233) in the case in which the neutrino mass difference is small becomes

∆Φ≈
(

∆m2+m
X2

eff
4M2 |νγµννγ

µν| 1
2

)
L

2E
(234)

where m is the value of the nearly-equal masses of neutrinos while X2
eff is a combination

of the coupling constants and with the dependence L/E as the ratio between length and
energy of the oscillations, as it is expected.

The phase difference due to the oscillation has the kinematic contribution, as a dif-
ference of the squared masses, plus a dynamic contribution, proportional to the neutrino
mass density distribution. The novelty torsion introduced is that, even in the case in which
neutrino masses were to be non-zero but with insufficient non-degeneracy in mass spec-
trum, we might still have oscillations, and therefore an ampler margin of freedom before
having some tension. Notice also that both m and X2

eff depend on the masses and coupling
constants of the two neutrinos involved so that they would be different for another pair of
neutrinos, making it clear how the parameters of the oscillation depend on the specific pair
of neutrinos, as it should be.

This is an immediate and clear effect that the neutrinos with Dirac mass term and
interacting in terms of torsion give to us for some new physical insight beyond what is
commonly expected from the standard model of particles.

What about the standard model of cosmology? To give an answer to this question, we
move on to examine some consequences torsion may have for Dark Matter.

To begin with, we specify that, although we still do not exactly know what dark matter
is, nevertheless it has to be a form of matter: albeit many models may fit galactic rotation
curves, only dark matter as a real form of matter fits all galactic behaviors [44].

Hence, given dark matter as a form of matter, massive and weakly interacting, we will
additionally take it to be described by 1

2 -spin spinor fields. This makes it possible to have
the effects due to torsional interactions.

In reference [45], the torsional effects have been studied in a classical context to see
how galactic dynamics could be modified by torsion, and, in [46], we have applied those
results to the case in which torsion was coupled to spinors to see how galactic dynamics
could be modified by torsion and how torsion could be sourced by dark matter.

Thus, here as before, torsion is not used as an alternative but as a correction over
pre-existing physics. Having this in mind, we recall that, in [46], we showed how, if spinors
are the source of torsion, the gravitational field in galaxies turns out to be increased: from
(142), we see that, in the case of the effective approximation (165), we get

Rρσ− 1
2

Rgρσ−Λgρσ =
k

2
(Eρσ− 1

2
X2

M2 SµSµgρσ) (235)

showing that the spinor field with the torsionally-induced nonlinear interactions has an
effective energy, which is written as the usual term plus a nonlinear contribution.

For this contribution, we have to recall that we are not considering a single spinor
field, as we have done when in particle physics, but collective states of spinor fields, as it is
natural to assume in cosmology, with the consequence that it is not possible to employ the
re-arrangements we used before and thus SµSµ cannot be reduced. Generally, we do not
know how to compute it, but, as the square of a density, it may be positive.

In Ref. [46], we have been discussing precisely what would happen if the spin density
square happened to be positive, and we have found that the contribution to the energy
would change the gravitational field as to allow for a constant behavior of the rotation
curves of galaxies, discussing the value of the torsion–spin coupling constant that is
required to fit the galactic observations.
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The details of the calculations were based on the fact that in this occurrence and within
the approximations of slow rotational velocity and weak gravitational field, the acceleration
felt by a point-particle was given by

div~a≈−mρ−K2ρ2 (236)

in which the Newton gravitational constant has been normalized and where K is the
effective value of the torsional constant, with constant tangential velocity obtained for
densities scaling down as r−2 in general. In the standard approach to dark matter, there
are only Newtonian source contributions scaling down as r−1 and so a modification to
the density distribution has to be devised, and it is the well known Navarro–Frenk–White
profile. In the presence of torsional corrections, the Newtonian profile suffices because,
even if the density drops as r−1, it is squared in the torsional correction and the r−2 drop is
obtained. These similarities suggest that the torsion correction might be what gives the
Navarro–Frenk–White profile. After all, the NFW profile is obtained in n-body dynamics
as those assumed here provided that the n spinors interact through torsion in terms of
some axial-vector simplified model.

Nor is the idea of modeling dark matter, through the NFW profile, unexpected in terms
of torsion, since this is precisely what a specific type of effective theories does.

In quite recent years, there has been a shift of approach in looking for physics beyond
the standard model, and in particular dark matter. The new way of tackling the issue
is based on the idea of studying all types of effective interactions that can be put in a
Lagrangian, and, among all of them, there is the axial-vector spin-contact interaction.

However, in even more recent years, this approach has been generalized, shifting the
attention from the effective interactions to the mediated interactions, known as simplified
models [47]. However, the story does not change, since among all these there is the
axial-vector mediated term

∆L =−gχγ
µ

πχBµ (237)

where χ is the dark matter particle and Bµ is the axial-vector mediator, and where the
structure of the interaction is that of the torsion–spin coupling, as it should be quite easily
recognizable for the reader at this moment.

When the standard model has been acknowledged to need a complementation, we
have been striving to have it placed within a more general model, which should have also
contained some new physics, and in particular dark matter. It has been the constant failure
in this project that prompted us to reverse the strategy, pushing us to look for simplified
models, namely models that can immediately describe dark matter, or in general new
physics, and leaving the task of including them, together with the standard model, into a
more general model for later, and better, times. If we were, therefore, to see that the dark
matter, or generally some new physics, were actually described by one of these simplified
models, the following step would be to include it beside the standard model within a
more general model, and at this point it should be clear what is our ultimate claim for this
entire section.

Our claim is that, if such a simplified model is the one described by the axial-vector
mediator, then we will need not look very far, as the general model would be torsion.

We next move to study a more direct effect about a cosmological situation [48,49].
The problem is quite simply the fact that the cosmological constant has a measured

value that, in natural units, is about one hundred and twenty orders of magnitude off
of the theoretically predicted one. Normally, this would have made physicists reject the
theories in which its value is calculated, but those theories are quantum field theory and
the standard model, being very successful otherwise.

Philosophers may argue that, in the face of a bad result disproving a theory, there
can be no good result that can support it: the history of physics is loaded with examples
of good agreements between observations and predictions that were based on theories
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later seen to be false. In addition, in this specific situation, the bad agreement is not only
bad, but it is the worst in all of physics ever. Nowadays, the common behavior would
be to claim that this is not really a bad agreement, since new physics might intervene to
make the agreement acceptable. It does not take very experienced philosophers to see
that this argument could always be invoked to push the problems under the carpet of an
even higher energy frontier, and when this frontier will be unreachable, the predictivity
of the theory will be annihilated. In this work, we try to embrace a philosophic approach,
or merely be reasonable, admitting that such a discrepancy is lethal.

As a consequence, it follows that all theories predicting contributions to the cosmolog-
ical constant must be dramatically re-adjusted. As we said above, these are the theory of
quantum fields, with cosmological constant contributions due to zero-point energy, and the
standard model, with cosmological constant contributions given by the same mechanism
that gives mass to all fields and that is the spontaneous symmetry breaking.

As for the contribution coming from the general theory of quantum fields in terms
of the zero-point energies, we have to recall that the zero-point energies are the result of
quantization implemented with commutation relationships. In a normal-ordered quantum
theory of fields, or simply in the classical theory of fields, zero-point energy does not
appear, and thus no further contribution arises in the cosmological constant.

Leaving us without zero-point energy, it becomes necessary to find a way to compute
the Casimir force without using any zero-point energy. It is worth remembering that
Casimir forces derived from van der Waals forces was indeed the very first way to describe
this phenomenon in the original paper by Casimir and Polder. A more recent account can
be found in [50]. See also [51,52].

As for the contribution of the standard model in terms of the mechanism of symmetry
breaking, recall that, after the break-down of the symmetry, we have the generation of the
masses of all particles interacting with the Higgs field plus that of an effective cosmological
constant 1

2 λ2v4 with a value around 10120 in natural units. If this term is to disappear,
we need to vanish either λ or v, but, as vanishing the former would imply no symmetry
breaking, the only possibility is to vanish v so that symmetry breaking can still occur
though not spontaneously. We may look for a dynamical symmetry breaking.

To begin our investigation, the very first thing we want to do is remark that, as the
reader may have noticed, we never treated the scalar field. The reason was merely to keep
an already heavy presentation from being heavier.

Still, it is now time to put in some scalar field. The scalar field complementing the
Lagrangian (166) gives

L =− 1
4 (∂W)2+ 1

2 M2W2− 1
k R− 2

k Λ− 1
4 F2 +

+iψγµ∇µψ+∇µφ†∇µφ − (238)

−XψγµπψWµ− 1
2 Ξφ2W2−Yψψφ −

−mψψ+µ2φ2− 1
2 λ2φ4

where the X, Ξ, Y are the constants related to torsion with spinor and scalar interactions.
It is quite interesting to notice that, within this complementation, there is also the term

φ2W2 coupling torsion to the scalar. This may look strange, since torsion is supposed to be
sourced by the spin density, which is equal to zero for scalar fields. Therefore, we should
expect to have torsion without a pure source of scalar fields, although we will have scalar
contributions in torsion field equations.

In fact, upon variation of the Lagrangian, we obtain

∇α(∂W)αν+(M2−Ξφ2)Wν =Xψγνπψ (239)

in which there is indeed a scalar contribution, although in the form of an interaction giving
an effective mass term.
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There is, immediately, something rather striking about this expression: in a cosmic
scenario, for a universe in an FLRW metric, we would have that the torsion, to respect the
same symmetries of isotropy and homogeneity, would have to possess only the temporal
component. However, in this case, the dynamical term would disappear leaving

(M2−Ξφ2)Wν =Xψγνπψ (240)

as the torsion field equations we would have had in the effective limit, though now the
result is exact. The source would have to be the sum of the spin density of all spinors in
the universe, and because the spin vector points in all directions, statistically the source
vanishes too and

(M2−Ξφ2)Wν =0 (241)

which tells us that, if torsion is present, then

M2=Ξφ2 (242)

and, if Ξ is positive, the scalar acquires the value

φ2=M2/Ξ (243)

which is constant throughout the universe.
A constant scalar all over the universe is the condition needed for slow-roll in infla-

tionary scenarios, and in this case there arises an effective cosmological constant

Λeffective=Λ+ 1
2

∣∣∣∣
λ
2

∣∣∣M
Ξ

∣∣∣
2
∣∣∣∣
2

(244)

in the Lagrangian (238), driving the scale factor of the FLRW metric and therefore driving
the inflation itself. Inflation will last, so long as symmetry conditions hold, but as the
universe expands and the density of sources decreases, local anisotropies are no longer
swamped, and their presence will spoil the symmetries that engaged the above mechanism,
bringing inflation to an end [53].

As the universe expands in a non-inflationary scenario, the torsional field equation
would no longer lose the dynamic term due to the symmetries, but it might still lose it due
to the fact that massive torsion can have an effective approximation. In this case, we would
still have

(M2−Ξφ2)Wν ≈Xψγνπψ (245)

although only as an approximated form. We may plug it back into the initial Lagrangian
(238) obtaining

L =− 1
k R− 2

k Λ− 1
4 F2+iψγµ∇µψ+∇µφ†∇µφ +

+ 1
2 X2(M2−Ξφ2)−1ψγνψψγνψ − (246)

−Yψψφ−mψψ+µ2φ2− 1
2 λ2φ4

as the resulting effective Lagrangian. The presence of an effective interaction involving
spinors and scalars, having a structure much richer than that of the Yukawa interaction, is
obvious. In addition, we observe that, if for vanishingly small scalar this reduces to the
above effective interaction for spinors, in the presence of larger values for the scalar, it can
even become singular. We might speculate that such a value is the maximum allowed for
the scalar as the one at which the above mechanism of inflation takes place.

Consider now the case µ=0 in the above Lagrangian.
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The scalar potential is minimized by φ2=v2 such that

λ2v2= 1
2 ΞX2(M2−Ξv2)−2|ψγνψψγνψ|v (247)

linking the square of the Higgs vacuum to the square of the density of the spinor vacuum.
Therefore, the dynamical symmetry breaking mechanism occurs eventually.

This break-down of symmetry is a dynamical one because the vacuum is not a constant,
but it is the vacuum expectation value of the spinor distribution.

After dynamical symmetry breaking is implemented in the Lagrangian, the effective
cosmological constant is still proportional to the Higgs vacuum, but the Higgs vacuum is
now proportional to the spinor vacuum. Where material distributions tend to zero, as we
would have in cosmology the vacuum for the spinor trivializes, the vacuum for the Higgs
trivializes as well and the cosmological constant is no longer generated [54].

The picture that emerges is one for which symmetry breaking is no longer a mecha-
nism that happens throughout the universe but only when spinors are present, with the
consequence that, if spinors are not present, the effective cosmological constant is similarly
not present. The cosmological constant due to spontaneous symmetry breaking in the
standard model is thus avoidable.

No zero-point energy leaves no contribution apart from those due to phase transitions,
which can be quenched by a symmetry breaking that is not spontaneous but dynamical,
and no effective cosmological constant arises.

In this third chapter, we presented and discussed the possible torsional dynamics in
the cosmology and particle physics standard models. Now, it is time to pull together all
the loose ends in order to display the general overview.

We have seen and stated repeatedly that torsion can be thought as an axial-vector
massive field coupling to the axial-vector bi-linear spinor field according to the term

∆L
Q−spinor

interaction=−XψγµπψWµ (248)

of which we have one for every spinor. Effective approximations involving two, three, or
even more spinor fields have been discussed, with a particular care for the case of neutrino
oscillations, for which we have detailed in what way the results of [42] can be generalized
in order to have

∆Φ≈ L
2E

(
∆m2+m

X2
eff

4M2 |νγµννγµν| 1
2

)
(249)

describing the phase difference for almost degenerate neutrino masses, as consisting of
the L/E dependence modulating the usual kinetic contribution, plus a new dynamic
contribution, so that, even if the neutrino mass spectrum were to be degenerate, torsion
would still induce an effective mechanism of oscillation. As these considerations have
nothing special about neutrinos, and thus they may as well be extended to all leptons, we
then proceeded in studying such extension. However, once the Lagrangian terms of the
weak interaction after symmetry breaking and the torsion for an electron and a left-handed
neutrino were taken in the effective approximation, we saw that, due to the cleanliness
of the scattering and the precision of the measurements, the standard model correction
induced by the torsion had to be very small, and, if this occurs because the torsion mass is
large, then the effective approximation is no longer viable. We have then re-considered the
case without effective approximations, allowing also for sterile right-handed neutrinos in
order to maintain the feasibility of the dynamical neutrino oscillations discussed above,
therefore reaching the general Lagrangian

∆L
Q/weak-spinor

interaction =−XeeγµπeWµ−XννγµπνWµ +

+ g√
2

(
W−

µ νγµeL+W+
µ eLγµν

)
+ (250)

+ g
cos θ Zµ[

1
2 (νγµν−eLγµeL)+|sin θ|2eγµe]
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showing that, while the sterile right-handed neutrino is by construction insensitive to
weak interactions, it is sensitive to the universal torsion interaction, suggesting that, to see
torsional interactions, we must pass for neutrino physics.

After having extensively wandered in the microscopic domain of particle physics, we
move to see what type of effect torsion might have for a macroscopic application of a yet
unseen particle, dark matter, and we have seen that, in the case of effective approximation,
the spinor source in the gravitational field equations becomes of the form

Rρσ− 1
2 Rgρσ−Λgρσ = k

2 (Eρσ− 1
2

X2

M2 SµSµgρσ) (251)

showing that, if the spin density square happens to be positive, the contribution to the
energy would change the gravitational field as to allow for a constant behavior of the rota-
tion curves of galaxies. We have discussed that this behavior comes from having a matter
density scaling according to r−2 for large distances. Such behavior, usually, is granted by
the Navarro–Frenk–White profile or, here, is due to the presence of torsion, suggesting that
the NFW profile is just the manifestation of torsional interactions, and ultimately that dark
matter may be described in terms of the axial-vector simplified model, sorting out one
privileged type among all possible simplified models now in fashion in particle physics.
Then, we proceeded to include into the picture also the scalar fields, getting

L =− 1
4 (∂W)2+ 1

2 M2W2− 1
k R− 2

k Λ− 1
4 F2 +

+iψγµ∇µψ+∇µφ†∇µφ − (252)

−XψγµπψWµ− 1
2 Ξφ2W2−Yψψφ −

−mψψ+µ2φ2− 1
2 λ2φ4

showing that, in general, the torsion, besides its coupling to the spinor, may also couple to
the scalar, with the scalar behaving as a sort of correction to the mass of torsion and a kind
of re-normalization factor in the torsion–spinor effective interactions. We discussed how,
within a homogeneous isotropic universe, the torsion field equations grant the condition
M2=Ξφ2 so that, if Ξ were positive, then the scalar field would acquire a constant value,
slow-roll will take place, and inflation could engage. After inflation has ended, torsion
contributions to the scalar sector may induce a dynamical symmetry breaking. This may
solve the cosmological constant problem in a new manner.

8. Conclusions

In this review, we have constructed the most general geometry with torsion as well as
curvature, and, after having also introduced gauge fields in a similarly geometric manner,
we have also built a genuinely geometric theory of spinor fields. We have seen how, under
the assumption of being at the least-order derivative, the most general fully covariant
system of field equations has been found for all physical fields in interaction. Separating
torsion from all other fields and splitting spinor fields in their irreducible components
allowed us to better see that torsion can be seen as an axial-vector massive field mediating
the interaction between chiral projections. A formal integration of the spinorial degrees of
freedom has also been discussed in some detail. Studying special situations, we have seen
that the torsionally-induced spin-contact interactions are attractive. In addition, we have
examined the conditions under which they can be removed with a choice of chiral gauge.

We have then seen that torsional effects for spinor fields can give rise to the conditions
for which the gravitational singularities are no longer bound to form. We have hence
established a parallel to the instance of the Pauli exclusion principle. We have discussed the
problem of positive energies for spinors. In addition, we have determined the conditions
under which positivity of the energy can be ensured.

Eventually, we have discussed problems inherent to the standard model of particles,
specifically for neutrino oscillations and dark matter. In addition, we have commented on
a possible solution to the cosmological constant problem.
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In a geometry which, in its most general form, is naturally equipped with torsion,
and for a physics which, for the most exhaustive form of coupling, has to couple the spin
of matter, the fact that torsion couples to the spin of spinor material field distributions is
just as well suited as a coupling can possibly be. In addition, its consequences about the
stability of such field distributions are certainly worth receiving further attention.

In the standard model of particles, there are different facts to consider. Assuming
the existence of right-handed sterile neutrinos, the torsion–spin coupling gives dynamic
corrections to the oscillation pattern that can become important contributions if we were
to see that the neutrino masses were too close to one another to fit the observed patterns.
By assuming dark matter as constituted by a form of matter with spinorial structure,
the torsion field, with its axial-vector massive character, might give rise to the known
NFW profile. In cosmology, the most urgent of the problems is that of the cosmological
constant, which can be solved, or at least quenched, by a theory in which spontaneous
symmetry breaking is replaced by dynamical symmetry breaking, as is the case when
torsion is allowed to interact through spinors with the scalar.

In the first two instances, that is, for the case of neutrino oscillations and dark matter,
the new contributions are condensed in ∆L = −XψγµπψWµ as axial-vector coupling.
In the last instance that is for the dynamical symmetry breaking, new physics are described
in terms of the ∆L =−XψγµπψWµ− 1

2 Ξφ2W2 contribution as what gives the torsion–spin
and scalar interaction. These two potentials for torsion are the only two potentials that can
be added into the Lagrangian within the restriction of renormalizability.

It is important to call attention to the fact that, as the general presentation goes, there
are two ways to have torsion in differential geometry: the first is the one followed here,
and it is the one more mathematical in essence, based on the general argument that torsion
is present simply because there is no reason to set it to zero. The second one is more
physical, based on the argument that torsion must be present since it necessarily arises
after gauging translations much in the same way in which curvature is present as it arose
after gauging rotations. In this approach, torsion and curvature are the Yang–Mills fields
that inevitably emerge because we are considering the gauge theory of the full Poincaré
group [55]. The usefulness of this approach has been remarkable in addressing problems
related to supersymmetry, and especially supergravity. For more details, we refer the
reader to [56,57], and in particular [58]. More recent papers that deal with torsion-gravity
as a gauge theory are [59–61]. Still important is the work in [62].

This latter approach of gauging the full Poincaré group is based on the tetradic
formalism, on which an overview by Tecchiolli can be found in this Special Issue [63].

Readers might not have failed to notice that there is a great absent in the presentation:
field quantization, and there are reasons for it to be so. In spite of all successful predictions
and precise measurements, it would not be a proper behavior to deny all mathematical
problems the theory of quantum fields still has. From the fact that the equal-time commuta-
tor relations may not make sense at all [64] to the non-existence of interaction pictures [65],
to mention only the most important of the problems, the rigorous mathematical treatment
of quantum fields is yet to be achieved. What can torsion do for this? Honestly, it seems
unlikely that any change in the field content can change things for the general structure
of the theory from its roots. However, it may still be possible that, after all, torsion could
address problems appearing later on in the development of the theory. For example, we
have already discussed how torsion could be responsible for avoiding singularities in the
case of spinor fields. This tells us that torsion may similarly be responsible for the fact that
the elementary particles might not be point-like. If this were the case, then torsion would
certainly have something to say about the problem of ultraviolet divergences. Torsion may
be what gives a physical meaning to regularization and normalization, with the torsion
mass giving the scale of the physical cut-off. There is still quite a way to go in fixing, or at
least alleviating, the problems of the quantum field theoretical approach. It does not look
unreasonable, however, that torsion might be there to help again.
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Then, there are all the possible extensions. To begin, there is the fact that we wrote all
field equations under the constraint of being at the least-order derivative possible. This
requirement also coincides with renormalizability for all equations except those for gravity.
If we wish to have renormalizability for all equations, then the gravitational field equations
must be taken at the fourth-order derivative in the metric tensor [66]. This is certainly an
opportunity for further research, especially for the effects torsion may have for the problems
of singularity formation and positive energies. Another point needing some strengthening
is related to the fact that torsion has always been taken completely antisymmetrically. Such
a symmetry was duly justified in terms of fundamental arguments, and, for that matter, the
completely antisymmetric torsion couples neatly with the completely antisymmetric spin of
the Dirac field. However, if higher-spin fields were to be found or more general geometric
backgrounds were to be needed, more general torsion would make their appearance in the
theory. Studying what may be the role of a trace torsion or of the remaining irreducible
torsion component is also an important task.

Regarding the mass generation of spinors through spin–torsion interactions, it is
necessary to direct the attention toward [67–69], and recently [70].

Again, a recent work is that of Diether and Christian later in this Special Issue [71].
In particle physics more in general, high-energy experimental constraints on torsion

have been placed, especially in [72–76]. Going to cosmology, dark matter has also been
studied in the presence of torsion: after the already-mentioned [45], the reader may find
it interesting to also have a look at [77–81]. As for the problem of singularity formation
during the Big Bang, the following references may be of help [82–86].

More mathematical extensions have been addressed along the years in various man-
ners. In fact, all possible alternatives and extensions of Einstein gravity can also be general-
ized for the torsional case: for instance, conformal gravity with torsion has been established
in [87], while f (R)-types of torsion-gravity have been studied in [88]. As for the latter,
the reader may also find the problem of junction conditions interesting [89].

For a review of such a problem, we invite the reader to the paper by Vignolo that can
also be found later in this Special Issue [90].

From a purely mathematical, general point of view, interesting features of the torsional
background in the presence of spinors have been investigated in [91,92].

The dynamics of the torsion field may also in principle allow the propagation of parity
violating modes, although many constraints have been placed recently [93,94].

Anomalies and constraints on torsion were studied in [95,96].
The possibilities introduced by not neglecting torsion in gravity for Dirac fields can

also be more mathematical in essence. Above all, it is paramount to mention all the exact
solutions for the coupled system of field equations that may be found. In [97–99], we found
exact solutions for the Dirac field in its own gravitational field. Including torsion in gravity
and allowing the coupling to the spinor can only increase the interesting features that exact
solutions could have. Of course, finding exact solutions for a system of interacting fields is
a very difficult enterprise and so we must expect a slow evolution.

It is clearly impossible to draw a complete list of references. Nevertheless, those
presented here, and their own references, might be taken as a fair list to help the reader.

We wish to conclude this exposition with one personal note on aesthetics. It is very
often stated in philosophical debates that a theory is considered to be beautiful when it has
some sense of inevitability built into itself. That is, a sense for which there is nothing that
can be modified, or removed, from the theory without looking like a form of unnecessary
assumption. We see torsion gravity precisely like that. Such a theory is formed by requiring
that some very general principles of symmetry be respected for the four-dimensional
continuum space–time. If these hypotheses are put in, they determine the development of
the theory without anything else to be postulated. It is at this point therefore that a theory
of gravity with no torsion, where we would remove an object that would otherwise be
naturally present, has to be regarded as something arbitrary.
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The most beautiful, in the sense of the most necessary, theory of gravity is the one in
which torsion is allowed to occupy the place that is its own a priori.
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1. Introduction

Several open problems in modern physics at both ultraviolet and infrared scales seem to justify
the need to enlarge or revise General Relativity (GR). For example, at astrophysical and cosmological
scales, in order for observations to agree with the theoretical predictions of GR, it is necessary to
assume the existence of the so-called dark matter and dark energy. But, up to now, at a fundamental
level, no experimental evidence has been found to prove the existence of such unknown forms of
matter and energy. This fact, together with other shortcomings of GR, represents the signal of a possible
breakdown in our understanding of gravity; the possibility of developing extended or alternative
theories of gravity is then to be seriously taken into account.

In the last thirty years [1,2], many extensions of GR have been actually proposed; among these,
f (R)-gravity certainly remains one of the most direct and simplest [3–7]: it relies on the idea that the
gravitational Lagrangian may depend on the Ricci scalar R in a more general way than the linear
one as it happens in the Einstein-Hilbert action. Recently, f (R)-gravity has received great interest in
view of its successes in accounting for both cosmic speed-up and missing matter at cosmological and
astrophysical scales, respectively (see, for example, [8–10]).

At the same time, including the torsion tensor among the geometrical attributes of space-time is
another way to extend GR. Cartan was the first to introduce torsion in the geometrical background;
after him, Sciama and Kibble embodied it within the framework of Einstein gravity implementing
the idea that spin can be source of torsion as energy does for curvature [11–13]. The resulting theory,
known as Einstein–Cartan–Sciama–Kibble (ECSK) theory, has been the first generalization of GR trying
to take the spin of elementary fields into account, and it still remains one of the most serious attempts
in this direction [14–16].

Following this paradigm, f (R)-gravity with torsion consists in one of the simplest extensions
of the ECSK theory, just as purely metric f (R)-gravity is with respect to GR. The key idea is again
that of replacing the Einstein-Hilbert Lagrangian with a non-linear function of the scalar curvature.
A remarkable consequence of the non-linearity of the gravitational Lagrangian is that torsion can be
non-zero even without the presence of spin, as long as the trace of the matter stress–energy tensor
is not constant [17–21]. This is a noticeable difference with respect to ECSK theory, where instead
torsion can exist only coupled to spin. It is known that torsion may give rise to singularity-free and
accelerated cosmological models [22], and a torsion arising from the non-linearity of the gravitational
Lagrangian function could amplify this effects and make them possible even in the absence of spin.
This is a feature that makes f (R)-gravity with torsion interesting enough to be studied in depth.

Of course, in order for any physical theory to be viable, it has to possess an associated initial value
problem correctly formulated in such a way that the dynamical evolution is uniquely determined
and consistent with causality requirements. More specifically, the following properties have to hold:
(i) small perturbations of the initial data have to generate small perturbations in the subsequent
dynamics; (ii) changes of the initial data have to preserve the causal structure of the theory. The initial
value problem of the theory is well-posed if both these requests are satisfied.

It is well known that GR has a well-posed initial value problem, so resulting in a stable theory
with a robust causal structure [23–26]. In order to be considered as a viable extension of the Einstein
theory, f (R)-gravity should also have such a feature.
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About this, by taking advantage of the dynamical equivalence with O’Hanlon theories [27], it is
easily seen that purely metric f (R)-gravity possesses a well-posed Cauchy problem [28] regardless of
the explicit form of the function f (R).

As far as the theory with torsion is concerned, the issue is quite simple whenever the trace of
the stress–energy tensor is constant: in this circumstance and in the absence of matter spin sources,
in fact, the theory is equivalent to GR with or without a cosmological constant, depending on the
explicit expression of the function f (R). For instance, this is what happens in vacuo and in the case
of coupling to electromagnetic or Yang–Mills fields. Instead, the coupling to other kinds of matter
sources must be discussed carefully case by case. Here, we face the Cauchy problem in the presence
of a perfect fluid or a Klein–Gordon scalar field. Making use of some different techniques, such
as conformal transformations and dynamic equivalence with scalar-tensor theories, we formulate
sufficient conditions to ensure that the related Cauchy problem is well-posed, also showing that there
exist f (R) functions that actually satisfy these requirements. The so-stated conditions can be adopted
as a selection rule for viable f (R)-models with torsion.

Another important mathematical aspect concerning every theory of gravitation is related to the
problem of matching different spacetimes like, for instance, joining together the interior with the
exterior region of a relativistic stars. The requirements which have to be fulfilled to solder two different
spacetimes are commonly known as junction conditions.

In GR, junction conditions have been investigated by different authors, including Lichnerowicz [29,30],
Taub [31], Choquet–Bruhat [32] and Israel [33], and the solution of the problem is now very well
known. In [34], the reader can find a very clear discussion about the topic.

On the contrary, at least in the authors’ knowledge, very few works deal with junction conditions
in ECSK theory: an analysis has been performed by Arkuszewski et al. [35], by means of the formalism
of tensor–valued differential forms [36–38], while the same topic has been indirectly addressed by
Bressange [39] following the same approach as in [34]. Concerning f (R)-gravity in purely metric
formulation, a discussion of junction conditions has been proposed by Deruelle et al. [40] and
Senovilla [41].

In this paper, we address the topic within the theory with torsion, analyzing the junction conditions
for f (R)-gravity with torsion. Borrowing arguments and notations from [34], after formulating the
junction conditions, we discuss their explicit form in the case of coupling to a Dirac field and a spin
fluid. As we shall see, the resulting junction conditions are very similar to those existing in ECSK
theory. However, this close similarity is only formal. Indeed, due to the contributions that the non
linearity of the gravitational Lagrangian function f (R) gives to the contortion tensor, the obtained
junction conditions are seen to involve also the trace of the stress–energy tensor and its first derivatives
evaluated on the separation hypersurface. This is a remarkable difference with respect to the ECSK
theory, which translates into conditions also concerning the function f (R). Therefore, as in the case of
the Cauchy problem, the study of the junction conditions can help to distinguish viable from nonviable
f (R)-models with torsion.

The layout of the paper is the following: In Section 2, we illustrate some generalities about
f (R)-gravity with torsion. In Section 3, we address the Cauchy problem. In Section 4, we discuss the
junction conditions. Finally, we devote Section 5 to conclusions. Throughout the paper, we use natural
units (h̄ = c = 8πG = 1).

2. f (R)-Gravity with Torsion

In f (R)-gravity with torsion, the (gravitational) dynamical fields are given by a
pseudo-Riemannian metric g and a metric compatible linear connection Γ, defined on the space-time
manifold M. The covariant derivative induced by connection Γ is given by:

∇∂i
∂j = Γ h

ij ∂h. (1)
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The torsion and Riemann curvature tensors, induced by the dynamical connection Γ, are expressed as:

T h
ij = Γ h

ij − Γ h
ji , (2a)

Rh
kij = ∂iΓ

h
jk − ∂jΓ

h
ik + Γ h

ip Γ
p

jk − Γ h
jp Γ

p
ik . (2b)

In view of the metric compatibility, the linear connection Γ can be decomposed as [14,15]:

Γ h
ij = Γ̃ h

ij − K h
ij , (3)

where:

K h
ij :=

1
2

(
−T h

ij + T h
j i − Th

ij

)
(4)

is the so-called contorsion tensor, and Γ̃ h
ij is the Levi–Civita connection induced by the metric g.

The field equations are obtained by varying an action functional of the form:

A(g, Γ) =
∫ (√

|g| f (R) + Lm

)
ds, (5)

where R(g, Γ) = gijRij (with Rij := Rh
ihj) denotes the scalar curvature associated with the connection

Γ. The field equations result in [18–20]:

f ′(R)Rij −
1
2

f (R)gij = Tij (6a)

and:

T h
ij =

1
2 f ′

(
∂ f ′

∂xp + S q
pq

)(
δ

p
j δh

i − δ
p
i δh

j

)
+

1
f ′
S h

ij , (6b)

where Tij and S h
ij denote the stress–energy and the spin density tensors, respectively. In Equation (6a),

attention must be paid to the order of the indexes, because the Ricci and stress–energy tensors Rij and
Tij are not symmetric, in general.

It is worth noticing that, due to the independence between the metric tensor gij and the dynamical
linear connection Γ h

ij , the variation of the action functional (5) with respect to the metric tensor
does not generate in Equation (6a) any term containing covariant derivatives of the scalar f ′(R)

(for details, see [18]); this is a remarkable difference with respect to the purely metric formulation of
f (R)-gravity [2], and it has important consequences: for instance, the theory with torsion is not of
fourth derivative order, as is the purely metric f (R)-theory. Taking the trace of Equation (6a) into
account, we get relation:

f ′(R)R − 2 f (R) = T (7)

between the curvature scalar R and the trace T of the stress–energy tensor.
From Equation (7), it is seen that if the trace T is constant, so R is. Of course, the same conclusion

holds when Tij = 0. In such circumstances, the field equations of f (R)-gravity with torsion are seen
to amount to the ones of Einstein–Cartan theory with (or without) cosmological constant if spin is
present, or the ones of Einstein theory with (or without) cosmological constant in the absence of spin.
This holds in general, with the exception of the particular case T = 0 and f (R) = αR2. In such a
case, indeed, Equation (7) is a trivial identity, and it does not impose any restriction on the scalar
curvature R.

Therefore, from now on, we shall systematically suppose that Tij is not zero and T is not constant,
as well as that the relation (7) is invertible. In this way, the curvature scalar R can be thought as a
suitable function of T , namely:

R = R(T ). (8)
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The relation (8) plays a crucial role for the formulation of f (R)-gravity with torsion presented in
this paper, as well as in our previous works. About this, it is worth noticing that the trace equation (7)
gives rise to an algebraic or transcendental relation between the curvature scalar and the stress–energy
tensor trace, but it is not a differential relation (unlike what happens in the purely metric formulation
of f (R)-gravity). Therefore, the Dini theorem is generally applicable, and the relation (8) can be (almost
always) supposed to locally exist. This allows us to express the torsion as a function of the matter fields
and, therefore, to separate purely metric contributions from torsional ones within the Einstein-like
equations, exactly as it happens in ECSK theory.

Defining the scalar field:
ϕ(T ) := f ′(R(T )), (9)

we can rewrite Equation (6a) in the equivalent form:

Rij −
1
2

Rgij =
1
ϕ
Tij +

1
2ϕ

(
f (R(T ))− f ′(R(T ))R(T )

)
gij, (10a)

T h
ij =

1
2ϕ

(
∂ϕ

∂xp + S q
pq

)(
δ

p
j δh

i − δ
p
i δh

j

)
+

1
ϕ
S h

ij , (10b)

which will be used in the following discussion. Making use of Equations (3), (4) and (10b), we can
express the contorsion tensor as:

K h
ij = K̂ h

ij + Ŝ h
ij , (11a)

Ŝ h
ij :=

1
2ϕ

(
−S h

ij + S h
j i − Sh

ij

)
, (11b)

K̂ h
ij := −T̂jδ

h
i + T̂pgphgij, (11c)

T̂j :=
1

2ϕ

(
∂ϕ

∂xj
+ S k

jk

)
. (11d)

Introducing the so-called torsion vector Ti := T
j

ij , we also mention the conservation laws [42]:

∇aT ai + TaT ai − TcaTica − 1
2
SstaRstai = 0, (12a)

∇hS ijh + ThS ijh + T ij − T ji = 0, (12b)

which have to be satisfied by the stress–energy and spin density tensors of the matter fields.
In particular, we recall that Equation (12b) amount to the antisymmetric part of the Einstein-like
Equation (10a).

In the case that the spin density tensor is zero, separating the Levi–Civita terms from the torsional
ones, we can rewrite the Einstein-like field Equation (10a) in the form [18]:

R̃ij −
1
2

R̃gij =
1
ϕ
Tij +

1
ϕ2

(
−3

2
∂ϕ

∂xi

∂ϕ

∂xj
+ ϕ∇̃j

∂ϕ

∂xi
+

3
4

∂ϕ

∂xh

∂ϕ

∂xk
ghkgij

−ϕ∇̃h ∂ϕ

∂xh
gij − V(ϕ)gij,

)
,

(13)

where the effective potential for the scalar field ϕ:

V(ϕ) :=
1
4

[
ϕF−1(( f ′)−1(ϕ)) + ϕ2( f ′)−1(ϕ)

]
, (14)
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has been introduced. In Equation (13), R̃ij, R̃, and ∇̃ denote, respectively, the Ricci tensor, the scalar
curvature, and the covariant derivative associated with the Levi–Civita connection of the dynamical
metric gij.

The Einstein-like Equation (13) (together with Equation (9)) are deducible from a scalar-tensor
theory with Brans–Dicke parameter ω0 = −3/2. This can be seen by recalling the action functional of
a (purely metric) scalar-tensor theory:

A(g, ϕ) =
∫ [√

|g|
(

ϕR̃ − ω0

ϕ
ϕi ϕ

i − U(ϕ)

)
+ Lm

]
ds, (15)

where ϕ is the scalar field, ϕi :=
∂ϕ

∂xi
and U(ϕ) is the potential of ϕ, Lm(gij, ψ) is the matter Lagrangian,

function of the metric and some other matter fields ψ, and ω0 is the so called Brans–Dicke parameter.
By varying (15) with respect to the metric tensor and the scalar field, one gets the field equations:

R̃ij −
1
2

R̃gij =
1
ϕ
Tij +

ω0

ϕ2

(
ϕi ϕj −

1
2

ϕh ϕhgij

)
+

1
ϕ

(
∇̃j ϕi − ∇̃h ϕhgij

)
− U

2ϕ
gij, (16)

and:
2ω0

ϕ
∇̃h ϕh + R̃ − ω0

ϕ2 ϕh ϕh − U′ = 0, (17)

where Tij := − 1√
|g|

δLm

δgij
and U′ :=

dU

dϕ
. By inserting the trace of Equation (16) into Equation (17),

one gets the equation:
(2ω0 + 3) ∇̃h ϕh = T + ϕU′ − 2U. (18)

A direct comparison immediately shows that, for ω0 := −3
2

and U(ϕ) :=
2
ϕ

V(ϕ) (where V(ϕ) is

defined in Equation (14)), Equation (16) becomes formally identical to the Einstein-like Equation (13)
for f (R)-gravity with torsion. Moreover, in such a circumstance, Equation (18) reduces to the
algebraic equation:

T + 2V′(ϕ)− 6
ϕ

V(ϕ) = 0, (19)

relating the matter trace T to the scalar field ϕ. In particular, it is easily seen that, under the condition
f ′′ 6= 0, Equation (19) represents exactly the inverse relation of (9), namely:

T + 2V′(ϕ)− 6
ϕ

V(ϕ) = 0 ⇐⇒ T = F−1(( f ′)−1(ϕ)), (20)

being F−1(X) = f ′(X)X − 2 f (X). The conclusion follows that, when the matter Lagrangian does
not depend on the dynamical connection (the dynamical connection does not couple with matter),
f (R)-gravity with torsion is dynamically equivalent to a scalar-tensor theory with a Brans–Dicke

parameter ω0 = −3
2

.

For later use, we also notice that field equations (13) can be simplified by rewriting them the
Einstein frame. In fact, performing the conformal transformation:

ḡij = ϕgij. (21)

Equation (13) assumes the simpler form (see for example [18,43]):

R̄ij −
1
2

R̄ḡij =
1
ϕ
Tij −

1
ϕ3 V(ϕ)ḡij, (22)
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where R̄ij and R̄ are, respectively, the Ricci tensor and the curvature scalar induced by the conformal
metric ḡij.

The relationships between the the conservation laws existing in the Jordan and those holding in
the Einstein frame are clarified by the following results [44,45]:

Proposition 1. Equations (13), (14), (19) imply the standard conservation laws ∇̃jTij = 0.

Proposition 2. The condition ∇̃jTij = 0 is equivalent to the condition ∇̄jT̄ij = 0, where

T̄ij :=
1
ϕ
Tij −

1
ϕ3 V(ϕ)ḡij and ∇̄ denotes the covariant derivative associated to the conformal metric ḡij.

3. The Cauchy Problem

First of all, we notice that, if the trace of the stress–energy tensor T is constant, f (R)-gravity with
torsion reduces to GR with (or without) cosmological constant. Therefore, when this is the case, the
Cauchy problem is well-formulated and well-posed [23,26,46]. For instance, this happens in vacuo
and in the presence of electromagnetic (or also Yang–Mills) fields (if f (R) 6= αR2).

The situation is more complicated if T 6= const.: in such a circumstance, the theory no longer
amounts to GR, so the classical Bruhat results [46] do not apply, and the well-formulation and
well-posedness of the Cauchy problem is not automatically assured.

To overcome this issue, the Cauchy problem could be addressed by exploiting the dynamical

equivalence with scalar-tensor theories with Brans–Dicke parameter ω0 = −3
2

. Unfortunately, here a

difficulty occurs: The d’Alembertian gpq∇p∇q ϕ disappears from Equation (18), and we no longer have
the possibility of deriving the expression of the d’Alembertian as a function of the dynamical variables
and their derivatives up to the first-order. In other words, we cannot eliminate the second-order
derivatives of the scalar field ϕ from the Einstein-like Equation (16).

An alternative idea is to pass from the Jordan to the Einstein frame, making use of the conformal
transformation technique. Following this approach, we can derive sufficient conditions for the
well-posedness of the Cauchy problem for f (R)-gravity with torsion in the presence of a perfect
fluid [44,47] or a Klein–Gordon scalar field [48]. Such conditions result in suitable requirements
imposed on the function f (R), so they can be assumed as a sort of selection rule for viable f (R) models.
In addition, we show that the function f (R) = R + αR2 satisfies the above mentioned conditions, in
such a way that the set of viable f (R) models is not empty.

3.1. The Cauchy Problem in Presence of a Perfect Fluid

We discuss the Cauchy problem in presence of a perfect fluid. As mentioned above, implementing
a conformal transformation (21), we show that the initial value problem can be analyzed by applying
the same results stated in [23,24,46] for GR.

To start with, given the metric gij of signature (−+++) in the Jordan frame, let us consider a
perfect fluid having stress–energy tensor of the form:

Tij = (ρ + p)UiUj + p gij (23a)

and undergoing the usual conservation laws:

∇̃jT ij = 0. (23b)

74



Universe 2019, 5, 224

In Equation (23a), ρ and p are the matter–energy density and the pressure of the fluid, respectively,
while Ui denotes the components of the four velocity of the fluid (with gijUiUj = −1). Performing the
conformal transformation (21), we rewrite the field equations in the Einstein frame as:

R̄ij −
1
2

R̄ḡij = T̄ij, (24a)

and:
∇̄jT̄ ij = 0, (24b)

where:

T̄ij =
1
ϕ
(ρ + p)UiUj +

(
p

ϕ2 − V(ϕ)

ϕ3

)
ḡij, (25)

plays the role of the effective stress–energy tensor.
In view of Proposition 2, Equation (24b) is equivalent to Equation (23b). This is a crucial aspect

for our discussion, allowing us to apply to the present case the results stated in [23,24,46]. To see this
point, we first suppose that the scalar field ϕ is positive, that is ϕ > 0. The opposite case ϕ < 0 differs
from the former only for some technical aspects, and it will be briefly outlined after. Of course, it is
implicitly assumed that ϕ 6= 0 at least in a neighborhood of the initial space-like surface.

Under the assumed conditions, the stress–energy tensor (25) can be rewritten in the form:

T̄ij =
1
ϕ2 (ρ + p) ŪiŪj +

(
p

ϕ2 − V(ϕ)

ϕ3

)
ḡij, (26)

where Ūi =
√

ϕUi is the four velocity of the fluid in the Einstein frame. Introducing the effective
mass-energy density:

ρ̄ :=
ρ

ϕ2 +
V(ϕ)

ϕ3 , (27a)

and the effective pressure:

p̄ :=
p

ϕ2 − V(ϕ)

ϕ3 , (27b)

we can express the stress–energy tensor (26) in the standard form:

T̄ij = (ρ̄ + p̄) ŪiŪj + p̄ ḡij. (28)

We notice that, given an equation of state of the form ρ = ρ(p) and assuming that the relation
(27b) is invertible (p = p( p̄)), by composition with Equation (27a), we obtain an effective equation of
state ρ̄ = ρ̄( p̄). Moreover, we recall that the explicit expressions of the scalar field ϕ and the potential
V(ϕ) depend on the specific form of the function f (R). As a consequence, the request that the relation
(27b) is invertible together with the condition ϕ > 0 (or, equivalently, ϕ < 0) can be assumed as
criteria for the viability of the functions f (R), providing us with suitable selection rules for admissible
gravitational Lagrangian function f (R) (see also [9]).

After that, in order to discuss the Cauchy problem, we can follow step-by-step the Bruhat’s
arguments [23,24,46]. In particular, we recall that the Cauchy problem for the system of differential
equations (24), with stress–energy tensor given by Equation (28) and equation of state ρ̄ = ρ̄( p̄),
is well-posed if the condition:

dρ̄

dp̄
≥ 1, (29)

is satisfied. The requirement (29) is easily verified by means of the relation:

dρ̄

dp̄
=

dρ̄/dp

dp̄/dp
≥ 1, (30)
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together with expressions (27) and the equation of state ρ = ρ(p). Once again, condition (30) depends
on the expressions of ϕ and V(ϕ); thus, it is strictly related to the form of the function f (R). Therefore,
condition (30) represents a further criterion for the admissibility of f (R)-models.

For the sake of completeness, we conclude by outlining the case ϕ < 0. Supposing again that the
signature of the metric in the Jordan frame is (−+++), the signature of the conformal metric is now
(+−−−), and the components of the four velocity of the fluid in the Einstein frame are Ūi =

√−ϕUi.
The effective stress–energy tensor is expressed as:

T̄ij = − 1
ϕ2 (ρ + p) ŪiŪj +

(
p

ϕ2 − V(ϕ)

ϕ3

)
ḡij = (ρ̄ + p̄) ŪiŪj − p̄ ḡij, (31)

where, as above, the quantities:

ρ̄ := − ρ

ϕ2 − V(ϕ)

ϕ3 , (32a)

and:

p̄ := − p

ϕ2 +
V(ϕ)

ϕ3 , (32b)

represent the effective mass-energy and the effective pressure.
After that, everything proceeds again as in [23,24,46], with the exception of a technical aspect: if ρ

and p are positive, the quantity r := ρ̄ + p̄ = −ρ + p

ϕ2 is now negative. About this, the reader can easily

verify that, with the choice log(− f−2r) instead of log( f−2r) as in [23,24,46], the Bruhat’s arguments
apply equally well.

As a simple example, we consider the model f (R) = R + αR2 coupled with dust. In the Jordan
frame, the matter stress–energy tensor is given by Tij = ρUiUj, and the trace of the Einstein-like
Equation (6a) yields the relation:

(1 + 2αR)R − 2R − 2αR2 = −ρ ⇐⇒ R = ρ. (33)

The scalar field (9) assumes the form:

ϕ(ρ) = f ′(R(ρ)) = 1 + 2αρ. (34)

Taking into account small values of the density ρ << 1 (for instance, the present cosmological
baryonic matter density) and choosing values of |α| not comparable with 1/ρ, we can reasonably
suppose ϕ > 0, independently of the sign of the parameter α. We have to calculate the potential (14):

V(ϕ) =
1
4

[
ϕF−1(( f ′)−1(ϕ)) + ϕ2( f ′)−1(ϕ)

]
. (35)

To this end, since ( f ′)−1(ϕ) = ρ, from Equation (34) we get the relation:

1
4

ϕ2( f ′)−1(ϕ) =
1
4
(1 + 2αρ)2ρ , (36)

and considering that F−1(Y) = f ′(Y)Y − 2 f (Y), we have the identities:

1
4

F−1(( f ′)−1(ϕ)) =
1
4

F−1(ρ) = −ρ (37)

and:
1
4

ϕF−1(( f ′)−1(ϕ)) = − (1 + 2αρ)ρ

4
. (38)
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We conclude that:

V(ϕ(ρ)) =
αρ2(1 + 2αρ)

2
. (39)

In the Einstein frame, the stress–energy tensor (26) is expressed as:

T̄ij =
ρ

ϕ2 ŪiŪj −
V(ϕ)

ϕ3 ḡij. (40)

Tensor (40) can be considered as the stress–energy tensor of a perfect fluid with density and
pressure given, respectively, by:

ρ̄ :=
ρ

ϕ2 +
V(ϕ)

ϕ3 =
2ρ + αρ2

2(1 + 2αρ)2 (41a)

and:

p̄ := −V(ϕ)

ϕ3 = − αρ2

2(1 + 2αρ)2 . (41b)

It is an easy matter to verify that the function (41b) is invertible. Indeed, for ρ > 0, one has:

dp̄

dρ
= − 4αρ

4(1 + 2αρ)3 6= 0. (42)

In addition, we have:
dρ̄

dρ
=

4 − 4αρ

4(1 + 2αρ)3 , (43)

so that:
dρ̄

dp̄
=

dρ̄/dp

dp̄/dp
=

−1 + αρ

αρ
≥ 1 ⇐⇒ α < 0 (44)

With condition (29) satisfied, it is then proved that the model f (R) = R + αR2, with α < 0,
possesses a well-posed Cauchy problem when coupled with dust.

3.2. The Cauchy Problem in the Presence of a Scalar Field

We take the coupling with a Klein–Gordon scalar field into account. Again, we give sufficient
conditions for the well-posedness of the related Cauchy problem. To this end, let us denote by

ψ a Klein–Gordon scalar field with self-interacting potential U(ψ) =
1
2

m2ψ2. The corresponding

stress–energy tensor is given by:

Tij =
∂ψ

∂xi

∂ψ

∂xj
− 1

2
gij

(
∂ψ

∂xp

∂ψ

∂xq gpq + m2ψ2
)

. (45)

The associated Klein–Gordon equation is expressed as:

∇̃j
∂ψ

∂xi
gij = m2ψ, (46)

where ∇̃ denotes the Levi–Civita covariant derivative induced by the metric gij. The trace of tensor
(45) is:

T := Tijg
ij = − ∂ψ

∂xp

∂ψ

∂xq gpq − 2m2ψ2 . (47)

The trace (47) depends explicitly on the metric tensor gij. Because of this, the conformal
transformation cannot be applied directly to the field equations (13), with the scalar field ϕ defined
by (9). Indeed, if we proceed in this way, both the metric gij and ḡij would appear in the conformally
transformed equations (22). This difficulty can be overcome making use of the already mentioned
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dynamical equivalence with ω0 = −3
2

Brans–Dicke gravity. The idea is then to discuss the Cauchy

problem for a ω0 = −3
2

Brans–Dicke theory coupled with the given Klein–Gordon field ψ. The field

equations of such a theory are the Einstein-like Equation (13), the Equation (19), and the Klein–Gordon
Equation (46), where the scalar field ϕ is a dynamical variable related to the trace T through
Equation (19). After implementing the conformal transformation (21), the Einstein-like Equation (13)
assumes the simpler form (22). At the same time, recalling the relation:

Γ̄ h
ij = Γ̃ h

ij +
1

2ϕ

∂ϕ

∂xj
δh

i −
1

2ϕ

∂ϕ

∂xp gphgij +
1

2ϕ

∂ϕ

∂xi
δh

j , (48)

linking the Levi–Civita connection Γ̃ h
ij associated with the metric gij to the Levi–Civita connection

Γ̄ h
ij induced by the conformal metric ḡij, we can write the Klein–Gordon equation in terms of the

conformal metric ḡij as:

− ∂ψ

∂xi
ḡij ∂ϕ

∂xj
+ ϕ∇̄j

∂ψ

∂xi
ḡij = m2ψ, (49)

where ∇̄j indicates the covariant derivative associated with the conformal metric ḡij. Analogously, we
can express the trace T as function of ḡij, that is:

T = − ∂ψ

∂xp

∂ψ

∂xq ϕḡpq − 2m2ψ2 . (50)

The relation corresponding to (19) now links the scalar field ϕ to the Klein–Gordon field ψ, its

partial derivatives
∂ψ

∂xi
, and the conformal metric ḡij. Moreover, as it has been already pointed out,

the quantity:

T̄ij :=
1
ϕ

Σij −
1
ϕ3 V(ϕ)ḡij, (51)

represents an effective stress–energy tensor. On the other hand, the Klein–Gordon equation (46) implies
the conservation laws ∇̃jTij = 0, thus also identifying ∇̄jT̄ij = 0 (see Proposition 2). This is a key
point, allowing us to making use of harmonic coordinates and then to apply similar arguments as
in [23,24,26].

More specifically, after rewriting the Einstein-like equations (22) in the equivalent form:

R̄ij = T̄ij −
1
2
T̄ ḡij, (52)

we adopt harmonic coordinates obeying the condition:

∇̄p∇̄pxi = −ḡpqΓ̄i
pq = 0 , (53)

in such a way that equations (52) can be expresed as (see, for example, [23,26]):

ḡpq
∂2 ḡij

∂xp∂xq = fij(ḡ, ∂ḡ, ψ, ∂ψ), (54)

where fij are suitable functions depending only on the metric ḡ, the scalar field ψ, and their first
order derivatives.

In addition to this, we suppose that Equation (19) is solvable with respect to the variable ϕ, and
then to derive from Equation (19) itself a function of the form:

ϕ = ϕ(ḡ, ψ,
∂ψ

∂xp

∂ψ

∂xq ḡpq), (55)
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expressing the scalar field ϕ as a suitable function of the metric ḡ, the Klein–Gordon field ψ, and its first
order derivatives. We notice that, in view of Equation (50), the dependence of ϕ on the derivatives of ψ

is necessarily of the form indicated in Equation (55). Once again, the solvability with respect the scalar
field ϕ to about Equation (19) depends on the explicit form of the potential V(ϕ) which is defined in
terms of the function f (R) via the relation (14). Therefore, the possibility of solving Equation (19) with
respect to ϕ can be taken as a rule to select viable f (R)-models. Moreover, from Equation (55), we
obtain the identity:

∂ϕ

∂xi
=

∂ϕ

∂
(

∂ψ
∂xs

∂ψ
∂xt ḡst

)2
∂ψ

∂xq ḡpq ∂2ψ

∂xi∂xp
+ fi(ḡ, ∂ḡ, ψ, ∂ψ). (56)

Inserting Equation (56) in Equation (49) and taking Equation (53) into account, we get the final
form of the Klein–Gordon equation expressed as:


ḡip − 2

ϕ

∂ϕ

∂
(

∂ψ
∂xs

∂ψ
∂xt ḡst

) ∂ψ

∂xj
ḡji ∂ψ

∂xq ḡpq


 ∂2ψ

∂xi∂xp
= f (ḡ, ∂ḡ, ψ, ∂ψ). (57)

In Equations (56) and (57), fi and f denote suitable functions of ḡij, ψ, and their first order
derivatives only.

Now, Equations (54) and (57) form a second order quasi-diagonal system of partial differential
equations for the unknowns ḡij and ψ. The matrix of the principal parts of such a system is diagonal,
and its elements are the differential operators:

ḡpq ∂2

∂xp∂xq , (58a)

and: 
ḡip − 2

ϕ

∂ϕ

∂
(

∂ψ
∂xs

∂ψ
∂xt ḡst

) ∂ψ

∂xj
ḡji ∂ψ

∂xq ḡpq


 ∂2

∂xi∂xp
. (58b)

The operator (58a) is the wave operator associated with the metric ḡij, while the operator (58b)
is very similar to the sound wave operator involved in the analysis of the Cauchy problem for GR
coupled with an irrotational perfect fluid [23,46]. It follows that the Cauchy problem associated with
the system of Equations (54) and (57) can be discussed borrowing arguments and results from [23,46].
More in detail, we recall that if the quadratic form associated with (58b) is of Lorentzian signature and,
if the characteristic cone of the operator (58b) is exterior to the metric cone, the system (54) and (57)
is causal and Leray hyperbolic [49,50]. Under these conditions, the associated Cauchy problem is
well-posed in suitable Sobolev spaces. Still borrowing from [23,46], if the signature of ḡij is (+−−−),

the above mentioned conditions are satisfied whenever the vector
∂ψ

∂xj
ḡij is timelike and the inequality:

− 2
ϕ

∂ϕ

∂
(

∂ψ
∂xs

∂ψ
∂xt ḡst

) ≥ 0, (59)

holds. Of course, when the signature of the metric ḡij is (−+++), the sign of inequality (59) has to be
inverted. As it has been already remarked, the function (55) depends on the potential (14), which is
determined by the explicit form of the function f (R). Therefore, we can adopt requirement (59) as a
criterion to single out viable f (R)-models with torsion.
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As an illustrative example, we consider again the model f (R) = R + αR2. From the relation

F−1(X) = f ′(X)X − 2 f (X) = −X, the identity ( f ′)−1(ϕ) =
ϕ − 1

2α
, and the expression (14), we easily

obtain the effective potential:

V(ϕ) =
1

8α
(ϕ − 1)2 ϕ. (60)

Equation (60), together with Equations (19) and (50), yields:

ϕ =

(
1

2α + 2m2ψ2
)

(
1

2α − ∂ψ
∂xs

∂ψ
∂xt ḡst

) , (61)

which describes the scalar field ϕ as a function of the metric ḡij, the Klein–Gordon field ψ, and its first
order derivatives. By deriving (61), we have:

∂ϕ

∂
(

∂ψ
∂xs

∂ψ
∂xt ḡst

) =
ϕ(

1
2α − ∂ψ

∂xs
∂ψ
∂xt ḡst

) . (62)

If the metric ḡij has signature (+−−−), we see that the requirement (59) is fulfilled if α < 0 and

if ḡpq ∂ψ

∂xq is a time-like vector field. On the contrary, when the signature of ḡij is (−+++), α has to

be positive.

4. The Junction Conditions

In this section, we address the junction conditions issue within the framework of f (R)-gravity
with torsion. As mentioned in the Introduction, the junction condition problem is crucial for any theory
of gravitation; for instance, in order to join together the interior with the exterior region of a relativistic
star, we need to know how matching different solutions of the field equations of the theory at a given
hypersurface. After deriving general junction conditions, in order to highlight the main differences
with respect to ECSK theory, we give two illustrative examples. For reasons of greater clarity and
better readability, the proposed examples are presented in two separate subsections.

Let us consider a hypersurface Σ which separates two different regions M+ and M− of spacetime.
To begin with, let us deal with the case in which the hypersurface Σ is either timelike or spacelike; the

case of null hypersurface will be discussed later. Let us denote by
(

g+ij , Γ+ h
ij

)
and

(
g−ij , Γ− h

ij

)
two

solutions of the field equations (10), defined in M+ and M−, respectively. We want to discuss how to
solder together at Σ the two given Einstein–Cartan geometries, in order to obtain a unique solution of
the field equations on the whole spacetime.

To this end, we refer Σ to local coordinates yA (A = 1, . . . , 3), and we adopt a coordinate system
xi, locally overlapping both M+ and M− in an open set containing Σ. After that, considering the arc
length s between any point p ∈ M and Σ along the geodesic normal to Σ (with respect to one of the
two given metric tensors) and passing through p itself, we define a function s which, without loss of
generality, can be set negative in M−, positive in M+, and equal to zero at Σ. Indicating by ni the unit
normal (with respect to the chosen metric tensor) outgoing from Σ, one has the relations:

dxi = nids, ni = ǫ∂is and nini = ǫ, (63)

where ǫ = 1 if Σ is spacelike, and ǫ = −1 if Σ is timelike. Moreover, given any geometric quantity W

defined on both sides of the hypersurface Σ, we denote by:

[W] := W
(
M+

)
|Σ − W

(
M−)

|Σ (64)
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the jump of W across Σ. The issue of matching different geometries at a given hypersurface Σ is usually
discussed in the framework of distribution-valued tensors [29,30,32,51,52]. In this regard, denoting by
Θ(s) (with Θ(0) := 1) the Heaviside distribution, we introduce the following geometrical objects:

gij = Θ(s)g+ij + (1 − Θ(s)) g−ij , (65a)

Γ h
ij = Θ(s)Γ+ h

ij + (1 − Θ(s)) Γ− h
ij , (65b)

with the requirement that the quantities (65) define a solution of the field equations (10) in the
distributional sense. To satisfy this request, the quantities (65) and all the the geometric quantities
induced by them have to be well defined as distributions. In particular, this must apply to the Riemann
and the Einstein tensors. Moreover, consistency between (65), (3) implies the identity:

Γ h
ij = Θ(s)

(
Γ̃+ h

ij − K+ h
ij

)
+ [1 − Θ(s)]

(
Γ̃− h

ij − K− h
ij

)
, (66)

where Γ̃ h
ij are the Christoffel coefficients associated with the metric (65a). By differentiating (65), we

get the relations:
∂kgij = Θ(s)∂kg+ij + (1 − Θ(s)) ∂kg−ij + ǫδ(s)

[
gij

]
nk, (67a)

∂kΓ h
ij = Θ(s)∂kΓ+ h

ij + (1 − Θ(s)) ∂kΓ− h
ij + ǫδ(s)

[
Γ h

ij

]
nk, (67b)

where, referring the reader to [31,51,52] and references therein for the definition of the Dirac δ-function
with support on the submanifold Σ : s = 0, we have used the identities ∂s

∂xi = ǫni and dΘ(s)
ds = δ(s).

Making use of Equation (67), as well as of the identities Θ2(s) = Θ(s) and Θ(s) (1 − Θ(s)) = 0,
it is easily seen that the Levi–Civita contribution to the connection Γ h

ij contains a singular term
having expression:

1
2

g+hk
|Σ

(
[gik] nj +

[
gjk

]
ni −

[
gij

]
nk

)
ǫδ(s). (68)

Requirement (65b) implies then the vanishing of the term (68); thus,

[
gij

]
= 0, (69)

amounting to the fact that the two metrics have to coincide on the hypersurface Σ. In addition, from
Equation (67b), we get the expression of the Riemann tensor of the the connection (65b):

R
p

qij = Θ(s)R
+p

qij + (1 − Θ(s)) R
−p

qij + δ(s)A
p

qij, (70)

where we have denoted by:

A
p

qij := ǫ
([

Γ
p

jq

]
ni −

[
Γ

p
iq

]
nj

)
(71)

the tensor connected with the presence of the δ-function term in the Riemann tensor (70). Once again,
decomposition (3) can be used, so that we can rewrite the tensor (71) as the sum:

A
p

qij = Ã
p

qij + Ā
p

qij, (72)

where:
Ã

p
qij = ǫ

([
Γ̃

p
jq

]
ni −

[
Γ̃

p
iq

]
nj

)
(73)

and:
Ā

p
qij = ǫ

([
−K

p
jq

]
ni +

[
K

p
iq

]
nj

)
(74)

are quantities related to the Levi–Civita and contortion, respectively.
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The continuity of the metric tensor across the hypersurface Σ implies that its derivatives may
have discontinuities only along the normal direction. Then, there exists a tensor field on Σ:

kij := ǫ
[
∂hgij

]
nh, (75)

such that: [
∂hgij

]
= kijnh. (76)

From Equation (76), we get the expressions:

[
Γ̃ h

ij

]
=

1
2

(
kh

jni + kh
inj − kijn

h
)

, (77)

which, inserted into Equation (73), yield the explicit representation:

Ã
p

qij =
ǫ

2

(
k

p
jnqni − k

p
inqnj − kqjn

pni + kqin
pnj

)
. (78)

By contraction of Equation (78), we have:

Ãqj := Ã
p

qpj =
ǫ

2

(
k

p
jnqnp − knqnj − kqjǫ + kqpnpnj

)
(79)

and:
Ã := Ã

q
q = ǫ

(
kpqnpnq − ǫk

)
, (80)

with k := kijg
ij. Making use of Equations (56), (80), we introduce the tensor:

H̃qj = Ãqj −
1
2

Ãgqj =
ǫ

2

(
k

p
jnqnp − knqnj − kqjǫ + kqpnpnj

)
− ǫ

2

(
kstn

snt − ǫk
)

gqj, (81)

which represents the δ-function part of the Einstein tensor, generated by Levi–Civita connection. Tensor
(81) is symmetric and tangent to the hypersurface Σ. In fact, it is a straightforward matter to verify that
H̃qjn

j = 0. If we denote by Ei
A := ∂xi

∂yA , the tensor H̃qj can be expressed as H̃qj = H̃ABE
q
AE

j
B, with [34]:

H̃AB := H̃qjE
q
AE

j
B = −1

2
kqjE

q
AE

j
B +

1
2

kpqhpqhAB, (82)

where hpq := gpq − ǫnpnq and hAB := gijE
i
AE

j
B are the projection operator and the induced metric on

the hypersurface Σ, respectively.
Analogously, we can single out the contributions given by contortion to the δ-function part of the

Einstein tensor. By contraction, from Equation (74), we in fact:

Āqj := Ā
p

qpj = ǫ
([

−K
p

jq

]
np +

[
K

p
pq

]
nj

)
(83)

and:
Ā := Ā

q
q = 2ǫ

[
K

p
pq

]
nq. (84)

By means of expressions (83), (84), we define the tensor:

H̄qj := Āqj −
1
2

Āgqj = ǫ
([

−K
p

jq

]
np +

[
K

p
pq

]
nj

)
− ǫ [K s

st ] ntgqj, (85)
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which, in general, is neither symmetric nor tangent to the hypersurface Σ. All the obtained results allow
us to express the effective stress–energy tensor appearing on the right-hand side of Equation (10a) in
the form:

T̂qj = Θ(s)

[
1
ϕ
Tqj +

1
ϕ

U(T )gqj

]+
+ (1 − Θ(s))

[
1
ϕ
Tqj +

1
ϕ

U(T )gqj

]−
− δ(s)Hqj, (86)

where:
Hqj = H̃qj + H̄qj, (87)

and where, for simplicity, we have denoted by U(T ) := 1
2 [ f (R(T ))− f ′(R(T ))R(T ))].

From Equation (86), it follows that the request that the Einstein-like equations (10a) have a smooth
transition across the hypersurface Σ is then equivalent to require that the tensor Hqj vanishes at
Σ. Therefore, the remaining junction conditions can be obtained by imposing the vanishing of all
projections of the tensor Hqj on Σ. About this, we have:

• the completely orthogonal projection of Hqj on Σ is automatically zero:

Hqjn
qnj = H̄qjn

qnj = −ǫ
[
K

qp
j

]
npnqnj = 0 (88)

because H̃qj is tangent to Σ and the contorsion is antisymmetric in the last two indexes;
• the tangent–orthogonal projection of Hqj is:

HqjE
q
Anj = H̄qjE

q
Anj = −ǫ

[
K

p
jq

]
npE

q
Anj +

[
K

p
pq

]
E

q
A. (89)

According to [35], the quantity in Equation (89) results in the jump of trace of the projection on Σ

of the contorsion tensor. In fact, it is easily seen that the identity:

[
K

p
jq h

j
ih

i
pE

q
A

]
=
[
K

p
jq

(
δ

j
p − ǫnpnj

)
E

q
A

]
= −ǫ

[
K

p
jq

]
npnjE

q
A +

[
K

p
pq

]
E

q
A, (90)

holds.
• the orthogonal–tangent projection of Hqj is zero:

HqjE
j
Anq = H̄qjE

j
Anq = ǫ

(
−
[
K

p
jq

]
npnqE

j
A +

[
K

p
pq

]
njE

j
Anq

)
= 0, (91)

in view of the antisymmetry properties of the contorsion tensor and the orthogonality between
the vectors ni and Ei

A;
• the totally tangent projection of Hqj is given by:

HqjE
q
AE

j
B = H̃qjE

q
AE

j
B + H̄qjE

q
AE

j
B = H̃AB + ǫ

(
−
[
K

p
jq

]
npE

q
AE

j
B +

[
K

qp
q

]
nphAB

)
. (92)

Summarizing everything, it is seen that the vanishing of the tensor Hqj needs the quantities
(89), (92) to be zero at Σ. In particular, as it happens in GR, it can be shown that the condition
HqjE

q
AE

j
B = 0 is connected with the vanishing of the jump of the extrinsic curvature across Σ. To clarify

this point, let us introduce the quantity:

QAB :=
(
∇inj

)
E

j
AEi

B, (93)

which generalizes the notion of extrinsic curvature for an arbitrary linear connection (3). From
Equation (93) together with Equations (3) and (77), we get the relation:

[QAB] =
[
∇injE

j
AEi

B

]
=
[
∇inj

]
E

j
AEi

B =
ǫ

2
kijE

i
AE

j
B +

[
K h

ji

]
nhEi

AE
j
B. (94)
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Comparing Equations (82), (92) and (94), it is then an easy matter to prove the identity:

HAB := HkjE
k
AE

j
B = −ǫ ([QAB]− [Q] hAB) , (95)

where [Q] := [QAB] hAB. It follows that the requirements HAB = 0 and [QAB] = 0 at Σ are equivalent.
The request of vanishing of the quantities (89), (92) involves the Levi–Civita connection and the

spin tensor (via the contorsion tensor) but also the trace of the energy–impulse tensor and its first
derivatives. This is because of the torsional contributions given by the non-linearity of the function
f (R) and it represents a significant difference from the ECSK theory. In order to better clarify this
last aspect, in the next subsections, we illustrate two examples dealing with the spin fluid and the
Dirac field.

Before doing this, for the sake of completeness, we briefly outline also the case of null hypersurface.
Then, let Σ be a null hypersurface described by an equation Φ(xi) = 0, where Φ is a smooth
function. We suppose that M+ and M− correspond to the domains where Φ is positive and negative,
respectively. Again, we discuss the matching on Σ of two solutions of the field equations in the form:

gij = Θ(Φ)g+ij + (1 − Θ(Φ)) g−ij , (96a)

Γ h
ij = Θ(Φ)Γ+ h

ij + (1 − Θ(Φ)) Γ− h
ij . (96b)

The null normal vector is defined as ni = α−1∂iΦ, where α is a suitable non–zero function on Σ.
By means of analogous arguments to those given above, it is immediately seen that the metric tensor
(96a) has to be continuous across the hypersurface Σ, namely [gij] = 0. Following a usual procedure,
let us then introduce a transverse vector field Ni satisfying the requirements Nini = 1 and Ni Ni = 0.
We have the relations [ni] = [Ni] = 0. We also introduce the transverse metric:

hij = gij − ni Nj − njNi. (97)

Due to the continuity of the metric tensor across Σ, its derivatives may have discontinuities only
along the transverse direction. This implies the existence of a tensor field γij on Σ, such that:

γij = [∂sgij]N
s ⇐⇒ [∂sgij] = γijns. (98)

By Equation (98), we can express the jump of the Christoffel symbols as:

[
Γ̃ h

ij

]
=

1
2

(
γh

jni + γh
inj − γijn

h
)

. (99)

Making use of Equation (99) and following the identical procedure illustrated above, it is easily
seen that the δ-function part of the Einsein tensor is now given by the sum:

Hij = H̃ij + H̄ij, (100)

where:
H̃ij :=

α

2

(
γi

hnhnj + γ
j
hnhni − γh

hninj − γhknhnkgij
)

(101)

represents the contribution due to Levi–Civita terms, and:

H̄ij := α
(
−
[
K jih

]
nh +

[
K ih

h

]
nj +

[
K hk

h

]
nkgij

)
(102)

represents the contribution given by contorsion terms. As in the case of spacelike or timelike
hypersurfaces, smooth transition across the hull hypersurface Σ at the level of Einstein-like equations
requires the vanishing of the tensor (100).
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4.1. The Coupling to a Spin Fluid

Let us consider a Weyssenhoff spin fluid with stress–energy and the spin tensors, respectively,
given by [15,53,54]:

T ij = UiPj + p
(

UiU j − gij
)

, (103a)

and:
S h

ij = SijU
h, (103b)

where Ui is the 4-velocity, Pj denotes the 4-density of energy–momentum, Sij = −Sji is the spin
density, and p is the pressure of the fluid. By means of the conservation laws for the spin (12b),
which are equivalent to the antisymmetric part of Einstein-like equations (10a), we can express the
stress–energy tensor (103a) as [54]:

Tij = (ρ + p)UiUj − pgij − UiT̂hSh
j − Ui∇̃h

(
SkjU

h
)

Uk, (104)

where ρ := UiPi and ∇̃h is the covariant derivative with respect to the Levi–Civita connection induced
by the metric gij. In view of the usual convective condition SijU

j = 0 [53,55] and the representation
(11), it is easily seen that the vanishing at Σ of the quantities (89), (92) yields the explicit equations:

− ǫ
[
K

p
jq

]
npE

q
Anj +

[
K

p
pq

]
E

q
A = −ǫ

[
1
ϕ
SqjUp

]
npnjE

q
A −

[
1
ϕ

∂ϕ

∂xq

]
E

q
A = 0, (105a)

H̃AB + ǫ
(
−
[
K

p
jq

]
npE

q
AE

j
B +

[
K

qp
q

]
nphAB

)
=

H̃AB + ǫ

([
1

2ϕ

(
SjqUp + S p

qUj + S p
jUq

)]
npE

q
AE

j
B +

[
1
ϕ

∂ϕ

∂xp

]
nphAB

)
= 0.

(105b)

Equation (105b) can be decomposed into its symmetric and antisymmetric parts, thus giving rise
to the further conditions: [

1
2ϕ

SjqUp

]
npE

q
AE

j
B = 0, (106a)

H̃AB + ǫ

([
1

2ϕ

(
S p

qUj + S p
jUq

)]
npE

q
AE

j
B +

[
1
ϕ

∂ϕ

∂xp

]
nphAB

)
= 0. (106b)

In order to illustrate a specific case, we imagine having to join together two static and spherically
symmetric metrics:

ds2
± = eν± dt2 − eλ±

dr2 − r2
(

dθ2 + sin2 θ dφ2
)

, (107)

solutions of Equation (10) coupled to a spin fluid. It is convenient to rename the spherical coordinates
as x0 := t, x1 := r, x2 := θ, x3 := φ in such a way that the 4-velocity of the fluid (supposed to be
at rest in the chosen frame) is described by Ui = U0δi

0, with U0 = e−
ν
2 , and the unit normal to the

hypersurface Σ : x1 = const. is given by ni = n1δi
1 with n1 = e−

λ
2 . The functions ν and λ, as well as all

the involved matter fields, depend only on the radial variable r.
According to the convective condition SijU

j = 0 and the stated spherical symmetry, we suppose
that the spins of the particles composing the fluid are all aligned in the r direction; this means that
only the components S23 = −S32 of the spin density are non-zero [55]. Under these conditions, the
stress–energy tensor of the spin fluid assumes the usual form:

Tij = (ρ + p)UiUj − pgij. (108)
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Using the above assumptions, it is easily seen that the constraints (105a), (106a) are automatically
satisfied, while Equation (106b) reduces to:

H̃AB + ǫ

[
1
ϕ

∂ϕ

∂xp

]
nphAB = 0. (109)

Recalling the identity H̃AB = −ǫ
([

Q̃AB

]
−
[
Q̃
]

hAB

)
[34], it is seen that Equation (109) relates the

quantity
[

1
ϕ

∂ϕ
∂xp

]
to the jump across Σ of the extrinsic curvature Q̃AB associated with the Levi–Civita

connection of the metric (107). We note that, in the case of ECSK theory, condition (109) becomes
H̃AB = 0, which is the same condition holding in General Relativity [34].

Because of Equations (8) and (9), in general, the condition (109) involves the derivatives of matter
fields. To see this point more in detail, we again take the model f (R) = R + αR2 into account. Due to
Equation (108), from the trace equation (7) and the definition (9), we have the relations:

− R = T = ρ − 3p, (110)

and:
ϕ = 1 + 2α (3p − ρ) . (111)

Moreover, it is easy to verify that:

Q̃00 =
1
2

∂ν

∂r
eν− λ

2
|r=r0

(112)

is the only non–vanishing component of the extrinsic curvature Q̃AB induced by the metric (107) on the
hypersurface Σ : r = r0 const.. In view of this, requirement (109) is seen to reduce to the following
two conditions: 


2α
(

3 ∂p
∂r − ∂ρ

∂r

)

1 + 2α (3p − ρ)


 = 0, (113a)

and: [
∂ν

∂r

]
= 0. (113b)

As an even more specific example, we suppose to have to joining together the interior spacetime
M− of a star with spin properties, with the exterior region M+ assumed empty. In such a circumstance,
we have T +

ij = 0 and S+ h
ij = 0, and in M+ the field equations (10) are identical to the Einstein

equations (without cosmological constant) in vacuo; their unique solution
(

g+ij , Γ+ h
ij

)
is then given by

the Schwartzchild metric:

g+ij dxidxj =

(
1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2
(

dθ2 + sin2 θ dφ2
)

, (114)

together with its Levi–Civita connection Γ+ h
ij = Γ̃+ h

ij . Consequently, the junction conditions (69), (113)
assume the explicit form:

eν−(r0) =

(
1 − 2M

r0

)
, eλ−(r0) =

(
1 − 2M

r0

)−1

, (115a)

(
∂ν−

∂r

)

|r=r0

=
2M

r0 (r0 − 2M)
,

(
3

∂p−

∂r
− ∂ρ−

∂r

)

|r=r0

= 0. (115b)

On Equation (115), some comments are in order. Due to the second equation (115b), at Σ the spin

fluid must behave like a sort of radiation, having a barotropic factor of the form w =
(

∂p−

∂ρ−

)
|r=r0

= 1/3
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at the boundary r = r0. This fact is quite general: for all static and spherically symmetric solutions

(107) of f (R)-gravity with torsion, the condition
(
−3 ∂p−

∂r + ∂ρ−
∂r

)
|r=r0

= ∂T −
∂r |r=r0

= 0 is always

sufficient (together with (113b)) to fulfill the requirement (109), and it becomes necessary also whenever
∂ϕ−
∂T |r=r0

6= 0 (like in the case f (R) = R + αR2, where ∂ϕ−
∂T |r=r0

= −2α). On the other hand, whenever

the condition ∂ϕ−
∂T |r=r0

= 0 is imposed, it yields a relation between density and pressure at the
separation hypersurface, which constraints the equation of state [56].

4.2. The Coupling to a Dirac Field

Let ψ be a Dirac field with Lagrangian function given by:

Lm =

[
i

2

(
ψ̄γiDiψ − Diψ̄γiψ

)
− mψ̄ψ

]
, (116)

where Diψ = ∂ψ

∂xi + ω
µν

i σµνψ and Diψ̄ = ∂ψ̄

∂xi − ψ̄ω
µν

i σµν are the covariant derivatives of the Dirac
fields, σµν = 1

8

[
γµ, γν

]
, γi = γµei

µ with γµ denoting Dirac matrices and where m is the mass of the
Dirac field. In what follows, the notation for which:

γµγνγλ = γµηνλ − γνηµλ + γληµν + iǫµνλτγ5γτ , (117)

is used. From (116), we derive the Dirac equations:

iγhDhψ +
i

2
Thγhψ − mψ = 0, (118)

where, due to to the fact that torsion is no longer totally antisymmetric, the torsion vector Th := T
j

hj is
present. The stress–energy and the spin density tensors are given by [15,42]:

Tij =
i

4

(
ψ̄γiDjψ − Djψ̄γiψ

)
, (119)

and:
S h

ij = −1
4

ηµσǫσνλτ (ψ̄γ5γτψ) eh
µeν

i eλ
j . (120)

In what follows, we can systematically assume that ψ̄ψ 6= 0. Indeed, if ψ̄ψ = 0, the trace of the
stress–energy tensor would be constantly zero and the theory would amount to an ECSK-like theory
for which the solution of the junction conditions problem is already known [35]. Therefore, without
loss of generality, we can limit ourselves to dealing with spinor fields of type-1 and type-2 according
to the Lounesto classification [57–59].

Making use of representation (11), it is seen that in this case the vanishing at Σ of the quantities
(89), (92) yields the conditions:

− ǫ
[
K

p
jq

]
npE

q
Anj +

[
K

p
pq

]
E

q
A = −ǫ

[
K̂

p
jq

]
npE

q
Anj +

[
K̂

p
pq

]
E

q
A = −

[
1
ϕ

∂ϕ

∂xq

]
E

q
A = 0, (121a)

H̃AB + ǫ
(
−
[
K

p
jq

]
npE

q
AE

j
B +

[
K

qp
q

]
nphAB

)
=

H̃AB + ǫ
(
−
[
K̂

p
jq

]
npE

q
AE

j
B +

[
K̂

qp
q

]
nphAB −

[
Ŝ

p
jq

]
npE

q
AE

j
B

)
=

H̃AB + ǫ

([
1
ϕ
S p

jq

]
npE

q
AE

j
B +

[
1
ϕ

∂ϕ

∂xp

]
nphAB

)
= 0.

(121b)
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Splitting Equation (121b) in its symmetric and antisymmetric parts, we obtain the equations:

H̃AB + ǫ

[
1
ϕ

∂ϕ

∂xp

]
nphAB = 0, (122a)

[
1
ϕ
S p

jq

]
npE

q
AE

j
B = 0. (122b)

As an illustrative example, we suppose joining two axially symmetric spacetimes, solutions of the
field equations resulting again from the model f (R) = R + αR2. More in detail, we assume that the
metric tensors in both the regions M− and M+ are of Lewis–Papapetrou kind, expressed in spherical
coordinates as:

g±ij dxidxj = −B2
±(r

2 dθ2 + dr2)− A2
±(−W± dt + dφ)2 + C2

± dt2, (123)

where all functions A±(r, θ), B±(r, θ), C±(r, θ), and W±(r, θ) depend on the r and θ variables only. We
assume that M+ is empty, while M− is filled with a Dirac field. We also suppose that in M+ the
metric is the Kerr one. This is consistent with the fact that R + αR2 gravity with torsion in vacuo is
equivalent to GR and, therefore, admits the same solutions. In the Lewis–Papapetrou form (123), the
coefficients of the Kerr metric are expressed as:

A2
+(r, θ) =

[
a2 +

(
−a2 + m2 + 2mr + r2)2

4r2

]
sin2 θ +

ma2 (−a2 + m2 + 2mr + r2) sin4 θ

r

(
(−a2+m2+2mr+r2)

2

4r2 + a2 cos2 θ

) , (124a)

B2
+(r, θ) =

a2 cos2 θ

r2 +
1
4
+

m

r
+

3m2 − a2

2r2 +
m3 − a2m

r3 +
a4 − 2a2m2 + m4

4r4 , (124b)

C2
+(r, θ) =

m2a2 (−a2 + m2 + 2mr + r2)2 sin4 θ

(

a2 + (−a2+m2+2mr+r2)
2

4r2

)
sin2 θ + ma2(−a2+m2+2mr+r2) sin4 θ

r

(
(−a2+m2+2mr+r2)

2

4r2 +a2 cos2 θ

)




×

1

r2
(

(−a2+m2+2mr+r2)
2

4r2 + a2 cos2 θ

)2 + 1 − m
(
−a2 + m2 + 2mr + r2)

r

(
(−a2+m2+2mr+r2)

2

4r2 + a2 cos2 θ

) ,

(124c)

W+(r, θ) =
ma
(
−a2 + m2 + 2mr + r2) sin2 θ(

a2 + (−a2+m2+2mr+r2)
2

4r2

)
sin2 θ + ma2(−a2+m2+2mr+r2) sin4 θ

r

(
(−a2+m2+2mr+r2)

2

4r2 +a2 cos2 θ

)
×

1

r

(
(−a2+m2+2mr+r2)

2

4r2 + a2 cos2 θ

) ,

(124d)

where a and m are the parameters entering the Kerr metric. We want to analyze the junction conditions
at the hypersurface Σ : r = r0 const. To this end, by using Equations (118) and (119), we
preliminarily notice that in the regions M− and M+ we have, respectively:

ϕ− = 1 + 2αR = 1 − 2αT = 1 − αmψ̄ψ, (125a)

and:
ϕ+ = 1. (125b)
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In view of Equation (125), the constraint (121a) implies that the scalar ψ̄ψ is forced to be constant
on the hypersurface Σ. Moreover, it is easily seen that the requirement (122b) is equivalent to
the conditions:

ψ̄γ5γ0ψ|Σ = 0, ψ̄γ5γ2ψ|Σ = 0, ψ̄γ5γ3ψ|Σ = 0, (126)

which have to be satisfied at Σ by the spinor field ψ. The remaining condition (122a) can be discussed
by rewriting it in the equivalent form:

[
Q̃AB

]
= −1

2

[
1
ϕ

∂ϕ

∂xh

]
nhhAB, (127)

where
[
Q̃AB

]
indicates the jump across Σ of the extrinsic curvatures induced by the metrics (123).

Denoting by Ã := A+(r0, θ) = A−(r0, θ), B̃ := B+(r0, θ) = B−(r0, θ), C̃ := C+(r0, θ) = C−(r0, θ), and
W̃ := W+(r0, θ) = W−(r0, θ) for simplicity, we have that the non–zero components of

[
Q̃AB

]
are:

[
Q̃θθ

]
= −r2

0 [∂rB] , (128a)

[
Q̃φφ

]
= − Ã

B̃
[∂r A] , (128b)

[
Q̃tφ

]
=

Ã
(
2W̃ [∂r A] + Ã [∂rW]

)

2B̃
, (128c)

[
Q̃tt

]
=

C̃ [∂rC]− ÃW̃2 [∂r A]− Ã2W̃ [∂rW]

B̃
. (128d)

Due to Equations (125) and (128), the non-trivial equations of (127) result to have explicit expression:

[∂rB]

B̃
= − αm

2(1 − αmψ̄ψ|Σ)
∂r (ψ̄ψ)|Σ , (129a)

[∂r A]

Ã
= − αm

2(1 − αmψ̄ψ|Σ)
∂r (ψ̄ψ)|Σ , (129b)

2 [∂r A]

Ã
+

[∂rW]

W̃
= − αm

(1 − αmψ̄ψ|Σ)
∂r (ψ̄ψ)|Σ , (129c)

C̃ [∂rC]− ÃW̃2 [∂r A]− Ã2W̃ [∂rW]

C̃2 − Ã2W̃2
= − αm

2(1 − αmψ̄ψ|Σ)
∂r (ψ̄ψ)|Σ . (129d)

From Equation (129), it is seen that the jumps of the r-derivatives of quantities A±, B±, and C±

have to satisfy the relations:

[∂r A]

Ã
=

[∂rB]

B̃
=

[∂rC]

C̃
= − αm

2(1 − αmψ̄ψ|Σ)
∂r (ψ̄ψ)|Σ =

1
2ϕ

∂ϕ

∂(ψ̄ψ)
∂r (ψ̄ψ)|Σ , (130)

while the function W(r, θ) has to be of class C1.
In conclusion, it is shown that, in the non–linear case f (R) 6= R + λ, the scalar field ψ̄ψ is also

involved in the characterization of the junction conditions. In particular, the derivatives of the metric
components with respect to the coordinate r can have some jumps at the hypersurface Σ, connected
with the r–derivative of the scalar quantity ψ̄ψ. This is a difference from the linear case f (R) = R + λ

(ECSK theory), where, instead, the metric has to be at least of class C1.

5. Conclusions

The well-posedness of the Cauchy problem, as well as the well-formulation of the junction
conditions, are crucial aspects of any theory of gravity. In fact, a well-posed initial value problem
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ensures uniqueness, continuity, and causality of solutions from initial data; at the same time,
well-formulated junction conditions allow us to understand if and how two different space-times can
be soldered at a given hypersurface, with obvious applications and consequences, for example, on an
astrophysical level.

In this paper, we have discussed the Cauchy problem and the junction conditions within the
framework of f (R)-gravity with torsion.

For what concerns the Cauchy problem, we have seen that the problem is always well-posed
in vacuo and, in the absence of spin, every time the trace of the matter stress–energy tensor is
constant; indeed, in such a circumstance, the theory amounts to an Einstein-like theory for which
the well-posedness of the initial value problem is well-established: for instance, this is what happens
in the case of coupling to an electromagnetic field or a Yang–Mills field. On the contrary, when the
stress–energy tensor trace is not constant, the problem needs to be discussed case-by-case.

Here, we have faced the coupling to a perfect fluid and a Klein–Gordon scalar field. In both cases,
we have derived sufficient conditions ensuring the well-posedness of the initial value problem. We
have also proved that there exist f (R) models with torsion, which actually satisfy the stated conditions:
the model f (R) = R + αR2 does it. The key idea to achieve these results has been implementing a
conformal transformation from the Jordan to the Einstein frame, proving that the conservation laws
are formally preserved under such a transformation; this has allowed us to apply well-known Bruhat’s
results, holding in GR.

On the junction conditions, we have deduced the general requirements needed to solder at a
given hypersurface two different solutions of f (R)-gravity with torsion. Despite a formal resemblance,
junction conditions for f (R)-gravity with torsion differ from those holding in the ECSK theory because
they involve the trace of the matter stress–energy tensor and its first derivatives; this is due to the
contributions that the non-linearity of the gravitational function f (R) gives to the contorsion tensor
and, in general, it results in specific conditions that the matter fields have to satisfy at the separation
hypersurface. In order to better clarify this aspect, we have given two illustrative examples, considering
the model f (R) = R + αR2 coupled to a spin fluid and a Dirac field, respectively.

Finally, we have shown that the study of the initial value problem, as well as the junction
conditions in the context of f (R)-gravity with torsion, singles out suitable conditions on the
gravitational Lagrangian function f (R) itself, which may be used as selection criteria for viable
f (R) models.
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Abstract: This article is a review of what could be considered the basic mathematics of
Einstein–Cartan theory. We discuss the formalism of principal bundles, principal connections, curvature
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1. Introduction

The formulation of torsion gravity and the consequent coupling with spin rely on a different
formulation compared to the one of original works on General Relativity. This formulation regards
geometrical objects called principal bundles. In this context, we can formulate General Relativity
(or Einstein–Cartan–Sciama–Kibble (ECSK) theory in the presence of torsion) with a principal connection,
which can be pulled back to the base manifold in a canonical way and further restricted to the only
antisymmetric component, giving birth to the well-known spin connection. This process shows the
possibility of formulating General Relativity as a proper gauge theory rather than using the affine
formulation and Christoffel symbols Γ. What permits the equivalence of the two formulations is a bundle
isomorphism called tetrads or vierbein, which is supposed to respect certain compatibility conditions. Then,
we can define the associated torsion form and postulate the Palatini–Cartan action as a functional of such
tetrads and spin connection. This leads to ECSK field equations.

We will first set up all the abstract tools of principal bundles, tetrads, and principal connection;
secondly, we will derive the Einstein–Cartan–Sciama–Kibble theory in its implicit version; and finally,
we will discuss conservation laws coming from local SO(3, 1) and diffeomorphism invariance of
ECSK theory.

Throughout the article, we will give theorems and definitions. However, we would like to stress that
hypotheses for such theorems will often be slightly redundant: we will take spaces and functions to be
differentiable manifolds and smooth, even though weaker statements would suffice. This is because we
prefer displaying the setup for formalizing the theory rather than presenting theorems and definitions
with weaker hypotheses that we will never use for the theory. Nontheless, we will specify where such
hypotheses are strengthened. In spite of this, the discussion will be rather general, probably more general
than what is usually required in formulating ECSK (Einstein–Cartan–Sciama–Kibble) theory.
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2. Bundle Structure

The introduction of a metric g and an orthogonality relation via a minkowskian metric η are two
fundamental ingredients for building up a fiber bundle where we want the orthogonal group to act freely
and transitively on the fibers. This will allow us to have a principal connection and to see the perfect
analogy with an ordinary gauge theory ([1] chapter III).

Such a construction underlies the concept of principal bundle, and tetrads will be an isomorphism from
the tangent bundle1 TM to an associated bundle V .

2.1. G-Principal Bundle

We give some definitions2.

Definition 1 (G-principal bundle3). Let M be a differentiable manifold and G be a Lie group.

A G-principal bundle P is a fiber bundle π : P → M together with a smooth (at least continuous) right action

P : G × P → P such that P acts freely and transitively on the fibers4 of P and such that π(Pg(p)) = π(p) for all

g ∈ G and p ∈ P.

We need to introduce a fundamental feature of fiber bundles.

Definition 2 (Local trivialization of a fiber bundle). Let E be a fiber bundle over M, a differentiable manifold,

with fiber projection π : E → M, and let F be a space5.

A local trivialization (U, ϕU) of E, is a neighborhood U ⊂ M of u ∈ M together with a local diffeomorphism.

ϕU : U × F → π−1(U) (1)

such that π(ϕU(u, f )) = u ∈ U for all u ∈ U and f ∈ F.

This definition implies π−1(u) ≃ F ∀u ∈ U.

Definition 3 (Local trivialization of a G-principal bundle). Let P be a G-principal bundle.

A local trivialization (U, ϕU) of P is a neighborhood U ⊂ M of u ∈ M together with a local diffeomorphism.

ϕU : U × G → π−1(U) (2)

such that π(ϕU(u, g)) = u ∈ U for all u ∈ U and g ∈ G and such that

ϕ−1
U (Pg(p)) = ϕ−1

U (p)g = (u, g′)g = (u, g′g). (3)

1 Disjoint union of tangent spaces: TM = ∪x∈M{x} × Tx M
2 References [2–4] are recommended for further details.
3 We give the definition based on our purposes; in general, we can release some hypotheses. In particular, G needs to be only

a locally compact topological group and M needs to be a topological Hausdorff space. This definition is a version with a stronger
hypothesis than the one contained in Reference [5].

4 Fibers are π−1(x) ∀x ∈ M.
5 In the present case, F will be a differentiable manifold, a vector space, a topological space, or a topological group. Furthermore, if

we write “space”, we mean one among these.

94



Universe 2019, 5, 206

Observation 1: A fiber bundle is said to be locally trivial in the sense that it admits a local trivialization for
all x ∈ M, namely there exists an open cover {Ui} of M and a set of diffeomorphisms ϕi such that every
{Ui, ϕi} is a local trivialization6.

Here, we recall the similarity with a differentiable manifold. For a manifold when we change
charts, we have an induced diffeomorphism between the neighborhoods of the two charts, given by the
composition of the two maps.

Thus, having two charts (Ui, φi) and (Uj, φj), we define the following:

φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj). (4)

At a level up, we have an analogous thing when we change trivialization. Of course, here, we have
one more element: the element of fiber.

Taking two local trivializations (Ui, ϕi) and (Uj, ϕj) and given a smooth left action T : G → Diffeo(F)

of G on F, we then have

(ϕ−1
j ◦ ϕi)(x, f ) =

(
x, T (gij(x))( f )

)
∀x ∈ Ui ∩ Uj, f ∈ F. (5)

where the maps gij : Ui ∩ Uj → G are called the transition functions for this change of trivialization and G

is called the structure group.
Such functions obey the following transition functions conditions for all x ∈ Ui ∩ Uj:

– gii(x) = id

– gij(x) = (gji(x))−1

– gij(x) = gik(x)gkj(x) for all x ∈ Ui ∩ Uk ∩ Uj.

The last condition is called the cocycle condition.

Theorem 1 (Fiber bundle construction theorem). Let M be a differentiable manifold, F be a space, and G be a Lie

group with faithful smooth left action T : G → Diffeo(F) of G on F.

Given an open cover {Ui} of M and a set of smooth maps,

tij : Ui ∩ Uj → G (6)

defined on each nonempty overlap, satisfying the transition function conditions.

Then, there exists a fiber bundle π : E → M such that

– π−1(x) ≃ F for all x ∈ M

– its structure group is G, and

– it is trivializable over {Ui} with transition functions given by tij.

A proof of the theorem can be found in Reference [6] (Chapter 1).

2.2. Coframe Bundle and Minkowski Bundle

It is clear now that having E as a fiber bundle over M with fibers isomorphic to F and F′ as a space
equipped with the smooth action T ′ of G, implies the possibility of building a bundle E′ associated to

6 The bundle is said to be trivial if U = M.
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E, which shares the same structure group and the same transition functions gij. By the fiber bundle
construction theorem, we have a new bundle E′ over M with fibers isomorphic to F′.

This bundle is called the associated bundle to E.
Depending on the nature of the associated bundle7, we have the following two definitions:

Definition 4 (Associated G-principal bundle). Let π : E → M be a fiber bundle over a differentiable manifold

M, G be a Lie group, F′ be a topological space, and P be a smooth right action of G on F′. Let also E′ be the associated

bundle to E with fibers isomorphic to F′.
If F′ is the principal homogeneous space8 for P, namely P acts freely and transitively on F′, then E′ is called

the G-principal bundle associated to E.

Definition 5 (Associated bundle to a G-principal bundle). Let P be a G-principal bundle over M, F′ be a space,

and ρ: G→ Diffeo(F′) be a smooth effective left action of the group G on F′.
We then have an induced right action of the group G over P × F′ given by

(p, f ′) ∗ g = (Pg(p), ρ(g−1)( f ′)). (7)

We define the associated bundle E to the principal bundle P, as an equivalence relation:

E := P ×ρ F′ =
P × F′

∼ , (8)

where (p, f ′) ∼ (Pg(p), ρ(g−1)( f ′)), p ∈ P, and f ′ ∈ F′ with projection πρ : E → M s.t. πρ([p, f ′]) = π(p) =

x ∈ M.

Therefore πρ : E → M is a fiber bundle over M with π−1
ρ (x) ≃ F′ for all x ∈ M.

Observation 2: The new bundle, given by the latter definition, is what we expected from a general
associated bundle: a bundle with the same base space, different fibers, and the same structure group.

Idea: We take a G-principal bundle P as an associated bundle to TM, and we build a vector bundle
associated to P with a fiber-wise metric η. We shall call this associated bundle V .

First of all, we display the G-principal bundle as the G-principal bundle associated to TM.

Definition 6 (Orthonormal coframe). Let (M, g) be a pseudo-riemannian n-dimensional differentiable manifold

and (V, η) be an n-dimensional vector space with minkowskian metric η.

A coframe at x ∈ M is the linear isometry.

xe :=
{

xe : Tx M → V
∣∣

xe∗η := ηab xea
xeb = g

}
, (9)

equivalently xea forms an ordered orthonormal basis in T∗
x M.

An orthonormal frame is defined as the dual of a coframe.

7 We will be dealing with two particular types of associated bundles: a principal bundle associated to a vector bundle and a vector
bundle associated to a principal bundle.

8 The space where the orbits of G span all the space.
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Observation 3: Locally, coframes can be identified with local covector fields. A necessary and sufficient
condition for identifying them with global covector fields (namely a coframe for each point of the manifold)
is to have a parallelizable manifold, namely a trivial tangent bundle.

Definition 7 (Orthonormal coframe bundle). Let (M, g) be a differentiable n-dimensional manifold with

pseudo-riemannian metric g and T∗M be its cotangent bundle (real vector bundle of rank n).

We call the coframe bundle F∗
O(M) the G-principal bundle where the fiber at x ∈ M is the set of all orthonormal

coframes at x and where the group G = O(n − 1, 1) acts freely and transitively on them.

The dual bundle of this is the orthonormal frame bundle, and it is denoted by FO(M), made up of
orthonormal frames (dual of orthonormal coframes).

Observations 4:

i. The orthonormal frame bundle is an associated G-principal bundle to TM.
ii. We can consider the Minkowski bundle V the vector bundle over M with fibers V. It is clear that such a

bundle and FO(M) are one of the associated bundles of the other via action of the orthogonal group
O(n − 1, 1). Therefore, V := FO(M)×ρ V, where ρ is taken to be the fundamental representation of
O(n − 1, 1).

iii. We stress that this bundle V is not canonically isomorphic to TM; in general, there is no canonical
choice of a representative of xe of the equivalence class [xe, v] ∈ V , of which the inverse xe−1(v) gives
rise to a canonical identification of a vector in Tx M. Namely, fixed a v ∈ V, not all choices of xe

give rise to a fixed vector X ∈ Tx M. As a matter of fact, the reference metric fixed on V does not
allow in general the existence of a canonical soldering (Section 7). In Reference [7], it is shown how
to define the Minkowski bundle without deriving it from FO(M); the authors refer to that as fake

tangent bundles.
iv. If the manifold is parallelizable, we have the bundle isomorphism e : TM → V , which is given

by the identity map over M and xe : Tx M → V ∀x ∈ M. It can be regarded as a V-valued 1-form
e ∈ Ω1(M,V). We can identify e with an element of Ω1(M, V), thus with global sections of the
cotangent bundle such that, at each point in M, the corresponding covectors xea obey ηab xea

xeb = g.

We are now ready to define tetrads.

Definition 8 (Tetrads). Let ρ : O(3, 1) → Aut(V) be the fundamental representation.

Tetrads are the bundle isomorphisms e : TM → V . They are identifiable with elements e ∈ Ω1(M,V), and if

M is parallelizable, tetrads can be identified with Ω1(M, V) ∋ eava such that {va} is an orthonormal basis of V,

ea ∈ Ω1(M), and ηabeaeb = g.

3. Principal Connection

Is there any difference?

In the ordinary formulation of General Relativity (as in the original Einstein’s work, for instance), we
have objects called Γs, which are coefficients of a linear connection ∇ and thus determined by a parallel
transport of tangent vectors.
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The biggest advantage of treating O(3, 1) as an “explicit symmetry” of the theory is that we have
obtained the possibility of defining a principal connection, which is the same kind of entity we have in an
ordinary gauge theory9.

3.1. Ehresmann Connection

If we consider a smooth fiber bundle π : E → M, where fibers are differentiable manifolds, we can of
course take tangent spaces at points e ∈ E. Having the tangent bundle TE, we may wonder if it is possible
to separate the contributions coming from M to the ones from the fibers.

This cannot be done just by stating TE = TM ⊕ TF, unless E = M × F is the trivial bundle. Namely,
we cannot split directly vector fields on M from vector fields on the fibers F.

We can formalize this idea: use our projection π for constructing a tangent map π∗ = dπ : TE → TM,
and consider its kernel.

Definition 9 (Vertical bundle). Let M be a differentiable manifold and π : E → M be a smooth fiber bundle.

We call the sub-bundle VE = Ker(π∗ : TE → TM) the vertical bundle.

Following this definition, we have the natural extension to the complementary bundle of the vertical
bundle, which is somehow the formalization of the idea we had of a bundle that takes care of tangent
vector fields on M.

Definition 10 (Ehresmann connection). Let M be a differentiable manifold and π : E → M be a smooth fiber bundle.

Consider a complementary bundle HE such that TE = HE ⊕ VE. We call this smooth sub-bundle HE the

horizontal bundle or Ehresmann connection.

Thus, vector fields will be called vertical or horizontal depending on whether they belong to Γ(VE) or
Γ(HE), respectively.

3.2. Ehresmann Connection and Horizontal Lift

We recall the case of the linear connection ∇; it was uniquely determined by a parallel transport procedure.
In the case of a principal connection, we have an analogous.

Definition 11 (Lift). Let π : E → M be a fiber bundle, M be a differentiable manifold, x ∈ M and e ∈ E such that

π(e) = x.

Given a smooth curve γ : R → M such that γ(0) = x, we define a lift of γ through e as the curve γ̃, satisfying

γ̃(0) = e and π(γ̃(t)) = γ(t) ∀t. (10)

If E is smooth, then a lift is horizontal if every tangent to γ̃ lies in a fiber of HE, namely

˙̃γ(t) ∈ HEγ̃(t) ∀t. (11)

It can be shown that an Ehresmann connection uniquely determines a horizontal lift. Here, it is the
analogy with parallel transport.

9 Think of (U(1), Aµ) for electromagnetism.
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3.3. Connection Form in a G-Principal Bundle

We now focus on the case where the smooth fiber bundle is a G-principal bundle with smooth
action P.

Here, we need a group G, that we generally take to be a matrix Lie group. We then have the
corresponding algebra g, a matrix vector space in the present case.

The action P defines a map σ : g → Γ(VE) called the fundamental map10, where at p ∈ P, for an element
ξ ∈ g, it is given via the exponential map Exp : g → G.

σp(ξ) =
d
dt

Petξ (p)
∣∣
t=0. (12)

The map is vertical because

π∗σp(ξ) =
d
dt

π(Petξ (p))
∣∣
t=0 =

d
dt

π(p) = 0. (13)

Thus, the vector σp(ξ) is vertical and it is called the fundamental vector.
Before proceeding, we need some Lie group theory.

Recall of Lie machinery: Let G be a Lie group (a differentiable manifold) with g as its Lie algebra and
∀g, h ∈ G. We define:

– Lg : G → G and Rg : G → G, such that Lgh = gh and Rgh = hg are the left and right actions,
respectively;

– the adjoint map Adg : G → G via such left and right actions is Adg := Lg ◦ Rg−1 , namely Adgh =

ghg−1. It also acts on elements of the algebra ξ ∈ g as Adg : g → g via the exponential map11

Adgξ =
d
dt

(
(Lg ◦ Rg−1)(etξ)

)∣∣
t=0 =

d
dt

∣∣
t=0

= gξg−1 ∈ g,
(14)

where the last two equalities hold in the present case of matrix Lie groups. This is not to be confused
with the adjoint action ad : g× g → g, which is generated by the derivative of the adjoint map with
g = etχ and χ ∈ g, such that adχξ = [χ, ξ];

– the left invariant vector fields v ∈ Γ(TG) as Lg∗ ◦ v = v, namely v(g) = Lg∗v(e);
– the Maurer–Cartan form is the left invariant g-valued 1-form θ ∈ Ω1(G, g) defined by its values at g.

θg := Lg−1∗ : TgG → TeG ∼= g. (15)

For any left invariant vector field v, it holds ∀g ∈ G that θg(v(g)) = v(e). Therefore, left invariant
vector fields are identified by their values over the identity thanks to the Maurer–Cartan form θ. So
we can state ([8]) that this identification v(e) 7→ v defines an isomorphism between the space of left

10 It turns out that it is an isomorphism, since P is regular.
11 We stress that the exponential map is not an isomorphism for all Lie groups; thus, the elements generated by the exponential map

belong, in general, to a connected subgroup of the total group, which is usually homeomorphic to its simply connected double
cover. More in general, the isomorphism is between a subset of the algebra containing 0 and a subset of the group containing the
identity. Moreover, for a compact, connected, and simply connected Lie group, the algebra always generates the whole group via
the exponential map.

99



Universe 2019, 5, 206

invariant vector fields on G and the space of vectors in TeG, thus, the Lie algebra g. For matrix Lie
groups, it holds that θg = g−1dg.

By definition, the action of an element of the group on P is Pg : P → P, and therefore, it defines
a tangent map Pg∗ : TP → TP, for which the following Lemma holds:

Lemma 1.

Pg∗ ◦ σ(ξ) = σ(Adg−1 ξ). (16)

Proof. At p ∈ P

Pg∗σp(ξ) =
d
dt

(
(Pg ◦Petξ )(p)

)∣∣
t=0 =

d
dt

(
(Pg ◦Petξ ◦Pg−1 ◦Pg)(p)

)∣∣
t=0, (17)

we then use the fact that Pg ◦Petξ ◦Pg−1 = Pg−1etξ g = PAd
g−1

etξ and the identity for matrix groups

Adgetξ = etAdgξ to get the following:

Pg∗σp(ξ) =
d
dt

(
P

e
t(Ad

g−1 ξ)(Pg(p))
)∣∣

t=0 = σPg(p)(Adg−1 ξ). (18)

It is time to define what we were aiming to define at the beginning of the section: the connection form.

Definition 12. Let P be a smooth G-principal bundle and HE ⊂ TP be an Ehresmann connection.

We call the g-valued 1-form ω ∈ Ω1(P, g), satisfying

ω(v) =

{
ξ i f v = σ(ξ), ξ ∈ C∞(P, g)

0 i f v horizontal,
(19)

the connection 1-form.

Proposition 1.

P∗
gω = Adg−1 ◦ ω. (20)

Proof. Suppose v = σ(ξ), since the other case left is trivial.
We can carry out some calculations on the left-hand side, and following from the definition of

pull-back and Lemma 1, we have

(
P∗

gω
)(

σ(ξ)
)
= ω

(
Pg∗ ◦ σ(ξ)

)
= ω

(
σ(Adg−1(ξ)

)
= Adg−1(ξ). (21)

Then, we only need to manipulate the right-hand side as

Adg−1
(
ω(σ(ξ))

)
= Adg−1(ξ). (22)

Both times, we used just the given definition of connection 1-form (Equation (19)).

Remark 1. This last Proposition is called G-equivariance. It can be imposed instead of by assuming that HE is

an Ehresmann connection, and then HE can be shown to be such an Ehresmann connection.
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Another fundamental concept is given in the following:

Definition 13 (Tensorial form). Let ρ : G → Aut(V) be a representation over a vector space V and α ∈ Ωk(P, V)

be a vector valued differential form.

We call α a tensorial form if it is the following:

– horizontal, i.e., α(v1, ..., vk) = 0 if at least one vi is a vertical vector field, and

– equivariant, i.e., for all g ∈ G, P∗
gα = ρ(g−1) ◦ α.

We define horizontal and equivariant forms as maps belonging to Ωk
G(P, V).

Observation 5: The connection form ω is not, in general, horizontal; thus, it is not a tensorial form,
ω /∈ Ω1

G(P, g). This will be clear when taking into account how the gauge field transforms under a change
of trivialization in Section 4.

3.4. Curvature Forms

Given our connection 1-form ω, we can proceed in two ways: the first consists in taking a map called
the horizontal projection and in defining the curvature as this projection applied on the exterior derivative
of ω. In this way, we naturally see that curvature measures the displacement of the commutator of two
vectors from being horizontal.

We will proceed in a different way though. We will define the curvature through a structure equation.

Definition 14. Given ω ∈ Ω1(P, g), a principal connection 1-form, the 2-form Ω ∈ Ω2
G(P, g) satisfies

the following:

Ω = dω +
1
2
[ω ∧ ω] (23)

whic is called curvature 2-form.

In Equation (23), [ω ∧ ω] denotes the bilinear operation on the Lie algebra g called differential Lie
bracket. It is defined as follows:

[ω ∧ η](u, v) =
1
2

(
[ω(u), η(v)]− [ω(v), η(u)]

)
, (24)

where u and v are vector fields.
It follows straightforwardly that, if we take two general horizontal vector fields u, v ∈ Γ(HE) and we

use the ordinary formula12 for the exterior derivative of a 1-form dω(u, v) = uω(v)− vω(u)− ω([u, v]),
since ω(u) = ω(v) = 0, we get

Ω(u, v) = −ω([u, v]). (25)

We see that Ω measures how the commutator of two horizontal vector fields is far from being
horizontal as well.

12 Here, we regard ω(u) as a function ω(u) : P → g belonging to the algebra of smooth functions to g, C∞(P, g).
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4. Exterior Covariant Derivative

4.1. For an Ehresmann Connection HE

Observation 6: Ωk
G(P, V) is not closed under the ordinary exterior derivative. In that sense, if

α ∈ Ωk
G(P, V), then dα /∈ Ωk+1

G (P, V). This is what a covariant differentiation will do instead.

The idea of a covariant exterior derivative for a connection HE is, given such an Ehresmann connection
HE, the one of projecting vector fields onto this horizontal bundle and then feed our ordinary exterior
derivative with such horizontal vector fields.

First of all, we define a map acting as a pull-back. Namely that, given a map h : TP → HE such that,
for all vertical vector fields v, we get h ◦ v := hv = 0 (called the horizontal projection), we define the dual
map h∗ : T∗P → HE∗ such that, for α ∈ Ω1(P, V) and V a vector space, we have h∗ ◦ α := h∗α = α ◦ h.

Definition 15 (dh). Let P be a G-principal bundle, V be a vector space, and α ∈ Ωk(P, V) be an equivariant form.

We define the exterior covariant derivative dh as a map dh : Ωk(P, V) → Ωk+1
G (P, V) such that

dhα(v0, ..., vk) := h∗dα(v0, ..., vk) = dα(hv0, ..., hvk), (26)

where v0, ..., vk are vector fields.

It depends on the choice of our Ehresmann connection HE, which reflects onto the horizontal
projection h; that is why we have the index h.

Observation 7: We can make our covariant derivative depend only on ω, if we restrict it to only forms
in Ωk

G(P, V) and if we consider the representation of the algebra induced by the derivative of ρ that we
denote dρ : g → End(V). Then, we have dρ ◦ ω ∈ Ωk

(
P, End(V)

)
.

4.2. For a Connection Form ω

Definition 16 (dω). Let P be a G-principal bundle, V be a vector space, and α ∈ Ωk
G(P, V) be a tensorial form.

We define the exterior covariant derivative dω as a map dω : Ωk
G(P, V) → Ωk+1

G (P, V) such that13

dωα := dα + ω ∧dρ α

:= dα + dρ ◦ ω ∧ α.
(27)

Remark 2.

– We observe that d2
ωα 6= 0 for a general α ∈ Ωk

G(P, V), but it is easy to show that it holds14

d2
ωα = Ω ∧dρ α, (28)

Thus, for a flat connection such that Ω = 0, we have d2
ωα = d2α = 0.

13 For a general k-form:

(ω ∧dρ α)(v1, ..., vk+1) =
1

(1 + k)! ∑
σ

sign(σ)dρ
(
ω(vσ(1))

)(
α(vσ(2), ..., vσ(k+1)

)
.

14 See the first Bianchi identity in Equation (56) for the proof.
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– We have observed that ω /∈ Ω1
G(P, g). Therefore, dωω is not well defined. However, we can consider

dhω ∈ Ω2
G(P, g), and this is precisely our curvature Ω = dω + 1

2 [ω ∧ ω], where the anomalous 1
2 factor

comes from the "non-tensoriality" of ω. As a matter of fact, there is no representation that would make the 1
2

term arise if we considered dωω instead.

– The fact that dω is not well defined for non-tensorial forms does not mean that ω defines a less general derivative

than what dh does. As a matter of fact, HE could be defined starting from ω, as we mentioned above, since

HE = Ker ω.

5. Gauge Field and Field Strength

5.1. Make It Clear

Definition 17 (Gauge field). Let P → M be a G-principal bundle, G be a Lie group with g as the respective Lie

algebra, {Uβ} be a cover of M, and sβ : Uβ → P be a section.

We define the gauge field as the pull-back of the connection form ω ∈ Ω1(P, g) as

Aβ = s∗βω ∈ Ω1(Uβ, g). (29)

We notice that, under a change of trivialization, such a gauge field changes via the action of the
adjoint map.

In fact, we have the following:

Lemma 2. The restriction of ω to π−1(Uβ) agrees with

ωβ = Ad
g−1

β
◦ π∗Aβ + g∗βθ, (30)

where gβ : π−1(Uβ) → G is the map induced by the inverse of the trivialization map ϕβ defined in Equation (2),
and with Ad

g−1
β

, we intend for the adjoint map at the group element given by gβ(p)−1 at a point p ∈ π−1(Uβ).

The proof comes from the observation that Equations (19) and (30) coincide in π−1(Uβ) for both a
horizontal (for which they are zero) and a vertical vector field.

Thanks to this, we easily have the following:

Proposition 2. Let G be a matrix Lie group. Then it holds the following transformation for a gauge field:

Aβ = gβγ Aγg−1
βγ − dgβγg−1

βγ . (31)

Proof. Using Equations (29) and (30) for all x ∈ Uβ ∩ Uγ,

Aβ = s∗βω

= s∗βωβ = s∗βωγ

= s∗β
(
Ad

g−1
γ

◦ π∗Aγ + g∗γθ
)

= Ad
g−1

βγ
◦ Aγ + g∗γβθ (using gγ ◦ sβ := gβγ : Uβ ∩ Uγ → G)

= Adgβγ
◦
(

Aγ − g∗βγθ
)

(Adgβγ
◦ g∗βγθ = −g∗γβθ),

(32)

which reduces to the assert for matrix Lie groups.
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Observations 8:

i. We observe that a local gauge transformation of the gauge field corresponds to a change of
trivialization chart.

ii. Non-tensoriality of ω was given by the fact that it is, in general, not horizontal. For the gauge field
A, we can generalize to forms on M the concept of tensoriality/non-tensoriality by noticing that
a form obtained by the pull-back of a tensorial form, denoted with t ∈ Ω1

G(P, V), would transform
differently compared to A, namely as

tβ := s∗βt = gβγtγg−1
βγ . (33)

The Maurer–Cartan form θ reflects the non-horizontality of ω to the gauge field, from Equation (30).
iii. A difference of two gauge fields like A − A′ transforms as Equation (33). In fact, the transformation

rule is one of a tensorial form, since the Maurer–Cartan forms simplify.
iv. We notice that (iii) is a particular case of a more general one. Indeed, it is possible to show with proof

in Reference [2] (Chapter 5) that Ωk
G(P, V) ∼= Ωk(M, P ×ρ V). This is essentially due to the fact that,

thanks to the equivalence relation of the associated bundle and the gluing condition of sections on
overlaps, the pull-backs by sections sβ : Uβ → P give a one-to-one correspondence between these
two spaces. Therefore, we can obtain forms with a tensorial transformation like Equation (33) just by
taking the pull-back of tensorial forms on P; these will be forms on M with values into the associated
bundle P ×ρ V.

v. Observations (iii) and (iv) ensure that an object built with gauge fields Aβ ∈ Ω1(Uβ, g) (which
transform on overlaps by Equation (31)) will be in Ω2(M, P ×Ad g); see Observation 9.

Claim. This gauge field defines an exterior covariant derivative for bundle-valued forms on M. We denote such a

map with

dA : Ωk(M, P ×ρ V) → Ωk+1(M, P ×ρ V). (34)

Anyway, we will further develop this argument in Section 6.1.
We can proceed analogously and can define the pull-back of the curvature:

Definition 18 (Field strength). Let P → M be a G-principal bundle, G be a Lie group with g as the respective Lie

algebra, {Uβ} be a cover of M, and sβ : Uβ → P be a section.

We define the field strength as the pull-back of the curvature form Ω ∈ Ω2
G(P, g) as

Fβ = s∗βΩ ∈ Ω2
G(Uβ, g), (35)

which, by definition of Ω, is

Fβ = dAβ +
1
2
[Aβ ∧ Aβ]. (36)

Similarly to what we have done for the gauge field, we can show15 that the field strength transforms as

Fβ = Adgβγ
◦ Fγ = gβγFγg−1

βγ , (37)

15 Using the Cartan structure equation for θ, dθ = − 1
2 [θ, θ].
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where the last equality holds for matrix Lie groups with g and g−1 in G. This is indeed the transformation
of a tensorial form, as in Equation (33).

Observation 9: Thanks to our previous observation, i.e., there is a canonical isomorphism between
Ωk

G(P, V) and Ωk(M, P ×ρ V), we can relate Ω and Fβ with a form16 FA ∈ Ω2(M, adP). Namely there is
a canonical isomorphism sending Ω ∈ Ω2

G(P, g) to FA ∈ Ω2(M, adP). Indeed, given the transformation
law for the field strength in Equation (37), we see that {Fβ} is horizontal and equivariant and, thus,
forms a global section belonging to Ω2(M, adP), which is usually denoted as FA.

The notation FA stresses that it is obtained from gauge fields in Ω1(Uβ, g).
In the case of a trivial bundle, it is also possible to define a global gauge field A ∈ Ω1(M, g).

5.2. 2nd Bianchi Identity

Consider dA : Ωk(M, P ×ρ V) → Ωk+1(M, P ×ρ V) as the exterior covariant derivative and FA ∈
Ω2(M, ad P) as the field strength.

Then, we have the following:

Proposition 3.

dAFA = 0. (38)

This is the second Bianchi identity.

Proof. Given

FA = dA +
1
2
[A ∧ A], (39)

then

dAFA = dFA + [A ∧ FA]

= d2 A +
1
2

d[A ∧ A] + [A ∧ dA] +
1
2
[A ∧ [A ∧ A]]

=
1
2
[A ∧ [A ∧ A]] (d2 A = 0 and

1
2

d[A ∧ A] = −[A ∧ dA])

= 0. (because of Jacobi identity)

(40)

6. Affine Formulation

In the usual formulation of General Relativity, one defines a covariant derivative ∇, which is a map
among tensors. Then, one can define curvature and torsion and eventually get the field equations for
ECSK theory or General Relativity by setting torsion to zero.

One may wonder if this latter formulation is equivalent to the one we have been implementing
through principal bundles and principal connection.

The answer is positive and is given in the next two sections.

16 Where we have introduced the notation Ωk(M, P ×Ad g) := Ωk(M, adP).

105



Universe 2019, 5, 206

6.1. Affine Covariant Derivative

We have built our setup by taking ρ to be the fundamental representation of O(3, 1), P = FO(M),
and V = FO(M)×ρ V to be the Minkowski bundle, as in (ii) of Observations 4. Therefore, as mentioned
above, the isomorphism between Ωk

G(P, V) and Ωk(M, P ×ρ V) allows to define an exterior covariant
derivative of forms in Ω1(M,V):

dA : Ωk(M,V) → Ωk+1(M,V). (41)

In this way, we have a covariant differentiation for V-valued differential forms on M and, thus,
also for tetrads, since e ∈ Ω1(M,V).

Since we note that dρ induces a one form dρ(A) ∈ Ω1(M, End(V)
)
, we can further define another

kind of derivative that “takes care” of internal indices only; in particular, this will not be necessarily a map
between differential forms.

This derivative in components reads, for φ ∈ Γ(V),

(DAφ)a
µ = (∂µφa + Aac

µ ηcbφb) (42)

and, for α ∈ Ωk(M,V),
(DAα)a

µν1...νk
= (∂µαa

ν1...νk
+ Aac

µ ηcbαb
ν1...νk

), (43)

which shows that it does not map α to a differential form.
Now, we immediately apply the inverse of a tetrad to DAφ and identify it with ∇.
In fact, we take a vector field X ∈ Γ(TM), feed the tetrad e with it, then apply17 DA to get DA(ιXe),

and finally pull it back with the inverse of the tetrad ē.
In components, this reads as follows:

(
DA(ιXe)

)a

µ
= Dµ(e

a
νXν) = ∂µ(e

a
νXν) + ωab

µ ηbcec
νXν, (44)

where, for reasons of metric compatibility18 with η, we have the only antisymmetric part of the gauge
field, for which we used the notation Aa

µc = ωab
µ ηbc.

Be aware: Do not get confuse. We shall refer to ω ∈ Ω1(M, Λ2V) as the spin connection. To stress that we
want DA to depend on the spin connection only, we shall denote it with Dω.

Pulling back via ē, we obtain

ēσ
a

(
Dµ(e

a
νXν)

)
= ēσ

a

(
∂µ(e

a
νXν) + ωab

µ ηbcec
νXν

)
. (45)

We define the Christoffel symbols Γσ
µν as

Γσ
µν = ēσ

a (Dµea
ν)

= ēσ
a (∂µea

ν + ωab
µ ηbcec

ν)
(46)

17 Here, we use the so-called interior product, i.e., a map ιξ : Ωk(M) → Ωk−1(M), such that (ιξ α)(X1, ..., Xk−1) = α(ξ, X1, ..., Xk−1),
for vector fields ξ, X1, ...Xk−1. Furthermore it respects ιξ (α ∧ β) = (ιξ α) ∧ β + (−1)kα ∧ (ιξ β), where α ∈ Ωk(M). Therefore, it
forms an antiderivation. The relation with the Lie derivative is given by the formula Lξ α = d(ιξ α) + ιξ dα, called the Cartan
identity. The interior product of a commutator satisfies ι[X,Y] = [LX , ιY ], with X and Y vector fields.

18 In fact, imposing the condition of DAη = 0 implies the antisymmetry of the gauge field.
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and, thus, we get
∇µXσ := ēσ

a

(
Dµ(e

a
νXν)

)
= ∂µXσ + Γσ

µνXν, (47)

which is the covariant derivative well known in General Relativity.
We can also see what the curvature form is in terms of the commutator of two derivatives, given by

the only antisymmetric part of the connection.
Then,

FAantis := Fω (48)

and it is given by (
D[µDν]φ

)a
=
(
∂[µων]

ab + ωad
[µ ηdeωeb

ν]

)
ηbcφc = Fab

µνηbcφc, (49)

where A[µBν] = AµBν − AνBµ is our convention for the antisymmetrization. The fact that Fω is a 2-form
shows that Fab

µν = −Fab
νµ; furthermore, metric compatibility ensures also Fab

µν = −Fba
µν, therefore Fω ∈

Ω2
G(M, Λ2V).

Observation 10: We see19 that, here, the bundle metric η acts as a map η : Ω2(M, Λ2V) → Ω2(M, End(V))

isomorphically; thus, it permits to identify elements of the second exterior power Λ2V with linear maps
given by the fundamental representation of the algebra g = so(3, 1). We can introduce the notation for
the wedge product in the fundamental representation as ∧ f ; namely for, say, an α ∈ Ω1(M,V), we have
(ω ∧ f α)a = ωabηbc ∧ αc.

6.2. Riemann Curvature Tensor

We can now consider the commutator of two affine covariant derivatives and use Equation (47), getting

(∇[µ∇ν]X)σ = ēσ
a

(
D[µDν](ιXe)

)a
= ēσ

a Fab
µνηbcec

ωXω. (50)

We identify the Riemann tensor
Rµνω

σ = ēσ
a Fab

µνηbcec
ω, (51)

the Ricci curvature tensor
Rµω = Rµσω

σ = ēσ
a Fab

µσηbcec
ω (52)

and thus the Ricci scalar

R = gµωRµω = ē
µ
d ēω

e ηde ēσ
a Fab

µσηbcec
ω = −ē

µ
a ēω

b Fab
µω. (53)

It follows the antisymmetry of the Riemann tensor in the indices µν and ωσ, but it is important to
note that we cannot ensure any symmetry in the Ricci curvature instead due to the presence of torsion.

7. Torsion

Here, we start focusing on the importance of torsion, which arises quite naturally as curvature does.

19 We denote the metric acting on the bundle and the metric acting on the fibers in the same way; however, we will usually deal
with elements of the fibers.
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7.1. Torsion Form

Definition 19 (Solder form/soldering of a G-principal bundle). Let π : P → M be a smooth G-principal

bundle over a differentiable manifold M, ρ : G → Aut(V) be a representation, and G be a Lie group.

We define the solder form, or soldering, as the vector-valued 1-form θ ∈ Ω1
G(P, V) such that θ̃ : TM → P×ρ V

is a bundle isomorphism, where θ̃ ∈ Ω1(M, P ×ρ V) is the associated bundle map induced by the isomorphism of

Ω1
G(P, V) ∼= Ω1(M, P ×ρ V).

Observations 11:

– The choice of the solder form is not unique, in general.
– We can observe that, taking P = FO(M), ρ as the fundamental representation of O(3, 1), and V as the

vector space with reference metric η, θ̃ corresponds to our definition of tetrads. The different choices
of soldering give rise to different tetrads.

– In the case that P = FO(M) and that the associated bundle is simply chosen to be TM, the solder
form is called canonical or tautological. Since the associated bundle TM sets the bundle isomorphism θ̃

to be the identity map id : TM → TM.
– In Observations 4, we mentioned that the Minkowski bundle cannot be canonically identified with

the tangent bundle itself; indeed, we fixed a reference metric η, which cannot be pulled back by the
identity map to give the metric on TM in general, and thus, the solder form is not canonical.

The soldering of the principal frame bundle allows us to define the torsion form20.

Definition 20 (Torsion form). Let P = FO(M), ρ : O(3, 1) → Aut(V) be the fundamental representation, V be

a vector space with reference metric η, and θ ∈ Ω1
G(P, V) be a solder form.

We define the torsion form Θ ∈ Ω2
G(P, V) as follows:

Θ = dωθ = dθ + ω ∧ f θ. (54)

7.2. Torsion in a Local Basis

We would like to express the torsion form in terms of tetrads and the gauge field.
In Reference[9], a formula is given and it is obtained by applying the previous definition of the torsion

form under the canonical isomorphism Ωk
G(P, V) ∼= Ωk(M,V); therefore yielding

Θ̃a = (dAe)a = dea + Aabηbc ∧ ec. (55)

7.3. 1st Bianchi Identity

Proposition 4. Following our previous definitions, we have

dωΘ = Ω ∧ f θ, (56)

which is called the first Bianchi identity.

Proof. For this proof, we prefer using Equation (26).
We consider three vector fields u, v, w ∈ Γ(TP). By definition, it follows

20 Torsion can be defined for every principal bundle, but physics arises when considering the frame bundle.
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dhΘ(u, v, w) = dΘ(hu, hv, hw)

= (dω ∧ f θ − ω ∧ f dθ)(hu, hv, hw) (because of Equation (54))

= dω ∧ f θ(hu, hv, hw) (because of Equation (19))

= Ω ∧ f θ(u, v, w).

(57)

The last equality holds because of tensoriality of θ and the second remark in Remark 2.

This proposition is a natural consequence of the property of the covariant differential expressed in
Equation (28).

7.4. Torsion Tensor

Definition 21 (Torsion tensor). Given two vector fields X, Y ∈ Γ(TM) and a 1-form τ ∈ Ω1(M), we define the

torsion tensor field Q as the tensor field of type-(1
2) such that

Q(X, Y; τ) := τ(Q(X, Y)) = τ
(
ē(dAe(X, Y))

)
. (58)

It is evidently antisymmetric in X, Y, by definition.

Proposition 5. We have the following formula:

Q(X, Y) = ∇XY −∇YX − [X, Y] (59)

and, in components, it reads

Qµν
σ = Γσ

µν − Γσ
νµ − Cσ

µν, (60)

where Cσ
µν = 0 in a holonomic basis for X and Y and ∇ is the covariant derivative21.

Proof. Recalling the definition of torsion

Q = ē · (dωe) = ēa(dωe)a, (61)

it follows
ēa(dωe)a = ēσ

a

(
∂[µea

ν] + ωa
[µb

eb
ν]

)
dxµ ∧ dxν ⊗ ∂σ

= (Γσ
µν − Γσ

νµ)dxµ ∧ dxν ⊗ ∂σ (Γσ
µν = ēσ

a (Dµea
ν).)

= Qµν
σdxµ ∧ dxν ⊗ ∂σ,

(62)

then Qµν
σ = Γσ

µν − Γσ
νµ.

We have now set up all the background for building our theory and for discussing field equations of
ECSK theory.

21 See Reference [10] for references about this.
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8. Field Equations and Conservation Laws

We present here field equations for ECSK theory22. Thus, we will neither assume the possibility of
a propagating torsion (and we will always keep non-identically vanishing Riemann curvature [14]) nor
display a lagrangian for a totally independent torsion field; rather, we will only set the Palatini–Cartan
lagrangian for gravity, as done in Reference [15], and a matter lagrangian as the source. This theory is
known as Einstein–Cartan–Sciama–Kibble gravity (ECSK).

In the present case, torsion reduces to an algebraic constraint. This is a consequence of making torsion
join the action of the theory as only contained in the Ricci scalar because of a non-torsion-free connection
and not with an independent coupling coefficient. In works like References [16–19], torsion is present as
an independent part (independent coupling coefficient) of the action and it does propagate.

This is why the ECSK is considered as the most immediate generalization of General Relativity with
the presence of torsion.

Therefore, we wish to eventually obtain an action of two independent objects, tetrads and connection,
where this latter action should give rise to equations for curvature when varying tetrads and for torsion
when varying the connection.

We will focus more on the geometrical side of these equations and we will not dwell on deepening
matter interaction (couplings, symmetry breaking, etc.), as done for instance in References [20–24].

8.1. ECSK Equations

ECSK theory with cosmological constant belongs to the Lovelock–Cartan family, which describes the
most general action in four dimensions such that this action is a polynomial on the tetrads and the spin
connection (including derivatives), is invariant under diffeomorphisms and local Lorentz transformations,
and is constructed without the Hodge dual23.

Recalling that we will refer to A as ω and stressing that it must be only the antisymmetric part,
the notation for dA becomes dω.

We will be dealing with a variational problem given by an action of the kind

S = SPC + Smatter, (63)

where the Palatini–Cartan action is

SPC[e, ω] =
∫

M
Tr
[1

2
e ∧ e ∧ Fω +

Λ

4!
e4]. (64)

The wedge product is defined over both space–time and internal indices as a map24∧ : Ωk(M, ΛpV)×
Ωl(M, ΛqV) → Ωk+l(M, Λp+qV) and the trace is a map Tr : Λ4V → R, normalized such that (for vi

elements of a basis in V) Tr[vi ∧ vj ∧ vk ∧ vl ] = εijkl . The choice of the normalization of the trace works
as a choice of orientation for M (since the determinant of a matrix in O(3, 1) may be ±1). Therefore, we
reduce the total improper Lorentz group O(3, 1) to the only orientation preserving part, which is still
not connected, SO(3, 1). This gives an invariant volume form on M. In this way, we consider sections of
ΛkT∗M ⊗ ΛpV .

22 Some classical works about ECSK theory and General Relativity with torsion, like References [11–13].
23 See Reference [25] for details.
24 Such that, for α ∈ Ωk(M, ΛpV) and β ∈ Ωl(M, ΛqV), we have α ∧ β = (−1)(k+p)(l+q)β ∧ α.
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Be aware: Later on, we will make explicit some indices and keep implicit some others; for this purpose,
we will specify what kind of wedge product we are dealing with, even though it will be evident because it
will be among the implicit indices.

We recall the definition of Fω and deduce the identity for its variation

δω Fω = dωδω, (65)

where we stress that, despite ω being non-tensorial, δω is instead, and therefore, it transforms under the
adjoint action (as Fω does) like in Equation (33). That holds because δω may be regarded as a difference of
two spin connections.

The action for the matter is of the kind

Smatter[e, ω, ϕ] = κ
∫

M
Tr[L(e, ω, ϕ)], (66)

where L is an invariant lagrangian density form with the proper derivative order in our variables, ϕ is
a matter field, and κ is a constant.

Such matter lagrangian is supposed to be source for both curvature and torsion equations, namely it
will be set for fulfilling some conditions fitting the theory.

Therefore, varying the actions in Equations (64) and (66) and considering Equation (65), we have25

∫
M Tr[δe ∧ (e ∧ Fω + Λ

3! e
3)] =

∫
M Tr[κ δL

δe ∧ δe]
∫

M Tr[ 1
2 dω(e ∧ e) ∧ δω] =

∫
M Tr[κ δL

δω ∧ δω],
(67)

which is equivalent to

εabcdeb ∧ Fcd
ω + Λ

3! εabcdeb ∧ ec ∧ ed = κ
δTr[L]

δea := κTa

1
2 εabcddω(ec ∧ ed) = κ

δTr[L]
δωab := κΣab

(68)

where the wedge product here is only between differential forms.
Setting Λ = 0 and in performing the derivative, Equation (68) can be rewritten as

εabcdeb ∧ Fcd
ω = κTa

εabcd Q̃c ∧ ed = κΣab,
(69)

where we have set Q̃ = dωe.
These are equations for the ECSK theory in their implicit form26, where T and Σ are related to,

respectively, the energy momentum and the spin tensor, once pulled back.
By making all the indices explicit, as given in Reference [20], and properly setting κ according to

natural units27, Equation (69) takes the following form

Gµν = 8πTµν

Qµν
σ = −16πΣµν

σ.
(70)

25 Omitting equations of motion δL
δϕ = 0 for the matter field, which have to be satisfied for conservation laws anyway.

26 Without making space–time indices explicit.
27 All fundamental constants = 1.
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Observations 12:

i. Tµν is not symmetric, as expected from the non-symmetry of the Ricci curvature Rµν.
ii. We stress that, even though e is an isomorphism, the map e ∧ · : Ωk(M, ΛpV) → Ωk+1(M, Λp+1V) is

not an isomorphism, in general. In fact, taking δL
δe = 0 (with Λ = 0) in Equation (67) does not imply

Fω = 0, which would imply a flat connection.
iii. Setting δL

δω = 0 in Equation (67), one recovers the condition of vanishing torsion (hence, a Levi–Civita
connection) and, therefore, the Einstein equations.

iv. It is interesting to note that, requiring a totally antisymmetric spin tensor, sets the total antisymmetry
of the torsion tensor. Namely, in the case of a totally antisymmetric Σ, we need to couple the only
totally antisymmetric part of torsion into the geometrical lagrangian. This is further discussed in
Reference [20].

8.2. Conservation Laws

We have two symmetries, i.e., local Lorentz transformations and diffeomorphisms. They are
continuous symmetries, and as such, we expect two conservation laws. Since we are dealing with
local symmetries, we shall not find two conserved currents but rather two relations for the variations of
the matter lagrangian w.r.t. e and ω.

These relations directly imply the Bianchi identities of Equations (38) and (56), but we could also
do the converse, namely assuming Equations (38) and (56) and then deriving such conservation laws.
This means that conservation laws are a consequence of symmetry on the one hand, implemented via the
following symmetries (respectively diffeomorphisms and local SO(3, 1))

δξ ea = Lξ ea = ιξ dea + dιξ ea

δξ ωab = Lξ ωab = ιξdωab + dιξ ωab,
(71)

where ξ is the generator vector field,

δΛea = Λabηbcec

δΛωab = −dωΛab Λ ∈ so(3,1),
(72)

or a direct consequence if we impose field equations and, thus, gravitational dynamics and Bianchi
identities on the other hand.

We will follow the shortest derivation, namely to implement the Bianchi identities of Equations (38)
and (56) on field Equation (69).

Thanks to Bianchi identities, left hand side of field Equation (69) can be rewritten in the following way:

dω(εabcdeb ∧ Fcd
ω ) = ιaQ̃b ∧ (εbcdeec ∧ Fde

ω ) + ιaFbc
ω ∧ (εbcdeQ̃d ∧ ee)

dω(εabcdQ̃c ∧ ed) = − 1
2 (εacdeec ∧ Fde

ω ∧ eb − εbcdeec ∧ Fde
ω ∧ ea),

(73)

where ιa = ιēa and eb = ηbcec.
However, because of the same field in Equation (69), they reduce to

dωTa = ιaQ̃b ∧ Tb + ιaFbc
ω ∧ Σbc

dωΣab = 1
2 T[a ∧ eb],

(74)

In References [26,27], a more detailed discussion can be found. These are conservation laws for ECSK theory.
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In components, as given in Reference [20], they read

∇µTµν + TσρQσρν − ΣµσρRµσρν = 0

∇µΣσω
µ + 1

2 T[σω] = 0.
(75)

9. Conclusions

We have set up all the mathematical background for building ECSK theory, eventually achieving field
equations and conservation laws.

In ECSK theory, torsion is only an algebraic constraint and it does not propagate. This is a natural
consequence of inserting torsion into the theory without an independent coupling coefficient but
simply generalizing the Einstein–Hilbert action (or Palatini action in our formulation)

∫
R
√−gd4x to

a non-torsion-free connection ∇ (or spin connection in our case). In this case, the Ricci scalar contains both
curvature and torsion.

It is possible to immediately recover General Relativity by imposing the zero torsion condition, which,
in the considered theory, translates to letting the matter field ϕ generate a null contribution to the spin
tensor Σµν

σ. The most natural matter fields which would fit with the theory are spinors; indeed, spinors are
the way in which we can have a non-vanishing spin tensor which is also dynamical because of equations
of motion for the spinor field.

This review does not want to substitute the well-known literature but to just give a self-contained
and mathematically rigorous introduction to ECSK theory, providing also some references for deepening
knowledge in the present subjects. Also, we intentionally did not dive too deeply into physical applications
to cosmology (like done in References [28–33]), that might be a valid argument for writing another review
article.
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1. Introduction

Einstein’s theory of gravitation, or more in general any of its extensions with higher-
order derivative terms, have acquired over the years the status of superb physical theories:
established upon one single principle, that is that the space-time is a (1+3)-dimensional
manifold, whose curvature is determined by the energy content, they have produced many
of the most surprising predictions in all of physics, starting with the bending of light rays
in 1916 and ending with the detection of gravitational waves one century later. In fact, if
Dark Matter is indeed a form of matter, there is not a single prediction left to confirm.1

Quantum Field Theory has done no less: its predictions are among the most precise in
history, and while still in need of rigorous mathematical formalization very few doubt that
this task will be accomplished in the foreseeable future.

There are, nevertheless, still two problems that appear to cloud the beauty of these two
pillars of modern physics, both related to the issue of singularities. QFT’s range of applica-
bility, while very vast, is limited to the assumption that particles be structureless point-like
objects. Einstein gravity, on the other hand, seems to be doomed by what is known as the
Hawking–Penrose theorem, stating that gravitational formation of singularities of matter
distributions is an unavoidable consequence for all known fields.

In detail, the HP theorem tells that if some conditions on the energy density tensor
hold, as they do for all physical fields, then the overall gravitational pull would never stop
and the whole material distribution would inevitably collapse into a singular point. Since
the HP theorem, in its essence, is a result of Einstein gravity, a first attempt at avoiding
singularities might come for extensions of Einstein gravity, where higher-order derivative
field equations would entirely change the shape of the problem. It is indeed the case that
at least in some of these extensions there are solutions of the gravitational field equations
that are without singularities [1]. Because the theory presented in [1] is the only extension
of gravity that is renormalizable [2], one may be led to think that all singularity issues are
avoidable also in QFT and therefore that nothing more need be done. Just the same, even if
this were to be true, one would still have to rely upon the theory presented in [1]. Granted
that such an extension of Einstein gravity is the only one compatible with renormalizability,
we still do not know if such a theory is the description of gravity at high energy densities.

In lack of any prediction for a high-energy density gravitational effect, one might wish
to stay on the more comfortable environment provided by Einstein gravity. However, it in,
the problem of singularity formation would be still far from being solved. So a possible,
alternative way out of the problem might be to look for different manners in which Einstein
gravity could be enlarged. As Einstein gravity is indeed a remarkably stringent theory,
there are not many possibilities. In fact, in the perspective of staying on (1+3)-dimensional
manifolds, and without tampering with the differential order of the field equations, the
only possibility that remains is not to neglect the torsion.

The torsion of space-time is a very natural ingredient of differential geometry, one
that is always present in the most general setting. For a comprehensive review on torsion
we invite the interested reader to have a look at the introductory chapter on the present
Special Issue [3] and at some of the references therein, either for a general review [4] or
for the seminal papers [5,6]. As the torsional completion of Einstein gravity has the same
differential order of Einstein gravity itself then the HP theorem applies as usual and the
presence of torsion can only change the conditions on the energy density. This was the
initial hope, as it was worked out by Kerlick in [7]. The initial hope, however, was soon
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to be lost, since Kerlick himself pointed out that torsion, instead of solving this problem,
was actually worsening it [7,8]. The catch was that the model used was just the torsional
completion of Einstein gravitation known as Einstein–Sciama–Kibble theory, in which
the torsion–spin interaction is repulsive [9]. While such a repulsive character may at first
look appealing, in view of avoiding singularities, in reality repulsive forces give positive
energy contributions that increase the gravitational pull and so the tendency to form these
singularities. This is the physical reason why Kerlick and Inomata find that singularities
are enhanced in [7,8]. In [9] Popławski points out that, despite this, singularities still do not
appear at least in some cosmological scenarios.

It is difficult to understand why this should be the case, and instead of a theory in
which singularities are avoided despite being enhanced, it would be better to have a theory
where singularities are avoided because they are dissipated. To this purpose, one must
then violate all of the energy conditions. This can only be done by lowering the energy
contributions via the inclusion of negative potentials, and these can only be given by some
attractive force. Thus, as paradoxical as it may be, one has to look for attractive torsionally-
induced spin–spin interaction in the Dirac equation. This is precisely what many have
done, for example in [10–12] and references therein.

The idea is that the ESK theory, of all torsional completions of Einstein gravity, is
only the simplest, the one in which torsion is added only implicitly through the curvature
tensor in the Lagrangian. That is, from Einstein gravity L=R(g) the ESK theory is given by
L=R(g, Q) with Q being the torsion tensor. In [10] the authors take instead L=R(g, Q)+Q2

where Q2 is formally any of the three scalar contractions of the squared torsion tensor.
Thus, with the freedom granted by three new universal constants, the authors of [10] are
able to obtain an effective constant for torsion whose sign is undetermined and therefore
with the possibility of being inverted with respect to the ESK theory in its simplest form,
and as a result they indeed get to avoid the singularity of the early universe.

Others, however, took into account yet another generalization. Because the Q2 term
can be read as a combination of three mass terms, one for each of the three irreducible
components of torsion, we could then make sure that its sign be that of a positive mass,
then add the three dynamical terms of the three parts of torsion. In reality, however, of the
three irreducible components of torsion, only the completely antisymmetric part seems
to be acceptable for consistency arguments connected to the metric-compatibility of the
manifold and related properties [13–16]. Because a torsion that is completely antisymmetric
is the Hodge dual of an axial-vector, the resulting model is that of an axial-vector torsion,
namely a model in which torsion is a parity-odd Proca field. In it there may be effects that
are due to torsion propagation [17]. Some of these have been studied for the avoidance of
singularity [18].

In the present work, we will recall all results of [18] but employing the polar form of
spinors [19] so to get cleaner and more powerful results for the problem of singularities
in gravitational systems. In addition, we will extend all of the above results to the case of
singularities that appear also in absence of gravity and for general systems.

2. The Polar Form of Spinors

To do what we intend to do we first introduce the polar formulation of Dirac spinors,
for which we shall always refer to the fundamental work [19] and references therein.

However, we recall here a few basic conventions. The set of Clifford matrices γa

verifying {γa, γb}=2ηabI are used to set σab =
1
4 [γa, γb] as the generators of the complex

Lorentz transformation. Then 2iσab = εabcdπσcd is used to define the matrix π so that I,γa,
σab,γaπ,π are a basis for the space of 4 × 4 complex matrices. As a consequence, we have
that the identities γiγjγk =γiηjk − γjηik + γkηij+iεijkqπγq hold in general.

The product of a complex Lorentz transformation and a unitary phase is the spin
transformation S and spinors ψ are defined as what transforms according to these spin
transformations. Adjoint spinors are related by ψ=ψ†γ0 and with these one can construct
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all spinor bi-linears and prove their Fierz identities. Before doing that however we will
give the following theorem. If |ψψ|2+|iψπψ|2 6=0 one can always write the spinor field as

ψ=φe−
i
2 βπ L−1




1
0
1
0


 (1)

up to ψ → πψ and for some L having the structure of a spin transformation whose
parameters are recognized to be the spinorial Goldstone fields and where φ and β are a real
scalar and a real pseudo-scalar field called module and chiral angle. The above is the polar
form of the spinor field and with it we can write the spinor bi-linears as

iψπψ=2φ2 sin β (2)

ψψ=2φ2 cos β (3)

as well as

ψγaπψ=2φ2sa (4)

ψγaψ=2φ2ua (5)

known as spin axial-vector and velocity vector verifying

u[µsν]σ
µνπψ+ψ = 0 (6)

uµγµψ=−sµγµπψ= eiβπψ (7)

and

uaua =−sasa =1 (8)

uasa =0 (9)

known as Fierz identities. Consequently, when the spinor field is re-written in polar form
its eight real components are re-arranged so that the two degrees of freedom, the module
and chiral angle, remain isolated from the six components that can always be transferred
into the frame, and that is what is known to be the Goldstone fields.

To better see the role of these Goldstone fields, we can write them explicitly according
to the formula

L−1∂µL= iq∂µξI+
1
2

∂µξab
σab (10)

in which ξ and ξab are respectively the gauge and space-time Goldstone fields. Together
with the gauge potential and spin connection Aµ and Cijµ we can define

q(∂µξ−Aµ)≡Pµ (11)

∂µξij−Cijµ ≡Rijµ (12)

which can be proven to be real tensors respectively called gauge and space-time tensorial
connection. With them

∇µψ=
(
∇µ ln φI− i

2∇µβπ−iPµI− 1
2 Rijµσij

)
ψ (13)

is the polar form of the covariant derivative of the spinor field. As a consequence

∇µsi =Rjiµsj (14)

∇µui =Rjiµuj (15)
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as general identities. As is clear, after that the Goldstone fields are transferred into the phase
and the frame, they combine with gauge potential and spin connection hence becoming the
longitudinal parts of the Pµ and Rijµ tensors.

To write the Dirac spinor field equations for the polar variables we introduce the pair
of dual potentials

Σijµ =Rijµ−2Pµuasbεijab (16)

Mab
µ =

1
2 Rijµεijab+2Pµu[asb] (17)

and their contractions Σανπ gνπ =Σα and Mανπ gνπ =Mα in terms of which we have

∇µ ln φ2+Σµ+2msµ sin β=0 (18)

∇µβ−2XWµ+Mµ+2msµ cos β=0 (19)

with m being the mass of the spinor, X the spin–torsion coupling constant and Wµ the
torsion axial-vector [3,13–16].

These matter field equations have to be complemented with the geometric field equa-
tions given by

∇ρ(∂W)ρµ+M2Wµ =2Xφ2sµ (20)

where M is the mass of torsion together with

Rρσ− 1
2 Rgρσ−Λgρσ = 1

2 [
1
4 F2gρσ−FραFσ

α +

+ 1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α +

+M2(WρWσ− 1
2 W2gρσ) +

+φ2[Pρuσ+Pσuρ +

+(∇ρβ/2−XWρ)sσ+(∇σβ/2−XWσ)sρ −
− 1

4 R σ
αν sκερανκ− 1

4 R
ρ

αν sκεσανκ ]] (21)

for the gravitational field equations and

∇σFσµ =2qφ2uµ (22)

for the electrodynamic field equations.
As a concluding remark we also give the expression

L=− 1
4 (∂W)2+ 1

2 M2W2−R−2Λ− 1
4 F2

+ i
2 (ψγµ∇µψ−∇µψγµψ)−
−XWσψγσπψ−mψψ (23)

which is the Lagrangian of the full theory.
The field equations above are just the polar form of the field equations one would

have in the torsional completion of gravity with electrodynamics [3].
We have maintained the Lagrangian in its standard form to easily compare it to the

Lagrangians of known theories, as we will do next.

3. Singularities Avoidance in Spinorial Average

We begin a more in-depth treatment of the theory, useful for future developments,
by introducing the concept of effective approximation. As we have just seen, torsion can
be massive, and since we have not observed it so far, it may also be argued that its mass
should be quite large indeed. So it is reasonable to assume that there might be regimes in
which the mass term dominates all dynamical terms. When the dynamical terms can be
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suppressed in favour of the mass term we are in the so-called effective approximation. The
torsion field equations reduce to

M2Wµ ≈2Xφ2sµ (24)

and so by substituting torsion everywhere in terms of the spin we should expect torsion–
spin interactions to convert into spin–spin interactions of non-linear character.

When this is done in the Lagrangian we get

L=−R−2Λ− 1
4 F2

+ i
2 (ψγµ∇µψ−∇µψγµψ)−

− 1
2

X2

M2 ψγσπψψγσπψ−mψψ (25)

or by employing Fierz re-arrangements

L=−R−2Λ− 1
4 F2

+ i
2 (ψγµ∇µψ−∇µψγµψ) +

+ 1
2

X2

M2 ψγσψψγσψ−mψψ (26)

or yet again

L=−R−2Λ− 1
4 F2

+ i
2 (ψγµ∇µψ−∇µψγµψ) +

+ 1
2

X2

M2 |iψπψ|2+ 1
2

X2

M2 |ψψ|2−mψψ (27)

revealing that torsionally-induced spin–spin interactions are attractive. In fact if we were
to further split into the left-handed and right-handed projections then we would see that
such an attraction takes place between these two chiral parts. This is expected, since the
above Lagrangian is just the Lagrangian of the Nambu–Jona-Lasinio model [20].

The effective approximation within the gravitational field Equation (21) gives instead
the expression

Rρσ− 1
2 Rgρσ−Λgρσ = 1

2 [
1
4 F2gρσ−FραFσ

α +

+φ2(Pρuσ+Pσuρ+∇ρβ/2sσ+∇σβ/2sρ −
− 1

4 R σ
αν sκερανκ− 1

4 R
ρ

αν sκεσανκ+2 X2

M2 φ2gρσ)] (28)

while in the Dirac Equation (19) we get

∇µβ−2(2 X2

M2 φ2−m cos β)sµ+Mµ =0 (29)

with all other equations remaining unchanged. Contracting (28) and employing the scalar
product of (29) along the spin we get the particularly simple

R+4Λ=−2 X2

M2 φ4 − mφ2 cos β (30)

which can be substituted back into the initial field equations to give the gravitational field
equations

Rρσ =−Λgρσ+ 1
2 [

1
4 F2gρσ−FραFσ

α +

+φ2(Pρuσ+Pσuρ+∇ρβ/2sσ+∇σβ/2sρ −
− 1

4 R σ
αν sκερανκ− 1

4 R
ρ

αν sκεσανκ−m cos βgρσ)] (31)

so that all spin–spin interactions disappear as source for the dynamics of the Ricci tensor.
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This however does not mean that torsion has no impact, as we will now see.
The gravitational field equations written for the Ricci tensor are the most adapted to

investigate the dominant energy condition since this is given as

Rρσuρuσ>0 (32)

with uα a normalized time-like vector. Imposing this condition on (31) we obtain

φ2(−2 X2

M2 φ2−sµ∇µβ/2+ 1
4 Rijbsaεijba −

− 1
4 Rανσuσuρsκεανρκ+ 1

2 m cos β)−Λ>0 (33)

where (29) was again used and in which electrodynamics has been neglected for simplicity.
This expression is still quite general for the purpose that we have in mind.
In the treatment done by Kerlick and further generalizations [7–12], this is the moment

where some additional assumptions are made by these authors. They are either specific
symmetries or special properties for the material distributions. Because most of these
assumptions appear ad hoc and some of them even unphysical, we will assume none of
them in the following. In what is next we employ the only assumption that is physically
adequate and very general, namely for gravitating systems such as the Big Bang and Black
Holes the random distribution of particles allows the spin average to vanish all terms in
which spin appears linearly. This means that (33) becomes

−2 X2

M2 φ4+ 1
2 mφ2 cos β−Λ>0 (34)

in spin-average. When no matter field is present we have that (34) reduces to −Λ > 0
which is obviously invalid if the cosmological constant is positive (as is in our convention).
This is what we expect for a universe in continuous accelerated expansion. Neglecting the
cosmological constant

−4 X2

M2 φ2+m cos β>0 (35)

as easy to see. In absence of torsion this is always verified whenever m cos β>0 as is always
the case for a standard matter distribution (for which the chiral angle is assumed to vanish
albeit not in a justified way [19]). This is what recovers the common arguments about
the gravitational formation of singularities and their inevitability. In presence of torsion,
however, we have that for densities that are larger and larger, regardless of the values of
the chiral angle, we can always approximate

− X2

M2 >0 (36)

again as is clear. This is of course always violated in a very dramatic way (see for in-
stance [18]). So failing the hypothesis there is no implication from the HP theorem.

The conclusion is that for systems given by statistically distributed spinor fields, such
as the Big Bang or Black Holes, the formation of gravitational singularities is not a necessity.

It is instructive to look back at the previous attempts in a comparative way and
draw the differences. That is, it is now the time to ask, given that the torsionally-induced
spin–spin interaction renders the gravitational formation of singularities not a necessary
occurrence, how is it that in the past previous attempts did not come up with the same
result? The answer is that there are many different ways to let torsion take its place in
the Lagrangian: one, the simplest, is via the minimal coupling, as done by the Kerlick
school [7,9]; another is via the generalization that takes into account also explicit squared
torsion terms in the Lagrangian, as in [10]; the final is to include also all squared derivative
torsion terms within the most general dynamically-consistent Lagrangian [18]. In the first
one, which is just the ESK gravitation, the torsionally-induced spin–spin interaction has
a constant equal to 3/16 when measured in natural units, since its value is rigidly linked
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to that of the Newton constant; in the generalizations of the ESK gravity the constant has
an indefinite value, as it results from combining the three constants that appear in front
of each of the three squared torsion terms that may be added; in the most general case
the constant is −X2/M2 when the effective approximation is implemented because in a
theory in which torsion propagates we must require the energy density and the mass to
be positive. Therefore the gravitational formation of singularities that cannot be avoided
in Einstein gravity, and that is worsened in ESK gravity, may become avoidable in further
generalizations, and it is certainly avoidable in the most general case of propagating torsion
(in effective approximation).

The mechanism for gravitational singularity avoidance can only be effectively enforced
in a theory of propagating torsion, that is in the most general physical situation.

The interpretation we can give is that in such a case the torsionally-induced spin–spin
interactions turn attractive, which have a negative potential, and thus the overall energy
contribution is decreased. If the negative potential becomes dominant, the total energy
turns negative, then the curvature reverts sign, and gravity becomes repulsive.

It is the fact that torsion is an attraction between chiral parts what causes the relaxation
of the attraction of the gravitational field of the overall material distribution.

4. Singularities Avoidance for Single Particles

In the previous section we have investigated the problem of the singularity formation
in gravitational systems, constituted by statistically distributed spinor fields. The vanishing
of the spin-average in linear terms was our only hypothesis.

What if we have no random distributions? Worse, what if we have a single particle
as in QFT? In this case gravitation would always be negligible and we could not use the
above argument to avoid singularities, so what is there to be done in this case?

Of course, the full analysis has to be re-done without the help of any of the previous
hypotheses, and when only torsion appears in the dynamics of spinor fields. As a conse-
quence, in the following we will consider only torsion and Dirac spinor field equations
and see what information we can extract for the singularity problem. Torsion will still be
taken in its effective approximation and for the Dirac spinor field equations we will do
some formal manipulations to put them in a form that is more suitable for our purposes.

One of the advantages of the polar formulation of the Dirac theory is that, with it, it is
very easy to see that the second-order derivative field equations are given by

∇µ
(
φ2∇µβ

)
−(8X2/M2φ2m sin β −

−2XWµΣµ−∇µ Mµ+MµΣµ)φ2=0 (37)

as a continuity equation for the chiral angle and

|∇β/2|2−m2−φ−1∇2φ+ 1
4 (−2∇µΣµ +

+ΣµΣµ−Mµ Mµ+4XMµWµ−4X2WµWµ)=0 (38)

as a Hamilton–Jacobi equation for the module. Singularities form at high density, and so
what really interests us is the Hamilton–Jacobi equation for the module (38), for which
we are now going to assume torsion in its effective approximation, resulting into the
simpler expression

∇2φ−4 X4

M4 φ5−2 X2

M2 (Mµsµ)φ3+( 1
2∇µΣµ −

− 1
4 ΣµΣµ+

1
4 Mµ Mµ−|∇β/2|2+m2)φ=0 (39)

in which as expected non-linearities have arisen. In it, the quintic term is always negative,
so that the highest-order self-interaction is always attractive. Then the cubic term is negative
so long as Mµsµ >0 and in this case also the lower-order self-interaction is attractive. The
linear term is positive when 2∇µΣµ − ΣµΣµ+Mµ Mµ−|∇β|2+4m2 > 0 and in this case it
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behaves as a regular mass term. In case of singularity formation, we should expect the
density to increase, leading to larger values of the module. There is no need to evaluate the
signs of these two terms because both are negligible with respect to the highest-order term
and therefore we end up having the definite form

∇2φ−4 X4

M4 φ5=0 (40)

which does have a non-singular behaviour. In fact it is a straightforward operation to see
that in stationary cases

~∇·~∇φ+4 X4

M4 φ5=0 (41)

and for spherical symmetry

1
r2 ∂r(r

2∂rφ)+4
X4

M4 φ5=0 (42)

which is exactly one of the instances of the Lane–Emden equation that can be solved. The
explicit solution is

φ=

√
3M4

4X4+3M4r2 (43)

which is non-singular. Notice that when the torsion constant tends to zero then the 1/r
singular behaviour is recovered as a general feature of the solution. Therefore we can say
that it is precisely the presence of torsion what forbids singularities.

The formation of singularities recovered with a vanishing torsion constant can also be
seen as due to a too large torsion mass. It is therefore tempting to speculate that it is the
torsion mass what gives the scale of the cut-off beyond which divergences are negligible in
QFT. In more detail, renormalization schemes are based on the idea for which ultraviolet
divergences appear because we do not actually know what happens at very high energy,
but we postulate that in these regimes physics is different and free of singularities. As it
stands one may think that this new physics is just what we would have always had, had
we never neglected torsion from the beginning.

How would QFT change if we were to employ the non-singular solutions we have in
presence of torsion? Would we still need any of the known renormalization protocols?

We conclude this section by noticing that if in Equation (39) both conditions on the
cubic and linear terms hold then (39) has the structure of a solitonic equation.

5. One Specific Circumstance: Walking Droplets

Let us focus more on (39) and ask the following question: what happens if in it the
linear term is 2∇µΣµ − ΣµΣµ+Mµ Mµ−|∇β|2+4m2 <0 instead? For such a situation the
linear term becomes that of a mass with imaginary value. At high density solutions are
still regular. However far from the origin there no longer is an exponentially decreasing
behaviour with radial distance but rather an oscillating behaviour. Solutions would no
longer be solitons but something more similar to a material distribution with a solid core
surrounded by wavelets. It is tempting to see in these the bouncing droplets used for
hydrodynamic analogs of quantum systems [21,22].

Let us try to give an explicit example. Consider Pt =m and a tensorial connection with
component

Rrϕϕ =−r|sin θ|2 (44)

Rrθθ =−r (45)

Rϕθt =−2εr2 sin θ (46)
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where ε is a constant due to the Riemann curvature being equal to zreo. These are compati-
ble with sr =1 and ut =1 from the constraints (14) and (15). The dual potentials (16) and
(17) are given by the expressions

Σr =2/r (47)

Mr =−2(m+ε) (48)

from which we can now see that for β=0 they give

sµ Mµ =2(m+ε) (49)

2∇µΣµ−ΣµΣµ+Mµ Mµ+4m2=−4(2m+ε)ε (50)

to be discussed. If ε is negative with m> |ε|>0 we obtain the self-interaction to be attractive
and the mass term to be a real mass term, so that the conditions to have solitonic solutions
are ensured. If instead ε is positive we always obtain a self-interaction of attractive character
but now with mass of imaginary type, so that the solution has the peripheral oscillations
proper of wavelets. Equation (38) in this case is in fact given according to

∇2φ−4 X4

M4 φ5−4 X2

M2 (m+ε)φ3−(2m+ε)εφ=0 (51)

so that at high densities it reduces to (40) with solution (43) but at lower densities it becomes

∇2φ−(2m+ε)εφ=0 (52)

which in the stationary spherical case has

φ=
sin
(

r
√

ε|ε+2m|
)

r
√

ε|ε+2m|
and φ=

cos
(

r
√

ε|ε+2m|
)

r
√

ε|ε+2m|
(53)

as solutions. This is the solution of a second-order derivative equation for the module with
no chiral angle and as such it does not strictly describe a complete solution for the spinor
field. It does however provide valuable insight into the dynamics of matter distributions
that behave as bouncing droplets. The droplet itself would be the high-density part and the
surrounding bath would be the low-density part of the module of the material field.

Could this really mean that the behaviour of quantum particles, so accurately mim-
icked by a bouncing droplet, is ultimately the result of the presence of torsionally induced
tensions within matter distributions?

Quantum mechanics has always had difficulties in interpreting what a particle actually
is. From Louis de Broglie on, the idea of particles behaving as waves was ubiquitously
accepted, although still today we have no idea how exactly such a particle-wave duality
really describes what happens in nature. It was de Broglie in a number of articles during
the 1920s who put forward the possible interpretation known as pilot-wave model, with
physical waves propagating in space and then guiding all particles around. Later known
also as the double-solution model due to the fact that in it waves and particles are solution of
two different equations [23,24], this interpretation has also been re-discovered by Bohm [25],
and it is nowadays one of the few models still compatible with all restrictions imposed by
Bell-like inequalities, from the non-locality to the contextuality constraints.

The fact that in the dBB interpretation of quantum mechanics contextuality, and more
specifically non-locality, can be compatible with relativistic invariance has been recently
shown be presenting a fully covariant version (with spin) of the dBB model. The key issue
was to convert the Dirac theory into a consistent hydrodynamic formulation, which can be
done by employing the polar form of spinor fields [26].
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In this hydrodynamic formulation, quantum mechanics is naturally written in a
manner that makes it easy to visualize and interpret the motion of particles as the result of
an underlying wave dynamics, precisely as mimicked by bouncing droplets.

In the dBB model, waves and particles are seen as solution of two fields equations,
a linear equation which possesses wave solutions and a non-linear equation which has
soliton solutions. However, one is left with the uncomfortable feeling that it is inelegant
to have such a duplicity, and on top of it one may still wonder why one equation should
be linear and the other should be non-linear. A possible escape from this conundrum
might come from the simple observation that extended waves and localized solitons do
not need to be solutions of two different field equations, but just two different solutions
of the same field equation with the wave behaviour emerging for low densities and the
solitonic behaviour emerging for high densities. In this way, the most elegant solution to
the problem raised by de Broglie one century ago would merely be to consider spinorial
matter field equations in presence of torsion. As also commented in the previous section,
the torsion mass, providing a natural scale for the matter distribution, would give the scale
beyond which the quantum field would start to convert its wave behaviour into a localized
bulk of matter. Then, the size of the particle would give the cut-off scale presently used in
all renormalization schemes of QFT.

Is this interpretation sensible? One good aspect is that all it seems to need is the
presence of torsion, which is a natural ingredient of the most general Dirac spinorial field
theory. On the other hand, more work must necessarily be done to see whether complete
exact solutions to the non-linear field equation can actually be found.

We are confident that very soon we might include some preliminary assessment on
this problem in a following paper.

6. Conclusions

In this paper, we have considered the polar formulation of the Dirac spinor field theory
fully coupled to geometric general backgrounds to face the problem of singularities.

As a first step, we have discussed the effective approximation of torsion and the fact
that within this approximation the torsion can be effectively substituted in terms of the spin
axial-vector in all field equations. The result is torsionally-induced spin–spin interactions
of attractive character, exactly as we have in the Nambu–Jona-Lasinio model. We have
discussed how, for the Hawking–Penrose theorem, this model provides the environment
to violate the dominant energy condition, resulting in the avoidance of singularities for
gravitational systems constituted by a large number of particles. We have compared our
results with previous attempts and given a physical justification.

For single particles, where all gravitational fields can be neglected, such singularity
avoidance has been discussed by using the field equations for the module of the matter
distribution. We have seen that second-order differential equations of Hamilton-Jacobi type
for the module, in the effective approximation of torsion, and for large densities of matter,
become one of the Lane–Emden equations for which an exact solution exists, and it is found
to be non-singular. General considerations in QFT related to some ultraviolet divergences
have been discussed in terms of a cut-off scale that is derived from the torsion mass.

Finally, general comments about solitons and bouncing droplets have been given in
terms of covariant conditions. The relevance of these results for quantum mechanics, like
the de Broglie double-solution model or the Bohmian dynamics, has also been addressed.

We are certain of the fact that the foundations of physics as a whole could benefit from
the effects that would arise if torsion were considered as a fundamental field.
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Notes

1 Dark Energy is also a problem that has to be faced, but in this case the treatment of the zero-point energy and the phase-shift due
to spontaneous symmetry breaking are more pertinent to the domain of high-energy particle physics, and as such Dark Energy is
more of an issue that belongs to the interface of cosmology and the fundamental constituents of matter.
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Abstract: We develop a many-particle quantum-hydrodynamical model of fermion matter interacting
with the external classical electromagnetic and gravitational/inertial and torsion fields. The con-
sistent hydrodynamical formulation is constructed for the many-particle quantum system of Dirac
fermions on the basis of the nonrelativistic Pauli-like equation obtained via the Foldy–Wouthuysen
transformation. With the help of the Madelung decomposition approach, the explicit relations be-
tween the microscopic and macroscopic fluid variables are derived. The closed system of equations
of quantum hydrodynamics encompasses the continuity equation, and the dynamical equations of
the momentum balance and the spin density evolution. The possible experimental manifestations of
the torsion in the dynamics of spin waves is discussed.

Keywords: quantum hydrodynamics; spin; gauge gravity; torsion

1. Introduction

Spin (an intrinsic angular momentum) is an important physical property of matter,
associated with rotation, which is considered as the source of the gravitational field [1–10]
in the framework of the gauge gravity approach. The spin angular momentum, together
with the energy-momentum current, determines the geometrical structure of the spacetime
manifold and predicts nontrivial post-Riemannian deviations from Einstein’s general
relativity (GR) theory. The development of the gravitational theory with torsion has
a long history, going back to 1922 when Élie Cartan [1] introduced the corresponding
geometrical formalism. Since the 1960s, the interest in the theory of gravitation with
spin and torsion based on the Riemann–Cartan geometry had considerably grown, and
the consistent formalism was developed [2–7]. A further generalization of the gauge
gravitational theory takes into account the additional microstructural physical properties
of matter (encompassing the intrinsic shear and the dilation currents along with the spin)
as the sources of gravity, that results in the extension of the spacetime structure to the
metric-affine geometry [8]. An exhaustive overview of historic developments can be found
in [9,10].

The study of dynamics of the spinning matter on the Riemann–Cartan spacetime
represents a nontrivial problem which is of interest both theoretically and experimentally.
Quoting Einstein [11], “... the question whether this continuum has a Euclidean, Rieman-
nian, or any other structure is a question of physics proper which must be answered by
experience, and not a question of a convention to be chosen on grounds of mere expediency.”
It is now well established that the spacetime torsion can only be detected with the help of
the spin [12–14]. The early theoretical analysis of the possible experimental manifestations
of the torsion field at low energies can be found in [15].

By noticing that the spin and the energy-momentum tensors are the two Noether
currents for the Poincaré group, one can develop a natural formulation of the theory of
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gravity with torsion as a local gauge theory for the Poincaré spacetime symmetry [16–18].
This underlies the previous study of the quantum dynamics of a Dirac particle in the
Poincaré gauge gravitational field [19,20], where both the minimal and nonminimal cou-
pling of the Dirac fermion with the electromagnetic and the gauge gravitational fields was
comprehensively analysed for an arbitrary spacetime geometry with the curvature and
torsion. It was demonstrated that the Pauli-like equation for the spinning particles contains
new torsion-dependent terms which could give rise to the physical effects competing with
the electromagnetic ones.

The study of the spin-torsion coupling obviously fits into the general context of the
theoretical and experimental research of spin-dependent long-range forces [21–40]. Cer-
tain extensions of the Standard Model in the high energy particle physics predict the
existence of new particles, in particular, of the light pseudoscalar bosons (such as gold-
stones, axions [41–43], arions [44,45], etc.) that may give rise to the spin–spin interactions
of various kinds. An exchange via such light bosons between two fermions is qualitatively
described by a magnetic dipole-dipole type potential. Different methods were proposed
to detect these spin–spin interactions, including ferromagnetic detectors with a highly
sensitive two-channel UHF receiver [45], paramagnetic salt with a dc SQUID used in a
rotating copper mass [22,23], examining the hyperfine resonances for 9Be+ ions stored
in the Penning ion trap [24], and even treating the Earth as a polarized spin source [25].
In the recent experiment [26], the transversely polarized slow neutrons were used in an
attempt to observe a possible spin rotation of neutrons that traversed a meter of liquid 4He
under the action of the torsion field. Ultracold neutrons provide a convenient tool, with the
quantum gravitational states of ultracold neutrons being sensitive to the post-Riemannian
contributions [38]. On the theoretical side, the covariant multipolar technique was used for
the analysis of the equations of motion of test bodies with spin for a very general class of
gravitational theories with the minimal and nonminimal coupling [27,28]. An interesting
practical realization of theoretical findings has been recently proposed as a new Gravity
Probe Spin space mission using mm-scale ferromagnetic gyroscopes in orbit around the
Earth [29]. Typically, the predicted spin-torsion effects are expected to be quite small and
difficult to observe experimentally, however, one can set the experimental bounds on the
spin-torsion coupling constants and on the torsion field as well [30–40].

Here we for the first time develop the quantum hydrodynamics for the many-particle
system of massive Dirac fermion spin-1/2 particles interacting with external electromag-
netic, metric gravitational/inertial and torsion fields on the basis of the earlier analysis [19].

This article is organized as follows. In Section 2, we formulate a Pauli-type one-particle
equation for a Dirac fermion moving on the background of gravitational and electromag-
netic fields. In Section 3, we introduce the many-particle Pauli-like equation and construct
the many-particle quantum hydrodynamics for the non-relativistic particles in the external
classical fields. We derive the system of hydrodynamical equations and analyze the struc-
ture of force fields in these equations. In Section 4, we apply Madelung’s decomposition for
the spinor wave function to get the basic physical quantities in macroscopic form. Finally,
in Section 5 we discuss possible experimental manifestations of the results obtained in this
article, and Section 6 contains our conclusions.

Our basic conventions and notations are the same as in Reference [8]. In particular,
the world indices are labeled by Latin letters i, j, k, . . . = 0, 1, 2, 3 (for example, the local
spacetime coordinates xi and the holonomic coframe dxi), whereas we reserve Greek letters
for tetrad indices, α, β, . . . = 0, 1, 2, 3 (e.g., the anholonomic coframe ϑα = eα

i dxi). In order
to distinguish separate tetrad indices we put hats over them. Finally, spatial indices are
denoted by Latin letters from the beginning of the alphabet, a, b, c, . . . = 1, 2, 3. The metric of
the Minkowski spacetime reads gαβ = diag(c2,−1,−1,−1), and the totally antisymmetric
Levi-Civita tensor ηαβµν has the only nontrivial component η0̂1̂2̂3̂ = c, so that η0̂abc = cεabc

with the three-dimensional Levi-Civita tensor εabc. The spatial components of the tensor
objects are raised and lowered with the help of the Euclidean 3-dimensional metric δab.
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2. Pauli Equation for the System with Spin-Torsion Coupling

2.1. Poincaré Gauge Gravity Theory: The Basics

Recalling that the Standard Model in the fundamental particle physics is formulated as
a gauge theory for the internal unitary symmetry groups, one may say that, apart from the
gravitational interaction, the gauge-theoretic approach underlies the modern physics. There
exist, however, a natural extension of Einstein’s GR that is based on the Poincaré symmetry
group G = T4 ⋊ SO(1, 3), the semi-direct product of the four-parameter translation group
T4 and the six-parameter Lorentz group SO(1, 3), with the energy-momentum current and
the spin angular momentum current as the sources of the gravitational field [9,10,16–18].

The gauge fields act as mediators of physical interactions for the fermion matter source.
Specializing to the electromagnetic and gravitational interactions, in the framework of the
standard Yang–Mills–Sciama–Kibble approach [10], one then describes electromagnetism
by the U(1) gauge field potential Ai, and in similar way, one describes gravity by the
Poincaré gauge potentials eα

i and Γi
αβ. Geometrically, the 4 potentials eα

i of the translation
subgroup T4 are naturally interpreted as the coframe (or the tetrad) field of a physical
observer on the spacetime manifold M4, whereas the 6 potentials Γi

αβ = − Γi
βα for the

Lorentz subgroup SO(1, 3) are identified with the local connection that introduces the
parallel transport on the spacetime M4.

The multiplet of gauge potentials,
{

Ai, eα
i , Γi

αβ
}

, (1)

determines the corresponding multiplet of the “Yang–Mills” gauge field strengths:

Fij = ∂i Aj − ∂j Ai, (2)

Tij
α = ∂ie

α
j − ∂je

α
i + Γiβ

αe
β
j − Γjβ

αe
β
i , (3)

Rij
αβ = ∂iΓj

αβ − ∂jΓi
αβ + Γiγ

βΓj
αγ − Γjγ

βΓi
αγ. (4)

Thereby, we derive the Maxwell tensor Fij as the U(1) gauge field strength for the elec-
tromagnetic field, and the spacetime torsion tensor Tij

α and the curvature tensor Rij
αβ =

− Rij
βα as the two Poincaré (T4 “translational” and SO(1, 3) “rotational”, respectively)

gauge field strengths for the gravitational field.
The nontrivial “mixed” form of the torsion (3) is explained by the semi-direct structure

of the Poincaré symmetry group. The resulting Riemann–Cartan geometry on the spacetime
M4 is characterized by the nonvanishing torsion and curvature, whereas in the special case
Tij

α = 0 we recover the Riemannian geometry, and for Rij
αβ = 0 one finds the Weitzenböck

space of distant parallelism.
Here we do not discuss the construction of the complete dynamical scheme of the

Poincaré gauge theory that requires the introduction of the corresponding gravitational
field Lagrangian, and consider the electromagnetic and the gravitational fields as a non-
dynamical background. It is important to recall, though, that the variation of the La-
grange density of matter with respect to the gauge field potentials (1) gives rise to the
corresponding dynamical currents: the electric current, the canonical energy-momentum
tensor, and the spin angular momentum tensor, respectively. Further details can be found
in [9,10,16–18], and we conclude this section with the following technical points which are
needed for the subsequent discussion.

One can decompose the local Lorentz connection into the sum:

Γi
αβ = Γ̃i

αβ − Ki
αβ (5)
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of the Riemannian connection (denoted by the tilde), which is torsionless ∂ie
α
j − ∂je

α
i +

Γ̃iβ
αe

β
j − Γ̃jβ

αe
β
i = 0 and metric-compatible, plus the post-Riemannian contortion tensor,

Kiαβ =
1
2

(
Tαβi − Tiαβ + Tiβα

)
. (6)

On the other hand, the torsion tensor Tµν
α = ei

µe
j
νTij

α can be decomposed into the
three irreducible parts:

Tµν
α =

1
3
(δα

µTν − δα
ν Tµ) +

1
3

ηµνλ
αŤλ+ րTµν

α, (7)

where րTµν
α is the trace-free and axial trace-free tensor, the torsion trace vector Tµ = Tαµ

α,
and the axial trace vector:

Ťα = − 1
2

ηαµνλTµνλ, (8)

with the totally antisymmetric Levi-Civita tensor ηαµνλ.

2.2. Hamiltonian for the Dirac Fermion

The Pauli-like equation for a fermion particle, moving under the action of the torsion
field had been derived in [15] for the flat Minkowski spacetime, and in [19] for an arbitrary
curved space background. The relativistic dynamics of the Dirac particle with spin 1/2,
electric charge q, and mass m minimally coupled to the gravitational and electromagnetic
fields is described by the invariant action:

S =
∫

d4x
√
−gL, (9)

where the Lagrangian of the spinor wave function ψ and ψ = ψ†γ0̂ has the form:

L =
ih̄

2

(
ψγαDαψ − Dαψγαψ

)
− mc ψψ . (10)

The spinor covariant derivative describes the minimal coupling of the charged Dirac
particle with the external electromagnetic and gravitational gauge fields (1):

Dα = ei
α

(
∂i −

iq

h̄
Ai +

i

4
Γi

βγσβγ

)
. (11)

Here, c and h̄ are the speed of light and Planck’s constant, respectively, the 4-potential of the
electromagnetic field Ai = (−φ, A) encompasses the scalar φ and vector A potentials, and
σαβ = i

2

(
γαγβ − γβγα

)
are the Lorentz algebra generators, where the flat Dirac matrices

γα are defined in local Lorentz frames.
We denote the local spatial and time coordinates by xi = (t, xa), a, b, c = 1, 2, 3.

An orthonormal coframe (tetrad) is needed to attach spinor spaces at every point of the
space–time manifold. Then the dynamics of the Dirac particle can be investigated in an
arbitrary Poincaré gauge field (eα

i , Γi
αβ), where the components of tetrads in the Schwinger

gauge [19] read:

e 0̂
i = V δ 0

i , eâ
i = W â

b

(
δb

i − cKb δ 0
i

)
, a, b = 1, 2, 3. (12)

As was shown in reference [19], the Hermitian Hamiltonian of the fermion particle has the
form:

H = βmc2V + qΦ +
c

2

(
πb F b

aαa + αaF b
aπb

)

+
c

2
(K· π + π ·K) +

h̄c

4
(Ξ·Σ − Υγ5), (13)
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where the kinetic 3-momentum operator πa = −ih̄∂a − qAa = pa − qAa accounts of the
interaction with the electromagnetic field, and we denoted:

F b
a = VWb

â, Υ = Vεâb̂ĉΓ
âb̂ĉ

, Ξa =
V

c
εâb̂ĉ
(
Γ0̂b̂ĉ

+ Γ
b̂ĉ0̂ + Γ

ĉ0̂b̂

)
. (14)

As usual, αa = βγa (a, b, c, · · · = 1, 2, 3) and the spin matrices Σ1 = iγ2̂γ3̂, Σ2 = iγ3̂γ1̂, Σ3 =

iγ1̂γ2̂ and γ5 = iα1̂α2̂α3̂. Boldface notation is used for 3-vectors K = {Ka}, π = {πa}, α =
{αa}, Σ = {Σa}.

Taking into account the decomposition of the connection (5) into the Riemannian and
post-Riemannian parts, we find that the Pauli-like equation with the Hermitian Hamilto-
nian (13) encompasses the spin-torsion coupling:

Υ = Υ̃ + VcŤ0̂, Ξâ = Ξ̃â − VŤ â. (15)

The tilde denotes the Riemannian quantities. The post-Riemannian contributions come
from the components Ťα = (Ť0̂, Ť â) of the axial torsion vector (8). Accordingly, the spin-
torsion coupling terms read explicitly

− h̄cV

4

(
Σ·Ť + cγ5Ť0̂

)
. (16)

The above general formalism can be applied to the study of fermion’s dynamics in
arbitrary external electromagnetic and gravitational (including the post-Riemannian one)
fields.

Let us now specialize to the analysis of the possible physical effects of the spacetime
torsion and the inertial forces on the non-relativistic particle in the rotating reference frame
(such as the Earth), [46]:

V = 1, W â
b = δa

b , Ka = − (ω × r)a

c
, Γ0̂

âb̂ = − εabcωc

c
, Γ0̂

â0̂ = 0. (17)

Substituting this configuration into the Hamiltonian (13) we derive:

H = βmc2 + cα · π − ω · (r × π)− h̄

2
ω · Σ − h̄c

4

(
Ť0̂cγ5 + Ť · Σ

)
. (18)

In order to reveal the physical contents of the Schrödinger equation, we need to go to the
Foldy–Wouthuysen (FW) representation. Applying the methods developed in [19], we find
the FW Hamiltonian:

H = βǫ + qφ − ω · (r × π)− h̄

2
ω · Σ − qh̄c2

4

{
1
ǫ

, B · Π

}

+
h̄c3

8

{
π · Π

ǫ
, Ť0̂
}
− h̄c

8

{
mc2

ǫ
, Ť · Σ

}

− h̄c3

8

[
Σ · π

ǫ(ǫ + mc2)
π · Ť + Ť · π

Σ · π

ǫ(ǫ + mc2)

]

− qh̄c

8

{
1

ǫ(ǫ + mc2)
, Σ · (E× π − π ×E)

}
. (19)

Here, Π = βΣ, { , } denotes anticommutators, ǫ =
√

m2c4 + c2π2, and E = E + B × (ω ×
r) is the physical electric field as seen in the noninertial rotating reference frame.

Under ordinary conditions we assume |eh̄B| ≪ m2c2, that is the magnetic field is much
smaller than the critical field |B| ≪ Bc = m2c2/eh̄, and particle’s velocity is much smaller
than the speed of light, |π|/m ≪ c. Then ǫ = mc2 + π2/2m, and in the semiclassical limit
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of (19) we finally obtain the Pauli-type equation ih̄
∂ψ
∂t = Hnrψ with the non-relativistic

Hamiltonian:

Hnr =
π2

2m
+ qφ − ω · (r × π)− h̄

2
ω · σ − qh̄

2m
B · σ +

h̄c

8m

{
π · σ, Ť0̂

}
− h̄c

4
Ť · σ. (20)

This result is consistent with an alternative analysis based on the method of exact FW
transformations [20], see the relevant discussion in [47,48].

In the physically important situations, the torsion pseudovector is spacelike, and
|Ť | ≫ cŤ0̂. Taking this into account, we now switch to the physically interesting case
Ť0̂ = 0. This is the true for the fermions (10) and (11) minimally coupled to gravity.

3. Quantum Hydrodynamics for Spin-Torsion Coupling

In this section, we derive the many-particle quantum hydrodynamics (MPQHD)
equations from the many-particle Pauli-like equation for the system of charged particles
with spin-1/2. The method of MPQHD allows to present the dynamics of a system of
interacting quantum particles in terms of the functions defined in the three-dimensional
physical space. This is important for the study of wave process, which take place in a
three-dimensional physical space [49,50]. In flat spacetime, the MPQHD formalism for
many-particles fermion systems was previously developed in [51–53], whereas the case
of the noninertial reference frames was considered in [54]. The methods of MPQHD can
be used for the analysis of a wide variety of systems of many interacting particles. In
particular, the finite temperature hydrodynamic model has been derived recently in [55]
for the spin-1 ultracold bosons. In Reference [56] the method was applied to the study of
the polarization dynamics in a system of quantum particles with nontrivial electric dipole
moments.

After applying the Foldy–Wouthuysen transformation for Dirac particle in combina-
tion with the method of many-particle quantum hydrodynamics, we arrive at the many-
particle Pauli-like equation:

ih̄
∂ψs

∂t
= Ĥψs, (21)

where the many-particle wave function of the system of N spinning particles:

ψs(R, t) = ψs(r1, r2, . . . , rN , t) (22)

is a spinor function in the 3N-dimensional configuration space (s is the spin index), and
the many-particle Hamiltonian reads:

Ĥ =
N

∑
p=1

(
π̂2

p

2mp
+

h̄

2
σ · Ωp + φp

)
. (23)

Here, we introduced:

Ωp = −ω − qp

mp
Bp −

c

2
Ť p, (24)

φp = qp φ(rp)−
mp

2
[ω × rp]

2, (25)

π̂p = − ih̄∇p − qp Ap − mp ω × rp , (26)

and mp and qp denote the mass and the charge of p-th particle, respectively. In particular,
qp stands for the charge of electrons qe = − e, or for the charge of ions qi = e. The
electromagnetic vector and scalar potentials Ap = A(rp) and φ = φ(rp) are taken at the
positions rp of the p-th particle, and the same applies to the external magnetic Bp = B(rp)
and the torsion Ť p = Ť(rp) fields. The last terms in (25) and (26) manifest the inertial
contributions in the rotating reference frame with the angular velocity ω.
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As compared to the standard case of a system in an external electromagnetic field, the
many-particle Hamiltonian (23) includes the torsion effects, encoded in the second term
∼ σ · Ť p, that has the same form as the Zeeman energy in the magnetic field. In addition,
this Hamiltonian includes Mashhoon’s spin-rotation contribution ∼ σ · ω, see [57–59].

The state of the system is characterized by the concentration of particles in the neigh-
borhood of a point r in the physical space as:

n(r, t) =
∫

dR
N

∑
p=1

δ(r − rp)ψ
∗
s (R, t)ψs(R, t) = 〈ψ†n̂ψ〉. (27)

Here the integration measure reads dR = ∏p d3rp. The function n(r, t) is thus determined
as the quantum average of the concentration operator n̂ = ∑p δ(r − rp) in the coordinate
representation. The spin density vector of fermions is determined in a similar way:

S(r, t) =
∫

dR
N

∑
p=1

δ(r − rp)ψ
∗
s (R, t)(ŝp)ss′ψs′(R, t) = 〈ψ†sψ〉, (28)

as the quantum average of the spin operator s = ∑p δ(r − rp)ŝp, with ŝp = h̄
2 σp.

The continuity equation for the concentration of the particles n(r, t) can be derived
by taking the time derivative of the definition (27) and making use of the many-particle
Pauli-like Equation (21):

∂tn(r, t) +∇ · J(r, t) = 0, (29)

where the current density is defined as the microscopic average J(r, t) = 1
2 〈ψ†Jψ + c.c.〉 of

the operator

J = ∑
p

δ(r − rp)
π̂p

mp
. (30)

Here the generalized momentum operator is defined by (26).

3.1. Spin Density Evolution

In a similar way, the dynamical equation for the spin density can be obtained by
differentiating the definition (28) with respect to time and making use of the many-particle
Pauli-like Equation (21):

∂tS
a(r, t) + ∂bΛba(r, t) = εabcΩbSc(r, t). (31)

Here the spin precession angular velocity is defined as:

Ω = −ω − q

m
B − c

2
Ť , (32)

cf. (24), whereas the spin current density tensor is introduced as a microscopic average
Λba(r, t) = 1

2 〈ψ†Lbaψ + c.c.〉 of the operator

Lba = ∑
p

δ(r − rp)
π̂a

p ŝb
p

mp
. (33)

3.2. Equation of Motion

Along the same lines, the derivation of the equation of motion of a hydrodynamic
system in an external electromagnetic and torsion fields is based on differentiating the
expression for the current density J(r, t) with respect to time and using the Pauli-like
Equation (21) with the Hamiltonian (23). The result reads:

m∂t Ja(r, t) + ∂bΠab(r, t) = qnEa(r, t) + qεabc Jb(r, t)Bc(r, t)− Sb(r, t)∂aΩb + Fa
iner, (34)
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where the momentum flux tensor appears in fluid dynamics as a quantum average
Πab(r, t) = 1

2 〈ψ†Pabψ + c.c.〉 of the operator

Pab = ∑
p

δ(r − rp)
π̂
(a
p π̂

b)
p

mp
. (35)

The equation of motion (34) describes the influence of the external electromagnetic and
torsion fields on the fermion matter in terms of the Lorentz and the Stern-Gerlach forces.

As a next step, one can move from the microscopic representation of the particle
current density and the spin current density to their corresponding macroscopic variables
by making use of an explicit representation of the spinor wave function. Such an explicit
representation of the wave function is known as the Madelung decomposition.

4. Madelung Decomposition

The microscopic many-particle wave function or the Madelung decomposition [60]
of the N-particle wave function can be represented in terms of the amplitude a(R, t), the
phase ξ(R, t) and the local spinor Z(R, r, t), defined in the local rest frame and normalized
so that Z†Z = 1:

ψ(R, t) = a(R, t) ϕ(R, r, t), ϕ(R, r.t) = e
i
h̄ ξ(R,t) Z(R, r, t). (36)

Applying the decomposition (36) to the p-th particle, we can introduce a microscopic veloc-
ity and a microscopic spin as vp := 1

mp
ϕ† π̂p ϕ and sp := ϕ† ŝp ϕ = h̄

2 ϕ† σp ϕ, respectively.
Explicitly, we then find:

vp(R, r, t) =
1

mp

(
∇p ξ − qAp − ih̄Z†

∇p Z − mp ω × rp

)
, (37)

sp(R, r, t) =
h̄

2
Z†

σpZ . (38)

The velocity field of the p-th particle can be decomposed vp(R, r, t) = v(r, t) + ηp(R, r, t)
into a sum of the macroscopic average v(r, t) and the thermal fluctuations part ηp(R, r, t)
of the velocity. In a similar way, the spin of the p-th particle can be represented as the
sum sp(R, r, t) = s(r, t) + τp(R, r, t) of the macroscopic average s(r, t) and the thermal
fluctuations part τp(R, r, t) of the spin. By definition, the averages of the fluctuations
vanish, 〈a2ηp〉 = 0 and 〈a2τp〉 = 0. We assume that the particle system is closed and not
placed in a thermostat. Recalling that the temperature is the average kinetic energy of the
chaotic motion of the particles of the system, we consider deviations of the velocity and
spin of quantum particles from the local average values, which correspond to the ordered
motion of the particles.

Combining Equations (27), (30) and (28) with (36)–(38), we can derive the macroscopic
concentration, the macroscopic current density and the macroscopic spin density from the
corresponding microscopic variables:

n(r, t) =
∫

dR
N

∑
p=1

δ(r − rp) a2(R, t), (39)

J(r, t) =
∫

dR
N

∑
p=1

δ(r − rp) a2(R, t) vp(R, r, t) = n(r, t) v(r, t), (40)

S(r, t) =
∫

dR
N

∑
p=1

δ(r − rp) a2(R, t) sp(R, r, t) = n(r, t) s(r, t). (41)
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After the Madelung decomposition procedure for the basic physical variables in the
microscopic representation, the spin current density (33) and the momentum flux (35) can
be recast in terms of the fluid variables into:

Λba(r, t) =
∫

dR
N

∑
p=1

δ(r − rp)

(
a2sa

pvb
p −

a2

mp
εacdsc

p∂b
psd

p

)
, (42)

Πab(r, t) =
∫

dR
N

∑
p=1

δ(r − rp)

(
h̄2

2mp
(∂a

pa∂b
pa − a∂a

p∂b
pa)

+mpa2va
pvb

p +
a2

mp
∂a

psc
p∂b

psc
p

)
, (43)

respectively. We are now ready to write down the complete set of dynamical equations for
the quantum system of spinning particles explicitly in terms of the fluid variables. This set
encompasses the continuity equation

∂tn +∇ · (n v) = 0, (44)

and the momentum balance equation

(∂t + vb∂b) va =
q

m
Ea +

q

m
(v × B)a − 1

n
∂b pab +

h̄2

2m2 ∂a

(
∆
√

n√
n

)

+
1

2m2 ∂a(∂bs · ∂bs)− 1
m

s · ∂a
Ω̂ + f a

iner −
1
m

Qa
therm, (45)

whereas the spin evolution Equation (31) reads:

(∂t + vb∂b) s = Ω̂ × s − Θtherm, (46)

where the spin precession angular velocity is modified, cf. (32),

Ω̂ = −ω − q

m
B − c

2
Ť − 1

mn
∂b(n∂bs). (47)

This modification arises from the interaction of spin with the surrounding spin-texture of
the fluid, and one can formally interpret this in terms of an effective magnetic field defined
as a sum of an external magnetic field and the emergent field:

B̂ = B +
1

qn
∂b(n∂bs). (48)

In fact, one can also view the first term on the right-hand side of (47), which is due to
Mashhoon’s spin-rotation coupling term and describes the Barnett effect, and the third
term on the right-hand side of (47), representing the spin-torsion coupling, as the two
additional contributions to the “effective” magnetic field

Bω =
m

q
ω, BT =

mc

2q
Ť . (49)

The dynamical Equation (46) describes the precession of spin under the action of the
torque produced by the external magnetic field and the emergent fields, leading to the
Zeeman type effect. The additional torque in (46) arises from thermal-spin interactions:

Θtherm = ∂b

∫
dR

N

∑
p=1

δ(r − rp)

(
a2ηb

psp −
a2

mp
sp × ∂b

pτp

)
, (50)
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that is also responsible for the last force term in the momentum balance Equation (45)

Qa
therm =

1
n

∂b

∫
dR

N

∑
p=1

δ(r − rp)
a2

mp

(
∂b

pτp · ∂a
psp + ∂b

psp · ∂a
pτp − ∂a

pτp · ∂b
pτp

)

− ∂a

{
1
n

∂b

[
n ∂b

( 1
n

∫
dR

N

∑
p=1

δ(r − rp)
a2

2mp
τp · τp

)]}
. (51)

Analysing the structure of the equation of motion (45), we identify the first two terms
on the right hand side with the Lorenz force determined by the external electric and
magnetic fields E and B, while the third term is the divergence of the kinetic pressure
tensor

pab(r, t) =
∫

dR
N

∑
p=1

δ(r − rp) a2 mp ηa
p ηb

p. (52)

The fifth term on the right hand side of the Equation (45) represents the effect of spin–spin
interactions inside the fluid, the interaction of the spin with the spin background texture.
The sixth term describes the Stern–Gerlach force that characterizes the influence of the non-
uniform effective magnetic and the torsion field. In the non-inertial frame, an additional
contribution encompasses the Coriolis force, the centrifugal force and Euler force field:

finer = − 2 ω × v − ω × (ω ×R)− ∂ω

∂t
×R, (53)

where the vector of center of mass is defined as:

R(r, t) =
1
n

∫
dR

N

∑
p=1

δ(r − rp)ψ
∗
s (R, t)rpψs(R, t). (54)

Our derivations are consistent with the earlier analysis [54].

5. Experimental Manifestations of Spin-Torsion Coupling

Experimental search for the nontrivial torsion effects is naturally embedded into the
broader framework of the studies of the spin-dependent long-range forces [21–40]. By
making use of the corresponding experimental techniques, it is possible to find strong
limits on the values of the gauge gravity spin-torsion coupling constants and on the torsion
field itself. A good example of an efficient approach in this respect gives an observation
of the nuclear spin precession in gaseous spin polarized 3He or 129Xe samples with the
help of a highly sensitive low-field magnetometer [61–63] detecting a sidereal variation
of the relative spin precession frequency in a new type of 3He/129Xe clock comparison
test. In a similar experiment [64], the ratio of nuclear spin-precession frequencies of 199Hg
and 201Hg atoms was measured in the magnetic field and the Earth’s gravitational field.
Based on the corresponding experimental data from [64], the analysis of dynamics of the
minimally coupled Dirac fermion [19] in external electromagnetic and gravitational fields
revealed the strong bounds on the possible background space-time torsion:

c

2
|Ť | · | cos θ| < 6.45 × 10−6s−1, (55)

where θ is the angle between the magnetic B and torsion Ť fields. On the other hand, by
making use of the experimental data from [61], one finds the restriction:

c

2
|Ť | · | cos θ| < 3.59 × 10−7s−1. (56)

These results are consistent with the alternative empirical estimates for the torsion
limits [30–40]. As another powerful tool one can mention the use of the quantum interfer-
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ometry to probe the spacetime structure, including the search for possible post-Riemannian
deviations, focusing on the detection of the phase shift and polarization rotation effects for
the neutron and atom beams [65–69].

As an application of the quantum hydrodynamics formalism, let us investigate a
simple model of a continuous medium of particles with spin and consider the dynamics
of the spin waves in such a particle system. Neglecting the spin-thermal coupling in the
spin dynamical Equation (46) and assuming the small perturbations of the spin s = s0 + δs

around an undisturbed value |s0| = h̄/2, we find, in the first order,

∂tδs = Ω̂
(0) × δs + Ω̂

(1) × s0. (57)

Here, the equilibrium values of the external background fields are encoded in Ω̂
(0) =

−ω0 − q
m B0 − c

2 Ť , where B0, ω0 and Ť are the external uniform magnetic field, the Earth’s
angular velocity and the background torsion, respectively, and the small disturbance reads:

Ω̂
(1) = − ∆δs

m
, (58)

Assuming that the perturbations of the spin vary as δs ∼ exp(−iωst + ik · r), we then
derive the dispersion law relating the wave frequency ωs and the wave vector k for the
spin waves excited in the external magnetic and torsion fields:

ω2
s = Ω2

c +
c2

4
Ť2 + ω2

0 + 2Ωcω0 cos θ1 + c ΩcŤ cos θ2 + c ω0Ť cos(θ2 − θ1). (59)

Here, Ωc =
qB0
m + h̄k2

2m , whereas θ1 and θ2 are, respectively, the angle between the external
magnetic field and Earth’s angular velocity, and the angle between B0 and the background
torsion Ť . Equation (59) is a generalization for the dispersion relation of spin waves found
in Reference [70] and it takes into account the contribution of the spin part of the quantum
Bohm potential as an additional spin torque due to the self-action inside the system of
particles, which leads to the propagation of spin waves. The square of the frequency ω2

s

encompasses a contribution proportional to the square of the modulus of the wave vector
∼ k2. As we can see from the dispersion relation (59) the torsion effect is maximal when
the pseudovector field Ť is aligned along the external magnetic field.

6. Discussion and Conclusions

In this paper, we for the first time developed the quantum hydrodynamics for the
many-particle system of massive Dirac fermion spin-1/2 particles interacting with external
electromagnetic, metric gravitational/inertial and torsion fields. This essentially extends
the single-particle quantum hydrodynamical approach which was developed for the flat
spacetime, see [71–76] and the references therein. Taking as the basis of the earlier general
formalism [19], the consistent hydrodynamical formulation was constructed for the many-
particle quantum system of fermions, and the explicit relations between the microscopic
and macroscopic fluid variables were derived with help of the Madelung decomposition
approach. In the present study, we have focused on the physically important situation with
Ť0̂ = 0, a more exotic case with Ť0̂ 6= 0 (which may be realized in cosmology, for example,
see the earlier work [15], or in the more general models) will be considered elsewhere.

The resulting system of hydrodynamical equations consists of the continuity
Equation (44), the momentum balance Equation (45) and the spin dynamics Equation (46).
The momentum balance equation includes the contributions in the form of the quantum
Bohm potential and a new spin part of the Bohm quantum potential which are propor-
tional to the square of Planck’s constant. In addition, the dynamical equations take into
account the thermal effects resulting from the fluctuations of the spin and velocity near
their average values. As an application of the formalism, we evaluated the possible effects
of the spacetime torsion and the spin part of quantum Bohm potential on the dispersion
characteristics of the spin waves (59) excited in the many-particle fermion system. The
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developed hydrodynamical model can be used in the future studies of various types of
transport phenomena in spinning matter with an account of external electromagnetic and
gravitational fields.
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Abstract: We investigate the axial vector spin–torsion coupling effects in the framework of the
Poincaré gauge theory of gravity with the general Yang–Mills type Lagrangian. The dynamical
equations for the “electric” and “magnetic” components of the torsion field variable are obtained in
the general form and it is shown that the helicity density and the spin density of the electromagnetic
field appear as the physical sources. The modified Maxwell’s equations for the electromagnetic field
are derived, and the electromagnetic wave propagation under the action of the uniform homogeneous
torsion field is considered. We demonstrate the Faraday effect of rotation of the polarization for
such a wave and establish the strong bound on the possible cosmic axial torsion field from the
astrophysical data.

Keywords: spin; gauge gravity; torsion; electromagnetic wave; Faraday effect

1. Introduction

The search for new spin-dependent interactions between fundamental particles apart
from the magnetic dipole interaction is an important area of high-energy physics research
beyond the Standard Model [1]. É. Cartan was the first who proposed, at the beginning of
the 20th century, the post-Riemannian geometrical structures generated by the microstruc-
tural properties of the physical matter, particularly to analyze the coupling of the torsion of
spacetime to the intrinsic spin [2].

The interest in the theory of gravitation with spin and torsion based on the Riemann–
Cartan geometry had considerably grown in the second half of the 20th century after
the consistent gauge theory formalism was developed [3–7]. It is now well established
that the spacetime torsion can only be detected with the help of the spin [8–10]. The
early theoretical analysis of the possible experimental manifestations of the torsion field
can be found in [11–13]. The so-called Einstein–Cartan theory [14–16] with the linear
Hilbert–Einstein gravitational Lagrangian represents a degenerate version of the Poincaré
gauge gravity. In this model, the torsion couples to spin algebraically and, therefore, it
vanishes outside the matter sources, but essentially modifies the physical structure inside
astrophysical compact objects, see [17–19].

The torsion becomes a dynamical propagating field in the Poincaré gauge gravity
theory with a Yang–Mills type Lagrangian [20], and the most general gravitational model
with the Lagrangian (which is quadratic in the curvature and torsion) was considered in
Reference [21] with an emphasis on the consistency of the gauge theory of gravity with
experimental observations at the macroscopic level. Accordingly, its probing should be
essentially confined to the microscopic level and focus on the study of the dynamics of
fundamental particles, atoms, and molecules. It is worthwhile to note that it has not yet
been possible to create a source of spin density that could generate torsion to be detected in
the laboratory. However, one can establish the constraints on the spin–torsion coupling, in
particular from the experimental search for the Lorentz and CPT violation. The bounds on
new spin-dependent interactions were found [22,23] with the help of a torsion pendulum
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technique, which was also used in the search for CP-violating interactions between the
pendulum’s electrons and unpolarized matter in laboratory surroundings or the Sun.
Among other physical effects, the contribution of the interacting vector and pseudovector
of the torsion to the hyperfine splitting of the ground state of the hydrogen atom was
evaluated in [24,25], whereas a possible manifestation of the spin–torsion coupling in the
scattering of polarized photons in a medium of sodium vapor was analyzed in [26]. The
experimental upper bounds on the spin–torsion interactions were reported in [27–29].

In the context of the growing interest in fundamental physics at the sub-eV scale,
Moody and Wilczek [30] analyzed new fields, generating dipole couplings between fermions
that can be detectable in laboratory experiments, paying special attention to axions. An
axion as a hypothetical particle was postulated in the Peccei–Quinn theory to resolve the
strong CP problem in quantum chromodynamics, and it can produce long-range dipole
forces [31]. Similar dipole interactions between fermions can be produced by other parti-
cles [32–35], for example, by an arion, which is a boson corresponding to a spontaneous
breaking of the chiral lepton symmetry [35]. The search for axions and axion-like particles
is of considerable interest in relation to the cold dark matter issue. Currently, there is a
number of experimental attempts to find axions that encompass the Primakoff effect for
the astrophysical axions [36], the polarization measurements for light propagating in a
magnetic field, the light shining through wall experiments [37], and the cosmic axion spin
precession experiment [38,39].

Another direction in the search for long-range spin-dependent interactions is the
prediction of the existence of an unparticle in the context of quantum excitations of scale-
invariant interactions [40], along with exotic spin-1 bosons or paraphotons [41], which are
currently being actively investigated [42]. Quite generally, the analysis of the behaviors
of atomic systems affected by new hypothetical spin-dependent forces gives rise to the
constraints on the coupling constants [1] with the sixteen types of potentials characteriz-
ing interactions between fermions mediated by the new exotic particles [42,43]. A wide
range of relevant laboratory investigations was carried out using the physical methods of
atomic and molecular systems, as well as make use of the optical methods: ion capture
experiments [44], using nitrogen-vacancy centers in diamonds [45,46], based on molecular
and atomic spectroscopies [47].

The gauge symmetry is one of the most powerful physical concepts underlying the
description of fundamental interactions. The global gauge U(1) invariance in quantum
electrodynamics leads to the electric charge conservation law, whereas the local gauge
invariance requires the introduction of a massless vector field that mediates the long-range
interaction between charges, with the electric current as a source of the electromagnetic
field. In quantum chromodynamics, the invariance under the global group SU(2) yields
the isospin conservation law, and the invariance under the local transformations of the
group SU(2) leads to the introduction of the Yang–Mills gauge field. The extension of this
theory leads to the explanation of the strong interactions in terms of the exchange of gluons.

Recently [48,49], an attempt was made to construct a gauge theory model to describe
the weak spin–spin interactions. It was suggested [48] that the invariance of the Lagrangian
under the local Lorentz transformation requires the introduction of a massless axial vector
gauge field, which gives rise to a super-weak long-range spin–spin force in a vacuum, which
is attractive for parallel spins. In this model, the axial vector field couples to the axial vector
current of the Dirac fermion field and the photon field or a neutral spin-1 field. The axial
vector field was introduced [50] to provide stability of the classical electron and to construct
divergence-free quantum electrodynamics. Optical experiments are the most accurate
and accessible for measuring the effects of new physical fields. The direct interactions
between electromagnetic and gauge fields were considered in [51] in the Poincaré gauge
gravity approach, whereas the coupling of the photon to the axial vector gauge field was
supported by the local Lorentz symmetry group in the approach [48,49]. Here, we study
the possible influence of the axial torsion field on the propagation and polarization of an
electromagnetic wave.
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The structure of the paper is as follows. In Section 2, we briefly outline the correspond-
ing Lagrange–Noether framework of the Poincaré gauge gravity theory. In Section 3, we
study the propagation of the electromagnetic wave under the influence of the uniform
homogeneous axial vector torsion field. Finally, in Section 4, we discuss the results obtained
and apply them to derive the strong upper limit of the value of the cosmic background
torsion field from the astrophysical data. In Appendix A, the structure of the general
quadratic Poincaré gauge gravitational field Lagrangian is given, and the effective coupling
constants are introduced.

Our basic conventions and notations are as follows. The world indices are labeled by
Latin letters i, j, k, . . . = 0, 1, 2, 3 (for example, the local spacetime coordinates xi), whereas
we reserve Greek letters for tetrad indices, α, β, . . . = 0, 1, 2, 3 (i.e., for labeling the legs of an
anholonomic coframe eα

i ). In order to distinguish separate tetrad indices, we put hats over
them. Finally, spatial indices are denoted by Latin letters from the beginning of the alphabet,
a, b, c, . . . = 1, 2, 3. The metric of the Minkowski spacetime reads gij = diag(c2,−1,−1,−1),
and the totally antisymmetric Levi–Civita tensor ηijkl has the only nontrivial component
η0123 = c, so that η0abc = cεabc with the three-dimensional Levi–Civita tensor εabc. The
spatial components of the tensor objects are raised and lowered with the help of the
Euclidean three-dimensional metric δab.

2. Gauge Theory of Gravitation

The Poincaré gauge gravity [52–57] is an extension of Einstein’s general relativity
theory (GR), in which the spin, energy, and momentum are independent sources of the
gravitational fields (the metric gij and connection Γki

j), and the spacetime structure is
described by the Riemann–Cartan geometry with the curvature and the torsion:

Rkli
j = ∂kΓli

j − ∂lΓki
j + Γkn

jΓli
n − Γln

jΓki
n, (1)

Tkl
i = Γkl

i − Γlk
i. (2)

The Riemann–Cartan connection can be decomposed into the Riemannian and the post-
Riemannian parts,

Γkj
i = Γ̃kj

i − Kkj
i, (3)

where the Christoffel symbols are determined by the metric

Γ̃kj
i =

1
2

gil(∂jgkl + ∂kgl j − ∂l gkj), (4)

and the contortion tensor is constructed in terms of the torsion

Kkj
i = − 1

2
(Tkj

i + Ti
kj + Ti

jk) . (5)

The torsion (2) can be decomposed [57] into three irreducible components,

Tkl
i = (1)Tkl

i + (2)Tkl
i + (3)Tkl

i, (6)

where the second irreducible part features the torsion trace vector

(2)Tkl
i =

1
3

(
δi

kTl − δi
l Tk

)
, (7)

the third irreducible part is constructed in terms of the torsion axial pseudo-vector

(3)Tkl
i = − 1

3
ηkl

ijT j, (8)

and the first irreducible purely tensor part has the properties
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(1)Tik
i = 0, (1)Tijkηijkl = 0. (9)

The vector and pseudovector of torsion are defined as

Tj := Tij
i, T j =

1
2

Tkliη
klij. (10)

Here, we focus on the dynamical realization of the Poincaré gauge theory as a Yang–
Mills type model with the most general quadratic in curvature and torsion Lagrangian (A3),
see Appendix A for the details. Earlier [25,51], the contributions of the vector and the pseu-
dovector (10) to physical effects at the microscopic level were analyzed in the framework
of this theory and the strong constraints were established on the spin–torsion coupling
parameters. Following [51], we continue to study the influence of the axial pseudovector
torsion field (3)Tkl

i on physical matters, and assume that the metric of spacetime is flat,
whereas possible post-Riemannian deviations of the spacetime geometry are small.

As a result, the connection (3) reduces to the contortion, Γkj
i = −Kkj

i = 1
2
(3)Tkj

i, and
by combining (1) and (8), we find (for the curvature) that Rkli

j = 1
3 ηi

jn
[k∂l]Tn, for the small

post-Riemannian corrections. Then it is straightforward to verify that the Yang–Mills-type
gauge gravity Lagrangian (A3) is simplified to

L = h̄

{
− 1

4
fij f ij +

µ2

2
αiα

i − λ

2
(∂iα

i)2
}

. (11)

Here, fij = ∂iαj − ∂jαi is constructed from the rescaled axial torsion trace vector field

αi =
ℓρ

3

√
−Λ5

2κch̄
Ti, (12)

and the coupling constants (A4)–(A9) of the Poincaré gravity Lagrangian (A3) determine

µ2 = − 3µ1

ℓ2
ρΛ5

, λ =
3Λ4

2Λ5
. (13)

It is known that the particle spectrum of the Yang–Mills type Poincaré gauge gravity
model (A3) contains, in general, the so-called ghost and tachyon modes that may lead to the
loss of stability and unitarity of the theory. These issues were analyzed in References [58–60],
and the necessary stability conditions were derived that restrict the choices of the coupling
constants. Accordingly, we here specialize to the class of models with b3 = 2b1, which
for the spin 1 sector yields λ = 0, thus avoiding the stability and unitarity problems.
Furthermore, we assume that a2 = a1 − a0, which corresponds to the vanishing rest mass
µ = 0, in agreement with the estimates derived for the axial vector field [60,61] from the
high-energy physics phenomenology.

2.1. Interaction between Fermions and Axial Torsion

In accordance with the minimal coupling principle [29], the interaction between
the fermion field ψ and gauge fields is introduced via the spinor covariant derivative
Diψ, where

Di = ∂i −
iq

h̄
Ai +

i

4
Γi

αβσαβ, (14)

with the Lorentz group generators σαβ = iγ[αγβ] constructed from the Dirac matrices γα.
As a result, the dynamics of the spinor field coupled with the gauge fields on the Minkowski
flat metric background is given by the Lagrangian

LD =
ih̄

2

{
ψγi∂iψ − (∂iψ)γ

iψ
}
− mcψψ + qAiψγiψ +

3
4

h̄χαiψγiγ5ψ. (15)
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Here, we used the identity γµσαβ + σαβγµ = − 2ǫµναβγνγ5 and introduced

χ =
1
ℓρ

√
2κch̄

−Λ5
. (16)

Thereby, the axial pseudovector torsion field naturally couples to the spinor axial current
jif = ψγiγ5ψ or to the spin and helicity of the Dirac fermion. By recalling the definition of
the Planck length ℓPl, we can recast (16) into

χ =
ℓPl

ℓρ

√
16π

−Λ5
. (17)

which demonstrates that the spin–torsion coupling constant χ is very small, provided we
assume that the characteristic length of the Poincaré gauge gravity is much larger than the
Planck scale, ℓρ ≫ ℓPl.

2.2. Interaction between the Electromagnetic Field and Axial Torsion

Following Pradhan et al. [48–50], the interaction of the axial torsion and the elec-
tromagnetic field is derived from the standard Maxwell–Lorentz Lagrangian when the
ordinary derivatives are replaced by covariant ones. An apparent breaking of the U(1)
gauge invariance can be fixed by the modified Stueckelberg method [62]. Together with the
dynamical Lagrangian for the axial vector field (11) and the fermion sector terms (15), the
total Lagrangian for the torsion field interacting with the spin of the matter sources then
reads [49]

L = − 1
4

√
ε0

µ0
FijF

ij +
ih̄

2

{
ψγi∂iψ − (∂iψ)γ

iψ
}
− mcψψ + qAiψγiψ

+ h̄
{
− 1

4
fij f ij +

µ2

2
α2 − λ

2
(∂α)2

}
+

3
4

h̄χαiψγiγ5ψ − χ

√
ε0

µ0
αiη

ijkl Aj∂k Al , (18)

where ε0 and µ0 are the electric and magnetic constants of the vacuum. The axial vector
torsion is thereby coupled to the axial current density of the electron and photon fields:

jif = ψγiγ5ψ, jib = ηijkl Aj∂k Al , (19)

where we explicitly have

Ai = {− φ, A}, αi = {− ϕ, α}. (20)

The quantization of the model (18) was analyzed in [51] and the static potential between
fermions (due to the exchange of the axial torsion) was computed.

2.3. The Electromagnetic Source of an Axial Vector Field

Let us consider the spin densities of the spinor and electromagnetic fields as the
sources of the axial vector field αi. The components of the axial currents (19) for fermions

and photon fields can be obtained by substituting Dirac bispinors ψ =

(
u
v

)
into

Equation (19).

jif = −{(u∗v + v∗u)/c, (u∗
σu + v∗σv)}, jib =

1
c
{A · B, (E × A + φB)}. (21)

2.4. Field Equations

Neglecting the fermion sector, let us derive the field equations for the Lagrangian (18).
Technically, we need to make variations with respect to the axial torsion field αi and the
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electromagnetic field potential Ai. The corresponding Euler–Lagrange equation δL/δαi = 0
for the torsion reads:

− ∂j f ij + µ2αi + λ∂i(∂α) + χ

√
ε0

µ0
ηijkl Aj∂k Al = 0. (22)

Introducing the “electric” and “magnetic” components of the torsion variable by means of

Ea = fa0, Ba =
1
2

ǫabc fbc, a, b = 1, 2, 3, (23)

along with the usual definitions of the electric and magnetic fields

Ea = Fa0, Ba =
1
2

ǫabcFbc, a, b = 1, 2, 3, (24)

we recast (22) into the three-dimensional form:

∇ · E − µ2 ϕ − λ∂t(∂α) = − χ

µ0
A · B, (25)

∇×B− 1
c2 ∂tE + µ2

α + λ∇(∂α) = − χε0(φB + E × A). (26)

In a similar way, we derived the modified Maxwell equations as the Euler–Lagrange
equation δL/δAi = 0:

− ∂jF
ij +

χ

2
ηijkl Aj fkl − χ ηijklαjFkl = 0. (27)

An immediate observation is in order. Since ∂i∂jF
ij = 0 identically (symmetric lower

indices contracted with the antisymmetric upper indices), by taking the divergence ∂i of the
field Equation (22) (in the special class of stable and unitary models under consideration
with λ = 0 and µ2 = 0) and (27), we derive

ηijkl FijFkl = 0, ηijkl Fij fkl = 0, (28)

respectively. Making use of (23) and (24), we find that only crossed-field configurations are
actually allowed:

E · B = 0, E ·B+ E · B = 0. (29)

In particular, this includes wave configurations.
By making use of (20), (23), and (24), we rewrite the inhomogeneous Maxwell

Equation (27) in the three-dimensional form:

∇ · E = 2χc α · B − χc A ·B, (30)

∇× B − 1
c2 ∂tE =

2χ

c
(ϕB + E × α)− χ

c
(φB+ E × A). (31)

As usual, we have to add the homogeneous Maxwell system,

∇ · B = 0, (32)

∇× E + ∂tB = 0. (33)

3. Influence of Axial Torsion on Electromagnetic Wave

Here, we focus on the analysis of the dynamics of the electromagnetic field under the
action of the background axial torsion, whereas the full coupled system will be considered
elsewhere. Among the possible background configurations, of special interest are the cases
of the uniform homogeneous field and the wave configurations. The uniform background
field may arise on macroscopic scales, mimicking a distinguished cosmic frame violating
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the Lorentz symmetry, similar to the mechanisms discussed in [63–66]. It seems natural to
turn to the case of the uniform axial torsion background that was extensively considered in
earlier literature [28,60,61]

3.1. The Case of the Uniform External Axial Torsion Field

Assuming the uniform axial torsion field, when the components αi = {− ϕ, α} are
constant in time and do not change in space, we can solve Maxwell’s equations for the
plane wave ansatz

E = E0e−iωt+ik·r , B = B0e−iωt+ik·r . (34)

Substituting this into the homogeneous system, (32) and (33), we derive k · B = 0, and

B =
k × E

ω
, (35)

and making use of this in (31), we obtain the algebraic equation

k × (k × E) +
ω2

c2 E + i
2χ

c
(ϕk − ωα)× E = 0. (36)

Evaluating the determinant, we find the dispersion relation

(
ω2

c2 − k2
)2

ω2

c2 −
(

ω2

c2 − k2
)

u2 − (ku)2 = 0. (37)

Here we denoted
u :=

2χ

c
(ϕk − ωα), (38)

whereas k2 = k · k, u2 = u · u, and (ku) = k · u. It is worthwhile to notice that, similar to
the wave in a vacuum, the magnetic field is orthogonal to the electric field and the wave
vector,

B · E = 0, B · k = 0, (39)

which follows from (35). However, the electric field is not orthogonal to the wave vector, in
general,

ik · E = 2χc α · B =
2χc

ω
α · (k × E), (40)

which is derived by substituting the plane wave ansatz (34) into the inhomogeneous
Equation (30); this is also a direct consequence of (36).

Special case 1. Assuming ϕ 6= 0, α = 0, from (37), we find a simpler dispersion
relation (

ω2

c2 − k2
)2

−
(

2χ

c

)2

ϕ2k2 = 0. (41)

This can be immediately recast into

ω2

c2 = k · k ± 2χ

c
ϕ
√

k · k. (42)

The second term on the right-hand side describes a deformation of the light cone under the
influence of the torsion component ϕ.

Special case 2. Assuming ϕ = 0, α 6= 0, the general result (37) reduces to

(
ω2

c2 − k2
)2

− (2χ)2
[(

ω2

c2 − k2
)

α2 + (kα)2
]
= 0. (43)

Here, α2 = α · α, and (kα) = k · α. The resulting dispersion relation can be straightforwardly
simplified into
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ω2

c2 = k · k + 2χ2
α · α ± 2χ

√
χ2(α · α)2 + (k · α)2 = 0. (44)

3.2. Rotation of the Polarization Plane

Without loss of generality, one can assume that the electromagnetic wave propagates
along the z-axis, in other words, we take k = (0, 0, kz). It is more convenient to analyze the
two special cases separately. In the first case (ϕ 6= 0, α = 0), the dispersion relation (42)
yields two values for the wave vector,

kz = k± =
ω ± χϕ

c
, (45)

in the leading order of the small coupling constant χ. Hence, there are two independent
waves propagating along z with two different phase velocities. As a result, after extracting
the corresponding amplitudes E± for the electric field from the algebraic Equation (36), we
find the solution

E = E+e−iωt+ik+z e+ + E−e−iωt+ik−z e− , (46)

where we denote the combinations of the basis vectors

e± =
ex ∓ iey

2
. (47)

Therefore, from the point of view of physics, the solution (46) describes the superposition
of the right-hand (counter-clockwise) circularly polarized and the left-hand (clockwise)
circularly polarized waves.

Recalling that the linearly polarized wave arises as the sum of the right-hand and
left-hand circular waves with equal amplitudes, E+ = E−, we then obtain the real solution

E = E0 cos[ω(t − z/c)]
{

cos(χϕz/c) ex − sin(χϕz/c) ey

}
. (48)

Thus, we recover the Faraday effect when the polarization vector continuously rotates with
the propagation of the plane wave. The polarization rotation angle γ, see Figure 1, from
the initial point z = 0 until the point z = h is determined by

γ =
χϕh

c
. (49)

Figure 1. Faraday effect of polarization rotation under the action of uniform axial torsion.

For the second case of the axial torsion field configuration (ϕ = 0, α 6= 0), the form of
the solution depends on the relative orientation of the α with respect to the wave vector of
the electromagnetic wave k. Quite generally, given the direction of the wave propagation,
we can decompose α = α|| + α⊥ into the longitudinal and transversal projections on the
wave vector k and the plane orthogonal to it. Accordingly, we derive the solution for the
real electric field of the linearly polarized electromagnetic plane wave, to the first order in
the interaction constant χ:
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E = E0 cos[ω(t − z/c)]
{

cos(χα||z) ex − sin(χα||z) ey

}

− 2χα⊥c

ω
E0 sin[ω(t − z/c)] sin(χα||z + φ0) ez . (50)

Since the wave propagates along the z-axis, we have k · α = kzα||, and

α|| = ez · α = α cos θ, α⊥ = α sin θ, (51)

and cos φ0 = ex · α⊥ measures the angle between the projection α⊥ and the basis vector ex.
Obviously, by choosing the coordinate frame appropriately, we can always make φ0 = 0.
It is worthwhile to note that, in accordance with (40), the electric field has a nontrivial
component along the wave vector and the third term in (50) vanishes only when the wave
propagates along the axial torsion α. In that case, the polarization rotation angle

γ = χα||h = χα cos θh (52)

from the initial point z = 0 to the endpoint z = h is maximal. However, when the axial
vector field is orthogonal to the direction of propagation of the electromagnetic wave
α ⊥ k, there will be no rotation of the polarization plane. This generalized Faraday effect is
supported by the solution of the dispersion Equation (43),

kz = k± =
ω

c
± χα|| =

ω

c
± χα cos θ, (53)

in the leading order of the small coupling constant χ, which gives rise to the two waves
traveling with two different phase velocities.

4. Discussion and Conclusions

The search for exotic new forces and interactions generated by the spin of matter
particles, fields, and continuous media has a long history. Since the corresponding spin–
torsion coupling constant χ is very small, the detection of such new forces becomes a
challenging issue and requires high-precision measurements. On the other hand, the new
fields should be truly highly penetrating.

Taking into account that optical experiments are among the most accurate ones, the
analysis of possible optical effects of the axial vector torsion field appears to be quite
promising. Here, the classical dynamics of the axial vector field were studied in the
framework of the Yang–Mills type Poincaré gravity model with a focus on the interaction
with the electromagnetic field. We derived the dynamical equations for the axial vector
torsion field, (25) and (26), and identified the source of the “electric” component of the
torsion variable with the helicity density of the electromagnetic field ∼ A · B, which
characterizes non-trivial topological properties of the field configuration, whereas the
“magnetic” component of the torsion variable is generated by the spin density of the
electromagnetic field.

Continuing the earlier studies of the spin–torsion effects in the fermion sector [24–26],
we here turn to the boson sector. Maxwell’s equations are modified (30)–(33) in the presence
of the axial torsion field. The analysis of the propagation of electromagnetic waves under the
action of the axial vector torsion field reveals the Faraday effect of the rotation of the wave’s
polarization and the angle of rotation is determined by the coupling constant, the magnitude
of the axial vector torsion field and the travel distance: γ = χϕh

c or γ = χα||h. This is
consistent with the similar effect arising due to the Lorentz symmetry violation [63,64] or
due to the action of the pseudoscalar axion [65,66].

Compared to earlier literature that focused on the evaluation of the spin–spin inter-
action potential [20,30,34,42,43,48,49,51], the results obtained provide a qualitatively new
approach to the search for possible manifestations of the spin–torsion coupling with the
help of the optical polarization methods. When discussing the most general model of the
interacting electromagnetic field and propagating axial torsion field [67,68], one has to pay
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special attention to the acausal (i.e., superluminal propagation) anomalies. In agreement
with the conclusions of [67,68], the class of models under consideration with b3 = 2b1
yields λ = 0 for the axial pseudovector field, and so the stability, unitarity, and causality
issues are safely avoided.

Assuming the cosmic nature of the background axial torsion, we can apply the results
obtained in the astrophysical situation, and analyze the distribution over the sky sphere of
the polarization of radiation, coming from distant radio galaxies. Then taking the observa-
tional data collected in Table I of Reference [65], and repeating verbatim the computations
by replacing the Lorentz-violating parameter with the axial torsion pseudovector, we estab-
lish the strong bounds on the torsion’s magnitude: |T| . 8.7 × 10−27 m−1. This turns out to
be significantly lower than the limits found from the analysis of the spin–torsion coupling
effects in the fermion sector [12,24–29].
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Appendix A. Poincaré Gauge Gravity Dynamics

In the literature, the quadratic Poincaré gravity theories are often formulated in terms
of the standard tensor objects, which are not decomposed into irreducible parts. As usual,
we introduce the Ricci tensor and the co-Ricci tensor as

Rij := Rkij
k, Rij :=

1
2

Rklm
i ηklmj, (A1)

from which the curvature scalar and pseudoscalar arise naturally as the traces

R = gijRij = Rij
ji, R = gijR

ij =
1
2

Rijkl ηijkl . (A2)

We consider the general quadratic model with the Yang–Mills type Lagrangian that contains
all possible quadratic invariants of the torsion and the curvature:

L = − 1
2κc

{
a0R + a0R + 2λ0

+ a1 Tkl
i Tkl

i + a2 Ti Ti + a3 Tkl
i Ti

kl

+ a1 ηklmn Tkli Tmn
i + a2 ηklmn Tklm Tn

+ ℓ2
ρ

(
b1 Rijkl R

ijkl + b2 Rijkl R
klij + b3 Rijkl R

ikjl

+ b4 RijR
ij + b5 RijR

ji + b6 R2

+ b1 ηklmn RklijRmn
ij + b2 ηklmn Rkl Rmn

+ b3 ηklmn Rklm
i Rni + b4 ηklmn Rklmn R

)}
. (A3)

Here, κ = 8πG
c4 is Einstein’s gravitational constant with the dimension of [κc] =s kg−1.

G = 6.67 × 10−11 m3 kg−1 s−2 is Newton’s gravitational constant. The speed of light:
c = 2.9 × 108 m/s. For completeness, we include the cosmological term λ0.
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Besides the linear “Hilbert type” part characterized by a0 and a0, the Lagrangian (A3)
contains several additional coupling constants, which fix the structure of the “Yang–Mills
type” part: a1, a2, a3, a1, a2, b1, · · · , b6, b1, · · · , b4, and ℓ2

ρ. The coupling constants aI , aI , bI ,
and bI are dimensionless, whereas the dimension [ℓ2

ρ] = [area] so that [ℓ2
ρ/κc] = [h̄].

The analysis of the particle spectrum for the quadratic model (A3) reveals that the
dynamics of gravitational modes in different JP (spinparity) sectors are determined by the
following combinations of the coupling constants: 2± sector

Λ1 = 4(b1 + b2) + 2b3 + b4 + b5, Λ2 = 4b1 + b3, (A4)

0± sector

Λ3 = 4(b1 + b2) + 2b3 + 4(b4 + b5) + 12b6, Λ4 = 4b1 − 2b3, (A5)

and 1± sector

Λ5 = 4(b1 − b2) + b4 − b5, Λ6 = 4b1 + b3 + 2b4, (A6)

Λ5 = 4(b2 − 2b3), Λ6 = − 4(b2 + 3b4), (A7)

whereas the mass terms are specified by

µ1 = − a0 + a1 − a2, µ2 = − 2a0 +
2a1 + a2 + 3a3

4
, (A8)

µ3 = − a0 −
2a1 + a2

4
, µ1 =

8
3
(4a1 + 3a2 − 2a0). (A9)
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Abstract: Two of the major open questions in particle physics are: (1) Why do the elementary
fermionic particles that are so far observed have such low mass-energy compared to the Planck
energy scale? (2) What mechanical energy may be counterbalancing the divergent electrostatic
and strong force energies of point-like charged fermions in the vicinity of the Planck scale? In this
paper, using a hitherto unrecognised mechanism derived from the non-linear amelioration of the
Dirac equation known as the Hehl–Datta equation within the Einstein–Cartan–Sciama–Kibble (ECSK)
extension of general relativity, we present detailed numerical estimates suggesting that the mechanical
energy arising from the gravitationally coupled self-interaction in the ECSK theory can address both
of these questions in tandem.

Keywords: Einstein–Cartan gravity; Hehl–Datta equation; ultraviolet divergence; renormalisation;
modified gravity; quantum electrodynamics; hierarchy problem; torsion; spinors

1. Introduction

For over a century, Einstein’s theory of gravity has provided remarkably accurate and precise
predictions for the behaviour of macroscopic bodies within our cosmos. For the elementary particles in
the quantum realm, however, Einstein–Cartan theory of gravity may be more appropriate, because it
incorporates spinors and associated torsion within a covariant description [1,2]. For this reason
there has been considerable interest in Einstein–Cartan theory, in the light of the field equations
proposed by Sciama [3] and Kibble [4]. For example, in a series of papers Poplawski has argued that
Einstein–Cartan–Sciama–Kibble (ECSK) theory of gravity [5] solves many longstanding problems in
physics [6–9]. His concern has been to avoid singularities endemic in general relativity by proposing
that our observed universe is perhaps a black hole within a larger universe [7]. Our concern, on the
other hand, is to point out using numerical estimates that ECSK theory also offers solutions to two
longstanding problems in particle physics.

The first problem we address here concerns the well known fact that in the limit of vanishing
radii (or point limit) the electrostatic and strong force self-energies of point-like fermions become
divergent. We will show, however, that torsion contributions within the ECSK theory resolves this
difficulty as well, at least numerically, by counterbalancing the divergent electrostatic and strong force
energy densities near the Planck scale. In fact, the negative torsion energy associated with the spin
angular momentum of elementary fermions may well be the long sought after mechanical energy
that counteracts the divergent positive energies stemming from their electrostatic and strong nuclear
charges. As a result of this counterbalancing, however, our suggestion does not have anything to do
with high energy physics.

The second of these problems can be traced back to the fact that gravity is a considerably weaker
“force” compared to the other forces. When Newton’s gravitational constant is combined with the
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speed of light and Planck’s constant, one arrives at the energy scale of ∼1019 GeV, which is some
17 orders of magnitude larger than the heaviest known elementary fermion (the top quark) observed
at the mass-energy of ∼172 GeV. Thus, there is a difference of some 17 orders of magnitude between
the electroweak scale and the Planck scale. There have been many attempts to explain this difference,
but none is as simple as our explanation based on the torsion contributions within the ECSK theory.

Now one of the reasons why ECSK theory is not widely accepted as a viable theory of gravity
is the lack of any experimental evidence for the gravitational torsion. However, as reviewed in [10],
gravitational torsion appears to be entirely confined to elementary fermions, and therefore it is not
directly detectable. Elementary fermions are at the heart of all matter and can be viewed as defects in
spacetime associated with torsion. Thus, as we have argued elsewhere [11], existence of matter itself
may be taken as a proof that gravitational torsion exists, albeit only inside of matter, and therefore it
does not propagate. In other words, detection of matter itself may be taken as an indirect detection of
gravitational torsion. As we will see, our results below lend considerable support to this possibility.

2. Evaluation of the Charged Fermionic Self-Energy within ECSK Theory

The ECSK theory of gravity is an extension of general relativity allowing spacetime to have torsion
in addition to curvature, where torsion is determined by the density of intrinsic angular momentum,
reminiscent of the quantum-mechanical spin [1–9,12–18]. As in general relativity, the gravitational
Lagrangian density in the ECSK theory is proportional to the curvature scalar. Unlike in general
relativity, the affine connection

Γ k
i j = ω

µ
i νek

µeν
j + ek

µ∂ie
µ
j (1)

is not restricted to be symmetric, although metric compatibility conditions are retained, defined by the
requirements that the covariant derivatives of the tetrad fields e

µ
k and the Minkowski metric vanish,

implying the antisymmetry ω
µν

i = −ω
νµ

i of the spin connection [19]. The antisymmetric part of the
connection, namely

Sk
ij = Γ k

[i j] = ∂ie
k
j − ∂je

k
i + ω k

i λeλ
j − ω k

j λeλ
i (2)

(i.e., the torsion tensor), is then regarded as a dynamical variable analogous to the metric tensor
gij in general relativity. Consequently, variation of the total action for the gravitational field and
matter with respect to the metric tensor gives Einstein-type field equations that relate the curvature to
the dynamical energy-momentum tensor Tij = (2/

√−g)δL/δgij, where L is the matter Lagrangian
density. On the other hand, variation of the total action with respect to the torsion tensor gives the
Cartan equations for the spin tensor of matter [5]:

sijk =
1
κ

S[ijk] , where κ =
8πG

c4 . (3)

Thus, ECSK theory of gravity extends general relativity to include intrinsic spin of matter,
with fermionic fields such as those of quarks and leptons providing natural sources of torsion. Torsion,
in turn, modifies the Dirac equation for elementary fermions by adding to it a cubic term in the spinor
fields, as observed by Kibble, Hehl and Datta [1,4,5].

It is this nonlinear Hehl–Datta equation that provides the theoretical background for our
proposal. The cubic term in this equation corresponds to an axial-axial self-interaction in the matter
Lagrangian, which, among other things, generates a spinor-dependent vacuum-energy term in the
energy-momentum tensor (see, for example, Reference [15]). The torsion tensor Sk

ij appears in the
matter Lagrangian via covariant derivative of a Dirac spinor with respect to the affine connection.
The spin tensor for the Dirac spinor ψ can then be derived [5], and turns out to be totally antisymmetric:

sijk = − ih̄c

4
ψ̄γ[iγjγk]ψ, (4)
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where ψ̄ ≡ ψ†γ0 := (ψ∗
1 , ψ∗

2 , −ψ∗
3 , −ψ∗

4 ) is the Dirac adjoint of ψ and γi are the Dirac matrices:
γ(iγj) = 2gij. The Cartan Equations (3) render the torsion tensor to be quadratic in spinor fields.
Substituting it into the Dirac equation in the Riemann–Cartan spacetime with metric signature
(+, −, −, −) gives the cubic Hehl–Datta equation [1,4,5]:

ih̄ γkψ:k = mc ψ +
3κh̄2c

8

(
ψ̄γ5γkψ

)
γ5γkψ, (5)

where the colon denotes a general-relativistic covariant derivative with respect to the Christoffel
symbols, and m is the mass of the spinor. The Hehl–Datta Equation (5) and its adjoint can be obtained
by varying the following action with respect to ψ̄ and ψ, respectively, without varying it with respect
to the metric tensor or the torsion tensor [15]:

I =

∫
d4x

√
−g

{
− 1

κ
R + ih̄c(ψ̄γkψ:k − ψ̄:kγkψ)− mc2ψ̄ψ − 3κh̄2c2

8
(ψ̄γ5γkψ)(ψ̄γ5γkψ)

}
. (6)

The last term in this action corresponds to the effective axial-axial, self-interaction mentioned above:

LAA = −
√
−g

3κh̄2c2

8
(ψ̄γ5γkψ)(ψ̄γ5γkψ). (7)

This self-interaction term is not renormalisable. It is an effective Lagrangian density in which
only the metric and spinor fields are dynamical variables. The original Lagrangian density for a
Dirac field in which the torsion tensor is also a dynamical variable (giving the Hehl–Datta equation),
is renormalisable, since it is quadratic in spinor fields. As we will see, renormalisation may not
be required if ECSK gravity turns out to be what is realised in Nature, because it gives physical
justification for the counter terms.

Before proceeding further we note that the above action is not the most general possible action
within the present context. In addition to the axial-axial term, an axial-vector and a vector-vector term
can be added to the action, albeit as non-minimal couplings (see, for example, Reference [17]). However,
it has been argued in Reference [15] that minimal coupling is the most natural coupling of fermions to
gravity because non-minimal couplings are sourced by components of the torsion that do not appear
naturally in the models of spinning matter. For this reason we will confine our treatment to the minimal
coupling of fermions to gravity and the corresponding Hehl–Datta equation, while recognizing that
strictly speaking our neglect of non-minimal couplings amounts to an approximation, albeit a rather
good approximation, at least as far as electrodynamics is concerned.

2.1. S-Matrix Evaluation of the Charged Fermionic Self-Energy within QED

It is instructive for our purposes to first review in this subsection the standard treatment of
the charged fermionic self-energy within QED, ignoring the ECSK gravity. To this end, recall that
the canonical evaluation of the electron self-energy was performed by Weisskopf in 1939 [20],
which revealed that in general the self-energy of an electron is logarithmically divergent. An S-matrix
evaluation for the electromagnetic mass, δm, confirms Weisskopf’s result [21–23]. In the units of
h̄ = c = 1 and α = e2/4π, together with a high-energy cutoff Λ, this electromagnetic mass can be
expressed as

δm =
3α m

2π
ln
(

Λ

m

)
(for Λ >> m), (8)

where “ln” stands for the natural logarithm. Let us investigate this result using simple numerical
analysis. What happens, for example, if we use Planck mass for the cutoff? This should be a reasonable
assumption since the Planck scale can be considered a limiting scale in the same fashion as h̄ and c are
considered. Then, for an electron we have
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δme =
3α me

2π
ln
(

mP

me

)
≈ 0.1795 me. (9)

This suggests that the electromagnetic mass-energy of an electron in this case would be about
18 percent of the total rest mass-energy. That does not seem unreasonable, but there is no way to
confirm that it is correct. Moreover, according to some views, if the electromagnetic mass is truly
infinite then there should be a compensating negative infinite mechanical mass that produces the
observed positive rest mass. On the other hand, Weinberg in Reference [22] gives a renormalised
expression for the “complete self-energy function” as

Σ∗
order e2(p) = Σ∗

1 loop(p)− (Z2 − 1)(i/p + mx) + Z2 δmx

=
−2π2e2

(2π)4

∫
1

0

dx

{
[i(1 − x)/p + 2mx] ln

(
m2

x(1 − x)

p2x(1 − x) + m2
xx

)

− mx[1 + x] ln
(

1 − x

x2

)

− (i/p + mx)

[
(1 − x) ln

(
1 − x

x2

)
− 2(1 − x2)

x

]}
. (10)

The middle term in this integrand represents the renormalised electromagnetic mass so that for
an electron it gives

δme renorm =
−2π2e2

(2π)4

∫ 1

0
dx

{
−mx[1 + x] ln

(
1 − x

x2

)}
=

3α me

8π
≈ 0.0008711 me. (11)

In this case the electromagnetic mass is considerably less than 1 percent of the total rest mass.
That indicates that the cutoff should be very close to the rest mass of the electron. Thus we seem to
have two conflicting results. The conflict can be resolved by realizing that the mass in the equations
leading to these results was plugged in by hand in an ad hoc manner. Moreover, from a quantum
field theory and Feynman diagram perspective, it is easy to see that the mass comes in via the fermion
propagator. Therefore by definition it is off-mass-shell, since the propagator represents an internal
virtual line. It can thus have any value. In other words, it is really a variable. For the time being we
will treat it as a variable and use the relation m = 1/r. Now that the apparent conflict is resolved,
in what follows we focus on the renormalisation process.

It is easy to see that, in the rest frame of the particle in question with i/p = −m, the renormalised
complete self-energy function in Equation (10) is identically zero. That may seem odd, since one would
expect that in the rest frame the self-energy would be equal to the rest mass-energy. It really just means
that the propagator is zero, as it should be for the rest frame. Thanks to the Hehl–Datta equation,
we have an additional term in the Lagrangian to consider in the renormalisation process. In our view,
this additional term represents the mechanical (bare) mass, since it is negative with respects to the
observed mass. Thus, in the renormalised self-energy function in Equation (10), the counter terms
are superfluous since the torsion term from the Hehl–Data equation is the counter term! Moreover,
we will see later that the rest mass is produced in a natural way from energy considerations generated
only from the physical constants and geometry.

Using m = 1/r, we can now put the renormalised electromagnetic mass equation in a more
familiar form for electromagnetic energy,

δmrenorm =
3αm

8π
=

3α

8πr
=

3 e2

32π2 r
. (12)
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However, δm in this expression still goes to infinity as r → 0. Perhaps a Planck length cutoff
may be used to tame this infinity. We will soon see that r does take on a finite value very close to
Planck length. Now we know from experiments that the radius of an electron is likely to be less than
10−22 m [24]. Substituting that bound for r gives

δm =
3 e2

32π2 (10−22m)
' 1.719 × 103 GeV, (13)

which, although finite, is still a very large electromagnetic energy contribution, with the actual value
likely to be even greater. Thus, according to this estimate, the electromagnetic mass is going to be very
large near the Planck length and will have to be compensated for in order to recover the observed rest
mass of a charged fermion. The compensation will have to be negative mass-energy relative to the
positive electromagnetic energy:

mobs = −X + δmR = −X +
3 α

8πrB
−→ −X

r
+

3 α

8πrB
. (14)

We suspect that the unknown variable X might be related to the Hehl–Datta self-interaction
term (7) because that term varies as 1/rx. Our goal then is to investigate this possibility.

To that end, note that the full second order S-matrix calculation within QED worked out by
Milonni [21] gives

S
(2)
f i (E) = −i(2π)4δ4(p f − pi)

√
m2

EiE f

1
r3 ū(p f , s f )Σ(pi)u(pi, si), (15)

where Σ(pi) = −ie2
∫

d4k

(2π)4

gµν

k2 + iǫ
γµ 1

/pi − /k − m + iǫ
γν. (16)

Milonni’s evaluation of Σ(pi) produces the result for δm given in Equation (8). However, we doubt
this evaluation is appropriate since, as we noted previously, the mass comes in via the propagator and
therefore it is off mass shell. We will not use it in our evaluation.

2.2. S-Matrix Evaluation for the Charged Fermionic Self-Energy within Einstein–Cartan Gravity

Building on the results of the previous subsection, we now evaluate the self-energy S-matrix
process including the contribution from ECSK gravity. Our calculation will be different from the
old way of calculating self-energy in the manner of Weisskopf because in our approach we have the
gravitational torsion term as a built-in counter-term. The following calculations will be somewhat
unconventional as there is no Feynman diagram for evaluation in the rest frame. We begin with our
complete QED Lagrangian for free particles:

LQED√−g
= ih̄c ψ̄γµ∂µψ + e ψ̄γµ Aµψ − 1

4
FµνFµν − mc2ψ̄ψ − 3κh̄2c2

8
(ψ̄γ5γµψ)(ψ̄γ5γµψ). (17)

Here the last term is from the Hehl–Datta equation for gravitational torsion via spin density
squared. We take it to be a self-interaction involving intrinsic spin. In other words, the spin interacts
with itself much like the charge interacts with the field it creates. For our analysis of a charged lepton in
the rest frame, only three terms are applicable because the derivative term is zero and normal gravity
is negligible. The self-interaction Hamiltonian density for the first term with h̄ = c = 1 and (x) = (x, t)

is then
hI(x)1 = e ψ̄(x)γµ Aµψ(x). (18)

The next self-interaction term is
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hI(x)2 = − 3κ

8
(ψ̄(x)γ5γkψ(x))(ψ̄(x)γ5γkψ(x)). (19)

For our purposes it is sufficient to evaluate the S-matrix in the rest frame, where the quantities
ψ̄(x)γ5γkψ(x) and ψ̄(x)γ5γkψ(x) appearing on the RHS are nonzero even in the rest frame because
the coupling between fermions and anti-fermions is an intermediate step in the self-interaction, as we
have shown in Equations (A14) and (A15) of Appendix B. Furthermore, as shown in Appendix B,
the first order S-matrix terms in the rest frame are now simplified to

S
(1)
f i (E1) = −it

α

r




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 . (20)

S
(1)
f i (E2) = it

3κ

8 r3




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 . (21)

On the other hand, for mψ̄ψ in the rest frame, applying Equation (A8) from Appendix B we have

S
(1)
f i (E3) = im

∫
d4x 〈 f | ψ̄(x)ψ(x) | i〉 = i

m r3 t

r3 ū f (m)ui(m) = i mt




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 . (22)

Equation (5) suggests that the sum of these three terms is equal to zero:

−it
α

r




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


+ it

3κ

8 r3




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


+ i mt




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 = 0. (23)

Consequently, we have
α

r
− 3κ

8 r3 = m. (24)

Reinstating h̄ and c we thus arrive at

αh̄c

r
− 3κ(h̄c)2

8 r3 = mc2. (25)

An identical result can be obtained also for the anti-fermion spinor, v(m), so that this equation
remains the same for both fermion and anti-fermion. In what follows we will use this S-matrix result
for our numerical approximations. From these results, after solving for r, it is evident that the complete
process is finite, without divergences. This suggests that the above is the correct S-matrix solution for
the fermion self-energy problem, with all other orders of the S-matrix expansion vanishing because
the genuine fermionic self-energy must naturally be evaluated only in the rest frame, with all other
contributions summing to zero. Any higher loop corrections in squared charge will be automatically
compensated by higher loop corrections from the squared spin.

It is also worth noting that without ameliorating the Dirac equation with a cubic term, the Dirac
equation would reduce for an electron to αh̄/re = mec, giving re = αh̄/(mec) ∼ 10−15 m,
where α = e2/(4πh̄c) is the fine structure constant. This is the classical electron radius. Experimental
evidence, however, suggests that electron radius is much smaller [24]. As we shall see, our calculations
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with the cubic term included predicts the electron radius to be of the order of 10−34 m, which is closer
to the Planck length. This may turn out to be the correct value of the electron radius.

Needless to say, what we have presented above is a derivation of Equation (25) within a theory that
may be viewed as a quantum field theory of Dirac fields in a Riemann–Cartan spacetime [4,5]. It can be
interpreted also as a theory of gravity-coupled self-interaction within standard general relativity [1,5].
However, any such generalization must necessarily reproduce the Hehl–Datta Equation (5) for single
fermions even at reasonably high energies, just as Dirac equation remains valid for single fermions at
high energies [18].

Finally, it is important to note here that, despite the appearance of four spinors in the interaction
term of Equation (6), it describes the self-interaction of a single fermion, of range ∼10−34 m, not mutual
interactions among the spins of four distinct fermions. That is to say, it does not describe a “spin
field” of some sort as a carrier of a new interaction [5]. If, however, one insists on interpreting the
interaction term in Equation (6) as describing interactions among four distinct fermions, then the
mass of the corresponding exchange boson would have to exceed 1015 GeV, which is evidently
quite unreasonable. Moreover, as we shall see in Section 3, this energy is a fictitious quantity and
therefore there is no justification for assuming some kind of a new torsion interaction between
different fermions. What is more, as we shall soon see, within our scheme any corrections due to
vacuum polarization are automatically compensated for in the production of electroweak mass-energy,
dictated by Equation (25) above.

2.3. Evaluation of Charged Fermionic Self-Energy by Dimensional Analysis

It is instructive to compare the results of the previous two subsections with the evaluation of
the charged fermionic self-energy using only dimensional analysis. To this end, we begin with the
following physically reasonable assumptions:

1. ECSK theory of gravity is the correct theory of spacetime for addressing the fermionic self-energy
problem since it allows the dimension-full gravitational constant, G, to enter elementary particle
physics in a natural manner.

2. Since experiments to date indicate that an electron is a point-like particle without any substructure
and put an upper bound of 10−22 meters on its radius, we assume that the radius of electron is
much less than that value.

3. We assume that the radial distance, r, on which the electromagnetic self-interaction depends is
the same radial distance on which the self-interaction arising from the ECSK gravity-induced
torsion spin density also depends.

Given these assumptions, we ask: What physical mechanism is responsible for the observed rest
mass mx of the elementary charged fermions? To answer this question we express the rest mass energy
in CGS units, and assume that it is at least partially1 electromagnetic in nature, so that it satisfies a
relation like

mxc2 ∼ e2

r
+ X, (26)

where the dimensionality of X is necessarily that of energy. However we already know that the value
of r < 10−15 m produces an energy greater than mxc2. Therefore X must be negative energy, giving

mxc2 ∼ e2

r
+ (−X). (27)

1 As is well known, assuming that the rest mass energy is entirely electromagnetic in nature leads to the classical radius of the
electron, which has been ruled out by experiments. Our assumption of it being at least partially electromagnetic in nature is
quite reasonable.
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Now, since fermions have spin h̄/2, it is reasonable to assume that it is involved in a
mechanical-like energy resulting from the spin interacting with itself analogous to charge, so that we
may have a relation like

− X ∼ −
(

h̄

2

)2 1
r

. (28)

It is evident from this expression that what we have on its RHS is energy × mass × length = EML,
so we will have to divide out by mass and length to get the dimensions of energy, giving

− X ∼ −
(

h̄

2r

)2 1
M

, (29)

which in terms of the gravitational constant G ∼ L3/MT2 can be written as

− X ∼ −G

(
h̄

2r

)2

. (30)

The dimensions on the RHS of this expression now give us E × L3/T2, so we will have to cancel
out L3/T2. A natural candidate to accomplish that is the speed of light, c, giving

− X ∼ − G

c2r

(
h̄

2r

)2

= − G

r3

(
h̄

2c

)2

, (31)

provided we cancel out the extra L with 1/r. Thus, we now have the dimensions of energy on the RHS,
so that we finally have

mxc2 ∼ e2

rx
− G

r3
x

(
h̄

2c

)2

. (32)

This is the basic form of our central equation (apart from some numerical constants) which we
have derived also using two other methods in the previous subsections. Solving this equation for rx

with electron mass for mx gives a value of the order of 10−34 m. However, rather surprisingly, we also
found a solution for rx for the classical electron radius.

3. Particle Masses via Torsion Energy Contribution

We start with our S-matrix result for a charged fermion:

αh̄c

r
− 3πGh̄2

c2 r3 = mc2. (33)

The first term in Equation (33) diverges as r → 0. If we set r to Planck length we obtain

αh̄c

lP
≈ 8.909 × 1016 GeV, (34)

which is close to Planck energy. Although finite, this is still an extremely large energy. Such a large
energy for charged leptons is never realised in Nature. A natural question then is: Is there a negative
mechanical energy that cancels out most of this energy to produce the observed rest mass-energy
of leptons? We believe the answer lies in the second term of Equation (33), which—as we saw
above—arises from the non-linear amelioration of the Dirac equation within ECSK theory. Indeed,
if we again set the Planck length for r in the second term of Equation (33), then we obtain

− 3π Gh̄2

2 c2 (lP)3 ≈ − 5.773 × 1019 GeV. (35)
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Comparing this value with the electrostatic energy at the Planck length estimated in Equation (34)
we see at once that the torsion-induced mechanical energy in Equation (35) can indeed counterbalance
the huge electrostatic energy. This is a surprising observation, considering the widespread belief
that “the numerical differences which arise [between GR and ECSK theories] are normally very small,
so that the advantages of including torsion are entirely theoretical” [18].

Moving forward to our goal of numerical estimates, let us note that whenever terms quadratic
in spin happen to be negligible, then the ECSK theory is observationally indistinguishable from
general relativity. Therefore, for post-general-relativistic effects, the density of spin-squared has to be
comparable to the density of mass. The corresponding characteristic length scale, say for a nucleon,
is referred to as the Cartan or Einstein–Cartan radius [2,18], defined as

rCart ≈ (l2
P λC)

1
3 , (36)

where λC is the Compton wavelength of the nucleon. Now it has been noted by Poplawski [6–9,25,26]
that quantum field theory based on the Hehl–Datta equation may avert divergent integrals normally
encountered in calculating radiative corrections, by self-regulating propagators. Moreover, the multipole
expansion applied to Dirac fields within the ECSK theory shows that such fields cannot form singular,
point-like configurations because these configurations would violate the conservation law for the spin
density, and thus the Bianchi identities. These fields in fact describe non-singular particles whose spatial
dimensions are at least of the order of their Cartan radii, defined by the condition

ǫ ∼ κs2, (37)

where
√

s2 ∼ h̄c |ψ|2 is the spin density, ǫ ∼ mc2|ψ|2 is the rest energy density and |ψ|2 ∼ 1/r3 is
the probability density, giving the radius in Equation (36). Consequently, at the least the de Broglie
energy associated with the Cartan radius of a fermion (which is approximately 10−27 m for an electron)
may introduce an effective ultraviolet cutoff for it in quantum field theory in the ECKS spacetime.
The avoidance of divergences in radiative corrections in quantum fields may thus come from spacetime
torsion originating from intrinsic spin. Poplawski and others, however, took ǫ to be the mass-energy
density of the fermion to arrive at the Cartan radius Equation (36). It is easy to work out from the first
term of our Equation (33) that at the Cartan radius the electrostatic energy density for an electron is
still extremely large:

αh̄c

(10−27m)4 ≈ 1.440 × 1090 GeV m−3. (38)

For this reason it is not correct to identify ǫ with the rest mass-energy density, which is
≈ 5.1099 × 1077 GeV m−3 for an electron at the Cartan radius. The electrostatic energy density of
an electron is thus about thirteen orders of magnitude higher. Therefore ǫ is better identified with the
electrostatic energy density provided most of it is cancelled out.

If in Equation (33) we set the electrostatic energy appearing in its first term to be equal to the
spin squared energy induced by the self-interaction appearing in its second term and solve for r,
then we obtain

rt =

√
3π

α
lP , (39)

the value of which works out to be
rt ≈ 5.808 × 10−34 m . (40)

Thus, our rt is about 36 times larger than the Planck length, and, as we can see, it is a remarkably
simple constant in terms of the Planck length, lP, and the fine structure constant, α. According to
Equation (33), rt is the effective radius at which energy density due to spin density should completely
compensate the huge electrostatic energy seen in Equation (34). In our view, this is the correct Cartan
radius, at least for the charged leptons, and that may still provide a plausible mechanism for averting
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singularities, since it is still larger than the Planck length. It is important to note, however, that these
huge energy densities never actually occur in Nature, because according to our Equation (33) they are
automatically compensated. The physical mechanism described above is simply to enable extraction
of the radius rx for different charged fermions.

We can now use Equation (33) to solve for rx for the different charged leptons and anti-leptons
which leads us to the following formula for our numerical estimates:

αh̄c

rx
− 3 πGh̄2

c2 r3
x

= +mxc2 . (41)

As shown in the Appendix A below, we were able to find solutions for rx for the charged leptons
using arbitrary precision in Mathematica. The first in our results listed below is the solution for rt up
to 24 significant figures. Then, using the same precision for comparison, we list the results for re for an
electron, rµ for a muon and rτ for a tauon, along with the anti-fermions:

rt = 5.80838808109165274355010 × 10−34 m −→ 0.0 MeV ,

re− = re+ = 5.80838808109165274414872 × 10−34 m −→ 0.511 MeV ,

rµ− = rµ+ = 5.80838808109165286732523 × 10−34 m −→ 106 MeV ,

rτ− = rτ+ = 5.80838808109165482503366 × 10−34 m −→ 1777 MeV .

We should note that there is also a positive solution obtained for the reduced Compton wavelength
for these fermions in the form of

rx = α
h̄

mxc
. (42)

This is so because the spin density squared term for an electron becomes very small of order
10−38 MeV when rx is equal to that result so it can be considered effectively as zero. This solution for
fermion radius appears to have been ruled out by scattering experiments. However, while it is true that
no structure has been found via scattering experiments, there does seem to be some structure involving
the magnetic moment and zitterbewegung. The apparent conflict with the scattering experiments
can be resolved if there is a very small object for electric charge near Planck length, as our solution
indicates, that is “circulating” about the Compton wavelength. Then the scattering at high energies
can be understood as from that point-like object and the scattering at low energies can be understood
as from the Compton wavelength “size” due to the Coulomb field, with the Coulomb field “barrier”
near the Compton wavelength penetrated in the high energy scatterings.

Evidently, very minute changes in the radii are seen to cause large changes in the observed rest
mass-energies of the fermions. As the differences in the radii go larger, the resultant mass-energies
go higher, as one would expect. It seems extraordinary that Nature would subscribe to such tiny
differences resulting from a large number of significant figures, but that might explain why the
underlying relationship between the observed values of the masses of the elementary particles has
remained elusive so far. In addition to the possible reasons for this mentioned above, it is not
inconceivable that the difference between the spin energy density and the electrostatic energy density
radii with respect to rt arises due to purely geometrical factors. We also suspect that there may possibly
be some kind of symmetry breaking mechanism at work similar to the Higgs mechanism, and this
symmetry breaking results in the observed mass-energy generation.

As a consistency check, let us verify that the tiny length differences seen above vanish, ∆r → 0,
as the corresponding rest mass-energy differences tend to zero: ∆E → 0. To this end, we recast
Equation (41) for arbitrary rx in a form involving only rest mass-energy on the RHS as:

αh̄c

rx
− 3π l2

P h̄c

r3
x

= mxc2. (43)
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If we now set
A ≡ αh̄c and B ≡ 3π l2

P h̄c , (44)

then, with ∆E = mxc2 and setting rx = rt as the cancellation radius for which ∆E = 0, we obtain

rt =
√

B/A . (45)

This allows us to derive a general expression for rx when ∆E 6= 0:

A

rx
− B

r3
x
= ∆E. (46)

From this expression it is now easy to see that

lim
∆E→ 0

{(
A

rx
− B

r3
x

)
= ∆E

}
=

(√
A

3

√
B

−
√

A
3

√
B

)
ln

√
B/A

lP
= 0 =⇒ rx =

√
B/A = rt , (47)

and conversely, using Equation (45),

lim
rx → rt

{(
A

rx
− B

r3
x

)
= ∆E

}
=⇒ ∆E = 0 . (48)

Consequently, with ∆r ≡ | rt − rx|, we see from the above limits that ∆r → 0 as ∆E → 0,
and vice versa.

As a rough estimate, the calculation for the radius rq of elementary quarks can be performed in a
similar manner as that for charged leptons, since at such short distances the strong force reduces to
a Coulomb-like force. One must also factor-in the electrostatic energy, so that a relationship like the
following must be calculated, say, for the top quark:

9 αh̄c

4 rqx
+

αs h̄c

3 rqx
− 3πGh̄2

c2 r3
qx

= mtc
2 . (49)

Here αs is the appropriate strong force coupling (we use 0.1). Needless to say, a cancellation
radius different from that of the charged leptons should be calculated for comparison, by setting

9 αh̄c

4 rqt
+

αs h̄c

3 rqt
− 3πGh̄2

c2 r3
qt

= 0. (50)

A calculation of the radius for the top quark based on Equation (49) can be found in the
Appendix A and is ≈2.594 × 10−34m. We expect it to be only a very rough estimate of the actual
value of the radius. Since only one spin density is involved, the above calculation might be able to
approximate the behaviour of the quarks. The calculation of the radii rqx for the up and down quark
will probably be problematic, since their masses are not well known.

With regard to neutrinos, the self-energy function is very similar to that for charged leptons
with the Z boson replacing the photon and weak coupling replacing α. A rough calculation gives the
same order for the radius at ≈10−34 m. However, if this does not hold for the neutrino self-energy,
then the story is quite different because they would not have self-energy due to electric or colour
charge. That means that their rest mass-energy comes entirely from torsion energy due to intrinsic
spin. Solving that gives us a radius for electron neutrinos of the order of 10−26 m. However, the torsion
(spin-squared) self-energy is negative relative to the positive rest mass. We suspect that this means
that neutrinos could have anti-gravity properties [27]. The anti-gravity effect with normal matter for
single neutrinos is practically negligible but the cosmological implications could be large.
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4. Possible Solution of the Hierarchy Problem

As alluded to in the introduction, the Hierarchy Problem refers to the fact that gravitational
interaction is extremely weak compared to the other known interactions in Nature. One way to
appreciate this difference is by combining the Newton’s gravitational constant G with the reduced
Planck’s constant h̄ and the speed of light c. The resulting mass scale is the Planck mass, mP, which some
have speculated to be associated with the existence of smallest possible black holes [7]. If we compare
the Plank mass with the mass of the top quark (the heaviest known elementary particle),

mP =

√
h̄c

G
≈ 2.1765 × 10−8 kg ,

mt =
173.21 GeV

c2 ≈ 3.1197 × 10−25 kg ,

then we see that there is some 17 orders of magnitude difference between them. This illustrates the
enormous difference between the Planck scale and the electroweak scale. Many solutions have been
proposed to explain this difference, such as supersymmetry and large extra dimensions, but none has
been universally accepted, for one reason or another. Furthermore, recent experiments performed with
the Large Hadron Collider are gradually ruling out some of these proposals. Regardless of the nature
of any specific proposal, it is clear from the above values that predictions of numbers with at least
17 significant figures are necessary to successfully explain the difference between mP and mt.

We saw from our numerical demonstration in the previous section that within the ECSK theory
minute changes in length can induce sizable changes in the observed masses of elementary particles,
and that we do have numbers at our disposal with more than 17 significant figures for producing those
masses. Moreover, all length changes occurring in our demonstration are taking place close to the
Planck length. Thus, since we are “cancelling out” near the Planck length to obtain masses down to the
electroweak scale, ours is clearly a possible mechanism for resolving the Hierarchy Problem. We can
appreciate this fact by simplifying our central equation by setting h̄ = c = 1, which then reduces to

α

rx
− 3πG

r3
x

= mx . (51)

It is now easy to see from this equation that the observed mass-energy only depends on the
coupling constants and the radii (geometry). Moreover, it is confined entirely within a volume close to
the Planck volume, as we saw in our calculations in the previous section. Thus, we are led to

Planck Scale =⇒ Electroweak Scale.

In other words, there is no hierarchy problem in the ECSK theory, because Planck scale physics is
producing the electroweak scale physics in the form of the mass-energy of fermions as a byproduct of
the very geometry of spacetime.

Within the ECSK theory, which extends general relativity to include spin-induced torsion,
gravitational effects near micro scales are not necessarily weak. On the other hand, since torsion
is produced in the ECSK theory by the spin density of matter, it is confined to that matter, and thus is a
very short range effect, unlike the infinite range effect of Einstein’s gravity produced by mass-energy.
In fact, the torsion field falls off as 1/r6, as shown in the calculations of Section 3, since it is produced
by spin density squared, confined to the matter distribution [9].

To compare the strengths of gravitational and torsion effects at various scales, we may define
a mass-dependent dimensionless gravitational coupling constant, Gm2/(h̄c), and evaluate it for the
electron, top quark and Planck masses:
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αGe
=

Gm2
e

h̄c
≈ 1.7517 × 10−45,

αGt
=

Gm2
t

h̄c
≈ 1.1620 × 10−36,

αGP
=

Gm2
P

h̄c
= 1 ,

αe =
e2

4πh̄c
≃ 7.2973 × 10−3.

Here αe is the electromagnetic coupling constant, or the fine structure constant. From these
values we see that near the Planck scale the gravitational coupling is very strong compared to the
electromagnetic coupling. However, as we noted above and in Section 3, near the Planck scale torsion
effects due to spin density are also very strong, albeit with opposite polarity compared to that of
Einstein’s gravity, akin to a kind of “anti-gravity” effect of a very short range.

For our demonstration above we have used electrostatic energy density and spin density for
matter in a static approximation, for which the field equation within the ECSK theory reduces to
G00 = T00. A numerical estimate for G00 from the contributions of the electrostatic energy and spin
density parts of T00 at our cancellation-radius gives

G00
stat =

8πG

c4
αh̄c

r4
t

≈ +4.209 × 1062 m−2 (52)

and

G00
spin = −8πG

c4
3 πGh̄2

c2r6
t

≈ −4.209 × 1062 m−2. (53)

Evidently, these field strengths at the cancellation radius are quite large even for a single electron.
Fortunately they are never realised in Nature, because, as we can see, they cancel each other out
to produce G00

net = 0. On the other hand, if we use only the mass-energy density for electron at
the cancellation radius, then we obtain G00

mass ≈ 3.0674 × 1043 m−2, which is again some 19 orders of
magnitude off the mark. What is more, the latter field strength does not fall off as fast as that due
to the spin-induced torsion field. Thus, it is reasonable to conclude that without the cancellation of
divergent energies due to the spin self-interaction we have explored here, our universe would be
highly improbable.

While there have been other approaches to the hierarchy problem from the viewpoint of the ECSK
theory [28–32], our partial solution to the problem is simpler. We have fermions with near Planck scale
radii (size) producing rest mass energy in the electro-weak scale. While we have not explained why
higher generation fermions do not exist, given that as an assumption, our solution is more complete.

5. Concluding Remarks

In this paper we have addressed two longstanding questions in particle physics: (1) Why do
the elementary fermionic particles that are so far observed have such low mass-energy compared to
the Planck scale? (2) What mechanical energy may be counterbalancing the divergent electrostatic
and strong force energies of point-like charged fermions in the vicinity of the Planck scale?
Using a hitherto unrecognised mechanism extracted from the well known Hehl–Datta equation,
we have presented numerical estimates suggesting that the torsion contributions within the
Einstein–Cartan–Sciama–Kibble extension of general relativity can address both of these questions
in conjunction.

The first of these problems, the Hierarchy Problem, can be traced back to the extreme weakness of
gravity compared to the other forces, inducing a difference of some 17 orders of magnitude between
the electroweak scale and the Planck scale. There have been many attempts to explain this huge
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difference, but none is simpler than our explanation based on the spin induced torsion contributions
within the ECSK theory of gravity. The second problem we addressed here concerns the well known
divergences of the electrostatic and strong force self-energies of point-like fermions at short distances.
We have demonstrated above, numerically, that torsion contributions within the ECSK theory resolves
this difficulty as well, by counterbalancing the divergent electrostatic and strong force energies close to
the Planck scale.

It is widely accepted that in the standard model of particle physics charged elementary fermions
acquire masses via the Higgs mechanism. Within this mechanism, however, there is no satisfactory
explanation for how the different couplings required for the fermions are produced to give the correct
values of their masses. While the Higgs mechanism does bestow masses correctly to the heavy gauge
bosons and a massless photon, and while our demonstration above does not furnish a fundamental
explanation for the fermion masses either, we believe that what we have proposed in this paper is
worthy of further research, since our proposal also offers a possible resolution of the Hierarchy Problem.

In Reference [33], Singh points out that there appears to be a symmetry between small and large
masses for spin-torsion coupling and energy-curvature coupling. We have noted that there also appears
to be a symmetry in that the energy-curvature coupling is effectively infinite while the spin-torsion
coupling is very short-ranged near the Planck length.

One may wonder why a gravitational coupling would be involved in the torsion term involving
spin-squared, but we suspect it has more to do with Planck length than gravity. The torsion term with
our rt cancellation length can be simplified to

− 3 πGh̄2

c2 r3
t

= −3π(lP)
2h̄c

(
√

3π
α lP)3

= − αh̄c√
3π
α lP

≈ −2.479 × 1015 GeV. (54)

Instead of gravitational coupling, now the term has become simple and involves only constants
and the Planck length.

Needless to say, the geometrical cancellation mechanism for divergent energies we have proposed
here also dispels the need for mass-renormalisation, since we have obtained finite solutions for rx

taming the infinities. Thus, both classical and quantum electrodynamics appear to be more complete
with torsion contributions included.
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Appendix A. Calculations of Fermion Radii using Wolfram Mathematica

In this appendix we explain how we used the arbitrary-precision in Mathematica to solve the
numerical equations out to 24 significant figures. Each equation displayed below—derived from
our central Equation (33)—is simplified so that only the numerical factors have to be used, since
the dimensional units cancel out, leaving lengths in meters. For decimal factors, the numbers must
be padded out to 26 digits with zeros. Then the numerical part of electrostatic energy density is
defined as A and the numerical part of spin energy density is defined as B, just as in Equation (44)
above. These are then used throughout to perform the calculations. For the values of various physical
constants involved in the calculations we have used the 2014 CODATA values, Reference [34] and
values from the Particle Data Group, Reference [35].
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Calculation of the Cancellation Radius for Charged Leptons using Formula Equation (41):

αh̄c r2
t −

3 πGh̄2

c2 = 0 (A1)

A:=N[(7.2973525664000000000000000 × 10−3)(1.0545718000000000000000000 × 10−34)

× (2.9979245800000000000000000 × 108), 26];
B:=N[(3π(6.6740800000000000000000000 × 10−11)(1.0545718001391130000000000 × 10−34)2)/
(2.9979245800000000000000000 × 108)2, 26];

N[Solve[A ∗ r2
t − B == 0, rt], 26]//Last

{rt → 5.80838808109165274355010115 × 10−34}
Calculation of Radius re of Electron and Positron

αh̄c − 3πGh̄2

c2r2
e

− mec2re = 0 (A2)

C1:=N[(9.1093835600000000000000000 × 10−31)((2.9979245800000000000000000 × 108)2), 26];
N
[
Solve

[(
A − B

/(
r2

e

) )
− C1 ∗ re == 0, re

]
, 26
]

//Last
{re → 5.80838808109165274414871873 ×10−34}
Calculation of Radius rµ of Muon and Anti-Muon

αh̄c − 3πGh̄2

c2r2
µ

− mµc2rµ = 0 (A3)

C2:=N[(1.8835315940000000000000000 ∗ 10−28)((2.9979245800000000000000000 ∗ 108)2), 26];

N
[
Solve

[(
A − B

/
(r2

µ)
)
− C2 ∗ rµ == 0, rµ

]
, 26
]

//Last

{rµ → 5.80838808109165286732522928 × 10−34}
Calculation of Radius rτ of Tau and Anti-Tau

αh̄c − 3 πGh̄2

c2r2
τ

− mτc2rτ = 0 (A4)

C3:=N[(3.1674700000000000000000000 × 10−27)((2.9979245800000000000000000 ∗ 108)2), 26];
N
[
Solve

[(
A − B

/(
r2

τ

) )
− C3 ∗ rτ == 0, rτ

]
, 26
]

//Last
{rτ → 5.80838808109165482503366295 ×10−34}
Calculation of the Cancellation Radius for (2e/3) Quarks using Formula (50):

9αh̄c

4
+

αs h̄c

3
− 3πGh̄2

c2r2
qt

= 0. (A5)

D:=N[(1/3)(1/10)(1.0545718000000000000000000 × 10−34)(2.9979245800000000000000000 × 108), 26];

N
[
Solve[((4/9)A + D) ∗ r2

qt − B == 0, rqt], 26
]

//Last

{rqt → 2.59439809658779489414601733 ×10−34}
Calculation of Radius rtq of Top Quark:

αh̄c

6π
+

αs h̄c

3
− 3πGh̄2

2c2r2
tq

− mtc
2rtq = 0 (A6)

E:=N[(3.0877000000000000000000000 × 10−25)((2.9979245800000000000000000 × 108)2), 26];

N[Solve[
(
(4/9)A + D − B

/(
r2

tq

))
− E ∗ rtq == 0, rtq], 26]//Last

{rtq → 2.59439809658780297057798049 ×10−34}
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Appendix B. Miscellaneous Derivations for S-matrix Evaluation

For use in deriving the following, we begin with the fermion anticommutator,

{bi(p), b†
j (p′)} = {di(p), d†

j (p′)} = (2π)3 E

m
δijδ

3(p − p′), (A7)

and since there is only one electron and no positron in both the initial and final states for the rest frame
and Ei = E f = pi = p f = m = ω = 2π/t with the spins being summed over, we have

ψ(x) | i〉 =
√

m

Eir3 ψ(x)b†
i (pi) | 0〉

=

√
1
r3

∫
d3 p

(2π)3

2

∑
j=1

bj(m)uj(m)e−iEtb†
i (m) | 0〉

=

√
1
r3

∫
d3 p

(2π)3

2

∑
j=1

uj(m)e−iEt{bj(m), b†
i (m)} | 0〉

=

√
1
r3 ui(m)e−iEt,

and similarly

〈 f | ψ̄(x) =

√
1
r3 ū f (m)e+iEt,

ψ(x) | i〉 =
√

1
r3 vi(m)e+iEt,

〈 f | ψ̄(x) =

√
1
r3 v̄ f (m)e−iEt, (A8)

in which the fermion anticommutator Equation (A7) is used for simplification [21]. Note that the
spatial components,

√
1/r3, of the spin vector are factored out in these plane-wave equations.

For the derivation of Equation (20), we begin with Equation (18) for the electrostatic
self-interaction contribution,

hI = e ψ̄(x)γµ Aµψ(x), (A9)

and substitute it into the first order S-Matrix,

S
(1)
f i (E1) = −i

∫
d4x 〈 f | e ψ̄(x)γµ Aµψ(x) | i 〉. (A10)

Making substitutions using Equation (A8) from above, and then going to the rest frame, along with
using A0 = e/4πr, α = e2/4π and taking r to be constant, the S-matrix expression works out to give
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S
(1)
f i (E1) = −i

e2

4π r

∫
d4 x

(√
1
r3 ū f (m)e+im tγ0

√
1
r3 ui(m)e−im t

)

= −i
α

r4

(
ū f (m)γ0 ui(m)

) ∫
d4 x

= −i
α r3t

r4




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




= −i t
α

r




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , (A11)

where we have taken
∫

d4x = r3 t.
The S-matrix evaluation for Equation (21) in the rest frame is as follows. We begin with Equation (19),

hI(x) = − 3κ

8
(ψ̄(x)γ5γkψ(x))(ψ̄(x)γ5γkψ(x)), (A12)

and substitute it into the first order S-Matrix:

S
(1)
f i (E2) = i

3κ

8

∫
d4x 〈 f | (ψ̄(x)γ5γkψ(x))(ψ̄(x)γ5γkψ(x)) | i 〉. (A13)

Then, because the spatial components,
√

1/r3, of the spin vectors are factored out in the
plane-wave equations that we derived in Equation (A8), by substituting Equation (A8) into
Equation (A13) and then going to the rest frame, the S-matrix expression works out to give

S
(1)
f i (E2) = i

3κ

8

∫
d4 x

1
r3

(
ū f (m)e+imt γ5γ0 vi(m)e+imt

) 1
r3

(
v̄ f (m)e−imt γ5γ0 ui(m)e−imt

)

= i
3κ

8 r6

∫
d4 x

(
ū f (m) γ5γ0 vi(m) v̄ f (m) γ5γ0 ui(m)

)

= i
3κ

8 r6


ū f (m) γ5γ0 (−1)




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 γ5γ0 ui(m)




∫
d4 x

= i
3κ r3t

8 r6




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




= i t
3κ

8 r3




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , (A14)

where we have again taken
∫

d4x = r3 t. Similarly, the S-matrix expression for the anti-fermion works
out to give
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S
(1)
f i (E4) = i

3κ

8

∫
d4 x

1
r3

(
v̄ f (m)e−imt γ5γ0 ui(m)e−imt

) 1
r3

(
ū f (m)e+imt γ5γ0 vi(m)e+imt

)

= i
3κ

8 r6


v̄ f (m) γ5γ0




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 γ5γ0 vi(m)




∫
d4 x

= i
3κ r3 t

8 r6 (−1)




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




= −i t
3κ

8 r3




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 . (A15)

From the last two equations it is easy to see that the fermion and anti-fermion S-matrix equations
are coupled. In other words, one might initially think that in the rest frame ψ̄(t)γ5γ0ψ(t) = 0,
which would result in the entire term being zero, but that is not the case because of the coupling of
mixed states between fermions and anti-fermions is an intermediate step in the self-interaction.
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A Possible Explanation of Dark Matter and Dark Energy
Involving a Vector Torsion Field

Graeme W. Milton

Department of Mathematics, The University of Utah, Salt Lake City, UT 84112 USA; milton@math.utah.edu

Abstract: A simple gravitational model with torsion is studied, and it is suggested that it could
explain the dark matter and dark energy in the universe. It can be reinterpreted as a model using the
Einstein gravitational equations where spacetime has regions filled with a perfect fluid with negative
energy (pressure) and positive mass density, other regions containing an anisotropic substance that
in the rest frame (where the momentum is zero) has negative mass density and a uniaxial stress
tensor, and possibly other “luminal” regions where there is no rest frame. The torsion vector field
is inhomogeneous throughout spacetime, and possibly turbulent. Numerical simulations should
reveal whether or not the equations are consistent with cosmological observations of dark matter and
dark energy.

Keywords: general relativity with torsion; dark matter; dark energy

1. Introduction

One of the outstanding problems in physics is to account for the apparent dark energy
and dark matter in the universe since it accounts for roughly 95% of the total matter in
the universe. Reviews of the dark matter and dark energy cosmological problem, and the
models that have been introduced to account for it, include those of Peebles and Ratra [1],
Sahni [2], Copeland, Sami, and Tsujikawa [3], Frieman, Turner, and Huterer [4], Amendola
and Tsujikawa [5], Li, Li, Wang, and Wang [6], and Arun, Gudennavar, and Sivaram [7]. We
will not survey the literature here as these reviews do an excellent job of that. As is often
the case, we use dimensions where the speed of light c is 1; we use the Einstein summation
convention where sums over repeated indices are assumed, and a comma in front of a
lower index such as f,i denotes differentiation of f with respect to xi.

Maybe the most favored model is the ΛCDM model. Here, Λ is Einstein’s cosmo-
logical constant, giving rise to dark energy with p = −µ0, and CDM is cold dark matter
introduced to give the observed ratio of pressure to total mass density, which is about
−0.8. Constraints on dark matter and dark energy properties are imposed by the results
of the DES collaboration [8,9]. Gravitational lensing measurements [10] give a Hubble
constant that is consistent with long-period Cepheid measurements in the large Magellanic
cloud [11], but both strongly indicate significant discrepancies with the ΛCDM model.
Experimental tests of the strong equivalence principle [12] provide further evidence casting
doubt on the model in favor of modified gravity theories. Alternatively, there may be late
time dark matter creation [13].

The relativistic model we introduce here has no adjustable parameters and incorpo-
rates a torsion vector field. It is perhaps the simplest gravitational model involving torsion;
yet, we believe it could explain the dark energy and dark mass in the universe. If the
simplicity of the underlying equations is to be a guiding principle in physics, then these
equations surely meet that principle. Of course, our equations still need to be compatible
with both existing and future experimental observations, both qualitatively and quanti-
tatively, and this remains to be seen. It is to be stressed that our equations govern the
curvature of empty space and do not fully determine the interaction between matter and
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the curvature. We believe the simpler problem of obtaining the equations for empty space
should be addressed first, as a stepping stone towards a more general theory where matter
is included. The main demands that drive our formulation of the equations are:

• That the new equations should be as simple as possible, involving as few assumptions
as possible

• That, correspondingly, the new equations should be linear constraints on the curvature
tensor.

• That, clearly, the number of unknowns in the torsion field and in the metric, modulo
coordinate transformations, should be equal to the number of independent scalar
constraints imposed by the new equations.

• Any solution to Einstein’s equations is also a solution to the new equations.

It may be argued that these should not be assumed a priori, but that convincing
physical arguments should be presented as well. On the other hand, Einstein’s equations
for empty space can be obtained from the first three of these requirements without any
necessity to introduce physical considerations. Indeed, as is well known, it is natural
that the Ricci tensor (with the possible addition of the cosmological constant term) is
zero in empty space as this provides 10 equations for the 10 metric elements, with the
4 functions associated with freedom in the choice of coordinates being compensated by the
4 Bianchi identities. Only when matter is present is physics needed to determine the full
Einstein equations, as embodied in the constraints that the equations reduce to Newton’s
gravitational equations when the spacetime curvature is small and that small test particles
follow geodesics. Since we do not consider the full interaction of matter and curvature, we
cannot claim that small test particles will still follow geodesics: that would be a natural
demand to be required of a more general theory.

Despite the simplicity of our underlying equations the resultant dynamics of the
torsion vector field, even in the weak field approximation, is enormously complicated,
suggesting the torsion vector field has some sort of turbulent behavior. This is the main
novel feature of our theory: the suggestion that torsion may induce intrinsic inhomogeneity
on many length scales, even in the absence of matter. This goes further than the idea that
space is inhomogeneous on the Planck length scale and is also a feature of anti-de Sitter
spacetime [14]. Other work shows that the inhomogeneities of matter in the universe may
account for the perceived acceleration of the universe without any need to introduce a
negative cosmological constant (Λ < 0) (see [15] and the references therein).

Numerical simulations of the torsion field behavior will almost certainly be necessary
to test the theory and assess its compatibility with astronomical and cosmological obser-
vations. The equations can be reinterpreted as a model using the Einstein gravitational
equations where spacetime has regions filled with a perfect fluid with negative energy
(pressure) and positive mass density, other regions containing an anisotropic substance,
which in the local rest frame (where the momentum is zero) has negative mass density and
a uniaxial stress tensor, and possibly other “luminal” regions where there is no natural local
“rest frame”. We emphasize, though, that all three regions are manifestations of the torsion
vector field, and the three regions accordingly correspond to regions where the vector
field points inside, outside, or on the boundary of the light cone. Our theory predicts that
dark energy and dark matter (which are both manifestations of the torsion field) interact
and exchange energy. Other models where dark energy and dark matter interact were
reviewed by Wang, Abdalla, Atrio-Barandela, and Pavón [16] (see also the more recent
work of Borges and Wands [17]).

It has been noted before by De Sabbata and Sivaram [18] that torsion provides a
natural framework for negative mass, as has been suggested to occur in the early universe.
Cosmological models with negative mass have been studied by Ray, Khlopov, Ghosh, and
Mukhopadhyay [19] and by Famaey and McGaugh [20] and yield promising explanations
for the acceleration of the expansion rate of the universe.

In addition to the cosmological dark mass problem, there is also the dark mass prob-
lem, which is associated with the observations of higher-than-expected rotational velocities
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of stars far from the galactic center. One empirically motivated model that successfully ac-
counts for this is Modified Newtonian Dynamics (MOND), first introduced by Milgrom [21].
He suggested that Newton’s law, where the gravitational force is proportional to the acceler-
ation, be replaced at low accelerations, below a critical acceleration a0 =≈1.2× 10−10 ms−2,
by one where the force is proportional to the square of the acceleration; see Figure 1. Later,
this idea motivated a relativistic theory developed by Bekenstein [22] and generalized by
Skordis [23]. One prediction of MOND, later verified, was that there should be a universal
relation between the rotation speeds of stars in the outermost parts of a galaxy and the total
mass, not dark mass, of the galaxy; see the book of Merritt [24] for further discussion on
this point. In particular, on the basis of this, it seems unlikely that unseen particles will
provide the explanation for the galactic missing mass problem. Other reviews of MOND,
including these and other relativistic extensions and their implications for cosmology, have
been given by Famaey and McGaugh [20], Merritt [24], and Milgrom [25]. It is not yet
clear whether the torsion field model developed here will be successful in explaining the
galactic dark mass problem, though the success of Farnes [26] in explaining the flattening
of rotation curves by introducing negative mass suggests that it might meet with success
on this front.

Figure 1. Figure, courtesy of M. Milgrom, taken from http://www.scholarpedia.org/article/The_
MOND_paradigm_of_modified_dynamics, (accessed on 31 March 2020) showing its predictions,
which are consistent with experimental observations. Plotted is the acceleration as a function of the
distance from an isolated mass M, for a star with M = M⊙ (red), a globular cluster with M = 105 M⊙
(blue), a galaxy with M = 3× 1010 M⊙ (green), and a galaxy cluster with M = 3× 1013 M⊙ (magenta),
in which M⊙ represents one solar mass.

Torsion is the antisymmetric part of the affine connection. The affine connection
determines how vectors change under parallel displacements. Cartan introduced torsion
and applied it to develop generalizations of Einstein’s gravitational equations. His work
dates back to the early 1920s; see [27] and the references therein (translated in [28]). A
brief introduction to torsion is in the classic book on gravitation by Misner, Thorne, and
Wheeler [29]. More extensive reviews of general relativistic models that include torsion,
with further developments, include those of Hehl, von der Heyde, and Kerlick [30], De
Sabbata and Sivaram [18], Hehl, McCrea, Mielke, and Ne’eman [31], Shapiro [32], Ortín [33],
Trautman [34], Poplawski [35], and Fabbri [36]. Interestingly, Jose Beltrán Jiméneza, Lavinia
Heisenberg, and Tomi S. Koivisto have recently shown [37] that Einstein’s gravitational
equations can be reformulated in terms of the torsion alone, eliminating the metric.
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Typically, general relativistic models with torsion have been introduced to allow for
the intrinsic spin of matter and are quite complicated. By contrast, our focus here is
on developing a simple model that may account for the dark mass and dark energy in
the universe.

Ivanov and Wellenzohn suggested that the Einstein–Cartan theory may account for
dark energy [38]. Another gravitational model that incorporates the same torsion vector
field we use, as well as additional fields and a fifth dimension, was developed by Sen-
gupta [39], who suggests it may solve both the cosmological and galactic dark matter
problem. Other models incorporating torsion, quite different from the one explored here,
that may explain the accelerated expansion of the universe have been developed by Watan-
abe and Hayashi [40], Minkevich [41], de Berredo-Peixoto and de Freitas [42], Belyaev,
Thomas, and Shapiro [43], and Vasak, Kirsch, and Struckmeier [44].

The analysis in the following sections is more or less standard, though equivalent
formulations are clearly possible according to one’s mathematical taste. The key step
to arriving at our equations is simply to postulate that geodesics and autoparallels co-
incide. There is nothing difficult in the analysis leading to our equations governing the
spacetime curvature.

2. Metric and Affinities

The functions guv of the metric field describe with respect to the arbitrarily chosen
system of co-ordinates the metrical relations of the spacetime continuum:

ds2 = guvdxudxv. (1)

Here, we will assume that the guv are real and symmetric in the indices u and v, and
thus, (1) provides the defining equation for guv with respect to a given coordinate system.

Now, consider the affinity Γi
st, which determines a vector after parallel displacement.

To a real contravariant vector A with components Ai at a point P with coordinates xt, we
correlate a vector A + δA with components Ai + δAi at the infinitesimally close point with
coordinates xt + δxt by

δAi = −Γi
st Asδxt. (2)

Since the magnitude of A in parallel displacement does not change to first order in
that displacement, we obtain

0 = δ[guv Au Av] =
dguv

dxα
Au Avdxα + guv Au(δAv) + guv Av(δAu), (3)

and so, using (2), we obtain

guv,α − guβΓ
β
vα − gvβΓ

β
uα = 0, (4)

where the comma denotes partial differentiation. Now, by considering this equation
together with the two equations

gvα,u − gvβΓ
β
αu − gαβΓ

β
vu = 0, (5)

gαu,v − gαβΓ
β
uv − guβΓ

β
αv = 0, (6)

that are obtained by a cyclic interchange of indices and by subtracting (4) from the sum
of (5) and (6), we obtain

[u v, α] + gvβΓ̂
β
uα + guβΓ̂

β
vα − gαβΓ̂

β
uv = gαβΓ

β
uv, (7)

where [u v, α] is the Christoffel symbol of the first kind, given by

[u v, α] = 1
2 (gαu,v + gαv,u − guv,α), Γ̂

β
ij =

1
2 (Γ

β
ij − Γ

β
ji). (8)
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The antisymmetric part of the affinity Γ̂
β
ij, in contrast to Γ

β
ji, is a tensor—Cartan’s

torsion tensor.

3. Equating Geodesics with Autoparallels

Geodesics are trajectories x(s), which we chose to parametrize by the distance s along
them, that have an extremal distance between two points. Since they clearly only depend
on the metric, they satisfy the standard formula:

d2xµ

ds2 + gµr[α β, r]
dxα

ds

dxβ

ds
= 0. (9)

Alternatively, we may consider an autoparallel constructed in such a way that succes-
sive elements arise from each other by parallel displacements. An element is the vector
dx/ds, and under parallel displacement, its components transform as

δ

(
dxu

ds

)
= −Γ

µ
αβ

dxα

ds
δxβ. (10)

The left-hand side is to be replaced by (d2xµ/ds2)δs, giving

d2xµ

ds2 + Γ
µ
αβ

dxα

ds

dxβ

ds
= 0. (11)

We postulate that geodesics coincide with autoparallels, thus giving

{
Γ

µ
αβ − gµr[α β, r]

}dxα

ds

dxβ

ds
= 0, (12)

or equivalently,
{

1
2 (Γ

µ
αβ + Γ

µ
βα)− gµr[α β, r]

}dxα

ds

dxβ

ds
= 0. (13)

This postulate is fundamental to the theory. While it is absent of any physical justifica-
tion, aside from removing possible ambiguity in the path that test particles are required to
follow in a more general theory, it is essential to keep the governing equations as simple as
possible. This is our motivation for this constraint.

As (13) holds for all dxα/ds and dxβ/ds, we obtain

Γ
µ
αβ ≡ 1

2 (Γ
µ
αβ + Γ

µ
βα) = gµr[α β, r]. (14)

Multiplying both sides by gµs and summing over µ gives

gµsΓ
µ
αβ + gµsΓ

µ
βα = 2[α β, s]. (15)

Combining this with (7) then yields

Sαβµ ≡ gαrΓ̂r
βµ = −gβrΓ̂r

αµ = −Sβαµ = Sβµα. (16)

Therefore, Sαβµ is antisymmetric with respect to the interchange of any pair of its three
indices, and this implies (see, for example, the text below Equation (2.16) in [30]) that

Γ̂i
jk = girerjkℓU

ℓ, (17)

for some contravariant vector density U, where, as is standard, erjkℓ is the Levi-Civita
tensor density, with e1234 = 1 and antisymmetric with respect to the interchange of any
pair of indices. U is known as the axial part of the torsion [30]. A parallel derivation
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of the complete antisymmetry of torsion is in the review of Fabbri [36]. Combining (17)
with (14) gives

Γ
µ
αβ = Γ

µ
αβ + gµrerαβℓU

ℓ. (18)

4. The Ricci Tensor

Let us express the Ricci tensor:

Rjk = Γi
riΓ

r
jk − Γi

rkΓr
ji + Γi

jk,i − Γi
ji,k, (19)

which is associated with the local curvature of spacetime, in terms of the symmetric and
antisymmetric parts of the affinity:

Rjk = (Γ
i
ri + Γ̂i

ri)(Γ
r
jk + Γ̂r

jk)− (Γ
i
rk + Γ̂i

rk)(Γ
r
ji + Γ̂r

ji) + (Γ
i
jk + Γ̂i

jk),i − (Γ
i
ji + Γ̂i

ji),k,

= Γ
i
ri(Γ

r
jk + Γ̂r

jk)− (Γ
i
rk + Γ̂i

rk)(Γ
r
ji + Γ̂r

ji) + (Γ
i
jk + Γ̂i

jk),i − Γ
i
ji,k, (20)

where we used the fact that Γi
ri = 0, as follows from (17). Therefore, now, we have

Rjk = R0
jk − Γ̂i

rkΓ̂r
ji + Γ̂i

krΓ
r
ji + Γ

i
rkΓ̂r

ij − Γ
i
riΓ̂

r
kj − Γ̂i

kj,i, (21)

where
R0

jk = Γ
i
riΓ

r
jk − Γ

i
rkΓ

r
ji + Γ

i
jk,i − Γ

i
ji,k (22)

is the usual Ricci curvature tensor associated just with the metric. We now consider the
symmetric part of Rjk as it is central to our equations:

Rjk ≡ 1
2 (Rjk + Rkj) = R0

jk − Γ̂i
rkΓ̂r

ji = R0
jk − gsiesrkℓU

ℓgtretjihUh. (23)

Given an arbitrary point, we can always find a new coordinate system such that the
metric is orthogonal at that point. In this new coordinate system at this one point

R11 = R0
11 − giieir1ℓU

ℓgrrer1ihUh,

R12 = R0
11 − giieir1ℓU

ℓgrrer2ihUh, (24)

where a sum over i and r is implied. For eir1ℓer1ih to be nonzero, it is necessary that r 6= i
and irℓ must be a permutation of rih (and a permutation of 234), implying ℓ = h. Therefore,
we obtain

R11 = R0
11 − 2g22g33(U4)2 − 2g44g22(U3)2 − 2g33g44(U2)2. (25)

Furthermore, for eir1ℓer2ih to be nonzero, ℓ must be 2 and h must be 1, implying

R12 = R0
12 + 2g33g44U3U4. (26)

Of course, similar formulas hold for the other elements of Rjk. Hence, at this point, in
this coordinate system,

Rjk = R0
jk + 2g−1gjngkmUmUn − 2g−1gjkgmnUmUn, (27)

where g = g11g22g33g44 is the determinant of the metric tensor, or, introducing a contravari-
ant vector Nk such that Nk = Uk/

√−g, we obtain

Rjk = R0
jk + 2gjkgmnNmNn − 2gjngkmNmNn. (28)

This equation being a tensor equation will be true in any coordinate system, as well as
at any point since the original point was arbitrarily chosen. Raising indices gives

R
j
k = (R0)

j
k + 2δ

j
kgmnNmNn − 2gkmNmN j. (29)
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Finally, contracting indices, we obtain

R ≡ R
j
j = R0 + 6gmnNmNn, (30)

where R0 = (R0)
j
j. We will call N the torsion field.

5. The Proposed New Gravitational Equations

In this section, we investigate how torsion affects the geometry of empty space. For
our purposes, it is to be observed that in the Einstein–Cartan–Sciama–Kibble theory, as
reviewed in [30,33,34], one has

Nj = −2κSj, (31)

where Sj is the spin axial-vector field, and so, there would be no torsion in empty space.
Nevertheless, more general theories of torsion-gravity, in which torsion propagates, do
not need to verify such a constraint, and therefore, N can still be nonzero even if S = 0
identically; see Fabbri [36] and the references therein. Having emphasized that there
exist theories in which torsion can still be nonzero, even in a vacuum, we will however
not be specifying any particular Lagrangian. Instead, we will work from a very general
perspective. The new gravitational field equations are

Rjk − 1
2 gjkR = κT′

jk. (32)

where the T′
jk are the elements of the symmetric stress–energy–momentum tensor T′ and

κ ≈ 2 × 10−43s2m−1kg−1 is the gravitational constant. This then has the equivalent form:

R0
jk − 1

2 gjkR0 − gjkgmnNmNn − 2gjngkmNmNn = κT′
jk, (33)

or
R0

jk − 1
2 gjkR0 = κTjk, (34)

with
Tjk = T′

jk + [gjkgmnNmNn + 2gjngkmNmNn]/κ. (35)

Thus, T is the equivalent stress–energy–momentum tensor if we were to reinterpret
our equations in the format of Einstein’s original gravitational equation. Therefore, if
the torsion field N is small enough, we recover Einstein’s original equations to a good
approximation and, hence, those of Newtonian gravity. From here onwards, until the last
section, we assume that T′ = 0, i.e., that no ordinary matter is present in the region of
spacetime being studied. By multiplying (32) by gkj and summing over indices, we see that
R = 0, and hence, (33) can be rewritten as

Rjk = R0
jk + 2gjkgmnNmNn − 2gjngkmNmNn = 0, (36)

or, raising indices,

R
jk
= {R0}jk + 2gjkgmnNmNn − 2N jNk = 0. (37)

These equations are consistent, for example, with those of Sengupta [39] (see his
Equation (27)), which, however, are not the same as they include an extra dimension and
incorporate additional fields.

The well-known Bianchi identities between the components of the contracted curva-
ture tensor imply

[{R0}jk − 1
2 gjkR0],k = 0, (38)
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and as is well known, this implies T
ij
,j = 0, reflecting conservation of energy and momentum.

Together with (37) and (30), we obtain

[gjkgmnNmNn + 2N jNk],k = 0. (39)

We can view these as the extra four equations needed to determine the four compo-
nents of N in empty space. One slightly unsatisfactory feature of the equations is that N

is only determined up to a sign change. In other words, given a solution in a spacetime
region, another solution can be obtained by reversing the sign of N within a subregion.
Thus, we do not consider our theory to be complete. At the quantum Planck length scale, it
likely needs modification, and the modified theory could prevent abrupt changes in the
sign of N. Alternatively, one could take the view that there is no torsion, but rather, N(x) is
just a vector field pervading all space. Then, the sign of N(x) is immaterial, but still, one
would expect modifications at the Planck length scale to provide a lower limit to the length
scales of “turbulence” in the vector field N(x).

6. The Weak Field Approximation

Now, consider the weak field approximation where gαβ = g0
αβ + κhαβ and Ni =

√
κni

where κ is a small parameter, and the g0
aβ correspond to the Minkowski metric:

g0
aa = {g0}aa = 1, g0

ab = {g0}ab = 0, g0
a4 = {g0}a4 = 0, g0

44 = {g0}44 = −1 (40)

in which a, b are indices taking the values 1, 2, or 3 with a 6= b. There is some freedom in
the choice of the hαβ due to the coordinate shifts that we can make to first order in κ. This
freedom can be eliminated by imposing the harmonic gauge that

h
jk
,k = 1

2{g0}jkh,k, (41)

in which h = {g0}sthst and hjk = {g0}js{g0}kthst. To first order in κ (37) implies

0 = R
jk

/κ = −1
2

g0
mn

∂hjk

∂xm∂xn
+ 2{g0}jkg0

mnnmnn − 2njnk. (42)

Furthermore, to first order in κ, (39) implies

[{g0}jkg0
mnnmnn + 2njnk],k = 0. (43)

Not all 10 equations in (42) are independent, as a consequence of the Bianchi identi-
ties (38). To see this directly, multiply (42) by g0

hj and contract indices to give

0 = R/κ = −1
2

g0
mn

∂h

∂xm∂xn
+ 6g0

mnnmnn, (44)

which is also implied by taking the first-order approximation to (30). Thus, we have

0 = (R
jk − 1

2 gjkR)/κ = − ∂

∂xm∂xn
(hjk − 1

2{g0}jkh)− [{g0}jkg0
mnnmnn + 2njnk]. (45)

With (41), we recover (43). In summary, we should first use the four equations (43)
to determine the ni(x), i = 1, 2, 3, 4. Then, we should use the 16 Equations (41) and (42),
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of which only 10 are independent, to determine the 10 functions hij(x). Writing out
Equation (42) explicitly, we obtain

∇2hab − ∂2

∂t2 hab = 4[δab(n
2 − n2

4)− nanb],

∇2ha4 − ∂2

∂t2 ha4 = 4nan4,

∇2h44 − ∂2

∂t2 h44 = −4n2, (46)

where the indices a and b take values from 1 to 3, n2 = n2
1 + n2

2 + n2
3, and ni = g0

ijn
j. As we

used the harmonic gauge, there is the additional restriction that the hjk satisfy (41), i.e., that

ha1
,1 + ha2

,2 + ha3
,3 + ha4

,4 = 1
2 (h

11 + h22 + h33 − h44),a, a = 1, 2, 3,

h41
,1 + h42

,2 + h43
,3 + h44

,4 = − 1
2 (h

11 + h22 + h33 − h44),4. (47)

The identities (43) imply T
ij
,j = 0 with, to zeroth order in κ,

Taa = 2n2
a + n2 − n2

4, Tab = 2nanb,

T44 = 3n2
4 − n2, Ta4 = −2nan4. (48)

Equivalently, the matrix T with elements Tij takes the block form:

T =

(
2n ⊗ n + (n2 − n2

4)I −2n4n

−2n4nT 3n2
4 − n2

)
, (49)

where nT is the row vector, which is the transpose of n, defined as n = (n1, n2, n3).

7. Subluminal, Luminal, and Superluminal Regions of Spacetime

In this section, we do not make the weak field approximation, but we consider any
point P in spacetime and choose the Minkowski metric (40) at that point.

7.1. Subluminal Regions and the Equivalent Perfect Fluid with Negative Energy That
Occupies Them

Consider a region where k = n2
4 − n2 > 0. We call such a region a subluminal region.

Define the 4-velocity V with components

Va = na/
√

k, V4 = n4/
√

k (50)

satisfying V2
1 + V2

2 + V2
3 − V2

4 = −1. In terms of this velocity, (48) implies

Taa = (2V2
a − 1)k, Tab = 2VaVbk,

T44 = (2V2
4 + 1)k, Ta4 = 2VaV4k. (51)

By comparison, a perfect fluid moving with 4-velocity V has

Taa = (µ0 + p)V2
a + p, Tab = (µ0 + p)VaVb,

T44 = (µ0 + p)V2
4 − p, Ta4 = (µ0 + p)VaV4, (52)

where p = p is the pressure and µ0 is the rest density (in the frame with the same velocity
as the fluid). Thus, T corresponds to a fluid with

p = −µ0/3, µ0 = 3k. (53)
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Note that, in this case, it always possible to choose a moving frame of reference with
respect to which the fluid is not locally moving, i.e., n2 = 0.

7.2. Superluminal Regions and the Equivalent Substance with Negative Mass That Occupies Them

Consider those regions where k = n2
4 − n2 < 0, which we call superluminal. Then, it

is impossible to move to a reference frame such that n2 = 0 at a given point. Rather, we can
move to a frame where n4 = 0 at this point. In this frame,

Taa = 2n2
a + n2, Tab = 2nanb,

T44 = −n2, Ta4 = 0. (54)

This corresponds to some sort of substance, which, in this frame, has no momentum, a
negative mass density −n2, and a stress:

σ = −n2I − 2n ⊗ n, (55)

corresponding to a pressure of n2 and an additional uniaxial compression in the direction n.

7.3. Luminal Regions

Finally, consider the regions where k = n2
4 − n2 = 0, which we call luminal. Then,

Taa = 2n2
a, Tab = 2nanb, T44 = 2n2

4, Ta4 = −2nan4. (56)

Clearly, a luminal boundary or luminal region must separate regions that are sublumi-
nal or superluminal. In a luminal region, one cannot move to a frame where n2 = 0, nor
where n2

4 = 0, unless both are zero. The momentum density, mass density, and stress are
nonzero everywhere, except where the torsion field vanishes.

8. Some Solutions and Perturbative Solutions for the Torsion Field in the Weak
Field Approximation

Let us consider solutions of T
ij
,j = 0 in a flat metric given by (40). Using (49), we obtain

0 =
∂

∂t
[3n2

4 − n2]− 2∇ · (n4n),

0 = ∇ · (n ⊗ n)− ∂(n4n)

∂t
+ 1

2∇(n2 − n2
4)

= (n · ∇)n + n∇ · n − ∂(n4n)

∂t
+ 1

2∇(n2 − n2
4), (57)

where the first equation represents the conservation of energy and the second the balance
of forces.

In the subluminal regions, if we look for solutions where n = 0 globally and not just
at one point, the conservation of energy implies ∂n2

4/∂t = 0, while the balance of forces
implies ∇(n2

4) = 0. Thus, n2
4 must be a constant in spacetime. On the other hand, if we

allow for small values of n, with n2 ≪ n2
4, then to first order in the perturbation with

e = n4n and f = n2
4, we obtain

∂e

∂t
= −1

2
∇ f , 3

∂ f

∂t
= 2∇ · e, (58)

giving

3
∂2 f

∂t2 = −∇2 f . (59)

This has exponentially growing solutions such as

f = 1 + δeτ cos k · x, with k2 ≡ k · k = 3τ2, (60)
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where δ is a small parameter. After a finite time, this solution for f reaches negative values,
but before which, our assumption that n2 ≪ n2

4 is violated. Thus, the solution with n = 0
is unstable to perturbations.

In the superluminal regions, if we look for solutions where n4 = 0 globally and not
just at one point, then the conservation of energy implies that n2 must not vary with time,
and the balance of forces implies

∇(n2) + 2∇ · (n ⊗ n) = 0. (61)

This provides three equations to be satisfied by the three functions na(x1, x2, x3, t),
a = 1, 2, 3. There is a manifold of functions satisfying (61), and we can choose any trajectory
n(x1, x2, x3, t) that lies on this manifold and is such that n2(x1, x2, x3) = n(x1, x2, x3, t) ·
n(x1, x2, x3, t) is independent of time. Unless n(x1, x2, x3, t) only depends on t, it seems
likely that this second condition will generally force n(x1, x2, x3, t) to be independent of
time (up to a sign change in n). If we investigate the effect of perturbations, with n2

4 ≪ n2

and both n1 and ǫ depending only on x1 and t and say n2 = n3 = 0, we obtain

∂e1

∂t
=

3
2

∂d

∂x1
,

∂d

∂t
= −2

∂e1

∂x1
, (62)

where e1 = n4n1 and d = n2
1. This gives

∂2d

∂t2 = −3
∂2d

∂x2
1

, (63)

which has exponentially growing solutions such as

d = 1 + eτ cos k · x, with k2 = τ2/3. (64)

While, after a finite time, our assumption that n2
4 ≪ n2 becomes violated, the calcula-

tion shows that the solution with n4 = 0 is unstable to perturbations.
In luminal regions where n2 − n2

4 = 0, we can use this identity to eliminate n4 from (57)
and obtain

0 =
∂n2

∂t
±∇ · (|n|n),

0 = ∇ · (n ⊗ n)± ∂(|n|n)
∂t

,

= (n · ∇)n + n∇ · n ± ∂(|n|n)
∂t

, (65)

where the plus or minus sign is taken according to whether n4 = ±|n|. In the special case
where n2 = n3 = 0 (after making a spatial rotation if necessary), we obtain n4 = n1 (or
n4 = −n1), and (65) reduces to the single equation:

∂n1

∂t
=

∂n1

∂x1
(66)

to be satisfied by the function n1(x1, x2, x3, t), describing a wave propagating at the speed
of light in the direction of the x1-axis. We call them localized longitudinal torsion waves,
longitudinal because n is aligned with the direction of propagation. We now look for
perturbation solutions with n4 = n1 − ǫ, where ǫ is a small parameter and both n1 and ǫ
depend only on x1 and t while n2 = n3 = 0. Letting ǫn1 = η and d = n2

1, we obtain

∂(d − η)

∂t
= −∂(d − η)

∂x1
,

∂(d − 3η)

∂t
= −∂(d − η)

∂x1
. (67)
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The first wave equation has the solution η = d + h(x1 − t), where h(y) is an arbitrary
function, and substituting in the second gives ∂d/∂t = h′(x1 − t), where h′(y) is the
derivative of h(y). We conclude that

η = σ(x1), d = σ(x1)− h(x1 − t), (68)

where σ(x1) satisfies h(y) ≤ |σ(y)| ≪ |h(y)| for all y, to ensure that d is non-negative
and that the perturbation is small (|ǫ(x1, t)| ≪ |n1(x1, t)| for all (x1, t), but otherwise is an
arbitrary function. Thus, h(y) can only take negative values, and the perturbation travels
at the speed of light in the direction of n.

We now present various other solutions of the equations, without investigating
their stability.

8.1. Plane Wave Solutions

Here, we consider plane wave solutions to the equations in the weak field approxima-
tion. It is to be emphasized that since the equations are non-linear, specifically quadratic in
n, one cannot generally superimpose our plane wave solutions to obtain another solution.

The simplest case is when the fields only depend on, say, x1. Then, we deduce that T1j

is a constant, i.e.,

3n2
1 + n2

2 + n2
3 − n2

4 = k1, n1n2 = k2, n1n3 = k3, n1n4 = k4, (69)

where the ki are constants. Multiplying the first equation by n2
1, we obtain

n4
1 = (k1n2

1 − k2
2 − k2

3 + k2
4)/3, (70)

which requires the constants ki to be such that the right-hand side is non-negative. Thus,
n2

1 is constant, and the last three equations in (69) imply that n2
2, n2

3, and n2
4 are constants

as well, unless n2
1 = 0. Therefore, the only interesting case is when n2

1 = 0, implying that
k2 = k3 = k4 = 0. Then, according to whether −k1 = n2

4 − n2 is positive, zero, or negative,
the solution will be subluminal, superluminal, or luminal. Thus, subject to the constraint
that n2 ≥ k1 (relevant only when k1 > 0), n2(x1) and n3(x1) can be chosen arbitrarily and
determine n2

4 = n2 − k1. In particular, if k1 = 0, one may choose n2(x1) and n3(x1) to
be zero outside an interval of values of x1. In a frame of reference moving with velocity
−v1 in direction x1, this will look like a wave pulse traveling a velocity v1, as all the field
components will be functions of x1 − v1t. We call them localized transverse torsion waves,
transverse because n is perpendicular to the wave front. Unlike longitudinal torsion waves,
which can only travel at the speed of light, these can have any velocity less than c.

Similarly, when the fields only depend on t = x4, we deduce that T4j is a constant, i.e.,

n4n = k′, 3n2
4 − n2 = k′4, (71)

in which n = (n1, n2, n3) and n2 = n · n and where k′4 and k′ = (k′1, k′2, k′3) are constants.
Multiplying the last formula by n2

4 shows that

n4
4 = (k′4n2

4 + k′ · k′)/3 (72)

is constant, implying n2
4 is constant and, through the first equation in (71), that n2

1, n2
2, and

n2
3 are constant as well, unless n2

4 = 0. When n2
4 = 0, then k′ = 0. The last formula in (71)

then forces n2 to be constant. Subject to this constraint, n can have an arbitrary dependence
on time (with n(t) being independent of x1, x2, and x3). However, note that the inevitable
spatial variation of n may eliminate this arbitrariness, as may going beyond the weak
field approximation.
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8.2. Solutions with Cylindrical Symmetry, Including Torsion-Rolls

Consider cylindrical coordinates (r, θ, z, t) taking r to be the radial distance from
the z-axis, θ to be the angular variable, and t to be the time. We seek solutions where
n = (nr, nθ , nz) and n4 only depend on r, so that

∇ · (n4n) =
1
r

d(rn4nr)

dr
r̂,

(n · ∇)n =

(
nr

dnr

dr
− n2

r

r

)
r̂ +

(
nr

dnθ

dr
+

nrnθ

r

)
θ̂ +

(
nr

dnz

dr

)
ẑ,

n(∇ · n) =
1
r

d(rnr)

dr
(nr r̂ + nθ θ̂ + nzẑ),

1
2∇(n2 − n2

4) = 1
2

[
d

dr
(n2 − n2

4)

]
r̂, (73)

where we used the standard formulas for the gradient, divergence, and n · ∇ in cylindrical
coordinates. Then, the conservation laws (57) take the form

0 =
1
r

d(rnrn4)

dr
,

0 =
n2

r − n2
θ

r
+ 1

2
d

dr

[
2n2

r + n2 − n2
4

]
,

0 =
2nrnθ

r
+

d(nrnθ)

dr
,

0 =
nrnz

r
+

d(nrnz)

dr
. (74)

If we consider an interface at a constant radius r = r0, with outwards unit normal r̂,
then the weak form of the equations T

ij
,j = 0 imply the jump conditions on the elements

Tij that

T

(
r̂

0

)

must be continuous across the interface, where T is given by (49). This implies that
the quantities

c4 = n4nr, cθ = nθnr, cz = nznr, cr = 3n2
r + n2

θ + n2
z − n2

4 (75)

must all be continuous across the interface r = r0. Multiplying the last equation by n2
r , we

see that
n4

r = (crn2
r − c2

θ − c2
z + c2

4)/3 (76)

must be continuous as well, and the first three equations imply that all components of
(n, n4) are continuous across the interface, up to a change of sign, unless n2

r = 0 at the
interface. If n2

r is zero at the interface, it follows that c4 = cθ = cz = 0 at the interface.
Therefore, across r = r0, any jumps in nθ(r, t), nz(r, t), and n4(r, t) that maintain the
continuity of n2 − n2

4 are possible provided nr(r, t) is continuous and nr(r0, t) = 0.
The first, third, and last equations in (74) imply

rnrn4 = k4, rnrnz = kz, r2nrnθ = kθ (77)

where k4, kz, and kθ are constants. In the case nr = 0, all are satisfied with k4 = kz = kθ = 0.
The remaining second equation in (74) becomes

d

dr

[
n2 − n2

4

]
=

2n2
θ

r
. (78)
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Thus, there is only one constraint among the three functions nθ(r), nz(r), and n4(r).
We see that n2 − n2

4 must monotonically increase with r, in a manner controlled by n2
θ(r),

and if it tends to zero at infinity, then n2 − n2
4 must be negative for all r, corresponding to a

subluminal region. If n and n4 vanish outside a certain radius, then we call this solution
a torsion-roll. Physically, the pressure increases to larger negative values as the radius
decreases, and its gradient provides the centripetal force that holds the “fluid” circulating
around the z-axis with a velocity governed by nθ . In a moving frame of reference, which is
not moving in the z-direction, the torsion-roll will appear to be moving.

Of course, if n2 − n2
4 is constant and positive outside a certain radius (corresponding,

for example, to a superluminal region where, say, nz is constant and nθ = n4 = 0), then
n2 − n2

4 can remain positive for all r, or can transition from positive to negative values at
a particular radius. This example demonstrates that transitions between subluminal and
superluminal regions are possible.

Alternatively, if nr is nonzero, then (77) implies

n4 = k4/(rnr), nz = kz/(rnr), nθ = kθ/(r2nr). (79)

Substituting these in the second equation in (74) yields

ds

dr
=

2s(3k2
θ − r4s2 − 2kr2)

r(3r4s2 − k2
θ + kr2)

, where s = n2
r , k = k2

4 − k2
z. (80)

This gives us a flow-field in the (r, s) phase plane. Note that (80) remains invariant
under the transformation

r → λ1r, s → λ2s, k2
θ → λ4

1λ2
2k2

θ , k → λ2
1λ2

2k. (81)

Thus, without loss of generality, we may, by rescaling any solution, take kθ to be 0
or 1 and k to be −1, 0, or 1. If k = 0, then there is essentially just one solution: s0(r)
satisfying s0(1) = 1 with all other solutions (with kθ = 1) taking the form s(r) = λ2s0(λr),
parametrized by λ. The solutions for s0(r) = n2

r (r) and n2
θ(r) = 1/(r4n2

r ) are shown in
Figure 2 along with the flow field. One can see that the solution does not exist below a
critical value of r, which looks unsatisfactory. This critical radius is associated with the
vanishing of the denominator in (80).

(a) (b)

Figure 2. Solution for the torsion field with cylindrical symmetry with nr 6= 0, k = 0, and kθ = 1.
(a) The flow field when k = 0 and kθ = 1 and the particular solution satisfying n2

r = 1 when r = 1.
(b) The same solution for n2

r on a log–log plot and the accompanying function n2
θ = 1/(r4n2

r ).

To obtain satisfactory solutions that exist for all r 6= 0, one may take kθ = 0 and k = 1
to avoid the denominator in (80) vanishing, except at r = 0. Then, (80) reduces to

ds

dr
= −2s(r2s2 + 2)

r(3r2s2 + k)
, where s = n2

r . (82)
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There is again essentially just one solution: s0(r) satisfying s0(1) = 1 with all other
solutions (with k = 1) taking the form s(r) = λs0(λr), parametrized by λ. The solution
is graphed in Figure 3. There is a singularity at r = 0, and while n2

r (r) goes rapidly to
zero as r → ∞, n2

4(r) and n2
z(r) (unless it is zero) diverge to ∞ as r → ∞. This solution is

satisfactory once one takes into account that the weak field approximation is not valid near
the singularity at r = 0, nor as r → ∞, and one should use the full equations (37) there.
For this example with k = 1 and kθ = 0, it is interesting that there is a transition from a
superluminal region inside to a subluminal region outside according to the sign of

n2 − n2
4 = n2

r +
k2

z

r2n2
r
− k2

4
r2n2

r
= n2

r −
1

r2n2
r

, (83)

which is also plotted in Figure 3.

(a) (b)
Figure 3. Solution for the torsion field with cylindrical symmetry with nr 6= 0, k = 1, and kθ = 0.
(a) The graph of n2

r = 1 showing its divergence as r → 0. (b) The plot of n2 − n2
4 = n2

r − 1/(r4n2
r )

showing a transition from superluminal to subluminal as r increases.

9. Extension of the Schwarzschild Solutions With Spherical Symmetry

Here, we generalize Schwarzschild’s solution for a spherically symmetric metric solv-
ing Einstein’s equations in the absence of matter. The important point is that in appropriate
limits, some of the solutions here approach the Schwarzschild solution. Consequently,
existing experimental results of black holes do not invalidate our theory, but rather place
constraints on the magnitude of the torsion field. This magnitude should be tied to the
radius of the universe, and, hence, to the critical acceleration in MOND. Thus, experi-
ments in the near vicinity of a star or black hole would not typically reveal the difference
with Schwarzschild’s solution. We have not explored the situation regarding rotating
black holes.

As shown by Schwarzschild, the metric in “polar” coordinates spherically symmetric
about the origin must be of the form

ds2 = a dr2 + r2(dθ2 + sin2 θ dφ2)− b dt2, (84)

in which a and b are functions of r and t. Here, we look for solutions where they are
functions of r only. Setting x1 = r, x2 = θ, x3 = φ, x4 = t allows us to use (84) to identify
the coefficients:

g11 = a, g22 = r2, g33 = r2 sin2 θ, g44 = −b. (85)

From (36), we obtain the ten equations:
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0 = R11 =
a′

ar
+

a′b′

4ab
+

(b′)2

4b2 − b′′

2b
+ 2a[r2(N2)2 + r2 sin2 θ(N3)2 − b(N4)2],

0 = R22 = 1 − 1
a
+

ra′

2a2 − rb′

2ab
+ 2r2[a(N1)2 + r2 sin2 θ(N3)2 − b(N4)2],

0 = R33 = [1 − 1
a
+

ra′

2a2 − rb′

2ab
] sin2 θ + 2r2 sin2 θ[a(N1)2 + r2(N2)2 − b(N4)],

0 = R44 =

(
b′

ar
+

b′′

2a
− (b′)2

4ab
− a′b′

4a2

)
− 2b[a(N1)2 + r2(N2)2 + r2 sin2 θ(N3)2],

0 = Rmn = −2gmmgnnNmNn for all m, n with m 6= n, no sum on m, n, (86)

where the terms not involving N can be identified with the standard formulas for the
elements R0

ij that are zero when i 6= j. Here, differentiation with respect to x1 = r is denoted
by the prime, with the double prime denoting the second derivative. The second and third
equations and the last equation force N2 = N3 = 0, which is not surprising considering the
symmetry of the problem. Two possibilities remain: either N1 = 0 or N4 = 0. The first case
corresponds to a subluminal solution and the second to a superluminal solution.

Let us consider first the case where N1 = N2 = N3 = 0. Multiplying the second last
equation in (86) by a/b and adding it to the first gives

a′

a
+

b′

b
− 2q = 0 where q = rab(N4)2 ≥ 0. (87)

The second equation in (86) implies

a′

a
− b′

b
+ 2(a − 1)/r − 4q = 0. (88)

Adding and subtracting these equations gives

a′/a =
1
r
− a

r
+ 3q,

b′/b =
a

r
− 1

r
− q. (89)

Multiplying the last by br, differentiating it, and using the result to eliminate b′′ from
the first equation in (86) yield

q′ = 2q2 +
q

r
. (90)

This has the solution

q =
α2r

1 − α2r2 , (91)

where α is a constant. Furthermore, by replacing q with rab(N4)2, one obtains

2q2 +
q

r
= q′ = ab(N4)2 + (ra′/a)ab(N4)2 + (rb′/b)ab(N4)2 + rab

d(N4)2

dr
,

=
q

r
[1 + (1 − a + 3qr) + (a − 1 − qr)] + q

d(N4)2

dr
=

q

r
+ 2q2 + q

d(N4)2

dr
. (92)

This implies that (N4)2 is a constant that we call β2, giving

a

r
=

q

br2(N4)2 =
α2

brβ2(1 − α2r2)
. (93)
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Substituting this back in the second equation in (89) gives the linear first-order differ-
ential equation:

db

dr
+ b

[
1
r
+

α2

1 − α2r2

]
=

α2

β2r(1 − α2r2)
. (94)

Multiplying both sides by the integrating factor of r/
√

1 − α2r2 gives

d

dr

[
br/
√

1 − α2r2
]
=

α2

β2(1 − α2r2)
√

1 − α2r2
. (95)

Integrating both sides and recalling (93), we obtain

b =
α2

β2 − 2m

√
1 − α2r2

r
,

a =
α2

bβ2(1 − α2r2)
, (96)

where m is a constant of integration. In particular, with α2 = β2, this becomes

b = 1 − 2m

√
1 − α2r2

r
,

a =
1

b(1 − α2r2)
, (97)

which in the limit α → 0 reduces to the familiar Schwarzschild solution:

a =
1

1 − 2m/r
, b = 1 − 2m/r, (98)

which becomes Euclidean at large r. Once we allow nonzero α, the space is no longer
Euclidean at large r, but it still has a black hole at the center, with a diverging when
r = 2m

√
1 − α2r2 and at r = 1/α2, the latter corresponding to the closed universe studied

in the next section.
Now, consider the second possibility that N2 = N3 = N4 = 0. Again, multiplying the

second last equation in (86) by a/(b) and adding it to the first give

a′

a
+

b′

b
− 2w = 0 where w = ra2(N1)2 ≥ 0. (99)

Furthermore, the second equation in (86) implies

a′

a
+

b′

b
+ 2(a − 1)/r + 4w = 0. (100)

Adding and subtracting these equations give

a′/a =
1
r
− a

r
− w,

b′/b =
a

r
− 1

r
+ 3w. (101)

Multiplying the last by br, differentiating it, and using the result to eliminate b′′ from
the first equation in (86) yield

w′ = −2w2 + w(1 − 4
3 a)/r. (102)
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The equations (101) and (102) appear to have no simple analytic solution. One may
eliminate a(r) from the two equations that do not involve b(r) to obtain

w′′

w
=

7(w′)2

4w2 − 3w′

2wr
− 2w

r
+ w2 − 1

4r2 , (103)

and from a solution w(r), (102) easily gives a(r). Alternatively, one may eliminate w(r)
from these equations to obtain

v′′

v
=

3(v′)2

v2 +
v′

vr
+ (5v′ + 2v2)/3 + v/r. (104)

where v = a/r, and given a solution a(r) = rv(r), the first equation in (101) yields w(r).
In either case, b(r) is found by integrating the last equation in (101). Note that if b(r) is
a solution, then so will be λ2b(r) for any constant λ, i.e., b(r) is only determined up to a
multiplicative constant. This reflects the fact that we are free to rescale the time coordinate,
replacing t by t/λ in (84).

Rather than dealing with these second-order equations for w(r) and v(r), one can
numerically solve (101) and (102) directly. Figure 4 shows some typical solutions, excluding
unphysical examples where, say, a(r) or w(r) remain negative for all r

(a) (b)

(c) (d)

Figure 4. Numerical solutions of Equations (101) and (102). (a) Graph with w(1) = a(1) = b(1) = 1
showing a “black hole”-type singularity at r = 0.5959. (b) Same as for (a), but on a log–log plot.
Note the blow up of b(r) as r → ∞. (c) Graph with w(1) = 0.01 and a(1) = b(1) = 1. Comparing
this with (b) and taking note of the different vertical scales, one can see the approach to the usual
Schwarzschild solution as w(1) → 0. (d) Graph with w(1) = 0.8, a(1) = 0.2, and b(1) = 0.3 showing
a different type of solution with no critical “black hole” radius, but rather, a singularity at r = 0. The
solution for b(r) still clearly blows up as r → ∞.

192



Universe 2022, 8, 298

10. Homogeneous Expanding Universe

It should be emphasized that the solution given here, which is incompatible with the
observations, is for a homogeneous universe devoid of ordinary matter. It does not apply
to a universe where spacetime itself has fluctuations that are not due to ordinary matter.
Even ignoring ordinary gravitational effects, the perturbation results at the beginning of
Section 8 imply such fluctuations occur, and so, one should expect that its cosmological
predictions deviate from those presented in this section. This is explained further in the
next section.

We take the Friedmann–Lemaître–Robertson–Walker metric in reduced-circumference
polar coordinates:

ds2 = a2
[

dr2

1 − kr2 + r2(dθ2 + sin2 θ dφ2)

]
− dt2 (105)

where a, the reduced circumference, can be a function of time, while r, θ, and φ are time
independent, and k = 1, 0,−1, according to whether the universe is spatially closed, flat, or
open with negative curvature. With x1 = r, x2 = θ, x3 = φ, and x4 = t, the corresponding
metric coefficients are

g11 = a2/(1 − kr2), g22 = a2r2, g33 = a2r2 sin2 θ, g44 = −1. (106)

Assuming N1 = N2 = N3 = 0 and defining

P = 2k + (aä + 2ȧ2), (107)

where the dot and double dot denote first and second derivatives with respect to time, the
equations become

0 = R11 = −2(N4)2a2/(1 − kr2)− P/(1 − kr2),

0 = R22 = −2(N4)2a2r2 − Pr2,

0 = R33 = −2(N4)2a2r2 sin2 θ − Pr2 sin2 θ,

0 = R44 = 3ä/a, (108)

where the terms not involving N4 can be identified with the standard formulas for R0
ij. The

last equation in (108) implies ȧ is a constant that we define to be β. We obtain

P = 2k + 2ȧ2 = 2(k + β2), a = βt + γ, (109)

where γ is an integration constant that we can choose to be zero by redefining our origin
of time appropriately (except in the trivial case of a spatially flat universe independent of
time with N4 = 0). From the remaining three equations in (107), which are all equivalent,
we obtain

(N4)2 = − P

2a2 = − k + β2

β2t2 , (110)

which implies that k = −1 (an open universe, like in anti-de Sitter spacetime) and β2 < 1.

11. Addressing the Dark Matter and Dark Energy Problem

The result of the previous section giving an expansion rate ȧ independent of time
agrees with the well-known result that ä = 0 for a model with p = −µ0/3. However, this
is based on the premise that spacetime is homogeneous. The expansion of the universe
appears to be accelerating with measurements indicating p = −0.8µ0 [8], and this could be
a consequence of our theory, as we now explain.

Dark matter itself is known to be inhomogeneous; see, for example, [45] and the
references therein. Spacetime is also inhomogeneous in our model. As the analysis at
the beginning of Section 8 shows, if there is a small fluctuation in the torsion vector field
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in subluminal or superluminal regions of spacetime, then that perturbation will grow.
Moreover, ordinary gravitational effects might add to the inhomogeneity: if there is a
higher equivalent mass density in two different regions, then there could be gravitational
attraction between these regions, leading to accretion. At the same time, “collisions”
between accreting regions should tend to disperse the torsion vector field density. Thus,
there will be a certain amount of equivalent kinetic energy associated with the torsion
field accounting for some additional “dark energy”. More importantly, there could be
substructures in the torsion field containing differing ratios of “dark energy” to “dark
mass”. The structures could collide and give rise to different structures. In particular,
there might be “negative mass structures”, by which we mean structures in the torsion
vector field incorporating superluminal regions. Accounting for these effects should reduce
the total mass density, providing a higher p/µ0 ratio, which may be consistent with the
experimental value of −0.8.

It is to be emphasized that both our full equations (37) and their weak field approxi-
mations (46), (47), and (57) have no intrinsic length scale. There is a length scale associated
with the overall density of the torsion vector field (connected with the mass density of the
apparent dark matter and dark energy in our theory), but this is of the order of the radius
of the universe. It seems likely that the torsion vector field could be quite turbulent with
structures on many length scales, down to some lower cutoff length scale where the current
theory breaks down. This cutoff could be the Planck length scale.

To provide quantitative predictions, one needs a better idea of the behavior of the
torsion vector field within spacetime, and this will almost certainly require sophisticated
numerical simulations to obtain an approximation to the “macroscopic equation of state”.
Simulations are needed to provide a better understanding of torsion fluid behavior in
intergalactic and interstellar regions, as well as around stars, globular clusters, galaxies,
and galaxy clusters. These may require the introduction of some parameter that provides a
lower length scale to the “turbulence” in the torsion vector field, which ultimately could
be taken to be very small. Simulating the dynamics of the torsion vector field over the
continuum of length scales may also require a sort of numerical renormalization group
approach. While we have not investigated the stability of the torsion waves and torsion-
rolls, it is not important that they are stable, even in the weak field approximation. The
purpose of our exact solutions in the weak field approximation was mainly to illustrate the
rich dynamics of the torsion vector field, to give some insight into possible dynamics and
to show that one can have transitions between subluminal and superluminal regions, as
noted at the end of Section 8.2.

Regarding the question as to whether our model can account for the galactic dark mass
problem, an encouraging sign is the apparent cosmological connection between the critical
acceleration a0 ≈ 1.2× 10−10 m/s2 in MOND, the radius of the universe, and the density of
dark matter or energy in the universe, as reviewed in [46]. Thus, the density of dark matter
or energy, roughly ̺ ≈ 10−27 kg/m3, which in our theory is related to the strength of the
torsion field N, has an associated length scale 1/

√
c2̺κ ≈ 6 × 1026 meters (approximately

the radius of the universe), which agrees with the length scale c2/a0 ≈ 7.5 × 1026 meters
associated with the critical acceleration a0 in MOND.

12. Discussion

The theory presented here is largely aimed at providing equations governing the
behavior of spacetime and the torsion field in regions devoid of matter. An initial test
of the theory would entail numerical simulations of the torsion field in the weak field
approximation with ordinary gravitational effects neglected, as governed by Equation (57),
and allowing for field fluctuations. These fluctuations in the torsion field should be
truncated at a small length scale, perhaps at the Planck length scale. This should give an
approximation to the effective equation of state. The next step would be to determine the
evolution of a homogeneous closed universe with this equation of state. Then, perturbations
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could be introduced and the evolution studied. For the theory to be viable, without
modification, the results need to be consistent with cosmological observations.

Beyond the need for a lower cutoff, the equations are still incomplete. As remarked
already, one can change the sign of N(x) in any region and still satisfy the equations,
indicating that there is a deeper theory that prevents such discontinuous solutions for
N(x). Perhaps this also enters at the Planck length scale, and both it and the truncation
of fluctuations in the torsion field are accounted for by appropriate quantum equations.
Assuming there is only weak coupling between the torsion fluid with matter, aside from the
coupling due to gravitation (spacetime curvature), then one might think there is conserva-
tion of momentum and energy both for the stress–energy–momentum tensor of the torsion
vector field and for the stress–energy–momentum tensor of matter. On the other hand, if
one regards the conservation of momentum and energy as a consequence of the Bianchi
identities, then there appears to be no reason why they should be separately conserved.
For this reason, our current theory, while it describes the curvature of spacetime and the
accompanying torsion vector field in regions devoid of matter, is incomplete in regions
containing matter.

One appealing feature of Cartan’s equations, and which is absent in our current theory,
is that they allow for the incorporation of intrinsic spin—something that was discovered
in 1925–1926 after Cartan first arrived at his remarkable equations. Cartan was originally
motivated by the work of the Cosserat brothers [47], who, like his equations, allowed
for a non-symmetric stress field. His focus was on deriving equations where the source
(matter) field automatically satisfied energy and momentum conservation. Sciama [48] and
Kibble [49] independently developed the same generalization of Cartan’s theory, known
as U4 or the Einstein–Cartan–Sciama–Kibble theory. Their theory and the original Cartan
theory imply that the torsion field is zero in empty space and, so, reduce to the Einstein
equations when matter is not present. An advantage of these theories, not yet incorporated
in our theory as there is no coupling with matter, is that they account for the conservation
of angular momentum [30].

As others have also realized, departing from Cartan’s approach has the potential
for explaining dark energy and dark matter as manifestations of a revised gravitational
theory. Our theory is perhaps the simplest theory with that potential. As stressed already,
conservation of energy and momentum still hold provided one reinterprets the equations
as Einstein’s equation with an energy–momentum–stress tensor associated with “empty
space”, i.e., associated with the torsion field. It could be that more complicated equations
involving torsion will provide the final answer (and, as observed in the introduction, many
candidates, besides Cartan’s and those of Sciama and Kibble, have been proposed, and
undoubtedly, others will be put forward in the future). In that case, it could be that the
ultimate theory only slightly perturbs the results in our theory in the intergalactic and
interstellar regions, yet provides some lower limit to the likely “turbulence” in the torsion
field. Thus, if successful, the theory proposed here may provide a guide in the search for
the ultimate theory. It may be that the most important “take home” message of this paper
is highlighting the importance of considering torsion theories that allow for dynamics in
empty space on multiple length scales of the torsion field (and hence, of the accompanying
metric). Interestingly, even in the absence of any torsion, anti-de Sitter space has a weakly
turbulent instability [14].

If warranted by experimental observations, a natural modification of our theory would
be to add a term involving Einstein’s cosmological constant Λ. However, it would be far
more satisfying if this was not needed.
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Abstract: In the Einstein–Cartan gravitational theory with the chameleon field, while changing
its mass independently of the density of its environment, we analyze the Friedmann–Einstein
equations for the Universe’s evolution with the expansion parameter a being dependent on time only.
We analyze the problem of an identification of the chameleon field with quintessence, i.e., a canonical
scalar field responsible for dark energy dynamics, and for the acceleration of the Universe’s expansion.
We show that since the cosmological constant related to the relic dark energy density is induced by
torsion (Astrophys. J. 2016, 829, 47), the chameleon field may, in principle, possess some properties of
quintessence, such as an influence on the dark energy dynamics and the acceleration of the Universe’s
expansion, even in the late-time acceleration, but it cannot be identified with quintessence to the full
extent in the classical Einstein–Cartan gravitational theory.

Keywords: torsion/Einstein-Cartan; gravity/chameleon

PACS: 03.50.-z; 04.25.-g; 04.25.Nx; 14.80.Va

1. Introduction

The chameleon field, changing its mass independently of a density of its environment [1,2],
has been invented to avoid the problem of the equivalence principle violation [3]. Nowadays it is
accepted that the chameleon field, identified with quintessence [4–10], i.e., a canonical scalar field,
can be useful for an explanation of the late-time acceleration of the Universe’s expansion [11–14]
and may shed light on the origins of dark energy and dark energy dynamics [15–21]. Since the
relic dark energy density is closely related to the cosmological constant [15], in contrast to such a
hypothesis that the chameleon field might originate the cosmological constant proportionally to the
homogeneous static dark energy density, it has been shown at the model-independent level within the
Einstein–Cartan gravitational theory [22–38] that the cosmological constant or the relic dark energy
density has a geometrical origin caused by torsion [39]. In this case the chameleon field is able only to
evolve above the relic background of the dark energy simulating its dynamics and, of course, to make
a certain influence on the acceleration of the Universe’s expansion.

For the observation of torsion in the terrestrial laboratories there have been derived potentials of
low-energy torsion–neutron interactions [40–42]. In terrestrial laboratories, the extreme smallness of
absolute values of torsion was confirmed in different estimates of constraints on the contributions of
torsion to observables of elementary particle interactions [43–48], including the qBounce experiments
with ultracold neutrons (UCNs) [49–55] (see also [48]).

The chameleon–matter interactions were also intensively investigated in terrestrial laboratories [49–57]
in experiments with ultracold and cold neutrons through some effective low-energy chameleon–neutron
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potentials [58–61] and by using cold atoms in the atom interferometry [62–66]. However, recently the
importance of the chameleon field as quintessence in the late-time acceleration of the Universe has been
questioned by Wang et al. [67] and Khoury [68] by pointing out that the conformal factor, relating Einstein’s
and Jordan’s frames and defining the chameleon–matter interactions, is essentially constant over the last
Hubble time. According to Wang et al. [67] and Khoury [68], this implies a negligible influence of the
chameleon field on the late-time acceleration of the Universe’s expansion. To some extent, this should also
imply that the chameleon field cannot possess such a property of quintessence as responsibility for the
late-time acceleration of the Universe’s expansion [5–7].

Thus, the aim of this paper is to investigate the properties of the chameleon field in comparison
to the properties of quintessence. We would like to remind readers that by definition, quintessence
is a hypothetical state of dark energy described by a canonical scalar field for an explanation of the
observable acceleration of the Universe’s expansion. We have to also emphasize that our analysis is
restricted by the classical Einstein–Cartan gravitational theory. Below we show that the chameleon
field has no relation to the origin of the cosmological constant, or the relic dark energy density,
which is induced by torsion [39]. However, the chameleon field can still influence on the Universe’s
expansion even in the late-time acceleration, caused by its evolution above the background of the
relic dark energy [39]. By analyzing Einstein’s equations for the flat Universe in spacetime with the
Friedmann metric, dependent on the expansion parameter a [69], we show that conservation of a total
energy–momentum tensor of the system, including the chameleon field, radiation and matter (dark and
baryon matter), demands the conformal factor to be equal to unity if and only if the dependencies of
the radiation ρr(a) and matter ρm(a) densities on the expansion parameter a do not deviate from their
standard forms, ρr(a) ∼ a−4 and ρm(a) ∼ a−3 respectively [69]. We obtain the same result by analyzing
the first order differential Friedmann–Einstein equation, relating ȧ2/a2 to the chameleon field, radiation
and matter densities, and the second order differential Friedmann–Einstein equation, relating ä/a to
the chameleon field, radiation and matter densities and their pressures, where ȧ and ä are the first and
second time derivatives of the expansion parameter. Of course, the equality of the conformal factor
to unity suppresses any coupling of the chameleon field to a matter density of its environment and
makes such a scalar field unhelpful for avoiding the problem of the equivalence principle violation
[3]. However, it does not prevent the chameleon field, evolving above the background of the relic
dark energy, from a simulation of a dark energy dynamics and having an influence on the acceleration
of the Universe’s expansion. Then, we show that the Friedmann–Einstein equation for ȧ2/a2 is the
first integral of the Friedmann–Einstein equation for ä/a if and only if the total energy–momentum of
the system, including the chameleon field, radiation and matter, is locally conserved. As a result we
infer that (i) if the radiation and matter densities obey their standard dependence on the expansion
parameter ρr(a) ∼ a−4 and ρm(a) ∼ a−3 the conformal factor is equal to unity and the chameleon field
loses the possibility to couple to an environment, and (ii) if the dependencies of the radiation and
matter densities deviate from their standard behavior ρr(a) ∼ a−4 and ρm(a) ∼ a−3, the conformal
factor is not equal to unity and makes possible interactions of the chameleon field with its environment.
In this case, usage of the chameleon field for the problem of equivalence principle violation becomes
meaningful. In spite of the fact that the chameleon field does not possess the main property of
quintessence in order to be a hypothetical form of dark energy [4], since the relic dark energy density
or the cosmological constant has a geometrical origin related to torsion [39], the chameleon field,
evolving above the relic dark energy and simulating a dark energy dynamics, might be responsible for
an acceleration of the Universe’s expansion.

The paper is organized as follows. In Section 2 we derive Einstein’s equations in the
Einstein–Cartan gravitational theory with torsion, chameleon and matter fields. Following [39]
we show that the contribution of torsion to the Einstein–Hilbert action is presented in the form of
the cosmological constant. Then, following Khoury and Weltman [1] we include the part of the
integrand of the Einstein–Hilbert action proportional to the cosmological constant for the potential
of the self-interaction of the chameleon field. This implies that the chameleon field has no relation
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to an origin of the cosmological constant or the relic dark energy density but can only evolve above
such a relic background caused by torsion and simulate dark energy dynamics. In Section 3 in the flat
Friedmann spacetime with the standard Friedmann metric gµν, i.e., g00 = 1, g0j = 0 and gij = a2(t) ηij

and ηij = −δij, we show that the Einstein equations reduce themselves to the Friedmann–Einstein
equations of the Universe’s evolution with the chameleon field, radiation and matter (dark and baryon)
densities. Since the Einstein tensor Gµν = Rµν − 1

2 gµνR, where Rµν and R are the Ricci tensor and
scalar curvature, respectively, obey the Bianchi identity Gµν

;µ = 0, where Gµν
;µ is the covariant

divergence [69], the total energy–momentum tensor of the system, including the chameleon field,
radiation and matter (dark and baryon), should be locally conserved. We find that local conservation
of the total energy–momentum tensor imposes the evolution equations for the radiation and matter
densities, where the dependence of them on the expansion parameter a is corrected by the conformal
factor in comparison to the standard dependence ρr(a) ∼ a−4 and ρa ∼ a−3, respectively [69]. We show
that the Friedmann–Einstein equation for ȧ2/a2 is the first integral of the Friedmann–Einstein equation
for ä/a if and only if the total energy momentum of the system, including the chameleon field,
radiation and matter, is locally conserved. In case of the standard dependence of the radiation and
matter densities on the expansion parameters ρr(a) ∼ a−4 and ρm ∼ a−3 [69], local conservation of the
total energy–momentum tensor of the chameleon field, radiation and matter demand the conformal
factor to be equal to unity. This suppresses any interaction of the chameleon field with an ambient
environment. In Section 4 we discuss experiments to probe torsion in the terrestrial laboratories
through effective low-energy torsion-neutron interactions derived in [40–42]. In Section 5 we discuss
the results obtained.

2. Einstein’s Equations in the Einstein–Cartan Gravitational Theory with Chameleon and
Matter Fields

We take the Einstein–Hilbert action of the Einstein–Cartan gravitational theory without chameleon
and matter fields in the standard form [27,37,69]:

SEH =
1
2

M2
Pl

∫
d4x

√
−gR, (1)

where MPl = 1/
√

8πGN = 2.435 × 1027 eV is the reduced Planck mass, GN is the Newtonian
gravitational constant [70] and g is the determinant of the metric tensor gµν. The scalar curvature R is
defined by [27,37]

R = gµνRα
µαν = gµν

( ∂

∂xν
Γα

αµ − ∂

∂xα
Γα

νµ + Γα
νϕΓϕ

αµ − Γα
αϕΓϕ

νµ

)
= gµνRµν, (2)

where Rα
µβν and Rµν are the Riemann and Ricci tensors in the Einstein–Cartan gravitational theory,

respectively. Then, Γα
µν is the affine connection

Γα
µν = {α

µν}+Kα
µν = {α

µν}+ gασKσµν, (3)

where {α
µν} are the Christoffel symbols [69]

{α
µν} =

1
2

gαλ
(∂gλµ

∂xν
+

∂gλν

∂xµ − ∂gµν

∂xλ

)
(4)

and Kσµν is the contorsion tensor, related to torsion Tσµν by Kσµν = 1
2 (Tσµν + Tµσν + Tνσµ) and

T α
µν = gασTσµν = Γα

µν − Γα
νµ with the following properties: Kσµν = −Kνµσ and Tµν = −Tνµ [27,37].

The integrand of the Einstein–Hilbert action Equation (1) can be represented in the following form:

√
−gR =

√
−g R +

√
−g C +

∂

∂xν
(
√
−g gµνKα

αµ)−
√
−g gµν

( 1√−g

∂

∂xα
(
√
−gKα

νµ)− {ϕ
αµ}Kα

νϕ − {α
νϕ}Kϕ

αµ

)
, (5)
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where we have denoted

C = gµν(Kϕ
αµ Kα

νϕ −Kα
αϕKϕ

νµ) (6)

and R is the Ricci scalar curvature of the Einstein gravitational theory, expressed in terms of
the Christoffel symbols {α

µν} [69] only. When removing in Equation (5) the total derivatives
and integrating by parts, we delete the third term and transcribe the fourth term into the form√−g gµν

;α Kα
νµ, where gµν

;α is the covariant derivative of the metric tensor gµν, vanishing because of
the metricity condition gµν

;α = 0 [69].

Derivation of Equation (5)

Let us show that
√−gR can be presented in the form of Equation (5). Using Equation (3) we get

an obvious relation

√
−gR =

√
−g R +

√
−g C +

√
−g gµν

( ∂

∂xν
Kα

αµ − ∂

∂xα
Kα

νµ + {α
νϕ}Kϕ

αµ + {ϕ
αµ}Kα

νϕ

− {α
αϕ}Kϕ

νµ − {ϕ
νµ}Kα

αϕ

)
. (7)

Having replaced the first term in the brackets by the total derivative and by adding the last term in the
brackets, we arrive at the expression

√−gR =
√−g R +

√−g C + ∂
∂xν

(√−g gµν Kα
αµ
)
− ∂

∂xν

(√−g gµν
)
Kα

αµ −√−g gµν {ϕ
νµ}Kα

αϕ

− √−g gµν
(

∂
∂xα Kα

νµ + {α
αϕ}Kϕ

νµ − {α
νϕ}Kϕ

αµ − {ϕ
αµ}Kα

νϕ

)
.

(8)

Then, the first term in the brackets we rewrite as follows:

√
−gR =

√
−g R +

√
−g C +

∂

∂xν

(√
−g gµν Kα

αµ
)
− ∂

∂xν

(√
−g gµν

)
Kα

αµ −
√
−g gµν {ϕ

νµ}Kα
αϕ

−
√
−g gµν

( 1√−g

∂

∂xα

(√
−gKα

νµ
)
− 1√−g

∂
√−g

∂xα
Kα

νµ + {α
αϕ}Kϕ

νµ − {α
νϕ}Kϕ

αµ − {ϕ
αµ}Kα

νϕ

)
. (9)

Since
√−g gµν{ϕ

νµ} and {α
αϕ} are equal to [69] (see Equation (10.107) and Equation (9.56))

√
−g gµν{ϕ

νµ} = − ∂

∂xν

(√
−g gϕν

)
, {α

αϕ} =
1√−g

∂
√−g

∂xϕ , (10)

the fourth and fifth terms in the first line in Equation (9) and the second and third terms in the brackets
are cancelled out in pairs. This reduces Equation (9) to Equation (5).

Now we may show that the contribution of the fourth term in Equation (5) to the Einstein–Hilbert
action reduces to the contribution of the term

√−g gµν
;α Kα

νµ. The contribution of the fourth term in
Equation (5) to the Einstein–Hilbert action is defined by the integral

∫
d4x

√
−g gµν

( 1√−g

∂

∂xα
(
√
−gKα

νµ)− {ϕ
αµ}Kα

νϕ − {α
νϕ}Kϕ

αµ

)
. (11)

After the integration by parts in the first term we get

∮ √
−g gµνKα

νµdSα −
∫

d4x
√
−g
(∂gµν

∂xα
Kα

νµ + gµν{ϕ
αµ}Kα

νϕ + gµν{α
νϕ}Kϕ

αµ

)
. (12)

Having omitted the surface term and having renamed some indices in the second integral in
Equation (12), we arrive at the expression

−
∫

d4x
√
−g
(∂gµν

∂xα
+ gρν{µ

ρα}+ gνρ{µ
ρα}
)
Kα

νµ, (13)
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where we have used the property of the Christoffel symbols {µ
αρ} = {µ

ρα}. The expression in the
brackets is the covariant derivative of the metric tensor gµν (see, for example, [27,69])

gµν
;α =

∂gµν

∂xα
+ gρν{µ

ρα}+ gµρ{ν
ρα}. (14)

Thus, the contribution of the fourth term to the Einstein–Hilbert action is proportional to the integral

∫
d4x

√
−g gµν

( 1√−g

∂

∂xα
(
√
−gKα

νµ)− {ϕ
αµ}Kα

νϕ − {α
νϕ}Kϕ

αµ

)
= −

∫
d4x

√
−g gµν

;α Kα
νµ. (15)

This confirms our assertion concerning a vanishing contribution of the fourth term in Equation (5) to
the Einstein–Hilbert action in case of the metricity condition gµν

;α = 0 [69].
Since it has been shown in [39] that C = −2ΛC, where ΛC is the cosmological constant [69,71,72]

(see also [15]) or the relic dark energy density, the Einstein–Hilbert action Equation (1) of the
Einstein–Cartan gravitational theory with the scalar curvature Equation (2) can be represented in the
following form [39]:

SEH =
1
2

M2
Pl

∫
d4x

√
−g
(

R − 2ΛC

)
. (16)

As has been shown in [39], the same result is valid for the Poincaré gauge gravitaitonal theory [73–77]
(see also [31–34]). Using Equation (11) the action of the Einstein–Cartan gravitational theory with
torsion, chameleon fields and matter fields we take in the form [39]

SEH =
1
2

M2
Pl

∫
d4x

√
−g R +

∫
d4x

√
−gL[φ] +

∫
d4x

√
−g̃Lm[g̃], (17)

where L[φ] is the Lagrangian of the chameleon field

L[φ] = 1
2

gµν ∂µφ∂νφ − V(φ) (18)

and V(φ) is the potential of the chameleon self-interaction. In Equation (17), following Khoury and
Weltman [1], we have included additively the cosmological constant ΛC in the form of the relic
dark energy density ρΛ = M2

PlΛC into the potential V(φ) of the chameleon field self-interaction;
i.e., V(φ) = ρΛ + Φ(φ). This implies that the chameleon field has no relation to the origin of the
cosmological constant or the relic dark energy density. It can only evolve above the relic background
of the dark energy, caused by torsion.

The matter fields and the radiation [78,79] are described by the Lagrangian Lm[g̃µν].
The interactions of the matter fields and radiation with the chameleon field are expressed in terms
of the metric tensor g̃µν in the Jordan frame [1,2,80], which is conformally related to Einstein’s frame
metric tensor gµν by g̃µν = f 2 gµν (or g̃µν = f−2 gµν) and

√−g̃ = f 4 √−g with f = e βφ/MPl , where β

is the chameleon–matter coupling constant [1,2]. The factor f = e βφ/MPl can be interpreted also as a
conformal coupling to matter fields and radiation [80] (see also [1,2,81]). For simplicity we have set the
chameleon–photon coupling constant βγ [79] to be equal to the chameleon–matter coupling constant β.

By varying the action of Equation (17) with respect to the metric tensor δgµν (see, for example, [69]),
we arrive at Einstein’s equations, modified by the contribution of the chameleon field. We get

Rµν −
1
2

gµν R = − 1
M2

Pl

(
f 2 T̃

(m)
µν + T

(φ)
µν

)
, (19)
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where Rµν is the Ricci tensor [69]; T̃
(m)
µν and T

(φ)
µν are the matter (with radiation, which we treat as a

radiative fluid [82–86]) and chameleon energy–momentum tensors, respectively, determined by

T̃
(m)
µν =

2√−g̃

δ

δg̃µν

(√
−g̃L[g̃]

)
= (ρ̃ + p̃) ũµũν − p̃ g̃µν,

T
(φ)
µν =

2√−g

δ

δgµν

(√
−gL[φ]

)
=

∂φ

∂xµ

∂φ

∂xν
− gµν

(1
2

gλρ ∂φ

∂xλ

∂φ

∂xρ − V(φ)
)

. (20)

The factor f 2 appears in front of T̃
(m)
µν because of the relation

2√−g

δ

δgµν

(√
−g̃Lm[g̃]

)
=

√−g̃√−g

δg̃λρ

δgµν T̃
(m)
λρ = f 2 T̃

(m)
µν , (21)

where we have used that
√−g̃√−g

= f 4 ,
δg̃λρ

δgµν = f−2 1
2
(gλ

µgρ
ν + gλ

νgρ
µ), (22)

since g̃λρ = f−2 gλρ [80] and T̃
(m)
µν = T̃

(m)
νµ . Then, the quantities ρ̃, p̃ and ũµ in the Jordan frame are

related to the quantities ρ, p and uµ in Einstein’s frame as [80]

ρ̃ = f−3 ρ , p̃ = f−3 p , ũµ = f uµ , ũµ = f−1 uµ. (23)

This gives T̃
(m)
µν = f−1T

(m)
µν . By plugging Equation (20) with T̃

(m)
µν = f−1T

(m)
µν into Equation (19),

we arrive at Einstein’s equations

Rµν −
1
2

gµν R = − 1
M2

Pl
Tµν, (24)

where Tµν is the total energy–momentum tensor equal to

Tµν =
(
(ρ + p) uµuν − p gµν

)
e βφ/MPl +

( ∂φ

∂xµ

∂φ

∂xν
− gµν

(
gλρ 1

2
∂φ

∂xλ

∂φ

∂xρ − V(φ)
))

, (25)

where the contribution of torsion T
(tor)
µν = ρΛgµν = M2

PlΛCgµν [39] is included additively in the
potential V(φ) of the self-interactions of the chameleon field. Below we analyze the Einstein equations
(Equation (24)) in the cold dark matter (CDM) model [70] in the Friedmann flat spacetime with the line
element [69,70]

ds2 = gµν(x)dxµdxν = dt2 + a2(t) ηijdxidxj, (26)

where g00(x) = 1 and gij(x) = a2(t) ηij with ηij = −δij. Then, a(t) is the expansion parameter of the
Universe’s evolution [69]. The Christoffel symbols {α

µν}, the components of the Ricci tensor Rµν and
the scalar curvature R are equal to [69]

{0
00} = {0

0j} = {j
00} = {i

kj} = 0, , {0
kj} = −aȧ ηkj , {i

0j} =
ȧ

a
δi

j,

R00 = 3
ä

a
, R0j = 0 , Rij =

( ä

a
+ 2

ȧ2

a2

)
gij , R = 6

( ä

a
+

ȧ2

a2

)
, (27)

where ηiℓηℓj = δi
j and ȧ and ä are first and second derivatives with respect to time.
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3. Friedmann–Einstein Equations of the Universe’s Evolution

In Friedmann spacetime, Einstein’s equations (Equation (24)) define the equations of the
Universe’s evolution, which are usually called Friedmann’s equations (or the Friedmann–Einstein
equations) [69]. They are given by

ȧ2

a2 =
1

3M2
Pl

(
ρφ + (ρr + ρm) f (φ)

)
(28)

and

ä

a
= − 1

6M2
Pl

(
ρφ + 3pφ + (ρr + 3pr) f (φ) + ρm f (φ)

)
, (29)

where ρr and ρm are the radiation and matter densities. The scalar field φ couples to radiation and
matter densities through the conformal factor f (φ) = e βφ/MPl . Then, the radiation density ρr and
pressure pr are related by the equation of state pr = ρr/3 [69]. For the description of matter we use the
cold dark matter (CDM) model with the pressureless dark and baryon matter [70]. The scalar field
density ρφ and pressure pφ are equal to

ρφ =
1
2

φ̇2 + V(φ) , pφ =
1
2

φ̇2 − V(φ). (30)

Varying the action Equation (17) with respect to the scalar field φ and its derivative one gets the
equation of motion for the scalar field [81]. In Friedmann spacetime it reads

φ̈ + 3
ȧ

a
φ̇ +

dVeff(φ)

dφ
= 0, (31)

where Veff(φ) is the effective potential given by

Veff(φ) = V(φ) + ρm

(
f (φ)− 1

)
. (32)

The contribution of the radiation density comes into the effective potential in the form
(ρr − 3pr)

(
f (φ)− 1

)
. As for the equation of state pr = ρr/3, such a contribution vanishes. Thus,

through the interaction with matter density ρm the scalar field can acquire a non-vanishing mass if the
effective potential Veff(φ) obeys the constraints

dVeff(φ)

dφ

∣∣∣
φ=φmin

= 0 ,
d2Veff(φ)

dφ2

∣∣∣
φ=φmin

> 0, (33)

i.e., the effective potential Veff(φ) possesses a minimum at φ = φmin. An important role for a
dependence of a chameleon field mass on a density of an environment is the conformal factor f (φ)

and its deviation from unity.

3.1. Bianchi Identity, Conservation of Total Energy–Momentum Tensor and Conformal Factor

By using Equation (27) and taking into account that in the Friedmann flat spacetime the
non-vanishing components of the Einstein tensor Gµν = Rµν − 1

2 gµνR are equal to

G00 = −3
ȧ2

a2 , Gij =
(
− 2

ä

a
− ȧ2

a2

)
gij (34)
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one may show that Einstein’s tensor Gµν obeys the Bianchi identity [69]

Gµν
;µ =

1√−g

∂

∂xρ

(√
−g Gρν

)
+ Γν

µρGµρ = 0, (35)

where Gµν
;µ is a covariant divergence and Γν

µρ = {ν
µρ} are the Christoffel symbols [69]. As a result,

the covariant divergence of the total energy–momentum tensor Tµν
;µ should also vanish

Tµν
;µ =

1√−g

∂

∂xρ

(√
−g Tρν

)
+ Γν

µρTµρ = 0. (36)

Due to time-dependence only Equation (31) takes the form

1√−g

∂

∂t

(√
−g T00

)
+ Γ0

ijT
ij = 0, (37)

where we have taken into account Equation (27). Using the non-vanishing components of the total
energy momentum tensor

T00 = ρφ + (ρr + ρm) f (φ) , Tij = −
(

pφ + pr f (φ)
)

gij (38)

we transcribe Equation (32) into the form

d

dt

(
ρφ + (ρr + ρm) f (φ)

)
+ 3

ȧ

a

(
ρφ + pφ + (ρr + pr) f (φ) + ρm f (φ)

)
= 0. (39)

Since Equation (31) can be rewritten as follows:

d

dt

(
ρφ + ρm f (φ)

)
=

d

dt
ρm − 3

ȧ

a

(
ρφ + pφ

)
, (40)

we may remove the contribution of the chameleon field in Equation (39). As result, we get

d

dt

(
ρr f (φ) + ρm

)
+

ȧ

a

(
4ρr f (φ) + 3ρm f (φ)

)
= 0, (41)

where we have used the equation of state pr = ρr/3 [69]. Due to independence of radiation and matter
densities, Equation (41) can be split into evolution equations of the radiation and matter densities:

d

dt

(
ρr f (φ)

)
+ 4

ȧ

a

(
ρr f (φ)

)
= 0,

d

dt
ρm + 3

ȧ

a
ρm f (φ) = 0. (42)

For the standard dependence of the radiation and matter densities on the expansion parameter a(t) [69],

ρr = 3M2
PlH

2
0Ωr

a4
0

a4 , ρm = 3M2
PlH

2
0Ωm

a3
0

a3 , (43)

where a0, H0 = 1.438(11)× 10−33 eV, Ωr and Ωm are the expansion parameter, the Hubble rate and
the relative radiation and matter densities at our time t0 = 1/H0 [70], the equations for the radiation
and matter densities Equation (42) are satisfied identically for f (φ) = 1.

Thus, if the radiation and matter densities depend on the expansion parameter a as ρr(a) ∼ a−4

and ρm(a) ∼ a−3, local conservation of the total energy–momentum in the Universe can be fulfilled
if and only if the conformal factor f (φ), relating Einstein’s and Jordan’s frames and defining the
chameleon–matter coupling, is equal to unity; i.e., f (φ) = 1. However, in this case there is no influence
of the chameleon field on the evolution of the radiation and matter densities and a dependence of the
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chameleon field mass on a density of its environment. In turn, for f (φ) 6= 1 the evolution equations
(Equation (37)) admit some exact solutions. It is convenient to search these solutions independently of
the expansion parameter a. Treating the conformal factor f (φ) as a function of the expansion parameter
a, i.e., setting f (φ) = f (a) 6= 1, the solutions to Equation (37) can be given by

ρr(a) = ρr0
a4

0
a4

f (a0)

f (a)
,

ρm(a) = ρm0
a3

0
a3 exp

(
3
∫ a0

a

f (a′)− 1
a′

da′
)

, (44)

where ρr0 = 3M2
PlH

2
0Ωr and ρm0 = 3M2

PlH
2
0Ωm are the radiation and matter densities at out time

t0 = 1/H0 and a(t0) = a0, i.e., in the era of the late-time acceleration of the Universe’s expansion or
the dark energy–dominated era. The integration constants of the first order differential equations
(Equation (35)) are fixed by the conditions ρr(a0) = ρr0 and ρm(a0) = ρm0, respectively [69,70].
According to the solutions (Equation (44)), the chameleon field has an influence on the evolution of the
radiation and matter densities.

As an example of the conformal factor we may use f = e βϕ(a)/MPl [1,2], where ϕ(a) is the
chameleon field as a function of the expansion parameter a and the solution to Equation (31),
i.e., φ(t) = ϕ(a). Keeping the linear order contributions in the βϕ(a)/MPl expansion we get

ρr(a) = ρr0
a4

0
a4

(
1 +

β

MPl
(ϕ(a0)− ϕ(a))

)
,

ρm(a) = ρm0
a3

0
a3

(
1 + 3

β

MPl

∫ a0

a
ϕ(a′)

da′

a′

)
. (45)

Thus, the deviations of the radiation and matter densities from their standard behavior ρr(a) ∼ a−4

and ρm(a) ∼ a−3 are given by

δρr(a) =
β

MPl
ρr0

a4
0

a4

(
ϕ(a0)− ϕ(a)

)
,

δρm(a) = 3
β

MPl
ρm0

a3
0

a3

∫ a0

a
ϕ(a′)

da′

a′
. (46)

Some observations of deviations of the radiation and matter densities in the Universe from their
standard form might, in principle, evidence an existence of the chameleon field. Nevertheless, we have
to emphasize that the contributions of the conformal factor to the radiation and matter densities at our
time are not practically observable. It is seen from the solutions (Equation (44)) that the conformal factor
affects the evolution of the radiation and matter densities during the radiation and matter-dominated
eras only. Of course, an influence of the chameleon field evolution on the distribution of the radiation
density might seem rather questionable, since the evolution equation (Equation (37)) defines an
evolution of the product ρr f (φ), where one may hardly separate ρr from f (φ). By introducing an

effective radiation density ρ
(eff)
r = ρr f (φ) we obtain a canonical radiation density Equation (43), where

the contribution of f (φ) at a = a0 is hidden very likely in Ωr.

3.2. The Friedmann–Einstein (Equation Equation (28)) as the First Integral of the Friedmann–Einstein
Equation (Equation (29))

It is well–known that without the chameleon field and for the conformal factor f (a) = 1 the
Friedmann–Einstein differential equation for ȧ2/a2 is the first integral of the Friedmann–Einstein
differential equation for ä/a [69]. However, such a property of Equation (28) with the chameleon
field and the conformal factor f (a) 6= 1 to be the first integral of Equation (29) has not so far been
investigated and proven in the literature. In order to prove that Equation (28) is the first integral
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of Equation (29) with the contributions of the chameleon field and the conformal factor f (a) 6= 1,
we rewrite Equation (28) as follows:

ȧ2

a2 =
1

3M2
Pl

(
ρch + ρr f + ρm

)
, (47)

where ρch = ρφ + ρm( f − 1) = 1
2 φ̇2 + Veff(φ) is the chameleon field density, given by Equation (30)

with the replacement V(φ) → Veff(φ) (see Equation (32)). In order to find ρch as a function of the
expansion parameter a we use Equation (31) and transcribe it into the form

a
d

da
ρch(a) + 6ρch(a) = 6Veff(a), (48)

where we have denoted Veff(φ) = Veff(a), assuming that φ is a function of a; i.e., φ = φ(a). As a
function of the expansion parameter a, the effective potential Veff(a) is given by

Veff(a) = V(a) + ρm(a)( f (a)− 1), (49)

where V(a) = V(φ) = V(ϕ(a)) with the additive contribution of the relic dark energy density,
induced by torsion, and f (a) = e βϕ(a)/MPl . The solution to Equation (48) is equal to

ρch(a) =
Cφ

a6 +
6
a6

∫
a5Veff(a)da, (50)

where the term Cφ/a6 corresponds to the contribution of the kinetic term of a scalar field [87].
The integration constant Cφ, we define as follows: Cφ = 3M2

PlH
2
0Ωφa6

0, where Ωφ is the integration
constant, having the meaning of a relative density of a scalar field at time t0 = 1/H0 [70]. As a result,
Equation (47) takes the form

ȧ2

a2 =
1

3M2
Pl

(
ρch(a) + ρr(a) f (a) + ρm(a)

)
, (51)

where in the right-hand-side (r.h.s.) all densities and the conformal factor are functions of the expansion
parameter a. Further, it is convenient to rewrite Equation (29) as follows:

ä

a
= −2

ȧ2

a2 +
1

3M2
Pl

ρr(a) f (a) +
1

2M2
Pl

ρm(a) f (a) +
1

M2
Pl

V(a), (52)

where we have used Equation (51). Since the second derivative ä of the expansion parameter a with
respect to time can be given by

ä =
1
2

dȧ2

da
, (53)

one may transcribe Equation (47) into the form

a
d

da
ȧ2 + 4ȧ2 =

2
3M2

Pl
a2ρr(a) f (a) +

1
M2

Pl
a2ρm(a) f (a) +

2
M2

Pl
a2V(a). (54)

The solution to Equation (54) amounts to

ȧ2 =
C

a4 +
2

3M2
Pl

1
a4

∫
a5ρr(a) f (a)da +

1
M2

Pl

1
a4

∫
a5ρm(a) f (a)da +

2
M2

Pl

1
a4

∫
a5V(a)da, (55)
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where C is the integration constant. Dividing both sides of Equation (55) by a2 we arrive at the equation

ȧ2

a2 =
1

3M2
Pl

(Cφ

a6 +
6
a6

∫
a5U(a)da +

2
a6

∫
a5ρr(a) f (a)da +

3
a6

∫
a5ρm(a) f (a)da

)
, (56)

where we have set Cφ = 3M2
PlC = 3M2

PlH
2
0Ωφ. Thus, Equation (51) is the first integral of Equation (29).

Making a replacement V(a) = Veff(a)− ρm(a)( f (a)− 1) we arrive at the expression

ȧ2

a2 =
1

3M2
Pl

(
ρch(a) +

2
a6

∫
a5ρr(a) f (a)da +

6
a6

∫
a5ρm(a)da − 3

a6

∫
a5ρm(a) f (a)da

)
. (57)

Since the radiation and matter densities as functions of a obey the equations

a
d

da

(
ρr(a) f (a)

)
= −4

(
ρr(a) f (a)

)
,

a
d

da
ρm(a) = −3ρm(a) f (a) (58)

and that ρr(a) f (a) = ρr0 f (a0)a4
0/a4 (see Equation (44)), we transcribe the right–hand–side (r.h.s.) of

Equation (57) into the form

ȧ2

a2 =
1

3M2
Pl

(
ρch(a) + ρr(a) f (a) +

1
a6

∫
d

da

(
a6ρm(a)

)
da
)
=

1
3M2

Pl

(
ρch(a) + ρr(a) f (a) + ρm(a)

)
, (59)

This proves that Equation (28) is the first integral of Equation (29) if the total energy–momentum is
locally conserved. The evolution of the chameleon field density ρch(a) independently of the expansion
parameter a is defined by Equation (50), which we rewrite as follows:

ρch(a) = ρΛ +
Cφ

a6 +
6
a6

∫
a5Φ(a)da +

6
a6

∫
a5ρm(a)

(
f (a)− 1

)
da, (60)

where ρΛ = M2
PlΛC. and the third term in Equation (60) is the model-dependent part of the potential

of the self-interaction of the chameleon field V(φ) = ρΛ + Φ(φ) [4,10,16,88], taken as a function of the
expansion parameter a, i.e., Φ(φ) = Φ(a). Such a chameleon field density may affect the acceleration
of the Universe’s expansion. Setting f (a) = 1 in Equation (60) we get

ρch(a) = ρΛ +
Cφ

a6 +
6
a6

∫
a5Φ(a)da, (61)

where the second and the last terms might still provide an acceleration of the Universe’s expansion
additional to that caused by the first term ρΛ, which is induced by torsion [39].

4. Torsion–Neutron Low-Energy Interactions

Our analysis carried out above may give an impression that after the absorption of torsion by
the cosmological constant, the Einstein–Cartan gravitational theory reduces to Einstein’s gravitational
theory [69]. Such an impression can be real only in case of the absence of fermions. As has been
shown in [40–42], there is a huge variety of minimal and nonminimal low-energy torsion–neutron
interactions. The torsion tensor field Tσµν, being a tensor of the third rank and antisymmetric with
respect to indices µ and ν, i.e., Tσµν = −Tσνµ, is defined by 24 independent components: (i) four vectors
Eµ = (E0, ~E ), (ii) four axial vectors Bµ = (B0, ~B ) and (iii) 16 tensors Mσµν [35,36,44] (see also [40–42]).
The effective low-energy torsion–neutron potentials are presented in the form of expansion in powers
of 1/m, where m is the neutron mass, and restricted by the terms of order O(1/m), by using the
Foldy–Wouthuysen (FW) canonical transformations [89]. The most interesting effective low-energy
torsion–neutron interactions are induced in the rotating coordinate systems, which can be used for
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experimental probes of torsion in terrestrial laboratories [48,60]. It is important to emphasize that a
part of these effective low-energy torsion–neutron interactions provide a violation of time-reversal
invariance [42], which can be probed in the terrestrial laboratories.

According to [42], in the coordinate system rotating with an angular velocity ~Ω the time
component E0 of the 4-vector Eµ of the torsion field induces the T–odd, i.e., violating time reversal
symmetry, optical potential

Φ
(T−odd)
eff = −i

4
3
E0

m
~S · ~Ω, (62)

where ~S = 1
2~σ is the operator of the neutron spin and~σ are 2 × 2 Pauli matrices [90]. As has been

shown in [47], because of the T–odd interaction (Equation (62)), the cross section for low-energy
neutron–nucleus scattering, caused by the beam of polarized neutrons passing through a spinning
cylinder, should acquire the correction [39]

∆σTV(Ω, p) =
8π

3
√

2
E0R2L

Ω

p
, (63)

where R and L are the radius and length of the spinning cylinder, and p is a neutron momentum
(for a detailed discussion of the p-dependence of ∆σTV(Ω, p) we refer to [47] below Equation (5)).
The aim of the proposed experiment is a search for the Ω-dependent part of the helicity-dependent
part of the difference of the cross sections for neutron–nucleus scattering, caused by neutrons polarized
parallel and antiparallel to the neutron beam axis coinciding with the axis of a spinning cylinder.
For contemporary experimental abilities, such a T–odd correction allows one to probe the time
component of the 4-vector part of the torsion field at the level of sensitivity of about |E0| ∼ 10−32 GeV.
This is a few orders of magnitude better in comparison to the estimate obtained in [44].

Another part of the effective low-energy torsion–neutron potentials, which is not proportional to
1/m, can be used for probes of the components of the torsion field in the qBounce experiments dealing
with ultracold neutrons (UCNs) bouncing in the gravitational field of the Earth [49–55] (see also [48]).
As an example, we consider the effective low-energy potential of the time-component B0 (pseudoscalar)
of the 4-axial vector Bµ and the time-time-space-components ( ~M)k = M00k of the tensor Mσµν [42]

Φeff =
1
3
B0 ~S ·

(
~Ω⊕ × (~R⊕ +~r )

)
− 1

2
~S ·
(
~M×

(
~Ω⊕ × (~R⊕ +~r )

))
, (64)

where ~Ω⊕ and ~R⊕ are the angular velocity and the radius vector of the Earth as they are shown in
Figure 1. Then,~r is the radius–vector of the UCN in the laboratory.

The experiments with UCNs, bouncing in the gravitational field of the Earth, are being performed
in the laboratory at Institut Laue Langevin (ILL) in Grenoble. The ILL laboratory is fixed to the
surface of the Earth in the northern hemisphere. Following [91–95] we choose the ILL laboratory
or the standard laboratory frame with coordinates (t, x, y, z), where the x, y and z axes point south,
east and vertically upwards, respectively, with northern and southern poles on the axis of the Earth’s
rotation with the Earth’s sidereal frequency Ω⊕ = 2π/(23 hr 56 min 4.09 s = 7.2921159 × 10−5 rad/s.
The position of the ILL laboratory on the surface of the Earth is determined by the angles χ and
φ, where χ = 900 − θ is the colatitude of the laboratory, defined in terms of the latitude θ, and φ

is the longitude of the laboratory measured east of south with the values θ = 45.16667◦ N and
φ = 5.71667◦ E [96], respectively. The beam of UCNs moves from south to north antiparallel to the
x–direction and with energies of UCNs quantized in the z–direction.
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Figure 1. The position of the ILL laboratory doing the qBounce experiments on the surface of the Earth.

In the qBounce experiments the contributions of interactions beyond the gravitational interaction
of the Earth are measured in terms of the transition frequencies ωpq = Ep − Eq of the transitions
|q〉 → |p〉 between two gravitational states of UCNs |q〉 and |p〉 [49–55] (see also [59,60]). As of
the small values of the components of the torsion field the contribution of the~r-dependent part of
the effective torsion–neutron potential Equation (64), where the vector~r defines a location of the
UCN in the coordinate system (t, x, y, z), to the transition frequencies between quantum gravitational
states of UCNs can be neglected in comparison to the contributions of the terms independent of~r.
Relative to the axes (x, y, z) the vectors ~Ω⊕ and ~R⊕ are equal to ~Ω⊕ = (−Ω⊕ sin χ, 0, Ω⊕ cos χ) and
~R⊕ = (0, 0, R⊕), respectively. This allows one to transcribe the effective low-energy torsion–neutron
potential Equation (64) into the form

Φeff = Ω⊕R⊕ sin χ
(1

3
B0Sy +

1
2
MzSx −

1
2
MxSz

)
= 1.1 × 10−6

(1
3
B0Sy +

1
2
MzSx −

1
2
MxSz

)
, (65)

where (Sx, Sy, Sz) are operators of the neutron spin ~S–operator components. Thus, measuring the
transition frequencies of spin-flip transitions between gravitational states |q ↓〉 → |p ↑〉 one may
measure the contributions of the pseudoscalar B0 and tensor Mx = −M00x and Mz = −M00z

components of the torsion field. A predictable power of the qBounce experiments we may demonstrate
by example of the estimate of the contribution of the pseudoscalar component B0 of the torsion field
coupled to UCNs. Indeed, according to Lämmerzahl [43], the value of the pseudoscalar component of
the torsion field is constrained by |B0| < 2 × 10−18 GeV. Its contribution to the transition frequencies
between quantum gravitational states of UCNs |q ↓〉 → |p ↑〉 is of about |∆ωp↑q↓| < 7 × 10−16 eV.
This value is at the level of current experimental sensitivity ∆E < 10−15 eV [55] and the sensitivity of
a nearest future, which is of about ∆E < 10−17 eV and even ∆E < 10−21 eV [49,97]. The experiments
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discussed in this sections and and many others, which could be carried out by using effective
low-energy potentials of torsion–neutron interactions derived in [40–42], might make reliable the
geometrical origin of the cosmological constant or the relic dark energy, induced by torsion [39].

5. Discussion

We would like to emphasize that our analysis of the chameleon field as a candidate for
quintessence is carried out within the classical Einstein–Cartan gravitational theory with the
Einstein-Hilbert action linear in the Ricci scalar curvature. By definition [4], quintessence is a
hypothetical form of dark energy described by a canonical scalar field for an explanation of the
observable acceleration of the Universe’s expansion. The most important that quintessence should
be a hypothetical form of dark energy. In this connection in the Einstein–Cartan gravitational theory,
when the cosmological constant or the relic dark energy density has the geometrical origin, caused by
torsion, the chameleon field possesses no chance to be a hypothetical form of dark energy. In other
words having provided a geometrical origin for the cosmological constant or the relic dark energy
torsion deprives the chameleon field to have a chance to be quintessence. As a result, the chameleon
field is able only to evolve above the relic background of the dark energy, caused by torsion, but not to
originate it. Then, as a consequence of conservation of the total energy–momentum of the system, the
chameleon field can affect the dark energy dynamics and as well as the Universe’s expansion even
also the late-time acceleration. We have shown that such an influence of the chameleon field on the
acceleration of the Universe’s expansion retains also even if the conformal factor, relating Einstein’s and
Jordan’s frames and defining the interaction of the chameleon field with its ambient matter, is equal
to unity (see Equations (60) and (61). This result is closely related to our proof that for the system,
including the chameleon field, radiation and matter (dark and baryon matter), the Friedmann–Einstein
equation for ȧ2/a2 is the first integral for the Friedmann–Einstein equation for ä/a.

We have found that local conservation of the total energy–momentum of the system, including
the chameleon field, radiation and matter (dark and baryon matter), leads to the equations of
the evolution of the radiation and matter densities, corrected by the conformal factor. Of course,
since for radiation the evolution equation defines an evolution of the product ρr(a) f (φ), where the
conformal factor f (φ) is a function of the expansion parameter a, such a product ρr(a) f (φ) does
not deviate from the standard behavior ρr(a) f (φ) ∼ a−4. Since the radiation density ρr(a) enters to
the Friedmann–Einstein equations only in the form of the product ρr(a) f (φ) one may not probably
separate the contribution of the conformal factor above the standard shape proportional to a−4. In turn,
for the matter density ρm(a) the contribution of the conformal factor leads to a deviation from the
standard behavior ρm(a) ∼ a−3 [69]. However, such a deviation might be, in principle, noticeable only
during the matter-dominated era. In the dark energy–dominated era that is in our time of the late-time
acceleration of the Universe, where the expansion parameter is equal to a0 = a(t0) for the Hubble
time t0 = 1/H0 [69], the contributions of the conformal factor to the radiation and matter densities
in comparison to the standard values ρr(a0) = 3M2

PlH
2
0Ωr and ρm(a0) = 3M2

PlH
2
0Ωm are practically

unobservable. This agrees well with the constraints on the deviations of the radiation and matter
densities from their values at our time to a few parts per million [98], which can be obtained from the
constraints on the fifth force caused by the chameleon field in the Galaxy and the Solar system.

The cosmological constant ΛC, induced by torsion [39], we have included additively to the
potential of the self-interaction of the chameleon field as a background of the relic dark energy:
V(φ) = ρΛ + Φ(φ). In the chameleon field theory [1,2] the relic dark energy density ρΛ is defined as

follows: ρΛ = Λ4, where the scale Λ = 4
√

3M2
PlH

2
0ΩΛ = 2.24(1)meV is calculated for the relative dark

energy density ΩΛ = 0.685(7) [70]. The φ-dependent part of the potential of the self-interaction of the
chameleon field Φ(φ) is arbitrary to some extent, i.e., model-dependent, and demands a special analysis
similar to that carried out in [4,10,16,88]. However, such an analysis goes beyond the scope of our
paper. We would like to emphasize that a specific analysis of a dynamics of the chameleon field such
as different mechanisms of chameleon screening and a formation of a fifth force, for example, in the
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Galaxy and the Solar system is related also to a special choice of the potential of the self-interaction of
the chameleon field [16,98]. Such an analysis has been carried out by Brax et al. [16] and Jain et al. [98].
The repetition of such an analysis goes beyond the scope of this paper.

As regards the assertion by Wang et al. [67] and Khoury [68] that since the conformal factor
is practically constant during the Hubble time, so the chameleon field is not responsible for the
late-time acceleration of the Universe, one may argue that the conformal factor might be, in principle,
practically constant (or better to say unity), but such a behavior of the conformal factor does not
prohibit the chameleon field, evolving above the relic dark energy background induced by torsion,
to take a certain part in dark energy dynamics and, correspondingly, in the acceleration of the
Universe’s expansion (see Equations (60) and (61)) and even so in the late-time acceleration of the
Universe’s expansion.

As regards another canonical scalar fields which can be introduced for an explanation of an
origin of dark energy and an influence on acceleration of the Universe’s expansion such as symmetron
and dilaton, we may say the following. Since the dynamics of the symmetron field differs from the
dynamics of the chameleon one only by the shape of the potential of self-interaction [99], our conclusion
concerning an identification of the chameleon field with quintessence is fully applicable to the
symmetron one. In other words the symmetron field cannot be quintessence to full extent. Moreover,
we have to mention that an existence of the symmetron field and its importance for an evolution of the
Universe might seem to be rather questionable after the qBounce experiments [55] on the transition
frequencies between quantum gravitational states of UCNs, which have excluded the existence of the
symmetron field.

Then, we have to confess that our analysis of an identification of a canonical scalar field with
quintessence, carried out within the classical Einstein–Cartan gravitational theory, can say practically
nothing concerning dilaton. Indeed, unlike the gravitational theories with the chameleon and
symmetron fields the gravitational theories with dilaton are based on string theory in terms of the
non-riemannian structure of space-time [100–107]. Of course, since an inclusion of dilaton as a canonical
scalar field is closely related to a requirement of scale invariance of the action of the dynamical system
under consideration, the classical Einstein–Cartan gravitational theory can be, in principle, modified by
a requirement of scale invariance [108]. However, in such a modified Einstein–Cartan gravitational
theory the problem of the geometrical origin of the cosmological constant or the relic dark energy
caused by torsion demands a special analysis, which goes beyond the scope of this paper. Nevertheless,
if in such a modified Einstein–Cartan gravitational theory torsion would be a geometrical origin of the
cosmological constant or the relic dark energy density, our conclusion concerning an impossibility to
identify dilation with quintessence might have been valid only within such a modified Einstein–Cartan
gravitational theory.

Robust support fpr the geometrical origin of the cosmological constant or the relic dark energy
could be experimental observations of torsion in terrestrial laboratories in terms of its contributions to
observables of different physical processes. In Section 4 we have discussed two of these experiments,
which can be carried out by using beams of polarized UCNs. We mean the contribution of the T–odd
torsion–neutron low-energy interaction to the cross section for the scattering of the beam of polarized
neutrons by nucleus in the end of spinning cylinder. This allows one to estimate the value of the
time component E0o f the 4-vector part of the torsion field at the level of about |E0| ∼ 10−32 GeV.
Another experiment on the probe of torsion can be carried out at ILL by the French–Austrian qBounce
Collaboration by using Gravity Resonance Spectroscopy (GRS), a new measuring technique combining
quantum measurements and gravity experiments [49–55]. The qBounce experiments, measuring
transition frequencies between quantum gravitational states of UCNs, allow one to probe torsion
with a sensitivity of about ∆E < 10−17 eV and even ∆E ∼ 10−21 eV [49,97]. This should improve
the existing upper bound on the pseudoscalar B0 component of the torsion field by a few orders of
magnitude and give new constraints on the tensor M00k components of the torsion field [44].
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Abstract: We confront f (T, TG) gravity, with big bang nucleosynthesis (BBN) requirements. The
former is obtained using both the torsion scalar, as well as the teleparallel equivalent of the Gauss–
Bonnet term, in the Lagrangian, resulting to modified Friedmann equations in which the extra
torsional terms constitute an effective dark energy sector. We calculate the deviations of the freeze-out
temperature Tf , caused by the extra torsion terms in comparison to ΛCDM paradigm. Then, we
impose five specific f (T, TG) models and extract the constraints on the model parameters in order
for the ratio |∆Tf /Tf | to satisfy the observational BBN bound. As we find, in most of the models
the involved parameters are bounded in a narrow window around their general relativity values as
expected, asin the power-law model, where the exponent n needs to be n . 0.5. Nevertheless, the
logarithmic model can easily satisfy the BBN constraints for large regions of the model parameters.
This feature should be taken into account in future model building.

Keywords: modified gravity; nucleosynthesis; torsional gravity

PACS: 98.80.−k; 04.50.Kd; 26.35.+c; 98.80.Es

1. Introduction

There are two motivations that lead to the construction of modifications of gravity.
The first is purely theoretical, namely, to construct gravitational theories that do not suffer
from the renormalizability problems of general relativity and thus are closer to a quantum
description [1,2]. The second is cosmological, namely, to construct gravitational theories
that at a cosmological framework can describe the early and late accelarating eras [3–7] ,
as well as to alleviate various observational tensions [8].

There is a rich literature on modified and extended theories of gravity. One may start
from the Einstein–Hilbert Lagrangian and add extra terms, resulting in f (R) gravity [9–11],
in f (G) gravity [12–14], in f (G, T ) theories [15], in f (P) gravity [16–18] in Lovelock grav-
ity [19,20], in Weyl gravity [21], in Horndeski/Galileon scalar-tensor theories [22,23], etc.
Nevertheless, one can follow a different approach and add new terms to the equivalent tor-
sional formulation of gravity, resulting in f (T) gravity [24,25], in f (T, TG) gravity [26–28],
in f (T, B) gravity [29,30], in scalar-torsion theories [31], etc. Torsional gravity has been
proven to exhibit interesting phenomenology, both at the cosmological framework [32–57]
and at the level of local, spherically symmetric solutions [58–75].
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One crucial test that every modification of gravity should pass that is usually un-
derestimated in the literature is the confrontation with Big Bang Nucleosynthesis (BBN)
data [76–80]. Specifically, the amount of modification needed in order to fulfill the late-time
cosmological requirements must not at the same time spoil the successes of early-time
cosmology, and among them the BBN phase. Hence, whatever are the advantages of
a specific modified theory of gravity, if it cannot satisfy the BBN constraints it must be
excluded [81–84].

In the present manuscript, we are interested in investigating the BBN epoch in a
universe governed by f (T, TG) gravity. In particular, we desire to study various specific
models that are known to lead to viable phenomenology and extract constraints on the
involved model parameters. The plan of the article is as follows: In Section 2, we briefly
present f (T, TG) gravity, extracting the field equations and applying them to a cosmological
framework. In Section 3, we summarize the BBN formalism and provide the difference
in the freeze-out temperature caused by the extra torsion terms. Then, in Section 4, we
investigate five specific f (T, TG) models, confronting them with the observational BBN
bounds. Finally, Section 5 is devoted to the Conclusions.

2. f (T , TG) Gravity

In this section, we briefly review f (T, TG) gravity [26–28]. As usual in torsional
formulation of gravity, we use the tetrad field as the dynamical variable, which forms an
orthonormal basis at the tangent space. In a coordinate basis, one can relate it with the
metric through gµν(x) = ηABeA

µ (x)eB
ν (x), where ηAB = diag(−1, 1, 1, 1), and with Greek

and Latin letters, denoting coordinate and tangent indices, respectively. Applying the
Weitzenböck connection Wλ

νµ ≡ eλ
A ∂µeA

ν [25], the corresponding torsion tensor is

Tλ
µν ≡ Wλ

νµ − Wλ
µν = eλ

A (∂µeA
ν − ∂νeA

µ ) , (1)

and then the torsion scalar is obtained through the contractions

T ≡ 1
4

TρµνTρµν +
1
2

TρµνTνµρ − T
ρ

ρµ T
νµ

ν , (2)

and incorporates all information of the gravitational field. Used as a Lagrangian, the torsion
scalar gives rise to exactly the same equations with general relativity, which is why the
theory was named the teleparallel equivalent of general relativity (TEGR).

Similarly to curvature gravity, where one can construct higher-order invariants such
as the Gauss–Bonnet one, in torsional gravity one may construct higher-order torsional
invariants, too. In particular, since the curvature (Ricci) scalar and the torsion scalar
differ by a total derivative, in [26] the authors followed the same recipe and extracted a
higher-order torsional invariant that differs from the Gauss–Bonnet one by a boundary
term, namely

TG =
(

Kκ
ϕπK

ϕλ
ρK

µ
χσK

χν
τ − 2Kκλ

πK
µ

ϕρK
ϕ
χσK

χν
τ

+2Kκλ
πK

µ
ϕρK

ϕν
χK

χ
στ + 2Kκλ

πK
µ

ϕρK
ϕν

σ,τ

)
δ

πρστ
κλµν , (3)

where K
µν

ρ ≡ − 1
2

(
T

µν
ρ − T

νµ
ρ − T

µν
ρ

)
is the contortion tensor, and the generalized δ

πρστ
κλµν

denotes the determinant of the Kronecker deltas. Note that similarly to the Gauss–Bonnet
term, the teleparallel equivalent of the Gauss–Bonnet term TG is also a topological invariant
in four dimensions.

Using the above torsional invariants, one can construct the new class of f (T, TG)
gravitational modifications, characterized by the action [26]

S =
M2

P

2

∫
d4x e f (T, TG) , (4)
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with M2
P the reduced Planck mass. The general field equations of the above action can

be found in [26], where one can clearly see that the theory is different from f (R), f (R, G),
and f (T) gravitational modifications, and thus it corresponds to a novel class of modified
gravity.

In this work, we are interested in the cosmological applications of f (T, TG) gravity.
Hence, we consider a spatially flat Friedmann–Robertson–Walker (FRW) metric of the form

ds2 = −dt2 + a2(t)δijdxidxj , (5)

with a(t) the scale factor, which corresponds to the diagonal tetrad

eA
µ = diag(1, a(t), a(t), a(t)). (6)

In this case, the torsion scalar (2) and the teleparallel equivalent of the Gauss–Bonnet
term (3) become

T = 6H2 (7)

TG = 24H2(Ḣ + H2), (8)

with H = ȧ
a the Hubble parameter and where dots denote derivatives with respect to t.

The general field equations for the FRW geometry are [27]

f − 12H2 fT − TG fTG
+ 24H3 ˙fTG

= 2M−2
P (ρr + ρm) (9)

f − 4
(
3H2 + Ḣ

)
fT − 4H ˙fT − TG fTG

+
2

3H
TG

˙fTG
+ 8H2 ¨fTG

= −2M−2
P (pr + pm) , (10)

with ˙fT = fTT Ṫ + fTTG
ṪG, ˙fTG

= fTTG
Ṫ + fTGTG

ṪG, and ¨fTG
= fTTTG

Ṫ2 + 2 fTTGTG
ṪṪG +

fTGTGTG
Ṫ 2

G + fTTG
T̈ + fTGTG

T̈G, and where fTT , fTTG
,... denote multiple partial differentia-

tions with respect to T and TG. Note that in the above equations, we have also introduced
the radiation and matter sectors, corresponding to perfect fluids with energy densities
ρr, ρm and pressures pr, pm, respectively. Lastly, we mention that the above equations for
f (T, TG) = −T + Λ recover the TEGR and general relativity equations, where Λ is the
cosmological constant.

As we can see, we can re-write the Friedmann Equations (9) and (10) in the usual form

3M2
PH2 = (ρr + ρm + ρDE) (11)

−2M2
PḢ = (ρr + pr + ρm + pm + ρDE + pDE), (12)

where we have defined the effective dark energy density and pressure as

ρDE ≡ M2
P

2

(
6H2− f+12H2 fT+TG fTG

−24H3 ˙fTG

)
, (13)

pDE ≡ M2
P

2

[
−2(2Ḣ + 3H2) + f − 4

(
Ḣ + 3H2) fT

−4H ˙fT − TG fTG
+

2
3H

TG
˙fTG

+ 8H2 ¨fTG

]
, (14)

of gravitational origin.

3. Big Bang Nucleosynthesis Constraints

Big bang nucleosynthesis (BBN) was a process that took place during radiation era.
Let us first present the framework, which provides the BBN constraints through standard
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cosmology [76–80]. The first Friedmann equation from Einstein–Hilbert action can be
written as

3H2 = M−2
P ρ, (15)

where ρ = ρr + ρm. In the radiation era, the radiation sector dominates; hence, we can write

H2 ≈ M−2
P

3
ρr ≡ H2

GR. (16)

In addition, it is known that the energy density of relativistic particles is

ρr =
π2

30
g∗T4, (17)

where g∗ ∼ 10 is the effective number of degrees of freedom and T is the temperature. Thus,
if we combine (16) with (17) we obtain

H(T) ≈
(

4π3g∗
45

)1/2
T2

MPl
, (18)

where MPl = (8π)
1
2 MP = 1.22 × 1019 GeV is the Planck mass.

During the radiation era, the scale factor evolves as a(t) ∼ t1/2. Therefore, using the
relation of the Hubble parameter with the scale factor, we find that in the radiation era
the Hubble parameter evolves as H(t) = 1

2t . Combining the last one with (18), we find

the relation between temperature and time. Thus, we have
1
t
≃
(

32π3g∗
90

)1/2
T2

MPl
(or

T(t) ≃ (t/sec)−1/2 MeV).
During the BBN, we have interactions between particles. For example, we have

interactions between neutrons, protons, electrons, and neutrinos, namely, n + νe → p + e−,
n + e+ → p + ν̄e, and n → p + e− + ν̄e. We name the conversion rate from a particle A to
particle B as λBA. Hence, the conversion rate from neutrons to protons is λpn, and it is equal
to the sum of the three interaction conversion rates written above. Therefore, the calculation
of the neutron abundance arises from the protons-neutron conversion rate [78,79]

λpn(T) = λ(n+νe→p+e−) + λ(n+e+→p+ν̄e) + λ(n→p+e−+ν̄e) (19)

and its inverse λnp(T), and therefore for the total rate we have λtot(T) = λnp(T) + λpn(T).
Now, we assume that the various particle (neutrino, electron, and photon) temperatures
are the same and low enough in order to use the Boltzmann distribution instead of the
Fermi-Dirac one, and we neglect the electron mass compared to the electron and neutrino
energies. The final expression for the conversion rate is [81–84]

λtot(T) = 4A T3(4!T2 + 2 × 3!QT + 2!Q2) , (20)

where Q = mn − mp = 1.29× 10−3 GeV is the mass difference between neutron and proton
and A = 1.02 × 10−11 GeV−4.

We proceed in calculating the corresponding freeze-out temperature. This will arise
comparing the universe expansion rate 1

H with λtot(T). In particular, if 1
H ≪ λtot(T),

namely, if the expansion time is much smaller than the interaction time, we can consider
thermal equilibrium [76,77]. On the contrary, if 1

H ≫ λtot(T) then particles do not have
enough time to interact so they decouple. The freeze-out temperature Tf , in which the

decoupling takes place, corresponds to H(Tf ) = λtot

(
Tf

)
≃ cq T5

f , with cq ≡ 4A 4! ≃
9.8 × 10−10 GeV−4 [81–84]. Now, if we use (18) and H(Tf ) = λtot

(
Tf

)
≃ cq T5

f , we acquire
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Tf =

(
4π3g∗

45M2
Plc

2
q

)1/6

∼ 0.0006 GeV. (21)

Using modified theories, we obtain extra terms in energy density due to the modifica-
tion of gravity. The first Friedmann Equation (11) during radiation era becomes

3M2
PH2 = ρr + ρDE, (22)

where ρDE must be very small compared to ρr in order to be in accordance with observations.
Hence, we can write (22) using (16) as

H = HGR

√
1 +

ρDE

ρr
= HGR + δH, (23)

where HGR is the Hubble parameter of standard cosmology. Thus, we have

∆H =
(√

1 + ρDE
ρr

− 1
)

HGR, which quantifies the deviation from standard cosmology,

i.e., form HGR. This will lead to a deviation in the freeze-out temperature ∆Tf . Since

HGR = λtot ≈ cq T5
f and

√
1 + ρDE

ρr
≈ 1 + 1

2
ρDE
ρr

, we easily find

(√
1 +

ρDE

ρr
− 1
)

HGR = 5cq T4
f ∆Tf , (24)

and finally
∆Tf

Tf
≃ ρDE

ρr

HGR

10cq T5
f

, (25)

where we used that ρDE << ρr during BBN era. This theoretically calculated
∆Tf

Tf
should

be compared with the observational bound
∣∣∣∣∣
∆Tf

Tf

∣∣∣∣∣ < 4.7 × 10−4 , (26)

which is obtained from the observational estimations of the baryon mass fraction converted
to 4He [85–91].

4. BBN Constraints on f (T , TG) Gravity

In this section, we will apply the BBN analysis in the case of f (T, TG) gravity. Let us
mention here that in general, in modified gravity, inflation is not straightaway driven by an
inflaton field, but the inflaton is hidden inside the gravitational modification, i.e., it is one
of the extra scalar degrees of freedom of the modified graviton. Hence, in such frameworks
reheating is usually performed gravitationally, and the reheating and BBN temperatures
may differ from standard ones. Nevertheless, in the present work we make the assumption
that we do not deviate significantly from the successful concordance scenario, in order to
examine whether f (T, TG) gravity can at first pass BBN constraints or not. Clearly a more
general analysis should be performed in a separate project, to cover more radical cases too.
In the following, we will examine five specific models that are considered to be viable in
the literature.

4.1. Model I: f = −T + β1
√

T2 + β2TG

Firstly, we investigate the model f = −T + β1
√

T2 + β2TG [28]. Since in our analysis
we focus on the radiation era where the Hubble parameter H(t) = 1

2t , we can express
the derivatives of the Hubble parameter as powers of the Hubble parameter itself, e.g.,
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Ḣ = −2H2 and Ḧ = 8H3. Additionally, in order to eliminate one model parameter we will
apply the Friedmann equation at present time, requiring

ΩDE0 ≡ ρDE0/(3M2
PH2

0), (27)

where ΩDE is the dark energy density parameter and with the subscript “0” denoting the
value of a quantity at present time. Doing so, and inserting f = −T + β1

√
T2 + β2TG into

(13) and then into (25), we finally find

∆Tf

Tf
= (10cqT3

f )
−1ζH0ΩDE0(3 − 2β2)

−3/2

·
(

9 − 15β2 + 6β2
2

)[
(3 + 2β2)H2

0 + 2β2Ḣ0

]3/2

·
[(

9 + 3β2 − 2β2
2

)
H4

0 + 9β2H2
0 Ḣ0 + β2

2H0Ḧ0

]−1
, (28)

where

ζ ≡
(

4π3g∗
45

) 1
2

M−1
Pl. . (29)

In this expression, we insert [92]

ΩDE0 ≈ 0.7, H0 = 1.4 × 10−42 GeV, (30)

and the derivatives of the Hubble function at present are calculated through Ḣ0 = −H2
0(1 + q0)

and Ḧ0 = H3
0(j0 + 3q0 + 2) with q0 = −0.503 the current decceleration parameter of the Uni-

verse [92], and j0 = 1.011 the current jerk parameter [93,94]. Hence, Ḣ0 ≈ −9.7 × 10−85 GeV2

and Ḧ0 ≈ 4.1 × 10−126 GeV3.
Using the BBN constraint (26), we conclude that β2 ∈ (−2.98,−2.93) ∪ (0.99, 1.01),

where we have used (27) to find

β1 =
√

3H0ΩDE0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]3/2

·
[(

9 + 3β2 − 2β2
2

)
H4

0 + 9β2H2
0 Ḣ0 + β2

2H0Ḧ0

]−1
. (31)

Using the above range of β2, we find that β1 ∈
(
2.09 × 10−26, 0.001

)
∪ (1.380, 1.384).

In Figure 1, we depict |∆Tf /Tf | appearing in (28) versus the model parameter β2.
As we can see, the allowed range is within the vertical dashed lines.

-5 -4 -3 -2 -1 0 1 2

-0.4

-0.2

0.0

0.2

0.4

β2

ΔTf

Tf

Figure 1. |∆Tf /Tf | vs. the model parameter β2 (blue solid curve), for Model I: f = −T +

β1
√

T2 + β2TG. The allowed range of β2, where (26) is satisfied (horizontal red dashed line), is
within the vertical dashed lines.
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4.2. Model II: f = −T + a1T2 + a2T
√
|TG|

Let us now study the case f = −T + a1T2 + a2T
√
|TG|, where a1, a2 are the free

parameters of the theory [28]. In this case, we find

∆Tf

Tf
=

3
10

c−1
q ζ3Tf

{
ΩDE0

3H2
0

−
√

6a2

[√
H2

0 + Ḣ0

6H0

(
6 − 2Ḣ2

0 − H0Ḧ0

H2
0 + Ḣ0

)
− 1

]}
. (32)

Using the constraint (26), and according to (32), ∆Tf /Tf is linear in a2; we deduce that
(32) is valid for a small region around 2.7 × 1083 GeV−2, where we have used the constraint
from current cosmological era (27)

a1 =
ΩDE0

18H2
0
−

√
6a2

√
H2

0 + Ḣ0

36H0

[
6 − 2Ḣ2

0 − H0Ḧ0(
H2

0 + Ḣ0
)2

]
. (33)

Using the above value of a2, we find that a1 = −1.1 × 1083 GeV−2.

4.3. Model III: f =−T + β1
√

T2+β2TG + a1T2 + a2T
√
|TG|

Now, we analyze the model f = −T + β1
√

T2 + β2TG + a1T2 + a2T
√
|TG|, where we

have four free parameters, namely, β1, β2, a1, a2 [28]. In order to simplify the analysis, we
will impose the constraint −2.99 < β2 < 3

2 , obtained above.
In this case, we find

∆Tf

Tf
= −

(
60cqT3

f

)−1{
3
√

12β1(3−2β2)
−1/2(1+β2−2β1)

− 18
{ΩDE0

3H2
0

+

√
12β1

18H3
0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−1/2

·
[
(3−6β1+2β2)H2

0 + 2β2Ḣ0

]

− a2√
6H0

√
H2

0 + Ḣ0

[
6 − 2Ḣ2

0 − H0Ḧ0

(H2
0 + Ḣ0)2

]
+
√

6a2

−
√

12β1β2

18H3
0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−3/2

·
[
(3 + 2β2)H4

0 + (9 + 8β2)H2
0 Ḣ0

+β2

(
4Ḣ2

0 + H0Ḧ0

)]}
ζ2T4

f

}
ζ.

Observing that expression (34) is linear in a2, and using the constraint (26) and two
values for β1 from the aforementioned range we extracted in model I, i.e., β1 = 1.4 and
β2 = 1, we find that (32) is valid for a small region around the point −3.5 × 1083 GeV−2.
Using another set of values (β1 = 0.001, β2 ≈ −2.96), we find that (32) is valid for a small
region around the point −5.3 × 1083 GeV−2, where we have used
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a1 =
ΩDE0

18H2
0
+

√
12β1

108H3
0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−1/2

[
(3 − 6β1 + 2β2)H2

0 + 2β2Ḣ0

]

−
√

6
36

a2

H0

√
H2

0 + Ḣ0

(
6 − 2Ḣ2

0 − H0Ḧ0(
H2

0 + Ḣ0
)2

)

−
√

12β1β2

108H3
0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−3/2

×
[
(3 + 2β2)H4

0 + (9 + 8β2)H2
0 Ḣ0 + β2

(
4Ḣ2

0 + H0Ḧ0

)]
, (34)

from (27). Imposing the above range of a2, we find that a1 = 1.4 × 1083 GeV−2 for the first
case and a1 = 2.2 × 1083 GeV−2 for the second.

4.4. Model IV: f = −T + β1
(
T2 + β2TG

)n

As a next model, we consider the power-law model f = −T + β1
(
T2 + β2TG

)n, where
the free parameters are β1, β2, n. In this model, we use values of β1, β2 in order to constrain
the power n. In this case, repeating the above steps, we find

∆Tf

Tf
=
(
10cq

)−1
ΩDE0H

2(1−n)
0 ζ4n−1T8n−7

f (3 − 2β2)
n−2

·
[
(3 + 2β2)H2

0 + 2β2Ḣ0

]2−n[(
9 − 12β2 + 4β2

2

)

−2n
(

18 − 39β2 + 18β2
2

)
+ 16n2β2(2β2 − 3)

]

·
{(

9 + 12β2 + 4β2
2

)
H4

0 + 4β2(3 + 2β2)H2
0 Ḣ0 + 4β2

2Ḣ2
0

−2n
[(

18 + 15β2 + 2β2
2

)
H4

0 + β2(27 + 12β2)H2
0 Ḣ0

+6β2
2Ḣ2

0 + 2β2
2H0Ḧ0

]
+ 2n2β2

[
4(3 + 2β2)H2

0 Ḣ0

+4β2Ḣ2
0 + 2β2H0Ḧ0

]}−1
. (35)

We use the constraint (26) and four values for β2 from the range we extracted in model
I above. For β2 ≈ −2.9, we find that the constraint (26) is valid for n . 0.5. Similarly,
using the value β2 = −2, we find n . 0.47, while for β2 = −1 we find n . 0.46. Finally,
for β2 = 1, we find n . 0.47. We mention that we have used the relation

β1 = −6(12)−nH
2(1−n)
0 ΩDE0

[
(3+2β2)H2

0+2β2Ḣ0

]2−n

·
{(

9 + 12β2 + 4β2
2

)
H4

0 + 4β2(3 + 2β2)H2
0 tH0 + 4β2

2Ḣ2
0

−2n
[(

18 + 15β2 + 2β2
2

)
H4

0 + β2(27 + 12β2)H2
0 Ḣ0

+6β2
2Ḣ2

0 + 2β2
2H0Ḧ0

]
+ 2n2β2

[
4(3 + 2β2)H2

0 Ḣ0

+4β2Ḣ2
0 + 2β2H0Ḧ0

]}−1
, (36)

which arises from (27).
Now, taking β2 ≈ −2.9, n . 0.5 we find β1 ∈

[
−6.1 × 10−82, 0.0007

]
GeV2(1−2n).

Similarly, for β2 = −2, n . 0.47 we find β1 ∈
[
−3.5 × 10−74, 5.9 × 10−6] GeV2(1−2n), while

using β2 = −1, n . 0.46 we find β1 ∈
[
−4.4 × 10−58, 1.2 × 10−6] GeV2(1−2n). Finally,

for β2 = 1, n . 0.47 we find β1 ∈
[
−6.4 × 10−8, 9.0 × 10−6] GeV2(1−2n).
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In order to provide the above results in a more transparent way, in Figure 2, we present
|∆Tf /Tf | from (35) in terms of the model parameter n. As we observe, n needs to be n . 0.5
to pass the BBN constraint (26).
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0.0000
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0.0005

n

ΔTf
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Figure 2. |∆Tf /Tf | vs. the model parameter n (blue solid curve), for Model IV: f = −T +

β1
(
T2 + β2TG

)n with β2 ≈ −2.90, and the upper bound for |∆Tf /Tf | from (26) (red dashed line).
As we observe, constraints from BBN require n . 0.5.

4.5. Model V: f = −T + α ln β1
(
T2 + β2TG

)n

In the last model we examine is the logarithmic one, characterized by f = −T +
α ln β1

(
T2 + β2TG

)n, where β1, β2, n are the free parameters. Repeating the above analysis,
we find

∆Tf

Tf
=
(

10cqζT7
f

)−1
H2

0 ΩDE0

{
ln β1 + n[ln 12

+4 ln
(

ζT2
f

)
+ ln(3−2β2)

−2(3−2β2)
−2
(

18−39β2+18β2
2

)]}

·
{

ln β1 + n
{

ln 12 + 2 ln(H0) + ln[(3+2β2)H2
0+2β2Ḣ0]

−2
[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−2[(
18 + 15β2 + 2β2

2

)
H4

0

+β2(27+12β2)H2
0 Ḣ0+6β2

2Ḣ2
0+2β2

2H0Ḧ0

]}}−1
, (37)

where using relation (27) we find

α = −6H2
0 ΩDE0

{
ln β1 + n

{
ln 12 + 2 ln(H0)

+ ln
[
(3+2β2)H2

0+2β2Ḣ0

]

−2
[
(3+2β2)H2

0 + 2β2Ḣ0

]−2[
(18+15β2+2β2

2)H4
0

+ β2(27+12β2)H2
0 Ḣ0 + 6β2

2Ḣ2
0 + 2β2

2H0Ḧ0

]}}−1
. (38)

We consider the values β1 = 0.001 GeV−4n, β2 ≈ −2.9, and we find that n is allowed
to take every value apart from −0.0003 and a very small region around it since (37) diverges.
Moreover, α is allowed to take every value apart from 0, which is the value it obtains using
the above narrow window for n. Using the same considerations as the above models, we
find that for β1 = 0.001 GeV−4n, β2 = −2 the value of n is allowed to take every value
apart from −0.012 and a every value but 0. Similarly, for β1 = 0.001 GeV−4n, β2 = −1 we
find that n 6= −0.018 and a 6= 0, while for β1 = 0.001 GeV−4n, β2 = 1 we find n 6= −0.018
and a 6= 0.

As an example, in Figure 3 we present |∆Tf /Tf | from (37) as a function of the model
parameter n. The model parameter n is allowed to take all possible values except those
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values around a very small region centered at −0.0003, in which (37) diverges. Hence, we
conclude that the logarithmic f (T, TG) model can easily satisfy the BBN bounds.
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-35

4.×10
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-35
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Figure 3. |∆Tf /Tf | vs. the model parameter n (blue solid curve), for Model V: f = −T +

α ln β1
(
T2 + β2TG

)n, choosing β1 = 0.001 GeV−4n, β2 ≈ −2.7. The vertical dashed line at n − 0.0003
denotes the point where (37) diverges.

5. Conclusions

Modified gravity aims to provide explanations for various epochs of the universe
evolution, and at the same time to improve the renormalizability issues of general relativity.
Nevertheless, despite the specific advantages at a given era of cosmological evolution, one
should be very careful not to spoil the other, well understood and significantly constrained,
phases, such as the big bang nucleosynthesis (BBN) one.

In particular, there are many modified gravity models, which are constructed phe-
nomenologically in order to be able to describe the late-time universe evolution at both
the background and perturbation level. Typically, these models are confronted with obser-
vational data such as Supernovae Type Ia (SNIa), Baryonic Acoustic Oscillations (BAO),
cosmic microwave background (CMB), cosmic chronometers (CC), gamma-ray bursts
(GRB), growth data, etc. The problem is that although modified gravity scenarios, through
the extra terms they induce, are very efficient in describing the late-time universe, quite
often they induce significant terms at early times too, thus spoiling the early-time evolution,
such as the BBN phase, in which the concordance cosmological paradigm is very successful.
Hence, independently of the late-universe successes that a modified gravity model may
have, one should always examine whether the model can pass the BBN constraints too.

In the present work, we confronted one interesting class of gravitational modification,
namely, f (T, TG) gravity, with BBN requirements. The former is obtained using both
the torsion scalar, as well as the teleparallel equivalent of the Gauss–Bonnet term, in the
Lagrangian. Hence, one obtains modified Friedmann equations in which the extra torsional
terms constitute an effective dark energy sector.

We started by calculating the deviations of the freeze-out temperature Tf , caused by the
extra torsion terms, in comparison to ΛCDM paradigm. We imposed five specific f (T, TG)
models that have been proposed in the literature in phenomenological grounds, i.e., in order
to be able to describe the late-time evolution and lead to acceleration without an explicit
cosmological constant. Hence, we extracted the constraints on the model parameters in

order for the ratio |∆Tf /Tf | to satisfy the BBN bound
∣∣∣∆Tf

Tf

∣∣∣ < 4.7 × 10−4. As we found,

in most of the models the involved parameters are bounded in a narrow window around
their general relativity values, as expected. However, the logarithmic model can easily
satisfy the BBN constraints for large regions of the model parameters, which acts as an
advantage for this scenario.

We stress here that we did not fix the cosmological parameters to their general relativity
values; on the contrary, we left them completely free and we examined which parameter
regions are allowed if we want the models to pass the BBN constraints. The fact that in
most models the parameter regions are constrained to a narrow window around their
general relativity values was in some sense expected, but in general is not guaranteed or
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known a priori since many modified gravity models are completely excluded under the
BBN analysis since for all parameter regions their early-universe effect is huge.

In conclusion, f (T, TG) gravity, apart from having interesting cosmological implica-
tions both in the inflationary and late-time phase, possesses particular sub-classes that can
safely pass BBN bounds; nevertheless, the torsional modification is constrained in narrow
windows around the general relativity values. This feature should be taken into account in
future model building.
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