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Preface to ”Emerging Trends in Energy Economics”

In the intersection between Economics and Engineering, Energy Economics has been an active

research topic for more than 150 years. From the 19nth century, the problem of creating, processing,

storing and transporting Energy based on exhaustible resources (coal initially, oil, natural gas and

electricity later) was well defined. It was during the major international oil crisis of 1973, however,

that the national and international sociopolitical factors integrated with energy were identified,

revealed, studied extensively and were finally incorporated in the scientific debate on Energy

Economics. The increased interest in this multidisciplinary topic manifested in the publication of

specialized scientific journals that focus and deal with this significant and complex issue. Energy

Economics is a significant and broad segment of this line of research. Energy economics deals

with the production, supply and demand of all forms of energy, the efficiency and optimization

in the use of the relevant technology and know-how that pertains on the production, distribution

and storage (when possible). It affects all aspects of real economic activity, both the supply side

and the consumption. Moreover, Energy Economics include the study, analysis and forecasting of

all forms of energy as a financial commodity. Investment, hedging and speculation are significant

areas of research interest as with all commodities. Energy as a financial commodity that is traded in

organized exchanges and over-the-counter in private contracts is an interesting, rigorous and very

dynamic strain of research. The reason for this attention, is of course the significant changes that

are materializing especially in industrialized countries i.e the European Union, the US, etc. These

countries have started distancing themselves and limiting their use of fossil fuels – especially coal

and oil. There is a transition to less dependence from those types of energy and towards renewable

forms of energy that are environmentally neutral. As a result, the research interest on energy is keen

and the research work on this area is also facilitated for the scholars by the availability of large sets

of energy data in very high frequencies. Thus, it provides a fertile ground for the application of both

traditional and emerging methodologies.

When we proposed the topic of this Special Issue for Energies, we were targeting for the

innovation and the novelty in the area of Energy Economics with a special focus on production,

distribution, storing, forecasting, financing, risk, taxation, trading, exchanges, networks, etc., in both

spot and derivatives markets. We are very proud of the attention that our call for papers attracted

from researchers in the field and of the resulting quality of the special issue that we composed from

their innovative approaches.

In [4], Flouros e.a. compile a panel of 171 economies and use it to study the effect of geopolitical

risk on the transition to a “green” economy. Ioannidis e.a. in [7] examine the recently introduced

Target Model, its application in the wholesale electricity market of Greece and its impact on electricity

prices. Chen and Rehman in [2] identify the critical periods in the trading of energy-related

commodities employing an unsupervised Machine Learning framework. Balashova and Serletis in

[1] uncover hidden linkages between the oil price uncertainty, the total factor productivity (TFP)

growth, and the critical indicators of knowledge production and associated spillovers. Christopoulos

e.a. in [3] investigated the effect that the Covid-19 pandemic and the stock market volatility have

on oil price volatility. Three papers apply various forecasting techniques in forecasting energy:

Gupta and Pierdzioch in [5] are forecasting the volatility of crude oil using the LASSO estimator,

Hu e.a. in [6] forecast the Short-Term Load using the Ensemble Empirical Mode Decomposition

coupled with the Salp Swarm Algorithm, and Mouchtaris e.a. in [9] forecast the Natural Gas Spot

Prices using an arsenal of Machine Learning Methodologies. The Special Issue is concluded by

ix



two review papers: Menegaki in [8] summarizes and compares results of different studies in the

energy-sustainable growth nexus for various groups of countries and Oliveira and Moutinho in

[10] perform a bibliographic analysis on the topics of renewable energy, economic growth and the

economic development nexus.

We express our gratitude to all the researchers that trusted their valuable research papers for our

Special Issue. We must also thank all the editorial people from MDPI and the Energies journal that

supported us along this effort and made the editorship a peasant and productive experience for us.
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In the intersection between economics and engineering, energy economics has been
an active research topic for more than 150 years. From the 19th century, the problem of
creating, processing, storing and transporting energy based on exhaustible resources (coal
initially, oil, natural gas and electricity later) was well defined. It was during the major
international oil crisis of 1973, however, that the national and international sociopolitical
factors integrated with energy were identified, revealed, studied extensively and were
finally incorporated into the scientific debate on energy economics. The increased interest
in this multidisciplinary topic manifested in the publication of specialized scientific jour-
nals that focus and deal with this significant and complex issue. Energy economics is a
significant and broad segment of this line of research. Energy economics deals with the
production, supply and demand of all forms of energy, the efficiency and optimization in
the use of the relevant technology and know-how that pertains to the production, distribu-
tion and storage (when possible). It affects all aspects of real economic activity, both the
supply side and the consumption. Moreover, energy economics include the study, analysis
and forecasting of all forms of energy as a financial commodity. Investment, hedging
and speculation are significant areas of research interest, as with all commodities. Energy
as a financial commodity that is traded in organized exchanges and over-the-counter in
private contracts is an interesting, rigorous and very dynamic strain of research. The reason
for this attention is of course the significant changes that are materializing especially in
industrialized countries, i.e., the European Union, the US, etc. These countries have started
distancing themselves from and limiting their use of fossil fuels—especially coal and oil.
There is a transition to less dependence on those types of energy and towards renewable
forms of energy that are environmentally neutral. As a result, the research interest on
energy is keen and the research work on this area is also facilitated for the scholars by the
availability of large sets of energy data in very high frequencies. Thus, it provides a fertile
ground for the application of both traditional and emerging methodologies.

When we proposed the topic of this Special Issue for Energies, we were targeting
the innovation and the novelty in the area of energy economics with a special focus on
production, distribution, storing, forecasting, financing, risk, taxation, trading, exchanges,
networks, etc., in both spot and derivatives markets. We are very proud of the attention
that our call for papers attracted from researchers in the field and of the resulting quality of
the Special Issue that we composed from their innovative approaches.

In [1], Flouros et al. compile a panel of 171 economies and use it to study the effect
of geopolitical risk on the transition to a “green” economy. Ioannidis et al. in [2] examine
the recently introduced Target Model, its application in the wholesale electricity market
of Greece and its impact on electricity prices. Chen and Rehman in [3] identify the critical
periods in the trading of energy-related commodities employing an unsupervised Machine
Learning framework. Balashova and Serletis in [4] uncover hidden linkages between the
oil price uncertainty, the total factor productivity (TFP) growth, and the critical indicators
of knowledge production and associated spillovers. Christopoulos et al. in [5] investi-
gated the effect that the COVID-19 pandemic and the stock market volatility have on oil
price volatility. Three papers apply various forecasting techniques in forecasting energy:
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Gupta and Pierdzioch in [6] are forecasting the volatility of crude oil using the LASSO
estimator, Hu et al. in [7] forecast the Short-Term Load using the Ensemble Empirical
Mode Decomposition coupled with the Salp Swarm Algorithm, and Mouchtaris et al. in [8]
forecast the Natural Gas Spot Prices using an arsenal of Machine Learning Methodologies.
The Special Issue is concluded by two review papers: Menegaki in [9] summarizes and
compares results of different studies in the energy-sustainable growth nexus for various
groups of countries, and Oliveira and Moutinho in [10] perform a bibliographic analysis on
the topics of renewable energy, economic growth and the economic development nexus.

We express our gratitude to all the researchers that trusted their valuable research
papers to our Special Issue. We must also thank all the editorial people from MDPI and the
Energies journal that supported us with this effort and made the editorship a peasant and
productive experience for us.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper uncovers linkages between oil price uncertainty, total factor productivity (TFP)
growth, and critical indicators of knowledge production and spillovers. It contributes to the literature
by investigating the effects of oil price volatility on TFP growth, controlling for two different channels
for TFP growth; benefits from the quality of the national innovation system and from adopting new
technologies. We use an unbalanced panel for 28 European Union countries for the period from 1990
to 2018. We find that oil price uncertainty has a negative and statistically significant effect on TFP
growth, even after we control for technological advancements and the effects of globalization. We
also find that the scale of research and innovation and international trade are positive contributors to
TFP growth.

Keywords: economic growth; innovation activity; globalization; international trade

1. Introduction

We use recent advances in macroeconometrics and financial econometrics to investi-
gate the macroeconomic effects of oil price shocks and oil price uncertainty. In doing so,
they appeal to the real options theory (also known as investment under uncertainty), which
predicts that firms are likely to delay making irreversible investment decisions in the face
of uncertainty about the price of oil, particularly when the cash flow from investments is
contingent on the oil price.

In particular, we investigate the effects of oil price uncertainty on total factor productiv-
ity growth, and in doing so, we control for two different channels for TFP growth—benefits
from the quality of the national innovation system and from adopting new technologies.
We use an unbalanced panel for 28 European Union countries over the period from 1990 to
2018. Consistent with the earlier literature, we find that oil price uncertainty has a negative
and statistically significant effect on TFP growth even after we control for technological
advancements and the effects of globalization.

According to the Solow growth model [1], the aggregate value added (or GDP) growth
can be decomposed into contributions from the aggregate capital input, K, aggregate labour
input, L, and aggregate total factor productivity, TFP, as follows:

ΔlnGDP = νKΔlnK + νLΔlnL + ΔlnTFP (1)

where νK is the output elasticity of capital and νL is the output elasticity of labour. Under
the assumption of constant return to scale νK + νL = 1, TFP driven by factors, such as
technological progress, that are not tied to explicit input usage. In theory, TFP growth
captures technical change and overall efficiency.

We consider two separate channels of technological change: benefits from the National
Innovation System and benefits from adopting new technologies. Even within the European
Union (EU), there are countries with full-cycle national innovation systems and countries

Energies 2021, 14, 3429. https://doi.org/10.3390/en14123429 https://www.mdpi.com/journal/energies3
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who mainly adopt rather than invent modern technologies. The former countries are
referred to as “innovation leaders” and the latter as “innovation followers”, using (here)
the Innovation Union Scoreboard terminology in a slightly different manner. Thus, we
consider different sets of key indicators to assess technological progress in different groups.

However, not only technological progress affects TFP growth. Globalization and
openness of the modern economies suggest that there is an impact of the global business
cycle on productivity. The linkage between the stock market volatility and business cycle
was investigated in the literature (see, for example [2] and literature review in [3]). In
addition, Elder and Serletis [4] and Serletis and Xu [5], among others, argue that volatility
in oil prices has had a negative and statistically significant effect on several investment
measures, durables consumption, and aggregate output.

Thus, we investigate the effects of oil price volatility on TFP growth, controlling for
variables measuring technological progress and openness of the economy. Our study
examines two central research questions. Firstly, we propose a regression model for TFP
growth, combining different indicators depending on different innovation strategy types.
Secondly, we assess uncertainty in commodity markets.

The rest of the paper is organized as follows. Sections 2 and 3 present the methodology
used in the empirical investigation. Section 4 presents the data and the empirical results.
Section 5 provides a discussion of the results and addresses the policy implications. The
final section concludes the paper.

2. Research Model

We use the Conference Board Total Economy Database (TED) as a source of data
for TFP growth (The Conference Board, 2019. The Conference Board Total Economy
Database™, April 2019, http://www.conference-board.org/data/economydatabase/ ac-
cessed on: 10 March 2020). The database contains time series data for more than 120
countries, covering the period since 1990.

According to Jorgenson and co-authors [6,7], capital services and labour input are
measured as translog aggregates of heterogeneous capital and labour types. Under the
assumptions of competitive markets, full input utilization, and constant returns to scale,
the contribution of each input to output equals the share of input cost to total cost—see
Measuring Productivity [8].

TED capital is decomposed into Information and Communication Technology (ICT)
capital and non-ICT-capital. Labour is decomposed into pure employment quantity and
labour quality. One can find a detailed description of the sources and methods used to
construct all TED variables in materials provided on the official website.

According to endogenous growth theory, TFP can be modelled as a function of a
country’s innovation capacity (see, for example, [9,10]). Innovation capacity depends upon
the size and quality of the national innovation system, openness to international trade,
the degree of technological specialization, and the ability to adopt and commercialize
new-to-the-world technology.

We specify the TFP growth equation to reflect the role of the national innovation
system as a source of productivity growth, the impact of technology spillovers, the role of
international trade and FDI, and “the health” of the global economy as follows:

ΔlnTFPit = ∑
j

βjXj
it + α0 + αi + δZt + εit (2)

where εit is an error term, i denotes a country, t denotes time, αi captures country fixed
effects, and Zt accounts for the “health” of the global economy at time t.

As TFP growth is measured from the supply side, period effects in TFP growth models
can capture global demand changes. We use oil price volatility to capture the ‘health’ of
the economy and changes in demand instead of period fixed effect.

There are several channels through which oil prices may affect productivity. Firstly, at
the end of 2019, before the pandemic, the global economy consumed around 100 million

4
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barrels of crude oil per day, compared to about 40 million barrels at the end of the 1970s
(https://www.iea.org/reports/world-energy-outlook-2019. accessed on: 1 December
2020). In the case of stable oil prices, firms can more accurately plan their expenses and
investments. Rising oil prices reduce the availability of inputs and lead to output decreases
(see Hamilton [11]). The impact of oil price movements on GDP and several macroeconomic
and financial variables for the United States economy has been widely investigated in the
literature (see, for example, Barsky and Kilian [12], Kilian and Vigfusson [13], and Azad
and Serletis [14], among others). In fact, Azad and Serletis [14] find the linkage between oil
price uncertainty and macroeconomic indicators of emerging economies to be significant.

Secondly, financial and commodity markets are good indicators of the state of the
global economy. The correlation between commodity (notably, crude oil) prices and equity
prices after the global crisis has been established in the literature (see Lombardi and
Ravazzolo [15]).

High volatility of financial and commodity markets causes fear among portfolio
investors, and may increase risk aversion. In turn, it may reduce investments in risky
innovation projects and slow down technological progress.

For EU countries, uncertainty in commodity markets is even more important, as these
countries are pure importers of fossil fuels and other raw materials. According to Eurostat,
(https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-2c.html accessed on: 3
March 2021) the dependency rate (the share of net imports in gross inland energy consump-
tion) was equal to 58% in 2018. The dependency rate on energy imports has increased since
2000, when it was just 56%, despite the increasing efforts to achieve the renewable energy
directive target by 2020. Several barriers that were found for the United States and Russia
(see [16]) are also relevant for EU countries (see, for example, [17]).

The vector Xj in Equation (2) captures a country’s technological advancement and the
effect of globalization.

R&D is one of the leading indicators of a national innovation system and potential
readiness for technological advances. As R&D expenditure comprises all expenditure on
research and development in business enterprises, the government sector, higher education
and non-profit firms, it captures all national efforts on product and process innovations
quite well. It is therefore suited as a proxy for technological innovation. In the EU, it is
one of the main indicators of achieving the strategic goal to grow through innovations.
We examine the impact of the growth rate of R&D expenditure on TFP growth to reduce
heteroscedasticity in our model.

Globalization is one of the main trends of the last three decades, considered in this
study. Public policy, which was changing in the 1990s and 2000s towards a free-market
economic system, and communications technology innovations have been identified as
the two primary driving factors of globalization. Nowadays, there is growing uncertainty
in industrialized countries regarding whether globalization means more opportunity or
more risk. Trump, Brexit and increasing populism are named direct consequences of this
development (see [18]). However, we can’t deny the impact of globalization on economic
growth in general, and TFP growth in particular. One of our objectives in this study is to
investigate the linkage between globalization and TFP growth.

There are several ways to measure globalization. For example, the KOF Globalization
Index measures the economic, social, and political dimensions of globalization. (https://
www.kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html. ac-
cessed on: 03 March 2021) We use factors included in the KOF Globalisation Index from
an economic perspective, such as trade openness and free capital movement. Note that
European countries are among the leaders in the globalization ranking.

Participation in international trade may be regarded as a driver of productivity in-
creases (see [19]). Firstly, only efficient and highly productive firms can be successful in
world markets. So, the increase in exports can be regarded as a sign of increasing produc-
tivity. On the other hand, EU firms mainly import raw materials and intermediate products
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to produce higher value-added products. So, the value of imports is also associated with
productivity, at least in highly industrialized countries.

Secondly, for trading on the world market, the developed infrastructure is essential.
To compete on global markets, firms need to be efficient in logistics, inventive in business
processes, and successful in adopting advanced technologies. Thus, we consider the
growth rate of both exports and imports to be a good candidate in explaining productivity
dynamics for EU countries.

As the impact of FDI on TFP growth has been supported by many researchers, we
examine FDI inflows and outflows. FDI inflows can bring technological, marketing and
organizational innovations, at least in theory, affecting TFP growth. However, for the
EU countries, the role of FDI outflows as a source of technology spillovers seems to also
be important, as a sizable proportion of the EU outward flows typically are destined for
the United States and other European countries (for example, Switzerland and Iceland) (
https://ec.europa.eu/eurostat/web/products-datasets/-/bop_fdi6_geo accessed on: 3
March 2021). Moreover, transnational corporations (TNCs) benefit from investing in
emerging countries [20], which can indirectly affect the TFP of the home country of the
transnational corporations. Globalization is also characterized by an ongoing fragmentation
of production [21]. More efficient production chains, achieved by lowering transaction costs
while investing in countries with lower factor costs, are assumed to increase productivity.

The technological spillovers can also be captured through flows of payments for the
use of intellectual property. We use charges for the benefit of intellectual property rights
paid and received by a country to reflect the scale of new technology commercialization on
the one hand and the scale of new technology adoption on the other hand.

3. Oil Price Volatility

To measure oil price volatility, we follow the procedure used in [22]. Our first step is
to detrend the Brent oil price series and obtain the cyclical component, denoted as Brentcycl .
The volatility of oil price is then measured by the conditional variance of the forecast of the
cyclical component of the oil price as follows:

Brentcycl
t = γ0 + γ0σt + εtσ

2
t = ω + αε2

t−1 + βσ2
t−1 (3)

where σ2
t is the one-period ahead forecast variance based on past information (conditional

variance), εt is a conditionally normal innovation. Thus, we use the GARCH-M(1,1) model,
as in for example, [4,23,24], to measure oil price volatility. The GARCH-based measure of
volatility is common in the empirical literature (see for example [25,26]).

4. Empirical Evidence

4.1. Data Description and Analysis

We retrieve data from TED, Eurostat, the OECD database, and the World Bank
database. We use an unbalanced panel of 28 EU countries (including all EU members
as of the end of 2019) for the period 1990–2018. Data on R&D expenditures, international
trade and royalties are converted to constant PPP dollars. The growth rate is measured in
log changes multiplied by 100.

To visualize the dynamics of TFP at a country level, we compute a country-specific
TFP index. We create the index setting the year 1990 TFP level equal to 100 for each country.
We show the TFP dynamics in panel (a) of Figure 1 for the EU15 countries and in panel (b)
of Figure 1 for the EU13 countries, using data from the TED database.
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Figure 1. (a) TFP dynamics by country, EU15 countries, 1990–2018. (b) TFP dynamics by country, EU13 countries, 1990–2018.

The dynamics of productivity vary significantly among the ‘old’ members of the EU.
Ireland has the highest productivity gains, followed by Finland, Sweden and Germany (see
panel (a) of Figure 1). The stagnating productivity trends in Spain and Italy are evident,
and Greece shows a sharp decline in productivity in the 2010s.

The majority of the former communist states have shown an upward productivity
trend since the early 2000s. For example, Romania is one of the most fast-growing EU
countries in terms of TFP (see panel (b) of Figure 1). However, the TFP indexes for Bulgaria
and Croatia are far below 100 in 2018, meaning that TFP in these countries was lower
in 2018 compared to 1990. (It is to be noted that the TFP series for Croatia is based
on TED estimates using data for Yugoslavia. http://www.conference-board.org/data/
economydatabase/ accessed on: 10 March 2020) Notably, all countries display a noticeable
decrease in productivity in 2009; however, the recovery rates are different.
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To measure the uncertainty in commodity markets, we estimate the unknown parame-
ters of the GARCH-M(1,1) model (3), using monthly observations of the Brent oil prices
(see Figure 2).

Figure 2. Trend and cyclical components of the Brent spot oil price. (FOB, dollars per barrel).

We obtain a one-period ahead forecast of monthly volatility from the GARCH-M
model (3). The volatility VolT of the year T is measured as the monthly average of the
one-year window:

VotT =
1
12

12

∑
j=1

σ̂2
T,j

where σ̂2
T,j is an estimate of the GARH component of Equation (3) for year T at month j.

We plot the obtained data in Figure 3. The sharp peak corresponds to the most significant
uncertainty in oil and financial markets during the global financial crisis. This peak is
closely associated with the consecutive steep decline in TFP growth of EU countries (see
Figure 1).
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Figure 3. Oil price uncertainty from the GARCH-in-Mean model.
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The model key variables’ description and summary statistics are reported in Table 1.

Table 1. Variable’s description and descriptive statistics.

Variable Description Source of Raw Data MEAN Std Dev Obs

ΔlnTFPit
Total factor productivity
growth, log change, %

The Conference Board Total
Economy Database™ 0.49 3.35 808

Vol_Oilt Oil prices volatility
Europe Brent Spot Price
FOB (Dollars per Barrel)
from EIA

1.36 2.7 28

Δln(RDit)
R&D expenditures growth,
log change, %

Main Science and
Technology Indicators
(OECD), World
Development Indicators

3.86 9.4 675

Δln(Tradeit)
International trade growth,
log change, %

World Development
Indicators 4.28 8.92 787

Δln(Royaltyit)

The growth rate of charges
for the use of the
intellectual property
(receipts plus payments),
log change, %

World Development
Indicators 9.68 25.6 531

Δ(FDI_In f lowit)
Change in FDI net inflow
as % of GDP

World Development
Indicators 0.15 23.9 765

Δ(FDI_out f lowit)
Change in FDI net outflow
as % of GDP

World Development
Indicators −0.02 22.26 766

Note: Oil price volatility is defined for each of the 28 years and is a common factor for any country. The estimated values from the
GARCH-M model are divided by 100.

Before running the regression model, we proceed with unit root tests for panel data.
We use the the Levin, Lin, and Chu [27] test, assuming a common unit root proccess, and
the Im, Pesaran, and Shin [28] ADF test, assuming individual unit root process in the
considered time-series. Results are reported in Table 2.

Table 2. Unit root test.

Variable

Null: Unit Root (Assume
Common Unit Root Process)
LLC Test

Null: Unit Root (Assume
Individual Unit Root Process)
Im, Pesaran and Shin Test

Null: Unit Root (Assume
Individual Unit Root Process)
ADF Test

Statistic
Probability

Statistic
Probability

Statistic
Probability

ΔlnTFPit
−15.5
0.000

−15.57
0.000

323.8
0.000

Vol_Oilt
−15.8
0.000

−11.0
0.000

215.5
0.000

Δln(RDit)
−11.0
0.000

−11.1
0.000

212.7
0.000

Δln(Tradeit)
−20.5
0.000

−18.8
0.000

365.4
0.000

Δln(Royaltyit)
−18.3
0.000

−15.85
0.000

302.1
0.000

Δ(FDI_In f lowit)
−30.0
0.000

−28.8
0.000

548.3
0.000

Δ(FDI_out f lowit)
−25.7
0.000

−26.0
0.000

501.1
0.000
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4.2. Estimation Results

The empirical analysis is conducted for 28 EU countries. Firstly, we estimate our model
(2) with a single variable in vector X, namely the growth rate of real R&D expenditures, and
oil price volatility, assuming the cross-section fixed effect. The Haussman test has shown
that the random effects do not over-perform the fixed effects specification. The fixed effects
specification suits better our analysis as we are interested in the country-specific part of the
growth rate of TFP (parameter αi in Equation (2)).

Then, we check whether the growth rate of international trade and changes in FDI
inflows and outflows could improve the model specification. To reflect the impact of
knowledge spillovers on total factor productivity growth, we include the royalty variable. It
is calculated as the sum of receipts and payments for the use of intellectual property rights.

Table 3 summarizes the estimated impact of R&D expenditures, international trade
and royalties, changes in FDI flows and oil price volatility on TFP growth.

Table 3. The estimated effect of global and domestic factors on TFP growth for EU28 (refers to EU members as of the end
of 2019).

Dependent Variable = ΔlnTFPit

Basic Model Openness Technology Spillover

(1) (2) (3)

Vol_Oilt
−0.34 ***
(0.03)

−0.25 ***
(0.04)

−0.24 ***
(0.03)

Δln(RD)it
0.06 ***
(0.01)

0.03 ***
(0.01)

0.02 **
(0.01)

Δln(Trade)it —— 0.12 ***
(0.03)

0.13 ***
(0.01)

Δ(FDI_in f low)it —— −0.01 ***
(0.003)

−0.007
(0.006)

Δ(FDI_out f low)it —— 0.01 ***
(0.002)

0.012 *
(0.006)

Δln(Royalty)it —— —— 0.0069 **
(0.0030)

Constant 1.0 ***
(0.1)

0.43 *
(0.2)

0.41 ***
(0.1)

Cross section fixed effect significant significant significant

Adjusted R2 0.32 0.45 0.52

Observations 661 654 489

Notes: White cross-section standard errors in parentheses, *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.10.

In order to analyze whether the effects of technological innovations, openness and
knowledge spillovers differ between countries with different historical and economic
development, the countries are divided into two groups: “old” and “new” EU members,
which is relatively common in empirical analyses.

To test for equality of means of TFP growth rates between the EU15 and EU13 countries
for the 1990–2018 period, we run the Satterthwaite–Welch t-test, which allows for unequal
variances. We cannot reject the null hypothesis that the mean growth rate is equal for these
two groups at the 5% significance level (the test statistic is equal to 1.9 with a p-value of
0.056). However, we assume that the impact of different factors on total factor productivity
differs between countries with mature and developing markets.

10



Energies 2021, 14, 3429

4.3. Discussion

All “old” EU countries (except Finland) have negative country-specific “fixed” growth
rates of TFP, although, in the case of Austria and Germany, the coefficients are very close to
zero. All “new” EU countries have positive country-specific ‘fixed’ growth rates of TFP,
with Latvia and Lithuania having the highest values. The effect is partly due to a “low
base” TFP in the former Soviet countries.

R&D expenditure growth has an impact on productivity in all EU countries. The
openness of the economy also helps to boost productivity growth in all EU countries.
This is in line with the findings of the “Globalization Report 2018: Who Benefits Most
from Globalization?” It was shown that “for the third time in a row, as in 2014 and 2016,
when measured in terms of real gross domestic product (GDP) per capita, industrialized
countries continue to be the biggest winners of increasing globalization, while developing
and emerging economies lag behind”.

Our findings of the positive impact of FDI outflows on productivity growth are
consistent with the results obtained by Altomonte and Ottaviano [29] in their study of the
role of international production sharing in EU productivity at the micro-level. Royalties
are more important for the EU13 countries than for the EU15 countries. Among the EU13
countries, almost all countries except Hungary, pay a lot more for the intellectual property
rights than they receive from other countries.

5. Conclusions

Total factor productivity measures the overall efficiency of labour and capital in the
production process. During the examined period, from the early 1990s to the late 2010s, the
EU countries showed a growth trend in the total factor productivity on average.

We assume that the total factor productivity is influenced by several groups of factors.
Firstly, it is research and development carried out in a given country. For developed
countries (most EU countries belong to this group), innovation is the most important driver
of economic growth. We use internal R&D expenditure as a proxy variable for assessing
the scale of research and innovation. We find that growth in R&D spending is associated
with an increase in the TFP growth rate, all other things being equal.

The second group of factors includes indicators of the openness of the economy. These
include the volume of foreign trade and inbound and outbound foreign direct investment.
High competition in international markets increases the demands on companies to be more
efficient and productive. Thus, it contributes to an increase in the overall productivity of
the economy. We find a significant positive effect of international trade on TFP growth.

The impact of FDI inflow on productivity in developing countries is well documented
in the literature. The positive effect of FDI-trade linkage lies in its contribution to integrating
the host country into the world economy. The same is relevant for the former communist
European countries which experienced a transition to a capitalist economic system during
the 1990s. The impact of FDI outflow on the productivity of the home country is less
examined in the empirical literature. Our estimates show that, controlling other variables,
the impact of FDI inflow on TFP growth is not significant; however, the impact of FDI
outflow is positive and significant.

However, it is not only innovation, technology and the overall efficiency of companies
that drive productivity growth. Uncertainty on world commodity and financial markets
plays a significant role and can have negative effects on economic growth. The volatility
of the oil market, which is closely related to the volatility of other markets, inhibits the
growth of total factor productivity, as shown in the study.

In this paper, we have focused on the effects of oil price shocks and oil price uncertainty
on total factor productivity. Assessing the importance of oil price shocks, by simultaneously
evaluating the effects monetary policy shocks, fiscal shocks, and other measures of risk and
uncertainty, is an area for potentially productive research.
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Abstract: The identification of critical periods and business cycles contributes significantly to the
analysis of financial markets and the macroeconomy. Financialization and cointegration place a
premium on the accurate recognition of time-varying volatility in commodity markets, especially
those for crude oil and refined fuels. This article seeks to identify critical periods in the trading
of energy-related commodities as a step toward understanding the temporal dynamics of those
markets. This article proposes a novel application of unsupervised machine learning. A suite of
clustering methods, applied to conditional volatility forecasts by trading days and individual assets
or asset classes, can identify critical periods in energy-related commodity markets. Unsupervised
machine learning achieves this task without rules-based or subjective definitions of crises. Five
clustering methods—affinity propagation, mean-shift, spectral, k-means, and hierarchical agglomera-
tive clustering—can identify anomalous periods in commodities trading. These methods identified
the financial crisis of 2008–2009 and the initial stages of the COVID-19 pandemic. Applied to four
energy-related markets—Brent, West Texas intermediate, gasoil, and gasoline—the same methods
identified additional periods connected to events such as the September 11 terrorist attacks and the
2003 Persian Gulf war. t-distributed stochastic neighbor embedding facilitates the visualization of
trading regimes. Temporal clustering of conditional volatility forecasts reveals unusual financial
properties that distinguish the trading of energy-related commodities during critical periods from
trading during normal periods and from trade in other commodities in all periods. Whereas critical
periods for all commodities appear to coincide with broader disruptions in demand for energy,
critical periods unique to crude oil and refined fuels appear to arise from acute disruptions in supply.
Extensions of these methods include the definition of bull and bear markets and the identification of
recessions and recoveries in the real economy.

Keywords: energy commodities; financial crises; Brent; WTI; gasoline; clustering; t-SNE; machine
learning; COVID-19 pandemic

1. Introduction

1.1. The Motivation for this Research

Crises loom large in finance and macroeconomics. Defining transitions between
bull and bear markets, or between recessions and expansions, helps identify distinctive
financial or economic regimes. Commodity markets, especially those related to petroleum,
undergo their own fluctuations. Indeed, abrupt and abnormal movements within these
notoriously turbulent markets often signal trouble in other sectors of the broader economy.
Oil price volatility, in particular, experiences structural shifts. The intense financialization of
commodities, including crude oil and refined fuels, heightens the importance of identifying
shifts and disruptions in volatility across time.

This article proposes a novel method for identifying critical moments in commodity
markets, ranging from structural shifts to abrupt disruptions. It places special emphasis on
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markets for crude oil and refined fuels. Unsupervised machine learning can distinguish
crises from normal conditions. It can identify anomalies within an economic time series and
set those trading days apart for closer examination, as opposed to finding time time-varying
effects through conventional analysis.

Recent work by the authors has demonstrated the use of clustering and manifold
learning to arrange commodities into discrete markets for fuels, precious metals, base
metals, and agricultural commodities by climate [1]. In an extension of that work, this
article focuses more closely on the temporal domain of these markets. A suite of clustering
can identify critical periods affecting all commodity markets, such as the 2008–2009 global
financial crisis and the COVID-19 pandemic. These critical periods also affect markets
specific to oil and refined fuels. Even closer examination reveals additional periods of
special interest to energy-related markets. Most of those periods are shorter, acute supply
disruptions through extreme weather or acts of war.

As between the clustering of commodities and trading days, temporal clustering poses
the greater technical challenge and offers the greater practical reward. Discrete commodity
markets number in the dozens. A comprehensive span of financial history can cover
thousands of trading days. The configuration of commodities in metaphysical financial
space need not observe a particular order. By contrast, cogent, temporally defined market
regimes must represent contiguous or nearly contiguous blocs of trading days.

Certain branches of finance and macroeconomics seek to define cyclical peaks and
troughs. Many conventional definitions of bull and bear markets or recessions and ex-
pansions within the broader economy, however, rely upon arbitrary benchmarks or even
subjective judgment. If stock prices fall more than 20 percent from a recent peak, for
instance, many analysts are prepared to declare the onset of a bear market. A 10 percent
decline, by contrast, is labeled a “correction.”

Relative to these arbitrary, categorical distinctions, a mathematically informed treat-
ment of conditional volatility forecasts may identify contiguous or nearly contiguous
clusters of trading days. Although this article does not immediately pursue the possibility,
the methods that it applies may ultimately enable new ways to identify distinctive regimes
in financial markets or the broader economy. Though bull-and-bear market indicators and
peak-and-trough definitions of the business cycle will undoubtedly persist, data-driven
alternatives or complements may arise from unsupervised machine learning and related
forms of artificial intelligence.

Unsupervised machine learning also obviates disputes over the definition of local
maxima and minima across potentially expansive spans of financial history. These methods
serve as an extended metaphor for one of the greatest challenges in machine learning
and artificial intelligence: determining whether a model has been globally optimized, or
whether an optimization algorithm has converged locally.

By the same token, reliance on unsupervised machine learning presents challenges
unique to this set of methods. Unlike conventional regression-based methods or their
equivalents within predictive applications of supervised machine learning, unsupervised
methods such as clustering and manifold learning are not typically used to validate research
hypotheses. They struggle to perform either of the traditional tasks in economics. Other
methods outperform unsupervised machine learning in forecasting values and in enabling
causal inference. What unsupervised machine learning does excel in doing, however,
is revealing patterns within data itself, without reliance on labels, values, or research
hypotheses formulated by human analysts.

Mindful of the potential of unsupervised machine learning, as well as its limits,
this article targets questions that routinely arise in traditional research on commodities,
broader financial markets, and the real economy. This article answers those questions in
the narrower, more specific context of energy-related commodities. There is intense interest
in comovement and connectedness among commodities trading, financial markets, and
macroeconomic phenomena. These relationships are known to vary across time. At its most
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intriguing, time-varying conditional volatility supports hypotheses regarding cyclicality
and structural shifts in many branches of economics.

This article asks whether raw data consisting of nothing more than logarithmic returns
or conditional volatility forecasts can distinguish among ordinary trading days, acute
crises that bend the arc of energy commodities trading sharply but only temporarily,
and more enduring turning points that can credibly be described as turning points or
structural shifts. If unsupervised learning succeeds in this task on a limited slice of the
economic universe, then this article may support new approaches that can complement
traditional peak-to-trough methods of defining cyclicality in financial markets and the
broader business cycle.

1.2. A Section-by-Section Summary

Section 2 of this article reviews the literature on comovement and volatility spillovers
in commodity markets, particularly those involving energy. Section 2 also reviews the
literature on rules-based definitions of bull and bear markets and economic recessions.
This extended review of the relevant economic literature provides complete background on
volatility in crude oil and refined fuel markets. Section 2 ultimately explains why connec-
tions between commodities trading, financial markets, and the broader economy motivate
efforts to describe cyclicality and other manifestations of variability in the volatility of
energy-related markets over time.

Section 3 presents data sources and describes the unsupervised machine-learning
methods underlying this article. Conditional volatility forecasts based on a GJR-GARCH(1,
1, 1) process for 22 commodity markets from 2000 through 2020 constitute the primary data
source. The subarray containing volatility forecasts for four oil and fuel markets provides
the central focus. Logarithmic returns, for all commodities and the energy-specific subset,
constitute an additional source of data.

Section 4 aggregates results from five clustering methods—affinity propagation, mean-
shift, spectral, k-means, and hierarchical agglomerative clustering—as applied to a com-
prehensive market basket of 22 commodities and to a more focused basket of four energy-
related commodities: Brent, West Texas intermediate, gasoil, and gasoline. t-distributed
stochastic neighbor embedding, or t-SNE, helps visualize all clustering results.

Meaningful temporal clusters for broader commodity markets delineate the global
financial crisis and the COVID-19 pandemic. Focused clustering in energy-related markets
identifies several additional critical periods for crude oil and refined fuel markets. Section 5
presents and distinguishes those two sets of results.

Section 6 discusses the implications of this article’s findings for managers, investors,
and policymakers. Critical periods in energy-related markets demand a different approach
to hedging and risk management, not merely for commodity investors, but also for in-
vestors using commodities to neutralize other sources of risk. The role of energy-related
crises in macroeconomic policymaking also warrants careful consideration.

The identification of temporal regimes in commodity markets through clustering
suggests the generalizability of unsupervised machine learning to other markets and to
macroeconomic data. The second half of Section 6 describes these and other possible paths
for future research.

2. Literature Review

The economic literature germane to this article spans four distinct subjects:

1. Price volatility in oil and refined fuel markets;
2. Comovement and volatility spillovers between these energy-related commodities and

other commodity markets;
3. Similar connections between energy-related commodity markets, other financial

markets, and the real economy;
4. Methods for identifying cyclicality and other time-varying effects in commodity

markets, stock markets, and the real economy.
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This section addresses each body of literature in turn. A review of the relevant
literature on unsupervised machine learning is deferred until Section 3′s presentation of
materials and methods.

2.1. Price Volatility in Crude Oil and Refined Fuels
2.1.1. Oil Price Volatility

Commodity markets figure prominently in developmental economics and interna-
tional trade. Representing a quarter of global trade in goods, commodities provide the
most important source of income for some of the world’s poorest countries [2,3]. Be-
cause advanced economies rely so heavily on petroleum-based fuels for transportation
and many industrial processes, the wealth of developed nations also hinges on oil-based
commodities [4].

The pervasive financialization of commodities raises the premium on proper under-
standing of the price and volatility dynamics in these markets [5]. This is particularly
true of crude oil and fuels refined from it [6–9]. Producers and industrial customers have
the greatest stake, since oil price volatility directly affects investments in oil inventories,
production and transportation facilities, and physical capital based on oil consumption [10].
These sunk investments demonstrate why “costly reversibility” is a prime mover in the
economics of market structure and industrial organization [11–14].

Because of their intrinsic volatility and their dependence on global supply chains,
energy markets are especially sensitive to external shocks. The diverse factors affecting
oil prices include sociopolitical disturbances, shifts in the global supply and demand,
and technological and regulatory changes promoting demand for renewable energy [15].
Discrete events, “such as wars, the release of OPEC production quota decisions, oil stock
fluctuations and extreme weather,” also affect oil prices [16] (p. 256).

Chronic or acute, these factors are never stable. Structural breaks punctuate the time-
varying conditional heteroskedasticity of oil price volatility [17]. Although conventional
tools for forecasting oil prices and volatility abound [18,19], models that ignore struc-
tural breaks and other sources of temporal variability in volatility “will have very low
power” [17] (p. 555). This is yet another instance in which accurate forecasting relies upon
the more realistic assumption that volatility does not remain constant [20].

2.1.2. Refined Fuels: Gasoline and Gasoil (Diesel)

Because gasoline and gasoil are refined petroleum products, their price and volatility
dynamics depend heavily upon the economics of oil. These markets are nevertheless
subject to forces befitting their proximity to retail consumers. Gasoline and gasoil are
affected by time-varying consumer income [21] and the price elasticity of demand for
petroleum-based fuels among other retail-level energy sources [22]. Demand for gasoline
may be less elastic than typically assumed, especially in the short run [23].

Perhaps the most distinctive trait of the price behavior of refined fuels, particularly
gasoline, is its asymmetry [24–27]. The “rockets and feathers” hypothesis posits that
increases in crude oil prices are transmitted much more quickly to gasoline than de-
creases [28–30]. Data across the United States showed that retail gasoline prices increased
0.52 percent within the first week of an anticipated 1 percent increase in oil prices, but fell
0.24 percent within the first week of a 1 percent decrease [31].

Other sources describe asymmetry in gasoline pricing according to Edgeworth price
cycles, characterized by sawtooth-shaped time series consisting of many price decreases
punctuated by occasional upward jumps [32,33]. Straightforward measurements of gasoline
demand have shown that elasticity decreases as volatility rises [34,35]. Both the “rockets
and feathers” hypothesis and Edgeworth price cycles are consistent with this account
of volatility.

Other sources contest the presence of asymmetry in the relationship between oil and
refined fuel markets [36]. Asymmetry, if present for gasoline and gasoil in Europe, is
fleeting and appears over very short time horizons [37]. Asymmetry appears in Spain and
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Italy, but not in Greece, the United Kingdom, or the United States [38]. Time-varying effects
such as volatility clustering and structural breaks affect the degree of asymmetry in the
transmission of volatility from oil to gasoline [39]. Findings of asymmetry may depend on
the frequency at which volatility data is sampled [40].

One study reaches an intriguing conclusion: The “rockets and feathers” hypothesis
tells the dominant story of oil–gasoline asymmetry, but not the exclusive story [28]. When
oil prices are falling, on average, gasoline prices follow a contrary “boulders and balloons”
dynamic by which gasoline more swiftly tracks oil price declines than increases. The rever-
sal in the polarity of oil–gasoline asymmetry strongly suggests that volatility transmission
between crude oil and refined fuels varies over time. Indeed, the presence of opposite
tendencies, based on the timing of the broader business cycle, suggests that asymmetry,
persistence, and cyclicality in volatility must be understood in the context of other capital
markets and the macroeconomy [41,42].

Though literature on the price dynamics of gasoil is relatively sparse and inconclusive,
national fuel mix policies appear to account for some of this fuel’s differences relative to
gasoline [43]. The European Union [44] and the United Kingdom [45] both nudge their
transportation sectors to favor gasoil over gasoline. With mixed success, the United States
has maintained a heating oil reserve to stabilize prices for this variant of gasoil, widely
used to heat homes in the northeastern region of that country [46]. Home heating can be
expected to be one of the least elastic sources of demand for gasoil, at least over short time
horizons, for households that depend on this fuel.

2.2. Comovement and Volatility Spillovers within Commodity Markets
2.2.1. The Financialization of Commodities and Hedging Strategies

As a prime outgrowth of the coordination of commodity markets with other aspects
of global finance [5], comovement and volatility spillovers among commodities warrant
careful evaluation [47]. Commodity futures have become popular tools for diversifica-
tion [48,49]. Tools for managing financial risk in other capital markets apply directly to
energy-related commodity markets [50]. Commodities as safe havens can offset turbulence
from other asset classes, from equities to currencies [51]. The “universe of financial as-
sets,” spanning diverse “investment strategies,” heightens the importance of “risk transfer
between oil” and markets for other “global, large and liquid” assets [52] (p. 56).

Unstable energy prices often induce investors to hold other assets alongside energy
commodities. Hedging strategies and portfolio rebalancing enable investors to manage
comovement [53]. At a minimum, oil price shocks affect non-energy commodities [54–57].
A study of volatility in oil and refined fuel should therefore consider comovement and
volatility spillovers linking energy with other commodity classes, especially metals and
agricultural products.

2.2.2. Precious Metals

The traditional role of precious metals as hedges against inflation and economic
turbulence [58] casts those commodities in sharp relief against crude oil and refined
fuels [59–61]. Markets for oil are more volatile than markets for gold and silver [62].
Precious metals exhibit hedging and safe haven properties vis-à-vis energy [49,59,63,64].
Connections between gold and oil extend to other financial instruments [60,65].

Financial risk may not run equally between two markets. Among instances of volatility
spillover in commodity markets [66–68], the propensity of oil to transmit volatility to precious
metals poses the greatest challenge to investors in energy-related commodities [69–72]. As
the global financial crisis of 2008–2009 demonstrated, precious metal returns may be more
sensitive to disaggregated structural oil shocks [72].

2.2.3. Base Metals

Because oil prices heavily affect input costs for industrial processes using base metals,
connections between energy markets and metals extend beyond gold, silver, platinum,
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and palladium [73,74]. Although one study identified platinum, gold, and silver as net
transmitters of volatility to oil [60], such spillover may not persist across all periods and
market states. Indeed, traditional distinctions between precious and base metals may
not hold across all financial conditions. Tin, gold, nickel, lead, and aluminum transmit
return and volatility to oil markets. Copper, zinc, and platinum are net receivers—but only
“at certain specific moments” [75] (p. 12). Time-varying fluctuations became especially
pronounced during the global financial crisis [60] and the COVID-19 pandemic [75].

2.2.4. Agricultural Commodities

Energy markets also transmit volatility to agricultural commodities [3,71,76–79]. The
dependence of agricultural commodity markets on energy prices varies over time [80].
A structural break appears to have shifted the relationship between oil and agricultural
commodities after 2006 [81]. Sources differ in attributing the disruption to a change in
biofuels policy [76] or to a broader crisis in food crops [78].

The relationship may vary more subtly over time [80]. During periods such as the
financial crisis of 2008–2009, oil and agricultural commodity markets crash simultaneously.
Connectedness likewise strengthened during the COVID-19 pandemic [82]. Under normal
economic conditions, however, these markets move in opposite directions. This pattern
implies that hedging will fail in the very conditions when hedges would prove most
valuable. The counterbalancing effect also denies investors the opportunity to realize
excess profits in both markets.

These conclusions are neither universal nor inevitable. A different study focusing on
common crisis periods such as the global financial crisis and the pandemic rejects two key
conclusions of other studies [83]. Oil and crops have a bidirectional relationship in which
each class of commodities transmits volatility to the other with roughly equal probability
over long time horizons. As a surprising consequence, oil and agricultural prices remained
relatively stable throughout the pandemic.

Certain crops (particularly corn and soybeans) either compete directly against crude
oil as a renewable substitute or serve as a complementary product [84]. A third crop,
sugarcane, affects these markets because of its substitutability for corn [85]. Conventional
wisdom holds that high oil prices invite competition from corn-based ethanol and soybean-
based biodiesel [86].

This relationship, like many others, appears to depend on the state of the market:
Spillovers from oil to agricultural and biofuel markets are stronger when oil prices are
higher [87]. Conversely, concerns over the diversion of common-pool resources used in
agriculture from food to fuel production reach their peak during economic crises [88].

Closer scrutiny of the impact of biofuel policies on oil and gasoline price variability [89]
has not found conclusive evidence that energy markets spur volatility in corn [90] or that
policy-stimulated demand for biofuels has elevated prices or volatility in agricultural
markets [91]. The answer to the conundrum may lie in the limited economic impact of
biofuel policies. If such policies were abolished around the world, biofuel demand would
implode without materially affecting overall demand for agricultural commodities [92].

2.2.5. The Geopolitics of Energy-Related and Agricultural Commodities

The prominence of oil and export crops in many developing economies heightens
the economic, political, and diplomatic sensitivity of volatility spillovers involving those
markets [3]. Connectedness between these commodities bridge distant geographic markets,
such as Chinese crops and crude oil, whether around the world [93] or specifically in the
United States [94]. As a rule, however, research on the impact of oil price volatility on
developing countries that import rather than export petroleum remains limited [95].

A global study spanning 157 countries at different stages of development attributed
40 percent of income volatility to oil price fluctuation [96]. Though “the adverse effects
of [price] instability” are often “much more severe” in developing countries, those gov-
ernments can rarely afford “the extensive support programs that typify the agricultural
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sectors of the developed world” [97] (p. 1729). Dependence on natural resource extraction
is so often associated with stunted economic development that this paradox is known as
the “resource curse” [98–101].

Geopolitical tension from oil divides importing and exporting countries [102,103].
Importing countries must rely on insecure foreign sources of an economic lifeblood [104],
while global trade and politics drive fiscal policy and economic cycles in exporting coun-
tries [105]. The rapid emergence of China portends the revival of a Great Game among
global superpowers in central Asia and other oil-rich regions [106].

Again, however, the economic effects are asymmetrical. Economic reactions to energy
price shocks in exporting countries are greater and more persistent than in importing
countries [107]. In the long run, both oil-importing and -exporting countries stand to lose.
At least among OECD countries, oil price volatility stunts economic growth in net importers,
while oil price uncertainty hurts net exporters [108]. Furthermore, to the extent that oil
price volatility suppresses international trade and globalization, the ensuing reduction of
global welfare harms all countries [109].

2.3. Broader Financial and Macroeconomic Effects of Oil and Fuel Price Volatility
2.3.1. Financial Markets beyond Commodities

Oil markets transmit volatility to other capital markets, including equity markets [110,111].
Although one study concludes that the American stock market is neither a net transmitter
nor a net receiver of volatility relative to oil or precious metals [60], others have found
spillover effects in smaller economies such as Iran [112] and South Korea [113].

Stock returns and stock market volatility in oil-exporting countries such as Qatar, Saudi
Arabia, and Venezuela are assuredly affected by oil prices [114]. These effects follow a
regime-switching framework based on the cyclical state of these countries’ equity markets—
specifically, whether stocks in oil-producing countries are in a bull or bear market [114].
Some sources advise investors in oil-exporting countries to increase their allocation to
oil [115,116].

The relationship between oil price volatility and the equity market may depend on
the cyclicality of both markets. The “relationship between oil prices and US equities
could depend on both the nature of oil price shocks and how well the US stock market
is performing” [117] (p. 6). Complete understanding of the mutual dependence of oil
prices and broader capital markets requires not only some understanding of cyclicality in
commodity and equity markets, but also a principled way of identifying critical periods
within financial history.

To like effect, structural heterogeneities in foreign exchange markets coincide with
geopolitical and economic impacts [118]. In conjunction with broader macroeconomic
phenomena, oil markets exert dynamic influence on trade in currencies [118]. Portfolio
management and other forms of risk management therefore hinge on the relationship
between oil prices, exchange rates, and the business cycle.

2.3.2. Macroeconomic Effects

Oil price volatility impairs economic growth [119]. Like many other phenomena
connected to oil and fuel markets, the macroeconomic effects of disruptions in energy-
related markets are asymmetrical. Oil price increases stunt economic growth more deeply
than corresponding decreases in price spur economic activity [120,121]. Even sharp price
drops may reduce aggregate output in oil-importing countries by raising uncertainty or
inducing inefficient reallocation of resources [122].

Macroeconomic uncertainty spurred by oil price volatility varies over time. Volatility
typically peaks during financial crises and recessions [123]. Nonlinear measures capture
the overall economic effects of oil price shocks [124]. Oil price volatility in the wake of
economic, geopolitical, and natural disturbances often combines short-term perturbations
with longer-term macroeconomic factors [125].
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A useful trichotomy summarizes the macroeconomic component of oil price volatil-
ity [126]. First, “most commodity prices are endogenous with respect to the global business
cycle” [127] (p. 313). Second, demand shocks cause slow but sustained changes in price.
Third, and in stark contrast, supply shocks have immediate but small and ultimately
evanescent price impacts. In oil-related markets, crises and recessions generally reduce
demand over a sustained period, while geopolitical events and natural disasters tend to
disrupt supplies on an acute basis.

This rigidly logical approach to evaluating the macroeconomic effects of oil and fuel
price volatility does leave room for potentially exogenous factors to affect uncertainty.
Oil “price uncertainty,” conditioned “on macroeconomic uncertainty,” might be a more
complete and “suitable measure of uncertainty” than purely volatility-based measures [127]
(p. 325). As a matter of broad theory, if not empirical precision, uncertainty may depend
more heavily on the predictability of energy-related markets than on their volatility [127].

2.4. Identifying Cyclicality and Critical Periods in Energy Markets, Finance, and the
Real Economy

Comprehensive financialization strengthens the connections linking commodities,
capital markets, and the broader economy. These relationships reinforce other centrifugal
tendencies throughout economics. For instance, asset pricing models should account for
tangible assets and human capital as well as financial instruments [128]. The behavior of a
firm is likewise influenced by that of its upstream suppliers, downstream purchasers, and
competitors in geographically and technologically adjacent markets [129].

Appropriately enough, efforts to track economic cyclicality span stock markets and
macroeconomic policymaking. These two domains, neither more than a single degree
removed from commodity markets, have invited many efforts to define critical periods.
Even though this article applies unsupervised machine language rather than conventional
econometric methods, it is motivated by the same desire to trace economic cyclicality in
commodity markets, particularly for crude oil and refined fuels.

Stock markets provide the narrower and methodologically simpler basis for compar-
ison. Technical stock analysis typically defines bull and bear markets, respectively, as a
market-wide price increase of at least 20 percent since the previous trough or a market-wide
decrease of at least 20 percent since the previous peak [130–132]. A 10 percent decline is
typically described as a “correction” [133]. Designations of bull and bear cycles within
market trends can be made only in retrospect, and there is no justification for these ar-
bitrary 10 and 20 percent thresholds beyond the conventions of technical analysis and
financial journalism.

For its part, the Business Cycle Dating Committee of the National Bureau for Economic
Research (NBER) tracks recessions and recoveries in the United States [134–137]. The
NBER’s methodology relies on a dynamic-factor, Markov-switching model that examines
non-farm payroll employment, the index of industrial production, real personal income,
and real manufacturing and trade sales [134,136].

Figure 1 describes the NBER’s announcements regarding the arrival and departure of
recessions in the United States [138,139]. It depicts smoothed recession probabilities as they
rise and ebb. Notably, only two periods from 2000 through 2020 have exceeded 50 percent
according to the NBER: the financial crisis of 2008–2009 and the COVID-19 pandemic. The
“dot-com” crisis of 2001 approached but did not exceed a 50 percent probability of recession.
As is evident in the shaded areas of Figure 1, however, the NBER did define March through
November 2001 as a recession.
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Figure 1. Smoothed U.S. recession probabilities [RECPROUSM156N], retrieved from FRED, Federal
Reserve Bank of St. Louis [138].

One can also frame this problem as the mirror image of an event study [140,141].
An event study traces abnormal effects to determine the duration of a suspected market
disturbance. Event studies of oil price shocks [142,143], for instance, have evaluated OPEC
announcements [144,145] and storms [146]. Conversely, temporal clustering uses economic
anomalies to extract events for further examination amid the flow of financial history.

The timing of recession announcements presents an economically significant issue in
its own right [147]. By the NBER’s own admission, its business cycle dating committee’s
“approach to determining the dates of turning points is retrospective” [148]. Before defini-
tively identifying a peak, “the committee tends to wait to identify a peak until a number of
months after it has actually occurred” [148]. Likewise, the committee does not immediately
announce a trough. Rather, the committee “waits until it is confident that an expansion is
underway” [148].

Under this methodology, announcements of recessions and recoveries are not aligned
in time with actual economic activity [149]. In the three decades from 1980 to 2010, “the lag
between the determined start of [a] recession” and the NBER’s “peak announcement” has
averaged 9 months [150] (p. 645). At a bit more than 15 months, the lag between a trough
and its announcement is longer still [150].

The lag between actual macroeconomic phenomena and their announcements creates
an opportunity for machine learning, artificial intelligence, and other automated methods
for evaluating economic data. For instance, the United States publishes its official Consumer
Price Index on a monthly basis, with a delay of several weeks between the gathering of
price data by. the Bureau of Labor Statistics and the announcement of each new CPI
reading [151]. By contrast, the Massachusetts Institute of Technology’s Billion Prices Project
reports a comparable price index on a daily basis [151].

This article develops a methodology for identifying critical periods in energy-related
commodity markets. The literature on oil and fuel markets emphasizes volatility and the
connectedness of oil and oil-based fuels with other commodities, other financial markets,
and the macroeconomy. Instead of defining cycles akin to bull and bear markets or
macroeconomic expansions and recessions, this article will try to distinguish between
critical and normal periods of trading within markets for petroleum-related commodities.
In seeking a crisis-based approach to understanding temporal shifts in these markets,
this article aims at an intermediate level of mathematical rigor between the extremes
represented by technical definitions of bull and bear markets and the NBER’s recession-
and-recovery methodology.

Qualitative distinctions between peaks and troughs, expansionary and recessionary
cycles, and critical periods dissolve upon closer mathematical inspection. Critical points in
calculus identify points within the domain of a function where the derivative or gradient
is zero (assuming that the function is differentiable at those points). Peaks and troughs
as maxima and minima constitute critical points in a univariate function. In a multidi-

23



Energies 2021, 14, 6099

mensional space representing returns on more than one asset, critical points also include
saddle points, where all slopes in orthogonal directions are zero, but no local extremum
is attained. In this mathematically informed sense, the methods described and applied in
this article cast a wider net than methods dedicated of finding peaks and troughs within a
single time series.

The second derivative of logarithmic returns on a financial asset is related to volatility
through the Taylor series expansion [152,153]. Points within the domain of a function
where the second derivative is zero indicate inflection or undulation. Methods focusing on
financial volatility may therefore find inflection and undulation points as well as critical
points. These observations are not meant to suggest that this article consciously seeks
to find all critical and inflection points in a strictly mathematical sense. Rather, this
analogy simply offers a conceptually helpful way of understanding similarities as well as
meaningful differences between traditional peak-and-trough approaches and this article’s
clustering methods.

As with stock markets and the broader economy, cyclicality in commodity prices has
drawn scholarly attention [154]. Efforts to sharpen forecasting and the understanding of
the dependence structure in oil and adjacent markets have highlighted differences between
normal trading and economic turmoil [155]. The question is whether existing and novel
“econometric tools” can generate reliable volatility forecasts when “periods of heightened
volatility in crude oil markets are recurrent” [156] (p. 622).

Conventional econometric tools include unit root tests [157,158]. Those tests aided
the discovery of structural breaks in 1990 and 2008, coinciding with the first Gulf War and
the global financial crisis [17]. Technical analysis inspired by conventional methods for
identifying bull and bear cycles in equity markets [159] has aided the search for cyclical
effects in oil-based markets, at higher [4] as well as lower frequencies [160].

Computational tools abound amid economic “big data” [151]. Although some sources
have mined linguistic [161] and Internet search data [16,162] in search of novel insights,
this article uses machine learning and artificial intelligence to answer a more fundamental
question: Whether financial economics can detect oil price fluctuation and its impact on
the relationship between risk and return [163].

This article applies unsupervised machine learning to conditional volatility in com-
modity markets over two decades. An ensemble of clustering methods can identify
episodes in commodity markets (especially those related to energy) warranting closer
examination. Some episodes, particularly the global financial crisis and the COVID-19 pan-
demic, reflect a broader, more durable demand shock. Other episodes may last mere days.
Such acute events should be expected more often within a confined subset of commodities,
such as crude oil and refined fuels. These acute events typically involve geopolitical or
natural calamities that disrupt supplies of oil and its downstream derivatives.

3. Materials and Methods

3.1. Data
3.1.1. Data Sources and Preprocessing

This article draws its raw data from sources used in [1]. Thomson Reuters’ DataS-
tream provided price data on a range of precious metals, base metals, energy commodi-
ties, and agricultural commodities. Specifically, this article relies upon daily prices from
18 September 2000 through 31 July 2020 for gold, silver, platinum, palladium (precious met-
als); copper, zinc, tin, lead, nickel, aluminum (base metals); Brent, West Texas intermediate
crude (WTI), gasoil, gasoline (energy commodities); and palm oil, wheat, corn, soybeans,
coffee, cocoa, cotton, and lumber (agricultural commodities).

The preprocessing pipeline took two further steps. Transforming daily prices into
continuous logarithmic returns shortened all series by a single day: 18 September 2000. The
resulting log return data (as well as the conditional volatility data derived from log returns)
therefore covered the period from 19 September 2000 to 31 July 2020. Two additional
days were excluded. On 20 April 2020, WTI closed at –37.63. This event rendered it
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mathematically impossible to calculate the log return for WTI on that day and the next,
21 April 2020. Those two trading dates were also omitted.

The second preprocessing step involved forecasts of conditional volatility from log
returns. We calculated the conditional, time-variant volatility for all 22 commodities accord-
ing to a GJR-GARCH(1, 1, 1) process using Student’s t distribution [1,164]. The mathemati-
cal underpinnings of GJR-GARCH(1, 1, 1) have been thoroughly documented [165,166].
GJR-GARCH outperforms alternative time-series models in forecasting financial mar-
kets [167].

For purposes of analysis and discussion, we aggregated log return and volatility
data according to a precalculated ontology of commodity markets. The vocabulary of
commodities trading distinguishes between mined, nonrenewable “hard” commodities (such
as metals and fossil fuels) and grown, renewable “soft” commodities [20,88,168,169]. The term
“soft” is sometimes reserved for tropical crops such as cocoa, coffee, and sugar [170]. We
adopt that narrower definition of “softs” and describe the temperate commodities of wheat,
corn, and soybeans as “crops.” Because cotton and lumber span tropical and temperate
climates, these commodities can be assigned to either agricultural subcategory. Results
from the clustering of log returns support the classification of cotton and lumber as tropical
or semitropical softs [1].

These distinctions, paired with traditional divisions among metals and fuels, can be
summarized as a traditional ontology of commodities trading:

1. Energy (crude oil and refined fuels): Brent, WTI, gasoil, gasoline;
2. Precious metals: Gold, silver, platinum, palladium;
3. Base metals: Copper, zinc, tin, lead, nickel, aluminum;
4. Temperate crops: Wheat, corn, soybeans;
5. Tropical and semitropical “softs”: Cocoa, palm oil, coffee, cotton, lumber.

3.1.2. Visualizations of Logarithmic Return and Conditional Volatility Data

This subsection visualizes this article’s core data. Although log return and conditional
volatility calculations were performed on all 22 commodities, this article compares only
energy-related commodities with one another on an individual basis. This article compares
crude oil and refined fuels as an asset class alongside the aggregate categories for metals
and agricultural commodities.

Figure 2a depicts cumulative log returns for commodities as asset classes. Relative to other
classes, energy-related commodities show many sharper price movements. Figure 2b illustrates
cumulative log returns for individual crude oil and fuel markets. Although comovement
among individual oil and fuel markets is far tighter (as one should expect) than among
broad classes of commodities, sharper upward and downward price spikes, particularly
for gasoline, are evident to the naked eye.

  
(a) Log returns: All commodities (b) Log returns: Energy-specific commodities 

Figure 2. Cumulative logarithmic returns: (a) All classes of commodities; (b) Crude oil and refined fuel markets.
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Figure 3a,b depict conditional volatility. By analogy to Figure 2a,b, Figure 3a portrays
the five broad classes of commodities, while Figure 3b focuses on the four individual energy-
related markets. Visibly greater volatility in energy markets dominates Figure 3b. Relative
to crude oil markets and even gasoil, the market for gasoline is palpably more volatile.
These acute volatility spikes confirm the intuition motivating the conventional exclusion
of food and fuel prices from core inflation indices used in the making of macroeconomic
policy [171–174].

  

(a) Conditional volatility: All commodities (b) Conditional volatility: Energy-specific commodities 

Figure 3. Conditional volatility forecasts: (a) All classes of commodities; (b) Crude oil and refined fuel markets.

3.2. Clustering Methods
3.2.1. General Considerations

Many applications within economics and finance exploit clustering and related forms
of unsupervised machine learning [175–178]. This article applies five clustering meth-
ods: Spectral, mean-shift, affinity propagation, k-means, and hierarchical agglomerative
clustering. Each of these methods is available in the SciKit-Learn package for Python.
The implementation of hierarchical agglomerative clustering in Scipy generated visually
distinctive dendrograms for that method.

Previous research had established that temporal clustering should be based on con-
ditional volatility rather than logarithmic returns [1]. All five clustering methods were
applied to volatility data arrayed in n rows of trading days and p columns corresponding
to the number of distinct commodity markets. For the full volatility array covering all
22 commodities, p = 22. For the energy-specific subarray, p = 4. The two arrays, however,
had the same number of trading days: n = 5182.

For both the full 5182 × 22 array and the energy-specific 5182 × 4 subarray, clus-
tering results underwent a crude aggregation inspired by voting classifiers in machine
learning [179]. Since clustering of the full 5182 × 22 array reached rough consensus on the
financial crisis of 2008–2009 and the COVID-19 pandemic as the two periods of interest,
that analysis relied on the union and the intersection of the five sets of clustering results.
Using the union of sets is tantamount to allowing a single vote to drive a positive result.
The intersection of those sets indicates unanimity. These set theory concepts therefore
define the logical extremes of voting methodologies [180,181].

Greater variability in the results for the energy-specific 5182 × 4 subarray required
a more flexible approach. For that array, this article aggregated all positive results regis-
tered by two or more of the five clustering methods. The most generous voting method,
consisting of the union of all positive results, generated a wider range of dates. Though
unexamined in this article, those results remain available for future research.

The balance of this subsection will describe each of the five clustering methods.

26



Energies 2021, 14, 6099

3.2.2. Spectral Clustering

Spectral clustering operates on a projection of the normalized Laplacian [182,183].
Since this article’s conditional volatility arrays represent 4 or 22 commodity markets as
simple functions of a common vector of trading dates, the Laplacian (Δf = ∇2f ) is the sum
of the partial second derivatives for each of those variables.

Spectral clustering should work very well with financial data. This method exposes
individual clusters within highly non-convex structures [184,185]. Since each volatility
vector is plotted against the same vector of trading dates, the resulting arrays of volatility
forecasts by date are tantamount to overlapping curves on a two-dimensional plane.
Spectral clustering therefore excels precisely where conventional statistical measures of
central tendency and variability fail to describe the shape of the data to be clustered.

These properties have made spectral clustering especially popular in computer vision
and image processing [186,187]. The ability of spectral clustering to detect blobs and edges
suggests potential success with economic time series. In mathematical terms, image and
time-series data are quite similar. Unlike documents that have been vectorized for natural
language processing, these data sources consist of perfectly dense arrays whose columns
observe the same scale, or at least nearly so. Still images and simple, harmonized arrays of
economic time series can be rendered in a nominally two-dimensional format.

Spectral clustering generated the fewest discrete clusters. Consequently, the spectral
method may be regarded as setting the most conservative clustering baseline.

3.2.3. Mean-Shift Clustering

An extension of more traditional pattern-recognition algorithms, mean-shift clustering
uses nonparametric techniques to identify deviant blobs in an otherwise smooth space [188].
Alongside k-means, mean-shift is one of two centroid-based methods in this article. The
distinctive process that gives mean-shift its name relies on a recursive updating of potential
centroids that would represent the mean of the points within a given region. A final
postprocessing stage eliminates near-duplicates before reporting the final list of centroids.
Hybridizing the mean-shift method with agglomeration can reduce the computation cost
of mean-shift clustering [189].

3.2.4. Hierarchical Agglomerative Clustering

Hierarchical clustering methods decompose and arrange mathematical objects ac-
cording to dendrograms, or trees expressing phylogenetic relationships [190–192]. The
agglomerative method begins from the “bottom” of a dataset and combines instances into
clusters until all data has been assigned to a single, overarching cluster [193].

Bottom-up agglomeration is less computationally demanding than top-down divi-
sion [194,195]. Four methods for computing distances in hierarchical clustering are widely
used: Ward’s method and single-, average-, and complete-linkage [196–199].

In economics and finance, hierarchical clustering has evaluated stock markets [200,201],
buildings and real estate [202,203], broader financial indicators [204], and the relationship
between financial markets and the real economy [177]. Hierarchical clustering of cryptocur-
rency markets [205] intensifies the urgency of research into this asset class during market
turbulence [206].

One source has used hierarchical clustering to identify correlation patterns similar
enough to comprise distinct market states [207]. Aside from our own work [1] and the use of
multidimensional scaling to evaluate comovement among commodities during subjectively
defined crises [164], this application of hierarchical clustering represents the most extensive
effort to classify periods in financial history through unsupervised machine learning.

3.2.5. Affinity Propagation

Affinity propagation identifies typical cluster members by exchanging quantitative
messages between data pairs until the algorithm converges on a high-quality set of ex-
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emplars [208–210]. This property distinguishes affinity propagation from mean-shift and
k-means clustering, which are centroid-based methods.

Under SciKit-Learn’s default settings, however, affinity propagation generates far too
many distinct exemplars. To the extent that other methods (specifically spectral, mean-shift,
and hierarchical clustering) can better estimate the optimal number of clusters, an instance
of affinity propagation can alter the element preference from its default value of the median
of the array of input similarities [211]. To a limited extent, this adjustment enables affinity
propagation to alter the number of clusters that it finds.

Affinity propagation spans an impressive range of applications. Affinity propaga-
tion is used to cluster microarray and gene expression data [212–214] and in sequence
analysis [215]. Applications beyond bioinformatics [216] include natural language pro-
cessing [217–219] and computer vision [220,221]. Especially if calibrated so that element
preference yields something close to the optimal number of exemplars, this versatile
clustering method should accommodate financial time series.

3.2.6. k-Means Clustering

One of the oldest clustering algorithms [222], k-means clustering remains a popu-
lar way to partition mathematical space [223]. k-means clustering excels in detecting
fraud [224] and firms at risk of default or failure [225]. Other financial applications include
the forecasting of returns and the management of investment risk [176,226–228]. Our own
previous research on commodity markets relied heavily on k-means clustering [1].

k-means clustering does require more careful handling. More than other methods, k-
means clustering depends on algorithms for determining the ideal number of clusters [229,230].
In addition to k, the optimal number of clusters, this centroid-based method depends
entirely on randomized instantiation [231]. To ensure replicability of results, this article
seeded SciKit-Learn’s pseudo-random number generator with the value of 1. Finally,
k-means clustering cannot detect objects lacking a hyper-ellipsoidal shape [232].

3.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)

This article uses a single method of manifold learning: t-distributed stochastic neigh-
bor embedding, or t-SNE [233–235]. t-SNE reduces distances between similar instances
and maintains distances between dissimilar instances. Although this article applies t-SNE
solely for visualization, t-SNE can be a valuable form of unsupervised learning on its own.
Preprocessing with t-SNE can detect and remove outliers in preparation for the application
of convolutional neural networks to computer vision [236].

4. Results, Part 1: Temporal Clustering

Clustering results differ dramatically according to the underlying array of conditional
volatility forecasts. This section accordingly separates results for the full 5182 × 22 array of
all commodities from results based on the smaller 5182 × 4 energy-specific array.

Differences among clustering methods are also stark. Clustering differs from classi-
fication through supervised machine learning in a crucial respect. Clustering results do
not correspond to a priori labels assigned by a human. Analyst judgment therefore plays
a subtler role. Each clustering method must be evaluated on its own terms. Moreover,
each method’s results must be evaluated in light of all others and against the backdrop
of unavoidably subjective judgment. Each method’s underlying mathematics, however,
offers principled guidance on the exercise of that discretion.

4.1. Temporal Clustering of the Full Array of Conditional Volatility Forecasts
4.1.1. The Naïve Biennial Baseline

The naive clustering of all 20 years of commodities trading data provides a valuable
starting point. Consider the possibility that a fixed and predetermined period of time
should define each segment of financial interest. This hypothetical is far from absurd;
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monthly, quarterly, or annual reporting slices financial time in precisely this way. In the
interest of convenience, we select intervals of two calendar years each.

Figure 4 establishes a visual baseline for all temporal clustering. Consistent reliance
on t-SNE to reduce all 22 dimensions produces a uniform three-dimensional projection
of conditional volatility forecasts. Synthetic centroids generated by the average of all
observations for each biennium supply a rough sense of those two years.

 

Figure 4. Naïve, biennially defined clusters of trading days in commodity markets.

Cluster 9 is particularly interesting because the 2019–2020 biennium includes the
global maximum for cumulative log returns on precious metals and the global minimum
in cumulative log returns on oil and fuels. That cluster’s synthetic centroid falls very
near the global center. Its corresponding observations, in cyan, stretch across the financial
firmament, as measured by its width across the zeroth t-SNE dimension.

Expanding all spheres from Figures 4 and 5 reveals the futility of arbitrary biennial
clusters. If spherical radii corresponding to each cluster define the mean distance of each
observation from its corresponding synthetic centroid, then the size of each sphere and its
overlap with other spheres suggest the extent to which each cluster is internally cogent
and externally distinct. Internal cogency, if present, should reveal itself through contiguous
or nearly contiguous clusters in an ordered, one-dimensional projection along a temporal
axis. An ordered, horizontal representation would indeed display 10 perfectly contiguous,
nonoverlapping clusters. That is an artifact of the arbitrary definition of those clusters,
however, and not any mathematical property captured by t-SNE.
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Figure 5. Naïve, biennially defined clusters in commodity markets—with spheres representing the
mean distance of each cluster’s observations from its synthetic centroid.

4.1.2. Spectral Clustering

Spectral clustering of all conditional volatility forecasts identifies eight clusters. Al-
though this method does not generate centroids, finding the mean of each cluster’s mem-
bers in the three-dimensional t-SNE manifold produces synthetic centroids.

Figure 6 reveals the complete t-SNE manifold of spectral clusters. Clusters 1, 2, 3,
and 5 appear in a tight group at upper left. Clusters 1 and 2 contain only two days each,
while cluster 3 adds only nine more. The tiny size of these clusters is implied by their
compactness.
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Figure 6. Spectral clustering of commodity markets—A t-SNE (t-distriubted stochastic neighbor
embedding) manifold.

Two other groupings also stand out. Clusters 4 and 7 occupy the lower foreground.
Cluster 6 stands alone. As with clusters 1, 2, and 3, a tight radius implies that cluster 6
consists of a small number of days. Indeed, cluster 6 contains only 22 days.

The vast majority of trading days—4920 out of 5182—belong to cluster 0. The t-SNE
manifold suggests that cluster 0 may be the fallback cluster representing ordinary trading
days, when volatility levels do not substantially deviate from their central tendency.

The most useful representation of temporal clusters, of course, is the one plotted
against the ordered vector of dates. Figure 7 reveals how the eight spectral clusters almost
perfectly identify two critical periods of interest from 2000 to 2020. The height of the bars
communicates categorical rather than ordinal or numerical information. Because of the
fortuity that spectral clustering assigned the number 0 to the default, catch-all category, all
clusters numbered 1 and above identify periods of interest.
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Figure 7. Spectral clustering of commodity markets—An ordered timeline.

Spectral clustering identified the financial crisis of 2008–2009 and the COVID-19 pan-
demic. Almost miraculously, six of the remaining seven clusters are perfectly contiguous.
Instances from cluster 5, though split by clusters 1, 2, and 3, joined those other clusters
to form a continuum covering the beginning of the pandemic. Cluster 6 covers the final
22 days in the dataset. Whether those days belong with the earliest phase of the pan-
demic or instead indicate a transition toward noncritical cluster 0 may be inferred from the
location of cluster 6 in Figure 6 as well as the statistical summary of each cluster.

The resolution of Figure 7, however, is not sharp enough to reveal additional insights.
Cluster 5 consists of two subclusters separated by nearly 19 years. The earliest instances
in cluster 5 occur in 25–28 September 2001, exactly two weeks after the terrorist attacks of
11 September 2001. The remaining 67 days in cluster 5 started in March 2020, coinciding
with the outbreak of COVID-19 in Europe and North America. This represents evidence,
however faint, that an event unequivocally related to energy markets might sway the
commodities market as a whole.

4.1.3. Mean-Shift Clustering

Mean-shift clustering generated results remarkably similar to spectral clustering. In
certain respects, mean-shift clustering might be even more parsimonious.

Figure 8 identifies two periods of potential interest: The tight clump formed by clusters
2, 4, and 5 at left and the looser pair of clusters 1 and 3 at bottom. Because t-SNE manifolds
are shaped by their underlying data, Figure 8 can be compared directly with other t-SNE
manifolds. Figures 4–6 make it apparent that clusters 2, 4, and 5 correspond to COVID-19,
while clusters 1 and 3 track the financial crisis of 2008–2009.

The ordered timeline in Figure 9 confirms these intuitions. Clusters 2, 4, and 5 indeed cover
the COVID-19 pandemic. Notably, the final 39 trading days (9 June through 31 July 2021) fall
within cluster 0. Mean-shift results suggest that the final 22 days might be better classified
as “ordinary” trading days rather than part of the COVID-19 crisis.

4.1.4. Hierarchical Agglomerative Clustering

The visual signature of hierarchical clustering is the dendrogram. The dendrogram
has the added benefit of offering principled guidance on the optimal number of clusters.

Figure 10 displays the dendrogram for hierarchical agglomerative clustering using
Ward’s method and Euclidean distances. The height of the branches offers guidance on
the ideal number of clusters. In principle, the ideal number of hierarchical clusters may
be as low as two. The height of the blue branches exceeds the vertical distance between
any other set of splits. Splitting this dataset into two temporal clusters is tantamount to the
binary classification between crises and ordinary (or non-critical) periods.
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Figure 8. Mean-shift clustering of commodity markets—A t-SNE manifold.

 

Figure 9. Mean-shift clustering of commodity markets—An ordered timeline.

The dotted horizontal line in Figure 10 intersects five vertical branches. The comfort-
able vertical distance on either side of 75 implies that 5 is a near-optimal number, if we are
unwilling to abandon multiclass in favor of binary clustering. In any event, the logic of
agglomeration makes it easy to rearrange the five clusters as two.
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Figure 10. Hierarchical agglomerative clustering of commodity markets—A dendrogram truncated
after four levels with a horizonal cut indicating five clusters.

Hierarchical agglomerative clustering in Python can designate an arbitrary number of
clusters, k ∈ [1, n]. Having determined k = 5, we can project the t-SNE manifold in three
dimensions as well as the ordered timeline.

The three-dimensional t-SNE manifold of hierarchical clustering results differs in
striking ways from its spectral and mean-shift counterparts. Figure 11 divides noncritical
trading days more evenly among three clusters: 0, 1, and 2. Clusters 3 and 4 are the outliers.
Cluster 3 surely represents the financial crisis, while cluster 4 captures COVID-19.

The ordered timeline in Figure 12 confirms the intuitive interpretation of the t-SNE
manifold. Again, departures from ordinary trading are designated by higher-numbered
clusters. The spike for cluster 3 coincides with the financial crisis, while cluster 4 rises
during the COVID-19 pandemic.

4.1.5. Affinity Propagation

The final two clustering methods, affinity propagation and k-means clustering, require
more computation and discretionary judgment. These difficulties arise from a simple
difference: Default settings for affinity propagation and k-means clustering generate a
larger number of smaller clusters. Worse, many of those clusters cover non-consecutive
days, despite their relatively small size.

Adjusting the element preference matrix enables affinity propagation to generate a
desired number of exemplars. This trait of affinity propagation is not infinitely elastic.
Nevertheless, a simple matrix of element preferences generated five clusters, the same
value of k in hierarchical agglomerative clustering. Those element preferences consisted of
the median (not mean) of each vector of volatility forecasts, uniformly scaled by −3000.
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Figure 11. Hierarchical agglomerative clustering of commodity markets—A t-SNE manifold.

 

Figure 12. Hierarchical agglomerative clustering of commodity markets—An ordered timeline.

Figure 13 shows how closely affinity propagation, once nudged toward five clusters,
resembles hierarchical agglomerative clustering. Critical days appear in clusters 2 and 4,
which respectively define the financial crisis and the pandemic.
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Figure 13. Affinity propagation of commodity markets—A t-SNE manifold.

Figure 14 places these clusters within an ordered timeline. Cluster 2, however, covers
not only the financial crisis of 2008–2009 but also the three days immediately following
cluster 4′s definition of the pandemic. Consistent with other clustering results, this minor
deviation from perfect contiguity suggests that volatility during the COVID-19 crisis drifted
toward conditions characterizing the longer-lasting “great recession.”

 

Figure 14. Affinity propagation of commodity markets—An ordered timeline.
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4.1.6. k-Means Clustering

This article’s exercise in k-means clustering on all conditional volatility forecasts
duplicates the temporal clustering in [1], with a salient difference: The value of k, now fixed
at six, is the average number of clusters found by other methods (Figure 15). Conventional
methods for optimizing k did not prove particularly satisfying. It remains possible to
determine k through other clustering methods.

 

Figure 15. k-means clustering of commodity markets—A t-SNE manifold.

Like mean-shift clustering, k-means clustering relies on the stochastic instantiation
of centroids. k-means clustering, however, generates the least contiguous and the least
visibly cogent set of clusters. Figure 16 reveals only two wholly contiguous clusters (1 and
4), which coincide with the financial crisis and the pandemic.
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Figure 16. k-means clustering of commodity markets—An ordered timeline.

4.1.7. The Union and Intersection of Clustering Results for the Full Volatility Array

Though similar, these five clustering methods differ subtly, just enough to require
human intervention. Some methods confine all results for the financial crisis or the pan-
demic to a single cluster. Others divide results among as many as four clusters. Affinity
propagation associated three days after its COVID cluster with the earlier financial crisis.

Prior intuitions about any particular clustering method are just that: prior intuitions.
The “no-free-lunch” theorem of machine learning posits that no single method can be
expected to outperform others in every task [237]. Moreover, machine-learning ensembles
typically outperform any individual model [238]. Some method of aggregating results
from different clustering models seems advisable.

Elementary set theory provides a simple solution. The union of all clustering results
identifies a critical period as long as any method assigns a date to a critical period. The
intersection of those results demands agreement among all methods. Given the simplicity of
finding agreement over exactly two periods—the financial crisis and the pandemic—these
opposite extremes of any plausible voting algorithm define the range of answers.

Figure 17 depicts this simple voting algorithm’s parsimonious results. The union of all
results defines the financial crisis as 16 September 2008 to 24 April 2009. The intersection of
those results narrows the timeframe so that it runs from 16 October 2008 to 17 March 2009.

The definition of the COVID-19 pandemic is likewise perfectly contiguous by either
criterion. The union of results defines the COVID crisis as 10 March to 1 July 2020. The
narrower intersection of those sets also begins on 10 March but ends on 26 May 2020.

 

Figure 17. Set theory aggregations of temporal clusters—An ordered timeline.
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4.2. Temporal Clustering of the Energy-Specific Array of Conditional Volatility Forecasts

We now apply all five clustering methods to the energy-specific 5182 × 4 subarray of
conditional volatility forecasts. The smaller size of this array nudges all methods toward
finding more clusters. That property makes some clustering models more difficult to
manage. On the other hand, the relative stability of clustering on the grand array of
22 commodities suggests that this suite of unsupervised machine-learning methods can be
successfully extended to larger financial markets (including equity markets with hundreds
or thousands of stocks) and to arrays of macroeconomic indicators.

Dispensing with the naïve clustering of observations by arbitrary two-year periods,
we begin with spectral clustering and progress through all other methods.

4.2.1. Spectral Clustering

Figure 18 reports spectral clustering results for the time periods within the subarray
of energy-specific conditional volatility.

 

Figure 18. Spectral clustering of energy-related markets—A t-SNE manifold.

On the energy-specific subarray, as with the full array, spectral clustering is a very
conservative method. It finds fewer and smaller clusters apart from a single large cluster
of ordinary observations. In Figure 18, clusters 1 through 6 adhere together during the
COVID-19 pandemic. Cluster 7 stands apart in time and contains 17 consecutive trading
days. Cluster 0 accounts for nearly 99 percent of the full 5182 days.
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Figure 19′s ordered timeline reveals that cluster 7 does not overlap any period associ-
ated with the financial crisis of 2008–2009. Rather, cluster 7 consists of 17 days in August
and September 2005. This is the first energy-specific event not identified by the broader
array of all commodities. As will become apparent, these days coincided with Hurricane
Katrina, which profoundly affected oil production and gasoline refining in and near the
Gulf of Mexico [239,240]. Indeed, an enduring structural break between crude oil and spot
gasoline prices is attributed to this event [241].

 

Figure 19. Spectral clustering of commodity markets—An ordered timeline.

4.2.2. Mean-Shift Clustering

Relative to spectral clustering, the mean-shift method finds nearly twice as many
clusters. More intriguingly, mean-shift clusters deviating from the central tendency of
energy-specific volatility gather on a single side of the three-dimensional t-SNE manifold.

Figure 20 shows how mean-shift clustering is based on centroids. The centroids
indicated by numerals are visibly distinct from the apparent center of gravity for each
cluster within the t-SNE manifold’s stylized three-dimensional space. Clusters 0 and 1, the
two largest, exhibit the greatest apparent dislocation between centroids and individual
instances. All other clusters, except perhaps clusters 2 and 7, are more likely to identify
brief, compact events in the trading in crude oil and refined fuels. Such events likely arise
from supply disruptions, as opposed to longer-lasting shifts in demand associated with
broader crises affecting all commodities.

Figure 21 renders mean-shift results on an ordered timeline. Mean-shift clustering
is manifestly more sensitive than spectral clustering. Cluster 0 plays its usual role as the
fallback category. All clusters numbered higher than 1 are much smaller, containing (in two
instances) as few as two days. Pronounced spikes are associated with the global financial
crisis and the pandemic, as well as a previously undetected 2016 event.

Clusters 1 and 2, as the second- and third-largest clusters among the 15, fall between
the extremes represented by cluster 0 and collectively by clusters 3 through 14. In addition
to indicating several periods in the early 2000s, Cluster 1 brackets better known, already
identified volatility events. It may be reasonably surmised that this cluster indicates the
beginning or the end of distinctive events. Its appearance at the end of the peak of the
pandemic reinforces what all-commodity clustering has already suggested: The pandemic
arrived suddenly and began to relax almost as quickly.

Cluster 2 recurs on multiple occasions in the first half of this 20-year period and again
in 2015. Those 60 trading days should share characteristics that distinguish them from the
financial crisis, the 2016 event, and the pandemic.

Recombining mean-shift clusters from 15 into four—0, 1, 2, and all clusters numbered
3 or higher—provides a clearer picture. Figure 22 reports this summarized timeline.
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Figure 20. Mean-shift clustering of energy-related markets—A t-SNE manifold.

 

Figure 21. Mean-shift clustering of energy-related markets—An ordered timeline.
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Figure 22. Mean-shift clustering of energy-related markets—A simplified timeline compressing
15 clusters into four.

4.2.3. Hierarchical Agglomerative Clustering

As a matter of visual interpretability as well as mathematical logic, hierarchical clus-
tering begins with a dendrogram. Figure 23 suggests that the ideal number of clusters may
be as low as three: A concentrated cluster of 51 trading days (not necessarily consecutive)
in the middle in red, a moderately large supercluster of 848 days at right in cyan, and a
very large supercluster of the remaining 4283 days at left in green. Deviating from cluster
distance as a guide to the optimal value of k yields the 12 clusters along the bottom.

Distances within these 12 clusters average less than 30, as opposed to the distance of
60 separating a three-cluster configuration from its five-cluster alternative. Even so, many
of these clusters will exhibit so little contiguity that it will take considerably more analyst
judgment to cogently interpret hierarchical clustering.

 

Figure 23. Hierarchical agglomerative clustering of energy-related markets—A dendrogram trun-
cated at 12 clusters, with a horizonal cut indicating three clusters.

The t-SNE manifold of hierarchical clustering in Figure 24 looks decidedly unlike the
manifolds for spectral and mean-shift clustering. The affinity propagation and k-means
manifolds will exhibit a shape similar to the hierarchical results. The greatest difference
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lies in the relative sizes and overlapping locations of the spheres representing the clusters.
Aside from clusters 9, 2, 10, and perhaps 5, these clusters have large radii and overlap
their neighbors. The centroids are synthetic, as in spectral clustering, and not stochastically
instantiated, as in k-means. Overlapping spheres suggest that the adjoining clusters will
not be perfectly contiguous, or even close to being so.

 

Figure 24. Hierarchical agglomerative clustering of energy-related markets—A t-SNE manifold.

The ordered timeline in Figure 25 confirms these fears. Cluster 0, the closest repre-
sentation of normal trading, has shorter stretches of uninterrupted, contiguous cogency
than the default, background trading clusters under the spectral or mean-shift methods.
Cluster 1, which appears during the financial crisis and the pandemic, also appears in 2001.
Reducing the total number of clusters below the 15 clusters generated by mean-shift did
not bring visible order to the timeline. Additional analyst judgment seems advisable.

Figure 26, the revised manifold, highlights the six smallest hierarchical clusters. A
principled case can be made to include cluster 8, the seventh smallest among 12, because
of its proximity to cluster 5 in the t-SNE manifold and in Figure 23′s dendrogram. On the
other hand, cluster 8 adds 484 days to the 415 total days in clusters 1, 2, 5, 7, 9, and 10. At
415 total days, those clusters comprise almost exactly 8 percent of the 5182 trading days.
Adding 484 days from cluster 8 would raise the share of critical trading days to more than
17 percent. For the sake of comparison, mean-shift clustering identified 609 trading days of
interest, while spectral clustering found only 70.

Whether critical periods in energy commodity trading comprise 8 or 17 percent of an
entire timeframe requires delicate analyst judgment. An incidental benefit of forecasting
conditional volatility through GARCH is the ability to estimate the degrees of freedom for
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the t-distribution that best fits each series of returns. Figure 27 shows that the estimated
degrees of freedom for energy-related commodities ranged between 3.03 (WTI) and 3.71
(gasoil). For an equally weighted market basket of oils and refined fuels, ν ≈ 3.51.

 

Figure 25. Hierarchical agglomerative clustering of energy-related markets—An ordered timeline.

 

Figure 26. Hierarchical agglomerative clustering of energy-related markets—the t-SNE manifold
revisited, with clusters of interest indicated by their centroids.
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Figure 27. Estimated degrees of freedom (ν) for Student’s t-distribution for each series of log returns.
Energy-related commodities, including an equally weighted market basket, appear in red.

The degrees of freedom estimate enables the cumulative distribution function for Student’s
t-distribution with location = 0 and scale = 1 to describe the size of the tails at a given value of ν.
At this dataset’s estimates for ν, the two-tailed estimate for F(x | |x| > 2) ranges from 0.121634
for gasoil to 0.138395 for WTI. The estimate is 0.125950 for the equally weighted market
basket. The one-tailed estimate would be exactly half of those values. The one-tailed
estimate for F(x | x > 2) might be justified on the reasoning that volatility is invariably
non-negative and that outliers found through clustering are likely to exhibit extremely
high rather than extremely low volatility. That rationale, to say nothing of methodological
conservatism, supports a smaller number of clusters.

By either measure, the six or seven smallest clusters occupy a distinct edge within
Figure 26. All of the candidate clusters lie a palpable distance from the t-SNE manifold’s
center of gravity. This is intriguing (if not altogether conclusive) visual evidence that a
size-based criterion can successfully isolate outliers among trading days.

Figure 28 simplifies the ordered timeline in Figure 25 by reducing the more conser-
vative six-cluster interpretation of hierarchical clustering into binary classification. Those
six clusters have been aggregated into a single “critical” supercluster, while all other days
are classified as a normal, noncritical background. In addition to the financial crisis and
the pandemic, simplified hierarchical clustering identifies periods of interest in 2000, 2001,
2003, 2005, 2015, and 2016.

 

Figure 28. Hierarchical agglomerative clustering of energy-related markets—A simplified timeline
aggregating the smallest six among 12 clusters.

4.2.4. Affinity Propagation

The smaller size of the energy-specific subarray created immense difficulty with
affinity propagation. Scaling the element preference matrix according to the median values
for each series cannot reduce the number of clusters close to the range of eight to 15, the
number of clusters found by the spectral and mean-shift methods. More aggressive efforts
prevented the algorithm from converging. The smallest number of viable clusters in affinity
propagation appears to be 32.
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Affinity propagation generates a beautiful but deadly t-SNE manifold (Figure 29). The
large number of overlapping clusters, many enveloped in spheres with moderate to large
radii, suggests that this method yields highly atomized, noncontiguous clusters.

 

Figure 29. Affinity propagation of energy-related markets—A t-SNE manifold.

Figure 30 displays an ordered timeline whose clusters are extremely hard to interpret.
Affinity propagation is even more chaotic than hierarchical clustering (Figure 25). The
larger the number of clusters, the likelier that individual clusters will splinter internally.
Identifying financially meaningful groups of trading days requires extensive work.

Experience with more tractable clustering methods suggests a way forward. Critical
and ordinary trading days are not uniformly distributed. The very process used to forecast
volatility—GJR(1, 1, 1)-GARCH—presumes heteroskedasticity in the sequence of logarith-
mic returns. All else being equal, clusters identifying extreme levels of volatility are likely
to be smaller than clusters describing lower background levels.

A viable filter therefore consists of tagging affinity propagation clusters for further
evaluation until the cumulative number of trading days reaches a certain threshold. The
415 out of 5182 days selected by hierarchical clustering provide a workable benchmark.
Isolating the 14 smallest among 32 clusters yields 384 trading days, roughly 7.4 percent
of the total. Adding a 15th cluster would add the 78 days from cluster 12 and raise the
number of potentially critical days to 459, or nearly 8.9 percent. Because cluster 12 is so
close to the 14 even smaller clusters, we included it. Fortuitously, that choice ultimately
made no difference in aggregation through voting.
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Figure 30. Affinity propagation of energy-related markets—An ordered timeline.

Figure 31 isolates the 15 smallest affinity propagation clusters. As expected, these
clusters occupy the left edge of the t-SNE manifold and resemble the critical clusters chosen
by hierarchical clustering (Figure 26). Four subgroups are evident: Two appear closer to
the top: Clusters 7 and 8 in one supercluster and clusters 11, 23, and 26 in another beneath
it. Clusters 28 through 31 occupy the far upper left. Finally, clusters 1, 12 through 15, and
25 comprise a more diffuse but still distinct supercluster at lower left.

Figure 32 isolates these four superclusters. The first three superclusters cover contigu-
ous or nearly contiguous periods corresponding to energy-trading events in 2005, 2016, and
2020. The last of these plainly covers the COVID-19 pandemic—specifically, its frantic first
weeks. Clusters in 2005 and 2016, wholly distinct from the financial crisis and the pandemic,
imply the occurrence of events quantitatively distinct from the fourth supercluster. Those
clusters unite several events in the early 2000s and the back half of the pandemic with the
financial crisis.

Analyst judgment, aided by the heuristic tool of choosing the k smallest clusters until
some fraction of all trading days is attained, rescued an initially frustrating set of results
from affinity propagation. We will apply a similar approach to k-means clustering.
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Figure 31. Affinity propagation of energy-related markets—A t-SNE manifold, with clusters of
interest indicated by their synthetic centroids.

 

Figure 32. Affinity propagation of energy-related markets—A simplified timeline showing the 15
smallest clusters, further subdivided into four groups of interest.

4.2.5. k-Means Clustering

Finding the optimal number of clusters is as difficult as it is pivotal for k-means
clustering [229,230]. Other methods have yielded as few as eight and as many as 32 clusters.
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Without reliable guidance from other tests, we proceed with k = 12, as suggested by
hierarchical clustering and roughly halfway between spectral and mean-shift clustering.

Figure 33 shows another treacherously beautiful, highly overlapping set of clusters.
Although k-means clustering proceeded on a value of k akin to the number of clusters
found by mean-shift and hierarchical clustering, it attains less clarity. The failure to deliver
cogent clusters vexed affinity propagation and ultimately required considerable human
intervention. Finally, the radial sizes of the spheres within the t-SNE manifold, aside from
clusters 2, 6, 10, and maybe 11, suggest that few if any clusters will be close to contiguous.

 

Figure 33. k-means clustering of energy-related markets—A t-SNE manifold.

As expected, Figure 34 shows a deeply fractured k-means timeline. Only clusters 6 and
10 approached perfect contiguity. Cluster 10 is more readily associated with the COVID-19
pandemic. Cluster 6 identifies the September 2005 Katrina event, which eluded detection
by temporal clustering of all commodities.

The previously deployed size-based filtering technique converts the superficial chaos
of k-means clustering into a credible division of energy-trading history. Figure 35 isolates
the six smallest clusters (2, 6, 10, 11, 8, and 0) at the familiar left edge of the t-SNE manifold.
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Figure 34. k-means clustering of energy-related markets—An ordered timeline.

 

Figure 35. k-means clustering of energy-related markets—A t-SNE manifold, with clusters of interest
indicated by their synthetic centroids.
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Figure 36 reduces the apparent chaos in k-means clustering (Figure 34) into a binary
indicator of critical events. Familiar episodes have emerged: In addition to the financial
crisis and the pandemic, k-means clustering isolates events in the early 2000s (including
August/September 2005) as well as events in 2015 and 2016.

 

Figure 36. k-means clustering of energy-related markets—A simplified timeline showing the six
smallest clusters, aggregated as indicators of critical events.

4.2.6. Aggregating Clustering Results through Voting

All that remains is the aggregation of clustering results through voting. The much
smaller number of energy-related commodities makes clustering more sensitive and more
likely to find a larger number of critical events. In addition, spectral clustering is much
more conservative than other methods. Consequently, some gradations in addition to the
extreme outcomes of set theory might be warranted.

The union of all sets of clustering results is tantamount to a one-vote regime. The
intersection of those sets effectively imposes a unanimous hard voting regime. Tabulating
positive results from each clustering method as a single, equally weighted vote facilitates
as many gradations as there are models. In this instance, five distinct models can generate
votes ranging from 0 to 5. Any positive result is an element of the union of all five sets. The
more votes required, the more stringent the voting regime becomes, until the intersection
of all sets reaches the extreme of unanimity.

Figure 37 displays voting results. The only trading days receiving a single vote were
those identified by mean-shift clustering but by no other method. Aggregation through
voting becomes most interesting at the threshold of two votes. Moreover, the 70 days
receiving unanimous support are coextensive with the days found by spectral clustering.
Of the other 400 days, 333 received unanimous support from the four remaining methods.

 

Figure 37. A voting-based aggregation of temporal clusters and critical periods in energy-related
commodities trading—An ordered timeline.
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5. Results, Part 2: Evaluating Critical Periods in Energy-Related Markets

5.1. Identifying and Classifying Critical Periods Located through Temporal Clustering

If all periods receiving two or more votes in Figure 37 are treated as critical, or at
least as candidates for such a classification, the following events emerge from the temporal
clustering of energy-related markets between 2000 and 2020:

1. Five noncontiguous days in 2000: 26, 27, and 29 September, plus 18 and 19 October;
2. The December 2000 event: 15 December 2000 through 2 January 2001;
3. The immediate aftermath of the 11 September 2001 terrorist attacks: 25 September 2001

through 7 November 2001;
4. The American invasion of Afghanistan: 13 November 2001 through 27 December 2001;
5. The second Gulf War: 19 March 2003 through 5 May 2003;
6. The single day of 30 September 2013;
7. Five noncontiguous days in 3, 6, 7, 8 December 2004 and 16 December 2004;
8. The aftermath of Hurricane Katrina: 31 August 2005 through 12 October 2005;
9. The global financial crisis: 19 September 2008 through 30 April 2009;
10. The September 2015 event: 2 September 2015 through 22 September 2015;
11. The winter 2016 event: 18 January 2016 through 25 March 2016;
12. The COVID-19 pandemic: 9 March 2020 through 17 July 2020.

Three of these 12 events may be too brief or incoherent for proper examination. The
noncontiguous days in fall 2000 and December 2004, as well as 30 September 2003, comprise
a total of 11 trading days. The shortest span among the nine other events is the 13 days of
the December 2000 event. Even if those three events are excluded from in-depth analysis,
however, the 11 days they collectively span may be worth including in a broader definition
of critical (as distinct from ordinary, noncritical) trading days.

A more generous definition of critical days remains available. Several clustering
methods could have been expanded to include closer to 800 rather than 400 days. Days
that are noncontiguous under this aggregation of clustering results may cohere once more
days of possible interest are investigated.

Among the nine surviving events, it makes sense to distinguish between (a) events
uncovered by temporal clustering of all commodities and (b) events unique to the energy-
specific subarray. There are three possible and nonmutually exclusive justifications for
separate treatment. First, the financial crisis of 2008–2009 and the COVID-19 pandemic
may have affected all commodity asset classes in ways that meaningfully departed from
the ordinary course of trading. Second, crises affecting all commodities are likelier to be
deeper recessions affecting the broader economy across a wider geographic swath. In
other words, events affecting other commodities in addition to oil and refined fuels arise
from comprehensive declines in demand. By contrast, crises unique to energy markets are
likelier to arise from disruptions in supply, attributable to acts of war, natural disasters, or
even OPEC production decisions. Finally, the impact of the financial crisis or the pandemic
on energy may have been so profound as to sway the overall commodities market.

5.2. Visualizing and Evaluating Critical Periods Uncovered by Temporal Clustering
5.2.1. Condiitonal Volatility Forecasts

In principle, temporal clustering precedes and enables more extensive analysis. Identi-
fying events such as the global financial crisis, the COVID-19 pandemic, and energy-market
disruptions associated with American military engagements offers even greater value when
those events’ financial characteristics are distinguished from those of calmer, ordinary con-
ditions. This section visualizes conditional volatility and cumulative logarithmic returns
during critical events.

Since temporal clustering operated on arrays of conditional volatility, it makes sense
to depict conditional volatility during critical events. Cumulative log returns describe the
experience of commodity traders during those events. They, too, are worth illustrating.

Figure 38 shows the volatility conditions during the nine critical periods identified
through temporal clustering. Throughout 20 years, an equally weighted market basket

52



Energies 2021, 14, 6099

of Brent, WTI, gasoil, and gasoline exhibited an average GJR(1, 1, 1)-GARCH conditional
volatility forecast of 1.918575. Collectively, all critical events exhibited average conditional
volatility of 4.009828, while noncritical periods averaged 1.709983. Many but not all of the
periods in Figure 38 exhibited peak volatility exceeding 4.00.

 

Figure 38. Conditional volatility forecasts during critical periods for an equally weighted market
basket of four oil and fuel commodities, with details for each of the constituent markets.

The real question is why some periods showed elevated volatility for energy-related
commodities, but others did not. Notably, both the financial crisis and the COVID-19
pandemic showed sustained volatility above 4.00. By contrast, a majority of the energy-
specific critical events managed to stay below 4.00. Conditions of active warfare do not
explain the difference. The Second Gulf War in 2003 remained below 4.00, while the event
of 2016, comparable in duration and overall volatility, did crest above 4.00.

Every energy-related crisis does exhibit an upward volatility spike in at least one of
four oil and fuel markets. The two episodes associated with the September 11 terrorist
attacks and the American military response, the global financial crisis, and the COVID-19
pandemic all show the four individual markets spiking together and early. To a limited
degree, the same can be said for Gulf War II in 2003.

The five other energy-specific events appear to be driven by a volatility spike in a
single constituent market. Only the December 2000 event involved a spike in a crude oil
market, as volatility in WTI rocketed in the middle of that month. Gulf War II occasioned

53



Energies 2021, 14, 6099

a sudden rise in gasoil volatility, which remained high until markets eased seven weeks
later. All other events—Hurricane Katrina in 2005 and the temporally proximate events of
September 2015 and late winter 2016—involved spikes in gasoline.

At least to some degree, all nine critical periods identified by temporal clustering of
volatility exhibit the imbalanced triangular shape associated with the rockets-and-feathers
account of oil pricing and the Edgeworth price cycles in refined fuel markets. At or near
the beginning of each event, volatility in at least one constituent market spikes. Volatility
then eases slowly. Whether to describe the relaxation of volatility by analogy to feathers
or gradations on a sawtooth blade appears to be a strictly esthetic question. Volatility
during these critical events exhibits the triangular signature associated with either account
of pricing dynamics in energy-related markets.

On the other hand, critical periods identified through temporal clustering do not
invariably exhibit the peak-to-trough shape that characterizes traditional definitions of
recessions and bull and bear markets. Though several episodes open with peak volatility for
at least one of the four energy-related commodities, others do not. Given the mathematical
basis of clustering, critical periods do not end because volatility reaches a local trough.
Rather, they end because volatility has relaxed and returned to background levels.

Differences in the volatility profile of these events provide a reminder that temporal
clustering by any one method reflects subtleties that can be erased during aggregation by
voting. To be workable, the voting process must treat each method as though it were a
binary classifier. Either a period is critical, or it is not.

Each of the individual methods nevertheless achieved subtleties by finding more
than two clusters. For instance, the very conservative spectral clustering method isolated
the 17 days it associated with Hurricane Katrina from six wholly separate clusters that
collectively identified 53 days during the pandemic. Differences among those six periods
become unrecoverable once they are aggregated as a “pandemic” supercluster.

Other methods reflect a similar subtlety. Mean-shift clustering suggested that a single
cluster characterized much of the financial crisis as well as the geopolitically fraught energy
crises of the early 2000s, but Katrina stood entirely apart. Hierarchical agglomerative
clustering could have been interpreted as recommending three superclusters: one for
51 days during the crisis, another 848 days worthy of attention for abnormal volatility
readings, and a third supercluster comprising all other trading days across two decades.

Analyst judgment looms large again. There may be no quantitatively consistent rule
for striking the desired balance between the ease of isolating outliers on a binary basis and
the nuance of discerning differences among outlier, critical periods.

5.2.2. Logarithmic Returns

These periods’ log returns do provide another tool. Visualizing log returns also depicts
markets as investors understand them: by the ebb and flow of profit and loss.

Volatility events are associated, perhaps stereotypically and simplistically, with har-
rowing declines in asset prices. This perception is reinforced by the popular depiction
of VIX as the “fear index.” The log returns in Figure 39 suggest far greater diversity and
subtlety in the temporal clustering of energy-related markets. For the steep, sustained
decline in demand associated with the financial crisis, the stereotype does apply.

Other events tell a subtly different story. The suspension of air travel in the United
States after 11 September 2001 inflicted losses on all oil and fuel markets. That episode
may represent a rare instance of an energy-specific crisis arising from an acute disruption
in demand as well as supply, or instead of it. After a steep decline at the beginning of the
ensuing invasion of Afghanistan, prices stabilized and rose. Though they were separated
by less than a week, these were distinct events.

Although the rockets-and-feathers hypothesis and Edgeworth pricing cycles are asso-
ciated with prices rather than volatility, the triangular charts associated with those accounts
of energy markets do not appear in Figure 39. Temporal clustering of the volatility array
did not isolate periods where prices rose rapidly and eased slowly. If anything, some
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critical periods exhibit the opposite “boulders and balloons” pattern, by which gasoline
prices steeply decline in response to oil price decreases, and then recover slowly [28].

 

Figure 39. Cumulative logarithmic returns during critical periods for an equally weighted market
basket of four oil and fuel commodities, with details for each of the constituent markets. Cumulative
log returns on precious metals are shown for purposes of comparison.

On the other hand, to the extent that these signature descriptions of price- or return-
based time series apply to energy markets under normal conditions, we might find that
energy markets follow differently shaped arcs during critical periods. Indeed, it is entirely
plausible that sawtooth-shaped or rockets-and-feathers patterns characterize volatility
but not return during critical periods, while the opposite relationship governs ordinary,
background trading. It is also possible that the iconic shapes associated with Edgeworth
pricing cycles or rockets-and-feathers behavior do appear throughout these time series, but
over time horizons longer than those of acute events isolated by temporal clustering. The
behavior of energy markets during temporal clusters associated with ordinary, background
trading invites further research.

The movement of precious metal prices also highlights the difference between the
terrorist attacks and the Afghan invasion. Precious metals are considered hedges against
inflation and geopolitical turbulence. The latter property is probably the dominant driver of
precious metal prices during military activities affecting petroleum-exporting regions. Pre-
cious metal prices fell after 11 September 2001 but recouped their losses during the Afghan
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invasion. Precious metal prices fell again during Gulf War II, when they accompanied even
steeper declines in oil and fuel prices.

At least two events proved to be net winners for energy investors and companies.
Despite a few downward spikes, winter 2016 eventually rallied these energy markets.

Even more dramatically, the onset of the COVID-19 pandemic inflicted catastrophic
losses on oil and fuel markets, only to spark a ferocious rally. The price of gasoil, a fuel
associated with industrial uses and long-haul transport, remained more stable throughout
both phases. (Despite gasoil’s superior fuel efficiency and lower levels of pollution [242],
and despite the popularity of diesel-powered cars in Europe, gasoline engines in passenger
vehicles outnumber diesel engines four to one [243].) It is little wonder that this historically
unprecedented episode generated such diverse clustering results. At the same time, aggre-
gating all methods enables the evaluation of four months of prices, returns, and volatility
that know no equal in financial history.

5.3. Comparing Energy-Market Impacts with Other Commodity Asset Classes

Energy-specific crises may be best understood through a comparison with other
commodity classes. Subjectively defined crisis periods offer a good starting point. In
addition to six critical periods in broader commodity markets between 2000 and 2019 [164],
we propose a seventh—the COVID-19 pandemic—as defined by temporal clustering of
energy-specific volatility. The critical periods are as follows:

1. The gas shock, March 2001 through December 2001;
2. The Iraq invasion, November 2002 through July 2003;
3. Oil price increases, June 2007 through August 2008;
4. Global oil and food crises, July 2008 through January 2009;
5. The coffee shock, June 2010 through March 2011;
6. Chinese deceleration, June 2015 through February 2016;
7. The COVID-19 pandemic, 10 March 2020 through 17 July 2020.

Figure 40 overlays these periods on conditional volatility for all commodity asset
classes. A majority of these seven human-designated crises accompany visible spikes
in volatility in energy-related markets, even though many such crises are either defined
neutrally (for example, Chinese deceleration) or wholly by reference to other commodity
markets (the coffee shock). Indeed, deceleration of the Chinese economy would explain
the energy markets’ September 2015 and winter 2016 events.

Aggregate statistics on energy-specific crises show elevated volatility for these markets
(Figure 41). Energy-specific markets are more volatile on the whole, but the gap between
volatility in these commodities and in all other asset classes grows considerably during
volatility outliers in energy-related markets.

Unsurprisingly, defining crises according to a single asset class has the effect of
highlighting volatility events unique to that class. An even more striking implication of
Figure 41 is the reduction of volatility in almost every other asset class, even relative to
noncritical periods generally. Only tropical and semitropical softs experienced increased
volatility during energy-related events. Akin to the way VIX options and other volatility-
based strategies can hedge equity portfolios, stakeholders in the fossil fuel sector might
consider broader holdings as a way to offset energy-specific turbulence.
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Figure 40. Six human-defined commodity crises, 2000–2020, plus the COVID-19 pandemic.

 

Figure 41. Volatility for commodity asset classes, overall and during noncritical and critical periods.

The opposite directions of annualized log returns on all commodity classes, as shown
in Figure 42, reinforce the intuition that other commodities move separately during events
affecting solely energy-related markets. This exercise vindicates the wisdom of cluster-
ing all commodity markets before focusing on energy-specific events. There have been
exactly two crises affecting all commodity markets since 2000: the global financial crisis of
2008–2009 and the COVID-19 pandemic. Aside from assets related to energy, no asset
class lost ground during energy-specific events. Base metals did suffer steep price declines
overall and lost ground relative to baseline rates of return during energy-specific events.
Even that class did not decline in the aggregate, however, during the American military
interventions of the early 2000s and the energy-market disturbances of 2015 and 2016.
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Figure 42. Annualized logarithmic returns for commodity asset classes, overall and during noncritical
and critical periods.

Figures 43 and 44 highlight the effects of the financial crisis and the pandemic. Though
these broad events affected all commodities, they made a far deeper impression on energy-
related markets. Collapses in demand had a far greater impact on energy-related com-
modities and (to a lesser extent) base metals during the financial crisis. COVID-19, on the
other hand, benefited the energy sector overall after historically unprecedented gyrations
in both directions.

 
Figure 43. Volatility for commodity asset classes, overall and during the financial crisis of 2008–2009
and the COVID-19 pandemic.

 

Figure 44. Annualized logarithmic returns for commodity asset classes, overall and during the
financial crisis of 2008–2009 and the COVID-19 pandemic.
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5.4. Comparing Crude Oil with Refined Fuels

The examination of volatility and log return for energy-related markets in Section 5.2
suggested dramatic differences among individual markets. Internal differences among these
markets may be more economically meaningful than differences separating oil and refined
fuels from other commodities.

Volatility for Brent, WTI, gasoil, and gasoline is elevated during all energy-related
events. Figures 45 and 46 should come as no surprise at all. Differences in scaling may
obscure the fact that the across-the-board, the crises of 2008–2009 and COVID-19 in Figure 46
were more volatile than the energy-specific events in Figure 45.

There is a noticeable difference between refined fuels. The palpably lower levels of
volatility for gasoil in all conditions suggests that this fuel enjoys a floor of demand that
undergirds prices and returns throughout varying economic conditions. The flip side of
gasoil’s relative stability is greater susceptibility for gasoline. Faster and less consistent
changes in demand for gasoline generate greater turbulence.

 

Figure 45. Volatility for energy-related commodities, overall and during noncritical and critical periods.

 

Figure 46. Volatility for energy-related commodities, overall and during the financial crisis and
the pandemic.

Annualized logarithmic returns on Brent, WTI, gasoil, and gasoline tell a more dra-
matic story (Figures 47 and 48). Relative to crude oil, refined fuels absorb far more punish-
ing losses in critical periods. Such losses—though by no means universal, as demonstrated
by the winter 2016 event and the COVID-19 pandemic—are far steeper for gasoil and
especially gasoline. WTI essentially broke even during the two greatest economic crises of
the past two decades. Brent pulled affirmatively ahead of the breakeven point.

By contrast, gasoil and gasoline staggered during the financial crisis. They cratered
during the onset of the COVID-19 pandemic, only to regain their footing and actually
advance as pandemic conditions retreated during the summer of 2020.
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Figure 47. Annualized logarithmic returns on energy-related commodities, overall and during
noncritical and critical periods.

 

Figure 48. Annualized logarithmic returns on energy-related commodities, overall and during the
financial crisis and the pandemic.

6. Discussion

6.1. Implications for Firms, Investors, and Governments

“The interconnected nature of oil, metal, and agro-commodity price movements
through the transmission of price shocks have serious implications for policymakers and
investors” [57] (p. 1). Oil price volatility also affects strategic investment decisions by
individual firms [244,245]. All stakeholders in energy markets should pay close heed to
the identification of critical periods through temporal clustering.

As expected, the temporal clustering of the limited market basket of four energy-
specific commodities generated a larger number of discrete critical events. The parallel
exercise of clustering the broader basket of 22 commodities proves valuable in distin-
guishing between supply-related and demand-related events. Disruptions in demand
affect multiple commodity classes. They tend to be associated with recessions, depres-
sions, and other events of global scale. By contrast, supply disruptions tend to arise from
acute crises associated with military operations and extreme weather. At least since 2000,
supply-related crises have been unique to energy-related markets and tend to be shorter
in duration.

These patterns confirm the value of the trichotomy identified in [126,127]. Though
commodity prices are generally endogenous with respect to the global business cycle,
they respond to demand shocks slowly but steadily. They respond to supply shocks with
sharp but small and momentary movements. Though these effects may not be unique to
energy-related markets, this article’s focus on oil, gasoline, and gasoil certainly isolated all
three effects.

The different duration associated with each of the two types of critical events affects
managerial, investment, and policy prescriptions. Different stakeholders in energy markets
and adjacent areas of the economy have different time horizons. At one extreme, the
brevity of supply-related disruptions suggests that crises identified through the temporal
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clustering of the energy-specific subarray of volatility forecasts carries the greatest weight
for short-term hedging and managerial decisions.

Longer-term investors and strategic managerial decisions (as distinct from tactical
hedging decisions) depend more heavily on demand-related crises. These tend to be crises
that emerge from temporal clustering of the all-commodities array as well as clustering of
the narrower, energy-specific subarray. Changes in comovement and connectedness during
these periods tend to be slower but also more enduring. Structural shifts in economic
dynamics are likelier to occur during these overlapping crises, as opposed to acute events
arising from disruptions in the supply of oil or its distillates.

The difference between long-term structural shifts due to changes in demand and
episodic disruptions in supply carries profound macroeconomic implications. Conventional
measures of core inflation exclude putatively volatile food and fuel commodities [171–174].
Consumer demand, at least for fuel, turns out to be quite inelastic in the short term.
Temporal clustering uncovered rapid and extreme movements in fuel prices, only a few
of which coincided with broader drops in demand detected by temporal clustering of
all commodities.

Generalizations of the methods demonstrated in this article promise powerful insights,
microscopic as well as telescopic. Extensions of this research can and should be both
introspective and teleological. Opportunities for further research lurk within the data
gathered for this article. In addition to the array of log returns for all commodities, as
well as those related to energy, temporal clustering can use different variations on the
theme of volatility. Historical volatility or additional conditional volatility forecasts at
higher frequencies may yield different results, as would implied volatility derived from
options trading.

The temporal clusters also invite closer examination. Hierarchical clustering could
easily have been expanded to treat 17 percent rather than 8 percent of all trading days as
potentially critical. The threshold for votes among clustering methods could be reduced
from two to one. A softer definition of periods to be identified by temporal clustering may
uncover, as hypothesized at the beginning of this article, inflection points as well as local
minima and maxima within the history of commodities trading.

Obvious extensions beyond crude oil and refined fuels involve other asset classes
among commodities, such as precious metals or the surprisingly placid market for tropical
and subtropical softs. Although this article did gather data for as many as four additional
asset classes among commodities—precious metals, base metals, temperate crops, and
semitropical and tropical “softs”—the thoroughness needed to evaluate even one of those
commodity classes would have required a considerable effort.

The value of examining temperate crops alongside oil, gasoline, and gasoil could be
considerable. At a bare minimum, temporal clustering would enhance the understanding
of connectedness between markets for fossil fuel commodities and food crops [78–80]. Corn
as a feed stock for ethanol and soybeans as a feed stock for biodiesel directly affect oil
markets [84]. Sugarcane, a crop not included in this article’s data sources, is an obvious
candidate for inclusion in such a comparison [85].

Financialization of commodities raises the premium on hedging. First-order oppor-
tunities for diversification and hedging lie within commodity markets. Precious metals
experienced relatively less volatility and retained more of their value throughout all crises.
During energy-specific events, if not in broader crises, agricultural commodities as a super-
class proved resilient. This was particularly true of tropical and semitropical softs. Returns
on those commodities mitigated many of the losses incurred by crude oil and refined fuels
during energy-specific events. They even fared reasonably well during the financial crisis.

The relationship between energy-specific and agricultural commodities should pro-
vide especially useful guidance in emerging markets. The decoupling of energy commodi-
ties from softs may reveal hedging and diversification opportunities among investment
opportunities in emerging markets. Petrostates tend not to depend on agricultural exports,
and coffee and cocoa producers are not coextensive with OPEC. Extensions of this work
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can critical moments identified through unsupervised machine learning with event studies.
In addition to OPEC announcements [144,145], the public disclosure of decisions affecting
major agricultural markets and the resolution of global trade disputes over agriculture can
serve as bases for comparative analysis.

All capital markets invite temporal clustering. Deeper research should examine
equities and sovereign debt as well as commodities. Although many sources addressing
diversification opportunities affecting oil and refined fuels have specifically addressed
other commodities (including but not limited to precious metals) [55,57], equity holdings
can also contribute to diversification [50,114–116].

In addition to markets for equity and sovereign debt, the entire fixed-income mar-
ketplace presents an enticing target for temporal clustering. The market for debt includes
Islamic sukuk [246]. Clustering by market movements should operate at two levels: Ini-
tially in financial space, as different instruments respond to interest-rate, default, and
prepayment risk, and again in time as crises overtake and release different segments of the
bond market.

6.2. Additional Directions for Research: Temporal Clustering and Machine Learninng

This article has demonstrated the feasibility of using unsupervised machine learning
to isolate and interpret critical periods in financial and economic history. In terms of math-
ematical complexity, the methods demonstrated in this article lie somewhere between the
most familiar benchmarks in the literature on the identification of regime shifts throughout
economics. The clustering of all commodity markets, followed by a narrower focus on
four energy-related markets—Brent, WTI, gasoil, and gasoline—encompasses subtleties
that elude methodologies based on arbitrary 10 or 20 percent changes from short-term
minima and maxima in stock market prices. By the same token, temporal clustering does
not purport to capture all of the nuances of the dynamic-factor, Markov-switching model
that the NBER uses to identify recessions in the United States.

The amount of subjective judgment used in this application of unsupervised machine
learning likewise occupies middle ground. Since conventional definitions of bull and bear
markets are based on fixed changes in stock prices, those exercises rely exclusively on
the definition of peaks and valleys in recent financial history. Conversely, the selection of
commodity markets and the admittedly crude taxonomy distinguishing oil and refined
fuels from precious and base metals, temperate crops, and tropical and semitropical softs
does not approach the depth of the research supporting the NBER’s focus on non-farm
employment, industrial production, real personal income, and real manufacturing and
trade sales as broad macroeconomic indicators.

Much of the mathematical elaboration in temporal clustering arises from unsupervised
machine learning itself. The categorical ontology of commodity markets is an artifact of the
clustering of daily logarithmic returns for each commodity [1]. The clustering of trading
days according to volatility forecasts generates far more diverse results. The vast difference
in scale between two dozen commodities, give or take, and thousands of trading days
makes temporal clustering that much more challenging.

Fixing the optimal number of clusters continues to pose a formidable barrier. One
possible solution lies in using more deterministic methods, such as spectral or mean-shift
clustering, to guide more malleable methods. Leading use cases include the calibration of
element preferences in affinity propagation or the stipulation of k in k-means clustering.

By its nature, clustering as a branch of unsupervised machine learning divides large
quantities of data into more tractable classes. The concurrent application of multiple
clustering methods with wholly disparate algorithms highlights the applicability of an
ensemble technique from supervised machine learning: the voting classifier. This article
used voting methods to aggregate clustering results.

This article also exploited an intuition arising from clustering as a method for outlier
detection. Especially for methods predisposed to generate a large number of clusters (affin-
ity propagation) or to select noncontiguous clusters (k-means), one method for imposing
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order on temporal clustering consists of selecting clusters until some threshold fraction of
all trading days has been reached.

This method does inflict costs of its own. Any reduction in the number of clusters
pushes clustering closer to binary classification and away from the nuances attained by
multiclass clustering. Even the conservative spectral clustering method distinguished
between the pandemic and the energy-specific event associated with Hurricane Katrina.

The extreme turbulence associated with COVID-19 provides a unique lesson. The
four months after the pandemic’s outbreak in March 2020 revealed radical shifts that
had no precedent in this 20-year survey. Indeed, there may be no other period like it in
modern economic history. The sudden shock to demand, to say nothing of uncertainty over
the progression of the greatest threat to human health apart from war, destroyed normal
channels for conveying economic information [247].

Utmost care in the volatility-based clustering of critical periods is advised, especially
if clustering is treated as an exercise in binary classification. The nine discernible events
highlighted in this article are quite diverse, even as they were treated as outliers in the
ordinary fabric of financial spacetime. Cataclysms such as the financial crisis of 2008–09
and the COVID-19 pandemic swamp all commodities, though by no means equally. Other
events exhibit unusual volatility in a single energy market, often (but not always) gasoline.

Even the direction of the impact on prices and returns is not uniform. Two events,
notably, the winter 2016 event and the pandemic, witnessed sharp increases in energy
prices. More precisely, these events represented superclusters of temporally contiguous
but economically distinct periods. Temporal clustering can steer analysts toward intrigu-
ing moments.

On the other hand, clustering cannot dictate the course of economic history. Nor can
clustering define the inferences to be drawn from economic analysis. As the poet T.S. Eliot
wrote [248] (p. 26):

“The knowledge imposes a pattern, and falsifies, /For the pattern is new in every
moment/And every moment is a new and shocking/Valuation of all we have been.”

The comparison of temporal clustering across all commodities with the energy-specific
subarray carries broad and important implications. The inescapably narrow focus on any
fraction of the universe of valuable assets necessarily undermines efforts to model the
entire economy according to that limited sample [128].

The reduction of complexity may ultimately prove more of a virtue than a vice. As eco-
nomics advances by devising ever more elaborate models, from the decision-making level
to that of the broader macroeconomy, simplification often holds the key to success [151].
The deeper the data, so it seems, the more vital it becomes to reduce complex relationships
to their bare essence [151].

Unsupervised machine learning’s greatest contribution may lie in its ability to reveal
those moments where other analytical methods are most likely to fail. Such failures include
the shortcomings of other branches of artificial intelligence. Failures in otherwise accurate
deep learning models for forecasting economic time series may reveal macroeconomic
regime shifts in an unintended and unsupervised fashion [249].

Temporal clustering may reveal the mirror image of this phenomenon. The application
of unsupervised machine learning to economic time series can identify such shifts, or at
least smaller breaks or departures, from otherwise prevalent financial or macroeconomic
regimes. Such recognition, one can only hope, should happen ex ante, before policymakers
adopt predictive models as elaborate and consequential as they are flawed.

Disruptions in financial or economic spacetime represent deviations from the “normal
science” of economic exchange. Even if temporal crises do not shift economic paradigms,
they raise departures from prior factual suppositions that warrant analytical calibra-
tion [250]. Posterior probabilities in Bayesian statistics and the concept of backpropagation
in deep learning through neural networks embody this wisdom.

At the very least, critical periods identified through temporal clustering should not be
expected to behave according to the usual rules of financial or economic engagement. Ceteris
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paribus, temporal outliers identify wrinkles in economic time when conventional wisdom
and entrenched forecasting methods are most likely to fail. As necessity is the mother of
invention, crisis is the font of philosophical foment and the father of discovery [250].

7. Conclusions

Crude oil and refined fuels are crucial elements of global trade. Through their finan-
cialization, these energy commodities sway capital markets and economic development
around the world. Geopolitical struggles over oil and its distillates divide importing from
exporting countries. Public policies responding to these economic and diplomatic condi-
tions seek to nudge oil-importing countries from fossil fuels and toward a fuel mix with
renewable sources and a lower carbon footprint.

Mainstream economics has exhaustively evaluated the volatility dynamics and con-
nectedness of energy-related commodities. These effects vary considerably across time.
Disruptions in supply and especially in demand punctuate distinct regimes in the relation-
ship of oil and fuel markets to financial instruments and markets for other commodities.
The rockets-and-feathers behavior of Edgeworth price cycles in gasoline markets may
even reverse and follow the opposing boulders-and-balloons pattern, depending on the
relationship of fuel markets to oil prices, capital markets, and broader business cycles.

At the same time, mainstream economics has traditionally relied on peak-to-trough
methods to define these cycles and their temporal boundaries. Given the centrality of the
time domain to fuller understanding of volatility and connectedness in energy markets,
this article has used a new set of computational tools to define critical periods in the trading
of energy commodities. Unsupervised machine learning and related fields of artificial
intelligence promise deeper mastery of time and its economic meaning.
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Abstract: The challenges of the world economy and their societies, after the outbreak of the COVID-
19 pandemic have led policy-makers to seek for effective solutions. This paper examines the oil price
volatility response to the COVID-19 pandemic and stock market volatility using daily data. A general
econometric panel model is applied to investigate the relationship between COVID-19 infection and
death announcements with oil price volatility. The paper uses data from six geographical zones,
Europe, Africa, Asia, North America, South America, and Oceania for the period 21 January 2020 until
13 May 2021 and the empirical findings show that COVID-19 deaths affected oil volatility significantly.
This conclusion is confirmed by a second stage analysis applied separately for each geographical
area. The only geographical area where the existence of correlation is not confirmed between the rate
of increase in deaths and the volatility of the price of crude oil is Asia. The conclusions of this study
clearly suggest that COVID-19 is a new risk component on top of economic and market uncertainty
that affects oil prices and volatility. Overall, our results are useful for policy-makers, especially in the
case of a new wave of infection and deaths in the future.

Keywords: COVID-19; pandemic; energy market volatility; announcements; uncertainty; deaths; infections

1. Introduction

It is expected for someone to think that there is no connection between a pandemic
and the energy industry. But when it becomes clear that the pandemic is responsible for
uncertainty, the relationship between these two magnitudes acquires a logical basis. Two
years after the COVID pandemic appeared in the city of Wuhan in China in 2019 and
spread rapidly in Europe and in the USA, it was obvious that consequences were going
to be severe for the world economy. The main feature of this pandemic was its rapid
and unprecedented negative impact on economic activity and in particular the spread of
great uncertainty worldwide. It was then expected for this uncertainty to combine with
financial turmoil pushing companies and individuals in taking precautionary measures.
Their first measure was to decrease their spending to be able to face impending difficulties
if necessary.

The environment created by the financial hardship but mostly by the daily announce-
ments of deaths and infections naturally had a negative effect on the consumers’ psychology.
In such an insecure environment, it was rather normal to observe a reduction in demand
for oil and therefore a reduction in its price. Speaking with numbers, during the first two
years of the pandemic, global electricity demand was decreased by an average of 15% [1]
resulted in a downward movement of the prices for crude oil and natural gas.

It should be noted that the COVID-19 pandemic period did not have the same charac-
teristics as other periods of uncertainty which were due to a slowing or overheating of the
economy, and thus measures to deal with COVID-19 should be different too. In any case,
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the focus of these measures was on the restriction of free movement and transportation. In
fact, travel bans not only applied between different countries but were mainly imposed
within countries themselves. So, it was natural for these restrictions on the movement of
people and the transport of goods to cause a significant reduction in the demand for fuel,
damaging further the energy sector.

At this point it is useful to mention that global organizations and states acted in-
stantly, adopting measures to limit the effects of the pandemic in the global economy.
The experience of the past and the tools that technological transformation provides to the
policy-makers make decision framework more effective and also more complex. The main
objective is to avoid a new universal quarantine of the population in their homes or even
partial lockdowns of economic activities.

The main purpose of this paper is to examine the dramatical impact of the COVID-19
on the energy sector during the pandemic period, providing useful results for policy-
makers, especially in case of a new wave of infections and deaths in the future.

The rest of this paper is organized as follows. Section 2 discusses the existing literature,
emphasizing on the effects of COVID-19 on the energy sector while Section 3 presents the
data and hypotheses. Section 4 presents the methodology applied to show the relationship
between COVID-19 infections and death announcements with oil price volatility. Section 5
explains the empirical results and Section 6 presents the conclusions and a short discussion
for future works.

2. Literature Review

In the recent literature we found studies that investigated the effects of COVID-19 on
specific sectors or economic zones or even the global economy. Most of these studies focus
on financial markets and the energy sector, while in several cases, macroeconomic factors
are also examined. Most of these studies provide useful conclusions, and the effects of the
pandemic are expected to remain at the top of academic interest for the next period. The
purpose of these studies is to acquire the necessary knowledge to deal with similar cases in
the future, in order to limit the negative effects and to reset the real economy and social life
on track as soon as possible.

Ref. [2] examines the linkage of the global oil market with the USA energy stock
market using their implied volatility indexes. The main conclusion of this study is the
existence of a long-run relationship between oil and stock market implied volatility indexes.
In a similar way, ref. [3] studied the dynamic correlation between spot oil price fluctuations
and the stock uncertainty index for the USA, Japan, China, and Hong Kong in order to
find out whether crude oil can be used as a hedging instrument. According to the applied
wavelet coherence analysis, crude oil cannot support hedging on a long run period but it
can be a hedging instrument in a state of panic, like the pandemic period.

Ref. [4] applied a heterogeneous autoregressive realized volatility model to examine
the predictive power for oil-market volatility using an uncertainty index based on the
daily newspaper news for the pandemic period. They found that by incorporating such
information in their model, forecast accuracy improves significantly.

Ref. [5] applied a nonlinearity autoregressive distribute lag model to examine the
crude oil price fluctuation while they also use an event study model to compare how
different types of events affect crude oil price fluctuations. In their effort to combine crude
oil price fluctuation with what causes it, a state-space model was applied and evidence of
strong correlation between event shocks and event types was found.

Ref. [6] attempted to estimate the out-of-sample predictive power of crude oil price
volatility in relation to financial ratios and macroeconomic variables which are commonly
used in the literature. Her findings suggested that considerable economic profit is possible
based on this model while useful implications are also provided for portfolio optimization
and asset allocation. On the other hand, ref. [7] examined for the USA the relation between
COVID-19 and oil price volatility, the stock market and the geopolitical risk among others.
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By applying wavelet approaches they found that COVID-19 effect on geopolitical risk is
higher than economic uncertainty in the USA.

Ref. [8] provided a way for increasing energy efficiency and energy saving. They
examined the challenges of COVID-19 for the energy sector. In particular, they investigated
new practices enforced by the pandemic and the way they affected energy demand and con-
sumption. They found that demand has declined but intensity showed apparent changes as
the extra energy used to fight COVID-19 was not negligible for the recovery of the demand
for energy, while differences in recovery can also be found between different regions.

Ref. [9] examined the implications of COVID-19 for the sustainable energy transitions.
The adopted measures by the states, firms, and individuals have motivated many changes
that may influence the sustainable transition of energy. They identified the main impact of
lockdown on energy and investigated how economic stimulus packages can shape energy
transitions and found that the politics of sustainable energy transitions are at a critical stage.

Ref. [10] examined the risk transmission from the COVID-19 to metals and energy
markets and found significant negative volatility transmission from the COVID-19 to
gold, palladium, and brent oil markets. According to these results, COVID-19 risk is
not transmitted to the industrial metal market but COVID-19 leads to an increase in oil
market volatility.

Ref. [11] estimated the price volatility of crude oil and natural gas for the listed firms
in the MCX exchange of India. Their results are interesting for policy-makers to assess the
appropriate strategy in facing the effects of the pandemic as they find leverage effect of
COVID-19 on the price volatility of crude oil but not on the price volatility of natural gas.

Ref. [12] examined the hourly oil price volatility and found a significant increase of
volatility in the pandemic period. To achieve that, they built a dataset with hourly oil
prices combined with global cases of COVID-19 and deaths and applied an OLS regression
model with volatility being one of the proxies of oil price volatility. In addition, ref. [13]
attempted to estimate predictors of oil prices and for that he examined the interconnection
of oil prices with COVID-19 infections and oil price news. He found that effect on oil prices
is more significant when infections exceed the threshold of 84,479, whereas the effect of oil
price news conditioned on COVID-19 cases is limited.

Ref. [14] estimated the historical volatility of energy markets during the COVID-19
pandemic period by using infection ratio, economic policy uncertainty index and infectious
diseases market volatility. His findings can explain the investors’ position in implementing
options to protect from risk in the energy market and their willingness to pay excess
premium for that.

Ref. [15] investigated the relation between the COVID-19, the crude oil market, and
the stock market by observing return and volatility spillover with both a time-domain
approach and a frequency dynamics approach. Their analysis showed that spillover return
mainly exist in the short term while volatility spillover mainly exists in the long term.
They also applied a moving window analysis to conclude that COVID-19 created more
risk for investors which resulted in high losses in the short term. It is also interesting that
COVID-19 impacts on the volatility of the oil, and stock market was even higher than
volatility caused in 2008 by the global financial crisis.

Ref. [16] examined the role of gold as a hedging instrument against crude oil price
risks. They applied an asymmetric VARMA-GARCH model to assess the impact of COVID-
19 and they found that gold can work as a hedge instrument against oil risks as their results
during pandemic show negative coefficient of returns spillovers from gold to oil price
returns, meaning that an increase in gold in this period will lead to a less decline in oil
price returns. Moreover, volatility spillovers between the gold and oil price returns suggest
that significant volatility effects are present.

Ref. [17] examined the predictive power of oil supply, demand, and risk shocks in
relation to the realized volatility of the daily oil returns. They applied a heterogeneous
autoregressively realized volatility approach and showed that especially financial market-
driven risk shocks can improve the forecasting performance for in and out-of-sample. Their
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conclusions offer to investors a valuable way to use traded assets at high frequency in
order to monitor oil market volatility.

Ref. [18] emphasized on vaccines by examining the storage conditions based on their
thermal load to cool and found that the cold storage of Oxford–AstraZeneca, Janssen
COVID-19, and CoronaVac vaccines in Brazil generates 35-times less environmental impact
than Pfizer. They also developed an energy index showing that Oxford–AstraZeneca,
Janssen COVID-19, and CoronaVac vaccines have 9.34-times higher energy efficiency
than Pfizer.

Ref. [19] considered that COVID-19 led to an economic crisis which has changed the
social behavior and reduced the industrial activity and the demand for power worldwide.
To examine the impact of COVID-19 on power demand, they quantified the country load
reduction of COVID-19, based on the active cases and the lockdown period as proxies. They
found that in Germany and Great Britain the power demand was reduced while in France
the demand was increased for the period outside the lockdown. During the lockdown,
France had a much higher reduction than in Germany and Great Britain. However, the
effect of COVID-19 on carbon emissions in the power sector was small.

Other studies focused on the impact of COVID-19 pandemic on stock market returns
and stock market volatility.

Ref. [20] examined the response of stock market returns from 64 countries to confirmed
deaths from COVID-19. His research covers the period January to April 2020 and shows
a negative response of stock markets returns to confirmed deaths. Ashraf’s research also
suggested that negative response was stronger and faster in the first days of confirmed
deaths indicating that market response depends on the period of the outbreak.

Ref. [21] investigated the effect of official pandemic announcements on financial
markets volatility as expressed by S&P 500 and found that COVID-19 is a significant
source of price volatility in the USA financial markets which thereafter affects the global
financial cycle.

The existing literature highlights reasonable questions about the impact of COVID-19
on oil price volatility and in this paper we try providing some answers to this issue.

3. Data and Hypotheses

One question that has caught the interest of the academic community in recent years is
the relationship between the pandemic and the oil price volatility. Until 2019 the literature
showed that oil prices fluctuate due to the forces of supply and demand. Indeed, several
research showed that during normal periods, the demand for oil is shaped by global
economic activity, while on the supply side, factors related to technological innovations
that improve the oil production process are incorporated.

However, in the last two years, we have observed increasing volatility in the price
of oil without any economic event justifying it during the same period. As a result, the
academic community has turned its attention to investigating the causes that led to this
phenomenon. As it turned out, the intense uncertainty created by the pandemic, first for
health reasons and then for the possible effects on the world economy, significantly affected
the demand for oil. This demand shock is different from the traditional aggregate demand
shock because the decline in consumer confidence is inextricably linked to the fear caused
by the virus.

Consequently, one of the main questions raised by the literature is how COVID-
19 death announcements and the speed of COVID-19 deaths and infections affect oil
price volatility.

In this context, our paper provides answers on three theoretical questions contributing
with its findings in the existing literature as follows:

Hypotheses 1. How the announcements of new cases affect the volatility of the oil price?

Hypotheses 2. How the rate of change of cases affect the volatility of the oil price?

Hypotheses 3. Do the above influences differ between different geographical areas worldwide?
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The three hypotheses are tested with a general econometric panel model similar to
the one proposed by ref. [21] who examined the response of financial market volatility on
COVID-19 new cases of infection and the fatality ratio. Yet, this article (ref. [21]) does not
examine the volatility of oil prices in relation to the pandemic which is the main scope of
our study.

In the empirical analysis we collect daily data for COVID-19 infection announcements
and deaths from the World Health Organization. Our daily data also include three crude
oil volatility indices, the CBOE 30-day crude oil implied volatility index, the 3-month crude
oil implied volatility index, and the Brent 3-month implied volatility index. Further, daily
data involve also four market uncertainty indices, namely VIX Volatility Index, VSTOXX
Volatility Index, NIKKEI Volatility Index, and CBOE China ETF Volatility Index. Last
but not least, daily data concern the Economic Uncertainty index, the Baker, Bloom and
Davis index of economic policy uncertainty for Europe which is based on the frequency of
newspaper references to policy uncertainty.

In the first stage of analysis, our sample is divided into six main geographical areas, so
that the empirical analysis leads to useful conclusions for each area separately and in the
second stage of analysis the population of the six geographical areas is an aggregate sample.

4. Methodology

The current study investigates the relationship between COVID-19 infection and
death announcements with oil price volatility. Our analysis considers existing economic
uncertainty and stock market uncertainty in this relationship to disentangle the effects of
these uncertainties from that of COVID-19 deaths and infection announcements.

VOL(oil) = α + β1 COV(f ) + β2 COV(s) + β3 EU + β4 MU + β5 K + ε (1)

where:

VOL(oil) refers to three different measures of oil price volatility,
1. COV(f) and COV(s) refer to COVID-19-related deaths and COVID-19-related speed of

death and infection growth.
2. EU stands for economic uncertainty index.
3. MU is the market uncertainty index, as reflected by volatility indices in the three

largest economic zones, namely in the US (VIX) Europe and Asia (China and Japan) and
4. K is a dummy variable representing the day of the week effect, with value one for

Monday and zero otherwise.

The reason that our models apply more timeseries regarding the MU variable is due
to the fact that the geographical areas are examined individually and each of them is
combined with the corresponding stock index.

More details for the variables in our models can be found in the Appendix A.
Our models investigate how COVID-19 death or infection increase (speed) and actual

deaths (fatal) affect oil volatility by using the following seven models

VOL(oil) = α + β1 COV(f ) + ε (2)

VOL(oil) = α + β2 COV(s) + ε (3)

VOL(oil) = α + β1 COV(f ) + β2 COV(s) + ε (4)

VOL(oil) = α + β1 COV(f ) + β2 COV(s) + β3 MU + ε (5)

VOL(oil) = α + β1 COV(f ) + β2 COV(s) + β3 EU + ε (6)

VOL(oil) = α + β1 COV(f ) + β2 COV(s) + β3 MU + β4 EU + ε (7)

VOL(oil) = α + β1 COV(f ) + β2 COV(s) + β3 MU + β4 EU + β5 K + ε (8)
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In our analysis, we run fixed-effect panel models, and we interpret the fitness of
estimated model and significance of coefficients as expressed by adjusted R2, t-statistics,
and significance of t-statistics. Variance inflation factors (VIFs) of our models are between
1.6 and 1.85, significantly lower than 6. Then we investigate whether our models are robust
in particular economic zones and under different model assumptions.

5. Empirical Results

In Table 1 we present the descriptive statistics from where we can observe two main
results. First, there is an intensive oil price volatility, economic uncertainty, and market
uncertainty and second, there is an accelerated growth rate of infections and deaths for
the investigated period. The sharp increase in deaths and infection rates as a result of the
pandemic COVID-19 and the consequent fear of an escalating crisis raised legitimate ques-
tions about the degree of impact of the pandemic in the price of crude oil in international
markets as well as the volatility of its price.

Table 1. Descriptive statistics.

N Mean Var StDev Min Max

VOL(oil) 1 2052 58.86 1627.2 40.33 30.7 325.15
VOL(oil) 2 2052 45.80 351.9 18.76 26.692 128.891
VOL(oil) 3 2052 43.06 213.8 14.62 10.5338 103.318

MU 1 2052 27.68 121.4 11.02 12.91 82.69
MU 2 2052 27.29 132.0 11.49 12.2389 85.6206
MU 3 2052 25.75 75.82 8.70 14.26 60.67
MU 4 2052 28.46 49.27 7.01 19.76 69.28

EU 2052 259.4 20,151 141.9 22.25 807.66
Week 2052 0.1988 0.1593 0.3992 0 1

COV(f) 1912 −3.591 0.2230 0.4722 −5.77 −2.30
COV(s) 1 1923 −4.306 4.107 2.026 −8.99 3.93
COV(s) 2 1701 −4.476 2.336 1.528 −7.04 1.60
COV(s) 3 1678 −4.350 3.166 1.779 −7.03 3.82
COV(s) 4 1650 −4.262 3.794 1.948 −7.02 5.48

Note: VOL(oil) 1, 2 and 3 are respectively the CBOE 30 day crude oil implied volatility index, Crude oil 3 month
implied volatility index, and Brent 3 month implied volatility index. Estimates of 3-month implied volatility.
COV(s) 1,2,3 and 4 are respectively the logarithm of (new daily COVID-19 infection case announcements divided
by seven days lagged total COVID deaths), the logarithm of (new daily COVID-19-related deaths divided by
7 days lagged total COVID deaths), the logarithm of (new daily COVID-19-related deaths divided by 14 days
lagged total COVID deaths), and the logarithm of (new daily COVID-19-related deaths divided by 21 days lagged
total COVID deaths). MU1,2,3 and 4 are respectively the VIX index, VSTOXX Index-EURO STOXX 50 Volatility,
the NIKKEI Volatility Index, and the Cboe China ETF Volatility index.

Table 2 shows the results of the individual models presented above for the examined
geographical areas of our study.

Our results in Table 2 are based on world panel data, and they indicate that COVID-19
deaths (COV(f)) and speed of death increase (COV(s)) can explain as stand-alone variables
11% and 39% of the oil-volatility (Columns 2 and 3 on Table 1 respectively).
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Table 2. COVID-19 death announcements and oil price volatility, panel world data.

Model 1 2 3 4 5 6 7 8

COV(f) 341.2 *** 851.6 *** 943.2 *** 647.4 *** 418.0 *** 145.7 *** 139.8 ***
(7.52) (16.14) (18.84) (14.81) (8.20) (8.21) (11.63)

COV(s) 4.192 *** 17.58 *** 16.79 *** 6.400 *** 10.72 *** 1.426 *** 1.240 ***
(7.66) (33.56) (35.10) (11.32) (20.88) (6.66) (8.55)

MU 1.771 *** 2.188 *** 0.954 *** 0.754 ***
(21.46) (26.24) (29.55) (34.51)

EU 0.0905 *** 0.131 *** 0.0429 *** 0.0324 ***
(15.57) (21.15) (18.86) (21.03)

C −6.108 34.33 *** 139.4 *** 106.0 *** 7.200 59.41 *** 9.998 *** 14.89 ***
(−1.43) (19.77) (56.26) (36.97) (1.61) (17.63) (5.98) (13.16)

R2 adj 0.690 0.110 0.397 0.501 0.645 0.605 0.773 0.825
N 1701 2052 1701 1701 1701 1701 1701 1701

Note: The table includes panel data of six geographical areas, namely North America, South America, Europe, Africa, Asia and Oceania.
The number in parentheses represent t-statistics. *** asterisks indicate 1% level of significance. COV(f) is the logarithm of total deaths,
COV(s) is the logarithm of (new daily COVID deaths divided by 7 day lagged total COVID deaths), MU is the US vix index, EU is the
economic uncertainty index. R2 adj is the R-square adjusted. The dependent variable in Model 1–6 is CBOE 30 day crude oil implied
volatility index, the dependent variable in Model 7 is Crude oil 3 month implied volatility index, and the dependent variable in Model 8 is
Brent 3 month implied volatility index.

When market uncertainty (Column 5, Table 2) or economic uncertainty (Column 6,
Table 2) is taken into account, the significance of the overall model (adjusted R-square)
increases to 64% and 60% respectively. If both Market Uncertainty (MU, expressed by
the American VIX index) and Economic Uncertainty (EU) alongside with COV(f) and
COV(s) are considered in the model (Column1, Table 2) the adjusted R-square of the model
increases to 69% if the dependent variable is the CBOE 30 day crude oil implied volatility
index. In the models presented in that Table, COV(f) is the logarithm of total deaths, and
COV(s) is the logarithm of new daily COVID-19 deaths divided by seven days lagged
total COVID-19 deaths. The model illustrated in Column 7 uses as dependent variable the
Crude oil three months implied volatility index, and the model presented in Column 8
uses as the dependent variable in Brent 3 month implied volatility index. The latter models
report an even higher (77% and 82%) adjusted R-square. All the dependent variables in
all these models are positive and significant at a 1% level, providing robust evidence of
significance for world data.

The above observations lead to comparable conclusions with other studies of the same
period, which examine the effect of the pandemic on stock values or energy prices or on
other products (Refs. [2,7,14]).

From the above we conclude that the pandemic affected the volatility of the price of
crude oil globally. This influence is confirmed both by the new cases of infections and by
the rate of infections.

Robustness Tests

To test the robustness of our models first we focus on the three major economic areas,
Asia, Europe, and North America to find out if our conclusions are in line with global
conclusions presented in Table 2. The findings of these analysis are presented in Tables 3–7.
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Table 3. COVID-19 death announcements and oil price volatility, European data.

1 2 3 4 5 6 7 8

COV(f) 349.2 *** 775.4 *** 877.2 *** 458.5 *** 621.2 *** 135.4 *** 130.1 ***
(4.99) (11.96) (16.33) (6.35) (10.63) (4.78) (6.76)

COV(s) 5.880 *** 12.31 *** 13.18 *** 10.67 *** 6.398 *** 1.610 *** 1.196 ***
(5.56) (11.33) (16.43) (13.34) (5.73) (3.77) (4.12)

MU 1.249 *** 1.586 *** 0.800 *** 0.664 ***
(6.45) (8.04) (10.22) (12.48)

EU 0.0887 *** 0.114 *** 0.0427 *** 0.0299 ***
(6.29) (7.91) (7.49) (7.73)

C 11.87 24.64 *** 118.1 *** 81.05 *** 58.07 *** 15.95 * 13.54 *** 16.28 ***
(1.37) (7.25) (21.65) (17.56) (11.33) (1.75) (3.88) (6.86)

R2 adj 0.713 0.294 0.287 0.613 0.676 0.678 0.780 0.831
N 318 342 318 318 318 318 318 318

Note: The table includes daily aggregated data of European countries. The number in parentheses represent t-statistics. * and *** indicate
10%, and 1% level of significance, respectively. COV(f) is the logarithm of total deaths, COV(s) is the logarithm of (new daily COVID
deaths divided by 7 days lagged total COVID deaths), MU is the US vix index, EU is the economic uncertainty index. R2 adj is the R-square
adjusted. The dependent variable in Model 1-6 is CBOE 30 days crude oil implied volatility index, the dependent variable in Model 7 is
Crude oil 3 months implied volatility index and the dependent variable in Model 8 is Brent 3 months implied volatility index.

Table 3 presents the model’s predictive ability in European data, while Table 4 presents
the North American data under the specifications of the models presented in Table 2. They
illustrate solid predictive power in terms of coefficients and adjusted R-square. In particular
adjusted R-square ranges between 70% (Column 1, Tables 3 and 4) and 84% (Column 8, on
both Tables 3 and 4).

Table 4. COVID-19 death announcements and oil price volatility, North American data.

1 2 3 4 5 6 7 8

COV(f) 272.5 ** 843.5 *** 553.1 *** 237.5 ** 578.0 *** 166.1 *** 181.1 ***
(2.48) (7.05) (5.55) (2.10) (5.98) (3.83) (6.22)

COV(s) 8.762 *** 20.61 *** 19.57 *** 15.55 *** 12.31 *** 2.520 *** 1.885 ***
(4.73) (22.61) (21.98) (13.54) (6.86) (3.44) (3.83)

MU 1.148 *** 1.202 *** 0.809 *** 0.685 ***
(4.59) (4.61) (8.18) (10.31)

EU 0.0772 *** 0.0801 *** 0.0361 *** 0.0250 ***
(5.21) (5.24) (6.17) (6.36)

C 37.94 ** 31.46 *** 156.1 *** 132.0 *** 102.3 *** 63.41 *** 19.96 *** 20.11 ***
(2.36) (7.17) (35.00) (21.68) (12.59) (3.97) (3.14) (4.70)

R2 adj 0.704 0.125 0.624 0.657 0.684 0.678 0.782 0.837
N 309 342 309 309 309 309 309 309

Note: The table includes daily aggregated data of North American countries. The number in parentheses represent t-statistics. ** and ***
indicate 5% and 1% level of significance, respectively. COV(f) is the logarithm of total deaths, COV(s) is the logarithm of (new daily COVID
deaths divided by 7 days lagged total COVID deaths), MU is the US vix index, EU is the economic uncertainty index. R2 adj is the R-square
adjusted. The dependent variable in Model 1–6 is CBOE 30 days crude oil implied volatility index. The dependent variable in Model 7 is
Crude oil 3 months implied volatility index. The dependent variable in Model 8 is Brent 3 months implied volatility index.

On Table 5 we investigate whether by using the VSTOXX Index-EURO STOXX
50 Volatility index as a measure of Market Uncertainty for European data we can have
significantly different results. In this case, the results we find are comparable.
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Table 5. COVID-19 death announcements, European volatility, and oil price volatility, European data.

1 2 3 4 5 6 7 8

COV(f) 314.4 *** 775.4 *** 877.2 *** 458.5 *** 603.0 *** 109.4 *** 106.0 ***
(4.35) (11.96) (16.33) (6.35) (9.73) (3.75) (5.42)

COV(s) 6.155 *** 12.31 *** 13.18 *** 10.67 *** 6.946 *** 1.670 *** 1.165 ***
(5.81) (11.33) (16.43) (13.34) (6.18) (3.91) (4.07)

MU 1.148 *** 1.444 *** 0.765 *** 0.655 ***
(6.09) (7.39) (10.07) (12.88)

EU 0.0937 *** 0.114 *** 0.0454 *** 0.0318 ***
(6.68) (7.91) (8.02) (8.39)

C 16.71 ** 24.64 *** 118.1 *** 81.05 *** 58.07 *** 23.92 *** 15.58 *** 17.23 ***
(2.00) (7.25) (21.65) (17.56) (11.33) (2.71) (4.63) (7.64)

R2 adj 0.709 0.294 0.287 0.613 0.676 0.669 0.778 0.835
N 318 342 318 318 318 318 318 318

Note: The table includes daily aggregated data of European countries. The number in parentheses represent t-statistics. ** and *** indicate
5%, and 1% level of significance, respectively. COV(f) is the logarithm of total deaths, COV(s) is the logarithm of (new daily COVID
deaths divided by 7 days lagged total COVID deaths), MU is the VSTOXX Index-EURO STOXX 50 Volatility index, EU is the economic
uncertainty index. R2 adj is the R-square adjusted. The dependent variable in Model 1–6 is CBOE 30 days crude oil implied volatility index,
the dependent variable in Model 7 is Crude oil 3 months implied volatility index and the dependent variable in Model 8 is Brent 3 months
implied volatility index.

We examine Asian data in Tables 6 and 7, using the Japanese stock market volatility
(Table 6) and Chinese stock market volatility (Table 7) index to express market uncertainty.

Table 6. COVID-19 death announcements, Japanese volatility, and oil price volatility, Asian data.

1 2 3 4 5 6 7 8

COV(f) 1533.7 *** 4018.7 *** 4686.9 *** 3534.3 *** 2359.5 *** 442.6 *** 298.9 ***
(4.32) (23.35) (22.34) (13.62) (6.71) (3.05) (2.97)

COV(s) −0.777 13.10 *** −6.604 *** −4.588 *** −2.193 0.232 0.481
(−0.57) (7.46) (−4.65) (−3.36) (−1.55) (0.42) (1.25)

MU 1.932 *** 2.110 *** 1.076 *** 0.884 ***
(7.64) (7.92) (10.40) (12.32)

EU 0.0721 *** 0.0812 *** 0.0401 *** 0.0324 ***
(6.51) (6.82) (8.86) (10.32)

C −47.27 *** −30.76 *** 117.9 *** −74.52 *** −61.19 *** −57.67 *** −1.149 7.374 ***
(−5.21) (−7.56) (14.50) (−7.42) (−6.36) (−6.09) (−0.31) (2.87)

R2 adj 0.740 0.615 0.140 0.654 0.696 0.708 0.798 0.840
N 337 342 337 337 337 337 337 337

Note: The table includes daily aggregated data of Asian countries. The number in parentheses represent t-statistics. *** indicate level of
significance. COV(f) is the logarithm of total deaths, COV(s) is the logarithm of (new daily COVID deaths divided by 7 days lagged total
COVID deaths), MU is the Nikkei Volatility index, EU is the economic uncertainty index. R2 adj is the R-square adjusted. The dependent
variable in Model 1–6 is CBOE 30 days crude oil implied volatility index, the dependent variable in Model 7 is Crude oil 3 months implied
volatility index, and the dependent variable in Model 8 is Brent 3 months implied volatility index.

Tables 6 and 7 show the robustness of the significance data (COV(f)) but they do not
confirm consistency for the significance of COVID-19 growth data (COV(s), columns 1,
6–8 of Table 6 and columns 7 and 8 of Table 7). This may be due to the slow growth of
these indices in Asian markets, which probably does not reflect the importance of demand
for oil consumption worldwide, as the main markets are the European and the North
American markets.
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Table 7. COVID-19 death announcements, Chinese volatility, and oil price volatility, Asian data.

1 2 3 4 5 6 7 8

COV(f) 2717.6 *** 4018.7 *** 4686.9 *** 3534.3 *** 3720.2 *** 937.1 *** 710.8 ***
(9.14) (23.35) (22.34) (13.62) (13.65) (7.91) (8.56)

COV(s) −2.981 ** 13.10 *** −6.604 *** −4.588 *** −4.716 *** −0.671 −0.272
(-2.20) (7.46) (−4.65) (−3.36) (-3.34) (−1.24) (−0.72)

MU 1.198 *** 1.316 *** 0.909 *** 0.738 ***
(5.09) (5.28) (9.69) (11.24)

EU 0.0768 *** 0.0812 *** 0.042 *** 0.034 ***
(6.66) (6.82) (9.12) (10.52)

C −68.85 *** −30.76 *** 117.9 *** -74.52 *** −61.19 *** −82.14 *** -14.71 *** −3.714
(−7.33) (−7.56) (14.50) (−7.42) (−6.36) (−8.41) (−3.93) (−1.42)

R2 adj 0.717 0.615 0.140 0.654 0.696 0.680 0.791 0.831
N 337 342 337 337 337 337 337 337

Note: The table includes daily aggregated data of Asian countries. The number in parentheses represent t-statistics. ** and *** indicate 5%,
and 1% level of significance, respectively. COV(f) is the logarithm of total deaths, COV(s) is the logarithm of (new daily COVID deaths
divided by 7 days lagged total COVID deaths), MU is the Cboe China ETF Volatility index, EU is the economic uncertainty index. R2 adj is
the R-square adjusted. The dependent variable in Model 1–6 is CBOE 30 days crude oil implied volatility index, the dependent variable in
Model 7 is Crude oil 3 months implied volatility index, and the dependent variable in Model 8 is Brent 3 months implied volatility index.

A second evidence for robustness is also provided in Table 8 which presents the
results of our models using world aggregated data and shows that coefficients are posi-
tive and significant irrespectively of which model is applied while adjusted R-square is
also sufficient.

Table 8. COVID-19 death announcements and oil price volatility, world aggregated data.

1 2 3 4 5 6 7 8

COV(f) 657.8 *** 1758.7 *** 1391.5 *** 682.3 *** 981.5 *** 277.2 *** 256.2 ***
(5.93) (17.26) (13.96) (5.33) (11.20) (6.25) (8.64)

COV(s) 5.748 *** 18.15 *** 11.41 *** 10.35 *** 5.497 *** 1.853 *** 1.267 ***
(5.34) (12.77) (9.28) (9.10) (4.97) (4.30) (4.40)

MU 1.504 *** 1.746 *** 0.831 *** 0.683 ***
(10.57) (12.85) (14.60) (17.96)

EU 0.0602 *** 0.112 *** 0.032 *** 0.022 ***
(4.56) (7.93) (6.03) (6.32)

C 4.009 −1.936 139.1 *** 61.20 *** 51.72 *** 0.725 13.07 *** 15.05 ***
(0.53) (−0.50) (21.35) (8.03) (7.29) (0.09) (4.28) (7.38)

R2 adj 0.730 0.466 0.325 0.573 0.640 0.713 0.799 0.852
N 337 342 337 337 337 337 337 337

Note: The table includes world aggregated data. The number in parentheses represent t-statistics. *** indicate 1% level of significance.
COV(f) is the logarithm of total deaths, COV(s) is the logarithm of (new daily COVID deaths divided by 7 days lagged total COVID deaths),
MU is the US vix index, EU is the economic uncertainty index. R2 adj is the R-square adjusted. The dependent variable in Model 1–6 is
CBOE 30 days crude oil implied volatility index, the dependent variable in Model 7 is Crude oil 3 months implied volatility index, and the
dependent variable in Model 8 is Brent 3 months implied volatility index.

Third, in Tables 9–11 we test the robustness of our models by replacing one of our
variables using world panel data. In Table 9 we investigate the effect of COVID-19 infection
speed instead of examining COVID-19 death speed. These models are significant, but
they report a slightly lower adjusted R-square, indicating that markets are more worried
about death growth rates and actual deaths than COVID-19 infection growth rates. This
may be because they regard that economic effect of deaths is more certain and robust than
reporting cases that can be manipulated or affected by the number of tests taken.
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Table 9. COVID-19 death announcements, infection speed, and oil price volatility, world panel data.

1 2 3 4 5 6 7 8

COV(f) 211.0 *** 851.6 *** 909.5 *** 279.8 *** 548.8 *** 95.00 *** 94.45 ***
(5.28) (16.14) (18.47) (6.06) (13.49) (6.02) (8.65)

COV(s) 1.890 *** 13.18 *** 13.39 *** 7.789 *** 3.182 *** 0.773 *** 0.760 ***
(4.41) (26.97) (29.69) (18.53) (6.75) (4.56) (6.48)

MU 1.811 *** 2.397 *** 0.935 *** 0.747 ***
(25.78) (33.44) (33.70) (38.91)

EU 0.107 *** 0.158 *** 0.0502 *** 0.038 ***
(21.21) (29.43) (25.18) (27.83)

C −17.8 *** 34.33 *** 119.0 *** 92.33 *** 43.83 *** −10.1 *** 7.207 *** 12.79 ***
(−5.33) (19.77) (51.16) (35.70) (16.18) (−2.73) (5.46) (14.00)

R2 adj 0.681 0.110 0.271 0.380 0.571 0.607 0.767 0.815
N 1943 2052 1943 1943 1943 1943 1943 1943

Note: The table includes panel data of six geographical areas, namely North America, South America, Europe, Africa, Asia, and Oceania.
The number in parentheses represent t-statistics. *** indicate 1% level of significance. COV(f) is the logarithm of total deaths, COV(s) is the
logarithm of (new daily COVID infection case announcements divided by 7 days lagged total COVID deaths), MU is the US vix index, EU
is the economic uncertainty index. R2 adj is the R-square adjusted. The dependent variable in Model 1–6 is CBOE 30 days crude oil implied
volatility index, the dependent variable in Model 7 is Crude oil 3 months implied volatility index, and the dependent variable in Model 8 is
Brent 3 months implied volatility index.

Tables 10 and 11 present the results under different assumptions (2-week and 3-week
respectively, instead of 7-day speed) about the COVID-19 death speed. These models are
significant and report similar coefficients but convey slightly lower significance than our
7-day basic Model presented in Table 2.

Table 10. COVID-19 death announcements, 2-week speed, and oil price volatility, world panel data.

1 2 3 4 5 6 7 8

COV(f) 342.5 *** 851.6 *** 919.4 *** 448.8 *** 621.7 *** 151.5 *** 145.2 ***
(7.47) (16.14) (18.77) (8.89) (14.07) (8.48) (12.01)

COV(s) 4.144 *** 15.41 *** 14.45 *** 9.532 *** 6.093 *** 1.313 *** 1.165 ***
(8.54) (35.19) (35.98) (21.54) (12.32) (6.95) (9.11)

MU 1.751 *** 2.147 *** 0.928 *** 0.727 ***
(19.56) (23.72) (26.58) (30.80)

EU 0.0861 *** 0.121 *** 0.0418 *** 0.0315***
(14.54) (19.40) (18.12) (20.19)

C −5.206 34.33 *** 127.2 *** 93.78 *** 54.03 *** 7.021 10.08 *** 15.16 ***
(−1.26) (19.77) (61.80) (36.32) (17.40) (1.64) (6.27) (13.93)

R2 adj 0.683 0.110 0.424 0.524 0.611 0.644 0.763 0.817
N 1678 2052 1678 1678 1678 1678 1678 1678

Note: The table includes panel data of six geographical areas, namely North America, South America, Europe, Africa, Asia, and Oceania.
The number in parentheses represent t-statistics. *** indicate 1% level of significance. COV(f) is the logarithm of total deaths, COV(s)is
the logarithm of (new daily COVID deaths divided by 14 days lagged total COVID deaths), MU is the US vix index, EU is the economic
uncertainty index. R2 adj is the R-square adjusted. The dependent variable in Model 1–6 is CBOE 30 days crude oil implied volatility index,
the dependent variable in Model 7 is Crude oil 3 months implied volatility index and the dependent variable in Model 8 is Brent 3 months
implied volatility index.
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Table 11. COVID-19 death announcements, 3-week speed, and oil price volatility, world panel data.

1 2 3 4 5 6 7 8

COV(f) 328.2 *** 851.6 *** 850.4 *** 462.8 *** 565.6 *** 154.2 *** 144.5 ***
(7.09) (16.14) (17.81) (9.31) (12.66) (8.60) (11.94)

COV(s) 4.642 *** 14.20 *** 12.85 *** 8.994 *** 6.405 *** 1.432 *** 1.257 ***
(10.44) (37.22) (35.95) (22.40) (14.40) (8.31) (10.81)

MU 1.715 *** 2.057 *** 0.890 *** 0.701 ***
(17.50) (20.76) (23.43) (27.37)

EU 0.0782 *** 0.106 *** 0.0398 *** 0.0301 ***
(13.02) (16.88) (17.10) (19.15)

C −0.0438 34.33 *** 119.6 *** 86.73 *** 53.60 *** 11.83 *** 11.87 *** 16.50 ***
(−0.01) (19.77) (66.94) (35.14) (17.83) (2.80) (7.42) (15.29)

R2 adj 0.672 0.110 0.456 0.543 0.611 0.638 0.748 0.808
N 1650 2052 1650 1650 1650 1650 1650 1650

Note: The table includes panel data of six geographical areas, namely North America, South America, Europe, Africa, Asia, and Oceania.
The number in parentheses represent t-statistics. *** indicate 1% level of significance. COV(f) is the logarithm of total deaths, COV(s)is
the logarithm of (new daily COVID deaths divided by 21 days lagged total COVID deaths), EU is the US vix index, MU is the economic
uncertainty index. R2 adj is the R-square adjusted. The dependent variable in Model 1–6 is CBOE 30 days crude oil implied volatility index,
the dependent variable in Model 7 is Crude oil 3 months implied volatility index and the dependent variable in Model 8 is Brent 3 months
implied volatility index.

Table 12 compares the basic Model (Column 1, Table 12) with a model that takes
account the weekly effect (Column 2, Table 12). The findings illustrate that there is no
significant “day of the week” effect in the data examined, and the robustness of these data
remains intact after we account for this factor.

Table 12. COVID-19 death announcement and oil price volatility, world panel data.

1 2

COV(f) 341.2 *** 338.7 ***
(7.52) (7.45)

COV(s) 4.192 *** 4.135 ***
(7.66) (7.48)

MU 1.771 *** 1.771 ***
(21.46) (21.47)

EU 0.0905 *** 0.0912 ***
(15.57) (15.51)

Week −1.112
(−0.76)

C −6.108 −6.260
(−1.43) (−1.46)

R2 adj 0.690 0.690
N 1701 1701

Note: The table includes panel data of six geographical areas, namely North America, South America, Europe,
Africa, Asia, and Oceania in columns 1–2. The number in parentheses represent t-statistics. *** indicate 1% level
of significance. COV(f) is the logarithm of total deaths, COV(s) is the logarithm of (new daily COVID deaths
divided by 7 days lagged total COVID deaths), EU is the US vix index, MU is the economic uncertainty index,
and week is a dummy variable taking the value one on Mondays, zero otherwise. The dependent variable is
CBOE 30 days crude oil implied volatility index. R2 adj is the R-square adjusted.

Our findings offer a valuable contribution to the existing literature as we provide
evidence that COVID-19 death growth rates and deaths affect oil volatility significantly. The
pandemic affects the volatility of the price of crude oil worldwide. This result is confirmed
both by the new cases of infections and by the rate of infections. These conclusions are
verified separately for each geographic area and the world as a whole. The contribution of
this study is not limited to the indication that COVID-19 is a new factor of risk that affects
oil prices on top of economic and market uncertainty but also provides new measures of
risk factor like the speed rate of death.
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6. Conclusions

In this study we investigate the relationship between COVID-19 infection and death
announcements with oil price volatility. We use the speed rate of deaths as a proposed
measure for the COVID-19 risk and we apply panel data from six world geographical areas
taking into consideration the existing economic uncertainty and stock market uncertainty
in order to separate these effects from the effects resulting from the announcements of
COVID-19 deaths and infection. The applied tests show that oil volatility is significantly
affected by COVID-19 deaths which indicates that COVID-19 is a new factor of risk which
one can argue has intensified the market risk.

The findings of our study underscore the importance of better understanding the
effects of a pandemic shock on movements and the volatility of oil prices. In addition,
it emphasizes the need for policy-makers and market stakeholders to explicitly consider
changes in global health conditions when analyzing the causes and consequences, in order
to plan an appropriate response to oil price shocks. In this regard, although lockdown
policies of certain economic activities and restrictions in travelling had some positive effects
in reducing the transmission of the health crisis, at the same time there were negative effects
on the economy. In addition, the policies of governments around the world as well as
Central Banks to support economies and individuals by offering them access to affordable
financing have sent a clear message of calming the markets and addressing the crisis in
many ways.

In particular, the EU has taken bold decisions by setting up a recovery fund for its
Member States. Based on the results of our study, such measures are in the right direction
and what is proposed at this stage is to create a framework with a permanent form. Such a
framework should have two pillars, one institutional and one economic, in order to calm the
markets from any concerns about similar cases in the future. The institutional framework
will outline possible restrictive measures in countries with high rates of infection, but at
the same time, these measures will be supplemented by financial support.

The conclusions of this study can be used as a guide for future decisions of managers,
investors, and policy-makers regarding management, asset pricing, and market stability.
Risk managers and asset pricing managers have already incorporated the pandemic in their
short and medium-term decisions to prepare their business plans. Especially, for the energy
companies that affected substantially by the restrictions in travelling and transportation,
this study provides interesting considerations. Especially, oil and gas producers, it is
crucial to have always a plan B to face similar phenomenon in the future while, individual
investors must also take into consideration COVID-19 in their expectations.

In any way, we already know that although vaccines were available in the first semester
of 2021 for the public worldwide, the Delta mutation of COVID-19 is spreading rapidly.
Nonetheless, for future work, another important factor of this equation is the technological
advances and especially the 5G infrastructure which provided significant solutions in
business communication and education especially in the more developed countries.
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Appendix A

Table A1. Description of variables used in the study.

(VOL(oil))

CBOE 30 day crude oil implied volatility index.

Crude oil 3 month implied volatility index. Estimates
3-month implied volatility. IVOLCRUD Index.

Brent 3 month implied volatility index. Estimates of
3-month implied volatility. IVOLBREN Index.

COVID Deaths (COV(f)) The logarithm of cumulative COVID-19-related deaths

COVID-19 related speed of
death and infection growth

(COV(s))

The logarithm of (new daily COVID-19 infection case
announcements divided by seven days lagged total

COVID deaths)

The logarithm of (new daily COVID-19-related deaths
divided by 7 days lagged total COVID deaths)

The logarithm of (new daily COVID-19-related deaths
divided by 14 days lagged total COVID deaths)

The logarithm of (new daily COVID-19-related deaths
divided by 21 days lagged total COVID deaths)

Economic Uncertainty (EU)

The Baker, Bloom and Davis index of economic policy
uncertainty for Europe is based on the frequency of

newspaper references to policy uncertainty. 10
newspapers from the 5 largest European Union

economies (Germany, UK, France, Italy, and Spain) are
used: Handelsblatt, FAZ, the Financial Times, The

Times of London, Le Monde, Le Figaro, Corriere Della
Sera, La Repubblica, El Pais, and El Mundo. The index

is constructed based on the number of news articles
containing the terms uncertain or uncertainty, economic
or economy, as well as policy-relevant terms (scaled by
the smoothed number of articles containing “today”).

Policy-relevant terms include: “policy”, “tax”,
“spending”, “regulation”, “central bank”, “budget”,

and “deficit”.

Market Uncertainty (MU)

VIX Volatility Index.

VSTOXX Index-EURO STOXX 50 Volatility.

NIKKEI Volatility Index.

Cboe China ETF Volatility index.
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Abstract: The advent of various initiatives around the globe in shaping an energy transition towards
a “greener” energy production future sparked a research interest towards the determinants that will
shape their success. In this paper, we depart from the relevant literature evaluating the potential effect
of geopolitical tensions on renewable energy investments, building on an explicit quantitative approach
that provides clear empirical evidence. In doing so, we compile a large panel of 171 economies and
measure the effect of geopolitical risk on “green” investing as measured by popular geopolitical risk
indices, while controlling for all major variables proposed by literature. Our flexible Autoregressive
Distributed Lag model with heterogenous effects across economies suggests that geopolitical risk has a
significantly measurable effect on green investments both in the short and the long run. In fact, our
results suggest that proper model specification is robust across alternate risk assessments. Overall, our
study has direct policy implications suggesting that renewable energy could be an important part of
our energy mix only if we take into account its linkages with geopolitical tensions.

Keywords: geopolitical risk; renewable energy sources; energy production; ARDL; GDP; CO2

emissions

1. Introduction

Energy is considered a vital element to the development and prosperity of societies,
especially in the modern age of interconnection, high technological advancement, and
globalization. Despite the fact that energy as a fuel for sustainable development continues
to play a vital role, the acute environmental issues of our times have sparked a conversation
on the forms and types of energy that should be used to ensure a high quality of life in
developed economies and a safe energy environment to underdeveloped and developing
ones. Thus, the debate focuses on the right to seek energy abundance and a just energy
transition towards more environmentally friendly energy sources for all societies.

Unlike other societal dilemmas, the historical evolution of energy transition cannot
be used to shape a cause-and-effect framework in the near future. In particular, the initial
changes in fuel from wood to coal, and even oil, may have been influenced by the need to
provide better services to society. Now, the latest changes may be deliberate and can be seen
as driven, for others, by concerns about greenhouse gas emissions, nuclear risks, energy
prices or dependence on energy imports. The problem lies in the fact that certain types and
forms of energy, such as fossil fuels, emit gases that directly affect the environment to a
critical extent, a fact that has already caused potentially irreversible damage globally [1].

The aim of this study is to evaluate the potential relationship between Renewable
Energy Sources (RES) and Geopolitical Risk (GPR) as a driver of energy transition, since
most of the studies focus mainly on the role of stakeholders and policy-making. More
specifically, the term “energy transition” refers to a more sustainable use of energy, that of
renewable sources. According to the literature, “transition” concerns socio-technical system
changes. In particular, according to [2], transition is based on three levels: the niche level,
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the regime level, as well as the landscape level, “where impactful global events take place—
like wars, economic crises, environmental disasters, geopolitical events, supranational
decision-making—that influence both regime stability and the emergence and development
of niches”. In this context, there are several studies highlighting the role of stakeholders
and policy makers in energy transition. Indicatively, according to [3] “policy makers should
take stakeholders’ perceptions into due consideration when trying to design a well suited
and balanced policy intervention”, since energy transition requires socio-economic and
environmental interactions, which create a complicated context in which decision-making
takes place. In addition, [4] index takes into account several variables, such as governance
and economic dynamics, in order to create a useful tool for policy-makers in order to
evaluate energy transition, given that energy transition policy is determined mainly by
stakeholders, since they affect the decision-making in several levels [5]. Therefore, the
contribution of this study towards existing literature not only examines the potential
effect of geopolitical tensions on renewable energy investments, but further enriches the
stakeholders’ arsenals in the decision-making process.

The correlation of international politics and energy is perceived under several aspects,
such as environmental issues and climate change [5–8], nuclear proliferation [9–11], as
well as energy security as a vital determinant of economic growth [12–14]. In a sense of
competitiveness and struggle for power rather than cooperation, none of the countries are
willing to jeopardize their access in energy production as it would have severe implications
on economic growth and development [15–17]. As mentioned by [18], “the climate regime
has been afflicted by the ‘free rider’ problem. If some countries join together and agree to
make cuts which are costly, then others who do not can enjoy the environmental benefits of
such action without paying”. Especially developing countries, such as India and China,
refuse to give up coal as an energy source, since their development is highly dependent
on this element [19,20]. Besides, access to energy sources is a matter of national security,
either in terms of demand or supply [21]. The issue of energy security and even energy
autonomy through investing in renewable energy investments has become even more
pressing during the latest tensions between Russia and the rest of Europe, the closure of the
Maghreb-Europe Gas Pipeline between Algeria and Spain, or the tensions in the Middle
East that mounted fossil fuel prices. The European Union has marked the first significant
effort in mitigating its dependence to other oil and natural gas producing countries with
the ambitious “Green Deal” policy initiative.

The intensive use of fossil fuels during previous eras had severe environmental im-
pacts. Increased energy consumption associated with high CO2 emissions due to the
combustion of fossil fuels led to global warming. The current policies implemented by
developed countries did not work effectively for various reasons, including weak political
propensity to effectively address the problem. The most illustrative example is the decision
of the Trump administration to withdraw from the Paris Climate Agreement, even though it
would be possible for the country to return back and rejoin in the near future should a new
administration decide to do so. It was the first nation in the world to formally withdraw
from the Paris Climate Agreement.

During the recent pandemic crisis of COVID-19, the energy demand decreased due
to the slowdown of economic activities and business on a global level. Two years and
counting from the start of the pandemic, global energy demand seems close to reverting
back to its earlier levels as the global economy is recovering to its previous state. The
crisis people have been forced to manage without preparation in terms of its extent and
intensity seems to be a prelude to handling future crises, which will most likely become
more frequent in other areas such as energy, economics and other. At the same time, the
necessary energy for producing one global GDP unit declined during the last years, while
investments in energy efficiency reverted and almost started increasing from 2021. Such
investments can be linked to better efficiency in terms of optimal energy use and higher
yield rates that contribute to the need for less energy consumption for the same outcome.
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Although economically developed countries account for about 60% of the total ex-
penditure projected in the Sustainable Recovery Report (Figure 1), the available funds
of these economies are much larger than those of emerging and developing economies,
which already face a large infrastructure deficit [22]. These emerging markets and emerging
economies account for one-fifth of the world’s spending on clean energy, while accounting
for two-thirds of the world’s population [22].

Figure 1. Energy investments by region. (Source: [22]).

The falling cost of key clean energy technologies offers a huge opportunity for all
countries to chart a new, lower emissions pathway towards economic growth and prosperity.
This is reflected on the revenue of listed renewable power companies’ stocks outperforming
fossil fuel companies and public equity market indices in recent years. However, clean
energy investment still remains far short of what is required to put the energy system
on a sustainable track (Figure 2). At the same time, the amount being spent on oil and
natural gas is also short of what would be required to maintain current consumption
trends [22]. A possible option could be to achieve higher capital investments for clean
energy, which would not be an easy process due to required adjustments during the
energy transition period. The possibility of increasing investments in green and renewable
energy technologies is a function of their investment costs and the policy of the countries—
incentives or charges. As the cost of basic green and renewable energy technologies
decreases, so will a market of opportunities emerge. It is observed that investments in
green and renewable energy technologies remain low and there is a distance from the point
that is considered sufficient to put the energy system on a sustainable path [22].

Figure 2. Energy investments by region. (Source: [22]).
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Since fossil fuels are limited, the concentration on them comes from their dominant
position in the global energy landscape, which accounts for almost 86% of the global
energy consumption [23]. At the same time, Renewable Energy Sources (RES) can be
reproduced in order to replace the consumed number of resources such as solar, wind,
hydropower, geothermal, and biomass. The case of geopolitical risk in this scenario is the
mix of military disputes between nation states and war threats that can have an impact
on the international political system [24]. RES are known to be clean, green energy and
friendly to the environment, and for that reason, RES can critically contribute to reduce
CO2 emissions and other pollutants. Renewables, including solar, wind, hydro, biofuels,
biomass, and others, are at the center of the transition to a less carbon-intensive and more
sustainable energy system [22]. Based on the use of the energy mix in 2015, the fuel mix
used for global energy production in 2015/16 can be considered as: fossil fuels represent
85% of the total amount of energy produced worldwide, while renewable energy sources
account for only 1–2%. It should be noted that crude oil (40%), coal (22%), and natural
gas (23%) are considered fossil fuels, while geothermal, sunlight, wind and recycling are
considered renewable energy sources. The appearance of RES balances the influence of
oil and gas producers in global politics. RES is closely related to climate change issues,
natural resource depletion, and energy diversification, which contribute to energy security.
Since geopolitical interests in the fossil fuels market changes, it makes RES appear more
important in the international economy [25].

Energy and geopolitics have been tightly related to each other. Security of supply and
access to the main natural resources have critically contributed to the energy security and
consequently the national security of the involved nation-states. Moreover, access to energy
resources has been proved a critical parameter in determining the winners of wars in the
last century. Energy has been considered as one of the available tools that could influence
neighboring states and strengthen national security through properly implemented energy
policies. It has been seen that nation-states use energy as a geopolitical weapon in order to
protect their vital interests and contribute to their national security [26].

Nevertheless, the development of new resources is changing the geopolitical and
energy landscape since the transition to more environmentally friendly solutions has
already started and is undergoing on a global scale. The availability of new resources is
driving the creation of new geopolitical tools and opportunities, while at the same time
climate change supports the energy transition to more green choices. The Intergovernmental
Panel on Climate Change (IPCC), a group convened by the United Nations, set a specific
target in its 1.5 ◦C report that clear benchmarks are required for action, such as cutting all
emissions in half by 2030. Those countries with more capacity and responsibility must lead
the way and support others in their journey. Governments must align their targets and
plans with 1.5 ◦C according to the commitment of COP26 event, held in Glasgow in 2021.
Based on current policies it looks that we are only on track to a critical 2.9 ◦C future [27].
Numerous studies and discussions in the literature show that ongoing climate change is
primarily due to the rapid increase in Green House Gas (GHG) emissions from carbon
dioxide (CO2)3 as well as from methane gas and nitrous oxide [28,29]. The major source of
carbon dioxide (CO2) emissions is the burning of fossil fuels, which represented 87% of the
world’s energy supply in 2012 [30].

The motivation of this study stems from the understudied relationship between Geopo-
litical risk and energy transition towards an environmentally friendly production path. The
hypothesis tested is whether GPR influences Renewable Energy Sources (RES) production
and thus investments in this sector should be treated as any other investment. Although the
existing literature reaches mixed results regarding the sign of this relationship, its existence
is of great importance both to practitioners and policy authorities. The limited number of
studies in the relevant literature treats the estimation problem based on cointegrated panel
regressions or on univariate time-series, no approach evaluates a heterogenous response
framework that includes contemporaneously short and long-term dynamics. Following this
string of literature, we develop a panel Autoregressive Distributed Lag (ARDL) estimator
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with heterogeneous effects [31] to study the relationship between RES and GPR on a wide
range of economies. In doing so, we evaluate the Caldara and Iacovello [24] GPR index that
comes in two flavors; an aggregated one for the global economy and a disaggregated one
for 18 developing economies. As a robustness test, we repeat our analysis using the World
Uncertainty Index of [2]. Our empirical findings support the existence of a significant nega-
tive relationship between GPR and investments in RES. Thus, despite the significance of a
just energy transition towards “green” energy, the nature of the investments in the sector
does not exhibit different characteristics than any other investment and is heavily relied
upon traditional investment criteria such as GPR. Our contribution could be summarized
to the following items:

• Use of a heterogeneous approach on a panel dataset that is able to grasp asymmetric
effects among different economies.

• A broad examination of the entire global geopolitical landscape and its relationship
with the evolution of renewable energy sources.

• A definite empirical suggestion that geopolitical tensions are a crucial deterrent of
investing in “green” energy.

2. Literature Review

One of the main questions posed in the relevant literature is how geopolitics interact
with energy, either regarding fossil fuels or renewables sources [32–34]. Up to now, most
scholars analyze the correlation between political and economic uncertainty with energy,
finding mixed results. In particular, according to [35], the determinants of renewable energy
are mainly determined by consumption, supply and demand while political variables
represent only 23% of the overall literature, focusing on institutional quality, democracy,
ideology and governance as independent variables. As the author mentions “[ . . . ] the
strand of literature to which the reviewed papers contribute to is relatively new and
fragmented”. However, there are only few studies which focus on the relationship between
Geopolitical Risk (GPR), as developed by [24], and RES.

The majority of empirical studies examine the impact of political and economic insta-
bility on fossil fuels. More specifically, focusing on the correlation between geopolitics and
energy, as measured by geopolitical risk, most scholars examine the connection between
these two variables based on fossil fuels, such as CO2 emissions, and most find mixed
results. For example, [36] argue that high geopolitical risk is associated with high CO2
emissions, especially in the case of BRICS. Implementing a STRIRPAT model, [37] find
that CO2 emissions increased due to GPR for BRICS. Other scholars find similar results,
but they measure geopolitical risk in terms of military power [38], or terrorism [39,40].
By employing ARDL and a fully modified ordinary least regression model, most of the
mentioned studies argue that militarization escalates CO2 emissions. However, according
to [41], militarization mitigates CO2 emissions as far as India and Pakistan is concerned,
due to the fact that they find an asymmetric impact between these two variables.

Reference [41] argue that GPR has an asymmetric effect on CO2 emissions. Using the
non-linear autoregressive distributed lag model (NARDL), they find that any change in
geopolitical risk negatively affects energy consumption and CO2 emissions. In particular,
measuring the impact of geopolitical risk on CO2 emissions and energy consumption in
BRICS, they conclude that “clean energy consumption can be a useful tool to reduce the
geopolitical risks in BRICS”. Reference [42] also argue that geopolitical risk is negatively
correlated to CO2 emissions, and that oil prices seem to remain unaffected on shocks
from investments in RES. However, [43], focusing on energy transition behavior with an
emphasis on geopolitical risk and implementing the ARDL method, suggest that there is
a positive correlation between geopolitical risks and energy transition and “any increase
in CO2 emissions has negative and statistically significant impact on energy transition
in Russia”.

Given that a group of scholars considers the impact of geopolitical risk in a wider
sense, that of political and economic instability, they measure its impact both on CO2
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emissions and renewable sources. In particular, [44] implements a Generalized Method
of Moments approach using two panel data estimation techniques. He concludes that
political instability increases CO2 emissions, given that “democracy itself can also lead to
environmental degradation”. Moreover, [45] is one of the first studies that examines the
effects of geopolitical risk, based on the [24] index, on the oil stock nexus for the years
1899–2016. By implementing an unrestricted Vector Autoregressive-GARCH model in
order to model time-varying conditional variances, they conclude that oil market volatility
is larger compared to that of the stock market and the former is more significantly affected
by GPR than the stock market index.

Regarding the economic aspect, [46] based on the Economic Uncertainty Index devel-
oped by [47], argue that in the short run, economic uncertainty increases CO2 emissions,
and, additionally, apart from political instability, economic instability can have a positive
impact on environmental degradation in the long run. However, [48] based on the World
Uncertainty Index (WUI) and using an ARDL approach, find that there is a positive cor-
relation between the WUI and CO2 emissions in the long run. On the other hand, [49]
implemented non-linear econometric approaches and found a negative correlation between
WUI and RES. As they mention, “the nonparametric LLLS regression estimates exhibit a neg-
ative long-run association between renewable energy consumption and policy uncertainty
i.e., higher uncertainty regarding economic policy lowers renewable energy consumptions
and vice-versa”. However, when renewable energy consumption is examined in relation
to political factors by [50], political and institutional factors have a strong and statistically
significant effect on renewable energy consumption. In particular, implementing a short
and long-run panel causality approach on an Error Correction Model, they conclude that
“renewable energy markets are strongly interwoven with major political decisions”.

On a different path, [51] measure the impact of WUI on investments for various in-
dustrial sectors. On a panel approach, they conclude that although the economic policy
uncertainty inhibits the energy enterprises of fossil fuels, such as coal and petroleum, it
significantly promotes solar and renewable energy. However, [52] finds no correlation
between economic policy uncertainty and renewable energy growth. Implementing the
empirical model based [52], the author finds a negative but statistically insignificant effect
between the two variables. In addition, more attention is given on the impact of geopolitics
on investments rather than on RES investments. For instance, many scholars argue that
geopolitical risk has a severe impact on investments and affects negatively other economic
sectors, such as tourism, trade flows, and oil prices [53–55] but positively affects govern-
ment investments [56]. Other studies show that the impact of GPR varies depending on the
geopolitically-sensitive sector [48] and energy can be considered as such. Moreover, given
that RES is heavily depended on in R&D products, again, GPR has a negative relationship
with R&D investments, although even in this field there are mixed results [57].

Additionally, geopolitical risk seems to significantly affect the diffusion of RES and
energy production [58,59] and has a positive effect on renewable energy consumption [60].
In particular, [58] examined the correlation between geopolitical risk and renewable energy
deployment in the United States based on quarterly data for the period of 1973 to 2020,
using cointegration analysis and the ARDL approach. The study concludes that geopolitical
risk has a positive and significant impact on renewable energy diffusion, since renewable
energy, in a way, diminishes the level of energy dependency, thus providing energy security.
Thus, “geopolitical risk is a driver to renewable energy deployment because of the expected
negative consequences of these uncertainties on the economy”. Similarly, [59] finds cor-
responding results in a similar study focusing on 10 crude oil importer countries for the
period of 1985–2017, employing a panel cointegration analysis and the ARDL approach.
Similarly, [60] investigated the effect of geopolitical risk on renewable energy consumption
in emerging economies over the period of 1996–2015. They employed a two-step system
generalized method of moments (GMMs) approach. The results showed that geopolitical
risk has a positive and significant impact on renewable energy consumption. Besides, fi-
nancial development also supports renewable energy consumption in emerging economies,
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while the proper selection of a power plant based on renewable resources has to fulfil many
criteria and incorporates high uncertainty.

The geopolitics of Renewable Energy Sources (RES), seems to have quite different
characteristics compared to the cases where conventional fuels are met, such as crude oil,
natural gas, lignite and coal. In the case of RES—when compared to conventional fuels—
there is a greater need for Foreign Direct Investment (FDI) and allocation of necessary
capital for the creation of fixed assets that will relate to the appropriate infrastructure, since
most countries do not have them available at the moment. Moreover, there is a need for
new distribution networks as well as creation of an appropriate network of suppliers and
consumers, while RES energy production is much more decentralized and distributed in
more areas within the country. The production of energy from RES creates the immediate
need for design, construction, and availability of energy storage methods, which is now a
necessary condition for the energy security of a country and the avoidance of unforeseen
interruptions in the availability of electricity in the distribution network to consumers.
Furthermore, the production of energy from RES could have a positive impact on the
geopolitical relations in the world, although such a condition is not always unambiguous,
since it could be considered the opposite, taking into account basic observations regarding
RES. Finally, the use of RES still requires a great deal of effort to inform, build knowledge on,
accept and integrate into existing networks of each country in a correct and efficient manner.

The increasing use of RES and the replacement of traditional forms of energy has
already been under progress, referring to the energy transition process that takes place
in the international energy scene. This transformation in the energy mix seems to be
accompanied by a corresponding geopolitical risk that may drive new developments and
changes in international politics [61,62]. Such a massive energy transition, although it
would take time and several obstacles could delay its initial plan, can impact international
relations and drive nation-states to gain more strength and power in case they succeed
in gaining access to the related natural resources that are critical for the development of
RES [63–65]. Current findings on the contribution of RES to normality and peace at both
regional and global levels differ. One strand of literature poses that an increase of RES and
their greater contribution to the energy mix contributes to the reduction of geopolitical risk
and to the deepening of the cooperation between states. The need for cooperation between
economies and the interconnection of energy systems for the maintenance of an adequate
energy production system with smooth and efficient operation is also supported [66,67].
Moreover, energy production based solely on the “green” RES will contribute more to
global energy security and thus smoothen tensions and frictions among states [68,69].

The intensification of cryptocurrency mining and the need to use environmentally
friendly energy production to sustain respective investments has spurred a novel research
path. [70] present an algorithm designed for the trading of energy saving certificates, imple-
mented via a blockchain-based smart contract system, that can be used to reward “green”
energy consumption and penalize all other forms in mining cryptocurrencies. [71] calculate
an environmental performance index that introduces crypto mining to the energy con-
sumption mix, suggesting that European countries have a firmer commitment in reducing
the environmental impact from mining. Finally, [65] show that Bitcoin and gold respond
positively to the composite geopolitical risk indicator when risk is high. This underscores
that both Bitcoin and gold have the ability to act as safe havens for assets whose valuations
plummet during times of violent geopolitical conflicts.

3. The Data

As we discuss in the introduction section, the scope of this study is to evaluate
the potential causal relationship between RES and GPR. To account for this scope, we
compiled an annual dataset of 171 countries from the period 1980–2018 from the U.S.
Energy Information Administration (EIA) on the ratio of Energy production from RES.
The GRP index we selected was the Caldara and Iacovello [24] from the Federal Reserve
(FRB), given its broad use in relevant literature. The aforementioned index creates an
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index on the range of 0–100 based on a selection of newspaper articles from 10 outlets
covering geopolitical tensions. In our framework, we merge the recent index that covers
the period of 1985–2021 to the historical index (with only 3 newspapers) that goes back
to 1990. Moreover, we control for various other effects using Real GDP growth rates to
control for heterogeneities in economic development levels between economies, energy
consumption per capita, and energy consumption per 2015 PPP GDP (MMBtu/$) to control
for access to energy and brent oil prices from the repository of the Federal reserve of St.
Louis (Fred), to account for the cost of energy production and the comparison with other
energy production means. The descriptive statistics of our dataset are reported in Table 1.

Table 1. Aggregated GPR index descriptive statistics.

Variable Abbreviation Observations Mean Std. Dev. Min Max Source

Ratio of Energy Production from
Renewable sources (%) ren_prod_r 5630 0.152 0.259 0.000 0.999 EIA

Energy consumption per capita
(MMBtu/person) cons_cap 6198 80.731 122.504 0.000 1139.321 EIA

Energy consumption per 2015 PPP GDP
(MMBtu/$) Energy_gdp 6198 4.182 4.831 0.000 166.913 EIA

Geopolitical risk index gpr 39 104.057 38.970 40.662 181.954 FRB
CO2 Emissions (metric tons per capita) CO2 6298 4.521 8.214 0.000 266.483 World Bank

Real GDP growth rate (%) gdp 6084 0.035 0.066 −0.667 1.480 World Bank
Brent oil prices ($ per barrel) brent 39 44.117 29.829 13.200 111.27 Fred

Countries 171
Time Span 1980–2018

As we observe, our panel dataset is unbalanced, since we miss observations for a
number of variables. Nevertheless, the panel approach provides substantially more robust
results than a simple Least-Squares regression with only 39 observations. Our variables
have different logarithmic range, therefore we use logarithms for all variables apart from
the RES ratio (ren_prod_r) and real GDP growth rate (gdp). Moreover, we observe large
heterogeneities as we find countries with no RES production (South Sudan, Haiti, and Sri
Lanka) and others with very large production ratios (Ireland, Austria, and Iceland). While
the Caldara and Iacovello [24] index is a popular choice among researchers, it measures
only global geopolitical risk without a spatial characteristic. Thus, to account for country
specific results, we examine a sub-sample of 18 developing countries, for which Caldara
and Iacovello produce an economy-specific index. This exercise could potentially highlight
heterogeneity better than the aggregated index. The descriptive statistics of this subsample
are reported in Table 2.

The sample is again heterogenous and logarithms are used to account for a different
arithmetic range in variables. Finally, as a robustness test, we evaluate the World Uncer-
tainty Index of [2] as the geopolitical risk measure. The index is produced annually for the
period 1980–2018 for 130 countries. The index is country-specific and thus can be used to
evaluate the results from the above approaches. We report descriptive statistics in Table 3.
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Table 2. Country-specific descriptive statistics.

Variable Abbreviation Observations Mean Std. Dev. Min Max Source

Ratio of Energy Production from
Renewable sources ren_prod_r 598 0.133 0.182 0 0.869 EIA

Energy consumption per capita
(MMBtu/person) cons_cap 598 4.106 0.900 1.898 5.838 EIA

Energy consumption per 2015 PPP GDP
(MMBtu/$) Energy_gdp 589 1.623 0.501 0.689 3.066 EIA

Geopolitical risk index gpr 612 98.759 28.719 35.747 261.257 FRB
CO2 Emissions (metric tons per capita) CO2 607 1.313 0.867 −0.660 3.292 World Bank

Real GDP growth rate gdp 599 3.903 5.099 −22.900 18.300 World Bank
Brent oil prices ($ per barrel) brent 39 44.117 29.829 13.200 111.27 Fred

Countries 18
Time Span 1985–2018

Table 3. World Uncertainty Index descriptive statistics.

Variable Abbreviation Observations Mean Std. Dev. Min Max Source

Ratio of Energy Production from
Renewable sources ren_prod_r 4660 0.1667 0.265 0 0.999 EIA

Energy consumption per capita
(MMBtu/person) cons_cap 4830 85.274 126.346 0 1139.321 EIA

Energy consumption per 2015 PPP GDP
(MMBtu/$) Energy_gdp 4830 4.436 5.242 0 166.914 EIA

World Uncertainty Index wui 4839 0.141 0.136 0 1.343 [2]
CO2 Emissions (metric tons per capita) CO2 4866 4.426 5.804 0 58.874 World Bank

Real GDP growth rate gdp 4720 3.454 6.248 −66.700 124.700 World Bank
Brent oil prices ($ per barrel) brent 5070 44.117 29.829 13.200 111.27 Fred

Countries 130
Time Span 1980–2018

Again, we resort to logarithmic forms of the variables, while the heterogeneity is obvious.

4. Empirical Results

The relationship between GPR and RES cannot be examined using a typical regression
model, applied in quite a few empirical approaches in the literature, given that infrastruc-
ture investments need a significant time horizon to be completed and create a “critical
mass” for shaping consumption preferences. The typical regression approaches (even in
more advanced machine learning approaches) evaluate short-term relationships between
variables. To account for long-term relationships and the possible evolving stationary
of variables in the short-term, we use a panel Cross-Section Augmented Autoregressive
Distributed Lag (CS-ARDL) model of [27] that accounts for long-term relationships and
possible cointegration between variables as in (1):

Δyi,t = β0,i +
py

∑
l=1

βi,lΔyi, t−l +
px

∑
j=0

β′
i,lΔxi,t−j +

pz

∑
l=0

ψ′
i,lzt−l +

(
θo,iyi,t−1 +

k

∑
j=0

θi,kxi,t−k

)
+ εi.t (1)

where θo,iyi,t−1 + ∑k
j=0 θi,kxi,t−k is the Error correction term (ECM) of the model, py the lag

order of the dependent variable, px the lag order of the control variables, pz the lag order
of the added cross-sectional averages to account for endogeneity issues. The ECM part of
the model captures long-term relationships between the dependent and the independent
variables, while the rest of the model accounts for short-term relationships. The lag order py,
px and pz are determined according to the Bayesian Information Criterion (BIC), while the
ARDL/Bounds Testing methodology determines long-term (cointegration) relationship.

In estimating models’ coefficients we consider the Mean Group [MG] [72] estimator
that allows for cross-sectional heterogenous coefficients and nonstationary (but cointe-
grated) data, the Common Correlated Effects Mean Group [CCEMG] [27] estimator that
controls for cross-sectional dependence in addition to the characteristics of MG and the
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Dynamic Common Correlated Effects Mean Group [DCCEMG] [27] that adds lagged de-
pendent variables to CCEMG to address endogeneity issues which render the estimators
biased and inconsistent. The D/CCEMG estimator treats common dynamic factors as
nuisance parameters used solely for controlling cross-sectional dependence without actual
interpretation ability.

4.1. Aggregated Caldara and Iacovello Index

We start our analysis on testing cross-sectional dependencies among variables to
account for the use of the aforementioned estimators [73,74], using the fixed-T variance
estimator from [75] in all standard error estimations. This estimator is heteroscedasticity
robust and allows for panels with a fixed time dimension (balanced). Nevertheless, the
differences with unbalanced panels (Table 4) are not statistically different.

Table 4. Cross-sectional dependence test results.

Panel A: Chudik et al. (2016) Test: 0.5 ≤ alpha < 1 Implies Strong Cross-Sectional Dependence

Variable Alpha Std. Err. [95% Conf. Interval]

ren_prod_r 0.591 0.052 0.489 0.693
cons_cap 0.949 0.401 0.162 1.737

Energy_gdp 0.947 0.055 0.839 1.055
gpr 1.002 0.017 0.968 1.036
CO2 0.906 0.026 0.855 0.957
gdp 0.445 0.223 0.006 0.884

brent 1.002 0.035 0.934 1.071

Panel B: Pesaran (2015) The null hypothesis is the existence of weak cross-sectional dependence

variable CD p-value Cross-sections Observations

ren_prod_r 55.601 0.000 117 39
cons_cap 204.019 0.000 142 39

Energy_gdp 234.030 0.000 142 39
gpr 752.904 0.000 171 39
CO2 0.000 1.000 141 39
gdp 59.316 0.000 129 39

brent 752.904 0.000 171 39

The cross-sectional dependence test of [76] [Panel A], suggests a strong cross-sectional
dependence for most variables since alpha is very close or above 0.5. We reach similar
results with the [77] test, where we reject the null hypothesis of weak cross-sectional
dependence for all variables. Before estimating models’ parameters, we need to test the
stationarity of the variables, since for a CS-ARDL model to provide valid estimates, we
should have either I(0) or I(1) variables, but not I(2). In the case that we have a variable
that is second order integrated ARDL, estimates can be explosive and irrelevant. We
perform a unit root test using the Augmented Dickey-Fuller (ADF) and its version using
Generalized Least Squares estimators (DF-GLS) for the gpr and brent prices that are constant
across panels, while we implement the Breitung and the Cross-sectional version of the
Im-Pesaran-Shin (CIPS) tests for the other variables that change across panels. The latter is
an augmented version of the typical IPS test including cross-sectional means to account for
endogeneity issues in the regression.

All variables are stationary in first differences (Panel B, Table 5) while gdp, brent,
CO2, GPR, cons_cap and ren_prod_r are non-stationary in levels. Thus, there could be a
cointegration relationship, but this cannot be detected with typical ECM models since we
have a mixture of I(0) and I(1) variables. To overcome this issue, we use an “unrestricted”
ECM model based on an ARDL model with heterogenous (different) coefficients among
cross-sections (countries) to allow for higher flexibility [76]. The model’s coefficients are
reported in Table 6.
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Table 5. Unit root test results.

Panel A: Levels

ADF Test DF-GLS Breitung CIPS

Null Hypothesis Non Stationarity Stationarity
Panels Contain Unit

Roots

Homogeneous
Non-Stationary

Panels

ren_prod_r 11.735 −0.689
cons_cap 4.196 −2.498 *

Energy_gdp −1.998 ** −2.713 ***
gpr −2.198 −2.557
CO2 4.285 −2.122
gdp −27.982 *** −4.468 ***

brent −2.674 −2.234

Panel B: First differences

ren_prod_r −19.805 *** −3.163 ***
cons_cap −33.999 *** −5.640 ***

Energy_gdp −42.123 *** −5.501 ***
gpr −4.682 *** −5.178 ***
CO2 −35.357 *** −5.618 ***
gdp −46.334 *** −6.250 ***

Brent −5.897 *** −5.316 ***

Note: *, ** and *** denote rejection of the null hypothesis at 10%, 5% and 1% level of significance. Pesaran Panel
Unit Root Test with cross-sectional and first difference mean included. Deterministics chosen: constant & trend.
Dynamics: lags criterion decision Portmanteau (Q) test for white noise.

Table 6. Model’s coefficients estimates.

Dependent Variable
Δren_prod_rt

Mean Group ARDL
Estimator

(1)

Common Correlated Effects
ARDL Estimator

(2)

Dynamic Common
Correlated Effects ARDL

Estimator
(3)

Panel A: Short-run coefficients

Δren_prod_rt−1 0.250 0.139 0.203
(0.290) (0.218) (0.151)

Δln(cons_capt) 0.010 0.023 * 0.016
(0.016) (0.014) (0.018)

Δln(energ_gdpt) −0.007 −0.010 ** −0.009 **
(0.005) (0.004) (0.005)

Δln(gpdt) −0.001 −0.001 −0.001
(0.000) (0.000) (0.000)

Δln(gprt) −0.084 *** −0.085 *** −0.087 ***
(0.013) (0.014) (0.014)

Δln(co2t) 0.003 0.002 0.004
(0.005) (0.004) (0.005)

Δln(brentt) −0.000488 −0.001 −0.001
(0.001) (0.002) (0.001)

Δ(ren_prod_rt−1 × ln(gprt−1)) 0.663 *** 0.544 *** 0.577 ***
(0.115) (0.115) (0.138)

Constant 0.001 *** 0.001 *** 0.001 ***
(0.000) (0.000) (0.000)
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Table 6. Cont.

Dependent Variable
Δren_prod_rt

Mean Group ARDL
Estimator

(1)

Common Correlated Effects
ARDL Estimator

(2)

Dynamic Common
Correlated Effects ARDL

Estimator
(3)

Panel B: Long-run coefficients

ln(cons_capt) 0.011 0.023 * 0.016
(0.016) (0.013) (0.018)

ln(energ_gdpt) −0.007 −0.009 ** −0.009 *
(0.005) (0.004) (0.005)

ln(co2t) 0.003 0.000 0.004
(0.004) (0.004) (0.005)

ln(gdpt) −0.001 * −0.001 * −0.001 ***
(0.000) (0.000) (0.000)

ln(gprt) −0.084 *** −0.0851 *** −0.087 ***
(0.014) (0.014) (0.010)

ln(brentt) −0.001 −0.001 −0.001
(0.001) (0.002) (0.001)

ren_prod_rt × ln(gprt) 0.470 *** 0.426 *** 0.463 ***
(0.046) (0.070) (0.047)

Constant 0.001 *** 0.003 *** 0.001 ***
(0.000) (0.000) (0.000)

Panel C: Adjustment Term (ECM)

ren_prod_rt −0.750 *** −0.861 *** −0.797 ***
(0.290) (0.218) (0.151)

Observations 2805 2805 2668
Number of groups 100 100 97

R-squared 0.99 0.050 0.050
Cross-sectional means lag - - 2

Cross-sectional Exponent on
residuals 0.606 0.588 0.607

Weak cross-sectional
dependence on residuals 33.390 *** 31.81 *** 33.79 ***

Long-run common F-test 7.430—I(1) 9.10—I(1) 10.73—I(1)
Long-run ECM t-test 6.69 *** 15.64 *** 27.94 ***

Linear trend Cross-section No No
Pooled Constant Yes Yes Yes

Note: Standard errors are reported in parenthesis. All standard errors are [76] fixed-T standard errors for pooled
coefficients. According to [77] the I(0) and the I(1) bounds of the bounds test for the joint F-test of all long-run
coefficients are 2.42 and 3.52 at the 5% level of significance. The respective t-test on the null hypothesis on which
the adjustment term equals zero has an upper boundary of −3.65 and a lower of −5.59. The null hypothesis of
the [77] test for weak cross-sectional dependence assumes that residuals are weakly cross-sectional dependent. A
value of 0.5 ≤ exponent < 1 implies strong cross-sectional dependence. Note: *, ** and *** denote rejection of the null
hypothesis at 10%, 5% and 1% level of significance.

Starting from the short-run estimates (Panel A, Table 6) the GPR coefficient has a
negative and significant effect on the dependent variable (ratio of RES produced energy),
as well as the interaction term of GPR with the dependent variable. The latter measures the
multiplier effect of GRP on RES production as we move from countries with low production
to countries with higher production. Our interest in Panel B where we report the long-run
effects, where GPR has a negative and significant (although very small) effect on the pro-
duction ratio and a significant multiplier effect of the interaction term. The ECM coefficient
is negative, significant and greater than −1 (as expected). The Cross-sectional Exponent
on residuals is close to 0.5 (but above it) suggesting weak cross-sectional dependency on
residuals after estimation. Moreover, we also detect cointegration of all variables based on
the boundaries F-test, while all variables are above the upper boundaries of the Student-t
bounds test. The long-run common F-test which evaluates the null hypothesis that all ECM
terms are zero concludes that the use of the ECM test is warranted, while the same applies
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for the long-run ECM t-test (bounds test) of [77]. Thus, all models are well-identified and
reach similar conclusions, suggesting that our findings are robust and independent of the
selection of the estimator. The counterfactual signs of the energy consumption based on the
GDP coefficient probably stem from the fact that GPR is constant across sections (countries).
Thus, we need a more granular examination, with a more detailed panel dataset. In Figure 3
we depict the full distribution of the coefficients, as Table 6 reports mean estimates across
coefficients. As we observe, all values are negative but are heavily skewed towards zero.

Figure 3. Coefficients estimates on long-term effect of GPR on the ratio of RES production based on
the MG (subplot (a)), CCE (subplot (b)) and DCCE (subplot (c)) estimator.

4.2. Disaggregated Caldara and Iacovello Index Data

We extend our analysis focusing only on the 18 country-specific indices provided by [25].
The disaggregated data are expected to provide a further insight on the heterogeneity effects
of GPR on RSE production. In Table 7 we report directly the model’s estimates.

Table 7. Disaggregated index data estimates.

Variable
Mean Group ARDL

Estimator
(1)

Common Correlated Effects
ARDL Estimator

(2)

Dynamic Common
Correlated Effects ARDL

Estimator
(3)

Panel A: Short-run coefficients

Δren_prod_rt−1 0.001 0.068 0.207
(0.006) (0.076) (0.206)

Δln(cons_capt) −0.048 −0.031 −0.047
(0.040) (0.036) (0.045)
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Table 7. Cont.

Variable
Mean Group ARDL

Estimator
(1)

Common Correlated Effects
ARDL Estimator

(2)

Dynamic Common
Correlated Effects ARDL

Estimator
(3)

Δln(energ_gdpt) 0.001 −0.002 −0.000
(0.008) (0.007) (0.008)

Δln(gpdt) 0.001 0.001 0.000
(0.001) (0.001) (0.000)

Δln(gprt) −0.024 *** −0.023 *** −0.023 ***
(0.007) (0.007) (0.007)

Δln(co2t) 0.002 0.002 0.002
(0.006) (0.005) (0.007)

Δln(brentt) 0.001 0.001 0.001
(0.001) (0.001) (0.001)

Δ(ren_prod_rt−1 × ln(gprt−1)) 0.217 *** 0.181 *** 0.212 ***
(0.003) (0.037) (0.007)

Constant 0.000 −0.002 ** −0.002 **
(0.000) (0.001) (0.001)

Panel B: Long-run coefficients

ln(cons_capt) −0.049 −0.035 −0.048
(0.040) (0.035) (0.046)

ln(energ_gdpt) 0.001 −0.001 −0.000
(0.008) (0.001) (0.008)

ln(co2t) 0.002 0.001 0.0018
(0.006) (0.005) (0.008)

ln(gdpt) 0.001 0.001 0.000
(0.000) (0.000) (0.000)

ln(gprt) −0.023 *** −0.023 *** −0.023 ***
(0.007) (0.007) (0.007)

ln(brentt) 0.001 0.001 0.001
(0.001) (0.001) (0.001)

ren_prod_rt × ln(gprt) 0.218 *** 0.289 *** 0.203 ***
(0.004) (0.073) (0.016)

Constant 0.000 −0.001 *** −0.001 ***
(0.000) (0.001) (0.000)

Panel C: Adjustment Term (ECM)

ren_prod_rt −1.000 *** −0.932 *** −0.793 ***
(0.001) (0.076) (0.206)

Observations 478 495 478
Number of groups 17 17 17

R-squared 0.996 0.004 0.005
Cross-sectional means lag - - 1

Cross-sectional Exponent on
residuals 0.619 0.609 0.587

Weak cross-sectional
dependence on residuals −0.52 2.27 ** 1.63

Long-run common F-test 569.34—I(1) 77.45—I(1) 4.89—I(1)
Long-run ECM t-test 215.65 *** 150.21 *** 14.84 ***

Linear trend No No No
Pooled Constant Yes Yes Yes

Note: Standard errors are reported in parenthesis. All standard errors are [76] fixed-T standard errors for pooled
coefficients. According to [77] the I(0) and the I(1) bounds of the bounds test for the joint F-test of all long-run
coefficients are 2.42 and 3.52 at the 5% level of significance. The respective t-test on the null hypothesis on which the
adjustment term equals zero has an upper boundary of −3.65 and a lower of −5.59. The null hypothesis of the [77]
test for weak cross-sectional dependence assumes that residuals are weakly cross-sectional dependent. A value of
0.5 ≤ exponent < 1 implies strong cross-sectional dependence. Note: ** and *** denote rejection of the null hypothesis
at 5% and 1% level of significance.
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The disaggregated data provide a clear depiction of the heterogenous effects of GPR on
the production of RSE. The GPR is negative and significant at the short-term for all models,
the interaction term is significant with the correct sign and the same applies in the long run.
The ECM (adjustment term) implies cointegration and is lower than unity in absolute value,
has a negative sign, and is statistically significant. Apparently, all other control variables
have a statistically insignificant effect, but this is not an issue as the variable of interest is
GPR and control variables are used to shape the dimensional space that we minimize the
cost function. In Figure 4 we depict the country specific coefficients. As we observe, all
coefficients are negative and clustered towards zero, with a few countries exhibiting higher
distance from zero.

Figure 4. Coefficients estimates on long-term effect of GPR on the ratio of RES production based on
the MG (subplot (a)), CCE (subplot (b)) and DCCE (subplot (c)) estimator.

4.3. Robustness Tests

As a robustness test we change our measure of GPR and use the World Uncertainty Index
from [2] that is available at the country level for 143 countries (130 after data pre-processing).
In Table 8 we depict model’s coefficient values for the MG, CCE and DCCE estimators.

Table 8. WUI data model.

Variable
Mean Group ARDL

Estimator
(1)

Common Correlated Effects
ARDL Estimator

(2)

Dynamic Common
Correlated Effects ARDL

Estimator
(3)

Panel A: Short-run coefficients

Δren_prod_rt−1 0.021 0.042 −0.008
(0.035) (0.056) (0.039)

Δln(cons_capt) −0.012 −0.010 −0.058
(0.069) (0.069) (0.066)
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Table 8. Cont.

Variable
Mean Group ARDL

Estimator
(1)

Common Correlated Effects
ARDL Estimator

(2)

Dynamic Common
Correlated Effects ARDL

Estimator
(3)

Δln(energ_gdpt) 0.082 0.085 0.113
(0.066) (0.062) (0.069)

Δln(gpdt) 0.001 ** 0.001 0.001 *
(0.000) (0.000) (0.000)

Δln(wuit) −0.465 *** −0.473 *** −0.458 ***
(0.079) (0.079) (0.079)

Δln(co2t) −0.082 *** −0.085 *** −0.079 **
(0.026) (0.027) (0.032)

Δln(brentt) −0.002 −0.004 0.003
(0.002) (0.003) (0.004)

Δ(ren_prod_rt−1 × ln(wuit−1)) 2.050 *** 2.027 *** 2.023 ***
(0.226) (0.233) (0.218)

Constant 0.000 −0.000 0.033
(0.000) (0.000) (0.023)

Panel B: Long-run coefficients

ln(cons_capt) −0.011 −0.011 −0.079
(0.071) (0.072) (0.076)

ln(energ_gdpt) 0.079 0.077 0.169
(0.069) (0.066) (0.108)

ln(co2t) −0.086 *** −0.084 *** −0.121 *
(0.028) (0.029) (0.067)

ln(gdpt) 0.001 ** 0.001 * 0.001 *
(0.000) (0.000) (0.000)

ln(wuit) −0.490 *** −0.494 *** −0.487 ***
(0.087) (0.085) (0.086)

ln(brentt) −0.002 −0.005 0.009
(0.002) (0.003) (0.009)

ren_prod_rt × ln(wuit) 2.063 *** 2.027 *** 2.059 ***
(0.269) (0.233) (0.284)

Constant 0.000 −0.000 *** 0.080
(0.000) (0.000) (0.063)

Panel C: Adjustment Term (ECM)

ren_prod_rt −0.979 *** −0.958 *** −0.997 ***
(0.0350) (0.0560) (0.039)

Observations 2934 3033 2934
Number of groups 98 98 98

R-squared 0.644 0.350 0.520
Cross-sectional means lag - - 2

Cross-sectional Exponent on
residuals 0.500 0.508 0.519

Weak cross-sectional
dependence on residuals 1.64 4.410 *** 1.670*

Long-run common F-test 169.47—I(1) 66.100—I(1) 154—I(1)
Long-run ECM t-test 783.57 *** 292.000 *** 669.82 ***

Linear trend No No No
Pooled Constant Yes Yes No

Note: Standard errors are reported in parenthesis. All standard errors are [76] fixed-T standard errors for pooled
coefficients. According to [77] the I(0) and the I(1) bounds of the bounds test for the joint F-test of all long-run
coefficients are 2.42 and 3.52 at the 5% level of significance. The respective t-test on the null hypothesis on which
the adjustment term equals zero has an upper boundary of −3.65 and a lower of −5.59. The null hypothesis of
the [77] test for weak cross-sectional dependence assumes that residuals are weakly cross-sectional dependent. A
value of 0.5 ≤ exponent < 1 implies strong cross-sectional dependence. Note: *, ** and *** denote rejection of the
null hypothesis at 10%, 5% and 1% level of significance.
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Regardless of the model examined, we find a significant ECM term, negative and
below unity in absolute terms, reject weak residual dependency after estimation, detect
cointegration of the variables, and all residuals pass the Student-t bounds test. Strong
residual dependency is not warranted. The WUI, interaction term and CO2 emissions
are significant both in the short and the long run. All coefficients have the correct sign,
while GDP growth has a marginal effect. The stronger negative effect of the WUI data
corroborates to our finding in previous sections and supports a negative relationship
between geopolitical uncertainty and the ration of “green” produced energy. In Figure 5
we depict the country-specific coefficients for WUI.

Figure 5. Coefficients estimates on long-term effect of GPR on the ratio of RES production based on
the MG (subplot (a)), CCE (subplot (b)) and DCCE (subplot (c)) estimator.

5. Conclusions and Policy Implications

The energy transition towards greener production choices already being implemented
in many developed economies seems to be dependent on geopolitical risk, which can
effectively drive international politics and affect RES investments. Existing literature
mostly focuses on geopolitics through examining the effect of traditional energy sources,
such as crude oil and natural gas [65]. In this paper, we depart from the traditional approach
and evaluate the relationship between RES and GPR on an explicit quantitative framework.
Building on an aggregated GPR index on available data for 171 economies, we evaluate
the effect of GPR fluctuations on energy produced by RES, controlling for the majority of
variables proposed in literature. In doing so, we train a panel ARDL model where we allow
for heterogenous effects between economies (largely overlooked in the relevant literature),
with the flexibility of the model including both long and short-term relationships.
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Our empirical findings suggest that:

i GPR has a negative effect on RES production regardless of the estimator used.
ii In parallel, this relationship between GPR and RES is obvious both in short and longer

horizons.
iii The inclusion of an interaction term suggests that the effect of GPR on RES increases

with the increase in the production level.
iv Our results are robust to a country-specific examination or the use of alternative GRP

measures.
v Apparently, no other variable exhibits a universal (in terms of GPR specification or

estimator selection) consistent effect.

All models are well-specified according to our statistical controls, and answer in-
clusively our research scope, complementing the relevant literature and can have direct
policy implications.

The current energy transition taking place globally is massive and is expected to take
time, and could eventually become a game changer and alter the power status of nations
globally. Moreover, it can affect international relations and drive nation-states to gain
more strength and power if they succeed to gain access to related natural resources that
are critical for the development of RES. The final share of RES in the energy mix for total
primary energy supply and electricity generation of a nation state’s short and long-term
energy security seem to be important. Diversification of energy mix is always seen as
the proper strategy for a nation state to follow, in order to be sure that any change to be
implemented in its national energy policy will be sustainable and effective. Since RES is
not purely geographically concentrated as traditional types of energy and thus not fully
managed by each country, it depends on different geopolitical risks.
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Abstract: We use a dataset for the group of G7 countries and China to study the out-of-sample
predictive value of uncertainty and its international spillovers for the realized variance of crude oil
(West Texas Intermediate and Brent) over the sample period from 1996Q1 to 2020Q4. Using the Lasso
estimator, we found evidence that uncertainty and international spillovers had predictive value
for the realized variance at intermediate (two quarters) and long (one year) forecasting horizons
in several of the forecasting models that we studied. This result holds also for upside (good) and
downside (bad) variance, and irrespective of whether we used a recursive or a rolling estimation
window. Our results have important implications for investors and policymakers.
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1. Introduction

Heightened macroeconomic uncertainty, as observed over the last decade and half
due to the global financial crisis (GFC), the European sovereign debt crisis, and, of course,
the ongoing COVID-19 pandemic, has tended to make the path of the future aggregate
demand of commodities, and, as a result, also aggregate production, less predictable. Given
this, risk averse commodity producers prefer to hold physical inventory, which causes a rise
in the convenience yield, which, in turn, results in increased volatility of commodity prices,
as outlined in the ‘Theory of Storage’ [1,2]. With crude oil being undoubtedly the most
actively traded commodity, quite a few recent studies have analyzed the role of uncertainty
in forecasting the volatility of the oil market (see, for example, [3–7]). For earlier studies,
the reader is referred to the references cited in these papers.

As far as the existing literature is concerned, Bonaccolto et al. [3], analyzed the rele-
vance of newspaper-based measures of economic policy and equity market uncertainty
of the United States (US) in predicting the conditional quantiles of crude oil returns and
volatility, using a nonparametric k-th order causality-in-quantiles model. A dynamic analy-
sis showed that these US-based uncertainty indexes are primarily relevant during periods
of market distress, when the role of oil risk is the predominant interest, with heterogeneous
effects over different quantile levels.

Along similar lines, Bouri et al. [4] analyzed the predictive power of a daily newspaper-
based index of US uncertainty associated with infectious diseases (EMVID) for oil-market
volatility. These authors documented that incorporating EMVID into a forecasting set-
ting significantly improved the forecast accuracy of oil volatility at short-, medium-,
and long-run horizons, based on a heterogenous autoregressive model of (realized) volatil-
ity. Li et al. [5], using a mixed data sampling generalized autoregressive conditional
heteroscedastic (MIDAS-GARCH) model, highlighted the role of monetary policy uncer-
tainty in addition to overall economic policy uncertainty of the US in forecasting oil market
volatility.
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However, Dutta et al. [7], relying on a quantiles-based approach, showed that, unlike
the overall uncertainty of the US related to policy decisions, equity market volatility of
the US in general, and the same due to commodity market movements and crises, carried
higher forecasting power for oil market volatility. Interestingly, while Li et al. [5] did
not find a metric of global uncertainty to be important in forecasting oil market volatility,
Liang et al. [6] did highlight its relevance along with the importance of the overall equity
market volatility indices of the US, as the existing studies above discussed , using a standard
predictive regression framework, model combination, and shrinkage approaches.

As can be observed from the concise review presented in the preceding paragraph,
a general tendency of the above studies is to primarily incorporate the role of the uncertainty
of the US in predicting movements of the oil market volatility, barring to some extent the
work of Liang et al. [6], who considered a role of a measure of global uncertainty. While
this is understandable to some extent given the dominance of the US as a major player
in the global oil market (and also because the GFC originated in the US), Bahloul and
Gupta [8] and Dinçer et al. [9], indicated that uncertainties of other economies within the
G7 (comprising of Canada, France, Germany, Italy, Japan, the United Kingdom and the US)
and China, also tend to drive oil market volatility due to the importance of their position
as exporters and importers in the oil market.

In light of this, and the fact that oil is a global market, we forecast the quarterly realized
variance (RV) of oil (West Texas Intermediate, WTI, and Brent crude) price volatility and
consider not only the role of uncertainties of all the G7 countries and China but also their
respective spillover of uncertainty to the rest of the world, over the period from 1996Q1 to
2020Q4. Accounting for the total amount of uncertainty spillovers of these major economies
onto other countries renders it possible to better model worldwide uncertainty and its
influence on global oil demand in a parsimonious manner, i.e., without incorporating the
information from uncertainties of multiple other (135 to be exact, based on our data source,
which we shall discuss later in detail) countries in the world.

In this regard, we were motivated by the work of Liang et al. [6], who suggested
the need to look at a global measure of uncertainty (based on 22 countries, unlike 143 in
our case) over and above the same of the US in predicting oil-price volatility. Following
Andersen and Bollerslev [10], we captured RV as the sum of squared returns over a quarter,
which yielded an observable, unconditional, measure of volatility, which is otherwise a
latent process. Conventionally, the time-varying volatility was modeled and the fit assessed
using various GARCH models, under which the conditional variance is a deterministic
function of the model parameters and past data. Alternatively, some recent papers consid-
ered stochastic volatility (SV) models, where the volatility is a latent variable that follows a
stochastic process. Irrespective of whether one uses GARCH or SV models, the underlying
estimate of volatility is not model-free (or unconditional) as in the case of RV.

One must realize that identifying factors that, in our case, happen to be the uncertain-
ties of the G7 and their spillovers, that help to accurately forecast oil market volatility also
has economic implications that are of key importance for both policymakers and investors.
This is because, as shown by van Eyden et al. [11], movements in the second-moment of
crude oil can predict slowdowns in worldwide economic growth.

Moreover, the recent financialization that has characterized developments in the oil
market has led to the increased participation of hedge funds, pension funds, and insurance
companies in the market, as per Bampinas and Panagiotidis [12], Degiannakis and Filis [13],
and Bonato [14], which resulted in oil being viewed as an alternative investment in the
portfolio decisions of financial institutions (especially post the GFC). Precise forecasts of
oil-price volatility are of vital importance to oil traders, since volatility is a key input to
investment decisions and portfolio choices [15].

To the best of our knowledge, this is the first paper to evaluate the out-of-sample
forecasting power of uncertainties of the G7 and China and its spillovers for oil returns
volatility. In order to account for the fact that market agents care about the level and nature
of volatility, the latter making it important to distinguish between upside (“good”) and
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downside (“bad”) volatilities [16], we also forecast good RV (the sum of daily squared
positive returns only over a quarter) and bad RV (the sum of daily squared negative returns
only over a quarter), in addition to the overall RV.

Given that our data sample spans a 25 year period (1996–2020) of 100 quarterly obser-
vations, and we have 16 predictors, besides one lag of RV that captures the well-known per-
sistence of RV associated with the oil market [17,18], we use, as our econometric approach,
a machine-learning technique known as least absolute shrinkage and selection operator
(Lasso), proposed by Tibshirani [19], which, in turn, is a regression-analysis method that
performs both variable selection and regularization (i.e., the process of adding information
to prevent overfitting) in order to enhance the prediction accuracy and interpretability of
the resulting statistical model.

In this regard, it should be noted that the better performance of the Lasso model over
forecast-combination methods in forecasting oil-market volatility has been demonstrated
by Liang et al. [6] and, hence, motivates us to rely on this framework as well. Our
paper, thus, adds to the already existing large literature on the forecastability of oil-returns
volatility by considering the role of the uncertainties of major economies in the world
and the associated spillover, where the literature can be grouped into the following broad
categories, using a wide variety of models and macroeconomic, financial, behavioral,
and climate pattern-related predictors (see, for example, Lux et al. [20]), Bonato et al. [21],
Demirer et al. [22,23], Gkillas et al. [24], Bouri et al. [25]; Salisu et al. [26], and the references
cited within these papers).

We organize the remainder of this paper as follows: In Section 2, we describe our data.
In Section 3, we briefly discuss the forecasting models, along with the Lasso approach
used to estimate these models. In Section 4, we present the results from our forecasting
experiment. In Section 5, we conclude.

2. Data

As for crude oil prices, we used the nominal daily data derived from the US Energy
Information Administration (EIA, https://www.eia.gov/dnav/pet/hist/RWTCD.htm
(accessed on 1 May 2021)) for West Texas Intermediate (WTI). After computing the daily
log-returns, we obtained quarterly overall, upside (“good”), and downside (“bad”) realized
variances by taking the sum of the daily squared returns, positive returns only, and negative
returns only over a specific quarter. As a robustness check, we also analyzed the quarterly
RV of the Brent crude oil returns, which, in turn, was also sourced from the US EIA (see
https://www.eia.gov/dnav/pet/hist/RBRTED.htm (accessed on 1 May 2021)).

Figure 1 plots the RV (and its “good” and “bad” counterparts, as defined in Section 3)
of both the WTI and Brent crude oil returns. During the GFC, sharp fluctuations in RVs
were observed over 2020 associated with the COVID-19 outbreak, thus, highlighting the
importance of our question.

Uncertainty is a latent variable and, hence, requires methods to measure it. As doc-
umented by Gupta et al. [27], there are three broad approaches to quantify uncertainty,
apart from the various ones associated with financial markets (such as implied-volatility
indices, like the popular VIX, realized volatility, idiosyncratic volatility of equity returns,
and corporate spreads): (1) a text-based approach, with the main idea to construct indices
from searches of key words or terms related to (economic and policy) uncertainty in major
newspapers or country-reports; (2) using stochastic-volatility estimates from various small
and large-scale structural models (related to macroeconomics and finance) to derive mea-
sures of uncertainty; and (3) using the dispersion of professional forecaster disagreements
to obtain uncertainty estimates.

For our metric of uncertainty, we used the first approach outlined by Ahir et al. [28],
mainly because it is not model-specific, as it does not require any complicated estimation
of a large-scale model to generate it in the first place. In addition to the uncertainty data,
the associated spillover of the G7 economies and China to other economies in the world,
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are available publicly for download (https://worlduncertaintyindex.com/data/ (accessed
on 1 May 2021)).
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Figure 1. Realized volatility. For better readability, the vertical axes of the panels are not the same for all time series.

From frequency counts of “uncertainty” (and its variants) in the quarterly Economist
Intelligence Unit (EIU) country reports from 1996 for 8 of the 143 countries, Ahir et al. [28]
constructed quarterly indices of economic uncertainty for 37 countries in Africa, 22 in
Asia and the Pacific, 35 in Europe, 27 in the Middle East and Central Asia, and 22 in the
Western Hemisphere. The EIU reports provide an analysis and forecasts of political, policy,
and economic conditions, as well as a discussion of significant political and economic
developments in each country. These reports are compiled by a central EIU editorial team
from work done by country-specific teams of analysts.

In order to make the uncertainty indexes comparable across countries, the raw counts
were scaled by the total number of words in each report. In addition to the uncertainty
indexes of each of the 143 countries, the dataset of Ahir et al. [28] also provides the
uncertainty spillover metrics for the G7 and China, which, in turn, determine the choice of
the countries in our paper, and the quarterly sample period of 1996Q1 to 2020Q4, which
was the latest available data at the time of writing this paper. Specifically, the eight (G7 plus
China) uncertainty spillover indexes of one of these particular countries to the remaining
142 countries was computed by counting the percent of word “uncertain” (or its variant)
mentioned within a proximity to a word related to a particular G7 country or China in the
EIU country reports.

The spillover index was then rescaled by multiplying 1,000,000 with a higher number
suggesting higher uncertainty related to the specific country involving the G7 or China
and vice versa. For further details regarding the words related to the G7 and China that
were used, the reader is referred to Ahir et al. [28]. We used the cross-sectional sum over
time to obtain the total uncertainty spillover (on to the remaining 142 economies) indexes
of each of these eight countries.

Understandably, since we aimed to contribute to the oil RV forecasting literature by
analyzing whether accounting for spillovers of uncertainty of the G7 countries and China
to the rest of the world mattered over and above the uncertainty of these economies, we
relied on the method of Ahir et al. [28] for a matter of consistency and similarity in how
both these indexes are derived, even though alternative ways of constructing country-level
uncertainty indexes, though not spillovers, are available in the public domain (see, for
example, the indexes avilable at: http://policyuncertainty.com/ (accessed on 9 July 2021)
based on the work of Baker et al. [29]).
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Figures 2 and 3 plot the uncertainty time series and the international spillover effects.
While the uncertainty series tended to fluctuate consistently over time, the spillovers had
sudden massive spikes from the country(ies) of origin of the GFC, the European sovereign
debt crisis, “Brexit”, and the outbreak of the Coronavirus pandemic.
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Figure 2. Time series of uncertainty. For better readability, the vertical axes of the panels are not the same for all time series.

Figure 3. Time series of international spillovers. For better readability, the vertical axes of the panels are not the same for all
time series.

3. Methodologies

For the forecasting analysis, we used a linear regression model. The model featured
an intercept and an autoregressive term as its core components. The autocorrelation
functions for the realized volatility (for the estimator that we used in our empirical re-
search, see Equations (5)) plotted in Figure 4 showed that this simple autoregressive model
should suffice to capture the main elements of the persistence of RV (and its “good” and
“bad” counterparts).

Based on the suggestion of an anonymous referee, we also compared the in-sample
performance of our benchmark autoregressive RV model with that of the best-fitting
GARCH model, namely the Exponential GARCH (EGARCH), in predicting RV and found
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that the former produced a lower root mean square error (RMSEs) than the latter, which is
not surprising given the insignificant coefficient in the volatility equation corresponding
to the lagged GARCH term, highlighting the inability of the model to adequately capture
volatility at a quarterly frequency. Complete details of these results are available upon
request from the authors.
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Figure 4. Autocorrelation functions of realized volatility. Dashed horizontal lines: bounds of the 95% confidence interval.
RVB: Downside (“bad”) RV. RVG: Upside (“good”) RV.

In addition, we considered the various uncertainties, U, and international spillovers,
S, as additional predictors. In our empirical application, this gave four forecasting models:

RVt+h = β0 + βRVt + εt+h, (1)

RVt+h = β0 + βRVt +
nu

∑
j=1

βu,jUt,j + εt+h, (2)

RVt+h = β0 + βRVt +
ns

∑
j=1

βs,jSt,j + εt+h, (3)

RVt+h = β0 + βRVt +
nu

∑
j=1

βu,jUt,j +
ns

∑
j=1

βs,jSt,j + εt+h, (4)

where the index h denotes the forecast horizon, and (for h > 1) RVt+h denotes the average
realized variance over the forecast horizon being studied, with h = 1, 2, and 4 in our
context. When computing out-of-sample forecasts, we constructed the data matrix in such
a way that the number of forecasts was the same for all forecast horizons. In addition,
nu and ns denote the number of uncertainties and international spillovers being studied,
and εt+h denotes an error term.

Figures 5 and 6 plot the autocorrelation functions for the uncertainties and interna-
tional spillovers. The figures show that all uncertainty measures exhibited a certain degree
of persistence, while we observed persistence in the case of the international spillovers
mainly for Canada, China, the United Kingdom, and the United States only.

As the dependent variable, we used the classical estimator of RV (Andersen and
Bollerslev, 1998). In our case, we used the sum of the squared daily returns per quarter.
We have

RVt =
M

∑
i=1

r2
t,i, (5)
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where rt,i is the daily return, which is defined as the log-difference in prices as observed on two
consecutive days, and i = 1, . . . , M is the number of quarterly observations. As a robustness
check, we shall also study whether uncertainties and international spillovers help to forecast√

RV, which researchers also often call “volatility” in empirical finance applications.
We also studied the predictive value of uncertainties and international spillovers for

upward (“good”, RVG) and downward (“bad”, RVB) realized variance. Thus, we also
forecast RVG and RVB with our forecasting equations. In line with Barndorff-Nielsen et al.
(2010), we computed the bad and good realized volatility as described by the following
two equations (1 = indicator function):

RVGt=
M

∑
i=1

r2
t,i 1[(rt,i)>0], (6)

RVBt=
M

∑
i=1

r2
t,i 1[(rt,i)<0]. (7)

For the estimation of our forecasting model, we used the least absolute shrinkage and
selection operator (Lasso) estimator. Our choice of the Lasso as our preferred estimation
technique reflects the fact that the dimension of the forecasting model became quite large
(relative to the size of our sample period) when we added the various uncertainties and
international spillovers to the core components of the model. The Lasso technique chose
the coefficients, β, βu,1, βu,2, . . . , βs,1, βu,2, . . ., so as to minimize the following expression
(for a detailed discussion of the Lasso, see, e.g., Hastie et al. [30]):

N

∑
t=1

(
RVt+h − β0 − βRVt −

nu

∑
j=1

βu,jUt,j −
ns

∑
j=1

βs,jSt,j

)2

+ λ

(
|β|+

nu

∑
j=1

|βu,j|+
ns

∑
j=1

|βs,j|
)

, (8)

where N denotes the number of observations used for estimation of the model. Hence,
the Lasso shrinking used the L1 norm of the coefficient vectors to shrink the dimension of
the estimated model. Depending on the magnitude of the shrinkage parameter, λ, the Lasso
estimator shrinked and even set to zero some of the coefficients and, thus, can be viewed
as a predictor-selection technique.
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Figure 5. Autocorrelation functions of uncertainties. Dashed horizontal lines: bounds of the 95% confidence interval.

We selected the value of the shrinkage parameter, λ, to minimize the minimum mean
cross-validated error when we used 10-fold cross validation. For estimation of the Lasso
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models, we used the R package “glmnet” [31]. For the R environment for statistical
computing, see the R Core Team [32].
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Figure 6. Autocorrelation functions of international spillovers. Dashed horizontal lines: bounds of the 95% confidence interval.

In order to compute out-of-sample forecasts, we primarily used a recursively expand-
ing estimation window (with a training period of 10 years to initialize the estimations) and,
as a robustness check, a fixed-length rolling estimation window. We, then, evaluated the
forecasts by means of the Clark and West [33] test. The null hypothesis was that the models
being compared had an equal out-of-sample mean-squared prediction error (MSPE).

The Clark–West test requires regressing the quantity f̂t+h = (RVt+h − R̂VA,t+h)
2 −

[(RVt+h − R̂VB,t+h)
2 − (R̂VA,t+h − R̂VB,t+h)

2] on a constant, where a hat denotes the fore-
cast of RV, and the subindices A and B denote the two models under scrutiny (B denotes
the larger model). The Clark–West test is based on an adjusted difference of the MSPEs im-
plied by Models A and B. The test rejects the null hypothesis if the t-statistic of the constant
in this regression model is significantly positive (one-sided test; we used Newey–West
robust standard errors to study the significance of the t-statistic).

4. Empirical Results

In Table 1, we report the baseline forecasting results for WTI and Brent. The table
gives the p-values of the Clark–West test. The key message to take home from the results
given in the table is that the Lasso model that included uncertainty and/or international
spillovers outperformed in our out-of-sample forecasting exercise for the core model at the
intermediate and long forecasting horizon. We obtained this key result for both WTI and
Brent crude oil-price realized variances.

We used robust standard errors to compute the p-values because (as one would have
expected) the forecast errors were autocorrelated at the longer forecast horizons due to the
overlapping forecast horizons. As suggested by an anonymous reviewer, we also tested
whether the forecast errors had a unit root. A standard unit root test (Kwiatowski et al. [34]
showed that the forecast errors could be regarded as stationary time series. Detailed results
are not reported to save journal space but are available from the authors upon request.

There was also evidence of predictive value when we further extended the forecast
horizon to six and eight quarters. Further, when we studied the natural logarithm of RV,
we observed improvements in the forecasting performance at the longer and, depending
on the model specification, at the intermediate forecasting horizon. Detailed results are
available from the authors upon request.
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Table 1. Baseline forecasting results.

Panel A: WTI

Model h = 1 h = 2 h = 4

Uncertainty 0.8103 0.0019 0.1347
Spillovers 0.8665 0.0161 0.0681

Both 0.8930 0.0005 0.0013

Panel B: Brent

Model h = 1 h = 2 h = 4

Uncertainty 0.1723 0.0024 0.1191
Spillovers 0.7901 0.0706 0.0463

Both 0.2008 0.0106 0.0008
CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. Training period used to
initialize the recursive-estimation scheme: 40 quarters.

In order to shed further light on the relative forecasting performance of the model,
we document in Table 2, for both WTI and Brent, the forecasting gains expressed as the
percentage increase (or decrease) in the ratio of the root-mean-squared-forecasting error
(RMSFE) of the benchmark (that is, autoregressive) model and the alternative models.
A positive forecasting gain, thus, shows that the RMSFE of the benchmark model exceeded
the RFMSFE of the alternative model, implying that the alternative model yielded better
forecasts under a standard quadratic loss function.

We observed positive forecasting gains mainly at the intermediate and especially at
the long forecasting horizon. The forecasting gains were the largest when we combined
uncertainty and international spillovers (h = 2, 4). The autoregressive benchmark model,
in turn, tended to fare better than the alternative models at the short forecasting horizon.
Taken together, the results corroborated the results of the Clark–West test. The correlation
between the forecasting gains reported in Table 2 and the p-values of the Clark–West test
given in Table 1 was significantly negative (coefficient of correlation = −0.48, t-statistic of
−2.19, p-value = 0.04), showing that higher forecasting gains tended to be associated with
lower p-values and, thus, significant test results.

Table 2. Forecasting gains.

Panel A: WTI

Model h = 1 h = 2 h = 4

Uncertainty −2.2952 −0.0290 0.2379
Spillovers −3.3006 3.0384 2.4165

Both −2.6771 3.6453 4.4951

Panel B: Brent

Model h = 1 h = 2 h = 4

Uncertainty 0.3186 0.6375 0.1207
Spillovers −7.5552 −12.9077 0.3586

Both −0.0492 1.5670 6.7234
Note: The forecasting gains are defined as 100 × (RMSFE0/RMSFE1 − 1), where the index 0 denotes the bench-
mark (autoregressive) model, and the index 1 denotes the alternative models (including uncertainty and/or
spillovers). RMSFE: root-mean-squared-forecasting error. Training period used to initialize the recursive-
estimation scheme: 40 quarters.

A major exception arose in the case of Brent and the spillovers model and h = 2, where
the forecasting gain was negative (and large in absolute terms), while the Clark–West test
(which is, as described in the methodology in Section 3, based on the adjusted difference
of the out-of-sample MSPEs generated by the two models being compared) yielded a
significant result.
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Next, we summarize in Table 3 the results (Clark–West test) for the good and bad
realized variances, again for both WTI and Brent. The results corroborated that uncertainty
and/or international spillovers added to the forecasting performance of the model esti-
mated on data for bad realized variance at the intermediate and long forecast horizon.
For good realized variance, we observed insignificant test results in the case of uncertainty
for WTI and significant test results for international spillovers at the intermediate and
long forecast horizon. In addition, the test results for both uncertainty and international
spillovers were insignificant at the short and the intermediate, but not at the long, forecast
horizons for Brent.

Table 3. Forecasting results for upside and downside volatility.

Panel A: Bad Realized Variance (WTI)

Model h = 1 h = 2 h = 4

Uncertainty 0.1540 0.0447 0.0334
Spillovers 0.7545 0.0362 0.4446

Both 0.9393 0.0228 0.1652

Panel B: Bad Realized Variance (Brent)

Model h = 1 h = 2 h = 4

Uncertainty 0.4946 0.0003 0.0073
Spillovers 0.2806 0.0838 0.0472

Both 0.2907 0.0029 0.0211

Panel C: Good Realized Variance (WTI)

Model h = 1 h = 2 h = 4

Uncertainty 0.7907 0.1301 0.5917
Spillovers 0.8808 0.0202 0.0007

Both 0.8691 0.0021 0.0003

Panel D: Good Realized Variance (Brent)

Model h = 1 h = 2 h = 4

Uncertainty 0.6569 0.1818 0.0001
Spillovers 0.3599 0.8717 0.0027

Both 0.7035 0.4739 0.0010
Note: CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. Training period
used to initialize the recursive-estimation scheme: 40 quarters.

Table 4 gives the forecasting results for
√

RV. We use the terms “realized volatility”
and “realized variance” interchangeably in this paper, while researchers in the empirical-
finance literature often use the term “volatility” to refer to

√
RV. The results for WTI

showed that uncertainty had predictive value at the long forecast horizon, but international
spillovers did not add to the forecasting performance of the model. The test results for
Brent, in turn, were significant for uncertainty at the intermediate and the long forecast
horizon, and for international spillovers at the long forecast horizon.

Table 5 summarizes the results for a rolling-estimation window. The test results were
significant for all three forecasting horizons (at the 10% level) for uncertainty in the case
of WTI. In addition, the test results for international spillovers were significant for WTI
when we studied the long forecast horizon. As for Brent, the test results for uncertainty
and international spillovers were significant for the long forecast horizon and, in addition,
for the intermediate forecast horizon in the case of international spillovers.
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Table 4. Forecasting results for the realized volatility (
√

RV).

Panel A: WTI

Model h = 1 h = 2 h = 4

Uncertainty 0.7271 0.2133 0.0255
Spillovers 0.8681 0.1204 0.1304

Both 0.8946 0.1175 0.0298

Panel B: Brent

Model h = 1 h = 2 h = 4

Uncertainty 0.1570 0.0317 0.0083
Spillovers 0.5702 0.1058 0.0557

Both 0.4063 0.0651 0.0070
Note: CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. Training period
used to initialize the recursive-estimation scheme: 40 quarters.

Table 5. Forecasting results for a rolling-estimation window.

Panel A: WTI

Model h = 1 h = 2 h = 4

Uncertainty 0.0894 0.0916 0.0018
Spillovers 0.1562 0.2739 0.0775

Both 0.1395 0.1714 0.0006

Panel B: Brent

Model h = 1 h = 2 h = 4

Uncertainty 0.1832 0.1606 0.0734
Spillovers 0.3552 0.0105 0.0020

Both 0.4020 0.0114 0.0004
Note: CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. Length of the
rolling-estimation window: 40 quarters.

In order to illustrate how the Lasso estimator works, we plot in Figure 7 the importance
of the uncertainty and international spillovers over time. The results are for WTI and
a recursive-estimation window. We used a simple metric of importance. Specifically,
we define importance as the number of nonzero coefficients estimated for uncertainty
(international spillovers) divided by nu (ns). Hence, zero means that the Lasso sets all
coefficients, for example, of uncertainty to zero in a given forecasting period, and one
means that all coefficients of uncertainty are included in the model.

The results show that uncertainty tended to be of more importance on average than
international spillovers at the short and the intermediate forecast horizon, while the im-
portance of both categories of predictors was more or less balanced at the long forecast
horizon. The results also illustrate that the importance of both uncertainty and international
spillovers was not stable over the out-of-sample period, lending support to our decision to
use a recursive- and a rolling-estimation window to analyze the forecasting properties of
uncertainty and international spillovers for the realized volatility over time.

This result is not surprising but is indicative of the fact that uncertainty and its
spillovers themselves are not constant and vary across time (as shown in Figures 2 and 3)
depending on events that affect the macroeconomic uncertainty in these major economies
and the associated spillovers, thereafter, to the rest of the world.
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Figure 7. Importance of uncertainty and international spillovers. The results are for WTI and a
recursive-estimation window. Importance is defined as the number of nonzero coefficients estimated
for uncertainty divided nu and similarly for spillovers. Hence, zero means that all coefficients of,
for example, uncertainty are zero in a given forecasting period, and one means that all coefficients
of uncertainty/spillovers are nonzero. The time axis refers to the period in which a forecast is
being made.

Table 6 summarizes, as a further robustness check, the results for a ridge-regression
approach. A ridge regression also solves the minimization problem given in Equation (8)
for the Lasso with the difference being that the penalty term multiplied by the λ coefficient
used the L2 norm to shrink the estimated coefficients of the forecasting model. The
results show that, at the intermediate forecast horizon, only the uncertainty improved the
forecasting performance, whereas, for the long forecasting horizon, both uncertainty and
international spillovers (Brent) helped to improve the forecast accuracy.

Our forecasting analysis confirmed the initial premise of our paper that the uncer-
tainties of other important economies within the G7 in addition to the US and China also
tend to drive oil market volatility due to the importance of their position as exporters
and importers in the oil market. Especially in the longer-run, the spillovers of uncertainty
from these major economies to other countries in the world are important in capturing the
accurate size of the global demand in the oil market in the wake of increased uncertainty.

The relatively stronger long-run influence of spillovers on oil market volatility is
understandable, since it takes time for uncertainty originating in the G7 and China to
spread to the rest of the world, via various channels namely, trade, financial markets,
and exchange rates [35,36], to the extent that it leads to uncertainty convergence over
time [37]. In sum, our findings are indicative of the fact that accounting for the total amount
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of uncertainty spillovers of the major economies, over and above their own uncertainties,
allowed us to better model worldwide uncertainty and its influence on global oil demand,
which, in turn, translated into more accurate forecasting of the realized variance capturing
oil-market volatility.

Table 6. Forecasting results for a ridge regression.

Panel A: WTI

Model h = 1 h = 2 h = 4

Uncertainty 0.7883 0.0017 0.0005
Spillovers 0.8775 0.4673 0.1202

Both 0.8018 0.4647 0.0225

Panel B: Brent

Model h = 1 h = 2 h = 4

Uncertainty 0.4852 0.0013 0.0027
Spillovers 0.8576 0.1443 0.0076

Both 0.8233 0.3856 0.0053
Note: CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. Length of the
recursive-estimation window: 40 quarters.

5. Conclusions

Based on a dataset for the G7 countries and China, our results showed that uncer-
tainty and international spillovers had predictive value in an the out-of-sample forecasting
exercise for the realized variance of crude oil (West Texas Intermediate and Brent), where
our sample period ranged from 1996Q1 to 2020Q4. Given that, on the one hand, our
sample period was relatively short and, on the other hand, our data comprised measures
of uncertainty for eight countries and eight measures of international spillovers, we used
the Lasso estimator to estimate our forecasting models. Taken together, our empirical
results demonstrated that, depending on the model specification, uncertainty and interna-
tional spillovers had predictive value for the realized variance (and its “good” and “bad”
counterparts) at an intermediate (two quarters) and a long (one year) forecasting horizon.

Compared to the current literature, which has relied only on the role of US uncertainty
in predicting oil market volatility, our paper extends this line of research by highlighting
the importance of not only the uncertainty of the G7 countries and China but also their
respective spillovers of uncertainty to the rest of the world. This being the first study of its
kind, it is impossible to provide comparative quantitative assessment of our results with
the existing papers in this related area; however, its academic value in terms of depicting
the pertinent role of uncertainty and its spillovers beyond the US in forecasting oil-market
volatility cannot be overlooked.

In addition, our results can be used by policy authorities to obtain information on
the future path of the volatility of oil prices due to uncertainty of G7 countries and China,
as well as the associated global spillovers of uncertainty from these economies. This
knowledge, in turn, could be useful to predict economic activity, given that oil-price
volatility is known to lead business cycles. Our results, therefore, may help policymakers
to reach appropriate policy decisions in the wake of the movements in the uncertainties of
major global economies and the spillovers. Moreover, with volatility being a key input in
portfolio decisions, the forecastability of oil-price volatility due to the uncertainties of G7
and China, as well as the associated spillovers, should be of vital importance to traders in
the oil market.

Having indicated the important implications of our results, it is also necessary to
acknowledge one limitation of our study in terms of the low-frequency of our data. Ideally,
we would have preferred to have conducted the forecasting exercise of realized variance
of oil at a higher frequency, as it is of great importance for policymakers and investors to
make timely policy and portfolio decisions; however, the uncertainty spillover indexes
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were available only at a quarterly frequency and, hence, constrained us in our ability to
provide higher-frequency (say, for example, daily or monthly) results.

As a part of future research, it would be interesting to extend our analysis to other
commodity markets, in particular gold, which is a well-established safe haven in the wake
of heightened uncertainty [38,39].
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Abstract: Short-term load forecasting is an important part of load forecasting, which is of great
significance to the optimal power flow and power supply guarantee of the power system. In this paper,
we proposed the load series reconstruction method combined improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) with sample entropy (SE). The load series is
decomposed by ICEEMDAN and is reconstructed into a trend component, periodic component, and
random component by comparing with the sample entropy of the original series. Extreme learning
machine optimized by salp swarm algorithm (SSA-ELM) is used to predict respectively, and the
final prediction value is obtained by superposition of the prediction results of the three components.
Then, the prediction error of the training set is divided into four load intervals according to the
predicted value, and the kernel probability density is estimated to obtain the error distribution of the
training set. Combining the predicted value of the prediction set with the error distribution of the
corresponding load interval, the prediction load interval can be obtained. The prediction method
is verified by taking the hourly load data of a region in Denmark in 2019 as an example. The final
experimental results show that the proposed method has a high prediction accuracy for short-term
load forecasting.

Keywords: load forecasting; load series; mode decomposition; extreme learning machine; kernel
density estimation

1. Introduction

With the development of industry and the economy, the conflict between supply and
demand for energy is becoming increasingly acute. Among them, electric energy is not
only closely related to people’s lives, but also closely related to industrial production.
Therefore, the balance between the supply and demand of electric energy is of particular
concern. At present, the main power generation model in the world is still coal combustion
power generation, which will cause air pollution. To ensure the sustainable development
of economy, countries all over the world are vigorously developing new energy [1]. With
the development of electric energy conversion technology and electric energy storage
technology [2,3], photovoltaic power generation, wind power generation, tidal power
generation, and geothermal power generation are more and more incorporated into the
power grid, which not only alleviates the energy shortage but also introduces a large
number of random power flows. This poses a new severe challenge to the stability and
load balance of the power grid.

In the power system incorporating a large number of new energy sources, power
needs to achieve a two-way balance between supply and demand. However, due to the
uncontrollability of the power generation on the supply side being affected by a variety
of influencing factors, the power consumption behavior of users on the demand side also
has certain randomness. The interaction between supply and demand increases more
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uncertain factors for the load flow of the system, and accurate short-term load forecasting is
of great significance to ensure the balance of the power system [4]. On the other hand, since
September 2021, China has notified many places to limit the power load, which has had a
certain impact on the lives of some people and the production of enterprises. Therefore,
accurate prediction of power load is a major demand for social development. Finally, with
the construction of the smart grid [5], it is not only to improve the stability and energy
utilization of the system, and reduce the power generation cost, but also an important goal.
Accurate prediction of power demand in various regions is helpful to realize the economic
operation of a power system [6].

Load forecasting can be divided into point forecasting [7,8] and probability forecast-
ing [9,10] according to the forecasting results. At present, most load forecasting is mainly
point forecasting of load, and the forecasting result is the single point expectation of load at
a certain time in the future. Power load is nonlinear and time-varying, so point prediction
is difficult to reflect the fluctuation range of load change. The estimation of some uncertain
factors in power market by probabilistic prediction method is helpful to the control and
stable operation of power grid [11].

According to whether the prediction object or the distribution type of prediction error
presupposes, probability prediction can fall into parametric probability prediction [12] and
nonparametric probability prediction [13,14]. Using the parametric methods for probability
density estimation requires the object is estimated to conform to a specific distribution,
which has limitations in the present situation where more and more new energy generation
is being integrated into the grid. The a priori assumptions avoided by the non-parametric
method and the absence of excessive human intervention make it easier to approach the
actual distribution.

In most decomposition and integration models, the load series is decomposed into
several components by decomposition method. Then, predicting each component, the
number of models is large, and the training time is long. In order to solve this problem,
we use improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN) combined with sample entropy to reconstruct the load series into three parts:
random component, periodic component, and trend component, which reduces the number
of models. In this way, the number of prediction models can be reduced to three and the
training time can be shortened. For most load forecasting, point forecasting is used, which
is difficult to reflect the load variation range. We use point forecasting combined with
probability forecasting to predict the load interval. The error interval of the prediction set
is obtained by combining the probability distribution of the error of the training set with
KDE, and the final prediction interval can be obtained by combining the predicted value
of the point. Finally, under the 90% confidence interval, the prediction intervals coverage
probability (PICP) reached 0.919, indicating that 91.9% of the prediction set data fell within
the prediction interval. On the other hand, the prediction intervals normalized averaged
width (PINAW) on the cover is 0.112, which shows that we do not improve the prediction
accuracy by increasing the bandwidth. In conclusion, we can draw a conclusion that the
method proposed in this paper has good prediction accuracy and has a good application
prospect in the field of load probabilistic forecasting.

The rest of this paper is structured as follows. The second section introduces the current
research work of load forecasting. The third section introduces the relevant methods used
in this paper. The fourth section mainly introduces the realisation process of the model and
evaluation indicators. The fifth section is the experimental results and analysis. The sixth
section is the summary of this paper.

2. Literature Review

At present, load forecasting methods are mainly divided into traditional methods
and artificial intelligence methods. Artificial intelligence methods mainly include deep
learning methods represented by the short-term memory network (LSTM) [15,16] and the
convolutional neural network (CNN) [17,18], and machine learning methods represented
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by support vector regression (SVR) [19,20] and the artificial neural network (ANN) [21,22].
The deep learning method has the characteristics of a good prediction effect and high fault
tolerance to input, but the model spends a lot of time in training. At present, decomposition
and integration models have made preferable effects in load forecasting and other energy
forecasting fields, but these models often predict all decomposed components one by
one and then superimpose the results, so the training time is usually long. In addition,
there is a direct relationship between the decomposition and the prediction accuracy of
the integrated model and the decomposition method. The phenomenon of mode aliasing
may occur in empirical mode decomposition (EMD) [23]. The amplitude and iteration
number of white noise added by ensemble empirical mode decomposition (EEMD) [24]
depends on the human experience setting. When the numerical setting is not set, it may
be unable to overcome the phenomenon of modal aliasing. These factors may affect the
prediction results.

At present, most load forecasting still takes the determined load value as the forecast-
ing goal. Ge et al. [25] achieved good accuracy in industrial load prediction using reinforce-
ment learning combined with least squares support vector machines for particle swarm
optimisation. Zhang et al. [26] used complete ensemble empirical mode decomposition
with adaptive noise combined with support vector regression with dragonfly optimization
to forecast the electric load, which also had good prediction results. Rafi et al. [27] used
convolutional neural networks combined with long- and short-term memory networks to
construct a prediction model for short-term electricity load forecasting and achieved good
prediction reliability. Wang et al. [28] used a long- and short-term memory network to
forecast short-term residential loads with consideration of weather features. Phyo et al. [29]
used classification and regression tree and the deep belief network for 30-min granularity
load forecasting.

On the other hand, deterministic forecasting is difficult to fully reflect the load infor-
mation. Therefore, using the probability forecasting method to predict the load change
range is helpful to provide strong support for the production, dispatching, operation, and
other links of the power grid system.

In addition, the prediction accuracy of decomposition and the integrated model is
directly related to the decomposition method, and the phenomenon of mode aliasing may
occur in empirical mode decomposition. On the other hand, most decomposition and
integration models build prediction models for each component. Although the prediction
accuracy is high, the number of models is large and the training time is long.

In this paper, we first carry out point prediction, and then analyze the training set
error to obtain the distribution of prediction error in different load intervals to realize load
probability prediction. The improved complete ensemble empirical mode decomposition
with adaptive noise (ICEEMDAN) [30] effectively solves the problem of mode mixing in
empirical mode decomposition (EMD) and avoids the residual noise in decomposition
ensemble empirical mode decomposition (EEMD), which helps to improve the prediction
accuracy of the model. Firstly, the ICEEMDAN combined with sample entropy is used to
reconstruct the load series, which is decomposed into three parts—random component,
periodic component, and trend component—which effectively reduces the number of
prediction models and shortens the prediction time. Since the extreme learning machine
(ELM) algorithm was proposed, it has achieved good results in many fields, such as fault
diagnosis [31,32], coal mine safety [33], and so on. The accuracy of the prediction results
can be effectively improved by using the salp swarm algorithm (SSA) to optimize the ELM.
Then, the kernel density estimation method is used to analyze the training set error, obtain
the probability density curve of the training set error, and then estimate the error interval
of the prediction set to obtain the final interval prediction result.
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3. Methods

3.1. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (ICEEMDAN)

Improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN) is an algorithm based on empirical mode decomposition (EMD) proposed
by Colominas et al. [34]. ICEEMDAN can effectively solve the mode mixing problem of
EMD and the residual noise problem of EEMD. The decomposition process is as follows:

(1) Calculate the local mean of S(i) = S + λ0C1

(
α(i)
)

by EMD to obtain the first-order
residue R1 and corresponding intrinsic mode function (IMF) IMF1.

R1 =
(

M
(

S(i)
))

(1)

IMF1 = S − R1 (2)

where i ∈ {1, 2, 3 . . . M}, S is the original signal; λ is the signal-to-noise ratio; α(i) be
a realization of zero mean unit variance white noise; Cj(·) is the operator represents
the jth order intrinsic mode function obtained by EMD; and M(·) is the operator
represents the local mean of the resulting signal.

(2) Calculate the local mean of R1 + λ1C2

(
α(i)
)

by EMD to obtain the second-order
residue R2 and corresponding intrinsic mode function IMF2.

R2 =
(

M
(

R1 + λ1C2

(
α(i)
)))

(3)

IMF2 = R1 − R2 (4)

(3) Repeat the process until the signal cannot be decomposed.

Rl =
(

M
(

Rl−1(t) + λl−1Cl

(
α(i)
)))

(5)

IMFl = Rl−1 − Rl (6)

where l = 2, 3, . . . L, L are the total numbers of IMF.

Finally, the original signal is decomposed into S =
L
∑

j = 1
IMFj + RL.

3.2. Sample Entropy SE

Sample entropy (SE) [35] is a method to measure the complexity of unstable time
series. Compared with the general method, the sample entropy method does not depend
on the data length and has a better consistency. The value of sample entropy is positively
correlated with the degree of sequence self-similarity. The sample entropy is calculated
as follows:

(1) For the time series x(i) with sample size N, the following vectors are obtained accord-
ing to the order of m dimensional vectors of the time series:

X(i) = [x(1), x(2), . . . , x(N − m + 1)] (7)

where, i = 1, 2, 3 . . . N − m + 1.
(2) C group optimization algorithm proposed by Mirjaln Xm(i) whose distance from

Xm(j) is less than r in Xm(i). Define this number as Bi. The ratio of Bi to the total
number of vectors is denoted Bm

i .

dm = [Xm(i), Xm(j)] = max
0≤k≤m−1

|x(i + k)− x(j + k)| (8)
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Bm
i (r) =

Bi
N − m + 1

(9)

Bm(r) =

N−m
∑

i = 1
Bm

i

N − m
(10)

(3) Increase the dimension to m + 1, and repeat the step to calculate the Bm+1(r)
(4) Calculate sample entropy SE.

SE = − ln
[

Bm+1(r)
Bm(r)

]
(11)

3.3. Salp Swarm Algorithm (SSA)

The Salp Swarm Algorithm (SSA) is a heuristic group optimization algorithm proposed
by Mirjalili et al. [36] in 2017. The SSA algorithm mimics the swarm behaviour of salp on
the seabed to find the optimal parameters. In the sea, the salp group is in a chain shape;
the frontmost salp is responsible for guiding the whole swarm, and the following salps
are responsible for searching the global situation according to the forward direction. The
specific process of the SSA is as follows:

Initialize all parameters, the number of salp is M, the maximum number of iterations
is I, and [lb, ub] is the search range. d is the dimension of the parade target.

(1) Population initialization. SSA initializes the population by generating random numbers.

XM×d = lb + rand(M, d)× (ub − lb) (12)

(2) Calculate the fitness of each salp. Save the salp coordinates with the highest fitness.
(3) Calculate variable c1.

c1 = 2e−( 4i
I )

2
(13)

In the Equation (13), i is the current iteration number; and I is the maximum itera-
tion number.

(4) Update the first salp’s position. The first is responsible for searching for food to lead
the movement direction of this salp population. The update equation the position of
the first salp is:

x1
d =

{
Pd + c1((ubd − lbd)c2 + lbd), c3 ≥ 0.5
Pd − c1((ubd − lbd)c2 + lbd), c3 < 0.5

(14)

where, x1
d denotes the position of the leader of the salp in d dimensional space; ubd and

lbd are upper and lower bounds of d dimensional space, respectively. Pd is the position
of food source in d dimensional space; c2 and c3 are random numbers uniformly
generated within the range of [0, 1].

(5) Update the location of the follower, update the equation is:

xm
d =

1
2

[
xm

d + xm−1
d

]
(15)

where, m ≥ 2, xm
d is the position parameter of the mth salp in the d dimensional space.

(6) Calculate the fitness of each salp. Save the salp coordinates with the highest fitness.
Update iteration number i = I + 1.

(7) If the i > I, then output the coordinates of the salp with the optimal fitness. Otherwise
skip to step (3).

3.4. Extreme Learning Machine (ELM)

Extreme learning machine (ELM) [37] is proposed by Huang et al. It is a supervised
learning method for a single hidden layer feedforward neural network. The input weight
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matrix and hidden layer threshold of ELM are randomly generated, which has the advan-
tages of fewer training parameters and a short training time.

The mathematical model of ELM is as follows:

yi =
l

∑
j = 1

g
(
ωj·xi + bj

)·β j (16)

In the Equation (19), i = 1, 2, . . . , N; xi is the input vector; yi is the output vector; g(x)
is the incentive function; ωj is the input weight matrix; bj is the hidden layer threshold; β j
is the output weight matrix; l is the number of hidden layer nodes; and N is the number
of samples.

3.5. Kernel Density Estimation (KDE)

Kernel density estimation (KDE) [38–40] is proposed by Parzen, mainly by using
differentiable kernel function to estimate the probability density function.

f̂ (x) =
1

Mw

M

∑
i = 1

F
(

x − xi
w

)
(17)

In the formula, M is the number of samples; F(x) is a kernel function, which includes
Normal kernel, Box kernel, Triangle kernel, Epanechnikov kernel; w is the window width.

4. Realisation Process and Evaluation Index

4.1. Realisation Process

Although the traditional decomposition “model and ensemble” prediction model has a
good prediction effect, it also needs to establish forecasting models for all components sepa-
rately, which requires a lot of training time. In this paper we reconstructed the ICEEMDAN
decomposed components by combination with sample entropy and load characteristics.
Specifically, the load is divided into a stochastic component, a periodic component, and
a trend component. Then, the three components are predicted respectively, and the final
point prediction result is obtained by superimposing the prediction results of the three
components. The specific prediction process of the model is as follows:

(1) Decomposition of load data. ICEEMDAN is used to decompose the original load
series to obtain some IMF. Then, calculate the sample entropy of the original series
and each IMF.

(2) Reconstruction of load data. The IMF with sample entropy greater than 0.5 is recon-
structed as the random component, the IMF with sample entropy less than 0.04 is
reconstructed as the trend component, and the remaining IMF is reconstructed as the
periodic component.

(3) Forecasting of load values. The data set contains 8760 load data. The training set and
prediction set are divided according to 4:1. The first 7008 load data are used as the
training set, and the remaining data are used as the prediction set. Use SSA-ELM to
establish models for random component, periodic component, and trend component
respectively for prediction. Take the load value two hours before the prediction time
as input to obtain the prediction results of each component, and overlay the three
results to get the final point prediction results. SSA searches the number of hidden
layer neurons and hidden layer threshold of ELM group optimization to improve the
prediction performance of ELM.

(4) Normalisation of error data. To avoid the effect of predicted value size on the error
estimates, the error values were normalised using the maximum actual value of the
load in the training set.

(5) Calculate the upper and lower limits of error. Several error intervals are divided
according to the prediction results of the training set. The kernel density estimation
is used to obtain the probability density function of each interval training set error.
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Select the appropriate kernel function by fitting the probability density function image
and real error data fitting. Combined with interval confidence, the upper and lower
error limits are obtained.

(6) Obtain the final prediction interval by superimposing the load value of the prediction
set with the corresponding upper and lower limits of error.

4.2. Evaluation Index

To evaluate the point prediction results of the proposed model, we use the mean
absolute percentage error (MAPE), mean absolute error (MAE), and mean square error
(MSE) to evaluate the accuracy of the prediction results. The equations are as follows:

MAPE =
1
M

M

∑
i = 1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (18)

MAE =
1
M

M

∑
i = 1

|yi − ŷi| (19)

MSE =
1
M

M

∑
i = 1

|yi − ŷi|2 (20)

In the above equations, M is the number of samples; yi is the actual load value; and ŷi
is the predicted load value.

To evaluate the interval prediction results, PICP and PINAW are introduced. The
equations are as follows:

PICP =
1
M

M

∑
i = 1

ci (21)

PINAW =
1

MR

M

∑
i = 1

|Ui − Li| (22)

In the formula, M represents the number of samples; when the prediction result is in
the interval, ci = 1; when the prediction result is not in the interval, ci = 0; R is the true
value range; Ui is the upper bound of prediction; and Li is the lower bound of prediction.

5. Experiments and Analysis

5.1. Experimental Data and Conditions

To further test the prediction performance of the model, we use the hourly load data
of a region in Denmark in 2019 for verification obtained from ENTSO-E. The load value is
shown in Figure 1. We can see that the load value is generally stable, and the distribution
shows a trend of high, medium, and low at both ends.

Experiments were conducted on 64-bit Windows 10 using MATLAB R2018a with an
i7-7700hq CPU and a GTX-1050 graphics card.

From the Figure 1, we can see that the load data at 5–7 p.m. on May 1 is 0, which may
be the abnormal data caused by missing data. At 8:00 a.m. and 9:00 a.m. on November 4,
the load reached the highest value of the whole year, but this value is relatively isolated.
This situation also shows that the change of load is affected by many factors and has some
randomness. On the whole, the fluctuation of annual load data is small, and the load at the
beginning and end of the year is slightly larger in the overall trend.
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Figure 1. Load value of a region in Denmark in 2019.

5.2. Selection of Mode Decomposition Method

Firstly, empirical mode decomposition (EMD), ensemble empirical mode decompo-
sition (EEMD) and improved complete ensemble empirical mode decomposition with
adaptive noise (ICEEMDAN) are used to decompose the original load series. To control
the experimental variables, we set the noise weight of EEMD and ICEEMDAN to 0.2 and
the number of noise additions to 50. A higher entropy value of the intrinsic mode function
(IMF) means a lower autocorrelation of the IMF. The results are shown in Table 1. The
sample entropy of the original series is 1.462. The higher the sample entropy, the lower the
autocorrelation of the IMF series and the more complex the IMF. The sample entropy of
IMF 11 and IMF 12 generated by EEMD decomposition is 0, because the sample entropy
of the two IMF is less than 1 × 10−5. The series is chaotic and random. Table 1 shows the
sample entropy values and correlation coefficients for each IMF.

Table 1. Sample entropy and correlation coefficient.

Method IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 IMF13

EMD
CC 0.087 0.352 0.672 0.203 0.280 0.244 0.104 0.155 0.217 0.324 0.033
SE 0.192 0.518 0.6173 0.1767 0.329 0.155 0.247 0.041 0.084 0.341

EEMD
CC 0.205 0.582 0.607 0.232 0.380 0.272 0.120 0.195 0.339 0.153 0.336 0.308 0.191
SE 0.763 1.121 0.873 0.092 0.064 0.300 2.63 × 10−3 3.00 × 10−3 1.42 × 10−3 9.56 × 10−4 0 0 2 × 10−5

ICEEMDAN
CC 0.193 0.511 0.618 0.195 0.342 0.212 0.065 0.134 0.350 0.019
SE 0.729 1.123 1.059 0.108 0.082 0.041 4.30 × 10−3 3.30 × 10−3 1.66 × 10−3 1.30 × 10−3

We reconstruct the IMF with entropy > 0.5 into a random component. The IMF with
0.04 < entropy < 0.5 is reconstructed into a periodic component. IMF with entropy < 0.04
is reconstructed as a trend component. The composition of the three components under
different modal decomposition methods is shown in Table 2.

Table 2. Division of three components by different decomposition methods.

Method Random Component Periodic Component Trend Components

EMD IMF1–IMF3 IMF4–IMF7 IMF8–IMF11
EEMD IMF1–IMF3 IMF4–IMF6 IMF7–IMF13

ICEEMDAN IMF1–IMF3 IMF4–IMF6 IMF7–IMF10

According to the division results in Table 2, we reconstructed the decomposed load
series and then used the extreme learning machine (ELM) to predict the results as shown
in the following Table 3. When the ELM algorithm is used for prediction, to ensure the
optimal number of neurons in the hidden layer, we set a cycle, that is, the number of hidden
neurons is from 1 to 100, and the optimal number of neurons is selected. The prediction
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results are shown in Table 3. It can be seen that the accuracy of load series prediction after
decomposition and reconstruction using ICEEMDAN algorithm is the highest, absolute
percentage error (MAPE) is 2.50, mean absolute error (MAE) is 63.84, and mean square error
(MSE) is 9625.20. The prediction results based on EMD decomposition and reconstruction
are worse. It is possible that a mode mixing situation has occurred. Therefore, we can judge
that using ICEEMDAN to reconstruct and predict the load series has good accuracy.

Table 3. Prediction results of ELM.

Method MAPE(%) MAE MSE

EMD-ELM 2.60 67.23 16,393.89
EEMD-ELM 2.66 68.20 12,555.00

ICEEMDAN-ELM 2.50 63.84 9625.20

Based on the above experimental results, we choose to use ICEEMDAN combined
with sample entropy reconstruction to decompose the load data. The reconstructed load
data is shown in Figure 2.

 

Figure 2. The reconstructed load series.

Combined with Figure 2, we can see that the load value showed a downward trend
from January to August, reaching the bottom of electricity consumption in August, and
the load value showed an upward trend from August to December. Through the variance
and standard deviation, we can find that the January, February, April, and December load
values is bigger, and the June, July, August, and September load values is smaller.

Figure 2 is the three load components reconstructed by ICEEMDAN combined with
sample entropy. We can see that the periodic component has obvious and stable periodicity;
when the fluctuation range of the trend component is small, the load value is high at both
ends and low in the middle, and the overall trend is similar to that of the original data. The
series with a higher frequency of random component variation is more ambiguous, and
the variation range of load value is large and random. Through the above analysis, we can
conclude that the reconstructed component conforms to the characteristics of the original
load data.
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5.3. Prediction Performance of Different Prediction Methods

To select the best prediction algorithm, we chose the BP neural network, support
vector regression, and ELM to compare. The predicted results are shown in Table 4. The
experimental results are shown in Table 3. The MAPE and MAE of ICEEMDAN-ELM are
greater then ICEEMDAN-BP, and MSE is smaller than that of ICEEMDAN-BP. However, the
three evaluation indexes of ICEEMDAN-ELM are better than ICEEMDAN-SVR. As MSE is
more sensitive to extremum, combining the three evaluations we chose ICEEMDAN-ELM.

Table 4. Prediction results of different algorithms.

Method MAPE(%) MAE MSE

ICEEMDAN-BP 2.28 58.68 9822.40
ICEEMDAN-SVR 3.13 77.10 11,582.00
ICEEMDAN-ELM 2.50 63.84 9625.20

In the experimental process, we find that although ELM has the advantages of high
accuracy and a fast training speed, the prediction stability is slightly poor. To further
improve the prediction effect, we use the salp swarm algorithm (SAA) to optimize the
number of hidden layer neurons and threshold of ELM to improve the accuracy of point
prediction. After using SSA optimization, the prediction accuracy of the model has been
significantly improved. It can be seen that MAPE, MAE and MSE decreased to 1.98, 50.42
and 6723.70, respectively. Figure 3 is the comparison between the prediction results of
SSA-ELM and ELM. From Figure 3, we can see that SSA-ELM has a higher prediction
accuracy than ELM. Therefore, we can conclude that using the SSA method to optimize
the number and threshold of ELM hidden layer neurons is better than selecting only the
optimal number of ELM hidden layer neurons.

 

Figure 3. Comparison of actual and predicted values.

5.4. Performance of Reconstructed Model and Ordinary Model

To better evaluate the three different prediction models, we use SSA-ELM to predict
the load data processed by different methods. From Table 5, we can see that the prediction
effect of the model combined with ICEEMDAN is better than that of the ordinary model
without decomposition. On the other hand, we can see that the training time of the
reconstructed model is 127.78 s, which is significantly lower than that of the decomposed
model. Considering the prediction accuracy, the number of models, and training time, we
believe that the overall performance of the reconstructed model is better.
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Table 5. Comparison of the reconstructed model and the decomposition model.

Method MAPE(%) MAE MSE Traing Time (s)

Reconstructed Model 1.98 50.427 6723.70 127.78
Decomposition Model 1.55 38.46 2632.40 451.50

Ordinary Model 2.32 59.69 8898.00 41.00

5.5. Interval Prediction Based on Kernel Density Estimation

To better estimate the uncertainty in the load sequence, we used the kernel density
estimation method to estimate the load interval. Firstly, we use the maximum real load
value of the training set to normalize the error of the training set, and then divide the
error into 0–1750 MW, 1750–2350 MW, 2350–2850 MW, and more than 2850 MW, according
to the size of the predicted load value. The four intervals are respectively estimated by
kernel density estimation and logistic estimation, and the optimal approximation curve is
selected. Then, according to the predicted value of the prediction set, the corresponding
error percentage is selected to obtain the final prediction interval.

It can be seen from Figure 4 that the fitting effect of kernel density estimation is better
than that of logistic estimation in the process of estimating the set error of the 0–1750 MW
interval. Further comparison with Figure 4b, it can be found that the normal kernel has a
better fitting effect on the cumulative distribution function curve of the training set error,
and the error range is [−1.44%, +2.1%] under the 90% confidence interval. Similarly, we
found that the prediction effect of 1750–2350 MW Epanechnikov kernel is better through
experiments, and the error range of 90% confidence interval is [−2.9%, +2.6%]. For the
2350–2850 MW load interval, Box kernel has a good fitting. The error range is [−3.3%,
+4.1%] under 90% confidence interval. The Box kernel above 2850 MW has a good prediction
effect, and the corresponding value range is [−3.21%, +3.98%].

 
                    (a) 

 
                    (b) 

Figure 4. 0–1750 MW interval training set error; (a) probability density function curve; (b) cumulative
distribution function curve.
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Finally, prediction intervals coverage probability (PICP) is 0.919 and prediction inter-
vals normalized averaged width (PINAW) is 0.112. PCIP is 0.919, indicating that 91.9%
of the load values in the test set fall within the prediction interval, and PCIP > interval
confidence, which shows that the model in this paper has good prediction performance and
can accurately estimate the load change. For PINAW, when the prediction interval width is
certain, the larger the variation range of real load data, the smaller the PINAW, which also
represents the better performance of the model. To avoid the impact of the highest point
of annual load value (4952) on PINAW, we select the second highest point of forecast set
value 3416 as the upper limit of load change, and the final PINAW is 0.112. This shows that
the width of the prediction interval is within a reasonable range, and the model used in
this paper does not obtain high coverage by unlimited increase of the width of the error
interval. To sum up, we can conclude that the probability prediction model proposed in
this paper has good prediction accuracy.

6. Conclusions

By analyzing the above experiments, we can draw the following conclusions:

(1) Compared with EEMD and EMD decomposition models, we find that ICEMDAN
decomposition has better prediction accuracy. In addition, through the comparison of
the decomposition model, reconstruction model, and ordinary model, we can find that
the reconstruction model performs well in training time and prediction accuracy, and
is suitable for load forecasting scenarios. Combined ICEEMDAN with sample entropy
is used to decompose and reconstruct the load series, which not only improves the
accuracy of load forecasting, but also reduces the number of models, shortens the
training time, and improves the forecasting efficiency.

(2) Through the comparison between SSA-ELM and ELM, we can find that the prediction
accuracy of the model has been significantly improved after using SSA to optimize
the number and threshold of ELM hidden layer neurons. SSA-ELM can effectively
improve the stability and accuracy of prediction results.

(3) The kernel density estimation is used to analyze the error interval, which has a good
fitting for the error curve and can obtain a more accurate prediction interval. We also
found that the choice of different sum functions will affect the fitting effect of error
distribution, and then affect the accuracy of interval prediction.

(4) PICP was 0.919 and PINAW was 0.112. These two indicators show that the model
achieves high coverage in a reasonable interval width. This means that the method
used in this paper can better predict the variation range of load and reflect some
unknown load information. It also proves the feasibility of the method used in
this paper.
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Abstract: The European Union Target Model aims to integrate European energy market by removing
barriers to trade and align markets. The most important goals of the Target Model are to provide
consistent prices, enhance liquidity, support cross boarder trading, facilitate interconnections, and
coordinate the use of transmission system capacity. In that context, the smooth operation of both
forward and spot markets is a core development that directly affects the good operation of the
wholesale market. This paper examines the application of the Target Model in the wholesale electricity
market of Greece and its impact on electricity prices. The study explores the time period before the
implementation of the Target Model, which took place on November 2020, and the first nine months
of its execution. Based on the feedback received by the rest of the European countries, which are
already part of the European Single Market, this crucial period of time is considered transitional,
when many distortions and unethical behaviors take place. Empirical findings indicate a relatively
successful implementation of the Target Model in Greece, with price disorders mostly met in the
Balancing Market.

Keywords: target model; Greek wholesale electricity market; day-ahead market; intraday market;
balancing market; trading volumes

1. Introduction

Since 1996, the European Union (EU) aims to harmonize and liberalize the internal
energy market, by adopting a list of measures to eventually create the “Single European
Energy Market”. The need to strengthen competition for the benefit of final consumers via
reliable prices, transparency, and reliability are some of the key factors that have pushed
Europe to support cross-border electricity trade among Member States. The Target Model
is the official tool that Member States need to implement towards the completion of the
Single Market. Prior to that, most of the countries operated their wholesale electricity
markets according to the guidelines of a Mandatory Pool model.

The EU Target Model is based on two broad principles: (i) the development of in-
tegrated regional wholesale markets, preferably established on a zonal basis, in which
prices provide important signals for generators’ operational and investment decisions; and
(ii) market coupling based on the so-called ‘flow-based’ capacity calculation, a method that
takes into account that electricity can flow via different paths and optimize the represen-
tation of available capacities in meshed electricity grids. More information on the Target
Model are available online: https://eur-lex.europa.eu/legalcontent/bg/TXT/?uri=CELEX:
52017SC0383 (accessed on 13 September 2021), In general, Market Coupling, which is a
crucial component of the Target Model refers to the interconnected cross-border electricity
market among the Member States of the European Union. Through the physical intercon-
nection among them, the flow of electricity takes place based on the optimal and shortest
route from various production sources towards the final consumer. According to [1],
discrepancies between regulatory policies and market designs could distort the normal
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functioning of the neighboring markets and security of supply. Market Coupling is based
on Price Coupling of Regions (PCR), Flow-Based Market Coupling, and the Cross-Border
Intraday (XBID) Project. In line with [2], by maximizing the use of cross-border intercon-
nection capacity, market coupling increases the level of market integration and facilitates
the access to low-cost generation by consumers located in high-cost generation countries.
Thus, it is expected that a high-priced area could greatly benefit from the introduction of
this mechanism. Existing literature supports the above argument [3,4].

To achieve market coupling, and for the benefit of all participants, the Mandatory
pool was gradually replaced across Europe by the Target model (the Commission pursues
the vision of a ‘Target Model’ using a European governance process (Third package,
Directive 2009/72/EC.)). The ultimate goal of the Target Model is to enable the energy
produced in one country to be delivered to another Member State participating in this
Model. The Member States of the European Union are committed to complying with the
fundamental principles which ensure a level playing field. Cross-border electricity trade
initially takes place at a regional level and aims to achieve pan-European market coupling
and consequently convergence to a single electricity price for the whole of Europe [5]. A
prerequisite for the smooth operation of the model is the coordination of national actions
between neighboring countries, and the optimal exploitation of cross-border electricity
transactions. The implementation of the Target model envisages the creation of four new
electricity markets that operate on an energy exchange. Given the above, the purpose of
the Target model is to promote competition, convergence of energy prices with the prices
of neighboring countries and increase of the overall welfare in the economy. However,
considering the case of Greece, the implementation of the Target Model, that took place
on the 1 November 2020, provides mixed results [6]. In theory, the goal of a Single
European Energy Market is to favor end consumers. However, wholesale electricity prices
in Greece have more than doubled since the beginning of November 2020. This sharp
rise is partially attributed to the peculiarities of the introduced model, since both marker
participants and regulators broadly accept that the market was not completely prepared
for that fundamental shift [7–9].

This paper examines the application of the Target Model in the wholesale electricity
market of Greece and its impact on electricity prices. To our knowledge, this is the first
study to analyze and evaluate this application. The study explores the time period before
the implementation of the Target Model and the first nine months of its execution. Based on
the feedback received by the rest of the European countries, which are already part of the
European Single Market, this transitional period of time is considered crucial, when many
distortions and unethical behaviors take place. Empirical findings indicate a relatively
successful implementation of the Target Model in Greece, with price disorders mostly
met in the Balancing Market. However, those increased prices have caused great market
turmoil and unbearable pressure on businesses and small suppliers who are unable to cope
financially with the unprecedented situation.

A plethora of academic papers have reviewed the efficiency of Target Model imple-
mentation in various counties across Europe. As a starting point, Ref. [10] provides an
overall estimation considering the benefits of Target Model implementation across Europe.
The authors highlight that additional improvements are feasible by reducing unscheduled
flows and preventing the curtailment of renewables with improved market design. In
general, the study underlines the necessity to assist interconnections and cross-border
trading, given that the final outcome, via the provision of balancing services, leads to
increased gains for the overall economy. Based on the challenge to achieve a common
electricity market design in a multi-regional context, Ref. [11] analyzed how diverse design
approaches, such as cross-border congestion management and capacity mechanisms, affect
generation adequacy and welfare in Europe. Their findings confirm the benefits of market
coupling in terms of welfare as well as generation adequacy. Earlier investigations of the
effectiveness of a common electricity market design suggested a partial successful [12–15].
However, recent studies are clearly in favor of the effectiveness of a Single Electricity Mar-
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ket across Europe [16–18]. For instance, Ref. [19] argue that investment in interconnection
reduces wholesale electricity prices in France and Ireland as well as the net revenues of
thermal generators.

Considering country-by-country analysis, Ref. [2] evaluated the impact of the Target
Model in the Italian electricity market and estimated the welfare benefits using various
scenarios. The study concludes that a welfare increase is apparent when market fundamen-
tals are tight. Next, Ref. [20] examined the evolution of the Irish Single Electricity Market
under the European Target Model for electricity. The authors focused on the theoretical and
practical circumstances under which derivatives markets stimulate competition in the spot
and retail markets. In addition, the authors examined the impact of market concentration
on the new capacity payment mechanism, and, eventually, provided specific proposals
towards the regulatory authorities to enhance the overall performance of the wholesale
market. The authors conclude that regulators should promote competition in the forward
market and at the same time extend regulation to the price and quantity that the dominant
firm bids.

Another study, considering the case of Britain, [21], investigates the EU Target Elec-
tricity Model and its effectiveness before and after 2015. The paper provides theoretical
and empirical implications of delivering capacity, energy, and quality of supply, by paying
special attention to the trilemma problem of the country and considers potential solu-
tions. Ref. [22] provides an exploratory analysis of the price spikes both in the Day-Ahead
and Imbalance markets following the implementation of the Electricity Act of 1998 in the
Netherlands. The authors argue that market participants gain from more stable economic
environment in which they can better forecast future prices and evaluate investment plans.
Finally, a recent study considering the case of Spain compares the regulatory framework
and the cost of electrical energy among European countries [23]. The limited electricity
interconnection capacity of Spain leads to higher energy bill costs and, eventually, lower
competition of electricity intense industries.

Prior studies have analyzed the wholesale electricity market of Greece [24]. For
instance, Ref. [25] provided a detailed analysis of recent developments in the electricity
market of Greece and described the structure of the Hellenic Energy Exchange and the
markets that will be formed in the future. The authors presented the basic design variables
and respective options for the integration of the Greek wholesale electricity market with
the other European markets under the Target. Finally, a recent study by [26] highlights the
recent attempt to liberalize the electricity market, which was hindered for a long time by
socio-economic forces that favored the monopolistic system of the market. Overall, the
authors argue that the road towards a Single European Energy Market is an opportunity
for the country to move forward and in parallel to maintain the pace of “coupling” with
the most developed energy economies of Europe.

Over the past decade, national authorities demonstrated a strong commitment on
energy policy goals and are constantly in line with the EU’s overall goal to achieve cli-
mate neutrality by 2050. Greece aims to achieve a 62–65% share of renewable energy in
the electricity mix by 2030. To accomplish the above objective, the Greek government
announced various packages of financial incentives, tax cuts, exemptions, and funding
programs. In parallel, ambitious incentives for private companies were introduced, to
invest in Renewable Energy Sources (RES) and contribute to the gradual decarbonization
of the country. In 2020, the renewed National Energy and Climate Plan and the introduc-
tion of the Green Legislative Framework played a key role by continuing to support RES
penetration in the energy mix of Greece. It is estimated that gross energy consumption in
Greece is expected to fall below 22,000 ktoe by the year 2040, while the share of RES will
gradually exceed petroleum products. In line with Figure 1, between 2020 and 2040, RES
are expected to play a dominant role in the country’s energy production, increasing their
share by up to 36%. Currently, Greece has exceeded the 2020 targets for the production
of energy from RES. At the same time, Greece faces the highest wholesale energy price in
Europe and in parallel one of the lowest retail prices in the EU. In that context, according
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to Eurostat (2019), the electricity market is considered as a key sector in Greece, since
generation, transportation, distribution, supply, and trade of electricity produce 2% of
national Gross Added Value of the total economy. Gross electricity generation in 2019
remained relatively steady compared to 2018 levels, reaching 53.3 TWh, while COVID-19
affected the total electricity consumption in Greece, an index which continued to decline
for a third consecutive year.

Figure 1. Evolution of Gross Energy Consumption in Greece (ktoe), (2018–2040), Source: National Energy and Climate Plan
(2020) and Authors’ estimations.

In line with Figure 2, the further decarbonization process of the electricity generation
in Greece continues, with the lignite share plummeting to 15.4% in 2020. The share of
RES recorded the most significant growth in the electricity mix, increasing by 9.7% during
the period December 2019–October 2020. In addition, April 2020 was characterized as a
“Snapshot from the Future” when natural gas and RES prevailed in the electricity mix.
At the same time, the price of CO2 emission allowances directly affects electricity prices
and contribute to emissions reduction through Europe. Beyond lignite-fired units, natural
gas-fired units are also affected by the increasing cost of CO2 emissions, however, at a
lower magnitude. In 2020, RES and Hydro together represented a greater share of total
capacity (53%) compared to coal and natural gas combined (47%). According to Figure 3,
the incumbent, Public Power Cooperation (PPC), retained a dominant share in electricity
generation. PPC’s share in the retail market continues the downward trend, reaching 64.2%
in May 2020 from 94.3% in January 2016 (Figure 4).

Considering alternative suppliers, three energy groups are active generators in the
Greek energy market (Mytilineos, Heron, Elpedison). The oligopoly that prevails due to the
small number of thermal producers has distorted competition in the wholesale market. In
recent years, NOME-type auctions have played a key role in the electricity market, mainly
towards the reduction of PPC retails’ market share. Essentially, alternative suppliers
entered the market, exploiting cheap energy from NOME and achieving increasing their
shares without substantial risk. Energy suppliers that are not vertically integrated into
the market are forced to buy energy at high prices with the impact of either losing market
share, raising their tariffs, or presenting losses on their balance sheets.
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Figure 2. Evolution of Electricity Generation by Source in Greece (%), (2018–2030), Source: National Energy and Climate
Plan (2020) and Authors’ estimations.

Figure 3. PPC’s Market Share (%), (2016–May 2021), Source: Hellenic Energy Exchange and Authors’ estimations.

Figure 4. Retail Market Share (%), (2016–May 2021), Source: Hellenic Energy Exchange and Authors’ estimations.

Figure 5 shows that, since the financial crisis of 2008, energy demand decreased
exponentially and, in 2014, it reached 50,000 GWh. Then, a slight increase occurred, and
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it reached 50,217.4 GWh in 2019. The appearance of the pandemic stopped the upward
trend of demand and, according to the “Reference Scenario” of the Hellenic Transmission
System Operator (HTSO), electricity demand will regain its prior level in 2022. In April
2020, when COVID-19 restrictive measures were firstly introduced, a decrease of 9.8% in
energy demand was recorded compared to April of 2019. Overall, the first four months
of 2020 recorded a decrease in demand of 3.8% compared to the first four months of 2019.
The pandemic heavily impacted oil and electricity demand, while natural gas consumption
remained stable.

Figure 5. Historical Data and Forecast of Total Annual Demand for Electricity in Greece (GWh), (2006–2031), Source:
Hellenic Transmission System Operator and Authors’ estimations.

According to prior literature, an efficient design for real-time markets should address the
special challenges of electricity system operation and support the intended economic outcomes
by providing a spot market basis for development of and reliance on forward contracts [27,28].
Hellenic Energy Exchange S.A., (HEnEx) is the entity responsible for the operation of Spot and
Derivatives markets in Greece. HEnEx has established the EnEx Clearing House S.A. (EnEx
Clear) as the market Clearing House, in order to undertake the responsibilities of clearing, risk
management, and settlement of the transactions. Under the Target Model, HEnEx Members
are able to participate in the following markets: Day-Ahead Market (DAM), Intra-Day Market
(IDM), Balancing Market (BM), and Forward Market (FWM).

2. The Application of the Target Model in Greece

A key energy market improvement was accomplished as the Target Model, a specific
commitment of Greece, was implemented on 1 November 2020. This is considered as an
important phase in the direction of Greece to fulfill the requirements of the EU energy policy.
The innovative structure of the market which include the Day-Ahead Market, the Intra-day
Market, the Balancing Market, and Forward Market is anticipated to provide improved
price information and broader involvement and market entree of various services. The
scheme “produce and forget” that used to be the case for Greece is transforming into a
flexible and dynamic one. The novel market design is well-suited with all EU Members,
permitting for the quick Day-Ahead and Intraday coupling with the neighboring countries.
Considering the case of Greece, coupling with Italy and Bulgaria has already been achieved,
which in turn is anticipated to boost energy security, assist the ongoing growth of RES, and
promote competition in the wholesale market.

The latest market formation entails the collaboration of several entities like ADMIE,
which is the Transmission System Operator, the Hellenic Energy Exchange, the Clearing
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House, and the Athex Clear for the Derivatives Market. Moreover, the Regulatory Authority
for Energy (RAE) and the Hellenic Capital Market Commission collaborate for the efficient
supervision of the legal structure that oversees the daily function of the markets. The
recently formed clearing house, EnEx Clear, is in charge for the financial settlement, the
invoicing of participants, and eventually the risk management of the system. Financial
institutions, such as banks, are already listed as official General Clearing Members to
provide their services for both the spot and derivatives market.

The intense unpredictability of electricity prices has constantly concerned academics,
generators, retail suppliers, and traders [29,30]. Those variations could be attributed to
several factors that may be either easily predicted or not. Namely, reasons that crucially
affect electricity prices are unexpected modifications in demand, unit availability, estab-
lished interconnections with neighboring countries, fuel price such as natural gas, coal or
oil, CO2 prices, the stochastic generation of RES, macroeconomic conditions, and broader
socioeconomic disorders like the pandemic. Consequently, members are able to exploit
the hedging opportunities of the Derivatives Market. However, despite the fact that the
Derivatives Market has been available to market participants in Greece since March 2020,
it is not utilized by them, and liquidity persists at minimum levels, even after 15 months of
official operation.

The Market Clearing Price of the Day-Ahead Market is formed at the point where the
aggregate supply and aggregate demand curves intersect. Next, the energy exchange is
responsible for submitting priority price taking orders by representing previous transac-
tions as submitted on the Forward Market or the unregulated bilateral Over-The-Counter
(OTC) market. In that framework, the recently established energy exchange aims to be a
vital component in the growth, of the domestic and regional economy over the utilization
of the Target Model. Regardless of the COVID-19 outbreak, the market layout of a totally
functional gas exchange is presently under formation. In the wake of the electricity market,
a natural gas trading platform will be available to participants at a later stage. Hence,
including a gas marketplace in the framework of HEnEx is expected to function as a key
step for the overall market, along with the recent developments in Northern Greece with
the Trans Adriatic Pipeline, and other pivotal projects being supported by the EU [31].

According to Table 1 which depicts the most recent available data provided by the
HEnEx, Day-Ahead Market accounts for more than 98.5% (or 3972 GWh) of the total volume
traded during May 2021. Hence, the biggest share of market value derives from DAM (€254.7
Million), since the Intraday Market accounts for 1.5% (54.1 GWh) of the total volume by taking
into consideration the three Intraday Auctions (LIDA 1, LIDA 2, & LIDA 3). Next, we identify
small discrepancies between the Day-Ahead Market Price and the Intraday Prices. Figure 6
shows that, in May 2021, DAM price was equal to 63.16 €/MWh, while the average Intraday
price was slightly lower at 63 €/MWh (LIDA 1 (62.53 €/MWh), LIDA 2 (63.12 €/MWh) and
LIDA 3 (63.52 €/MWh)). The analysis that follows provides detailed information considering
the comparison between DAM and IDM prices and shows that prices between the two markets
were almost identical from November 2020 until June 2021.

Table 1. Summary of the main figures from DAM & LIDAs (April & May 2021), Source: Hellenic
Energy Exchange and Authors’ estimations.

May 2021
April 2021

DAM LIDA 1 LIDA 2 LIDA 2

Price (€/MWh)
63.16 62.53 63.12 63.52
64.17 63.17 64.88 66.80

Volume (GWh)
3972 28.2 14.6 11.3
4176 37.8 17.0 9.7

Value (MM€)
254.7 1.91 0.98 0.78
271.1 2.28 1.08 0.64
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Figure 6. Day-Ahead & Intraday Prices (€/MWh) (November 2020–June 2021), Source: Hellenic Energy Exchange and
Authors’ estimations.

Next, in terms of the electricity mix for May 2021, the sell volume of the Day-Ahead
Market is dominated by the natural gas (38%) and RES (33%), while imports (18%), hydro
(7%), and lignite (5%) account for the remaining share of generation (Figure 7). Considering
the Intraday Market, again, natural gas (49%) and RES (29%) account for 78% of the total
generation (Figure 8). Moreover, on the buy side of the Day-Ahead Market, considering
again May 2021, the majority of the volume directed to Low Voltage (LV) Load (56%),
Medium Voltage (MV) Load (19%) and High Voltage (HV) Load (15%) (Figure 9). In the
Intraday market, we identify natural gas-fired units absorbing 50%, RES aggregators 28%,
and LV load 14% (Figure 10).

Figure 7. Day-Ahead Market, Sell Volume mix (%), (May 2021), Source: Hellenic Energy Exchange and Authors’ estimations.

Figure 8. Intraday Volume—Sell Volume mix (%), (May 2021), Source: Hellenic Energy Exchange and Authors’ estimations.
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Figure 9. Day-Ahead Market—Buy Volume mix (%), (May 2021), Source: Hellenic Energy Exchange and Authors’ estimations.

Figure 10. Intraday—Buy Volume mix (%), (May 2021), Source: Hellenic Energy Exchange and Authors’ estimations.

As Figure 11 illustrates, since 2008, the daily average market clearing price in Greece
fluctuated from 10 €/MWh to 123 €/MWh, with an average price considering the period 1
January 2008 until 1 June 2021 at 54.1 €/MWh. In terms of the overall fluctuation, and prior
to the implementation of the Target Model, we identify spikes in electricity prices (values
higher than 100 €/MWh) only four times in a period of a 13.5 year period. Specifically, the
first spike is identified by the end of 2008, the second at the beginning of 2012, the third
in mid-2014, and the fourth in early 2017. However, only following the implementation
of the Target Model, the average daily Market Clearing Price skyrocketed to 128 €/MWh.
Prior to the launch of the Target Model, a significant drop occurred in wholesale electricity
prices during the 1st period of COVID-19 lockdown (March 2020–April 2020), reaching
28.5 €/MWh in April 2020.

Figure 11. Daily Average Market Clearing Price in Greece (€/MWh), (2008–July 2021), Source: Hellenic Energy Exchange
and Authors’ estimations.
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3. Empirical Findings

3.1. Day-Ahead Market and Intraday Market

A price increase in the Day-Ahead Market causes intense concern, which, during
the first nine months of Target Model operation, recorded an increase of 97.8%, since
the average price soared from 47.2 €/MWh in October 2020 to 93.4 €/MWh in July 2021.
Interestingly, despite the fact that the total electricity consumption reduced by almost 10%
from March 2021 to April 2021, the price followed an upward trend from 57.64 €/MWh
in March to 64.17 €/MWh in April (an increase of 11.3%). On a year-to-year comparison,
the price levels during April 2020 were equal to 28.51 €/MWh, thus the price increase
was more than 125%. Based on Figure 12, the upward trend of Day-Ahead Market price
continued until July 2021. In detail, during June 2021, the price at DAM was set at 83.38
€/MWh, an increase of 32% compared to May 2021 when the price was recorded at 63.16 €
MWh. On an annual basis, during June 2020, the DAM price was 34.04 €/MWh, meaning
that the growth was equal to 144% (see Figure 13 for Day-Ahead Market prices and Table 2
for Intraday Market prices).

The aforementioned developments are not entirely attributed to the implementation
of the Target Model. The overall demand increase due to high temperatures is one of the
main reasons that led to a spectacular rise in the price of electricity, which, on 25 June 2021,
reached 128.15 €/MWh. In line with the prices recorded during June 2021 and July 2021,
with prices exceeding the benchmark of 100 €/MWh, it is anticipated that the increase in
price levels will be maintained during the following period. At the same time, the constantly
increasing natural gas prices crucially affect electricity cost in Greece, since natural gas
accounts for 38% of electricity generation in the DAM. The natural gas import price since
June 2020 follows an upward trend, while consumption hits an all-time high record during
2020. Precisely, natural gas import price in Greece during the COVID-19 outbreak dropped
to 5.4 €/MWh in March 2020 yet recovered to 13.4 €/MWh by December 2020.

Market coupling systems exist both in Day-ahead trading and in Intraday markets,
and this interconnection among markets ensures efficient electricity trading. Furthermore,
the participation in short-term markets, the initiation of bilateral contracts, and the removal
of prior restrictions on trading are expected to boost liquidity, with a positive impact on
the balancing market. In this direction, a significant change that is taking place is the
implementation of continuous trading in the Intraday market within the first quarter of
2022. At the same time, during October 2021, the wholesale gas market will be activated.
Initially, spot transactions will be available to market participants and, in the second stage,
futures products as well, thus acting as a starting point for the establishment of a regional
energy hub.

Figure 14 illustrates that, the impact of Co2 prices is already apparent on coal-fired
units since their total operational cost today is more than 75 €/MWh (35 €/MWh fuel cost
+ 40 €/MWh CO2 cost). In addition, the increased CO2 prices will generate additional
pressure to the daily operation of natural gas-fired plants and eventually lead to higher
electricity prices. The corresponding levels of total operational cost for natural gas-fired
units is more than 65 €/MWh (55 €/MWh fuel cost + 10 €/MWh co2 cost). Even though
the emissions from natural gas (117 pounds of CO2 emitted /btu) are lower compared
to coal (215 pounds of CO2 emitted /btu), given the current and projected prices of CO2
emissions, natural gas-fired units are anticipated to drive electricity prices at increased
levels in all three Scenarios (see Figures A1 and A2 in Appendix A for more details. Main
assumptions: auction price €/t CO2 not to drop at lower than 50 €/t CO2, fuel cost remains
steady in all three Scenarios at 55 €/MWh)).
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Figure 12. Daily Average Market Clearing Price in Greece (€/MWh), (2018–July 2021), Source: Hellenic Energy Exchange and
Authors’ estimations.

Figure 13. Monthly Average Market Clearing Price (€/MWh), (2019–July 2021), Source: Hellenic Energy Exchange and
Authors’ estimations.

Table 2. Monthly average Intraday prices (€/MWh), (November 2020–June 2021), Source: Hellenic
Energy Exchange and Authors’ estimations.

LIDA 1 LIDA 2 LIDA 3 Average IDM

Nov-20 53.21 51.84 56.03 53.69
Dec-20 60.26 59.09 54.98 58.11
Jan-21 53.57 49.9 48.07 50.51
Feb-21 50.67 54.31 54.52 53.16
Mar-21 55.66 56.82 59.11 57.19
Apr-21 63.17 64.88 66.8 64.95
May-21 62.53 63.12 63.51 63.05

June 2021 82.96 83.12 85.75 83.94
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Figure 14. CO2 European Emission Allowances (€/ton), (2017–May 2021), Source: EEX and Authors’ estimations.

In 2022, the Target Model is expected to incorporate the optimization algorithm,
EUPHEMIA. The EUPHEMIA algorithm is a key tool for calculating and linking individual
electricity prices across Europe as well as for optimal cross-border capacity allocation. It
offers transparency in the calculation of energy price and its distribution. The procedure
of the algorithm is as follows: first, the participants submit their orders to the respective
energy exchange; the algorithm accumulates the orders and, according to specific criteria,
those orders are accepted or rejected. The criteria on the basis of which it operates are the
maximum prevalence of social welfare (according to the consumer surplus, the producer
surplus and the congestion rent in the area) and the flow of capacity so that no congestion
is caused. The following table provides illustrative information considering imports and
exports of electricity for both explicit and implicit allocation. Greece is a net importer of
electricity to cover the domestic demand. According to Table 3, the main countries from
which Greece imports electricity are Albania (235 GWh), North Macedonia (166 GWh), and
Bulgaria (125 GWh from Explicit Allocation and 135 GWh from Implicit Allocation). On
the contrary, Greece exported electricity towards Italy via Implicit Allocation (152 GWh)
and towards North Macedonia via Explicit Allocation (75 GWh).

Table 3. Imports/Exports at Day-Ahead Market, May 2021 (GWh), Source: Hellenic Energy Exchange and Authors’ estimations.

Exports—Explicit
Allocation

Imports—Explicit
Allocation

Exports—Implicit
Allocation

Imports—Implicit
Allocation

Albania 17 235 0 0
North Macedonia 75 166 0 0

Bulgaria 12 125 7 135
Italy 0 0 152 25

Turkey 6 37 0 0

3.2. Balancing Market

The Balancing Market, which is the market responsible for the smooth operation of the
system as electricity approaches the actual delivery, was the one that presented the biggest
problems as its cost multiplied compared to the corresponding cost from the previous model
of mandatory pool. In November 2020, the balancing market quadrupled compared to the
previous model (Figures 15 and 16). Only during the last two months of 2020, when the
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Target Model was initiated, the burden on the Balancing Market was estimated at €135 million
euros while the total annual burden of 2020 at €200 million. Based on the liquidation of the
Balancing Market for the period from November 30 to December 6, the cost amounted to
43.37 euros per megawatt hour. For the same period, the corresponding weighted average
price of the Day-Ahead Market (DAM) was 66.18 euros per megawatt hour. This means that
the cost of the Balancing Market amounted to 66% of the market value. The prices formed in
the Balancing Market force the companies to increase the tariffs by 15% to 20% even in the
low voltage (households). Medium increases are already being borne by similar increases
(large commercial companies). The cost of energy is close to 70 euros per megawatt hour,
while in the same period there were contracts on the market with 55–60 euros per megawatt
hour. The surge in the price of electricity caused a great upheaval in the market in December
2020 with consumers massively terminating electricity contracts.

Figure 15. Daily Imbalance Price in Greece (€/MWh), (January 2020–July 2021), Source: Hellenic Transmission System Operator and
Authors’ estimations.

Figure 16. Weekly Standard Deviation of imbalance prices in Greece, (January 2020–July 2021), Source: Hellenic Transmission
System Operator and Authors’ estimations.
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4. The Response of the Regulator

Due to the deteriorating situation resulting from the implementation of the Target
Model, the regulator was aware of the potential impact of this situation and, in order to
curb the rise in wholesale energy costs, on 13 February 2021 (Figure 17), made the Decision
(54/2021) to impose a threshold on the bids of the producers regarding the downward bal-
ancing action (The Decision was taken in cooperation with the European Commission and
the Ministry of Environment and Energy). RAE also modified the Integrated Scheduling
Process (ISP) algorithm. The ISP refers to an action performed by the System Administrator
in order to configure the unit allocation program and the distribution of balancing power to
the entities that provide it. The exercise is executed three times: once immediately after the
resolution of the Day-Ahead Market and twice more after the resolution of each of the two
intraday auctions held within the framework of the Intraday Market. It can additionally
be performed at the request of the TSO, in case any serious changes occur during the
operation of the System, such as serious damage related to loss of unit, loss of interface,
and forecast failures.

Figure 17. Timeline of important developments following the Target Model implementation in Greece.

Based on the above decision, RAE modified the ISP algorithm in such a way as
to eliminate the submission of tenders for quantities of energy that are lower than the
technical minimum production quantity. In the explanatory memorandum, RAE notes that
it recognizes that there is an issue of abusive behavior in the balancing market and states
that the measures it promotes aim to balance the market by keeping it essentially able to
operate, and, secondly, the restoration of conditions of good operation and competition. In
particular, the adoption of these measures strengthened the operational framework of the
Balancing Market, by discouraging the occurrence of abusive behaviors and preventing the
avoidance of standard rules in order to benefit, to the detriment of the system’s economy
and a healthy competition. Another action of RAE regarding the inconsistent operation
of the Target model was the imposition of a penalty of five million euros on the TSO,
due to the failure of completing the Western Corridor in the Peloponnese. Although the
above arrangements prevented the continuous rise in balancing costs, the situation does
not remain viable, and more adjustments are needed for the smooth operation of the
energy exchange:

‚ The causes of the malfunction—Improper operation of the Target model in Greece
‚ Price liberalization given that producers providing balancing services were able to

provide prices up to 100 times their actual variable unit costs.
‚ Oligopoly on the producers of thermal units.
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‚ Inability of the system administrator algorithm to prevent unethical bids.
‚ Congestion of the high voltage network in the Peloponnese due to overload.
‚ Low interconnection power transmission of electricity from other countries
‚ Low liquidity in the Forward and Intraday market. Both the number of partici-

pants and the volume of transactions should increase, aiming to reduce the need for
balancing energy and, consequently, the corresponding costs.

Measures to Be Taken

Demand response: The expected development of RES has considerable impacts on the
average daily pattern of electricity generation in the current decade. Demand Response
concerns the storage of energy that comes from RES during peak hours so that it can be
stored and used when demand is increased. According to the TSO, it is estimated that in
2025 the thermal units will only cover the remaining quantities apart from the generation
from RES. Nowadays, Demand Response is not available to support the wholesale elec-
tricity market in Greece, yet it is crucial for smoothing the typical load curve in the future.
In addition, the use of batteries as a means of energy storage is anticipated to provide
long-term profits for the overall economy. Hence, the authorities need to establish concrete
steps to allow participation of Demand Response and Storage in all stages including in the
Balancing Market.

Central scheduling: The Balancing Market is governed by the principle of Central
Dispatching per unit. The Marker Operator considers the generation offers and, according
to an algorithm optimization solution, provides the most efficient nominations to each
to the entity providing balancing services. These entities submit bids in the market area
per unit, per load zone, and per interconnection border. This model is applied to Greece,
Poland, Italy, and Ireland, while the model of Self-Scheduling is selected in other European
countries. In countries where the Self-Scheduling model is applied, first the backup auction
process takes place, then follows the Day-Ahead Market, the Intraday Market, and finally
the self-scheduling nomination. In this way, the simultaneous action of upward and
downward balancing is prevented, a fact that is usually observed in the Greek electricity
market. The imposition of a penalty for the simultaneous action of upward and downward
balancing is one of the best measures to minimize this phenomenon.

5. Next Steps

‚ Power Purchase Agreements (PPAs)—Several GWs of merchant driven projects are
expected to come online by 2030 and a supportive framework for PPAs is key for
their deployment. In that context, the national authorities are seeking to establish
a subsidy support-scheme by supporting renewable electricity absorbed by energy-
intensive industries and other enterprises. Balancing costs are an important part of
the equation, and the scheme is anticipated to subsidize balancing market costs by
using recovery fund money as part of the effort. According to the plan, the support
mechanism will be made available to energy consumers whose energy cost exceeds
20% of operating costs. Besides industrial producers, the mechanism’s availability
could be expanded to also cover hotels in the tourism sector, retail food chains, and
other enterprises operating on a mass scale. RES investors opting to establish bilateral
PPAs with industrial consumers are expected to be given licensing priority for the
projects over peers planning to secure tariffs via RES auctions. The licensing priority
for PPAs is a measure to counteract the fact that projects that have been awarded a
contract via the auction system (Auction prices have decreased significantly in the
previous auctions, especially in the last common auction, where the weighted average
price dropped by 30% compared to the Starting Price. For more details on auction
results, see Table A1 in Appendix A) are likely to enjoy more favorable treatment for
project financing. The scheme needs to be endorsed by the European Directorate for
Competition. For the moment, there is only one PPA signed in Greece—Mytilineos
has signed a PPA with Egnatia group for 200 MW solar at 33 €/MWh (It is worth
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noting that Mytilineos acquired over 1 GW of assets in the late stage of development
by Egnatia group, which suggests that the pricing might not necessarily show a
representative fair value of a PPA).

‚ Capacity Remuneration Mechanism (CRM)—Greece aims to create a new permanent
CRM following the temporary CRM from 2020. Additionally, Greece is pushing
for a strategic reserve scheme in order to compensate lignite units which need to
stay on the system for capacity adequacy purposes despite being unprofitable. At
the moment, Greece has submitted a proposal highlighting the need and operation
details of a strategic reserve scheme along with a set of answers posed by the EU
commission in June 2021. The new CRM needs to be aligned with EU regulations.
Greece submitted in June 2021 a draft of the Market Reform Plan for the national
Day-ahead, Intraday and Balancing markets that were launched in November 2020.
In July 2021, DG Comp is set to start consultations which will take four months before
the final Market Reform Plan can be published. In parallel with the consultations of
the Market Reform Plan, a new capacity adequacy report from the Greek TSO will
be prepared for the EU commission as a supplement to the Greek energy ministry’s
proposal for the strategic reserve scheme—a final Market Reform Plan by the last
quarter of 2021 that can be legally implemented as early as the first quarter of 2022.
The setup of a strategic reserve scheme could be activated in the first quarter of 2022
together with the updates from the Market Reform Plan. The legislation of the new
CRM would be activated after the strategic reserve scheme ends and will include,
among others, Demand Response.

The Transition to Full-Scale Target Model for RES

Existing literature provides illustrative information considering the impact of the
Target Model on RES [32] and the role of RES Aggregators [33]. Figure 18 depicts the
upcoming scheme in Greece, which contains substantial operational charges such as clear-
ing, imbalance, and non-compliance costs. Under the introduced scheme, it is mandatory
for generators with a capacity bigger than 500 KW to sell their production in wholesale
market, either by utilizing own resources or via the existing aggregators. Apart from their
aforementioned obligation, RES producers need to also be considered for accurate forecast
projections. As long as the interim phase of the Target Model is available, and until the
introduction of the full-scale Target Model, participants will be credited with 1 €/MWh,
which corresponds to a Fixed Management Premium. During this phase, RES producers
are burdened by the Temporary Mechanism of Optimal Forecast Accuracy that equals
12.98 €/MWh for 2021. Overall, RES producers under the Sliding FiP framework receive a
premium which is the difference between the Reference Price (or Auction Price) with the
monthly Reference Market Price (RMP) per technology.

For the Greek wholesale electricity Market, the RMP is derived from the hourly gener-
ation that corresponds to each RES technology. The calculation considers the aggregate
production coming from the total number of identical technologies. RMP is part of an
exercise that yields the “Sliding Premium” which is the same for every producer per
RES technology. Therefore, this process guarantees that total revenues in terms of each
technology are resulting from the multiplication of the Reference Price (or Auction Price)
with the total production for the specific time unit. Historical data of Reference Market
Price by month reveal that, on average, compensation prices for all RES technologies are
48.8 €/MWh. The COVID-19 effect is apparent in this figure as well since prices for all
RES technologies dropped around 33 €/MWh. However, as Figure 19 illustrates, a sharp
increase in prices followed along with the gradual withdrawal of mobility restrictions. Even
during the 2nd wave of lock down of lockdown restrictions in Greece (November 2020 until
May 2021), RES compensation prices remained at increased levels (around 55 €/MWh).
Average Reference Market Price of all RES Technologies from November 2019 until May
2021 (excluding COVID-19 effect) equals 52.2 €/MWh.
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Figure 18. New RES Framework under the Target Model in Greece, Source: Hellenic Energy Exchange and Authors’ estimations.

Figure 19. Reference Market Price in Greece (€/MWh), (November 2019–June 2021), Source: Hellenic Energy Exchange and
Authors’ estimations.
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6. Conclusions

This paper investigated the implementation of the Target Model in the wholesale
electricity market of Greece and its impact on electricity prices. The study explores the
time period before the implementation of the Target Model and the first nine months of its
execution. In countries like Greece, where a monopoly or oligopoly of producers prevails
in the wholesale electricity market, in combination with low capacity in connectivity with
other neighboring countries, an upward trend on electricity prices is mostly anticipated.
The above, combined with the lack of supervision in order to prevent manipulative behav-
ior, could partially lead to the postponement of energy related investment plans. Energy
producers are the only ones who benefit from the price increase and the overall market
turmoil since those companies are able to exploit the legislative and technical gaps and
implement unethical strategies in order to achieve extremely high profitability.

The peculiarity in this case is that the market itself provides room for the above
exploitation since the submitting bids are within the limits set by the European Union.
Especially in times of high demand, where there is a low supply from the producers,
it is necessary to check by the competent regulator in order to determine whether they
meet the reality or whether they use the regulations of the Target model to achieve profit
maximization through the Balancing Market. As market participants understand better the
dynamics of the new market and RAE monitors competition and costs, the Target Model
is expected to become more fluent and efficient eventually increasing competition and
reducing costs. In addition, RES seems to be responsible for a large share of the cost of the
Balancing Market. This fact is due to the inability of accurately predicting their production,
due to their stochastic nature. In addition, in line with [34], the increase of RES to an
electricity market has an ambiguous effect on wholesale prices. The merit order effect has
a downward pressure on prices while, with market power, higher inframarginal rents will
tend to increase prices. Considering the case of Greece, we observe simultaneous increase
in RES share and higher prices which yields to the existence of market power. This could
be mainly attributed to the increased share of one RES aggregator in the market, which is
equal to 54%. It is apparent that the aforementioned finding has important consequences
for the domestic wholesale prices.

Part of prior studies found that Target Model implementation was accompanied by
welfare increase, which is not yet the case of the Greek wholesale market. Some benefits that
are anticipated to be evident on the wholesale market of Greece are the consumers benefit
from lower prices as a buyer will be automatically matched with the cheapest generation
in Europe, and the fact that balancing markets will be integrated so that consumers benefit
from lower balancing costs and improved security of supply across the EU. However, a
study from the United Kingdom (UK) illustrates how market design solutions characterized
by good intentions could have adverse effects, depending on the details of how they are
implemented in practice [35]. The author lists some drawbacks in the case of UK such
as the increased cost of relieving congestions, increased risk of discrimination by system
operators, increase in the potential scope for abuse of market power by generators, and
failure to capture positive externalities and perverse incentives. We observe that our
findings are in line with the case of Spain, where the limited electricity interconnection
capacity of the country led to higher energy bill costs and, eventually, lower competition of
electricity intense industries [23].

At the same time, our research is in line with prior empirical findings towards the
direction of extended regulation to the price and quantity of the dominant firm bids. As
can be seen from the countries of the European Union where the Target model has been
implemented, it takes a period of one and a half years for the market to function properly
and for healthy competition to prevail. One of the main limitations of the study is that the
study explores only the first nine months of its execution; thus, future research should utilize
new data and reevaluate the effectiveness of Target Model implementation in the wholesale
market of Greece. This study documents in detail all the developments that took place up
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to this point, but this is yet to be seen in the future if the Target model achieves functioning
properly and effectively in Greece and eventually benefiting the final consumers.
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Appendix A

Figure A1. Projection of CO2 Price evolution €/t, Source: Authors’ projections.

Figure A2. Estimation of average annual total cost of Natural Gas-fired Units (€/MWh), (2017–2040),
Source: Authors’ projections.
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Abstract: The recent trend in New Economics is the establishment of measures of sustainable wealth
and welfare which take into account all the parameters of economic, environmental, and social life
and progress, juxtaposed to the conventional and myopic GDP. This review summarizes results
from a series of recent papers in the energy-growth nexus field, which have perused a proxy for the
sustainable GDP instead of the conventional GDP and discusses the difference in results and policy
implications. The energy-growth nexus field itself has generated a bulk of work since the seminal
study of Kraft and Kraft (1978), but still the field needs new perspectives in order to generate results
with a consensus. The bidirectional causality between energy consumption and sustainable economy
provides evidence for the Feedback Hypothesis, a statement that essentially warns that it is too early
for sustainability to be feasible without fossil energy consumption, and vice versa. The unidirectional
causality reveals, on the one side, that an economy cannot grow without the plentiful consumption
of energy (the Growth Hypothesis) and, on the other side, that the growth of the economy fuels
energy consumption (the Conservation Hypothesis). Failure to corroborate causality between energy
consumption and economic growth is evidence for the Neutrality Hypothesis.

Keywords: energy-growth nexus; sustainable economy; new economics; critical review

1. Introduction

According to the International Energy Agency [1] the world energy consumption has
increased by 45% since 1980 and will be 70% higher by 2030. Therefore, future energy policy
is bound to remain focused on saving, efficiency, and renewable energy usage. European
Union energy targets for 2030 have been set as follows: 40% reduction in greenhouse gas
emissions (compared to 1990 levels), at least 32% share of renewable energy consump-
tion, and 32.5% energy savings compared with the business-as-usual scenario [2] The EU
is devoting significant efforts to reduce energy consumption in the main consumption
areas such as residential, tertiary, transport and industry. However, both primary and
final energy consumption are slightly above their 2020 targets because not all sectors
have managed to decrease their consumption. One such sector was transport and the
largest increase in energy consumption was noted in the tertiary sectors (20.2%) which
overshadowed the progress made in industry (−14.6%) and the households (−4.5%) [2].
Despite the applied policies, it is not an easy task to harness energy consumption given
the demands for economic growth, the increasing population, the heating energy demand,
the household characteristics towards single person families, and the energy prices which
have not fully incorporated the incurred environmental costs pertinent to their exploitation
and consumption.

Despite the need for energy conservation (with energy conservation we refer to the
reduction of energy consumption in all sections of economy), energy inputs are necessary in
production and thus the configuration of the impact of energy cuttings on economic growth
remains important. Energy efficiency is an ongoing process, it has gone through a major
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breakthrough, but there is still much structural distance to be covered until its full potential
is exploited by all sectors. Thus, increases in efficiency of thermal power generation have
been made, due to a shift from coal to gas, and a change in the power mix has also been
achieved with a higher share of renewables [3]. The financial crisis has been acknowledged
to having slowed down efficiency progress, a situation that will be prolonged with the
health crisis caused by the COVID-19 pandemic. Overall, there is not a single and widely
acknowledged indicator of energy efficiency and this can only be revealed through reduced
energy consumption (conservation). On the other hand, we need to remember that there
is not a single index to measure energy efficiency, and this can only be perceived through
a combined overview of the energy intensity reduction, energy consumption reduction
and energy savings [3]. Taking into account the fact that energy efficiency (through the
aforementioned dimensions) is at the foreground of energy policy and the political and
economic agenda worldwide, it is no doubt because the energy-growth nexus economics
field remains timely despite the controversy in its results and the lack of consensus [4,5].

At the same time, the 17 sustainable development goals which were stipulated by
United Nations in 2015 and have been included into the UN 2030 Agenda, do connect
directly or indirectly to energy matters in at least four of the goals; the 7th goal is about
affordable and clean energy, the 11th goal is about sustainable cities and communities, the
12th goal is about responsible consumption and production, and the 13th goal is about
climate action. On top of that, the evolution of New Economics have introduced new
perspectives in the real measurement of wellbeing which take into account all sustainability
goals and many additional aspects in order to establish a measure of real wealth that
could be juxtaposed to the conventional measure of the Gross Domestic Product (GDP).
The usage of a sustainable GDP in place of the traditional GDP in the energy-growth
nexus research field will enable comparisons between the effects of energy conservation
on welfare. Societies need the knowledge of the trade-off between the reduction of energy
consumption and the effect on their wellbeing.

Hypotheses encountered in the conventional energy-growth nexus are the following four:

• Growth Hypothesis: Energy consumption Granger causes GDP growth. This signifies
an economy much reliant on energy consumption for its growth. It is applicable to
early industrial economies which applied emphasis on their economic growth at all
costs and this energy consumption has caused environmental degradation.

• Feedback Hypothesis: Energy consumption Granger causes GDP growth and vice
versa. GDP growth Granger causes energy consumption. This causal relationship
denotes a circle of coupling between energy consumption and economic growth. This
circle cannot be interrupted unless structural changes and conservation technologies
are adopted in economies.

• Conservation Hypothesis: GDP growth Granger causes energy consumption. Thus
with proper structural and technological correction, conservation is feasible without
interrupting economic growth.

• Neutrality Hypothesis: No causal relationship is observed between GDP growth and
energy consumption. This situation can be met in either very rich and advanced
economies or basic rural societies in poor countries, in which production is evolved
for the maintenance of a subsistence level, but not for the sake of economic growth
and wealth accumulation.

New considerations encountered in the sustainability extended energy-growth nexus
are suggested as follows:

• If energy conservation affects both GDP growth and sustainable economic growth,
societies should think of procrastinating energy conservation until further renewable
energies penetration becomes feasible.

• If energy conservation affects GDP growth but not sustainable economic growth, the
conservation adaptation will be less painful in terms of wellbeing. If societies are
focused on wellbeing rather than growth, then this situation may not be problematic.
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• If energy conservation affects neither conventional GDP growth, nor sustainable GDP
growth, then it safely takes place with no repercussions on growth.

• If energy conservation does not affect GDP growth, but affects sustainable economic
growth, then this situation needs a lot of consideration for the identification of possible
rigidities that may be causing such a result.

This paper summarizes and compares results of different studies in the energy-
sustainable growth nexus for various groups of countries around the world and compares
the results with the respective conventional energy-growth nexus studies.

The rest of this paper is organized as follows: The current part (Section 1) is the
introduction, Section 2 is the background material, Section 3 briefly refers to the employed
methodologies in each paper, Section 4 summarizes and discusses the results of the different
studies, while Section 5 offers the conclusion.

2. Background Material on Sustainable Economic Growth

The relationship between energy and sustainable economic development is studied
with various indexes. For example Zhang and Su [6] study the rural household energy
sustainable development in China with a composite indicator. Wang et al. [7] have also
constructed a composite indicator for energy sustainable development in China. On the
other hand, in the energy-growth nexus, Esseghir and Khouni [8] insert a focus on the
discussion on sustainability, though without using a specific index in that aspect. The ISEW
indicator for Europe has not been applied before within the energy-growth nexus.

The energy-growth nexus concerns the papers studying the relationship between
energy consumption and economic growth and the direction of causation among the
variables which best describe how an economy functions. Until recently, the literature until
has not been unanimous but is rather controversial. A big picture of that situation has been
provided in Kalimeris et al. [9]; Menegaki [10] and Ozturk [11]. Economic growth in most
of these papers has typically been shown with GDP per capita. In different cases in which
these papers performed a sector analysis rather than a country–economy as a whole, other
proxies were employed for economic activity, such as industrial production which has been
employed in the study by Marques et al. [12]. Overall, energy-growth studies mainly aim to
discover the role of energy consumption as a factor of production in an economy. Therefore,
they draw conclusions about the sensitivity of economic growth to various energy policy
tools, which aim to make the economy rely less on energy consumption and consequently
produce less greenhouse emissions, resulting in less fossil fuel resources depletion.

As aforementioned, these studies typically place the GDP per capita variable in the
position of the dependent variable, while the independent variables are basic drivers of
production, such as capital formation, labour, greenhouse gas emissions, energy consump-
tion, electricity consumption, or production, trade etc. The elasticities of these magnitudes,
with respect to GDP, constitute important information for policy making in each economy
or groups of economies. However, given the principles of the so-called “New Economics”
and their base of genuine progress and sustainable economic welfare and sustainable GDP,
we agree that the energy-growth nexus research is rather short sighted, because it does
not say anything about the genuine effect and the contribution of energy consumption on
sustainable economic welfare.

In order to explain the aforementioned statement in a better way, we mean to suggest
that: The GDP of each country has a different base and is generated in ways that may have
different effects on human welfare. Therefore, a high-income country may have generated
excessive pollution and induced extreme urbanization, accompanied by a low quality of
life or family breakdown caused by the extended working hours of the working force.
The list of the negative effects is rather long in this respect. Conversely, a less developed
economy, usually accompanied with a lower GDP per capita, may have a cleaner natural
environment, more essential human bonds, less family disintegration, and generally consist
of people who enjoy their wellbeing and existence more. Furthermore, an industrialized
country generates more environmental degradation than a country that produces services.
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Petrochemical activities, construction, or agriculture are usually very polluting activities in
an economy. Next, we provide the energy intensity of GDP for an indicative set of countries
across the world (Table 1). The differences in intensity reflect the different structure of the
GDP in each country with the participation of energy.

Table 1. Energy intensity of GDP across the world.

Country Energy Intensity (koe/%15p)

Colombia 0.057
United Kingdom 0.058

Turkey 0.06
Portugal 0.064

Italy 0.064
Romania 0.066

Spain 0.067
Mexico 0.069

Germany 0.07
Egypt 0.07

Indonesia 0.071
Japan 0.076

Source: Enerdata.net [13]. Note: koe stands for kilogram of oil equivalent.

GDP does not distinguish economic activity that improves welfare from the one that
reduces welfare [14]. This and other drawbacks of the GDP as a measure of wellbeing and
genuine comprehensive progress, had been acknowledged from the day it was established.
For instance, GDP disregards transactions performed in the unofficial and unrecorded
economy. Nevertheless, these transactions are consuming energy capital and labour. These
transactions are not recorded in the official accounts of the economy thus, they do not ap-
pear to generate income, but they consume energy, capital and contribute to the generation
of pollution.

The same applies with market failures from environmental and social externalities that
are not reflected in the GDP but contribute to the depletion of resources and formal capital.
Furthermore, these externalities may inflate the GDP with much defensive expenditure,
which arise from disservices generated from the externalities [15]. For example, a poor road
network (this is capital) may be one of the reasons for a high number of car accidents and
fatalities. The expenditure incurred to have cars repaired or people hospitalized should
not be measured as GDP. This rationale of New Economics [16] that has started permeating
the modern economic world, brings forward the need to re-examine the relationship of the
conventional energy-growth nexus by focusing on income indicators that are as inclusive
as possible.

Until today, and from what we do know from the literature, very little research has
been devoted on this new promising area. For example, You [17] has employed genuine
savings instead of the GDP variable and concludes that renewable energy increases China’s
genuine savings, while fossil energy contributes to the increase of GDP growth. Genuine
savings is a variable readily available by international statistical agencies. Conversely, the
ISEW explained in this paper and applied in the energy-growth nexus (in all the reviewed
papers) is a more comprehensive indicator because it included data from all the three
sustainability fields: economic, environmental, and societal.

The Construction of the Index for Sustainable Economy

Welfare is a controversial and multi-aspect concept. Therefore, a comprehensive
indicator is needed to reflect it. Some of the aspects of welfare are the following: living
standards (housing conditions, housing area, size etc.), health, the feeling of neighbour-
hood, education, time use, democratic engagement, leisure, culture, environment, public
infrastructure, natural resources, emissions, equal access to resources and their sustainable
use; corruption and transparency, waste assimilation capacity, sustainable consumption
and production, demographics, recycling rates, adult literacy, mean duration of schooling,
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knowledge, social relations, climate change (extreme weather phenomena), urban sprawl-
ing, commuting, noise pollution, globalization, volunteerism, criminality, unemployment
costs, loss of farmland and wetland, net foreign borrowing, happiness (happy life years),
peace, and safety.

As we understand, some of the above aspects are tangible and some are not. From
the tangible dimensions some of them have not yet been measured. The immaterial ones
are mainly psychological aspects that may lead to happiness and wellbeing. It is more
difficult to calculate the value of the immaterial ones than the material or tangible ones.
There are means to calculate intangibles, such as revealed or stated preference techniques.
However, even if their value has been estimated for one economy, there is no institutional
tool to impose or even encourage other economies to do the same. Therefore, cross country
comparisons cannot be made if there is no cross-country agreement on the calculation of
those values. This increases the difficulty of the calculation of a complete ISEW, which can
host all possible parameters affecting human wellbeing within an economy. Countries that
have made a lot of institutional progress have had more progress in advanced statistical
data keeping while others with low institutional development have not managed to do this.

The convention held by the European Commission, entitled “2007 Beyond”, has
presented a series of 24 similar indicators. Each one of them deals with a different and
specific aspect of human welfare. However, none of them is so comprehensive and inclusive,
something which would make an ideal indicator. For instance, the adjusted net savings
(ANS) or genuine savings, the capability index, (according to which, the quality of life is
defined by what people achieve with their resources), the ecological footprint indicator
(which evaluates the balance between the demand and supply for renewable resources
in a certain population or economic activity and the capacity to assimilate waste), the
environmentally sustainable national income-ESNI (defined by the number of years that a
certain economy with its current production capacity is away from an ideal benchmark
that is considered to be sustainable), the human development index-HDI (which measures
life-span and years of healthiness, together with access to education and knowledge and a
decent standard of living that does not deprive one of basic facilities and goods), the Happy
Planet Index- HPI, (ratio of the product of the experienced welfare and life expectancy
to the ecological footprint) as well as many others. Goosens et al. [18] distinguish these
indicators and place them into three categories: those replacing GDP, those supplementing
GDP, and those adjusting it. The ISEW belongs to the ones which are adjusting GDP to
reflect the experienced welfare.

The first version of the ISEW was generated by Daly and Cobb [19] for the US and
then was further improved in 1994. There are both numerous supporters and opponents of
the ISEW. The index has received a lot of criticism for measuring welfare and sustainability
together within one index [20] and for the way it treats stocks and flows methodologi-
cally [21]. Responses to the former criticism state that the ISEW indicator is an aggregate
indicator for both current and future wellbeing. Future welfare is an aspect of utility for
the current generation. The latter receives satisfaction from knowing they will not damage
the utility of their descendants [22]. This was additionally supported by Lawn [23]. He
drew principles from Irving Fisher’s “net psychic income” and he explains why each
component in the ISEW contributes to the psychic income. Despite the hesitations stated by
the ISEW opposers, the existent ISEW is better than nothing (Lawn and Clarke, [24]). This
is explained by the fact that the Index has covered a lot of distance to the measurement of
sustainability but not all of that. Posed in a different way by Posner and Costanza [25], it is
better to be approximately correct than completely wrong. Bleys and Whitby [26] report
some of the most important obstacles and opportunities in the calculation of the ISEW.

From what it is known, the calculation of the ISEW has been sparsely implemented
only for several European countries: regional Italy [27], Belgium [28], France [29] and
Greece [16]. Therefore, the official expression of the proposed ISEW in the reviewed papers
here, is described in Equation (1):

ISEW = Cw + Geh + Kn + S-N-Cs (1)
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where Cw denotes the weighted consumption, Geh denotes non defensive public expendi-
ture, Kn stands for the net capital growth, S stands for the unpaid work benefit, N stands
for the depletion of natural environment and Cs denotes the cost from social problems,
which has not been taken into account in the calculations of the reviewed papers due to
lack of proper data. Understandably, environmental, or ecological degradation is a wide
concept which encompasses many more problems, for which, however, we had no data
available to rely on. For instance, the cost of water pollution or the cost of the loss of land
and wetlands is not readily published in the publicly available official databases that are
usually employed, namely Eurostat, OECD, and World Bank. The same applies for the lack
of reliable social data. Since we have not been able to include costs from social problems,
Equation (1) is simplified to Equation (2), as demonstrated by Menegaki and Tugcu [30]
and Menegaki and Tiwari [31] and the rest of the reviewed papers:

ISEW = Cw + Geh + Kn + S-N (2)

The method approach in Equations (1) and (2) is also recommended in [18] Gigliarano
et al. [27], Menegaki and Tsagarakis [32]. The first two papers concern regional Italy and
have included a large variety of available environmental and social data. However, in
the reviewed papers contained in this study, this has not been possible. Thus, in each of
the reviewed papers first, we have calculated the ISEW for the sampled countries and
then we have estimated the conventional energy-GDP growth and new energy-ISEW for
those countries, where it was feasible upon data availability for the variables, setting up
the energy-growth nexus for the countries the study was focusing on each time. Table 2
explains the details of the calculation and the origin of the data in the sampled papers.
Please note that since the current paper is a review of past published papers, new methods
of calculation of the involved ISEW components have been evolved. The future researcher
must take that into consideration. For example, it would be interesting to recalculate the
index with the cost of carbon being $100 or $200/ton [7,28]. The same applies with the cost
of renewable energies, which is reduced over time as technology improves.

Table 2. The ISEW components, sign, calculation methods and data sources as it has been originally presented in the
reviewed papers.

Component Sign Calculation Method Source/Available from

1. Adjusted personal
consumption with

durables (Cw)
+

We multiplied personal consumption and durables’
expenditure (PC) with Gini coefficient (G) and
poverty index (P) as: PC × (1 − G) × (1 − P)

PC:
http://data.worldbank.org/

indicator/NE.CON.PRVT.CDT.CD.
(accessed on 1 January 2015)

Gini coefficient:
http://data.worldbank.org/

indicator/SI.POV.GINI.
(accessed on 1 January 2015)

Poverty index (headcount ratio):
http://data.worldbank.org/

indicator/SI.POV.2DAY.
(accessed on 1 January 2015)

2. Education expenditure (Geh) +

Public expenditure on education(current operating
expenditures in education, including wages and

salaries and excluding capital investments in
buildings and equipment). Assuming that half of it
is defensive, we multiply this amount with 50%.

http://data.worldbank.org/
indicator/NY.ADJ.AEDU.CD.
(accessed on 1 January 2015)

3. Health expenditure (Geh) + Public health expenditure is also multiplied with
50% for the same reason as above.

http://data.worldbank.org/
indicator/SH.XPD.PUBL.

(accessed on 1 January 2015)

168



Energies 2021, 14, 5074

Table 2. Cont.

Component Sign Calculation Method Source/Available from

4. Net capital growth (Kn) ±
We have used data on fixed capital accumulation

(FCA). We subtracted consumption of fixed
capital(CFC) to find the net capital and then

calculated its growth rate.

FCA: http://data.worldbank.org/
indicator/NE.GDI.TOTL.CD.
(accessed on 1 January 2015)

CFC: http://data.worldbank.org/
indicator/NY.ADJ.DKAP.CD.
(accessed on 1 January 2015)

5. Mineral depletion (N) −

Mineral depletion is the ratio of the value of the
stock of mineral resources to the remaining reserve

lifetime (capped at 25 years). It covers tin, gold,
lead, zinc, iron, copper, nickel, silver, bauxite, and

phosphate.

http://data.worldbank.org/
indicator/NY.ADJ.DMIN.CD.
(accessed on 1 January 2015)

6. Energy depletion (N) −
It is the ratio of the value of the stock of energy

resources to the remaining reserve lifetime
(capped at 25 years). It covers coal, crude oil, and

natural gas.

http://data.worldbank.org/
indicator/NY.ADJ.DNGY.CD.
(accessed on 1 January 2015)

7. Forest depletion (N) −
Net forest depletion is calculated as the product of
unit resource rents and the excess of roundwood

harvest over natural growth.

http://data.worldbank.org/
indicator/NY.ADJ.DFOR.CD.
(accessed on 1 January 2015)

8. Damage from CO2
emissions (climate
change-long-run

environmental damage) (N)

−

It is estimated to be $20 per ton of carbon (the unit
damage in 1995 U.S. dollars) times the number of
tons of carbon emitted. World bank estimations

are based on Samuel Fankhauser’s “Valuing
Climate Change: The Economics of the

Greenhouse” (1995).

http://data.worldbank.org/
indicator/NY.ADJ.DCO2.CD.
(accessed on 1 January 2015)

Note: This type of the ISEW calculation has been applied by Menegaki and Tsagarakis [27]. The notation following the definition of
components in this table, is the one represented in Equation (2).

3. Methodology

The current section will provide a summary of the methodologies used in the series
of papers the current review focuses on. Those methodologies are varied depending on
the different characteristics of the data and the diagnosed problems. The section is further
divided into three sub-sections on unit root testing, cointegration and causality, respectively.
The section serves an informative purpose because the current study is a review of previous
studies and not a new empirical one. Thus, this section does not describe the employed
methodologies from scratch as this can be done in the relevant original papers. These
papers are: Menegaki and Tugcu [33], Menegaki et al. [34], Menegaki and Tugcu [35],
Menegaki and Tiwari [31], Menegaki and Tugcu [17], Menegaki and Tugcu [30].

3.1. Unit Roots Testing

Testing for unit roots is the first stage in every study in the energy-growth nexus. First,
the study by Menegaki and Tugcu [35] in page29, uses the cross-sectionally augmented
IPS test for the investigation of unit roots in cross-sectionally dependent data. Previously,
in page 29–31 they have used the Pesaran CD test [36], Pesaran scaled LM test [36] and
Baltagi et al. [37] bias-corrected scaled LM test. The presence of cross-sectional dependence
was confirmed in three out of four statistics. Second, the study by Menegaki et al. [34]
in page 1261 has employed ADF Fisher, PP Fisher (Maddala and Wu, [38] and Choi, [39])
and CIPS (Zt-bar) test (Pesaran, [40]). Third, the study by Menegaki and Tugcu [35] has
employed the Pesaran IPS and GIPS (Pesaran et al. [40]) test in page 896 in constant
and constant and trend versions. Fourth, the study by Menegaki and Tiwari [31] in pages
499–500 employs a battery of unit root tests such as the Levin et al. [41], the Im et al. [42], the
augmented Dickey-Fuller test [43] the Phillips-Perron test [44] and the Breitung t-test [45]
Hadri Z-test [46] and Heteroskedastic consistent Z test. Fifth, the study by Menegaki and
Tugcu [30] in page 81 tests panel unit roots with Im et al. [41] and Choi [47]. None of
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the variables was stationary at levels, so they took first differences. Sixth, the study by
Menegaki and Tugcu [33] in pg 156 has also used the augmented IPS (Pesaran, [48]), after
acknowledging the existence of cross-sectional dependence (Pesaran, [40]).

3.2. Cointegration

Accordingly, this sub-section describes the type of cointegration analysis employed
in each of the sampled studies. First, the study by Menegaki and Tugcu [33] in page 31
used a panel cointegration procedure developed by Westerlund [49] which considers the
cross-sectional dependence that has been previously acknowledged. Second, the study by
Menegaki et al. [34] in page 1261–1262 employed the ARDL cointegration framework which
directly hosts both short run and long run relationships. Third, the study by Menegaki
and Tugcu [35] in page 897 (Table 4 in the referenced paper) uses the panel ARDL model
with a Pooled Mean Group (PMG) estimator. The advantage of this estimator is that
it allows the intercepts, the short run coefficients, and error variances to differ across
groups of countries, but it constraints the longrun coefficients to be the same. Fourth, the
study by Menegaki and Tiwari [31] in pages 501–502 applies the Pedroni cointegration
test [50] and based on evidence from the Hausman test they have decided in favour of
a dynamic fixed effects model to depict the cointegration relationship estimated with
a Generalized Method of Moments (GMM), which revealed that there was no problem
of autocorrelation. They have also employed a quantile regression to corroborate the
previous results. Fifth, the study by Menegaki and Tugcu [32] in page 83 has also used the
Westerlund [49], whereby the underlying idea is to test for the absence of cointegration by
determining whether the individual panel members are error correcting. Over the long run,
cointegration is employed to investigate whether the variables move along the same path.
The confirmation of cointegration also indicates the existence of a causality relationship at
least in one direction of the relationship. Menegaki and Tugcu [30] in page 157 have used
the Pedroni [51] cointegration with seven test statistics. Four out of the seven statistics are
estimated based on pooled data across countries, and three out of the seven are based on
averages of the individual autoregressive coefficients for each country.

3.3. Causality

The causality analysis is usually the last step in the energy-growth nexus studies.
Causality analysis is necessary to reveal the direction of the causal relationship, which
is not revealed in the cointegration analysis. This sub-section provides information as
to which causality methods have been employed. First, the study by Menegaki and
Tugcu [33] in page 31–32 have employed the Dumitrescu and Hurlin [52] to examine the
panel causality context in their data. Second, the study by Menegaki and Tiwari [31] in
page 1264 employed panel VECM Granger/Block exogeneity Wald tests. Third, Menegaki
and Tugcu [35], within their ARDL approach, have separate long run and short run effects
through the elasticities and semi-elasticities in page 897. Fourth, the study by Menegaki and
Tiwari [31] in page 503 employs a VECM Granger causality/Block exogeneity Wald tests.
Fifth, the study by Menegaki and Tugcu [27] in pages 84–85 has used Konya [53] which
is a bootstrap panel Granger causality test and is examined as a set of SUR (seemingly
unrelated regression). This test relies on the lag structure and hence this should be carefully
decided. Sixth, the study by Menegaki and Tugcu [30] in page 157 has employed a pairwise
Granger causality test.

4. Results and Discussion

This section provides summary results of the major and focal points reached in each
study about the relationship of energy consumption and sustainable economy vis-a-vis the
results from the conventional energy consumption and GDP growth.

Study 1: Sustainable economic growth and energy consumption in Asian countries
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[Full study can be found at: Menegaki, A.N., Tugcu, C.T., 2018. Two versions of the
Index of Sustainable Economic Welfare (ISEW) in the energy-growth nexus for selected
Asian countries. Sustainable Production and Consumption 14, 21–35]

This study has separated energy consumption into renewable and non-renewable. It
has also used international trade, natural resources rents, financial development, and the
consumer price index as covariates. The dependent variable was sustainable economic
growth in two versions: “loose” and “strict”. The used data ranged from 1990 to 2015.
The results have revealed a bidirectional relationship between each of the two versions
of sustainable economic growth and the rest of the covariates as well as between GDP
growth and the rest of the covariates. There is only a unilateral relationship between the
strict version of sustainable economic growth and international trade, but that was not
significant at 5%.

Particularly, there is a bidirectional relationship between economic growth and energy
consumption (either renewable or non-renewable) and between sustainable economic
growth and energy consumption (either renewable or non-renewable). Thus, the Feedback
Hypothesis is overall supported and this shows that energy conservation will negatively
affect conventional and sustainable economic growth. The latter will then affect energy
consumption and this dependence is mutual and of a spiral type. This constitutes some
evidence that economic growth (not least the sustainable one) is coupled with energy
consumption and without it, it will be fragile. Asia has achieved very high economic
growth rates in recent years but has not managed to correct the inequalities. Environmental
degradation could not be escaped and, therefore, Asian countries belong to the 70% of the
world’s most vulnerable countries in front of climate change. Based on the parameters
constituting the sustainable economic growth, it is apparent that Asian countries are also
characterized by poor performance in vital indicators, such as public health expenditure.
The progress in major energy goals, such as the improvement in the electrification rates,
the increased penetration of renewable energies, and particularly the progress in energy
efficiency have not been able to support the required structural change that would enable
the confirmation of the conservation or neutrality hypotheses. The latter, if confirmed,
signal the existence of energy decoupled economies which are more sustainable. It is
interesting to reflect on the result of the Feedback Hypothesis between sustainable eco-
nomic growth and energy consumption, which shows that energy consumption Granger
causes sustainable growth. This has ramifications on the Environmental Kuznets Curve
Hypothesis, according to which developing economies cannot help degrading the environ-
ment at the first stages of their development until a point is reached, which is the turning
point of the EKC, where economies actively start improving their natural environment.
Overall, it would be an interesting point of further research to corroborate the findings of
the energy-sustainable growth nexus with relevant findings from the EKC curves. One
of the most striking implications from the results in the Asian group of countries is that
governments need not take different measures for conventional and sustainable economic
growth, given that their Granger causal behaviour appears the same.

Study 2: Sustainable economic growth and energy consumption in Europe

[The full study can be found at: Menegaki, A.N., Marques, A.C., Fuinhas, J.A., 2017.
Redefining the energy-growth nexus with an index for sustainable economic welfare in
Europe. Energy 141, 1254–1268]

Detailed results from this study can be found in Menegaki et al. (2017). The study
has compared the causal behaviour between conventional economic growth with energy
consumption and sustainable economic growth with energy consumption from fossil fuels
and renewable resources. Covariates have used the following variables: financial sector,
carbon emissions, labour, electricity produced from renewables, electricity produced from
non-renewables, capital, exports, natural resource rents and inflation.

Short run causality analysis has revealed bidirectional causality between energy con-
sumption and sustainable economic growth. Sustainable economic growth also positively
affects labour, exports, financial development, rents, electricity produced from renewable,
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and electricity produced from non-renewables. Energy consumption also positively affects
inflation, carbon emissions, labour and capital. The corresponding analysis with conven-
tional economic growth has revealed similar causation findings, except for the variable of
labour; the latter was not significant in the conventional economic growth framework.

As far as the negative contribution of the rents to economic growth (conventional
or sustainable) is concerned, it has been captured in literature (Fuinhas et al., with a
negative sign for specific natural resources, such as oil production. This may be attributed
to the high dependence on these resources which allow rent earning, but at the same
time hinder the diversification of productive structures of these countries. Nevertheless,
this effect is very small in this empirical study, because European countries rely much
less on oil production for revenues. Inflation was significant only in the conventional
economic growth framework, which may be an indication that sustainable economic
growth is robust to price fluctuations. The effect of inflation on conventional economic
growth has also been documented in Asia has achieved very high economic growth rates
in recent years but has not managed to correct the inequalities Asia has achieved very high
economic growth rates in recent years but has not managed to correct the inequalities.In
countries with high inflation, businesses suffer, and their operational environment is not
favourable. Regarding the significance of labour in the sustainable economy, we need to
remember that the reporting for conventional economic growth does not take into account
the contributions of unofficial labour and the disservices from unemployment. Therefore,
the latter acknowledgements throw some light as to why labour appears significant in the
sustainable economy and not the conventional economic growth.

A result that causes scepticism is the positive significance of fossil fuelled electricity
only in the conventional economic growth model. This finding is in line with previous
literature which supports that renewables hamper economic growth. The current study
corroborates this, given the significant negative sign of renewables in the sustainable
economic growth framework. The larger coefficient estimated for capital in the welfare
nexus than the conventional one shows that shocks, such as the financial crisis which
entailed severe investment cuttings, could compromise the implementation of sustainable
development in Europe. Sustainable economies need to increase or renew their capital base.
Overall, the small differences between the welfare and the economic framework show that
these frameworks are not perfect substitutes.

Study 3: Sustainable economic growth and energy consumption in G7 countries

[The full study can be found at: Menegaki, A.N., Tugcu, C.T., 2017. Energy con-
sumption and Sustainable Economic Welfare in G7 countries; A comparison with the
conventional nexus. Renewable and Sustainable Energy Reviews 69, 892–901]

G7 countries play important roles in the global political and economic scene. Their
decisions affect the global financial architecture, and they are usually regarded as exemplar
policy actors by developing countries. The study on G7 countries has employed capital,
labour, and research and development (R&D) expenditure as a proxy for education and
energy consumption. The sustainable economic growth has assumed two versions: “light”
and the “strict”.

The Feedback Hypothesis is confirmed only between strict sustainable economic
growth and energy consumption, while between the light sustainable economic growth
and energy consumption we observe the Conservation Hypothesis. The same hypothesis
is also confirmed in the GDP framework. The rest of the covariates all have a positive
significant effect, except for labour with a negative sign in the strict welfare and energy
consumption, which enters with a negative sign in the light welfare framework.

Based on the results derived from this set of countries, G7 most likely will be resilient
to energy conservation measures and their sustainable development progress will not
be hindered. Within the framework of the strict welfare, G7 economies show a feedback
behaviour which means that resilience is not strong enough.

Study 4: Sustainable economic growth and energy consumption in American countries
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[The full study can be found at: Menegaki, A.N., Tiwari, A.K., 2017. The index of sus-
tainable economic welfare in the energy-growth nexus for American countries. Ecological
Indicators 72, 494–509]

This study is based on data from 1990 to 2013 on 20 American countries. These
data are: labour, capital, carbon emissions, energy use, renewable energy, rents, and
trade. This study examines the relationship between energy consumption and economic
growth (conventional and sustainable). Results do not reveal a relationship between energy
consumption and growth whatsoever, but they clearly provide support for the Growth
Hypothesis between renewable energy and GDP growth. On the other hand, results also
support the Feedback Hypothesis between renewable energy sustainable economic growth.
Another important finding is that the speed of adjustment for GDP growth is −0.380, while
for the sustainable growth, it is −0.625. This entails that if the equilibrium situation in
each case is perturbated, the sustainable growth can come to equilibrium at a higher speed
(almost double) than the GDP growth.

As far as the energy consumption variable is concerned, this variable is only affected
by capital under the sustainable economy framework. Renewable energy resources are
affected by trade under both frameworks (GDP growth and sustainable economy). Had we
stayed with conventional analysis in the first place, the non-existence of Granger causality
between energy and GDP would have been mistaken for the Neutrality Hypothesis. In
such a situation conservation measures on energy are not expected to retard economic
growth. Contrary to this, the additional information we receive from the renewable energy-
sustainable economy, namely the confirmation of the Feedback Hypothesis, provides a
useful warning for policy makers: Therefore, applying conservation measures in renewable
energy consumption will eventually cause a de-growth result and this, in turn, will impact
on the development of renewable energies and it will slow down their penetration in the
American countries.

Last, but not least, the results from Menegaki and Tiwari [31] inform us in the sustain-
able economy framework that the same amount of energy or renewable energy Granger
causes a smaller effect on sustainable economy than the GDP economy. This is a sound
indication that the sustainable economy is more stable and less prone to the fluctuations
that can be caused by the application of energy conservation measures.

Study 5. Sustainable economic growth and energy consumption in emerging economies

[The full study can be found at: Menegaki, A.N., Tugcu, C.T., 2016. The sensitivity
of growth, conservation, feedback & neutrality hypotheses to sustainability accounting.
Energy for Sustainable Development 34, 77–87]

The study is based on 15 emerging economies and uses two versions of sustainable
economy. The light and the strict version of sustainable economic growth vis a vis the
conventional economic growth as denoted by the GDP growth. Thus, besides the afore-
mentioned variables, the rest of the employed variables are capital, labour, openness of
economy (imports and exports) and of course energy consumption. Based on the estimated
results, in 8/15 countries, the confirmed hypothesis does not vary between the conven-
tional growth framework and the sustainable economy (strong version). For 13 out of
15 countries, the same hypothesis is observed between the basic and the solid version of
sustainable economy. For 8 out of 15 economies the same hypothesis is observed between
GDP and the two versions of sustainable economy. Different causalities between the light
and strong version of the sustainable economy are noted only for Poland and South Africa.
Moreover, Brazil and Malaysia confirm the Feedback Hypothesis in the GDP framework,
while for the sustainable economy framework the Growth Hypothesis is supported. Thus,
had policy makers ignored the different results applicable between the conventional and
the sustainable economy, it would have resulted in the possibility of changing energy con-
sumption by changing welfare. A different situation applies for Colombia and Indonesia.
The Growth Hypothesis applies in the GDP economy, while the Feedback Hypothesis
applies for the sustainable economy. The latter entails that conservation measures will
have repercussions on sustainability and, in turn, on energy.
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Study 6. Sustainable economic growth and energy consumption in Sub-Saharan countries

[The full study can be found at: Menegaki, A.N.; Tugcu, C.T. Rethinking the energy-
growth nexus: Proposing an index of sustainable economic welfare for sub-saharan africa.
Energy Res. Soc. Sci. 2016, 17, 147–159]

The African region has been in the foreground of the summits of G8 since 2000. Due
to its socio-economic and environmental characteristics, this region can play an important
role for combating climate change. Thus, the way official assistance, with respect to energy
is designed, is important, and such studies can inform policy making towards the right
decisions. The study is based on 42 countries within the data span between 1985 and 2013.
Besides GDP growth, sustainable economy growth, and energy consumption, the following
variables are used: capital, carbon emissions, trade, and inflation. Granger causality results
have provided support for the Feedback Hypothesis between energy consumption and
the sustainable economy growth. A similar bidirectional relationship has been confirmed
between capital and sustainable economy and between trade and sustainable economy.
Moreover, we note a unidirectional Granger causality running from sustainable economy
to rents and from carbon emissions to sustainable economy. The support for the Feedback
Hypothesis between sustainable economy and energy consumption means that each magni-
tude affects the other and no conservation measures can take place without compromising
sustainability. According to Menegaki and Tugcu [11], this finding can be expected to
occur in the context of underdeveloped or developing economies which are in need of a
minimum threshold of energy consumption that cannot be avoided, and it will put the
sustainable economy on track. Thus, it may be the case that it is too early for the studied
countries to be controlled in their energy consumption.

5. Concluding Remarks

The new trend of economic thinking and planning, with respect to sustainable eco-
nomic growth and not the traditional economic growth as revealed by GDP, has led to
the investigation of the so called energy-growth nexus from this new perspective. The
current paper summarizes the gist causality results from a series of six studies which have
been devoted to the investigation of the energy-sustainable economic growth relationship
in various groups of countries worldwide. While the idea was first applied to a set of
Sub-Saharan countries, mainly because it was a region suffering from poverty and because
of the role it could play in the global sustainability, the interesting results the first study
reached gave the initiative for the gradual study of an additional set of countries, covering
almost the whole world.

Nowadays, besides the abundant studies in the conventional energy-growth nexus
field which have been implemented for various single countries and groups of countries,
there are a number of studies dealing with the relationship between energy consumption
and a sustainable economy. A striking result is that almost all studies, and thus all country
sets, provide support for the Feedback Hypothesis between energy consumption and sus-
tainable economy. Despite the different econometric methods and the different timespans
and covariates, the studies end up resulting in the same common finding, namely the
bidirectional causal relationship between energy consumption and sustainable economy,
which entails that sustainability cannot be yet achieved with energy conservation. Despite
energy conservation being an action towards sustainability, energy consumption is still
much required for the implementation of a sustainable economy. It is most surprising
that this result is apparent worldwide with no differentiation between developed and
underdeveloped countries. This might reflect the many dimensions of the sustainability
agenda, such as the late and insufficient adoption of renewable energies by most countries
due to their high cost, and the only recent adoption of circular economy practices, climate
change mitigation etc. Generally, the worldwide evidence of the Feedback Hypothesis in
the energy-sustainable economy relationship is a signal that sustainability requires a major
structural transformation of economies, which is both energy and fossil energy intensive.

174



Energies 2021, 14, 5074

Of course, it is understood that the sustainable economy index that the series of
studies has employed is far from perfect. However, the criticism received for the Index of
Sustainable Economic Welfare is widely known, but still the lack of a better index allows
withstanding of this criticism. Next, the main conclusions derived from the sampled studies
are presented and compared.

5.1. Study 1 (Asia)

Contrary to other country groups, in the group of Asian countries no different implica-
tions appear for economic growth, either conventional or sustainable. Thus, policy makers
in the energy sector can apply a uniform energy policy. However, since conservation
measures will restrain growth generally, it would be advisable that the policy makers
refrain from that altogether. This may be due to the fact that Asian countries in our sample
are developing countries, and this entails that that they have not yet reached the time point
at which they can decouple their growth from energy consumption.

5.2. Study 2 (Europe)

Particularly for the European sample of countries, the positive effect of capital invest-
ment is larger in the sustainable nexus than the conventional, which reveals that when
economies are faced with financial shocks, such as an economic crisis, reducing investment
can also reduce sustainable economic growth. Significant differences exist between the
long and short run in the energy-growth relationship of European countries. In the short
run, conservation policies put more strain on the GDP rather than the sustainable economy.
The opposite applies for the long run horizon. As far as the comparison of results in the
conventional energy-growth nexus is concerned, the positive effect of capital investment is
lower in the conventional energy-growth nexus as compared to the sustainable one. This
highlights the importance of not cutting down on investment, a fact that can seriously
delay sustainable growth. Despite this, the study reveals that sustainable growth also
affects energy consumption, both in the short and the long run. Thus, energy conservation
policies, albeit taking place in the short run, bear long-term implications.

5.3. Study 3 (G7 Countries)

G7 are the seven richest economies, so it is important to observe the energy-growth
relationship in them. Basic sustainable growth (as a separate sustainability indicator and
defined in the relevant study) is affected negatively by energy consumption, which is
some evidence that G7 countries have reached a point in their history of economic growth
and development where additional energy consumption can do no better. The same
is not suggested with conventional economic growth however, and this underlines the
importance of studying these two contexts together (the conventional energy-growth model
with the sustainable economy-growth model). In this relationship the energy-growth is
mutually caused by each other, thus any energy conservation measures will bring economic
growth to a halt. This case study reveals that sustainable economic growth is more fragile
in G7 countries than in the Asian or European ones. This may be due to the fact that
the seven richest countries have relied much on energy consumption and environment
exploitation in order to reach their high growth level.

5.4. Study 4 (American Countries)

In the American group of countries, we find that energy does not affect either type
of economic growth. While this lends support for the Neutrality Hypothesis, the picture
is different in the separate case of the effect of renewable energy, unveiling a feedback
hypothesis which entails that renewable energy conservation will lead to a de-growth of
American economies. The situation revealed in this case study is quite different from all
the above cases and with no implications for policy making, because it appears that growth
is not dependent on energy consumption. The structure of the economy is different and
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probably with an advancement in energy efficiency which enables growth decoupled from
energy. Thus energy conservation will bear no negative consequences for growth.

5.5. Study 5 (Emerging Economies)

This study suggests caution towards the results received between the different versions
of sustainable GDP and the different results reached when comparing the conventional
energy-growth nexus with the sustainable energy-growth nexus. It is understandable
that the constructed ISEW is far from perfect and has been built based on the available
information concerning basic sustainable GDP components. The method used in this study
enables reaching results for each country separately. In nine countries, causality results are
stable across the conventional growth and the different definitions of sustainable growth
that are identified in the study. These countries are Chile, China, Colombia, India, Mexico,
Morocco, Philippines, Thailand, and Turkey. In the rest of the countries, there are different
results, either between the conventional and sustainable aspect of growth, or between the
different versions of sustainability. Hence, one cannot make comparisons between this
group of countries and the rest stated in this review.

5.6. Study 6 (Sub-Saharan Countries)

For Sub-Saharan countries it is found that energy conservation policies will restrict sus-
tainable development. Due to its characteristics, this region will play a fundamental role in
combating climate change. The huge income inequalities in Sub-Saharan countries require
the usage of a more comprehensive measure of economic growth, such as the sustainable
GDP. This study has resulted in a bidirectional relationship between energy consumption
and sustainable growth, which means that these two magnitudes fuel each other. On the
other hand, no relationship is revealed between energy consumption and economic growth,
which supports the existence of the Neutrality Hypothesis. Thus, energy conservation will
negatively affect sustainable growth but will not affect conventional growth and thus must
be taken into consideration by policy makers who pursue sustainability. Conversely to
the American sample of studies, where neutrality is evidenced in both cases of economic
growth (conventional and sustainable), the Sub-Saharan case study reveals that neutrality
is the case only for the conventional economic growth and not its sustainable counterpart.
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Abstract: The ability to accurately forecast the spot price of natural gas benefits stakeholders and is
a valuable tool for all market participants in the competitive gas market. In this paper, we attempt
to forecast the natural gas spot price 1, 3, 5, and 10 days ahead using machine learning methods:
support vector machines (SVM), regression trees, linear regression, Gaussian process regression
(GPR), and ensemble of trees. These models are trained with a set of 21 explanatory variables in a
5-fold cross-validation scheme with 90% of the dataset used for training and the remaining 10% used
for testing the out-of-sample generalization ability. The results show that these machine learning
methods all have different forecasting accuracy for every time frame when it comes to forecasting
natural gas spot prices. However, the bagged trees (belonging to the ensemble of trees method) and
the linear SVM models have superior forecasting performance compared to the rest of the models.

Keywords: natural gas; spot price; machine learning; forecasting

1. Introduction

Natural gas has been proposed as a solution to increase the security of the energy sup-
ply and to reduce environmental pollution around the world. It is the second most widely
used energy commodity after oil [1]. With the replacement of coal and the widespread
use of natural gas, gas spot price forecasting has become one of the most critical issues in
many sectors. The accurate forecasting of natural gas spot prices is of high importance, as
these forecasts are used in the energy market, in power system planning and in regulatory
decision making, covering both supply and demand in the natural gas market.

Due to the significant economic results obtained from forecasting, many techniques
have been explored and studied, especially in electric load forecasting, such as artificial
neural networks (ANN), as seen in [2] and SVM, as seen in [3] and many other works. The
current studies on energy market forecasting mainly focus on crude oil prices [4]. Thus,
publications in the field of natural gas price forecasting are relatively rare [1].

One of the few studies that has tried to directionally forecast natural gas price move-
ments for the U.S. market is that of [5], which analyzed trader positions published on
a weekly basis. [6] forecasted gas prices one day ahead, but they relied on monthly for-
ward products and futures instead of focusing on current prices. They combined wavelet
transform (WT) with fixed and adaptive machine learning/time series models: multi-layer
perceptron (MLP), radial basis functions (RBF), linear regression, and GARCH (Generalized
Autoregressive Conditional Heteroskedasticity). According to their results, the best models
for electricity demand/gas price forecasting are the adaptive MLP/GARCH.

Another study analyzing gas prices is that of [7]. They trained several nonlinear
models with the aid of a Gamma test: local linear regression (LLR), dynamic local linear
regression (DLLR), and artificial neural networks (ANN). They used daily, weekly, and
monthly Henry Hub spot prices from 1997 to 2012. They concluded that the forecasting
model of daily spot prices using ANN can provide an accurate view. Moreover, ANN
models have superior performance compared to LLR and DLLR models.
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Ref. [8] tried to determine whether natural gas future prices can predict natural gas
spot prices. They used daily observations for the spot and futures prices for natural gas
for all trading days between 1 January 1997 and 3 March 2014 collected from the U.S.
Energy Information Administration (EIA) for a total of 4294 observations. According to
their results, gas futures prices are not superior in forecasting natural gas spot prices when
compared to a random walk (RW) model.

Ref. [9] compared the long-horizon forecasting performance of traditional econometric
models with machine learning methods (neural networks and random forests) for the main
energy commodities in the world: oil, coal and gas. Their results showed that machine
learning methods outperform traditional econometric methods and that they present an
additional advantage, which is the ability to predict turning points.

Ref. [10] combined machine learning methodologies (XGboost, SVM, logistic regres-
sion, random forests, and neural networks) with dynamic moving windows and expanded
windows to forecast crises in the U.S. natural gas market for a period spanning from 1994
to 2019. According to their results, the best forecasting accuracy was achieved with the
XGboost combined with the dynamic moving window, reaching 49% accuracy and a false
alarm of no more than 25%.

Ref. [11] presented a literature survey of the published papers forecasting natural gas
prices, amongst others. According to their survey, predicting the exact future evolution of
natural gas price is impossible.

According to the literature review, it can be observed that machine learning method-
ologies produce higher prediction accuracy compared to standard econometric methods.
Therefore, in this paper we trained models that have the potential to successfully predict
gas prices. The models trained in this paper are the support vector machines (SVM),
regression trees, linear regression, Gaussian process regression (GPR), and ensemble of
trees models. We focus on the short-term forecasting of the natural gas spot price 1, 3, 5,
and 10 days ahead, and we compare the effectiveness of the machine learning models in
natural gas price forecasting with a random walk model.

For the training of the models, we used the lags of the natural gas spot prices and
a set of 21 explanatory variables that were selected based on the relevant literature (for
instance, [1,8,12]) and determined their ability to enhance the predictive ability of natural
gas price forecasting. The selected variables were then fed into the forecasting models
through a training–testing learning process, resulting in the most efficient and least error-
prone models for natural gas price forecasting.

The paper is organized as follows: in Section 2, we will briefly discuss the methodolo-
gies and the data used in our study, while in Section 3, we describe our empirical results.
Finally, Section 4 will conclude the paper.

2. Methodology

2.1. Support Vector Machines

Support vector machines (SVM) are a set of methods for data classification and
regression based on the maximization of the interclass distance: the basic concept of the
SVM is to define the optimal (optimal in the sense of the model’s generalization to unknown
data) linear separator that separates the data points into two classes. To facilitate this, the
algorithm employs the “kernel trick”: the initial data space is projected through a kernel
function to a higher dimensional space (feature space) where the dataset may be linearly
separable [13]. In this paper, we use four kernels, the linear, the quadratic, the cubic, and
three different Gaussian kernels: fine, medium and coarse, following a different structure
in the data each time.

2.2. Gaussian Process Regression

Gaussian processes are a flexible class of non-parametric machine learning models
that are primarily used for modeling spatial and time series data. Gaussian models
are commonly used to solve difficult machine learning problems. They are particularly
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useful and attractive due to their flexible non-parametric nature and their computational
simplicity. A common application of Gaussian processes is regression. Gaussian process
regression (GPR) is based on the determination of an appropriate kernel function or a
measure of similarity between data points whose locations are known. Compared to other
machine learning methods, the advantages of GPR lie in its ability to seamlessly integrate
multiple machine learning tasks, such as parameter estimation. Moreover, it has excellent
performance and needs a relatively small training dataset to perform predictions. However,
a known problem that arises is that due to the computational complexity of the predictions,
according to [12], it becomes infeasible for GPR to be effective for large datasets. In this
paper we trained four different GPR models coupled with the most important kernel
functions with same length scale for each predictor:

(1) Rational Quadratic GPR: a Gaussian process model that uses the rational quadratic
kernel;

(2) Squared Exponential GPR: a Gaussian process model that uses the squared exponen-
tial kernel;

(3) Matern 5/2 GPR: a Gaussian process model that uses the matern 5/2 kernel;
(4) Exponential GPR: a Gaussian process model that uses the exponential kernel.

2.3. Decision Trees

Ref. [14] proposed decision trees as a forecasting modeling technique in statistics, data
mining, and machine learning. It employs a decision tree (as a forecasting model) to shift
from observations of an item (represented by the branches) to inferences about the object’s
target value (represented in the leaves). Regression trees are decision trees in which the
target variable can take continuous values (typically real numbers). In this paper we use
three different tree models:

(1) Fine Tree where the minimum leaf size is 4;
(2) Medium Tree where the minimum leaf size is 12;
(3) Coarse Tree: where the minimum leaf size is 36.

2.4. Ensemble of Trees

An ensemble of trees is formed by several individual trees that are added together.
Although decision trees are one of the most efficient and interpretable classification algo-
rithms, they suffer from low generalization ability nonetheless. Thus, they provide a low
bias in-sample but a high variance out-of-sample. Ensemble techniques have been shown
to solve this problem. They combine several decision trees to produce better prediction
performance, as opposed to using a single decision tree. The basic principle underlying the
ensemble model is that a group of weak learners is combined to form a strong learner. The
main techniques for training ensemble decision tree models are bagging and boosting [15].

2.4.1. Bagging

Bagging (bootstrap aggregation) is used when our goal is to reduce the variance of a
decision tree. In this process, the basic idea is to generate several subsets of data from the
training sample, which is selected randomly by replacement. Each subset of data is used to
train the corresponding decision tree model. As a result, we end up with a set of different
models. Finally, the average of all predictions obtained from different trees is used, which
is more powerful and accurate than a single decision tree (Figure 1).

2.4.2. Boosting

Boosting is another ensemble technique that aims to improve the accuracy of predic-
tions generated by one or many models. This technique starts by fitting an initial model
(e.g., a tree or linear regression) to the data. Then, a second model is constructed that
focuses on accurately predicting cases where the first model does not perform well by
using a weighted data sample. The combination of these two models is better than either
individual model separately. The boosting process is then repeated several times. Each
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successive model attempts to correct the weaknesses and errors of the combined boosted
set of all of the previous models (Figure 2). Combining the entire set at the end converts
the weak learners into a better performing model.

Figure 1. Bagging [16].

Figure 2. Boosting [16].

2.5. Cross-Validation

A common issue in this area of work is the problem of overfitting. A model can
theoretically be conditioned to precisely fit the training data, hence exhibiting very high
accuracy in-sample. Nonetheless, such a model would be useless in forecasting, as it
will likely exhibit a low fit in the test (out-of-sample) data. In such cases, the model is
trained to only fit the training data and not the underlying phenomenon. To avoid this,
in the empirical part of the study, we employed a k-fold cross validation procedure. The
in-sample data, which are used to train the model, are divided into k parts (folds) of equal
size. Then, in each of the k iterations, one fold is used as the testing set, while the remaining
k-1 folds are used as the training set. This is repeated for all k folds. In this scheme, the
model’s accuracy is evaluated by the average performance over all of the k folds for each
set of the model’s parameters. Figure 3 provides a graphical representation of a 3-fold cross
validation procedure.

2.6. The Dataset

For the training and the testing of our models, we compiled a dataset consisting
of 2423 daily natural gas spot price values from the Energy Information Administration
(EIA) database and 21 related economic variables from the Federal Reserve Bank of Saint
Louis and Yahoo Finance databases. They span the period from 3 December 2010 to
18 September 2020 (Table 1). In addition, the momentum of the last 5 and 10 days (Mo-
mentum 5 and 10 are defined as the sum of the times that natural gas spot price increases
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in the last 5 and 10 days, respectively) as well as the 5- and 10-day moving average was
calculated and added to the independent variable set. With the exception of interest rates,
all of the variables were converted to natural logarithms.

Figure 3. A three-fold cross validation for a given set of model parameter values. Each fold serves as
a test sample, while the remaining folds are used to train the model. The average prediction accuracy
for each set of parameters over the k-folds is used to assess the model [17].

Table 1. List of explanatory variables with mean, standard deviation, skewness, kurtosis, and variance.

# Name Mean Standard Deviation Skewness Kurtosis Variance

Panel A: Stock Indices

1 NASDAQ Composite Index 5289.44 2132.48 0.61 −0.4 4,549,055

2 S&P 500 Index 2112.97 607.77 0.18 −0.92 369,500

3 Dow Jones Industrial Average Index 18,797.36 5195.66 0.3 −1.04 27,003,372

Panel B: Exchange Rates

4 USD/EUR 0.19 0.09 0.3 −1.29 0.008

5 JPY/USD 4.62 0.14 −0.82 −0.61 0.019

6 USD/GBP 0.37 0.1 0.19 −1.5 0.010

Panel C: WTI Spot Price

7 Cushing, OK WTI Spot Price FOB 4.17 0.37 −0.57 0.34 0.1401

Panel D: Interest Rates

8 Effective Federal Funds Rate 0.638 0.77 1.17 −0.15 0.5974

9 5-Year Breakeven Inflation Rate 1.7 0.32 −0.84 1.57 0.107

10 10-Year Breakeven Inflation Rate 1.94 0.33 −0.44 0.36 0.1142

11 1-Year Treasury Constant Maturity Rate 0.75 0.82 1.1 −0.23 0.6757

12 10-Year Treasury Constant Maturity Rate 2.22 0.61 −0.4 0.51 0.3736

13 Bank Prime Loan Rate 3.76 0.75 1.18 −0.12 0.5732

Panel E: Future Contracts

14 Natural Gas Futures Contract 1 1.1 0.26 −0.171 −0.51 0.0686

15 Natural Gas Futures Contract 2 1.11 0.25 −0.174 −0.62 0.0626

16 Natural Gas Futures Contract 3 1.13 0.24 −0.163 −0.69 0.0573

17 Natural Gas Futures Contract 4 1.15 0.23 −0.096 −0.75 0.0519

18 OK Crude Oil Future Contract 1 4.181 0.371 −0.53 0.15 0.138

19 OK Crude Oil Future Contract 2 4.189 0.358 −0.37 −0.45 0.1283

20 OK Crude Oil Future Contract 3 4.195 0.348 −0.27 −0.81 0.1213

21 OK Crude Oil Future Contract 4 4.199 0.341 −0.22 −0.95 0.1165
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In order to test the generalization ability of the trained models, the dataset was divided
into two parts: the first 90% was used as the training data set (in-sample, consisting of
2180 observations), and the remaining 10% of the most recent observations was the test
data set (out-of-sample, consisting of 243 observations).

3. Empirical Results

The prediction accuracy of each model for both the out-of-sample and in-sample data
was measured using the Root Mean Square Error (RMSE) metric. Thus, the optimal model
was selected as the one that minimizes the RMSE:

RMSE =

√
∑T

t=1 (ŷt − yt)
2

T
(1)

where ŷ = the forecasted value, y = the actual value, and T = the number of observations.
Our forecasts were produced for several alternative forecasting horizons, i.e., t + 1,

t + 3, t + 5, and t + 10. We completed the same task with a random walk model in order to
compare our machine learning results to a naïve prediction model.

Before moving to structural models (The ones that include the independent variables
of our data set.), we first tried to identify the best autoregressive representation, i.e., to
produce the best AR(q) model (autoregressive model). The AR(q) model is a simple model
that uses past (lagged) values of natural gas spot prices to forecast the future natural gas
spot price.

Xt = c +
q

∑
i=1

ϕiXt−i + εt (2)

where X is the natural gas spot price, q is the maximum number of lags, and ϕi the
parameter vector of the lags to be estimated.

In order to identify the optimal number of lags, we train several linear SVM models
by varying the number of lags we used each time, starting with an AR(1) up to an AR(15).

We concluded that by using the first 14 lags, we minimize the in-sample RMSE
(0.04196). These results are presented in Figure 4.

 
Figure 4. RMSE for AR models.
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After identifying the best autoregressive representation, we built structural mod-
els. These include the 14 lags and all of the explanatory variables described earlier as
independent variables to produce forecasts one day ahead. For this, we trained several
alternative machine learning models and also produced the results for the random walk
model. The in-sample and out-of-sample RMSEs of these models are presented in Table 2.
An important issue in such forecasting models is to avoid overfitting in the in-sample or
out-of-sample datasets. In the literature, this is known as the bias–variance trade-off. An
efficient forecasting model is one that provides a balanced performance both in-sample
and out-of-sample, i.e., the bias and variance are comparable. For this reason, we rejected
all of models that provided evidence of overfitting and continued our empirical analysis
with the rest. In the last column of Table 2, we note the models that overfit and are not
used in the rest of our analysis. Interestingly, the tree models (plus bagged and boosted
trees) do not overfit, and all of the GPR models overfit alongside most of the SVM models
(with the exception of the linear SVM).

Table 2. In-sample and out-of-sample (OOS) RMSE of all models.

Models In-Sample RMSE OOS RMSE Overfitting

RW 0.042643 0.057435 no
Linear Regression 0.038421 0.062872 no
Interactions Linear 0.1009 1.560244 yes

Robust Linear 0.039067 0.05736 no
Fine Tree 0.04992 0.071181 no

Medium Tree 0.045707 0.083954 no
Coarse Tree 0.047189 0.083388 no
Linear SVM 0.038581 0.056694 no

Quadratic SVM 0.044703 0.161214 yes
Cubic SVM 0.058968 0.456275 yes

Fine Gaussian SVM 0.098278 0.461634 yes
Medium Gaussian SVM 0.042352 0.243223 yes
Coarse Gaussian SVM 0.046224 0.079625 yes

Boosted Trees 0.065151 0.06169 no
Bagged Trees 0.041597 0.061089 no

Squared Exponential GPR 0.039915 0.216353 yes
Matern 5/2 GPR 0.039915 0.164098 yes
Exponential GPR 0.039989 0.098513 yes

Rational Quadratic GPR 0.040069 0.120337 yes

3.1. Time Frame t + 1

According to the results presented in Figure 5, we observed that for the time horizon t + 1,
the optimal in-sample model was the linear regression model with RMSE = 0.038421 and that
the best out-of-sample forecasting model was the linear SVM model with RMSE = 0.056694. The
robust linear model also showed very good results, as it had the second lowest RMSE in
the out-of-sample data and the third lowest in the in-sample data. Finally, the random walk
model seemed to adequately predict the out-of-sample data. Therefore, we can generally
conclude that linear models are able to predict the natural gas spot prices one day ahead
with high accuracy and that the best model (linear regression) has good generalization
ability (Figure 6).

3.2. Time Frame t + 3

The results for the forecasting window t + 3 are presented in Figure 7. We observed
that for time horizon t + 3, the optimal in-sample model was the bagged trees model with
RMSE = 0.057793 and that the best out-of-sample forecasting model was the boosted trees
model with RMSE = 0.077136. According to the above, it is clear that the best models at
time horizon t + 3 are tree based models. The out-of-sample performance of the bagged
trees model is presented in Figure 8.
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Figure 5. RMSE for t + 1 forecasting.

Figure 6. Comparison of the actual natural gas spot prices and the predicted prices with the linear regression model for
t + 1 in the out-of-sample part of the dataset.

3.3. Time Frame t + 5

The results for the forecasting window at t + 5 are presented in Figure 9. In this
window, we found that the optimal in-sample model was the bagged trees model with
RMSE = 0.061787 and that the best out-of-sample forecasting model was the linear SVM
model with RMSE = 0.083687. The bagged trees model also shows good generalization
ability (Figure 10). It is worth noting that the random walk model also showed good
performance, as it holds the second lowest out-of-sample RMSE = 0.087654.
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Figure 7. RMSE for t + 3 forecasting.

Figure 8. Comparison of the actual natural gas spot prices and the predicted prices with the bagged trees model for t + 3 in
the out-of-sample part of the dataset.

3.4. Time Frame t + 10

Finally, for the t + 10 forecasting window the results are presented in Figure 11. We observed
that the optimal in-sample model was the bagged trees model with RMSE = 0.064968 and that
the best out-of-sample forecasting model was the linear SVM model with RMSE = 0.102711.
Additionally, the random walk model showed good results, as it achieved the second lowest
out-of-sample RMSE = 0.109871. The best model for time horizon t + 10 (bagged trees) has also
good generalization ability (Figure 12).
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Figure 9. RMSE for t + 5 forecasting.

Figure 10. Comparison of the actual natural gas spot prices and the predicted prices with the bagged trees model for t + 5 in
the out-of-sample part of the dataset.

Interestingly the random walk model showed very good results for the out-of-sample
part of the dataset at all time instances, while at the same time, we can conclude that all
of the linear models have the ability to predict natural gas prices with high accuracy and
showed very good performance with small RMSE values. The bagged trees models also
showed very good predictive ability, having the lowest in-sample RMSE error at all time
instances except for t + 1.
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Figure 11. RMSE for t + 10 forecasting.

 
Figure 12. Comparison of the actual natural gas spot prices and the predicted prices with the bagged trees model for t + 10
in the out-of-sample part of the dataset.

4. Conclusions

The accurate forecasting of any asset has obvious practical implications. It can help
individuals on both the supply and demand sides to reduce associated risk by better an-
ticipating future changes in prices and by being prepared and acting on time to optimize
their participation and behavior in the relevant market via positive or negative storage,
substitution from and to this market, and the alteration of budget plans and in general
decreases uncertainty, which has adverse effects on both suppliers and consumers. More-
over, government officials can use such information for larger scale planning, as they can
anticipate prices swings.

The effective forecasting of natural gas prices is obviously important for all market
participants: suppliers, distributors, consumers, investors, and regulatory agencies. It is
also a powerful and important tool that has become increasingly important for various
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stakeholders in the natural gas market, helping them to make better decisions for risk
management, reducing the demand-supply gap, and optimizing resource utilization based
on accurate predictions. For investors trading in the U.S. energy equity markets, the current
boom around green energy investing offers significant hurdles. If and how these investors
learn to cope with various information frictions, navigate through broad fluctuations in
market risk appetite and uncertainty, and deal with unexpected changes in energy laws
and regulations will be crucial to their investment decisions [18].

In this paper, we tested the effectiveness of various machine learning algorithms in
forecasting natural gas spot prices. We trained multiple machine learning models and a
naïve random walk model. In machine learning models, we used the optimal number of
lagged natural gas spot prices and 21 other explanatory variables (regressors). These were
selected based on economic theory and the relevant literature. Hence, these regressors
included macroeconomic and stock market indicators, exchange rates, interest rates, the
spot prices and future contracts of Oklahoma West Texas Intermediate Crude Oil, the
corresponding future contracts of natural gas, the momentum of the last 5 and 10 days,
and the 5- and 10-day moving average. The models were trained to forecast horizons one,
three, five and ten days ahead (t + 1, t + 3, t + 5 and t + 10).

The dataset included 2423 daily observations for the time period from 3 December 2010
to 18 September 2020. This dataset was divided into two subsets, with the first part cover-
ing the range from 19 November 2010 to 19 September 2019, or 2180 observations that were
used to train our models, and the second part spanning the period from 20 September 2019
to 18 September 2020, or the remaining 243 observations, which were used to test the gener-
alization ability of the models to unknown data that were not used in the training process.
In order to avoid the issue of overfitting, we employed a 5-fold cross validation method.

The optimal AR representation was found to be 14 lags using a linear SVM model.
Next, we added all of the explanatory variables to train the 19 models. In 10 of these models,
we detected overfitting; thus, they were not used in the subsequent analysis. These models
were the interactions linear, SVM (quadratic, cubic, fine Gaussian, medium Gaussian,
coarse Gaussian) and GPR (squared exponential, matern 5/2, exponential, and rational
quadratic) models. The models that did not show overfitting were the random walk, linear
regression, robust linear, fine tree, medium tree, coarse tree, linear SVM, boosted trees, and
bagged trees models.

According to the results, the optimal model for in-sample data at t + 1 is a linear
regression model, and for t + 3, t + 5, and t + 10 bagged trees models are optimal. For the
out-of-sample data, the best models are linear SVM models for t + 1, t + 5, and t + 10 and a
boosted trees model for t + 3. The aforementioned models do not overfit since the RMSE’s
for the in-sample and out-of-sample data are comparable.

Therefore, from our research, we conclude that the most effective methods for natural
gas spot price forecasting are the linear SVM and the bagged trees.
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Abstract: The present research aims to conduct a systemic review on Renewable Energy, Economic
Growth and Economic Development and look for links between the papers published between 2008
and May 2021. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) methodology, it was possible to reach a sample of 111 articles selected by Web of Science
and a sample of 199 academic articles selected by Scopus in that specific period. The analysis of the
group of Renewable and Non-renewable Energy Consumption, Economic Growth and Economic
Development shows that most of the articles published in this subsample use the quantitative
methodology in economic sciences. The results indicate that research on the subject has a growing
trend and that most of the articles are post-2015 publications. In addition, China has been the leading
nation in published works. The journal Renewable and Sustainable Energy Reviews is considered the
most relevant in this category, and Sustainability has the most publications. Finally, a research gap
was identified to be explored, lacking studies aimed at understanding the consumption of renewable
energies and economic development and studies that focus on renewable energies and economic
growth in less developed economies.

Keywords: bibliometric analysis; development economics; economic growth; energy; renewable energy

1. Introduction

The investigation of what drives economic growth and development is thematic and
will never cease to be relevant in academia. The nexus between economic growth and
energy consumption has been a significantly explored subject in academia over the years;
for example, in recent years, this nexus was investigated by several researchers [1–9]. These
and other studies pointed to a relevant relationship between energy consumption and
economic growth, and the results obtained are of paramount importance in the develop-
ment of policies and strategies according to the behavior of economic growth in the face of
energy consumption.

After observing an increase in carbon dioxide emissions, research began to find
evidence that related this increase with an increase in economic activity; therefore, we
began to investigate the gap in which energy consumption was inserted, as in, [10–12].
Ref. [13] conducted a bibliometric review on this topic and concluded that there is a
relationship of bidirectional causality between economic growth and CO2 emissions; thus,
stimulating a reduction in emissions will reduce economic growth [13].

The existence of difficulty in reconciling economic activity and energy consumption
with the conservation of the environment is clear, as is the need to encourage sustainable
economic growth. Having said this, the present paper proposes to build a bibliometric
review that takes into account studies investigating the relationship between renewable
energy, economic growth and economic development nexus in order to understand which
direction this field of study is taking.

The present research accessed the WoS and Scopus database to search keywords,
titles and abstracts related to the terms renewable energy, economic growth and economic
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development between the years 2008 and May 2021. The selection of articles used in the
research was made through the PRISMA methodology. This research was also proposed
to quantify the impact of the papers and journals published on the subject in that period,
using some descriptive information to identify which journal(s) and which author(s) is the
most relevant within the sample collected. Finally, an analysis was made, with the help of
VOSviewer software, to find clusters and links between the terms used and the researchers.

The remainder of this study is structured as follows. Section 2 presents a brief literature
review. Section 3 discusses the research methodology of the paper; Section 4 presents
results, findings and discussion of this paper based on the study aims. Section 5 provides
some concluding remarks, limitations of this study and suggestions for future papers.

2. Literature Review

In this section, a brief literature review on bibliometric reviews and systemic reviews
is made. The authors of [14,15] set out to study the footprints of degradation. While
one focused on environmental degradation itself [14], the other focused on the carbon
footprint [15]. Studies differ methodologically; ref. [14] published a bibliometric analysis,
while [15] published a systematic review. Ref. [14] researched the keywords “water foot-
print”, “carbon footprint”, “land footprint”, “biodiversity footprint”, “chemical footprint”,
“nitrogen footprint”, “phosphorus footprint”, “PM2.5 foot-print”, “PM10 footprint” and
“ozone footprint” in the Web of Science (WoS) database for the period 1986–2019 after
screening processes reached a sample of 4352 articles. The results indicate that the U.S. and
China are the countries that have conducted the most research on the subject in the period
aforementioned and are those with the highest cooperation among themselves. In addition,
it was emphasized that “water footprint” and “carbon footprint” are the most studied terms
in relation to the others used in the research. Finally, the authors concluded that the most
recent research focuses on the carbon footprint related to supply production chains, green-
house gas emissions, water consumption in agriculture and environmental issues related to
construction [14]. In the study proposed by [15], we used the same database, except for the
1992–2019 interval, and only searched the keyword “carbon footprint”, obtaining a sample
of 7450 articles. The results indicate that research on the subject began to grow in 2008,
and four topics were “international trade”, “life cycle assessment”, “ecological footprint”,
and “supply chain”. There was also a significant interaction between the US and European
Union (EU) research; however, in recent years, research from China has been increasing and
standing out. The Journal of Cleaner Production is the most prominent. Finally, research
in Economic and Political Economics seems to be the most recent ascending [15] theme.
Ref. [16] developed a systematic review on carbon leakage with the following questions:
What are the generation channels and the factors of the leakage? What methodologies are
used to evaluate the leak? Which topics need more attention to formulate more effective
climate policies? [16]. The research used the keywords “carbon leakage” and “emission
transfer” in the WoS database for the period 2000–2020, with screening techniques reaching
407 articles for research. The researchers concluded that many studies have focused on
the loss of competitiveness in the intense emission sectors, caused mainly by international
trade, and there is not enough debate about the negative leak channel. In addition, the
authors point out the absence of quantitative methodologies for carbon leaks [16].

With the intention of providing an overview of the work performed on the Environ-
mental Kuznets’ Curve (EKC), ref. [17] proposed a bibliometric analysis. Using the WoS
database, he analyzed the publications made in the period of 1999–2010, with the PRISMA
approach, and reached a sample of 1775 articles to study. The results of the study indicate
that research has grown exponentially in recent years and that China, the U.S., Turkey
and Pakistan are the countries with the highest academic publication on the subject. In
addition, the authors surveyed the journals that published the most in that period, which
are Environmental Science and Pollution Research, Journal of Cleaner Production, Ecologi-
cal Economics and Energy Policy. The author with the most publications is Muhammad
Shahbaz [17]. Furthermore, on the topic of EKC, [18] used the WoS database to conduct a
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study of publications on the subject in the last two decades (1999–2019). From a universe
of 59,225 documents, 2384 were investigated in this research. The results found by the
authors, based on co-citation, indicate that the most relevant journal on this topic is Eco-
logical Economics; in addition, of the ten most relevant journals, Elsevier publishes seven.
The countries with the highest number of citations are China, the USA and Turkey. The
same order was obtained by [17]. The most influential researcher is Muhammad Shahbaz,
with the same result obtained by [17]. It is no coincidence that the most relevant institu-
tion is the Beijing Institute of Technology, where Muhammad Shahbaz is a professor [18].
Moreover, [19] proposed a systemic and bibliographic review on industry 4.0. The study
used two databases for the survey of Scopus as well as WoS articles published until 2020.
The terms used for research were “Industry 4.0”, “Industrie 4.0” and “Fourth Industrial
Revolution”, following PRISMA protocols, and a sample of 745 articles were obtained. The
authors concluded that industry 4.0 is motivated by profit; the value of digital transforma-
tion is materialized as corporate profit. In addition, the authors highlighted factors that can
determine success or failure, which depend on favorable conditions such as government
incentives and an abundance of resources for the digital transition in Industry 4.0 to be
achieved [19].

With the objective of detailing the stage and the current research trends on Thermal
Energies Storage (TES), [20] elaborated a bibliometric analysis on the subject. The Scopus
database was used for the research that used all available coverage until 21 September 2020.
The authors divided the results of the research into three categories, including buildings,
districts, and roads and bridges [20]. As far as buildings are concerned, the results indicated
that it is and the most studied category. The USA was the country to publish the first
relevant studies on the subject, and the most researched line is the demand for cooling
by optimized control techniques. While in Europe, of latent heat thermal energy storage
through passive techniques and demand management strategies, in China, there is a focus
on material study, and economic analysis seems to be the trend of the most recent studies
for buildings. Studies on TES applied to districts began to increase in 2013 and are led by
Europe. TES at the district level was investigated at the system level, mainly applications
of solar systems and cogeneration systems. The most recent studies have investigated
economics and techno-economic. Finally, studies applied to roads and bridges do not
attract many researchers. Norway, Japan and China are the countries with the most
Publications [20]. Ref. [21] conducted a bibliometric study between 2000 and 2019 on TES
in order to understand the trend and future of this field of research. The authors’ analysis
concludes that latent-heat TES has been the focus in recent years, but thermochemical TES
and its hybrid TES technologies appear to be the next focus of researchers [21].

A bibliometric and systematic review was proposed by [22] to understand the stan-
dards of key performance indicators (KPI) and multicriteria decision-making models
(MCDM/A) in the context of renewable energy technologies (RET). The following ques-
tions were raised: “Is there a pattern in the use of performance criteria to select and assess
RET performance?”; “Is there a pattern in the use of multicriteria models for decision
making to select and assess RET performance?”. To find these answers, 142 articles from
the WoS database were selected between 1998 and 2019. The authors concluded that there
is a growing trend in this research, mainly from 2015. According to the authors, the results
of this study demonstrated a preference in the use of synthesis models rather than overlap,
the importance of considering political and technical indicators beyond those related to the
Triple Bottom Line in decision-making and the importance of MCDM/A in achieving the
sustainable development goals of the United Nations agenda [22].

A mapping of a 21st-century problem, poverty energy, was proposed by [23]. Thus, a
bibliometric analysis was made using the Web of Science database, and for the 1999–2019
temporal sample, they obtained 1018 articles in the sample. The results show that 2003 was
the founding year of energy poverty research. Nine hundred eighty-two institutions devel-
oped research on the subject. In addition, the results indicate that the largest cooperation
occurred between the UK, USA, Australia and Italy. Among the periods, Energy Policy
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publishes on the subject for the longest period, while Renewable and Sustainable Energy
Reviews publishes the studies with greater influence; Sovacool is the researcher with the
highest number of publications and the most influential. Finally, the authors highlighted
four areas that should be research trend in the coming years: energy poverty in developing
countries, impacts of energy poverty on vulnerable groups, root causes of energy poverty
and consequences of emission reduction policies [23].

3. Materials and Methods

In this section, we explain the database, period and methodology applied in the
selection of the investigated articles and the techniques applied for analysis. There are
several databases for scientific document searches, for instance, the Web of Science (WoS)
and Scopus. This investigation chose to use the database provided by WoS and Scopus for
the period 2008 to 21 May 2021. The year 2008 is the first year of commitment to reducing
carbon emissions of the Kyoto protocol subscriber countries; this first cycle being finalized
in 2012, the chosen period covers the years of the first cycle and the subsequent period.

The first step of this investigation was the choice of the sample, using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology pro-
posed by [24]. The PRISMA methodology is a guideline developed to deal with unsatisfac-
tory systematic reviews, which focuses on making the research transparent; therefore, the
researcher needs to be aware of the purpose of the review, what the procedure was, and
finally, what the findings were [24].

According to [24], the PRISMA methodology was developed to be applied in systemic
reviews that assess the effects of interventions in the health area. The PRISMA approach
provides guidance that contributes to a methodological improvement to identify, evaluate
and synthesize studies; this technique consists of applying a checklist with 27 items in order
to have a more accurate screening. Although developed to be applied in the health area,
the checklist is relevant and applicable for systematic reviews with mixed methodologies,
which include quantitative and qualitative studies [24], a scenario faced by this research.

First, all the documents in the Web of Science (WoS) database related to the three
terms of the research (Renewable Energy, Economic Growth and Economic Development)
were researched for the period 2008 to 21 May 2021. Immediately, 3382 documents were
identified. When applying the procedures, only open access documents were considered;
this limited the search to 1.025, excluding 2357 documents. Then only the following areas
of research, Environmental Science, Energy Fuels, Environmental Studies, Economics,
Management and Business, thus eliminating 426 documents and having 599 documents.
Then, the type of documents and language was limited, taking into account only scientific
articles and in the English language, leaving 428 articles with the possibility of making
the final sample. Finally, titles and abstracts were analyzed; in this stage, 317 articles were
disregarded, thus leaving 111 to make up the Web of Science sample. Figure 1 summarizes
the screening process.

Second, all the papers in the Scopus database relating to the words Renewable Energy,
Economic Growth and Development Economic were identified. The search with these
words was directed in keywords, title and abstract, resulting in 2836 identified documents.
Following the identification was the screening stage where only open-source documents
were chosen to be analyzed, resulting in 790, so there was a reduction of 2046 documents.
The second stage of screening was to exclude the research areas that are not related to the
focus of the investigation of this research, considering only the following fields of study:
Environmental Science, Energy, Social Sciences, Economics, Econometrics and Finance,
and Business, Management and Accounting. With this restriction, 377 documents were
eliminated, leaving 413 with the possibility of entering the study. Then, we limited the
types of documents. We took into account only articles, finding 300 articles. In addition,
these were limited to the English language, which resulted in the exclusion of 9 articles,
making 291 eligible. Finally, an analysis was made of the abstracts, titles and keywords of
these 291 articles to determine which ones would be considered for the investigation of this
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systematic review, based on the information found. Ninety-two articles were disregarded,
so 199 articles were considered for analysis, as can be seen in Figure 2. The protocol applied
to the Scopus database can be found in Appendix A of this research.

Figure 1. Identification of Studies Via Web of Science Database.

The eligibility of the articles used in this research was mirrored in the strategy applied
by [13]. In the stage of determining the eligibility of the articles, the title, abstract and key-
words of the individually selected articles were reviewed. In this final stage of screening,
we identified the articles that could be part of the study sample. Having exposed this, the
articles included in the research explore the link between economic growth, renewable
energy consumption and economic development. It should be emphasized that at this
stage, only scientific articles were taken into account, so documents such as thesis, disserta-
tions, articles published in a non-English language, editorial notes, books, book chapters,
among other types of documents, were disregarded. Finally, it was possible to obtain the
199 articles used in this research, which relate to the keywords in question, from a sample
of 74 international journals between 2008 and 21 May 2021.

This research chose to work with the Scopus database due to its great coverage
and multidisciplinary. In addition to being peer-reviewed, updated frequently and has
resources that assist researchers in the development of work. According to [25], the biggest
advantages of the Scopus database are the inclusion of open access articles, tools to find
authors, a wide catalog of scientific and technological journals, automatic generation of
h-index, more content published in Europe compared to WoS [25].

The screening criterion applied in the Web of Science (WoS) database, which final
filter according to the Prisma technique, shows a sample of 111 documents; moreover,
50 articles that represent 45% of the searches found in the WoS database are also listed in
the Scopus database.
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Figure 2. Identification of Studies Via Scopus Database.

After defining the investigated studies, this research analyzes the information of the
articles, considering some indicators: number of publications, h-index and citations, as
was performed in [26]. However, it is important to emphasize that the literature does not
yet have an accurate and conclusive methodology to evaluate articles, journals, and so on,
let alone be able to determine their value. This field of research, which tries to measure
the value of an article, the researcher or even the institution, is criticized. A criticism
pointed out by [26] assumes that an article published in a journal of greater relevance
should have a higher value than one published in a median journal, but this is a challenge
since each article, regardless of where it is published, will be assigned the same value [26].
The databases, trying to work around these difficulties (for example, the Scopus database),
have three metrics that are based on the citations received to assign quantitative values,
whether to the author, article, journal or institution, they are: CiteScore (CS), SCImago
Journal Ranking (SJR) and the Source Normalized Impact per Paper (SNIP), while, in
the WoS database the metrics are available in the Journal Citation Reports (JCR) from
Clarivate Analytics

The CiteScore from Scopus is not similar to the impact factor calculated by JCR of the
Web of Science (WoS). The difference occurs only in the period used to make the calculation.
The CS considers the number of citations in the last 3 years and divides these by the number
of publications in the same period, while the ones calculated by WoS are based on the
interval of the last 2 years. Nevertheless, according to [26], these metrics are not 100%
reliable since it is possible to circumvent them using self-citations [26]. Another Scopus
metric used to rank journals is the SJR, which measures the weighted citations received
by the journal; the weighting of the citations takes into account the subject field and the
prestige (SJR) of the journal it cites.

As a certificate that auto citations are a problem for these metrics, the same problem
should be taken into account when the absolute number of citations is considered as
a metric. However, in this case, when dealing with already conceptualized studies, this
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problem tends to be less significant since it is expected that reputable articles are more
cited. Intuitively, there is a number of citations that is much higher than the number of
articles [26] since they are considered as references. Hereby, the number of citations can be
taken into account with the purpose of measuring the influence of an institution, author
or journal [26]. Nonetheless, there may be flaws, for example, a great article recently
published and that has not yet become popular or even research conducted in a very
specific scientific field.

Finally, there is the h-index, proposed by [27], which combines the number of publi-
cations and citations. Taking this research as a reference, which has an h-index of 34, this
tells us that at least 34 articles published in the period investigated received 34 or more
citations. Just as the other metrics, it also has criticisms. For instance, an extreme case
pointed out by [26]: if a researcher publishes more than 100 articles and three received
more than 1000 citations, while the rest are not cited, the index of this researcher will only
be three [26]. Instinctively, it is possible to conclude that this hypothetical researcher has
an academic relevance significantly higher than three. Despite the criticisms, this index is
useful and relevant in academia; therefore, it is appropriate to the scope of this research in
the criterion of evaluating the relevance of research, researcher, journal or institution.

In addition, with the help of VOSviewer software, textual analysis is made in order
to identify the relationships between articles, keywords and researchers in the Renewable
Energy, Economic Growth and Economic Development theme. The VOSviewer software
allows for a relationship network construction between the articles published in the speci-
fied period.

4. Discussion

In this section, we analyze and discuss the information from the sample, starting
with a temporal reading of the evolution of the publications in the years investigated. The
following Figure 3 informs us of the annual amount of articles published on the subject
from 2008 to May 2021.

Figure 3. Number of Annual Publications (2008–May/2021).

The X-axis represents the years of research, while the Y-axis represents the number of
articles published. A growth trend is easily noticeable, with the exception of 2010, 2011
and 2016. The number of articles published annually grew by the year. The considerable
increase in publications in the last 5 years is remarkable; these years concentrate 78.39%
of the papers published in that period. The decrease in the number of articles from 2020
to 2021 is most likely due to the sampling period of the research since it does not include
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the year 2021 as a whole; therefore, we cannot consider it as an indictment of a drop in
publications. It is possible that by the end of the year 2021, there will be a number of
publications similar to 2020, providing the theme continues with the growth trend.

The growth of publications in the second half of the decade of the 2010s may be the
result of the first cycle of commitments of the Kyoto Protocol (2008–2012), which should
have fostered research to analyze the effects. Within the scope of this research, in the
sample raised, many studies consider emissions and effects on economic activity. It is
believed that the first cycle of responsibilities of the Kyoto protocol has a fundamental role
in increasing research on renewable energy consumption, non-renewable and which way
these matrices are less harmful to the environment affect economic activity.

In Figure 4, we chose to make a geographical analysis, that is, to identify how many
and which countries have the most publications on the subject in that period. At first,
when considering any number of publications, we obtained 63 countries with research
published on this theme of the 194 existing countries. This reveals that only 32% of nations
developed research on renewable energy, economic growth and economic development
up to the moment of this research. However, it should be noted that this does not mean
that only 30% of the countries in the world were investigated in relation to this theme,
but that the research is concentrated on around 30% of the countries. In order to facilitate
understanding, we did not consider all 63 countries; we chose to make a minimum count
of publications, which is five. Thus, the following graph considers only those countries
that had more than five publications during the period of the development of this study.

Figure 4. 25 Countries with more publications between 2008 and May 2021.

Only 25 countries have more than five articles published; China is noticeably an outlier.
The number of Chinese publications is greater than the other countries; consequently, China
is responsible for 22.11% of the publications in that period. Another attention-calling factor
is that on all continents, there is at least one country with at least five publications on the
subject, except Latin America.

Being a multidisciplinary research area, many journals publish about this theme.
Seventy-four periodicals were published in that period. In Table 1, the periodicals are
ranked according to the metrics stipulated by the WoS and Scopus databases.

Table 2 above shows us the number of articles in the area that were cited in some way
in the research period. There are a total of 167 articles. It should be noted that this number
is lower than the total sample, which is 199. This is because some articles (32 or 16.080%)
have not yet been cited. When analyzing the citations, it seems that the number is low
when compared to other research areas in which there are articles that have more than
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1000 references. In this sample, no article reached such a number. It was clear that most
of the published papers have less than 50 citations, which should change in the future as
there is expected to be an increase in articles with more than 50 citations since the increase
in publications on this subject is notorious in recent years.

Table 1. Source Ranking.

R Journal Name H-Index Citations Publications Percentage >200 >100 >50 <50 CS SJR

1 Renewable and Sustainable
Energy Reviews 295 74 4 2.010 0 0 1 3 30.4 3.632

2 Global Environmental Change 177 228 1 0.503 1 0 0 0 20.2 4.304
3 Water Research 303 28 1 0.503 0 0 0 0 15.6 2.932
4 Renewable Energy 191 45 4 2.010 0 0 0 4 10.8 2.052

5 Resources, Conservation
and Recycling 130 37 1 0.503 0 0 0 1 14.6 2.215

6 Journal of Industrial Ecology 102 332 1 0.503 1 0 0 0 12.8 1.808
7 Energy Economics 152 87 3 1.508 0 0 0 3 2.7 0.977
8 Energy Policy 217 774 15 7.538 0 3 3 9 10.2 2.168
9 Science of the Total Environment 244 443 9 4.523 0 2 1 6 10.5 1.661

10 Journal of
Environmental Management 179 24 2 1.005 0 0 0 2 9.8 1.321

11 Entrepreneurship and
Sustainability Issues 25 5 1 0.503 0 0 0 1 7.0 1.171

12 Environmental Sciences Europe 35 5 1 0.503 0 0 0 1 4.8 1.774
13 Progress in Planning 48 24 1 0.503 0 0 0 1 8.4 0.913
14 Urban Studies 147 0 1 0.503 0 0 0 1 6.6 1.618

15 Mitigation and Adaptation
Strategies for Global Change 71 25 1 0.503 0 0 0 1 5.9 1.112

16 Technological and Economic
Development of Economy 47 119 3 1.508 0 0 1 2 6.0 0.622

17 British Journal of Management 108 21 1 0.503 0 0 0 1 6.8 1.522
18 Aerosol and Air Quality Research 55 7 1 0.503 0 0 0 1 5.9 0.965
19 Financial Innovation 18 66 1 0.503 0 0 1 0 4.2 0.847
20 New Political Economy 56 42 1 0.503 0 0 0 1 5.4 1.748

21 Environmental Science and
Pollution Research 113 144 16 8.040 0 0 0 16 5.5 0.788

22 Energy Reports ***** 33 113 6 3.015 0 0 0 6 2.7 0.977
23 Energy Strategy Reviews **** 33 414 3 1.508 1 0 0 2 7.8 1.336
24 Energy Journal 77 9 1 0.503 0 0 0 1 4.4 1.480

25 Review of International
Political Economy 70 15 1 0.503 0 0 0 1 3.6 1.823

26 Climate and Development 35 1 1 0.503 0 0 0 1 4.8 1.047

27 Journal of Security and
Sustainability Issues 23 34 3 1.508 0 0 0 3 3.1 0.375

28 Environmental and
Resource Economics 92 0 1 0.503 0 0 0 1 4.2 1.401

29 International Journal of Energy
and Environmental Engineering 30 16 1 0.503 0 0 0 1 3.9 0.528

30 Borsa Istanbul Review 21 0 1 0.503 0 0 0 1 4.3 0.684
31 Energy, Sustainability and Society 25 43 2 1.005 0 0 0 2 4.2 0.658

32 Environment, Development
and Sustainability 56 2 2 1.005 0 0 0 2 3.8 0.548

33 Sustainability (Switzerland) * 85 383 39 19.598 0 0 0 39 3.2 0.581
34 Economic Analysis and Policy 29 21 1 0.503 0 0 0 1 3.6 0.776

35 Energy Exploration
and Exploitation 30 22 2 1.005 0 0 0 2 2.8 0.489

36 International Journal of Energy
Economics and Policy ** 33 99 17 8.543 0 0 1 16 3.5 0.371

37 Journal of International Studies 17 4 1 0.503 0 0 0 1 3.7 0.541

38
Journal of Sustainable

Development of Energy, Water
and Environment Systems

14 11 1 0.503 0 0 0 1 3.7 0.400

39 Environmental and
Climate Technologies 17 5 1 0.503 0 0 0 1 2.3 0.326

40 Journal of Economics, Finance
and Administrative Science 13 0 1 0.503 0 0 0 1 1.4 0.308

41 Atmosphere 37 3 1 0.503 0 0 0 1 2.9 0.698
42 Frontiers in Energy Research **** 30 6 5 2.513 0 0 0 5 2.6 0.641
43 Thermal Science 43 3 2 1.005 0 0 0 2 2.4 0.495
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Table 1. Cont.

R Journal Name H-Index Citations Publications Percentage >200 >100 >50 <50 CS SJR

44 EAM: Ekonomie
and Management 22 9 1 0.503 0 0 0 1 2.3 0.322

45 Environmental Economics and
Policy Studies 23 6 1 0.503 0 0 0 1 2.9 0.483

46 Structural Change and
Economic Dynamics 48 1 1 0.503 0 0 0 1 3.5 0.621

47 Polish Journal of
Environmental Studies 54 6 3 1.508 0 0 0 3 2.4 0.366

48 Asia and the Pacific
Policy Studies 14 14 2 1.005 0 0 0 2 2.7 0.533

49 Environment and
Development Economics 62 2 1 0.503 0 0 0 1 2.8 0.787

50
Energy Sources, Part A: Recovery,

Utilization and
Environmental Effects

45 34 1 0.503 0 0 0 1 3.3 0.319

51 Emerging Markets Finance
and Trade 34 47 1 0.503 0 0 0 1 2.6 0.444

52
International Journal of

Innovation and
Sustainable Development

20 8 1 0.503 0 0 0 1 3.9 0.528

53 International Journal of
Renewable Energy Development 12 5 2 1.005 0 0 0 2 3.9 0.528

54 Economic Annals—XXI 14 1 1 0.503 0 0 0 1 1.5 0.234
55 Economy of Region 14 0 2 1.005 0 0 0 2 1.9 0.351
56 Geojournal 12 28 1 0.503 0 0 0 1 2.2 0.232
57 Cogent Economics and Finance 16 112 1 0.503 0 1 0 1 2.0 0.252
58 Management and Marketing 11 1 1 0.503 0 0 0 1 1.9 0.218
59 Social Science 19 11 1 0.503 0 0 0 1 2.3 0.239
60 Latin American Economic Review 8 50 1 0.503 0 0 1 0 2.4 0.346
61 Banks and Bank System 16 0 1 0.503 0 0 0 1 1.0 0.216
62 Comparative Economic Research 8 5 1 0.503 0 0 0 1 1.3 0.195

63 Geography,
Environment, Sustainability 8 1 1 0.503 0 0 0 1 1.2 0.286

64 International Organizations
Research Journal 7 6 1 0.503 0 0 0 1 1.1 0.295

65 Copenhagen Journal of
Asian Studies 13 0 1 0.503 0 0 0 1 1.2 0.175

66 Pakistan Development Review 26 7 1 0.503 0 0 0 1 1.0 0.143

67 Environmental and
Socio-Economic Studies 3 4 1 0.503 0 0 0 1 0.6 0.381

68 Informação e Sociedade 6 0 1 0.503 0 0 0 1 0.4 0.256

69 Wit Transactions on Ecology and
the Environment 21 4 2 1.005 0 0 0 2 0.6 0.142

70 Russian Journal of
Economics ****** 12 1 1 0.503 0 0 0 1 0.2 NA

71 Environment and Planning C:
Government and Policy 2 69 9 1 0.503 0 0 0 1 3.5 0.998

72 European Research
Studies Journal *3 34 44 1 0.503 0 0 0 1 2.6 0.274

73 Journal of Reviews on
Global Economics 1 6 12 1 0.503 0 0 0 1 0.2 0.227

74 Ekonomica Vilniaus Universitetas NA 1 1 0.503 0 0 0 1 NA NA
Total 4163 199 100

* Listed since 2009; ** Listed since 2011; **** Listed since 2013; ***** Listed since 2014; ****** Listed since 2015; 1 Coverage period 2016–2019;
2 Listed until 2017; 3 Listed until 2018; R = Ranking; >200 Number of articles with more than 200 citations; >100 Number of articles with
more than 100 citations; >50 Number of articles with more than a 50 citations; <50 Number of articles with less than a 50 citations.

Taking the total h-index (34) of this research into account, it is noted that it is not
a high value as it only comprises 17.085% of the sample. The number of articles with more
than 400, 200, 100 and 50 citations is expected to increase since, as previously mentioned in
this study, a growth trend is observed in research on renewable energy, economic growth
and economic development.
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Table 2. General Citation on Renewable Energy, Economic Growth and Development Economic
on Scopus.

2008–May/2021

Citations Number of Papers % of Papers

≥400 citations 1 0.503
≥200 citations 2 1.005
≥100 citations 6 3.015
≥50 citations 9 4.523
≤50 citations 149 74.874

Total 199 83.920
Source: prepared by the authors with data from Scopus.

Table 3 shows us the most cited articles in the research period, in one of the criteria
selected to determine relevance. These are the 20 most relevant papers of that period. One
is able to notice a good distribution in the journal ranking, which may be an indication that
good studies on the subject can be found in most journals listed in this research. Another
point is that most of these 20 articles are post-2015, which reinforces the hypothesis that
research on the subject still has a horizon of growth.

Table 3. Most Cited Articles in the Period (2008–May/2021).

Journal JR TC Title Author(s) Year

Energy Strategy Reviews 23 405
The role of renewable
energy in the global

energy transformation

Gielen, Dolf
Boshell, Francisco

Saygin, Deger
Bazilian, Morgan D.
Wagner, Nicholas
Gorini, Ricardo

2019

Journal of Industrial Ecology 6 332

How circular is the global
economy? An assessment
of material flows, waste

production, and recycling
in the European Union
and the world in 2005

Haas, Willi
Krausmann, Fridolin

Wiedenhofer, Dominik
Heinz, Markus

2015

Global Environmental Change 2 228

Energy, land-use and
greenhouse gas emissions
trajectories under a green

growth paradigm

Van Vuuren, Detlef P.
Stehfest, Elke

Gernaat, David E.H.J.
Doelman, Jonathan C.

( . . . )

2017

Science of the Total Environment 9 131

Dynamic impact of trade
policy, economic growth,
fertility rate, renewable

and non-renewable energy
consumption on ecological

footprint in Europe

Alola, Andrew Adewale
Bekun, Festus Victor

Sarkodie, Samuel Asumadu
2019

Energy Policy 8 127 China in the transition to a
low-carbon economy Zhang, Zhong Xiang 2010

Cogent Economics and Finance 57 112

Effect of economic growth
on CO2 emission in

developing countries:
Evidence from a dynamic

panel threshold model

Aye, Goodness C.
Edoja, Prosper Ebruvwiyo 2017

Science of the Total Environment 9 103

Modelling coal rent,
economic growth and CO2

emissions: Does
regulatory quality matter

in BRICS economies?

Adedoyin, Festus Fatai
Gumede, Moses Iga
Bekun, Festus Victor

Etokakpan, Mfonobong
Udom

Balsalobre-lorente, Daniel

2020
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Table 3. Cont.

Journal JR TC Title Author(s) Year

Energy Policy 8 101
The energy and CO2 emissions

impact of renewable energy
development in China

Qi, Tianyu
Zhang, Xiliang

Karplus, Valerie J.
2014

Energy Policy 8 100
The environmental Kuznets curve in
Indonesia: Exploring the potential of

renewable energy

Sugiawan, Yogi
Managi, Shunsuke 2016

Energy Policy 8 89
Onshore wind power development in

China: Challenges behind a
successful story

Han, Jingyi
Mol, Arthur P.J.
Lu, Yonglong

Zhang, Lei

2009

Energy Policy 8 79

The driving forces of change in
energy-related CO2 emissions in

Ireland: A multi-sectoral
decomposition from 1990 to 2007

O’ Mahony, Tadhg Zhou,
Peng Sweeney, John 2012

Technological and Economic
Development of Economy 16 75

Evaluation of renewable energy
alternatives using MACBETH and

fuzzy AHP multicriteria methods: the
case of Turkey

Ertay, Tijen
Kahraman, Cengiz

Kaya, Ihsan
2013

Financial Innovation 19 66
The relationship between energy

consumption, economic growth and
carbon dioxide emissions in Pakistan

Khan, Muhammad Kamran
Khan, Muhammad Imran

Rehan, Muhammad
2020

Renewable and Sustainable
Energy Reviews 1 58 Energy security and renewable

energy policy analysis of Pakistan

Aized, Tauseef
Shahid, Muhammad
Bhatti, Amanat Ali

Saleem, Muhammad
Anandarajah, Gabrial

2018

Science of the Total Environment 9 54

An assessment of environmental
sustainability corridor: The role of
economic expansion and research
and development in EU countries

Adedoyin, Festus Fatai
Alola, Andrew Adewale

Bekun, Festus Victor
2020

Science of the Total Environment 9 53

Heterogeneous impacts of renewable
energy and environmental patents on

CO2 emission—Evidence from
the BRIICS

Cheng, Cheng
Ren, Xiaohang

Wang, Zhen
Yan, Cheng

2019

International Journal of Energy
Economics and Policy 36 51

The role of renewable, non-renewable
electricity consumption and carbon

emission in development in
Indonesia: Evidence from distributed

lag tests

Saudi, Mohd Haizam Mohd
Sinaga, Obsatar

Roespinoedji, Djoko
Razimi, Mohd Shahril Ahmad

2019

Latin American Economic Review 60 50

The dynamic linkage between
renewable energy, tourism, CO2

emissions, economic growth, foreign
direct investment, and trade

Ben Jebli, Mehdi
Ben Youssef, Slim
Apergis, Nicholas

2019

Energy Policy 8 49
Hydropower, social priorities and the
rural-urban development divide: The

case of large dams in Cambodia

Siciliano, Giuseppina
Urban, Frauke

Kim, Sour
Dara Lonn, Pich

2015

Emerging Markets Finance
and Trade 51 47

Financing Renewable Energy Projects
in Major Emerging Market
Economies: Evidence in the
Perspective of Sustainable
Economic Development

Kutan, Ali M.
Paramati, Sudharshan Reddy

Ummalla, Mallesh
Zakari, Abdulrasheed

2018

JR = Journal Ranking; TC = Total Citations.

The taxonomy of the publication was another aim in this research, hereby, the studies
selected through the PRISMA methodology were qualified in four subgroups by the authors,
I being—Renewable and Non-Renewable Energy Consumption, Economic Growth and
Economic Development; II—Transition to a low-carbon economy and energy efficiency;
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III—Environmental Degradation; IV—Others. Most of the articles in this sample fall into
category II—Renewable Energies, Economic Growth and Economic Development, and the
expected result, according to the Scopus database, 127 of 199 (63.819%), is in this category.
Although category II relates to the keywords used in the scope, it is not the focal point
of the publications. These are more related to energy efficiency and countries with the
objective of reducing their carbon emissions and cover around 15.075% (30 documents)
of the research. The Environmental Degradation is responsible for 8.04%, in other words,
16 documents. Finally, the other category, with fewer studies, encompasses researches that
relate to the subjects but are very specific cases and covers 13.065%, or 26 published papers
on that period. When analyzing the methodologies applied in the researches that are part
of the sample of this study, a prevalence of quantitative methodologies is observed of the
199 studies. One hundred and sixty-one, or 80.904%, apply quantitative methods to obtain
the results of their studies. In the following paragraphs, an analysis of the studies within
the given subsamples is performed.

The analysis of group I (Renewable and Non-Renewable Energy Consumption, Eco-
nomic Growth and Economic Development) shows that most of the articles published
in this subsample use quantitative methodology while 89.763% of the studies use some
common methodologies in economic sciences. Most studies are analyses of statistical
inferences of countries or a country studied in isolation. There are many studies covering
various economies [28–34], for example [35–38]. Ref. [35] conducted a study covering
123 countries, 146 countries for Ref. [36], 53 countries for Ref. [37], and in [38], 24 countries
are heterogeneous economies. However, when observing the studies that opt for groups,
there is a direction to investigate specific groups with some similarities, whether geograph-
ical, economic and cultural, among others. Ref. [39] investigated 37 economies considered
developed. OCDE member countries were studied from various perspectives by [40–45].
The results obtained by [45] indicate that in the long term, trade openings and technological
developments tend to stimulate the consumption of renewable energy in OCDE countries.
Emerging economies were investigated by [46–50], still, in the emerging economies, there
were more targeted studies, such as papers [51–53]. According to [51], for these economies,
the flow of foreign direct investment (FDI) and the development of the financial market are
fundamental in promoting the consumption of renewable energies, in addition to reducing
emissions and promoting economic growth. The BRICS economies were also investigated
in isolation: Brazil was studied by [54–56], Russia by [57], China and India by [58] and
China by several [59–65], and there were also investigations for Chinese provinces such
as [66,67]. Moreover, Brazil, China and the USA were studied by [68], China and USA
in [69], and China, USA, France and Japan by [70]. Continents were also the target of this
type of research: Europe was studied by [71–83]. The result obtained by [71] indicates
a balance between environmental degradation, economic growth, commercial opening,
consumption of renewable and non-renewable energies and fertility rate. Furthermore, it
was observed that the consumption of non-renewable energies increases the degradation
of the environment, while the consumption of renewables contributes to conservation. As
in the case of the BRICS, European countries were studied separately: Portugal by [84].
Portugal, Spain, Denmark and the USA by [85], Ukraine by [86,87], Turkey by [88,89],
Romania by [90], Czech Republic and Slovakia by [91], Wales by [92], Poland by [93,94],
Estonia, Latvia and Lithuania by [95], Scotland by [96] and Russia [97]. The American
continent, to be more precise, Latin America, was also the target of research by [98–101].
The study [99] concluded that the consumption of renewable energies, tourism, and FDI
tend to reduce environmental degradation, while foreign trade and economic growth are
responsible for the deterioration of the environment. Refs. [102–104] analyzed Bolivia and
Ecuador, respectively. Saudi Arabia [105] and Iran [106] were studied in the Middle East.
This relationship was studied for the Asian continent, where the Environmental Kuznets’
Curve [107] was validated, for the South Asian economies by [108]. Ref. [109] investi-
gated South Asian and Southwest economies, and the results obtained indicate that the
consumption of renewable and non-renewable energies promotes economic growth [109].
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Belt Road countries were investigated by [110,111], SAARC and ASEAN countries [112],
as well as, South Korea [113], Bangladesh [114], Malaysia [115–118], Indonesia [119–123],
Vietnam [124], Taiwan [125], Pakistan [126–130], Kazakhstan [131,132], and Thailand [133].
Not many studies dealing with the African continent [134] investigate the continent, [135]
sub-Saharan Africa, [136] Rwanda, [137] Cameron, Nigeria [138], [139] Ethiopia and [140]
Tunisia. In Oceania, only [141] investigated Australia. OPEC member countries were
studied by [142] and concluded that electricity production improves access to energy and
promotes the economy. In addition to quantitative methodologies, other methodological
approaches were applied; however, they were the minority in this subsample (10.318%).
Similar to quantitative studies, there is an analysis of large groups, such as [143,144],
which were analyzed a very different group of economies. The research addressed Eu-
rope [145,146], the United Kingdom [147] and Russia [97]. Refs. [148,149] analyzed China,
while [150] studied India and China together; Islamic countries were studied by [151], and
finally Bangladesh, Indonesia and the USA by [152–154], respectively.

The studies of subsample II (Transition to a Low-Carbon Economy/Energy Efficiency)
are a total of 30, of which 22, or 73.333%, are quantitative surveys. Quantitative studies
in this sample have a broad profile, such as [155,156]. The results of [156] point out that
renewable energy and energy efficiency technologies are the central points for an energy
transition. Renewable energy is the key to limiting greenhouse gas emissions and limiting
the increase in global temperature by 2◦ [156]. The continents were also investigated: Asia
was studied in [157–159], and the African continent in [160]. The most localized studies
have a concentration on research focused on China [161–163]. The results found by [161]
indicate that the targets of electricity production through renewable sources in China con-
tributed to an increase of 1.8% between 2010 and 2020. In addition to these, [164] studied
India and China. India was also addressed in [165]. Still, on the Asian continent, Pakistan,
Vietnam, Kazakhstan and Japan were studied by [166–169], respectively. In Europe, Ireland
was surveyed in [170], Turkey by [171], Netherlands by [172], Germany, United Kingdom
and Norway in [173]. Regarding the USA, it was found that by achieving innovation
targets, there is a reduction in carbon dioxide emissions [174]. In the Middle East, Saudi
Arabia was studied by [175], and finally, [176] proposed to investigate quantitatively the
impact of public policy of gradual reduction in fossil fuel consumption given through gov-
ernment subsidies; the results indicate that this contributes positively to the performance
of macroeconomic factors [176]. In non-quantitative approaches, [177] investigated trends
for the global energy market in the medium and long term and concluded that there is a
global interest in renewable and non-conventional energies, as well as in improving energy
efficiency to reduce an environmental impact on energy generation [177]. Europe was
studied by [178,179], while China was studied by [180,181], Russia by [182], the economies
of Mexico and Vietnam by [183] and Nigeria in [184].

There is subsample III, in which the documents relate to the keywords used in the
research, but the focus of the research is on the degradation of the environment. Having
said this, this group has 16 articles, 12 of which are quantitative papers, while the rest
applied other methodologies. In the field of quantitative studies, [185] studied 32 countries
considered in development. While [186] focused on the BRICS, for these economies, the
consumption of renewable energies and the FDI tend to reduce carbon dioxide emissions,
the opposite relationship found for GDP, and bank credit with CO2, the increase in these
variables is accompanied by an increase in environmental degradation, as well as ex-
ports [186]. In addition to this research, South Africa was also studied by [187,188], and
India, together with Malaysia, Indonesia, Kenya, Mexico, Colombia, and Poland, were
investigated by [189]. The European Union was addressed by [190], and concluded that
economic factors accelerate environmental degradation; only Turkey was analyzed in isola-
tion from Europe by [191,192]. ASEAN member countries were investigated by [193] and
showed that macroeconomic factors contribute to degradation. Still, in Asia, Vietnam and
Taiwan were studied by [194,195], respectively. The African continent was studied by [196]
and Ghana by [197]. The study with non-quantitative approaches by [198] focuses on the
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possibilities of development in the global use of energy, land exploration, emissions and
climate change in order to maintain constant sustainable development. The results indicate
that a combination of these factors by opting for sustainable alternative, can lead to a strong
energy transition towards renewable sources; however, in addition, it is also necessary
to apply strict climate policies to reduce the trend of the rising global temperature [198].
Ref. [199] studies how the banking sector can contribute to decarbonization. Finally, [200]
is the only country study that investigates Nigeria.

Lastly, in category IV (Others), unlike the aforementioned, where there is a clear
predominance of quantitative methodologies, there is a balance. Of the 26 papers falling
into this category, 13 (50%) are quantitative, while the other half use other approaches.
In this category there are comprehensive studies, which do not necessarily work with
continents/countries, for example [201–205], moreover [206] conducted a micro study. In
studies dealing with territories for the European continent [207], it was concluded that
renewable energy development policies improve the social factors studied (government
policy, general public awareness, the market, lobbying activity) [207]. Russia was stud-
ied in [208], and the United Kingdom and Germany in [209] together with the USA and
Brazil. On the Asian continent, Iran, China and Cambodia were investigated by [210,211]
and [212], respectively. Ref. [213] studied the decision-making between financing and not
financing renewable energy matrices on the African continent and concluded that investor
confidence in regulatory effectiveness is the main concern, besides local construction capac-
ity and political instruments [213]. In non-quantitative approaches, there are also studies
without a sample directed to country/continent, such as [214–219]. Ref. [219] proposes
two scenarios, a conservative one in which there is no change in the current situation of
energy production and a transition, which assumes ambitious targets in the evolution
and incentives of renewable energies. The results show that renewable sources may be
responsible for providing between 35 and 50% of the world’s electricity production by 2040,
while the share of fossil fuels tends to decrease [219]. Ref. [220] demonstrated that common
law adept countries responded better to renewable energy investment opportunities; in
other words, the study points out that legal and regulatory institutions are to blame for the
global imbalance in the development of energy [220]. In Europe, only Italy and Macedonia
have surveys in this category, [221] and [222] respectively. While only Chinese provinces
were surveyed in [223–225], and at the country level, in Asia, only Nepal in [226].

Due to the diverse results obtained in the studies, there is no academic/scientific
consensus on the way in which energy consumption affects economic dynamics. There
are economies in which the influence is positive, others negative and even economies in
which the results are not statistically significant. This is likely to be the effect of specific
characteristics of each sample observed in the studies. Despite this, a conclusion regarding
the consumption of renewable energies was possible. They are fundamental in mitigating
greenhouse gas emissions; therefore, there is evidence that they are essential in conserving
the environment.

The prevalence and varieties of quantitative approaches in the studies are an indication
that information is available so that decision-makers and policymakers can formulate
strategies based on statistical evidence.

It is worth noting that when observing the countries taken into account in the above-
mentioned studies, they are developed economies. There are many studies for Europe, USA,
OCDE member countries, and many studies for developing economies, such as the case of
BRICS, but little is investigated for less wealthy economies, as most African and Caribbean
economies are countries that find themselves at the bottom of a low point of economic
development. Thus, there are indications of a gap to be explored, develop, or even replicate
studies already conducted for the most relevant economies, for these countries with lower
economic power, in order to ascertain how the consumption of renewable energies affects
the economy of these nations.

Along with, according to the analysis of the articles in this sample, a focus on relating
energy consumption, whether renewable and non-renewable, with macroeconomic indica-
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tors, such as labor force, trade, foreign direct investment, with economic growth, not taking
into account variables or socioeconomic indicators, is noticeable. This marginalization
of metrics to evaluate economic and social development may be an indication, as it was
previously pointed out that there is a growth horizon in the studies of this theme. It is
natural that socioeconomic development is promoted from economic growth. Therefore,
academia is on the way to understanding the various effects of renewable energies on
economic activity, and from this understanding to expand into economic development.

Figure 5 informs us of the most used keywords. A universe of 637 keywords was
obtained; however, when we limit it to a minimum of five occurrences, this number drops
to 17, thus, following relevance criteria previously stipulated that Figure 4 was made with
the existing relationships between these 17 words that were most used by the authors
as keywords.

Figure 5. Keywords Occurrence Analysis.

Immediately, it is possible to observe that there are four clusters (given the different
colors on the image), all of which somehow connect with the keyword “economic growth”,
which is the most used term by researchers, followed by “renewable energy”. It is noted
that, of the three terms selected in this work, two stand out. This may be an indication that
the academy is focused on investigating the relationship between economic growth and
energy consumption, a subject that was already investigated, however not overdone, since
the focus is now on renewable energy matrices. With regard to the term of economic devel-
opment, this subject, although extremely relevant, when related to economic growth and
renewable energy, appears to be marginalized; that is, there is not much targeted research,
so it is possible to conclude that there is a gap that should be explored by researchers.

It is also noted in the keywords with more occurrences there is a certain emphasis on
CO2 in conjunction with keywords that relate to sustainability. This implies an apparent
interest in studying how greenhouse gas emissions may be impacting growth and or
economic development. To a certain extent, the rise in the temperature of the planet may be
one of the factors that have driven research to understand how renewable energies affect
economic dynamics.

In addition, Figure 6 shows us that there are indications (given the yellow color) that
these keywords, in sets, date to 2015 post surveys, once more, another indication that there
is still much to be explored. Finally, China is noted as one of the most cited terms, and
this may be one of the reasons why the country has greater prominence in the number of
publications on the subject.
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Figure 6. Keywords Overlay Visualization.

When the links between renewable energy, economic growth and economic develop-
ment are observed, it is noted that there is no evidence of research relating to economic
development and renewable energies, as can be seen in Figure 7 below. According to
Figure 7, the existence of two clusters is clear; one between economic growth and renew-
able energies and the other between economic growth and economic development. The
research gap that can be explored is even more evident since there is no direct link between
economic development and renewable energies.

However, if we use energy consumption instead of renewable energies, a link is noted
with economic development, as can be seen in Figure 8. Once again, this result reinforces
the hypothesis of the absence of studies relating the consumption of renewable energies
with development.

Finally, an analysis of the possible clusters and links between the researchers was
also performed. The number of citations is a relevance indicator, even though it is not an
accurate metric. In VOSviewer, the software to perform such analysis only considered
authors with more than five citations, so the number of authors analyzed is 404 (instead of
665), which is the total number of researchers in this sample. Even though the number of
researchers was reduced to 404, a link was found between only 46 of them, as can be seen
in Figure 9.

Figure 7. Link Between Renewable Energy, Economic Growth and Economic Development.
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Figure 8. Link Between Energy Consumption, Economic Growth and Development Economic.

Figure 9. Authors’ Network Visualization.

By observing the number of colors, one can see 10 clusters. However, although there
are 10, only 4 clusters stand out because they have more branches; therefore, they are
connected to more researchers. These are one led by Bekun in blue, followed by Sarkodie
in yellow, then Ozturk is in purple, and finally, the cluster formed by the Shahbaz in
red. Notoriously, this relationship does not occur randomly since they are the authors
with the highest number of documents published on the stipulated criteria. Sarkodie has
eight publications based on the topic in that period, while Bekun has five publications,
Shahbaz four publications, and Ozturk three publications.

Among the most referenced studies in the period, Bekun and Sarkodie, of the authors
with the highest number of publications, are unique, with works listed among only 20 most
referenced in the period. While Shahbaz, already recognized for his academic contribution
in research that relates to economics and the environment, as highlighted in [17,18], appears
to be relevant in studies relating to renewable energy and economics.

The work developed by these authors in the period investigated also does not study
less developed economies, except Ozturk studying energies and ecological sustainability in
the Belt and Road Initiative Countries [110], and Sarkodie investigating Ghana’s economy
in [197], all other studies focus on developed or developing economies. This is a strong
indication that these less capable economies are being marginalized in the context of
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understanding how renewable energies can affect their economic growth and development,
and this negligence may be another factor of delay in their development.

5. Conclusions

This research focused on investigating articles published in the Scopus database that
studied the relationship between renewable energy, economic growth and economic de-
velopment between 2008 and May 2021. The results of screening through the PRISMA
methodology provided a sample of 111 articles selected by the WoS database and 199 arti-
cles selected by the Scopus database. There is a prevalence of quantitative methodologies to
the detriment of other approaches. Regarding the ranking of the journals with the highest
impact, Renewable and Sustainable Energy Reviews were in first place, followed by Global
Environmental Change and in third was Water Research. However, the journal with the
largest number of publications was Sustainability (Switzerland).

Despite the effort to overcome the difficulty in quantitatively measuring an article,
journal or author, this is the major limitation of this research. The metrics used for quan-
tifying are susceptible to failure; thus, they are not accurate because there is no defined
methodology that is applicable to the type of approach used in this study. In addition to
this, the selected sampling period was also considered since it does not take the year 2021
into account. To be more precise, it is only considered until 21 May. Nevertheless, the
number of publications found for this year should not be ignored. Another limiting factor
of the research is found in the sample used, considering the information available in the
Scopus database in the construction of the analyzed sample, not taking into account all the
studies that exist in Web of Science (WoS), which may have relevant studies that of course
were not taken into consideration.

The analysis of the data obtained among both databases leads us to conclude that
studies with respect to renewable energy, economic growth and economic development are
just beginning since it is possible to observe a growth trend. Most of the studies published
on that period occurred after 2015, and the articles considered to have the greatest impact
are publications that date back to more recent years, which appears to be the result of the
end of the first cycle of commitments of the Kyoto Protocol.

It is notorious that the topic is being researched on all continents, and surprising that
China is a leader in publications, given that it is one of the countries whose economic
growth has been the most damaging to the environment.

This research was able to identify research gaps; studies have focused on understand-
ing how renewable energies have affected economies around the globe, but the observed
gap is precisely in one of the keywords used in this research. No studies were observed
that connect renewable energies and economic development; therefore, it is suggested that
it is a theme to be addressed by academia in the future. There is also a lack of studies
dedicated to less developed economies, so there is no evidence of how the factors observed
in this study can affect the economic activity of these countries; for these economies, there
is a lack of information to outline the best strategies and policy development to promote
greater growth. In addition, with the possibility of continuing to work with this sample, it
is also proposed in future research to analyze the quality of the research reviewed in this
article, with the objective of finding unexplored gaps, which can later be addressed.

This type of study, proposed in this research, is strategic for decision-makers and
policymakers in demonstrating that the effects of a variable on the economy. In the case of
this research, the nexus between economic growth, renewable energy consumption and
economic development may be different between economies. Hence, it is an indication
that before any strategic decision-making to promote economic growth, consumption of
renewable energies or economic development, statistical studies should be promoted, with
the aim of having an evidence-based decision and thus making efficient decisions.
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Appendix A

The search protocol is dated, which is a study limiter. The Scopus database updates
its article base quite frequently, making it impossible to replicate and analyze all the papers
in it.

On the Scopus (https://www.scopus.com), accessed on 21 May 2021, search page,
which has restricted access, requiring a login, we researched the three keywords used in our
research (Renewable Energy, Economic Growth and Economic Development), obtaining
a total of 2836 documents. Articles published in Biochemistry, Genetics and Molecular
Biology, Medicine, Physics and Astronomy, Immunology and Microbiology, Pharmacology,
Toxicology and Pharmaceutics, Arts and Humanities, Psychology, Health Professions and
Veterinary was not taken into consideration. Below can be seen the final research protocol,
which resulted in a sample of 291 documents, which later went through another screening
stage that culminated in the 199 articles analyzed in this study.

Table A1. Search Protocol.

TITLE-ABS-KEY (RENEWABLE AND ENERGY, AND ECONOMIC AND GROWTH AND
DEVELOPMENT AND ECONOMIC) AND PUBYEAR > 2007 AND (LIMIT-TO (OA, “all”)) AND

(EXCLUDE (SUBJAREA, “ENGI”) OR EXCLUDE (SUBJAREA, “EART”) OR EXCLUDE
(SUBJAREA, “AGRI”) OR EXCLUDE (SUBJAREA, “MATH”) OR EXCLUDE (SUBJAREA,
“BIOC”) OR EXCLUDE (SUBJAREA, “MATE”) OR EXCLUDE (SUBJAREA, “COMP”) OR

EXCLUDE (SUBJAREA, “CENG”) OR EXCLUDE (SUBJAREA, “MEDI”) OR EXCLUDE
(SUBJAREA, “MULT”) OR EXCLUDE (SUBJAREA, “PHYS”) OR EXCLUDE (SUBJAREA,

“CHEM”) OR EXCLUDE (SUBJAREA, “IMMU”) OR EXCLUDE (SUBJAREA, “ARTS”) OR
EXCLUDE (SUBJAREA, “DECI”) OR EXCLUDE (SUBJAREA, “HEAL”) OR EXCLUDE

(SUBJAREA, “PHAR”) OR EXCLUDE (SUBJAREA, “PSYC”) OR EXCLUDE (SUBJAREA,
“VETE”)) AND (LIMIT-TO (DOCTYPE, “AR”)) AND (LIMIT-TO (LANGUAGE, “ENGLISH”))
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