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ABSTRACT
This book describes warehouse-scale computers (WSCs), the computing platforms that power cloud 

computing and all the great web services we use every day. It discusses how these new systems treat 

the datacenter itself as one massive computer designed at warehouse scale, with hardware and software 

working in concert to deliver good levels of internet service performance. The book details the 

architecture of WSCs and covers the main factors influencing their design, operation, and cost 

structure, and the characteristics of their software base. Each chapter contains multiple real-world 

examples, including detailed case studies and previously unpublished details of the infrastructure 

used to power Google’s online services. Targeted at the architects and programmers of today’s 

WSCs, this book provides a great foundation for those looking to innovate in this fascinating and 

important area, but the material will also be broadly interesting to those who just want to under-

stand the infrastructure powering the internet. 

The third edition reflects four years of advancements since the previous edition and nearly 

doubles the number of pictures and figures. New topics range from additional workloads like video 

streaming, machine learning, and public cloud to specialized silicon accelerators, storage and net-

work building blocks, and a revised discussion of data center power and cooling, and uptime. Fur-

ther discussions of emerging trends and opportunities ensure that this revised edition will remain 

an essential resource for educators and professionals working on the next generation of WSCs.

KEYWORDS
data centers, cloud computing, servers, hyperscale systems, hardware accelerators, Internet ser-

vices, distributed systems, energy efficiency, fault-tolerant computing, cluster computing, com-

puter organization, computer design



xi

Contents

 Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . 1

1.1 Warehouse-Scale Computers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.2 Cost Efficiency at Scale  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.3 Not Just a Collection of Servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1.4 One Data Center vs. Several   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.5 Why WSCs Might Matter to You  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.6 Architectural Overview of WSCs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

1.6.1 Servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

1.6.2 Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

1.6.3 Networking Fabric  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

1.6.4 Buildings and Infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

1.6.5 Power Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

1.6.6 Handling Failures and Repairs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

1.7 Overview of Book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

2 Workloads and Software Infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

2.1 Warehouse Data Center Systems Stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

2.2 Platform-Level Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

2.3 Cluster-Level Infrastructure Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

2.3.1 Resource Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

2.3.2 Cluster Infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

2.3.3 Application Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

2.4 Application-Level Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

2.4.1 Workload Diversity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

2.4.2 Web Search   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

2.4.3 Video Serving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

2.4.4 Scholarly Article Similarity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

2.4.5 Machine Learning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

2.5 Monitoring Infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

2.5.1 Service-Level Dashboards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30



xii

2.5.2 Performance Debugging Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

2.5.3 Platform-Level Health Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . .  32

2.6 WSC Software Tradeoffs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

2.6.1 Data Center vs. Desktop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

2.6.2 Performance and Availability Toolbox  . . . . . . . . . . . . . . . . . . . . . . .  34

2.6.3 Buy vs. Build  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

2.6.4 Tail-Tolerance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

2.6.5 Latency Numbers that Engineers Should Know  . . . . . . . . . . . . . . .  40

2.7  Cloud Computing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

2.7.1 WSC for Public Cloud Services vs. Internal Workloads  . . . . . . . . .  42

2.7.2 Cloud Native Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

2.8 Information Security at Warehouse Scale  . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

3 WSC Hardware Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

3.1 Server Hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

3.1.1 Server and Rack Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

3.1.2 The Impact of Large SMP Communication Efficiency  . . . . . . . . . .  50

3.1.3  Brawny vs. Wimpy Servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

3.2 Computing Accelerators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

3.2.1 GPUs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 TPUs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

3.3 Networking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

3.3.1 Cluster Networking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

3.3.2 Host networking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

3.4 Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

3.4.1 Disk Trays and Diskless Servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

3.4.2 Unstructured WSC Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

3.4.3 Structured WSC Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

3.4.4 Interplay of Storage and Networking Technology  . . . . . . . . . . . . . .  70

3.5 Balanced Designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

3.5.1  System Balance: Storage Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . .  71

3.5.2 Quantifying Latency, Bandwidth, and Capacity  . . . . . . . . . . . . . . . .  72

4 Data Center Basics: Building, Power, and Cooling  . . . . . . . . . . . . . . . . . . . . . . . .  75

4.1 Data Center Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

4.1.1 Tier Classifications and Specifications   . . . . . . . . . . . . . . . . . . . . . .  75

4.1.2 Building Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

4.2 Data Center Power Systems   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79



xiii

4.2.1 Uninterruptible Power Systems (UPS)  . . . . . . . . . . . . . . . . . . . . . . .  80

4.2.2 Power Distribution Units (PDUs)  . . . . . . . . . . . . . . . . . . . . . . . . . .  81

4.2.3 Comparison of AC and DC Distribution Architectures   . . . . . . . . .  81

4.3 Example: Radial Power Distribution with Redundancy  . . . . . . . . . . . . . . . .  83

4.4 Example: Medium Voltage Power Plane  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

4.5 Data Center Cooling Systems   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

4.5.1 Computer Room Air Conditioners (CRACs)  . . . . . . . . . . . . . . . . .  88

4.5.2 Chillers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

4.5.3 Cooling Towers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

4.5.4 Free Cooling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

4.5.5 Air Flow Considerations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

4.5.6 In-Rack, In-Row, and Liquid Cooling  . . . . . . . . . . . . . . . . . . . . . . .  94

4.5.7 Container-Based Data Centers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96

4.6 Example: Google’s Ceiling-Mounted Cooling for the Data Center   . . . . . .  97

4.7 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

5 Energy and Power Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

5.1 Data Center Energy Efficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

5.1.1 The PUE Metric  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

5.1.2 Issues with the PUE Metric  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

5.1.3 Sources of Efficiency Losses in Data Centers  . . . . . . . . . . . . . . . .  102

5.1.4 Improving the Energy Efficiency of Data Centers  . . . . . . . . . . . . .  104

5.1.5 Beyond the Facility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105

5.2 The Energy Efficiency of Computing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

5.2.1 Measuring Energy Efficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

5.2.2 Server Energy Efficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

5.2.3 Usage Profile of Warehouse-Scale Computers  . . . . . . . . . . . . . . . .  108

5.3 Energy-Proportional Computing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

5.3.1 Causes of Poor Energy Proportionality  . . . . . . . . . . . . . . . . . . . . .  111

5.3.2 Improving Energy Proportionality  . . . . . . . . . . . . . . . . . . . . . . . . .  113

5.3.3 Energy Proportionality in the Rest of the System  . . . . . . . . . . . . .  114

5.3.4 Relative Effectiveness of Low-Power Modes  . . . . . . . . . . . . . . . . .  115

5.3.5 The Role of Software in Energy Proportionality  . . . . . . . . . . . . . .  116

5.4 Energy Efficiency through Specialization  . . . . . . . . . . . . . . . . . . . . . . . . . .  118

5.5 Data Center Power Provisioning   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

5.5.1 Deploying the Right Amount of Equipment  . . . . . . . . . . . . . . . . .  121

5.5.2 Oversubscribing Facility Power  . . . . . . . . . . . . . . . . . . . . . . . . . . .  121



xiv

5.6 Trends in Server Energy Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

5.6.1 Using Energy Storage for Power Management   . . . . . . . . . . . . . . .  125

5.7 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

6 Modeling Costs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

6.1 Capital Costs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

6.2 Operational Costs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

6.3 Case Studies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132

6.4 Real-World Data Center Costs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

6.5 Modeling a Partially Filled Data Center  . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

6.6 The Cost of Public Clouds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

7 Dealing with Failures and Repairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139

7.1 Implications of Software Fault Tolerance  . . . . . . . . . . . . . . . . . . . . . . . . . .  140

7.2 Categorizing Faults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

7.2.1 Fault Severity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

7.2.2 Causes of Service-Level Faults  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

7.3 Machine-Level Failures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145

7.3.1 What Causes Machine Crashes?  . . . . . . . . . . . . . . . . . . . . . . . . . .  148

7.3.2 Predicting Faults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150

7.4 Repairs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150

7.5 Tolerating Faults, Not Hiding Them   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

7.6 Accounting for Faults in Cluster System Design  . . . . . . . . . . . . . . . . . . . .  153

8 Closing Remarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

8.1  Hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

8.2  Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159

8.3  Economics and Energy Efficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160

8.4  Building Responsive Large-Scale Systems  . . . . . . . . . . . . . . . . . . . . . . . . . .  161

8.4.1 Continually Evolving Workloads  . . . . . . . . . . . . . . . . . . . . . . . . . .  161

8.4.2 Amdahl’s Cruel Law   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162

8.4.3 The Attack of the Killer Microseconds  . . . . . . . . . . . . . . . . . . . . . .  162

8.4.4 Tail at Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162

8.5  Looking Ahead  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163

8.5.1 The Ending of Moore’s Law   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163

8.5.2 Accelerators and Full System Designs  . . . . . . . . . . . . . . . . . . . . . .  164

8.5.3 Software-Defined Infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . .  165

8.5.4 A New Era of Computer Architecture and WSCs  . . . . . . . . . . . .  166



xv

8.6  Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167

 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169

 Author Biographies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189



xvii

Acknowledgments

While we draw from our direct involvement in Google’s infrastructure design and operation over 

the past several years, most of what we have learned and now report here is the result of the hard 

work, insights, and creativity of our colleagues at Google. The work of our Technical Infrastructure 

teams directly supports the topics we cover here and, therefore, we are particularly grateful to them 

for allowing us to benefit from their experience. 

Thanks to the work of Kristin Berdan at Google and Michael Morgan at Morgan & 

Claypool, we were able to make this lecture available electronically without charge, which was a 

condition for our accepting this task. We are very grateful to Mark Hill and Michael Morgan for 

inviting us to this project, and to Michael and Margaret Martonosi for the encouragement and 

gentle prodding and endless patience to make this revision possible. 

Special thanks to several people at Google who helped review and added content in the 

Third Edition: Jichuan Chang, Liqun Cheng, Mike Dahlin, Tim Hockin, Dave Landhuis, David 

Lo, Beckett Madden, Jon McCune, Tipp Moseley, Nishant Patil, Alex Ramirez, John Stanley, 

Varun Sakalkar, and Amin Vahdat. Thanks to Robert Stroud, Andrew Morgan, and others who 

helped with data and figures for prior editions. Special thanks to Jimmy Clidaras who wrote the 

original content on cooling and power distribution for Chapter 5 of the second edition. Ana Lo-

pez-Reynolds, along with Marcos Armenta, Gary Borella, and Loreene Garcia helped with all the 

illustrations, creating awesome new figures, and making sure all the illustrations had a consistent 

look. Thanks to our reviewers: Christos Kozyrakis and Thomas Wenisch for their valuable com-

ments, and to Bob Silva for his proofreading. Thanks also to Brent Beckley, Deborah Gabriel, and 

Christine Kiilerich at Morgan Claypool for their collaboration.

The second edition greatly benefited from thorough reviews by David Andersen, Partha 

Ranganathan, and Christos Kozyrakis, as well as contributions and corrections by Tor Aamodt, 

Dilip Agrawal, Remzi Arpaci-Dusseau, Mike Bennett, Liqun Chen, Xiaobo Fan, David Guild, 

Matthew Harris, Mark Hennecke, Mark Hill, Thomas Olavson, Jack Palevich, Pete Pellerzi, John 

Reese, Ankit Somani, and Amin Vahdat. We sincerely thank them for their help. We are also 

grateful for the feedback and corrections to the first edition submitted by Vijay Rao, Robert Hundt, 

Mike Marty, David Konerding, Jeremy Dion, Juan Vargas, Artur Klauser, Pedro Reviriego Vasallo, 

Amund Tveit, Xiau Yu, Bartosz Prybylski, Laurie Doyle, Marcus Fontoura, Steve Jenkin, Evan 

Jones, Chuck Newman, Taro Tokuhiro, Jordi Torres, and Christian Belady. Ricardo Bianchini, Fred 

Chong, Jeff Dean, and Mark Hill provided extremely useful feedback on early drafts despite being 



xviii ACKNOWLEDGMENTS

handed a relatively immature early version of the first edition. The first edition also benefited from 

proofreading by Catherine Warner.

And finally, we appreciate you, our readers, for all the support for this book and all the feed-

back on the two prior editions. We will continue to much appreciate any thoughts, suggestions, 

or corrections you might have on this edition as well. Please submit your comments and errata at 

https://goo.gl/HHqQ25. Thanks in advance for taking the time to contribute.



1

CHAPTER 1

Introduction

The ARPANET is nearly 50 years old, and the World Wide Web is close to 3 decades old. Yet the 

internet technologies that emerged from these two remarkable milestones continue to transform 

industries and cultures today and show no signs of slowing down. The widespread use of such pop-

ular internet services as web-based email, search, social networks, online maps, and video stream-

ing, plus the increased worldwide availability of high-speed connectivity, have accelerated a trend 

toward server-side or “cloud” computing. With such trends now embraced by mainline enterprise 

workloads, the cloud computing market is projected to reach close to half a trillion dollars in the 

next few years [Col17]. 

In the last few decades, computing and storage have moved from PC-like clients to smaller, 

often mobile, devices, combined with large internet services. While early internet services were 

mostly informational, today, many web applications offer services that previously resided in the 

client, including email, photo and video storage, and office applications. Increasingly, traditional en-

terprise workloads are also shifting to cloud computing. This shift is driven not only by the need for 

user experience improvements, such as ease of management (no configuration or backups needed) 

and ubiquity of access, but also by the advantages it provides to vendors. Specifically, software as 

a service allows faster application development because it is simpler for software vendors to make 

changes and improvements. Instead of updating many millions of clients (with a myriad of peculiar 

hardware and software configurations), vendors need to only coordinate improvements and fixes 

inside their data centers and can restrict their hardware deployment to a few well-tested configura-

tions. Similarly, server-side computing allows for faster introduction of new hardware innovations, 

such as accelerators that can be encapsulated under well-defined interfaces and APIs. Moreover, 

data center economics allow many application services to run at a low cost per user. For example, 

servers may be shared among thousands of active users (and many more inactive ones), resulting 

in better utilization. Similarly, the computation and storage itself may become cheaper in a shared 

service (for example, an email attachment received by multiple users can be stored once rather than 

many times, or a video can be converted to a client format once and streamed to multiple devices). 

Finally, servers and storage in a data center can be easier to manage than the desktop or laptop 

equivalent because they are under control of a single, knowledgeable entity. Security, in particular, 

is an important differentiator for the cloud.

Some workloads require so much computing capability that they are a more natural fit for a 

massive computing infrastructure than for client-side computing. Search services (web, images, and 

so on) are a prime example of this class of workloads, but applications such as language translation 
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(and more broadly, machine learning) can also run more effectively on large shared computing 

installations because of their reliance on massive-scale models.

These trends toward server-side computing and widespread internet services created a new 

class of computing systems that, in our first edition of this book, we named warehouse-scale com-

puters, or WSCs. The name is meant to call attention to the most distinguishing feature of these 

machines: the massive scale of their software infrastructure, data repositories, and hardware platform. 

This perspective is a departure from a view of the computing problem that implicitly assumes a 

model where one program runs in a single machine. In warehouse-scale computing, the program 

is an internet service, which may consist of tens or more individual programs that interact to 

implement complex end-user services such as email, search, or maps. These programs might be 

implemented and maintained by different teams of engineers, perhaps even across organizational, 

geographic, and company boundaries (as is the case with mashups, for example).

The computing platform required to run such large-scale services bears little resemblance to 

a pizza-box server or even the refrigerator-sized, high-end multiprocessors that reigned in prior 

decades. The hardware for such a platform consists of thousands of individual computing nodes 

with their corresponding networking and storage subsystems, power distribution and conditioning 

equipment, and extensive cooling systems. The enclosure for these systems is in fact a building, 

which is often indistinguishable from a large warehouse. 

1.1 WAREHOUSE-SCALE COMPUTERS

Had scale been the only distinguishing feature of these systems, we might simply refer to them as 

data centers. Data centers are buildings where multiple servers and communication gear are co-lo-

cated because of their common environmental requirements and physical security needs, and for 

ease of maintenance. In that sense, a WSC is a type of data center. Traditional data centers, however, 

typically host a large number of relatively small- or medium-sized applications, each running on a 

dedicated hardware infrastructure that is de-coupled and protected from other systems in the same 

facility. Those data centers host hardware and software for multiple organizational units or even 

different companies. Different computing systems within such a data center often have little in 

common in terms of hardware, software, or maintenance infrastructure, and tend not to communi-

cate with each other at all.

WSCs currently power the services offered by companies such as Google, Amazon, Face-

book, Microsoft, Alibaba, Tencent, Baidu, and others. They differ significantly from traditional data 

centers: they belong to a single organization, use a relatively homogeneous hardware and system 

software platform, and share a common systems management layer. Often, much of the application, 

middleware, and system software is built in-house compared to the predominance of third-party 

software running in conventional data centers. Most importantly, WSCs run a smaller number of 
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very large applications (or internet services), and the common resource management infrastructure 

allows significant deployment flexibility. The requirements of homogeneity, single-organization 

control, and enhanced focus on cost efficiency motivate designers to take new approaches in con-

structing and operating these systems.

Although initially designed for online data-intensive web workloads, WSCs also now power 

public clouds such as those from Amazon, Google, and Microsoft. Such public clouds do run many 

small applications, like a regular data center. However, as seen by the provider, all of these appli-

cations are identical VMs, and they access large, common services for block or database storage, 

load balancing, and so on, fitting very well with the WSC model. Over the years, WSCs have also 

adapted to incorporate industry standards and more general purpose designs that the same infra-

structure can support both large online internal services as well as large public cloud offerings, with 

very little deviation, and in many cases, even the same developer experience. 

Internet services must achieve high availability, typically aiming for at least 99.99% uptime 

(“four nines,” or about an hour of downtime per year). Achieving fault-free operation on a large 

collection of hardware and system software is hard and is made more difficult by the large number 

of servers involved. Although it might be theoretically possible to prevent hardware failures in a 

collection of 10,000 servers, it would surely be very expensive. Consequently, WSC workloads must 

be designed to gracefully tolerate large numbers of component faults with little or no impact on 

service level performance and availability. 

1.2 COST EFFICIENCY AT SCALE

Building and operating a large computing platform is expensive, and the quality of a service it pro-

vides may depend on the aggregate processing and storage capacity available, further driving costs 

up and requiring a focus on cost efficiency. For example, in information retrieval systems such as 

web search, three main factors drive the growth of computing needs.

• Increased service popularity translates into higher request loads.

• The size of the problem keeps growing—the web is growing by millions of pages per 

day, which increases the cost of building and serving a web index.

• Even if the throughput and data repository could be held constant, the competitive 

nature of this market continuously drives innovations to improve the quality of results 

retrieved and the frequency with which the index is updated. Although some quality 

improvements can be achieved by smarter algorithms alone, most substantial improve-

ments demand additional computing resources for every request. For example, in a 

search system that also considers synonyms of the search terms in a query, or semantic 

relationships, retrieving results is substantially more expensive. Either the search needs 

1.2 COST EFFICIENCY AT SCALE
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to retrieve documents that match a more complex query that includes the synonyms, or 

the synonyms of a term need to be replicated in the index data structure for each term.

This relentless demand for more computing capabilities makes cost efficiency a primary 

metric of interest in the design of WSCs. Cost efficiency must be defined broadly to account for 

all the significant components of cost, including hosting-facility capital and operational expenses 

(which include power provisioning and energy costs), hardware, software, management personnel, 

and repairs. Chapter 6 discusses these issues in more detail.

1.3 NOT JUST A COLLECTION OF SERVERS

Our central point is that the data centers powering many of today’s successful internet services 

are no longer simply a collection of miscellaneous machines co-located in a facility and wired up 

together. The software running on these systems, such as Gmail or web search services, executes at 

a scale far beyond a single machine or a single rack: it runs on no smaller a unit than clusters of 

hundreds to thousands of individual servers. Therefore, the machine, the computer, is itself this large 

cluster or aggregation of servers and needs to be considered as a single computing unit.

The technical challenges of designing WSCs are no less worthy of the expertise of computer 

systems architects than any other class of machines. First, they are a new class of large-scale ma-

chines driven by a new and rapidly evolving set of workloads. Their size alone makes them difficult 

to experiment with or simulate efficiently; therefore, system designers must develop new techniques 

to guide design decisions. In addition, fault behavior, security, and power and energy considerations 

have a more significant impact in the design of WSCs, perhaps more so than in other smaller scale 

computing platforms. Finally, WSCs have an additional layer of complexity beyond systems con-

sisting of individual servers or small groups of servers; WSCs introduce a significant new challenge 

to programmer productivity, a challenge even greater than programming the individual multicore 

systems that comprise the WSC. This additional complexity arises indirectly from virtualization 

and the larger scale of the application domain and manifests itself as a deeper and less homoge-

neous storage hierarchy (Chapter 4), higher fault rates (Chapter 7), higher performance variability 

(Chapter 2), and greater emphasis on microsecond latency tolerance (Chapter 8).

The objectives of this book are to introduce this new design space, describe some of the 

requirements and characteristics of WSCs, highlight some of the important challenges unique to 

this space, and share some of our experience designing, programming, and operating them within 

Google. We are fortunate to be not only designers of WSCs but also customers and programmers of 

the platform, which has provided us an unusual opportunity to evaluate design decisions through-

out the lifetime of a product. We hope that we succeed in relaying our enthusiasm for this area as 

an exciting new target worthy of the attention of the general research and technical communities.
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1.4 ONE DATA CENTER VS. SEVERAL 

In this book, we define the computer to be architected as one data center, even though many inter-

net services use multiple data centers located far apart. Multiple data centers are sometimes used 

as complete replicas of the same service, with replication used mostly to reduce user latency and 

improve serving throughput. In those cases, a given user request is fully processed within one data 

center, and our machine definition seems appropriate.

In cases where a user query involves computation across multiple data centers, our single 

data center focus is a less obvious fit. Typical examples are services that deal with nonvolatile user 

data updates, and therefore require multiple copies for disaster tolerance. For such computations, 

a set of data centers might be the more appropriate system. Similarly, video streaming workloads 

benefit significantly from a content-distribution network (CDN) across multiple data centers and 

edge points. 

However, we have chosen to think of the multi-data center scenario as more analogous to a 

network of computers. This is in part to limit the scope of this book, but also mainly because the 

huge gap in connectivity quality between intra- and inter-data center communications causes pro-

grammers to view such systems as separate computational resources. As the software development 

environment for this class of applications evolves, or if the connectivity gap narrows significantly in 

the future, we may need to adjust our choice of machine boundaries.

1.5 WHY WSCS MIGHT MATTER TO YOU

In the first edition of the book a decade ago, we discussed how WSCs might be considered a niche 

area, because their sheer size and cost render them unaffordable by all but a few large internet 

companies. We argued then that we did not believe this to be true, and that the problems that 

large internet services face would soon be meaningful to a much larger constituency because many 

organizations would be able to afford similarly sized computers at a much lower cost. 

Since then our intuition has come true. Today, the attractive economics of low-end server 

class computing platforms puts clusters of thousands of nodes within the reach of a relatively broad 

range of corporations and research institutions. Combined with the trends around ever increasing 

numbers of processor cores on a single die, a single rack of servers today has more hardware threads 

than many data centers had a decade ago. For example, a rack with 40 servers, each with four 16-

core dual-threaded CPUs, contains more than 4,000 hardware threads! Such systems exhibit the 

same scale, architectural organization, and fault behavior of WSCs from the last decade.1

1 The relative statistics about sources of hardware faults can change substantially in these more integrated fu-
ture systems, but silicon trends around less reliable components and the likely continuing high impact of soft-
ware-driven faults suggest that programmers of such systems still need to deal with a fault-ridden platform.

1.5 WHY WSCS MIGHT MATTER TO YOU
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However, perhaps more importantly, the explosive growth and popularity of Infrastruc-

ture-as-a-Service (IaaS) cloud computing offerings have now made WSCs available to anyone with a 

credit card [Arm+10]. We believe that our experience building these systems is useful in understand-

ing the design issues and programming challenges for the next-generation cloud computing platform.

1.6 ARCHITECTURAL OVERVIEW OF WSCS

The hardware implementation of a WSC differs significantly from one installation to the next. 

Even within a single organization such as Google, systems deployed in different years use differ-

ent basic elements, reflecting the hardware improvements provided by the industry. However, the 

architectural organization of these systems is relatively stable. Therefore, it is useful to describe this 

general architecture at a high level as it sets the background for subsequent discussions. 

1.6.1 SERVERS

The hardware building blocks for WSCs are low-end servers, typically in a 1U2 or blade enclosure 

format, and mounted within a rack and interconnected using a local Ethernet switch. These rack-

level switches, which can use 40 Gbps or 100 Gbps links, have a number of uplink connections 

to one or more cluster-level (or data center-level) Ethernet switches. This second-level switching 

domain can potentially span more than 10,000 individual servers. In the case of a blade enclosure, 

there is an additional first level of networking aggregation within the enclosure where multiple pro-

cessing blades connect to a small number of networking blades through an I/O bus such as PCIe. 

Figure 1.1(a) illustrates a Google server building block. More recently, WSCs have featured addi-

tional compute hardware building blocks, including GPUs and custom accelerators (for example, 

Figure 1.1(b) illustrates a TPU board). Similar to servers, these are connected through custom or 

industry-standard interconnects at the rack (or multi-rack pod) levels, leading up to the data center 

network. Figure 1.1(c) illustrates storage trays that are used to build out storage. Figure 1.2 shows 

how these building blocks are assembled into rows of racks of servers for both general-purpose 

servers and accelerators. 

2 Being satisfied with neither the metric nor the U.S. system, rack designers use “rack units” to measure the height 
of servers. 1U is 1.75 in or 44.45 mm; a typical rack is 42U high.
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Figure 1.1: Example hardware building blocks for WSCs. Left to right: (a) a server board, (b) an ac-

celerator board (Google’s Tensor Processing Unit [TPU]), and (c) a disk tray. 

1.6 ARCHITECTURAL OVERVIEW OF WSCS
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Figure 1.2: Hardware building blocks assembled into interconnected racks and rows. 

1.6.2 STORAGE

Disks and Flash SSDs are the building blocks of today’s WSC storage system. To provide durable 

storage to a large number of applications, these devices are connected to the data center network 
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and managed by sophisticated distributed systems. WSC system designers need to make several 

tradeoffs based on their requirements. For example, should the disks and SSDs be connected di-

rectly to compute servers (Directly Attached Storage, or DAS) or disaggregated as part of Network 

Attached Storage (NAS)? While DAS can reduce hardware costs and improve network utilization 

(the network port is dynamically shared between compute and storage tasks), the NAS approach 

tends to simplify deployment and provide higher QoS to avoid performance interference from 

compute jobs. Alos, WSCs, including Google’s, deploy desktop-class disk drives (or their close 

cousins, nearline drives) instead of enterprise-grade disks to save costs. Overall, storage devices in 

WSCs should aim at an aggregated view of the global optima across key metrics, including band-

width, IOPS, capacity, tail latency, and TCO. 

Distributed storage systems not only manage storage devices, but also provide unstructured 

and structured APIs for application developers. Google’s Google File System (GFS), and later 

Colossus and its Cloud cousin GCS [Ser17], are examples of unstructured WSC storage systems 

that use space-efficient Reed-Solomon codes and fast reconstruction for high availability. Google’s 

BigTable [Cha+06] and Amazon’s Dynamo [DeC+07] are examples of structured WSC storage 

that provides database-like functionality but with weaker consistency models. To simplify devel-

opers’ tasks, newer generations of structured storage systems such as Spanner [Cor+12] provide an 

SQL-like interface and strong consistency models. 

The nature of distributed storage in WSCs also leads to the interplay of storage and net-

working technologies. The fast evolution and improvement of data center networking have created 

a large gap between network and disk performance, to the point that WSC designs can be dra-

matically simplified to not consider disk locality. On the other hand, low-latency devices such as 

Flash SSD and emerging Non-Volatile Memories (NVMs) pose new challenges for WSC design. 

WSC designers need to build balanced systems with a hierarchy of memory and storage 

technologies, holistically considering the cluster-level aggregate capacity, bandwidth, and latency. 

Chapter 3 discusses system balance in more detail. 

1.6.3 NETWORKING FABRIC

Choosing a networking fabric for WSCs involves a trade-off between speed, scale, and cost. As of 

2018, it is not hard to find switches with 48 ports to interconnect servers at full speed of 40–100 

Gbps Ethernet within a single rack. As a result, bandwidth within a rack of servers tends to be 

homogeneous. However, network switches with high port counts, which are needed to tie together 

WSC clusters, have a much different price structure and are more than 10 times more expensive 

(per port) than commodity rack switches. As a rule of thumb, a switch with 10 times the bisection 

bandwidth often costs about 100 times more. As a result of this cost discontinuity, the networking 

fabric of WSCs is often organized as a two-level hierarchy. Commodity switches in each rack 

1.6 ARCHITECTURAL OVERVIEW OF WSCS
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provide a fraction of their bisection bandwidth for inter-rack communication through a handful 

of uplinks to the more costly cluster-level switches. For example, a 48-port rack-level switch could 

connect 40 servers to 8 uplinks, for a 5:1 oversubscription (8–20 Gbps per server uplink band-

width). In this network, programmers must be aware of the relatively scarce cluster-level bandwidth 

resources and try to exploit rack-level networking locality, complicating software development and 

possibly impacting resource utilization.

Alternatively, one can remove some of the cluster-level networking bottlenecks by spending 

more money on the interconnect fabric. For example, Infiniband interconnects typically scale to a 

few thousand ports but can cost much more than commodity Ethernet on a per port basis. Simi-

larly, some networking vendors are starting to provide larger-scale Ethernet fabrics, but again at a 

much higher cost per server. How much to spend on networking vs. additional servers or storage is 

an application-specific question that has no single correct answer. However, for now, we will assume 

that intra-rack connectivity is cheaper than inter-rack connectivity. 

1.6.4 BUILDINGS AND INFRASTRUCTURE

So far, we have discussed the compute, storage, and network building blocks of a WSC. These are 

akin to the CPU, memory, disk, and NIC components in a PC. We still need additional compo-

nents like power supplies, fans, motherboards, chassis, and other components, to make a full com-

puter. Similarly, a WSC has other important components related to power delivery, cooling, and 

building infrastructure that also need to be considered. 

WSC buildings (and campuses) house the computing, network, and storage infrastruc-

ture discussed earlier, and design decisions on the building design can dramatically influence the 

availability and uptime of the WSC. (Chapter 4 discusses the tier levels used in the data center 

construction industry.) 

Similarly, WSCs have elaborate power delivery designs. At the scale that they operate, WSCs 

can often consume more power than thousands of individual households. Therefore, they use a ho-

listic and hierarchical power delivery design that feeds electricity from the utility, to the substation, 

to power distribution units, to bus ducts, to individual power rails and voltage regulators on the 

server board, while also providing corresponding backup and redundancy such as uninterruptible 

power supplies (UPSs), generators, and backup batteries at different levels of the topology. 

WSCs can also generate a lot of heat. Similar to power delivery, WSCs employ an elaborate 

end-to-end cooling solution with a hierarchy of heat-exchange loops, from circulated air cooled by 

fan coils on the data center floor, to heat exchangers and chiller units, all the way to cooling towers 

that interact with the external environment. 

The building design, delivery of input energy, and subsequent removal of waste heat all drive 

a significant fraction of data center costs proportional to the amount of power delivered, and also 



11

have implications on the design and performance of the compute equipment (for example, liquid 

cooling for accelerators) as well as the availability service level objectives (SLOs) seen by workloads. 

These are therefore as important to optimize as the design of the individual compute, storage, and 

networking blocks. 

 

Figure 1.3: Power distribution, Council Bluffs, Iowa, U.S.

Figure 1.4: Data center cooling, Douglas County, Georgia, U.S.

1.6 ARCHITECTURAL OVERVIEW OF WSCS
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Figure 1.5: Cooling towers and water storage tanks, Lenoir, North Carolina, U.S.

Figure 1.6: Aerial view of Google data center, Council Bluffs, Iowa, U.S. 
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Figure 1.7: Google Cloud Platform regions and number of zones, circa July 2018. The latest source is 

available at https://cloud.google.com/about/locations/.

1.6.5 POWER USAGE

Energy and power usage are important concerns in the design of WSCs because, as we discuss in 

more detail in Chapter 5, energy-related costs have become an important component of the total 

cost of ownership of this class of systems. Figure 1.8 provides some insight into how energy is used 

in modern IT equipment by breaking down the peak power usage of one generation of WSCs 

deployed at Google in 2017 by main component group.

Although this breakdown will vary significantly depending on how systems are configured 

for a given workload, the graph indicates that CPUs are the dominant energy consumer in WSCs. 

Interestingly, the first edition of this book showed the relative energy use of the memory system 

rising to near parity with CPU consumption. Since then that trend has reversed due to a combi-

nation of effects. First, sophisticated thermal management has allowed CPUs to run closer to their 

maximum power envelope, resulting in higher energy consumption per CPU socket. Second, mem-

ory technology has shifted away from power hungry FBDIMMs to DDR3 and DDR4 systems 

with better energy management. Third, DRAM voltage has dropped from 1.8 V down to 1.2 V. 

Finally, today’s systems have a higher ratio of CPU performance per gigabyte of DRAM, possibly 

as a result of a more challenging technology scaling roadmap for main memory. While increasing 

bandwidth demands can still reverse these trends, currently, memory power is still significantly 

1.6 ARCHITECTURAL OVERVIEW OF WSCS
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smaller than CPU power. It is also worth noting that the power and cooling overhead are relatively 

small, reflecting generations of improvements in this area, many specific to WSCs. In Chapter 5, 

we discuss WSC energy efficiency in further detail; see Figure 5.6 for a discussion on power usage 

as a function of load.

COOLING OVERHEAD
3.0%

POWER OVERHEAD
7.0%

MISC
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DRAM
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Figure 1.8: Approximate distribution of peak power usage by hardware subsystem in a modern data 

center using late 2017 generation servers. The figure assumes two-socket x86 servers and 12 DIMMs 

per server, and an average utilization of 80%. 

1.6.6 HANDLING FAILURES AND REPAIRS

The sheer scale of WSCs requires that internet services software tolerates relatively high com-

ponent fault rates. Disk drives, for example, can exhibit annualized failure rates higher than 4% 

[PWB07; SG07b]. Different deployments have reported between 1.2 and 16 average server-level 

restarts per year. With such high component failure rates, an application running across thousands 

of machines may need to react to failure conditions on an hourly basis. We expand on this topic in 

Chapter 2, which describes the application domain, and Chapter 7, which deals with fault statistics.

1.7 OVERVIEW OF BOOK

We will elaborate on the issues discussed above in the rest of the book. 
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Chapter 2 starts with an overview of applications that run on WSCs and that define all the 

later system design decisions and trade-offs. We discuss key applications like web search and video 

streaming, and also cover the systems infrastructure stack, including platform-level software, clus-

ter-level infrastructure, and monitoring and management software. 

Chapter 3 covers the key hardware building blocks. We discuss the high-level design con-

siderations in WSC hardware and focus on server and accelerator building blocks, storage architec-

tures, and data center networking designs. We also discuss the interplay between compute, storage, 

and networking, and the importance of system balance. 

Chapter 4 looks at the next level of system design, focusing on data center power, cooling 

infrastructure, and building design. We provide an overview of the basics of the mechanical and 

electrical engineering involved in the design of WSCs and delve into case studies of how Google 

designed the power delivery and cooling in some of its data centers. 

Chapter 5 discusses the broad topics of energy and power efficiency. We discuss the chal-

lenges with measuring energy efficiency consistently and the power usage effectiveness (PUE) 

metric for data center-level energy efficiency, and the design and benefits from power oversub-

scription. We discuss the energy efficiency challenges for computing, with specific focus on energy 

proportional computing and energy efficiency through specialization. 

Chapter 6 discusses how to model the total cost of ownership of WSC data centers to 

address both capital expenditure and operational costs, with case studies of traditional and WSC 

computers and the trade-offs with utilization and specialization. 

Chapter 7 discusses uptime and availability, including data that shows how faults can be 

categorized and approaches to dealing with failures and optimizing repairs. 

Chapter 8 concludes with a discussion of historical trends and a look forward. With the 

slowing of Moore’s Law, we are entering an exciting era of system design, one where WSC data 

centers and cloud computing will be front and center, and we discuss the various challenges and 

opportunities ahead.

1.7 OVERVIEW OF BOOK
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CHAPTER 2

Workloads and Software 

Infrastructure

2.1 WAREHOUSE DATA CENTER SYSTEMS STACK

The applications that run on warehouse-scale computers (WSCs) dominate many system design 

trade-off decisions. This chapter outlines some of the distinguishing characteristics of software 

that runs in large internet services and the system software and tools needed for a complete com-

puting platform. Here are some terms used to describe the different software layers in a typical 

WSC deployment.

• Platform-level software: The common firmware, kernel, operating system distribution, 

and libraries expected to be present in all individual servers to abstract the hardware 

of a single machine and provide a basic machine abstraction layer.

• Cluster-level infrastructure: The collection of distributed systems software that man-

ages resources and provides services at the cluster level. Ultimately, we consider these 

services as an operating system for a data center. Examples are distributed file systems, 

schedulers and remote procedure call (RPC) libraries, as well as programming models 

that simplify the usage of resources at the scale of data centers, such as MapReduce 

[DG08], Dryad [Isa+07], Hadoop [Hadoo], Sawzall [Pik+05], BigTable [Cha+06], 

Dynamo [DeC+07], Dremel [Mel+10], Spanner [Cor+12], and Chubby [Bur06].

• Application-level software: Software that implements a specific service. It is often useful 

to further divide application-level software into online services and offline computa-

tions, since they tend to have different requirements. Examples of online services are 

Google Search, Gmail, and Google Maps. Offline computations are typically used in 

large-scale data analysis or as part of the pipeline that generates the data used in online 

services, for example, building an index of the web or processing satellite images to 

create map tiles for the online service.

• Monitoring and development software: Software that keeps track of system health and 

availability by monitoring application performance, identifying system bottlenecks, 

and measuring cluster health. 
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Figure 2.1 summarizes these layers as part of the overall software stack in WSCs. 
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Figure 2.1: Overview of the Google software stack in warehouse-scale computers. 

2.2 PLATFORM-LEVEL SOFTWARE

The basic software system image running in WSC server nodes isn’t much different than what one 

would expect on a regular enterprise server platform. Therefore we won’t go into detail on this level 

of the software stack.

Firmware, device drivers, or operating system modules in WSC servers can be simplified to 

a larger degree than in a general purpose enterprise server. Given the higher degree of homogene-

ity in the hardware configurations of WSC servers, we can streamline firmware and device driver 

development and testing since fewer combinations of devices will exist. In addition, a WSC server 

is deployed in a relatively well known environment, leading to possible optimizations for increased 

performance. For example, the majority of the networking connections from a WSC server will be 

to other machines within the same building, and incur lower packet losses than in long-distance 

internet connections. Thus, we can tune transport or messaging parameters (timeouts, window sizes, 

and so on) for higher communication efficiency.

Virtualization first became popular for server consolidation in enterprises but now is also 

popular in WSCs, especially for Infrastructure-as-a-Service (IaaS) cloud offerings [VMware]. A 

virtual machine provides a concise and portable interface to manage both the security and per-

formance isolation of a customer’s application, and allows multiple guest operating systems to 
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co-exist with limited additional complexity. The downside of VMs has always been performance, 

particularly for I/O-intensive workloads. In many cases today, those overheads are improving and 

the benefits of the VM model outweigh their costs. The simplicity of VM encapsulation also makes 

it easier to implement live migration (where a VM is moved to another server without needing 

to bring down the VM instance). This then allows the hardware or software infrastructure to be 

upgraded or repaired without impacting a user’s computation. Containers are an alternate popular 

abstraction that allow for isolation across multiple workloads on a single OS instance. Because each 

container shares the host OS kernel and associated binaries and libraries, they are more lightweight 

compared to VMs, smaller in size and much faster to start. 

2.3 CLUSTER-LEVEL INFRASTRUCTURE SOFTWARE

Much like an operating system layer is needed to manage resources and provide basic services in 

a single computer, a system composed of thousands of computers, networking, and storage also 

requires a layer of software that provides analogous functionality at a larger scale. We call this layer 

the cluster-level infrastructure. Three broad groups of infrastructure software make up this layer.

2.3.1 RESOURCE MANAGEMENT

This is perhaps the most indispensable component of the cluster-level infrastructure layer. It con-

trols the mapping of user tasks to hardware resources, enforces priorities and quotas, and provides 

basic task management services. In its simplest form, it is an interface to manually (and statically) 

allocate groups of machines to a given user or job. A more useful version would present a higher 

level of abstraction, automate allocation of resources, and allow resource sharing at a finer level of 

granularity. Users of such systems would be able to specify their job requirements at a relatively high 

level (for example, how much CPU performance, memory capacity, and networking bandwidth) 

and have the scheduler translate those requirements into an appropriate allocation of resources. 

Kubernetes (www.kubernetes.io) is a popular open-source program which fills this role that 

orchestrates these functions for container-based workloads. Based on the ideas behind Google’s 

cluster management system, Borg, Kubernetes provides a family of APIs and controllers that allow 

users to specify tasks in the popular Open Containers Initiative format (which derives from Docker 

containers). Several patterns of workloads are offered, from horizontally scaled stateless applications 

to critical stateful applications like databases. Users define their workloads’ resource needs and Ku-

bernetes finds the best machines on which to run them. 

It is increasingly important that cluster schedulers also consider power limitations and 

energy usage optimization when making scheduling decisions, not only to deal with emergencies 

(such as cooling equipment failures) but also to maximize the usage of the provisioned data center 

power budget. Chapter 5 provides more detail on this topic, and more information can be found 

2.3 CLUSTER-LEVEL INFRASTRUCTURE SOFTWARE
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in recent publications [FF05, Lim+13]. Similarly, cluster scheduling must also consider correlated 

failure domains and fault tolerance when making scheduling decisions. This is discussed further in 

Chapter 7.

2.3.2 CLUSTER INFRASTRUCTURE

Nearly every large-scale distributed application needs a small set of basic functionalities. Examples 

are reliable distributed storage, remote procedure calls (RPCs), message passing, and cluster-level 

synchronization. Implementing this type of functionality correctly with high performance and high 

availability is complex in large clusters. It is wise to avoid re-implementing such tricky code for each 

application and instead create modules or services that can be reused. Colossus (successor to GFS) 

[GGL03, Ser17], Dynamo [DeC+07], and Chubby [Bur06] are examples of reliable storage and 

lock services developed at Google and Amazon for large clusters.

Many tasks that are amenable to manual processes in a small deployment require a signifi-

cant amount of infrastructure for efficient operations in large-scale systems. Examples are software 

image distribution and configuration management, monitoring service performance and quality, 

and triaging alarms for operators in emergency situations. The Autopilot system from Microsoft 

[Isa07] offers an example design for some of this functionality for Windows Live data centers. 

Monitoring the overall health of the hardware fleet also requires careful monitoring, automated 

diagnostics, and automation of the repairs workflow. Google’s System Health Infrastructure, de-

scribed by Pinheiro et al. [PWB07], is an example of the software infrastructure needed for efficient 

health management. Finally, performance debugging and optimization in systems of this scale need 

specialized solutions as well. The X-Trace [Fon+07] system developed at UC Berkeley is an example 

of monitoring infrastructure aimed at performance debugging of large distributed systems.

2.3.3 APPLICATION FRAMEWORK

The entire infrastructure described in the preceding paragraphs simplifies the deployment and 

efficient usage of hardware resources, but it does not fundamentally hide the inherent complexity 

of a large scale system as a target for the average programmer. From a programmer’s standpoint, 

hardware clusters have a deep and complex memory/storage hierarchy, heterogeneous components, 

failure-prone components, varying adversarial load from other programs in the same system, and 

resource scarcity (such as DRAM and data center-level networking bandwidth). Some types of 

higher-level operations or subsets of problems are common enough in large-scale services that it 

pays off to build targeted programming frameworks that simplify the development of new prod-

ucts. Flume [Cha+10], MapReduce [DG08], Spanner [Cor+12], BigTable [Cha+06], and Dynamo 

[DeC+07] are good examples of pieces of infrastructure software that greatly improve programmer 

productivity by automatically handling data partitioning, distribution, and fault tolerance within 
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their respective domains. Equivalents of such software for the cloud, such as Google Kubernetes 

Engine (GKE), CloudSQL, AppEngine, etc. will be discussed in the discussion about cloud later 

in this section. 

2.4 APPLICATION-LEVEL SOFTWARE

2.4.1 WORKLOAD DIVERSITY

Web search was one of the first large-scale internet services to gain widespread popularity, as the 

amount of web content exploded in the mid-1990s, and organizing this massive amount of infor-

mation went beyond what could be accomplished with available human-managed directory ser-

vices. However, as networking connectivity to homes and businesses continues to improve, offering 

new services over the internet, sometimes replacing computing capabilities that traditionally lived 

in the client, has become more attractive. Web-based maps and email services are early examples 

of these trends. 

This increase in the breadth of services offered has resulted in a corresponding diversity in 

application-level requirements. For example, a search workload may not require an infrastructure 

capable of high-performance atomic updates and is inherently forgiving of hardware failures (be-

cause absolute precision every time is less critical in web search). This is not true for an application 

that tracks user clicks on sponsored links (ads). Clicks on ads are small financial transactions, which 

need many of the guarantees expected from a transactional database management system. Figure 

2.2 presents the cumulative distribution of cycles across workloads in Google data centers. The top 

50 workloads account for only about 60% of the total WSC cycles, with a long tail accounting for 

the rest of the cycles [Kan+15].

Once we consider the diverse requirements of multiple services, the data center clearly 

must be a general-purpose computing system. Although specialized hardware solutions might be 

a good fit for individual parts of services (we discuss accelerators in Chapter 3), the breadth of re-

quirements makes it important to focus on general-purpose system design. Another factor against 

hardware specialization is the speed of workload churn; product requirements evolve rapidly, and 

smart programmers will learn from experience and rewrite the baseline algorithms and data struc-

tures much more rapidly than hardware itself can evolve. Therefore, there is substantial risk that 

by the time a specialized hardware solution is implemented, it is no longer a good fit even for the 

problem area for which it was designed, unless these areas are ones where there is a significant focus 

on hardware-software codesign. Having said that, there are cases where specialization has yielded 

significant gains, and we will discuss these further later.

Below we describe workloads used for web search, video serving, machine learning, and cita-

tion-based similarity computation. Our objective here is not to describe internet service workloads 

2.4 APPLICATION-LEVEL SOFTWARE
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in detail, especially because the dynamic nature of this market will make those obsolete by pub-

lishing time. However, it is useful to describe at a high level a few workloads that exemplify some 

important characteristics and the distinctions between key categories of online services and batch 

(offline) processing systems. 
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Figure 2.2: Diversity of workloads in WSCs. 

2.4.2 WEB SEARCH 

This is the quintessential “needle in a haystack” problem. Although it is hard to accurately determine 

the size of the web at any point in time, it is safe to say that it consists of trillions of individual doc-

uments and that it continues to grow. If we assume the web to contain 100 billion documents, with 

an average document size of 4 KB (after compression), the haystack is about 400 TB. The database 

for web search is an index built from that repository by inverting that set of documents to create a 

repository in the logical format shown in Figure 2.3.

A lexicon structure associates an ID to every term in the repository. The termID identifies a 

list of documents in which the term occurs, called a posting list, and some contextual information 

about it, such as position and various other attributes (for example, whether the term is in the 

document title).

The size of the resulting inverted index depends on the specific implementation, but it tends 

to be on the same order of magnitude as the original repository. The typical search query consists of 

a sequence of terms, and the system’s task is to find the documents that contain all of the terms (an 

AND query) and decide which of those documents are most likely to satisfy the user. Queries can 

optionally contain special operators to indicate alternation (OR operators) or to restrict the search 
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to occurrences of the terms in a particular sequence (phrase operators). For brevity we focus on the 

more common AND query in the example below.

 
POSTING LIST FOR termID 0xf2e

doc1, posX, attr.

doc2, posY, attr.

docN, posZ, attr.

LEXICON TABLE

“APPLE”

APPLE 0x2fe

Figure 2.3: Logical view of a web index.

Consider a query such as [new york restaurants]. The search algorithm must traverse the 

posting lists for each term (new, york, restaurants) until it finds all documents contained in all three 

posting lists. At that point it ranks the documents found using a variety of parameters, such as the 

overall importance of the document (in Google’s case, that would be the PageRank score [PB] as 

well as other properties such as number of occurrences of the terms in the document, positions, and 

so on) and returns the highest ranked documents to the user.

Given the massive size of the index, this search algorithm may need to run across a few 

thousand machines. That is accomplished by splitting (or sharding) the index into load-balanced 

subfiles and distributing them across all of the machines. Index partitioning can be done by docu-

ment or by term. The user query is received by a front-end web server and distributed to all of the 

machines in the index cluster. As necessary for throughput or fault tolerance, multiple copies of 

index subfiles can be placed in different machines, in which case only a subset of the machines is 

involved in a given query. Index-serving machines compute local results, pre-rank them, and send 

their best results to the front-end system (or some intermediate server), which selects the best 

results from across the whole cluster. At this point, only the list of doc_IDs corresponding to the 

resulting web page hits is known. A second phase is needed to compute the actual title, URLs, and 

a query-specific document snippet that gives the user some context around the search terms. This 

2.4 APPLICATION-LEVEL SOFTWARE
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phase is implemented by sending the list of doc_IDs to a set of machines containing copies of the 

documents themselves. Once again, a repository this size needs to be partitioned (sharded) and 

placed in a large number of servers.

The total user-perceived latency for the operations described above needs to be a fraction of 

a second; therefore, this architecture places heavy emphasis on latency reduction. However, high 

throughput is also a key performance metric because a popular service may need to support many 

thousands of queries per second. The index is updated frequently, but in the time granularity of 

handling a single query, it can be considered a read-only structure. Also, because there is no need 

for index lookups in different machines to communicate with each other except for the final merge 

step, the computation is very efficiently parallelized. Finally, further parallelism is available by ex-

ploiting the fact that there are no logical interactions across different web search queries.

If the index is sharded by doc_ID, this workload has relatively small networking require-

ments in terms of average bandwidth because the amount of data exchanged between machines is 

typically not much larger than the size of the queries themselves (about a hundred bytes or so) but 

does exhibit some bursty behavior. Basically, the servers at the front-end act as traffic amplifiers as 

they distribute a single query to a very large number of servers. This creates a burst of traffic not 

only in the request path but possibly also on the response path as well. Therefore, even if overall 

network utilization is low, careful management of network flows is needed to minimize congestion.
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Figure 2.4: Example of daily traffic fluctuation for a search service in one data center over a 24-hr period.
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Finally, because web search is an online service, it suffers from normal traffic variations be-

cause users are more active on the web at different times of the day. Figure 2.4 illustrates this effect, 

showing that traffic at peak usage hours can be more than twice as high as off-peak periods. Such 

variability presents a challenge to system operators because the service must be sized for traffic 

intensities significantly higher than average.

2.4.3 VIDEO SERVING

IP video traffic represented 73% of the global internet in 2016, and is expected to grow to 83% 

by 2021. Live video will grow 15-fold, and video-on-demand will grow double by then. In July 

2015, users were uploading 400 hr of video per minute to YouTube, and in February 2017 users 

were watching 1 billion hours of YouTube video per day. Video transcoding (decoding video in 

one format and encoding it into a different format) is a crucial part of any video sharing infra-

structure: video is uploaded in a plethora of combinations of format, codec, resolution, frame rate, 

color space, and so on. These videos need to be converted to the subset of codecs, resolutions, and 

formats that client devices can play, and adapted to the network bandwidth available to optimize 

the user experience.

Video serving has three major cost components: the compute costs due to video transcod-

ing, the storage costs for the video catalog (both originals and transcoded versions), and the 

network egress costs for sending transcoded videos to end users. Improvements in video com-

pression codecs improve the storage and egress costs at the expense of higher compute costs. The 

YouTube video processing pipeline balances the three factors based on the popularity profile of 

videos, only investing additional effort on compressing highly popular videos. Below we describe 

how video on demand works; other video serving use cases, like on-the-fly transcoding or live 

video streaming, are similar at a high level but differ in the objective functions being optimized, 

leading to different architectures. 

Every video uploaded to YouTube is first transcoded [Lot+18] from its original upload for-

mat to a temporary high-quality common intermediate format, to enable uniform processing in the 

rest of the pipeline. Then, the video is chunked into segments and transcoded into multiple output 

resolutions and codecs so that when a user requests the video, the available network bandwidth 

and the capabilities of the player device are matched with the best version of the video chunk to 

be streamed. Video chunks are distributed across multiple machines, parallelizing transcoding of 

each video segment into multiple formats, and optimizing for both throughput and latency. Finally, 

if a video is identified as highly popular, it will undergo a second video transcoding pass, where 

additional compute effort is invested to generate a smaller video at the same perceptual quality. This 

enables users to get a higher resolution version of the video at the same network bandwidth, and 

the higher compute costs are amortized across egress savings on many playbacks.

2.4 APPLICATION-LEVEL SOFTWARE
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Figure 2.5: The YouTube video processing pipeline. Videos are transcoded multiple times depending 

on their popularity. VOD = video on demand.

Once video chunks are transcoded to their playback ready formats in the data center, they are 

distributed through the Edge network, which caches the most recently watched videos to minimize 

latency and amplify egress bandwidth. When a user requests a video that is not readily available in 

the Edge caches, the request is forwarded to the nearest data center or a peer Edge location, and 

the requested video is uploaded from the catalog. 

2.4.4 SCHOLARLY ARTICLE SIMILARITY

Services that respond to user requests provide many examples of large-scale computations required 

for the operation of internet services. These computations are typically data-parallel workloads 

needed to prepare or package the data that is subsequently used by the online services. For example, 

computing PageRank or creating inverted index files from a web repository fall in this category. 

But in this section, we use a different example: finding similar articles in a repository of academic 

papers and journals. This is a useful feature for internet services that provide access to scientific 

publications, such as Google Scholar (http://scholar.google.com). Article similarity relationships 

complement keyword-based search systems as another way to find relevant information; after find-

ing an article of interest, a user can ask the service to display other articles that are strongly related 

to the original article.

There are several ways to compute similarity scores, and it is often appropriate to use mul-

tiple methods and combine the results. With academic articles, various forms of citation analysis 

are known to provide good quality similarity scores. Here we consider one such type of analysis, 

called co-citation. The underlying idea is to count every article that cites articles A and B as a vote 
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for the similarity between A and B. After that is done for all articles and appropriately normalized, 

we obtain a numerical score for the (co-citation) similarity between all pairs of articles and create 

a data structure that for each article returns an ordered list (by co-citation score) of similar articles. 

This data structure is periodically updated, and each update then becomes part of the serving state 

for the online service.

The computation starts with a citation graph that creates a mapping from each article iden-

tifier to a set of articles cited by it. The input data is divided into hundreds of files of approximately 

the same size (for example, by taking a fingerprint of the article identifier, dividing it by the number 

of input files, and using the remainder as the file ID) to enable efficient parallel execution. We use 

a sequence of MapReduce runs to take a citation graph and produce a co-citation similarity score 

vector for all articles. In the first Map phase, we take each citation list (A1, A2, A3, . . . , An) and 

generate all possible pairs of documents, and then feed them to the Reduce phase, which counts 

all occurrences of each pair. This first step results in a structure that associates all pairs of co-cited 

documents with a co-citation count. Note that this becomes much less than a quadratic explosion 

because most documents have a co-citation count of zero and are therefore omitted. A second Ma-

pReduce pass groups all entries for a given document, normalizes their scores, and generates a list 

of documents with decreasing similarity scores to the original one.

This two-pass data-parallel program executes on hundreds of servers with relatively light-

weight computation in each stage followed by significant all-to-all communication between the 

Map and Reduce workers in each phase. Unlike web search, however, the networking traffic is 

streaming in nature, which makes it friendlier to existing congestion control algorithms. Also con-

trary to web search, the latency of individual tasks is much less important than the overall parallel 

efficiency of the workload.

2.4.5 MACHINE LEARNING

Deep neural networks (DNNs) have led to breakthroughs, such as cutting the error rate in an 

image recognition competition since 2011 from 26% to 3.5% and beating a human champion at Go 

[ Jou+18]. At Google, DNNs are applied to a wide range of applications including speech, vision, 

language, translation, search ranking, and many more. Figure 2.6 illustrates the growth of machine 

learning at Google. 

Neural networks (NN) target brain-like functionality and are based on a simple artificial 

neuron: a nonlinear function (such as max(0, value)) of a weighted sum of the inputs. These artificial 

neurons are collected into layers, with the outputs of one layer becoming the inputs of the next one 

in the sequence. The “deep” part of DNN comes from going beyond a few layers, as the large data 

sets in the cloud allowed more accurate models to be built by using extra and larger layers to capture 

higher levels of patterns or concepts [ Jou+18].

2.4 APPLICATION-LEVEL SOFTWARE
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The two phases of DNNs are training (or learning) and inference (or prediction), and they 

refer to DNN model development vs. use [ Jou+18]. DNN workloads are further be classified into 

different categories: convolutional, sequence, embedding-based, multilayer perceptron, and rein-

forcement learning [MLP18]. 

Training determines the weights or parameters of a DNN, adjusting them repeatedly until 

the DNN produces the desired results. Virtually all training is in floating point. During training, 

multiple learners process subsets of the input training set and reconcile the parameters across the 

learners either through parameter servers or reduction across learners. The learners typically process 

the input data set through multiple epochs. Training can be done asynchronously [Dea+12], with 

each learner independently communicating with the parameter servers, or synchronously, where 

learners operate in lockstep to update the parameters after every step. Recent results show that 

synchronous training provides better model quality; however, the training performance is limited 

by the slowest learner [Che+16]. 

Inference uses the DNN model developed during the training phase to make predictions on 

data. DNN inference is typically user facing and has strict latency constraints [ Jou+17]. Inference 

can be done using floating point (single precision, half precision) or quantized (8-bit, 16-bit) com-

putation. Careful quantization of models trained in floating point is needed to enable inference 

without any quality loss compared to the floating point models. Lower precision inference enables 

lower latency and improved power efficiency for inference [ Jou+17].

Three kinds of Neural Networks (NNs) are popular today.

1. Multi-Layer Perceptrons (MLP): Each new layer is a set of nonlinear functions of 

weighted sum of all outputs (fully connected) from a prior one.

2. Convolutional Neural Networks (CNN): Each ensuing layer is a set of nonlinear func-

tions of weighted sums of spatially nearby subsets of outputs from the prior layer, 

which also reuses the weights.

3. Recurrent Neural Networks (RNN): Each subsequent layer is a collection of nonlinear 

functions of weighted sums of outputs and the previous state. The most popular RNN 

is Long Short-Term Memory (LSTM). The art of the LSTM is in deciding what to 

forget and what to pass on as state to the next layer. The weights are reused across 

time steps. 

Table 2.1 describes recent versions of six production applications (two examples of each of 

the three types of NNs) as well as the ResNet50 benchmark [He+15]. One MLP is a recent version 

of RankBrain [Cla15]; one LSTM is a subset of GNM Translate [Wu+16b]; one CNN is Incep-

tion; and the other CNN is DeepMind AlphaGo [Sil+16].
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Figure 2.6: Growth of machine learning at Google.

Table 2.1: Six production applications plus ResNet benchmark. The fourth column is the total num-

ber of operations (not execution rate) that training takes to converge.

Type of 

Neural 

Network

Parameters 

(MiB)

Training Inference

Examples to 

Convergence

ExaOps to 

Conv

Ops 

per Example

Ops 

per Example

MLP0 225 1 trillion 353 353 Mops 118 Mops

MLP1 40 650 billion 86 133 Mops 44 Mops

LSTM0 498 1.4 billion 42 29 Gops 9.8 Gops

LSTM1 800 656 million 82 126 Gops 42 Gops

CNN0 87 1.64 billion 70 44 Gops 15 Gops

CNN1 104 204 million 7 34 Gops 11 Gops

ResNet 98 114 million <3 23 Gops 8 Gops

2.4 APPLICATION-LEVEL SOFTWARE
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2.5 MONITORING INFRASTRUCTURE

An important part of the cluster-level infrastructure software layer is concerned with various forms 

of system introspection. Because the size and complexity of both the workloads and the hardware 

infrastructure make the monitoring framework a fundamental component of any such deployments, 

we describe it here in more detail.

2.5.1 SERVICE-LEVEL DASHBOARDS

System operators must keep track of how well an internet service is meeting its service level indi-

cators (SLIs). The monitoring information must be very fresh so that an operator (or an automated 

system) can take corrective actions quickly and avoid significant disruption—within seconds, not 

minutes. Fortunately, the most critical information needed is restricted to just a few signals that can 

be collected from the front-end servers, such as latency and throughput statistics for user requests. 

In its simplest form, such a monitoring system can simply be a script that polls all front-end serv-

ers every few seconds for the appropriate signals and displays them to operators in a dashboard. 

Stackdriver Monitoring [GStaDr] is a publicly available tool which shares the same infrastructure 

as Google’s internal monitoring systems.

Large-scale services often need more sophisticated and scalable monitoring support, as the 

number of front-ends can be quite large, and more signals are needed to characterize the health 

of the service. For example, it may be important to collect not only the signals themselves but also 

their derivatives over time. The system may also need to monitor other business-specific parameters 

in addition to latency and throughput. The monitoring system supports a simple language that lets 

operators create derived parameters based on baseline signals being monitored. Finally, the system 

generates automatic alerts to on-call operators depending on monitored values and thresholds. Fine 

tuning a system of alerts (or alarms) can be tricky because alarms that trigger too often because 

of false positives will cause operators to ignore real ones, while alarms that trigger only in extreme 

cases might get the operator’s attention too late to allow smooth resolution of the underlying issues.

2.5.2 PERFORMANCE DEBUGGING TOOLS

Although service-level dashboards help operators quickly identify service-level problems, they typi-

cally lack the detailed information required to know why a service is slow or otherwise not meeting 

requirements. Both operators and the service designers need tools to help them understand the 

complex interactions between many programs, possibly running on hundreds of servers, so they can 

determine the root cause of performance anomalies and identify bottlenecks. Unlike a service-level 

dashboard, a performance debugging tool may not need to produce information in real-time for 
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online operation. Think of it as the data center analog of a CPU profiler that determines which 

function calls are responsible for most of the time spent in a program.

Distributed system tracing tools have been proposed to address this need. These tools attempt 

to determine all the work done in a distributed system on behalf of a given initiator (such as a user 

request) and detail the causal or temporal relationships among the various components involved.

These tools tend to fall into two broad categories: black-box monitoring systems and appli-

cation/middleware instrumentation systems. WAP5 [Rey+06b] and the Sherlock system [Bah+07] 

are examples of black-box monitoring tools. Their approach consists of observing networking traffic 

among system components and inferring causal relationships through statistical inference methods. 

Because they treat all system components (except the networking interfaces) as black boxes, these 

approaches have the advantage of working with no knowledge of, or assistance from, applications 

or software infrastructure components. However, this approach inherently sacrifices information 

accuracy because all relationships must be statistically inferred. Collecting and analyzing more 

messaging data can improve accuracy but at the expense of higher monitoring overheads.

Instrumentation-based tracing schemes, such as Pip [Rey+06a], Magpie [Bar+03b], and 

X-Trace [Fon+07], take advantage of the ability to explicitly modify applications or middleware 

libraries for passing tracing information across machines and across module boundaries within ma-

chines. The annotated modules typically also log tracing information to local disks for subsequent 

collection by an external performance analysis program. These systems can be very accurate as there 

is no need for inference, but they require all components of the distributed system to be instru-

mented to collect comprehensive data. The Dapper [Sig+10] system, developed at Google, is an ex-

ample of an annotation-based tracing tool that remains effectively transparent to application-level 

software by instrumenting a few key modules that are commonly linked with all applications, such 

as messaging, control flow, and threading libraries. Stackdriver Trace [GStaDr] is a publicly avail-

able implementation of the Dapper system. XRay, a feature of the LLVM compiler, uses compiler 

instrumentation to add trace points at every function entry and exit, enabling extremely fine latency 

detail when active and very low overhead when inactive. For even deeper introspection, the Stack-

driver Debugger [GStaDb] tool allows users to dynamically add logging to their programs without 

recompiling or redeploying.

CPU profilers based on sampling of hardware performance counters have been incredibly 

successful in helping programmers understand microarchitecture performance phenomena. Goo-

gle-Wide Profiling (GWP) [Ren+10] selects a random subset of machines to collect short whole 

machine and per-process profile data, and combined with a repository of symbolic information 

for all Google binaries produces cluster-wide view of profile data. GWP answers questions such 

as: which is the most frequently executed procedure at Google, or which programs are the largest 

users of memory? The publicly available Stackdriver Profiler [GStaPr] product is inspired by GWP.

2.5 MONITORING INFRASTRUCTURE
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2.5.3 PLATFORM-LEVEL HEALTH MONITORING

Distributed system tracing tools and service-level dashboards measure both health and perfor-

mance of applications. These tools can infer that a hardware component might be misbehaving, 

but that is still an indirect assessment. Moreover, because both cluster-level infrastructure and ap-

plication-level software are designed to tolerate hardware component failures, monitoring at these 

levels can miss a substantial number of underlying hardware problems, allowing them to build up 

until software fault-tolerance can no longer mitigate them. At that point, service disruption could 

be severe. Tools that continuously and directly monitor the health of the computing platform are 

needed to understand and analyze hardware and system software failures. In Chapter 7, we discuss 

some of those tools and their use in Google’s infrastructure in more detail.

Site reliability engineering

While we have talked about infrastructure software thus far, most WSC deployments support an 

important function called “site reliability engineering,” different from traditional system adminis-

tration in that software engineers handle day-to-day operational tasks for systems in the fleet. Such 

SRE software engineers design monitoring and infrastructure software to adjust to load variability 

and common faults automatically so that humans are not in the loop and frequent incidents are 

self-healing. An excellent book by a few of Google’s site reliability engineers [Mur+16] summarizes 

additional principles used by SREs in large WSC deployments. 

2.6 WSC SOFTWARE TRADEOFFS

2.6.1 DATA CENTER VS. DESKTOP

Software development in internet services differs from the traditional desktop/server model in 

many ways.

• Ample parallelism: Typical internet services exhibit a large amount of parallelism stem-

ming from both data- and request-level parallelism. Usually, the problem is not to 

find parallelism but to manage and efficiently harness the explicit parallelism inherent 

in the application. Data parallelism arises from the large data sets of relatively inde-

pendent records that need processing, such as collections of billions of web pages or 

billions of log lines. These very large data sets often require significant computation for 

each parallel (sub) task, which in turn helps hide or tolerate communication and syn-

chronization overheads. Similarly, request-level parallelism stems from the hundreds 

or thousands of requests per second that popular internet services receive. These re-

quests rarely involve read-write sharing of data or synchronization across requests. For 
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example, search requests are essentially independent and deal with a mostly read-only 

database; therefore, the computation can be easily partitioned both within a request 

and across different requests. Similarly, whereas web email transactions do modify user 

data, requests from different users are essentially independent from each other, creating 

natural units of data partitioning and concurrency. As long as the update rate is low, 

even systems with highly interconnected data (such as social networking backends) 

can benefit from high request parallelism.

• Workload churn: Users of internet services are isolated from the services’ implementation 

details by relatively well-defined and stable high-level APIs (such as simple URLs), 

making it much easier to deploy new software quickly. Key pieces of Google’s services 

have release cycles on the order of a couple of weeks compared to months or years for 

desktop software products. Google’s front-end web server binaries, for example, are 

released on a weekly cycle, with nearly a thousand independent code changes checked 

in by hundreds of developers—the core of Google’s search services is re-implemented 

nearly from scratch every 2–3 years. This environment creates significant incentives 

for rapid product innovation, but makes it hard for a system designer to extract useful 

benchmarks even from established applications. Moreover, because internet services 

is still a relatively new field, new products and services frequently emerge, and their 

success with users directly affects the resulting workload mix in the data center. For 

example, video services such as YouTube have flourished in relatively short periods 

and present a very different set of requirements from the existing large customers of 

computing cycles in the data center, potentially affecting the optimal design point of 

WSCs. A beneficial side effect of this aggressive software deployment environment 

is that hardware architects are not necessarily burdened with having to provide good 

performance for immutable pieces of code. Instead, architects can consider the possi-

bility of significant software rewrites to leverage new hardware capabilities or devices.

• Platform homogeneity: The data center is generally a more homogeneous environment 

than the desktop as a target platform for software development. Large internet services 

operations typically deploy a small number of hardware and system software configu-

rations at any given time. Significant heterogeneity arises primarily from the incentive 

to deploy more cost-efficient components that become available over time. Homo-

geneity within a platform generation simplifies cluster-level scheduling and load 

balancing and reduces the maintenance burden for platforms software, such as kernels 

and drivers. Similarly, homogeneity can allow more efficient supply chains and more 

efficient repair processes because automatic and manual repairs benefit from having 

more experience with fewer types of systems. In contrast, software for desktop systems 

2.6 WSC SOFTWARE TRADEOFFS
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can make few assumptions about the hardware or software platform they are deployed 

on, and their complexity and performance characteristics may suffer from the need to 

support thousands or even millions of hardware and system software configurations.

• Fault-free operation: Because internet service applications run on clusters of thousands 

of machines—each of them not dramatically more reliable than PC-class hardware—

the multiplicative effect of individual failure rates means that some type of fault is 

expected every few hours or less (more details are provided in Chapter 7). As a re-

sult, although it may be reasonable for desktop-class software to assume a fault-free 

hardware operation for months or years, this is not true for data center-level services: 

internet services need to work in an environment where faults are part of daily life. 

Ideally, the cluster-level system software should provide a layer that hides most of 

that complexity from application-level software, although that goal may be difficult to 

accomplish for all types of applications.

Although the plentiful thread-level parallelism and a more homogeneous computing plat-

form help reduce software development complexity in internet services compared to desktop sys-

tems, the scale, the need to operate under hardware failures, and the speed of workload churn have 

the opposite effect.

2.6.2 PERFORMANCE AND AVAILABILITY TOOLBOX

Some basic programming concepts tend to occur often in both infrastructure and application levels 

because of their wide applicability in achieving high performance or high availability in large-scale 

deployments. The following table (Table 2.2) describes some of the most prevalent concepts. Some 

articles, by Hamilton [Ham07], Brewer [Bre01], and Vogels [Vog08], provide interesting further 

reading on how different organizations have reasoned about the general problem of deploying in-

ternet services at a very large scale.

Table 2.2: Key concepts in performance and availability trade-offs

Technique Main Advantages Description

Replication Performance and 

availability

Data replication can improve both throughput and 

availability. It is particularly powerful when the rep-

licated data is not often modified, since replication 

makes updates more complex.

Reed-Solomon 

codes

Availability and 

space savings

When the primary goal is availability, not through-

put, error correcting codes allow recovery from data 

losses with less space overhead than straight replica-

tion.
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Sharding

(partitioning)

Performance and 

availability

Sharding splits a data set into smaller fragments 

(shards) and distributes them across a large num-

ber of machines. Operations on the data set are 

dispatched to some or all of the shards, and the 

caller coalesces results. The sharding policy can vary 

depending on space constraints and performance 

considerations. Using very small shards (or micro-

sharding) is particularly beneficial to load balancing 

and recovery.

Load-balancing Performance In large-scale services, service-level performance 

often depends on the slowest responder out of 

hundreds or thousands of servers. Reducing re-

sponse-time variance is therefore critical.

In a sharded service, we can load balance by biasing 

the sharding policy to equalize the amount of work 

per server. That policy may need to be informed 

by the expected mix of requests or by the relative 

speeds of different servers. Even homogeneous ma-

chines can offer variable performance characteristics 

to a load-balancing client if servers run multiple 

applications.

In a replicated service, the load-balancing agent 

can dynamically adjust the load by selecting which 

servers to dispatch a new request to. It may still be 

difficult to approach perfect load balancing because 

the amount of work required by different types of 

requests is not always constant or predictable.

Microsharding (see above) makes dynamic load 

balancing easier since smaller units of work can be 

changed to mitigate hotspots.

2.6 WSC SOFTWARE TRADEOFFS
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Health checking 

and watchdog 

timers

Availability In a large-scale system, failures often manifest as slow 

or unresponsive behavior from a given server. In this 

environment, no operation can rely on a given server 

to make forward progress. Moreover, it is critical to 

quickly determine that a server is too slow or un-

reachable and steer new requests away from it. Re-

mote procedure calls must set well-informed timeout 

values to abort long-running requests, and infrastruc-

ture-level software may need to continually check 

connection-level responsiveness of communicating 

servers and take appropriate action when needed.

Integrity checks Availability In some cases, besides unresponsiveness, faults man-

ifest as data corruption. Although those may be 

rare, they do occur, often in ways that underlying 

hardware or software checks do not catch (for exam-

ple, there are known issues with the error coverage 

of some networking CRC checks). Extra software 

checks can mitigate these problems by changing the 

underlying encoding or adding more powerful re-

dundant integrity checks.

Application-spe-

cific compression

Performance Often, storage comprises a large portion of the 

equipment costs in modern data centers. For ser-

vices with very high throughput requirements, it is 

critical to fit as much of the working set as possible 

in DRAM; this makes compression techniques very 

important because the decompression is orders of 

magnitude faster than a disk seek. Although generic 

compression algorithms can do quite well, applica-

tion-level compression schemes that are aware of the 

data encoding and distribution of values can achieve 

significantly superior compression factors or better 

decompression speeds.
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Eventual consis-

tency

Performance and 

availability

Often, keeping multiple replicas up-to-date using 

the traditional guarantees offered by a database 

management system significantly increases complex-

ity, hurts performance, and reduces availability of 

distributed applications [Vog08]. Fortunately, large 

classes of applications have more relaxed require-

ments and can tolerate inconsistent views for limited 

periods, provided that the system eventually returns 

to a stable consistent state.

Centralized con-

trol

Performance In theory, a distributed system with a single master 

limits the resulting system availability to the avail-

ability of the master. Centralized control is neverthe-

less much simpler to implement and generally yields 

more responsive control actions. At Google, we have 

tended toward centralized control models for much 

of our software infrastructure (like MapReduce and 

GFS). Master availability is addressed by designing 

master failover protocols.

Canaries Availability A very rare but realistic catastrophic failure scenario 

in online services consists of a single request distrib-

uted to a very large number of servers, exposing a 

program-crashing bug and resulting in system-wide 

outages. A technique often used at Google to avoid 

such situations is to first send the request to one (or 

a few) servers and only submit it to the rest of the 

system upon successful completion of that (canary) 

request.

Redundant 

execution and 

tail-tolerance

Performance In very large-scale systems, the completion of a 

parallel task can be held up by the slower execution 

of a very small percentage of its subtasks. The larger 

the system, the more likely this situation can arise. 

Sometimes a small degree of redundant execution of 

subtasks can result in large speedup improvements. 

2.6 WSC SOFTWARE TRADEOFFS
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2.6.3 BUY VS. BUILD

Traditional IT infrastructure makes heavy use of third-party software components, such as data-

bases and system management software, and concentrates on creating software that is specific to the 

particular business where it adds direct value to the product offering; for example, as business logic 

on top of application servers and database engines. Large-scale internet service providers such as 

Google usually take a different approach, in which both application-specific logic and much of the 

cluster-level infrastructure software is written in-house. Platform-level software does make use of 

third-party components, but these tend to be open-source code that can be modified in-house as 

needed. As a result, more of the entire software stack is under the control of the service developer.

This approach adds significant software development and maintenance work but can provide 

important benefits in flexibility and cost efficiency. Flexibility is important when critical function-

ality or performance bugs must be addressed, allowing a quick turnaround time for bug fixes at all 

levels. It eases complex system problems because it provides several options for addressing them. 

For example, an unwanted networking behavior might be difficult to address at the application level 

but relatively simple to solve at the RPC library level, or the other way around.

Historically, when we wrote the first edition of this book, a primary reason favoring build 

versus buy was that the needed warehouse-scale software infrastructure simply was not available 

commercially. In addition, it is hard for third-party software providers to adequately test and tune 

their software unless they themselves maintain large clusters. Last, in-house software may be sim-

pler and faster because it can be designed to address only the needs of a small subset of services, 

and can therefore be made much more efficient in that domain. For example, BigTable omits some 

of the core features of a traditional SQL database to gain much higher throughput and scalability 

for its intended use cases, and GFS falls short of offering a fully Posix compliant file system for 

similar reasons. Today, such models of scalable software development are more widely prevalent. 

Most of the major cloud providers have equivalent versions of software developed in-house, and 

open-source software versions of such software are also widely used (e.g., Kubernetes, Hadoop, 

OpenStack, Mesos). 

2.6.4 TAIL-TOLERANCE

Earlier in this chapter we described a number of techniques commonly used in large-scale soft-

ware systems to achieve high performance and availability. As systems scale up to support more 

powerful online web services, we have found that such techniques are insufficient to deliver 

service-wide responsiveness with acceptable tail latency levels. (Tail latency refers to the latency 

of the slowest requests, that is, the tail of the latency distribution.) Dean and Barroso [DB13] 

have argued that at large enough scale, simply stamping out all possible sources of performance 
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variability in individual system components is as impractical as making all components in a large 

fault-tolerant system fault-free.

Consider a hypothetical system where each server typically responds in 10 ms but with a 

99th percentile latency of 1 s. In other words, if a user request is handled on just one such server, 

1 user request in 100 will be slow (take 1 s). Figure 2.7 shows how service level latency in this hy-

pothetical scenario is impacted by very modest fractions of latency outliers as cluster sizes increase. 

If a user request must collect responses from 100 such servers in parallel, then 63% of user requests 

will take more than 1 s (marked as an “x” in the figure). Even for services with only 1 in 10,000 

requests experiencing over 1 s latencies at the single server level, a service with 2,000 such servers 

will see almost 1 in 5 user requests taking over 1 s (marked as an “o”) in the figure.
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Figure 2.7: Probability of >1 s service level response time as the system scale and frequency of server 

level high latency outliers varies.

Dean and Barroso show examples of programming techniques that can tolerate these kinds 

of latency variability and still deliver low tail latency at the service level. The techniques they pro-

2.6 WSC SOFTWARE TRADEOFFS
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pose often take advantage of resource replication that has already been provisioned for fault-toler-

ance, thereby achieving small additional overheads for existing systems. They predict that tail tol-

erant techniques will become more invaluable in the next decade as we build ever more formidable 

online web services.

2.6.5 LATENCY NUMBERS THAT ENGINEERS SHOULD KNOW

This section is inspired by Jeff Dean’s summary of key latency numbers that engineers should know 

[Dea09]. These rough operation latencies help engineers reason about throughput, latency, and ca-

pacity within a first-order approximation. We have updated the numbers here to reflect technology 

and hardware changes in WSC. 

Table 2.3: Latency numbers that every WSC engineer should know. (Updated 

version of table from [Dea09].)

Operation Time

L1 cache reference 1.5 ns

L2 cache reference 5 ns

Branch misprediction 6 ns

Uncontended mutex lock/unlock 20 ns

L3 cache reference 25 ns

Main memory reference 100 ns

Decompress 1 KB with Snappy [Sna] 500 ns

“Far memory”/Fast NVM reference 1,000 ns (1us)

Compress 1 KB with Snappy [Sna] 2,000 ns (2us)

Read 1 MB sequentially from memory 12,000 ns (12 us)

SSD Random Read 100,000 ns (100 us)

Read 1 MB bytes sequentially from SSD 500,000 ns (500 us)

Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms)

Read 1 MB sequentially from disk 10,000,000 ns (10 ms)

Disk seek 10,000,000 ns (10 ms)

Send packet California Netherlands California 150,000,000 ns (150 ms)

2.7  CLOUD COMPUTING

Recently, cloud computing has emerged as an important model for replacing traditional enterprise 

computing systems with one that is layered on top of WSCs. The proliferation of high speed inter-
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net makes it possible for many applications to move from the traditional model of on-premise com-

puters and desktops to the cloud, running remotely in a commercial provider’s data center. Cloud 

computing provides efficiency, flexibility, and cost saving. The cost efficiency of cloud computing is 

achieved through co-locating multiple virtual machines on the same physical hosts to increase uti-

lization. At a high level, a virtual machine (VM) is similar to other online web services, built on top 

of cluster-level software to leverage the entire warehouse data center stack. Although a VM-based 

workload model is the simplest way to migrate on-premise computing to WSCs, it comes with 

some additional challenges: I/O virtualization overheads, availability model, and resource isolation. 

We discuss these in more detail below. 
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Figure 2.8: Overview of VM-based software stack for Google Cloud Platform workloads.

• I/O Virtualization: A VM does not have direct access to hardware resources like local 

hard drives or networking. All I/O requests go through an abstraction layer, such 

as virtio, in the guest operating system. The hypervisor or virtual machine monitor 

(VMM) translates the I/O requests into the appropriate operations: For example, 

storage requests are redirected to the network persistent disk or local SSD drives, and 

2.7 CLOUD COMPUTING
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networking requests are sent through virtualized network for encapsulation. Although 

I/O virtualization often incurs some performance overhead improvements in both 

virtualization techniques and hardware support for virtualization have steadily reduced 

these overheads [Dal+18].

• Availability model: Large-scale distributed services achieve high availability by running 

multiple instances of a program within a data center, and at the same time maintain-

ing N + 1 redundancy at the data center level to minimize the impact of scheduled 

maintenance events. However, many enterprise applications have fewer users and use 

older stacks, such as relational databases, where horizontal scaling is often not possi-

ble. Cloud providers instead use live migration technology to ensure high availability 

by moving running VMs out of the way of planned maintenance events, including 

system updates and configurations changes. As a recent example, when responding to 

the Meltdown and Spectre vulnerabilities [Hen+18]. Google performed host kernel 

upgrades and security patches to address these issues across its entire fleet without 

losing a single VM. 

Resource isolation: As discussed earlier, the variability in latency of individual com-

ponents is amplified at scale at the service level due to interference effects. Resource 

quality of service (QoS) has proved to be an effective technique for mitigating the 

impact of such interference. In cloud computing, malicious VMs can exploit multi-

tenant features to cause severe contention on shared resources, conducting Denial 

of Service (DoS) and side-channel attacks. This makes it particularly important to 

balance the tradeoff between security guarantees and resource sharing.

2.7.1 WSC FOR PUBLIC CLOUD SERVICES VS. INTERNAL WORKLOADS

Google began designing WSCs nearly a decade before it began offering VM-based public clouds as 

an enterprise product, the Google Cloud Platform [GCP]. During that time Google’s computing 

needs were dominated by search and ads workloads, and therefore it was natural consider the de-

sign of both WSCs as well as its corresponding software stack in light of the requirements of those 

specific workloads. Software and hardware engineers took advantage of that relatively narrow set of 

requirements to vertically optimize their designs with somewhat tailored, in-house solutions across 

the whole stack and those optimizations resulted in a company-internal development environment 

that diverged from that of early public cloud offerings. As the portfolio of internal workloads 

broadened, Google’s internal designs had to adapt to consider more general purpose use cases and 

as a consequence, the gap between internal workload requirements and those of public clouds has 

narrowed significantly in most application areas. Although some differences still remain, internal 
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and external developers experience a much more similar underlying platform today, which makes it 

possible to bring internal innovations to external users much more quickly than would have been 

possible a decade ago. One example is the recent public availability of TPUs to Google Cloud 

Platform customers, discussed more in Chapter 3.

2.7.2 CLOUD NATIVE SOFTWARE

The rising popularity of Cloud Services brought with it a new focus on software that takes full 

advantage of what cloud providers have to offer.  Coupled with the shift toward containers as the 

vehicle for workloads, the “Cloud Native” ethos emphasizes properties of clouds that are not easily 

realized in private data centers. This includes things like highly dynamic environments, API-driven 

self-service operations, and instantaneous, on-demand resources. Clouds are elastic in a way that 

physical WSCs have difficulty matching. These properties allow developers to build software that 

emphasizes scalability and automation, and minimizes operational complexity and toil.

Just as containers and orchestrators catalyzed this shift, other technologies are frequently 

adopted at the same time. Microservices are the decomposition of larger, often monolithic, appli-

cations into smaller, limited-purpose applications that cooperate via strongly defined APIs, but can 

be managed, versioned, tested, and scaled independently. Service meshes allow application oper-

ators to decouple management of the application itself from management of the networking that 

surrounds it. Service discovery systems allow applications and microservices to find each other in 

volatile environments, in real time.

2.8 INFORMATION SECURITY AT WAREHOUSE SCALE

Cloud users depend on the ability of the WSC provider to be a responsible steward of user or 

customer data. Hence, most providers invest considerable resources into a sophisticated and layered 

security posture. The at-scale reality is that security issues will arise, mandating a holistic approach 

that considers prevention, detection, and remediation of issues. Many commercial software or hard-

ware vendors offer individual point solutions designed to address specific security concerns, but few 

(if any) offer solutions that address end-to-end security concerns for WSC. The scope is as broad 

as the scale is large, and serious WSC infrastructure requires serious information security expertise.

At the hardware level, there are concerns about the security of the physical data center prem-

ises. WSC providers employ technologies such as biometric identification, metal detection, cameras, 

vehicle barriers, and laser-based intrusion detection systems, while also constraining the number 

of personnel even permitted onto the data center floor (for example, see https://cloud.google.com/

security/infrastructure/design/). Effort is also invested to ascertain the provenance of hardware and 

the designs on which it is based. Some WSC providers invest in custom solutions for cryptographic 

2.8 INFORMATION SECURITY AT WAREHOUSE SCALE
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machine identity and the security of the initial firmware boot processes. Examples include Google’s 

Titan, Microsoft’s Cerberus, and Amazon’s Nitro.

Services deployed on this infrastructure use encryption for inter-service communication; 

establish systems for service identity, integrity, and isolation; implement access control mechanisms 

on top of identity primitives; and ultimately carefully control and audit access to end user or cus-

tomer data. Even with the correct and intended hardware, issues can arise. The recent Spectre/Melt-

down/L1TF issues [Hen+18] are illustrative of the need for WSC providers to maintain defense-

in-depth and expertise to assess risk and develop and deploy mitigations. WSC providers employ 

coordinated management systems that can deploy CPU microcode, system software updates, or 

other patches in a rapid but controlled manner. Some even support live migration of customer VMs 

to allow the underlying machines to be upgraded without disrupting customer workload execution.

Individual challenges, such as that of authenticating end user identity, give rise to a rich set 

of security and privacy challenges on their own. Authenticating users in the face of password reuse 

and poor password practices at scale, and otherwise preventing login or account recovery abuse 

often require dedicated teams of experts.

Data at rest must always be encrypted, often with both service- and device-centric systems 

with independent keys and administrative domains. Storage services face a form of cognitive dis-

sonance, balancing durability requirements against similar requirements to be able to truly, confi-

dently assert that data has been deleted or destroyed. These services also place heavy demands on 

the network infrastructure in many cases, often requiring additional computational resources to 

ensure the network traffic is suitably encrypted.

Internal network security concerns must be managed alongside suitable infrastructure to 

protect internet-scale communication. The same reliability constraints that give rise to workload 

migration infrastructure also require network security protocols that accommodate the model of 

workloads disconnected from their underlying machine. One example is Google application layer 

transport security (ALTS) [Gha+17]. The increasing ubiquity of SSL/TLS, and the need to respond 

appropriately for ever-present DoS concerns, require dedicated planning and engineering for cryp-

tographic computation and traffic management.

Realizing the full benefit of best-practices infrastructure security also requires operational 

security effort. Intrusion detection, insider risk, securing employee devices and credentials, and even 

basic things such as establishing and adhering to best practices for safe software development all 

require non-trivial investment.

As information security begins to truly enjoy a role as a first-class citizen in WSC infra-

structure, some historical industry norms are being reevaluated. For example, it may be challenging 

for a WSC to entrust critical portions of its infrastructure to an opaque or black-box third-party 

component. The ability to return machines to a known state—all the way down to the firmware 

level—in between potentially mutually distrusting workloads is becoming a must-have.
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CHAPTER 3

WSC Hardware Building Blocks

As mentioned earlier, the architecture of WSCs is largely defined by the hardware building blocks 

chosen. This process is analogous to choosing logic elements for implementing a microprocessor, 

or selecting the right set of chipsets and components for a server platform. In this case, the main 

building blocks are server hardware, networking fabric, and storage hierarchy components. This 

chapter focuses on these building blocks, with the objective of increasing the intuition needed for 

making such choices.

3.1 SERVER HARDWARE

Clusters of mid-range servers are the preferred building blocks for WSCs today [BDH03]. This is 

true for a number of reasons, the primary one being the underlying cost-efficiency of mid-range 

servers when compared with the high-end shared memory systems that had earlier been the pre-

ferred building blocks for the high-performance and technical computing space. The continuing 

CPU core count increase has also reached a point that most VM/task instances can comfortably fit 

into a two-socket server. Such server platforms share many key components with the high-volume 

personal computing market, and therefore benefit more substantially from economies of scale. It 

is typically hard to do meaningful cost-efficiency comparisons because prices fluctuate and perfor-

mance is subject to benchmark characteristics and the level of effort put into benchmarking. In the 

first edition, we showed a comparison of TPC-C benchmark [TPC] results from a system based 

on a high-end server (HP Integrity Superdome-Itanium2 [TPC07a]) and one based on a low-end 

server (HP ProLiant ML350 G5 [TPC07b]). The difference in cost-efficiency was over a factor of 

four in favor of the low-end server. When looking for more recent data for this edition, we real-

ized that there are no competitive benchmarking entries that represent the high-end server design 

space. As we observed in 2009, the economics of the server space made that class of machines 

occupy a small niche in the marketplace today. The more interesting discussions now are between 

mid-range server nodes and extremely low end (so-called “wimpy”) servers, which we cover later 

in this chapter.

3.1.1 SERVER AND RACK OVERVIEW

Servers hosted in individual racks are the basic building blocks of WSCs. They are interconnected 

by hierarchies of networks, and supported by the shared power and cooling infrastructure. 
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As discussed in Chapter 1, WSCs use a relatively homogeneous hardware and system soft-

ware platform. This simplicity implies that each server generation needs to provide optimized per-

formance and cost for a wide range of WSC workloads and the flexibility to support their resource 

requirements. Servers are usually built in a tray or blade enclosure format, housing the motherboard, 

chipset, and additional plug-in components. The motherboard provides sockets and plug-in slots 

to install CPUs, memory modules (DIMMs), local storage (such as Flash SSDs or HDDs), and 

network interface cards (NICs) to satisfy the range of resource requirements. Driven by workload 

performance, total cost of ownership (TCO), and flexibility, several key design considerations de-

termine the server’s form factor and functionalities.

• CPU: CPU power, often quantified by the thermal design power, or TDP; number of 

CPU sockets and NUMA topology; CPU selection (for example, core count, core and 

uncore frequency, cache sizes, and number of inter-socket coherency links). 

• Memory: Number of memory channels, number of DIMMs per channel, and DIMM 

types supported (such as RDIMM, LRDIMM, and so on). 

• Plug-in IO cards: Number of PCIe cards needed for SSD, NIC, and accelerators; form 

factors; PCIe bandwidth and power, and so on. 

• Tray-level power and cooling, and device management and security options: Voltage 

regulators, cooling options (liquid versus air-cooled), board management controller 

(BMC), root-of-trust security, and so on.

• Mechanical design: Beyond the individual components, how they are assembled is also 

an important consideration: server form-factors (width, height, depth) as well as front 

or rear access for serviceability.

Figure 3.1 shows a high-level block diagram of the key components of a server tray. Figure 

3.2 shows photographs of server trays using Intel and IBM processors. 
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Figure 3.1: Block diagram of a server. 

Going into more system details, the first x86-server supports two Intel Haswell CPU sock-

ets, and one Wellsburg Platform Controller Hub (PCH). Each CPU can support up to 145W 

TDP (for example, Intel’s 22 nm-based Haswell processor with 18-core per socket and 45MB L3 

shared cache). The server has 16 DIMM slots, supporting up to two DIMMs per memory channel 

(2DPC) with ECC DRAM. With Integrated Voltage Regulators, the platforms allow per core 

DVFS. The system supports 80 PCIe Gen3 lanes (40 lanes per CPU), and various PCIe plug-ins 

with different IO width, power, and form factors, allowing it to host PCIe cards for SSD, 40 GbE 

NIC, accelerators. It also includes several SATA ports and supports both direct-attached storage 

and PCIe-attached storage appliance (“disk trays”). 

3.1 SERVER HARDWARE
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Figure 3.2: Example server trays: (top) Intel Haswell-based server tray and (bottom) IBM Pow-

er8-based server tray. 

The second server is similar, except it supports IBM Power CPUs with higher thread counts 

and TDP, more PCIe lanes (96 lanes per two-socket), and up to 32 DDR3 DIMMs (twice that 

of the two-socket Intel-based system). The system maximizes the memory and IO bandwidth 

supported by the platform, in order to support a wide range of workloads and accelerators. We also 

balance the choice of CPU, in terms of core count, frequency, and cache sizes, with the available 

memory system bandwidth. 
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The rack is the physical structure that holds tens of servers together. Racks not only pro-

vide the physical support structures, but also handle shared power infrastructure, including power 

delivery, battery backup, and power conversion (such as AC to 48V DC). The width and depth of 

racks vary across WSCs: some are classic 19-in wide, 48-in deep racks, while others can be wider 

or shallower. The width and depth of a rack can also constrain server form factor designs. It is 

often convenient to connect the network cables at the top of the rack, such a rack-level switch is 

appropriately called a Top of Rack (TOR) switch. These switches are often built using merchant 

switch silicon, and further interconnected into scalable network topologies (such as Clos) described 

in more detail below. For example, Google’s Jupiter network uses TOR switches with 64x 40 Gbps 

ports. These ports are split between downlinks that connect servers to the TOR, and uplinks that 

connect the TOR to the rest of the WSC network fabric. The ratio between number of downlinks 

and uplinks is called the oversubscription ratio, as it determines how much the intra-rack fabric is 

over-provisioned with respect to the data center fabric.

NETWORK 
SWITCHES

POWER 
CONVERSION

CONFIGURABLE
PAYLOAD BAY

BATTERY 
BACKUP

Figure 3.3: Machine racks like this support servers, storage, and networking equipment in Google’s 

data centers. 

3.1 SERVER HARDWARE
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Figure 3.3 shows an example rack in a Google data center. Aside from providing configurable 

physical structure for server trays with different widths and heights (for example, it can host four 

Haswell servers per row), it also provides the configurable power conversion and battery backup 

support, with redundancy, to match the IT power load. The TOR switch and rack management 

unit are located at the top of the rack and are further connected to a data center fabric to connect 

many racks. 

The Open Compute Project (http://opencompute.org) also contains detailed specifications 

of many hardware components for WSCs.

3.1.2 THE IMPACT OF LARGE SMP COMMUNICATION EFFICIENCY

Simple processor-centric cost-efficiency analyses do not account for the fact that large Shared-Mem-

ory Multiprocessors (SMPs) benefit from drastically superior intercommunication performance 

than clusters of low-end servers connected by commodity fabrics. Nodes in a large SMP may 

communicate at latencies on the order of 100 ns, whereas LAN-based networks, usually deployed 

in clusters of servers, will experience latencies at or above 100 μs. For parallel applications that fit 

within a single large SMP (for example, SAP HANA), the efficient communication can translate 

into dramatic performance gains. However, WSC workloads are unlikely to fit within an SMP, 

therefore it is important to understand the relative performance of clusters of large SMPs with 

respect to clusters of low-end servers each with smaller number of CPU sockets or cores (albeit the 

same server-class CPU cores as used in large SMPs). The following simple model can help make 

these comparisons.

Assume that a given parallel task execution time can be roughly modeled as a fixed local com-

putation time plus the latency penalty of accesses to global data structures. If the computation fits 

into a single large shared memory system, those global data accesses will be performed at roughly 

DRAM speeds (~100 ns). If the computation fits in only a multiple of such nodes, some global 

accesses will be much slower, on the order of typical LAN speeds (~100 μs). Assume further that 

accesses to the global store are uniformly distributed among all nodes, so that the fraction of global 

accesses that map to the local node is inversely proportional to the number of nodes in the system. 

If the fixed local computation time is of the order of 1 ms—a reasonable value for high-throughput 

internet services—the equation that determines the program execution time is as follows:

Execution time = 1 ms + f * [100 ns/# nodes + 100 μs * (1 − 1/# nodes)],

where the variable f is the number of global accesses per work unit (1 ms). In Figure 3.4, we plot the 

execution time of this parallel workload as the number of nodes involved in the computation in-

creases. Three curves are shown for different values of f, representing workloads with light commu-

nication (f = 1), medium communication (f = 10), and high communication (f = 100) patterns. Note 

that in our model, the larger the number of nodes, the higher the fraction of remote global accesses.
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Figure 3.4: Execution time of parallel tasks as the number of SMP nodes increases for three levels of 

communication intensity. Execution time is normalized to the single node case and plotted in loga-

rithmic scale.

The curves in Figure 3.4 have two interesting aspects worth highlighting. First, under light 

communication, there is relatively small performance degradation from using clusters of multiple 

nodes. For medium- and high-communication patterns, the penalties can be quite severe, but 

they are most dramatic when moving from a single node to two, with rapidly decreasing addi-

tional penalties for increasing the cluster size. Using this model, the performance advantage of 

a single 128-processor SMP over a cluster of thirty-two 4-processor SMPs could be more than 

a factor of 10×.

By definition, WSC systems will consist of thousands of processor cores. Therefore, we would 

like to use this model to compare the performance of a cluster built with large SMP servers with 

one built with low-end ones. Here we assume that the per-core performance is the same for both 

systems and that servers are interconnected using an Ethernet-class fabric. Although our model is 

exceedingly simple (for example, it does not account for contention effects), it clearly captures the 

effects we are interested in.

In Figure 3.5, we apply our model to clusters varying between 512 and 4,192 cores and show 

the performance advantage of an implementation using large SMP servers (128 cores in a single 

shared memory domain) versus one using low-end servers (four-core SMPs) The figure compares 

the performance of clusters with high-end SMP systems to low-end systems, each having between 

512 and 4,192 cores, over three communication patterns.. Note how quickly the performance edge 

3.1 SERVER HARDWARE
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of the cluster based on high-end servers deteriorates as the cluster size increases. If the application 

requires more than 2,000 cores, a cluster of 512 low-end servers performs within approximately 

5% of one built with 16 high-end servers, even under a heavy communication pattern. With a 

performance gap this low, the price premium of the high-end server (4–20 times higher) renders 

it an unattractive option.
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Figure 3.5: Deteriorating performance advantage of a cluster built with large SMP server nodes (128-

core SMP) over a cluster with the same number of processor cores built with low-end server nodes 

(four-core SMP), for clusters of varying size.

The point of this analysis is qualitative in nature: it primarily illustrates how we need to rea-

son differently about our baseline platform choice when architecting systems for applications that 

are too large for any single high-end server. The broad point is that the performance effects that 

matter most are those that benefit the system at the warehouse scale. Performance enhancements that 

have the greatest impact on computation, that are local to a single node (such as fast SMP-style 

communication in our example), are still very important. But if they carry a heavy additional cost, 

their cost-efficiency may not be as competitive for WSCs as they are for small-scale computers.
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Since the first edition of this book was released, the number of cores per processor has 

steadily increased, allowing larger cluster sizes with smaller numbers of individual server nodes, 

and has essentially moved us toward the left side of Figure 3.5. However, given the scale of ware-

house-scale systems, the discussion above still holds qualitatively. The increasing number of cores 

per single system does have implications on the broader system balance, and this is discussed further 

in the last section of this chapter. This analysis framework can also be useful in reasoning about 

intra-rack and data center-level networking bandwidth provisioning.

3.1.3  BRAWNY VS. WIMPY SERVERS

Clearly one could use the argument laid out above to go further and use CPU cores that are even 

smaller or wimpier than today’s server-class CPU cores. The Piranha chip multiprocessor [Bar+00] 

was one of the earliest systems to advocate the use of lower-end cores in enterprise-class server 

systems. In [BDH03], we argued that chip multiprocessors using this approach are especially com-

pelling for Google workloads. More recently, even more radical approaches that leverage embed-

ded-class CPUs (wimpy processors) have been proposed as possible alternatives for WSC systems. 

Lim et al. [Lim+08], for example, make the case for exactly such alternatives as being advantageous 

to low-end server platforms once all power-related costs are considered (including amortization of 

data center build-out costs and the cost of energy). Hamilton [Ham09] makes a similar argument, 

although using PC-class components instead of embedded ones. The advantages of using smaller, 

slower CPUs are very similar to the arguments for using mid-range commodity servers instead of 

high-end SMPs.

• Multicore CPUs in mid-range servers typically carry a price-performance premium 

over lower-end processors so that the same amount of throughput can be bought two 

to five times cheaper with multiple smaller CPUs.

• Many applications are memory- or I/O-bound so that faster CPUs do not scale well 

for large applications, further enhancing the price advantage of simpler CPUs.

• Slower CPUs tend to be more power efficient; typically, CPU power decreases by 

O(k2) when CPU frequency decreases by a factor of k.

The FAWN (Fast Array of Wimpy Nodes) project [And+11] at Carnegie Mellon has ex-

plored the utility of wimpy cores as the basis for building an energy efficient key-value storage 

system, with an emphasis on flash memory. The nature of the workload in FAWN storage servers 

makes them a good fit for less powerful cores since the computation tends to be more I/O- and 

memory latency-bound than CPU-bound.

Several commercial products have also explored designs with a small number of mobile-class 

cores. Such systems often provide an integrated interconnect to attach disks, flash storage, and Eth-

3.1 SERVER HARDWARE
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ernet ports that can be shared among the servers. For example, HP’s Moonshot Servers [HPM13] 

defined a blade-style chassis that can accommodate 45 server cartridges, including mobile x86 or 

ARM-based CPUs in a 4.3U form factor. More recently, Microsoft’s Project Olympus [MPO] 

discussed using ARM-based CPUs for search, storage, and machine learning workloads. 

In the previous edition of this book, we summarized some of the tradeoffs with very low-per-

forming cores that can make them unattractive for WSCs (a point discussed at length by one of the 

authors [Höl10]. Specifically, although many internet services benefit from seemingly unbounded 

request- and data-level parallelism, such systems are not immune from Amdahl’s law. As the num-

ber of offered parallel threads increases, it can become increasingly difficult to reduce serialization 

and communication overheads, limiting either speedup or scaleup [DWG92, Lim+08]. In the limit, 

the amount of inherently serial work performed on behalf of a user request by extremely slow sin-

gle-threaded hardware will dominate overall execution time. 

Also, the more the number of threads that handle a parallelized request, the larger the 

variability in response times from all these parallel tasks, exacerbating the tail latency problem 

discussed in Chapter 2. One source of large performance variability that occurs on multi-core 

architectures is from opportunistic overclocking, with vendor-specific names such as Turbo Boost 

or Turbo CORE. The premise behind this feature is to run the CPU at higher frequencies when 

there are sufficient electrical and thermal margins to do so. The largest beneficiaries of this feature 

are single-threaded sequential workloads, which can receive up to 76% higher CPU frequency 

than the nominal processor frequency.3 This level of performance variability has several effects: 

it degrades Amdahl’s law by inflating single-threaded performance and further exacerbates vari-

ability in response times for distributed scale-out applications by adding a complex performance 

dimension (number of active CPU cores, electrical, and thermal margins on the CPU). As multi-

core processors continue to scale up core counts, addressing this source of heterogeneity within 

the system becomes a more pressing concern.

As a result, although hardware costs may diminish, software development costs may increase 

because more applications must be explicitly parallelized or further optimized. For example, sup-

pose that a web service currently runs with a latency of 1-s per user request, half of it caused by 

CPU time. If we switch to a cluster with lower-end servers whose single-thread performance is 

three times slower, the service’s response time will double to 2-s and application developers may 

have to spend a substantial amount of effort to optimize the code to get back to the 1-s latency level.

Networking requirements also increase with larger numbers of smaller systems, increasing 

networking delays and the cost of networking (since there are now more ports in an already expen-

sive switching fabric). It is possible to mitigate this effect by locally interconnecting a small number 

of slower servers to share a network link, but the cost of this interconnect may offset some of the 

price advantage gained by switching to cheaper CPUs. 

3 https://ark.intel.com/products/codename/37572/Skylake#@server
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Smaller servers may also lead to lower utilization. Consider the task of allocating a set of 

applications across a pool of servers as a bin packing problem—each of the servers is a bin, with as 

many applications as possible packed inside each bin. Clearly, that task is harder when the bins are 

small because many applications may not completely fill a server and yet use too much of its CPU 

or RAM to allow a second application to coexist on the same server.

Finally, even embarrassingly parallel algorithms are sometimes intrinsically less efficient 

when computation and data are partitioned into smaller pieces. That happens, for example, when 

the stop criterion for a parallel computation is based on global information. To avoid expensive 

global communication and global lock contention, local tasks may use heuristics based on local 

progress only, and such heuristics are naturally more conservative. As a result, local subtasks may 

execute longer than they might if there were better hints about global progress. Naturally, when 

these computations are partitioned into smaller pieces, this overhead tends to increase.

A study by Lim et al. [Lim+13] illustrates some of the possible perils of using wimpy cores 

in a WSC workload. The authors consider the energy efficiency of Atom-based (wimpy) and Xe-

on-based (brawny) servers while running a memcached server workload. While the Atom CPU 

uses significantly less power than the Xeon CPU, a cluster provisioned with Xeon servers outper-

forms one provisioned with Atom servers by a factor of 4 at the same power budget.

Also, from the perspective of cloud applications, most workloads emphasize single-VM 

performance. Additionally, a bigger system is more amenable to being deployed and sold as smaller 

VM shapes, but the converse is not true. For these reasons, cloud prefers brawny systems as well. 

However, in the past few years there have been several developments that make this dis-

cussion more nuanced, with more CPU options between conventional wimpy cores and brawny 

cores. For example, several ARMv8-based servers have emerged with improved performance (for 

example, Cavium ThunderX2 [CTX2] and Qualcomm Centriq 2400 [QC240]), while Intel Xeon 

D processors use brawny cores in low-power systems on a chip (SoCs). These options allow server 

builders to choose from a range of wimpy and brawny cores that best fit their requirements. As a 

recent example, Facebook’s Yosemite microserver uses the one-socket Xeon D CPU for its scale-out 

workloads and leverages the high-IPC cores to ensure low-latency for web serving. To reduce the 

network costs, the design shares one NIC among four SoC server cards.

As a rule of thumb, a lower-end server building block must have a healthy cost-efficiency 

advantage over a higher-end alternative to be competitive. At the moment, the sweet spot for many 

large-scale services seems to be at the low-end range of server-class machines. We expect more 

options to populate the spectrum between wimpy and brawny cores, and WSC server design to 

continue to evolve with these design options. 

3.1 SERVER HARDWARE
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3.2 COMPUTING ACCELERATORS

Historically, the deployment of specialized computing accelerators (non-general-purpose CPUs) 

in WSCs has been very limited. As discussed in the second edition of this book, although they 

promised greater computing efficiencies, such benefits came at the cost of drastically restricting the 

number of workloads that could benefit from them. However, this has changed recently. Traditional 

improvements from Moore’s law scaling of general-purpose systems has been slowing down. But 

perhaps more importantly, deep learning models began to appear and be widely adopted, enabling 

specialized hardware to power a broad spectrum of machine learning solutions. WSC designs 

responded to these trends. For example, Google not only began to more widely deploy GPUs, 

but also initiated a program to build further specialized computing accelerators for deep learning 

algorithms [ Jou+17]. Similarly, Microsoft initiated at program to deploy FPGA-based accelerators 

in their fleet [Put+14]. 

Neural network (NN) workloads (described in Chapter 2) execute extremely high numbers 

of floating point operations. Figure 3.6, from OpenAI, shows the growth of compute require-

ments for neural networks [OAI18]. Since 2013, AI training compute requirements have doubled 

every 3.5 months. The growth of general-purpose compute has significantly slowed down, with a 

doubling rate now exceeding 4 or more years (vs. 18–24 months expected from Moore’s Law). To 

satisfy the growing compute needs for deep learning, WSCs deploy GPUs and other specialized 

accelerator hardware. 

Project Catapult (Microsoft) is the most widely deployed example of using reconfigurable 

accelerator hardware to support DNNs. They chose FPGAs over GPUs to reduce power as well 

as the risk that latency-sensitive applications wouldn’t map well to GPUs. Google not only began 

to widely deploy GPUs but also started a program to build specialized computing accelerators as 

the Tensor Processing Units (TPU) [ Jou+17]. The TPU project at Google began with FPGAs, but 

we abandoned them when we saw that FPGAs at that time were not competitive in performance 

compared to GPUs, and TPUs could use much less power than GPUs while being as fast or faster, 

giving them potentially significant benefits over both FPGAs and GPUs.

Time to convergence is a critical metric for ML training. Faster time to convergence im-

proves ML model development due to faster training iterations that enable efficient model archi-

tecture and hyperparameter exploration. As described inChapter 2, multiple learners or replicas are 

typically used to process input examples. Increasing the number of learners, however, can have a 

detrimental impact on model accuracy, depending upon the model and mode of training (synchro-

nous vs. asynchronous). For deep learning inference, many applications are user-facing and have 

strict response latency deadlines.
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Figure 3.6: Training compute requirements for models over time [OAI18].

3.2.1 GPUS

GPUs are configured with a CPU host connected to a PCIe-attached accelerator tray with multiple 

GPUs. GPUs within the tray are connected using high-bandwidth interconnects such as NVlink. 

Multiple GPU trays are connected to the data center network with NICs. The GPUs and NICs 

communicate directly through PCIe without data transfer through the host. Training on GPUs 

can be performed synchronously or asynchronously, with synchronous training providing higher 

model accuracy. Synchronous training has two phases in the critical path: a compute phase and 

a communication phase that reconciles the parameters across learners. The performance of such a 

synchronous system is limited by the slowest learner and slowest messages through the network. 

Since the communication phase is in the critical path, a high performance network that can enable 

fast reconciliation of parameters across learners with well-controlled tail latencies is important for 

high-performance deep learning training. Figure 3.7 shows a network-connected pod of GPUs 

used for training.

3.2 COMPUTING ACCELERATORS
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Figure 3.7: Interconnected GPUs for training.

3.2.2 TPUS

While well suited to ML workloads, GPUs still are relatively general purpose devices, and in re-

cent years designers have further specialized them to ML-specific ASICs that drop any vestiges of 

graphics or high-precision functional units. TPUs are used for training and inference. TPUv1 is an 

inference-focused accelerator connected to the host CPU through PCIe links; a detailed architec-

ture and performance review can be found in [ Jou+17]. 

TPUv2, in contrast, is a very different ASIC focused on training workloads (Figure 3.8). 

Each TPU board is connected to one dual socket server. Inputs for training are fed to the system 

using the data center network from storage racks. Figure 3.8 also shows the block diagram of each 

TPUv2 chip. Each TPUv2 consists of two Tensor cores. Each Tensor core has a systolic array for 

matrix computations (MXU) and a connection to high bandwidth memory (HBM) to store pa-

rameters and intermediate values during computation.

Multiple TPUv2 accelerator boards are connected through a custom high bandwidth torus 

network (Figure 3.9) to provide 11 petaflops of ML compute. The accelerator boards in the TPUv2 

pod work in lockstep to train a deep learning model using synchronous training [Dea]. The high 

bandwidth network enables fast parameter reconciliation with well-controlled tail latencies, allow-

ing near ideal scalability for training across a pod [Dea].
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Figure 3.8: TPUv2.

 

Figure 3.9: Four-rack TPUv2 pod.

TPUv3 is the first liquid-cooled accelerator in Google’s data center. Liquid cooling enables 

TPUv3 to provide eight times the ML compute of TPUv2, with the TPUv3 pod providing more 

than 100 petaflops of ML compute. Such supercomputing-class computational power supports 

dramatic new capabilities. For example, AutoML [GCAML], coupled with the computing power 

3.2 COMPUTING ACCELERATORS
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of TPUs, enables rapid neural architecture search and faster advances in ML research. Figure 3.10 

shows a board with four TPUv3 chips. Figure 3.11 shows a pod of third-generation TPUs. 

 

Figure 3.10: TPUv3.

 

Figure 3.11: Eight-rack TPUv3 pod.

3.3 NETWORKING

3.3.1 CLUSTER NETWORKING

Servers must be connected, and as the performance of servers increases over time, the demand for 

inter-server bandwidth naturally increases as well. But while we can double the aggregate compute 

capacity or the aggregate storage simply by doubling the number of compute or storage elements, 
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networking has no straightforward horizontal scaling solution. Doubling leaf bandwidth is easy; 

with twice as many servers, we’ll have twice as many network ports and thus twice as much band-

width. But if we assume that every server needs to talk to every other server, we need to double not 

just leaf bandwidth but bisection bandwidth, the bandwidth across the narrowest line that equally 

divides the cluster into two parts. (Using bisection bandwidth to characterize network capacity is 

common since randomly communicating processors must send about half the bits across the “mid-

dle” of the network.)

Unfortunately, doubling bisection bandwidth is difficult because we can’t just buy (or make) 

an arbitrarily large switch. Switch chips are pin- and power-limited in size; for example, a typical 

merchant silicon switch chip can support a bisection bandwidth of about 1 Tbps (16x 40 Gbps 

ports) and no chips are available that can do 10 Tbps. We can build larger switches by cascading 

these switch chips, typically in the form of a fat tree or Clos network,4 as shown in Figure 3.12 

[Mys+09, Vah+10].
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Figure 3.12: Sample three-stage fat tree topology. With appropriate scheduling this tree can deliver 

the same throughput as a single-stage crossbar switch.

Such a tree using k-port switches can support full throughput among k3/4 servers using 

5k2/4 switches, allowing networks with tens of thousands of ports. However, the cost of doing so 

increases significantly because each path to another server now involves more ports. In the sim-

plest network (a single stage consisting of a single central switch), each path consists of two ports: 

switch in and switch out. The above three-stage network quintuples that to 10 ports, significantly 

increasing costs. So as bisection bandwidth grows, the cost per connected server grows as well. Port 

costs can be substantial, especially if a link spans more than a few meters, thus requiring an optical 

interface. Today the optical components of a 100 m 10 Gbps link can easily cost several hundred 

4 Clos networks are named after Charles Clos, who first formalized their properties in 1952.

3.3 NETWORKING
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dollars (including the cost of the two optical ports, fiber cable, fiber termination, and installation), 

not including the networking components themselves (switches and NICs). 

To reduce costs per machine, WSC designers often oversubscribe the network at the top-of-

rack switch. Generally speaking, a rack contains a small enough number of servers so they can be 

connected with a switch at a reasonable cost. It’s not hard to find switches with 48 ports to inter-

connect 48 servers at full speed (say, 40 Gbps). In a full fat tree, each such switch would need the 

same number of ports facing “upward” into the cluster fabric: the edge switches in the figure above 

devote half their ports to connecting servers, and half to the fabric. All those upward-facing links in 

turn require more links in the aggregation and core layers, leading to an expensive network. In an 

oversubscribed network, we increase that 1:1 ratio between server and fabric ports. For example, with 

2:1 oversubscription, we build a fat tree for only half the bandwidth, reducing the size of the tree and 

thus its cost, but also reducing the available bandwidth per server by a factor of two. Each server can 

still peak at 40 Gbps of traffic, but if all servers are simultaneously sending traffic, they’ll only be able 

to average 20 Gbps. In practice, oversubscription ratios of 4–10 are common. For example, a 48-port 

switch could connect 40 servers to 8 uplinks, for a 5:1 oversubscription (8 Gbps per server).

Another way to tackle network scalability is to offload some traffic to a special-purpose net-

work. For example, if storage traffic is a big component of overall traffic, we could build a separate 

network to connect servers to storage units. If that traffic is more localized (not all servers need to 

be attached to all storage units) we could build smaller-scale networks, thus reducing costs. His-

torically, that’s how all storage was networked: a SAN (storage area network) connected servers to 

disks, typically using FibreChannel (FC [AI11]) networks rather than Ethernet. Today, Ethernet 

is becoming more common since it offers comparable speeds, and protocols such as FibreChannel 

over Ethernet) (FCoE [AI462]), SCSI over IP (iSCSI [iSC03]), and more recently NVMe over 

Fabric (NVMeoF [NVM]) allow Ethernet networks to integrate well with traditional SANs.

Figure 3.13 shows the structure of Google’s Jupiter Clos network [Sin+15]. This multi-stage 

network fabric uses low-radix switches built from merchant silicon, each supporting 16x 40 Gbps 

ports. Each 40 G port could be configured in 4x10 G or 40 G mode. A server is connected to its 

ToR switch using 40 Gbps Ethernet NICs. Jupiter’s primary building block is Centauri, a 4RU 

chassis housing two line cards, each with two switch chips. In an example ToR configuration, each 

switch chip is configured with 48x10 G to servers and 16x10 G to the fabric, yielding an oversub-

scription ratio of 3:1. Servers can also be configured with 40 G mode to have 40 G burst bandwidth. 

The ToR switches are connected to layers of aggregation blocks to increase the scale of the 

network fabric. Each Middle Block (MB) has four Centauri chassis. The logical topology of an MB 

is a two-stage blocking network, with 256x10 G links available for ToR connectivity and 64x40 G 

available for connectivity to the rest of the fabric through the spine blocks. 

Jupiter uses the same Centauri chassis as the building block for the aggregation blocks. Each 

ToR chip connects to eight middle blocks with dual redundant 10G links. This aids fast reconver-
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Figure 3.13: Google’s Jupiter network. Starting from NIC, to ToR, to multiple switches, to campus 

networks. Top: (1) switch chip and Centauri chassis, (2) middle block, and (3) spine block and topol-

ogy. Bottom: A Jupiter rack with middle block highlighted. 
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gence for the common case of single link failure or maintenance. Each aggregation block exposes 

512x40 G (full pop) or 256x40 G (depop) links toward the spine blocks. Six Centauri chassis are 

grouped in a spine block exposing 128x40 G ports toward the aggregation blocks. Jupiter limits the 

size to 64 aggregation blocks for dual redundant links between each spine block and aggregation 

block pair at the largest scale, once again for local reconvergence on single link failure. At this max-

imum size, the bisection bandwidth is 1.3 petabits per second. 

Jupiter employs a separate aggregation block for external connectivity, which provides the 

entire pool of external bandwidth to each aggregation block. As a rule of thumb, 10% of aggregate 

intra-cluster bandwidth is allocated for external connectivity using one to three aggregation blocks. 

These aggregation blocks are physically and topologically identical to those used for ToR connec-

tivity. However, the ports normally employed for ToR connectivity are reallocated to connect to 

external fabrics.

With Jupiter, the intra-cluster fabric connects directly to the inter-cluster networking layer 

with Cluster Border Routers (CBRs). Multiple clusters are deployed within the same building and 

multiple buildings on the same campus. The job scheduling and resource allocation infrastructure 

leverages campus-level and building-level locality. The design further replaces vendor-based inter 

cluster switching with Freedome, a two-stage fabric that uses the Border Gateway Protocol (BGP) 

at both the inter-cluster and intra-campus connectivity layers to provide massive inter-cluster 

bandwidth within buildings and the campus at a lower cost than existing solutions.

 Compared to WSCs, High-Performance Computing (HPC) supercomputer clusters often 

have a much lower ratio of computation to network bandwidth, because applications such as 

weather simulations distribute their data across RAM in all nodes, and nodes need to update neigh-

boring nodes after performing relatively few floating-point computations. As a result, traditional 

HPC systems have used proprietary interconnects with leading-edge link bandwidths, much lower 

latencies (especially for common functions like barrier synchronizations or scatter/gather opera-

tions, which often are directly supported by the interconnect), and some form of a global address 

space (where the network is integrated with CPU caches and virtual addresses). Typically, such 

interconnects offer throughputs that are at least an order of magnitude higher than contemporary 

Ethernet or InfiniBand solutions, but are much more expensive. 

WSCs using VMs (or, more generally, task migration) pose further challenges to networks 

since connection endpoints (that is, IP address/port combinations) can move from one physical 

machine to another. Typical networking hardware as well as network management software don’t 

anticipate such moves and in fact often explicitly assume that they’re not possible. For example, 

network designs often assume that all machines in a given rack have IP addresses in a common sub-

net, which simplifies administration and minimizes the number of required forwarding table entries 

routing tables. More importantly, frequent migration makes it impossible to manage the network 
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manually; programming network elements needs to be automated, so the same cluster manager that 

decides the placement of computations also needs to update the network state. 

The need for a programmable network has led to much interest in OpenFlow (http://www.

openflow.org/), P4 (www.p4.org), and software-defined networking (SDN), which move the 

network control plane out of individual switches into a logically centralized controller [Höl12, 

ONF12, Jai+13, Sin+15]. Controlling a network from a logically centralized server offers many 

advantages; in particular, common networking algorithms such as computing reachability, shortest 

paths, or max-flow traffic placement become much simpler to solve compared to their imple-

mentation in current networks where each individual router must solve the same problem while 

dealing with limited visibility (direct neighbors only), inconsistent network state (routers that are 

out of sync with the current network state), and many independent and concurrent actors (routers). 

Network management operations also become simple because a global view can be used to move 

a network domain, often consisting of thousands of individual switches, from one consistent state 

to another while simultaneously accounting for errors that may require rollback of the higher-level 

management operation underway. Recent developments in P4 further enable a protocol- and 

switch-independent high-level language that allows for programming of packet-forwarding data 

planes, further increasing flexibility.

In addition, servers are easier to program, offering richer programming environments and 

much more powerful hardware. As of 2018, a typical router control processor consists of a Xe-

on-based 2-4 core SoC with two memory channels and 16 GB DRAM. The centralization of the 

control plane into a few servers also makes it easier to update their software. SDN is a natural 

match for data center networking, since the applications running in a WSC are already managed 

by a central entity, the cluster manager. Thus it is natural for the cluster manager to also configure 

any network elements that applications depend on. SDN is equally attractive to manage WAN net-

works, where logically centralized control simplifies many routing and traffic engineering problems 

[Höl12, Jai+13].

For more details on cluster networking, see these excellent recent overview papers: Singh 

et al. [Sin+15], Kumar et al. [Kum+15], Vahdat et al. [Vah+10], Abts and Felderman [AF12], and 

Abts and Kim [AK11].

3.3.2 HOST NETWORKING

On the host networking side, WSC presents unique challenges and requirements: high throughputs 

and low latency with efficient use of host CPU, low tail latencies, traffic shaping (pacing and rate 

limiting), OS-bypass, stringent security and line-rate encryption, debuggability, QoS and conges-

tion control, etc. Public cloud computing further requires features such as support for virtualization 

and VM migration. Two general approaches can be combined to meet these requirements: onload 

3.3 NETWORKING
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where the host networking software leverages host CPU to provide low latency and rich features, 

and offload that uses compute in NIC cards for functions such as packet processing and crypto. 

There has been active research and development in this area, for example Azure’s use of FPGA as 

bump-in-the-wire [Fir+18], Amazon’s customized NIC for bare-metal support, Google’s host-side 

traffic shaping [Sae+17], and Andromeda approach toward cloud network virtualization [Dal+18]. 

3.4 STORAGE

The data manipulated by WSC workloads tends to fall into two categories: data that is private to 

individual running tasks and data that is part of the shared state of the distributed workload. Private 

data tends to reside in local DRAM or disk, is rarely replicated, and its management is simplified 

by virtue of its single user semantics. In contrast, shared data must be much more durable and is 

accessed by a large number of clients, thus requiring a much more sophisticated distributed storage 

system. We discuss the main features of these WSC storage systems next. 

3.4.1 DISK TRAYS AND DISKLESS SERVERS

Figure 3.14 shows an example of a disk tray used at Google that hosts tens of hard drives (22 drives 

in this case) and provides storage over Ethernet for servers in the WSC. The disk tray provides 

power, management, mechanical, and network support for these hard drives, and runs a customized 

software stack that manages its local storage and responds to client requests over RPC. 

In traditional servers, local hard drives provide direct-attached storage and serve as the boot/

logging/scratch space. Given that most of the traditional needs from the storage device are now 

handled by the network attached disk trays, servers typically use one local (and a much smaller) 

hard drive as the boot/logging device. Often, even this disk is removed (perhaps in favor of a small 

flash device) to avoid the local drive from becoming a performance bottleneck, especially with an 

increasing number of CPU cores/threads, leading to diskless servers.

A recent white paper [Bre+16] provides more details on the requirements of hard drives for 

WSCs, focusing on the tradeoffs in the design of disks, tail latency, and security. While current hard 

drives are designed for enterprise servers, and not specifically for WSC use-case, this paper argues 

that such “cloud disks” should aim at a global optimal in view of five key metrics: (1) higher I/Os 

per second (IOPS), typically limited by seeks; (2) higher capacity; (3) lower tail latency when used 

in WSCs; (4) meeting security requirements; and (5) lower total cost of ownership (TCO). The 

shift in use case and requirements also creates new opportunities for hardware vendors to explore 

new physical design and firmware optimizations. 
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Figure 3.14: (Top) Photograph of a disk tray. (Bottom) Block diagram. 
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3.4.2 UNSTRUCTURED WSC STORAGE

Google’s GFS [GGL03] is an example of a storage system with a simple file-like abstraction 

(Google’s Colossus system has since replaced GFS, but follows a similar architectural philosophy so 

we choose to describe the better known GFS here). GFS was designed to support the web search 

indexing system (the system that turned crawled web pages into index files for use in web search), 

and therefore focuses on high throughput for thousands of concurrent readers/writers and robust 

performance under high hardware failures rates. GFS users typically manipulate large quantities of 

data, and thus GFS is further optimized for large operations. The system architecture consists of a 

primary server (master), which handles metadata operations, and thousands of chunkserver (sec-

ondary) processes running on every server with a disk drive, to manage the data chunks on those 

drives. In GFS, fault tolerance is provided by replication across machines instead of within them, as 

is the case in RAID systems. Cross-machine replication allows the system to tolerate machine and 

network failures and enables fast recovery, since replicas for a given disk or machine can be spread 

across thousands of other machines.

Although the initial version of GFS supported only simple replication, Colossus and its 

externally available cousin GCS have added support for more space-efficient Reed-Solomon codes, 

which tend to reduce the space overhead of replication by roughly a factor of two over simple 

replication for the same level of availability. An important factor in maintaining high availability 

is distributing file chunks across the whole cluster in such a way that a small number of correlated 

failures is extremely unlikely to lead to data loss. Colossus optimizes for known possible correlated 

fault scenarios and attempts to distribute replicas in a way that avoids their co-location in a single 

fault domain. Wide distribution of chunks across disks over a whole cluster is also key for speeding 

up recovery. Since replicas of chunks in a given disk are spread across possibly all machines in a stor-

age cluster, reconstruction of lost data chunks is performed in parallel at high speed. Quick recovery 

is important since long recovery time windows leave under-replicated chunks vulnerable to data 

loss, in case additional faults hit the cluster. A comprehensive study of availability in distributed file 

systems at Google can be found in Ford et al. [For+10]. A good discussion of the evolution of file 

system design at Google can also be found in McKusik and Quinlan [McKQ09]. 

3.4.3 STRUCTURED WSC STORAGE

The simple file abstraction of Colossus and GCS may suffice for systems that manipulate large 

blobs of data, but application developers also need the WSC equivalent of database-like functional-

ity, where data sets can be structured and indexed for easy small updates or complex queries. Struc-

tured distributed storage systems, such as Google’s Bigtable [Cha+06] and Amazon’s DynamoDB 

[DeC+07], were designed to fulfill those needs. Compared to traditional database systems, Bigtable 

and DynamoDB sacrifice some features, such as the richness of schema representation and strong 
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consistency, in favor of higher performance and availability at massive scales. Bigtable, for example, 

presents a simple multi-dimensional sorted map consisting of row keys (strings) associated with 

multiple values organized in columns, forming a distributed sparse table space. Column values are 

associated with timestamps in order to support versioning and time-series.

The choice of eventual consistency in Bigtable and DynamoDB shifts the burden of resolv-

ing temporary inconsistencies to the applications using these systems. A number of application 

developers within Google have found it inconvenient to deal with weak consistency models and the 

limitations of the simple data schemes in Bigtable. Second-generation structured storage systems 

such as Megastore [Bak+11] and subsequently Spanner [Cor+12] were designed to address such 

concerns. Both Megastore and Spanner provide richer schemas and SQL-like functionality while 

providing simpler, stronger consistency models. Megastore sacrifices write throughput in order to 

provide synchronous replication. Spanner uses a new time base API to efficiently serialize global-

ly-distributed transactions, providing a simpler consistency model to applications that need seam-

less wide-area replication for fault tolerance. Both Megastore and Spanner sacrifice some efficiency 

in order to provide a simpler programming interface.

Clickstream and Ads data management, for example, is an important use-case of structured 

storage systems. Such systems require high availability, high scalability of NoSQL systems, and 

the consistency and usability of SQL databases. Google’s F1 system [Shu+13] uses Spanner as 

datastore, and manages all AdWords data with database features such as distributed SQL queries, 

transactionally consistent secondary indexes, asynchronous schema changes, optimistic transac-

tions, and automatic change history recording and publishing. The Photon [Ana+13] scalable 

streaming system supports joining multiple continuously flowing streams of data in real-time with 

high scalability and low latency, with exactly-once semantics (to avoid double-charging or missed 

clicks) eventually. 

At the other end of the structured storage spectrum from Spanner are systems that aim 

almost exclusively at high performance. Such systems tend to lack support for transactions or geo-

graphic replication, use simple key-value data models, and may have loose durability guarantees. 

Memcached [Fit+03], developed as a distributed DRAM-based object caching layer, is a popular 

example at the simplest end of the spectrum. The Stanford RAMCloud [Ous+09] system also uses 

a distributed DRAM-based data store but aims at much higher performance (over one million 

lookup operations per second per server) as well as durability in the presence of storage node fail-

ures. The FAWN-KV [And+11] system also presents a key-value high-performance storage system 

but instead uses NAND flash as the storage medium, and has an additional emphasis on energy 

efficiency, a subject we cover more extensively in Chapter 5. 

3.4 STORAGE
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3.4.4 INTERPLAY OF STORAGE AND NETWORKING TECHNOLOGY

The success of WSC distributed storage systems can be partially attributed to the evolution of data 

center networking fabrics. Ananthanarayanan et al. [Ana+11] observe that the gap between net-

working and disk performance has widened to the point that disk locality is no longer relevant in 

intra-data center computations. This observation enables dramatic simplifications in the design of 

distributed disk-based storage systems as well as utilization improvements, since any disk byte in a 

WSC facility can, in principle, be utilized by any task regardless of their relative locality.

Flash devices pose a new challenge for data center networking fabrics. A single enterprise 

flash device can achieve well over 100x the operations throughput of a disk drive, and one server 

machine with multiple flash SSDs could easily saturate a single 40 Gb/s network port even within 

a rack. Such performance levels will stretch not only data center fabric bisection bandwidth but 

also require more CPU resources in storage nodes to process storage operations at such high rates. 

Looking ahead, rapid improvements in WSC network bandwidth and latency will likely match 

flash SSD performance and reduce the importance of flash locality. However, emerging non-volatile 

memory (NVM) has the potential to provide even higher bandwidth and sub-microsecond access 

latency. Such high-performance characteristics will further bridge the gap between today’s DRAM 

and flash SSDs, but at the same time present an even bigger challenge for WSC networking. 

3.5 BALANCED DESIGNS

Computer architects are trained to solve the problem of finding the right combination of perfor-

mance and capacity from the various building blocks that make up a WSC. In this chapter we 

discussed many examples of how the right building blocks are apparent only when one considers 

the entire WSC system. The issue of balance must also be addressed at this level. It is important to 

characterize the kinds of workloads that will execute on the system with respect to their consump-

tion of various resources, while keeping in mind three important considerations.

• Smart programmers may be able to restructure their algorithms to better match a 

more inexpensive design alternative. There is opportunity here to find solutions by 

software-hardware co-design, while being careful not to arrive at machines that are 

too complex to program.

• The most cost-efficient and balanced configuration for the hardware may be a match 

with the combined resource requirements of multiple workloads and not necessarily a 

perfect fit for any one workload. For example, an application that is seek-limited may 

not fully use the capacity of a very large disk drive but could share that space with an 

application that needs space mostly for archival purposes.
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• Fungible resources tend to be more efficiently used. Provided there is a reasonable 

amount of connectivity within a WSC, effort should be put on creating software sys-

tems that can flexibly utilize resources in remote servers. This affects balanced system 

design decisions in many ways. For instance, effective use of remote disk drives may 

require that the networking bandwidth to a server be equal or higher to the combined 

peak bandwidth of all the disk drives locally connected to the server.

The right design point depends on more than the high-level structure of the workload itself 

because data size and service popularity also play an important role. For example, a service with 

huge data sets but relatively small request traffic may be able to serve most of its content directly 

from disk drives, where storage is cheap (in dollars per GB) but throughput is low. Very popular 

services that either have small data set sizes or significant data locality can benefit from in-memory 

serving instead. 

Finally, workload churn in this space is also a challenge to WSC architects. It is possible 

that the software base may evolve so fast that a server design choice becomes suboptimal during its 

lifetime (typically three to four years). This issue is even more important for the WSC as a whole 

because the lifetime of a data center facility generally spans several server lifetimes, or more than a 

decade or so. In those cases it is useful to try to envision the kinds of machinery or facility upgrades 

that may be necessary over the lifetime of the WSC system and take that into account during the 

design phase of the facility.

3.5.1  SYSTEM BALANCE: STORAGE HIERARCHY

Figure 3.15 shows a programmer’s view of storage hierarchy of a hypothetical WSC. As discussed 

earlier, the server consists of a number of processor sockets, each with a multicore CPU and its in-

ternal cache hierarchy, local shared and coherent DRAM, a number of directly attached disk drives, 

and/or flash-based solid state drives. The DRAM and disk/flash resources within the rack are 

accessible through the first-level rack switches (assuming some sort of remote procedure call API 

to them exists), and all resources in all racks are accessible via the cluster-level switch. The relative 

balance of various resources depends on the needs of target applications. The following configura-

tion assumes an order of magnitude less flash capacity than traditional spinning media since that is 

roughly the relative cost per byte difference between these two technologies.

3.5 BALANCED DESIGNS
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Figure 3.15: Storage hierarchy of a WSC. 

3.5.2 QUANTIFYING LATENCY, BANDWIDTH, AND CAPACITY

Figure 3.16 attempts to quantify the latency, bandwidth, and capacity characteristics of a WSC. For 

illustration we assume a system with 5,000 servers, each with 256 GB of DRAM, one 4 TB SSD, 

and eight 10 TB disk drives. Each group of 40 servers is connected through a 40-Gbps link to a 

rack-level switch that has an additional 10-Gbps uplink bandwidth per machine for connecting 

the rack to the cluster-level switch (an oversubscription factor of four). Network latency numbers 

assume a TCP/IP transport, and networking bandwidth values assume that each server behind an 

oversubscribed set of uplinks is using its fair share of the available cluster-level bandwidth. For 

disks, we show typical commodity disk drive (SATA) latencies and transfer rates.
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Figure 3.16: Latency, bandwidth, and capacity of WSC storage hierarchy levels.

The graph shows the relative latency, bandwidth, and capacity of each resource pool. For 

example, the bandwidth available from local SSDs is about 3 GB/s, whereas the bandwidth from 

off-rack SSDs is just 1.25 GB/s via the shared rack uplinks. On the other hand, total disk storage 

in the cluster is more than one million times larger than local DRAM.

A large application that requires many more servers than can fit on a single rack must deal 

effectively with these large discrepancies in latency, bandwidth, and capacity. These discrepancies 

are much larger than those seen on a single machine, making it more difficult to program a WSC. 

A key challenge for architects of WSCs is to smooth out these discrepancies in a cost-efficient 

manner. Conversely, a key challenge for software architects is to build cluster infrastructure and 

services that hide most of this complexity from application developers. For example, NAND flash 

technology, originally developed for portable electronics, has found target use cases in WSC sys-

tems. Flash-based SSDs are a viable option for bridging the cost and performance gap between 

DRAM and disks, as displayed in Figure 3.16. Flash’s most appealing characteristic with respect 

to disks is its performance under random read operations, which is nearly three orders of magni-

tude better. In fact, flash’s performance is so high that it becomes a challenge to use it effectively 

in distributed storage systems since it demands much higher bandwidth from the WSC fabric, as 

well as microsecond performance support from the hardware/software stack. Note that in the worst 

case, writes to flash can be several orders of magnitude slower than reads, and garbage collection 

can further increase write amplification and tail latency. Characteristics of flash around read/write 

3.5 BALANCED DESIGNS
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asymmetry, read/write interference, and garbage collection behaviors introduce new challenges and 

opportunities in adopting low-latency storage tiers in a balanced WSC design. 

Emerging technologies such as non-volatile memories (NVM) (for example, Intel 3D 

Xpoint based memory [3DX] and fast SSD products such as Samsung Z-NAND [Sam17]) add 

another tier between today’s DRAM and flash/storage hierarchy. NVM has the potential to provide 

cheaper and more scalable alternatives to DRAM, which is fast approaching its scaling bottle-

neck, but also presents challenges for WSC architects who now have to consider data placement, 

prefetching, and migration over multiple memory/storage tiers. NVM and flash also present new 

performance and efficiency challenges and opportunities, as traditional system design and software 

optimizations lack support for their microsecond (μs)-scale latencies. A new set of hardware and 

software technologies are needed to provide a simple programming model to achieve high perfor-

mance [Bar+17]. 
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CHAPTER 4

Data Center Basics: 

Building, Power, and Cooling 

Internet and cloud services run on a planet-scale computer with workloads distributed across mul-

tiple data center buildings around the world. These data centers are designed to house computing, 

storage, and networking infrastructure. The main function of the buildings is to deliver the utilities 

needed by equipment and personnel there: power, cooling, shelter, and security. By classic defini-

tions, there is little work produced at the data center. Other than some departing photons, all of the 

energy consumed is converted into heat. The delivery of input energy and subsequent removal of 

waste heat are at the heart of the data center’s design and drive the vast majority of non-computing 

costs. These costs are proportional to the amount of power delivered and typically run in range of 

$10–20 per watt (see Chapter 6), but can vary considerably depending on size, location, and design.

4.1 DATA CENTER OVERVIEW

4.1.1 TIER CLASSIFICATIONS AND SPECIFICATIONS 

The design of a data center is often classified using a system of four tiers [TSB]. The Uptime 

Institute, a professional services organization specializing in data centers, and the Telecommu-

nications Industry Association (TIA), an industry group accredited by ANSI and comprised of 

approximately 400 member companies, both advocate a 4-tier classification loosely based on the 

power distribution, uninterruptible power supply (UPS), cooling delivery, and redundancy of the 

data center [UpIOS, TIA].

• Tier I data centers have a single path for power distribution, UPS, and cooling distri-

bution, without redundant components.

• Tier II adds redundant components to this design (N + 1), improving availability.

• Tier III data centers have one active and one alternate distribution path for utilities. 

Each path has redundant components and is concurrently maintainable. Together they 

provide redundancy that allows planned maintenance without downtime.
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• Tier IV data centers have two simultaneously active power and cooling distribution 

paths, redundant components in each path, and are supposed to tolerate any single 

equipment failure without impacting the load.

The Uptime Institute’s specification focuses on data center performance at a high level. 

The specification implies topology rather than prescribing a specific list of components to meet 

the requirements (notable exceptions are the amount of backup diesel fuel and water storage, and 

ASHRAE temperature design points [UpIT]). With the Uptime standards, there are many ar-

chitectures that can achieve a given tier classification. In contrast, the TIA-942 standard is more 

prescriptive and specifies a variety of implementation details, such as building construction, ceiling 

height, voltage levels, types of racks, and patch cord labeling.

Formally achieving tier classification is difficult and requires a full review from one of the 

certifying bodies. For this reason most data centers are not formally rated. Most commercial data 

centers fall somewhere between tiers III and IV, choosing a balance between construction cost and 

reliability. Generally, the lowest individual subsystem rating (cooling, power, and so on) determines 

the overall tier classification of the data center.

Real-world data center reliability is strongly influenced by the quality of the organization 

running the data center, not just the design. Theoretical availability estimates used in the industry 

range from 99.7% for tier II data centers to 99.98% and 99.995% for tiers III and IV, respectively 

[TIA]. However, real-world reliability often is dominated by factors not included in these cal-

culations; for example, the Uptime Institute reports that over 70% of data center outages are the 

result of human error, including management decisions on staffing, maintenance, and training 

[UpIOS]. Furthermore, in an environment using continuous integration and delivery of software, 

software-induced outages dominate building outages. 

4.1.2 BUILDING BASICS

Data center sizes vary widely and are commonly described in terms of either the floor area for IT 

equipment or critical power, the total power that can be continuously supplied to IT equipment; 

Two thirds of U.S. servers were recently housed in data centers smaller than 5,000 ft2 (450 square 

meters) and with less than 1 MW of critical power [EPA07, Koo11]. Large commercial data 

centers are built to host servers from multiple companies (often called co-location data centers, or 

“colos”) and can support a critical load of tens of megawatts; the data centers of large cloud provid-

ers are similar, although often larger. Many data centers are single story, while some are multi-story 

(Figure 4.1); the critical power of some data center buildings can exceed 100 MW today.
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Figure 4.1: Google’s four-story cloud data center in Mayes County, Oklahoma.

At a high level, a data center building has multiple components. There is a mechanical yard 

(or a central utility building) that hosts all the cooling systems, such as cooling towers and chillers. 

There is an electrical yard that hosts all the electrical equipment, such as generators and power 

distribution centers. Within the data center, the main server hall hosts the compute, storage, and 

networking equipment organized into hot aisles and cold aisles. The server floor can also host repair 

areas for operations engineers. Most data centers also have separate areas designated for networking, 

including inter-cluster, campus-level, facility management, and long-haul connectivity. Given the 

criticality of networking for data center availability, the networking areas typically have additional 

physical security and high-availability features to ensure increased reliability. The data center build-

ing construction follows established codes around fire-resistive and non-combustible construction, 

safety, and so on [IBC15], and the design also incorporates elaborate security for access, including 

circle locks, metal detectors, guard personnel, and an extensive network of cameras. 

Figure 4.2 shows an aerial view of a Google data center campus in Council Bluffs, Iowa. 

Figure 4.3 zooms in on one building to highlight some of the typical components in greater detail. 

4.1 DATA CENTER OVERVIEW
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Figure 4.2: Aerial view of a Google data center campus in Council Bluffs, Iowa.
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Figure 4.3: A Google data center building in Council Bluffs, Iowa, showing the mechanical yard, elec-

trical yard, and server hall. 

Figure 4.4 shows the components of a typical data center architecture. Beyond the IT equip-

ment (discussed in Chapter 3), the two major systems in the data center provide power delivery 

(shown in red, indicated by numbers) and cooling (shown in green, indicated by letters). We discuss 

these in detail next. 
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Figure 4.4: The main components of a typical data center.

4.2 DATA CENTER POWER SYSTEMS 

Power enters first at a utility substation (not shown) which transforms high voltage (typically 110 

kV and above) to medium voltage (typically less than 50 kV). Medium voltage is used for site-level 

distribution to the primary distribution centers (also known as unit substations), which include the 

primary switchgear and medium-to-low voltage transformers (typically below 1,000 V). From here, 

the power enters the building with the low-voltage lines going to the uninterruptible power supply 

(UPS) systems. The UPS switchgear also takes a second feed at the same voltage from a set of die-

sel generators that cut in when utility power fails. An alternative is to use a flywheel or alternator 

assembly, which is turned by an electric motor during normal operation, and couples to a diesel 

motor via a clutch during utility outages. In any case, the outputs of the UPS system are routed to 

the data center floor where they are connected to Power Distribution Units (PDUs). PDUs are the 

last layer in the transformation and distribution architecture and route individual circuits to the 

computer cabinets.

4.2 DATA CENTER POWER SYSTEMS
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4.2.1 UNINTERRUPTIBLE POWER SYSTEMS (UPS)

The UPS typically combines three functions in one system.

• First, it contains a transfer switch that chooses the active power input (either utility 

power or generator power). After a power failure, the transfer switch senses when the 

generator has started and is ready to provide power; typically, a generator takes 10–15 s 

to start and assume the full rated load.

• Second, it contains some form of energy storage (electrical, chemical, or mechanical) 

to bridge the time between the utility failure and the availability of generator power.

• Third, it conditions the incoming power feed, removing voltage spikes or sags, or har-

monic distortions in the AC feed. This conditioning can be accomplished via “double 

conversion.”

A traditional UPS employs AC–DC–AC double conversion. Input AC is rectified to DC, 

which feeds a UPS-internal bus connected to strings of batteries. The output of the DC bus is then 

inverted back to AC to feed the data center PDUs. When utility power fails, input AC is lost but 

internal DC remains (from the batteries) so that AC output to the data center continues uninter-

rupted. Eventually, the generator starts and resupplies input AC power.

Traditional double-conversion architectures are robust but inefficient, wasting as much as 

15% of the power flowing through them as heat. Newer designs such as line-interactive, delta-con-

version, multi-mode, or flywheel systems operate at efficiencies in the range of 96–98% over a wide 

range of load cases. Additionally, “floating” battery architectures such as Google’s on-board UPS 

[Whi+] place a battery on the output side of the server’s AC/DC power supply, thus requiring only 

a small trickle of charge and a simple switching circuit. These systems have demonstrated efficien-

cies exceeding 99%. A similar strategy was later adopted by the OpenCompute UPS [OCP11], 

which distributes a rack of batteries for every four server racks, and by Google’s high-availability 

rack systems, which contain servers powered from a rack-level DC bus fed from either modular, 

redundant rectifiers or modular, redundant battery trays.

Because UPS systems take up a sizeable amount of space, they are usually housed in a room 

separate from the data center floor. Typical UPS capacities range from hundreds of kilowatts up 

to two megawatts or more, depending on the power needs of the equipment. Larger capacities are 

achieved by combining several smaller units.

It’s possible to use UPS systems not only in utility outages but also as supplementary energy 

buffers for power and energy management. We discuss these proposals further in the next chapter.
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4.2.2 POWER DISTRIBUTION UNITS (PDUS)

In our example data center, the UPS output is routed to PDUs on the data center floor. PDUs 

resemble breaker panels in residential houses but can also incorporate transformers for final voltage 

adjustments. They take a larger input feed and break it into many smaller circuits that distribute 

power to the actual servers on the floor. Each circuit is protected by its own breaker, so a short in 

a server or power supply will trip only the breaker for that circuit, not the entire PDU or even the 

UPS. A traditional PDU handles 75–225 kW of load, whereas a traditional circuit handles a max-

imum of approximately 6 kW (20 or 30 A at 110–230 V). The size of PDUs found in large-scale 

data centers is much higher, however, corresponding to the size of the largest commodity backup 

generators (in megawatts), with circuits sometimes corresponding to high-power racks ranging in 

the tens of kW capacity. PDUs often provide additional redundancy by accepting two independent 

(“A” and “B”) power sources and are able to switch between them with a small delay. The loss of 

one source does not interrupt power to the servers. In this scenario, the data center’s UPS units 

are usually duplicated on A and B sides, so that even a UPS failure will not interrupt server power.

In North America, the input to the PDU is commonly 480 V 3-phase power. This requires 

the PDU to perform a final transformation step to deliver the desired 110 V output for the serv-

ers, thus introducing another source of inefficiency. In the EU, input to the PDU is typically 400 

V 3-phase power. By taking power from any single phase to neutral combination, it is possible to 

deliver a desirable 230 V without an extra transformer step. Using the same trick in North America 

requires computer equipment to accept 277 V (as derived from the 480 V input to the PDU), which 

unfortunately exceeds the upper range of standard power supplies.

Real-world data centers contain many variants of the simplified design described here. These 

include the “paralleling” of generators or UPS units, an arrangement where multiple devices feed a 

shared bus so the load of a failed device can be picked up by other devices, similar to handling disk 

failures in a RAID system. Common paralleling configurations include N + 1 (allowing one failure 

or maintenance operation at a time), N + 2 (allowing one failure even when one unit is offline for 

maintenance), and 2N (fully redundant pairs).

4.2.3 COMPARISON OF AC AND DC DISTRIBUTION ARCHITECTURES 

The use of high-voltage DC (HVDC) on the utility grid presents advantages for connecting in-

compatible power grids, providing resistance to cascading failures, and long-distance transmission 

efficiency. In data centers, the case for DC distribution is centered around efficiency improvements, 

increased reliability from reduced component counts, and easier integration of distributed gener-

ators with native DC outputs. In comparison with the double-conversion UPS mentioned above, 

DC systems eliminate the final inversion step of the UPS. If the voltage is selected to match the DC 

primary stage of the server power supply unit (PSU), three additional steps are eliminated: PDU 

transformation, PSU rectification, and PSU power factor correction. 

4.2 DATA CENTER POWER SYSTEMS
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Figure 4.5 compares AC and DC distribution architectures commonly used in the data 

center industry. State-of-the-art, commercially available efficiencies (based on [GF]) are shown for 

each stage of the “power train.” The overall power train efficiency using state-of-the-art components 

remains a few percent higher for DC distribution as compared to AC distribution; this difference 

was more pronounced in data centers with older components [Pra+06]. Note that the AC architec-

ture shown corresponds to the voltage scheme commonly found in North America; in most other 

parts of the world the additional voltage transformation in the AC PDU can be avoided, leading 

to slightly higher PDU efficiency. 
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Figure 4.5: Comparison of AC and DC distribution architectures commonly employed in the data 

center industry. 
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The placement of batteries as parallel sources near the load can virtually eliminate UPS 

losses: ~0.1% compared to ~1%–3% for an in-line UPS with 480 V AC input. In typical Google de-

signs, batteries are included either on server trays or as modules of a rack in parallel with a DC bus, 

and this has allowed elimination of the upstream UPS, further increasing the power train efficiency.

Commercial DC equipment for data centers is available, but costs remain higher than for 

comparable AC equipment. Similarly, the construction of large data centers involves hundreds 

and sometimes thousands of skilled workers. While only a subset of these will be electricians, the 

limited availability of DC technicians may lead to increased construction, service, and operational 

costs. However, DC power distribution is more attractive when integrating distributed power 

generators such as solar photovoltaic, fuel cells, and wind turbines. These power sources typically 

produce native DC and are easily integrated into a DC power distribution architecture. 

4.3 EXAMPLE: RADIAL POWER DISTRIBUTION WITH 
REDUNDANCY

A conventional AC power distribution scheme for a large data center is shown in Figure 4.6. This 

topology is known as “radial” because power fans out to the entire data center floor from a pair of 

medium voltage buses that provide redundancy in case of loss of a utility feed. Low voltage (400–

480 V) AC power is supplied to the data center floor by many PDUs, each fed by either a step-

down transformer for utility power or a backup generator. In addition, power availability is greatly 

enhanced by an isolated redundant PDU. This module is identical to the others, but needs to carry 

load only when other low voltage equipment fails or needs to be taken temporarily out of service.

4.4 EXAMPLE: MEDIUM VOLTAGE POWER PLANE

An interesting modern architecture for data center power distribution is Google’s medium voltage 

power plane (Figure 4.7), which allows for sharing of power across the data center. High availability 

at the building level is provided by redundant utility AC inputs. Building-level transformers step 

the voltage down to a medium voltage of 11–15 kV for further distribution through the building’s 

electrical rooms. For backup power, a “farm” of many medium voltage generators are paralleled to 

a bus, and automated systems consisting of breakers and switches select between the utility and 

generator sources. Redundant paths exist from both utility and generator sources to many unit sub-

stations. Each unit substation steps down the voltage to approximately 400 V AC for distribution 

to a row of racks on the data center floor.

The power plane architecture offers several advantages with respect to traditional radial 

architectures. First, a large pool of diverse workloads can increase the opportunity for power over-

subscription [Ran+06], discussed in the following chapter. Roughly speaking, Google’s power plane 

architecture doubles the quantity of IT equipment that can be deployed above and beyond a data 

4.3 EXAMPLE: RADIAL POWER DISTRIBUTION WITH REDUNDANCY
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Figure 4.6: A radial power architecture with generators distributed among many low voltage PDUs. 

Each PDU has its own backup generator indicated by a “G.” Power loss due to failures of low voltage 

equipment is greatly mitigated by the presence of an isolated redundant PDU, which can take the 

place of any other PDU as a low voltage source. 
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center’s critical power capacity. Second, the generator farm offers resilience against generator failures 

with a minimum of redundant equipment. Finally, power is more fungible across the entire data cen-

ter floor: with appropriate sizing of both medium- and low-voltage distribution components, a high 

dynamic range of deployment power density can be supported without stranding power. This is an 

important benefit given that rack power varies substantially depending on the type of IT equipment 

within the rack. For example, storage-intensive racks consume much less power than compute-inten-

sive racks. With traditional radial power architectures, a low power density in one region of the data 

center floor can result in permanently underused infrastructure. The medium-voltage power plane 

enables power sharing across the floor: high power racks in one region can compensate for low power 

racks in another region, ensuring full utilization of the building’s power capacity.
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Figure 4.7: Concept for medium-voltage power plane architecture. 

4.4 EXAMPLE: MEDIUM VOLTAGE POWER PLANE
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4.5 DATA CENTER COOLING SYSTEMS 

Data center cooling systems remove the heat generated by the equipment. To remove heat, a cool-

ing system must employ some hierarchy of loops, each circulating a cold medium that warms up 

via some form of heat exchange and is somehow cooled again. An open loop replaces the outgoing 

warm medium with a cool supply from the outside, so that each cycle through the loop uses new 

material. A closed loop recirculates a separate medium, continuously transferring heat to either an-

other loop via a heat exchanger or to the environment; all systems of loops must eventually transfer 

heat to the outside environment.

The simplest topology is fresh air cooling (or air economization)—essentially, opening the 

windows. Such a system is shown in Figure 4.8. This is a single, open-loop system that we discuss 

in more detail in the section on free cooling.

HOT AIR COLLECTION
BENEATH CEILING

HOT AIR DISCHARGE
HOT AIR DISCHARGE

FRESH AIR INTAKE

EXHAUST

COOLING
SUPPLY

TO RACKS

Figure 4.8: Airflow schematic of an air-economized data center. 

Closed-loop systems come in many forms, the most common being the air circuit on the data 

center floor. Its function is to isolate and remove heat from the servers and transport it to a heat 

exchanger. As shown in Figure 4.9, cold air flows to the servers, heats up, and eventually reaches a 

heat exchanger to cool it down again for the next cycle through the servers.

Typically, data centers employ raised floors, concrete tiles installed onto a steel grid resting 

on stanchions two to four feet above the slab floor. The underfloor area often contains power cables 

to racks, but its primary purpose is to distribute cool air to the server racks. The airflow through 

the underfloor plenum, the racks, and back to the CRAC (a 1960s term for computer room air con-

ditioning) defines the primary air circuit.
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Figure 4.9: Raised floor data center with hot-cold aisle setup (image courtesy of DLB Associates 

[Dye06]). 

The simplest closed-loop systems contain two loops. The first loop is the air circuit shown 

in Figure 4.9, and the second loop (the liquid supply inside the CRACs) leads directly from the 

CRAC to external heat exchangers (typically placed on the building roof ) that discharge the heat 

to the environment.

A three-loop system commonly used in large-scale data centers is shown in Figure 4.10. The 

first datacenter floor loop involves circulating air that is alternately cooled by fan coils and heated by 

IT equipment on the data center floor. In the process loop, warm water from the fan coils returns to 

the cooling plant to be chilled and pumped back to the fan coils. Finally, the condenser water loop 

removes heat received from the process water through a combination of mechanical refrigeration by 

chiller units and evaporation in cooling towers; the condenser loop is so named because it removes 

heat from the condenser side of the chiller. Heat exchangers perform much of the heat transfer 

between the loops, while preventing process water from mixing with condenser water. 

 Each topology presents tradeoffs in complexity, efficiency, and cost. For example, fresh air 

cooling can be very efficient but does not work in all climates, requires filtering of airborne par-

ticulates, and can introduce complex control problems. Two-loop systems are easy to implement, 

relatively inexpensive to construct, and offer isolation from external contamination, but typically 

have lower operational efficiency. A three-loop system is the most expensive to construct and has 

moderately complex controls, but offers contaminant protection and good efficiency when employ-

ing economizers.

4.5 DATA CENTER COOLING SYSTEMS
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Figure 4.10: Three-loop data center cooling system. (Note that in favorable weather conditions, the 

entire data center heat load can be removed by evaporative cooling of the condenser water; the chiller 

evaporator and chiller condenser heat transfer steps then become unnecessary.)

Additionally, generators (and sometimes UPS units) provide backup power for most me-

chanical cooling equipment because the data center may overheat in a matter of minutes without 

cooling. In a typical data center, chillers and pumps can add 40% or more to the critical load sup-

ported by generators, significantly adding to the overall construction cost.

 CRACs, chillers, and cooling towers are among the most important building blocks in data 

center cooling systems, and we take a slightly closer look at each below.

4.5.1 COMPUTER ROOM AIR CONDITIONERS (CRACS)

All CRACs contain a heat exchanger, air mover, and controls. They mostly differ by the type of 

cooling they employ:

• direct expansion (DX);

• fluid solution; and

• water.

A DX unit is a split air conditioner with cooling (evaporator) coils inside the CRAC, and 

heat-rejecting (condenser) coils outside the data center. The fluid solution CRAC shares this basic 
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architecture but circulates a mixture of water and glycol through its coils rather than a phase-change 

refrigerant. Finally, a water-cooled CRAC connects to a chilled water loop.

CRAC units pressurize the raised floor plenum by blowing cold air into the underfloor space, 

which then escapes through perforated tiles in front of the server racks. The air flows through the 

servers and is expelled into a “hot aisle.” Racks are typically arranged in long rows that alternate 

between cold and hot aisles to reduce inefficiencies caused by mixing hot and cold air. In fact, many 

newer data centers physically isolate the cold or hot aisles with walls [PF]. As shown in Figure 4.9, 

the hot air produced by the servers recirculates back to the intakes of the CRACs, where it is cooled 

and exhausted into the raised floor plenum again.

4.5.2 CHILLERS

A water-cooled chiller as shown in Figure 4.11 can be thought of as a water-cooled air conditioner.

CONDENSER

VFD
MOTOR

COMPRESSOR

EVAPORATOR

 

Figure 4.11: Water-cooled centrifugal chiller. 

Chillers submerge the evaporator and condenser coils in water in two large, separate compart-

ments joined via a top-mounted refrigeration system consisting of a compressor, expansion valve, 

and piping. In the cold compartment, warm water from the data center is cooled by the evaporator 

coil prior to returning to the process chilled water supply (PCWS) loop. In the hot compartment, 

cool water from the condenser water loop is warmed by the condenser coil and carries the heat away 

4.5 DATA CENTER COOLING SYSTEMS
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to the cooling towers where it is rejected to the environment by evaporative cooling. Because the 

chiller uses a compressor, a significant amount of energy is consumed to perform its work.

4.5.3 COOLING TOWERS

Cooling towers (Figure 4.12) cool a water stream by evaporating a portion of it into the atmosphere. 

The energy required to change the liquid into a gas is known as the latent heat of vaporization, 

and the temperature of the water can be dropped significantly given favorable dry conditions. The 

water flowing through the tower comes directly from the chillers or from another heat exchanger 

connected to the PCWS loop. Figure 4.13 illustrates how it works.

Figure 4.12: Data center cooling towers. 
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Figure 4.13: How a cooling tower works.The numbers correspond to the associated discussions in the 

text.

1. Hot water from the data center flows from the top of the cooling tower onto “fill” 

material inside the tower. The fill creates additional surface area to improve evapora-

tion performance.

2. As the water flows down the tower, some of it evaporates, drawing energy out of the 

remaining water and reducing its temperature.

3. A fan on top draws air through the tower to aid evaporation. Dry air enters the sides 

and humid air exits the top.

4. The cool water is collected at the base of the tower and returned to the data center.

 Cooling towers work best in temperate climates with low humidity; ironically, they do not 

work as well in very cold climates because they need additional mechanisms to prevent ice forma-

tion on the towers and in the pipes.

4.5.4 FREE COOLING

Free cooling refers to the use of cold outside air to either help produce chilled water or directly 

cool servers. It is not completely free in the sense of zero cost, but it involves very low-energy costs 

compared to chillers.

4.5 DATA CENTER COOLING SYSTEMS



92 4. DATA CENTER BASICS: BUILDING, POWER, COOLING

As mentioned above, air-economized data centers are open to the external environment and 

use low dry bulb temperatures for cooling. (The dry bulb temperature is the air temperature mea-

sured by a conventional thermometer). Large fans push outside air directly into the room or the 

raised floor plenum when outside temperatures are within limits (for an extreme experiment in this 

area, see [AM08]). Once the air flows through the servers, it is expelled outside the building. An 

air-economized system can be very efficient but requires effective filtering to control contamination, 

may require auxiliary cooling (when external conditions are not favorable), and may be difficult to 

control. Specifically, if there is a malfunction, temperatures will rise very quickly since air can store 

relatively little heat. By contrast, a water-based system can use a water storage tank to provide a 

significant thermal buffer.

Water-economized data centers take advantage of the wet bulb temperature [Wbt]. The wet 

bulb temperature is the lowest water temperature that can be reached by evaporation. The dryer 

the air, the bigger the difference between dry bulb and wet bulb temperatures; the difference can 

exceed 10°C, and thus a water-economized data center can run without chillers for many more 

hours per year. For this reason, some air-economized data centers employ a hybrid system where 

water is misted into the airstream (prior to entering the data center) in order to take advantage of 

evaporation cooling.

Typical water-economized data centers employ a parallel heat exchanger so that the chiller 

can be turned off when the wet bulb temperature is favorable. Depending on the capacity of the 

cooling tower (which increases as the wet bulb temperature decreases), a control system balances 

water flow between the chiller and the cooling tower.

Yet another approach uses a radiator instead of a cooling tower, pumping the condenser 

fluid or process water through a fan-cooled radiator. Similar to the glycol/water-based CRAC, 

such systems use a glycol-based loop to avoid freezing. Radiators work well in cold climates (say, 

a winter in Chicago) but less well at moderate or warm temperatures because the achievable cold 

temperature is limited by the external dry bulb temperature, and because convection is less efficient 

than evaporation.

4.5.5 AIR FLOW CONSIDERATIONS 

Most data centers use the raised floor setup discussed above. To change the amount of cooling 

delivered to a particular rack or row, we exchange perforated tiles with solid tiles or vice versa. 

For cooling to work well, the cold airflow coming through the tiles should match the horizontal 

airflow through the servers in the rack. For example, if a rack has 10 servers with an airflow of 

100 cubic feet per minute (CFM) each, then the net flow out of the perforated tile should be 

1,000 CFM (or higher if the air path to the servers is not tightly controlled). If it is lower, some 

of the servers will receive cold air while others will ingest recirculated warm air from above the 

rack or other leakage paths.
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Figure 4.14 shows the results of a Computational Fluid Dynamics (CFD) analysis for a rack 

that is oversubscribing the data center’s airflow.

 

Figure 4.14: CFD model showing recirculation paths and temperature stratification for a rack with 

under-provisioned airflow. 

In this example, recirculation across the top of the rack causes the upper servers to ingest 

warm air. The servers on the bottom are also affected by a recirculation path under the rack. Block-

ages from cable management hardware cause a moderate warm zone about halfway up the rack.

The facility manager’s typical response to such a situation is to lower the temperature of the 

CRAC output. That works, but increases energy costs significantly, so it’s better to fix the underly-

4.5 DATA CENTER COOLING SYSTEMS
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ing problem instead and physically separate cold and warm air as much as possible, while optimiz-

ing the path back to the CRACs. In this setup the entire room is filled with cool air (because the 

warm exhaust is kept inside a separate plenum or duct system) and, thus, all servers in a rack will 

ingest air at the same temperature [PF].

Air flow limits the power density of data centers. For a fixed temperature differential across 

a server, a rack’s airflow requirement increases with power consumption, and the airflow supplied 

via the raised floor tiles must increase linearly with power. That in turn increases the amount of 

static pressure needed in the underfloor plenum. At low power densities, this is easy to accomplish, 

but at some point the laws of physics start to make it economically impractical to further increase 

pressure and airflow. Typically, these limitations make it hard to exceed power densities of more 

than 150–200 W/sq ft without substantially increased cost.

4.5.6 IN-RACK, IN-ROW, AND LIQUID COOLING

In-rack cooling can increase power density and cooling efficiency beyond the conventional 

raised-floor limit. Typically, an in-rack cooler adds an air-to-water heat exchanger at the back of 

a rack so the hot air exiting the servers immediately flows over coils cooled by water, essentially 

short-circuiting the path between server exhaust and CRAC input. In-rack cooling might re-

move part or all of the heat, effectively replacing the CRACs. Obviously, chilled water needs to 

be brought to each rack, greatly increasing the cost of plumbing. Some operators may also worry 

about having water on the data center floor, since leaky coils or accidents might cause water to 

spill on the equipment.

In-row cooling works like in-rack cooling except the cooling coils aren’t in the rack, but 

adjacent to the rack. A capture plenum directs the hot air to the coils and prevents leakage into the 

cold aisle. Figure 4.15 shows an in-row cooling product and how it is placed between racks.

Finally, we can directly cool server components using cold plates, that is, local, liquid-cooled 

heat sinks. It is usually impractical to cool all compute components with cold plates. Instead, com-

ponents with the highest power dissipation (such as processor chips) are targeted for liquid cooling 

while other components are air-cooled. The liquid circulating through the heat sinks transports the 

heat to a liquid-to-air or liquid-to-liquid heat exchanger that can be placed close to the tray or rack, 

or be part of the data center building (such as a cooling tower).
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Figure 4.15: In-row air conditioner. 

In spite of the higher cost and mechanical design complexity, cold plates are becoming essen-

tial for cooling very high-density workloads whose TDP per chip exceeds what is practical to cool 

with regular heatsinks (typically, 200–250 W per chip). A recent example is Google’s third-gener-

ation tensor processing unit (TPU): as shown in Figure 4.16, four TPUs on the same motherboard 

are cooled in series on a single water loop. 

 

4.5 DATA CENTER COOLING SYSTEMS
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Figure 4.16: Copper cold plates and hose connections provide liquid cooling for Google’s third-gener-

ation TPU.

4.5.7 CONTAINER-BASED DATA CENTERS

Container-based data centers go one step beyond in-row cooling by placing the server racks inside 

a container (typically 20 or 40 ft long) and integrating heat exchange and power distribution into 

the container as well. Similar to in-row cooling, the container needs a supply of chilled water and 

uses coils to remove all heat. Close-coupled air handling typically allows higher power densities 

than regular raised-floor data centers. Thus, container-based data centers provide all the functions 

of a typical data center room (racks, CRACs, PDU, cabling, lighting) in a small package. Figure 

4.17 shows an isometric cutaway of Google’s container design.

Like a regular data center room, containers must be accompanied by outside infrastructure 

such as chillers, generators, and UPS units to be fully functional.

To our knowledge, the first container-based data center was built by Google in 2005 

[GInc09], and the idea dates back to a Google patent application in 2003. However, subsequent 

generations of Google data centers have moved away from containers and instead incorporate the 

same principles at a broader warehouse level. Some other large-scale operators, including Microsoft 

[Micro] and eBay [eBay12], have also reported using containers in their facilities, but today they 

are uncommon. 
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Figure 4.17: Google’s container design includes all the infrastructure of the data center floor.

4.6 EXAMPLE: GOOGLE’S CEILING-MOUNTED COOLING 
FOR THE DATA CENTER 

Figure 4.18 illustrates the main features and air flow of Google’s overhead cooling system. This 

represents one variation on the efficient hot aisle containment that has become prevalent in the data 

center industry. Tall, vertical hot aisle plenums duct the exhaust air from the rear of the IT racks to 

overhead fan coils. The fan coils receive chilled process water from an external cooling plant; this 

water flows through multiple tube passages attached to fins, absorbing heat from the incoming hot 

air. Blowers in the fan coil units force the cooled air downward into the cold aisle, where it enters 

the intakes of servers and networking equipment. Together with the cooling plant and process 

4.6 EXAMPLE: GOOGLE’S CEILING-MOUNTED COOLING FOR THE DATA CENTER
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water loops, this air loop comprises a highly-efficient, end-to-end cooling system that consumes 

energy amounting to <10% of the energy consumed by the IT equipment. 
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Figure 4.18: Cross-sectional view of a cold aisle and associated hot air plenums in a Google data cen-

ter. (1) Hot exhaust from IT equipment rises in a vertical plenum space. (2) Hot air enters a large ple-

num space above the drop ceiling. (3) Heat is exchanged with process water in a fan coil unit, which 

also (4) blows the cold air down toward the intake of the IT equipment. 

4.7 SUMMARY

Data centers power the servers they contain and remove the heat generated. Historically, data cen-

ters have consumed twice as much energy as needed to power the servers, but when best practices 

are employed this overhead shrinks to 10–20%. Key energy saving techniques include free-cooling 

(further boosted by raising the target inlet temperature of servers), well-managed air flow, and 

high-efficiency power distribution and UPS components.
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CHAPTER 5

Energy and Power Efficiency

Energy efficiency has been a major technology driver in the mobile and embedded areas for a 

long time. Work in this area originally emphasized extending battery life, but then expanded to 

include reducing peak power because thermal constraints began to limit further CPU performance 

improvements or packaging density in small devices. However, energy management is also a key 

issue for servers and data center operations, one that focuses on reducing all energy-related costs, 

including capital and operating expenses as well as environmental impacts. Many energy-saving 

techniques developed for mobile devices are natural candidates for tackling this new problem space, 

but ultimately a WSC is quite different from a mobile device. In this chapter, we describe some of 

the most relevant aspects of energy and power efficiency for WSCs, starting at the data center level 

and continuing to component-level issues.

5.1 DATA CENTER ENERGY EFFICIENCY

The broadest definition of WSC energy efficiency would measure the energy used to run a par-

ticular workload (say, to sort a petabyte of data). Unfortunately, no two companies run the same 

workloads and, as discussed in Chapter 2, real-world application mixes change all the time, so it is 

hard to benchmark WSCs this way. Thus, even though such benchmarks have been contemplated 

[Riv+07], they haven’t yet been widely used [TGGb]. However, it is useful to view energy efficiency 

as the product of three factors we can independently measure and optimize:

Efficiency =  
Computation  

= (  1   ) 
× (   1 

   ) 
× (                 Computation                        ).                         Total Energy           PUE           SPUE           Total Energy to Electronic Components

(a) (b) (c)

In this equation, the first term (a) measures facility efficiency, the second (b) measures server 

power conversion efficiency, and the third (c) measures the server’s architectural efficiency. We dis-

cuss these factors in the following sections.

5.1.1 THE PUE METRIC

Power usage effectiveness (PUE) reflects the quality of the data center building infrastructure itself 

[TGGc], and captures the ratio of total building power to IT power (the power consumed by the 

computing, networking, and other IT equipment). IT power is sometimes referred to as “critical 

power.”
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PUE = (Facility power) / (IT Equipment power).

PUE has gained a lot of traction as a data center efficiency metric since widespread reporting 

started on it around 2009. We can easily measure PUE by adding electrical meters to the lines power-

ing the various parts of a data center, thus determining how much power is used by chillers and UPSs.

Historically, the PUE for the average data center has been embarrassingly poor. According 

to a 2006 study [MB06], 85% of data centers were estimated to have a PUE greater than 3.0. In 

other words, the building’s mechanical and electrical systems consumed twice as much power as the 

actual computing load. Only 5% had a PUE of 2.0 or better. 

A subsequent EPA survey of over 100 data centers reported an average PUE of 1.91 

[PUE10]. A few years back, an Uptime Institute survey of over 1,100 data centers covering a range 

of geographies and sizes reported an average PUE value between 1.8 and 1.89 [UpI12, Hes14]. 

More recently, a 2016 report from LBNL noted PUEs of 1.13 for hyperscale data centers (ware-

house-scale computers) and 1.6–2.35 for traditional data centers [She+16]. Figure 5.1 shows the 

distribution of results from one of these studies [UpI12]. Cold and hot aisle containment and in-

creased cold aisle temperature are the most common improvements implemented. Large facilities 

reported the biggest improvements, and about half of small data centers (with less than 500 servers) 

still were not measuring PUE.
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Figure 5.1: Uptime Institute survey of PUE for 1100+ data centers. This detailed data is based on a 

2012 study [UpI12] but the trends are qualitatively similar to more recent studies (e.g., 2016 LBNL 

study [She+16]).
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Very large operators (usually consumer internet companies like Google, Microsoft, Yahoo!, 

Facebook, Amazon, Alibaba, and eBay) have reported excellent PUE results over the past few years, 

typically below 1.2, although only Google has provided regular updates of its entire fleet based 

on a clearly defined metric (Figure 5.2) [GDCa]. At scale, it is easy to justify the importance of 

efficiency; for example, Google reported having saved over one billion dollars to date from energy 

efficiency measures [GGr].
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Figure 5.2: PUE data for all large-scale Google data centers over time [GDCa]. 

5.1.2 ISSUES WITH THE PUE METRIC

Although The Green Grid (TGG) publishes detailed guidelines on how to measure and report 

PUE [TGGd], many published values aren’t directly comparable, and sometimes PUE values are 

used in marketing documents to show best-case values that aren’t real. The biggest factors that can 

skew PUE values are as follows.

• Not all PUE measurements include the same overheads. For example, some may 

include losses in the primary substation transformers or in wires feeding racks from 

PDUs, whereas others may not. Google reported a fleet-wide PUE of 1.12 using a 

comprehensive definition of overhead that includes all known sources, but could have 

5.1 DATA CENTER ENERGY EFFICIENCY
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reported a PUE of 1.06 with a more “optimistic” definition of overhead [GDCb]. For 

PUE to be a useful metric, data center owners and operators should adhere to Green 

Grid guidelines [TGGd] in measurements and reporting, and be transparent about 

the methods used in arriving at their results.

• Instantaneous PUEs differ from average PUEs. Over the course of a day or a year, a 

facility’s PUE can vary considerably. For example, on a cold day it might be low, but 

during the summer it might be considerably higher. Generally speaking, annual aver-

ages are more useful for comparisons.

• Some PUEs aren’t real-world measurements. Often vendors publish “design” PUEs 

that are computed using optimal operating conditions and nominal performance 

values, or they publish a value measured during a short load test under optimal condi-

tions. Typically, PUE values provided without details fall into this category.

• Some PUE values have higher error bars because they’re based on infrequent manual 

readings, or on coarsely placed meters that force some PUE terms to be estimated in-

stead of measured. For example, if the facility has a single meter measuring the critical 

load downstream of the UPS, PDU, and low-voltage distribution losses will need to 

be estimated.

In practice, PUE values should be measured in real time. Not only does this provide a better 

picture of diurnal and seasonal variations, it also allows the operator to react to unusual readings 

during day-to-day operations. For example, someone may have left on a set of backup pumps after 

a periodic test. With real-time metrics the operations team can quickly correct such problems after 

comparing expected vs. actual PUE values.

The PUE metric has been criticized as not always indicating better energy performance, 

because PUEs typically worsen with decreasing load. For example, assume a data center’s PUE 

is 2.0 at a 500 kW load vs. 1.5 at a 1 MW load. If it’s possible to run the given workload with a 

500 kW load (for example, with newer servers), that clearly is more energy efficient despite the 

inferior PUE. However, this criticism merely points out that PUE is just one of three factors in 

the efficiency equation shown earlier in this chapter, and overall the widespread adoption of PUE 

measurements has arguably been the driver of the biggest improvements in data center efficiency 

in the past 50 years.

5.1.3 SOURCES OF EFFICIENCY LOSSES IN DATA CENTERS

The section on data center power systems in Chapter 4 describes the efficient transformation of 

power as it approaches the data center floor. The first two transformation steps bring the incoming 

high-voltage power (110 kV and above) to medium-voltage distribution levels (typically less than 
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50 kV) and, closer to the server floor to low voltage (typically 480 V in North America). Both 

steps should be very efficient, with losses typically below half a percent for each step. Inside the 

building, conventional double-conversion UPSs cause the most electrical loss. In the first edition 

we listed efficiencies of 88–94% under optimal load, significantly less if partially loaded (which is 

the common case). Rotary UPSs (flywheels) and high-efficiency UPSs can reach efficiencies of 

about 97%. The final transformation step in the PDUs accounts for an additional half-percent loss. 

Finally, 1–3% of power can be lost in the cables feeding low-voltage power (110 or 220 V) to the 

racks (recall that a large facility can have a raised floor area that is over 100 m long or wide, so 

power cables can be quite long).

A significant portion of data center inefficiencies stems from cooling overhead, with chillers 

being the largest culprit. Cooling losses are three times greater than power losses, presenting the 

most promising target for efficiency improvements: if all cooling losses were eliminated, the PUE 

would drop to 1.26, whereas a zero-loss UPS system would yield a PUE of only 1.8. Typically, the 

worse a facility’s PUE is, the higher the percentage of the total loss comes from the cooling system 

[BM06]. Intuitively, there are only so many ways to mishandle a power distribution system, but 

many more ways to mishandle cooling.

Conversely, there are many non-intuitive ways to improve the operation of the data center’s 

cooling infrastructure. The energy for running the cooling infrastructure has a nonlinear relation-

ship with many system parameters and environmental factors, such as the total system load, the 

total number of chillers operating, and the outside wind speed. Most people find it difficult to intuit 

the relationship between these variables and total cooling power. At the same time, a large amount 

of data is being collected regularly from a network of sensors used to operate the control loop for 

data center cooling. The existence of this large data set suggests that machine learning and artificial 

intelligence could be used to find additional PUE efficiencies [EG16]. 

Figure 5.3 shows the typical distribution of energy losses in a WSC data center. Much of 

this inefficiency is caused by a historical lack of attention to power loss, not by inherent limitations 

imposed by physics. Less than 10 years ago, PUEs weren’t formally used and a total overhead of 

20% was considered unthinkably low, yet as of 2018 Google reported a fleet-wide annual average 

overhead of 11% [GDCb] and many others are claiming similar values for their newest facilities. 

However, such excellent efficiency is still confined to a small set of data centers, and many small 

data centers probably haven’t improved much.
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Figure 5.3: A representative end-to-end breakdown of energy losses in a typical datacenter. Note that 

this breakdown does not include losses of up to a few percent due to server fans or electrical resistance 

on server boards.

5.1.4 IMPROVING THE ENERGY EFFICIENCY OF DATA CENTERS

As discussed in the previous chapter, careful design for efficiency can substantially improve PUE 

[Nel+, PGE, GMT06]. To summarize, the key steps are as follows.

• Careful air flow handling: Isolate hot air exhausted by servers from cold air, and keep 

the path to the cooling coil short so that little energy is spent moving cold or hot air 

long distances.

• Elevated temperatures: Keep the cold aisle at 25–30°C rather than 18–20°C. Higher 

temperatures make it much easier to cool data centers efficiently. Virtually no server 

or network equipment actually needs intake temperatures of 20°C, and there is no 

evidence that higher temperatures cause more component failures [PWB07, SPW09, 

ES+].

• Free cooling: In most moderate climates, free cooling can eliminate the majority of 

chiller runtime or eliminate chillers altogether.
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• Better power system architecture: UPS and power distribution losses can often be greatly 

reduced by selecting higher-efficiency gear, as discussed in the previous chapter.

• Machine learning: Apply novel machine learning techniques to discover non-intuitive 

techniques for controlling data center infrastructure to further reduce cooling require-

ments. Large amounts of data are being collected by many sensors in the data center, 

making this problem a natural fit for machine learning.

In April 2009, Google first published details on its data center architecture, including a video 

tour of a container-based data center built in 2005 [GInc09]. In 2008, this data center achieved a 

state-of-the-art annual PUE of 1.24, yet differed from conventional data centers only in the appli-

cation of the principles listed above. Today, large-scale data centers commonly feature PUEs below 

1.2, especially those belonging to cloud operators. Even in unfavorable climates, today’s PUEs are 

lower than the state-of-the-art PUEs in 2008 For example, Google’s data center in Singapore, 

where the average monthly temperature rarely falls below 25°C, the annual PUE is 1.18. 

5.1.5 BEYOND THE FACILITY

Recall the energy efficiency formula from the beginning of this chapter:

Efficiency =  
Computation  

= (  1   ) 
× (   1 

   ) 
× (                 Computation                        ).                         Total Energy           PUE           SPUE           Total Energy to Electronic Components

(a) (b) (c)

 

So far we’ve discussed the first term, facility overhead. The second term (b) accounts for 

overheads inside servers or other IT equipment using a metric analogous to PUE: server PUE 

(SPUE). SPUE consists of the ratio of total server input power to its useful power, where useful 

power includes only the power consumed by the electronic components directly involved in the 

computation: motherboard, disks, CPUs, DRAM, I/O cards, and so on. Substantial amounts of 

power may be lost in the server’s power supply, voltage regulator modules (VRMs), and cooling 

fans. As discussed in Chapter 4, the losses inside the server can exceed those of the entire upstream 

data center power train.

SPUE measurements aren’t standardized like PUE but are fairly straightforward to define. 

Almost all equipment contains two transformation steps: the first step transforms input voltage 

(typically 110–220 VAC) to local DC current (typically 12 V), and in the second step VRMs 

transform that down to much lower voltages used by a CPU or DRAM. (The first step requires 

an additional internal conversion within the power supply, typically to 380 VDC.) SPUE ratios 

of 1.6–1.8 were common a decade ago; many server power supplies were less than 80% efficient, 

and many motherboards used VRMs that were similarly inefficient, losing more than 25% of input 

power in electrical conversion losses. In contrast, commercially available AC-input power supplies 

5.1 DATA CENTER ENERGY EFFICIENCY
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today achieve 94% efficiency, and VRMs achieve 96% efficiency (see Chapter 4). Thus, a state-of-

the-art SPUE is 1.11 or less [Cli]. For example, instead of the typical 12 VDC voltage, Google uses 

48 VDC voltage rack distribution system, which reduces energy losses by over 30%.

The product of PUE and SPUE constitutes an accurate assessment of the end-to-end elec-

tromechanical efficiency of a WSC. A decade ago the true (or total) PUE metric (TPUE), defined 

as PUE * SPUE, stood at more than 3.2 for the average data center; that is, for every productive 

watt, at least another 2.2 W were consumed. By contrast, a modern facility with an average PUE 

of 1.11 as well as an average SPUE of 1.11 achieves a TPUE of 1.23. Close attention to cooling 

and power system design in combination with new technology has provided an order of magnitude 

reduction in overhead power consumption.

5.2 THE ENERGY EFFICIENCY OF COMPUTING

So far we have discussed efficiency in electromechanical terms, the (a) and (b) terms of the efficiency 

equation, and largely ignored term (c), which accounts for how the electricity delivered to electronic 

components is actually translated into useful work. In a state-of-the-art facility, the electromechan-

ical components have a limited potential for improvement: Google’s TPUE of approximately 1.23 

means that even if we eliminated all electromechanical overheads, the total energy efficiency would 

improve by only 19%. In contrast, the energy efficiency of computing has doubled approximately 

every 1.5 years in the last half century [Koo+11]. Although such rates have declined due to CMOS 

scaling challenges [FM11], they are still able to outpace any electromechanical efficiency improve-

ments. In the remainder of this chapter we focus on the energy and power efficiency of computing.

5.2.1 MEASURING ENERGY EFFICIENCY

Ultimately, we want to measure the energy consumed to produce a certain result. A number of 

industry benchmarks try to do exactly that. In high-performance computing (HPC), the Green 

500 [TG500] benchmark ranks the energy efficiency of the world’s top supercomputers using LIN-

PACK. Similarly, server-level benchmarks such as Joulesort [Riv+07] and SPECpower [SPEC] 

characterize other aspects of computing efficiency. Joulesort measures the total system energy to 

perform an out-of-core sort and derives a metric that enables the comparison of systems rang-

ing from embedded devices to supercomputers. SPECpower focuses on server-class systems and 

computes the performance-to-power ratio of a system running a typical business application on 

an enterprise Java platform. Two separate benchmarking efforts aim to characterize the efficiency 

of storage systems: the Emerald Program [SNI11] by the Storage Networking Industry Associa-

tion (SNIA) and the SPC-2/E [SPC12] by the Storage Performance Council. Both benchmarks 

measure storage servers under different kinds of request activity and report ratios of transaction 

throughput per watt.
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5.2.2 SERVER ENERGY EFFICIENCY

Clearly, the same application binary can consume different amounts of power depending on the 

server’s architecture and, similarly, an application can consume more or less of a server’s capacity 

depending on software performance tuning. Furthemore, systems efficiency can vary with utiliza-

tion: under low levels of utilization, computing systems tend to be significantly more inefficient 

than when they are exercised at maximum utilization. 
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Figure 5.4: Example benchmark result for SPECpower_ssj2008; bars indicate energy efficiency and 

the line indicates power consumption. Both are plotted for a range of utilization levels, with the aver-

age energy efficiency metric corresponding to the vertical dark line. The system has two 2.1 GHz 28-

core Intel Xeon processors, 192 GB of DRAM, and one M.2 SATA SSD. 
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Figure 5.4 shows the SPECpower benchmark results for the top performing entry as of 

January 2018 under varying utilization. The results show two metrics: performance- (transactions 

per second) to-power ratio and the average system power, plotted over 11 load levels. One feature 

in the figure is noteworthy and common to all other SPECpower benchmark results: the perfor-

mance-to-power ratio drops appreciably as the target load decreases because the system power 

decreases much more slowly than does performance. Note, for example, that the energy efficiency 

at 30% load has 30% lower efficiency than at 100%. Moreover, when the system is idle, it is still 

consuming just under 60 W, which is 16% of the peak power consumption of the server.

5.2.3 USAGE PROFILE OF WAREHOUSE-SCALE COMPUTERS

Figure 5.5 shows the average CPU utilization of two Google clusters during a representative three-

month period (measured between January and March 2013); each cluster has over 20,000 servers. The 

cluster on the right (b) represents one of Google’s most highly utilized WSCs, where large continuous 

batch workloads run. WSCs of this class can be scheduled very efficiently and reach very high utili-

zations on average. The cluster on the left (a) is more representative of a typical shared WSC, which 

mixes several types of workloads and includes online services. Such WSCs tend to have relatively low 

average utilization, spending most of their time in the 10–50% CPU utilization range. This activity 

profile turns out to be a perfect mismatch with the energy efficiency profile of modern servers in that 

they spend most of their time in the load region where they are most inefficient.

Another feature of the energy usage profile of WSCs is not shown in Figure 5.5: individ-

ual servers in these systems also spend little time idle. Consider, for example, a large web search 

workload, such as the one described in Chapter 2, where queries are sent to a large number of 

servers, each of which searches within its local slice of the entire index. When search traffic is 

high, all servers are being heavily used, but during periods of low traffic, a server might still see 

hundreds of queries per second, meaning that idle periods are likely to be no longer than a few 

milliseconds.

The absence of significant idle intervals in general-purpose WSCs, despite the existence of 

low activity periods, is largely a result of applying sound design principles to high-performance, 

robust distributed systems software. Large-scale internet services rely on efficient load distribu-

tion to a large number of servers, creating a situation such that when load is lighter, we tend to 

have a lower load in multiple servers instead of concentrating the load in fewer servers and idling 

the remaining ones. Idleness can be manufactured by the application (or an underlying cluster 

management system) by migrating workloads and their corresponding state to fewer machines 

during periods of low activity. This can be relatively easy to accomplish when using simple rep-

lication models, when servers are mostly stateless (that is, serving data that resides on a shared 

NAS or SAN storage system). However, it comes at a cost in terms of software complexity and 
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energy for more complex data distribution models or those with significant state and aggressive 

exploitation of data locality.
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Figure 5.5: Average activity distribution of a sample of 2 Google clusters, each containing over 20,000 

servers, over a period of 3 months. 

Another reason why it may be difficult to manufacture useful idle periods in large-scale 

distributed systems is the need for resilient distributed storage. GFS [GGL03] achieves higher 

resilience by distributing data chunk replicas for a given file across an entire cluster instead of 

concentrating them within only a small number of machines. This benefits file system performance 

by achieving fine granularity load balancing, as well as resiliency, because when a storage server 

crashes (or a disk fails), the replicas in that system can be reconstructed by thousands of machines, 

making recovery extremely efficient. The consequence of otherwise sound designs is that low traffic 

levels translate into lower activity for all machines instead of full idleness for a significant subset 

of them. Several practical considerations may also work against full idleness, as networked servers 

frequently perform many small background tasks on periodic intervals. The reports on the Tickless 

kernel project [SPV07] provide other examples of how difficult it is to create and maintain idleness.

5.2 THE ENERGY EFFICIENCY OF COMPUTING
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5.3 ENERGY-PROPORTIONAL COMPUTING

In an earlier article [BH07], we argued that the mismatch between server workload profile and 

server energy efficiency behavior must be addressed largely at the hardware level; software alone 

cannot efficiently exploit hardware systems that are efficient only when they are in inactive idle 

modes (sleep or standby) or when running at full speed. We believe that systems are inefficient 

when lightly used largely because of lack of awareness by engineers and researchers about the im-

portance of that region to energy efficiency.

We suggest that energy proportionality should be added as a design goal for computing compo-

nents. Ideally, energy-proportional systems will consume almost no power when idle (particularly in 

active idle states where they are still available to do work) and gradually consume more power as the 

activity level increases. A simple way to reason about this ideal curve is to assume linearity between 

activity and power usage, with no constant factors. Such a linear relationship would make energy 

efficiency uniform across the activity range, instead of decaying with decreases in activity levels. Note, 

however, that linearity is not necessarily the optimal relationship for energy savings. As shown in Fig-

ure 5.5(a), since servers spend relatively little time at high activity levels, it might be fine to decrease 

efficiency at high utilizations, particularly when approaching maximum utilization. However, doing so 

would increase the maximum power draw of the equipment, thus increasing facility costs.

Figure 5.6 illustrates the possible energy efficiency of two hypothetical systems that are 

more energy-proportional than typical servers. The curves in red correspond to a typical server, 

circa 2009. The green curves show the normalized power usage and energy efficiency of a more 

energy-proportional system, which idles at only 10% of peak power and with linear power vs. load 

behavior. Note how its efficiency curve is far superior to the one for the typical server; although its 

efficiency still decreases with the load level, it does so much less abruptly and remains at relatively 

high efficiency levels at 30% of peak load. The curves in blue show a system that also idles at 10% 

of peak but with a sublinear power versus load relationship in the region of load levels between 0% 

and 50% of peak load. This system has an efficiency curve that peaks not at 100% load, but around 

the 30–40% region. From an energy usage standpoint, such behavior would be a good match to the 

kind of activity spectrum for WSCs depicted in Figure 5.5(a).

The potential gains from energy proportionality in WSCs were evaluated by Fan et al. 

[FWB07] in their power provisioning study. They used traces of activity levels of thousands of ma-

chines over six months to simulate the energy savings gained from using more energy-proportional 

servers—servers with idle consumption at 10% of peak (similar to the green curves in Figure 5.6) 

instead of at 50% (such as the corresponding red curve). Their models suggest that energy usage 

would be halved through increased energy proportionality alone because the two servers compared 

had the same peak energy efficiency.
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Figure 5.6: Power and corresponding power efficiency of three hypothetical systems: a typical server 

with idle power at 50% of peak (Pwr50 and Eff50), a more energy-proportional server with idle 

power at 10% of peak (Pwr10 and Eff10), and a sublinearly energy-proportional server with idle 

power at 10% of peak (Pwr10sub and Eff10sub). The solid lines represent power % (normalized 

to peak power). The dashed lines represent efficiency as a percentage of power efficiency at peak. 

5.3.1 CAUSES OF POOR ENERGY PROPORTIONALITY

Although CPUs historically have a bad reputation regarding energy usage, they are not necessarily 

the only culprit for poor energy proportionality. Over the last few years, CPU designers have paid 

more attention to energy efficiency than their counterparts for other subsystems. The switch to 

multicore architectures instead of continuing to push for higher clock frequencies and larger levels 

of speculative execution is one of the reasons for this more power-efficient trend.

The relative contribution of the memory system to overall energy use has decreased over the 

last five years with respect to CPU energy use, reversing a trend of higher DRAM energy profile 

throughout the previous decade. The decrease in the fraction of energy used in memory systems 

is due to a combination of factors: newer DDR3 technology is substantially more efficient than 

previous technology (FBDIMMs). DRAM chip voltage levels have dropped from 1.8 V to below 

1.5 V, new CPU chips use more energy as more aggressive binning processes and temperature-con-

trolled “turbo” modes allow CPUs to run closer to their thermal envelope, and today’s systems have 

5.3 ENERGY-PROPORTIONAL COMPUTING
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a higher ratio of CPU performance per DRAM space (a result of DRAM technology scaling falling 

behind that of CPUs).
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Figure 5.7: Subsystem power usage in an x86 server as the compute load varies from idle to full usage. 

Figure 5.7 shows the power usage of the main subsystems for a Google server (circa 2012) as 

the compute load varies from idle to full activity levels. Unlike what we reported in the first edition, 

the CPU portion (everything inside a CPU socket) is once more the dominant energy consumer in 

servers, using two-thirds of the energy at peak utilization and about 40% when (active) idle. In our 

experience, server-class CPUs have a dynamic power range that is generally greater than 3.0x (more 

than 3.5x in this case), whereas CPUs targeted at the embedded or mobile markets can do even bet-

ter. By comparison, the dynamic range of memory systems, disk drives, and networking equipment 

is much lower: approximately 2.0x for memory, 1.3x for disks, and less than 1.2x for networking 

switches. This suggests that energy proportionality at the system level cannot be achieved through 

CPU optimizations alone, but instead requires improvements across all components. Networking 

and memory are both notable here. Future higher bandwidth memory systems are likely to increase 

the power of the memory subsystems. Also, given switch radix scaling challenges, the ratio of 

switches to servers is likely to increase, making networking power more important. Nevertheless, as 

we’ll see later, increased CPU energy proportionality over the last five years, and an increase in the 

fraction of overall energy use by the CPU, has resulted in more energy proportional servers today.
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5.3.2 IMPROVING ENERGY PROPORTIONALITY

Added focus on energy proportionality as a figure of merit in the past five years has resulted in no-

table improvements for server-class platforms. A meaningful metric of the energy proportionality 

of a server for a WSC is the ratio between the energy efficiency at 30% and 100% utilizations. A 

perfectly proportional system will be as efficient at 30% as it is at 100%. In the first edition (in early 

2009), that ratio for the top 10 SPECpower results was approximately 0.45, meaning that when 

used in WSCs, those servers exhibited less than half of their peak efficiency. As of June 2018, that 

figure has improved almost twofold, reaching 0.80. 
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Figure 5.8: Normalized system power vs. utilization in Intel servers from 2007–2018 (courtesy of 

David Lo, Google). The chart indicates that Intel servers have become more energy proportional in 

the 12-year period. 
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Figure 5.8 shows increasing proportionality in Intel reference platforms between 2007 and 

2018 [Sou12]. While not yet perfectly proportional, the more recent systems are dramatically more 

energy proportional than their predecessors.

5.3.3 ENERGY PROPORTIONALITY IN THE REST OF THE SYSTEM

While processor energy proportionality has improved, greater effort is still required for DRAM, 

storage, and networking. Disk drives, for example, spend a large fraction of their energy budget (as 

much as 70% of their total power for high RPM drives) simply keeping the platters spinning. Im-

proving energy efficiency and proportionality may require lower rotational speeds, smaller platters, 

or designs that use multiple independent head assemblies. Carrera et al. [CPB03] considered the 

energy impact of multi-speed drives and combinations of server-class and laptop drives to achieve 

proportional energy behavior. Sankar et al. [SGS08] explored different architectures for disk drives, 

observing that because head movements are relatively energy-proportional, a disk with lower 

rotational speed and multiple heads might achieve similar performance and lower power when 

compared with a single-head, high RPM drive.

Traditionally, data center networking equipment has exhibited rather poor energy propor-

tionality. At Google we have measured switches that show little variability in energy consumption 

between idle and full utilization modes. Historically, servers didn’t need much network bandwidth, 

and switches were expensive, so their overall energy footprint was relatively small (in the single digit 

percentages of total IT power). However, as switches become more commoditized and bandwidth 

needs increase, networking equipment could become responsible for 10–20% of the facility energy 

budget. At that point, their lack of proportionality will be a severe problem. To illustrate this point, 

let’s assume a system that exhibits a linear power usage profile as a function of utilization (u):

 P(u) = Pi + u(1-Pi).

In the equation above, Pi represents the system’s idle power, and peak power is normalized to 1.0. In 

such a system, energy efficiency can be estimated as u/P(u), which reduces to the familiar Amdahl 

Law formulation below:

       E(u) =         
1

          .
              

1 - Pi + Pi/u

Unlike the original Amdahl formula, we are not interested in very high values of u, since it 

can only reach 1.0. Instead, we are interested in values of utilization between 0.1 and 0.5. In that 

case, high values for Pi (low energy proportionality) will result in low efficiency. If every subcom-

ponent of a WSC is highly energy proportional except for one (say, networking or storage), that 

subcomponent will limit the whole system efficiency similarly to how the amount of serial work 

limits parallel speedup in Amdahl’s formula.
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Efficiency and proportionality of data center networks might improve in a few ways. Abts et 

al. [Abt+10] describe how modern plesiochronous links can be modulated to adapt to usage as well 

as how topology changes and dynamic routing can create more proportional fabrics. The IEEE’s 

Energy-Efficient Ethernet standardization effort [Chr+10], (802.3az), is also trying to pursue in-

teroperable mechanisms that allow link-level adaptation.

Finally, energy-proportional behavior is not only a target for electronic components but for 

the entire WSC system, including power distribution and cooling infrastructure.

5.3.4 RELATIVE EFFECTIVENESS OF LOW-POWER MODES

As discussed earlier, long idleness intervals would make it possible to achieve higher energy 

proportionality by using various kinds of sleep modes. We call these low-power modes inactive 

because the devices are not usable while in those modes, and typically a sizable latency and energy 

penalty is incurred when load is reapplied. Inactive low-power modes were originally developed 

for mobile and embedded devices, and they are very successful in that domain. However, most of 

those techniques are a poor fit for WSC systems, which would pay an inactive-to-active latency 

and energy penalty too frequently. The few techniques that can be successful in this domain have 

very low wake-up latencies, as is beginning to be the case with CPU low-power halt states (such 

as the ACPI C1E state).

Unfortunately, these tend to be the low-power modes with the smallest degrees of energy 

savings. Large energy savings are available from inactive low-power modes such as spun-down 

disk drives. A spun-down disk might use almost no energy, but a transition to active mode incurs 

a latency penalty 1,000 times higher than a regular access. Spinning up the disk platters adds an 

even larger energy penalty. Such a huge activation penalty restricts spin-down modes to situations 

in which the device will be idle for several minutes, which rarely occurs in servers.

Active low-power modes save energy at a performance cost while not requiring inactivity. 

CPU voltage-frequency scaling is an example of an active low-power mode because it remains able 

to execute instructions albeit at a slower rate. The (presently unavailable) ability to read and write 

to disk drives at lower rotational speeds is another example of this class of low-power modes. In 

contrast with inactive modes, active modes are useful even when the latency and energy penalties 

to transition to a high-performance mode are significant. Because active modes are operational, 

systems can remain in low-energy states for as long as they remain below certain load thresholds. 

Given that periods of low activity are more common and longer than periods of full idleness, the 

overheads of transitioning between active energy savings modes amortize more effectively.

The use of very low-power inactive modes with high-frequency transitions has been proposed 

by Meisner et al. [MGW09] and Gandhi et al. [Gan+] as a way to achieve energy proportionality. 

The systems proposed, PowerNap and IdleCap, assume that subcomponents have no useful low 

power modes other than full idleness and modulate active-to-idle transitions in all subcomponents 

5.3 ENERGY-PROPORTIONAL COMPUTING
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in order to reduce power at lower utilizations while limiting the impact on performance. The prom-

ise of such approaches hinges on system-wide availability of very low power idle modes with very 

short active-to-idle and idle-to-active transition times, a feature that seems within reach for proces-

sors but more difficult to accomplish for other system components. In fact, Meisner et al. [Mei+11] 

analyze the behavior of online data intensive workloads (such as web search) and conclude that 

existing low power modes are insufficient to yield both energy proportionality and low latency.

5.3.5 THE ROLE OF SOFTWARE IN ENERGY PROPORTIONALITY

We have argued that hardware components must undergo significant improvements in energy pro-

portionality to enable more energy-efficient WSC systems. However, more intelligent power man-

agement and scheduling software infrastructure plays an important role too. For some component 

types, achieving perfect energy-proportional behavior may not be a realizable goal. Designers will 

have to implement software strategies for intelligent use of power management features in existing 

hardware, using low-overhead inactive or active low-power modes, as well as implementing pow-

er-friendly scheduling of tasks to enhance energy proportionality of hardware systems. For example, 

if the activation penalties in inactive low-power modes can be made small enough, techniques like 

PowerNap (Meisner et al. [MGW09]) could be used to achieve energy-proportional behavior with 

components that support only inactive low-power modes.

This software layer must overcome two key challenges: encapsulation and performance 

robustness. Energy-aware mechanisms must be encapsulated in lower-level modules to minimize 

exposing additional infrastructure complexity to application developers; after all, WSC application 

developers already deal with unprecedented scale and platform-level complexity. In large-scale sys-

tems, completion of an end-user task also tends to depend on large numbers of systems performing 

at adequate levels. If individual servers begin to exhibit excessive response time variability as a result 

of mechanisms for power management, the potential for service-level impact is fairly high and can 

lead to the service requiring additional machine resources, resulting in minimal net improvements.

Incorporating end-to-end metrics and service level objective (SLO) targets from WSC 

applications into power-saving decisions can greatly help overcome performance variability chal-

lenges while moving the needle toward energy proportionality. During periods of low utilization, 

latency slack exists between the (higher latency) SLO targets and the currently achieved latency. 

This slack represents power saving opportunities, as the application is running faster than needed. 

Having end-to-end performance metrics is a critical piece needed to safely reduce the performance 

of the WSC in response to lower loads. Lo et al. [Lo+14] propose and study a system (PEGA-

SUS) that combines hardware power actuation mechanisms (Intel RAPL [Intel18]) with software 

control policies. The system uses end-to-end latency metrics to drive decisions on when to adjust 

CPU power in response to load shifts. By combining application-level metrics with fine-grained 
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hardware actuation mechanisms, the system is able to make overall server power more energy pro-

portional while respecting the latency SLOs of the WSC application.

Software plays an important role in improving cluster-level energy efficiency despite poor 

energy proportionality of underlying servers. By increasing the utilization of each individual server, 

cluster management software can avoid operating servers in the region of poor energy efficiency at 

low loads. Cluster scheduling software such as Borg [Ver+15] and Mesos [Hin+11] take advantage 

of resource sharing to significantly improve machine-level utilization through better bin-packing of 

disparate jobs (encapsulation). This is a net win for energy efficiency, where the poor energy propor-

tionality of the servers that make up a WSC is mitigated by running the server at higher utilizations 

closer to its most energy efficient operating point. An even larger benefit of higher utilization is 

that the number of servers needed to serve a given capacity requirement is reduced, which lowers 

the TCO dramatically due to a significant portion of the cost of a WSC being in concentrated in 

the CapEx costs of the hardware.

However, as server utilization is pushed higher and higher, performance degradation from 

shared resource contention becomes a bigger and bigger issue. For example, if two workloads that 

would each completely saturate DRAM bandwidth are co-located on the same server, then both 

workloads will suffer significantly degraded performance compared to when each workload is run 

in isolation. With workload agnostic scheduling, the probability of this scenario occurring increases 

as server capacity increases with the scaling of CPU core counts. To counter the effects of interfer-

ence, service owners tend to increase the resource requirements of sensitive workloads in order to 

ensure that their jobs will have sufficient compute capacity in the face of resource contention. This 

extra padding has an effect of lowering server utilization, thus also negatively impacting energy 

efficiency. To avoid this pitfall and to further raise utilization, contention aware scheduling needs to 

be utilized. Systems such as Bubble-Up [Mar+11], Heracles [Lo+15], and Quasar [DK14] achieve 

significantly higher server utilizations while maintaining strict application-level performance 

performance requirements. While the specific mechanisms differ for each system, they all share a 

common trait of using performance metrics in making scheduling and resource allocation decisions 

to provide both encapsulation and performance robustness for workloads running in the WSC. By 

overcoming these key challenges, such performance-aware systems can lead to significantly more 

resource sharing opportunities, increased machine utilization, and ultimately energy efficient WSCs 

that can sidestep poor energy proportionality.

Raghavendra et al. [Rag+08] studied a five-level coordinated power management scheme, 

considering per-server average power consumption, power capping at the server, enclosure, and 

group levels, as well as employing a virtual machine controller (VMC) to reduce the average power 

consumed across a collection of machines by consolidating workloads and turning off unused ma-

chines. Such intensive power management poses nontrivial control problems. For one, applications 

may become unstable if some servers unpredictably slow down due to power capping. On the 
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implementation side, power capping decisions may have to be implemented within milliseconds 

to avoid tripping a breaker. In contrast, overtaxing the cooling system may result in “only” a tem-

porary thermal excursion, which may not interrupt the performance of the WSC. Nevertheless, 

as individual servers consume more power with a larger dynamic range due to improving energy 

proportionality in hardware, power capping becomes more attractive as a means of fully realizing 

the compute capabilities of a WSC.

Wu et al. [Wu+16a] proposed and studied the use of Dynamo, a dynamic power capping 

system in production at Facebook. Dynamo makes coordinated power decisions across the entire 

data center to safely oversubscribe power and improve power utilization. Using Intel RAPL as the 

node-level enforcement mechanism to cap machine power, the system is workload-aware to ensure 

that high priority latency-sensitive workloads are throttled only as a measure of last resort. As a re-

sult of deploying Dynamo, the authors note a significant boost in power capacity utilization at their 

data centers through increased use of dynamic core frequency boosting; namely, Intel Turbo Boost 

[IntTu], which can run CPU cores at higher frequencies given sufficient electrical and thermal 

headroom. Much like PEGASUS, Dynamo combines application-specific knowledge with fine-

grained hardware knobs to improve the realizable compute capability of the WSC while respecting 

application performance boundaries.

Technologies such as Turbo Boost reflect a growing trend in CPU design of adding addi-

tional dynamic dimensions (CPU activity) to trade off power and performance. The behavior of 

Turbo Boost is highly dependent on the number of active cores and the compute intensity of the 

workload. For example, CPU core frequency can vary by as much as 85% on Intel Skylake server 

CPUs [IntXe]. Another manifestation of this phenomenon takes the form of wider vector instruc-

tions, such as AVX-512, which can cause large drops in CPU core frequency due to its usage. On 

the one hand, these techniques enable higher peak performance, but on the other hand, they in-

crease performance variability across the WSC. Dynamic frequency scaling decisions made in hard-

ware present a set of new challenges in achieving performance robustness, and software designers 

must be cognizant of such effects in hardware and to handle the resulting performance variation.

5.4 ENERGY EFFICIENCY THROUGH SPECIALIZATION

So far we have assumed traditional WSCs: collections of servers, each with CPUs, DRAM, net-

working, and disks; all computation handled by general purpose CPUs. However, recapping the dis-

cussion in Chapter 4, Dennard scaling has now ended (due to fundamental device limitations that 

prevent operating voltage from further being scaled due to static leakage concerns), and Moore’s 

Law is well on its way to being sunset (as chip manufacturers struggle with maintaining high yield 

while further shrinking transistor sizes). Looking forward, general purpose CPUs are facing a 
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daunting task when it comes to further energy efficiency improvements. This issue is orthogonal to 

energy proportionality, as it is about improving energy efficiency at peak compute load.

While general-purpose CPUs improve marginally over time when it comes to energy effi-

ciency improvements at peak load, the demand for compute is growing at a steady rate. Currently, 

this demand is being driven by technologies powered by artificial intelligence and machine learn-

ing, which require extraordinary amounts of compute commensurate with large model sizes and 

gargantuan amounts of data being fed into such workloads. While general-purpose CPUs are fully 

capable of performing the operations necessary for artificial intelligence, they are not optimized to 

run these kinds of workloads.

Specialized accelerators are designed for running one particular class of workloads well. The 

hardware for these accelerators can be general purpose graphics processing units (GPGPUs), field 

programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs), to name 

a few. Unlike general-purpose CPUs, specialized accelerators are incapable of running all kinds of 

workloads with reasonable efficiency. That is because these accelerators trade off general compute 

capabilities for the ability to run a subset of workloads with phenomenal performance and effi-

ciency. High-performance server class CPUs are designed to extract the maximum performance 

out of challenging workloads with a wide variety of potential kinds of computations, unpredictable 

control flows, irregular to non-existent parallelism, and complicated data dependencies. On the 

other hand, specialized accelerators need to perform well only for a specific kind of computation 

that provides opportunities for domain-specific optimizations.

For example, consider Google’s Tensor Processing Unit (TPU) [ Jou+17]. This custom ASIC 

was designed to handle the inference portion of several machine learning workloads. The energy 

efficiency of the TPU benefited greatly from the specialization of compute. The TPU is powered by 

a systolic array, an energy efficient construct that excels at performing regular computations, such as 

matrix multiplication. The use of a systolic array allows the TPU to avoid a high access rate to large 

SRAM arrays that would otherwise consume significant amounts of power. In addition, compared 

to a modern superscalar out-of-order CPU, the control logic for a TPU is relatively simple and thus 

much more energy efficient. Since parallelism in machine learning applications is easier to extract, 

the TPU has no need for the complicated and energy hungry control hardware found in CPUs. 

These and other design decisions for the TPU unlocked a vast improvement in energy efficiency. 

Figure 5.9 shows how the TPU is orders of magnitude more energy efficient for inference 

tasks compared to a contemporary server CPU of its time (Intel Haswell). However, while the 

energy efficiency is high, the energy proportionality of the TPU happens to be much worse than 

that of the CPU, as it consumes 88% of peak power at 10% load. The designers note that the poor 

energy proportionality is not due to fundamental reasons but to tradeoffs around design expediency. 

Nevertheless, there is an open opportunity to apply the same learnings from general compute, such 

as improved energy proportionality, to specialized accelerators as well.

5.4 ENERGY EFFICIENCY THROUGH SPECIALIZATION
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Specialized accelerators have an important role to play in improving the energy efficiency of 

WSCs of the future. Large emerging workloads such as machine learning are ripe targets for ac-

celeration due to the sheer volume of compute they demand. The challenge is to identify workloads 

that benefit from being implemented on specialized accelerators and to progress from concept to 

product in a relatively short timespan. In addition, the same insights from improving energy effi-

ciency of servers (such as energy proportionality) also apply to accelerators. Nevertheless, not all 

workloads can be put on specialized compute hardware. These can be due to the nature of the work-

load itself (general-purpose CPUs can be viewed as accelerators for complex, branchy, and irregular 

code) or due to it not having enough deployment volume to justify the investment in specialized 

hardware. Thus, it is still important to improve the overall energy efficiency of the entire data center, 

general-purpose servers included, in conjunction with improving energy efficiency of accelerators.
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Figure 5.9: Relative performance/watt (TDP) of GPU server (blue bar) and TPU server (red bar) to 
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shows its ratio to the CPU server and the blue bar shows its relation to the GPU server. Total includes 

host server power, but incremental doesn’t. GM and WM are the geometric and weighted means 

[ Jou+17].
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5.5 DATA CENTER POWER PROVISIONING 

Energy efficiency optimizations reduce electricity costs. In addition, they reduce construction costs. 

For example, if free cooling eliminates the need for chillers, then we don’t have to purchase and 

install those chillers, nor do we have to pay for generators or UPSs to back them up. Such construc-

tion cost savings can double the overall savings from efficiency improvements.

Actually using the provisioned power of a facility is equally important. For example, if a 

facility operates at 50% of its peak power capacity, the effective provisioning cost per watt used is 

doubled. This incentive to fully use the power budget of a data center is offset by the risk of exceed-

ing its maximum capacity, which could result in outages.

5.5.1 DEPLOYING THE RIGHT AMOUNT OF EQUIPMENT

How many servers can we install in a 1 MW facility? This simple question is harder to answer than 

it seems. First, server specifications usually provide very conservative values for maximum power 

consumption. Some vendors, such as Dell and HP, offer online power calculators [DEC, HPPC] 

to provide better estimates, but it may be necessary to measure the actual power consumption of 

the dominant applications manually.

Second, actual power consumption varies significantly with load (thanks to energy propor-

tionality), and it may be hard to predict the peak power consumption of a group of servers. While 

any particular server might temporarily run at 100% utilization, the maximum utilization of a group 

of servers probably isn’t 100%. But to do better, we’d need to understand the correlation between 

the simultaneous power usage of large groups of servers. The larger the group of servers and the 

higher the application diversity, the less likely it is to find periods of simultaneous very high activity. 

5.5.2 OVERSUBSCRIBING FACILITY POWER

As soon as we use anything but the most conservative estimate of equipment power consumption 

to deploy clusters, we incur a certain risk that we’ll exceed the available amount of power; that is, 

we’ll oversubscribe facility power. A successful implementation of power oversubscription increases 

the overall utilization of the data center’s power budget while minimizing the risk of overload 

situations. We will expand on this issue because it has received much less attention in technical 

publications than the first two steps listed above, and it is a very real problem in practice [Man09].

Fan et al. [FWB07] studied the potential opportunity of oversubscribing facility power by 

analyzing power usage behavior of clusters with up to 5,000 servers running various workloads at 

Google during a period of six months. One of their key results is summarized in Figure 5.10, which 

shows the cumulative distribution of power usage over time for groups of 80 servers (Rack), 800 

servers (PDU), and 5,000 servers (Cluster).

5.5 DATA CENTER POWER PROVISIONING
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Power is normalized to the peak aggregate power of the corresponding group. For example, 

the figure shows that although rack units spend about 80% of their time using less than 65% of their 

peak power, they do reach 93% of their peak power at some point during the six month observation 

window. For power provisioning, this indicates a very low oversubscription opportunity at the rack 

level because only 7% of the power available to the rack was stranded. However, with larger machine 

groups, the situation changes. In particular, the whole cluster never ran above 72% of its aggregate 

peak power. Thus, if we had allocated a power capacity to the cluster that corresponded to the sum 

of the peak power consumption of all machines, 28% of that power would have been stranded. This 

means that within that power capacity, we could have hosted nearly 40% more machines.
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Figure 5.10: Cumulative distribution of time that groups of machines spend at or below a given power 

level (power level is normalized to the maximum peak aggregate power for the corresponding group-

ing) (Fan et al. [FWB07]). 

This study also evaluates the potential of more energy-proportional machines to reduce peak 

power consumption at the facility level. It suggests that lowering idle power from 50% to 10% of 

peak (that is, going from the red to the green curve in Figure 5.6) can further reduce cluster peak 
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power usage by more than 30%. This would be equivalent to an additional 40%+ increase in facility 

hosting capacity.

The study further found that mixing different workloads within a cluster increased the op-

portunities for power oversubscription because this reduces the likelihood of synchronized power 

peaks across machines. Once oversubscription is applied, the system needs a safety mechanism to 

handle the possibility that workload changes may cause the power draw to exceed the data center 

capacity. This can be accomplished by always allocating some fraction of the computing resources 

to a workload that runs in a lower priority class or that otherwise does not have strict deadlines to 

meet (many batch workloads may fall into that category). Such workloads can be quickly paused or 

aborted to reduce facility load. Provisioning should not be so aggressive as to require this mecha-

nism to be triggered often, which might be the case if oversubscription is applied at the rack level, 

for example.

In a real deployment, it’s easy to end up with an underutilized facility even when you pay 

attention to correct power ratings. For example, a facility typically needs to accommodate future 

growth, but keeping space open for such growth reduces utilization and thus increases unit costs. 

Various forms of fragmentation can also prevent full utilization. Perhaps we run out of space in a 

rack because low-density equipment used it up, or we can’t insert another server because we’re out 

of network ports, or we’re out of plugs or amps on the power strip. For example, a 2.5 kW circuit 

supports only four 520 W servers, limiting utilization to 83% on that circuit. Since the lifetimes of 

various WSC components differ (servers might be replaced every 3 years, cooling every 10 years, 

networking every 4 years, and so on) it’s difficult to plan for 100% utilization, and most organiza-

tions don’t. 

Management of energy, peak power, and temperature of WSCs are becoming the targets of 

an increasing number of research studies. Chase et al. [Cha+01c], G. Chen et al. [Che+07], and Y. 

Chen et al. [Che+05] consider schemes for automatically provisioning resources in data centers, 

taking energy savings and application performance into account. Raghavendra et al. [Rag+08] 

describe a comprehensive framework for power management in data centers that coordinates 

hardware-level power capping with virtual machine dispatching mechanisms through the use of 

a control theory approach. Femal and Freeh [FF04, FF05] focus specifically on the issue of data 

center power oversubscription and describe dynamic voltage-frequency scaling as the mechanism 

to reduce peak power consumption. Managing temperature is the subject of the systems proposed 

by Heath et al. [Hea+06] and Moore et al. [Moo+05]. Finally, Pedram [Ped12] provides an intro-

duction to resource provisioning and summarizes key techniques for dealing with management 

problems in the data center. Incorporating application-level knowledge to safely save power by 

re-shaping its latency distribution through DVFS is studied by Lo et al. [Lo+14], Kasture et al. 

[Kas+15], and Hsu et al. [Hsu+15].

5.5 DATA CENTER POWER PROVISIONING
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5.6 TRENDS IN SERVER ENERGY USAGE

While in the past dynamic voltage and frequency scaling (DVFS) was the predominant mechanism 

for managing energy usage in servers, today we face a different and more complex scenario. Given 

lithography scaling challenges, the operating voltage range of server-class CPUs is very narrow, 

resulting in ever decreasing gains from DVFS. 

Figure 5.11 shows the potential power savings of CPU dynamic voltage scaling (DVS) 

for the same server by plotting the power usage across a varying compute load for three frequen-

cy-voltage steps. Savings of approximately 10% are possible once the compute load is less than two 

thirds of peak by dropping to a frequency of 1.8 GHz (above that load level the application violates 

latency SLAs). An additional 10% savings is available when utilization drops to one third by going 

to a frequency of 1 GHz. However, as the load continues to decline, the gains of DVS once again 

return to a maximum of 10%. Instead, modern CPUs increasingly rely on multiple power planes 

within a die as their primary power management mechanism, allowing whole sections of the chip to 

be powered down and back up quickly as needed. As the number of CPUs in a die increases, such 

coarse-grained power gating techniques will gain greater potential to create energy proportional 

systems.
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A second trend is that CPUs continue to outpace other server components in energy propor-

tionality improvements. The result is a power budget breakdown with larger energy fractions from 

non-CPU subsystems at lower utilizations.

5.6.1 USING ENERGY STORAGE FOR POWER MANAGEMENT 

Several studies [Gov+, Wan+, Kon+12] propose using energy stored in the facility’s backup systems 

(such as UPS batteries) to optimize facility performance or reduce energy costs. Stored energy 

could be used to flatten the facility’s load profile (using less utility power when it’s most expensive), 

mitigate supply variability in a wind-powered facility, or manage short demand peaks in oversub-

scribed facilities (using stored energy instead of capping the load).

In our opinion, the most promising use of energy storage in power management consists of 

managing short demand peaks or short-term supply reductions (say, when a data center is partly 

powered by renewable energy sources, such as wind). Power capping systems need some time to 

react intelligently to demand peak events, and may need to set peak provisioning levels well below 

the maximum breaker capacity in order to allow time for power capping to respond. A power cap-

ping system that can draw from energy storage sources for just a few seconds during an unexpected 

peak would allow the facility to safely operate closer to its maximum capacity while requiring a 

relatively modest amount of additional energy storage capacity.

To our knowledge no such power management systems have yet been used in production 

systems. Deploying such a system would be difficult and potentially costly. Besides the control com-

plexity, the additional cost of batteries would be significant, since we couldn’t just reuse the existing 

UPS capacity for power management, as doing so would make the facility more vulnerable in an 

outage. Furthermore, the types of batteries typically used in UPS systems (lead-acid) don’t age well 

under frequent cycling, so that more expensive technologies might be required. While some have 

argued that expanded UPSs would be cost effective [Kon+12], we believe that the economic case 

has not yet been made in practice. 

5.7 SUMMARY

Energy efficiency is a key cost driver for WSCs, and we expect energy usage to become an in-

creasingly important factor in WSC design. The current state of the industry is poor: the average 

real-world data center and the average server are far too inefficient, mostly because efficiency has 

historically been neglected and has taken a backseat relative to reliability, performance, and capital 

expenditures. As a result, the average WSC wastes two thirds or more of its energy.

The upside of this history of neglect is that sizable improvements are almost trivial to ob-

tain—an overall factor of two in efficiency improvements is possible, without much risk, by simply 

applying best practices to data center and server designs. Unfortunately, the path beyond this 

5.6 TRENDS IN SERVER ENERGY USAGE
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low-hanging fruit is more difficult, posing substantial challenges to overcome inherently complex 

problems and often unfavorable technology trends. Once the average, data center achieves state-of-

the-art PUE levels, and servers are deployed with high-efficiency power supplies that are available 

today, the opportunity for further efficiency improvements in those areas drops to below 40%. From 

a research and development standpoint, greater opportunities for gains in energy efficiency from 

now on will need to come from computer scientists and engineers, and less so from mechanical or 

power conversion specialists (though large opportunities remain for mechanical and power engi-

neers in reducing facility costs in particular).

First, power and energy must be better managed to minimize operational cost. Power deter-

mines overall facility cost because much of the construction cost is directly related to the maximum 

power draw that must be supported. Overall energy usage determines the electricity bill as well 

as much of the environmental impact. Today’s servers can have high maximum power draws that 

are rarely reached in practice, but that must be accommodated or limited to avoid overloading the 

facility’s power delivery system. Power capping promises to manage the aggregate power of a pool 

of servers, but it is difficult to reconcile with availability; that is, the need to use peak processing 

power in an emergency caused by a sudden spike in traffic or by a failure in another data center. 

In addition, peak server power is increasing despite the continuing shrinking of silicon gate sizes, 

driven by a combination of increasing operating frequencies, larger cache and memory sizes, and 

faster off-chip communication (DRAM and I/O buses as well as networking speeds).

Second, today’s hardware does not gracefully adapt its power usage to changing load condi-

tions, and as a result, a server’s efficiency degrades seriously under light load. Energy proportionality 

promises a way out of this dilemma but may be challenging to implement across all subsystems. 

For example, disks do not naturally lend themselves to lower-power active states. Systems for work 

consolidation that free up and power down entire servers present an avenue to create energy-pro-

portional behavior in clusters built with non-energy-proportional components but are harder to 

implement and manage, requiring transparent process migration and degrading the WSC’s ability 

to react to sudden upticks in load. Furthermore, high-performance and high-availability distributed 

systems software tends to spread data and computation in a way that reduces the availability of 

sufficiently large idle periods on any one system. Energy-management-aware software layers must 

then manufacture idleness in a way that minimizes the impact on performance and availability.

Third, energy optimization is a complex end-to-end problem, requiring intricate coordina-

tion across hardware, operating systems, VMs, middleware, applications, and operations organiza-

tions. Even small mistakes can ruin energy savings; for example, when a suboptimal device driver 

generates too many interrupts or when network chatter from neighboring machines keeps a ma-

chine from quiescing. There are too many components involved for perfect coordination to happen 

naturally, and we currently lack the right abstractions to manage this complexity. In contrast to 
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hardware improvements, such as energy-proportional components that can be developed in relative 

isolation, solving this end-to-end problem at scale will be much more difficult.

Fourth, the hardware performing the computation can be made more energy efficient. Gen-

eral purpose CPUs are generally efficient for any kind of computation, which is to say that they 

are not super efficient for any particular computation. ASICs and FPGAs trade off generalizability 

for better performance and energy efficiency. Special-purpose accelerators (such as Google’s tensor 

processing units) are able to achieve orders of magnitude better energy efficiency compared to gen-

eral purpose processors. With the sunset of Moore’s Law and the breakdown of Dennard scaling, 

specializing compute will likely keep its place as one of the remaining tools in the shrinking toolbox 

of hardware changes that can further improve energy efficiency.

Finally, this discussion of energy optimization shouldn’t distract us from focusing on improv-

ing server utilization, since that is the best way to improve cost efficiency. Underutilized machines 

aren’t only inefficient per unit of work, they’re also expensive. After all, you paid for all those servers, 

so you’d better keep them doing something useful. Better resource sharing through cluster-level 

scheduling and performance-aware scheduling have made very promising forward progress in in-

creasing server utilization while maintaining workload encapsulation and performance robustness.

5.7 SUMMARY
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CHAPTER 6

Modeling Costs

As described in Chapter 1, one of the defining characteristics of  WSCs is their emphasis on cost 

efficiency at scale. To better understand this, let us examine the total cost of ownership (TCO) of 

a data center. At the top level, costs split into capital expenses (Capex) and operational expenses 

(Opex). Capex refers to investments that must be made upfront and that are then depreciated over 

a certain timeframe. Examples are the construction cost of a data center or the purchase price of 

a server. Opex refers to the recurring monthly costs of actually running the equipment, excluding 

depreciation: electricity costs, repairs and maintenance, salaries of on-site personnel, and so on. 

Thus, we have:

TCO = data center depreciation + data center Opex + server depreciation + server Opex.

We focus on top-line estimates in this chapter, simplifying the models where appropriate. 

More detailed cost models can be found in the literature [Pat+05, Koo+07]. For academic purposes, 

our simplified model is accurate enough to model all major costs; the primary source of inaccuracy 

compared to real-world data centers will be the model input values, such as the cost of construction.

6.1 CAPITAL COSTS

Data center construction costs vary widely depending on design, size, location, and desired speed of 

construction. Not surprisingly, adding reliability and redundancy makes data centers more expen-

sive, and very small or very large data centers tend to be more expensive (the former because fixed 

costs cannot be amortized over many watts, the latter because large data centers require additional 

infrastructure, such as electrical substations). 

Table 6.1 shows a range of typical data center construction costs, expressed in dollars per 

watt of usable critical power, drawn from a variety of sources. In general, most large enterprise data 

centers cost around $9–13 per watt to build, and smaller ones cost more. The cost numbers in the 

table below shouldn’t be directly compared since the scope of the projects may differ. For example, 

the amount quoted may or may not include land or the cost of a pre-existing building.
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Table 6.1: Range of data center construction costs expressed in U.S. dollars per watt of critical 

power. Critical power is defined as the peak power level that can be provisioned to IT equipment

Cost/W Source

$12-25 Uptime Institute estimates for small- to medium-sized data centers; the lower value 

is for Tier I designs that are rarely built in practice [TS06].

$9-13 Dupont Fabros 2011 Form 10K report [DuP11] contains financial information sug-

gesting the following cost for its most recent facilities (built in 2010 and 2011; see 

page 39 for critical load and page 76 for cost):

$204M     for     18.2     MW     (NJ1 Phase I)     =>     $11.23/W

$116M     for     13        MW     (ACC6 Phase I) =>     $8.94/W

$229M     for     18.2     MW     (SC1 Phase 1)    =>     $12.56/W

$8-10 Microsoft’s investment of $130M for 13.2 MW ($9.85/W) capacity expansion to 

its data center in Dublin, Ireland [Mic12].

Facebook is reported to have spent $210M for 28 MW ($7.50/W) at its Prineville 

data center [Mil12].

Historical costs of data center construction of Tier III facilities range from $9–$13 per watt. 

The recent growth of cloud computing is driving a data center construction boom. North American 

Data Center reports5 nearly 300 MW under construction in 2017, a 5-year high. As data center 

construction projects continue to increase, costs are falling. The costs of most recent constructions 

range from $7–$9 per watt, as revealed in Form 10K reports from companies including Digital 

Realty Trust (DLR), CyrusOne (CONE), and QTS Realty Trust (QTS) [GDCC].

Characterizing cost in terms of dollars per watt makes sense for larger data centers (where 

size-independent fixed costs are a relatively small fraction of overall cost) because all of the data 

center’s primary components—power, cooling, and space—roughly scale linearly with watts. Typ-

ically, approximately 60–80% of total construction cost goes toward power and cooling, and the 

remaining 20–40% toward the general building and site construction.

Cost varies with the degree of desired redundancy and availability, and thus we always express 

cost in terms of dollars per critical watt; that is, watts that can actually be used by IT equipment. For 

example, a data center with 20 MW of generators may have been built in a 2N configuration and 

provide only 6 MW of critical power (plus 4 MW to power chillers). Thus, if construction costs 

$120 million, it costs $20/W, not $6/W. Industry reports often do not correctly use the term critical 

power, so our example data center might be described as a 20 MW data center or even a 30 MW 

data center if it is supplied by an electrical substation that can provide 30 MW. 

Frequently, construction cost is quoted in dollars per square foot, but that metric is less use-

ful because it cannot adequately compare projects and is used even more inconsistently than cost 

5 https://nadatacenters.com/wp-content/uploads/NADC-Newsletter-2018-R4.pdf
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expressed in dollars per watt. In particular, there is no standard definition of what space to include 

or exclude in the computation, and the metric does not correlate well with the primary cost driver 

of data center construction, namely critical power. Thus, most industry experts avoid using dollars 

per square foot to express cost.

The monthly depreciation cost (or amortization cost) that results from the initial construc-

tion expense depends on the duration over which the investment is amortized (related to its ex-

pected lifetime) and the assumed interest rate. Typically, data centers are depreciated over periods of 

15–20 years. Under U.S. accounting rules, it is common to use straight-line depreciation where the 

value of the asset declines by a fixed amount each month. For example, if we depreciate a $12/W 

data center over 12 years, the depreciation cost is $0.08/W per month. If we took out a loan to 

finance construction at an interest rate of 8%, the associated monthly interest payments add an 

additional $0.05/W, for a total of $0.13/W per month. Typical interest rates vary over time, but 

many companies use a cost of capital rate in the 7–12% range.

Server costs are computed similarly, except that servers have a shorter lifetime and thus are 

typically depreciated over 3–4 years. To normalize server and data center costs, it is useful to char-

acterize server costs per watt as well, using the server’s peak real-life power consumption as the 

denominator. For example, a $4,000 server with an actual peak power consumption of 500 W costs 

$8/W. Depreciated over 4 years, the server costs $0.17/W per month. Financing that server at 8% 

annual interest adds another $0.02/W per month, for a total of $0.19/W per month.

As discussed in earlier chapters, with the slowdown of Moore’s law, WSCs are increasingly 

turning to hardware accelerators to improve performance per watt. The Capex of internally de-

veloped accelerators also includes non-recurring engineering (NRE), the cost of designing and 

fabricating the ASIC, as well the surrounding infrastructure. If developing and deploying 100,000 

accelerators has a one time cost of $50M with each accelerator consuming 200 W, depreciated over 

4 years, the NRE cost is $0.05/W per month. 

6.2 OPERATIONAL COSTS

Data center operational expense (Opex) is harder to characterize because it depends heavily on 

operational standards (for example, how many security guards are on duty at the same time or how 

often generators are tested and serviced) as well as on the data center’s size: larger data centers are 

cheaper because fixed costs are amortized better. Costs can also vary depending on geographic loca-

tion (climate, taxes, salary levels, and so on) and on the data center’s design and age. For simplicity, 

we will break operational cost into a monthly charge per watt that represents items like security 

guards and maintenance, and electricity. Typical operational costs for multi-megawatt data centers 

in the U.S. range from $0.02–$0.08/W per month, excluding the actual electricity costs.

6.2 OPERATIONAL COSTS
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Similarly, servers have an operational cost. Because we are focusing just on the cost of run-

ning the infrastructure itself, we will focus on just hardware maintenance and repairs as well as 

electricity costs. Server maintenance costs vary greatly depending on server type and maintenance 

standards (for example, response times for four hours vs. two business days).

Also, in traditional IT environments, the bulk of the operational cost lies in the applications; 

that is, software licenses and the cost of system administrators, database administrators, network 

engineers, and so on. We are excluding these costs here because we are focusing on the cost of run-

ning the physical infrastructure, but also because application costs vary greatly depending on the 

situation. In small corporate environments, it is not unusual to see one system administrator per a 

few tens of servers, resulting in a substantial per-machine annual cost [RFG02]. Many published 

studies attempt to quantify administration costs, but most of them are financed by vendors trying 

to prove the cost-effectiveness of their products, so that reliable unbiased information is scarce. 

However, it is commonly assumed that large-scale applications require less administration, scaling 

to perhaps 1,000 servers per administrator.

6.3 CASE STUDIES

Given the large number of variables involved, it is best to illustrate the range of cost factors by 

looking at a small number of case studies that represent different kinds of deployments. 

First, we consider a typical new multi-megawatt data center in the U.S. (something closer 

to the Uptime Institute’s Tier III classification), fully populated with servers at the high end of 

what can still be considered a volume rack-mountable server product. For this example we chose a 

Dell PowerEdge FC640, with 2 CPUs, 128 GB of RAM, and 960 GB SSD. This server draws 340 

W at peak per Dell’s configuration planning tool and costs approximately $5,000 as of 2018. The 

remaining base case parameters chosen are as follows.

• The cost of electricity is the 2018 average U.S. industrial rate of 6.7 cents/kWh. 

• The interest rate a business must pay on loans is 8%, and we finance the servers with 

a 3-year interest-only loan.

• The cost of data center construction is $10/W, amortized over 206 years. 

• Data center Opex is $0.04/W per month. 

• The data center has a power usage effectiveness (PUE) of 1.5, the current industry 

average. 

6 We used 12 years in the first edition of the book, but 20 is more consistent with today’s industry financial ac-
counting practices.
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• Server lifetime is 3 years, and server repair and maintenance is 5% of Capex per year. 

• The server’s average power draw is 75% of peak power.

Figure 6.1 shows a breakdown of the yearly TCO for case A among data center and serv-

er-related Opex and Capex components. 
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Figure 6.1: TCO cost breakdown for case study A. 

In this example, typical of classic data centers, the high server capital costs dominate overall 

TCO, with 64% of the monthly cost related to server purchase and maintenance. However, com-

modity-based lower-cost (and perhaps lower-reliability) servers, or higher power prices, can change 

the picture quite dramatically. 

For case B (Figure 6.2), we assume a cheaper, faster, higher-powered server consuming 600 

W at peak and costing only $2,000 in a location where the electricity cost is $0.10/kWh. In this 

case, data center-related costs rise to 44% of the total, and energy costs rise to 19%, with server costs 

falling to 36%. In other words, the server’s hosting cost (that is, the cost of all infrastructure and 

power to house it) is almost twice the cost of purchasing and maintaining the server in this scenario.

 

6.3 CASE STUDIES
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Figure 6.2: TCO cost breakdown for case study B (lower-cost, higher-power servers). 

Note that even with the assumed higher power price and higher server power, the absolute 

3-year TCO in case B is lower than in case A ($6,310 vs. $7,812) because the server is so much 

cheaper. The relative importance of power-related costs may increase, as shown in case B, because 

the power consumption (and performance) of CPUs has more than doubled between 2010 and 

2018 (about 14% annually) [Techa], whereas the sale price of low-end servers has stayed relatively 

stable. As a result, the dollars per watt cost of server hardware is trending down, whereas electricity 

and construction costs are trending up. This indicates that over the long term, data center facility 

costs, which are proportional to power consumption, will become a larger fraction of total cost.

6.4 REAL-WORLD DATA CENTER COSTS

In fact, real-world data center costs are even higher than modeled so far. All of the models pre-

sented so far assume that the data center is 100% full and the servers are fairly busy (75% of peak 

power corresponds to a CPU utilization of approximately 50%; see Chapter 5). In reality, this is 

often not the case. For example, because data center space takes a while to build, we may want to 

keep a certain amount of empty space to accommodate future deployments. In addition, server 

layouts assume overly high (worst case) power consumption. For example, a server may consume up 

to 500 W with all options installed (maximum memory, disk, PCI cards, and so on), but the actual 

configuration deployed may only use 300 W. If the server layout assumes the nameplate rating of 

500 W, we will reach a utilization factor of only 60% and thus the actual data center cost per server 
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increases by 1.66x. Thus, in reality, the actual monthly cost per server is often considerably higher 

than shown above because the data center-related costs increase inversely proportional to data 

center power utilization.

As discussed in Chapter 5, reaching a high data center power utilization is not as simple 

as it may seem. Even if the vendor provides a power calculator to compute the actual maximum 

power draw for a particular configuration, that value will assume 100% CPU utilization. If we in-

stall servers based on that value and they run at only 30% CPU utilization on average (consuming 

200 W instead of 300 W), we just stranded 30% of the data center capacity. However, if we install 

servers based on the average value of 200 W and at month’s end the servers actually run at near full 

capacity for a while, our data center will overheat or trip a breaker. Similarly, we may choose to add 

additional RAM or disks to servers at a later time, which would require physical decompaction of 

server racks if we left no slack in our power consumption calculations. Thus, in practice, data center 

operators leave a fair amount of slack space to guard against these problems. Reserves of 20–50% 

are common, which means that real-world data centers rarely run at anywhere near their rated ca-

pacity. In other words, a data center with 10 MW of critical power will often consume a monthly 

average of just 4–6 MW of actual critical power (plus PUE overhead).

6.5 MODELING A PARTIALLY FILLED DATA CENTER

To model a partially filled data center, we simply scale the Capex and Opex costs (excluding power) 

by the inverse of the occupancy factor. For example, a data center that is only two-thirds full has 

a 50% higher Opex. Taking case B above but with a 50% occupancy factor, data center costs com-

pletely dominate the cost (Figure 6.3), with only 25% of total cost related to the server. Given the 

need for slack power just discussed, this case is not as far-fetched as it may sound. Thus, improving 

actual data center usage (using power capping, for example) can substantially reduce real-world data 

center costs. In absolute dollars, the server TCO in a completely full data center is $6,310 versus 

$8,981 in a half-full data center—all that for a server that we assumed cost just $2,000 to purchase!

Partially used servers also affect operational costs in a positive way because the servers use less 

power. Of course, the savings are questionable because the applications running on those servers are 

likely to produce less value. Our TCO model cannot capture this effect because it is based on the 

cost of the physical infrastructure only and excludes the application running on this hardware. To 

measure this end-to-end performance, we can measure a proxy for application value (for example, 

the number of bank transactions completed or the number of web searches) and divide the TCO 

by that number. For example, if we had a data center costing $1 million per month and completing 

100 million transactions per month, the cost per transaction would be 1 cent. On the other hand, if 

traffic is lower at one month and we complete only 50 million transactions, the cost per transaction 

doubles to 2 cents. In this chapter, we have focused exclusively on hardware costs, but it is important 

6.5 MODELING A PARTIALLY FILLED DATA CENTER
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to keep in mind that, ultimately, software performance and server utilization matter just as much. 

Such issues are also exacerbated in the context of accelerators that deliver higher value but also 

incur additional costs for the software ecosystem support. 
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Figure 6.3: TCO case study C (partly filled facility). 

6.6 THE COST OF PUBLIC CLOUDS

Instead of building your own data center and server, you can rent a VM from a public cloud pro-

vider such as Google’s Compute Engine or Amazon’s EC2. The Dell server used in our example 

is roughly comparable to a GCE n1-standard-16 instance, assumed at $0.76/hr as an on-demand 

instance, or $0.34/hr with a 3-year commitment.

Before we compare these with our cost model, consider the two very different pricing plans. 

Spot pricing is “pay-as-you-go.” You can start and stop a VM at any time, so if you need one for only 

a few days a year, on-demand pricing will be vastly cheaper than other alternatives. For example, you 

may need two servers to handle your peak load for six hours per day on weekdays, and one server 

during the rest of the year. With a spot instance, you pay for only 30 hr per week vs. 168 hr if you 

owned the server. However, spot instances are fairly expensive: at $0.76/hr, using one for three years 

at full price will cost $19,972, vs. roughly $8,000 for an owned server. (Note, however, that this does 

not burden the costs for other factors like utilization as discussed earlier.)

If you need a server for an extended period, public cloud providers will lower the hourly price 

in exchange for a long-term commitment and an upfront fee. Using the previous three-year con-
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tract as an example, a fully utilized instance would cost $8,987, about 45% of what you would pay 

for an on-demand instance for three years. This is competitive with the cost of an owned machine, 

possibly even cheaper since you could further reduce your cost in case you didn’t need the server 

after year two. 

How can a public cloud provider (who must make a profit on these prices) compete with 

your in-house costs? In one word: scale. As discussed in this chapter, many operational expenses 

are relatively independent of the size of the data center: if you want a security guard or a facilities 

technician on-site 24x7, the cost is the same whether your site is 1 MW or 5 MW. Furthermore, a 

cloud provider’s capital expenses for servers and buildings likely are lower than yours, since they buy 

(and build) in volume. Google, for example, designs its own servers and data centers to reduce cost.

Why are on-demand instances so much more expensive? Since the cloud provider doesn’t 

know whether you’re going to need a server, it keeps additional servers ready in case someone wants 

them. Thus, the utilization of the server pool used for on-demand instances is substantially below 

100% on average. For example, if the typical on-demand instance covers the six hours a day when 

traffic peaks, their utilization will be 25%, and thus their cost per hour is four times higher than 

that of a “baseload” instance that runs 24 hr a day. 

Many cloud providers offer sustained use discounts to automatically lower the cost of a VM 

if it is used more continuously throughout a month. For example (GCE), the first 25% of hours in 

a given month are charged at the full rate, and afterwards the effective rate decreases successively 

so that a VM used for the entire month receives a 30% overall discount. Such automatic discounts 

can simplify planning since there is no need to commit to an annual contract ahead of time.

6.6 THE COST OF PUBLIC CLOUDS
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CHAPTER 7

Dealing with Failures and Repairs

The promise of web-based, service-oriented computing will be fully realized only if users can trust 

that the services they increasingly rely on will be always available. This expectation translates into 

a high-reliability requirement for building-sized computers. Determining the appropriate level of 

reliability is fundamentally a tradeoff between the cost of failures (including repairs) and the cost 

of preventing them. For traditional enterprise-class servers, the cost of failures is thought to be 

high, and thus designers go to great lengths to provide more reliable hardware by adding redundant 

power supplies, fans, error correction coding (ECC), RAID disks, and so on. Many legacy enter-

prise applications were not designed to survive frequent hardware faults, and it is hard to make 

them fault-tolerant after the fact. Under these circumstances, making the hardware very reliable 

becomes a justifiable alternative.

In WSCs, however, hardware reliability alone cannot deliver sufficient availability primarily 

due to its scale. Suppose that a cluster has ultra-reliable server nodes with a stellar mean time be-

tween failures (MTBF) of 30 years (10,000 days)—well beyond what is typically possible to achieve 

at a realistic cost. Even with these ideally reliable servers, a cluster of 10,000 servers will see an 

average of one server failure per day. Thus, any application that depends on the availability of the 

entire cluster will see an MTBF no better than one day. In reality, typical servers see an MTBF 

substantially less than 30 years, and thus the real-life cluster MTBF would be in the range of a 

few hours between failures. Moreover, large and complex internet services are often composed of 

several software modules or layers that are not bug-free and can themselves fail at even higher rates 

than hardware components. Consequently, WSC applications must work around failed servers in 

software, either with code in the application itself or via functionality provided by middleware, such 

as a provisioning system for virtual machines that restarts a failed VM on a spare node. Some of the 

implications of writing software for this environment are discussed by Hamilton [Ham07], based 

on experience on designing and operating some of the largest services at MSN and Windows Live.

Before we continue, it’s important to understand the difference between availability, unavail-

ability, and failure. A system’s availability is the fraction of time during which it is available for use; 

conversely, its unavailability is the fraction of time during which the system isn’t available for some 

reason. Failures are one cause of unavailability, but are often much less common than other causes 

such as planned maintenance for hardware or software upgrades. Thus, a system with zero failures 

may still have availability of less than 100%, and a system with a high failure rate may have better 

availability than one with low failures, if other sources of unavailability dominate.
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7.1 IMPLICATIONS OF SOFTWARE FAULT TOLERANCE

Fault-tolerant software is inherently more complex than software that can assume fault-free op-

eration. As much as possible, we should try to implement a fault-tolerant software infrastructure 

layer that can hide much of the complexity of dealing with failures from application-level software.

There are some positive consequences of adopting a fault-tolerant model, though. Once 

hardware faults can be tolerated without undue disruption to a service, computer architects have 

some leeway to choose the level of hardware reliability that maximizes overall system cost efficiency. 

This leeway enables consideration, for instance, of using inexpensive PC-class hardware for a server 

platform instead of mainframe-class computers, as discussed in Chapter 3. In addition, this model 

can lead to simplifications in common operational procedures. For example, to upgrade system 

software in a cluster, you can load a newer version in the background (that is, during normal oper-

ation), kill the older version, and immediately start the newer one. Hardware upgrades can follow 

a similar procedure. Basically, the same fault-tolerant software infrastructure mechanisms built to 

handle server failures could have all the required mechanisms to support a broad class of operational 

procedures. By choosing opportune time windows and rate-limiting the pace of kill–restart actions, 

operators can still manage the desired number of planned service-level disruptions.

The basic property being exploited here is that, unlike in traditional server setups, it is no 

longer necessary to keep a server running at all costs. This simple requirement shift affects almost 

every aspect of the deployment, from machine and data center design to operations, often enabling 

optimization opportunities that would not be on the table otherwise. For instance, let us examine 

how this affects the recovery model. A system that needs to be highly reliable in the presence of 

unavoidable transient hardware faults, such as uncorrectable errors caused by cosmic particle strikes, 

may require hardware support for checkpoint recovery so that upon detection the execution can be 

restarted from an earlier correct state. A system that is allowed to go down upon occurrence of such 

faults may choose not to incur the extra overhead in cost or energy of checkpointing.

Another useful example involves the design tradeoffs for a reliable storage system. One alter-

native is to build highly reliable storage nodes through the use of multiple disk drives in a mirrored 

or RAIDed configuration so that a number of disk errors can be corrected on the fly. Drive redun-

dancy increases reliability but by itself does not guarantee that the storage server will be always up. 

Many other single points of failure also need to be attacked (such as power supplies and operating 

system software), and dealing with all of them incurs extra cost while never assuring fault-free 

operation. Alternatively, data can be mirrored or RAIDed across disk drives that reside in multiple 

machines—the approach chosen by Google’s GFS or Colossus file systems [GGL03]. This option 

tolerates not only drive failures but also entire storage server crashes because other replicas of each 

piece of data are accessible through other servers. It also has different performance characteristics 

from the centralized storage server scenario. Data updates may incur higher networking overheads 
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because they require communicating with multiple systems to update all replicas, but aggregate read 

bandwidth can be greatly increased because clients can source data from multiple endpoints (in the 

case of full replication).

In a system that can tolerate a number of failures at the software level, the minimum require-

ment made to the hardware layer is that its faults are always detected and reported to software in a 

timely enough manner as to allow the software infrastructure to contain it and take appropriate re-

covery actions. It is not necessarily required that hardware transparently correct all faults. This does 

not mean that hardware for such systems should be designed without error correction capabilities. 

Whenever error correction functionality can be offered within a reasonable cost or complexity, it often 

pays to support it. It means that if hardware error correction would be exceedingly expensive, the 

system would have the option of using a less expensive version that provided detection capabilities 

only. Modern DRAM systems are a good example of a case in which powerful error correction can 

be provided at a low additional cost.

Relaxing the requirement that hardware errors be detected, however, would be much more 

difficult because every software component would be burdened with the need to check its own 

correct execution. At one early point in its history, Google had to deal with servers whose DRAM 

lacked even parity checking. Producing a web search index consists essentially of a very large 

shuffle/merge sort operation, using several machines over a long period. In 2000, one of the then 

monthly updates to Google’s web index failed pre-release checks when a subset of tested queries 

was found to return seemingly random documents. After some investigation a pattern was found 

in the new index files that corresponded to a bit being stuck at zero at a consistent place in the data 

structures; a bad side effect of streaming a lot of data through a faulty DRAM chip. Consistency 

checks were added to the index data structures to minimize the likelihood of this problem recurring, 

and no further problems of this nature were reported. Note, however, that this workaround did not 

guarantee 100% error detection in the indexing pass because not all memory positions were being 

checked—instructions, for example, were not. It worked because index data structures were so much 

larger than all other data involved in the computation that having those self-checking data struc-

tures made it very likely that machines with defective DRAM would be identified and excluded 

from the cluster. The next machine generation at Google did include memory parity detection, and 

once the price of memory with ECC dropped to competitive levels, all subsequent generations have 

used ECC DRAM.

7.2 CATEGORIZING FAULTS

An efficient fault-tolerant software layer must be based on a set of expectations regarding fault 

sources, their statistical characteristics, and the corresponding recovery behavior. Software devel-

oped in the absence of such expectations can suffer from two risks: being prone to outages if the 

7.2 CATEGORIZING FAULTS
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underlying faults are underestimated, or requiring excessive overprovisioning if faults are assumed 

to be much more frequent than they actually are.

Providing an accurate quantitative assessment of faults in WSC systems is challenging given 

the diversity of equipment and software infrastructure across different deployments. Instead, we 

will attempt to summarize the high-level trends from publicly available sources and from our own 

experience.

7.2.1 FAULT SEVERITY

Hardware or software faults can affect internet services in varying degrees, resulting in different 

service-level failure modes. The most severe modes may demand high reliability levels, whereas 

the least damaging modes might have more relaxed requirements that can be achieved with less 

expensive solutions. We broadly classify service-level failures into the following categories, listed in 

decreasing degree of severity.

• Corrupted: Committed data are impossible to regenerate, lost, or corrupted.

• Unreachable: Service is down or otherwise unreachable by users.

• Degraded: Service is available but in some degraded mode.

• Masked: Faults occur but are completely hidden from users by fault-tolerant software 

and hardware mechanisms.

Acceptable levels of robustness will differ across those categories. We expect most faults 

to be masked by a well-designed fault-tolerant infrastructure so that they are effectively invisible 

outside of the service provider. It is possible that masked faults will impact the service’s maximum 

sustainable throughput capacity, but a careful degree of overprovisioning can ensure that the service 

remains healthy.

If faults cannot be completely masked, their least severe manifestation is one in which there 

is some degradation in the quality of service. Here, different services can introduce degraded avail-

ability in different ways. One example of such degraded service is when a web search system uses 

data partitioning techniques to improve throughput but loses some systems that serve parts of the 

database [Bre01]. Search query results will be imperfect but probably still acceptable in many cases. 

Graceful degradation as a result of faults can also manifest itself as decreased freshness. For exam-

ple, a user may access his or her email account, but new email delivery is delayed by a few minutes, 

or some fragments of the mailbox could be temporarily missing. Although these kinds of faults also 

need to be minimized, they are less severe than complete unavailability. Internet services need to 

be deliberately designed to take advantage of such opportunities for gracefully degraded service. In 

other words, this support is often application-specific and not easily hidden within layers of cluster 

infrastructure software.
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Service availability and reachability are very important, especially because internet service 

revenue is often related in some way to traffic volume [Cha+01b]. However, perfect availability is 

not a realistic goal for internet-connected services because the internet itself has limited availability 

characteristics. Chandra et al. [Cha+01b] report that internet endpoints may be unable to reach 

each other between 1% and 2% of the time due to a variety of connectivity problems, including 

routing issues. That translates to an availability of less than “two nines.” In other words, even if an 

internet service is perfectly reliable, users will, on average, perceive it as being no greater than 99.0% 

available. As a result, an internet-connected service that avoids long-lasting outages for any large 

group of users and has an average unavailability of less than 1% will be difficult to distinguish from 

a perfectly reliable system. Google measurements of internet availability as of 2014 indicated that 

it was likely on average in the range of 99.6–99.9% when Google servers are one of the endpoints, 

but the spectrum is fairly wide. Some areas of the world experience significantly lower availability.

Measuring service availability in absolute time is less useful for internet services that typically 

see large daily, weekly, and seasonal traffic variations. A more appropriate availability metric is the 

fraction of requests satisfied by the service divided by the total number of requests made by users; 

a metric called yield by Brewer [Bre01].

Finally, one particularly damaging class of failures is the loss or corruption of committed 

updates to critical data, particularly user data, critical operational logs, or relevant data that are hard 

or impossible to regenerate. Arguably, it is much more critical for services not to lose data than to 

be perfectly available to all users. It can also be argued that such critical data may correspond to a 

relatively small fraction of all the data involved in a given service operation. For example, copies of 

the web and their corresponding index files are voluminous and important data for a search engine, 

but can ultimately be regenerated by recrawling the lost partition and recomputing the index files.

In summary, near perfect reliability is not universally required in internet services. Although 

it is desirable to achieve it for faults such as critical data corruption, most other failure modes can 

tolerate lower reliability characteristics. Because the internet itself has imperfect availability, a user 

may be unable to perceive the differences in quality of service between a perfectly available service 

and one with, say, four 9s (99.99%) of availability.

7.2.2 CAUSES OF SERVICE-LEVEL FAULTS

In WSCs, it is useful to understand faults in terms of their likelihood of affecting the health of the 

whole system, such as causing outages or other serious service-level disruption. Oppenheimer et 

al. [OGP03] studied three internet services, each consisting of more than 500 servers, and tried to 

identify the most common sources of service-level failures. They conclude that operator-caused or 

misconfiguration errors are the largest contributors to service-level failures, with hardware-related 

faults (server or networking) contributing to 10–25% of the total failure events.

7.2 CATEGORIZING FAULTS
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Oppenheimer’s results are somewhat consistent with the seminal work by Gray [Gra90], 

which doesn’t look at internet services but instead examines field data from the highly fault-tolerant 

Tandem servers between 1985 and 1990. He also finds that hardware faults are responsible for a 

small fraction of total outages (less than 10%). Software faults (~60%) and maintenance/operations 

faults (~20%) dominate the outage statistics.

It is surprising at first to see hardware faults contributing to so few outage events in these 

two widely different systems. Rather than making a statement about the underlying reliability of 

the hardware components in these systems, such numbers indicate how successful the fault-tolerant 

techniques have been in preventing component failures from affecting high-level system behavior. 

In Tandem’s case, such techniques were largely implemented in hardware, whereas in the systems 

Oppenheimer studied, we can attribute it to the quality of the fault-tolerant software infrastructure. 

Whether software- or hardware-based, fault-tolerant techniques do particularly well when faults 

are largely statistically independent, which is often (even if not always) the case in hardware faults. 

Arguably, one important reason why software-, operator-, and maintenance-induced faults have 

a high impact on outages is because they are more likely to affect multiple systems at once, thus 

creating a correlated failure scenario that is much more difficult to overcome.

Our experience at Google is generally in line with Oppenheimer’s classification, even if the 

category definitions are not fully consistent. Figure 7.1 represents a rough classification of all events 

that corresponded to noticeable disruptions at the service level in one of Google’s large-scale online 

services. These are not necessarily outages (in fact, most of them are not even user-visible events), 

but correspond to situations where some kind of service degradation is noticed by the monitoring 

infrastructure and must be scrutinized by the operations team. As expected, the service is less likely 

to be disrupted by machines or networking faults than by software errors, faulty configuration data, 

and human mistakes.

Factors other than hardware equipment failure dominate service-level disruption because 

it is easier to architect services to tolerate known hardware failure patterns than to be resilient to 

general software bugs or operator mistakes. A study by Jiang et al. [ Jia+08], based on data from 

over 39,000 storage systems, concludes that disk failures are in fact not a dominant contributor to 

storage system failures. That result is consistent with analysis by Ford et al. [For+10] of distributed 

storage systems availability. In that study, conducted using data from Google’s Colossus distributed 

file system, planned storage node reboot events are the dominant source of node-level unavailability. 

That study also highlights the importance of understanding correlated failures (failures in multiple 

storage nodes within short time windows), as models that don’t account for correlation can under-

estimate the impact of node failures by many orders of magnitude.
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Figure 7.1: Distribution of service disruption events by most likely cause at one of Google’s main ser-

vices, collected over a period of six weeks by Google’s Robert Stroud. 

7.3 MACHINE-LEVEL FAILURES

An important factor in designing fault-tolerant distributed systems is understanding availability at 

the server level. Here we consider machine-level failures to be any situation that leads to a server 

being down, whatever the cause (such as operating system bugs).

As with cluster-service failures, relatively little published field data exists on server availabil-

ity. A 1999 study by Kalyanakrishnam et al. [KKI99] finds that Windows NT machines involved 

in a mail routing service for a commercial organization were on average 99% available. The authors 

observed 1,100 reboot events across 66 servers and saw an average uptime of 11.82 days (median 

of 5.54 days) and an average downtime of just less than 2 hr (median of 11.43 min). About half of 

the reboots were classified as abnormal; that is, were due to a system problem instead of a normal 

shutdown. Only 10% of the reboots could be blamed on faulty hardware or firmware. The data sug-

gest that application faults, connectivity problems, or other system software failures are the largest 

known crash culprits. If we are interested only in the reboot events classified as abnormal, we arrive 

at an MTTF of approximately 22 days, or an annualized machine failure rate of more than 1,600%.

Schroeder and Gibson [SG07a] studied failure statistics from high-performance computing 

systems at Los Alamos National Laboratory. Although these are not a class of computers that we 

are interested in here, they are made up of nodes that resemble individual servers in WSCs, so 

their data is relevant in understanding machine-level failures in our context. Their analysis spans 

7.3 MACHINE-LEVEL FAILURES
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nearly 24,000 processors, with more than 60% of them deployed in clusters of small-scale SMPs 

(2–4 processors per node). Although the node failure rates vary by more than a factor of 10x across 

different systems, the failure rate normalized by number of processors is much more stable—ap-

proximately 0.3 faults per year per CPU—suggesting a linear relationship between the number of 

sockets and unreliability. If we assume servers with four CPUs, we could expect machine-level fail-

ures to be at a rate of approximately 1.2 faults per year or an MTTF of approximately 10 months. 

This rate of server failures is more than 14 times lower than the one observed in Kalyanakrishnan’s 

study [KKI99].

Google’s machine-level failure and downtime statistics are summarized in Figures 7.2 and 

7.3. The data is based on a six-month observation of all machine restart events and their corre-

sponding downtime, where downtime corresponds to the entire time interval where a machine is 

not available for service, regardless of cause. These statistics cover all of Google’s machines. For 

example, they include machines that are in the repairs pipeline, planned downtime for upgrades, as 

well as all kinds of machine crashes.
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Figure 7.2: Distributions of machine restarts over six months at Google. (Updated in 2018.) 

Figure 7.2 shows the distribution of machine restart events. The graph shows that 50% 

or more machines restart at least once a month, on average. The tail is relatively long (the figure 

truncates the data at 11 or more restarts) due to the large population of machines in Google’s 

fleet. Approximately 5% of all machines restart more than once a week. Several effects, however, 

are smudged away by such large-scale averaging. For example, we typically see higher than normal 

failure rates during the first few months of new server product introduction. The causes include 

manufacturing bootstrapping effects, firmware and kernel bugs, and occasional hardware problems 
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that become noticeable only after a large number of systems are in use. If we exclude from the sam-

ple all machines that are still suffering from such effects, the annualized restart rate corresponds to 

approximately one month between restarts, on average, largely driven by Google’s bug resolution, 

feature enhancements, and security-processes-related upgrades. We also note that machines with 

frequent restarts are less likely to be in active service for long. 

In another internal study conducted recently, planned server unavailability events were fac-

tored out from the total machine unavailability. The remaining unavailability, mainly from server 

crashes or lack of networking reachability, indicates that a server can stay up for an average of nearly 

two years (0.5 unplanned restart rate). This is consistent with our intuition that most restarts are 

due to planned events, such as software and hardware upgrades.

These upgrades are necessary to keep up with the velocity of kernel changes and also allows 

Google to prudently react to emergent & urgent security issues. As discussed earlier, it is also 

important to note that Google Cloud’s Compute Engine offers live migration to keep the VM 

instances running by migrating the running instances to another host in the same zone rather than 

requiring your VMs to be rebooted. Note that live migration does not change any attributes or 

properties of the VM itself. 
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Figure 7.3: Distribution of machine downtime, observed at Google over six months. The average an-

nualized restart rate across all machines is 12.4, corresponding to a mean time between restarts of just 

less than one month. 

Restart statistics are key parameters in the design of fault-tolerant software systems, but the 

availability picture is complete only once we combine it with downtime data—a point articulated 

earlier by the Berkeley ROC project [Pat+02]. Figure 7.3 shows the distribution of downtime from 

7.3 MACHINE-LEVEL FAILURES
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the same population of Google servers. The x-axis displays downtime, against both density and cu-

mulative machine distributions. Note that the data include both planned reboots and those caused 

by miscellaneous hardware and software failures. Downtime includes all the time a machine stopped 

operating until it has rebooted and basic node services were restarted. In other words, the downtime 

interval ends not when the machine finishes rebooting, but when key basic daemons are up.

Approximately 55% of all restart events last less than 3 min, 25% of them last between 3 

and 30 min, with most of the remaining restarts finishing in about a day. These usually correspond 

to some combination of physical repairs (SW directed swaps) and automated file system recovery 

from crashes. Approximately 1% of all restart events last more than a day, usually corresponding to 

systems going into repairs. The average downtime is just more than 10 min. The resulting average 

machine availability is 99.93%. 

When provisioning fault-tolerant software systems, it is also important to focus on real 

(unexpected) machine crashes, as opposed to the previous analysis that considers all restarts. In our 

experience, the crash rate of mature servers (those that survived infant mortality) ranges between 

1.2 and 2 crashes per year. In practice, this means that a service that uses 2,000 servers should plan 

to operate normally while tolerating a machine crash approximately every 2.5 hr, or approximately 

10 machines per day. Given the expected machine downtime for 99% of all restart cases is less than 

2 days, one would need as few as 20 spare machines to safely keep the service fully provisioned. A 

larger margin might be desirable if there is a large amount of state that must be loaded before a 

machine is ready for service. 

7.3.1 WHAT CAUSES MACHINE CRASHES?

Reliably identifying culprits for machine crashes is generally difficult because, in many situations, 

transient hardware errors can be hard to distinguish from operating system or firmware bugs. How-

ever, there is significant indirect and anecdotal evidence suggesting that software-induced crashes 

are much more common than those triggered by hardware faults. Some of this evidence comes from 

component-level diagnostics. Because memory and disk subsystem faults were the two most com-

mon diagnostics for servers sent to hardware repairs within Google in 2018, we will focus on those.

DRAM Soft Errors 

Although there are little available field data on this topic, it is generally believed that DRAM 

soft error rates are extremely low once modern ECCs are used. In a 1997 IBM white paper, Dell 

[Del97] sees error rates from chipkill ECC being as low as six errors for 10,000 one-GB systems 

over three years (0.0002 errors per GB per year—an extremely low rate). A survey article by Tezza-

ron Semiconductor in 2004 [Terra] concludes that single-error rates per Mbit in modern memory 

devices range between 1,000 and 5,000 FITs (failures in time, defined as the rate of faults per billion 
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operating hours), but that the use of ECC can drop soft-error rates to a level comparable to that 

of hard errors.

A study by Schroeder et al. [SPW09] evaluated DRAM errors for the population of servers 

at Google and found FIT rates substantially higher than previously reported (between 25,000 

and 75,000) across multiple DIMM technologies. That translates into correctable memory errors 

affecting about a third of Google machines per year and an average of one correctable error per 

server every 2.5 hr. Because of ECC technology, however, only about 1.3% of all machines ever 

experience uncorrectable memory errors per year. A more recent study [HSS12] found that a large 

fraction of DRAM errors could be attributed to hard (non-transient) errors and suggested that 

simple page retirement policies could mask a large fraction of DRAM errors in production systems 

while sacrificing only a negligible fraction of the total DRAM in the system.

Disk Errors 

Studies based on data from NetApp and the University of Wisconsin [Bai+07], Carnegie Mellon 

[SG07b], and Google [PWB07] have recently examined the failure characteristics of modern disk 

drives. Hard failure rates for disk drives (measured as the annualized rate of replaced components) 

have typically ranged between 2% and 4% in large field studies, a much larger number than the 

usual manufacturer specification of 1% or less. Bairavasundaram et al. [Bai+07] looked specifically 

at the rate of latent sector errors—a measure of data corruption frequency. In a population of more 

than 1.5 million drives, they observed that less than 3.5% of all drives develop any errors over a 

period of 32 months.

These numbers suggest that the average fraction of machines crashing annually due to disk or 

memory subsystem faults should be less than 10% of all machines. Instead, we observe crashes to be 

more frequent and more widely distributed across the machine population. We also see noticeable 

variations on crash rates within homogeneous machine populations that are more likely explained 

by firmware and kernel differences.

The effect of ambient temperature on the reliability of disk drives has been well studied by 

Pinheiro et al. [PWB07] and El Sayed et al. [ES+]. While common wisdom previously held that 

temperature had an exponentially negative effect on the failure rates of disk drives, both of these 

field studies found little or no evidence of that in practice. In fact, both studies suggest that most 

disk errors appear to be uncorrelated with temperature.

Another indirect evidence of the prevalence of software-induced crashes is the relatively high 

mean time to hardware repair observed in Google’s fleet (more than six years) when compared to 

the mean time to machine crash (six months or less). 

It is important to mention that a key feature of well-designed fault-tolerant software is its 

ability to survive individual faults, whether they are caused by hardware or software errors. One 

7.3 MACHINE-LEVEL FAILURES



150 7. DEALING WITH FAILURES AND REPAIRS

architectural option that can improve system reliability in the face of disk drive errors is the trend 

toward diskless servers; once disks are a networked resource it is easier for a server to continue 

operating by failing over to other disk devices in a WSC.

7.3.2 PREDICTING FAULTS

The ability to predict future machine or component failures is highly valued because it could avoid 

the potential disruptions of unplanned outages. Clearly, models that can predict most instances of 

a given class of faults with very low false-positive rates can be very useful, especially when those 

predictions involve short time-horizons—predicting that a memory module will fail within the 

next 10 years with 100% accuracy is not particularly useful from an operational standpoint.

When prediction accuracies are less than perfect, which unfortunately tends to be true in 

most cases, the model’s success will depend on the tradeoff between accuracy (both in false-positive 

rates and time horizon) and the penalties involved in allowing faults to happen and recovering from 

them. Note that a false component failure prediction incurs all of the overhead of the regular hard-

ware repair process (parts, technician time, machine downtime, etc.). Because software in WSCs is 

designed to gracefully handle all the most common failure scenarios, the penalties of letting faults 

happen are relatively low; therefore, prediction models must have much greater accuracy to be eco-

nomically competitive. By contrast, traditional computer systems in which a machine crash can be 

very disruptive to the operation may benefit from less accurate prediction models.

Pinheiro et al. [PWB07] describe one of Google’s attempts to create predictive models for disk 

drive failures based on disk health parameters available through the Self-Monitoring Analysis and 

Reporting Technology (SMART) standard. They conclude that such models are unlikely to predict 

individual drive failures with sufficient accuracy, but they can be useful in reasoning about the expected 

lifetime of groups of devices which can be useful in optimizing the provisioning of replacement units.

7.4 REPAIRS

An efficient repair process is critical to the overall cost efficiency of WSCs. A machine in repair is ef-

fectively out of operation, so the longer a machine is in repair, the lower the overall availability of the 

fleet. Also, repair actions are costly in terms of both replacement parts and the skilled labor involved. 

Last, repair quality—how likely a repair action will actually fix a problem while accurately determining 

which (if any) component is at fault—affects both component expenses and average machine reliability.

Two characteristics of WSCs directly affect repair efficiency. First, because of the high number 

of relatively low-end servers involved and the presence of a software fault-tolerance layer, quickly 

responding to individual repair cases is not as critical because the repairs are unlikely to affect overall 

service health. Instead, a data center can implement a schedule that makes the most efficient use of a 
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technician’s time by making a daily sweep of all machines that need repairs attention. The philosophy 

is to increase the rate of repairs while keeping the repair latency within acceptable levels.

In addition, when many thousands of machines are in operation, massive volumes of data 

about machine health can be collected and analyzed to create automated systems for health deter-

mination and diagnosis. Google’s system health infrastructure, illustrated in Figure 7.4, is an exam-

ple of a monitoring system that takes advantage of this massive data source. It constantly monitors 

every server for configuration, activity, environmental, and error data. This information is stored as 

a time series in a scalable repository where it can be used for various kinds of analysis, including 

an automated machine failure diagnostics tool that uses machine learning methods to suggest the 

most appropriate repairs action.
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Figure 7.4: Google’s system health monitoring and analysis infrastructure. 

In addition to performing individual machine diagnostics, the system health infrastructure 

is useful in other ways. For example, it monitors the stability of new system software versions and 

has helped pinpoint a specific batch of defective components across a large fleet of machines. It has 

7.4 REPAIRS
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also been valuable in longer-term analytical studies, such as the disk failure study by Pinheiro et 

al., mentioned in the previous section, and the data center-scale power provisioning study by Fan 

et al. [FWB07].
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Figure 7.5: Highly available cluster architecture [Ser17, Ver+15, Sin+15]. 

7.5 TOLERATING FAULTS, NOT HIDING THEM 

The capacity of well-designed fault-tolerant software to mask large numbers of failures with rela-

tively little impact to service-level metrics could have unexpectedly dangerous side effects. Consider 

a three-tier application representing a web service with the backend tier replicated three times. 

Such replicated setups have the dual purpose of increasing peak throughput as well as tolerating 

server faults when operating below peak capacity. Assume that the incoming request rate is at 50% 

of total capacity. At this level, this setup could survive one backend failure with little disruption in 

service levels. However, a second backend failure would have a dramatic service-level impact that 

could theoretically result in a complete outage.
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In systems descriptions, we often use N to denote the number of servers required to pro-

vide a service at full load, so N + 1 describes a system with one additional replica for redundancy. 

Common arrangements include N (no redundancy), N + 1 (tolerating a single failure), N + 2 

(“concurrently maintainable,” tolerating a single failure even when one unit is offline for planned 

maintenance), and 2N (mirroring of every unit).

Systems with large amounts of internal replication to increase capacity (horizontal scaling) 

provide redundancy at a very low cost. For example, if we need 100 replicas to handle the daily 

peak load, an N + 2 setup incurs just 2% overhead for high availability. Such systems can tolerate 

failures so well that an outside observer might be unaware of how much internal slack remains, 

or in other words, how close to the edge one might be. In those cases, the transition from healthy 

behavior to meltdown can be abrupt, which is not a desirable property. This example emphasizes 

the importance of comprehensive monitoring, both at the application (or service) level as well as 

the machine infrastructure level, so that faults can be well tolerated and yet visible to operators. This 

enables prompt corrective action when the amount of internal redundancy approaches the limits of 

what the fault-tolerant software layer can handle.

Still, broken machines eventually must be repaired. Traditional scenarios, where a repair must 

happen immediately, require more costly staging of replacement parts as well as additional costs 

to bringing a service technician on site. When we can batch repairs, we can lower these costs per 

repair. For reference, service contracts for IT equipment that provide on-site repair within 24 hr 

typically come at an annual cost of 5–15% of the equipment’s value; a 4-hr response time usually 

doubles that cost. In comparison, repairs in large server farms are cheaper. To illustrate the point, 

assume that a WSC has enough scale to keep a full-time repairs technician busy. Assuming 1 hr 

per repair and an annual failure rate of 5%, a system with 40,000 servers would suffice; in reality, 

that number will be considerably smaller because the same technician can also handle installations 

and upgrades. Let us further assume that the hourly cost of a technician is $100 and that the av-

erage repair requires replacement parts costing 10% of the system cost; both of these assumptions 

are generously high. Still, for a cluster of servers costing $2,000 each, we arrive at an annual cost 

per server of 5% ∗ ($100 + 10% ∗ $2,000) = $15, or 0.75% per year. In other words, keeping large 

clusters healthy can be quite affordable.

7.6 ACCOUNTING FOR FAULTS IN CLUSTER SYSTEM DESIGN

For services with mutable state, as previously noted, replicas in different clusters must now worry 

about consistent replicas of highly mutable data. However, most new services start serving with a 

small amount of traffic and are managed by small engineering teams. In such cases these services 

need only a small fraction of the capacity of a given cluster, but if successful, will grow over time. For 

these services, even if they do not have highly mutable state, managing multiple clusters imposes a 

7.6 ACCOUNTING FOR FAULTS IN CLUSTER SYSTEM DESIGN
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significant overhead, both in terms of engineering time and resource cost; that is, N + 2 replication 

is expensive when N = 1. Furthermore, these services tend to be crowded out of clusters by the 

large services and by the fact that a large number of services leads to resource fragmentation. In all 

likelihood, the free resources are not where the service is currently running. 

To address these problems, the system cluster design needs to include a unit of resource allo-

cation and job schedulability with certain availability, and eliminate planned outages as a source of 

overhead for all but singly-homed services with the highest availability requirements.

Figure 7.5 shows a schematic of such a cluster stack.

Power: At the base of the stack, we tackle the delivery of power and cooling to ma-

chines. Typically, we target a fault tolerant and concurrently maintainable physical 

architecture for the power and cooling system. For example, as described in Chapter 

4, power is distributed hierarchically at the granularity of the building and physical 

data center rows. For high availability, cluster scheduling purposely spreads jobs across 

the units of failure. Similarly, the required redundancy in storage systems is in part 

determined by the fraction of a cluster that may simultaneously fail as a result of a 

power event. Hence, larger clusters lead to lower storage overhead and more efficient 

job scheduling while meeting diversity requirements.

Networking: A typical cluster fabric architecture, like the Jupiter design described in 

Chapter 3, achieves high availability by redundancy in fabric and physical diversity 

in deployment. It also focuses on robust software for the necessary protocols and a 

reliable out-of-band control plane. Given the spreading requirement for the cluster 

scheduler as previously discussed, Jupiter also supports uniform bandwidth across the 

cluster and resiliency mechanisms in the network control plane in addition to data 

path diversity.

Scheduling: Applications that run on Borg (Google’s large-scale cluster management 

system) are expected to handle scheduling-related failure events using techniques 

such as replication, storing persistent state in a distributed file system, and (if appro-

priate) taking occasional checkpoints. Even so, we try to mitigate the impact of these 

events. For example, Borg scheduling accounts for automatic rescheduling of evicted 

applications, on a new machine if necessary, and reduced correlated failures by spread-

ing applications across failure domains such as machines, racks, and power domains.

Storage: We keep the overall storage system highly available with two simple yet 

effective strategies: fast recovery and replication/encoding. Details are listed in the 

reference [Ser17].
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Together, these capabilities provide a highly available cluster suitable for a large number of 

big or small services. In cloud platforms such as Google Cloud Platform (GCP), high availability is 

exposed to customers using the concept of zones and regions [GCRZ]. A representative mapping 

of compute zones to regions is shown in Figure 7.6. 

 Google internally maintains a map of clusters to zones such that the appropriate product 

SLAs (Service Level Agreements) can be satisfied (for example, Google Compute Engine SLAs 

[GCE]). Cloud customers are encouraged to utilize the zone and region abstractions in developing 

highly available and fault-tolerant applications on GCP.
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Figure 7.6: Mapping of Google Compute Engine zones to regions, with associated physical and logi-

cal isolation and customer facing availability properties.
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CHAPTER 8

Closing Remarks

Pervasive Internet access, the proliferation of mobile devices, and the rapid growth of cloud com-

puting have all enabled an ever growing number of applications to move to a web services delivery 

model (“to the cloud”). In this model, the massive amounts of well-connected processing and stor-

age resources in large datacenters can be efficiently amortized across a large user population and 

multiple ubiquitous workloads. These datacenters are quite different from traditional colocation or 

hosting facilities of earlier times, constituting a new class of large-scale computers. The software 

in these computers is built from several individual programs that interact together to implement 

complex Internet services, and may be designed and maintained by different teams of engineers, 

perhaps even across organizational and company boundaries. The data volume manipulated by such 

computers can range from hundreds to thousands of terabytes, with service-level requirements for 

high availability, high throughput, and low latency often requiring replication of the baseline data 

set. Applications of this scale do not run on a single server or even on a rack of servers. They require 

clusters of many hundreds or thousands of individual servers, with their corresponding storage and 

networking subsystems, power distribution and conditioning equipment, and cooling infrastructure.

Our central point is simple: this computing platform cannot be viewed simply as a miscel-

laneous collection of co-located machines. Large portions of the hardware and software resources 

in these datacenters must work in concert to deliver good levels of Internet service performance, 

something that can only be achieved by a holistic approach to their design and deployment. In 

other words, we must treat the datacenter itself as one massive computer. The enclosure for this 

computer bears little resemblance to a pizza box or a refrigerator, the images chosen to describe 

servers in past decades. Instead it looks more like a building or warehouse—computer architecture 

meets traditional (building) architecture—a warehouse-scale computer (WSC).

Hardware and software architects need to understand the characteristics of this class of com-

puting systems so that they can continue to design and program today’s WSCs. WSCs are built 

from a relatively homogeneous collection of components (servers, storage, and networks) and use 

a common software management and scheduling infrastructure across all computing nodes to or-

chestrate resource usage among multiple workloads. In the remainder of this chapter, we summarize 

the main characteristics of WSC systems described in previous sections and list some important 

challenges and trends.
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8.1  HARDWARE

The building blocks of choice for WSCs are commodity server-class machines, consumer- or en-

terprise-grade storage devices, and Ethernet-based networking fabrics. Driven by the purchasing 

volume of hundreds of millions of consumers and small businesses, commodity components benefit 

from manufacturing economies of scale and therefore present significantly better price/performance 

ratios than their corresponding high-end counterparts. In addition, Internet and cloud applications 

tend to exhibit large amounts of easily exploitable parallelism, making the peak performance of an 

individual server less important than the aggregate throughput of a collection of servers.

The higher reliability of high-end equipment is less important in this domain because a 

fault-tolerant software layer is required to provision a dependable Internet service regardless of 

hardware quality. Even if we used highly reliable servers, clusters with tens of thousands of systems 

will experience failures too frequently for software to assume fault-free operation. Moreover, large 

and complex Internet services are often composed of multiple software modules or layers that are 

not bug-free and can fail at even higher rates than hardware components.

Given the baseline reliability of WSC components and the large number of servers used by 

a typical workload, there are likely no useful intervals of fault-free operation: we must assume that 

the system is operating in a state of near-continuous recovery. This state is especially challenging for 

online services that need to remain available every minute of every day. For example, it is impossible 

to use the recovery model common to many HPC clusters, which pause an entire cluster workload 

upon an individual node failure and restart the whole computation from an earlier checkpoint. 

Consequently, WSC applications must work around failed servers in software, either at the appli-

cation level or (preferably) via functionality provided via middleware, such as a provisioning system 

for virtual machines that restarts a failed VM on spare nodes. Despite the attractiveness of low-end, 

moderately reliable server building blocks for WSCs, high-performance, high-availability compo-

nents still have value in this class of systems. For example, fractions of a workload (such as SQL 

databases) may benefit from higher-end SMP servers with their larger interconnect bandwidth. 

However, highly parallel workloads and fault-tolerant software infrastructures effectively broaden 

the space of building blocks available to WSC designers, allowing lower end options to work very 

well for many applications.

The performance of the networking fabric and the storage subsystem can be more relevant to 

WSC programmers than CPU and DRAM subsystems, unlike what is more typical in smaller scale 

systems. The relatively high costs (per gigabyte) of DRAM or FLASH storage make them prohib-

itively expensive for large data sets or infrequently accessed data; therefore, disk drives are still used 

heavily. The increasing gap in performance between DRAM and disks, and the growing imbalance 

between throughput and capacity of modern disk drives makes the storage subsystem a common 

performance bottleneck in large-scale systems, motivating broader use of Flash, and potentially 
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new non-volatile memory technologies like ZNAND [Sam17] or 3D Xpoint [3DX]. The use of 

many small-scale servers demands networking fabrics with very high port counts and high bisection 

bandwidth. Because such fabrics are costly today, programmers must be keenly aware of the scarcity 

of datacenter-level bandwidth when architecting software systems. This results in more complex 

software solutions, expanded design cycles, and sometimes inefficient use of global resources. 

8.2  SOFTWARE

WSCs are more complex programming targets than traditional computing systems because of 

their immense scale, complexity of their architecture (as seen by the programmer), and the need to 

tolerate frequent failures.

Internet services must achieve high availability, typically aiming for a target of 99.99% or bet-

ter (about an hour of downtime per year). As mentioned earlier, achieving fault-free operation on a 

large collection of hardware and system software is infeasible, therefore warehouse-scale workloads 

must be designed to gracefully tolerate high numbers of component failures with little or no impact 

on service-level performance and availability.

This workload differs substantially from that running in traditional HPC datacenters, the 

traditional users of large-scale cluster computing. Like HPC applications, these workloads require 

significant CPU resources, but the individual tasks are less synchronized than in typical HPC appli-

cations and communicate less intensely. Furthermore, they are much more diverse, unlike HPC ap-

plications that exclusively run a single binary on a large number of nodes. Much of the parallelism 

inherent in this workload is natural and easy to exploit, stemming from the many users concurrently 

accessing the service or from the parallelism inherent in data mining. Utilization varies, often with 

a diurnal cycle, and rarely reaches 90% because operators prefer to keep reserve capacity for unex-

pected load spikes (flash crowds) or to take on the load of a failed cluster elsewhere in the world. In 

comparison, an HPC application may run at full CPU utilization for days or weeks.

Software development for Internet services also differs from the traditional client/server 

model in a number of ways. First, typical Internet services exhibit ample parallelism stemming from 

both data parallelism and request-level parallelism. Typically, the problem is not to find parallelism 

but to manage and efficiently harness the explicit parallelism that is inherent in the application. 

Second, WSC software exhibit significant workload churn. Users of Internet services are isolated 

from the service’s implementation details by relatively well-defined and stable high-level APIs (e.g., 

simple URLs), making it much easier to deploy new software quickly. For example, key pieces of 

Google’s services have release cycles on the order of days, compared to months or years for desk-

top software products. The datacenter is also a more homogeneous environment than the desktop. 

Large Internet services operations typically deploy a small number of hardware and system software 

configurations at any given point in time. Any heterogeneity arises primarily from the incentives to 

8.2 SOFTWARE
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deploy more cost-efficient components that become available over time. Finally, although it may be 

reasonable for desktop-class software to assume a fault-free hardware operation for months or years, 

this is not true for datacenter-level services; Internet services must work in an environment where 

faults are part of daily life. Ideally, the cluster-level system software should provide a layer that 

hides most of that complexity from application-level software, although that goal may be difficult 

to accomplish for all types of applications.

The complexity of the raw WSC hardware as a programming platform can lower program-

ming productivity because every new software product must efficiently handle data distribution, 

fault detection and recovery, and work around performance discontinuities (such as the DRAM/

disk gap and networking fabric topology issues mentioned earlier). Therefore, it is essential to 

produce software infrastructure modules that hide such complexity and can be reused across a 

large segment of workloads. Google’s MapReduce, GFS, BigTable, and Chubby are examples of 

the kind of software that enables the efficient use of WSCs as a programming platform. With the 

introduction of accelerators in the fleet, similar software modules, such as Tensorflow, are needed 

to hide complexity there as well.

8.3  ECONOMICS AND ENERGY EFFICIENCY

The economics of Internet services demands very cost efficient computing systems, rendering it 

the primary metric in the design of WSC systems. Cost efficiency must be defined broadly to ac-

count for all the significant components of cost including facility capital and operational expenses 

(which include power provisioning and energy costs), hardware, software, management personnel, 

and repairs.

Power- and energy-related costs are particularly important for WSCs because of their size. 

In addition, fixed engineering costs can be amortized over large deployments, and a high degree of 

automation can lower the cost of managing these systems. As a result, the cost of the WSC “enclo-

sure” itself (the datacenter facility, the power, and cooling infrastructure) can be a large component 

of its total cost, making it paramount to maximize energy efficiency and facility utilization. For 

example, intelligent power provisioning strategies such as peak power oversubscription may allow 

more computing to be deployed in a building.

The utilization characteristics of WSCs, which spend little time fully idle or at very high load 

levels, require systems and components to be energy efficient across a wide load spectrum, and par-

ticularly at low utilization levels. The energy efficiency of servers and WSCs is often overestimated 

using benchmarks that assume operation peak performance levels. Machines, power conversion 

systems, and the cooling infrastructure often are much less efficient at the lower activity levels, for 

example, at 30% of peak utilization, that are typical of production systems. We suggest that energy 

proportionality be added as a design goal for computing components. Ideally, energy-proportional 
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systems will consume nearly no power when idle (particularly while in active idle states) and grad-

ually consume more power as the activity level increases. 

Energy-proportional components could substantially improve energy efficiency of WSCs 

without impacting the performance, availability, or complexity. Since the publication of the first 

version of this book, CPUs have improved their energy proportionality significantly while the re-

maining WSC components have witnessed more modest improvements. 

In addition, traditional datacenters themselves are not particularly efficient. A building’s 

power utilization efficiency (PUE) is the ratio of total power consumed divided by useful (server) 

power; for example, a datacenter with a PUE of 2.0 uses an additional 1 W of power for every watt 

of server power. Unfortunately, many legacy datacenter facilities run at PUEs of 2 or greater, and 

PUEs of 1.5 are rare. Clearly, significant opportunities for efficiency improvements exist not just 

at the server level but also at the building level, as was demonstrated by Google’s annualized 1.11 

PUE across all its custom-built facilities as of late 2018 [GDCa].

Energy efficiency optimizations naturally produce lower electricity costs. However, power 

provisioning costs, that is, the cost of building a facility capable of providing and cooling a given 

level of power, can be even more significant than the electricity costs themselves—in Chapter 6 we 

showed that datacenter-related costs can constitute more than half of total IT costs in some de-

ployment scenarios. Maximizing the usage of a facility’s peak power capacity while simultaneously 

reducing the risk of exceeding it is a difficult problem but a very important part of managing the 

costs of any large-scale deployment.

8.4  BUILDING RESPONSIVE LARGE-SCALE SYSTEMS

8.4.1 CONTINUALLY EVOLVING WORKLOADS

In spite of their widespread adoption, in many respects, Internet services are still in their infancy 

as an application area. New products appear and gain popularity at a very fast pace with some of 

the services having very different architectural needs than their predecessors. For example, at the 

time of the first edition of this book, web search was the poster child for internet services. Video 

sharing on YouTube exploded in popularity in a period of a few months and the needs of such an 

application were distinct from earlier Web services such as email or search. 

More recently, machine learning has exploded in its application across a wide variety of work-

loads and use-cases. While machine learning is pervasive in multiple web services, some notable 

recent examples include: more meaning extraction in transitioning from web search to knowledge 

graphs, automatic image recognition and classification in photo and video sharing applications, and 

smart reply and automatic composition features in gmail. Beyond web services, machine learning 

is also transforming entire industries from health care to manufacturing to self-driving cars. Once 

8.4 BUILDING RESPONSIVE LARGE-SCALE SYSTEMS



162 8. CLOSING REMARKS

again, this has led to a fundamental change in the computation needs for the WSCs that power 

these workloads. Now with adoption of Cloud Computing, as discussed in Chapter 2, we are in the 

early stages of yet another evolution in workloads. A particularly challenging consideration is that 

many parts of WSC designs include components (building, power, cooling) that are expected to last 

more than a decade to leverage the construction investment. The mismatch between the time scale 

for radical workload behavior changes and the design and life cycles for WSCs requires creative 

solutions from both hardware and software systems.

8.4.2 AMDAHL’S CRUEL LAW 

Semiconductor trends suggest that future performance gains will continue to be delivered mostly 

by providing more cores or threads, and not so much by faster CPUs. That means that large-scale 

systems must continue to extract higher parallel efficiency (or speed-up) to handle larger, more 

interesting computational problems. This is a challenge today for desktop systems but perhaps not 

as much for WSCs, given the arguments we have made earlier about the abundance of thread-

level parallelism in its universe of workloads. Having said that, even highly parallel systems abide 

by Amdahl’s law, and there may be a point where Amdahl’s effects become dominant even in this 

domain, limiting performance scalability through just parallelism. This point could come earlier; 

for example, if high-bandwidth, high-port count networking technology continues to be extremely 

costly with respect to other WSC components.

8.4.3 THE ATTACK OF THE KILLER MICROSECONDS

As introduced by Barroso et al [Bar+17], the “killer microsecond problem” arises due to a new breed of 

low-latency IO devices ranging from datacenter networking to accelerators, to emerging non-vol-

atile memories. These IO devices have latencies on the order of microseconds rather than millisec-

onds. Existing system optimizations, however, are typically targeted at the nanosecond scale (at the 

computer architecture level) or millisecond scale (operating systems). Today’s hardware and system 

software make an inadequate platform for microsecond-scale IO, particularly given the tension 

between the support for synchronous programming models for software productivity, and perfor-

mance. New microsecond-optimized systems stacks, across hardware and software, are therefore 

needed. Such optimized designs at the microsecond scale, and corresponding faster IO, can in turn 

enable a virtuous cycle of new applications that leverage low latency communication, dramatically 

increasing the effective computing capabilities of WSCs.

8.4.4 TAIL AT SCALE

Similar to how systems need to be designed for fault tolerance, a new design constraint unique to 

WSCs is the design for tail tolerance [DB13]. This addresses the challenges in performance when 

even infrequent high-latency events (unimportant in moderate-size systems) can come to dominate 
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overall service performance at the WSC level. As discussed in Chapter 2, for a system with a typical 

latency of 10 ms, but a 99th percentile of one second, the number of user requests that take more 

than one second goes from 1% to 63% when scaling from one machine to a cluster of 100 machines! 

Large online services need to be designed create a predictable and responsive (low latency) whole of 

out less predictable parts. Some broad principles that have been used in recent WSCs include pri-

oritizing interactive requests, breaking tasks into finer-granularity units that can be interleaved to 

reduce head-of-line blocking, and managing background and one-off events carefully. Some specific 

software techniques used in Google systems are discussed in more detail in [DB13] including the 

use of canary requests and replicated hedge or speculative requests, and putting slow machines on 

“probation.” Recent work on QoS management in WSCs discuss hardware support to improve tail 

tolerance as well [Mar+11, DK14, Lo+15]. The need for such class of techniques will only continue 

to be greater as the scale and complexity of WSCs increase.

8.5  LOOKING AHEAD

We are still learning how best to design and use this new class of machines, as they are still relatively 

nascent (~15 years) compared to traditional systems. Below, we identify some key challenges and 

opportunities in this space, based on our experience designing and using WSCs.

8.5.1 THE ENDING OF MOORE’S LAW 

Overall, the broader computer architecture community faces an important and exciting challenge. 

As our thirst for computing performance increases, we must continue to find ways to ensure that 

performance improvements are accompanied by corresponding improvements in energy efficiency 

and cost efficiency. The former has been achieved in the past due to Dennard Scaling [Den+74]: 

every 30% reduction in transistor linear dimensions results in twice as many transistors per area 

and 40% faster circuits, but with a corresponding reduction to supply voltage at the same rate as 

transistor scaling. Unfortunately, this has become extremely difficult as dimensions approach atomic 

scales. It is now widely acknowledged that Dennard scaling has stopped in the past decade. This 

means that any significant improvements in energy efficiency in the foreseeable future are likely to 

come from architectural techniques instead of fundamental technology scaling. 

More recently, we are also seeing trends that classic Moore’s law—improvements in cost-ef-

ficiency—is also slowing down due to a number of factors spanning both economic considerations 

(e.g., fabrication costs in the order of billions of dollars) and fundamental physical limits (limits 

of CMOS scaling). This is a more fundamental disruption to the industry. The challenges are par-

ticularly exacerbated by our earlier discussion on evolving workloads and growing demand, with 

deeper analysis over ever growing volumes of data, new diverse workloads in the cloud, and smarter 

edge devices. Again, this means that continued improvements in computing performance need to 

8.5 LOOKING AHEAD
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come from architectural optimizations, for area and resource efficiency, but also around more hard-

ware-software codesign and fundamental new architectural paradigms. 
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Figure 8.1: Accelerator ecosystems are important.

8.5.2 ACCELERATORS AND FULL SYSTEM DESIGNS

Accelerators are by far the most promising approach to addressing the end of Moore’s Law. By 

tailoring the architecture to the application, we can achieve both improved power and area ef-

ficiency. The tradeoff often is that we sacrifice generality and flexibility to increase efficiency for 

specific types of workloads. In many respects, GPUs were the first and most successful example of 

the success of this approach, followed by other accelerators discussed in Chapter 3 such as FPGAs 

deployed by Microsoft and others, and full ASIC solutions such as Google’s TPUs. 

Accelerators also present a great example of how WSC design decisions need to evolve 

with changing workload requirements. In the first edition of this book, we argued against special-

ized computing pointing out that the promise of greater efficiency was not worth the tradeoffs 

of restricting the number of workloads that could benefit from them. However, since then, two 

key trends have changed that thinking. First, the slowing of Moore’s law has made accelerators 

more appealing compared to general-purpose systems, but second, perhaps more importantly, deep 

learning models took off in a big way enabling specialized hardware in this space to power a broad 

spectrum of new machine learning solutions. As a result, earlier in this decade Google began to 

more broadly deploy GPUs but also initiated a program to build more specialized accelerators. 

Accelerators in WSCs are still nascent, but our experience over the past few years have iden-

tified some key opportunities. First, hardware is just the proverbial tip of the iceberg (Figure 8.1). 
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Accelerator design needs to take a holistic view, across hardware and software for sure, but also 

across large-scale distributed system deployment. Our discussions earlier about the implications of 

designing at scale for general-purpose systems apply equally to the design of accelerators as well, 

illustrated by the design of pods of TPUs in Chapter 3. Additionally, similar to our discussions of 

the software stack in Chapter 2 for traditional systems, it is important to consider the full system 

stack for accelerators. This includes thinking about the design of accelerators in the context of 

the supporting interfaces and compilers, but also considering the tool and ecosystem support for 

tracing, debugging, monitoring, etc. A principled approach to the hardware-software codesign of 

accelerators is needed, one that carefully addresses problem decomposition, complexity encapsula-

tion, modularity and interfaces, technical debt, and performance. A lot can be learned from our rich 

experience in software design [Ous18].

Beyond customization for specific workload classes like deep learning, search and video serv-

ing, there are also significant opportunities for the “long tail” of workloads. It is notable that nearly 

one out three compute cycles at Google is attributable to a handful of “datacenter tax” functions 

that cross-cut all applications. Similarly, the “killer microsecond” opportunities discussed earlier 

motivate new hardware innovations as well [Bar+17]. Storage, networking, and security are other 

broad areas where there are other opportunities for acceleration. 

8.5.3 SOFTWARE-DEFINED INFRASTRUCTURE

Another promising approach for future WSCs is to embrace software-defined infrastructure. As 

discussed in prior chapters, WSCs have a lot of, often competing, constraints: how do we design 

at scale, at low costs, with ease of manageability and deployment, while also achieving high per-

formance and reliability and efficiency? A software-defined infrastructure embraces a modular 

approach emphasizing efficiency in the design of the individual building blocks and focusing on 

capability through composability. This allows us to achieve the benefits of volume economics, fun-

gibility, and agility with individual blocks, while allowing specialization, customization, and new 

capabilities at the broader composition layer. 

SDN [Kre+14] is a good example where separating the network control plane (the policy 

engine) from the forwarding planes allows the the underlying infrastructure to be abstracted, while 

enabling the control to become more programmable and flexible. SDNs have been widely adopted 

in the the design of WSCs and in the broader industry [ Jai+13, Kol14, Vah17]. We have an op-

portunity to consider similar software-defined approaches for the broader WSC design. Many 

ideas discussed in prior chapters including work around QoS management at the platform level 

[DK14, Lo+15, Mar+11], power management [Rag+08, Wu+16a], automatic memory and storage 

tier management [RC12], and more broadly disaggregated architectures [Lim+09, Gao+16] all play 

well into the theme of software-defined infrastructure. 

8.5 LOOKING AHEAD
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It is also interesting to note that a software-defined infrastructure is the first step to enabling 

the greater adoption of ML-based automation in WSC designs. Early work in this space such as 

the use of ML-based models for prefetching [Has+18] or ML-based approaches to power manage-

ment [EG16] are very promising, and we expect a lot more innovation in this space. 

8.5.4 A NEW ERA OF COMPUTER ARCHITECTURE AND WSCS

John Hennessy and David Patterson, titled their 2018 Turing award lecture “A Golden Age for 

Computer Architecture.” We think there is a similar golden age for WSCs coming as well. 

Beyond accelerators and software-defined infrastructure, there are a few other exciting trends 

worth noting. Data is growing much faster than compute. We recently noted [Lot+18] that the 

pace of bytes of data uploaded to Youtube is exponentially diverging from the pace of traditional 

compute processing growth (an order of magnitude over the past decade). While there has been 

significant innovation in the WSC software stack around data storage and processing (for example, 

in prior chapters, we discussed GFS, Colossus, MapReduce, TensorFlow, etc.), such innovation has 

been relatively agnostic to the underlying hardware. Emerging new memory technologies such as 

Intel’s 3D-Xpoint [3DX] or Samsung ZNAND [Sam17] present some fundamental technology 

disruptions in the memory/storage hierarchy. Co-designing new WSC hardware architectures for 

emerging data storage and processing needs will be an important area. 

WSCs and cloud-based computation also offer the potential to reduce the environmental 

footprint of IT. On the server side, better utilization, lower PUE, and faster introduction of new 

hardware can significantly reduce the overall energy footprint as workloads move from inefficient 

on-premise deployments to cloud providers. On the client side, mobile devices don’t need to store 

all data locally or process it on the device, leading to much more energy efficient clients as well.

Recent attacks like Spectre and Meltdown that exploit timing to inappropriately access data 

(discussed in Chapter 2) point to the growing importance of thinking of security as a first-class 

design constraint, motivating what some have called Architecture 2.0—a rethink of the hardware 

software interfaces to protect information [Hen+18]. At a system level, more hardware-software 

codesign for security is needed. Some examples include Google’s Titan root of trust chip [Sav+17] 

or recent discussions around enclaves (e.g., Intel SGX). 

One other opportunity for the broader community to counter the slowing of Moore’s law 

is around faster hardware development. Moore’s law is often formulated as improved performance 

over cost over time but the time variable does not get as much attention. If we can accelerate the 

cadence of introducing new hardware innovation in to the market, that can potentially offset slower 

performance increases per generation (sometimes referred to as optimizing the “area-under-the-

curve”). How can we release “early and often” in WSC hardware akin to WSC software? Recent 

work in this area, for example around plug-and-play chiplets, post-silicon debugging, and ASIC 

clouds [ERI], as well as community efforts such as the RISC-V foundation (www.riscv.org) present 
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interesting opportunities in this direction. Additional key challenges are around approaches to test 

and deploy custom hardware at scale. How do we “launch and iterate” at scale for hardware? Some 

preliminary work in this area include WSMeter [Lee+18] and FireSim [Kar+18] but more work 

is needed. 

Looking further out, the growing proliferation of smart devices and increased computation 

at the edge motivate a rethink of end-to-end system tradeoffs. Much as WSCs changed how we 

think of datacenter design by drawing the box at defining the warehouse as a computer, thinking 

about interconnected WSCs and their relationship with computing at the edge and in the network 

will be important in the next decade. 

8.6  CONCLUSIONS

Computation is moving into the cloud, and thus into WSCs. Software and hardware architects 

must be aware of the end-to-end systems to design good solutions. We are no longer designing 

individual “pizza boxes,” or single-server applications, and we can no longer ignore the physical and 

economic mechanisms at play in a warehouse full of computers. At one level, WSCs are simple—

just a few thousand servers connected via a LAN. In reality, building a cost-efficient massive-scale 

computing platform that has the necessary reliability and programmability requirements for the 

next generation of cloud-computing workloads is as difficult and stimulating a challenge as any 

other in computer systems today. We hope that this book will help computer scientists and practi-

tioners understand and contribute to this exciting area.

8.6 CONCLUSIONS
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