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a / Due to the rotation of the
earth, everything in the sky
appears to spin in circles. In this
time-exposure photograph, each
star appears as a streak.

Chapter 1

Conservation of Mass and
Energy

1.1 Symmetry and Conservation Laws

Even before history began, people must already have noticed
certain facts about the sky. The sun and moon both rise in the east
and set in the west. Another fact that can be settled to a fair degree
of accuracy using the naked eye is that the apparent sizes of the sun
and moon don’t change noticeably. (There is an optical illusion that
makes the moon appear bigger when it’s near the horizon, but you
can easily verify that it’s nothing more than an illusion by checking
its angular size against some standard, such as your pinkie held
at arm’s length.) If the sun and moon were varying their distances
from us, they would appear to get bigger and smaller, and since they
don’t appear to change in size, it appears, at least approximately,
that they always stay at the same distance from us.

From observations like these, the ancients constructed a scientific
model, in which the sun and moon traveled around the earth in
perfect circles. Of course, we now know that the earth isn’t the
center of the universe, but that doesn’t mean the model wasn’t
useful. That’s the way science always works. Science never aims
to reveal the ultimate reality. Science only tries to make models of
reality that have predictive power.

Our modern approach to understanding physics revolves around
the concepts of symmetry and conservation laws, both of which are
demonstrated by this example.

The sun and moon were believed to move in circles, and a circle
is a very symmetric shape. If you rotate a circle about its center,
like a spinning wheel, it doesn’t change. Therefore, we say that the
circle is symmetric with respect to rotation about its center. The
ancients thought it was beautiful that the universe seemed to have
this type of symmetry built in, and they became very attached to
the idea.

A conservation law is a statement that some number stays the
same with the passage of time. In our example, the distance between
the sun and the earth is conserved, and so is the distance between
the moon and the earth. (The ancient Greeks were even able to
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c / In this scene from Swan
Lake, the choreography has a
symmetry with respect to left and
right.

d / C.S. Wu at Columbia Uni-
versity in 1963.

determine that earth-moon distance.)

b / Emmy Noether (1882-1935). The daughter of a prominent German
mathematician, she did not show any early precocity at mathematics —
as a teenager she was more interested in music and dancing. She re-
ceived her doctorate in 1907 and rapidly built a world-wide reputation, but
the University of Göttingen refused to let her teach, and her colleague
Hilbert had to advertise her courses in the university’s catalog under his
own name. A long controversy ensued, with her opponents asking what
the country’s soldiers would think when they returned home and were ex-
pected to learn at the feet of a woman. Allowing her on the faculty would
also mean letting her vote in the academic senate. Said Hilbert, “I do
not see that the sex of the candidate is against her admission as a privat-
dozent [instructor]. After all, the university senate is not a bathhouse.” She
was finally admitted to the faculty in 1919. A Jew, Noether fled Germany
in 1933 and joined the faculty at Bryn Mawr in the U.S.

In our example, the symmetry and the conservation law both
give the same information. Either statement can be satisfied only by
a circular orbit. That isn’t a coincidence. Physicist Emmy Noether
showed on very general mathematical grounds that for physical the-
ories of a certain type, every symmetry leads to a corresponding
conservation law. Although the precise formulation of Noether’s
theorem, and its proof, are too mathematical for this book, we’ll see
many examples like this one, in which the physical content of the
theorem is fairly straightforward.

The idea of perfect circular orbits seems very beautiful and in-
tuitively appealing. It came as a great disappointment, therefore,
when the astronomer Johannes Kepler discovered, by the painstak-
ing analysis of precise observations, that orbits such as the moon’s
were actually ellipses, not circles. This is the sort of thing that led
the biologist Huxley to say, “The great tragedy of science is the slay-
ing of a beautiful theory by an ugly fact.” The lesson of the story,
then, is that symmetries are important and beautiful, but we can’t
decide which symmetries are right based only on common sense or
aesthetics; their validity has to be determined based on observations
and experiments.

As a more modern example, consider the symmetry between
right and left. For example, we observe that a top spinning clockwise
has exactly the same behavior as a top spinning counterclockwise.
This kind of observation led physicists to believe, for hundreds of
years, that the laws of physics were perfectly symmetric with respect
to right and left. This mirror symmetry appealed to physicists’
common sense. However, experiments by Chien-Shiung Wu et al. in
1957 showed that right-left symmetry was violated in certain types
of nuclear reactions. Physicists were thus forced to change their
opinions about what constituted common sense.

8 Chapter 1 Conservation of Mass and Energy



e / Portrait of Monsieur Lavoisier
and His Wife, by Jacques-Louis
David, 1788. Lavoisier invented
the concept of conservation of
mass. The husband is depicted
with his scientific apparatus,
while in the background on the
left is the portfolio belonging
to Madame Lavoisier, who is
thought to have been a student of
David’s.

1.2 Conservation of Mass
We intuitively feel that matter shouldn’t appear or disappear out of
nowhere: that the amount of matter should be a conserved quan-
tity. If that was to happen, then it seems as though atoms would
have to be created or destroyed, which doesn’t happen in any phys-
ical processes that are familiar from everyday life, such as chemical
reactions. On the other hand, I’ve already cautioned you against
believing that a law of physics must be true just because it seems
appealing. The laws of physics have to be found by experiment, and
there seem to be experiments that are exceptions to the conserva-
tion of matter. A log weighs more than its ashes. Did some matter
simply disappear when the log was burned?

The French chemist Antoine-Laurent Lavoisier was the first sci-
entist to realize that there were no such exceptions. Lavoisier hy-
pothesized that when wood burns, for example, the supposed loss
of weight is actually accounted for by the escaping hot gases that
the flames are made of. Before Lavoisier, chemists had almost never
weighed their chemicals to quantify the amount of each substance
that was undergoing reactions. They also didn’t completely under-
stand that gases were just another state of matter, and hadn’t tried
performing reactions in sealed chambers to determine whether gases
were being consumed from or released into the air. For this they
had at least one practical excuse, which is that if you perform a gas-
releasing reaction in a sealed chamber with no room for expansion,
you get an explosion! Lavoisier invented a balance that was capable
of measuring milligram masses, and figured out how to do reactions
in an upside-down bowl in a basin of water, so that the gases could
expand by pushing out some of the water. In one crucial experi-
ment, Lavoisier heated a red mercury compound, which we would
now describe as mercury oxide (HgO), in such a sealed chamber.
A gas was produced (Lavoisier later named it “oxygen”), driving
out some of the water, and the red compound was transformed into
silvery liquid mercury metal. The crucial point was that the total
mass of the entire apparatus was exactly the same before and after
the reaction. Based on many observations of this type, Lavoisier
proposed a general law of nature, that matter is always conserved.

self-check A
In ordinary speech, we say that you should “conserve” something, be-
cause if you don’t, pretty soon it will all be gone. How is this different
from the meaning of the term “conservation” in physics? . Answer,
p. 179

Although Lavoisier was an honest and energetic public official,
he was caught up in the Terror and sentenced to death in 1794. He
requested a fifteen-day delay of his execution so that he could com-
plete some experiments that he thought might be of value to the
Republic. The judge, Coffinhal, infamously replied that “the state
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f / Example 1.

g / The time for one cycle of
vibration is related to the object’s
mass.

h / Astronaut Tamara Jernigan
measures her mass aboard the
Space Shuttle. She is strapped
into a chair attached to a spring,
like the mass in figure g. (NASA)

has no need of scientists.” As a scientific experiment, Lavoisier de-
cided to try to determine how long his consciousness would continue
after he was guillotined, by blinking his eyes for as long as possible.
He blinked twelve times after his head was chopped off. Ironically,
Judge Coffinhal was himself executed only three months later, falling
victim to the same chaos.

A stream of water example 1
The stream of water is fatter near the mouth of the faucet, and
skinnier lower down. This can be understood using conservation
of mass. Since water is being neither created nor destroyed, the
mass of the water that leaves the faucet in one second must be
the same as the amount that flows past a lower point in the same
time interval. The water speeds up as it falls, so the two quan-
tities of water can only be equal if the stream is narrower at the
bottom.

Physicists are no different than plumbers or ballerinas in that
they have a technical vocabulary that allows them to make precise
distinctions. A pipe isn’t just a pipe, it’s a PVC pipe. A jump isn’t
just a jump, it’s a grand jeté. We need to be more precise now about
what we really mean by “the amount of matter,” which is what
we’re saying is conserved. Since physics is a mathematical science,
definitions in physics are usually definitions of numbers, and we
define these numbers operationally. An operational definition is one
that spells out the steps required in order to measure that quantity.
For example, one way that an electrician knows that current and
voltage are two different things is that she knows she has to do
completely different things in order to measure them with a meter.

If you ask a room full of ordinary people to define what is meant
by mass, they’ll probably propose a bunch of different, fuzzy ideas,
and speak as if they all pretty much meant the same thing: “how
much space it takes up,” “how much it weighs,” “how much matter
is in it.” Of these, the first two can be disposed of easily. If we
were to define mass as a measure of how much space an object
occupied, then mass wouldn’t be conserved when we squished a
piece of foam rubber. Although Lavoisier did use weight in his
experiments, weight also won’t quite work as the ultimate, rigorous
definition, because weight is a measure of how hard gravity pulls on
an object, and gravity varies in strength from place to place. Gravity
is measurably weaker on the top of a mountain that at sea level,
and much weaker on the moon. The reason this didn’t matter to
Lavoisier was that he was doing all his experiments in one location.
The third proposal is better, but how exactly should we define “how
much matter?” To make it into an operational definition, we could
do something like figure g. A larger mass is harder to whip back
and forth — it’s harder to set into motion, and harder to stop once
it’s started. For this reason, the vibration of the mass on the spring
will take a longer time if the mass is greater. If we put two different
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masses on the spring, and they both take the same time to complete
one oscillation, we can define them as having the same mass.

Since I started this chapter by highlighting the relationship be-
tween conservation laws and symmetries, you’re probably wondering
what symmetry is related to conservation of mass. I’ll come back to
that at the end of the chapter.

When you learn about a new physical quantity, such as mass,
you need to know what units are used to measure it. This will lead
us to a brief digression on the metric system, after which we’ll come
back to physics.

1.3 Review of the Metric System and
Conversions

The metric system

Every country in the world besides the U.S. has adopted a sys-
tem of units known colloquially as the “metric system.” Even in
the U.S., the system is used universally by scientists, and also by
many engineers. This system is entirely decimal, thanks to the same
eminently logical people who brought about the French Revolution.
In deference to France, the system’s official name is the Système In-
ternational, or SI, meaning International System. (The phrase “SI
system” is therefore redundant.)

The metric system works with a single, consistent set of prefixes
(derived from Greek) that modify the basic units. Each prefix stands
for a power of ten, and has an abbreviation that can be combined
with the symbol for the unit. For instance, the meter is a unit of
distance. The prefix kilo- stands for 1000, so a kilometer, 1 km, is
a thousand meters.

In this book, we’ll be using a flavor of the metric system, the SI,
in which there are three basic units, measuring distance, time, and
mass. The basic unit of distance is the meter (m), the one for time
is the second (s), and for mass the kilogram (kg). Based on these
units, we can define others, e.g., m/s (meters per second) for the
speed of a car, or kg/s for the rate at which water flows through a
pipe. It might seem odd that we consider the basic unit of mass to
be the kilogram, rather than the gram. The reason for doing this
is that when we start defining other units starting from the basic
three, some of them come out to be a more convenient size for use
in everyday life. For example, there is a metric unit of force, the
newton (N), which is defined as the push or pull that would be able
to change a 1-kg object’s velocity by 1 m/s, if it acted on it for 1 s.
A newton turns out to be about the amount of force you’d use to
pick up your keys. If the system had been based on the gram instead
of the kilogram, then the newton would have been a thousand times

Section 1.3 Review of the Metric System and Conversions 11



smaller, something like the amount of force required in order to pick
up a breadcrumb.

The following are the most common metric prefixes. You should
memorize them.

prefix meaning example
kilo- k 1000 60 kg = a person’s mass
centi- c 1/100 28 cm = height of a piece of paper
milli- m 1/1000 1 ms = time for one vibration of a guitar

string playing the note D

The prefix centi-, meaning 1/100, is only used in the centimeter;
a hundredth of a gram would not be written as 1 cg but as 10 mg.
The centi- prefix can be easily remembered because a cent is 1/100
of a dollar. The official SI abbreviation for seconds is “s” (not “sec”)
and grams are “g” (not “gm”).

You may also encounter the prefixes mega- (a million) and micro-
(one millionth).

Scientific notation

Most of the interesting phenomena in our universe are not on
the human scale. It would take about 1,000,000,000,000,000,000,000
bacteria to equal the mass of a human body. When the physicist
Thomas Young discovered that light was a wave, scientific notation
hadn’t been invented, and he was obliged to write that the time
required for one vibration of the wave was 1/500 of a millionth of
a millionth of a second. Scientific notation is a less awkward way
to write very large and very small numbers such as these. Here’s a
quick review.

Scientific notation means writing a number in terms of a product
of something from 1 to 10 and something else that is a power of ten.
For instance,

32 = 3.2× 101

320 = 3.2× 102

3200 = 3.2× 103 . . .

Each number is ten times bigger than the last.

Since 101 is ten times smaller than 102 , it makes sense to use
the notation 100 to stand for one, the number that is in turn ten
times smaller than 101 . Continuing on, we can write 10−1 to stand
for 0.1, the number ten times smaller than 100 . Negative exponents
are used for small numbers:

3.2 = 3.2× 100

0.32 = 3.2× 10−1

0.032 = 3.2× 10−2 . . .

12 Chapter 1 Conservation of Mass and Energy



A common source of confusion is the notation used on the dis-
plays of many calculators. Examples:

3.2× 106 (written notation)
3.2E+6 (notation on some calculators)
3.26 (notation on some other calculators)

The last example is particularly unfortunate, because 3.26 really
stands for the number 3.2 × 3.2 × 3.2 × 3.2 × 3.2 × 3.2 = 1074, a
totally different number from 3.2 × 106 = 3200000. The calculator
notation should never be used in writing. It’s just a way for the
manufacturer to save money by making a simpler display.

self-check B
A student learns that 104 bacteria, standing in line to register for classes
at Paramecium Community College, would form a queue of this size:

The student concludes that 102 bacteria would form a line of this length:

Why is the student incorrect? . Answer, p. 179

Conversions

I suggest you avoid memorizing lots of conversion factors be-
tween SI units and U.S. units. Suppose the United Nations sends
its black helicopters to invade California (after all who wouldn’t
rather live here than in New York City?), and institutes water flu-
oridation and the SI, making the use of inches and pounds into a
crime punishable by death. I think you could get by with only two
mental conversion factors:

1 inch = 2.54 cm

An object with a weight on Earth of 2.2 pounds-force has a
mass of 1 kg.

The first one is the present definition of the inch, so it’s exact. The
second one is not exact, but is good enough for most purposes. (U.S.
units of force and mass are confusing, so it’s a good thing they’re
not used in science. In U.S. units, the unit of force is the pound-
force, and the best unit to use for mass is the slug, which is about
14.6 kg.)

More important than memorizing conversion factors is under-
standing the right method for doing conversions. Even within the
SI, you may need to convert, say, from grams to kilograms. Differ-
ent people have different ways of thinking about conversions, but
the method I’ll describe here is systematic and easy to understand.
The idea is that if 1 kg and 1000 g represent the same mass, then

Section 1.3 Review of the Metric System and Conversions 13



we can consider a fraction like

103 g

1 kg

to be a way of expressing the number one. This may bother you. For
instance, if you type 1000/1 into your calculator, you will get 1000,
not one. Again, different people have different ways of thinking
about it, but the justification is that it helps us to do conversions,
and it works! Now if we want to convert 0.7 kg to units of grams,
we can multiply kg by the number one:

0.7 kg× 103 g

1 kg

If you’re willing to treat symbols such as “kg” as if they were vari-
ables as used in algebra (which they’re really not), you can then
cancel the kg on top with the kg on the bottom, resulting in

0.7��kg× 103 g

1��kg
= 700 g.

To convert grams to kilograms, you would simply flip the fraction
upside down.

One advantage of this method is that it can easily be applied to
a series of conversions. For instance, to convert one year to units of
seconds,

1���year× 365��
�days

1���year
× 24���hours

1��day
× 60���min

1���hour
× 60 s

1���min
=

= 3.15× 107 s.

Should that exponent be positive or negative?

A common mistake is to write the conversion fraction incorrectly.
For instance the fraction

103 kg

1 g
(incorrect)

does not equal one, because 103 kg is the mass of a car, and 1 g is
the mass of a raisin. One correct way of setting up the conversion
factor would be

10−3 kg

1 g
(correct).

You can usually detect such a mistake if you take the time to check
your answer and see if it is reasonable.

If common sense doesn’t rule out either a positive or a negative
exponent, here’s another way to make sure you get it right. There
are big prefixes, like kilo-, and small ones, like milli-. In the example
above, we want the top of the fraction to be the same as the bottom.
Since k is a big prefix, we need to compensate by putting a small
number like 10−3 in front of it, not a big number like 103.
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i / A hockey puck is released
at rest. If it spontaneously
scooted off in some direction,
that would violate the symmetry
of all directions in space.

j / James Joule (1818-1889)
discovered the law of conserva-
tion of energy.

Discussion question

A Each of the following conversions contains an error. In each case,
explain what the error is.

(a) 1000 kg× 1 kg
1000 g = 1 g

(b) 50 m× 1 cm
100 m = 0.5 cm

1.4 Conservation of Energy
Energy

Consider the hockey puck in figure i. If we release it at rest, we
expect it to remain at rest. If it did start moving all by itself, that
would be strange: it would have to pick some direction in which
to move, and why would it pick that direction rather than some
other one? If we observed such a phenomenon, we would have to
conclude that that direction in space was somehow special. It would
be the favored direction in which hockey pucks (and presumably
other objects as well) preferred to move. That would violate our
intuition about the symmetry of space, and this is a case where our
intuition is right: a vast number of experiments have all shown that
that symmetry is a correct one. In other words, if you secretly pick
up the physics laboratory with a crane, and spin it around gently
with all the physicists inside, all their experiments will still come
out the same, regardless of the lab’s new orientation. If they don’t
have windows they can look out of, or any other external cues (like
the Earth’s magnetic field), then they won’t notice anything until
they hang up their lab coats for the evening and walk out into the
parking lot.

Another way of thinking about it is that a moving hockey puck
would have some energy, whereas a stationary one has none. I
haven’t given you an operational definition of energy yet, but we’ll
gradually start to build one up, and it will end up fitting in pretty
well with your general idea of what energy means from everyday
life. Regardless of the mathematical details of how you would actu-
ally calculate the energy of a moving hockey puck, it makes sense
that a puck at rest has zero energy. It starts to look like energy is
conserved. A puck that initially has zero energy must continue to
have zero energy, so it can’t start moving all by itself.

You might conclude from this discussion that we have a new
example of Noether’s theorem: that the symmetry of space with re-
spect to different directions must be equivalent, in some mysterious
way, to conservation of energy. Actually that’s not quite right, and
the possible confusion is related to the fact that we’re not going
to deal with the full, precise mathematical statement of Noether’s
theorem. In fact, we’ll see soon that conservation of energy is re-
ally more closely related to a different symmetry, which is symmetry

Section 1.4 Conservation of Energy 15



k / Why does Aristotle look
so sad? Is it because he’s
realized that his entire system of
physics is wrong?

l / The jets are at rest. The
Empire State Building is moving.

with respect to the passage of time.

The principle of inertia

Now there’s one very subtle thing about the example of the
hockey puck, which wouldn’t occur to most people. If we stand
on the ice and watch the puck, and we don’t see it moving, does
that mean that it really is at rest in some absolute sense? Remem-
ber, the planet earth spins once on its axis every 24 hours. At the
latitude where I live, this results in a speed of about 800 miles per
hour, or something like 400 meters per second. We could say, then
that the puck wasn’t really staying at rest. We could say that it
was really in motion at a speed of 400 m/s, and remained in motion
at that same speed. This may be inconsistent with our earlier de-
scription, but it is still consistent with the same description of the
laws of physics. Again, we don’t need to know the relevant formula
for energy in order to believe that if the puck keeps the same speed
(and its mass also stays the same), it’s maintaining the same energy.

In other words, we have two different frames of reference, both
equally valid. The person standing on the ice measures all velocities
relative to the ice, finds that the puck maintained a velocity of zero,
and says that energy was conserved. The astronaut watching the
scene from deep space might measure the velocities relative to her
own space station; in her frame of reference, the puck is moving at
400 m/s, but energy is still conserved.

This probably seems like common sense, but it wasn’t common
sense to one of the smartest people ever to live, the ancient Greek
philosopher Aristotle. He came up with an entire system of physics
based on the premise that there is one frame of reference that is
special: the frame of reference defined by the dirt under our feet.
He believed that all motion had a tendency to slow down unless a
force was present to maintain it. Today, we know that Aristotle was
wrong. One thing he was missing was that he didn’t understand the
concept of friction as a force. If you kick a soccer ball, the reason
it eventually comes to rest on the grass isn’t that it “naturally”
wants to stop moving. The reason is that there’s a frictional force
from the grass that is slowing it down. (The energy of the ball’s
motion is transformed into other forms, such as heat and sound.)
Modern people may also have an easier time seeing his mistake,
because we have experience with smooth motion at high speeds.
For instance, consider a passenger on a jet plane who stands up
in the aisle and inadvertently drops his bag of peanuts. According
to Aristotle, the bag would naturally slow to a stop, so it would
become a life-threatening projectile in the cabin! From the modern
point of view, the cabin can just as well be considered to be at rest.

16 Chapter 1 Conservation of Mass and Energy



o / Foucault demonstrates
his pendulum to an audience at a
lecture in 1851.

m / Galileo Galilei was the first physicist to state the principle of inertia (in
a somewhat different formulation than the one given here). His contradic-
tion of Aristotle had serious consequences. He was interrogated by the
Church authorities and convicted of teaching that the earth went around
the sun as a matter of fact and not, as he had promised previously, as a
mere mathematical hypothesis. He was placed under permanent house
arrest, and forbidden to write about or teach his theories. Immediately af-
ter being forced to recant his claim that the earth revolved around the sun,
the old man is said to have muttered defiantly “and yet it does move.”

The principle of inertia says, roughly, that all frames of reference
are equally valid:

The principle of inertia
The results of experiments don’t depend on the straight-line,
constant-speed motion of the apparatus.

Speaking slightly more precisely, the principle of inertia says that
if frame B moves at constant speed, in a straight line, relative to
frame A, then frame B is just as valid as frame A, and in fact an
observer in frame B will consider B to be at rest, and A to be moving.
The laws of physics will be valid in both frames. The necessity for
the more precise formulation becomes evident if you think about
examples in which the motion changes its speed or direction. For
instance, if you’re in a car that’s accelerating from rest, you feel
yourself being pressed back into your seat. That’s very different from
the experience of being in a car cruising at constant speed, which
produces no physical sensation at all. A more extreme example of
this is shown in figure n on page 18.

A frame of reference moving at constant speed in a straight line
is known as an inertial frame of reference. A frame that changes
its speed or direction of motion is called noninertial. The principle
of inertia applies only to inertial frames. The frame of reference
defined by an accelerating car is noninertial, but the one defined by
a car cruising at constant speed in a straight line is inertial.

Foucault’s pendulum example 2
Earlier, I spoke as if a frame of reference attached to the surface
of the rotating earth was just as good as any other frame of ref-
erence. Now, with the more exact formulation of the principle of
inertia, we can see that that isn’t quite true. A point on the earth’s
surface moves in a circle, whereas the principle of inertia refers
only to motion in a straight line. However, the curve of the mo-
tion is so gentle that under ordinary conditions we don’t notice
that the local dirt’s frame of reference isn’t quite inertial. The first
demonstration of the noninertial nature of the earth-fixed frame of
reference was by Léon Foucault using a very massive pendulum
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n / This Air Force doctor volunteered to ride a rocket sled as a
medical experiment. The obvious effects on his head and face are not
because of the sled’s speed but because of its rapid changes in speed:
increasing in 2 and 3, and decreasing in 5 and 6. In 4 his speed is
greatest, but because his speed is not increasing or decreasing very
much at this moment, there is little effect on him.

(figure o) whose oscillations would persist for many hours with-
out becoming imperceptible. Although Foucault did his demon-
stration in Paris, it’s easier to imagine what would happen at the
north pole: the pendulum would keep swinging in the same plane,
but the earth would spin underneath it once every 24 hours. To
someone standing in the snow, it would appear that the pendu-
lum’s plane of motion was twisting. The effect at latitudes less
than 90 degrees turns out to be slower, but otherwise similar. The
Foucault pendulum was the first definitive experimental proof that
the earth really did spin on its axis, although scientists had been
convinced of its rotation for a century based on more indirect evi-
dence about the structure of the solar system.

People have a strong intuitive belief that there is a state of ab-
solute rest, and that the earth’s surface defines it. But Copernicus
proposed as a mathematical assumption, and Galileo argued as a
matter of physical reality, that the earth spins on its axis, and also
circles the sun. Galileo’s opponents objected that this was impossi-
ble, because we would observe the effects of the motion. They said,
for example, that if the earth was moving, then you would never
be able to jump up in the air and land in the same place again —
the earth would have moved out from under you. Galileo realized
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that this wasn’t really an argument about the earth’s motion but
about physics. In one of his books, which were written in the form
of dialogues, he has the three characters debate what would happen
if a ship was cruising smoothly across a calm harbor and a sailor
climbed up to the top of its mast and dropped a rock. Would it hit
the deck at the base of the mast, or behind it because the ship had
moved out from under it? This is the kind of experiment referred to
in the principle of inertia, and Galileo knew that it would come out
the same regardless of the ship’s motion. His opponents’ reasoning,
as represented by the dialog’s stupid character Simplicio, was based
on the assumption that once the rock lost contact with the sailor’s
hand, it would naturally start to lose its forward motion. In other
words, they didn’t even believe in the idea that motion naturally
continues unless a force acts to stop it.

But the principle of inertia says more than that. It says that
motion isn’t even real: to a sailor standing on the deck of the ship,
the deck and the masts and the rigging are not even moving. People
on the shore can tell him that the ship and his own body are moving
in a straight line at constant speed. He can reply, “No, that’s an
illusion. I’m at rest. The only reason you think I’m moving is
because you and the sand and the water are moving in the opposite
direction.” The principle of inertia says that straight-line, constant-
speed motion is a matter of opinion. Thus things can’t “naturally”
slow down and stop moving, because we can’t even agree on which
things are moving and which are at rest.

If observers in different frames of reference disagree on velocities,
it’s natural to want to be able to convert back and forth. For motion
in one dimension, this can be done by simple addition.

A sailor running on the deck example 3
. A sailor is running toward the front of a ship, and the other
sailors say that in their frame of reference, fixed to the deck, his
velocity is 7.0 m/s. The ship is moving at 1.3 m/s relative to the
shore. How fast does an observer on the beach say the sailor is
moving?

. They see the ship moving at 7.0 m/s, and the sailor moving even
faster than that because he’s running from the stern to the bow.
In one second, the ship moves 1.3 meters, but he moves 1.3+7.0
m, so his velocity relative to the beach is 8.3 m/s.

The only way to make this rule give consistent results is if we
define velocities in one direction as positive, and velocities in the
opposite direction as negative.

Running back toward the stern example 4
. The sailor of example 3 turns around and runs back toward
the stern at the same speed relative to the deck. How do the
other sailors describe this velocity mathematically, and what do
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p / The skater has con-
verted all his kinetic energy
into gravitational energy on
the way up the side of the
pool. Photo by J.D. Rogge,
www.sonic.net/∼shawn.

q / As the skater free-falls, his
gravitational energy is converted
into kinetic energy.

r / Example 5.

observers on the beach say?

. Since the other sailors described his original velocity as positive,
they have to call this negative. They say his velocity is now −7.0
m/s. A person on the shore says his velocity is 1.3+(−7.0) = −5.7
m/s.

Kinetic and gravitational energy

Now suppose we drop a rock. The rock is initially at rest, but
then begins moving. This seems to be a violation of conservation
of energy, because a moving rock would have more energy. But ac-
tually this is a little like the example of the burning log that seems
to violate conservation of mass. Lavoisier realized that there was
a second form of mass, the mass of the smoke, that wasn’t being
accounted for, and proved by experiments that mass was, after all,
conserved once the second form had been taken into account. In the
case of the falling rock, we have two forms of energy. The first is
the energy it has because it’s moving, known as kinetic energy. The
second form is a kind of energy that it has because it’s interacting
with the planet earth via gravity. This is known as gravitational en-
ergy.1 The earth and the rock attract each other gravitationally, and
the greater the distance between them, the greater the gravitational
energy — it’s a little like stretching a spring.

The SI unit of energy is the joule (J), and in those units, we find
that lifting a 1-kg mass through a height of 1 m requires 9.8 J of
energy. This number, 9.8 joules per meter per kilogram, is a measure
of the strength of the earth’s gravity near its surface. We notate this
number, known as the gravitational field, as g, and often round it
off to 10 for convenience in rough calculations. If you lift a 1-kg rock
to a height of 1 m above the ground, you’re giving up 9.8 J of the
energy you got from eating food, and changing it into gravitational
energy stored in the rock. If you then release the rock, it starts
transforming the energy into kinetic energy, until finally when the
rock is just about to hit the ground, all of that energy is in the form
of kinetic energy. That kinetic energy is then transformed into heat
and sound when the rock hits the ground.

Stated in the language of algebra, the formula for gravitational
energy is

GE = mgh,

where m is the mass of an object, g is the gravitational field, and h
is the object’s height.

A lever example 5
Figure r shows two sisters on a seesaw. The one on the left

has twice as much mass, but she’s at half the distance from the
center. No energy input is needed in order to tip the seesaw. If
1You may also see this referred to in some books as gravitational potential

energy.
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t / The spinning coin slows
down. It looks like conservation
of energy is violated, but it isn’t.

the girl on the left goes up a certain distance, her gravitational
energy will increase. At the same time, her sister on the right
will drop twice the distance, which results in an equal decrease in
energy, since her mass is half as much. In symbols, we have

(2m)gh

for the gravitational energy gained by the girl on the left, and

mg(2h)

for the energy lost by the one on the right. Both of these equal
2mgh, so the amounts gained and lost are the same, and energy
is conserved.

Looking at it another way, this can be thought of as an example
of the kind of experiment that you’d have to do in order to arrive
at the equation GE = mgh in the first place. If we didn’t already
know the equation, this experiment would make us suspect that
it involved the product mh, since that’s what’s the same for both
girls.

Once we have an equation for one form of energy, we can estab-
lish equations for other forms of energy. For example, if we drop a
rock and measure its final velocity, v, when it hits the ground, we
know how much GE it lost, so we know that’s how much KE it must
have had when it was at that final speed. Here are some imaginary
results from such an experiment.

m (kg) v (m/s) energy (J)

1.00 1.00 0.50

1.00 2.00 2.00

2.00 1.00 1.00

Comparing the first line with the second, we see that doubling
the object’s velocity doesn’t just double its energy, it quadruples it.
If we compare the first and third lines, however, we find that dou-
bling the mass only doubles the energy. This suggests that kinetic
energy is proportional to mass times the square of velocity, mv2,
and further experiments of this type would indeed establish such a
general rule. The proportionality factor equals 0.5 because of the
design of the metric system, so the kinetic energy of a moving object
is given by

KE =
1

2
mv2.

Energy in general

By this point, I’ve casually mentioned several forms of energy:
kinetic, gravitational, heat, and sound. This might be disconcert-
ing, since we can get thoroughly messed up if we don’t realize that a
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s / A vivid demonstration that heat is a form of motion. A small
amount of boiling water is poured into the empty can, which rapidly fills
up with hot steam. The can is then sealed tightly, and soon crumples.
This can be explained as follows. The high temperature of the steam is
interpreted as a high average speed of random motions of its molecules.
Before the lid was put on the can, the rapidly moving steam molecules
pushed their way out of the can, forcing the slower air molecules out of
the way. As the steam inside the can thinned out, a stable situation was
soon achieved, in which the force from the less dense steam molecules
moving at high speed balanced against the force from the more dense but
slower air molecules outside. The cap was put on, and after a while the
steam inside the can reached the same temperature as the air outside.
The force from the cool, thin steam no longer matched the force from the
cool, dense air outside, and the imbalance of forces crushed the can.

certain form of energy is important in a particular situation. For in-
stance, the spinning coin in figure t gradually loses its kinetic energy,
and we might think that conservation of energy was therefore being
violated. However, whenever two surfaces rub together, friction acts
to create heat. The correct analysis is that the coin’s kinetic energy
is gradually converted into heat.

One way of making the proliferation of forms of energy seem less
scary is to realize that many forms of energy that seem different on
the surface are in fact the same. One important example is that
heat is actually the kinetic energy of molecules in random motion,
so where we thought we had two forms of energy, in fact there is
only one. Sound is also a form of kinetic energy: it’s the vibration
of air molecules.

This kind of unification of different types of energy has been a
process that has been going on in physics for a long time, and at
this point we’ve gotten it down the point where there really only
appear to be four forms of energy:
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u / Example 6.

v / Example 7.

1. kinetic energy

2. gravitational energy

3. electrical energy

4. nuclear energy

We don’t even encounter nuclear energy in everyday life (except in
the sense that sunlight originates as nuclear energy), so really for
most purposes the list only has three items on it. Of these three,
electrical energy is the only form that we haven’t talked about yet.
The interactions between atoms are all electrical, so this form of
energy is what’s responsible for all of chemistry. The energy in the
food you eat, or in a tank of gasoline, are forms of electrical energy.

You take the high road and I’ll take the low road. example 6
. Figure u shows two ramps which two balls will roll down. Com-
pare their final speeds, when they reach point B. Assume friction
is negligible.

. Each ball loses some gravitational energy because of its de-
creasing height above the earth, and conservation of energy says
that it must gain an equal amount of kinetic energy (minus a lit-
tle heat created by friction). The balls lose the same amount of
height, so their final speeds must be equal.

The birth of stars example 7
Orion is the easiest constellation to find. You can see it in the

winter, even if you live under the light-polluted skies of a big city.
Figure v shows an interesting feature of this part of the sky that
you can easily pick out with an ordinary camera (that’s how I took
the picture) or a pair of binoculars. The three stars at the top are
Orion’s belt, and the stuff near the lower left corner of the picture
is known as his sword — to the naked eye, it just looks like three
more stars that aren’t as bright as the stars in the belt. The mid-
dle “star” of the sword, however, isn’t a star at all. It’s a cloud
of gas, known as the Orion Nebula, that’s in the process of col-
lapsing due to gravity. Like the pool skater on his way down, the
gas is losing gravitational energy. The results are very different,
however. The skateboard is designed to be a low-friction device,
so nearly all of the lost gravitational energy is converted to ki-
netic energy, and very little to heat. The gases in the nebula flow
and rub against each other, however, so most of the gravitational
energy is converted to heat. This is the process by which stars
are born: eventually the core of the gas cloud gets hot enough to
ignite nuclear reactions.
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w / Example 10.

x / Example 10.

Lifting a weight example 8
. At the gym, you lift a mass of 40 kg through a height of 0.5
m. How much gravitational energy is required? Where does this
energy come from?

. The strength of the gravitational field is 10 joules per kilogram
per meter, so after you lift the weight, its gravitational energy will
be greater by 10× 40× 0.5 = 200 joules.

Energy is conserved, so if the weight gains gravitational energy,
something else somewhere in the universe must have lost some.
The energy that was used up was the energy in your body, which
came from the food you’d eaten. This is what we refer to as
“burning calories,” since calories are the units normally used to
describe the energy in food, rather than metric units of joules.

In fact, your body uses up even more than 200 J of food energy,
because it’s not very efficient. The rest of the energy goes into
heat, which is why you’ll need a shower after you work out. We
can summarize this as

food energy→ gravitational energy + heat.

Lowering a weight example 9
. After lifting the weight, you need to lower it again. What’s hap-
pening in terms of energy?

. Your body isn’t capable of accepting the energy and putting it
back into storage. The gravitational energy all goes into heat.
(There’s nothing fundamental in the laws of physics that forbids
this. Electric cars can do it — when you stop at a stop sign, the
car’s kinetic energy is absorbed back into the battery, through a
generator.)

Absorption and emission of light example 10
Light has energy. Light can be absorbed by matter and trans-
formed into heat, but the reverse is also possible: an object can
glow, transforming some of its heat energy into light. Very hot ob-
jects, like a candle flame or a welding torch, will glow in the visible
part of the spectrum, as in figure w.

Objects at lower temperatures will also emit light, but in the in-
frared part of the spectrum, i.e., the part of the rainbow lying
beyond the red end, which humans can’t see. The photos in
figure x were taken using a camera that is sensitive to infrared
light. The cyclist locked his rear brakes suddenly, and skidded
to a stop. The kinetic energy of the bike and his body are rapidly
transformed into heat by the friction between the tire and the floor.
In the first panel, you can see the glow of the heated strip on the
floor, and in the second panel, the heated part of the tire.
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Heavy objects don’t fall faster example 11
Stand up now, take off your shoe, and drop it alongside a much
less massive object such as a coin or the cap from your pen.

Did that surprise you? You found that they both hit the ground
at the same time. Aristotle wrote that heavier objects fall faster
than lighter ones. He was wrong, but Europeans believed him for
thousands of years, partly because experiments weren’t an ac-
cepted way of learning the truth, and partly because the Catholic
Church gave him its posthumous seal of approval as its official
philosopher.

Heavy objects and light objects have to fall the same way, be-
cause conservation laws are additive — we find the total energy
of an object by adding up the energies of all its atoms. If a single
atom falls through a height of one meter, it loses a certain amount
of gravitational energy and gains a corresponding amount of ki-
netic energy. Kinetic energy relates to speed, so that determines
how fast it’s moving at the end of its one-meter drop. (The same
reasoning could be applied to any point along the way between
zero meters and one.)

Now what if we stick two atoms together? The pair has double
the mass, so the amount of gravitational energy transformed into
kinetic energy is twice as much. But twice as much kinetic energy
is exactly what we need if the pair of atoms is to have the same
speed as the single atom did. Continuing this train of thought, it
doesn’t matter how many atoms an object contains; it will have
the same speed as any other object after dropping through the
same height.

1.5 Newton’s Law of Gravity
Why does the gravitational field on our planet have the particular
value it does? For insight, let’s compare with the strength of gravity
elsewhere in the universe:

location g (joules per kg per m)

asteroid Vesta (surface) 0.3
earth’s moon (surface) 1.6
Mars (surface) 3.7
earth (surface) 9.8
Jupiter (cloud-tops) 26
sun (visible surface) 270
typical neutron star (surface) 1012

black hole (center) infinite according to some
theories, on the order of
1052 according to others

A good comparison is Vesta versus a neutron star. They’re
roughly the same size, but they have vastly different masses — a
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y / Isaac Newton (1642-1727)

teaspoonful of neutron star matter would weigh a million tons! The
different mass must be the reason for the vastly different gravita-
tional fields. (The notation 1012 means 1 followed by 12 zeroes.)
This makes sense, because gravity is an attraction between things
that have mass.

The mass of an object, however, isn’t the only thing that deter-
mines the strength of its gravitational field, as demonstrated by the
difference between the fields of the sun and a neutron star, despite
their similar masses. The other variable that matters is distance.
Because a neutron star’s mass is compressed into such a small space
(comparable to the size of a city), a point on its surface is within a
fairly short distance from every part of the star. If you visited the
surface of the sun, however, you’d be millions of miles away from
most of its atoms.

As a less exotic example, if you travel from the seaport of Guaya-
quil, Ecuador, to the top of nearby Mt. Cotopaxi, you’ll experience
a slight reduction in gravity, from 9.7806 to 9.7624 J/kg/m. This is
because you’ve gotten a little farther from the planet’s mass. Such
differences in the strength of gravity between one location and an-
other on the earth’s surface were first discovered because pendulum
clocks that were correctly calibrated in one country were found to
run too fast or too slow when they were shipped to another location.

The general equation for an object’s gravitational field was dis-
covered by Isaac Newton, by working backwards from the observed
motion of the planets:2

g =
GM

d2
,

where M is the mass of the object, d is the distance from the object,
andG is a constant that is the same everywhere in the universe. This
is known as Newton’s law of gravity.3 This type of relationship, in
which an effect is inversely proportional to the square of the distance
from the object creating the effect, is known as an inverse square
law. For example, the intensity of the light from a candle obeys an
inverse square law, as discussed in subsection 7.2.1 on page 140.

self-check C
Mars is about twice as far from the sun as Venus. Compare the strength
of the sun’s gravitational field as experienced by Mars with the strength
of the field felt by Venus. . Answer, p. 179

Newton’s law of gravity really gives the field of an individual
atom, and the field of a many-atom object is the sum of the fields
of the atoms. Newton was able to prove mathematically that this
scary sum has an unexpectedly simple result in the case of a spherical
object such as a planet: the result is the same as if all the object’s

2Example 12 on page 50 shows the type of reasoning that Newton had to go
through.

3This is not the form in which Newton originally wrote the equation.
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z / Example 12.

mass had been concentrated at its center.

Newton showed that his theory of gravity could explain the or-
bits of the planets, and also finished the project begun by Galileo
of driving a stake through the heart of Aristotelian physics. His
book on the motion of material objects, the Mathematical Princi-
ples of Natural Philosophy, was uncontradicted by experiment for
200 years, but his other main work, Optics, was on the wrong track
due to his conviction that light was composed of particles rather
than waves. He was an avid alchemist, an embarrassing fact that
modern scientists would like to forget. Newton was on the winning
side of the revolution that replaced King James II with William and
Mary of Orange, which led to a lucrative post running the English
royal mint; he worked hard at what could have been a sinecure, and
took great satisfaction from catching and executing counterfeiters.
Newton’s personal life was less happy, as we’ll see in chapter 5.

Newton’s apple example 12
A charming legend attested to by Newton’s niece is that he first

conceived of gravity as a universal attraction after seeing an ap-
ple fall from a tree. He wondered whether the force that made the
apple fall was the same one that made the moon circle the earth
rather than flying off straight. Newton had astronomical data that
allowed him to calculate that the gravitational field the moon ex-
perienced from the earth was 1/3600 as strong as the field on
the surface of the earth.4 (The moon has its own gravitational
field, but that’s not what we’re talking about.) The moon’s dis-
tance from the earth is 60 times greater than the earth’s radius,
so this fit perfectly with an inverse-square law: 60× 60 = 3600.

1.6 Noether’s Theorem for Energy
Now we’re ready for our first full-fledged example of Noether’s the-
orem. Conservation of energy is a law of physics, and Noether’s
theorem says that the laws of physics come from symmetry. Specif-
ically, Noether’s theorem says that every symmetry implies a con-
servation law. Conservation of energy comes from a symmetry that
we haven’t even discussed yet, but one that is simple and intuitively
appealing: as time goes by, the universe doesn’t change the way it
works. We’ll call this time symmetry.

We have strong evidence for time symmetry, because when we
see a distant galaxy through a telescope, we’re seeing light that
has taken billions of years to get here. A telescope, then, is like a
time machine. For all we know, alien astronomers with advanced
technology may be observing our planet right now,5 but if so, they’re

4See example 12 on page 50.
5Our present technology isn’t good enough to let us pick the planets of other

solar systems out from the glare of their suns, except in a few exceptional cases.
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seeing it not as it is now but as it was in the distant past, perhaps
in the age of the dinosaurs, or before life even evolved here. As we
observe a particularly distant, and therefore ancient, supernova, we
see that its explosion plays out in exactly the same way as those
that are closer, and therefore more recent.

Now suppose physics really does change from year to year, like
politics, pop music, and hemlines. Imagine, for example, that the
“constant” G in Newton’s law of gravity isn’t quite so constant. One
day you might wake up and find that you’ve lost a lot of weight with-
out dieting or exercise, simply because gravity has gotten weaker
since the day before.

If you know about such changes in G over time, it’s the ultimate
insider information. You can use it to get as rich as Croesus, or even
Bill Gates. On a day when G is low, you pay for the energy needed
to lift a large mass up high. Then, on a day when gravity is stronger,
you lower the mass back down, extracting its gravitational energy.
The key is that the energy you get back out is greater than what
you originally had to put in. You can run the cycle over and over
again, always raising the weight when gravity is weak, and lowering
it when gravity is strong. Each time, you make a profit in energy.
Everyone else thinks energy is conserved, but your secret technique
allows you to keep on increasing and increasing the amount of energy
in the universe (and the amount of money in your bank account).

The scheme can be made to work if anything about physics
changes over time, not just gravity. For instance, suppose that the
mass of an electron had one value today, and a slightly different
value tomorrow. Electrons are one of the basic particles from which
atoms are built, so on a day when the mass of electrons is low, every
physical object has a slightly lower mass. In problem 14 on page
35, you’ll work out a way that this could be used to manufacture
energy out of nowhere.

Sorry, but it won’t work. Experiments show that G doesn’t
change measurably over time, nor does there seem to be any time
variation in any of the other rules by which the universe works.6 If
archaeologists find a copy of this book thousands of years from now,
they’ll be able to reproduce all the experiments you’re doing in this
course.

I’ve probably convinced you that if time symmetry was violated,
then conservation of energy wouldn’t hold. But does it work the

6In 2002, there have been some reports that the properties of atoms as ob-
served in distant galaxies are slightly different than those of atoms here and now.
If so, then time symmetry is weakly violated, and so is conservation of energy.
However, this is a revolutionary claim, and it needs to be examined carefully.
The change being claimed is large enough that, if it’s real, it should be detectable
from one year to the next in ultra-high-precision laboratory experiments here on
earth.
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other way around? If time symmetry is valid, must there be a law
of conservation of energy? Logically, that’s a different question. We
may be able to prove that if A is false, then B must be false, but
that doesn’t mean that if A is true, B must be true as well. For
instance, if you’re not a criminal, then you’re presumably not in
jail, but just because someone is a criminal, that doesn’t mean he
is in jail — some criminals never get caught.

Noether’s theorem does work the other way around as well: if
physics has a certain symmetry, then there must be a certain cor-
responding conservation law. This is a stronger statement. The
full-strength version of Noether’s theorem can’t be proved without
a model of light and matter more detailed than the one currently at
our disposal.

1.7 Equivalence of Mass and Energy
Mass-energy

You’ve encountered two conservation laws so far: conservation
of mass and conservation of energy. If conservation of energy is a
consequence of symmetry, is there a deeper reason for conservation
of mass?

Actually they’re not even separate conservation laws. Albert
Einstein found, as a consequence of his theory of relativity, that
mass and energy are equivalent, and are not separately conserved
— one can be converted into the other. Imagine that a magician
waves his wand, and changes a bowl of dirt into a bowl of lettuce.
You’d be impressed, because you were expecting that both dirt and
lettuce would be conserved quantities. Neither one can be made to
vanish, or to appear out of thin air. However, there are processes
that can change one into the other. A farmer changes dirt into
lettuce, and a compost heap changes lettuce into dirt. At the most
fundamental level, lettuce and dirt aren’t really different things at
all; they’re just collections of the same kinds of atoms — carbon,
hydrogen, and so on.

We won’t examine relativity in detail in this book, but mass-
energy equivalence is an inevitable implication of the theory, and
it’s the only part of the theory that most people have heard of, via
the famous equation E = mc2. This equation tells us how much
energy is equivalent to how much mass: the conversion factor is the
square of the speed of light, c. Since c is a big number, you get
a really really big number when you multiply it by itself to get c2.
This means that even a small amount of mass is equivalent to a very
large amount of energy.
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ab / A New York Times head-
line from November 10, 1919,
describing the observations
discussed in example 13.

aa / Example 13.

Gravity bending light example 13
Gravity is a universal attraction between things that have mass,
and since the energy in a beam of light is equivalent to some very
small amount of mass, we expect that light will be affected by
gravity, although the effect should be very small. The first exper-
imental confirmation of relativity came in 1919 when stars next
to the sun during a solar eclipse were observed to have shifted
a little from their ordinary position. (If there was no eclipse, the
glare of the sun would prevent the stars from being observed.)
Starlight had been deflected by the sun’s gravity. Figure aa is a
photographic negative, so the circle that appears bright is actually
the dark face of the moon, and the dark area is really the bright
corona of the sun. The stars, marked by lines above and below
them, appeared at positions slightly different than their normal
ones.

Black holes example 14
A star with sufficiently strong gravity can prevent light from leav-
ing. Quite a few black holes have been detected via their gravita-
tional forces on neighboring stars or clouds of gas and dust.

Because mass and energy are like two different sides of the same
coin, we may speak of mass-energy, a single conserved quantity,
found by adding up all the mass and energy, with the appropriate
conversion factor: E +mc2.
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A rusting nail example 15
. An iron nail is left in a cup of water until it turns entirely to rust.
The energy released is about 500,000 joules. In theory, would a
sufficiently precise scale register a change in mass? If so, how
much?

. The energy will appear as heat, which will be lost to the envi-
ronment. The total mass-energy of the cup, water, and iron will
indeed be lessened by 500,000 joules. (If it had been perfectly
insulated, there would have been no change, since the heat en-
ergy would have been trapped in the cup.) The speed of light in
metric units is c = 3 × 108 meters per second (scientific notation
for 3 followed by 8 zeroes), so converting to mass units, we have

m =
E
c2

=
500, 000(
3× 108

)2

= 0.000000000006 kilograms.

(The design of the metric system is based on the meter, the kilo-
gram, and the second. The joule is designed to fit into this sys-
tem, so the result comes out in units of kilograms.) The change in
mass is too small to measure with any practical technique. This is
because the square of the speed of light is such a large number
in metric units.

The correspondence principle

The realization that mass and energy are not separately con-
served is our first example of a general idea called the correspondence
principle. When Einstein came up with relativity, conservation of
energy had been accepted by physicists for decades, and conserva-
tion of mass for over a hundred years.

Does an example like this mean that physicists don’t know what
they’re talking about? There is a recent tendency among social sci-
entists to deny that the scientific method even exists, claiming that
science is no more than a social system that determines what ideas
to accept based on an in-group’s criteria. If science is an arbitrary
social ritual, it would seem difficult to explain its effectiveness in
building such useful items as airplanes, CD players and sewers. If
voodoo and astrology were no less scientific in their methods than
chemistry and physics, what was it that kept them from producing
anything useful? This silly attitude was effectively skewered in a
famous hoax carried out in 1996 by New York University physicist
Alan Sokal. Sokal wrote an article titled “Transgressing the Bound-
aries: Toward a Transformative Hermeneutics of Quantum Gravity,”
and got it accepted by a cultural studies journal called Social Text.7

7The paper appeared in Social Text #46/47 (1996) pp. 217-
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The scientific content of the paper is a carefully constructed soup of
mumbo jumbo, using technical terms to create maximum confusion;
I can’t make heads or tails of it, and I assume the editors and peer
reviewers at Social Text understood even less. The physics, however,
is mixed in with cultural relativist statements designed to appeal to
them — “. . . the truth claims of science are inherently theory-laden
and self-referential” — and footnoted references to academic articles
such as “Irigaray’s and Hayles’ exegeses of gender encoding in fluid
mechanics . . . and . . . Harding’s comprehensive critique of the gen-
der ideology underlying the natural sciences in general and physics
in particular. . . ” On the day the article came out, Sokal published
a letter explaining that the whole thing had been a parody — one
that apparently went over the heads of the editors of Social Text.

What keeps physics from being merely a matter of fashion is that
it has to agree with experiments and observations. If a theory such
as conservation of mass or conservation of energy became accepted
in physics, it was because it was supported by a vast number of ex-
periments. It’s just that experiments never have perfect accuracy, so
a discrepancy such as the tiny change in the mass of the rusting nail
in example 15 was undetectable. The old experiments weren’t all
wrong. They were right, within their limitations. If someone comes
along with a new theory he claims is better, it must still be consis-
tent with all the same experiments. In computer jargon, it must be
backward-compatible. This is called the correspondence principle:
new theories must be compatible with old ones in situations where
they are both applicable. The correspondence principle tells us that
we can still use an old theory within the realm where it works, so
for instance I’ll typically refer to conservation of mass and conserva-
tion of energy in this book rather than conservation of mass-energy,
except in cases where the new theory is actually necessary.

Ironically, the extreme cultural relativists want to attack what
they see as physical scientists’ arrogant claims to absolute truth, but
what they fail to understand is that science only claims to be able
to find partial, provisional truth. The correspondence principle tells
us that each of today’s scientific truths can be superseded tomorrow
by another truth that is more accurate and more broadly applicable.
It also tells us that today’s truth will not lose any value when that
happens.

252. The full text is available on Professor Sokal’s web page at
www.physics.nyu.edu/faculty/sokal/.

32 Chapter 1 Conservation of Mass and Energy



Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Convert 134 mg to units of kg, writing your answer in scientific
notation. . Solution, p. 180

2 Compute the following things. If they don’t make sense be-
cause of units, say so.
(a) 3 cm + 5 cm
(b) 1.11 m + 22 cm
(c) 120 miles + 2.0 hours
(d) 120 miles / 2.0 hours

3 Your backyard has brick walls on both ends. You measure a
distance of 23.4 m from the inside of one wall to the inside of the
other. Each wall is 29.4 cm thick. How far is it from the outside
of one wall to the outside of the other? Pay attention to significant
figures.

4 The speed of light is 3.0× 108 m/s. Convert this to furlongs
per fortnight. A furlong is 220 yards, and a fortnight is 14 days. An
inch is 2.54 cm.

√

5 Express each of the following quantities in micrograms:
(a) 10 mg, (b) 104 g, (c) 10 kg, (d) 100× 103 g, (e) 1000 ng.

√

6 In the last century, the average age of the onset of puberty for
girls has decreased by several years. Urban folklore has it that this
is because of hormones fed to beef cattle, but it is more likely to be
because modern girls have more body fat on the average and pos-
sibly because of estrogen-mimicking chemicals in the environment
from the breakdown of pesticides. A hamburger from a hormone-
implanted steer has about 0.2 ng of estrogen (about double the
amount of natural beef). A serving of peas contains about 300
ng of estrogen. An adult woman produces about 0.5 mg of estrogen
per day (note the different unit!). (a) How many hamburgers would
a girl have to eat in one day to consume as much estrogen as an
adult woman’s daily production? (b) How many servings of peas?√

7 You jump up straight up in the air. When do you have the
greatest gravitational energy? The greatest kinetic energy? (Based
on a problem by Serway and Faughn.)

8 Anya and Ivan lean over a balcony side by side. Anya throws a
penny downward with an initial speed of 5 m/s. Ivan throws a penny
upward with the same speed. Both pennies end up on the ground
below. Compare their kinetic energies and velocities on impact.
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Problem 9.

9 (a) If weight B moves down by a certain amount, how much
does weight A move up or down?
(b) What should the ratio of the two weights be if they are to bal-
ance? Explain in terms of conservation of energy.

10 (a) You release a magnet on a tabletop near a big piece of
iron, and the magnet leaps across the table to the iron. Does the
magnetic energy increase, or decrease? Explain.
(b) Suppose instead that you have two repelling magnets. You give
them an initial push towards each other, so they decelerate while
approaching each other. Does the magnetic energy increase, or de-
crease? Explain.

11 For an astronaut sealed inside a space suit, getting rid of body
heat can be difficult. Suppose an astronaut is performing vigorous
physical activity, expending 200 watts of power. An energy of 200
kJ is enough to raise her body temperature by 1◦C. If none of the
heat can escape from her space suit, how long will it take before her
body temperature rises by 6◦C (11◦F), an amount sufficient to kill
her? Express your answer in units of minutes.

√

Problem 12.

12 The multiflash photograph below shows a collision between
two pool balls. The ball that was initially at rest shows up as a dark
image in its initial position, because its image was exposed several
times before it was struck and began moving. By making mea-
surements on the figure, determine whether or not energy appears
to have been conserved in the collision. What systematic effects
would limit the accuracy of your test? (From an example in PSSC
Physics.)
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13 How high above the surface of the earth should a rocket be
in order to have 1/100 of its normal weight? Express your answer
in units of earth radii.

√

14 As suggested on page 28, imagine that the mass of the electron
rises and falls over time. (Since all electrons are identical, physicists
generally talk about “the electron” collectively, as in “the modern
man wants more than just beer and sports.”) The idea is that
all electrons are increasing and decreasing their masses in unison,
and at any given time, they’re all identical. They’re like a litter
of puppies whose weights are all identical on any given day, but
who all change their weights in unison from one month to the next.
Suppose you were the only person who knew about these small day-
to-day changes in the mass of the electron. Find a plan for violating
conservation of energy and getting rich.

15 A typical balance like the ones used in school classes can be
read to an accuracy of about plus or minus 0.1 grams, or 10−4 kg.
What if the laws of physics had been designed around a different
value of the speed of light? To make mass-energy equivalence de-
tectable in example 15 on page 31 using an ordinary balance, would
c have to be smaller than it is in our universe, or bigger? Find the
value of c for which the effect would be just barely detectable.

√

16 (a) A free neutron (as opposed to a neutron bound into an
atomic nucleus) is unstable, and decays radioactively into a proton,
an electron, and a particle called an antineutrino, which fly off in
three different directions. The masses are as follows:

neutron 1.67495× 10−27 kg
proton 1.67265× 10−27 kg
electron 0.00091× 10−27 kg
antineutrino negligible

Find the energy released in the decay of a free neutron.
√

(b) Neutrons and protons make up essentially all of the mass of the
ordinary matter around us. We observe that the universe around us
has no free neutrons, but lots of free protons (the nuclei of hydrogen,
which is the element that 90% of the universe is made of). We find
neutrons only inside nuclei along with other neutrons and protons,
not on their own.

If there are processes that can convert neutrons into protons, we
might imagine that there could also be proton-to-neutron conver-
sions, and indeed such a process does occur sometimes in nuclei
that contain both neutrons and protons: a proton can decay into a
neutron, a positron, and a neutrino. A positron is a particle with
the same properties as an electron, except that its electrical charge
is positive (see chapter 5). A neutrino, like an antineutrino, has
negligible mass.

Although such a process can occur within a nucleus, explain why
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it cannot happen to a free proton. (If it could, hydrogen would be
radioactive, and you wouldn’t exist!)

17 (a) A 1.0 kg rock is released from rest, and drops 1.0 m. Find
the amount of gravitational energy released.

√

(b) Find the rock’s kinetic energy at the end of its fall.
√

(c) Find the rock’s velocity at the end of its fall.
√
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Chapter 2

Conservation of
Momentum

Fantasy novelist T.H. White invented a wonderful phrase that has
since entered into popular culture: “Everything not forbidden is
compulsory.” Originally intended as a satire of totalitarianism, it
was taken up by physicist Murray Gell-Mann as a metaphor for
physics. What he meant was that the laws of physics forbid all the
impossible things, and what’s left over is what really happens. Con-
servation of mass and energy prevent many things from happening.
Objects can’t disappear into thin air, and you can’t run your car
forever without putting gas in it.

Some other processes are impossible, but not forbidden by these
two conservation laws. In the martial arts movie Crouching Tiger,
Hidden Dragon, those who have received mystical enlightenment are
able to violate the laws of physics. Some of the violation, such as
their ability to fly, are obvious, but others are a little more subtle.
The rebellious young heroine/antiheroine Jen Yu gets into an argu-
ment while sitting at a table in a restaurant. A young tough, Iron
Arm Lu, comes running toward her at full speed, and she puts up one
arm and effortlessly makes him bounce back, without even getting
out of her seat or bracing herself against anything. She does all this
between bites. It’s impossible, but how do we know it’s impossible?
It doesn’t violate conservation of mass, because neither character’s
mass changes. It conserves energy as well, since the rebounding Lu
has the same energy he started with.

Suppose you live in a country where the only laws are prohibi-
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tions against murder and robbery. One day someone covers your
house with graffiti, and the authorities refuse to prosecute, because
no crime was committed. You’re convinced of the need for a new
law against vandalism. Similarly, the story of Jen Yu and Iron Arm
Lu shows that we need a new conservation law.

2.1 Translation Symmetry
The most fundamental laws of physics are conservation laws, and
Noether’s theorem tells us that conservation laws are the way they
are because of symmetry. Time symmetry is responsible for con-
servation of energy, but time is like a river with only two direc-
tions, past and future. What’s impossible about Lu’s motion is the
abrupt reversal in the direction of his motion in space, but neither
time symmetry nor energy conservation tell us anything about di-
rections in space. When you put gas in your car, you don’t have
to decide whether you want to buy north gas or south gas, east,
west, up or down gas. Energy has no direction. What we need is
a new conserved quantity that has a direction in space, and such
a conservation law can only come from a symmetry that relates
to space. Since we’ve already had some luck with time symmetry,
which says that the laws of physics are the same at all times, it
seems reasonable to turn now to the possibility of a new type of
symmetry, which would state that the laws of physics are the same
in all places in space. This is known as translation symmetry, where
the word “translation” is being used in a mathematical sense that
means sliding something around without rotating it.

Translation symmetry would seem reasonable to most people,
but you’ll see that it ends up producing some very surprising results.
To see how, it will be helpful to imagine the consequences of a
violation of translation symmetry. What if, like the laws of nations,
the laws of physics were different in different places? What would
happen, and how would we detect it? We could try doing the same
experiment in two different places and comparing the results, but
it’s even easier than that. Tap your finger on this spot on the page

×

and then wait a second and do it again. Did both taps occur at
the same point in space? You’re probably thinking that’s a silly
question; am I just checking whether you followed my directions?
Not at all. Consider the whole scene from the point of view of a
Martian who is observing it through a powerful telescope from her
home planet. (You didn’t draw the curtains, did you?) From her
point of view, the earth is spinning on its axis and orbiting the sun,
at speeds measured in thousands of kilometers per hour. According
to her, your second finger tap happened at a point in space about 30
kilometers from the first. If you want to impress the Martians and
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win the Martian version of the Nobel Prize for detecting a violation
of translation symmetry, all you have to do is perform a physics
experiment twice in the same laboratory, and show that the result
is different.

But who’s to say that the Martian point of view is the right one?
It gets a little thorny now. How do you know that what you detected
was a violation of translation symmetry at all? Maybe it was just
a violation of time symmetry. The Martian Nobel committee isn’t
going to give you the prize based on an experiment this ambiguous.
A possible scheme for resolving the ambiguity would be to wait a
year and do the same experiment a third time. After a year, the
earth will have completed one full orbit around the sun, and your
lab will be back in the same spot in space. If the third experiment
comes out the same as the first one, then you can make a strong
argument that what you’ve detected is an asymmetry of space, not
time. There’s a problem, however. You and the Martians agree that
the earth is back in the same place after a year, but what about an
observer from another solar system, whose planet orbits a different
star? This observer says that our whole solar system is in motion.
To him, the earth’s motion around our sun looks like a spiral or a
corkscrew, since the sun is itself moving.

2.2 The Principle of Inertia
Symmetry and inertia

This story shows that translation symmetry is closely related to
the relative nature of motion, as expressed by the principle of inertia.
Riding in a train on a long, straight track at constant speed, how
can you even tell you’re in motion? You can look at the scenery
outside, but that’s irrelevant, because we could argue that the trees
and cows are moving while you stand still. (The Martians say both
train and scenery are moving.) The real point is whether you can
detect your motion without reference to any external object. You
can hear the repetitive thunk-thunk-thunk as the train passes from
one piece of track to the next, but again this is just a reference to an
external object — all that proves is that you’re moving relative to
the tracks, but is there any way to tell that you’re moving in some
absolute sense? Assuming no interaction with the outside world, is
there any experiment you can do that will give a different result
when the train is in motion than when it’s at rest? You could
if translation symmetry was violated. If the laws of physics were
different in different places, then as the train moved it would pass
through them. “Riding over” these regions would be like riding over
the pieces of track, but you would be able to detect the transition
from one region to the next simply because experiments inside the
train came out different, without referring to any external objects.
Rather than the thunk-thunk-thunk of the rails, you would detect

Section 2.2 The Principle of Inertia 39



increases and decreases in some quantity such as the gravitational
constant G, or the speed of light, or the mass of the electron.

We can therefore conclude that the following two hypotheses are
closely related.

The principle of inertia
The results of experiments don’t depend on the straight-line,
constant-speed motion of the apparatus.

Translation symmetry
The laws of physics are the same at every point in space. Specifically,
experiments don’t give different results just because you set up your
apparatus in a different place.

A state of absolute rest example 1
Suppose that translation symmetry is violated. The laws of phys-
ics are different in one region of space than in another. Cruising in
our spaceship, we monitor the fluctuations in the laws of physics
by watching the needle on a meter that measures some funda-
mental quantity such as the gravitational constant. We make a
short blast with the ship’s engines and turn them off again. Now
we see that the needle is wavering more slowly, so evidently it’s
taking us more time to move from one region to the next. We
keep on blasting with the ship’s engines until the fluctuations stop
entirely. Now we know that we’re in a state of absolute rest. The
violation of translation symmetry logically resulted in a violation of
the principle of inertia.

self-check A
Suppose you do an experiment to see how long it takes for a rock to
drop one meter. This experiment comes out different if you do it on the
moon. Does this violate translation symmetry? . Answer, p. 179

2.3 Momentum
Conservation of momentum

Let’s return to the impossible story of Jen Yu and Iron Arm
Lu on page 37. For simplicity, we’ll model them as two identical,
featureless pool balls, a. This may seem like a drastic simplification,
but even a collision between two human bodies is really just a series
of many collisions between atoms. The film shows a series of instants
in time, viewed from overhead. The light-colored ball comes in,
hits the darker ball, and rebounds. It seems strange that the dark
ball has such a big effect on the light ball without experiencing
any consequences itself, but how can we show that this is really
impossible?
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a / How can we prove that this col-
lision is impossible?

We can show it’s impossible by looking at it in a different frame
of reference, b. This camera follows the light ball on its way in, so
in this frame the incoming light ball appears motionless. (If you
ever get hauled into court on an assault charge for hitting someone,
try this defense: “Your honor, in my fist’s frame of reference, it
was his face that assaulted my knuckles!”) After the collision, we
let the camera keep moving in the same direction, because if we
didn’t, it wouldn’t be showing us an inertial frame of reference.
To help convince yourself that figures a and b represent the same
motion seen in two different frames, note that both films agree on
the distances between the balls at each instant. After the collision,
frame b shows the light ball moving twice as fast as the dark ball;
an observer who prefers frame a explains this by saying that the
camera that produced film b was moving one way, while the ball
was moving the opposite way.

b / The collision of figure a is
viewed in a different frame of ref-
erence.

Figures a and b record the same events, so if one is impossible,
the other is too. But figure b is definitely impossible, because it
violates conservation of energy. Before the collision, the only kinetic
energy is the dark ball’s. After the collision, light ball suddenly has
some energy, but where did that energy come from? It can only
have come from the dark ball. The dark ball should then have lost
some energy, which it hasn’t, since it’s moving at the same speed as
before.

Figure c shows what really does happen. This kind of behavior
is familiar to anyone who plays pool. In a head-on collision, the
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incoming ball stops dead, and the target ball takes all its energy
and flies away. In c/1, the light ball hits the dark ball. In c/2, the
camera is initially following the light ball; in this frame of reference,
the dark ball hits the light one (“Judge, his face hit my knuckles!”).
The frame of reference shown in c/3 is particularly interesting. Here
the camera always stays at the midpoint between the two balls. This
is called the center-of-mass frame of reference.

c / This is what really happens.
Three films represent the same
collision viewed in three differ-
ent frames of reference. Energy
is conserved in all three frames.
Figure d shows a less cumber-
some way of representing the
same thing.

self-check B
In each picture in figure c/1, mark an x at the point half-way in between
the two balls. This series of five x’s represents the motion of the camera
that was used to make the bottom film. How fast is the camera moving?
Does it represent an inertial frame of reference? . Answer, p. 179

What’s special about the center-of-mass frame is its symmetry.
In this frame, both balls have the same initial speed. Since they
start out with the same speed, and they have the same mass, there’s
no reason for them to behave differently from each other after the
collision. By symmetry, if the light ball feels a certain effect from
the dark ball, the dark ball must feel the same effect from the light
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d / A less cumbersome rep-
resentation of figure c. The
collision is shown as a graph
of position, x , versus time, t .
By distorting the graph-paper
grid, we can describe the same
collision in the two other frames
of reference. Cf. figure e.

e / A visual shorthand for de-
scribing the relationship between
two frames of reference as in
figure d: the gray rectangle rep-
resents the original, undistorted,
graph paper, while the super-
imposed grid shows a different
frame.

ball.

This is exactly like the rules of accounting. Let’s say two big
corporations are doing business with each other. If Glutcorp pays a
million dollars to Slushco, two things happen: Glutcorp’s bank ac-
count goes down by a million dollars, and Slushco’s rises by the same
amount. The two companies’ books have to show transactions on
the same date that are equal in size, but one is positive (a payment)
and one is negative. What if Glutcorp records −1, 000, 000 dollars,
but Slushco’s books say +920, 000? This indicates that a law has
been broken; the accountants are going to call the police and start
looking for the employee who’s driving a new 80,000-dollar Jaguar.
Money is supposed to be conserved.

In figure c, let’s define velocities as positive if the motion is
toward the top of the page. In figure c/1 let’s say the incoming light
ball’s velocity is 1 m/s.

velocity (meters per second)
before the colli-
sion

after the collision change

0 1 +1
1 0 −1

The books balance. The light ball’s payment, −1, matches the dark
ball’s receipt, +1. Everything also works out fine in the center of
mass frame, c/3:

velocity (meters per second)
before the colli-
sion

after the collision change

−0.5 +0.5 +1
+0.5 −0.5 −1

self-check C
Make a similar table for figure c/2. What do you notice about the change
in velocity when you compare the three tables? . Answer, p. 179

Accounting works because money is conserved. Apparently, some-
thing is also conserved when the balls collide. We call it momentum.
Momentum is not the same as velocity, because conserved quanti-
ties have to be additive. Our pool balls are like identical atoms, but
atoms can be stuck together to form molecules, people, and plan-
ets. Because conservation laws work by addition, two atoms stuck
together and moving at a certain velocity must have double the mo-
mentum that a single atom would have had. We therefore define
momentum as velocity multiplied by mass.

Conservation of momentum
The quantity defined by momentum = mv is conserved.
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f / Example 3.

This is our second example of Noether’s theorem:

symmetry conserved quantity
time symmetry ⇒ mass-energy
translation symmetry ⇒ momentum

Conservation of momentum for pool balls example 2
. Is momentum conserved in figure c/1?

. We have to check whether the total initial momentum is the
same as the total final momentum.

dark ball’s initial momentum + light ball’s initial momentum
=?

dark ball’s final momentum + light ball’s final momentum

Yes, momentum was conserved:

0 + mv = mv + 0

Ice skaters push off from each other example 3
If the ice skaters in figure f have equal masses, then left-right
(mirror) symmetry implies that they moved off with equal speeds
in opposite directions. Let’s check that this is consistent with con-
servation of momentum:

left skater’s initial momentum + right skater’s initial momentum
=?

left skater’s final momentum + right skater’s final momentum

Momentum was conserved:

0 + 0 = m × (−v ) + mv

This is an interesting example, because if these had been pool
balls instead of people, we would have accused them of violat-
ing conservation of energy. Initially there was zero kinetic energy,
and at the end there wasn’t zero. (Note that the energies at the
end don’t cancel, because kinetic energy is always positive, re-
gardless of direction.) The mystery is resolved because they’re
people, not pool balls. They both ate food, and they therefore
have chemical energy inside their bodies:

food energy→ kinetic energy + kinetic energy + heat
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g / Example 5.

Unequal masses example 4
. Suppose the skaters have unequal masses: 50 kg for the one
on the left, and 55 kg for the other. The more massive skater, on
the right, moves off at 1.0 m/s. How fast does the less massive
skater go?

. Their momenta (plural of momentum) have to be the same
amount, but with opposite signs. The less massive skater must
have a greater velocity if her momentum is going to be as much
as the more massive one’s.

0 + 0 = (50 kg)(−v ) + (55 kg)(1.0 m/s)
(50 kg)(v ) = (55 kg)(1.0 m/s)

v =
(55 kg)
50 kg

(1.0 m/s)

= 1.1 m/s

Momentum compared to kinetic energy

Momentum and kinetic energy are both measures of the amount
of motion, and a sideshow in the Newton-Leibniz controversy over
who invented calculus was an argument over which quantity was
the “true” measure of motion. The modern student can certainly
be excused for wondering why we need both quantities, when their
complementary nature was not evident to the greatest minds of the
1700’s. The following table highlights their differences.

Kinetic energy. . . Momentum. . .

has no direction in space. has a direction in space.

is always positive, and cannot
cancel out.

cancels with momentum in the
opposite direction.

can be traded for forms of en-
ergy that do not involve mo-
tion. KE is not a conserved
quantity by itself.

is always conserved.

is quadrupled if the velocity is
doubled.

is doubled if the velocity is dou-
bled.

Here are some examples that show the different behaviors of the
two quantities.

A spinning coin example 5
A spinning coin has zero total momentum, because for every
moving point, there is another point on the opposite side that can-
cels its momentum. It does, however, have kinetic energy.

Momentum and kinetic energy in firing a rifle example 6
The rifle and bullet have zero momentum and zero kinetic energy
to start with. When the trigger is pulled, the bullet gains some mo-
mentum in the forward direction, but this is canceled by the rifle’s
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h / Example 8.

backward momentum, so the total momentum is still zero. The
kinetic energies of the gun and bullet are both positive numbers,
however, and do not cancel. The total kinetic energy is allowed
to increase, because both objects’ kinetic energies are destined
to be dissipated as heat — the gun’s “backward” kinetic energy
does not refrigerate the shooter’s shoulder!

The wobbly earth example 7
As the moon completes half a circle around the earth, its motion
reverses direction. This does not involve any change in kinetic
energy, because the moon doesn’t speed up or slow down, nor
is there any change in gravitational energy, because the moon
stays at the same distance from the earth.1 The reversed veloc-
ity does, however, imply a reversed momentum, so conservation
of momentum tells us that the earth must also change its mo-
mentum. In fact, the earth wobbles in a little “orbit” about a point
below its surface on the line connecting it and the moon. The two
bodies’ momenta always point in opposite directions and cancel
each other out.

The earth and moon get a divorce example 8
Why can’t the moon suddenly decide to fly off one way and the
earth the other way? It is not forbidden by conservation of mo-
mentum, because the moon’s newly acquired momentum in one
direction could be canceled out by the change in the momentum
of the earth, supposing the earth headed the opposite direction
at the appropriate, slower speed. The catastrophe is forbidden by
conservation of energy, because both their kinetic energies would
have increased greatly.

Momentum and kinetic energy of a glacier example 9
A cubic-kilometer glacier would have a mass of about 1012 kg —
1 followed by 12 zeroes. If it moves at a speed of 0.00001 m/s,
then its momentum would be 10, 000, 000 kg·m/s. This is the kind
of heroic-scale result we expect, perhaps the equivalent of the
space shuttle taking off, or all the cars in LA driving in the same
direction at freeway speed. Its kinetic energy, however, is only 50
joules, the equivalent of the calories contained in a poppy seed
or the energy in a drop of gasoline too small to be seen without
a microscope. The surprisingly small kinetic energy is because
kinetic energy is proportional to the square of the velocity, and the
square of a small number is an even smaller number.

Force

1Actually these statements are both only approximately true. The moon’s
orbit isn’t exactly a circle.
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Definition of force

When momentum is being transferred, we refer to the rate of
transfer as the force.2 The metric unit of force is the newton (N).
The relationship between force and momentum is like the relation-
ship between power and energy, or the one between your cash flow
and your bank balance:

conserved quantity rate of transfer

name units name units
energy joules (J) power watts (W)
momentum kg·m/s force newtons

(N)

A bullet example 10
. A bullet emerges from a gun with a momentum of 1.0 kg·m/s,
after having been acted on for 0.01 seconds by the force of the
gases from the explosion of the gunpowder. What was the force
on the bullet?

. The force is3

1.0
0.01

= 100 newtons.

There’s no new physics happening here, just a definition of the
word “force.” Definitions are neither right nor wrong, and just be-
cause the Chinese call it instead, that doesn’t mean they’re incor-
rect. But when Isaac Newton first started using the term “force”
according to this technical definition, people already had some def-
inite ideas about what the word meant.

In some cases Newton’s definition matches our intuition. In ex-
ample 10, we divided by a small time, and the result was a big force;
this is intuitively reasonable, since we expect the force on the bullet
to be strong.

Forces occur in equal-strength pairs

In other situations, however, our intuition rebels against reality.

Extra protein example 11
. While riding my bike fast down a steep hill, I pass through a
cloud of gnats, and one of them goes into my mouth. Compare
my force on the gnat to the gnat’s force on me.

. Momentum is conserved, so the momentum gained by the gnat
equals the momentum lost by me. Momentum conservation holds
true at every instant over the fraction of a second that it takes for

2This definition is known as Newton’s second law of motion. Don’t memorize
that!

3This is really only an estimate of the average force over the time it takes for
the bullet to move down the barrel. The force probably starts out stronger than
this, and then gets weaker because the gases expand and cool.
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i / It doesn’t make sense to
add his debts to her assets.

j / I squeeze the bathroom
scale. It does make sense to add
my fingers’ force to my thumbs’,
because they both act on the
same object — the scale.

the collision to happen. The rate of transfer of momentum out
of me must equal the rate of transfer into the gnat. Our forces
on each other have the same strength, but they’re in opposite
directions.

Most people would be willing to believe that the momentum gained
by the gnat is the same as the momentum lost by me, but they would
not believe that the forces are the same strength. Nevertheless,
the second statement follows from the first merely as a matter of
definition. Whenever two objects, A and B, interact, A’s force on B
is the same strength as B’s force on A, and the forces are in opposite
directions.4

(A on B) = −(B on A)

Using the metaphor of money, suppose Alice and Bob are adrift in
a life raft, and pass the time by playing poker. Money is conserved,
so if they count all the money in the boat every night, they should
always come up with the same total. A completely equivalent state-
ment is that their cash flows are equal and opposite. If Alice is
winning five dollars per hour, then Bob must be losing at the same
rate.

This statement about equal forces in opposite directions implies
to many students a kind of mystical principle of equilibrium that
explains why things don’t move. That would be a useless principle,
since it would be violated every time something moved.5 The ice
skaters of figure f on page 44 make forces on each other, and their
forces are equal in strength and opposite in direction. That doesn’t
mean they won’t move. They’ll both move — in opposite directions.

The fallacy comes from trying to add things that it doesn’t make
sense to add, as suggested by the cartoon in figure i. We only add
forces that are acting on the same object. It doesn’t make sense to
say that the skaters’ forces on each other add up to zero, because
it doesn’t make sense to add them. One is a force on the left-hand
skater, and the other is a force on the right-hand skater.

In figure j, my fingers’ force and my thumbs’ force are both acting
on the bathroom scale. It does make sense to add these forces, and
they may possibly add up to zero, but that’s not guaranteed by the
laws of physics. If I throw the scale at you, my thumbs’ force is
stronger that my fingers’, and the forces no longer cancel:

(fingers on scale) 6= −(thumbs on scale).

What’s guaranteed by conservation of momentum is a whole differ-

4This is called Newton’s third law. Don’t memorize that name!
5During the Scopes monkey trial, William Jennings Bryan claimed that every

time he picked his foot up off the ground, he was violating the law of gravity.
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ent relationship:

(fingers on scale) = −(scale on fingers)

(thumbs on scale) = −(scale on thumbs)

The force of gravity

How much force does gravity make on an object? From everyday
experience, we know that this force is proportional to the object’s
mass.6 Let’s find the force on a one-kilogram object. If we release
this object from rest, then after it has fallen one meter, its kinetic
energy equals the strength of the gravitational field,

10 joules per kilogram per meter×1 kilogram×1 meter = 10 joules.

Using the equation for kinetic energy and doing a little simple alge-
bra, we find that its final velocity is 4.4 m/s. It starts from 0 m/s,
and ends at 4.4 m/s, so its average velocity is 2.2 m/s, and the time
takes to fall one meter is therefore (1 m)/(2.2 m/s)=0.44 seconds.
Its final momentum is 4.4 units, so the force on it was evidently

4.4

0.44
= 10 newtons.

This is like one of those card tricks where the magician makes you go
through a bunch of steps so that you end up revealing the card you
had chosen — the result is just equal to the gravitational field, 10,
but in units of newtons! If algebra makes you feel warm and fuzzy,
you may want to replay the derivation using symbols and convince
yourself that it had to come out that way. If not, then I hope the
numerical result is enough to convince you of the general fact that
the force of gravity on a one-kilogram mass equals g. For masses
other than one kilogram, we have the handy-dandy result that

(force of gravity on a mass m) = mg.

In other words, g can be interpreted not just as the gravitational
energy per kilogram per meter of height, but also as the gravitational
force per kilogram.

Motion in two dimensions

Projectile motion

Galileo was an innovator in more than one way. He was arguably
the inventor of open-source software: he invented a mechanical cal-
culating device for certain engineering applications, and rather than
keeping the device’s design secret as his competitors did, he made
it public, but charged students for lessons in how to use it. Not

6This follows from the additivity of forces.
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k / A ball is falling (or rising).

l / The same ball is viewed in
a frame of reference that is
moving horizontally.

m / The drops of water travel
in parabolic arcs.

only that, but he was the first physicist to make money as a mili-
tary consultant. Galileo understood projectiles better than anyone
else, because he understood the principle of inertia. Even if you’re
not planning on a career involving artillery, projectile motion is a
good thing to learn about because it’s an example of how to handle
motion in two or three dimensions.

Figure k shows a ball in the process of falling — or rising, it
really doesn’t matter which. Let’s say the ball has a mass of one
kilogram, each square in the grid is 10 meters on a side, and the
positions of the ball are shown at time intervals of one second. The
earth’s gravitational force on the ball is 10 newtons, so with each
second, the ball’s momentum increases by 10 units, and its speed
also increases by 10 m/s. The ball falls 10 m in the first second, 20
m in the next second, and so on.

self-check D
What would happen if the ball’s mass was 2 kilograms? . Answer, p.
179

Now let’s look at the ball’s motion in a new frame of reference,
l, which is moving at 10 meters per second to the left compared to
the frame of reference used in figure k. An observer in this frame
of reference sees the ball as moving to the right by 10 meters every
second. The ball traces an arc of a specific mathematical type called
a parabola:

1 step over and 1 step down
1 step over and 2 steps down
1 step over and 3 steps down
1 step over and 4 steps down
. . .

It doesn’t matter which frame of reference is the “real” one. Both
diagrams show the possible motion of a projectile. The interesting
point here is that the vertical force of gravity has no effect on the
horizontal motion, and the horizontal motion also has no effect on
what happens in the vertical motion. The two are completely in-
dependent. If the sun is directly overhead, the motion of the ball’s
shadow on the ground seems perfectly natural: there are no horizon-
tal forces, so it either sits still or moves at constant velocity. (Zero
force means zero rate of transfer of momentum.) The same is true
if we shine a light from one side and cast the ball’s shadow on the
wall. Both shadows obey the laws of physics.

The moon example 12
In example 12 on page 27, I promised an explanation of how New-
ton knew that the gravitational field experienced by the moon due
to the earth was 1/3600 of the one we feel here on the earth’s
surface. The radius of the moon’s orbit had been known since
ancient times, so Newton knew its speed to be 1,100 m/s (ex-
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n / The memory of motion:
the default would be for the ball
to continue doing what it was
already doing. The force of grav-
ity makes it deviate downward,
ending up one square below the
default.

o / Example 12.

pressed in modern units). If the earth’s gravity wasn’t acting on
the moon, the moon would fly off straight, along the straight line
shown in figure o, and it would cover 1,100 meters in one second.
We observe instead that it travels the arc of a circle centered on
the earth. Straightforward geometry shows that the amount by
which the arc drops below the straight line is 1.6 millimeters. Near
the surface of the earth, an object falls 5 meters in one second,7

which is indeed about 3600 times greater than 1.6 millimeters.

The tricky part about this argument is that although I said the
path of a projectile was a parabola, in this example it’s a circle.
What’s going on here? What’s different here is that as the moon
moves 1,100 meters, it changes its position relative to the earth,
so down is now in a new direction. We’ll discuss circular motion
more carefully soon, but in this example, it really doesn’t matter.
The curvature of the arc is so gentle that a parabola and a circle
would appear almost identical. (Actually the curvature is so gentle
— 1.6 millimeters over a distance of 1,100 meters! — that if I had
drawn the figure to scale, you wouldn’t have even been able to tell
that it wasn’t straight.)

As an interesting historical note, Newton claimed that he first
did this calculation while confined to his family’s farm during the
plague of 1666, and found the results to “answer pretty nearly.”
His notebooks, however, show that although he did the calcula-
tion on that date, the result didn’t quite come out quite right, and
he became uncertain about whether his theory of gravity was cor-
rect as it stood or needed to be modified. Not until 1675 did he
learn of more accurate astronomical data, which convinced him
that his theory didn’t need to be tinkered with. It appears that he
rewrote his own life story a little bit in order to make it appear that
his work was more advanced at an earlier date, which would have
helped him in his dispute with Leibniz over priority in the invention
of calculus.

The memory of motion

There’s another useful way of thinking about motion along a
curve. In the absence of a force, an object will continue moving
in the same speed and in the same direction. One of my students
invented a wonderful phrase for this: the memory of motion. Over
the first second of its motion, the ball in figure n moved 1 square over
and 1 square down, which is 10 meters and 10 meters. The default
for the next one-second interval would be to repeat this, ending up
at the location marked with the first dashed circle. The earth’s 10-
newton gravitational force on the ball, however, changes the vertical
part of the ball’s momentum by 10 units. The ball actually ends up

7Its initial speed is 0, and its final speed is 10 m/s, so its average speed is 5
m/s over the first second of falling.
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p / The forces on car 1 can-
cel, and the total force on it is
zero. The forward and backward
forces on car 2 also cancel. Only
the inward force remains.

10 meters (1 square) below the default.

Circular motion

Figure q shows how to apply the memory-of-motion idea to cir-
cular motion. It should convince you that only an inward force is
needed to produce circular motion. One of the reasons Newton was
the first to make any progress in analyzing the motion of the planets
around the sun was that his contemporaries were confused on this
point. Most of them thought that in addition to an attraction from
the sun, a second, forward force must exist on the planets, to keep
them from slowing down. This is incorrect Aristotelian thinking;
objects don’t naturally slow down. Car 1 in figure p only needs a
forward force in order to cancel out the backward force of friction;
the total force on it is zero. Similarly, the forward and backward
forces on car 2 are canceling out, and the only force left over is the
inward one. There’s no friction in the vacuum of outer space, so if
car 2 was a planet, the backward force wouldn’t exist; the forward
force wouldn’t exist either, because the only force would be the force
of the sun’s gravity.

q / A large number of gentle taps gives a good approximation to
circular motion. A steady inward force would give exactly circular motion.

One confusing thing about circular motion is that it often tempts
us psychologically to adopt a noninertial frame of reference. Figure
r shows a bowling ball in the back of a turning pickup truck. Each
panel gives a view of the same events from a different frame of
reference. The frame of reference r/1, attached to the turning truck,
is noninertial, because it changes the direction of its motion. The
ball violates conservation of energy by accelerating from rest for
no apparent reason. Is there some mysterious outward force that is
slamming the ball into the side of the truck’s bed? No. By analyzing
everything in a proper inertial frame of reference, r/2, we see that
it’s the truck that swerves and hits the ball. That makes sense,
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t / Tycho Brahe made his name
as an astronomer by showing that
the bright new star, today called
a supernova, that appeared in
the skies in 1572 was far beyond
the Earth’s atmosphere. This,
along with Galileo’s discovery of
sunspots, showed that contrary
to Aristotle, the heavens were
not perfect and unchanging.
Brahe’s fame as an astronomer
brought him patronage from King
Frederick II, allowing him to carry
out his historic high-precision
measurements of the planets’
motions. A contradictory charac-
ter, Brahe enjoyed lecturing other
nobles about the evils of dueling,
but had lost his own nose in a
youthful duel and had it replaced
with a prosthesis made of an
alloy of gold and silver. Willing to
endure scandal in order to marry
a peasant, he nevertheless used
the feudal powers given to him by
the king to impose harsh forced
labor on the inhabitants of his
parishes. The result of their work,
an Italian-style palace with an
observatory on top, surely ranks
as one of the most luxurious
science labs ever built. He died
of a ruptured bladder after falling
from a wagon on the way home
from a party — in those days, it
was considered rude to leave the
dinner table to relieve oneself.

because the truck is interacting with the asphalt.

r / A bowling ball is in the back of a pickup truck turning left. The
motion is viewed first in a frame that turns along with the truck, 1, and
then in an inertial frame, 2.

2.4 Newton’s Triumph
Isaac Newton’s greatest triumph was his explanation of the motion
of the planets in terms of universal physical laws. It was a tremen-
dous psychological revolution: for the first time, both heaven and
earth were seen as operating automatically according to the same
rules.

Newton wouldn’t have been able to figure out why the planets
move the way they do if it hadn’t been for the astronomer Tycho
Brahe (1546-1601) and his protege Johannes Kepler (1571-1630),
who together came up with the first simple and accurate description
of how the planets actually do move. The difficulty of their task is
suggested by figure s, which shows how the relatively simple orbital
motions of the earth and Mars combine so that as seen from earth
Mars appears to be staggering in loops like a drunken sailor.

Brahe, the last of the great naked-eye astronomers, collected ex-
tensive data on the motions of the planets over a period of many
years, taking the giant step from the previous observations’ accuracy
of about 10 minutes of arc (10/60 of a degree) to an unprecedented
1 minute. The quality of his work is all the more remarkable consid-
ering that his observatory consisted of four giant brass protractors
mounted upright in his castle in Denmark. Four different observers
would simultaneously measure the position of a planet in order to
check for mistakes and reduce random errors.

With Brahe’s death, it fell to his former assistant Kepler to try
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s / As the Earth and Mars revolve around the sun at different rates,
the combined effect of their motions makes Mars appear to trace a
strange, looped path across the background of the distant stars.

to make some sense out of the volumes of data. Kepler, in con-
tradiction to his late boss, had formed a prejudice, a correct one
as it turned out, in favor of the theory that the earth and planets
revolved around the sun, rather than the earth staying fixed and
everything rotating about it. Although motion is relative, it is not
just a matter of opinion what circles what. The earth’s rotation
and revolution about the sun make it a noninertial reference frame,
which causes detectable violations of Newton’s laws when one at-
tempts to describe sufficiently precise experiments in the earth-fixed
frame. Although such direct experiments were not carried out until
the 19th century, what convinced everyone of the sun-centered sys-
tem in the 17th century was that Kepler was able to come up with
a surprisingly simple set of mathematical and geometrical rules for
describing the planets’ motion using the sun-centered assumption.
After 900 pages of calculations and many false starts and dead-end
ideas, Kepler finally synthesized the data into the following three
laws:

Kepler’s elliptical orbit law
The planets orbit the sun in elliptical orbits with the sun at
one focus.

Kepler’s equal-area law
The line connecting a planet to the sun sweeps out equal areas
in equal amounts of time.
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u / An ellipse is a circle that
has been distorted by shrinking
and stretching along perpendicu-
lar axes.

v / An ellipse can be constructed
by tying a string to two pins and
drawing like this with the pencil
stretching the string taut. Each
pin constitutes one focus of the
ellipse.

w / If the time interval taken
by the planet to move from P to Q
is equal to the time interval from
R to S, then according to Kepler’s
equal-area law, the two shaded
areas are equal. The planet
is moving faster during interval
RS than it did during PQ, which
Newton later determined was due
to the sun’s gravitational force
accelerating it. The equal-area
law predicts exactly how much it
will speed up.

Kepler’s law of periods
Let T , called the planet’s period, be the time required for a
planet to orbit the sun, and let a be the long axis of the ellipse.
Then T 2 is proportional to a3.

Although the planets’ orbits are ellipses rather than circles, most
are very close to being circular. The earth’s orbit, for instance, is
only flattened by 1.7% relative to a circle. In the special case of a
planet in a circular orbit, the two foci (plural of “focus”) coincide
at the center of the circle, and Kepler’s elliptical orbit law thus says
that the circle is centered on the sun. The equal-area law implies
that a planet in a circular orbit moves around the sun with constant
speed. For a circular orbit, the law of periods then amounts to a
statement that T 2 is proportional to r3, where r is the radius. If
all the planets were moving in their orbits at the same speed, then
the time for one orbit would only increase with the circumference
of the circle, so we would have a simple proportionality between T
and r. Since this is not the case, we can interpret the law of periods
to mean that different planets orbit the sun at different speeds. In
fact, the outer planets move more slowly than the inner ones.

Jupiter and Uranus example 13
. The planets Jupiter and Uranus have very nearly circular orbits,
and the radius of Uranus’s orbit is about four times grater than
that of Jupiter’s orbit. Compare their orbital periods.

. If all the planets moved at the same speed, then it would take
Uranus four times longer to complete the four-times-greater cir-
cumference of its orbit. However, the law of periods tells us that
this isn’t the case. We expect Uranus to take more than four times
as long to orbit the sun.

The law of periods is stated as a proportionality, and proportional-
ities are statements about quantities in proportion to one another,
i.e.. about division. We’re given information about Uranus’s or-
bital radius divided by Jupiter’s, and what we should expect to get
out is information about Uranus’s period divided by Jupiter’s. Let’s
call the latter ratio y . Then we’re looking for a number y such that

y2 = 43,

i.e.,

y × y = 4× 4× 4
y × y = 64

y = 8

The law of periods predicts that Uranus’s period will be eight times
greater than Jupiter’s, which is indeed what is observed (to within
the precision to be expected since the given figure of 4 was just
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stated roughly as a whole number, for convenience in calcula-
tion).

What Newton discovered was the reasons why Kepler’s laws were
true: he showed that they followed from his laws of motion. From a
modern point of view, conservation laws are more fundamental than
Newton’s laws, so rather than following Newton’s approach, it makes
more sense to look for the reasons why Kepler’s laws follow from
conservation laws. The equal-area law is most easily understood as
a consequence of conservation of angular momentum, which is a new
conserved quantity to be discussed in chapter 3. The proof of the
elliptical orbit law is a little too mathematical to be appropriate for
this book, but the interested reader can find the proof in chapter 15
of my online book Light and Matter.

x / Connecting Kepler’s law of pe-
riods to the laws of physics.

The law of periods follows directly from the physics we’ve already
covered. Consider the example of Jupiter and Uranus. We want to
show that the result of example 13 is the only one that’s consistent
with conservation of energy and momentum, and Newton’s law of
gravity. Since Uranus takes eight times longer to cover four times
the distance, it’s evidently moving at half Jupiter’s speed. In figure
x, the distance Jupiter covers from A to B is therefore twice the
distance Uranus covers, over the same time, from D to E. If there
hadn’t been any gravitational force from the sun, Jupiter would
have ended up at C, and Uranus at F. The distance from B to C is
a measure of how much force acted on Jupiter, and likewise for the
very small distance from E to F. We find that BC is 16 millimeters
on this scale drawing, and EF is 1 mm, but this is exactly what
we expect from Newton’s law of gravity: quadrupling the distance
should give 1/16 the force.
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y / The black box does work
by reeling in its cable.

2.5 Work
Imagine a black box8, containing a gasoline-powered engine, which
is designed to reel in a steel cable of length d, exerting a certain
force F .

If we use this black box was to lift a weight, then by the time it
has pulled in its whole cable, it will have lifted the weight through
a height d. The force F is barely capable of lifting a weight m if
F = mg, and if it does this, then the upward force from the cable
exactly cancels the downward force of gravity, so the weight will
rise at constant speed, without changing its kinetic energy. Only
gravitational energy is transferred into the weight, and the amount
of gravitational energy is mgd, which equals Fd. By conservation
of energy, this must also be the amount of energy lost from the
chemical energy of the gasoline inside the box.9

Now what if we use the black box to pull a plow? The energy in-
crease in the outside world is of a different type than before: mainly
heat created by friction between the dirt and the ploughshare. The
box, however, only communicates with the outside world via the
hole through which its cable passes. The amount of chemical en-
ergy lost by the gasoline can therefore only depend on F and d, so
again the amount of energy transferred must equal Fd.

The same reasoning can in fact be applied no matter what the
cable is being used to do. There must always be a transfer of energy
from the box to the outside world that is equal to Fd. In general,
when energy is transferred, we refer to the amount of energy trans-
ferred as work, W . If, as in the example of the black box, the motion
of the object to which the force is applied is in the same direction
as the force, then W = Fd.

z / The baseball pitcher put ki-
netic energy into the ball, so he
did work on it. To do the greatest
possible amount of work, he ap-
plied the greatest possible force
over the greatest possible dis-
tance.

If the motion is in the opposite direction compared to the force,
then W = −Fd; the negative work is to be interpreted as energy
removed from the object to which the force was applied. For ex-

8“Black box” is a traditional engineering term for a device whose inner work-
ings we don’t care about.

9For conceptual simplicity, we ignore the transfer of heat energy to the outside
world via the exhaust and radiator. In reality, the sum of these energies plus the
useful kinetic energy transferred would equal W .
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ample, if Superman gets in front of an oncoming freight train, and
brings it to a stop, he’s decreased its energy rather than increasing
it. In a normal gasoline-powered car, stepping on the brakes takes
away the car’s kinetic energy (doing negative work on it), and turns
it into heat in the brake shoes. In an electric or hybrid-electric car,
the car’s kinetic energy is transformed back into electrical energy to
be used again.
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Problem 1.

Problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The beer bottle shown in the figure is resting on a table in the
dining car of a train. The tracks are straight and level. What can
you tell about the motion of the train? Can you tell whether the
train is currently moving forward, moving backward, or standing
still? Can you tell what the train’s speed is?

2 You’re a passenger in the open basket hanging under a hot-
air balloon. The balloon is being carried along by the wind at a
constant velocity. If you’re holding a flag in your hand, will the flag
wave? If so, which way? (Based on a question from PSSC Physics.)

3 Driving along in your car, you take your foot off the gas, and
your speedometer shows a reduction in speed. Describe an inertial
frame in which your car was speeding up during that same period of
time.

4 If all the air molecules in the room settled down in a thin film
on the floor, would that violate conservation of momentum as well
as conservation of energy?

5 A bullet flies through the air, passes through a paperback
book, and then continues to fly through the air beyond the book.
When is there a force? When is there energy?

6 (a) Continue figure l farther to the left, and do the same for
the numerical table in the text.
(b) Sketch a smooth curve (a parabola) through all the points on
the figure, including all the ones from the original figure and all the
ones you added. Identify the very top of its arc.
(c) Now consider figure k. Is the highest point shown in the figure
the top of the ball’s up-down path? Explain by comparing with your
results from parts a and b.

7 Criticize the following statement about the top panel of figure
c on page 42: In the first few pictures, the light ball is moving up
and to the right, while the dark ball moves directly to the right.

8 Figure ac on page 60 shows a ball dropping to the surface of
the earth. Energy is conserved: over the whole course of the film,
the gravitational energy between the ball and the earth decreases
by 1 joule, while the ball’s kinetic energy increases by 1 joule.
(a) How can you tell directly from the figure that the ball’s speed
isn’t staying the same?
(b) Draw what the film would look like if the camera was following
the ball.
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A bull paws the ground, as
in problem 10.

(c) Explain how you can tell that in this new frame of reference,
energy is not conserved.
(d) Does this violate the strong principle of inertia? Isn’t every
frame of reference supposed to be equally valid?

Problem 8.

9 Two cars with different masses each have the same kinetic
energy. (a) If both cars have the same brakes, capable of supplying
the same force, how will the stopping distances compare? Explain.
(b) Compare the times required for the cars to stop.

10 In each of the following situations, is the work being done
positive, negative, or zero? (a) a bull paws the ground; (b) a fishing
boat pulls a net through the water behind it; (c) the water resists
the motion of the net through it; (d) you stand behind a pickup
truck and lower a bale of hay from the truck’s bed to the ground.
Explain. [Based on a problem by Serway and Faughn.]

11 Weiping lifts a rock with a weight of 1.0 N through a height
of 1.0 m, and then lowers it back down to the starting point. Bubba
pushes a table 1.0 m across the floor at constant speed, requiring
a force of 1.0 N, and then pushes it back to where it started. (a)
Compare the total work done by Weiping and Bubba. (b) Check
that your answers to part a make sense, using the definition of work:
work is the transfer of energy. In your answer, you’ll need to discuss
what specific type of energy is involved in each case.
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A tornado touches down in Spring Hill, Kansas, May 20, 1957.

Chapter 3

Conservation of Angular
Momentum

3.1 Angular Momentum
“Sure, and maybe the sun won’t come up tomorrow.” Of course,
the sun only appears to go up and down because the earth spins,
so the cliche should really refer to the unlikelihood of the earth’s
stopping its rotation abruptly during the night. Why can’t it stop?
It wouldn’t violate conservation of momentum, because the earth’s
rotation doesn’t add anything to its momentum. While California
spins in one direction, some equally massive part of India goes the
opposite way, canceling its momentum. A halt to Earth’s rotation
would entail a drop in kinetic energy, but that energy could simply
be converted into some other form, such as heat.

Other examples along these lines are not hard to find. A hydro-
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a / A figure skater pulls in
her arms so that she can execute
a spin more rapidly.

gen atom spins at the same rate for billions of years. A high-diver
who is rotating when he comes off the board does not need to make
any physical effort to continue rotating, and indeed would be unable
to stop rotating before he hit the water.

These observations have the hallmarks of a conservation law,
but what numerical measure of rotational motion is conserved? Car
engines and old-fashioned LP records have speeds of rotation mea-
sured in rotations per minute (r.p.m.), but the number of rotations
per minute (or per second) is not a conserved quantity. For example,
the twirling figure skater in figure a can pull her arms in to increase
her r.p.m.’s.

The example of the figure skater suggests that this conserved
quantity depends on distance from the axis of rotation. We’ll notate
this distance as r, since, for an object moving in a circle around an
axis of rotation, its distance from the axis equals the radius of the
circle.

Once we realize that r is a variable that matters, it becomes clear
that the examples we’ve been considering were all examples that
would be fairly complicated mathematically, because different parts
of these objects’ masses have different values of r. For example,
the figure skater’s front teeth are farther from the axis than her
back teeth. That suggests that instead of objects with complicated
shapes, we should consider the simplest possible example, which is
a single particle, of mass m, traveling in a circle of radius r at speed
v. Experiments show that the conserved quantity in this situation
is

±mvr.

We call this quantity angular momentum. The symbol ± indicates
that angular momentum has a positive or negative sign to represent
the direction of rotation; for example, in a given problem, we could
choose to represent clockwise angular momenta as positive numbers,
and counterclockwise ones as negative. In this equation, the only
velocity that matters is velocity that is perpendicular to the radius
line; motion parallel to the radius line, i.e., directly in our out, is
neither clockwise nor counterclockwise.

A figure skater pulls her arms in example 1
When the skater in figure a pulls her arms in, she is decreas-
ing r for all the atoms in her arms. It would violate conserva-
tion of angular momentum if she then continued rotating at the
same speed, i.e., taking the same amount of time for each revo-
lution, because her arms would be closer to the axis of rotation
and therefore have a smaller r (as well as a smaller v because
they would be completing a smaller circle in the same time). This
is impossible because it would violate conservation of angular
momentum. If her total angular momentum is to remain constant,
the decrease in angular momentum for her arms must be com-
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pensated for by an overall increase in her rate of rotation. That
is, by pulling her arms in, she substantially reduces the time for
each rotation.

b / Example 2: An early photo-
graph of an old-fashioned long-
jump.

A longjump example 2
In figure b, the jumper wants to get his feet out in front of him so
he can keep from doing a “face plant” when he lands. Bringing his
feet forward would involve a certain quantity of counterclockwise
rotation, but he didn’t start out with any rotation when he left the
ground. Suppose we consider counterclockwise as positive and
clockwise as negative. The only way his legs can acquire some
positive rotation is if some other part of his body picks up an equal
amount of negative rotation. This is why he swings his arms up
behind him, clockwise.

c / Example 3.

Changing the axis example 3
An object’s angular momentum can be different depending on the
axis about which it rotates, because r is defined relative to the
axis. Figure c shows two double-exposure photographs a viola
player tipping the bow in order to cross from one string to another.
Much more angular momentum is required when playing near the
bow’s handle, called the frog, as in the panel on the right; not
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d / Example 4.

e / The boy makes a torque
on the tetherball.

only are most of the atoms in the bow are at greater distances, r ,
from the axis of rotation, but the ones in the tip also have more
velocity, v . It is difficult for the player to quickly transfer a large
angular momentum into the bow, and then transfer it back out just
as quickly. This is one of the reasons that string players tend to
stay near the middle of the bow as much as possible.

Kepler’s equal-area law example 4
The hypothetical planet in figure d has an orbit in which its closest
approach to the sun is at half the distance compared to the point
at which it recedes the farthest. Since angular momentum, mvr ,
is conserved, and the planet’s mass is constant, the quantity vr
must be the same at both ends of the orbit. Doubling r therefore
requires cutting v in half. If the time interval from A to B is the
same as that from C to D, then the distance from C to D must
be half as much. But this is exactly what Kepler’s equal area law
requires, since the triangular pie wedge on top needs to have half
the width to compensate for its doubled height. In other words,
the equal area law is a direct consequence of conservation of
angular momentum.

Discussion question

A Conservation of plain old momentum, p, can be thought of as the
greatly expanded and modified descendant of Galileo’s original principle
of inertia, that no force is required to keep an object in motion. The princi-
ple of inertia is counterintuitive, and there are many situations in which it
appears superficially that a force is needed to maintain motion, as main-
tained by Aristotle. Think of a situation in which conservation of angular
momentum, L, also seems to be violated, making it seem incorrectly that
something external must act on a closed system to keep its angular mo-
mentum from “running down.”

B The figure is a strobe photo of a pendulum bob, taken from under-
neath the pendulum looking straight up. The black string can’t be seen
in the photograph. The bob was given a slight sideways push when it
was released, so it did not swing in a plane. The bright spot marks the
center, i.e., the position the bob would have if it hung straight down at us.
Does the bob’s angular momentum appear to remain constant if we con-
sider the center to be the axis of rotation? What if we choose a different
axis?

3.2 Torque
Force is the rate of transfer of momentum. The equivalent in the
case of angular momentum is called torque (rhymes with “fork”):

torque =
amount of angular momentum transferred

time taken to transfer it

Where force tells us how hard we are pushing or pulling on some-
thing, torque indicates how hard we are twisting on it.
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Discussion question B.

Have you ever had the experience of trying to open a door by
pushing on the wrong side, the side near the hinge? It’s difficult to
do, which apparently indicates that a given amount of force produces
less torque when it’s applied close to the axis of rotation. To try
to pin down this relationship more precisely, let’s imagine hitting a
tetherball, e. The boy applies a force F to the ball for a short time
t, accelerating the ball from rest to a velocity v. Since force is the
rate of transfer of momentum, we have

F =
mv

t
,

and multiplying both sides by r gives

Fr =
mvr

t
.

But ±mvr is simply the amount of angular momentum he’s given
the ball, so ±mvr/t also equals the amount of torque he applied.
The result of this example is

torque = ±Fr,
where the plus or minus sign indicates whether torque would tend to
create clockwise or counterclockwise motion. This equation applies
more generally, with the caveat that F should only include the part
of the force perpendicular to the radius line.

self-check A
There are four equations on this page. Which ones are important, and
likely to be useful later? . Answer, p. 179

To summarize, we’ve learned three conserved quantity, each of
which has a rate of transfer:

conserved quantity rate of transfer

name units name units
energy joules (J) power watts (W)
momentum kg·m/s force newtons

(N)
angular mo-
mentum

kg·m2/s torque newton-
meters
(N·m)
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f / The plane’s four engines
produce zero total torque but not
zero total force.

g / Example 5: the biceps
muscle flexes the arm.

Torque distinguished from force

Of course a force is necessary in order to create a torque — you
can’t twist a screw without pushing on the wrench — but force and
torque are two different things. One distinction between them is
direction. We use positive and negative signs to represent forces in
the two possible directions along a line. The direction of a torque,
however, is clockwise or counterclockwise, not a linear direction.

The other difference between torque and force is a matter of
leverage. A given force applied at a door’s knob will change the
door’s angular momentum twice as rapidly as the same force applied
halfway between the knob and the hinge. The same amount of force
produces different amounts of torque in these two cases.

It is possible to have a zero total torque with a nonzero total
force. An airplane with four jet engines, f, would be designed so
that their forces are balanced on the left and right. Their forces are
all in the same direction, but the clockwise torques of two of the
engines are canceled by the counterclockwise torques of the other
two, giving zero total torque.

Conversely, we can have zero total force and nonzero total torque.
A merry-go-round’s engine needs to supply a nonzero torque on it
to bring it up to speed, but there is zero total force on it. If there
was not zero total force on it, its center of mass would accelerate!

A lever example 5
Figure g shows an example of a lever within your arm. Different
muscles are used to flex and extend the arm, because muscles
work only by contraction. The biceps flexes it.

There are three forces acting on the forearm: the force from the
biceps, the force at the elbow joint, and the force from the load
being lifted. Because the elbow joint is motionless, it is natural
to define our torques using the joint as the axis. The situation
now becomes quite simple, because the upper arm bone’s force
exerted at the elbow has r = 0, and therefore creates no torque.
We can ignore it completely. In general, we would call this the
fulcrum of the lever.

If we restrict ourselves to the case in which the forearm rotates
with constant angular momentum, then we know that the total
torque on the forearm is zero, so the torques from the muscle and
the load must be opposite in sign and equal in absolute value:

rmuscleFmuscle = rloadFload ,

where rmuscle, the distance from the elbow joint to the biceps’
point of insertion on the forearm, is only a few cm, while rload
might be 30 cm or so. The force exerted by the muscle must
therefore be about ten times the force exerted by the load. We
thus see that this lever is a force reducer. In general, a lever may

66 Chapter 3 Conservation of Angular Momentum



Discussion question C.

be used either to increase or to reduce a force.

Why did our arms evolve so as to reduce force? In general, your
body is built for compactness and maximum speed of motion
rather than maximum force. This is the main anatomical differ-
ence between us and the Neanderthals (their brains covered the
same range of sizes as those of modern humans), and it seems
to have worked for us.

As with all machines, the lever is incapable of changing the amount
of mechanical work we can do. A lever that increases force will al-
ways reduce motion, and vice versa, leaving the amount of work
unchanged.

Discussion questions

A You whirl a rock over your head on the end of a string, and gradually
pull in the string, eventually cutting the radius in half. What happens to
the rock’s angular momentum? What changes occur in its speed, the time
required for one revolution, and its acceleration? Why might the string
break?

B A helicopter has, in addition to the huge fan blades on top, a smaller
propeller mounted on the tail that rotates in a vertical plane. Why?

C The photo shows an amusement park ride whose two cars rotate in
opposite directions. Why is this a good design?

3.3 Noether’s Theorem for Angular Momentum
Suppose a sunless planet is sitting all by itself in interstellar space,
not rotating. Then, one day, it decides to start spinning. This
doesn’t necessarily violate conservation of energy, because it could
have energy stored up, e.g., the heat in a molten core, which could be
converted into kinetic energy. It does violate conservation of angular
momentum, but even if we didn’t already know about that law of
physics, the story would seem odd. How would it decide which axis
to spin around? If it was to spontaneously start spinning about some
axis, then that axis would have to be a special, preferred direction
in space. That is, space itself would have to have some asymmetry
to it.

In reality, as I’ve already mentioned on page 15, experiments
show to a very high degree of precision that the laws of physics
are completely symmetric with respect to different directions. The
story of the planet that abruptly starts spinning is an example of
Noether’s theorem, applied to angular momentum. We now have
three such examples:

symmetry conserved quantity
time symmetry ⇒ mass-energy
translation symmetry ⇒ momentum
rotational symmetry ⇒ angular momentum
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Problem 4.

Problem 7.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 You are trying to loosen a stuck bolt on your RV using a big
wrench that is 50 cm long. If you hang from the wrench, and your
mass is 55 kg, what is the maximum torque you can exert on the
bolt?

√

2 A physical therapist wants her patient to rehabilitate his in-
jured elbow by laying his arm flat on a table, and then lifting a 2.1
kg mass by bending his elbow. In this situation, the weight is 33
cm from his elbow. He calls her back, complaining that it hurts him
to grasp the weight. He asks if he can strap a bigger weight onto
his arm, only 17 cm from his elbow. How much mass should she
tell him to use so that he will be exerting the same torque? (He is
raising his forearm itself, as well as the weight.)

√

3 An object is observed to have constant angular momentum.
Can you conclude that no torques are acting on it? Explain. [Based
on a problem by Serway and Faughn.]

4 The figure shows scale drawing of a pair of pliers being
used to crack a nut, with an appropriately reduced centimeter grid.
Warning: do not attempt this at home; it is bad manners. If the
force required to crack the nut is 300 N, estimate the force required
of the person’s hand. . Solution, p. 180

5 Two horizontal tree branches on the same tree have equal
diameters, but one branch is twice as long as the other. Give a
quantitative comparison of the torques where the branches join the
trunk. [Thanks to Bong Kang.]

6 (a) Alice says Cathy’s body has zero momentum, but Bob
says Cathy’s momentum is nonzero. Nobody is lying or making a
mistake. How is this possible? Give a concrete example.
(b) Alice and Bob agree that Dong’s body has nonzero momentum,
but disagree about Dong’s angular momentum, which Alice says is
zero, and Bob says is nonzero. Explain.

7 A person of weight W stands on the ball of one foot. Find
the tension in the calf muscle and the force exerted by the shinbones
on the bones of the foot, in terms of W , a, and b. (The tension is a
measure of how tight the calf muscle has been pulled; it has units
of newtons, and equals the amount of force applied by the muscle
where it attaches to the heel.) For simplicity, assume that all the
forces are at 90-degree angles to the foot. Suggestion: Write down
an equation that says the total force on the foot is zero, and another
equation saying that the total torque on the foot is zero; solve the
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two equations for the two unknowns.
√
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a / This Global Positioning
System (GPS) system, running
on a smartphone attached to a
bike’s handlebar, depends on
Einstein’s theory of relativity.
Time flows at a different rates
aboard a GPS satellite than it
does on the bike, and the GPS
software has to take this into
account.

The clock took up two seats, and two tickets were bought for it under the
name of “Mr. Clock.

Chapter 4

Relativity

4.1 Relativity According To Einstein
Time is not absolute

So far we’ve been discussing relativity according to Galileo and
Newton, but there is also relativity according to Einstein. When
Einstein first began to develop the theory of relativity, around 1905,
the only real-world observations he could draw on were ambiguous
and indirect. Today, the evidence is part of everyday life. For ex-
ample, every time you use a GPS receiver, a, you’re using Einstein’s
theory of relativity. Somewhere between 1905 and today, technology
became good enough to allow conceptually simple experiments that
students in the early 20th century could only discuss in terms like
“Imagine that we could. . . ” A good jumping-on point is 1971. In
that year, J.C. Hafele and R.E. Keating, shown in the photo above,
brought atomic clocks aboard commercial airliners, and went around
the world, once from east to west and once from west to east. The
clocks were capable of keeping time to within a few nanoseconds.
(A nanosecond, abbreviated ns, is one billionth of a second.) Hafele
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b / All three clocks are mov-
ing to the east. Even though the
west-going plane is moving to the
west relative to the air, the air
is moving to the east due to the
earth’s rotation.

c / The correspondence prin-
ciple requires that the relativistic
distortion of time become small
for small velocities. The effects
are so small that we have to
describe them in scientific nota-
tion (p. 12). For example, 10−15

means 0.000000000000001,
which is a hundred thousand
times smaller than 10−10.

and Keating observed that there was a discrepancy between the
times measured by the traveling clocks and the times measured by
similar clocks that stayed home at the U.S. Naval Observatory in
Washington. The east-going clock lost time, ending up off by −59
nanoseconds, while the west-going one gained 273 ns.

Causality

It reassuring that the effects on time were small compared to
the three-day lengths of the plane trips. There was therefore no
opportunity for paradoxical scenarios such as one in which the east-
going experimenter arrived back in Washington before he left and
then convinced himself not to take the trip. A theory that maintains
this kind of orderly relationship between cause and effect is said to
satisfy causality.

Time affected by motion and gravity

Hafele and Keating were testing specific quantitative predictions
of relativity, and they verified them to within their experiment’s
error bars. Let’s work backward instead, and inspect the empirical
results for clues as to how time works.

The two traveling clocks experienced effects in opposite direc-
tions, and this suggests that the rate at which time flows depends
on the motion of the observer. The east-going clock was moving in
the same direction as the earth’s rotation, so its velocity relative to
the earth’s center was greater than that of the clock that remained
in Washington, while the west-going clock’s velocity was correspond-
ingly reduced. The fact that the east-going clock fell behind, and
the west-going one got ahead, shows that the effect of motion is to
make time go more slowly. This effect of motion on time was pre-
dicted by Einstein in his original 1905 paper on relativity, written
when he was 26.

If this had been the only effect in the Hafele-Keating experiment,
then we would have expected to see effects on the two flying clocks
that were equal in size. In fact, the two effects are unequal in size:
−59 ns and 273 ns. This turns out to be because there was a second
effect involved, a gravitational one, simply due to the planes’ being
up in the air. The gravitational effects are beyond the scope of this
book.

The correspondence principle

The effects that Hafele and Keating observed were small. This
makes sense: the version of relativity worked out by Galileo (sec-
tions 2.2 and 2.3, pp. 39-53) had already been thoroughly tested by
experiments under a wide variety of conditions, so a new theory like
Einstein’s relativity must agree with Galileo’s to a good approxima-
tion, within the Galilean theory’s realm of applicability. This is an
example of the correspondence principle (p. 31). The behavior of
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d / Two events are given as
points on a graph of position
versus time. Joan of Arc helps to
restore Charles VII to the throne.
At a later time and a different
position, Joan of Arc is sentenced
to death.

e / A change of units distorts
an x-t graph. This graph depicts
exactly the same events as figure
d. The only change is that the x
and t coordinates are measured
using different units, so the grid is
compressed in t and expanded in
x .

f / A convention we’ll use to
represent a distortion of time and
space.

the three clocks in the Hafele-Keating experiment shows that the
amount of time distortion increases as the speed of the clock’s mo-
tion increases. Newton lived in an era when the fastest mode of
transportation was a galloping horse, and the best pendulum clocks
would accumulate errors of perhaps a minute over the course of sev-
eral days. A horse is much slower than a jet plane, so the distortion
of time would have had a relative size of only ∼ 10−15 — much
smaller than the clocks were capable of detecting. At the speed of a
passenger jet, the effect is about 10−12, and state-of-the-art atomic
clocks in 1971 were capable of measuring that. A GPS satellite trav-
els much faster than a jet airplane, and the effect on the satellite
turns out to be ∼ 10−10. The general idea here is that all physical
laws are approximations, and approximations aren’t simply right or
wrong in different situations. Approximations are better or worse
in different situations, and the question is whether a particular ap-
proximation is good enough in a given situation to serve a particular
purpose. The faster the motion, the worse the Newtonian approxi-
mation of absolute time. Whether the approximation is good enough
depends on what you’re trying to accomplish. The correspondence
principle says that the approximation must have been good enough
to explain all the experiments done in the centuries before Einstein
came up with relativity.

By the way, don’t get an inflated idea of the importance of the
Hafele-Keating experiment. Relativity had already been confirmed
by a vast and varied body of experiments decades before 1971. The
only reason I’m giving such a prominent role to this experiment is
that it is conceptually very direct.

Distortion of time and space

Relativity says that when two observers are in different frames of
reference, each observer considers the other one’s perception of time
to be distorted. We’ll also see that something similar happens to
their observations of distances, so both space and time are distorted.
What exactly is this distortion? How do we even conceptualize it?

The idea isn’t really as radical as it might seem at first. We can
visualize the structure of space and time using a graph with position
and time on its axes. These graphs were introduced on p. 43 in fig-
ures d and e, but we’re going to look at them in a slightly different
way. Before, we used them to describe the motion of objects. The
grid underlying the graph was merely the stage on which the actors
played their parts. Now the background comes to the foreground:
it’s time and space themselves that we’re studying. We don’t nec-
essarily need to have a line or a curve drawn on top of the grid to
represent a particular object. We may, for example, just want to
talk about events, depicted as points on the graph as in figure d.
A distortion of the Cartesian grid underlying the graph can arise
for perfectly ordinary reasons that Isaac Newton would have read-
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g / A Galilean version of the
relationship between two frames
of reference, as introduced in
figure e, p. 43. As in all such
graphs in this chapter, the original
coordinates, represented by the
gray rectangle, have a time axis
that goes to the right, and a
distance axis that goes straight
up.

ily accepted. For example, we can simply change the units used to
measure time and position, as in figure e.

We’re going to have quite a few examples of this type, so I’ll
adopt the convention shown in figure f for depicting them; this con-
vention was originally introduced in figure e on p. 43. Figure f
summarizes the relationship between figures d and e in a more com-
pact form. The gray rectangle represents the original coordinate
grid of figure d, while the grid of black lines represents the new ver-
sion from figure e. Omitting the grid from the gray rectangle makes
the diagram easier to decode visually.

Our goal of unraveling the mysteries of special relativity amounts
to nothing more than finding out how to draw a diagram like f
in the case where the two different sets of coordinates represent
measurements of time and space made by two different observers,
each in motion relative to the other. Galileo and Newton thought
they knew the answer to this question, but their answer turned
out to be only approximately right. To avoid repeating the same
mistakes, we need to clearly spell out what we think are the basic
properties of time and space that will be a reliable foundation for
our reasoning.

Experiments show that:

1. The laws of physics have translation symmetry (section 2.1),
time symmetry (section 1.6), and rotational symmetry (p. 15
and section 3.3).

2. The principle of inertia holds (p. 16).

3. Causality holds, in the sense described on page 72.

4. Time depends on the state of motion of the observer.

If it were not for property 4, we could imagine that figure g
would give the correct transformation between frames of reference
in motion relative to one another. Let’s say that observer 1, whose
grid coincides with the gray rectangle, is a hitch-hiker standing by
the side of a road. Event A is a raindrop hitting his head, and
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h / In the units that are most
convenient for relativity, the trans-
formation has symmetry about a
45-degree diagonal line.

i / Interpretation of the Lorentz
transformation. The slope in-
dicated in the figure gives the
relative velocity of the two frames
of reference. Events A and B that
were simultaneous in frame 1
are not simultaneous in frame 2,
where event A occurs to the right
of the t = 0 line represented by
the left edge of the grid, but event
B occurs to its left.

event B is another raindrop hitting his head. He says that A and B
occur at the same location in space. Observer 2 is a motorist who
drives by without stopping; to him, the passenger compartment of
his car is at rest, while the asphalt slides by underneath. He says
that A and B occur at different points in space, because during the
time between the first raindrop and the second, the hitch-hiker has
moved backward. On the other hand, observer 2 says that events A
and C occur in the same place, while the hitch-hiker disagrees. The
slope of the grid-lines is simply the velocity of the relative motion
of each observer relative to the other. (Recall that slope is defined
as the rise over the run. On these graphs of distance versus time,
the slope is the distance traveled divided by the elapsed time.)

Figure g has familiar, comforting, and eminently sensible behav-
ior, but it also happens to be wrong, because it violates property
4. The distortion of the coordinate grid has only moved the vertical
lines up and down, so both observers agree that events like B and
C are simultaneous. If this was really the way things worked, then
all observers could synchronize all their clocks with one another for
once and for all, and the clocks would never get out of sync. This
contradicts the results of the Hafele-Keating experiment, in which
all three clocks were initially synchronized in Washington, but later
went out of sync because of their different states of motion.

Based on properties 1-4, there is only one possible way to mod-
ify g, which is the one shown in h.1 This distortion is the one that
Einstein predicted in 1905, and is known as the Lorentz transforma-
tion, after Hendrik Lorentz (1853-1928). The distortion is a kind of
smooshing and stretching, as suggested by the hands. Also, we’ve
already seen in figures d-f on page 73 that we’re free to stretch or
compress everything as much as we like in the horizontal and verti-
cal directions, because this simply corresponds to choosing different
units of measurement for time and distance. In figure h I’ve chosen
units that give the whole drawing a convenient symmetry about a
45-degree diagonal line. Ordinarily it wouldn’t make sense to talk
about a 45-degree angle on a graph whose axes had different units.
But in relativity, the symmetric appearance of the transformation
tells us that space and time ought to be treated on the same footing,
and measured in the same units.

The exact size and shape of the parallelogram are controlled by
the requirements that (i) the slope labeled in the figure corresponds
properly to the velocity; (ii) the units are the special ones described

1For a proof that no other version is possible, see ch. 23 of my free online
book Light and Matter.
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above; and (iii) the area of the parallelogram is the same as the area
of the original square.2

2The equal-area property is proved in Light and Matter.
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j / The G factor.

k / An example in which the
G factor is numerically simple to
work out. The bottom edge of the
parallelogram rises 3 units and
goes 5 units to the right, so its
slope is 3/5. This slope repre-
sents the speed of one frame of
reference relative to the other. It’s
easy to verify that the square and
the parallelogram have the same
area, because one diagonal of
the square has been stretched to
twice its original length, the other
smooshed down by a half. The
bottom-right corner of the square
is at a time of 4 units, while
the corresponding corner of the
parallelogram is at 5. As defined
in figure j, the ratio of these times
is the value of G = 5/4.

The G factor

We’ve seen the experimental evidence that motion changes the
rate of flow of time, and this effect is correctly reproduced by the
Lorentz transformation.

Time dilation
A clock runs fastest in the frame of reference of an observer
who is at rest relative to the clock.

We define the factor G (Greek letter gamma) as in figure j. An
observer in motion relative to the clock at speed v perceives the
clock as running more slowly by a factor of G. For example, if G
equals 2, then the observer says the clock runs at half its normal
speed.

Figure k shows an example of how we can use properties (i)-(iii)
on p. 75 to find the value of G for a given velocity v of the clock
and the observer relative to one another. By plotting many such
points,3 we get the graph shown in figure l.

l / The behavior of the γ factor. (The velocity is in the special units
described on p. 75. More on these units in section 4.2.)

For small velocities, the graph is nearly flat at γ ≈ 1, meaning that

3To avoid the tedious work of drawing many figures like k, one can use algebra
and geometry to derive the equation G = 1/

√
1− v2.
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there is very little time dilation. This is required by the correspon-
dence principle.

Distances are also distorted:

Length contraction
A meter-stick appears longest to an observer who is at rest
relative to it. An observer moving relative to the meter-stick
at v observes the stick to be shortened by a factor of G.

m / Example 1: In the garage’s frame of reference, the bus is moving, and can fit in the garage due to
its length contraction. In the bus’s frame of reference, the garage is moving, and can’t hold the bus due to its
length contraction.

The garage paradox example 1
One of the most famous of all the so-called relativity paradoxes

has to do with our incorrect feeling that simultaneity is well de-
fined. The idea is that one could take a schoolbus and drive it at
relativistic speeds into a garage of ordinary size, in which it nor-
mally would not fit. Because of the length contraction, the bus
would supposedly fit in the garage. The driver, however, will per-
ceive the garage as being contracted and thus even less able to
contain the bus.

The paradox is resolved when we recognize that the concept of
fitting the bus in the garage “all at once” contains a hidden as-
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sumption, the assumption that it makes sense to ask whether the
front and back of the bus can simultaneously be in the garage.
Observers in different frames of reference moving at high relative
speeds do not necessarily agree on whether things happen si-
multaneously. As shown in figure m, the person in the garage’s
frame can shut the door at an instant B he perceives to be si-
multaneous with the front bumper’s arrival A at the back wall of
the garage, but the driver would not agree about the simultaneity
of these two events, and would perceive the door as having shut
long after she plowed through the back wall.
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n / A proof that causality im-
poses a universal speed limit. In
the original frame of reference,
represented by the square, event
A happens a little before event B.
In the new frame, shown by the
parallelogram, A happens after
t = 0, but B happens before t = 0;
that is, B happens before A. The
time ordering of the two events
has been reversed. This can only
happen because events A and B
are very close together in time
and fairly far apart in space. The
line segment connecting A and
B has a slope greater than 1,
meaning that if we wanted to be
present at both events, we would
have to travel at a speed greater
than c (which equals 1 in the
units used on this graph). You will
find that if you pick any two points
for which the slope of the line
segment connecting them is less
than 1, you can never get them to
straddle the new t = 0 line in this
funny, time-reversed way. Since
different observers disagree on
the time order of events like A
and B, causality requires that
information never travel from
A to B or from B to A; if it did,
then we would have time-travel
paradoxes. The conclusion is that
c is the maximum speed of cause
and effect in relativity.

4.2 Speeds In Relativity
The universal speed c

Let’s think a little more about the role of the 45-degree diagonal
in the Lorentz transformation. Slopes on these graphs are inter-
preted as velocities. This line has a slope of 1 in our special rel-
ativistic units, but that slope corresponds to some number, call it
c, in ordinary units of meters per second. Now note what happens
when we perform a Lorentz transformation: this particular line gets
stretched, but the new version of the line lies right on top of the old
one, and its slope stays the same. In other words, if one observer
says that something has a velocity equal to c, every other observer
will agree on that velocity as well.

Velocities don’t simply add and subtract.

This is counterintuitive, since we expect velocities to add and
subtract in relative motion. If a dog is running away from me at 5
m/s relative to the sidewalk, and I run after it at 3 m/s, the dog’s
velocity in my frame of reference is 2 m/s. According to everything
we have learned about motion, the dog must have different speeds
in the two frames: 5 m/s in the sidewalk’s frame and 2 m/s in
mine. But velocities are measured by dividing a distance by a time,
and both distance and time are distorted by relativistic effects, so
we actually shouldn’t expect the ordinary arithmetic addition of
velocities to hold in relativity; it’s an approximation that’s valid at
velocities that are small compared to c.

A universal speed limit

For example, suppose Janet takes a trip in a spaceship, and
accelerates until she is moving at 0.6c relative to the earth. She
then launches a space probe in the forward direction at a speed
relative to her ship of 0.6c. We might think that the probe was then
moving at a velocity of 1.2c, but in fact the answer is still less than
c (problem 1, page 89). This is an example of a more general fact
about relativity, which is that c represents a universal speed limit.
This is required by causality, as shown in figure n.

Light travels at c.

Now consider a beam of light. We’re used to talking casually
about the “speed of light,” but what does that really mean? Motion
is relative, so normally if we want to talk about a velocity, we have
to specify what it’s measured relative to. A sound wave has a certain
speed relative to the air, and a water wave has its own speed relative
to the water. If we want to measure the speed of an ocean wave, for
example, we should make sure to measure it in a frame of reference
at rest relative to the water. But light isn’t a vibration of a physical
medium; it can propagate through the near-perfect vacuum of outer
space, as when rays of sunlight travel to earth. This seems like a
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o / A ring laser gyroscope.

paradox: light is supposed to have a specific speed, but there is no
way to decide what frame of reference to measure it in. The way
out of the paradox is that light must travel at a velocity equal to c.
Since all observers agree on a velocity of c, regardless of their frame
of reference, everything is consistent.

The Michelson-Morley experiment

The constancy of the speed of light had in fact already been
observed when Einstein was an 8-year-old boy, but because nobody
could figure out how to interpret it, the result was largely ignored.
In 1887 Michelson and Morley set up a clever apparatus to measure
any difference in the speed of light beams traveling east-west and
north-south. The motion of the earth around the sun at 110,000
km/hour (about 0.01% of the speed of light) is to our west during the
day. Michelson and Morley believed that light was a vibration of a
mysterious medium called the ether, so they expected that the speed
of light would be a fixed value relative to the ether. As the earth
moved through the ether, they thought they would observe an effect
on the velocity of light along an east-west line. For instance, if they
released a beam of light in a westward direction during the day, they
expected that it would move away from them at less than the normal
speed because the earth was chasing it through the ether. They were
surprised when they found that the expected 0.01% change in the
speed of light did not occur.

The ring laser gyroscope example 2
If you’ve flown in a jet plane, you can thank relativity for help-
ing you to avoid crashing into a mountain or an ocean. Figure o
shows a standard piece of navigational equipment called a ring
laser gyroscope. A beam of light is split into two parts, sent
around the perimeter of the device, and reunited. Since the speed
of light is constant, we expect the two parts to come back together
at the same time. If they don’t, it’s evidence that the device has
been rotating. The plane’s computer senses this and notes how
much rotation has accumulated.

No frequency-dependence example 3
Relativity has only one universal speed, so it requires that all light
waves travel at the same speed, regardless of their frequency
and wavelength. Presently the best experimental tests of the in-
variance of the speed of light with respect to wavelength come
from astronomical observations of gamma-ray bursts, which are
sudden outpourings of high-frequency light, believed to originate
from a supernova explosion in another galaxy. One such obser-
vation, in 2009,4 found that the times of arrival of all the different
frequencies in the burst differed by no more than 2 seconds out
of a total time in flight on the order of ten billion years!

4http://arxiv.org/abs/0908.1832
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An interstellar road trip example 4
Because the distances between the stars are so vast, it’s con-
venient to measure them in light-years rather than kilometers. A
light-year is defined as the distance traveled by light in one year.
If we adopt the year as our unit of time, and the light-year as our
unit of distance, then the speed of light is 1, i.e., these units qual-
ify as the kind of “special units” that we’ve been assuming in all
the graphs.

Suppose that Alice stays on earth while her twin Betty heads off
in a spaceship for Tau Ceti, a nearby star. Tau Ceti is 12 light-
years away, so even though Betty travels at 87% of the speed of
light, it will take her a long time to get there: 14 years, according
to Alice.

p / Example 4.

Betty experiences time dilation. At this speed, her γ is 2.0, so that
the voyage will only seem to her to last 7 years. But there is per-
fect symmetry between Alice’s and Betty’s frames of reference, so
Betty agrees with Alice on their relative speed; Betty sees herself
as being at rest, while the sun and Tau Ceti both move backward
at 87% of the speed of light. How, then, can she observe Tau Ceti
to get to her in only 7 years, when it should take 14 years to travel
12 light-years at this speed?

We need to take into account length contraction. Betty sees the
distance between the sun and Tau Ceti to be shrunk by a factor of
2. The same thing occurs for Alice, who observes Betty and her
spaceship to be foreshortened.
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Discussion question B

Discussion questions

A A person in a spaceship moving at 99.99999999% of the speed
of light relative to Earth shines a flashlight forward through dusty air, so
the beam is visible. What does she see? What would it look like to an
observer on Earth?

B A question that students often struggle with is whether time and
space can really be distorted, or whether it just seems that way. Compare
with optical illusions or magic tricks. How could you verify, for instance,
that the lines in the figure are actually parallel? Are relativistic effects the
same, or not?

C On a spaceship moving at relativistic speeds, would a lecture seem
even longer and more boring than normal?

D Mechanical clocks can be affected by motion. For example, it was
a significant technological achievement to build a clock that could sail
aboard a ship and still keep accurate time, allowing longitude to be deter-
mined. How is this similar to or different from relativistic time dilation?

E The figure shows an artist’s rendering of the length contraction for the
collision of two gold nuclei at relativistic speeds in the RHIC accelerator in
Long Island, New York, which went on line in 2000. The gold nuclei would
appear nearly spherical (or just slightly lengthened like an American foot-
ball) in frames moving along with them, but in the laboratory’s frame, they
both appear drastically foreshortened as they approach the point of col-
lision. The later pictures show the nuclei merging to form a hot soup, in
which experimenters hope to observe a new form of matter. What would
the shapes of the two nuclei look like to a microscopic observer riding on
the left-hand nucleus? To an observer riding on the right-hand one? Can
they agree on what is happening? If not, why not — after all, shouldn’t
they see the same thing if they both compare the two nuclei side-by-side
at the same instant in time?

Discussion question E: colliding nuclei show relativistic length contrac-
tion.
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F If you stick a piece of foam rubber out the window of your car while
driving down the freeway, the wind may compress it a little. Does it make
sense to interpret the relativistic length contraction as a type of strain
that pushes an object’s atoms together like this? How does this relate to
discussion question E?

G The machine-gunner in the figure sends out a spray of bullets.
Suppose that the bullets are being shot into outer space, and that the
distances traveled are trillions of miles (so that the human figure in the
diagram is not to scale). After a long time, the bullets reach the points
shown with dots which are all equally far from the gun. Their arrivals
at those points are events A through E, which happen at different times.
Sketch these events on a position-time graph. The chain of impacts ex-
tends across space at a speed greater than c. Does this violate special
relativity?

Discussion question G.
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4.3 Dynamics
So far we have said nothing about how to predict motion in relativ-
ity. Do Newton’s laws still work? Do conservation laws still apply?
The answer is yes, but many of the definitions need to be modified,
and certain entirely new phenomena occur, such as the conversion
of mass to energy and energy to mass, as described by the famous
equation E = mc2.

Momentum

Here’s a flawed scheme for traveling faster than the speed of
light. The basic idea can be demonstrated by dropping a ping-pong
ball and a baseball stacked on top of each other like a snowman.
They separate slightly in mid-air, and the baseball therefore has
time to hit the floor and rebound before it collides with the ping-
pong ball, which is still on the way down. The result is a surprise
if you haven’t seen it before: the ping-pong ball flies off at high
speed and hits the ceiling! A similar fact is known to people who
investigate the scenes of accidents involving pedestrians. If a car
moving at 90 kilometers per hour hits a pedestrian, the pedestrian
flies off at nearly double that speed, 180 kilometers per hour. Now
suppose the car was moving at 90 percent of the speed of light.
Would the pedestrian fly off at 180% of c?

r / An unequal collision, viewed in
the center-of-mass frame, 1, and
in the frame where the small ball
is initially at rest, 2. The motion
is shown as it would appear on
the film of an old-fashioned movie
camera, with an equal amount of
time separating each frame from
the next. Film 1 was made by
a camera that tracked the center
of mass, film 2 by one that was
initially tracking the small ball,
and kept on moving at the same
speed after the collision.

To see why not, we have to back up a little and think about
where this speed-doubling result comes from. For any collision, there
is a special frame of reference, the center-of-mass frame, in which
the two colliding objects approach each other, collide, and rebound
with their velocities reversed. In the center-of-mass frame, the total
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momentum of the objects is zero both before and after the collision.

Figure r/1 shows such a frame of reference for objects of very
unequal mass. Before the collision, the large ball is moving relatively
slowly toward the top of the page, but because of its greater mass,
its momentum cancels the momentum of the smaller ball, which is
moving rapidly in the opposite direction. The total momentum is
zero. After the collision, the two balls just reverse their directions of
motion. We know that this is the right result for the outcome of the
collision because it conserves both momentum and kinetic energy,
and everything not forbidden is compulsory, i.e., in any experiment,
there is only one possible outcome, which is the one that obeys all
the conservation laws.

self-check A
How do we know that momentum and kinetic energy are conserved in
figure r/1? . Answer, p. 179

Let’s make up some numbers as an example. Say the small ball
has a mass of 1 kg, the big one 8 kg. In frame 1, let’s make the
velocities as follows:

before the collision after the collision

-0.8 0.8
0.1 -0.1

Figure r/2 shows the same collision in a frame of reference where
the small ball was initially at rest. To find all the velocities in this
frame, we just add 0.8 to all the ones in the previous table.

before the collision after the collision

0 1.6
0.9 0.7

In this frame, as expected, the small ball flies off with a velocity,
1.6, that is almost twice the initial velocity of the big ball, 0.9.

If all those velocities were in meters per second, then that’s ex-
actly what happened. But what if all these velocities were in units
of the speed of light? Now it’s no longer a good approximation just
to add velocities. We need to combine them according to the rela-
tivistic rules. For instance, reasoning similar to that in problem 1,
page 89 tells us that combining a velocity of 0.8 times the speed of
light with another velocity of 0.8 results in 0.98, not 1.6. The results
are very different:

before the collision after the collision

0 0.98
0.83 0.76

We can interpret this as follows. Figure r/1 is one in which the
big ball is moving fairly slowly. This is very nearly the way the
scene would be seen by an ant standing on the big ball. According
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s / An 8-kg ball moving at 83%
of the speed of light hits a 1-kg
ball. The balls appear foreshort-
ened due to the relativistic distor-
tion of space.

to an observer in frame s, however, both balls are moving at nearly
the speed of light after the collision. Because of this, the balls
appear foreshortened, but the distance between the two balls is also
shortened. To this observer, it seems that the small ball isn’t pulling
away from the big ball very fast.

Now here’s what’s interesting about all this. The outcome shown
in figure r/2 was supposed to be the only one possible, the only
one that satisfied both conservation of energy and conservation of
momentum. So how can the different result shown in figure s be
possible? The answer is that relativistically, momentum must not
equal mv. The old, familiar definition is only an approximation
that’s valid at low speeds. If we observe the behavior of the small
ball in figure s, it looks as though it somehow had some extra inertia.
It’s as though a football player tried to knock another player down
without realizing that the other guy had a three-hundred-pound bag
full of lead shot hidden under his uniform — he just doesn’t seem
to react to the collision as much as he should. This extra inertia is
described by redefining momentum as

momentum = mγv.

At very low velocities, γ is close to 1, and the result is very nearly
mv, as demanded by the correspondence principle. But at very
high velocities, γ gets very big — the small ball in figure s has a
γ of 5.0, and therefore has five times more inertia than we would
expect nonrelativistically.

Equivalence of mass and energy

Now we’re ready to see why mass and energy must be equivalent
as claimed in the famous E = mc2. So far we’ve only considered
collisions in which none of the kinetic energy is converted into any
other form of energy, such as heat or sound. Let’s consider what
happens if a blob of putty moving at velocity v hits another blob
that is initially at rest, sticking to it. The nonrelativistic result is
that to obey conservation of momentum the two blobs must fly off
together at v/2. Half of the initial kinetic energy has been converted
to heat.5

5A double-mass object moving at half the speed does not have the same
kinetic energy. Kinetic energy depends on the square of the velocity, so cutting
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Relativistically, however, an interesting thing happens. A hot
object has more momentum than a cold object! This is because
the relativistically correct expression for momentum is mγv, and
the more rapidly moving atoms in the hot object have higher values
of γ. In our collision, the final combined blob must therefore be
moving a little more slowly than the expected v/2, since otherwise
the final momentum would have been a little greater than the initial
momentum. To an observer who believes in conservation of momen-
tum and knows only about the overall motion of the objects and not
about their heat content, the low velocity after the collision would
seem to be the result of a magical change in the mass, as if the mass
of two combined, hot blobs of putty was more than the sum of their
individual masses.

Now we know that the masses of all the atoms in the blobs must
be the same as they always were. The change is due to the change in
γ with heating, not to a change in mass. The heat energy, however,
seems to be acting as if it was equivalent to some extra mass.

But this whole argument was based on the fact that heat is a
form of kinetic energy at the atomic level. Would E = mc2 apply to
other forms of energy as well? Suppose a rocket ship contains some
electrical energy stored in a battery. If we believed that E = mc2

applied to forms of kinetic energy but not to electrical energy, then
we would have to believe that the pilot of the rocket could slow
the ship down by using the battery to run a heater! This would
not only be strange, but it would violate the principle of relativity,
because the result of the experiment would be different depending
on whether the ship was at rest or not. The only logical conclusion is
that all forms of energy are equivalent to mass. Running the heater
then has no effect on the motion of the ship, because the total
energy in the ship was unchanged; one form of energy (electrical)
was simply converted to another (heat).

The equation E = mc2 tells us how much energy is equivalent
to how much mass: the conversion factor is the square of the speed
of light, c. Since c a big number, you get a really really big number
when you multiply it by itself to get c2. This means that even a small
amount of mass is equivalent to a very large amount of energy.

We’ve already seen several examples of applications of E = mc2,
on page 30.

the velocity in half reduces the energy by a factor of 1/4, which, multiplied by
the doubled mass, makes 1/2 the original energy.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The figure illustrates a Lorentz transformation using the con-
ventions described on p. 43. For simplicity, the transformation cho-
sen is one that lengthens one diagonal by a factor of 2. Since Lorentz
transformations preserve area, the other diagonal is shortened by a
factor of 2. Let the original frame of reference, depicted with the
square, be A, and the new one B. (a) By measuring with a ruler on
the figure, show that the velocity of frame B relative to frame A is
0.6c. (b) Print out a copy of the page. With a ruler, draw a third
parallelogram that represents a second successive Lorentz transfor-
mation, one that lengthens the long diagonal by another factor of
2. Call this third frame C. Use measurements with a ruler to deter-
mine frame C’s velocity relative to frame A. Does it equal double
the velocity found in part a? Explain why it should be expected to
turn out the way it does.

√
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Problem 5.

2 Astronauts in three different spaceships are communicating
with each other. Those aboard ships A and B agree on the rate at
which time is passing, but they disagree with the ones on ship C.
(a) Alice is aboard ship A. How does she describe the motion of her
own ship, in its frame of reference?
(b) Describe the motion of the other two ships according to Alice.
(c) Give the description according to Betty, whose frame of reference
is ship B.
(d) Do the same for Cathy, aboard ship C.

3 Figure e on p. 43 shows a convention for representing a Lorentz
transformation using a parallelogram. Recall that on these graphs,
the slope of the parallelogram’s bottom edge represents the velocity,
and that special units are assumed in which the speed of light equals
1. What would happen to the diagram if the velocity equaled the
speed of light?

Problem 4.

4 The figure shows a famous thought experiment devised by
Einstein. A train is moving at constant velocity to the right when
bolts of lightning strike the ground near its front and back. Alice,
standing on the dirt at the midpoint of the flashes, observes that
the light from the two flashes arrives simultaneously, so she says the
two strikes must have occurred simultaneously. Bob, meanwhile,
is sitting aboard the train, at its middle. He passes by Alice at
the moment when Alice later figures out that the flashes happened.
Later, he receives flash 2, and then flash 1. He infers that since
both flashes traveled half the length of the train, flash 2 must have
occurred first. How can this be reconciled with Alice’s belief that
the flashes were simultaneous? Explain using a graph. Note that
the light from the flashes will move at velocity c or −c, represented
by lines at 45-degree angles.

5 The rod in the figure is perfectly rigid. At event A, the
hammer strikes one end of the rod. At event B, the other end moves.
Since the rod is perfectly rigid, it can’t compress, so A and B are
simultaneous. In frame 2, B happens before A. Did the motion at
the right end cause the person on the left to decide to pick up the
hammer and use it?
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6 Suppose that the starship Enterprise from Star Trek has a
mass of 8.0 × 107 kg, about the same as the Queen Elizabeth 2.
Suppose that it was moving at half the speed of light. Read its
G off of the graph in figure l on p. 77, and use this to compute
its energy. Compare with the total energy content of the world’s
nuclear arsenals, which is about 1021 J.

√

7 In the graph in figure l on p. 77, the G factor blows up to infinity
as the velocity approaches the speed of light. Recall that force is
the rate of change of momentum, and that relativistic momentum
is given by mγv. Based on these ideas, what would happen if we
applied a constant force to an object for a very long time? Would
it eventually go faster than the speed of light?
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Chapter 5

Electricity

Where the telescope ends, the microscope begins. Which of the two
has the grander view? Victor Hugo

His father died during his mother’s pregnancy. Rejected by her
as a boy, he was packed off to boarding school when she remarried.
He himself never married, but in middle age he formed an intense
relationship with a much younger man, a relationship that he ter-
minated when he underwent a psychotic break. Following his early
scientific successes, he spent the rest of his professional life mostly
in frustration over his inability to unlock the secrets of alchemy.

The man being described is Isaac Newton, but not the triumphant
Newton of the standard textbook hagiography. Why dwell on the
sad side of his life? To the modern science educator, Newton’s life-
long obsession with alchemy may seem an embarrassment, a distrac-
tion from his main achievement, the creation the modern science of
mechanics. To Newton, however, his alchemical researches were nat-
urally related to his investigations of force and motion. What was
radical about Newton’s analysis of motion was its universality: it
succeeded in describing both the heavens and the earth with the
same equations, whereas previously it had been assumed that the
sun, moon, stars, and planets were fundamentally different from
earthly objects. But Newton realized that if science was to describe
all of nature in a unified way, it was not enough to unite the human
scale with the scale of the universe: he would not be satisfied until
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he fit the microscopic universe into the picture as well.

It should not surprise us that Newton failed. Although he was a
firm believer in the existence of atoms, there was no more experimen-
tal evidence for their existence than there had been when the ancient
Greeks first posited them on purely philosophical grounds. Alchemy
labored under a tradition of secrecy and mysticism. Newton had
already almost single-handedly transformed the fuzzyheaded field
of “natural philosophy” into something we would recognize as the
modern science of physics, and it would be unjust to criticize him
for failing to change alchemy into modern chemistry as well. The
time was not ripe. The microscope was a new invention, and it was
cutting-edge science when Newton’s contemporary Hooke discovered
that living things were made out of cells.

5.1 The Quest for the Atomic Force
Newton was not the first of the age of reason. He was the last of
the magicians. John Maynard Keynes

Nevertheless it will be instructive to pick up Newton’s train of
thought and see where it leads us with the benefit of modern hind-
sight. In uniting the human and cosmic scales of existence, he had
reimagined both as stages on which the actors were objects (trees
and houses, planets and stars) that interacted through attractions
and repulsions. He was already convinced that the objects inhab-
iting the microworld were atoms, so it remained only to determine
what kinds of forces they exerted on each other.

His next insight was no less brilliant for his inability to bring it to
fruition. He realized that the many human-scale forces — friction,
sticky forces, the normal forces that keep objects from occupying
the same space, and so on — must all simply be expressions of a
more fundamental force acting between atoms. Tape sticks to paper
because the atoms in the tape attract the atoms in the paper. My
house doesn’t fall to the center of the earth because its atoms repel
the atoms of the dirt under it.

Here he got stuck. It was tempting to think that the atomic force
was a form of gravity, which he knew to be universal, fundamental,
and mathematically simple. Gravity, however, is always attractive,
so how could he use it to explain the existence of both attractive
and repulsive atomic forces? The gravitational force between ob-
jects of ordinary size is also extremely small, which is why we never
notice cars and houses attracting us gravitationally. It would be
hard to understand how gravity could be responsible for anything
as vigorous as the beating of a heart or the explosion of gunpowder.
Newton went on to write a million words of alchemical notes filled
with speculation about some other force, perhaps a “divine force” or
“vegetative force” that would for example be carried by the sperm
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a / Four pieces of tape are
prepared, 1, as described in the
text. Depending on which com-
bination is tested, the interaction
can be either repulsive, 2, or
attractive, 3.

to the egg.

Luckily, we now know enough to investigate a different suspect
as a candidate for the atomic force: electricity. Electric forces are
often observed between objects that have been prepared by rubbing
(or other surface interactions), for instance when clothes rub against
each other in the dryer. A useful example is shown in figure 5.1/1:
stick two pieces of tape on a tabletop, and then put two more pieces
on top of them. Lift each pair from the table, and then separate
them. The two top pieces will then repel each other, 5.1/2, as
will the two bottom pieces. A bottom piece will attract a top piece,
however, 5.1/3. Electrical forces like these are similar in certain ways
to gravity, the other force that we already know to be fundamental:

• Electrical forces are universal. Although some substances,
such as fur, rubber, and plastic, respond more strongly to
electrical preparation than others, all matter participates in
electrical forces to some degree. There is no such thing as a
“nonelectric” substance. Matter is both inherently gravita-
tional and inherently electrical.

• Experiments show that the electrical force, like the gravita-
tional force, is an inverse square force. That is, the electrical
force between two spheres is proportional to 1/r2, where r is
the center-to-center distance between them.

Furthermore, electrical forces make more sense than gravity as
candidates for the fundamental force between atoms, because we
have observed that they can be either attractive or repulsive.

5.2 Charge, Electricity and Magnetism
Charge

“Charge” is the technical term used to indicate that an object
participates in electrical forces. This is to be distinguished from
the common usage, in which the term is used indiscriminately for
anything electrical. For example, although we speak colloquially of
“charging” a battery, you may easily verify that a battery has no
charge in the technical sense, e.g., it does not exert any electrical
force on a piece of tape that has been prepared as described in
section 5.1.

Two types of charge

We can easily collect reams of data on electrical forces between
different substances that have been charged in different ways. We
find for example that cat fur prepared by rubbing against rabbit
fur will attract glass that has been rubbed on silk. How can we
make any sense of all this information? A vast simplification is
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achieved by noting that there are really only two types of charge.
Suppose we pick cat fur rubbed on rabbit fur as a representative of
type A, and glass rubbed on silk for type B. We will now find that
there is no “type C.” Any object electrified by any method is either
A-like, attracting things A attracts and repelling those it repels, or
B-like, displaying the same attractions and repulsions as B. The two
types, A and B, always display opposite interactions. If A displays
an attraction with some charged object, then B is guaranteed to
undergo repulsion with it, and vice-versa.

The coulomb

Although there are only two types of charge, each type can come
in different amounts. The metric unit of charge is the coulomb
(rhymes with “drool on”), defined as follows:

One Coulomb (C) is the amount of charge such that a force of
9.0×109 N occurs between two pointlike objects with charges
of 1 C separated by a distance of 1 m.

The notation for an amount of charge is q. The numerical factor
in the definition is historical in origin, and is not worth memoriz-
ing. The definition is stated for pointlike, i.e., very small, objects,
because otherwise different parts of them would be at different dis-
tances from each other.

A model of two types of charged particles

Experiments show that all the methods of rubbing or otherwise
charging objects involve two objects, and both of them end up get-
ting charged. If one object acquires a certain amount of one type of
charge, then the other ends up with an equal amount of the other
type. Various interpretations of this are possible, but the simplest
is that the basic building blocks of matter come in two flavors, one
with each type of charge. Rubbing objects together results in the
transfer of some of these particles from one object to the other. In
this model, an object that has not been electrically prepared may ac-
tually possesses a great deal of both types of charge, but the amounts
are equal and they are distributed in the same way throughout it.
Since type A repels anything that type B attracts, and vice versa,
the object will make a total force of zero on any other object. The
rest of this chapter fleshes out this model and discusses how these
mysterious particles can be understood as being internal parts of
atoms.

Use of positive and negative signs for charge

Because the two types of charge tend to cancel out each other’s
forces, it makes sense to label them using positive and negative signs,
and to discuss the total charge of an object. It is entirely arbitrary
which type of charge to call negative and which to call positive.
Benjamin Franklin decided to describe the one we’ve been calling
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b / A charged piece of tape
attracts uncharged pieces of
paper from a distance, and they
leap up to it.

c / The paper has zero total
charge, but it does have charged
particles in it that can move.

“A” as negative, but it really doesn’t matter as long as everyone is
consistent with everyone else. An object with a total charge of zero
(equal amounts of both types) is referred to as electrically neutral.

self-check A
Criticize the following statement: “There are two types of charge, attrac-
tive and repulsive.” . Answer, p.
180

Coulomb’s law

A large body of experimental observations can be summarized
as follows:

Coulomb’s law: The magnitude of the force acting between
pointlike charged objects at a center-to-center distance r is given
by the equation

|F| = k
|q1||q2|
r2

,

where the constant k equals 9.0× 109 N·m2/C2. The force is attrac-
tive if the charges are of different signs, and repulsive if they have
the same sign.

Conservation of charge

An even more fundamental reason for using positive and negative
signs for electrical charge is that experiments show that with the
signs defined this way, the total amount of charge is a conserved
quantity. This is why we observe that rubbing initially uncharged
substances together always has the result that one gains a certain
amount of one type of charge, while the other acquires an equal
amount of the other type. Conservation of charge seems natural in
our model in which matter is made of positive and negative particles.
If the charge on each particle is a fixed property of that type of
particle, and if the particles themselves can be neither created nor
destroyed, then conservation of charge is inevitable.

Electrical forces involving neutral objects

As shown in figure 5.2.3, an electrically charged object can at-
tract objects that are uncharged. How is this possible? The key is
that even though each piece of paper has a total charge of zero, it
has at least some charged particles in it that have some freedom to
move. Suppose that the tape is positively charged, 5.2.3. Mobile
particles in the paper will respond to the tape’s forces, causing one
end of the paper to become negatively charged and the other to
become positive. The attraction between the paper and the tape
is now stronger than the repulsion, because the negatively charged
end is closer to the tape.

self-check B
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d / Examples of the construction
of atoms: hydrogen (top) and
helium (bottom). On this scale,
the electrons’ orbits would be the
size of a college campus.

e / André Marie Ampère (1775-
1836).

What would have happened if the tape was negatively charged? .

Answer, p. 180

The atom, and subatomic particles

I once had a student whose father had been an electrician. He
told me that his father had never really believed that an electrical
current in a wire could be carried by moving electrons, because the
wire was solid, and it seemed to him that physical particles moving
through it would eventually have drilled so many holes through it
that it would have crumbled. It may sound as though I’m trying
to make fun of the father, but actually he was behaving very much
like the model of the skeptical scientist: he didn’t want to make
hypotheses that seemed more complicated than would be necessary
in order to explain his observations. Physicists before about 1905
were in exactly the same situation. They knew all about electrical
circuits, and had even invented radio, but knew absolutely nothing
about subatomic particles. In other words, it hardly ever matters
that electricity really is made of charged particles, and it hardly ever
matters what those particles are. Nevertheless, it may avoid some
confusion to give a brief review of how an atom is put together:

charge mass in units of
the proton’s mass

location in atom

proton +e 1 in nucleus

neutron 0 1.001 in nucleus

electron −e 1/1836 orbiting nucleus

The symbol e in this table is an abbreviation for 1.60 × 10−19 C.
The physicist Robert Millikan discovered in 1911 that any material
object (he used oil droplets) would have a charge that was a multiple
of this number, and today we interpret that as being a consequence
of the fact that matter is made of atoms, and atoms are made of
particles whose charges are plus and minus this amount.

Electric current

If the fundamental phenomenon is the motion of charged parti-
cles, then how can we define a useful numerical measurement of it?
We might describe the flow of a river simply by the velocity of the
water, but velocity will not be appropriate for electrical purposes
because we need to take into account how much charge the moving
particles have, and in any case there are no practical devices sold
at Radio Shack that can tell us the velocity of charged particles.
Experiments show that the intensity of various electrical effects is
related to a different quantity: the number of coulombs of charge
that pass by a certain point per second. By analogy with the flow
of water, this quantity is called the electric current, I. Its units
of coulombs/second are more conveniently abbreviated as amperes,
1 A=1 C/s. (In informal speech, one usually says “amps.”)
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The main subtlety involved in this definition is how to account
for the two types of charge. The stream of water coming from a
hose is made of atoms containing charged particles, but it produces
none of the effects we associate with electric currents. For example,
you do not get an electrical shock when you are sprayed by a hose.
This type of experiment shows that the effect created by the motion
of one type of charged particle can be canceled out by the motion of
the opposite type of charge in the same direction. In water, every
oxygen atom with a charge of +8e is surrounded by eight electrons
with charges of −e, and likewise for the hydrogen atoms.

We therefore refine our definition of current as follows:

definition of electric current
When charged particles are exchanged between regions of space
A and B, the electric current flowing from A to B is

I =
change in B’s charge

t
,

where the transfer occurs over a period of time t.

In the garden hose example, your body picks up equal amounts of
positive and negative charge, resulting in no change in your total
charge, so the electrical current flowing into you is zero.

Ions moving across a cell membrane example 1
. Figure f shows ions, labeled with their charges, moving in or
out through the membranes of four cells. If the ions all cross
the membranes during the same interval of time, how would the
currents into the cells compare with each other?

. Cell A has positive current going into it because its charge is
increased, i.e., has a positive change in its charge.

Cell B has the same current as cell A, because by losing one unit
of negative charge it also ends up increasing its own total charge
by one unit.

Cell C’s total charge is reduced by three units, so it has a large
negative current going into it.

Cell D loses one unit of charge, so it has a small negative current
into it.

f / Example 1
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g / 1. Static electricity runs
out quickly. 2. A practical circuit.
3. An open circuit. 4. How an
ammeter works. 5. Measuring
the current with an ammeter.

It may seem strange to say that a negatively charged particle
going one way creates a current going the other way, but this is
quite ordinary. As we will see, currents flow through metal wires
via the motion of electrons, which are negatively charged, so the
direction of motion of the electrons in a circuit is always opposite to
the direction of the current. Of course it would have been convenient
if Benjamin Franklin had defined the positive and negative signs of
charge the opposite way, since so many electrical devices are based
on metal wires.

Number of electrons flowing through a lightbulb example 2
. If a lightbulb has 1.0 A flowing through it, how many electrons
will pass through the filament in 1.0 s?

. We are only calculating the number of electrons that flow, so we
can ignore the positive and negative signs. Solving for (charge) =
It gives a charge of 1.0 C flowing in this time interval. The number
of electrons is

number of electrons = coulombs× electrons
coulomb

= coulombs/
coulombs
electron

= 1.0 C/e

= 6.2× 1018

That’s a lot of electrons!

5.3 Circuits
How can we put electric currents to work? The only method of
controlling electric charge we have studied so far is to charge differ-
ent substances, e.g., rubber and fur, by rubbing them against each
other. Figure g/1 shows an attempt to use this technique to light
a lightbulb. This method is unsatisfactory. True, current will flow
through the bulb, since electrons can move through metal wires, and
the excess electrons on the rubber rod will therefore come through
the wires and bulb due to the attraction of the positively charged
fur and the repulsion of the other electrons. The problem is that
after a zillionth of a second of current, the rod and fur will both have
run out of charge. No more current will flow, and the lightbulb will
go out.

Figure g/2 shows a setup that works. The battery pushes charge
through the circuit, and recycles it over and over again. (We will
have more to say later in this chapter about how batteries work.)
This is called a complete circuit. Today, the electrical use of the
word “circuit” is the only one that springs to mind for most people,
but the original meaning was to travel around and make a round
trip, as when a circuit court judge would ride around the boondocks,
dispensing justice in each town on a certain date.
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Note that an example like g/3 does not work. The wire will
quickly begin acquiring a net charge, because it has no way to get
rid of the charge flowing into it. The repulsion of this charge will
make it more and more difficult to send any more charge in, and
soon the electrical forces exerted by the battery will be canceled
out completely. The whole process would be over so quickly that
the filament would not even have enough time to get hot and glow.
This is known as an open circuit. Exactly the same thing would
happen if the complete circuit of figure g/2 was cut somewhere with
a pair of scissors, and in fact that is essentially how an ordinary
light switch works: by opening up a gap in the circuit.

The definition of electric current we have developed has the great
virtue that it is easy to measure. In practical electrical work, one
almost always measures current, not charge. The instrument used
to measure current is called an ammeter. A simplified ammeter, g/4,
simply consists of a coiled-wire magnet whose force twists an iron
needle against the resistance of a spring. The greater the current,
the greater the force. Although the construction of ammeters may
differ, their use is always the same. We break into the path of the
electric current and interpose the meter like a tollbooth on a road,
g/5. There is still a complete circuit, and as far as the battery and
bulb are concerned, the ammeter is just another segment of wire.

Does it matter where in the circuit we place the ammeter? Could
we, for instance, have put it in the left side of the circuit instead
of the right? Conservation of charge tells us that this can make no
difference. Charge is not destroyed or “used up” by the lightbulb,
so we will get the same current reading on either side of it. What is
“used up” is energy stored in the battery, which is being converted
into heat and light energy.

5.4 Voltage
The volt unit

Electrical circuits can be used for sending signals, storing infor-
mation, or doing calculations, but their most common purpose by
far is to manipulate energy, as in the battery-and-bulb example of
the previous section. We know that lightbulbs are rated in units of
watts, i.e., how many joules per second of energy they can convert
into heat and light, but how would this relate to the flow of charge as
measured in amperes? By way of analogy, suppose your friend, who
didn’t take physics, can’t find any job better than pitching bales of
hay. The number of calories he burns per hour will certainly depend
on how many bales he pitches per minute, but it will also be pro-
portional to how much mechanical work he has to do on each bale.
If his job is to toss them up into a hayloft, he will got tired a lot
more quickly than someone who merely tips bales off a loading dock
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h / Alessandro Volta (1745-1827).

i / Example 3.

into trucks. In metric units,

joules

second
=

haybales

second
× joules

haybale
.

Similarly, the rate of energy transformation by a battery will not
just depend on how many coulombs per second it pushes through a
circuit but also on how much mechanical work it has to do on each
coulomb of charge:

joules

second
=

coulombs

second
× joules

coulomb

or
power = current× work per unit charge.

Units of joules per coulomb are abbreviated as volts, 1 V=1 J/C,
named after the Italian physicist Alessandro Volta. Everyone knows
that batteries are rated in units of volts, but the voltage concept is
more general than that; it turns out that voltage is a property of
every point in space.

To gain more insight, let’s think again about the analogy with
the haybales. It took a certain number of joules of gravitational
energy to lift a haybale from one level to another. Since we’re talking
about gravitational energy, it really makes more sense to talk about
units of mass, rather than using the haybale as our measure of the
quantity of matter. The gravitational version of voltage would then
be joules per kilogram. Gravitational energy equals mgh, but if we
calculate how much of that we have per kilogram, we’re canceling out
the m, giving simply gh. For any point in the Earth’s gravitational
field, we can assign a number, gh, which tells us how hard it is to
get a given amount of mass to that point. For instance, the top
of Mount Everest would have a big value of gh, because of the big
height. That tells us that it’s expensive in terms of energy to lift a
given amount of mass from some reference level (sea level, say) to
the top of Mount Everest.

Voltage does the same thing, but using electrical energy. We
can visualize an electrical circuit as being like a roller-coaster. The
battery is like the part of the roller-coaster where they lift you up to
the top. The height of this initial hill is analogous to the voltage of
the battery. When you roll downhill later, that’s like a lightbulb. In
the roller-coaster, the initial gravitational energy is turned into heat
and sound as the cars go down the hill. In our circuit, the initial
electrical energy is turned into heat by the lightbulb (and the hot
filament of the lightbulb then glows, turning the heat into light).

Energy stored in a battery example 3
. The 1.2 V rechargeable battery in figure i is labeled 1800 milliamp-
hours. What is the maximum amount of energy the battery can
store?
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. An ampere-hour is a unit of current multiplied by a unit of time.
Current is charge per unit time, so an ampere-hour is in fact a
funny unit of charge:

(1 A)(1 hour) = (1 C/s)(3600 s)
= 3600 C

1800 milliamp-hours is therefore 1800 × 10−3 × 3600 C = 6.5 ×
103 C. That’s a huge number of charged particles, but the total
loss of electrical energy will just be their total charge multiplied by
the voltage difference across which they move:

energy = (6.5× 103 C)(1.2 V)
= 7.8 kJ

Using the definition of voltage, V , we can rewrite the equation
power = current× work per unit charge more concisely as P = IV .

Units of volt-amps example 4
. Doorbells are often rated in volt-amps. What does this combi-
nation of units mean?

. Current times voltage gives units of power, P = IV , so volt-amps
are really just a nonstandard way of writing watts. They are telling
you how much power the doorbell requires.

Power dissipated by a battery and bulb example 5
. If a 9.0-volt battery causes 1.0 A to flow through a lightbulb, how
much power is dissipated?

. The voltage rating of a battery tells us what voltage difference
∆V it is designed to maintain between its terminals.

P = I ∆V
= 9.0 A · V

= 9.0
C
s
· J

C
= 9.0 J/s
= 9.0 W

The only nontrivial thing in this problem was dealing with the units.
One quickly gets used to translating common combinations like
A · V into simpler terms.

Discussion questions

A In the roller-coaster metaphor, what would a high-voltage roller
coaster be like? What would a high-current roller coaster be like?

B Criticize the following statements:

“He touched the wire, and 10000 volts went through him.”
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k / Georg Simon Ohm (1787-
1854).

“That battery has a charge of 9 volts.”

“You used up the charge of the battery.”

C When you touch a 9-volt battery to your tongue, both positive and
negative ions move through your saliva. Which ions go which way?

D I once touched a piece of physics apparatus that had been wired
incorrectly, and got a several-thousand-volt voltage difference across my
hand. I was not injured. For what possible reason would the shock have
had insufficient power to hurt me?

5.5 Resistance
What’s the physical difference between a 100-watt lightbulb and a
200-watt one? They both plug into a 110-volt outlet, so according
to the equation P = IV , the only way to explain the double power
of the 200-watt bulb is that it must pull in, or “draw,” twice as
much current. By analogy, a fire hose and a garden hose might be
served by pumps that give the same pressure (voltage), but more
water will flow through the fire hose, because there’s simply more
water in the hose that can flow. Likewise, a wide, deep river could
flow down the same slope as a tiny creek, but the number of liters
of water flowing through the big river is greater. If you look at the
filaments of a 100-watt bulb and a 200-watt bulb, you’ll see that the
200-watt bulb’s filament is thicker. In the charged-particle model
of electricity, we expect that the thicker filament will contain more
charged particles that are available to flow. We say that the thicker
filament has a lower electrical resistance than the thinner one.

j / A fat pipe has less resistance
than a skinny pipe.

Although it’s harder to pump water rapidly through a garden
hose than through a fire hose, we could always compensate by using
a higher-pressure pump. Similarly, the amount of current that will
flow through a lightbulb depends not just on its resistance but also
on how much of a voltage difference is applied across it. For many
substances, including the tungsten metal that lightbulb filaments
are made of, we find that the amount of current that flows is pro-
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portional to the voltage difference applied to it, so that the ratio
of voltage to current stays the same. We then use this ratio as a
numerical definition of resistance,

R =
V

I
,

which is known as Ohm’s law. The units of resistance are ohms,
symbolized with an uppercase Greek letter Omega, Ω. Physically,
when a current flows through a resistance, the result is to transform
electrical energy into heat. In a lightbulb filament, for example, the
heat is what causes the bulb to glow.

Ohm’s law states that many substances, including many solids
and some liquids, display this kind of behavior, at least for voltages
that are not too large. The fact that Ohm’s law is called a “law”
should not be taken to mean that all materials obey it, or that it
has the same fundamental importance as the conservation laws, for
example. Materials are called ohmic or nonohmic, depending on
whether they obey Ohm’s law.

On an intuitive level, we can understand the idea of resistance
by making the sounds “hhhhhh” and “ffffff.” To make air flow out
of your mouth, you use your diaphragm to compress the air in your
chest. The pressure difference between your chest and the air out-
side your mouth is analogous to a voltage difference. When you
make the “h” sound, you form your mouth and throat in a way that
allows air to flow easily. The large flow of air is like a large current.
Dividing by a large current in the definition of resistance means that
we get a small resistance. We say that the small resistance of your
mouth and throat allows a large current to flow. When you make
the “f” sound, you increase the resistance and cause a smaller cur-
rent to flow. In this mechanical analogy, resistance is like friction:
the air rubs against your lips. Mechanical friction converts mechan-
ical forms of energy to heat, as when you rub your hands together.
Electrical friction — resistance — converts electrical energy to heat.

If objects of the same size and shape made from two different
ohmic materials have different resistances, we can say that one ma-
terial is more resistive than the other, or equivalently that it is less
conductive. Materials, such as metals, that are very conductive are
said to be good conductors. Those that are extremely poor conduc-
tors, for example wood or rubber, are classified as insulators. There
is no sharp distinction between the two classes of materials. Some,
such as silicon, lie midway between the two extremes, and are called
semiconductors.

Applications

Superconductors

All materials display some variation in resistance according to
temperature (a fact that is used in thermostats to make a ther-
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mometer that can be easily interfaced to an electric circuit). More
spectacularly, most metals have been found to exhibit a sudden
change to zero resistance when cooled to a certain critical tempera-
ture. They are then said to be superconductors. A current flowing
through a superconductor doesn’t create any heat at all.

Theoretically, superconductors should make a great many excit-
ing devices possible, for example coiled-wire magnets that could be
used to levitate trains. In practice, the critical temperatures of all
metals are very low, and the resulting need for extreme refrigera-
tion has made their use uneconomical except for such specialized
applications as particle accelerators for physics research.

But scientists have recently made the surprising discovery that
certain ceramics are superconductors at less extreme temperatures.
The technological barrier is now in finding practical methods for
making wire out of these brittle materials. Wall Street is currently
investing billions of dollars in developing superconducting devices
for cellular phone relay stations based on these materials. In 2001,
the city of Copenhagen replaced a short section of its electrical power
trunks with superconducing cables, and they are now in operation
and supplying power to customers.

There is currently no satisfactory theory of superconductivity in
general, although superconductivity in metals is understood fairly
well. Unfortunately I have yet to find a fundamental explanation of
superconductivity in metals that works at the introductory level.

Constant voltage throughout a conductor

The idea of a superconductor leads us to the question of how
we should expect an object to behave if it is made of a very good
conductor. Superconductors are an extreme case, but often a metal
wire can be thought of as a perfect conductor, for example if the
parts of the circuit other than the wire are made of much less con-
ductive materials. What happens if the resistance equals zero in the
equation

R =
V

I
?

The result of dividing two numbers can only be zero if the number
on top equals zero. This tells us that if we pick any two points
in a perfect conductor, the voltage difference between them must
be zero. In other words, the entire conductor must be at the same
voltage. Using the water metaphor, a perfect conductor is like a
perfectly calm lake or canal, whose surface is flat. If you take an
eyedropper and deposit a drop of water anywhere on the surface, it
doesn’t flow away, because the water is still. In electrical terms, a
charge located anywhere in the interior of a perfect conductor will
always feel a total electrical force of zero.

Suppose, for example, that you build up a static charge by scuff-
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l / 1. A simplified diagram of
how a voltmeter works. 2. Mea-
suring the voltage difference
across a lightbulb. 3. The same
setup drawn in schematic form. 4.
The setup for measuring current
is different.

ing your feet on a carpet, and then you deposit some of that charge
onto a doorknob, which is a good conductor. How can all that charge
be in the doorknob without creating any electrical force at any point
inside it? The only possible answer is that the charge moves around
until it has spread itself into just the right configuration. In this
configuration, the forces exerted by all the charge on any charged
particle within the doorknob exactly cancel out.

We can explain this behavior if we assume that the charge placed
on the doorknob eventually settles down into a stable equilibrium.
Since the doorknob is a conductor, the charge is free to move through
it. If it was free to move and any part of it did experience a nonzero
total force from the rest of the charge, then it would move, and we
would not have an equilibrium.

It also turns out that charge placed on a conductor, once it
reaches its equilibrium configuration, is entirely on the surface, not
on the interior. We will not prove this fact formally, but it is intu-
itively reasonable (see discussion question B).

Short circuits

So far we have been assuming a perfect conductor. What if it’s
a good conductor, but not a perfect one? Then we can solve for

V = IR.

An ordinary-sized current will make a very small result when we
multiply it by the resistance of a good conductor such as a metal
wire. The voltage throughout the wire will then be nearly constant.
If, on the other hand, the current is extremely large, we can have
a significant voltage difference. This is what happens in a short-
circuit: a circuit in which a low-resistance pathway connects the two
sides of a voltage source. Note that this is much more specific than
the popular use of the term to indicate any electrical malfunction
at all. If, for example, you short-circuit a 9-volt battery as shown in
the figure, you will produce perhaps a thousand amperes of current,
leading to a very large value of P = IV . The wire gets hot!

The voltmeter

A voltmeter is nothing more than an ammeter with an additional
high-value resistor through which the current is also forced to flow,
l/1. Ohm’s law relates the current through the resistor directly
to the voltage difference across it, so the meter can be calibrated
in units of volts based on the known value of the resistor. The
voltmeter’s two probes are touched to the two locations in a circuit
between which we wish to measure the voltage difference, l/2. Note
how cumbersome this type of drawing is, and how difficult it can
be to tell what is connected to what. This is why electrical drawing
are usually shown in schematic form. Figure l/3 is a schematic
representation of figure l/2.
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The setups for measuring current and voltage are different. When
we’re measuring current, we’re finding “how much stuff goes through,”
so we place the ammeter where all the current is forced to go through
it. Voltage, however, is not “stuff that goes through,” it is a measure
of electrical energy. If an ammeter is like the meter that measures
your water use, a voltmeter is like a measuring stick that tells you
how high a waterfall is, so that you can determine how much energy
will be released by each kilogram of falling water. We don’t want to
force the water to go through the measuring stick! The arrangement
in figure l/3 is a parallel circuit: one which in there are “forks in
the road” where some of the current will flow one way and some
will flow the other. Figure l/4 is said to be wired in series: all the
current will visit all the circuit elements one after the other.

If you inserted a voltmeter incorrectly, in series with the bulb and
battery, its large internal resistance would cut the current down so
low that the bulb would go out. You would have severely disturbed
the behavior of the circuit by trying to measure something about it.

Incorrectly placing an ammeter in parallel is likely to be even
more disconcerting. The ammeter has nothing but wire inside it to
provide resistance, so given the choice, most of the current will flow
through it rather than through the bulb. So much current will flow
through the ammeter, in fact, that there is a danger of burning out
the battery or the meter or both! For this reason, most ammeters
have fuses or circuit breakers inside. Some models will trip their
circuit breakers and make an audible alarm in this situation, while
others will simply blow a fuse and stop working until you replace it.

Discussion questions

A In figure g/4 on page 100, what would happen if you had the ammeter
on the left rather than on the right?

B Imagine a charged doorknob, as described on page 107. Why is
it intuitively reasonable to believe that all the charge will end up on the
surface of the doorknob, rather than on the interior?
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Problems 2 and 3.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A hydrogen atom consists of an electron and a proton. For our
present purposes, we’ll think of the electron as orbiting in a circle
around the proton.

The subatomic particles called muons behave exactly like electrons,
except that a muon’s mass is greater by a factor of 206.77. Muons
are continually bombarding the Earth as part of the stream of par-
ticles from space known as cosmic rays. When a muon strikes an
atom, it can displace one of its electrons. If the atom happens to be
a hydrogen atom, then the muon takes up an orbit that is on the av-
erage 206.77 times closer to the proton than the orbit of the ejected
electron. How many times greater is the electric force experienced
by the muon than that previously felt by the electron?

2 The figure shows a circuit containing five lightbulbs con-
nected to a battery. Suppose you’re going to connect one probe of a
voltmeter to the circuit at the point marked with a dot. How many
unique, nonzero voltage differences could you measure by connecting
the other probe to other wires in the circuit? Visualize the circuit
using the same waterfall metaphor.

3 The lightbulbs in the figure are all identical. If you were
inserting an ammeter at various places in the circuit, how many
unique currents could you measure? If you know that the current
measurement will give the same number in more than one place,
only count that as one unique current.
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This sunspot is a product of the sun’s magnetic fields. The darkest region
in the center is about the size of our planet.

Chapter 6

Fields

6.1 Farewell To the Mechanical Universe
As late as 1900, physicists generally conceived of the universe in
mechanical terms. Newton had revealed the solar system as a col-
lection of material objects interacting through forces that acted at
a distance. By 1900, evidence began to accumulate for the exis-
tence of atoms as real things, and not just as imaginary models
of reality. In this microscopic realm, the same (successful) Newto-
nian picture tended to be transferred over to the microscopic world.
Now the actors on the stage were atoms rather than planets, and
the forces were electrical rather than gravitational, but it seemed to
be a variation on the same theme. Some physicists, however, began
to realize that the old mechanical picture wouldn’t quite work. At
a deeper level, the operation of the universe came to be understood
in terms of fields, the general idea being embodied fairly well in
“The Force” from the Star Wars movies: “... an energy field cre-
ated by all living things. It surrounds us, penetrates us, and binds
the galaxy together.” Substitute “massive” for “living,” and you
have a fairly good description of the gravitational field, which I first
casually mentioned on page 20. Substitute “charged” instead, and
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a / A bar magnet’s atoms are
(partially) aligned.

b / A bar magnet interacts
with our magnetic planet.

c / Magnets aligned north-south.

it’s a depiction of the electric field.

Time delays in forces exerted at a distance

What convinced physicists that they needed this new concept of
a field of force? Although we have been dealing mostly with elec-
trical forces, let’s start with a magnetic example. (In fact the main
reason I’ve delayed a detailed discussion of magnetism for so long
is that mathematical calculations of magnetic effects are handled
much more easily with the concept of a field of force.) First a little
background leading up to our example. A bar magnet, a, has an axis
about which many of the electrons’ orbits are oriented. The earth
itself is also a magnet, although not a bar-shaped one. The interac-
tion between the earth-magnet and the bar magnet, b, makes them
want to line up their axes in opposing directions (in other words
such that their electrons rotate in parallel planes, but with one set
rotating clockwise and the other counterclockwise as seen looking
along the axes). On a smaller scale, any two bar magnets placed
near each other will try to align themselves head-to-tail, c.

Now we get to the relevant example. It is clear that two people
separated by a paper-thin wall could use a pair of bar magnets to
signal to each other. Each person would feel her own magnet trying
to twist around in response to any rotation performed by the other
person’s magnet. The practical range of communication would be
very short for this setup, but a sensitive electrical apparatus could
pick up magnetic signals from much farther away. In fact, this is
not so different from what a radio does: the electrons racing up
and down the transmitting antenna create forces on the electrons
in the distant receiving antenna. (Both magnetic and electric forces
are involved in real radio signals, but we don’t need to worry about
that yet.)

A question now naturally arises as to whether there is any time
delay in this kind of communication via magnetic (and electric)
forces. Newton would have thought not, since he conceived of
physics in terms of instantaneous action at a distance. We now
know, however, that there is such a time delay. If you make a
long-distance phone call that is routed through a communications
satellite, you should easily be able to detect a delay of about half a
second over the signal’s round trip of 50,000 miles. Modern measure-
ments have shown that electric, magnetic, and gravitational forces
all travel at the speed of light, 3× 108 m/s.1 (In fact, we will soon
discuss how light itself is made of electricity and magnetism.)

If it takes some time for forces to be transmitted through space,
then apparently there is some thing that travels through space. The
fact that the phenomenon travels outward at the same speed in all

1As discussed in chapter 4, one consequence of Einstein’s theory of relativity
is that material objects can never move faster than the speed of light. It can
also be shown that signals or information are subject to the same limit.
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d / The second magnet is re-
versed.

e / Both magnets are reversed.

f / The wind patterns in a
certain area of the ocean could
be charted in a “sea of arrows”
representation like this. Each
arrow represents both the wind’s
strength and its direction at a
certain location.

directions strongly evokes wave metaphors such as ripples on a pond.

More evidence that fields of force are real: they carry energy.

The smoking-gun argument for this strange notion of traveling
force ripples comes from the fact that they carry energy.

First suppose that the person holding the bar magnet on the
right decides to reverse hers, resulting in configuration d. She had
to do mechanical work to twist it, and if she releases the magnet,
energy will be released as it flips back to c. She has apparently stored
energy by going from c to d. So far everything is easily explained
without the concept of a field of force.

But now imagine that the two people start in position c and
then simultaneously flip their magnets extremely quickly to position
e, keeping them lined up with each other the whole time. Imagine,
for the sake of argument, that they can do this so quickly that
each magnet is reversed while the force signal from the other is
still in transit. (For a more realistic example, we’d have to have
two radio antennas, not two magnets, but the magnets are easier
to visualize.) During the flipping, each magnet is still feeling the
forces arising from the way the other magnet used to be oriented.
Even though the two magnets stay aligned during the flip, the time
delay causes each person to feel resistance as she twists her magnet
around. How can this be? Both of them are apparently doing
mechanical work, so they must be storing magnetic energy somehow.
But in the traditional Newtonian conception of matter interacting
via instantaneous forces at a distance, interaction energy arises from
the relative positions of objects that are interacting via forces. If
the magnets never changed their orientations relative to each other,
how can any magnetic energy have been stored?

The only possible answer is that the energy must have gone
into the magnetic force ripples crisscrossing the space between the
magnets. Fields of force apparently carry energy across space, which
is strong evidence that they are real things.

This is perhaps not as radical an idea to us as it was to our
ancestors. We are used to the idea that a radio transmitting antenna
consumes a great deal of power, and somehow spews it out into the
universe. A person working around such an antenna needs to be
careful not to get too close to it, since all that energy can easily
cook flesh (a painful phenomenon known as an “RF burn”).

The gravitational field

Given that fields of force are real, how do we define, measure,
and calculate them? A fruitful metaphor will be the wind patterns
experienced by a sailing ship. Wherever the ship goes, it will feel a
certain amount of force from the wind, and that force will be in a
certain direction. The weather is ever-changing, of course, but for
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g / The gravitational field sur-
rounding a clump of mass such
as the earth.

now let’s just imagine steady wind patterns. Definitions in physics
are operational, i.e., they describe how to measure the thing being
defined. The ship’s captain can measure the wind’s “field of force”
by going to the location of interest and determining both the direc-
tion of the wind and the strength with which it is blowing. Charting
all these measurements on a map leads to a depiction of the field of
wind force like the one shown in the figure. This is known as the
“sea of arrows” method of visualizing a field.

Now let’s see how these concepts are applied to the fundamental
force fields of the universe. We’ll start with the gravitational field,
which is the easiest to understand. We’ve already encountered the
gravitational field, g, which we defined in terms of energy. Essen-
tially, g was defined as the number that would make the equation
GE = mgh give the right answer. However, we intuitively feel that
the gravitational field has a direction associated with it: down! This
can be more easily expressed via the following definition:

definition of the gravitational field
The gravitational field, g, at any location in space is found by
placing a test mass m at that point. The field is then given
by g = F/m, where F is the gravitational force on the test
mass.

With this new definition, we get units of N/kg, rather then
J/kg/m. These are in fact equivalent units.

The most subtle point about all this is that the gravitational
field tells us about what forces would be exerted on a test mass by
the earth, sun, moon, and the rest of the universe, if we inserted a
test mass at the point in question. The field still exists at all the
places where we didn’t measure it.

Sources and sinks

If we make a sea-of-arrows picture of the gravitational fields
surrounding the earth, g, the result is evocative of water going down
a drain. For this reason, anything that creates an inward-pointing
field around itself is called a sink. The earth is a gravitational sink.
The term “source” can refer specifically to things that make outward
fields, or it can be used as a more general term for both “outies”
and “innies.” However confusing the terminology, we know that
gravitational fields are only attractive, so we will never find a region
of space with an outward-pointing field pattern.

Knowledge of the field is interchangeable with knowledge of its
sources (at least in the case of a static, unchanging field). If aliens
saw the earth’s gravitational field pattern they could immediately
infer the existence of the planet, and conversely if they knew the
mass of the earth they could predict its influence on the surrounding
gravitational field.
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h / 1. When the circuit is in-
complete, no current flows
through the wire, and the magnet
is unaffected. It points in the
direction of the Earth’s magnetic
field. 2. The circuit is completed,
and current flows through the
wire. The wire has a strong
effect on the magnet, which turns
almost perpendicular to it. If the
earth’s field could be removed
entirely, the compass would point
exactly perpendicular to the wire;
this is the direction of the wire’s
field.

The electric field

The definition of the electric field is directly analogous to, and
has the same motivation as, the definition of the gravitational field:

definition of the electric field
The electric field, E, at any location in space is found by
placing a test charge q at that point. The electric field vector
is then given by E = F/q, where F is the electric force on the
test charge.

Charges are what create electric fields. Unlike gravity, which is
always attractive, electricity displays both attraction and repulsion.
A positive charge is a source of electric fields, and a negative one is
a sink.

6.2 Electromagnetism
Think not that I am come to destroy the law, or the prophets: I am
not come to destroy, but to fulfill. Matthew 5:17

Magnetic interactions

At this stage, you understand roughly as much about the clas-
sification of interactions as physicists understood around the year
1800. There appear to be three fundamentally different types of
interactions: gravitational, electrical, and magnetic. Many types
of interactions that appear superficially to be distinct — stickiness,
chemical interactions, the energy an archer stores in a bow — are
really the same: they’re manifestations of electrical interactions be-
tween atoms. Is there any way to shorten the list any further? The
prospects seem dim at first. For instance, we find that if we rub a
piece of fur on a rubber rod, the fur does not attract or repel a mag-
net. The fur has an electric field, and the magnet has a magnetic
field. The two are completely separate, and don’t seem to affect
one another. Likewise we can test whether magnetizing a piece of
iron changes its weight. The weight doesn’t seem to change by any
measurable amount, so magnetism and gravity seem to be unrelated.

That was where things stood until 1820, when the Danish physi-
cist Hans Christian Oersted was delivering a lecture at the Univer-
sity of Copenhagen, and he wanted to give his students a demonstra-
tion that would illustrate the cutting edge of research. He generated
a current in a wire by making a short circuit across a battery, and
held the wire near a magnetic compass. The ideas was to give an
example of how one could search for a previously undiscovered link
between electricity (the electric current in the wire) and magnetism.
One never knows how much to believe from these dramatic legends,
but the story is2 that the experiment he’d expected to turn out neg-

2Oersted’s paper describing the phenomenon says that “The first experiments
on the subject . . . were set on foot in the classes for electricity, galvanism, and
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i / A schematic representa-
tion of an unmagnetized material,
1, and a magnetized one, 2.

j / Magnetism is an interac-
tion between moving charges
and moving charges. The moving
charges in the wire attract the
moving charges in the beam of
charged particles in the vacuum
tube.

ative instead turned out positive: when he held the wire near the
compass, the current in the wire caused the compass to twist!

People had tried similar experiments before, but only with static
electricity, not with a moving electric current. For instance, they had
hung batteries so that they were free to rotate in the earth’s mag-
netic field, and found no effect; since the battery was not connected
to a complete circuit, there was no current flowing. With Oersted’s
own setup, h, the effect was only produced when the “circuit was
closed, but not when open, as certain very celebrated physicists in
vain attempted several years ago.”3

Oersted was eventually led to the conclusion that magnetism was
an interaction between moving charges and other moving charges,
i.e., between one current and another. A permanent magnet, he in-
ferred, contained currents on a microscopic scale that simply weren’t
practical to measure with an ammeter. Today this seems natural
to us, since we’re accustomed to picturing an atom as a tiny solar
system, with the electrons whizzing around the nucleus in circles.
As shown in figure i, a magnetized piece of iron is different from an
unmagnetized piece because the atoms in the unmagnetized piece
are jumbled in random orientations, whereas the atoms in the mag-
netized piece are at least partially organized to face in a certain
direction.

Figure j shows an example that is conceptually simple, but not
very practical. If you try this with a typical vacuum tube, like a
TV or computer monitor, the current in the wire probably won’t be
enough to produce a visible effect. A more practical method is to
hold a magnet near the screen. We still have an interaction between
moving charges and moving charges, but the swirling electrons in
the atoms in the magnet are now playing the role played by the
moving charges in the wire in figure j. Warning: if you do this,
make sure your monitor has a demagnetizing button! If not, then
your monitor may be permanently ruined.

Relativity requires magnetism

So magnetism is an interaction between moving charges and
moving charges. But how can that be? Relativity tells us that
motion is a matter of opinion. Consider figure k. In this figure and
in figure l, the dark and light coloring of the particles represents the
fact that one particle has one type of charge and the other particle
has the other type. Observer k/2 sees the two particles as flying
through space side by side, so they would interact both electrically
(simply because they’re charged) and magnetically (because they’re
charges in motion). But an observer moving along with them, k/1,
would say they were both at rest, and would expect only an elec-

magnetism, which were held by me in the winter just past,” but that doesn’t tell
us whether the result was really a surprise that occurred in front of his students.

3All quotes are from the 1876 translation by J.E. Kempe.
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k / One observer sees an electric
field, while the other sees both an
electric field and a magnetic one.

l / A model of a charged par-
ticle and a current-carrying wire,
seen in two different frames of
reference. The relativistic length
contraction is highly exaggerated.
The force on the lone particle is
purely magnetic in 1, and purely
electric in 2.

trical interaction. This seems like a paradox. Magnetism, however,
comes not to destroy relativity but to fulfill it. Magnetic interac-
tions must exist according to the theory of relativity. To understand
how this can be, consider how time and space behave in relativity.
Observers in different frames of reference disagree about the lengths
of measuring sticks and the speeds of clocks, but the laws of physics
are valid and self-consistent in either frame of reference. Similarly,
observers in different frames of reference disagree about what elec-
tric and magnetic fields there are, but they agree about concrete
physical events. An observer in frame of reference k/1 says there
are electric fields around the particles, and predicts that as time
goes on, the particles will begin to accelerate towards one another,
eventually colliding. She explains the collision as being due to the
electrical attraction between the particles. A different observer, k/2,
says the particles are moving. This observer also predicts that the
particles will collide, but explains their motion in terms of both an
electric field and a magnetic field. As we’ll see shortly, the mag-
netic field is required in order to maintain consistency between the
predictions made in the two frames of reference.

To see how this really works out, we need to find a nice simple
example. An example like figure k is not easy to handle, because in
the second frame of reference, the moving charges create fields that
change over time at any given location, like when the V-shaped wake
of a speedboat washes over a buoy. Examples like figure j are easier,
because there is a steady flow of charges, and all the fields stay the
same over time. Figure l/1 shows a simplified and idealized model
of figure j. The charge by itself is like one of the charged particles in
the vacuum tube beam of figure j, and instead of the wire, we have
two long lines of charges moving in opposite directions. Note that,
as discussed in discussion question C on page 104, the currents of
the two lines of charges do not cancel out. The dark balls represent
particles with one type of charge, and the light balls have the other
type. Because of this, the total current in the “wire” is double what
it would be if we took away one line.

As a model of figure j, figure l/1 is partly realistic and partly
unrealistic. In a real piece of copper wire, there are indeed charged
particles of both types, but it turns out that the particles of one
type (the protons) are locked in place, while only some of the other
type (the electrons) are free to move. The model also shows the
particles moving in a simple and orderly way, like cars on a two-
lane road, whereas in reality most of the particles are organized
into copper atoms, and there is also a great deal of random thermal
motion. The model’s unrealistic features aren’t a problem, because
the point of this exercise is only to find one particular situation that
shows magnetic effects must exist based on relativity.

What electrical force does the lone particle in figure l/1 feel?
Since the density of “traffic” on the two sides of the “road” is equal,
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m / Magnetic interactions in-
volving only two particles at a
time. In these figures, unlike
figure l/1, there are electrical
forces as well as magnetic ones.
The electrical forces are not
shown here. Don’t memorize
these rules!

there is zero overall electrical force on the lone particle. Each “car”
that attracts the lone particle is paired with a partner on the other
side of the road that repels it. If we didn’t know about magnetism,
we’d think this was the whole story: the lone particle feels no force
at all from the wire.

Figure l/2 shows what we’d see if we were observing all this from
a frame of reference moving along with the lone charge. Here’s where
the relativity comes in. Relativity tells us that moving objects ap-
pear contracted to an observer who is not moving along with them.
Both lines of charge are in motion in both frames of reference, but
in frame 1 they were moving at equal speeds, so their contractions
were equal. In frame 2, however, their speeds are unequal. The
dark charges are moving more slowly than in frame 1, so in frame 2
they are less contracted. The light-colored charges are moving more
quickly, so their contraction is greater now. The “cars” on the two
sides of the “road” are no longer paired off, so the electrical forces
on the lone particle no longer cancel out as they did in l/1. The
lone particle is attracted to the wire, because the particles attract-
ing it are more dense than the ones repelling it. Furthermore, the
attraction felt by the lone charge must be purely electrical, since the
lone charge is at rest in this frame of reference, and magnetic effects
occur only between moving charges and other moving charges.

Now observers in frames 1 and 2 disagree about many things,
but they do agree on concrete events. Observer 2 is going to see
the lone particle drift toward the wire due to the wire’s electrical
attraction, gradually speeding up, and eventually hit the wire. If 2
sees this collision, then 1 must as well. But 1 knows that the total
electrical force on the lone particle is exactly zero. There must be
some new type of force. She invents a name for this new type of
force: magnetism. This was a particularly simple example, because
the force was purely magnetic in one frame of reference, and purely
electrical in another. In general, an observer in a certain frame
of reference will measure a mixture of electric and magnetic fields,
while an observer in another frame, in motion with respect to the
first, says that the same volume of space contains a different mixture.

We therefore arrive at the conclusion that electric and magnetic
phenomena aren’t separate. They’re different sides of the same coin.
We refer to electric and magnetic interactions collectively as elec-
tromagnetic interactions. Our list of the fundamental interactions
of nature now has two items on it instead of three: gravity and
electromagnetism.

The basic rules for magnetic attractions and repulsions, shown in
figure m, aren’t quite as simple as the ones for gravity and electric-
ity. Rules m/1 and m/2 follow directly from our previous analysis
of figure l. Rules 3 and 4 are obtained by flipping the type of charge
that the bottom particle has. For instance, rule 3 is like rule 1,
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n / Example 1

o / The magnetic field curls
around the wire in circles. At
each point in space, the magnetic
compass shows the direction of
the field.

except that the bottom charge is now the opposite type. This turns
the attraction into a repulsion. (We know that flipping the charge
reverses the interaction, because that’s the way it works for elec-
tric forces, and magnetic forces are just electric forces viewed in a
different frame of reference.)

A magnetic weathervane placed near a current. example 1
Figure n shows a magnetic weathervane, consisting of two charges
that spin in circles around the axis of the arrow. (The magnetic
field doesn’t cause them to spin; a motor is needed to get them to
spin in the first place.) Just like the magnetic compass in figure h,
the weathervane’s arrow tends to align itself in the direction per-
pendicular to the wire. This is its preferred orientation because
the charge close to the wire is attracted to the wire, while the
charge far from the wire is repelled by it.

Magnetic fields

How should we define the magnetic field? When two objects at-
tract each other gravitationally, their gravitational energy depends
only on the distance between them, and it seems intuitively reason-
able that we define the gravitational field arrows like a street sign
that says “this way to lower gravitational energy.” The same idea
works fine for the electric field. But what if two charged particles
are interacting magnetically? Their interaction doesn’t just depend
on the distance, but also on their motions.

We need some way to pick out some direction in space, so we
can say, “this is the direction of the magnetic field around here.” A
natural and simple method is to define the magnetic field’s direction
according to the direction a compass points. Starting from this
definition we can, for example, do experiments to show that the
magnetic field of a current-carrying wire forms a circular pattern, o.

But is this the right definition? Unlike the definitions of the
gravitational and electric fields’ directions, it involves a particular
human-constructed tool. However, compare figure h on page 115
with figure n on page 119. Note that both of these tools line them-
selves up along a line that’s perpendicular to the wire. In fact, no
matter how hard you try, you will never be able to invent any other
electromagnetic device that will align itself with any other line. All
you can do is make one that points in exactly the opposite direction,
but along the same line. For instance, you could use paint to reverse
the colors that label the ends of the magnetic compass needle, or
you could build a weathervane just like figure n, but spinning like a
left-handed screw instead of a right-handed one. The weathervane
and the compass aren’t even as different as they appear. Figure p
shows their hidden similarities.

Nature is trying to tell us something: there really is something
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p / 1. The needle of a magnetic
compass is nothing more than a
bar magnet that is free to rotate in
response to the earth’s magnetic
field. 2. A cartoon of the bar mag-
net’s structure at the atomic level.
Each atom is very much like the
weathervane of figure n.

special about the direction the compass points. Defining the direc-
tion of the magnetic field in terms of this particular device isn’t as
arbitrary as it seems. The only arbitrariness is that we could have
built up a whole self-consistent set of definitions that started by
defining the magnetic field as being in the opposite direction.

Head-to-tail alignment of bar magnets example 2
. If you let two bar magnets like the one in figure p interact, which
way do they want to line up, head-to-head or head-to-tail?

. Each bar magnet contains a huge number of atoms, but that
won’t matter for our result; we can imagine this as an interac-
tion between two individual atoms. For that matter, let’s model
the atoms as weathervanes like the one in figure n. Suppose we
put two such weather vanes side by side, with their arrows both
pointing away from us. From our point of view, they’re both spin-
ning clockwise. As one of the charges in the left-hand weather
vane comes down on the right side, one of the charges in the
right-hand vane comes up on the left side. These two charges
are close together, so their magnetic interaction is very strong at
this moment. Their interaction is repulsive, so this is an unstable
arrangement of the two weathervanes.

On the other hand, suppose the left-hand weathervane is point-
ing away from is, while its partner on the right is pointing toward
us. From our point of view, we see the one on the right spinning
counterclockwise. At the moment when their charges come as
close as possible, they’re both on the way up. Their interaction is
attractive, so this is a stable arrangement.

Translating back from our model to the original question about bar
magnets, we find that bar magnets will tend to align themselves
head-to-tail. This is easily verified by experiment.

If you go back and apply this definition to all the examples we’ve
encountered so far, you’ll find that there’s a general rule: the force on
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r / A beam of electrons cir-
cles around the magnetic field
arrows.

q / The force on a charged par-
ticle moving through a magnetic
field is perpendicular to both the
field and its direction of motion.
The relationship is right-handed
for one type of charge, and left-
handed for the other type.

a charged particle moving through a magnetic field is perpendicular
to both the field and its direction of motion. A force perpendicular
to the direction of motion is exactly what is required for circular
motion, so we find that a charged particle in a vacuum will go in
a circle around the magnetic field arrows (or perhaps a corkscrew
pattern, if it also has some motion along the direction of the field).
That means that magnetic fields tend to trap charged particles.

Figure r shows this principle in action. A beam of electrons is
created in a vacuum tube, in which a small amount of hydrogen
gas has been left. A few of the electrons strike hydrogen molecules,
creating light and letting us see the path of the beam. A magnetic
field is produced by passing a current (meter) through the circular
coils of wire in front of and behind the tube. In the bottom figure,
with the magnetic field turned on, the force perpendicular to the
electrons’ direction of motion causes them to move in a circle.

Sunspots example 3
Sunspots, like the one shown in the photo on page 111, are
places where the sun’s magnetic field is unusually strong. Charged
particles are trapped there for months at a time. This is enough
time for the sunspot to cool down significantly, and it doesn’t get
heated back up because the hotter surrounding material is kept
out by the same magnetic forces.

The aurora and life on earth’s surface example 4
A strong magnetic field seems to be one of the prerequisites for

the existence of life on the surface of a planet. Energetic charged
particles from the sun are trapped by our planet’s magnetic field,
and harmlessly spiral down to the earth’s surface at the poles.
In addition to protecting us, this creates the aurora, or “northern
lights.”

The astronauts who went to the moon were outside of the earth’s
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s / Faraday on a British ban-
knote.

t / Faraday’s experiment, sim-
plified and shown with modern
equipment.

protective field for about a week, and suffered significant doses
of radiation during that time. The problem would be much more
serious for astronauts on a voyage to Mars, which would take
at least a couple of years. They would be subjected to intense
radiation while in interplanetary space, and also while on Mars’s
surface, since Mars lacks a strong magnetic field.

Features in one Martian rock have been interpreted by some sci-
entists as fossilized bacteria. If single-celled life evolved on Mars,
it has presumably been forced to stay below the surface. (Life
on Earth probably evolved deep in the oceans, and most of the
Earth’s biomass consists of single-celled organisms in the oceans
and deep underground.)

6.3 Induction
We’ve already seen that the electric and magnetic fields are closely
related, since what one observer sees as one type of field, another
observer in a different frame of reference sees as a mixture of both.
The relationship goes even deeper than that, however. Figure t
shows an example that doesn’t even involve two different frames of
reference. This phenomenon of induced electric fields — fields that
are not due to charges — was a purely experimental accomplishment
by Michael Faraday (1791-1867), the son of a blacksmith who had
to struggle against the rigid class structure of 19th century Eng-
land. Faraday, working in 1831, had only a vague and general idea
that electricity and magnetism were related to each other, based on
Oersted’s demonstration, a decade before, that magnetic fields were
caused by electric currents.

Figure t is a simplified drawing of the experiment, as described
in Faraday’s original paper: “Two hundred and three feet of cop-
per wire . . . were passed round a large block of wood; [another] two
hundred and three feet of similar wire were interposed as a spiral
between the turns of the first, and metallic contact everywhere pre-
vented by twine [insulation]. One of these [coils] was connected with
a galvanometer [voltmeter], and the other with a battery. . . When
the contact was made, there was a sudden and very slight effect at
the galvanometer, and there was also a similar slight effect when
the contact with the battery was broken. But whilst the . . . current
was continuing to pass through the one [coil], no . . . effect . . . upon
the other [coil] could be perceived, although the active power of the
battery was proved to be great, by its heating the whole of its own
coil [through ordinary resistive heating] . . . ”

From Faraday’s notes and publications, it appears that the sit-
uation in figure t/3 was a surprise to him, and he probably thought
it would be a surprise to his readers, as well. That’s why he offered
evidence that the current was still flowing: to show that the battery
hadn’t just died. The induction effect occurred during the short
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u / The geometry of induced
fields. The induced field tends to
form a whirlpool pattern around
the change in the field producing
it. The notation ∆ (Greek letter
delta) stands for “change in.”
Note how the induced fields
circulate in opposite directions.

v / A generator.

time it took for the black coil’s magnetic field to be established, t/2.
Even more counterintuitively, we get an effect, equally strong but
in the opposite direction, when the circuit is broken, t/4. The effect
occurs only when the magnetic field is changing: either ramping up
or ramping down.

What are we really measuring here with the voltmeter? A volt-
meter is nothing more than a resistor with an attachment for mea-
suring the current through it. A current will not flow through a
resistor unless there is some electric field pushing the electrons, so
we conclude that the changing magnetic field has produced an elec-
tric field in the surrounding space. Since the white wire is not a
perfect conductor, there must be electric fields in it as well. The
remarkable thing about the circuit formed by the white wire is that
as the electrons travel around and around, they are always being
pushed forward by electric fields. That is, the electric field seems to
form a curly pattern, like a whirlpool.

What Faraday observed was an example of the following princi-
ple:

the principle of induction
Any magnetic field that changes over time will create an electric
field. The induced electric field is perpendicular to the magnetic
field, and forms a curly pattern around it.
Any electric field that changes over time will create a magnetic field.
The induced magnetic field is perpendicular to the electric field, and
forms a curly pattern around it.

The first part was the one Faraday had seen in his experiment. The
geometrical relationships are illustrated in figure u. In Faraday’s
setup, the magnetic field was pointing along the axis of the coil of
wire, so the induced electric field made a curly pattern that circled
around the circumference of the block.

The generator example 5
A basic generator, v, consists of a permanent magnet that rotates
within a coil of wire. The magnet is turned by a motor or crank,
(not shown). As it spins, the nearby magnetic field changes. This
changing magnetic field results in an electric field, which has a
curly pattern. This electric field pattern creates a current that
whips around the coils of wire, and we can tap this current to light
the lightbulb.

If the magnet was on a frictionless bearing, could we light the bulb
for free indefinitely, thus violating conservation of energy? No.
It’s hard work to crank the magnet, and that’s where the energy
comes from. If we break the light-bulb circuit, it suddenly gets
easier to crank the magnet! This is because the current in the
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w / A transformer.

x / Observer A sees a posi-
tively charged particle moves
through a region of upward
magnetic field, which we assume
to be uniform, between the poles
of two magnets. The resulting
force along the z axis causes the
particle’s path to curve toward us.

coil sets up its own magnetic field, and that field exerts a torque
on the magnet. If we stopped cranking, this torque would quickly
make the magnet stop turning.

self-check A
When you’re driving your car, the engine recharges the battery continu-
ously using a device called an alternator, which is really just a generator.
Why can’t you use the alternator to start the engine if your car’s battery
is dead? . Answer, p. 180

The transformer example 6
It’s more efficient for the electric company to transmit power over
electrical lines using high voltages and low currents. However,
we don’t want our wall sockets to operate at 10000 volts! For this
reason, the electric company uses a device called a transformer,
w, to convert everything to lower voltages and higher currents
inside your house. The coil on the input side creates a magnetic
field. Transformers work with alternating current (currents that
reverses its direction many times a second), so the magnetic field
surrounding the input coil is always changing. This induces an
electric field, which drives a current around the output coil.

Since the electric field is curly, an electron can keep gaining more
and more energy by circling through it again and again. Thus
the output voltage can be controlled by changing the number of
turns of wire on the output side. In any case, conservation of
energy guarantees that the amount of power on the output side
must equal the amount put in originally,

(input current)×(input voltage) = (output current)×(output voltage)

so no matter what factor the voltage is reduced by, the current
is increased by the same factor. This is analogous to a lever. A
crowbar allows you to lift a heavy boulder, but to move the boulder
a centimeter, you may have to move your end of the lever a meter.
The advantage in force comes with a disadvantage in distance.
It’s as though you were allowed to lift a small weight through a
large height rather than a large weight through a small height.
Either way, the energy you expend is the same.

Fun with sparks example 7
Unplug a lamp while it’s turned on, and watch the area around
the wall outlet. You should see a blue spark in the air at the mo-
ment when the prongs of the plug lose contact with the electrical
contacts inside the socket.

This is evidence that, as discussed on page 113, fields contain
energy. Somewhere on your street is a transformer, one side
of which is connected to the lamp’s circuit. When the lamp is
plugged in and turned on, there’s a complete circuit, and current
flows. As current flows through the coils in the transformer, a
magnetic field is formed — remember, any time there’s moving
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y / James Clerk Maxwell (1831-
1879)

charge, there will be magnetic fields. Because there is a large
number turns in the coils, these fields are fairly strong, and store
quite a bit of energy.

When you pull the plug, the circuit is no longer complete, and the
current stops. Once the current has disappeared, there’s no more
magnetic field, which means that some energy has disappeared.
Conservation of energy tells us that if a certain amount of energy
disappears, an equal amount must reappear somewhere else.
That energy goes into making the spark. (Once the spark is gone,
its energy remains in the form of heat in the air.)

We now have two connections between electric and magnetic
fields. One is the principle of induction, and the other is the idea
that according to relativity, observers in different frames of reference
must perceive different mixtures of magnetic and electric fields. At
the time Faraday was working, relativity was still 70 years in the
future, so the relativistic concepts weren’t available — to him, his
observations were just surprising empirical facts. But in fact, the
relativistic idea about frames of reference has a logical connection
to the idea of induction.

Figure x is a nice example that can be interpreted either way.
Observer A is at rest with respect to the bar magnets, and sees
the particle swerving off in the z direction, as it should according
to the right-hand rule. Suppose observer B, on the other hand, is
moving to the right along the x axis, initially at the same speed
as the particle. B sees the bar magnets moving to the left and the
particle initially at rest but then accelerating along the z axis in a
straight line. It is not possible for a magnetic field to start a particle
moving if it is initially at rest, since magnetism is an interaction of
moving charges with moving charges. B is thus led to the inescapable
conclusion that there is an electric field in this region of space, which
points along the z axis. In other words, what A perceives as a pure
magnetic field, B sees as a mixture of electric and magnetic fields.
This is what we expect based on the relativistic arguments, but it’s
also what’s required by the principle of induction. In B’s frame of
reference, there’s initially no magnetic field, but then a couple of
bar magnets come barging in and create one. This is a change in
the magnetic field, so the principle of induction predicts that there
must be an electric field as well.

Electromagnetic waves

Theorist James Clerk Maxwell was the first to work out the prin-
ciple of induction (including the detailed numerical and geometric
relationships, which we won’t go into here). Legend has it that it
was on a starry night that he first realized the most important im-
plication of his equations: light itself is an electromagnetic wave,
a ripple spreading outward from a disturbance in the electric and
magnetic fields. He went for a walk with his wife, and told her
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she was the only other person in the world who really knew what
starlight was.

The principle of induction tells us that there can be no such
thing as a purely electric or purely magnetic wave. As an electric
wave washes over you, you feel an electric field that changes over
time. By the principle of induction, there must also be a magnetic
field accompanying it. It works the other way, too. It may seem a
little spooky that the electric field causes the magnetic field while
the magnetic field causes the electric field, but the waves themselves
don’t seem to worry about it.

The distance from one ripple to the next is called the wavelength
of the light. Light with a certain wavelength (about quarter a mil-
lionth of a meter) is at the violet end of the rainbow spectrum, while
light with a somewhat longer wavelength (about twice as long) is red.
Figure z/1 shows the complete spectrum of light waves. Maxwell’s
equations predict that all light waves have the same structure, re-
gardless of wavelength and frequency, so even though radio and x-
rays, for example, hadn’t been discovered, Maxwell predicted that
such waves would have to exist. Maxwell’s 1865 prediction passed an
important test in 1888, when Heinrich Hertz published the results
of experiments in which he showed that radio waves could be ma-
nipulated in the same ways as visible light waves. Hertz showed, for
example, that radio waves could be reflected from a flat surface, and
that the directions of the reflected and incoming waves were related
in the same way as with light waves, forming equal angles with the
normal. Likewise, light waves can be focused with a curved, dish-
shaped mirror, and Hertz demonstrated the same thing with radio
waves using a metal dish.
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z / Panel 1 shows the electro-
magnetic spectrum. Panel
2 shows how an electromagnetic
wave is put together. Imagine that
this is a radio wave, with a wave-
length of a few meters. If you
were standing inside the wave
as it passed through you, you
could theoretically hold a com-
pass in your hand, and it would
wiggle back and forth as the mag-
netic field pattern (white arrows)
washed over you. (The vibra-
tion would actually be much to
rapid to detect this way.) Sim-
ilarly, you’d experience an elec-
tric field alternating between up
and down. Panel 3 shows
how this relates to the principle of
induction. The changing electric
field (black arrows) should create
a curly magnetic field (white). Is it
really curly? Yes, because if we
inserted a paddlewheel that re-
sponded to electric fields, the field
would make the paddlewheel spin
counterclockwise as seen from
above. Similarly, the changing
magnetic field (white) makes an
electric field (black) that curls in
the clockwise direction as seen
from the front.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Albert Einstein wrote, “What really interests me is whether
God had any choice in the creation of the world.” What he meant by
this is that if you randomly try to imagine a set of rules — the laws of
physics — by which the universe works, you’ll almost certainly come
up with rules that don’t make sense. For instance, we’ve seen that
if you tried to omit magnetism from the laws of physics, electrical
interactions wouldn’t make sense as seen by observers in different
frames of reference; magnetism is required by relativity.

The magnetic interaction rules in figure m are consistent with the
time-reversal symmetry of the laws of physics. In other words, the
rules still work correctly if you reverse the particles’ directions of
motion. Now you get to play God (and fail). Suppose you’re going
to make an alternative version of the laws of physics by reversing
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the direction of motion of only one of the eight particles. You have
eight choices, and each of these eight choices would result in a new
set of physical laws. We can imagine eight alternate universes, each
governed by one of these eight sets. Prove that all of these mod-
ified sets of physical laws are impossible, either because the are
self-contradictory, or because they violate time-reversal symmetry.

2 The purpose of this problem is to show that the magnetic in-
teraction rules shown in figure m can be simplified by stating them
in terms of current. Recall that, as discussed in discussion question
C on page 104, one type of charge moving in a particular direction
produces the same current as the other type of charge moving in
the opposite direction. Let’s say arbitrarily that the current made
by the dark type of charged particle is in the direction it’s moving,
while a light-colored particle produces a current in the direction op-
posite to its motion. Redraw all four panels of figure m, replacing
each picture of a moving light or dark particle with an arrow show-
ing the direction of the current it makes. Show that the rules for
attraction and repulsion can now be made much simpler, and state
the simplified rules explicitly.

3 Physicist Richard Feynman originated a new way of thinking
about charge: a charge of a certain type is equivalent to a charge
of the opposite type that happens to be moving backward in time!
An electron moving backward in time is an antielectron — a par-
ticle that has the same mass as an electron, but whose charge is
opposite. Likewise we have antiprotons, and antimatter made from
antiprotons and antielectrons. Antielectrons occur naturally every-
where around you due to natural radioactive decay and radiation
from outer space. A small number of antihydrogen atoms has even
been created in particle accelerators!

Show that, for each rule for magnetic interactions shown in m, the
rule is still valid if you replace one of the charges with an opposite
charge moving in the opposite direction (i.e., backward in time).

4 Refer to figure r on page 121. Electrons have the type of charge
I’ve been representing with light-colored spheres.
(a) As the electrons in the beam pass over the top of the circle,
what is the direction of the force on them? Use what you know
about circular motion.
(b) From this information, use figure q on page 121 to determine
the direction of the magnetic field (left, right, up, down, into the
page, or out of the page).

5 You can’t use a light wave to see things that are smaller than
the wavelength of the light.
(a) Referring to figure z on page 127, what color of light do you
think would be the best to use for microscopy?
(b) The size of an atom is about 10−10 meters. Can visible light be
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Stationary wave patterns on
a clothesline (problem 6).

used to make images of individual atoms?

6 You know how a microwave gets some parts of your food hot,
but leaves other parts cold? Suppose someone is trying to convince
you of the following explanation for this fact: The microwaves inside
the oven form a stationary wave pattern, like the vibrations of a
clothesline or a guitar string. The food is heated unevenly because
the wave crests are a certain distance apart, and the parts of the food
that get heated the most are the ones where there’s a crest in the wave
pattern. Use the wavelength scale in figure z on page 127 as a way of
checking numerically whether this is a reasonable explanation.

7 This book begins and ends with the topic of light. Give an
example of how the correspondence principle applies here, referring
to a concrete observation from a lab.
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Chapter 7

The Ray Model of Light

7.1 Light Rays
Ads for one Macintosh computer bragged that it could do an arith-
metic calculation in less time than it took for the light to get from the
screen to your eye. We find this impressive because of the contrast
between the speed of light and the speeds at which we interact with
physical objects in our environment. Perhaps it shouldn’t surprise
us, then, that Newton succeeded so well in explaining the motion of
objects, but was far less successful with the study of light.

The climax of our study of electricity and magnetism was discov-
ery that light is an electromagnetic wave. Knowing this, however, is
not the same as knowing everything about eyes and telescopes. In
fact, the full description of light as a wave can be rather cumber-
some. In this chapter, we’ll instead make use of a simpler model of
light, the ray model, which does a fine job in most practical situa-
tions. Not only that, but we’ll even backtrack a little and start with
a discussion of basic ideas about light and vision that predated the
discovery of electromagnetic waves.

131



The nature of light

The cause and effect relationship in vision

Despite its title, this chapter is far from your first look at light.
That familiarity might seem like an advantage, but most people have
never thought carefully about light and vision. Even smart people
who have thought hard about vision have come up with incorrect
ideas. The ancient Greeks, Arabs and Chinese had theories of light
and vision, all of which were mostly wrong, and all of which were
accepted for thousands of years.

One thing the ancients did get right is that there is a distinction
between objects that emit light and objects that don’t. When you
see a leaf in the forest, it’s because three different objects are doing
their jobs: the leaf, the eye, and the sun. But luminous objects
like the sun, a flame, or the filament of a light bulb can be seen by
the eye without the presence of a third object. Emission of light
is often, but not always, associated with heat. In modern times,
we are familiar with a variety of objects that glow without being
heated, including fluorescent lights and glow-in-the-dark toys.

How do we see luminous objects? The Greek philosophers Pythago-
ras (b. ca. 560 BC) and Empedocles of Acragas (b. ca. 492
BC), who unfortunately were very influential, claimed that when
you looked at a candle flame, the flame and your eye were both
sending out some kind of mysterious stuff, and when your eye’s stuff
collided with the candle’s stuff, the candle would become evident to
your sense of sight.

Bizarre as the Greek “collision of stuff theory” might seem, it
had a couple of good features. It explained why both the candle
and your eye had to be present for your sense of sight to function.
The theory could also easily be expanded to explain how we see
nonluminous objects. If a leaf, for instance, happened to be present
at the site of the collision between your eye’s stuff and the candle’s
stuff, then the leaf would be stimulated to express its green nature,
allowing you to perceive it as green.

Modern people might feel uneasy about this theory, since it sug-
gests that greenness exists only for our seeing convenience, implying
a human precedence over natural phenomena. Nowadays, people
would expect the cause and effect relationship in vision to be the
other way around, with the leaf doing something to our eye rather
than our eye doing something to the leaf. But how can you tell?
The most common way of distinguishing cause from effect is to de-
termine which happened first, but the process of seeing seems to
occur too quickly to determine the order in which things happened.
Certainly there is no obvious time lag between the moment when
you move your head and the moment when your reflection in the
mirror moves.
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a / Light from a candle is bumped
off course by a piece of glass.
Inserting the glass causes the
apparent location of the candle
to shift. The same effect can
be produced by taking off your
eyeglasses and looking at which
you see near the edge of the
lens, but a flat piece of glass
works just as well as a lens for
this purpose.

Today, photography provides the simplest experimental evidence
that nothing has to be emitted from your eye and hit the leaf in order
to make it “greenify.” A camera can take a picture of a leaf even
if there are no eyes anywhere nearby. Since the leaf appears green
regardless of whether it is being sensed by a camera, your eye, or
an insect’s eye, it seems to make more sense to say that the leaf’s
greenness is the cause, and something happening in the camera or
eye is the effect.

Light is a thing, and it travels from one point to another.

Another issue that few people have considered is whether a can-
dle’s flame simply affects your eye directly, or whether it sends out
light which then gets into your eye. Again, the rapidity of the effect
makes it difficult to tell what’s happening. If someone throws a rock
at you, you can see the rock on its way to your body, and you can
tell that the person affected you by sending a material substance
your way, rather than just harming you directly with an arm mo-
tion, which would be known as “action at a distance.” It is not easy
to do a similar observation to see whether there is some “stuff” that
travels from the candle to your eye, or whether it is a case of action
at a distance.

Our description of the physics of material objects included both
action at a distance (e.g., the earth’s gravitational force on a falling
object) and contact forces such as friction.

One piece of evidence that the candle sends out stuff that travels
to your eye is that as in figure a, intervening transparent substances
can make the candle appear to be in the wrong location, suggesting
that light is a thing that can be bumped off course. Many peo-
ple would dismiss this kind of observation as an optical illusion,
however. (Some optical illusions are purely neurological or psycho-
logical effects, although some others, including this one, turn out to
be caused by the behavior of light itself.)

A more convincing way to decide in which category light belongs
is to find out if it takes time to get from the candle to your eye; in
Newton’s picture of the universe, action at a distance was supposed
to be instantaneous. The fact that we speak casually today of “the
speed of light” implies that at some point in history, somebody
succeeded in showing that light did not travel infinitely fast. Galileo
tried, and failed, to detect a finite speed for light, by arranging with
a person in a distant tower to signal back and forth with lanterns.
Galileo uncovered his lantern, and when the other person saw the
light, he uncovered his lantern. Galileo was unable to measure any
time lag that was significant compared to the limitations of human
reflexes.

The first person to prove that light’s speed was finite, and to
determine it numerically, was Ole Roemer, in a series of measure-
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b / An image of Jupiter and
its moon Io (left) from the Cassini
probe.

c / The earth is moving to-
ward Jupiter and Io. Since the
distance is shrinking, it is taking
less and less time for the light to
get to us from Io, and Io appears
to circle Jupiter more quickly than
normal. Six months later, the
earth will be on the opposite side
of the sun, and receding from
Jupiter and Io, so Io will appear
to revolve around Jupiter more
slowly.

ments around the year 1675. Roemer observed Io, one of Jupiter’s
moons, over a period of several years. Since Io presumably took the
same amount of time to complete each orbit of Jupiter, it could be
thought of as a very distant, very accurate clock. A practical and ac-
curate pendulum clock had recently been invented, so Roemer could
check whether the ratio of the two clocks’ cycles, about 42.5 hours
to 1 orbit, stayed exactly constant or changed a little. If the process
of seeing the distant moon was instantaneous, there would be no
reason for the two to get out of step. Even if the speed of light was
finite, you might expect that the result would be only to offset one
cycle relative to the other. The earth does not, however, stay at a
constant distance from Jupiter and its moons. Since the distance is
changing gradually due to the two planets’ orbital motions, a finite
speed of light would make the “Io clock” appear to run faster as the
planets drew near each other, and more slowly as their separation
increased. Roemer did find a variation in the apparent speed of Io’s
orbits, which caused Io’s eclipses by Jupiter (the moments when Io
passed in front of or behind Jupiter) to occur about 7 minutes early
when the earth was closest to Jupiter, and 7 minutes late when it
was farthest. Based on these measurements, Roemer estimated the
speed of light to be approximately 2×108 m/s, which is in the right
ballpark compared to modern measurements of 3×108 m/s. (I’m not
sure whether the fairly large experimental error was mainly due to
imprecise knowledge of the radius of the earth’s orbit or limitations
in the reliability of pendulum clocks.)

Light can travel through a vacuum.

Many people are confused by the relationship between sound
and light. Although we use different organs to sense them, there are
some similarities. For instance, both light and sound are typically
emitted in all directions by their sources. Musicians even use visual
metaphors like “tone color,” or “a bright timbre” to describe sound.
One way to see that they are clearly different phenomena is to note
their very different velocities. Sure, both are pretty fast compared
to a flying arrow or a galloping horse, but as we’ve seen, the speed of
light is so great as to appear instantaneous in most situations. The
speed of sound, however, can easily be observed just by watching a
group of schoolchildren a hundred feet away as they clap their hands
to a song. There is an obvious delay between when you see their
palms come together and when you hear the clap.

The fundamental distinction between sound and light is that
sound is an oscillation in air pressure, so it requires air (or some
other medium such as water) in which to travel. Today, we know
that outer space is a vacuum, so the fact that we get light from the
sun, moon and stars clearly shows that air is not necessary for the
propagation of light.
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d / Two self-portraits of the
author, one taken in a mirror and
one with a piece of aluminum foil.

e / Specular and diffuse re-
flection.

Interaction of light with matter

Absorption of light

The reason why the sun feels warm on your skin is that the
sunlight is being absorbed, and the light energy is being transformed
into heat energy. The same happens with artificial light, so the net
result of leaving a light turned on is to heat the room. It doesn’t
matter whether the source of the light is hot, like the sun, a flame,
or an incandescent light bulb, or cool, like a fluorescent bulb. (If
your house has electric heat, then there is absolutely no point in
fastidiously turning off lights in the winter; the lights will help to
heat the house at the same dollar rate as the electric heater.)

This process of heating by absorption is entirely different from
heating by thermal conduction, as when an electric stove heats
spaghetti sauce through a pan. Heat can only be conducted through
matter, but there is vacuum between us and the sun, or between us
and the filament of an incandescent bulb. Also, heat conduction can
only transfer heat energy from a hotter object to a colder one, but a
cool fluorescent bulb is perfectly capable of heating something that
had already started out being warmer than the bulb itself.

How we see nonluminous objects

Not all the light energy that hits an object is transformed into
heat. Some is reflected, and this leads us to the question of how
we see nonluminous objects. If you ask the average person how we
see a light bulb, the most likely answer is “The light bulb makes
light, which hits our eyes.” But if you ask how we see a book, they
are likely to say “The bulb lights up the room, and that lets me
see the book.” All mention of light actually entering our eyes has
mysteriously disappeared.

Most people would disagree if you told them that light was re-
flected from the book to the eye, because they think of reflection as
something that mirrors do, not something that a book does. They
associate reflection with the formation of a reflected image, which
does not seem to appear in a piece of paper.

Imagine that you are looking at your reflection in a nice smooth
piece of aluminum foil, fresh off the roll. You perceive a face, not a
piece of metal. Perhaps you also see the bright reflection of a lamp
over your shoulder behind you. Now imagine that the foil is just
a little bit less smooth. The different parts of the image are now
a little bit out of alignment with each other. Your brain can still
recognize a face and a lamp, but it’s a little scrambled, like a Picasso
painting. Now suppose you use a piece of aluminum foil that has
been crumpled up and then flattened out again. The parts of the
image are so scrambled that you cannot recognize an image. Instead,
your brain tells you you’re looking at a rough, silvery surface.
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f / Light bounces off of the
ceiling, then off of the book.

Mirror-like reflection at a specific angle is known as specular
reflection, and random reflection in many directions is called diffuse
reflection. Diffuse reflection is how we see nonluminous objects.
Specular reflection only allows us to see images of objects other
than the one doing the reflecting. In top part of figure d, imagine
that the rays of light are coming from the sun. If you are looking
down at the reflecting surface, there is no way for your eye-brain
system to tell that the rays are not really coming from a sun down
below you.

Figure f shows another example of how we can’t avoid the con-
clusion that light bounces off of things other than mirrors. The
lamp is one I have in my house. It has a bright bulb, housed in a
completely opaque bowl-shaped metal shade. The only way light
can get out of the lamp is by going up out of the top of the bowl.
The fact that I can read a book in the position shown in the figure
means that light must be bouncing off of the ceiling, then bouncing
off of the book, then finally getting to my eye.

This is where the shortcomings of the Greek theory of vision
become glaringly obvious. In the Greek theory, the light from the
bulb and my mysterious “eye rays” are both supposed to go to the
book, where they collide, allowing me to see the book. But we now
have a total of four objects: lamp, eye, book, and ceiling. Where
does the ceiling come in? Does it also send out its own mysterious
“ceiling rays,” contributing to a three-way collision at the book?
That would just be too bizarre to believe!

The differences among white, black, and the various shades of
gray in between is a matter of what percentage of the light they
absorb and what percentage they reflect. That’s why light-colored
clothing is more comfortable in the summer, and light-colored up-
holstery in a car stays cooler that dark upholstery.

The ray model of light

Models of light

Note how I’ve been casually diagramming the motion of light
with pictures showing light rays as lines on the page. Figure g shows
some more examples. More formally, this is known as the ray model
of light. The ray model of light seems natural once we convince
ourselves that light travels through space, and observe phenomena
like sunbeams coming through holes in clouds. If you’ve read chap-
ter 6, you’ve already been introduced to the concept of light as an
electromagnetic wave, and you know that the ray model is not the
ultimate truth about light, but the ray model is simpler, and in any
case science always deals with models of reality, not the ultimate
nature of reality. Figure h summarizes three models of light.
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g / Examples of ray diagrams.

h / Three models of light.

The ray model is a generic one. By using it we can discuss the
path taken by the light, without committing ourselves to any specific
description of what it is that is moving along that path. We will
use the nice simple ray model for rest of this chapter, and with it
we can analyze a great many devices and phenomena.

Note that the statements about the applicability of the various
models are only rough guides. For instance, wave interference effects
are often detectable, if small, when light passes around an obstacle
that is quite a bit bigger than a wavelength. Also, the criterion for
when we need the particle model really has more to do with energy
scales than distance scales, although the two turn out to be related.

The alert reader may have noticed that the wave model is re-
quired at scales smaller than a wavelength of light (on the order of a
micrometer for visible light), and the particle model is demanded on
the atomic scale or lower (a typical atom being a nanometer or so in
size). This implies that at the smallest scales we need both the wave
model and the particle model. They appear incompatible, so how
can we simultaneously use both? The answer is that they are not
as incompatible as they seem. Light is both a wave and a particle,
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i / The geometry of specular
reflection.

and a full understanding of this apparently nonsensical statement
would lead us to a discussion of the quantum physics revolution of
the twentieth century.

Geometry of specular reflection

Specular reflection obeys two simple geometrical rules:

• The angle of the reflected ray is the same as that of the incident
ray.

• The reflected ray lies in the plane containing the incident ray
and the normal (perpendicular) line. This plane is known as
the plane of incidence.

The two angles can be defined either with respect to the normal,
like angles B and C in the figure, or with respect to the reflecting
surface, like angles A and D. There is a convention of several hundred
years’ standing that one measures the angles with respect to the
normal, but the rule about equal angles can logically be stated either
as B=C or as A=D.

self-check A
Each of these diagrams is supposed to show two different rays being
reflected from the same point on the same mirror. Which are correct,
and which are incorrect?

. Answer, p. 180

Ray diagrams

Figure j shows some guidelines for using ray diagrams effectively.
The light rays bend when then pass out through the surface of the
water (a phenomenon that we’ll discuss in more detail later). The
rays appear to have come from a point above the goldfish’s actual
location, an effect that is familiar to people who have tried spear-
fishing.

• A stream of light is not really confined to a finite number of
narrow lines. We just draw it that way. In j/1, it has been
necessary to choose a finite number of rays to draw (five),
rather than the theoretically infinite number of rays that will
diverge from that point.

• There is a tendency to conceptualize rays incorrectly as ob-
jects. In his Optics, Newton goes out of his way to caution
the reader against this, saying that some people “consider ...
the refraction of ... rays to be the bending or breaking of them
in their passing out of one medium into another.” But a ray

138 Chapter 7 The Ray Model of Light



is a record of the path traveled by light, not a physical thing
that can be bent or broken.

• In theory, rays may continue infinitely far into the past and
future, but we need to draw lines of finite length. In j/1, a
judicious choice has been made as to where to begin and end
the rays. There is no point in continuing the rays any farther
than shown, because nothing new and exciting is going to
happen to them. There is also no good reason to start them
earlier, before being reflected by the fish, because the direction
of the diffusely reflected rays is random anyway, and unrelated
to the direction of the original, incoming ray.

• When representing diffuse reflection in a ray diagram, many
students have a mental block against drawing many rays fan-
ning out from the same point. Often, as in example j/2, the
problem is the misconception that light can only be reflected
in one direction from one point.

• Another difficulty associated with diffuse reflection, example
j/3, is the tendency to think that in addition to drawing many
rays coming out of one point, we should also be drawing many
rays coming from many points. In j/1, drawing many rays
coming out of one point gives useful information, telling us,
for instance, that the fish can be seen from any angle. Drawing
many sets of rays, as in j/3, does not give us any more useful
information, and just clutters up the picture in this example.
The only reason to draw sets of rays fanning out from more
than one point would be if different things were happening to
the different sets.

j / 1. Correct. 2. Incorrect: im-
plies that diffuse reflection only
gives one ray from each reflecting
point. 3. Correct, but unneces-
sarily complicated
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Discussion question

A If you observe thunder and lightning, you can tell how far away the
storm is. Do you need to know the speed of sound, of light, or of both?

B When phenomena like X-rays and cosmic rays were first discovered,
suggest a way one could have tested whether they were forms of light.

C Why did Roemer only need to know the radius of the earth’s orbit,
not Jupiter’s, in order to find the speed of light?

D The curtains in a room are drawn, but a small gap lets light through,
illuminating a spot on the floor. It may or may not also be possible to see
the beam of sunshine crossing the room, depending on the conditions.
What’s going on?

E Laser beams are made of light. In science fiction movies, laser
beams are often shown as bright lines shooting out of a laser gun on a
spaceship. Why is this scientifically incorrect?

F Suppose an intelligent tool-using fish is spear-hunting for humans.
Draw a ray diagram to show how the fish has to correct its aim. Note
that although the rays are now passing from the air to the water, the same
rules apply: the rays are closer to being perpendicular to the surface when
they are in the water, and rays that hit the air-water interface at a shallow
angle are bent the most.

7.2 Applications
The inverse-square law

Energy is conserved, so a ray of light should theoretically be
able to cross an infinite distance without losing any of its intensity,
provided that it’s traveling through empty space, so that there’s no
matter that it can give its energy away to. In that case, why does a
distant candle appear dim? Likewise, our sun is just a star like any
other star, but it appears much brighter because it’s so much closer
to us. Why are the other stars so dim if not because their light gets
“tired,” or “wears out?” It’s not that the light rays are stopping,
it’s that they’re getting spread out more thinly. The light comes
out of the source in all directions, and if you’re very far away, only
a tiny percentage of the light will go into your eye. (If all the light
from a star went into your eye, you’d be in trouble.)

k / The light is four times dimmer
at twice the distance.
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Figure k shows what happens if you double your distance from
the source. The light from the flame spreads out in all directions.
We pick four representative rays from among those that happen
to pass through the nearer square. Of these four, only one passes
through the square of equal area at twice the distance. If the two
equal-area squares were people’s eyes, then only one fourth of the
light would go into the more distant person’s eye.

Another way of thinking about it is that the light that passed
through the first square spreads out and makes a bigger square; at
double the distance, the square is twice as wide and twice as tall, so
its area is 2× 2 = 4 times greater. The same light has been spread
out over four times the area.

In general, the rule works like this:

distance× 2⇒ brightness× 1

4

distance× 3⇒ brightness× 1

9

distance× 4⇒ brightness× 1

16

To get the 4, we multiplied 2 by itself, 9 came from multiplying 3 by
itself, and so on. Multiplying a number by itself is called squaring
it, and dividing one by a number is called inverting it, so a rela-
tionship like this is known as an inverse square law. Inverse square
laws are very common in physics: they occur whenever something is
spreading out in all directions from a point. Physicists already knew
about this kind of inverse square law, for light, before Newton found
out that the force of gravity varied as an inverse square, so his law
of gravity made sense to them intuitively, and they were ready to
accept it. However, Newton’s law of gravity doesn’t describe grav-
ity as a substance that physically travels outward through space, so
it’s only a rough analogy. (One modern hypothesis about gravity
is that the messages of gravitational attraction between two objects
are actually carried by little particles, called gravitons, but nobody
has ever detected a graviton directly.)

self-check B
Alice is one meter from the candle, while Bob is at a distance of five
meters. How many times dimmer is the light at Bob’s location? .

Answer, p. 180

An example with sound example 1
. Four castaways are adrift in an open boat, and are yelling to try
to attract the attention of passing ships. If all four of them yell at
once, how much is their range increased compared to the range
they would have if they took turns yelling one at a time?
. This is an example involving sound. Although sound isn’t the
same as light, it does spread out in all directions from a source,
so it obeys the inverse-square law. In the previous examples, we
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l / The same lens is shown
with its diaphragm set to three
different apertures.

knew the distance and wanted to find the intensity (brightness).
Here, we know about the intensity (loudness), and we want to
find out about the distance. Rather than taking a number and
multiplying it by itself to find the answer, we need to reverse the
process, and find the number that, when multiplied by itself, gives
four. In other words, we’re computing the square root of four,
which is two. They will double their range, not quadruple it.

Astronomical distance scales example 2
The nearest star, Alpha Centauri,1 is about 10,000,000,000,000,000
times dimmer than our sun when viewed from our planet. If we as-
sume that Alpha Centauri’s true brightness is roughly the same
as that of our own sun, then we can find the distance to Alpha
Centauri by taking the square root of this number. Alpha Cen-
tauri’s distance from us is equal to about 100,000,000 times our
distance from the sun.

Pupils and camera diaphragms example 3
In bright sunlight, your pupils contract to admit less light. At night
they dilate, becoming bigger “light buckets.” Your perception of
brightness depends not only on the true brightness of the source
and your distance from it, but also on how much area your pupils
present to the light. Cameras have a similar mechanism, which
is easy to see if you detach the lens and its housing from the
body of the camera, as shown in the figure. Here, the diameter
of the largest aperture is about ten times greater than that of the
smallest aperture. Making a circle ten times greater in radius
increases its area by a factor of 100, so the light-gathering power
of the camera becomes 100 times greater. (Many people expect
that the area would only be ten times greater, but if you start
drawing copies of the small circle inside the large circle, you’ll
see that ten are not nearly enough to fill in the entire area of the
larger circle. Both the width and the height of the bigger circle are
ten times greater, so its area is 100 times greater.)

Parallax

Example 2 on page 142 showed how we can use brightness to de-
termine distance, but your eye-brain system has a different method.
Right now, you can tell how far away this page is from your eyes.
This sense of depth perception comes from the fact that your two
eyes show you the same scene from two different perspectives. If
you wink one eye and then the other, the page will appear to shift
back and forth a little.

If you were looking at a fly on the bridge of your nose, there
would be an angle of nearly 180◦ between the ray that went into

1Sticklers will note that the nearest star is really our own sun, and the second
nearest is the burned-out cinder known as Proxima Centauri, which is Alpha
Centauri’s close companion.
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m / At double the distance, the parallax angle is approximately halved.

your left eye and the one that went into your right. Your brain
would know that this large angle implied a very small distance.
This is called the parallax angle. Objects at greater distances have
smaller parallax angles, and when the angles are small, it’s a good
approximation to say that the angle is inversely proportional to the
distance. In figure m, the parallax angle is almost exactly cut in
half when the person moves twice as far away.

Parallax can be observed in other ways than with a pair of eye-
balls. As a child, you noticed that when you walked around on a
moonlit evening, the moon seemed to follow you. The moon wasn’t
really following you, and this isn’t even a special property of the
moon. It’s just that as you walk, you expect to observe a paral-
lax angle between the same scene viewed from different positions
of your whole head. Very distant objects, including those on the
Earth’s surface, have parallax angles too small to notice by walking
back and forth. In general, rays coming from a very distant object
are nearly parallel.

If your baseline is long enough, however, the small parallaxes
of even very distant objects may be detectable. In the nineteenth
century, nobody knew how tall the Himalayas were, or exactly where
their peaks were on a map, and the Andes were generally believed
to be the tallest mountains in the world. The Himalayas had never
been climbed, and could only be viewed from a distance. From down
on the plains of India, there was no way to tell whether they were
very tall mountains very far away, or relatively low ones that were
much closer. British surveyor George Everest finally established
their true distance, and astounding height, by observing the same
peaks through a telescope from different locations far apart.

An even more spectacular feat of measurement was carried out
by Hipparchus over twenty-one centuries ago. By measuring the
parallax of the moon as observed from Alexandria and the Helle-
spont, he determined its distance to be about 90 times the radius
of the earth.2

2The reason this was a hard measurement was that accurate clocks hadn’t
been invented, so there was no easy way to synchronize the two observations,
and the desired effect would be masked by the apparent motion of the moon
across the sky as it rose and set. Hipparchus’s trick was to do the measurement
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The earth circles the sun, n, and we can therefore determine
the distances to a few hundred of the nearest stars by making ob-
servations six months apart, so that the baseline for the parallax
measurement is the diameter of the earth’s orbit. For these stars,
the distances derived from parallax can be checked against the ones
found by the method of example 2 on page 142. They do check out,
which verifies the assumption that the stars are objects analogous
to our sun.

n / The nearer star has a larger
parallax angle. By measuring the
parallax angles, we can deter-
mine the distances to both stars.
(The scale on this drawing is
not realistic. If the earth’s orbit
was really this size, the nearest
stars would be several kilometers
away.)

Reversibility of light rays

The fact that specular reflection displays equal angles of inci-
dence and reflection means that there is a symmetry: if the ray had
come in from the right instead of the left in the figure above, the an-
gles would have looked exactly the same. This is not just a pointless
detail about specular reflection. It’s a manifestation of a very deep
and important fact about nature, which is that the laws of physics
do not distinguish between past and future. Cannonballs and plan-
ets have trajectories that are equally natural in reverse, and so do
light rays. This type of symmetry is called time-reversal symmetry.

Typically, time-reversal symmetry is a characteristic of any pro-
cess that does not involve heat. For instance, the planets do not
experience any friction as they travel through empty space, so there
is no frictional heating. We should thus expect the time-reversed
versions of their orbits to obey the laws of physics, which they do.
In contrast, a book sliding across a table does generate heat from
friction as it slows down, and it is therefore not surprising that this
type of motion does not appear to obey time-reversal symmetry. A
book lying still on a flat table is never observed to spontaneously
start sliding, sucking up heat energy and transforming it into kinetic
energy.

Similarly, the only situation we’ve observed so far where light
does not obey time-reversal symmetry is absorption, which involves
heat. Your skin absorbs visible light from the sun and heats up,
but we never observe people’s skin to glow, converting heat energy
into visible light. People’s skin does glow in infrared light, but
that doesn’t mean the situation is symmetric. Even if you absorb

during a solar eclipse, so that people at both locations would know they were in
sync.
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p / Discussion question B.

q / Discussion question C.

infrared, you don’t emit visible light, because your skin isn’t hot
enough to glow in the visible spectrum.

Ray tracing on a computer example 4
A number of techniques can be used for creating artificial visual
scenes in computer graphics. Figure o shows such a scene,
which was created by the brute-force technique of simply con-
structing a very detailed ray diagram on a computer. This tech-
nique requires a great deal of computation, and is therefore too
slow to be used for video games and computer-animated movies.
One trick for speeding up the computation is to exploit the re-
versibility of light rays. If one was to trace every ray emitted by
every illuminated surface, only a tiny fraction of those would actu-
ally end up passing into the virtual “camera,” and therefore almost
all of the computational effort would be wasted. One can instead
start a ray at the camera, trace it backward in time, and see where
it would have come from. With this technique, there is no wasted
effort.

o / This photorealistic image of a nonexistent countertop was pro-
duced completely on a computer, by computing a complicated ray
diagram.

Discussion questions

A If a light ray has a velocity vector with components cx and cy , what
will happen when it is reflected from a surface that lies along the y axis?
Make sure your answer does not imply a change in the ray’s speed.

B Generalizing your reasoning from discussion question A, what will
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r / The solid lines are physi-
cally possible paths for light rays
traveling from A to B and from
A to C. They obey the principle
of least time. The dashed lines
do not obey the principle of
least time, and are not physically
possible.

s / Paths AQB and APB are
two conceivable paths that a ray
could follow to get from A to B
with one reflection, but only AQB
is physically possible. We wish
to prove that the path AQB, with
equal angles of incidence and
reflection, is shorter than any
other path, such as APB. The
trick is to construct a third point,
C, lying as far below the surface
as B lies above it. Then path
AQC is a straight line whose
length is the same as AQB’s, and
path APC has the same length as
path APB. Since AQC is straight,
it must be shorter than any other
path such as APC that connects
A and C, and therefore AQB must
be shorter than any path such as
APB.

happen to the velocity components of a light ray that hits a corner, as
shown in the figure, and undergoes two reflections?

C Three pieces of sheet metal arranged perpendicularly as shown in
the figure form what is known as a radar corner. Let’s assume that the
radar corner is large compared to the wavelength of the radar waves, so
that the ray model makes sense. If the radar corner is bathed in radar
rays, at least some of them will undergo three reflections. Making a fur-
ther generalization of your reasoning from the two preceding discussion
questions, what will happen to the three velocity components of such a
ray? What would the radar corner be useful for?

7.3 ? The Principle of Least Time for Reflection
There is another way of stating the rules of reflection that is very
simple and beautiful, and turns out to have deep consequences and
apply much more broadly, not just to reflection. It is called the
principle of least time, or Fermat’s principle.

Let’s start with the motion of light that is not interacting with
matter at all. In a vacuum, a light ray moves in a straight line. This
can be rephrased as follows: of all the conceivable paths light could
follow from P to Q, the only one that is physically possible is the
path that takes the least time.

What about reflection? If light is going to go from one point to
another, being reflected on the way, the quickest path is indeed the
one with equal angles of incidence and reflection. If the starting and
ending points are equally far from the reflecting surface, r, it’s not
hard to convince yourself that this is true, just based on symmetry.
There is also a tricky and simple proof, shown in figure s, for the
more general case where the points are at different distances from
the surface.

Not only does the principle of least time work for light in a
vacuum and light undergoing reflection, we will also see in a later
chapter that it works for the bending of light when it passes from
one medium into another.

Although it is beautiful that the entire ray model of light can
be reduced to one simple rule, the principle of least time, it may
seem a little spooky to speak as if the ray of light is intelligent,
and has carefully planned ahead to find the shortest route to its
destination. How does it know in advance where it’s going? What
if we moved the mirror while the light was en route, so conditions
along its planned path were not what it “expected?” The answer is
that the principle of least time is really an approximate shortcut for
finding certain results of the wave model of light.

There are a couple of subtle points about the principle of least
time. First, the path does not have to be the quickest of all pos-
sible paths; it only needs to be quicker than any path that differs
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t / Light is emitted at the center
of an elliptical mirror. There are
four physically possible paths by
which a ray can be reflected and
return to the center.

u / An image formed by a
mirror.

infinitesimally from it. In figure s, for instance, light could get from
A to B either by the reflected path AQB or simply by going straight
from A to B. Although AQB is not the shortest possible path, it
cannot be shortened by changing it infinitesimally, e.g., by moving
Q a little to the right or left. On the other hand, path APB is phys-
ically impossible, because it is possible to improve on it by moving
point P infinitesimally to the right.

It’s not quite right to call this the principle of least time. In fig-
ure t, for example, the four physically possible paths by which a ray
can return to the center consist of two shortest-time paths and two
longest-time paths. Strictly speaking, we should refer to the prin-
ciple of least or greatest time, but most physicists omit the niceties,
and assume that other physicists understand that both maxima and
minima are possible.

7.4 Images by Reflection
Infants are always fascinated by the antics of the Baby in the Mirror.
Now if you want to know something about mirror images that most
people don’t understand, try this. First bring this page closer wand
closer to your eyes, until you can no longer focus on it without
straining. Then go in the bathroom and see how close you can
get your face to the surface of the mirror before you can no longer
easily focus on the image of your own eyes. You will find that
the shortest comfortable eye-mirror distance is much less than the
shortest comfortable eye-paper distance. This demonstrates that
the image of your face in the mirror acts as if it had depth and
existed in the space behind the mirror. If the image was like a flat
picture in a book, then you wouldn’t be able to focus on it from
such a short distance.

In this chapter we will study the images formed by flat and
curved mirrors on a qualitative, conceptual basis. Although this
type of image is not as commonly encountered in everyday life as
images formed by lenses, images formed by reflection are simpler to
understand.

A virtual image

We can understand a mirror image using a ray diagram. Figure
u shows several light rays, 1, that originated by diffuse reflection at
the person’s nose. They bounce off the mirror, producing new rays,
2. To anyone whose eye is in the right position to get one of these
rays, they appear to have come from a behind the mirror, 3, where
they would have originated from a single point. This point is where
the tip of the image-person’s nose appears to be. A similar analysis
applies to every other point on the person’s face, so it looks as
though there was an entire face behind the mirror. The customary
way of describing the situation requires some explanation:
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v / An image formed by a
curved mirror.

Customary description in physics: There is an image of the face
behind the mirror.

Translation: The pattern of rays coming from the mirror is exactly
the same as it would be if there was a face behind the mirror.
Nothing is really behind the mirror.

This is referred to as a virtual image, because the rays do not
actually cross at the point behind the mirror. They only appear to
have originated there.

self-check C

Imagine that the person in figure u moves his face down quite a bit — a
couple of feet in real life, or a few inches on this scale drawing. Draw a
new ray diagram. Will there still be an image? If so, where is it visible
from? . Answer, p. 180

The geometry of specular reflection tells us that rays 1 and 2
are at equal angles to the normal (the imaginary perpendicular line
piercing the mirror at the point of reflection). This means that ray
2’s imaginary continuation, 3, forms the same angle with the mirror
as ray 1. Since each ray of type 3 forms the same angles with the
mirror as its partner of type 1, we see that the distance of the image
from the mirror is the same as the actual face from the mirror, and
lies directly across from it. The image therefore appears to be the
same size as the actual face.

Curved mirrors

An image in a flat mirror is a pretechnological example: even
animals can look at their reflections in a calm pond. We now pass
to our first nontrivial example of the manipulation of an image by
technology: an image in a curved mirror. Before we dive in, let’s
consider why this is an important example. If it was just a ques-
tion of memorizing a bunch of facts about curved mirrors, then you
would rightly rebel against an effort to spoil the beauty of your lib-
erally educated brain by force-feeding you technological trivia. The
reason this is an important example is not that curved mirrors are
so important in and of themselves, but that the results we derive for
curved bowl-shaped mirrors turn out to be true for a large class of
other optical devices, including mirrors that bulge outward rather
than inward, and lenses as well. A microscope or a telescope is sim-
ply a combination of lenses or mirrors or both. What you’re really
learning about here is the basic building block of all optical devices
from movie projectors to octopus eyes.

Because the mirror in figure v is curved, it bends the rays back
closer together than a flat mirror would: we describe it as converging.
Note that the term refers to what it does to the light rays, not to the
physical shape of the mirror’s surface . (The surface itself would be
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w / The image is magnified
by the same factor in depth and
in its other dimensions.

described as concave. The term is not all that hard to remember,
because the hollowed-out interior of the mirror is like a cave.) It
is surprising but true that all the rays like 3 really do converge on
a point, forming a good image. We will not prove this fact, but it
is true for any mirror whose curvature is gentle enough and that
is symmetric with respect to rotation about the perpendicular line
passing through its center (not asymmetric like a potato chip). The
old-fashioned method of making mirrors and lenses is by grinding
them in grit by hand, and this automatically tends to produce an
almost perfect spherical surface.

Bending a ray like 2 inward implies bending its imaginary contin-
uation 3 outward, in the same way that raising one end of a seesaw
causes the other end to go down. The image therefore forms deeper
behind the mirror. This doesn’t just show that there is extra dis-
tance between the image-nose and the mirror; it also implies that
the image itself is bigger from front to back. It has been magnified
in the front-to-back direction.

It is easy to prove that the same magnification also applies to the
image’s other dimensions. Consider a point like E in figure w. The
trick is that out of all the rays diffusely reflected by E, we pick the
one that happens to head for the mirror’s center, C. The equal-angle
property of specular reflection plus a little straightforward geometry
easily leads us to the conclusion that triangles ABC and CDE are
the same shape, with ABC being simply a scaled-up version of CDE.
The magnification of depth equals the ratio BC/CD, and the up-
down magnification is AB/DE. A repetition of the same proof shows
that the magnification in the third dimension (out of the page) is
also the same. This means that the image-head is simply a larger
version of the real one, without any distortion. The scaling factor
is called the magnification, M . The image in the figure is magnified
by a factor M = 1.9.

Note that we did not explicitly specify whether the mirror was
a sphere, a paraboloid, or some other shape. However, we assumed
that a focused image would be formed, which would not necessarily
be true, for instance, for a mirror that was asymmetric or very deeply
curved.

A real image

If we start by placing an object very close to the mirror, x/1,
and then move it farther and farther away, the image at first behaves
as we would expect from our everyday experience with flat mirrors,
receding deeper and deeper behind the mirror. At a certain point,
however, a dramatic change occurs. When the object is more than
a certain distance from the mirror, x/2, the image appears upside-
down and in front of the mirror.

Here’s what’s happened. The mirror bends light rays inward, but
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when the object is very close to it, as in x/1, the rays coming from a
given point on the object are too strongly diverging (spreading) for
the mirror to bring them back together. On reflection, the rays are
still diverging, just not as strongly diverging. But when the object
is sufficiently far away, x/2, the mirror is only intercepting the rays
that came out in a narrow cone, and it is able to bend these enough
so that they will reconverge.

Note that the rays shown in the figure, which both originated at
the same point on the object, reunite when they cross. The point
where they cross is the image of the point on the original object.
This type of image is called a real image, in contradistinction to the
virtual images we’ve studied before. The use of the word “real” is
perhaps unfortunate. It sounds as though we are saying the image
was an actual material object, which of course it is not.

x / 1. A virtual image. 2. A
real image. As you’ll verify in
homework problem 9, the image
is upside-down

The distinction between a real image and a virtual image is an
important one, because a real image can be projected onto a screen
or photographic film. If a piece of paper is inserted in figure x/2
at the location of the image, the image will be visible on the paper
(provided the object is bright and the room is dark). Your eye uses
a lens to make a real image on the retina.

self-check D
Sketch another copy of the face in figure x/1, even farther from the mir-

150 Chapter 7 The Ray Model of Light



y / A Newtonian telescope
being used with a camera.

z / A Newtonian telescope
being used for visual rather than
photographic observing. In real
life, an eyepiece lens is normally
used for additional magnification,
but this simpler setup will also
work.

ror, and draw a ray diagram. What has happened to the location of the
image? . Answer, p. 180

Images of images

If you are wearing glasses right now, then the light rays from the
page are being manipulated first by your glasses and then by the lens
of your eye. You might think that it would be extremely difficult
to analyze this, but in fact it is quite easy. In any series of optical
elements (mirrors or lenses or both), each element works on the rays
furnished by the previous element in exactly the same manner as if
the image formed by the previous element was an actual object.

Figure y shows an example involving only mirrors. The Newto-
nian telescope, invented by Isaac Newton, consists of a large curved
mirror, plus a second, flat mirror that brings the light out of the
tube. (In very large telescopes, there may be enough room to put
a camera or even a person inside the tube, in which case the sec-
ond mirror is not needed.) The tube of the telescope is not vital; it
is mainly a structural element, although it can also be helpful for
blocking out stray light. The lens has been removed from the front
of the camera body, and is not needed for this setup. Note that the
two sample rays have been drawn parallel, because an astronomical
telescope is used for viewing objects that are extremely far away.
These two “parallel” lines actually meet at a certain point, say a
crater on the moon, so they can’t actually be perfectly parallel, but
they are parallel for all practical purposes since we would have to
follow them upward for a quarter of a million miles to get to the
point where they intersect.

The large curved mirror by itself would form an image I, but the
small flat mirror creates an image of the image, I′. The relationship
between I and I′ is exactly the same as it would be if I was an actual
object rather than an image: I and I′ are at equal distances from
the plane of the mirror, and the line between them is perpendicular
to the plane of the mirror.

One surprising wrinkle is that whereas a flat mirror used by itself
forms a virtual image of an object that is real, here the mirror is
forming a real image of virtual image I. This shows how pointless it
would be to try to memorize lists of facts about what kinds of images
are formed by various optical elements under various circumstances.
You are better off simply drawing a ray diagram.

Although the main point here was to give an example of an image
of an image, figure z shows an interesting case where we need to make
the distinction between magnification and angular magnification. If
you are looking at the moon through this telescope, then the images
I and I′ are much smaller than the actual moon. Otherwise, for
example, image I would not fit inside the telescope! However, these
images are very close to your eye compared to the actual moon. The
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small size of the image has been more than compensated for by the
shorter distance. The important thing here is the amount of angle
within your field of view that the image covers, and it is this angle
that has been increased. The factor by which it is increased is called
the angular magnification, Ma.

aa / The angular size of the flower
depends on its distance from the
eye.
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Discussion questions

A The figure shows an object that is off to one side of a mirror. Draw
a ray diagram. Is an image formed? If so, where is it, and from which
directions would it be visible?

B Locate the images of you that will be formed if you stand between
two parallel mirrors.

Section 7.4 Images by Reflection 153



C Locate the images formed by two perpendicular mirrors, as in the
figure. What happens if the mirrors are not perfectly perpendicular?
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D Locate the images formed by the periscope.
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Problem 3.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The natives of planet Wumpus play pool using light rays on
an eleven-sided table with mirrors for bumpers, shown in the figure
on the next page. Trace this shot accurately with a ruler to reveal
the hidden message. To get good enough accuracy, you’ll need to
photocopy the page (or download the book and print the page) and
construct each reflection using a protractor.

Problem 1.

2 The figure on the next page shows a curved (parabolic) mir-
ror, with three parallel light rays coming toward it. One ray is
approaching along the mirror’s center line. (a) Continue the light
rays until they are about to undergo their second reflection. To get
good enough accuracy, you’ll need to photocopy the page (or down-
load the book and print the page) and draw in the normal at each
place where a ray is reflected. What do you notice? (b) Make up
an example of a practical use for this device. (c) How could you
use this mirror with a small lightbulb to produce a parallel beam of
light rays going off to the right?

3 The figure shows four points where rays cross. Of these, which
are image points? Explain.
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Problem 2.

4 In this chapter we’ve only done examples of mirrors with
hollowed-out shapes (called concave mirrors). Now draw a ray dia-
gram for a curved mirror that has a bulging outward shape (called a
convex mirror). (a) How does the image’s distance from the mirror
compare with the actual object’s distance from the mirror? From
this comparison, determine whether the magnification is greater
than or less than one. (b) Is the image real or virtual? Could
this mirror ever make the other type of image?

5 Draw a ray diagram showing why a small light source (a
candle, say) produces sharper shadows than a large one (e.g., a long
fluorescent bulb).

6 A man is walking at 1.0 m/s directly towards a flat mirror.
At what speed is his separation from his image decreasing?

√

7 If a mirror on a wall is only big enough for you to see your-
self from your head down to your waist, can you see your entire
body by backing up? Test this experimentally and come up with an
explanation for your observations, including a ray diagram.

Note that when you do the experiment, it’s easy to confuse yourself
if the mirror is even a tiny bit off of vertical. One way to check
yourself is to artificially lower the top of the mirror by putting a
piece of tape or a post-it note where it blocks your view of the top
of your head. You can then check whether you are able to see more
of yourself both above and below by backing up.

8 As discussed in question 4, there are two types of curved
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mirrors, concave and convex. Make a list of all the possible com-
binations of types of images (virtual or real) with types of mirrors
(concave and convex). (Not all of the four combinations are phys-
ically possible.) Now for each one, use ray diagrams to determine
whether increasing the distance of the object from the mirror leads
to an increase or a decrease in the distance of the image from the
mirror.

Draw BIG ray diagrams! Each diagram should use up about half a
page of paper.

Some tips: To draw a ray diagram, you need two rays. For one of
these, pick the ray that comes straight along the mirror’s axis, since
its reflection is easy to draw. After you draw the two rays and locate
the image for the original object position, pick a new object position
that results in the same type of image, and start a new ray diagram,
in a different color of pen, right on top of the first one. For the two
new rays, pick the ones that just happen to hit the mirror at the
same two places; this makes it much easier to get the result right
without depending on extreme accuracy in your ability to draw the
reflected rays.

9 In figure x/2 in on page 150, only the image of my forehead was
located by drawing rays. Either photocopy the figure or download
the book and print out the relevant page. On this copy of the figure,
make a new set of rays coming from my chin, and locate its image.
To make it easier to judge the angles accurately, draw rays from the
chin that happen to hit the mirror at the same points where the two
rays from the forehead were shown hitting it. By comparing the
locations of the chin’s image and the forehead’s image, verify that
the image is actually upside-down, as shown in the original figure.

10 If the user of an astronomical telescope moves her head
closer to or farther away from the image she is looking at, does
the magnification change? Does the angular magnification change?
Explain. (For simplicity, assume that no eyepiece is being used.)

11 Here’s a game my kids like to play. I sit next to a sunny
window, and the sun reflects from the glass on my watch, making a
disk of light on the wall or floor, which they pretend to chase as I
move it around. Is the spot a disk because that’s the shape of the
sun, or because it’s the shape of my watch? In other words, would
a square watch make a square spot, or do we just have a circular
image of the circular sun, which will be circular no matter what?

12 A Global Positioning System (GPS) receiver is a device that
lets you figure out where you are by measuring the time for radio
signals to travel between you and the satellite, which is related to
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the distance between you and the satellite. By finding the ranges to
several different satellites in this way, it can pin down your location
in three dimensions to within a few meters. How accurate does the
measurement of the time delay have to be to determine your position
to this accuracy?

13 Estimate the frequency of an electromagnetic wave whose
wavelength is similar in size to an atom (about a nm). Referring
back to figure z on p. 127, in what part of the electromagnetic
spectrum would such a wave lie (infrared, gamma-rays, . . . )?

14 The Stealth Bomber is designed with flat, smooth surfaces.
Why would this make it difficult to detect using radar?
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a / A spring has an equilib-
rium length, 1, and can be
stretched, 2, or compressed, 3. A
mass attached to the spring can
be set into motion initially, 4, and
will then vibrate, 4-13.

“The Great Wave Off Kanagawa,” by Katsushika Hokusai (1760-1849).

Chapter 8

Waves

If you’ve read chapter 6, you’ve been introduced to the idea that
the universe isn’t really mechanical in nature. It’s made of fields
of force. When a radio antenna makes a disturbance in the electric
and magnetic fields, those disturbances travel outward like ripples
on a pond. In other words, waves are fundamental to the way the
universe works.

8.1 Vibrations
Your radio dial is calibrated in units of frequency, the simplest ex-
ample of this concept is provided not by a wave but by a vibrating
physical object such as a mass on the end of a spring, 8. With no
forces on it, the spring assumes its equilibrium length, 8/1. It can
be stretched, 2, or compressed, 3. We attach the spring to a wall
on the left and to a mass on the right. If we now hit the mass with
a hammer, 4, it oscillates as shown in the series of snapshots, 4-13.
If we assume that the mass slides back and forth without friction
and that the motion is one-dimensional, then conservation of energy
proves that the motion must be repetitive. When the block comes
back to its initial position again, 7, its potential energy is the same
again, so it must have the same kinetic energy again. The motion
is in the opposite direction, however. Finally, at 10, it returns to its
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b / 1. The amplitude of the
vibrations of the mass on a spring
could be defined in two different
ways. It would have units of
distance. 2. The amplitude of a
swinging pendulum would more
naturally be defined as an angle.

initial position with the same kinetic energy and the same direction
of motion. The motion has gone through one complete cycle, and
will now repeat forever in the absence of friction.

The usual physics terminology for motion that repeats itself over
and over is periodic motion, and the time required for one repetition
is called the period, T . One complete repetition of the motion is
called a cycle.

We are used to referring to short-period sound vibrations as
“high” in pitch, and it sounds odd to have to say that high pitches
have low periods. It is therefore more common to discuss the rapid-
ity of a vibration in terms of the number of vibrations per second,
a quantity called the frequency, f . Since the period is the number
of seconds per cycle and the frequency is the number of cycles per
second, they are reciprocals of each other,

f = 1/T .

Units of inverse second, s−1, are awkward in speech, so an abbre-
viation has been created. One Hertz, named in honor of a pioneer
of radio technology, is one cycle per second. In abbreviated form,
1 Hz = 1 s−1. This is the familiar unit used for the frequencies on
the radio dial.

Frequency of a radio station example 1
. KMHD’s frequency is 89.1 MHz. What does this mean, and
what period does this correspond to?

. The metric prefix M- is mega-, i.e., millions. The radio waves
emitted by KMHD’s transmitting antenna vibrate 89.1 million times
per second. This corresponds to a period of

T = 1/f = 1.12× 10−8 s.

This example shows a second reason why we normally speak in
terms of frequency rather than period: it would be painful to have
to refer to such small time intervals routinely. I could abbreviate
by telling people that KMHD’s period was 11.2 nanoseconds, but
most people are more familiar with the big metric prefixes than
with the small ones.

Units of frequency are also commonly used to specify the speeds
of computers. The idea is that all the little circuits on a computer
chip are synchronized by the very fast ticks of an electronic clock, so
that the circuits can all cooperate on a task without getting ahead
or behind. Adding two numbers might require, say, 30 clock cycles.
Microcomputers these days operate at clock frequencies of about a
gigahertz.

We have discussed how to measure how fast something vibrates,
but not how big the vibrations are. The general term for this is
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c / The John Hancock Tower
in Boston vibrates naturally at a
frequency of 0.14 Hz. Surpris-
ingly, this frequency is the same
regardless of the amplitude of the
vibrations

amplitude, A. The definition of amplitude depends on the system
being discussed, and two people discussing the same system may
not even use the same definition. In the example of the block on
the end of the spring, 8.1/1, the amplitude will be measured in
distance units such as cm. One could work in terms of the distance
traveled by the block from the extreme left to the extreme right, but
it would be somewhat more common in physics to use the distance
from the center to one extreme. The former is usually referred to as
the peak-to-peak amplitude, since the extremes of the motion look
like mountain peaks or upside-down mountain peaks on a graph of
position versus time.

In other situations we would not even use the same units for am-
plitude. The amplitude of a child on a swing, or a pendulum, 8.1/2,
would most conveniently be measured as an angle, not a distance,
since her feet will move a greater distance than her head. The elec-
trical vibrations in a radio receiver would be measured in electrical
units such as volts or amperes.

In many physical examples of vibrations, the force that brings
the vibrating object back to equilibrium gets stronger and stronger
as the object gets father and farther from equilibrium, and the force
is directly proportional to the distance from equilibrium. Most
springs behave this way, for example, so for example we’d expect
that the spring in figure 8 would make very nearly twice the force
when stretched twice as much. We then define a spring constant,,
which tells us how many newtons of force we get per meter of stretch-
ing. For example, the John Hancock Tower has a spring constant of
about 200 MN/m (meganewtons per meter), meaning that the wind
must exert a force of about 200 MN in order to make the tower sway
by one meter. To make it sway by two meters, the force would have
to be 400 MN.

When the force has this type of mathematical behavior, the re-
sulting motion is known as simple harmonic motion. One surprising
and useful fact about simple harmonic motion is that its frequency
is independent of amplitude. Intuitively, we would expect that vi-
brations with a greater amplitude would take more time, i.e., have a
lower frequency. However, when the amplitude is greater, the force
accelerating the mass back toward the equilibrium position is also
greater, and this turns out to compensate exactly for the need to
travel a greater distance. Legend has it that Galileo first noticed
this fact when he watched a chandelier swinging during a church
service, and timed it against his pulse. Mathematically, the fre-
quency of vibration is given by f = (1/2π)

√
k/m, where k is the

spring constant, and m is the mass that is vibrating.
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d / The two circular patterns of
ripples pass through each other.
Unlike material objects, wave pat-
terns can overlap in space, and
when this happens they combine
by addition.

8.2 Wave Motion
There are three main ways in which wave motion differs from the
motion of objects made of matter.

1. Superposition

The first, and most profound, difference between wave motion
and the motion of objects is that waves do not display any repulsion
of each other analogous to the normal forces between objects that
come in contact. Two wave patterns can therefore overlap in the
same region of space, as shown in the figure at the top of the page.
Where the two waves coincide, they add together. For instance,
suppose that at a certain location in at a certain moment in time,
each wave would have had a crest 3 cm above the normal water
level. The waves combine at this point to make a 6-cm crest. We
use negative numbers to represent depressions in the water. If both
waves would have had a troughs measuring -3 cm, then they combine
to make an extra-deep -6 cm trough. A +3 cm crest and a -3 cm
trough result in a height of zero, i.e., the waves momentarily cancel
each other out at that point. This additive rule is referred to as
the principle of superposition, “superposition” being merely a fancy
word for “adding.”

Superposition can occur not just with sinusoidal waves like the
ones in the figure above but with waves of any shape. The figures
on the following page show superposition of wave pulses. A pulse is
simply a wave of very short duration. These pulses consist only of
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a single hump or trough. If you hit a clothesline sharply, you will
observe pulses heading off in both directions. This is analogous to
the way ripples spread out in all directions when you make a distur-
bance at one point on water. The same occurs when the hammer
on a piano comes up and hits a string.

Discussion question

A In figure e, the fifth frame shows the spring just about perfectly
flat. If the two pulses have essentially canceled each other out perfectly,
then why does the motion pick up again? Why doesn’t the spring just stay
flat?

e / These pictures show the motion of wave pulses along a spring. To make a pulse, one end of the
spring was shaken by hand. Movies were filmed, and a series of frame chosen to show the motion. 1. A pulse
travels to the left. 2. Superposition of two colliding positive pulses. 3. Superposition of two colliding pulses, one
positive and one negative.
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g / As the wave pulse goes
by, the ribbon tied to the spring
is not carried along. The motion
of the wave pattern is to the
right, but the medium (spring) is
moving up and down, not to the
right.

f / As the wave pattern passes the rubber duck, the duck stays put.
The water isn’t moving forward with the wave.

2. The medium is not transported with the wave.

Figure f shows a series of water waves before it has reached a
rubber duck (left), having just passed the duck (middle) and having
progressed about a meter beyond the duck (right). The duck bobs
around its initial position, but is not carried along with the wave.
This shows that the water itself does not flow outward with the
wave. If it did, we could empty one end of a swimming pool simply
by kicking up waves! We must distinguish between the motion of
the medium (water in this case) and the motion of the wave pattern
through the medium. The medium vibrates; the wave progresses
through space.

self-check A
In figure g, you can detect the side-to-side motion of the spring because
the spring appears blurry. At a certain instant, represented by a single
photo, how would you describe the motion of the different parts of the
spring? Other than the flat parts, do any parts of the spring have zero
velocity? . Answer, p. 180

A worm example 2
The worm in the figure is moving to the right. The wave pattern,
a pulse consisting of a compressed area of its body, moves to
the left. In other words, the motion of the wave pattern is in the
opposite direction compared to the motion of the medium.
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h / Example 3. The surfer is
dragging his hand in the water.

i / Example 4: a breaking
wave.

j / Example 5. The boat has
run up against a limit on its speed
because it can’t climb over its
own wave. Dolphins get around
the problem by leaping out of the
water.

Surfing example 3
The incorrect belief that the medium moves with the wave is often
reinforced by garbled secondhand knowledge of surfing. Anyone
who has actually surfed knows that the front of the board pushes
the water to the sides, creating a wake — the surfer can even
drag his hand through the water, as in in figure h. If the water was
moving along with the wave and the surfer, this wouldn’t happen.
The surfer is carried forward because forward is downhill, not be-
cause of any forward flow of the water. If the water was flowing
forward, then a person floating in the water up to her neck would
be carried along just as quickly as someone on a surfboard. In
fact, it is even possible to surf down the back side of a wave, al-
though the ride wouldn’t last very long because the surfer and the
wave would quickly part company.

3. A wave’s velocity depends on the medium.

A material object can move with any velocity, and can be sped
up or slowed down by a force that increases or decreases its kinetic
energy. Not so with waves. The magnitude of a wave’s velocity
depends on the properties of the medium (and perhaps also on the
shape of the wave, for certain types of waves). Sound waves travel
at about 340 m/s in air, 1000 m/s in helium. If you kick up water
waves in a pool, you will find that kicking harder makes waves that
are taller (and therefore carry more energy), not faster. The sound
waves from an exploding stick of dynamite carry a lot of energy, but
are no faster than any other waves. In the following section we will
give an example of the physical relationship between the wave speed
and the properties of the medium.

Breaking waves example 4
The velocity of water waves increases with depth. The crest of a
wave travels faster than the trough, and this can cause the wave
to break.

Once a wave is created, the only reason its speed will change is
if it enters a different medium or if the properties of the medium
change. It is not so surprising that a change in medium can slow
down a wave, but the reverse can also happen. A sound wave trav-
eling through a helium balloon will slow down when it emerges into
the air, but if it enters another balloon it will speed back up again!
Similarly, water waves travel more quickly over deeper water, so a
wave will slow down as it passes over an underwater ridge, but speed
up again as it emerges into deeper water.

Hull speed example 5
The speeds of most boats, and of some surface-swimming ani-
mals, are limited by the fact that they make a wave due to their
motion through the water. The boat in figure j is going at the same
speed as its own waves, and can’t go any faster. No matter how
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k / Circular and linear wave
patterns.

l / Plane and spherical wave
patterns.

hard the boat pushes against the water, it can’t make the wave
move ahead faster and get out of the way. The wave’s speed de-
pends only on the medium. Adding energy to the wave doesn’t
speed it up, it just increases its amplitude.

A water wave, unlike many other types of wave, has a speed that
depends on its shape: a broader wave moves faster. The shape
of the wave made by a boat tends to mold itself to the shape of
the boat’s hull, so a boat with a longer hull makes a broader wave
that moves faster. The maximum speed of a boat whose speed is
limited by this effect is therefore closely related to the length of its
hull, and the maximum speed is called the hull speed. Sailboats
designed for racing are not just long and skinny to make them
more streamlined — they are also long so that their hull speeds
will be high.

Wave patterns

If the magnitude of a wave’s velocity vector is preordained, what
about its direction? Waves spread out in all directions from every
point on the disturbance that created them. If the disturbance is
small, we may consider it as a single point, and in the case of water
waves the resulting wave pattern is the familiar circular ripple, k/1.
If, on the other hand, we lay a pole on the surface of the water
and wiggle it up and down, we create a linear wave pattern, k/2.
For a three-dimensional wave such as a sound wave, the analogous
patterns would be spherical waves and plane waves, l.

Infinitely many patterns are possible, but linear or plane waves
are often the simplest to analyze, because the velocity vector is in
the same direction no matter what part of the wave we look at. Since
all the velocity vectors are parallel to one another, the problem is
effectively one-dimensional. Throughout this chapter and the next,
we will restrict ourselves mainly to wave motion in one dimension,
while not hesitating to broaden our horizons when it can be done
without too much complication.

Discussion questions

A [see above]

B Sketch two positive wave pulses on a string that are overlapping but
not right on top of each other, and draw their superposition. Do the same
for a positive pulse running into a negative pulse.

C A traveling wave pulse is moving to the right on a string. Sketch the
velocity vectors of the various parts of the string. Now do the same for a
pulse moving to the left.

D In a spherical sound wave spreading out from a point, how would
the energy of the wave fall off with distance?

8.3 Sound and Light Waves
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Sound waves

The phenomenon of sound is easily found to have all the char-
acteristics we expect from a wave phenomenon:

• Sound waves obey superposition. Sounds do not knock other
sounds out of the way when they collide, and we can hear more
than one sound at once if they both reach our ear simultane-
ously.

• The medium does not move with the sound. Even standing
in front of a titanic speaker playing earsplitting music, we do
not feel the slightest breeze.

• The velocity of sound depends on the medium. Sound travels
faster in helium than in air, and faster in water than in helium.
Putting more energy into the wave makes it more intense, not
faster. For example, you can easily detect an echo when you
clap your hands a short distance from a large, flat wall, and
the delay of the echo is no shorter for a louder clap.

Although not all waves have a speed that is independent of the
shape of the wave, and this property therefore is irrelevant to our
collection of evidence that sound is a wave phenomenon, sound does
nevertheless have this property. For instance, the music in a large
concert hall or stadium may take on the order of a second to reach
someone seated in the nosebleed section, but we do not notice or
care, because the delay is the same for every sound. Bass, drums,
and vocals all head outward from the stage at 340 m/s, regardless
of their differing wave shapes.

If sound has all the properties we expect from a wave, then what
type of wave is it? It must be a vibration of a physical medium such
as air, since the speed of sound is different in different media, such
as helium or water. Further evidence is that we don’t receive sound
signals that have come to our planet through outer space. The roars
and whooshes of Hollywood’s space ships are fun, but scientifically
wrong.1

We can also tell that sound waves consist of compressions and
expansions, rather than sideways vibrations like the shimmying of a
snake. Only compressional vibrations would be able to cause your

1Outer space is not a perfect vacuum, so it is possible for sounds waves to
travel through it. However, if we want to create a sound wave, we typically do
it by creating vibrations of a physical object, such as the sounding board of a
guitar, the reed of a saxophone, or a speaker cone. The lower the density of the
surrounding medium, the less efficiently the energy can be converted into sound
and carried away. An isolated tuning fork, left to vibrate in interstellar space,
would dissipate the energy of its vibration into internal heat at a rate many
orders of magnitude greater than the rate of sound emission into the nearly
perfect vacuum around it.
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eardrums to vibrate in and out. Even for a very loud sound, the
compression is extremely weak; the increase or decrease compared
to normal atmospheric pressure is no more than a part per million.
Our ears are apparently very sensitive receivers!

Light waves

Entirely similar observations lead us to believe that light is a
wave, although the concept of light as a wave had a long and tortu-
ous history. It is interesting to note that Isaac Newton very influen-
tially advocated a contrary idea about light. The belief that matter
was made of atoms was stylish at the time among radical thinkers
(although there was no experimental evidence for their existence),
and it seemed logical to Newton that light as well should be made of
tiny particles, which he called corpuscles (Latin for “small objects”).
Newton’s triumphs in the science of mechanics, i.e., the study of
matter, brought him such great prestige that nobody bothered to
question his incorrect theory of light for 150 years. One persua-
sive proof that light is a wave is that according to Newton’s theory,
two intersecting beams of light should experience at least some dis-
ruption because of collisions between their corpuscles. Even if the
corpuscles were extremely small, and collisions therefore very infre-
quent, at least some dimming should have been measurable. In fact,
very delicate experiments have shown that there is no dimming.

The wave theory of light was entirely successful up until the 20th
century, when it was discovered that not all the phenomena of light
could be explained with a pure wave theory. It is now believed that
both light and matter are made out of tiny chunks which have both
wave and particle properties. For now, we will content ourselves
with the wave theory of light, which is capable of explaining a great
many things, from cameras to rainbows.

If light is a wave, what is waving? What is the medium that
wiggles when a light wave goes by? It isn’t air. A vacuum is impen-
etrable to sound, but light from the stars travels happily through
zillions of miles of empty space. Light bulbs have no air inside them,
but that doesn’t prevent the light waves from leaving the filament.
For a long time, physicists assumed that there must be a mysterious
medium for light waves, and they called it the aether (not to be con-
fused with the chemical). Supposedly the aether existed everywhere
in space, and was immune to vacuum pumps. We now know that,
as discussed in chapter 6, light can instead be explained as a wave
pattern made up of electrical and magnetic fields.

8.4 Periodic Waves
Period and frequency of a periodic wave

You choose a radio station by selecting a certain frequency. We
have already defined period and frequency for vibrations, but what
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m / A graph of pressure ver-
sus time for a periodic sound
wave, the vowel “ah.”

n / A similar graph for a non-
periodic wave, “sh.”

o / A strip chart recorder.

do they signify in the case of a wave? We can recycle our previous
definition simply by stating it in terms of the vibrations that the
wave causes as it passes a receiving instrument at a certain point
in space. For a sound wave, this receiver could be an eardrum or
a microphone. If the vibrations of the eardrum repeat themselves
over and over, i.e., are periodic, then we describe the sound wave
that caused them as periodic. Likewise we can define the period
and frequency of a wave in terms of the period and frequency of
the vibrations it causes. As another example, a periodic water wave
would be one that caused a rubber duck to bob in a periodic manner
as they passed by it.

The period of a sound wave correlates with our sensory impres-
sion of musical pitch. A high frequency (short period) is a high note.
The sounds that really define the musical notes of a song are only
the ones that are periodic. It is not possible to sing a non-periodic
sound like “sh” with a definite pitch.

The frequency of a light wave corresponds to color. Violet is the
high-frequency end of the rainbow, red the low-frequency end. A
color like brown that does not occur in a rainbow is not a periodic
light wave. Many phenomena that we do not normally think of as
light are actually just forms of light that are invisible because they
fall outside the range of frequencies our eyes can detect. Beyond the
red end of the visible rainbow, there are infrared and radio waves.
Past the violet end, we have ultraviolet, x-rays, and gamma rays.

Graphs of waves as a function of position

Some waves, like sound waves, are easy to study by placing a
detector at a certain location in space and studying the motion as
a function of time. The result is a graph whose horizontal axis is
time. With a water wave, on the other hand, it is simpler just to
look at the wave directly. This visual snapshot amounts to a graph
of the height of the water wave as a function of position. Any wave
can be represented in either way.

An easy way to visualize this is in terms of a strip chart recorder,
an obsolescing device consisting of a pen that wiggles back and forth
as a roll of paper is fed under it. It can be used to record a per-
son’s electrocardiogram, or seismic waves too small to be felt as a
noticeable earthquake but detectable by a seismometer. Taking the
seismometer as an example, the chart is essentially a record of the
ground’s wave motion as a function of time, but if the paper was set
to feed at the same velocity as the motion of an earthquake wave, it
would also be a full-scale representation of the profile of the actual
wave pattern itself. Assuming, as is usually the case, that the wave
velocity is a constant number regardless of the wave’s shape, know-
ing the wave motion as a function of time is equivalent to knowing
it as a function of position.
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p / A water wave profile cre-
ated by a series of repeating
pulses.

Wavelength

Any wave that is periodic will also display a repeating pattern
when graphed as a function of position. The distance spanned by
one repetition is referred to as one wavelength. The usual notation
for wavelength is λ, the Greek letter lambda. Wavelength is to space
as period is to time.

q / Wavelengths of linear and circular water waves.

Wave velocity related to frequency and wavelength

Suppose that we create a repetitive disturbance by kicking the
surface of a swimming pool. We are essentially making a series of
wave pulses. The wavelength is simply the distance a pulse is able to
travel before we make the next pulse. The distance between pulses
is λ, and the time between pulses is the period, T , so the speed of
the wave is the distance divided by the time,

v = λ/T .

This important and useful relationship is more commonly writ-
ten in terms of the frequency,

v = fλ.

Wavelength of radio waves example 6
. The speed of light is 3.0 × 108 m/s. What is the wavelength of
the radio waves emitted by KKJZ, a station whose frequency is
88.1 MHz?
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s / A water wave traveling
into a region with a different
depth changes its wavelength.

. Solving for wavelength, we have

λ = v/f

= (3.0× 108 m/s)/(88.1× 106 s−1)
= 3.4 m

The size of a radio antenna is closely related to the wavelength of
the waves it is intended to receive. The match need not be exact
(since after all one antenna can receive more than one wave-
length!), but the ordinary “whip” antenna such as a car’s is 1/4
of a wavelength. An antenna optimized to receive KKJZ’s signal
would have a length of 3.4 m/4 = 0.85 m.

r / Ultrasound, i.e., sound with fre-
quencies higher than the range
of human hearing, was used to
make this image of a fetus. The
resolution of the image is re-
lated to the wavelength, since
details smaller than about one
wavelength cannot be resolved.
High resolution therefore requires
a short wavelength, correspond-
ing to a high frequency.

The equation v = fλ defines a fixed relationship between any two
of the variables if the other is held fixed. The speed of radio waves
in air is almost exactly the same for all wavelengths and frequencies
(it is exactly the same if they are in a vacuum), so there is a fixed
relationship between their frequency and wavelength. Thus we can
say either “Are we on the same wavelength?” or “Are we on the
same frequency?”

A different example is the behavior of a wave that travels from
a region where the medium has one set of properties to an area
where the medium behaves differently. The frequency is now fixed,
because otherwise the two portions of the wave would otherwise
get out of step, causing a kink or discontinuity at the boundary,
which would be unphysical. (A more careful argument is that a
kink or discontinuity would have infinite curvature, and waves tend
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to flatten out their curvature. An infinite curvature would flatten
out infinitely fast, i.e., it could never occur in the first place.) Since
the frequency must stay the same, any change in the velocity that
results from the new medium must cause a change in wavelength.

The velocity of water waves depends on the depth of the water,
so based on λ = v/f , we see that water waves that move into a
region of different depth must change their wavelength, as shown in
figure s. This effect can be observed when ocean waves come up to
the shore. If the deceleration of the wave pattern is sudden enough,
the tip of the wave can curl over, resulting in a breaking wave.
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Problem 4.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Many single-celled organisms propel themselves through water
with long tails, which they wiggle back and forth. (The most obvious
example is the sperm cell.) The frequency of the tail’s vibration is
typically about 10-15 Hz. To what range of periods does this range
of frequencies correspond?

2 (a) Pendulum 2 has a string twice as long as pendulum 1. If
we define x as the distance traveled by the bob along a circle away
from the bottom, how does the k of pendulum 2 compare with the
k of pendulum 1? Give a numerical ratio. [Hint: the total force
on the bob is the same if the angles away from the bottom are the
same, but equal angles do not correspond to equal values of x.]

(b) Based on your answer from part (a), how does the period of pen-
dulum 2 compare with the period of pendulum 1? Give a numerical
ratio. ?

3 The following is a graph of the height of a water wave as a
function of position, at a certain moment in time.

Trace this graph onto another piece of paper, and then sketch below
it the corresponding graphs that would be obtained if

(a) the amplitude and frequency were doubled while the velocity
remained the same;

(b) the frequency and velocity were both doubled while the ampli-
tude remained unchanged;

(c) the wavelength and amplitude were reduced by a factor of three
while the velocity was doubled.

Explain all your answers. [Problem by Arnold Arons.]

4 (a) The graph shows the height of a water wave pulse as a
function of position. Draw a graph of height as a function of time
for a specific point on the water. Assume the pulse is traveling to
the right.
(b) Repeat part a, but assume the pulse is traveling to the left.
(c) Now assume the original graph was of height as a function of
time, and draw a graph of height as a function of position, assuming
the pulse is traveling to the right.
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(d) Repeat part c, but assume the pulse is traveling to the left.
Explain all your answers. [Problem by Arnold Arons.]

5 Suggest a quantitative experiment to look for any deviation
from the principle of superposition for surface waves in water. Make
it simple and practical.

6 The musical note middle C has a frequency of 262 Hz. What
are its period and wavelength?

√
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Appendix 2: Hints and Solutions

Answers to Self-Checks

Answers to Self-Checks for Chapter 1
Page 9, self-check A: A conservation law in physics says that the total amount always remains
the same. You can’t get rid of it even if you want to.

Page 13, self-check B: Exponents have to do with multiplication, not addition. The first line
should be 100 times longer than the second, not just twice as long.

Page 26, self-check C: Doubling d makes d2 four times bigger, so the gravitational field
experienced by Mars is four times weaker.

Answers to Self-Checks for Chapter 2
Page 40, self-check A: No, it doesn’t violate symmetry. Space-translation symmetry only says
that space itself has the same properties everywhere. It doesn’t say that all regions of space
have the same stuff in them. The experiment on the earth comes out a certain way because that
region of space has a planet in it. The experiment on the moon comes out different because
that region of space has the moon in it. of the apparatus, which you forgot to take with you.

Page 42, self-check B: The camera is moving at half the speed at which the light ball is
initially moving. After the collision, it keeps on moving at the same speed — your five x’s all
line on a straight line. Since the camera moves in a straight line with constant speed, it is
showing an inertial frame of reference.

Page 43, self-check C: The table looks like this:

velocity (meters per second)
before the colli-
sion

after the collision change

−1 0 +1
0 −1 −1

Observers in all three frames agree on the changes in velocity, even though they disagree on the
velocities themselves.

Page 50, self-check D: The motion would be the same. The force on the ball would be 20
newtons, so with each second it would gain 20 units of momentum. But 20 units of momentum
for a 2-kilogram ball is still just 10 m/s of velocity.

Answers to Self-Checks for Chapter 3
Page 65, self-check A: The definition of torque is important, and so is the equation F = ±Fr.
The two equations in between are just steps in a derivation of F = ±Fr.

Answers to Self-Checks for Chapter 4
Page 86, self-check A: The total momentum is zero before the collision. After the collision,
the two momenta have reversed their directions, but they still cancel. Neither object has changed
its kinetic energy, so the total energy before and after the collision is also the same.
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Answers to Self-Checks for Chapter 5
Page 97, self-check A: Either type can be involved in either an attraction or a repulsion. A
positive charge could be involved in either an attraction (with a negative charge) or a repulsion
(with another positive), and a negative could participate in either an attraction (with a positive)
or a repulsion (with a negative).

Page 97, self-check B: It wouldn’t make any difference. The roles of the positive and negative
charges in the paper would be reversed, but there would still be a net attraction.

Answers to Self-Checks for Chapter 6
Page 124, self-check A: An induced electric field can only be created by a changing magnetic
field. Nothing is changing if your car is just sitting there. A point on the coil won’t experience
a changing magnetic field unless the coil is already spinning, i.e., the engine has already turned
over.

Answers to Self-Checks for Chapter 7
Page 138, self-check A: Only 1 is correct. If you draw the normal that bisects the solid ray,
it also bisects the dashed ray.

Page 141, self-check B: He’s five times farther away than she is, so the light he sees is 1/25
the brightness.

Page 148, self-check C: You should have found from your ray diagram that an image is still
formed, and it has simply moved down the same distance as the real face. However, this new
image would only be visible from high up, and the person can no longer see his own image.

Page 150, self-check D: Increasing the distance from the face to the mirror has decreased the
distance from the image to the mirror. This is the opposite of what happened with the virtual
image.

Answers to Self-Checks for Chapter 8
Page 166, self-check A: The leading edge is moving up, the trailing edge is moving down,
and the top of the hump is motionless for one instant.

Solutions to Selected Homework Problems

Solutions for chapter 1

Page 33, problem 1:

134 mg× 10−3 g

1 mg
× 10−3 kg

1 g
= 1.34× 10−4 kg

Solutions for chapter 3
Page 68, problem 4: The pliers are not moving, so their angular momentum remains constant
at zero, and the total torque on them must be zero. Not only that, but each half of the pliers
must have zero total torque on it. This tells us that the magnitude of the torque at one end
must be the same as that at the other end. The distance from the axis to the nut is about 2.5
cm, and the distance from the axis to the centers of the palm and fingers are about 8 cm. The
angles are close enough to 90◦ that we can pretend they’re 90 degrees, considering the rough
nature of the other assumptions and measurements. The result is (300 N)(2.5 cm) = (F )(8 cm),
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or F = 90 N.
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