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When the physics is well
known and well understood
the only way to advance
knowledge and technology
further is by way of
MATHEMATICS,
with its help if it already
exists, with new research
otherwise.

Rudolf Emil Kálmán (1930 – 2016)





Abstract
Interconnected systems are a major pillar of modern society. In recent years,
interconnected systems have gained an unprecedented extent. For such systems,
existing approaches for deriving models and designing observers reach their limits.
In consequence, models and observers are developed under severe simplifications
of the systems’ physics which leads to a poor applicability and underperformance.
This thesis provides remedy by automating the processes of deriving models
and designing observers. To this end, we develop automatable modeling and
observation methods in the domain-unifying framework of port-Hamiltonian
systems (PHSs). These methods are the first to allow for an automated model
generation and observer design in a wide class of interconnected systems.

The methods and algorithms are implemented in a software prototype named
AMOTO. AMOTO is applied to the automated model generation and observer
design in two case studies. Numeric simulations verify the validity of the models
and observers obtained from AMOTO. Moreover, they outperform the models
and observers resulting from state of the art techniques which verifies the practical
usefulness of the approach. Therewith, the methods, algorithms, and tools from
this thesis can help to solve the upcoming challenges in the interconnected
systems that constantly surround us.





Kurzfassung
Vernetzte Systeme stellen einen unverzichtbaren Teil moderner Gesellschaften
dar. Mit dem Ausrollen neuer Kommunikationstechnologien und in Folge der
fortgeschrittenen Nutzung von Synergiepotenzialen entstanden in den letzten
Jahren vernetzte Systeme ungeahnten Ausmaßes. Aufgrund der Komplexität
dieser Systeme, gelangen bestehende Modellierungs- und Beobachterentwurfs-
methoden an ihre Grenzen. Modelle und Beobachter können deshalb häufig nur
unter erheblichen Vereinfachungen entwickelt werden. Die vorliegende Disser-
tation schafft Abhilfe. Leitgedanke ist es, die Vorgänge der Modellerzeugung
und des Beobachterentwurfs zu automatisieren. Hierzu werden in dieser Ar-
beit automatisierbare Modellierungs- und Beobachtermethoden auf Basis der
Port-Hamiltonschen Systemtheorie entwickelt.

Diese Methoden sind in einem Software-Prototyp namens AMOTO imple-
mentiert. In zwei Fallstudien wird AMOTO jeweils zur automatisierten Modell-
herleitung und zum automatisierten Beobachterentwurf eingesetzt. Computersim-
ulationen weisen in beiden Fallstudien die Funktionstüchtigkeit der erzeugten
Modelle und Beobachter nach und zeigen, dass diese genauere Ergebnisse liefern,
als Modelle und Beobachter, die mit Methoden des bisherigen Stands der Technik
entwickelt wurden. Dies unterstreicht die praktische Nutzbarkeit des vorgestellten
Ansatzes. Es zeigt sich ferner, dass der Ansatz auf eine große Klasse vernetzter
Systeme anwendbar ist. Somit leisten die Methoden, Algorithmen und Werkzeuge
aus dieser Arbeit einen wichtigen Beitrag zur Bewältigung zukünftiger Heraus-
forderungen in vernetzen Systemen.
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Chapter 1
Introduction

1.1 Motivation

Interconnected systems are a major pillar of our modern society. Well-known ex-
amples of interconnected systems are the energy systems that constantly surround
us. Over the last few years, the rollout of powerful communication networks,
the pursuit of efficiency, and increased performance requirements have led to the
advent of interconnected systems of unforeseen extent. In the context of energy
systems, large-scale multi-carrier energy systems become reality (O’Malley et al.
[2020]). Other examples that penetrate into practice are interconnected industrial
systems (Gao et al. [2019]), cooperative swarms of drones (Tahir et al. [2019]),
adaptive mechanic structures (Warsewa et al. [2020]), and automotive power
networks for hybrid and electric vehicles (Mantilla-Pérez et al. [2020]).

From a system theoretic point of view, such interconnected systems have de-
manding properties. First, they comprise a large number of interdependent system
variables—a quality that Duindam et al. [2009] call the “curse of dimensionality”.
Second, many interconnected systems cover multiple physical domains as, e.g.,
the electric, mechanic, hydraulic, and thermal domain. Third, such systems con-
sist of many subsystems each of which contributes to the overall system behavior.
Hence, subsystems can hardly be neglected or abstracted. Fourth, in many cases,
interconnected systems feature nonlinear dynamics. Due to these reasons, the
literature refers to interconnected systems often as “complex physical systems”
(see, e.g., van der Schaft and Jeltsema [2014]).

Models are inevitable for the development of control systems in interconnected
systems. A model in form of a set of ordinary differential equations (ODEs) is
the basis for many simulations and the natural starting point for a model-based
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control system design. The modeling of interconnected systems, however, is a
very challenging task. This can be understood by two reasons:

1. The multi-physical nature of many interconnected systems disallows for an
individual person to oversee the entire system. Hence, the model derivation
involves experts from multiple disciplines. Naturally, different experts speak
different technical languages, apply different methods, and use different
notations.

2. The curse of dimensionality leads to extensive equations which makes it
impossible to develop models by hand. Even a partially computer-aided
development as an alternative leads to solutions in which the engineer is
still forced to handle mathematical expressions of enormous size.

It is important to note that the curse of dimensionality goes beyond the system
modeling. In fact, it complicates all steps in a model-based control system de-
velopment. In this thesis, we will elaborate this issue particularly for the design
of observers. In interconnected systems, observers are of considerable interest
as they are essential for the supervision of a system and often required for the
practical implementation of a control law.

Due to the above reasons, the development of models and observers for
interconnected systems is cost-intensive, cumbersome, and prone to error. In
consequence, models and observers are frequently developed under severe sim-
plifications in which the systems’ physics are only roughly approximated, e.g.,
by neglecting important dynamics or nonlinearities. In a wide operating range,
however, these approximations are inadmissible which limits the practical appli-
cability of the obtained models and observers.

To avoid such unjustified simplifications, there are different model derivation
and observer design techniques in the literature. These approaches are outlined
in the next section.

1.2 Literature Context

In the literature, there have been multiple computer-aided methods to handle the
complexity of interconnected systems in the model derivation and observer design.
This section presents a brief overview of these methods. A particular literature
review on methods for the modeling and observation in the framework of port-
Hamiltonian systems (PHSs) can be found in sections 3.1 and 4.1, respectively.
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1.2.1 Model Derivation Methods

Existing methods for a computer-aided derivation of ODE models can be clas-
sified into two groups, viz. data-based methods and physical-based methods.
Data-based methods compute a model based on data originating from the system
or a virtual duplicate. In contrast, in physical-based methods, a model is derived
from knowledge about the physical relations that govern the system. The focus
of this thesis—and therewith of this subsection—is on physical-based methods.

In analytical mechanics, there is a long tradition in the algorithmic derivation
of ODE models. This tradition traces back to the work of Joseph-Louis Lagrange
and Sir William Rowan Hamilton and the formalisms named after them. The
Lagrange and Hamilton formalisms and extensions thereof allow for a unified
energy- and power-based modeling of multi-domain systems (see Jeltsema and
Scherpen [2009]). Despite their prominence, the methods from analytical me-
chanics have received only limited attention in literature for the computer-aided
model derivation in interconnected systems. Two exceptions are the papers of Leu
and Hemati [1986] and Bachovchin and Ilić [2015]. In these papers, the authors
present methods for deriving the dynamic equations of robotic manipulators and
electric power systems, respectively, based on the Lagrange formalism.

Network-based modeling offers another approach to the computer-aided
derivation of ODE models for interconnected systems. The idea of a network-
based modeling is to describe the system under consideration by means of a graph.
In contrast to the methods based on analytical mechanics, there exists extensive
literature on the modeling of interconnected systems with network-based methods.
It is neither in the scope of this section nor the intention to go into the details of
all publications in this field. Instead, the pioneering works, some survey papers,
and a few recent results are highlighted.

The history of network-based modeling ranges back to the work of Kirchhoff
[1847] on electric network theory. The first network-based methods for an ODE
modeling of electric circuits were published in the mid 1960s by Brayton and
Moser [1964] and Chua and Rohrer [1965]. Roberson and Wittenburg [1968]
propose a formalism for the derivation of the dynamic equations of a system
of rigid bodies. The interconnection topology is described by a graph which
is analytically characterized by its incidence matrix. In the mid 1980s, Ceder-
baum [1984] surveyed important applications of network-theory to the modeling,
analysis, and synthesis of electric circuits. A method for the computer-aided
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generation of the equations of motion of planar multibody systems with open
and closed kinematic chains was presented by McPhee [1998]. The method inte-
grates network modeling methods and orthogonal projection methods. Schlacher
et al. [1998] combine a network-based modeling approach with the Lagrangian
framework. Based hereon, the authors propose a method for the computer-aided
modeling of mechatronic systems.

The research activities in the field of a network-based modeling for mechanic,
electric, and mechatronic systems in the years between 2000 and 2016 have
been reviewed by Garziad and Saka [2017]. Dörfler et al. [2018] survey some
recent results how network- and graph-theory informs the modeling, analysis,
and design of electric systems.

Network-based models have an excellent scalability which makes them ap-
pealing for the treatment of interconnected systems. The main limitation of a
network-based modeling approach is the assumption that the vertices and edges
of the system-describing graph represent some pre-defined system components.
This assumption limits the reusability and transferability of the models to other
systems, in particular across different physical domains.

1.2.2 Observer Design Methods

As early as 1966, Luenberger presented a “simple algorithm for computing the
observer” [Luenberger, 1966]. The development of algorithms for the practical
observer design is closely linked to the development of the observer theory as
a whole. Needless to say that a complete review of all algorithmic observer
design methods is outside the scope of this subsection. Instead, it is focused
on approaches which are particularly appealing for a computer-aided observer
design in interconnected systems.

Well-known methods for the computer-aided design of observers date back to
Ackermann [1972] and Kautsky et al. [1985]. The former is implemented in Wol-
fram Mathematica and can be accessed via the command EstimatorGains;
the latter is behind the MATLAB command place. The innovation of the
following decades were strongly influenced by the widespread availability of
technical computing systems and an increasing computational power. These
developments fostered the advent of optimization-based observer design tech-
niques as proposed by Franceschini et al. [1994], Howell and Hedrick [2002],
Ichihara [2007], and Shoukry et al. [2018]. Approaches particularly based on the



1.3. Research Objectives 5

solution of linear matrix inequalities (LMIs) were presented, e.g., by Cho and
Rajamani [1997], Wang et al. [2003], Moreno [2004], and Chen and Saif [2006].
Cheng et al. [1994] and Raghavan and Hedrick [1994] derive an observer design
strategy which is based on the numeric solution of a Riccati equation. Similar,
Edwards and Spurgeon [1994] presented an algorithm for the model-based design
of sliding mode observers which requires the solution of a Lyapunov equation.
Syrmos [1993] provided a computationally efficient observer design framework
based on the transmission zeros of the system. An approach based on orthogonal
transformations was proposed by Laila et al. [2011]. Schweers [2017] presented
a method for a computer-aided design of state estimators. The methods from
Schweers [2017] rely on data-based models of multi-domain systems.

The subsequent section briefly summarizes the insights of the literature review
and states the objectives of this thesis.

1.3 Research Objectives

The modeling of interconnected systems is a cumbersome and time-consuming
task which may involve experts from different engineering domains. The model
derivation using the power- and energy-based methods from analytical mechanics
is a promising approach to overcome these problems (cf. Jeltsema and Scherpen
[2009]). However, a computer-aided model generation with these methods has
received only limited attention in the literature and is, as for now, restricted to a
rather small class of interconnected systems.

On the other hand, many network-based modeling methods allow for an
efficient model derivation. However, these approaches are also limited to partic-
ular classes of systems as, e.g., electric networks, power systems, mechatronic
systems, or multi-body systems.

A unifying computer-aided modeling method which can be applied to a large
class of interconnected systems is lacking in the main literature.

For the computer-aided design of observers for interconnected systems there
exist powerful methods in the literature. A limitation, however, is that these
approaches are based on a purely numerical model of the system. In such a
model, there is hardly any information about the physical structure of the system
to be observed. On the one hand, this limits the reusability of the resulting
observers, e.g., in case of variations of the physical parameters. On the other
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hand, the lack of interpretability hampers the exploitation of physical system
properties for the observer design.

Physical-oriented methods for a computer-aided observer design for intercon-
nected systems have been rarely reported in the literature so far.

The thesis at hand addresses the above research gaps. The idea is to con-
sistently automate the physical-based model derivation and observer design for
interconnected systems. Something that is, to the best of our knowledge, neither
present in the literature nor existing in practice. To this end, this thesis follows a
port-Hamiltonian approach.

Port-Hamiltonian systems theory combines the Lagrangian/Hamiltonian-
based modeling framework with the network-based modeling framework: on
the one hand, PHSs rely on the Lagrangian/Hamiltonian paradigm in which
energy serves as a unifying conserved quantity in different physical domains;
on the other hand, PHSs are build upon the port-based modeling concept which
emphasizes their affinity to the network-based paradigm. The combination of
these two frameworks establishes the advantages of a port-Hamiltonian approach,
four of which are:

i. its scalability to very large interconnected systems;
ii. its inherent ability to treat multi-domain systems;

iii. the deep physical insight provided by port-Hamiltonian models;
iv. the incorporation of nonlinearities while retaining underlying conservation

laws.

For these reasons, port-Hamiltonian systems theory is the ideal methodologi-
cal framework for this thesis. The research objectives—restated in the light of
this methodological approach—are:

(O1) to develop methods for an automated generation of port-Hamiltonian mod-
els for a wide class of interconnected systems,

(O2) to derive methods for an automated design of observers based on the port-
Hamiltonian models obtained from the techniques from O1.
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1.4 Structure and Notation

To ensure orientation and readability, the structure and notation of the remainder
of this thesis are presented here.

Structure Chapter 2 outlines the terminology applied in this thesis and provides
the necessary basics in port-Hamiltonian systems theory. The following three
chapters contain the main contributions of this work. Chapter 3 is devoted to
the development of methods and algorithms for an automated model generation.
Methods and algorithms for an automated observer design are presented in
Chapter 4. Chapter 5 provides a proof of principle and demonstrates the practical
usefulness of the automated model generation and observer design. Finally, the
main conclusions of this work are drawn together in Chapter 6.

Notation Sets, groups, and spaces are written in blackboard bold. The cardinal-
ity of a set M is denoted as |M|. The sets N, R, and C are the sets of natural, real,
and complex numbers, respectively. For the dimension of a vector space X we
write dim(X). The group of n×n orthogonal matrices is given by O(n). Vectors
and matrices are written in bold font. Let AAA ∈ Rm×n be a matrix with m rows and
n columns. For the transpose of AAA we write AAA⊤. Now let m = n. The inverse of AAA
is denoted by AAA−1 (if it exists). Spec(AAA) denotes the spectrum of AAA, i.e., its set
of eigenvalues. AAA ≻ 0 and AAA ⪰ 0 mean that AAA is positive-definite and positive
semi-definite, respectively. A diagonal matrix is denoted by diag(·); likewise,
blkdiag(·) is a block diagonal matrix of matrices. Now let xxx ∈ Rm be a (column)
vector. The Euclidean norm of xxx is denoted as ∥xxx∥. For the kernel, image, and
rank of the linear map xxx 7→ AAAxxx we write ker(AAA), im(AAA), and rank(AAA), respectively.

Throughout this thesis, when using the expressions “we” or “us”, the author
presumes that the readers agree to what he is saying. In particular, these types
of expressions are not intended to imply any personalization of the academic
discourse.





Chapter 2
Fundamentals

The aim of this thesis is to develop automatable port-Hamiltonian methods for the
model derivation and the observer design in interconnected systems. This chapter
provides the fundamentals towards this endeavor. To enable a clear and concise
presentation of the technical contents, Section 2.1 outlines the terminology used
throughout this work. Afterwards, Section 2.2 provides selected fundamentals
in port-Hamiltonian systems theory which are necessary to derive automatable
methods in chapters 3 and 4.

2.1 Terminology

This section is devoted to the definition of some terms of key importance for this
work as, e.g., interconnected system, automated model generation, and automated
observer design.

2.1.1 Interconnected System

Our notion of an interconnected system is guided by the terminology from Willems
[2007]. To approach a formal definition of an interconnected system, we first
introduce the notion of an open graph. The following definition is condensed
from the elaboration of van der Schaft and Maschke [2013].
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Term 2.1 (Open graph)
An open graph is a directed graph G = (V,B) with vertices V and edges B.The set VB ⊂ V is the subset of boundary vertices which represent the inter-faces between the graph system and its environment. The set VI := V \VBcontains the inner vertices of the open graph.

Based on the concept of an open graph, we may now introduce the concept of a
networked system.

Term 2.2 (Networked system)
A networked system Σ is a system which can be described by an open graph
G = (V,B) with V = VI ∪VB and B = BI ∪BB. The elements of VI repre-sent multiple, possibly heterogeneous subsystems of the networked system.The interactions between the subsystems are expressed by the set of inneredges BI := {(u,v) ∈ B | u,v ∈ VI}. The subsystems may interact with thesystem environment via a set of boundary vertices VB. The boundary ver-tices are connected to the inner vertices by a set of boundary edges BB :=
{(u,v) ∈ B | u ∈ VI,v ∈ VB}.

Figure 2.1 illustrates the open graph representation of an exemplary networked
system with nine inner vertices, three boundary vertices, twelve inner edges, and
four boundary edges.

B1

B2 B3

1

2

3

4 5

6

7 8

9

system environment
networked system

Figure 2.1: Example of a networked systemwith nine inner vertices (1, . . . ,9), three boundaryvertices (B1,B2,B3), twelve inner edges, and four boundary edges
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A networked system allows for any kind of interaction between the vertices
of the open graph, e.g., by an exchange of matter, information, or energy. This
thesis will focus on networked systems in which the interactions are established
by an exchange of energy. The exchange of energy between vertices requires the
presence of a physical interconnection between them. This motivates the notion
of an interconnected system [Willems, 2007].

Term 2.3 (Interconnected system)
An interconnected system Σ as a networked system in which the interactionsbetween the vertices are established through an exchange of energy.

In this thesis, we consider continuous-time, finite-dimensional, deterministic in-
terconnected systems. Some well-known examples of such systems are electric
circuits (Kugi [2001]), power systems (Dörfler et al. [2018]), gas networks (Pfeifer
et al. [2018]), district heating networks (Merkert et al. [2019]), interconnected in-
dustrial systems (Gao et al. [2019]), and battery systems (Kupper [2019]). Other
examples are cooperative swarms of drones (Tahir et al. [2019]), automotive
power networks (Mantilla-Pérez et al. [2020]), large-scale mechatronic systems
(Deroo [2016]), and adaptive mechanic structures (Warsewa et al. [2020]).

2.1.2 Automated Model Generation

In order to approach the notion of an automated model generation let us first
clarify the meaning of a mathematical model. The following elaboration is
inspired from Wellstead [1979]:

Term 2.4 (Mathematical model)
Consider a system Σ. A mathematical model is an objective-specific descrip-tion of Σ in the form of mathematical functions and equations deduced fromavailable information about the system.

Next, the term mathematical model is particularized to a physical-based model.

Term 2.5 (Physical-based model)
Consider a system Σ. A physical-based model is a mathematical model of Σdeduced from the physical relations that govern the system.

Unless explicitly stated otherwise, in this work the term model denotes a physical-
based model. We aim at explicit ODE models in a state-space representation.



12 Chapter 2. Fundamentals

Explicit state-space models are particularly appealing for the design, analysis, and
simulation of control systems. The following definition combines the elaborations
from Vidyasagar [1993, p. 1] and van der Schaft [2017, p. 10]:

Term 2.6 (Explicit state-space model)
Consider a system Σ. An explicit state-spacemodel of Σ is amodel of the form

ẋxx(t) = fff (xxx(t),uuu(t), t) , (2.1a)
yyy(t) = ggg(xxx(t),uuu(t), t) , (2.1b)

for all t ∈ R≥0, where uuu(t) ∈ U ⊆ Rp, xxx(t) ∈ X ⊆ Rn, yyy(t) ∈ Y ⊆ Rq and suf-ficiently smooth mappings fff : X×U×R≥0→ X, ggg : X×U×R≥0→ Y. Thequantities uuu(t), xxx(t), and yyy(t) are referred to as input, state, and output of thesystem, respectively; U, X, and Y are denoted as input-space, state-space,and output-space, respectively.
Remark 2.7 (Notation). In the remainder of this thesis, the time-dependence“(t)” of vectors is omitted in the notation.

For interconnected systems, one distinguishes between global models and
local models. A global model of an interconnected system Σ is a model compris-
ing the entire open graph G = (V,B). In contrast, a local model is defined only
on a connected subgraph G̃ ⊂ G . Moreover, we distinguish between a symbolic
and a numeric model. In a symbolic model, the functions fff and ggg from (2.1)
depend (besides on xxx, uuu, and t) on the physical system parameters in symbolic
form as, e.g., a resistance R, a mass m, etc.; in contrast, in a numeric model, the
physical parameters are numerically specified, e.g., by information from data
sheets or parameter identification techniques. Hence, such a model is—except
for the variables uuu, xxx, and yyy—completely numerically determined.

Now we have everything prepared to introduce a term of key importance for
this thesis, viz. automated model generation.

Term 2.8 (Automated model generation)
Automated model generation describes the computer-aided derivation of aphysical-based explicit state-space model with minimal human assistance.
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The modeling of interconnected systems may easily involve hundreds of
equations. In Chapter 5, we examine two examples for this. For a human
developer, dealing with such a number of equations is cumbersome and prone to
error. Hence, this work particularly aims at automating the formalization step of
the model derivation, i.e., the “equation deriving part”.

2.1.3 Automated Observer Design

Observer theory is an important topic in systems and control theory. The observer
concept traces back to Luenberger [1964]. The following conception of an
observer is taken from Trumpf et al. [2011]:

Term 2.9 (Observer)
Given a system Σ whose variables can be partitioned into a set of knownor measured variables and a set of unknown variables to be reconstructed.An observer for Σ is a deterministic dynamic system which produces recon-structions of the unknown variables on the basis of the known or measuredvariables.

We aim at “asymptotic observers” (Trumpf [2013]), i.e., observers where the
reconstructions asymptotically converge towards the values of the unknown vari-
ables. If the Euclidean norm of the reconstruction error converges exponentially to
zero, the observer is called exponentially convergent (cf. Khalil [2002, Def. 4.5]).
Moreover, we distinguish between two observer architectures, viz. a centralized
and a distributed observer architecture (cf. Kupper [2019, Def. 2.5]). Given an
interconnected system Σ, in a centralized architecture, there is a single observer
which receives information from all measurement sources to calculate reconstruc-
tions of all unknown variables from Σ. In contrast, in a distributed architecture,
there is a dedicated observer for each subsystem of Σ. In each observer, the
available measurement information and the variables to be reconstructed are local
with respect to the subsystem.

Next, let us clarify the terms observer design and model-based observer
design.

Term 2.10 (Observer design)
Observer design refers to the process of specifying the parameters of an ob-server.
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Term 2.11 (Model-based observer design)
Model-based observer design is an observer design which is based on amath-ematical model of the system under consideration.

This thesis focuses on an observer design on the basis of physical-based explicit
state-space models. Such an observer design can rely either on global or local
model knowledge (cf. Deroo [2016]). The latter is of particular interest for the
design of a distributed observer.

A model-based observer design can rely either on a symbolic or a numeric
model. Accordingly, these two cases are denoted as symbolic and numeric
observer design, respectively. The former leads to an observer in which the
observer parameters depend on the physical parameters in symbolic form; the
latter results in observer parameters that are completely numerically specified.
A symbolic observer design has two advantages over a numeric observer design.
First, a symbolic design provides more insight into the physical background
of the observer parameters. In Chapter 4, it will be shown that this insight
allows us to use the physical properties of the system beneficially for the observer
design. Second, a symbolic observer design enables the reusability of the resulting
observer, e.g., in case of parameter variations. A drawback of a symbolic observer
design is that it may lead to computationally expensive operations on large
symbolic expressions. Both, symbolic and numeric observer designs, are in the
scope of this thesis.

Next, let us introduce a notion of major importance for this work, viz. auto-
mated observer design.

Term 2.12 (Automated observer design)
Automated observer design refers to a computer-aidedmodel-based observerdesign with minimal human assistance.

The following example motivates the practical usefulness of an automated ob-
server design:

Example 2.13:
Power systems are well-known examples of interconnected systems. Stateestimation techniques are crucial for the operation of a power system. Thestate estimators applied in nowadays control centers are static. Recently, anIEEE taskforce pointed out that in consequence of the energy transition, astatic state estimation is increasingly inadequate and “should be reassessed
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and enhanced with new monitoring tools, such as dynamic state estima-tion” [Zhao et al., 2019]. However, the extent of a power system with hun-dred and more inputs, states, and outputs significantly hampers the designof a dynamic state estimator. An automated observer design can overcomethis problem—as will be seen in Section 5.2.
2.2 Port-Hamiltonian Systems

This section provides some fundamentals in port-Hamiltonian systems theory
which are necessary for the development of automatable modeling and observer
design methods in chapters 3 and 4, respectively.

In Subsection 2.2.1, we briefly recapitulate the notion of generalized power
variables. Afterwards, Subsection 2.2.2 introduces the concept of a Dirac struc-
ture. The focus of this thesis is on explicit state-space models in form of input-
state-output PHSs. This particular class of PHSs is introduced in Subsection 2.2.3.

2.2.1 Generalized Power Variables

PHSs follow the power- and energy-based concept of the Lagrangian/Hamiltonian
modeling paradigm. A thorough introduction into this concept can be found,
e.g., in Breedveld [2009], Jeltsema and Scherpen [2009], and in the ageless book
authored by Wellstead [1979].

The core idea of an energy-based modeling is to use energy as universally,
domain-independent conserved quantity. The interaction between two elements,
subsystems, systems, etc. is coupled to an exchange of energy, i.e., E =

∫
Pdt.

The power P is described by two time-dependent, generalized power variables,
viz. a flow fff ∈ F and an effort eee ∈ E with F an abstract finite-dimensional vector
space and E its dual vector space E := F∗.The exchanged instantaneous power is
given by the dual pairing P = ⟨eee | fff ⟩.

The generalized variables have straightforward correspondences to system
variables from different physical domains. Table 2.1 summarizes the correspon-
dences between the generalized variables and the domain-specific variables for
the electric, magnetic, mechanic, hydraulic, thermal, and chemical domain.

This thesis makes use of a correspondence scheme which is known as thermo-
dynamic framework of domains and variables [Breedveld, 2009, p. 24]. In this
framework, the generalized state xxx is defined as the integral of the generalized
flow over time, i.e., xxx :=

∫
fff dt, see Table 2.1. Moreover, note that for each domain

the product of the flow- and the effort-related variable has the unit of power.
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Table 2.1: Correspondences between generalized variables and physical variables in the ther-modynamic framework of domains and variables (cf. Breedveld [2009, p. 24])
f flow e effort x state

electric I current V voltage Q charge
magnetic V voltage I current ψ flux linkage
kinetic translation F force v velocity p momentum
potential translation v velocity F force z displacement
kinetic rotation T torque ω angular velocity b angular momentum
potential rotation ω angular velocity T torque θ angular displacement
elastic hydraulic φ volume flow p pressure Λ volume
kinetic hydraulic p pressure φ volume flow Γ momentum of a fluid
thermal fS entropy flow T temperature S entropy
chemical fN molar flow µ chemical potential N number of moles

The following example illustrates how the concept of generalized power
variables contributes to a unified modeling of physical systems. The example will
be successively applied in this chapter.

Example 2.14:
Consider the electromagnetic, mechanic, and hydraulic systems in Fig-ure 2.2 (a), (b), and (c), respectively. The systems are structured as follows:
◦ The electromagnetic system consists of a current source feeding a cur-rent I0, an inductor L, a resistor R, and two capacitorsC1 andC2.
◦ The mechanic system is composed of a Hookean spring with stiffness

k, a damper with damping constant b, and two masses m1 and m2; anexternal force F0 acts on the mass m1.
◦ The hydraulic system consists of a pump providing a volume flow φ0and two open tanks with fluid capacitances Cf,1 and Cf,2;1 the twotanks are connected through a pipe with fluid inertance Lf and fluidresistance Rf.
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(b)

m1 m2

k bF0

FM,1
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FM,2
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(c)

Lf Rf

Cf,1 Cf,2

pT,1 pT,2

p0

pL pR

φ0 φL φR

φT,1 φT,2pT,1

Figure 2.2: Systems in the electromagnetic (a), mechanic (b), and hydraulic domain (c)

Let us introduce the generalized power variables as follows:

fC,1 fC,2 fC,3 fR f0 eC,1 eC,2 eC,3 eR e0

(a) electromagnetic IC,1 IC,2 VL IR I0 VC,1 VC,2 IL VR V0

(b) mechanic FM,1 FM,2 vS FD F0 vM,1 vM,2 FS vD v0

(c) hydraulic φT,1 φT,2 pL φR φ0 pT,1 pT,2 φL pR p0
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Under these correspondences the systems from Figure 2.2 (a), (b), and (c)obey the same network equations:

f0− fC,1− eC,3 = 0, (2.2a)
e0− fC,3− eR− eC,2 = 0, (2.2b)

eC,3− fR = 0, (2.2c)
fR− fC,2 = 0, (2.2d)
e0− eC,1 = 0. (2.2e)

2.2.2 Dirac Structures

The notion of a Dirac structure is of central importance for the port-Hamiltonian
framework. The Dirac structure establishes the link between the Lagrangian/Hamil-
tonian and the network-based point of view. It describes the network intercon-
nections in form of a power-conserving, geometric structure. Therewith, the
Dirac structure generalizes the symplectic geometry of the phase-space from the
classical Hamiltonian equations of motion [van der Schaft, 2009, p. 74]. The
power-conservation is ensured by relating generalized power variables fff and eee in
such a way that the total power entering (or leaving) the Dirac structure is zero.

In Chapter 3, the determination of a Dirac structure will be the enabling step
for an automated model generation. A detailed introduction into the concept of a
Dirac structure can be found in Bloch and Crouch [1999] and van der Schaft and
Jeltsema [2014]. The following definition is taken from the latter:

1The fluid capacitances Cf,i can be calculated as Cf,i = Ai/(ρg), where Ai is the cross-sectional area
of tank i, ρ the mass density of the (incompressible) fluid, and g the gravitational constant (i = 1,2).
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Definition 2.15 (Dirac structure)
Consider the flows fff ∈ F and the efforts eee ∈ E = F∗ where F is an abstractfinite-dimensional vector space. A constant Dirac structure is a subspaceD⊂
F×E such that

(i) ⟨eee | fff ⟩= 0, ∀( fff ,eee) ∈ D, (2.3a)
(ii) dimD= dimF. (2.3b)

Property (i) represents the power-conservation of the Dirac structure. The maxi-
mal dimension of any subspace D⊂ F×E satisfying property (i) is dimF [van
der Schaft, 2009, p. 56]. Hence, property (ii) requires D to be of maximal
dimension.

The following definition extends Definition 2.15 to the situation where a Dirac
structure is modulated by a state vector xxx ∈ X:

Definition 2.16 (Modulated Dirac structure)
Amodulated Dirac structure is a family of constant Dirac structuresD(xxx)⊂
F×E indexed over xxx ∈ X.
Remark 2.17 (Real vector spaces). Throughout this thesis we have F=Rn.As E= (Rn)∗ is isomorphic to Rn, we identify E with Rn.

Definitions 2.15 and 2.16 are coordinate-free. For the practical work, matrix
representations of Dirac structures are of paramount importance. The following
definition presents two matrix representations, viz. the kernel representation and
the input-output representation.

Definition 2.18 (Kernel representation)
A kernel representation of a modulated Dirac structureD(xxx)⊂Rn×Rn with
xxx ∈ X is

D(xxx) = {( fff ,eee) ∈ Rn×Rn | FFF (xxx) fff +EEE (xxx)eee = 000}, (2.4)
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where the matrices FFF (xxx) and EEE (xxx) satisfy

(i) EEE (xxx)FFF⊤(xxx)+FFF (xxx)EEE⊤(xxx) = 000, (2.5a)
(ii) rank(FFF (xxx) EEE (xxx)) = n, (2.5b)

for all xxx ∈ X. The power balance of (2.4) is
eee⊤ fff = 0, ∀( fff ,eee) ∈ D(xxx) . (2.6)

Remark 2.19 (Uniqueness of the kernel representation). Thematrices FFF (xxx)and EEE (xxx) are not uniquely determined by the kernel representation. Forexample, both matrices can be multiplied from the left by an arbitrary in-vertible matrix TTT (xxx) without changing D.
Proposition 2.20 (Input-output representation)
Let D(xxx)⊂ Rn×Rn with xxx ∈ X be a Dirac structure in kernel representation.Let rank(FFF (xxx)) = m (≤ n). We select m independent columns of FFF (xxx) andgroup them into amatrixFFF1 (xxx). The remaining n−m columns are collected inamatrixFFF2 (xxx). Possibly after permutations, wewriteFFF (xxx)= (FFF1 (xxx) FFF2 (xxx)).
Correspondingly, we split EEE (xxx), fff , and eee into (EEE1 (xxx) EEE2 (xxx)), ( fff⊤1 fff⊤2

)⊤, and
(
eee⊤1 eee⊤2

)⊤, respectively. Then, the matrix (FFF1 (xxx) EEE2 (xxx)) is invertible for all
xxx ∈ X and an input-output representation of D(xxx) is given by

D(xxx) = {( fff ,eee) ∈ Rn×Rn | yyy = ZZZ (xxx)uuu} (2.7)
with

ZZZ (xxx) =−(FFF1 (xxx) EEE2 (xxx))
−1(EEE1 (xxx) FFF2 (xxx)) . (2.8)

The matrix ZZZ (xxx) satisfies ZZZ (xxx) = −ZZZ (xxx)⊤ for all xxx ∈ X. The vectors uuu =

(eee⊤1 fff⊤2 )
⊤ and yyy = ( fff⊤1 eee⊤2 )

⊤ are referred to as input vector and output vector,respectively. The power balance of (2.7) is
uuu⊤yyy = eee⊤1 fff 1 + fff⊤2 eee2 = 0, ∀(

(
fff 1
fff 2

)
,

(
eee1

eee2

)
) ∈ D(xxx) . (2.9)
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Proof:
Bloch and Crouch [1999] prove this statement for a constant Dirac structure, i.e.,
the case where FFF (xxx) = FFF = const., EEE (xxx) = EEE = const.; the pointwise applica-
tion of the proof from Bloch and Crouch [1999] then proves the statement in
Proposition 2.20.

Remark 2.21 (Implicit and explicit representations). Due to the structure ofthe equation systems, the kernel representation (2.4) and the input-outputrepresentation (2.7) are denoted as implicit and explicit representations,respectively.
In the following, we continue with the example to illustrate the kernel and the

input-output representation of a Dirac structure.

Example 2.22:
Consider the three systems from Example 2.14. By rearranging the net-work equations (2.2), the internal interconnection structure of each of thesystems can be described by a Dirac structure in kernel representation (2.4):

D= {(




fC,1

fC,2

fC,3

fR

f0



,




eC,1

eC,2

eC,3

eR

e0



) ∈ R5×R5 |




−1 0 0 0 −1
0 0 1 0 0
1 0 0 1 1
1 1 0 0 1
0 0 0 0 0







− fC,1

− fC,2

− fC,3

− fR

f0



+




0 0 1 0 0
0 −1 0 −1 1
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 1







eC,1

eC,2

eC,3

eR

e0




=




0
0
0
0
0



}. (2.10)
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It can be easily verified that the matrices in (2.10) satisfy the condi-tions (2.5). An input-output representation of (2.10) is given by

D= {(




fC,1

fC,2

fC,3

fR

f0



,




eC,1

eC,2

eC,3

eR

e0



) ∈ R5×R5 |




− fC,1

− fC,2

− fC,3

− fR

e0




=




0 0 1 0 −1
0 0 −1 0 0
−1 1 0 1 0
0 0 −1 0 0
1 0 0 0 0







eC,1

eC,2

eC,3

eR

f0



}. (2.11)

Note that the equation systems in (2.10) and (2.11) are equivalent to (2.2).The division of the matrix in (2.11) into matrix blocks will be relevant in thefollowing chapter.
Example 2.22 gives a first hint that the matrix representations of a Dirac

structure can be derived from the network equations of the system. The structured
derivation of such representations is a central aspect of Chapter 3.

2.2.3 Input-State-Output Port-Hamiltonian Systems

In this thesis, we consider the class of explicit input-state-output PHSs. This is
a particularly important class of PHSs as it represents the starting point for the
majority of controller and observer design methods from the port-Hamiltonian
theory, see, e.g., Ortega et al. [2008], Venkatraman and van der Schaft [2010],
Vincent et al. [2016], van der Schaft [2017], Yaghmaei and Yazdanpanah [2019b].

Explicit input-state-output PHSs have first been introduced in the 1990s;
amongst others, pioneering works are from Maschke and van der Schaft [1992],
Maschke et al. [1992], and van der Schaft and Maschke [1995]. Kugi [2001] was
the first to use this system class to solve practical control engineering problems.
Comprehensive information about the theoretical background of explicit input-
state-output PHSs can be found in the textbooks from Duindam et al. [2009],
van der Schaft and Jeltsema [2014], and van der Schaft [2017]. The following
definition is based on the latter:
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Definition 2.23 (Explicit input-state-output PHS with feedthrough)
Anexplicit input-state-output PHSwith feedthrough is an explicit state-spacemodel of the form

ẋxx = (JJJ (xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+(GGG(xxx)−PPP(xxx))uuu, (2.12a)
yyy = (GGG(xxx)+PPP(xxx))⊤

∂H
∂xxx

(xxx)+(MMM (xxx)+SSS (xxx))uuu, (2.12b)

where xxx ∈ X ⊆ Rn, uuu ∈ U ⊆ Rp, and yyy ∈ Y ⊆ Rp are the state vector, theinput vector, and the output vector, respectively. The Hamiltonian H is acontinuously differentiable function with H : X→ R that is bounded frombelow. The matrices JJJ (xxx), RRR(xxx) ∈ Rn×n, GGG(xxx), PPP(xxx) ∈ Rn×p, MMM (xxx), SSS (xxx) ∈
Rp×p satisfy JJJ (xxx) =−JJJ⊤(xxx), MMM (xxx) =−MMM⊤(xxx), and

ΘΘΘ(xxx) :=
(

RRR(xxx) PPP(xxx)
PPP⊤(xxx) SSS (xxx)

)
=

(
RRR(xxx) PPP(xxx)

PPP⊤(xxx) SSS (xxx)

)⊤
⪰ 0, ∀xxx ∈ X. (2.13)

In the remainder of this work, the class of explicit input-state-output PHSs is
briefly denoted as explicit PHSs. The matrices, functions, and vectors in (2.12)
allow for a deep physical interpretation which is an essential advantage of an ex-
plicit PHS over an ordinary state-space representation: the matrix JJJ (xxx) represents
the internal energy-preserving interconnection in the system; RRR(xxx) accounts for
energy-dissipating effects; GGG(xxx), PPP(xxx), MMM (xxx), and SSS (xxx) specify the interaction
between the system and its environment via the system ports. The Hamiltonian
H is a storage function which is strongly related to the total energy contained
in the system. The instantaneous power exchange between the system and its
environment is given by uuu⊤yyy.

A limitation of explicit PHSs is given for systems with irreversible thermo-
dynamic processes. For such systems, the energy function is defined implicitly
as a Legendre submanifold of the thermodynamic phase-space [Arnold, 1989,
Appendix 4]. This implicit definition of the energy function impedes an explicit
modeling.

In the sequel, we turn our attention to a well-known special case of (2.12),
viz. to explicit PHSs without feedthrough.
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Definition 2.24 (Explicit PHS without feedthrough)
An explicit input-state-output PHS without feedthrough is an explicit state-space model of the form

ẋxx = (JJJ(xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+GGG(xxx)uuu, (2.14a)
yyy = GGG⊤ (xxx)

∂H
∂xxx

(xxx), (2.14b)

where xxx, uuu, yyy, andH as inDefinition2.23and JJJ (xxx)=−JJJ⊤(xxx),RRR(xxx)=RRR⊤(xxx)⪰
0.

The PHS (2.14) is particularly transparent with respect to the underlying Dirac
structure. The input-output representation of the Dirac structure (cf. Proposi-
tion 2.20) is specified by the skew-symmetric matrix

ZZZ (xxx) =



−JJJ (xxx) −GGGR (xxx) −GGG(xxx)
GGG⊤R (xxx) 000 000
GGG⊤(xxx) 000 000


 . (2.15)

Hence, in the non-feedthrough case, the matrices JJJ (xxx) and GGG(xxx) of the PHS (2.14)
can directly be determined from the Dirac structure. Likewise, the matrix RRR(xxx) re-
sults from RRR(xxx) = GGGR (xxx) R̃RR(xxx)GGG⊤R (xxx) for some resistive relation fff R =−R̃RR(xxx)eeeR

with R̃RR(xxx) = R̃RR⊤ (xxx)⪰ 0. Our successive example illustrates the formulation of
an explicit PHS based on a Dirac structure.

Example 2.25:
Consider the three systems from Example 2.14. The energy-dissipatingelements of the three systems obey a linear resistive relation of the form
fR = −DeR where D = 1/R, D = b, and D = 1/Rf for the electromagnetic,mechanic, and hydraulic system, respectively. From the resistive relation
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and the Dirac structure (2.11) we can calculate the following explicit PHS:

d
dt




x1

x2

x3


= (




0 0 −1
0 0 1
1 −1 0


−




0 0 0
0 0 0
0 0 D−1


)

∂H
∂xxx

(xxx)+




1
0
0


u, (2.16a)

y =
(
1 0 0

) ∂H
∂xxx

(xxx) . (2.16b)

The states in (2.16) correspond to the generalized states of the energy-storing elements of the systems. For the electromagnetic system, the states
x1 and x2 are given by the charges Q1 and Q2 on the capacitors C1 and C2,respectively; the state x3 relates to the flux linkage of the inductor L. Theinput and output of the model are given by the current I0 and the voltageV0,respectively. For the mechanic and hydraulic systems, one can draw similarcorrespondences as summarized in the following table:

state x1 state x2 state x3 input u output y

(a) electromag. charge Q1 charge Q2 flux linkage ψ current I0 voltage V0

(b) mechanic momentum p1 momentum p2 displacement z0 force F0 velocity v0

(c) hydraulic volume Λ1 volume Λ2 momentum Γ volume flow φ0 pressure p0

The Hamiltonian in (2.16) is the sum of the energies of the individualenergy-storing elements and can be expressed as

H (xxx) =
1
2

xxx⊤




q1 0 0
0 q2 0
0 0 q3


xxx, (2.17)

where q1, q2, q3 are equal to C−1
1 , C−1

2 , L−1 for the electromagnetic system;
m−1

1 , m−1
2 , k for the mechanic system; and C−1

f,1 , C−1
f,2 , L−1

f for the hydraulicsystem.
The previous example shows that PHSs can be used to model systems from

different domains in a unifying framework. The three systems are form equivalent
and lead to structurally identical port-Hamiltonian models. This, however, is an
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absolute special case. In general, different systems will lead to port-Hamiltonian
models of different structures.

Example 2.25 illustrates that a PHS preserves the underlying physical structure
of the system and therewith allows for a deep physical insight. Moreover, we
have seen that a port-Hamiltonian modeling approach differentiates between
the network model and the constitutive relations of the components. The Dirac
structure is the connecting element as it links the generalized port variables to the
constitutive relations of the components connected to the ports. This gives the
port-Hamiltonian approach a high degree of modularity.

Another advantageous property of explicit PHSs is that they are inherently
passive.

Proposition 2.26 (Passivity of explicit PHSs)
The explicit PHS fromDefinition 2.23 is passive. Moreover, if thematrixΘΘΘ(xxx)in (2.13) is positive-definite for all xxx ∈ X, the PHS is strictly passive.

Proof:
The proof can be found in Appendix A.1.

Remark 2.27 (Passivity of non-feedthrough PHSs). The claim from Propo-sition 2.26 applies also for the PHS from Definition 2.24. For strict passiv-ity, the requirement of positive definiteness in (2.13) simplifies to RRR(xxx) =
RRR⊤(xxx)≻ 0 for all xxx ∈ X.

The inherent passivity of PHSs facilitates the use of this system class for
passivity-based control design techniques [van der Schaft, 2017]. In Chapter 4,
the passivity of PHSs will be exploited for the automated model-based design of
observers.

Another noteworthy property of an explicit PHS is that the system output yyy
is determined mainly on the basis of physical considerations, cf. Example 2.25.
Hence, in general, the output variables are different from the measured variables.2

This will also be taken into account in Chapter 4.

This concludes the fundamentals chapter. Based on this groundwork, we
will develop port-Hamiltonian methods for an automated model generation and
observer design in the following two chapters.

2An exception in which the output variables coincide with the measurement variables is given for a
collocated actuator/sensor configuration.



Chapter 3
Automated Model Generation

This chapter addresses the development of methods for an automated generation
of explicit port-Hamiltonian models for interconnected systems. First, in Sec-
tion 3.1 we review the techniques that are available in the literature for describing
an interconnected systems as a PHS. We will identify a research gap in which ex-
isting methods suffer from different shortcomings impeding an automated model
generation. Based on this research gap the aims of this chapter are formulated.
Section 3.2 addresses these aims by deriving new methods for the modeling of
interconnected systems as PHSs. These methods constitute algorithms which
allow for the automated generation of explicit PHSs. The results from Section 3.2
will be discussed in Section 3.3. The chapter ends with a brief summary of the
main insights in Section 3.4.

3.1 Literature Review

There have been different approaches for the derivation of port-Hamiltonian
models of interconnected systems. The basic idea of these approaches is to
formulate a PHS by describing the topological structure of the system as a graph.
The available methods from the literature are detailed in the sequel.

A pioneering work on the graph-based derivation of PHSs stems from Kugi
[2001]. The author describes electromagnetic systems as directed graphs. Based
on the graph description, a method for the structured derivation of an explicit
port-Hamiltonian model is proposed. Another milestone in this field stems from
van der Schaft and Maschke [2013]. The authors describe various interconnected
systems as open directed graphs. Based on the directed graphs, explicit port-
Hamiltonian models are obtained. Fiaz et al. [2013] take up the idea from van
der Schaft and Maschke [2013] and propose a systematic framework for the port-
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Hamiltonian modeling of power networks. Circuit graphs are used by Falaize
and Hélie [2016] to derive port-Hamiltonian models of analog circuits. The
method from Falaize and Hélie [2016] has been implemented in a Python tool to
enable an automated model generation of differential-algebraic equation (DAE)
models, see Falaize and Hélie [2019]. Another graph approach is proposed by
Scheuermann et al. [2020]. The authors use solid graphs to derive discrete-time
port-Hamiltonian models for the heat transfer in metallic foams. A graph-based
port-Hamiltonian model for adaptive mechanic structures has been presented by
Warsewa et al. [2020]. Gernandt et al. [2021] derive a method for a graph-based
modeling of nonlinear electrical circuits as implicit PHSs.

The above graph-based approaches are easy to automate and allow for a time-
efficient modeling of different classes of interconnected systems. However, as
pointed out in the conclusion of van der Schaft and Maschke [2013], approaches
based on classical graphs are limited to conservation or balance laws within
a particular physical domain. This is emphasized by the fact that each of the
above-mentioned graph-based modeling techniques aims at a special class of
interconnected systems. Hence, these approaches cannot be applied for a wide
class of interconnected systems. In particular, they disallow for a treatment of
multi-domain systems.

The bond graph methodology is a promising framework to overcome the
limitations imposed by classical graph approaches [van der Schaft and Maschke,
2013]. Bond graphs are a domain-neutral graphical representation of physically
networked systems. By this, bond graphs are an ideal starting point for the mod-
eling of a large class of interconnected systems involving the electric, mechanic,
hydraulic, thermal, and chemical domains [Breedveld, 2009, p. 24]. The bond
graph concept was devised by Paynter [1961] and refined by Karnopp, Rosenberg,
and others. For a thorough introduction into the bond graph framework refer to
Borutzky [2010] or Karnopp et al. [2012]. For the derivation of a PHS, bond
graphs are particularly appealing as both—bond graphs and PHSs—share the
same physically unifying power- and energy-based modeling paradigm.

Rosenberg [1971] was the first to systematically derive a state-space formula-
tion of bond graphs. The method is based on a mathematical representation of the
bond-graph referred to as field representation. The formulation of a bond graph
as a PHS was first investigated by Golo et al. [2003]. The authors show that each
well-posed bond graph permits an implicit port-Hamiltonian formulation. Such
an implicit PHS aims at a use in numerical simulations. For the design of port-
Hamiltonian control methods, however, an explicit PHS is required. The transfer
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from an implicit to an explicit port-Hamiltonian representation is non-trivial. In
particular, as will be seen later, the existence of an explicit port-Hamiltonian for-
mulation of a bond graph is not guaranteed, even if the bond graph is well-posed.
Lopes [2016] addresses the formulation of a bond graph as differential-algebraic
PHS. It has been shown that such a differential-algebraic PHS can possibly be
transferred into an explicit input-state-output PHS [Lopes, 2016]. Concerning
this transfer, there exists a sufficient condition which, however, is restrictive as
it demands some block matrices of the underlying Dirac structure to be zero. A
necessary condition for the existence of an explicit port-Hamiltonian formulation
of a bond graph is missing in the literature. Donaire and Junco [2009] provide a
method transferring a class of causal bond graphs to an explicit input-state-output
PHS. The approach is restricted to non-feedthrough systems. As with Rosenberg
[1971], the starting point of Donaire and Junco [2009] is a bond graph field
representation. In the field representation, the authors assume some of the block
matrices to be constant or zero. Dai [2016] proposes a concept for formulating
bond graphs as simulation models with port-Hamiltonian dynamics. However,
the models are not formulated as input-state-output PHSs and are restricted to a
use in numerical simulations.

As can be seen from the above, bond graphs are a promising starting point
for the generation of port-Hamiltonian models. Nevertheless, the automated
explicit port-Hamiltonian formulation of bond graphs has only been treated for
various special cases in literature so far. Lopes [2016] and Donaire and Junco
[2009] address this topic but are restricted to particular classes of bond graphs.
Moreover, the literature lacks necessary conditions for the existence of an explicit
port-Hamiltonian formulation of bond graphs. The results of Lopes [2016] sug-
gest that an automated generation of port-Hamiltonian models from bond graphs
is possible. However, a specific method which can be fully automated is missing.

The remainder of this chapter addresses the automated generation of explicit
port-Hamiltonian models from bond graphs. The specific aims are:

(i) to provide methods for the automated generation of an explicit port-Hamil-
tonian model (2.12) based on bond graphs,

(ii) to derive necessary and sufficient conditions for the existence of the models
in (i),

(iii) to implement the results from (i) and (ii) in algorithms that enable an
automated generation of explicit PHSs for a large class of interconnected
systems.
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3.2 Main Results

The previous section stated the aims of this chapter. This section presents the
the main results to reach these aims. Subsection 3.2.1 first present the solution
strategy. Afterwards, subsections 3.2.2 to 3.2.6 follow a stepwise procedure
which will lead to the main results to be presented in subsections 3.2.7 and 3.2.8.
The results from this research have been reported by Pfeifer et al. [2019b], Pfeifer
et al. [2020a], Pfeifer et al. [2020b].

3.2.1 Basic Idea and Notation

PHSs and bond graphs are related by their port- and energy-based foundations.
The leading idea of the following subsections is to exploit this relationship to a
high degree. To this end, we strictly distinguish between balance equations and
constitutive relations. The former are described by means of a Dirac structure.
Transferring this Dirac structure from an implicit to an explicit representation
will be the crucial step on the way to an explicit PHS.

The structure of the approach is depicted in Figure 3.1. Subsection 3.2.2
initially presents a formal description of a bond graph. The formalized bond
graph builds the basis for an algorithmic implementation of the developed meth-
ods. In Subsection 3.2.3, the power-conserving, energy-routing elements of the
bond graph are described by a set of Dirac structures in implicit form. The
set of Dirac structures is composed into one single Dirac structure in Subsec-
tion 3.2.4. In Subsection 3.2.5, we transfer the composite Dirac structure from
an implicit to an explicit representation. Based on the constitutive relations of
storages and resistors from Subsection 3.2.2 and the explicit form of the Dirac
structure, an explicit port-Hamiltonian formulation of a bond graph is derived in
Subsection 3.2.6. Subsection 3.2.7 summarizes the insights from the previous
sections in a theorem and a corresponding algorithm. Subsection 3.2.8 refines
the result from Subsection 3.2.7 for a case of particular practical interest, viz. for
bond graphs containing dependent storages.

This section makes use the following notation. Let G = (V,B) be a directed
graph. G is weakly connected if replacing its directed edges with undirected
edges yields a connected (undirected) graph. The set

B(u) := {(v,u),(u,v) ∈ B | v ∈ V} (3.1)
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Formalized
bond graph
(Subsec. 3.2.2)

Set of Dirac
structures
(implicit form)

Single Dirac
structure
(implicit form)

Single Dirac
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Hamiltonian
model

Subsec. 3.2.3 Subsec. 3.2.4 Subsec. 3.2.5 Subsec. 3.2.6

Subsec. 3.2.6 Subsec. 3.2.7

Figure 3.1: Structure of the approach for an automated generation of explicit PHSs frombond graphs

with M(u) := |B(u)| contains all incident edges at u ∈ V. The sets

←−
B (u) := {(v,u) ∈ B | v ∈ V}, (3.2a)
−→
B (u) := {(u,v) ∈ B | v ∈ V} (3.2b)

are the ingoing and outgoing edges at u ∈ V, respectively. Moreover, let M be
a set of indices. For each i ∈M, let AAAi ∈ Rn×mi be a matrix with n rows and mi

columns. For the horizontal concatenation of all AAAi we write (AAAi) and append
“for all i ∈M”. Further, for each i ∈M, suppose a (column) vector xxxi ∈ Rn. For
the vertical concatenation of all xxxi we write (xxxi) and append “for all i ∈M”.

3.2.2 Bond Graph Formalization

Let us consider K-dimensional bond graphs (K ∈ N≥1) in the generalized bond
graph framework1 with the following types of elements: storages (C), modu-
lated resistors (R), sources of flow (Sf), sources of effort (Se), 0-junctions (0),
1-junctions (1), modulated transformers (TF) and modulated gyrators (GY). Fig-
ure 3.2 illustrates the graphical representations of the different types of elements.
The set

E := {C,R,Sf,Se,0,1,TF,GY} (3.3)
collects the different types of elements. We now describe the topology of a bond
graph by a directed graph. For each α ∈ E, let us define a set Vα of cardinality

1In contrast to the standard bond graph framework, the generalized bond graph framework comprises
only one type of storage elements, viz. C-type storages [Breedveld, 2009, p. 24].
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Sf Se

C R 0

1

GY

TF

. . .

. . .

Figure 3.2: Graphical representation of different types of bond graph elements

Nα := |Vα | which contains all elements of type α . Elements of type C, R, Sf, Se
are denoted as exterior elements; elements of type 0, 1, TF, GY are referred to as
interior elements. The sets of exterior and interior elements are defined as

VE := VC∪VR∪VSf∪VSe, NE := |VE|, (3.4a)
VI := V0∪V1∪VTF∪VGY, NI := |VI|, (3.4b)

respectively. The union V := ∪α∈EVα = ∪α∈{E,I}Vα is the set of all bond graph
elements (N := |V|). The N elements of V are connected by a set B of M bonds,
i.e., M := |B|. Each bond j ∈B carries a flow fff j ∈RK and an effort eee j ∈

(
RK
)∗.2

The directed graph G = (V,B) describes the topology of the bond graph.
Analogous to the naming of elements, we define sets of exterior and interior
bonds:

BE := {(u,v),(v,u) ∈ B | v ∈ VE,u ∈ VI}, ME := |BE|, (3.5a)
BI := {(u,v) ∈ B | u,v ∈ VI}, MI := |BI|. (3.5b)

The set BE contains bonds which connect an exterior element to an interior
element; BI contains bonds which connect two interior elements with each other.3

We consider bond graphs that are non-degenerate, i.e., bond graphs where G =

(V,B) is weakly connected, and where each exterior element is connected by
exactly one bond to one interior element, i.e., for each v ∈VE we have V(v)⊂VI

2As
(
RK
)∗ is isomorphic to RK it is identified with RK .

3Without loss of generality we exclude the presence of bonds interlinking two exterior elements.
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with |B(v)| = 1 and |V(v)| = 1. Moreover, we use the bond orientation rules
from standard bond graph literature [Borutzky, 2010, p. 59] in which bonds
are incoming to storages and resistors and outgoing from sources of flow and
effort. Without loss of generality, we assume each transformer and each gyrator
to have exactly one incoming and exactly one outgoing bond in order to enable
an unambiguous definition of transformer and gyrator ratios.

Next, we define and analyze an essential part of the bond graph, viz. the
junction structure.

Definition 3.1 (Junction structure)
The junction structure of a bond graph is the subgraph GI ⊂ G with GI =

(VI,BI).
Property 3.2 (Bond graph properties)
From the properties of a non-degenerate bond graph, it follows: GI is weaklyconnected, B= BE∪BI, and ME = NE.

So far, we described the topology of the bond graph by means of a directed graph.
Next, we formalize the constitutive relations of the bond graph elements. To this
end, let us first make the following two assumptions:

Assumption 3.3 (Modulation)
Modulation of resistors, transformers and gyrators can be expressed only independence on states of C-type elements and constant parameters.
Assumption 3.4 (Dissipation)
The constitutive relations of modulated resistors are linear with respect tothe respective power-port variables and in Onsager form.4
Borutzky [2010, p. 159] has shown that bond graphs violating Assumption 3.3

cannot in general be formulated in an explicit form. Likewise, Assumption 3.4 is
a well-known requirement for formulating an explicit PHS of the form (2.12) (cf.
van der Schaft and Jeltsema [2014, p. 53]).

Now the constitutive relations for the different types of bond graph elements
can be specified.

4For the notion of the Onsager form, refer to Borutzky [2010, p. 364].
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◦ Each storage element i ∈ VC is specified by a constitutive relation of the
form

fff j = ẋxxi, eee j =
∂Vi

∂xxxi
(xxxi), (3.6)

with j ∈ B(i) and energy state xxxi ∈ Xi, dim(Xi) = K (cf. [Borutzky, 2010,
p. 357]). The function Vi : Xi→ R, xxxi 7→ Vi(xxxi) is a differentiable storage
function that is bounded from below. This storage function describes the
energy contained in storage i. The energy states of all storage elements
are collected in an overall energy state xxx := (xxxi) for all i ∈ VC with xxx ∈ X,
dim(X) = KNC. The composite storage function V (xxx) := ∑i∈VC

Vi(xxxi) de-
scribes the energy of all storages.5

◦ Each resistive element i ∈ VR is given by a constitutive relation in Onsager
(conductance) form [Borutzky, 2010, p. 365]

fff j = DDDi(xxx)eee j, (3.7)

with j ∈ B(i), DDDi(xxx) ∈RK×K , and DDDi(xxx) = DDDi(xxx)⊤ ⪰ 0. The matrices DDDi(xxx)
are collected in an overall dissipation matrix DDD(xxx) := blkdiag(DDDi(xxx)) for
all i ∈ VR with DDD(xxx) = DDD(xxx)⊤ ⪰ 0.

◦ Elements i of type 0 and type 1 obey

i ∈ V0 : ∑
j∈←−B (i)

fff j− ∑
j∈−→B (i)

fff j = 000, eee j = eeek, ∀ j,k ∈ B(i) (3.8)
and

i ∈ V1 : ∑
j∈←−B (i)

eee j− ∑
j∈−→B (i)

eee j = 000, fff j = fff k, ∀ j,k ∈ B(i). (3.9)

5Note that from the properties of Vi(xxxi) it follows that V (xxx) is differentiable and bounded from below.
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◦ Transformers and gyrators are determined by constitutive relations of the
form

i ∈ VTF : fff j =UUU i (xxx) fff k, eeek =UUU⊤i (xxx)eee j, (3.10)
and

i ∈ VGY : eee j =WWW i (xxx) fff k, eeek =WWW⊤i (xxx) fff j, (3.11)

where j ∈ ←−B (i), k ∈ −→B (i) [Borutzky, 2010, pp. 358–359]. The square
matrices UUU i (xxx) and WWW i (xxx) have full rank K for all xxx ∈ X and are assem-
bled in a transformer matrix UUU (xxx) := blkdiag(UUU i (xxx)) and a gyrator matrix
WWW (xxx) := blkdiag(WWW i (xxx)) for all i ∈ VTF and VGY, respectively.

Source elements i ∈ VSf∪VSe describe conditions at the system boundary. Thus,
these elements are not subject to specific constitutive relations.

Now we have all prerequisites for a formal definition of a bond graph.

Definition 3.5 (Bond graph)
Let assumptions 3.3 and 3.4 hold. A bond graph is a tuple

BG := (V,B,X,V,DDD,UUU ,WWW ,K) , (3.12)
with a set of elements V, a set of bonds B, a state-space X, an energy stor-age function V : X 7→ R, a dissipation matrix DDD(xxx), a transformer matrix
UUU (xxx), a gyrator matrix WWW (xxx), and dimension K. The matrices DDD,UUU ,WWW areparametrized over xxx ∈ X.
Remark 3.6 (Single- und multi-bond graphs). In the literature, bond graphswith K = 1 are referred to as single-bond graphs and bond graphs with
K > 1 are denoted as multi-bond graphs Borutzky [2010]. Unless statedotherwise, the term “bond graph” refers to a multi-bond graph.

In the following, the formal definition of a bond graph is applied to an example
system. In the course of chapters 3 and 4, this example system will continuously
be used to exemplify the developed methods. This demonstrates the algorithmic
nature of these methods.
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Example 3.7:
Consider the K-dimensional bond graph in Figure 3.3.

TF: UUU(xxx1) 01

GY: III

Se Sf

C: V1(xxx1) C: V2(xxx2)

C: V3(xxx3)R: DDD

eee1

fff 1

eee2

fff 2

eee3 fff 3

eeeC3

fff C3

eeeSf

fff Sf

eeeSe

fff Se

eeeR fff R

eeeC1fff C1
eeeC2fff C2

Figure 3.3: Exemplary bond graph
The elements and bonds are summarized in V = VE ∪VI, B = BE ∪ BI,respectively, with VE = {C1,C2,C3,R,S f ,Se}, VI = {0,1,T F,GY}, BE =

{C1,C2,C3,R,S f ,Se}, and BI = {1,2,3}. Note that in Figure 3.3 the ele-ments of B are not explicitly highlighted but can be identified from the in-dices of the efforts and flows. The system state vector is xxx =
(
xxx⊤1 xxx⊤2 xxx⊤3

)⊤ ∈
X where

X= {




xxx1

xxx2

xxx3


 ∈ R3K | ∥xxx1∥< ∞}.6 (3.13)

Suppose an arbitrary, differentiable, non-negative storage function

V (xxx) =V1(xxx1)+V2(xxx2)+V3(xxx3). (3.14)

The R-type element is specified by a matrix DDD ∈ RK×K with DDD = DDD⊤ ≻ 0.The transformer T F is modulated by xxx1. The transformation ratio is givenby a full rank matrixUUU (xxx) =UUU⊤ (xxx) ∈ RK×K with

UUU(xxx1) = exp(−κ diag(xxx1)) . (3.15)

where exp(·) denotes thematrix exponential. The gyratorGY has a constantgyration ration ofWWW = III ∈RK×K . The formal description of the bond-graph
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from Figure 3.3 is then given by

BG = ({C1,C2,C3,R,S f ,Se,0,1,T F,GY} ,{C1,C2,C3,R,S f ,Se,1,2,3} ,
X,V1(xxx1)+V2(xxx2)+V3(xxx3),DDD,exp(−κ diag(xxx1)) , III,K), (3.16)

where X and DDD as described above.
Recall that the problem addressed in this chapter is to derive an automatable

modeling method that transfers a bond graph into an explicit input-state-output
PHS. In this context, it is crucial that such a PHS respects the causality of the
source elements of the bond graph. In other words, the input vector of the PHS
has to include flows of Sf elements and efforts of Se elements, while the output
vector has to include efforts of Sf elements and flows of Se elements. This is
formalized in the following property:

Property 3.8 (Inputs and outputs)
Let Bα = ∪i∈VαB(i) for α ∈ {Sf,Se}. The input vector uuu consists of ( fff j), (eeek)while the output vector yyy consists of (eee j), ( fff k) for all j ∈ BSf, k ∈ BSe.

Based on Definition 3.5 and Property 3.8 we may now formally specify the prob-
lem under consideration.

Problem3.9 (Automatedport-Hamiltonian formulationof a bondgraph)
Given a bond graph as in Definition 3.5. What is an automated modelingmethod that formulates the bond graph as a PHS (2.12) with Property 3.8?Under which conditions does such a port-Hamiltonian formulation of a bondgraph exist?

In the following subsections 3.2.3 to 3.2.6, we elaborate a solution to Problem 3.9.

3.2.3 Description of Interior Elements as Dirac
Structures

Let us first focus on the junction structure of the bond graph. The idea in this
subsection is to describe each element of the junction structure by a dedicated

6The state-space is restricted to bounded values of xxx1 in order to ensure the full rank property of the
matrix (3.15) for all xxx ∈ X.
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Dirac structure. For the Dirac structure we formulate a generic pattern which
makes its generation appealing for an automation. Before we consider the main
lemma of this subsection, viz. Lemma 3.12, we introduce two preliminary
statements. In the sequel, we will often modify flows and efforts from Dirac
structures by means of permutations. If the flows and efforts of a particular Dirac
structure are permuted in the same manner, this can be seen as a change of basis.
Intuitively, such a change of basis should not alter the fact that the considered
vector space is a Dirac structure. Proposition 3.10 and Corollary 3.11 formally
analyze this intuition and provide a practical calculation law to formulate the
Dirac structure in the new coordinates.

Proposition 3.10 (Orthogonal transformation)
Consider a modulated Dirac structure (2.4) and let TTT (xxx) ∈ O(n) be a familyof orthogonal matrices parametrized over xxx ∈ X. Then

D̃(xxx) = {( f̃ff , ẽee) ∈ Rn×Rn | F̃FF (xxx) f̃ff + ẼEE (xxx)ẽee = 000} (3.17)

with F̃FF (xxx) = FFF (xxx)TTT (xxx)⊤, ẼEE (xxx) = EEE (xxx)TTT (xxx)⊤ is a modulated Dirac struc-ture.
Proof:
Inserting fff = TTT (xxx)⊤ f̃ff and eee = TTT (xxx)⊤ ẽee into (2.4) gives (3.17). Equation (3.17)
is a Dirac structure as it fulfills (2.5):

(i) F̃FF (xxx) ẼEE⊤(xxx)+ ẼEE (xxx) F̃FF⊤(xxx) = FFF (xxx)EEE⊤(xxx)+EEE (xxx)FFF⊤(xxx) = 000, (3.18a)
(ii) rank

(
F̃FF (xxx) ẼEE (xxx)

)
= rank

((
FFF (xxx) EEE (xxx)

)
TTT⊤(xxx)

)

= rank
(
FFF (xxx) EEE (xxx)

)
= n. (3.18b)

Corollary 3.11 (Equivalent Dirac structures)
Given two vector spacesDi (xxx)= {( fff i,eeei)∈Rn×Rn |FFF i (xxx) fff i+EEE i (xxx)eeei = 000}with xxx ∈X, i ∈ {1,2}. If for every xxx ∈X there exists a TTT (xxx) ∈O(n) such that
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( fff 1,eee1) 7→ (TTT (xxx) fff 1,TTT (xxx)eee1) is a bijection between D1 (xxx) and D2 (xxx), then“D1 (xxx) is a Dirac structure” is equivalent to “D2 (xxx) is a Dirac structure”.
Proof:
The proof follows directly from a twofold application of Lemma 3.10.

Now follows the main lemma of this subsection. This lemma makes use of the
following notation: 000K is the K×K-dimensional zero matrix; 000a,b

K is an (a×b)
block matrix of zero matrices 000K . Analogously, IIIK is the K×K-dimensional
identity matrix and IIIa×b

K is an (a×b) block matrix of identity matrices IIIK .

Lemma 3.12 (Set of Dirac structures)
Given a bond graph (3.12) with the set of interior elements VI = V0∪V1∪
VTF∪VGY, NI = |VI|. The constitutive relations of all elements of VI can bedescribed by a set of Dirac structures DS with |DS| = NI. For each element
i ∈ VI there exists a corresponding element Di (xxx) ∈ DS with

Di (xxx) = {(
((

fff j
)

( fff k)

)
,

(
(eee j)

(eeek)

)
) ∈ RK·M(i)×RK·M(i) |

FFF i (xxx)
( (

fff j
)

−( fff k)

)
+EEE i (xxx)

(
(eee j)

(eeek)

)
= 000},

(3.19)

where j ∈ ←−B (i),k ∈ −→B (i), and B(i) =
←−
B (i)

⋃−→
B (i) with M(i) := |B(i)|. De-pending on the type of i, the matrices FFF i (xxx) and EEE i (xxx) in (3.19) are of one ofthe following forms:
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i ∈ V0 : FFF i (xxx) =

(
III1×M(i)

K

000(M(i)−1)×M(i)
K

)
, (3.20a)

EEE i (xxx) =

(
000K 0001×(M(i)−1)

K

III(M(i)−1)×1
K −IIIK(M(i)−1),

)
, (3.20b)

i ∈ V1 : FFF i (xxx) =

(
000K 0001×(M(i)−1)

K

III(M(i)−1)×1
K −IIIK(M(i)−1)

)(
IIIK·|←−B (i)| 000

000 −IIIK·|−→B (i)|

)
,

(3.20c)
EEE i (xxx) =

(
III1×M(i)

K

000(M(i)−1)×M(i)
K

)(
IIIK·|←−B (i)| 000

000 −IIIK·|−→B (i)|

)
, (3.20d)

i ∈ VTF : FFF i (xxx) =
(

IIIK UUU i (xxx)
000K 000K

)
, (3.20e)

EEE i (xxx) =
(

000K 000K

−UUU⊤i (xxx) IIIK

)
, (3.20f)

i ∈ VGY : FFF i (xxx) =
(

000K WWW i (xxx)
−WWW⊤i (xxx) 000K

)
, (3.20g)

EEE i (xxx) =
(

IIIK 000K

000K IIIK

)
. (3.20h)

Proof:
First, we prove that each element Di (xxx) ∈ DS describes the constitutive relations
of the corresponding interior element i ∈ VI. Second, we show that the elements
Di (xxx) ∈ DS define Dirac structures.
For i ∈ V0∪VTF,∪VGY, we insert (3.20a), (3.20b); (3.20e), (3.20f); (3.20g),(3.20h) into the equation system of (3.19) and obtain the constitutive relations(3.8), (3.10), (3.11), respectively. Analogously, for i ∈ V1 we may write (3.9) as
F̃FF i f̃ff i + ẼEE iẽeei = 000 with

(
000K 0001×(M(i)−1)

K

III(M(i)−1)×1
K −IIIK(M(i)−1)

)((
f̃ff j
)

(
f̃ff k
)
)
+

(
III1×M(i)

K

000(M(i)−1)×M(i)
K

)(
(ẽee j)

−(ẽeek)

)
= 000,

(3.21)
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for all j ∈←−B (i),k ∈ −→B (i). To bring (3.21) to the form of the equation system
in (3.19), we perform a change of coordinates fff i = TTT⊤i f̃ff i, eeei = TTT⊤i ẽeei, with
TTT i = blkdiag(IIIK·|←−B (i)|,−IIIK·|−→B (i)|) which yields ((3.20c),(3.20d)).

Inserting the matrices FFF i (xxx) and EEE i (xxx) from (3.20a), (3.20b); (3.20e), (3.20f);(3.20g), (3.20h) into (2.5) shows that these matrices indeed define Dirac struc-
tures. Analogously, the matrices F̃FF i and ẼEE i from (3.21) define a Dirac structure.
As TTT i ∈O(M(i)), by Corollary 3.11 the matrices (3.20c), (3.20d) then also de-
fine a Dirac structure.

Remark 3.13 (Dirac structures for 0- and 1-type elements). In Lemma 3.12,for i ∈ V0∪V1 we have FFF = const. and EEE = const., i.e., the matrices FFF (xxx)and EEE (xxx) are independent of xxx. The corresponding Dirac structures arethus non-modulated Dirac structures.
With the following example we continue Example 3.7 and illustrate the

generation of Dirac structures according to Lemma 3.12:

Example 3.14:
Consider the K-dimensional bond graph from Example 3.7 with its for-mal description (3.16). The set of interior elements is given by VI =

{0,1,T F,GY} with NI = 4. Define a corresponding set of Dirac structures
DS = {D0,D1,DT F ,DGY} where the elements Di are of the form (3.19)(i ∈ VI). By applying the calculation rules from the above Lemma 3.12, theequation systems of the Dirac structures read: 7
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D0 :




III III III III
000 000 000 000
000 000 000 000
000 000 000 000







fff S f
fff 2
− fff C2

− fff 3


+




000 000 000 000
III −III 000 000
III 000 −III 000
III 000 000 −III







eeeS f

eee2

eeeC2

eee3


= 000,

(3.22a)

D1 :




000 000 000 000
III III 000 000
III 000 III 000
III 000 000 III







fff Se
− fff C1

− fff R
− fff 1


+




III −III −III −III
000 000 000 000
000 000 000 000
000 000 000 000







eeeSe

eeeC1

eeeR

eee1


 = 000,

(3.22b)
DT F :

(
III UUU(xxx1)

000 000

)(
fff 1
− fff 2

)
+

(
000 000
−UUU(xxx1) III

)(
eee1

eee2

)
= 000,

(3.22c)
DGY :

(
000 III
−III 000

) (
fff 3
− fff C3

)
+

(
III 000
000 III

)(
eee3

eeeC3

)
= 000,

(3.22d)

whereUUU(xxx1) = exp(−κ diag(xxx1)) (cf. (3.15)).

3.2.4 Composition into a Single Dirac Structure

From Lemma 3.12 we obtain NI Dirac structures which describe the constitutive
equations of the NI interior elements of the bond graph. Next, we compose these
NI Dirac structures obtained into one single Dirac structure. To this end, we follow
the idea from Batlle et al. [2011] who proposed to describe the interconnection
of some Dirac structures again by a Dirac structure—a so-called interconnection
Dirac structure [Batlle et al., 2011].

The NI Dirac structures from Lemma 3.12 are formulated such that the vectors
and matrices are ordered according to ingoing and outgoing bonds. For the
determination of an interconnection Dirac structure, we first rewrite these Dirac
structures such that the interconnection variables (i.e., the flows and efforts of
interior bonds) become visible.

7Throughout this example, square zero matrices and identity matrices are of dimension K.
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Proposition 3.15 (Rewriting the Dirac structures)
Consider the situation from Lemma 3.12 with the set of Dirac structures DS.Let BI(i) and BE(i) denote the sets of interior and exterior bonds at i ∈ VI,respectively. For all i ∈ VI, the elements Di ∈ DS can then be written suchthat the vectors and matrices of Di are sorted by exterior and interior bonds:

Di (xxx) = {(
((

fff j
)

( fff k)

)
,

(
(eee j)

(eeek)

)
) ∈ RK·M(i)×RK·M(i) |

((FFF j (xxx)) (FFFk (xxx)))
((

ε( j) fff j
)

(ε(k) fff k)

)
+((EEE j (xxx)) (EEEk (xxx)))

(
(eee j)

(eeek)

)
= 000}, (3.23)

for all j ∈ BE(i),k ∈ BI(i) where ε : B(i)→{−1,1} is a sign function with

ε(b) =

{
1, b ∈←−B (i),

−1, b ∈ −→B (i).
(3.24)

Proof:
From Property 3.2 we know that B = BE ∪BI. It follows that for each i ∈ VI

we can permute the vectors and matrices of Di ∈ DS in (3.19) such that they are
sorted by exterior and interior bonds. The rest follows from Corollary 3.11.

Based on Proposition 3.15, we may now formulate an interconnection Dirac
structure by relating the flows and efforts of the interior bonds of (3.23).
Proposition 3.16 (Interconnection Dirac stucture)
Consider the Dirac structures (3.23). For each i ∈ VI, let us define fff IC

i :=
(ε(k) fff k) and eeeIC

i := (eeek) for all k ∈ BI(i). For the Dirac structures (3.23), wecan obtain an interconnection Dirac structure of the following form:

DIC = {( fff IC,eeeIC) ∈R2KMI×R2KMI |
(
FFF IC

i
)(

fff IC
i
)
+
(
EEEIC

i
)(

eeeIC
i
)
= 000,∀i ∈VI},(3.25)where fff IC := ( fff IC

i ), eeeIC := (eeeIC
i ), and FFF IC

i ,EEEIC
i ∈ R2KMI×KMI(i) for all i ∈ VI.
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Proof:
We have to show that (i) the equation system in (3.25) indeed describes the
interconnections between the Dirac structures (3.23) and (ii) that (3.25) is a
Dirac structure.
The junction structure consists of NI interior elements which are connected by MI

interior bonds (cf. Definition 3.1). Each interior bond is incident to two interior
elements. Thus, for each k ∈ BI the flow fff k appears exactly twice in fff IC: once
with a positive sign and once with a negative sign. Analogously, for each k ∈ BI

the effort eeek appears exactly twice in eeeIC, both times with a positive sign. Let us
equate these variables appearing twice by setting

(
IIIKMI IIIKMI

000KMI 000KMI

)(
( fff k)

−( fff k)

)
+

(
000KMI 000KMI

IIIKMI −IIIKMI

)(
(eeek)

(eeek)

)
= 000, (3.26)

for all k ∈ BI. The matrices in (3.26) satisfy (2.5) and can thus be related to
a Dirac structure. By permutations, we rearrange the entries of the vectors in(3.26) such that they are in the same order as in fff IC and eeeIC (cf. Corollary 3.11).
8 Finally, we rename the columns of the resulting matrices according to their
affiliation to elements of VI and obtain the equation system in (3.25).

Proposition 3.16 provides a constructive9 way for determining an interconnec-
tion Dirac structure for the NI Dirac structures describing the interior elements.
The interconnection Dirac structure exclusively contains flows and efforts of
the interior bonds. The overall number of Dirac structures is then NI + 1, i.e.,
NI Dirac structures from the interior elements plus one interconnection Dirac
structure. In the next lemma, we compose the NI +1 Dirac structures into one
single Dirac structure.

Lemma 3.17 (Composition of Dirac structures)
Consider NI Dirac structures of the form (3.23) with a corresponding inter-connection Dirac structure (3.25). Then, the NI + 1 Dirac structures can bemerged into a single Dirac structure:

8Note that by 2MI = ∑i∈VI
MI(i), the sizes of the matrices in (3.26) and (3.25) are equal.

9As a matter of fact, the construction rules are mainly in the proof of Proposition 3.16
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D(xxx) = {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


) ∈ RKNE×RKNE |

(
FFFC (xxx) FFFR (xxx) FFFSf (xxx) FFFSe (xxx)

)
︸ ︷︷ ︸

=FFF(xxx)




− fff C
− fff R
fff Sf
fff Se


+

(
EEEC (xxx) EEER (xxx) EEESf (xxx) EEESe (xxx)

)
︸ ︷︷ ︸

=EEE(xxx)




eeeC

eeeR

eeeSf

eeeSe


}, (3.27)

where fff α ,eeeα ∈RKNα andFFFα (xxx) ,EEEα (xxx)∈RKNE×KNα forα ∈ {C,R,Sf,Se}.10

The composite Dirac structure (3.27) can be calculated as follows:Define a full-rank matrix ΓΓΓ
⊤ (xxx)∈R2KMI×K(2MI+ME) as a (1×NI) block matrix

ΓΓΓ
⊤ (xxx) = (ΓΓΓ⊤i (xxx)) of matrices ΓΓΓ

⊤
i (xxx) ∈ R2KMI×KM(i) for all i ∈ VI with

ΓΓΓ
⊤
i (xxx) = FFF IC

i (EEEk (xxx))
⊤+EEEIC

i (FFFk (xxx))
⊤ , ∀k ∈ BI(i). (3.28)

Choose amatrixΛΛΛ(xxx)∈RKME×K(2MI+ME) such that im(ΛΛΛ⊤ (xxx)) = ker(ΓΓΓ⊤ (xxx))for all xxx ∈ X. Since rank(ΓΓΓ⊤ (xxx)) = 2KMI, we have dim(ker(ΓΓΓ⊤ (xxx))) = KMEand such a matrix ΛΛΛ(xxx) always exists. Matrix ΛΛΛ(xxx) can be written as a (1×
NI) block matrix (ΛΛΛi (xxx)) of matrices ΛΛΛi (xxx) ∈ RKME×KM(i) for all i ∈ VI. Then,a composite Dirac structure is given by:

D(xxx) = {
(
( fff j),(eee j)

)
∈ RKME×RKME |

(ΛΛΛi (xxx)(FFF j (xxx)))︸ ︷︷ ︸
=F̃FF (xxx)

(
fff j
)
+(ΛΛΛi (xxx)(EEE j (xxx)))︸ ︷︷ ︸

=ẼEE (xxx)

(eee j) = 000}, (3.29)

for all j ∈ BE(i), i ∈ VI, where F̃FF (xxx), ẼEE (xxx) are square matrices of size KME.The Dirac structure (3.29) relates the flows fff j and efforts eee j of only the ex-terior bonds j ∈ BE. Hence, by permutations we can easily obtain (3.27).
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Proof:
Batlle et al. [2011] consider the general composition of an arbitrary number of
Dirac structures coupled by any interconnection Dirac structure. The authors
show that (3.29) is a calculation rule for a composite Dirac structure in which the
interconnection variables have been eliminated [Batlle et al., 2011, Eq. (44),(45)].
In the case of Lemma 3.17, the interconnection variables are the flows and
efforts of the interior bonds. These variables have been eliminated from the
composite Dirac structure (3.29). Hence, (3.29) contains only flows and efforts
corresponding to exterior bonds. By permutations, we can then rewrite (3.29) as(3.27) (cf. Corollary 3.11).

Remark 3.18 (Signs of fff C and fff R). The negative sign of fff C and fff R in theequation system of (3.27) stems from the bond orientation rules in whichbonds are incoming to storages and resistors (cf. Subection 3.2.2).
Remark 3.19 (Automated composition). The calculations in this subsectioncan be easily automated in standard computer algebra systems. In par-ticular, this includes the determination of a matrix ΛΛΛ satisfying im(ΛΛΛ⊤) =
ker(ΓΓΓ⊤) in Lemma 3.17 [Batlle et al., 2011].

In the following, we proceed with our example and illustrate the composition
of the Dirac structures.

Example 3.20:
Consider the four Dirac structures specified by (3.22) from Example 3.14.By permutations, we may rewrite the equation systems from (3.22) in theform (3.23):

10Note that ME = NE (cf. Property 3.2).
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D0 :




III III III III
000 000 000 000
000 000 000 000
000 000 000 000







− fff C2

fff S f

− fff 3
fff 2


+




000 000 000 000
000 III 000 −III
−III III 000 000
000 III −III 000







eeeC2

eeeS f

eee3

eee2


= 000,

(3.30a)

D1 :




000 000 000 000
III 000 III 000
000 III III 000
000 000 III III







− fff C1

− fff R
fff Se
− fff 1


+




−III −III III −III
000 000 000 000
000 000 000 000
000 000 000 000







eeeC1

eeeR

eeeSe

eee1


 = 000,

(3.30b)
DT F :

(
III UUU(xxx1)

000 000

) (
fff 1
− fff 2

)
+

(
000 000
−UUU(xxx1) III

) (
eee1

eee2

)
= 000,

(3.30c)
DGY :

(
III 000
000 −III

) (
− fff C3

fff 3

)
+

(
000 III
III 000

)(
eeeC3

eee3

)
= 000,

(3.30d)

whereUUU(xxx1) = exp(−κ diag(xxx1)). The dashed lines indicate the partitioningof the flow and effort vectors with respect to the affiliation of the variablesto exterior and interior bonds. Next, we determine an interconnection DiracstructureDIC (3.25). From Proposition 3.16, one obtains the following equa-tion system for DIC:
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


III 000
000 000
000 III
000 000
000 000
000 000

︸ ︷︷ ︸
FFF IC

0

000
III
000
000
000
000
︸︷︷︸
FFF IC

1

000 000
III 000
000 III
000 000
000 000
000 000
︸ ︷︷ ︸

FFF IC
T F

III
000
000
000
000
000




︸ ︷︷ ︸
FFF IC

GY




− fff 3
fff 2
− fff 1

fff 1
− fff 2

fff 3




+




000 000
000 000
000 000
−III 000
000 000
000 III

︸ ︷︷ ︸
EEEIC

0

000
000
000
000
−III
000

︸ ︷︷ ︸
EEEIC

1

000 000
000 000
000 000
000 000
III 000
000 −III
︸ ︷︷ ︸

EEEIC
T F

000
000
000
III
000
000




︸ ︷︷ ︸
EEEIC

GY




eee3

eee2

eee1

eee1

eee2

eee3




= 000. (3.31)

Equation (3.31) relates flow and efforts only of interior bonds. In this case,the dashed lines separate the vector entries with respect to their origin fromthe different interior elements. As can be seen, the matrices in (3.31) aresimply column-wise permutations of the matrices in (3.26). Now we cancompose theDirac structures according to Lemma3.17. By using (3.30) and(3.31) we calculate (3.28) and obtain the following expression for ΓΓΓ
⊤ (xxx):




000 000 000 −III
000 000 000 000
000 −III 000 000
−III 000 000 000
000 000 000 000
III 000 000 000

︸ ︷︷ ︸
ΓΓΓ0

000 000 000 000
−III 000 000 000
000 000 000 000
000 000 000 000
000 000 000 −III
000 000 000 000

︸ ︷︷ ︸
ΓΓΓ1

000 000
000 −UUU(xxx1)

000 III
000 000
III 000

−UUU(xxx1) 000
︸ ︷︷ ︸

ΓΓΓT F (xxx1)

III 000
000 000
000 000
000 −III
000 000
000 000




︸ ︷︷ ︸
ΓΓΓGY

.

(3.32)
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With a computer algebra system, we evaluate im(ΛΛΛ⊤(xxx1)) = ker(ΓΓΓ⊤(xxx1))and obtain the following expression for ΛΛΛ
⊤(xxx1):




−III 000 000 000
000 000 000 III
000 III 000 000
000 000 000 000
000 000 000 000
000 000 III 000

︸ ︷︷ ︸
ΛΛΛ0

000 000 000 −UUU−1(xxx1)

000 000 000 000
−UUU(xxx1) 000 000 000

000 000 III 000
000 III 000 000
000 000 000 000

︸ ︷︷ ︸
ΛΛΛ1(xxx1)

−UUU−1(xxx1) 000
000 000
000 III
000 000
000 000
000 000

︸ ︷︷ ︸
ΛΛΛT F (xxx1)

000 III
III 000
000 000
000 000
000 000
000 000




︸ ︷︷ ︸
ΛΛΛGY

.

(3.33)Finally, with (3.33) and (3.30) we calculate (3.29) and obtain a single Diracstructure describing the equations of the junction structure. The equationsystem of the composed Dirac structure reads



000 −III 000
000 000 III
000 000 000
000 000 000
III 000 000
000 000 000

︸ ︷︷ ︸
FFFC

000
000
000
III
000
000
︸︷︷︸

FFFR

−III
000
000
000
000
000

︸ ︷︷ ︸
FFFSf

−UUU−1(xxx1)

000
000
III
III
000




︸ ︷︷ ︸
FFFSe(xxx1)




− fff C1

− fff C2

− fff C3

− fff R
fff S f
fff Se




+




000 000 III
000 000 000

UUU(xxx1) 000 000
000 000 000
000 000 000
000 −III 000

︸ ︷︷ ︸
EEEC(xxx1)

000
000

UUU(xxx1)

000
000
000

︸ ︷︷ ︸
EEER(xxx1)

000
III
III
000
000
III
︸︷︷︸
EEESf

000
000

−UUU(xxx1)

000
000
000




︸ ︷︷ ︸
EEESe(xxx1)




eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe




= 000. (3.34)

It can be seen that (3.34) relates flows and efforts of only exterior bonds.Moreover, (3.34) is in the form of the equation system from (3.27).
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3.2.5 Explicit Representation of the Dirac Structure

The Dirac structure obtained from Lemma 3.17 is in kernel representation which
is an implicit form. For the derivation of an explicit PHS, the natural next step
is to transfer the Dirac structure from an implicit form into an explicit form. In
the following, we consider methods for transferring a Dirac structure from an
(implicit) kernel representation into an (explicit) input-output representation (2.7).
The basic idea to this end is simple: we rearrange the implicit equations in (3.27)
such that a suitable explicit representation is obtained.

Bloch and Crouch [1999] show that for each Dirac structure in kernel represen-
tation there exists an input-output representation and vice versa. However, as with
the kernel representation (cf. Remark 2.19), the input-output representation of a
Dirac structure is not unique. In particular, not all input-output representations
of a Dirac structure allow for a subsequent derivation of an explicit PHS with
a suitable choice of inputs and outputs, viz. an explicit PHS with Property 3.8.
The inputs and outputs of an explicit PHS are determined by the inputs and
outputs of the underlying explicit form of the Dirac structure. Thus, based on
Property 3.8, we deduce that the input vector of the input-output representation
has to contain all flows corresponding to Sf elements and all efforts corresponding
to Se elements; the output vector has to contain the corresponding conjugated
variables. This is formalized in the following property:

Property 3.21 (Inputs and outputs of the Dirac structure)
Let Bα = ∪i∈VαB(i) for α ∈ {Sf,Se}. The input vector of the explicit Diracstructure includes ( fff j), (eeek)while the output vector includes (eee j), ( fff k) for all
j ∈ BSf, k ∈ BSe.

We seek to formulate the Dirac structure (3.27) in an explicit representation that
has Property 3.21. To this end, it is essential that the bond graph does not contain
dependent sources. Dependent sources occur if the values imposed by two sources
are conflicting. For example, think of an electric circuit with two voltage sources
in parallel or two current sources in series. Intuitively, for such systems, it is
impossible to find a model which has both conflicting variables as inputs. Hence,
we assume the source elements of the bond graph to be independent—which is
ensured by the following assumption:
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Assumption 3.22 (Independent sources)
The matrices in (3.27) fulfill

rank(EEESf (xxx) FFFSe (xxx)) = K (NSf +NSe) , ∀xxx ∈ X. (3.35)
In Appendix B.1, is is proven that the source elements from the bond graph are in-
dependent if and only if Assumption 3.22 is met. Conversely, if Assumption 3.22
is violated, the junction structure implies a dependency between source elements.
Dependent sources are serious modeling inconsistencies which may occur from
physically implausible structures in the bond graph. They must be resolved
by modifications of the bond graph [Karnopp et al., 2012, p. 169]. Based on
the exclusion of dependent sources in Assumption 3.22, one can now state the
following lemma:

Lemma 3.23 (Input-output representation)
Consider a Dirac structure (3.27) which fulfills Assumption 3.22. The Diracstructure can be formulated in an input-output representation with Prop-erty 3.21:

D(xxx) = {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


)∈RKNE×RKNE |




yyyC
yyyR
yyyP


= ZZZ (xxx)




uuuC

uuuR

uuuP


}, (3.36)

where ZZZ (xxx) is skew-symmetric for all xxx ∈ X and

uuuC =

(
eeeC,1

−fff C,2

)
, uuuR =

(
eeeR,1

−fff R,2

)
, uuuP =

(
fff Sf
eeeSe

)
, (3.37a)

yyyC =

(− fff C,1
eeeC,2

)
, yyyR =

(− fff R,1
eeeR,2

)
, yyyP =

(
eeeSf

fff Se

)
. (3.37b)
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The matrix ZZZ (xxx) exists for all xxx ∈ X and is given by:

ZZZ (xxx) =
(
FFFC,1 (xxx) EEEC,2 (xxx) FFFR,1 (xxx) EEER,2 (xxx) EEESf (xxx) FFFSe (xxx)

)−1

·
(
EEEC,1 (xxx) FFFC,2 (xxx) EEER,1 (xxx) FFFR,2 (xxx) FFFSf (xxx) EEESe (xxx)

)
.
(3.38)

Thematrices in (3.38) can be obtained from splitting (possibly after some per-mutations) FFFC (xxx) and FFFR (xxx) into (FFFC,1 (xxx) FFFC,2 (xxx)) and (FFFR,1 (xxx) FFFR,2 (xxx)),respectively, such that

(i)
(
FFFC,1 (xxx) FFFR,1 (xxx) EEESf (xxx) FFFSe (xxx)

) has full column rank (3.39a)
(ii) rank

(
FFFC,1 (xxx) FFFR,1 (xxx) EEESf (xxx) FFFSe (xxx)

)
=

rank
(
FFFC (xxx) FFFR (xxx) EEESf (xxx) FFFSe (xxx)

)
, (3.39b)

for all xxx ∈ X. According to the manner in which FFFC (xxx) and FFFR (xxx) are split,we partition EEEC (xxx) and EEER (xxx) into (EEEC,1 (xxx) EEEC,2 (xxx)) and (EEER,1 (xxx) EEER,2 (xxx)),respectively. In the same way, we split fff C, eeeC and fff R, eeeR .
Proof:
Let Assumption 3.22 hold. For the sake of notation, we neglect the argument
xxx and the supplement “for all xxx ∈ X” in this proof. We apply the ideas from
Bloch and Crouch [1999, Theorem 4] to show that we always find decomposi-
tions (FFFR,1,FFFR,2), (FFFC,1,FFFC,2), (EEEC,1,EEEC,2), (EEER,1,EEER,2) for FFFC, FFFR, EEEC, EEER,
respectively, such that

rank
(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
= KNE (3.40)

holds. Choose decompositions of FFFC and FFFR (possibly after some permuta-
tions) such that the conditions in (3.39) are fulfilled. Let FFFC,2, FFFR,2 denote the
rest of FFFC, FFFR, respectively, i.e., FFFC = (FFFC,1 FFFC,2), FFFR = (FFFR,1 FFFR,2). Next,
split EEEC and EEER according to the decomposition chosen for FFFC and FFFR, re-
spectively, into EEEC = (EEEC,1 EEEC,2) and EEER = (EEER,1 EEER,2). By (3.39a) the matrix
(FFFC,1 FFFR,1 EEESf FFFSe) has full column rank. Thus, its adjoint (FFFC,1 FFFR,1 EEESf FFFSe)

⊤
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is surjective. In particular we have

im
(
EEEC,1 EEER,1 FFFSf EEESe

)

= im
((

EEEC,1 EEER,1 FFFSf EEESe
)
·
(
FFFC,1 FFFR,1 EEESf FFFSe

)⊤)

= im
(

EEEC,1FFF⊤C,1 +EEER,1FFF⊤R,1 +FFFSfEEE⊤Sf +EEESeFFF⊤Se

)
. (3.41)

For (3.27), equation (2.5a) reads

000 = EEEFFF⊤+FFFEEE⊤

= EEEC,1FFF⊤C,1 +EEEC,2FFF⊤C,2 +EEER,1FFF⊤R,1 +EEER,2FFF⊤R,2 +EEESfFFF⊤Sf +EEESeFFF⊤Se +

FFFC,1EEE⊤C,1 +FFFC,2EEE⊤C,2 +FFFR,1EEE⊤R,1 +FFFR,2EEE⊤R,2 +FFFSfEEE⊤Sf +FFFSeEEE⊤Se,(3.42)
from which follows

im
(

EEEC,1FFF⊤C,1 +EEER,1FFF⊤R,1 +FFFSfEEE⊤Sf +EEESeFFF⊤Se

)

= im
(

FFFC,1EEE⊤C,1 +FFFC,2EEE⊤C,2 +EEEC,2FFF⊤C,2 +FFFR,1EEE⊤R,1

+ FFFR,2EEE⊤R,2 +EEER,2FFF⊤R,2 +EEESfFFF⊤Sf +FFFSeEEE⊤Se

)

⊆ im
(

FFFC,1EEE⊤C,1 FFFC,2EEE⊤C,2 EEEC,2FFF⊤C,2 FFFR,1EEE⊤R,1

FFFR,2EEE⊤R,2 EEER,2FFF⊤R,2 EEESfFFF⊤Sf FFFSeEEE⊤Se

)

⊆ im
(
FFFC,1 FFFC,2 EEEC,2 FFFR,1 FFFR,2 EEER,2 EEESf FFFSe

)

(3.39)
= im

(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
.

(3.43)

Combining (3.41) and (3.43) we can derive

im
(
FFF EEE

)
= im

(
EEEC,1 EEER,1 FFFSf EEESe

)
+

im
(
FFFC,1 FFFC,2 EEEC,2 FFFR,1 FFFR,2 EEER,2 EEESf FFFSe

) (3.44)
⊆ im

(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
⊆ im

(
FFF EEE

)
.
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Thus, equality holds in the above formula and we have

rank
(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
= rank

(
FFF EEE

) (2.5b)
= KNE. (3.45)

Hence, the square matrix (FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe) has full rank and is
invertible. From Bloch and Crouch [1999] it follows that under the above rank
condition (3.45) the kernel representation (3.27) can be formulated as the input-
output representation (3.36). The matrix ZZZ can be determined by the following
calculation law which is formally derived in Appendix B.2:

ZZZ =−ZZZ⊤ = −
(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)−1

·
(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)
.

(3.46)

We continue with our example to illustrate the reformulation of a Dirac
structure in an explicit input-output form.
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Example 3.24:
Consider the Dirac structure from Example 3.20 given in an implicit repre-sentation:

D(xxx1) = {(




fff C1

fff C2

fff C3

fff R
fff S f
fff Se



,




eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe



) ∈ R6K×R6K |




000 −III 000
000 000 III
000 000 000
000 000 000
III 000 000
000 000 000

︸ ︷︷ ︸
FFFC

000
000
000
III
000
000
︸︷︷︸

FFFR

−III
000
000
000
000
000

︸ ︷︷ ︸
FFFSf

−UUU−1(xxx1)

000
000
III
III
000




︸ ︷︷ ︸
FFFSe(xxx1)




− fff C1

− fff C2

− fff C3

− fff R
fff S f
fff Se




+




000 000 III
000 000 000

UUU(xxx1) 000 000
000 000 000
000 000 000
000 −III 000

︸ ︷︷ ︸
EEEC(xxx1)

000
000

UUU(xxx1)

000
000
000

︸ ︷︷ ︸
EEER(xxx1)

000
III
III
000
000
III
︸︷︷︸
EEESf

000
000

−UUU(xxx1)

000
000
000




︸ ︷︷ ︸
EEESe(xxx1)




eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe




= 000}. (3.47)

Recall that NC = 3, NR = 1 = NSf = 1 = NSe = 1 and thatUUU(xxx1) has full rank(see Example 3.7). With the matrices in (3.47), Assumption 3.22 is fulfilledas rank(EEESf FFFSe(xxx1)) = 2K. Hence, we can apply Lemma 3.23 to determinean explicit representation of (3.47). First, we search splittings of FFFC (xxx) and
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FFFR (xxx) such that (3.39a) and (3.39b) are fulfilled. Take

FFFC,1 =




−III 000
000 III
000 000
000 000
000 000
000 000



, FFFC,2 =




000
000
000
000
III
000



, (3.48)

andFFFR,1 =FFFR, i.e., FFFR,2 is an emptymatrix. It can be easily verified that thischoice satisfies the conditions in (3.39). Thus, we may evaluate (3.38) withthis splitting choice to determine the matrix ZZZ (xxx) and obtain the followingexplicit representation of (3.47):

D(xxx1) = {(




fff C1

fff C2

fff C3

fff R
fff S f
fff Se



,




eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe



) ∈ R6K×R6K |




− fff C2

− fff C3

eeeC1

− fff R
eeeS f

fff Se




=




000 −III −UUU−1(xxx1) 000 III 000
III 000 000 000 000 000

UUU−1(xxx1) 000 000 III 000 −III
000 000 −III 000 000 000
−III 000 000 000 000 000
000 000 III 000 000 000







eeeC2

eeeC3

− fff C1

eeeR

fff S f
eeeSe



}.

(3.49)

As can be seen from the above example, Lemma 3.23 assigns the variables of
the source elements appropriately to inputs and outputs of the Dirac structure (cf.(3.37)). By this, the resulting Dirac structure has Property 3.21. It follows from
Lemma 3.23, that Assumption 3.22 is a sufficient condition for the existence
of a Dirac structure representation with Property 3.21. Of course, it would be
desirable to show that Assumption 3.22 is also necessary. However, for a proof
of necessity, the non-uniqueness of an input-output representation of a Dirac
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structure is a stumbling block. As a remedy, the next proposition shows that there
is some kind of uniqueness, viz. that the input-output representation is unique for
a certain arrangement of variables.

Proposition 3.25 (Uniqueness of ZZZ (xxx))
For any given order of the variables in (3.37), the matrix ZZZ (xxx) in (3.36) isunique. This statement is independent of Assumption 3.22.

Proof:
For the sake of releasing notational burden we will suppress the argument xxx to the
matrices during the proof. Let ZZZ and ZZZ′ ∈ RKNE×KNE be two matrices fulfilling
the equations




yyyC
yyyR
yyyP


= ZZZ




uuuC

uuuR

uuuP


 and




yyyC
yyyR
yyyP


= ZZZ′




uuuC

uuuR

uuuP


 . (3.50)

Recall (3.37) and that dimD = KNE. As (yyy⊤C yyy⊤R yyy⊤P )
⊤ linearly depends on

(uuu⊤C uuu⊤R uuu⊤P )
⊤, we have that D is isomorphic to RKNE via

RKNE → D,




uuuC

uuuR

uuuP


 7→ (




fff C,1
fff C,2
fff R,1
fff R,2
fff Sf
fff Se



,




eeeC,1

eeeC,2

eeeR,1

eeeR,2

eeeSf

eeeSe



) where




yyyC
yyyR
yyyP


= ZZZ




uuuC

uuuR

uuuP


,

(3.51)

D→ RKNE, (




eeeC,1

eeeC,2

eeeR,1

eeeR,2

eeeSf

eeeSe



,




fff C,1
fff C,2
fff R,1
fff R,2
fff Sf
fff Se



) 7→




uuuC

uuuR

uuuP


 . (3.52)
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From (3.50) it follows that

ZZZ




uuuC

uuuR

uuuP


= ZZZ′




uuuC

uuuR

uuuP


 (3.53)

and thus ZZZ = ZZZ′ as
(
uuu⊤C uuu⊤P uuu⊤R

)⊤ ranges over all of RKNE .

Based on Proposition 3.25, we can now show that Assumption 3.22 is also a
necessary condition for the existence of an explicit Dirac structure representation
with Property 3.21.

Proposition 3.26 (Existence condition)
Assumption 3.22 is a necessary and sufficient condition for the existence ofan input-output representation of (3.27)which has Property 3.21. This state-ment is true independent of the specific realization ofFFF (xxx) andEEE (xxx) in (3.27)(cf. Remark 2.19).

Proof:
From the proof of Lemma 3.23 it follows that Assumption 3.22 is a sufficient
condition for transferring (3.27) into an input-output representation with Prop-
erty 3.21. So it is left to show that it is also necessary. To this end, we use the
uniqueness of ZZZ (xxx) from Proposition 3.25. For the sake of brevity, we neglect
the argument xxx and the supplement “for all xxx ∈ X” in this proof. Moreover, we
give a shorthand to two matrices:

XXX =
(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)
∈ RKNE×KNE, (3.54a)

YYY =
(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)
∈ RKNE×KNE. (3.54b)

Assume we can write D in both forms (3.27) and (3.36). Moreover, Assump-
tion 3.22 is fulfilled if XXX has full rank. Note that in the situation of Lemma 3.23
we have ZZZ =−XXX−1YYY which gives a hint that we should prove and use XXXZZZ =−YYY
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along the way. As an element ( fff ,eee) of D fulfills the equations in (3.27), we have

FFF




− fff C,1
− fff C,2
− fff R,1
− fff R,2

fff Sf
fff Se




+EEE




eeeC,1

eeeC,2

eeeR,1

eeeR,2

eeeSf

eeeSe




= 000 (3.55)

or equivalently—after reordering11:

XXX




yyyC
yyyR
yyyP


=−YYY




uuuC

uuuR

uuuP


 . (3.56)

The same element ( fff ,eee) also fulfills (3.36), i.e., we have




yyyC
yyyR
yyyP


= ZZZ




uuuC

uuuR

uuuP


 , (3.57)

where ZZZ is unique according to Proposition 3.25. By multiplying with XXX from
right we obtain

XXX




yyyC
yyyR
yyyP


= XXXZZZ




uuuC

uuuR

uuuP


 . (3.58)

Combining (3.56) and (3.58) yields

XXXZZZ




uuuC

uuuR

uuuP


=−YYY




uuuC

uuuR

uuuP


 . (3.59)

11cf. (B.5) and (B.6)
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Whence XXXZZZ = −YYY since (uuu⊤C uuu⊤R uuu⊤P )
⊤ ranges over all of RKNE . Let us now

investigate the rank of XXX . First, note that imXXX = im(XXX XXXZZZ) as imXXXZZZ ⊆ imXXX .
From this the statement that XXX has full rank follows:

rankXXX = rank
(
XXX XXXZZZ

) (3.59)
= rank

(
XXX −YYY

) (3.54)
= rank

(
FFF EEE

) (2.3b)
= KNE. (3.60)

Note that (3.60) holds for any realization of FFF and EEE. Moreover, every submatrix
in XXX must have full column rank. In particular, Assumption 3.22 holds.

Lemma 3.23 presents a method which allows to convert the Dirac struc-
ture (3.27) to an explicit form (3.36). The independence of source elements in
Assumption 3.22 was proven to be necessary and sufficient for the existence
of (3.36). Note that Lemma 3.23 does not make any assumptions on the pres-
ence of dependent storages. For the aim of deriving an explicit PHS, dependent
storages are particularly unpleasant: they contribute to the energy in a system
without having a dedicated representation in the system’s state vector. Systems
with dependent storages lead in general to mathematical models in forms of
DAEs [Borutzky, 2010, p. 142]. Therefore, we now consider an important special
case of (3.36) which—in addition to independent sources—also requires indepen-
dent storages. Later, we will relax the latter restriction and allow for dependent
storages.

Assumption 3.27 (Independent storages and sources)
The matrices in (3.27) fulfill

rank(FFFC (xxx) EEESf (xxx) FFFSe (xxx)) = K (NC +NSf +NSe) , ∀xxx ∈ X. (3.61)
Note that Assumption 3.27 implies Assumption 3.22. The subsequent corol-
lary makes use of Assumption 3.27 and addresses an important special case of
Lemma 3.23.
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Corollary 3.28 (Input-output representation under Assumption 3.27)
Consider a Dirac structure (3.27) which fulfills Assumption 3.27. The Diracstructure (3.27) can then be formulated in an input-output representation

D(xxx) = {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


) ∈ RKNE×RKNE |




yyyC
yyyR
yyyP


=




ZZZCC (xxx) −ZZZCR (xxx) −ZZZCP (xxx)
ZZZ⊤CR (xxx) ZZZRR (xxx) −ZZZRP (xxx)
ZZZ⊤CP (xxx) ZZZ⊤RP (xxx) ZZZPP (xxx)




︸ ︷︷ ︸
ZZZ(xxx)




uuuC

uuuR

uuuP


}, (3.62)

where ZZZ (xxx) =−ZZZ⊤ (xxx) for all xxx ∈ X and

uuuC = eeeC, uuuR =

(
eeeR,1

−fff R,2

)
, uuuP =

(
fff Sf
eeeSe

)
, (3.63a)

yyyC =− fff C, yyyR =

(− fff R,1
eeeR,2

)
, yyyP =

(
eeeSf

fff Se

)
. (3.63b)

The matrix ZZZ (xxx) is given by (3.38) with FFFC,1 (xxx) = FFFC (xxx), EEEC,1 (xxx) = EEEC (xxx)and (FFFR,1 (xxx) FFFR,2 (xxx)) a splitting of FFFR (xxx) such that (3.39) is fulfilled. More-over, Assumption 3.27 is necessary and sufficient for the existence of therepresentation (3.62) with vectors as in (3.63).
Proof:
The proof of Corollary 3.28 follows directly from Lemma 3.23 under Assump-
tion 3.27, which also shows that Assumption 3.27 is a sufficient condition. The
proof for the necessity is the same as the one given for Proposition 3.26.
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Note that Corollary 3.28 requires only a splitting of R-type power variables;
the splitting of C-type variables disappears.12 The corollary is illustrated in the
following example which continues the previous ones:

Example 3.29:
Recall the Dirac structure from Example 3.24 in implicit representa-tion (3.47). Assumption 3.27 is satisfied as rank(FFFC EEESf FFFSe(xxx1)) = 5K forall xxx1. Hence, we can apply Corollary 3.28 to determine an explicit represen-tation of (3.47). The splittingFFFR,2 =FFFR satisfies the conditions in (3.39). Byusing this splitting we obtain the following explicit representation of (3.47):

D(xxx1) = {(




fff C1

fff C2

fff C3

fff R
fff S f
fff Se



,




eeeC1

eeeC2

eeeC3

eeeR

eeeS f

eeeSe



) ∈ R6K×R6K |




− fff C1

− fff C2

− fff C3

eeeR

eeeS f

fff Se




=




000 000 000 III 000 000
000 000 III UUU−1(xxx1) −III 000
000 −III 000 000 000 000
−III −UUU−1(xxx1) 000 000 000 III

000 III 000 000 000 000
000 000 000 −III 000 000







eeeC1

eeeC2

eeeC3

− fff R
fff S f
eeeSe



}.

(3.64)

The dashed lines indicate the matrix blocks according to (3.62). Comparedto (3.49) in Example 3.29, (3.64) is another explicit representation of (3.47).In particular, in (3.64) all storage flows fff C are on the left side of the equationsystem.
The previous example illustrates that Corollary 3.28 yields an explicit rep-

resentation in which the flows fff C are on the left side of the equation system.
Recalling the constitutive relations of C-type elements (3.6), in particular fff C = ẋxx,
gives us a hint why this choice is useful: it paves the way for a dynamics equation
of form ẋxx = fff (xxx,uuu). The next subsection is devoted to deriving such a model.

12In fact, this is the property with which Corollary 3.28 particularizes Lemma 3.23.
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3.2.6 Formulation of an Explicit Port-Hamiltonian
System

Based on the Dirac structure from Corollary 3.28 we now derive an explicit PHS.
To this end, we merge the explicit form of the Dirac structure with the constitutive
relations of storages and resistors.

Consider a Dirac structure of the form (3.62) with vectors as in (3.63). Let us
first elaborate the constitutive relations of the storage elements and the resistive
elements of the bond graph. For C-type elements, the constitutive relations read

yyyC
(3.63)
= − fff C

(3.6)
= −ẋxx, uuuC

(3.63)
= eeeC

(3.6)
=

∂V
∂xxx

(xxx) . (3.65)

For R-type elements, the constitutive relation (3.7) from Subsection 3.2.2 read
fff R = DDD(xxx)eeeR with DDD(xxx) = DDD(xxx)⊤ ⪰ 0. In the Dirac structure (3.62), the vectors
fff R and eeeR are split and their components are assigned to inputs uuuR and outputs
yyyR. In the following, make the assumption that this splitting can also be applied
to fff R = DDD(xxx)eeeR without loosing the positive semi-definiteness of DDD(xxx):

Assumption 3.30 (Resistive relation in input-output form)
The resistive relations can be reorganized as

uuuR =−R̃RR(xxx)yyyR, (3.66)

with R̃RR(xxx) = R̃RR(xxx)⊤ ⪰ 0 and uuuR, yyyR as in (3.63).
In Appendix B.3 it is argued that Assumption 3.30 is not restrictive. The negative
sign in (3.66) accounts for the opposite orientations of the vectors ( fff R,eeeR) and
(uuuR,yyyR) (see (3.37)). Now we can merge the Dirac structure and the constitutive
relations of storages and resistors into an explicit PHS.
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Lemma 3.31 (Port-Hamiltonian formulation)
Given an explicit Dirac structure (3.62) and constitutive relations of storagesas in (3.65). Let Assumption 3.30 hold, that is, let the constitutive relationsof resistive elements be given as in (3.66). Then, (3.62), (3.65), and (3.66) canbe written as explicit input-state-output PHS of the form (2.12). The statevector and the Hamiltonian of the PHS are given by xxx and H (xxx) =V (xxx) from(3.65), respectively. The input vector of the PHS is uuu = uuuP; the output vectoris yyy = yyyP. The matrices of the PHS are calculated as:

JJJ (xxx)=−1
2ZZZCR (xxx)

(
K̃KK (xxx) R̃RR(xxx)− R̃RR(xxx) K̃KK⊤ (xxx)

)
ZZZ⊤CR (xxx)−ZZZCC (xxx) , (3.67a)

RRR(xxx)= 1
2ZZZCR (xxx)

(
K̃KK (xxx) R̃RR(xxx)+ R̃RR(xxx) K̃KK⊤ (xxx)

)
ZZZ⊤CR (xxx) , (3.67b)

GGG(xxx)= 1
2ZZZCR (xxx)

(
K̃KK (xxx) R̃RR(xxx)− R̃RR(xxx) K̃KK⊤ (xxx)

)
ZZZRP (xxx)+ZZZCP (xxx) , (3.67c)

PPP(xxx)=−1
2ZZZCR (xxx)

(
K̃KK (xxx) R̃RR(xxx)+ R̃RR(xxx) K̃KK⊤ (xxx)

)
ZZZRP (xxx) , (3.67d)

MMM (xxx)= 1
2ZZZ⊤RP (xxx)

(
K̃KK (xxx) R̃RR(xxx)− R̃RR(xxx) K̃KK⊤ (xxx)

)
ZZZRP (xxx)+ZZZPP (xxx) , (3.67e)

SSS (xxx)= 1
2ZZZ⊤RP (xxx)

(
K̃KK (xxx) R̃RR(xxx)+ R̃RR(xxx) K̃KK⊤ (xxx)

)
ZZZRP (xxx) , (3.67f)

where
K̃KK (xxx)= (III + R̃RR(xxx)ZZZRR (xxx))−1. (3.67g)

Remark 3.32 (Existence of K̃KK). The existence of matrix K̃KK (xxx) in (3.67g) willbe discussed later in Lemma 3.33.
Proof:
The proof follows four steps: (i) we eliminate the resistive variables in (3.62);
(ii) we decompose the structure obtained from (i) into symmetric and skew-
symmetric parts; (iii) we substitute storage variables with (3.65); (iv) we show
that the definiteness condition (2.13) holds. Again, we omit the argument xxx and
the supplement “for all xxx ∈ X” for all matrices in this proof.
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Substituting the second row from the equation system in (3.62) into (3.66) yields

uuuR =−R̃RRZZZ⊤CRuuuC + R̃RRZZZRPuuuP− R̃RRZZZRRuuuR

⇔
(
III + R̃RRZZZRR

)
uuuR =−R̃RRZZZ⊤CRuuuC + R̃RRZZZRPuuuP

⇔ uuuR =−K̃KKR̃RRZZZ⊤CRuuuC + K̃KKR̃RRZZZRPuuuP, (3.68)

with K̃KK as in (3.67g). Inserting (3.68) into the first and third row from the linear
equation system in (3.62) yields

(
yyyC
yyyP

)
=

[(
ZZZCC −ZZZCP

ZZZ⊤CP ZZZPP

)
+

(
ZZZCR

−ZZZ⊤RP

)
K̃KKR̃RR
(
ZZZ⊤CR −ZZZRP

)](uuuC

uuuP

)
. (3.69)

The first addend in the square bracket is a skew-symmetric matrix. The second
addend is decomposed into a skew-symmetric and a symmetric matrix. Using
this decomposition and R̃RR = R̃RR⊤, (3.69) reads

(
yyyC
yyyP

)
=

[(
ZZZCC −ZZZCP

ZZZ⊤CP ZZZPP

)
+

1
2

(
ZZZCR

−ZZZ⊤RP

)(
K̃KKR̃RR− R̃RRK̃KK⊤

)(
ZZZ⊤CR −ZZZRP

)

+
1
2

(
ZZZCR

−ZZZ⊤RP

)(
K̃KKR̃RR+ R̃RRK̃KK⊤

)(
ZZZ⊤CR −ZZZRP

)](uuuC

uuuP

)
.

(3.70)

Equation (3.70) can be written as

(
yyyC
yyyP

)
=

[(−JJJ −GGG
GGG⊤ MMM

)

︸ ︷︷ ︸
=ΨΨΨ

+

(
RRR PPP

PPP⊤ SSS

)]

︸ ︷︷ ︸
=ΘΘΘ

(
uuuC

uuuP

)
, (3.71)

with JJJ, GGG, MMM, RRR, PPP, SSS as in (3.67) and ΨΨΨ =−ΨΨΨ
⊤, ΘΘΘ = ΘΘΘ

⊤. Inserting (3.65) into(3.71) then yields (2.12). Using the idea of van der Schaft and Jeltsema [2014,
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p. 56], we prove the positive semi-definiteness of ΘΘΘ (cf. (2.13)):
(
uuu⊤C uuu⊤P

)
ΘΘΘ

(
uuuC

uuuP

)
=
(
uuu⊤C uuu⊤P

)
ΘΘΘ

(
uuuC

uuuP

)
+
(
uuu⊤C uuu⊤P

)
ΨΨΨ

(
uuuC

uuuP

)

︸ ︷︷ ︸
=0

(3.72)

=
(
uuu⊤C uuu⊤P

)
(ΘΘΘ+ΨΨΨ)

(
uuuC

uuuP

)
(3.73)

=
(
uuu⊤C uuu⊤P

)(yyyC
yyyP

) (2.3a),(3.66)
= yyy⊤R R̃RRyyyR ≥ 0. (3.74)

In the previous lemma, the calculation of the matrices of the PHS requires the
existence of a matrix K̃KK (xxx) = (III + R̃RR(xxx)ZZZRR (xxx))−1, where R̃RR(xxx) = R̃RR⊤(xxx) ⪰ 0
and ZZZRR (xxx) =−ZZZ⊤RR(xxx) for all xxx ∈ X. The matrix K̃KK (xxx) (or related expressions)
has appeared in previous publications addressing the derivation of state-space
formulations of bond graphs, e.g., Rosenberg [1971, eq. (7)], Wellstead [1979,
p. 199], Donaire and Junco [2009, eq. (14)], and Lopes [2016, Remark 2].
However, to the best of our knowledge, the existence of K̃KK has not been discussed
so far. The following lemma shows that K̃KK (xxx) always exists:

Lemma 3.33 (Existence of K̃KK)
Let XXX ,YYY ∈ Rp×p with XXX = XXX⊤ ⪰ 0 and YYY = −YYY⊤. Then, the matrix KKK :=
(III +XXXYYY ) is regular. In particular K̃KK := KKK−1 always exists.
Proof:
The idea of the proof is to show that (i) we can (without loss of generality) regard
XXX to be diagonal; 13 (ii) the matrix KKK is invertible. For (ii) we investigate first
the case of XXX being positive-definite. Afterwards, we generalize to the case of XXX
being positive semi-definite.
Recall that XXX is symmetric and positive semi-definite and that YYY is skew-symmetric.
Without loss of generality we may assume XXX to be diagonal. Indeed, since XXX
is a symmetric and real matrix, there exists (by the Spectral Theorem) an or-

13Note that this does not immediately follow from XXX = XXX⊤ ⪰ 0 but must be analyzed in relation to
III +XXXYYY .
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thogonal matrix TTT ∈ O(p) such that TTT XXXTTT⊤ is diagonal. Moreover, III +XXXYYY is
invertible if and only if TTT (III +XXXYYY )TTT⊤ = III +(TTT XXXTTT⊤)(TTTYYY TTT⊤) = III + X̃XXỸYY is in-
vertible, where X̃XX = TTT XXXTTT⊤ is diagonal and positive semi-definite and ỸYY = TTTYYY TTT⊤

is skew-symmetric. Thus, we can assume XXX to be diagonal in the remainder of
the proof.
The matrix III +XXXYYY is regular if and only if 0 is not an eigenvalue of it, that is if
−1 is not an eigenvalue of XXXYYY . We will show that the only possible real-valued
eigenvalue of XXXYYY is 0. Throughout this proof we use Spec(XXX) to denote the (real)
spectrum of XXX , i.e., the set of real eigenvalues of XXX .

◦ Case 1: XXX is positive-definite. Let
√

XXX be a diagonal matrix which is a
square root of XXX , i.e.,

√
XXX
√

XXX = XXX . Such a matrix exists and is invertible
since XXX is diagonal and positive-definite. Because the spectrum of a matrix
is invariant under conjugation, we have

Spec(XXXYYY ) = Spec
(√

XXX
−1

XXXYYY
√

XXX
)

= Spec
(√

XXXYYY
√

XXX
)
= Spec

(√
XXXYYY
√

XXX
⊤)⊆ {0}, (3.75)

where the last inclusion holds since
√

XXXYYY
√

XXX
⊤

is real and skew-symmetric.
Thus, −1 is not an eigenvalue of XXXYYY and III +XXXYYY is invertible.

◦ Case 2: XXX is (genuine) positive semi-definite. By the same conjugation
argument as at the beginning of the proof (this time with a permutation
matrix) we may assume without loss of generality that XXX is of the form

XXX =

(
XXX ′ 000
000 000

)
, (3.76)

where XXX ′ ∈Rℓ×ℓ is a positive-definite diagonal matrix. With the same block
decomposition we write YYY as

YYY =

(
YYY ′ YYY ′′

∗ ∗

)
, where YYY ′ ∈ Rℓ×ℓ. (3.77)
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We have

XXXYYY =

(
XXX ′YYY ′ XXX ′YYY ′′

000 000

)
. (3.78)

Thus, Spec(XXXYYY ) = Spec(XXX ′YYY ′)∪Spec(000)⊆ {0}, where the last inclusion
uses case 1 applied to XXX ′YYY ′. Hence, III +XXXYYY is invertible.

Let us illustrate the insights from this subsection by deriving a PHS for the
example system.

Example 3.34:
Consider the Dirac structure from Example 3.29 in explicit representa-tion (3.64). From Example 3.7 recall the constitutive relations of storagesand resistors: the three storage elements are described by an arbitrary dif-ferentiable, non-negative storage function V (xxx); the resistive element hasbeen specified by fff R = DDDeeeR where DDD = DDD⊤ ≻ 0 arbitrary. For an input-output splitting of R-type variables as in (3.64), we can write

fff R = DDDeeeR
(3.64)⇔ uuuR =− DDD︸︷︷︸

=R̃RR

yyyR. (3.79)
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Thus, Assumption 3.30 is fulfilled. With the calculation rules fromLemma 3.31, we then obtain an explicit PHS of the form (2.12):



ẋxx1

ẋxx2

ẋxx3


= (




000 000 000
000 000 −III
000 III 000


−




DDD DDDUUU−1(xxx1) 000
UUU−1(xxx1)DDD UUU−1(xxx1)DDDUUU−1(xxx1) 000

000 000 000


)

∂H
∂xxx

(xxx)

+(




000 000
III 000
000 000


−




000 −DDD
000 −UUU−1(xxx1)DDD
000 000


)

(
fff S f
eeeSe

)

(3.80a)
(

eeeS f

fff Se

)
= (




000 000
III 000
000 000


+




000 −DDD
000 −UUU−1(xxx1)DDD
000 000


)⊤

∂H
∂xxx

(xxx)+
(

000 000
000 DDD

)(
fff S f
eeeSe

)
.

(3.80b)

In (3.80) we have H (xxx) =V (xxx), MMM (xxx) = 000,UUU(xxx1) = exp(−κ diag(xxx1)), and
xxx ∈ X. The variables from the source elements are correctly allocated toinputs and outputs; hence, the (3.80) has Property 3.8. By the symmetry of
DDD and UUU it can be seen that the matrices in (3.80) indeed have the desiredsymmetry and skew-symmetry properties from Definition 2.23.Investigating RRR(xxx1) for the case DDD = III gives:

(
xxx⊤1 xxx⊤2 xxx⊤3

)
RRR(xxx1)




xxx1

xxx2

xxx3


= ∥xxx1 +UUU−1(xxx1)xxx2∥2 ≥ 0, ∀xxx ∈ X. (3.81)

Hence, forDDD = III the matrix RRR(xxx1) is positive semi-definite which verifies thedefiniteness condition 2.13.
The above example illustrates how the methods from this subsection can be

used to derive an explicit PHS based on a Dirac structure and the constitutive
relations of storages and resistors. In the next subsection, these methods are
embedded into a main theorem which addresses the derivation of an explicit PHS
from a bond graph.
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3.2.7 Theorem and Algorithm

This subsection first provides a theorem which summarizes the insights from
subsections 3.2.3 to 3.2.6. The theorem addresses the existence of an explicit
port-Hamiltonian formulation of a bond graph. Afterwards, we assemble the cor-
responding methods in an algorithm which calculates an explicit PHS based on a
given bond graph. The theorem and the algorithm are major results of this chapter.

Theorem 3.35 (Explicit Port-Hamiltonian Formulation of Bond Graphs)
Given a K-dimensional bond graph as in Definition 3.5. The junction struc-ture of the bond graph can be described by a Dirac structure in implicit form:

D(xxx) = {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


) ∈ RKNE×RKNE |

(
FFFC (xxx) FFFR (xxx) FFFSf (xxx) FFFSe (xxx)

)




− fff C
− fff R
fff Sf
fff Se




+
(
EEEC (xxx) EEER (xxx) EEESf (xxx) EEESe (xxx)

)




eeeC

eeeR

eeeSf

eeeSe


= 000}, (3.82)

where fff α = ( fff i)∈RKNα , eeeα = (eeei)∈RKNα for all i∈Vα andFFFα (xxx) ,EEEα (xxx)∈
RKNE×KNα with α ∈ {C,R,Sf,Se}. Let

rank(FFFC (xxx) EEESf (xxx) FFFSe (xxx)) = K (NC +NSf +NSe) , ∀xxx ∈ X. (3.83)
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hold (i.e., Assumption 3.27). Then, (3.82) can be formulated in an explicitrepresentation

D(xxx)= {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


)∈RKNE×RKNE |




yyyC
yyyR
yyyP


=ZZZ (xxx)




uuuC

uuuR

uuuP


}, (3.84)

where ZZZ (xxx) =−ZZZ⊤ (xxx) ∈ RKNE for all xxx ∈ X with uuuC = eeeC, uuuR = (eee⊤R,1 fff⊤R,2)
⊤,

uuuP = ( fff⊤Sf eee⊤Se)
⊤, yyyC = − fff C, yyyR = (− fff⊤R,1 eee⊤R,2)

⊤, and yyyP = (eee⊤Sf fff⊤Se)
⊤. Sup-pose the resistive relations can be reorganized as uuuR =−R̃RR(xxx)yyyR with R̃RR(xxx) =

R̃RR(xxx)⊤ ⪰ 0 (i.e., Assumption 3.30). The bond graph can then be formulatedas an explicit PHS (cf. Definition 2.23)

ẋxx = (JJJ (xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+(GGG(xxx)−PPP(xxx))uuu, (3.85a)
yyy = (GGG(xxx)+PPP(xxx))⊤

∂H
∂xxx

(xxx)+(MMM (xxx)+SSS (xxx))uuu, (3.85b)

that has Property 3.8. Assumption 3.27 and Assumption 3.30 together forma sufficient condition for formulating the bond graph as an explicit PHS (3.85)with Property 3.8. A necessary condition for the existence of such a modelis given by rank(EEESf (xxx) FFFSe (xxx)) = K (NSf +NSe) for all xxx ∈ X (i.e., Assump-tion 3.22).
Proof:
Consider a K-dimensional bond graph as in Definition 3.5. First, consider the set
of interior elements VI with |VI|= NI. According to Lemma 3.12, the equations
of the elements of VI can be described by a corresponding set of Dirac structures
DS with |DS| = NI. From Lemma 3.17 it follows that the NI elements of DS
can be composed into a single Dirac structure in implicit form (3.82). Now
let Assumption 3.27 hold. Then, (3.82) can be formulated in an explicit repre-
sentation (3.84). Consider the constitutive relations (3.65) of C-type elements.
Let Assumption 3.30 hold for uuuR,yyyR as in (3.84), i.e., the constitutive relation
of R-type elements can be written as (3.66). According to Lemma 3.31, the
equations (3.62), (3.65), and (3.66) can then be written as PHS (3.85). From
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Lemma 3.31, it follows that uuu = uuuP and yyy = yyyP which is why the explicit PHS has
Property 3.8.
Next, we prove sufficiency and necessity for the respective assumptions. Suf-
ficiency of assumptions 3.27 and 3.30 follows directly from the above con-
siderations. Now for the necessity of Assumption 3.22. Property 3.8 implies
Property 3.21. In Proposition 3.26 we show that Assumption 3.22 is necessary
(and sufficient) for formulating the junction structure equations as explicit Dirac
structure satisfying Property 3.21. In Lemma 3.31 it is shown, that the inputs and
outputs of the explicit Dirac structure directly translate into the inputs and outputs
of the explicit PHS. Thus, under Property 3.8, the necessity of Assumption 3.22
from Proposition 3.26 also accounts for the subsequent derivation of an explicit
PHS. This concludes the proof.

Theorem 3.35 provides two conditions, one sufficient and one necessary, for
the existence of an explicit port-Hamiltonian formulation of a bond graph. The
sufficient condition is composed of two subconditions, viz. (i) that the system
contains no dependent sources and no dependent storages (i.e., Assumption 3.27)
and (ii) that the constitutive relations of energy-dissipating elements can be
formulated in a suitable input-output representation (i.e., Assumption 3.30). The
necessary existence condition requires the system to contain no dependent sources
(i.e., Assumption 3.22).

The methods associated to Theorem 3.35 constitute an algorithm which can
be used to generate an explicit PHS from a given bond graph. A pseudo code
listing is given in Algorithm 3.36. The input of the algorithm is a formal bond
graph as defined in Definition 3.5. The output is a complete specification of the
resulting port-Hamiltonian model, viz. the matrices, Hamiltonian, state vector,
input vector, and output vector of the PHS.

It is straightforward to implement Algorithm 3.36 in a computer algebra
system. Based on such an implementation, one can compute an explicit PHS
from a bond graph. This computation runs fully automatic, i.e., except for the
specification of the bond graph, it requires no action from the user. Thus, provided
the existence conditions from Theorem 3.35 are satisfied, we can automatically
generate an explicit PHS from a bond graph.

A limitation of Algorithm 3.36 is that it cannot be applied to systems with
dependent storages as such systems violate Assumption 3.27. Dependent storages
occur for example in multi-phase power systems with Y -connected inductive
loads and in mechanic system with rigidly coupled masses. Of course, we are
also interested in an automated modeling of such systems. Hence, in the following
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subsection, we relax Assumption 3.27 in order to enable a generation of PHSs
from bond graphs possibly containing dependent storages.

Algorithm 3.36 Port-Hamiltonian formulation of a bond graph
Input: K-dimensional bond graph (3.12)1: // Methods from Subsection 3.2.32: for all i ∈ VI do3: compute FFF i (xxx), EEE i (xxx) according to (3.20)4: construct Di (xxx) as in (3.19)5: end for6: // Methods from Subsection 3.2.47: for all i ∈ VI do8: bring Di (xxx) to the form (3.23)9: compute DIC according to (3.25)10: compute ΓΓΓ

⊤
i (xxx) according to (3.28)11: end for12: ΓΓΓ

⊤ (xxx)← (ΓΓΓ⊤i (xxx)) for all i ∈ VI13: ΛΛΛ
⊤ (xxx)← ker(ΓΓΓ⊤ (xxx))14: write ΛΛΛ

⊤ (xxx) as (ΛΛΛ⊤i (xxx)) for all i ∈ VI15: compute D(xxx) according to (3.29)16: bring D(xxx) to the form (3.27)17: // Methods from Subsection 3.2.518: if Assumption 3.22 is violated then19: print "Bond graph contains dependent sources. No PHS can be computed!"20: terminate21: end if22: if Assumption 3.27 is violated then23: print "Bond graph contains dependent storages orstorages determined by sources. Algorithm terminates!"24: terminate25: end if26: split FFFR (xxx) such that (3.39) is fulfilled27: split EEER (xxx), fff R, eeeR in same parts as FFFR (xxx)28: compute ZZZ (xxx) according to (3.38) with FFFC,1 (xxx) = FFFC (xxx), EEEC,1 (xxx) = EEEC (xxx)29: compute uuui,yyyi according to (3.63), i ∈ {C,P,R}30: compute D(xxx) as in (3.62)31: // Methods from Subsection 3.2.632: if Assumption 3.30 is violated then33: print "No suitable input-output splitting of
R-type elements exists. Algorithm terminates!"34: terminate35: end if36: bring resistive relation to form (3.66)37: compute PHS matrices with (3.67)38: xxx← (xxxi),∀i ∈ VC and H (xxx)←V (xxx)39: uuu← uuuP, yyy← yyyP40: return explicit PHS (3.85)
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3.2.8 Systems with Dependent Storages

The aim of this subsection is to develop a method which derives an explicit
PHS from bond graphs with dependent storages. The leading idea is to express
variables according to dependent storages as functions of variables only accord-
ing to independent storages. Based hereon, we formulate the port-Hamiltonian
dynamics and output in terms of the system inputs and independent storages.
Portions of this section have previously been published in Pfeifer et al. [2020b].

Consider a bond graph as from Definition 3.5. In the following, we distin-
guish between two types of storages elements, viz. independent storages Ci and
dependent storages Cd.14 Correspondingly, let us decompose the set of storages
VC into VCi and VCd . We then have NC = NCi +NCd , where NCi = |VCi| and
NCd = |VCd|. Recall Lemma 3.23: provided there are no dependent sources, the
junction structure of the bond graph can always be described as a Dirac structure
in input-output representation (3.36). Using the composition VC = VCi ∪VCd ,
the Dirac structure (3.36) reads:

D= {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


) ∈ RKNE×RKNE |




yyyCi

yyyCd

yyyR
yyyP


=




ZZZCiCi (xxx) −ZZZCiCd (xxx) −ZZZCiR (xxx) −ZZZCiP (xxx)
ZZZ⊤CiCd

(xxx) ZZZCdCd (xxx) −ZZZCdR (xxx) −ZZZCdP (xxx)
ZZZ⊤CiR (xxx) ZZZ⊤CdR (xxx) ZZZRR (xxx) −ZZZRP (xxx)
ZZZ⊤CiP (xxx) ZZZ⊤CdP (xxx) ZZZ⊤RP (xxx) ZZZPP (xxx)







uuuCi

uuuCd

uuuR

uuuP


}, (3.86)

where

uuuCi = eeeCi, uuuCd =− fff Cd
, (3.87a)

yyyCi
=− fff Ci

, yyyCd
= eeeCd, (3.87b)

14The index i refers to independent and is not to be confused with the index I which stands for interior.



3.2. Main Results 75

and the remaining vectors as in (3.37). It is well known that power variables
of dependent storages are functions only of power variables of independent
storages and inputs from sources [Wellstead, 1979, p. 199]. Thus, without loss of
generality we may assume ZZZCdCd (xxx) = 000, ZZZCdR (xxx) = 000 and write (3.86) as

D= {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


) ∈ RKNE×RKNE |




yyyCi

yyyCd

yyyR
yyyP


=




ZZZCiCi (xxx) −ZZZCiCd (xxx) −ZZZCiR (xxx) −ZZZCiP (xxx)
ZZZ⊤CiCd

(xxx) 000 000 −ZZZCdP (xxx)
ZZZ⊤CiR (xxx) 000 ZZZRR (xxx) −ZZZRP (xxx)
ZZZ⊤CiP (xxx) ZZZ⊤CdP (xxx) ZZZ⊤RP (xxx) ZZZPP (xxx)







uuuCi

uuuCd

uuuR

uuuP


}. (3.88)

As can be seen in (3.88), dependent storages can be (i) dependent on independent
storages (i.e., ZZZCiCd (xxx) ̸= 0) and/or (ii) determined by sources (i.e., ZZZCdP (xxx) ̸= 0).
Wellstead [1979, p. 200] showed that case (ii) leads to mathematical models of
the form ẋxx = fff (xxx,uuu, u̇uu, t). Due to the dependence on u̇uu, no explicit PHS of the
form (2.12) can be obtained for such systems. Hence, we exclude case (ii) in the
following considerations. Moreover, we assume ZZZCiCd (xxx) to be constant. The
following assumption summarizes the preconditions on (3.88):
Assumption 3.37 (Matrix blocks in (3.88))
In (3.88), we have ZZZCdP (xxx) = 000 for all xxx ∈ X and ZZZCiCd (xxx) = ZZZCiCd = const.

Next, we elaborate the consequence of the decomposition VC = VCi ∪VCd to the
constitutive relations of storages. With the inputs and outputs from (3.88), we
can rewrite the constitutive relations (3.6) as

(
fff Ci

fff Cd

) (3.87)
= −

(
yyyCi

uuuCd

)
=

(
ẋxxi

ẋxxd

)
, (3.89a)

(
eeeCi

eeeCd

) (3.87)
=

(
uuuCi

yyyCd

)
=

( ∂Vi
∂xxxi

(xxxi)
∂Vd
∂xxxd

(xxxd)

)
, (3.89b)
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where xxxi ∈ RKNCi , xxxd ∈ RKNCd are the energy states and Vi : RKNCi → R,
Vd : RKNCd → R are the storage functions of the independent and dependent
storage elements, respectively. The overall energy in the system is then given by
the composite storage function V (xxxi,xxxd) =Vi(xxxi)+Vd(xxxd). The storage functions
Vi(xxxi) and Vd(xxxd) are bounded from below. Moreover, so far, they are allowed to
be any differentiable linear or nonlinear function. In the latter case, however, it
is (in general) impossible to solve (3.88) and (3.65) for an explicit expression
which relates the states of the dependent storages as a function of the states of the
independent storages. As a remedy, we restrict our attention to the special case of
linear storages, i.e., the case of quadratic positive-definite storage functions.

Assumption 3.38 (Quadratic storage functions)
The storage functions in (3.65) are of the formVi(xxxi) =

1
2xxx⊤i QQQixxxi andVd(xxxd) =

1
2xxx⊤d QQQdxxxd where QQQi = QQQ⊤i ≻ 0 and QQQd = QQQ⊤d ≻ 0.

Based on assumptions 3.37 and 3.38, we express the variables of dependent stor-
ages by means of variables of the independent storages in the following lemma.
This is the key lemma of this subsection.

Lemma 3.39 (Port-Hamiltonian formulation in case of dependent stor-ages)
Given a Dirac structure in explicit representation (3.88) that fulfills Assump-tion 3.37. Moreover, suppose constitutive relations of storages (3.65) whichsatisfy Assumption 3.38. For the constitutive relations of resistors, let As-sumption 3.30 hold, which enables us to write them as (3.66). Then, (3.88),(3.65), and (3.66) can be written as explicit input-state-output PHS of theform (2.12). The input, state, and output of the PHS are given as uuu = uuuP,
xxx = xxxi, and yyy = yyyP, respectively. The Hamiltonian is H (xxx) =Vi(xxxi) =

1
2xxx⊤i QQQixxxi
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where QQQi = QQQ⊤i ≻ 0. The matrices of the PHS are calculated as

JJJ (xxx) =
1
2

(
ZZZCiR (xxx) R̃RR(xxx) K̃KK⊤(xxx)ZZZ⊤CiR(xxx) L̃LL⊤

)

− 1
2

(
L̃LLZZZCiR (xxx) K̃KK (xxx) R̃RR(xxx)ZZZ⊤CiR(xxx)+ZZZCiCi (xxx) L̃LL⊤+ L̃LLZZZCiCi (xxx)

)
,

(3.90a)
RRR(xxx) =

1
2

(
ZZZCiR (xxx) R̃RR(xxx) K̃KK⊤(xxx)ZZZ⊤CiR(xxx) L̃LL⊤

)

+
1
2

(
L̃LLZZZCiR (xxx) K̃KK (xxx) R̃RR(xxx)ZZZ⊤CiR(xxx)−ZZZCiCi (xxx) L̃LL⊤+ L̃LLZZZCiCi (xxx)

)
,

(3.90b)
GGG(xxx) =

1
2
(
III + L̃LL

)
ZZZCiP (xxx)

− 1
2

(
ZZZCiR (xxx) R̃RR(xxx) K̃KK⊤(xxx)− L̃LLZZZCiR (xxx) K̃KK (xxx) R̃RR(xxx)

)
ZZZRP (xxx) ,

(3.90c)
PPP(xxx) =

1
2
(
III− L̃LL

)
ZZZCiP (xxx)

− 1
2

(
ZZZCiR (xxx) R̃RR(xxx) K̃KK⊤(xxx)+ L̃LLZZZCiR (xxx) K̃KK (xxx) R̃RR(xxx)

)
ZZZRP (xxx) ,

(3.90d)
MMM (xxx) =

1
2

ZZZ⊤RP(xxx)
(

K̃KK (xxx) R̃RR(xxx)− R̃RR(xxx) K̃KK⊤(xxx)
)

ZZZRP (xxx)+ZZZPP (xxx) , (3.90e)

SSS (xxx) =
1
2

ZZZ⊤RP(xxx)
(

K̃KK (xxx) R̃RR(xxx)+ R̃RR(xxx) K̃KK⊤(xxx)
)

ZZZRP (xxx) , (3.90f)

where K̃KK (xxx) =
(
III + R̃RR(xxx)ZZZRR (xxx)

)−1 and L̃LL =
(

III +ZZZCiCdQQQ−1
d ZZZ⊤CiCd

QQQi

)−1.
Remark 3.40 (Existence of K̃KK and L̃LL). In Lemma3.33, it has been shown thatthe matrix K̃KK (xxx) always exists for all x ∈ X. The existence of the matrix L̃LLwill be discussed later in Lemma 3.44.
Proof:
The basic approach of the proof is similar as in the proof of Lemma 3.31, i.e., in
the case without dependent storages. In the proof of Lemma 3.31, the first step
was to eliminate variables that belong to resistive elements. In the proof at hand,
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however, we will eliminate both, variables that belong to resistive elements and
variables that belong to dependent storages. In this context, a cornerstone is to
derive an expression which relates the variables of interest without using variables
that belong to dependent storages—which is step (i) of this proof. In step (ii), we
decompose the equation system obtained from (i) into a symmetric and a skew-
symmetric part and insert the constitutive relations of the independent storages
from (3.65). In the third step (iii), we prove the definiteness condition (2.13).
Compared to the proof of Lemma 3.31, step (iii) is more delicate as we have to
consider the dependent storages in the power balance of the system. For the sake
of releasing notational burden, we will suppress the argument xxx to the matrices
during the proof.

(i) Let assumption 3.37 hold. Substituting the third line from the equation
system of (3.88) into (3.66) gives

uuuR =−R̃RR
(

ZZZ⊤CiR uuuCi +ZZZRR uuuR−ZZZRP uuuP

)

⇔ uuuR =−K̃KK R̃RRZZZ⊤CiR uuuCi + K̃KK R̃RRZZZRP uuuP, (3.91)

with K̃KK =
(
III + R̃RRZZZRR

)−1. According to Lemma 3.33, K̃KK always exists. Now we
use an idea of Wellstead [1979, pp. 199-200] to eliminate the variables that belong
to dependent storages. In addition to Assumption 3.37, let Assumption 3.38 hold.
With (3.89b), the second line of the equation system of (3.88) reads:

yyyCd
= ZZZ⊤CiCd

uuuCi

⇔ ∂Vd

∂xxxd
(xxxd) = ZZZ⊤CiCd

(
∂Vi

∂xxxi
(xxxi)

)

⇔ QQQd xxxd = ZZZ⊤CiCd
QQQi xxxi

⇔ xxxd = QQQ−1
d ZZZ⊤CiCd

QQQi xxxi. (3.92)

By differentiating (3.92) with respect to time and using (3.89a), we obtain

ẋxxd = QQQ−1
d ZZZ⊤CiCd

QQQi ẋxxi

⇔ 000 =−uuuCd +QQQ−1
d ZZZ⊤CiCd

QQQi yyyCi
. (3.93)
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Insertion of (3.91) into the first line of the equation system in (3.88) gives

yyyCi
=
(

ZZZCiCi +ZZZCiRK̃KKR̃RRZZZ⊤CiR

)
uuuCi−ZZZCiCduuuCd +

(
−ZZZCiP−ZZZCiRK̃KKR̃RRZZZRP

)
uuuP.(3.94)

Equations (3.93) and (3.94) can be written in matrix-vector form:

(
III ZZZCiCd

−QQQ−1
d ZZZ⊤CiCd

QQQi III

)(
yyyCi

uuuCd

)
=

(
ZZZCiCi +ZZZCiRK̃KKR̃RRZZZ⊤CiR −ZZZCiP−ZZZCiRK̃KKR̃RRZZZRP

000 000

)(
uuuCi

uuuP

)
.

(3.95)

Next, we use the inversion rules for 2× 2 block matrices from Lu and Shiou
[2002] to invert the matrix on the left-hand side of equation (3.95). The Schur
complement of this matrix is given by:

LLL := III +ZZZCiCdQQQ−1
d ZZZ⊤CiCd

QQQi. (3.96)

The regularity of the matrix LLL will be discussed in Lemma 3.44. Provisionally, let
us suppose that the inverse of LLL exists and is given by L̃LL := LLL−1. By applying the
inversion rules from Lu and Shiou [2002], we can write (3.95) equivalently as

(
yyyCi

uuuCd

)
=

(
ZZZ1 ZZZ2

ZZZ3 ZZZ4

)(
uuuCi

uuuP

)
, (3.97)

with

ZZZ1 = L̃LL
(

ZZZCiCi +ZZZCiR K̃KK R̃RRZZZ⊤CiR

)
, (3.98a)

ZZZ2 = L̃LL
(
−ZZZCiP−ZZZCiR K̃KK R̃RRZZZRP

)
, (3.98b)

ZZZ3 = QQQ−1
d ZZZ⊤CiCd

QQQi L̃LL
(

ZZZCiCi−ZZZCiR K̃KK R̃RRZZZ⊤CiR

)
, (3.98c)

ZZZ4 = QQQ−1
d ZZZ⊤CiCd

QQQi L̃LL
(
−ZZZCiP−ZZZCiR K̃KK R̃RRZZZRP

)
. (3.98d)
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The first line of (3.97) will pave the way to the state differential equation (2.12a)
of the PHS. To obtain an expression for the output equation (2.12b), we insert(3.91) into the fourth line of the equation system of (3.88) and obtain

yyyP =
(

ZZZ⊤CiP−ZZZ⊤RPK̃KKR̃RRZZZ⊤CiR

)
uuuCi +

(
ZZZPP +ZZZ⊤RPK̃KKR̃RRZZZRP

)
uuuP. (3.99)

The first line of the equation system in (3.97) and equation (3.99) can be written
together in matrix-vector form as

(
yyyCi

yyyP

)
=

(
L̃LL
(
ZZZCiCi +ZZZCiR K̃KK R̃RRZZZ⊤CiR

)
−L̃LL
(
ZZZCiP +ZZZCiR K̃KK R̃RRZZZRP

)

ZZZ⊤CiP−ZZZ⊤RP K̃KK R̃RRZZZ⊤CiR ZZZPP +ZZZ⊤RP K̃KK R̃RRZZZRP

)(
uuuCi

uuuP

)
.

(3.100)
Note that (3.100) is independent of variables that belong to resistive elements
and dependent storages.

(ii) The matrix in (3.100) can be decomposed into a skew-symmetric and a
symmetric part. Using this decomposition, (3.100) can be equivalently written as

(
yyyCi

yyyP

)
=

[(−JJJ −GGG
GGG⊤ MMM

)

︸ ︷︷ ︸
=ΨΨΨ

+

(
RRR PPP

PPP⊤ SSS

)]

︸ ︷︷ ︸
=ΘΘΘ

(
uuuCi

uuuP

)
, (3.101)

with JJJ , RRR , GGG , PPP , MMM, SSS as in (3.90) and ΨΨΨ = −ΨΨΨ
⊤, ΘΘΘ = ΘΘΘ

⊤. By inserting
the identities of the independent variables from (3.65) into (3.101), we finally
obtain an explicit PHS (2.12) with uuu = uuuP, xxx = xxxi, yyy = yyyP and Hamiltonian
H (xxx) =Vi(xxxi).

(iii) In the last step, we show that the definiteness condition (2.13) holds. Let
us merge (3.101) with the second line of the equation system in (3.88):




yyyCi

yyyP
yyyCd


=





−JJJ −GGG 000
GGG⊤ MMM 000
000 000 000




︸ ︷︷ ︸
=:Ψ̃ΨΨ

+




RRR PPP 000
PPP⊤ SSS 000

ZZZ⊤CiCd
000 000






︸ ︷︷ ︸
=:Θ̃ΘΘ




uuuCi

uuuP

uuuCd


 . (3.102)
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Note that Ψ̃ΨΨ is skew-symmetric but Θ̃ΘΘ is not symmetric. Nevertheless, Θ̃ΘΘ ⪰ 0
implies ΘΘΘ⪰ 0. In the following, we show that Θ̃ΘΘ⪰ 0:

(
uuu⊤Ci

uuu⊤P uuu⊤Cd

)
Θ̃ΘΘ




uuuCi

uuuP

uuuCd


 =

(
uuu⊤Ci

uuu⊤P uuu⊤Cd

)(
Ψ̃ΨΨ+ Θ̃ΘΘ

)



uuuCi

uuuP

uuuCd




(3.102)
=

(
uuu⊤Ci

uuu⊤P uuu⊤Cd

)



yyyCi

yyyP
yyyCd




(2.9)
= −yyy⊤R uuuR

(3.66)
= yyy⊤R R̃RRyyyR ≥ 0. (3.103)

Hence, we have Θ̃ΘΘ⪰ 0, which implies ΘΘΘ⪰ 0. This concludes the proof.

Remark 3.41 (Dependent states as a function of independent states). Thefollowing expression (i.e., (3.92)) relates the dependent states as functionsof the independent states:

xxxd = QQQ−1
d ZZZ⊤CiCd

QQQi xxxi. (3.104)

Equation (3.104) can be used, for example, to express the total energy inthe system as a function only of xxxi:

V (xxxi,xxxd) = Vi(xxxi)+Vd(xxxd)

= 1
2xxx⊤i QQQixxxi +

1
2xxx⊤d QQQdxxxd

(3.104)
= 1

2xxx⊤i QQQi

(
III +ZZZCiCdQQQ−1

d ZZZ⊤CiCd
QQQi

)
xxxi

(3.96)
= 1

2xxx⊤i QQQiLLLxxxi =V (xxxi). (3.105)

Remark 3.42 (Dynamics of the dependent states). By inserting (3.65) intothe second line of (3.97), we yield an explicit expression for the dynamics
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of the dependent states:

ẋxxd = QQQ−1
d ZZZ⊤CiCd

QQQiL̃LL
(

ZZZCiCi−ZZZCiRK̃KKR̃RRZZZ⊤CiR

)
QQQixxxi

−QQQ−1
d ZZZ⊤CiCd

QQQiL̃LL
(
ZZZCiP +ZZZCiRK̃KKR̃RRZZZRP

)
uuuP.

(3.106)

A central prerequisite for the proof of Lemma 3.39 is the existence of the
matrix L̃LL = LLL−1, where LLL =

(
III +ZZZCiCdQQQ−1

d ZZZ⊤CiCd
QQQi

)
with QQQi, QQQd symmetric,

positive-definite and ZZZCiCd a matrix of proper size. In the sequel, we prove that
this prerequisite is indeed fulfilled, i.e., that LLL is always regular. To this end,
we will make use of the following mathematical concepts (see Deuflhard and
Hohmann [1995, p. 273]):

Definition 3.43 (Rayleigh quotient and numerical range)
Given a quadraticmatrixAAA∈Rn×n and anon-zero vector xxx∈Rn. TheRayleighquotient ρ(AAA,xxx) is defined as

ρ(AAA,xxx) :=
xxx⊤AAAxxx
xxx⊤xxx

. (3.107)

The set of all Rayleigh quotients over non-zero vectors

W (AAA) := {ρ(AAA,xxx) |xxx ∈ Rn \{000}} (3.108)

is called numerical range of AAA.
We have Spec(AAA) ⊆W (AAA) and for a symmetric matrix AAA we have W (AAA) =
[λmin,λmax] by the min-max Theorem (also known as Courant-Fischer Theorem),
where λmin and λmax are the smallest and the largest eigenvalues of AAA [Deuflhard
and Hohmann, 1995, Lemma 8.29, p. 273].
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The following lemma is the key step to show that L̃LL always exists:

Lemma 3.44 (Regularity of a matrix)
Let XXX ∈ Rp×p be a symmetric positive-definite matrix and YYY ∈ Rp×p be anymatrix whose numerical range W (YYY ) is contained in [0,∞), i.e., YYY has onlynon-negative eigenvalues. Then the matrix III +YYY XXX is regular.

Proof:
Without loss of generality we may assume XXX to be diagonal.15 The regularity of
III +YYY XXX will be proven by showing that YYY XXX has only eigenvalues in [0,∞), i.e.,
that −1 is not an eigenvalue of YYY XXX . Let

√
XXX be the diagonal matrix which is

a square root of XXX , i.e.,
√

XXX
√

XXX =
√

XXX
√

XXX
⊤
= XXX . Such a matrix exists and is

invertible since XXX is diagonal and positive-definite. Because the spectrum of a
matrix is invariant under conjugation, we have

Spec(YYY XXX) = Spec
(√

XXXYYY XXX
√

XXX
−1)

= Spec
(√

XXXYYY
√

XXX
)
= Spec

(√
XXXYYY
√

XXX
⊤)

⊆W
(√

XXXYYY
√

XXX
⊤)⊆W (YYY ) · (0,∞)⊆ [0,∞).

(3.109)

In (3.109), the second to last inclusion holds since

xxx⊤
√

XXXYYY
√

XXX
⊤

xxx
xxx⊤xxx

=
xxx⊤
√

XXXYYY
√

XXX
⊤

xxx

xxx⊤
√

XXX
√

XXX
⊤

xxx︸ ︷︷ ︸
∈W (YYY )

· xxx
⊤√XXX

√
XXX
⊤

xxx
xxx⊤xxx︸ ︷︷ ︸
∈W (XXX)

(3.110)

and W (XXX)⊆ (0,∞) by the min-max Theorem. Thus, −1 is not an eigenvalue of
YYY XXX and III +YYY XXX is invertible.

15cf. the proof of Lemma 3.33 and note that for TTT ∈O(p) we have W (TTTYYY TTT⊤) ∈ [0,∞).
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Corollary 3.45
The matrix L̃LL(xxx) from Lemma 3.39 always exists.

Proof:
Recall that QQQd ≻ 0 and thus QQQ−1

d ≻ 0, which also implies QQQ−1
d ⪰ 0. Hence,

ZZZCiCdQQQ−1
d ZZZ⊤CiCd

is positive semi-definite. The Rayleight quotient of a positive
semi-definite matrix is always ≥ 0, i.e., W (ZZZCiCdQQQ−1

d ZZZ⊤CiCd
) ⊆ [0,∞). As QQQi is

symmetric and positive-definite, the claim follows from Lemma 3.44.

Remark 3.46 (Alternative proof of Lemma 3.33). By interchanging YYY and
XXX , the proof of Lemma 3.44 can be easily extended to also show regularityof III +XXXYYY . By this, we obtain an alternative proof of Lemma 3.33 for theexistence of matrix K̃KK (xxx) (cf. Remark 3.40).

Now we have everything prepared to collect the insights from the previous lem-
mas in a summarizing theorem about the existence of an explicit port-Hamiltonian
formulation—similar to Theorem 3.35. In contrast to Theorem 3.35, however,
the following theorem focuses on bond graphs that contain dependent storages.
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Theorem 3.47 (PHSs from Bond Graphs with Dependent Storages)
Given a K-dimensional bond graph as in Definition 3.5 with linear storages(i.e., Assumption 3.38). The junction structure of the bond graph can be de-scribed by aDirac structure in implicit form (3.82). Let rank(EEESf (xxx) FFFSe (xxx))=
K (NSf +NSe) hold for all xxx ∈ X (i.e., Assumption 3.22). Then, (3.82) can beformulated in an explicit form

D= {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


) ∈ RKNE×RKNE |




yyyCi

yyyCd

yyyR
yyyP


=




ZZZCiCi (xxx) −ZZZCiCd (xxx) −ZZZCiR (xxx) −ZZZCiP (xxx)
ZZZ⊤CiCd

(xxx) 000 000 −ZZZCdP (xxx)
ZZZ⊤CiR (xxx) 000 ZZZRR (xxx) −ZZZRP (xxx)
ZZZ⊤CiP (xxx) ZZZ⊤CdP (xxx) ZZZ⊤RP (xxx) ZZZPP (xxx)




︸ ︷︷ ︸
ZZZ(xxx)




uuuCi

uuuCd

uuuR

uuuP


}, (3.111)

where ZZZ (xxx) =−ZZZ⊤ (xxx) for all xxx ∈X and uuuCi = eeeCi , uuuCd =− fff Cd
, uuuR = (eee⊤R,1 −

fff⊤R,2)
⊤, uuuP = ( fff⊤Sf eeeSe)

⊤, yyyCi
= − fff Ci

, yyyCd
= eeeCd , yyyR = (− fff⊤R,1 eee⊤R,2)

⊤, yyyP =

(eee⊤Sf fff⊤Se)
⊤. Suppose the resistive relations can be written as uuuR = R̃RR(xxx)yyyRwith R̃RR(xxx) = R̃RR(xxx)⊤ ⪰ 0 (i.e., Assumption 3.30). Moreover, let ZZZCdP (xxx) = 000for all xxx ∈X and ZZZCiCd (xxx) = ZZZCiCd = const. (i.e., Assumption 3.37). The bondgraph can then be formulated as an explicit PHS as from Definition 2.23:

ẋxx = (JJJ (xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+(GGG(xxx)−PPP(xxx))uuu, (3.112a)
yyy = (GGG(xxx)+PPP(xxx))⊤

∂H
∂xxx

(xxx)+(MMM (xxx)+SSS (xxx))uuu, (3.112b)

that has Property 3.8. The input, state, and output of the PHS are given as
uuu = uuuP, xxx = xxxi, and yyy = yyyP, respectively, with the Hamiltonian H (xxx) =Vi(xxxi).
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Proof:
Consider a K-dimensional bond graph as in Definition 3.5 which fulfills As-
sumption 3.38. From Theorem 3.35 it is known that the junction structure of
the bond graph can be described by a Dirac structure of the form (3.82). Let
Assumption 3.22 hold. From Lemma 3.23 it follows that (3.82) can be written
as (3.111) where the zero blocks are due to the fact that variables of dependent
storages are functions only of power variables of independent storages and inputs
from sources [Wellstead, 1979, p. 199]. Let assumptions 3.30 and 3.37 hold.
It follows from Lemma 3.39 that the bond graph can then be formulated as an
explicit PHS (3.112) with inputs, states, outputs, and Hamiltonian as stated. By
uuu = uuuP and yyy = yyyP, the PHS has Property 3.8.

Theorem 3.47 provides a sufficient condition for the existence of an explicit
port-Hamiltonian formulation of bond graphs with dependent storages. The
condition is composed of four subconditions, viz. (i) that the system contains no
dependent sources (i.e., Assumption 3.22); (ii) that the constitutive relation of
energy-dissipating elements can be formulated in a suitable input-output repre-
sentation (i.e., Assumption 3.30); (iii) that the variables from dependent storages
are static functions of only variables from independent storages (i.e., Assump-
tion 3.37); and (iv) that the storage elements are linear (i.e., Assumption 3.38).
By these conditions, Theorem 3.47 generalizes Theorem 3.35 with respect to
the occurence of dependent storages but is less general concerning the permitted
storage functions.

Algorithm 3.48 collects the methods associated to Theorem 3.47 in a pseudo
code listing to calculate an explicit PHS from a given bond graph. It is straight-
forward to implement the algorithm in a computer algebra system. Such an
implementation enables the automated generation of an explicit PHS based on a
bond graph system with dependent storages.
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Algorithm 3.48 Port-Hamiltonian formulation of a bond graph with dependent storages
Input: K-dimensional bond graph (3.12) with linear storages1: // Methods from subsections 3.2.3 and 3.2.4 are as in Algorithm 3.362: execute line 1 to 14 from Algorithm 3.363: // Methods from Subsection 3.2.54: if Assumption 3.22 is violated then5: print "Bond graph contains dependent sources. No PHS can be computed!"6: terminate7: end if8: split FFFC (xxx) and FFFR (xxx) such that (3.39) is fulfilled9: split EEEC (xxx), fff C, eeeC in same parts as FFFC (xxx)10: split EEER (xxx), fff R, eeeR in same parts as FFFR (xxx)11: compute ZZZ (xxx) according to (3.38)12: compute uuui,yyyi according to (3.37), i ∈ {C,P,R}13: compute D(xxx) as in (3.111)14: // Methods from Subsection 3.2.815: if Assumption 3.30 or 3.37 is violated then16: print "Existence conditions are violated. Algorithm terminates!"17: terminate18: end if19: bring resistive relation to form (3.66)20: compute PHS matrices with (3.90)21: xxx← xxxi and H (xxx)←Vi(xxxi)22: uuu← uuuP, yyy← yyyP23: return explicit PHS (3.112)

To illustrate the automated model generation based on Algorithm 3.48, let us
consider a new example.

Example 3.49:
Consider the single-bond graph (K = 1) in Figure 3.4.

R: D 0 TF: U 0 GY: W (xi,xd) Se

C: Vi(xi) C: Vd(xd)

eR

fR

fCi
eCi fCd

eCd

eSe

fSe

Figure 3.4: Exemplary bond graph with dependent storages
The C-type element with storage function Vi(xi) is considered as indepen-dent storage element; the C-type element with storage function Vd(xd) is adependent storage element. The respective storage functions are given by
Vi(xi) = x2

i /(2ci) and Vd(xd) = x2
d/(2cd) where ci,cd > 0. The constitutiverelation of the R-type element is specified by fR = DeR where D > 0. The
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transformer TF has a constant transformation ratio U > 0 and the gyrator
GY is state-modulated with an arbitrary gyration ratio W (xi,xd) > 0 for all
xi,xd ∈ R.By executing the first two lines of Algorithm 3.48, we obtain a Dirac struc-ture of the form (3.111):

D= {(




fCi

fCd

fR

fSe


 ,




eCi

eCd

eR

eSe


) ∈ R4×R4 |




− fCi

eCd

eR

fSe


=




0 −U −1 − U
W (xi,xd)

U 0 0 0
1 0 0 0
U

W (xi,xd)
0 0 0







eCi

− fCd

− fR

eSe


}. (3.113)

Assumptions 3.30 and 3.37 are satisfied for (3.113). Hence, from Theo-rem 3.47 we know that the bond graph from Figure 3.4 permits an explicitport-Hamiltonian formulation of the form (3.112). By executing the remain-der of Algorithm 3.48, we obtain the following explicit PHS:

ẋ =−
(

Dci
ci+U2 cd

)

︸ ︷︷ ︸
=RRR(x)=RRR

∂H
∂x

(x)+
(

U ci
W (x)(ci+U2 cd)

)

︸ ︷︷ ︸
=GGG(x)−PPP(x)

u, (3.114a)

y =
(

U
W (x)

)

︸ ︷︷ ︸
=(GGG(x)+PPP(x))⊤

∂H
∂x

(x), (3.114b)

with u = eSe, x = xi, y = fSe, andH(x) =Vi(xi).16 In this example, the expres-sions for JJJ, MMM, and SSS are calculated as zero. Note that RRR > 0. Moreover, theinputs and outputs are such that the PHS has Property 3.8.
Example 3.49 illustrates that one can obtain an explicit PHS also for systems

with linear dependent storages. In the next section, we discuss the main results

16The function W (x) =W (xi) in (3.114) can be obtained from the gyration ratio W (xi,xd) by using
the substitution rule for xd from (3.104) (cf. Remark 3.41).
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presented in subsections 3.2.7 and 3.2.8 with respect to the overall objectives of
this thesis and previous results from the related literature.

3.3 Discussion

Theorems 3.35 and 3.47 are the main theoretical results of this chapter. The
two theorems are the first to give rigorous existence conditions for the complete
transfer from a bond graph to an explicit PHS. In the literature, there exist some
existence conditions for intermediate steps of this transfer. Golo et al. [2000] and
Golo et al. [2003] show that the junction structure of a bond graph can always
be related to a Dirac structure in implicit form which is in line with the findings
from Theorem 3.35. Donaire and Junco [2009] provide sufficient conditions for
the transfer from a Dirac structure in explicit form to a non-feedthrough PHS.
Verbally formulated sufficient conditions for the existence of an explicit PHS
have been given by van der Schaft [2009, p. 70] and van der Schaft and Jeltsema
[2014, p. 53]. Theorems 3.35 and 3.47 put the conditions of Golo et al. [2000],
Golo et al. [2003], Donaire and Junco [2009], van der Schaft [2009], and van der
Schaft and Jeltsema [2014] into the perspective of an explicit port-Hamiltonian
formulation of bond graphs.17 Therewith, the conditions from the two theorems
relate to, link, and generalize existing conditions and knowledge and streamline
the present body of literature towards a fully automated model generation for
interconnected systems.

From theorems 3.35 and 3.47 it follows that two important classes of bond
graphs permit an explicit port-Hamiltonian formulation, viz. (i) bond graphs
with nonlinear independent storages and (ii) bond graphs with linear dependent
storages. Both cases, (i) and (ii), allow for nonlinearities in the interconnection
structure arising from a state-modulation of energy-routing or energy-dissipating
elements.

The independence of sources (i.e., Assumption 3.22) is shown to be a neces-
sary condition for the existence of an explicit PHS. This condition is not strict as,
in real physical systems, dependent sources are impossible to occur. It is note-
worthy that Assumption 3.22 is also necessary for a bond graph to be well-posed
in the sense of Golo et al. [2003, Def. 2].

Another condition from theorems 3.35 and 3.47 for the existence of a PHS
is that the resistive relations can be rewritten in an input-output form (i.e., As-

17A more detailed discussion of theorems 3.35 and 3.47 in the light of previous work is out of the
scope of this section but can be found in the literature notes provided in Appendix B.5.
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sumption 3.30). This assumption is well-known from the literature (see, e.g., van
der Schaft and Jeltsema [2014, p. 53] or van der Schaft [2009, p. 69] and is also
mild. In Appendix B.3, it is shown that Assumption 3.30 is always fulfilled if
the resistive elements are truly dissipative. This is satisfied by most multi-bond
graphs and, in particular, for all single-bond graphs.

A limitation of theorems 3.35 and 3.47 is given for systems with nonlinear
dependent storages. For such systems, however, there exist different strategies to
eliminate dependent storages by adding or removing certain bond graph elements.
The interested reader is referred to Borutzky [2010] and Karnopp et al. [2012].

As an interim conclusion, explicit PHSs are capable of describing a large class
of bond graphs according to Definition 3.5. So it is left to discuss the capabilities
and restrictions of Definition 3.5.

Definition 3.5 encompasses a comprehensive class of bond graphs as it allows
for multi-port systems with nonlinearities in the energy-storing elements and
state-modulations in the energy-routing and energy-dissipating elements. On
the other hand, Definition 3.5 is limited to resistive relations that are linear in
the power variables (i.e., Assumption 3.4). This represents the most relevant
case of resistive relations (cf. van der Schaft and Jeltsema [2014, pp. 53–54]
and Borutzky [2010, p. 364]), but excludes some phenomena that are of practi-
cal interest as, e.g., the dissipative relation describing the pressure drop in gas
networks (cf. Strehle et al. [2018]) or the dissipative relation of nonlinear loads
in AC power systems (cf. Strehle et al. [2020]). Hence, Appendix B.4 relaxes
Assumption 3.4 which allows to consider bond graphs containing nonlinear re-
sistive relations. Based hereon, Theorem 3.35 is generalized to systems with
nonlinear dissipation. This leads to a novel class of explicit PHSs with nonlinear
dissipation and feedthrough, which has, to the best of our knowledge, not been
presented in the literature so far.18 This generalization is straightforward which
is why Assumption 3.4 is uncritical.19

Provided the existence conditions from theorems 3.35 and 3.47 are fulfilled,
algorithms 3.36 and 3.48, respectively, enable the fully automated calculation
of an explicit PHS from a given bond graph. The two algorithms are the first to

18For the case of no feedthrough, this class of PHSs particularizes to the class of PHSs with nonlinear
resistive structure introduced by van der Schaft [2017, Def. 6.1.4].

19On the other hand, the PHS obtained in Section B.4 does not have the favorable symmetry and
definiteness properties of (2.12) which is why we do not consider the PHS from Section B.4 any
further.
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enable such a fully automated calculation and the main practical result of this
chapter.

A PHS obtained from algorithms 3.36 and 3.48 has Property 3.8 and thus
correctly reflects the source elements of the underlying bond graph. The state
vector of the PHS consists of the states of the independent energy storages. This
is in line with the literature, where the order of an ODE model of a bond graph
is known to be equal to the number of independent storages [Borutzky, 2010,
p. 119]. The Hamiltonian of the PHS is the sum of the storage functions of
the independent storages. Hence, the properties of the energy storages directly
translate from the bond graph into the explicit PHS.

The calculation laws in algorithms 3.36 and 3.48 reveal state-modulated resis-
tors, transformers, or gyrators to result in an explicit PHS with state-dependent
matrices. On the other hand, if all bond graph elements of the types R, TF, and
GY are non-modulated, the matrices of the explicit PHS are constant. If, in addi-
tion, the storages obey quadratic storage functions (i.e., Assumption 3.38 holds),
the resulting PHS is linear. For the feedthrough-case, algorithms 3.36 and 3.48
reveal the parameters of R-type elements to possibly appear in each of the matri-
ces of the PHS—and not only in the dissipation matrix RRR(xxx). This is in line with
previous findings in the literature from Donaire and Junco [2009][p. 145, Remark]
and van der Schaft and Jeltsema [2014, Example 4.1].

As can be seen, algorithms 3.36 and 3.48 ensure important properties of the
system to translate into the explicit PHS. On the other hand, the results show that
the physical interpretability of explicit models has natural limits. Introducing a
causality from inputs over states to outputs leads to inter-subsystem dependencies
that go beyond the physical interconnection structure. Therefore, the matrices of
an explicit model usually do not have a subsystem-wise block structure.

A practical limitation of algorithms 3.36 and 3.48 is given for the development
of fully symbolic models. The algorithms require matrix inversions, see (3.38),(3.67g), and (3.90). The inversion of large symbolic matrices, however, may lead
to large expressions. Thereby, one cannot state an absolute limit for the allowed
matrix sizes. The practical invertibility of a symbolic matrix strongly depends
on the specific structure of the matrix. If the inversion of a symbolic matrix is
intractable, one can still approach with local models.

The development of numeric models is free of such limitations. In the numeric
case, the maximal size of the involved matrices is determined by the memory
of the applied computer. Thereby, the sizes of the matrices grow with O(K2)

where K is the dimension of the bond graph. The practical limit, however, is
given by the computation time for the matrix inversions. In the worst case, the
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computation time for a matrix inverse grows polynomially with O(s3) where s is
the matrix order [Lyche, 2020, p. 65]. In both algorithms, the largest matrix to be
inverted is given in (3.38). This matrix is of order KN. Hence, the upper bound
for the computation time for algorithms 3.36 and 3.48 grows with O(K3N3), i.e.,
cubically with the product of the dimension and the sum of elements in the bond
graph. It is noteworthy, that in practice this worst case rarely occurs as the matrix
in (3.38) is typically a sparse matrix.

In conclusion, for a large class of interconnected systems the methods from
this chapter enable an efficient automated generation of explicit port-Hamiltonian
models. The obtained models transparently reflect important properties of the
underlying physical systems.

3.4 Summary and Contributions

Modeling an interconnected system as an explicit state-space system is a cum-
bersome task. The methods and algorithms from this chapter provide remedy as
they enable an automated generation of explicit port-Hamiltonian models on the
basis of a bond graph representation of the system. The main contributions of
this chapter are:

(C1.1) necessary and sufficient conditions for the existence of an explicit port-
Hamiltonian formulation of bond graphs (theorems 3.35 and 3.47);

(C1.2) fully automatable algorithms which allow to compute an explicit PHS
based on a given bond graph (algorithms 3.36 and 3.48).

The methods and algorithms from this chapter are the first to allow for an
automated generation of physical-based explicit state-space models for a large
class of interconnected systems. Therewith, these contributions meet the research
objective O1 from Section 1.3. Successive examples verified the theoretical
findings and illustrated the algorithmic nature of the automated model generation.



Chapter 4
Automated Observer Design

The previous chapter presented methods for an automated generation of port-
Hamiltonian models for interconnected systems. The obtained models may
serve as the starting point for numerical simulations as well as for the design of
controllers and observers. This chapter focuses on the latter, i.e., the PHS-based
design of observers. Thereby, we aim for an automatable observer design which
exploits the port-Hamiltonian structure of the model.

First, the state of the art in observer design methods for PHSs is reviewed in
Section 4.1. We will identify two research gaps hampering an automated observer
design for a large class of PHSs. From the research gaps we deduce the objectives
of the chapter. To reach these objectives, new PHS-based observers which allow
for an automated design are derived in Section 4.2. Finally, in Section 4.3 and
Section 4.4 we discuss the new developed methods in the light of the existing
literature and summarize the contributions from this chapter, respectively.

4.1 Literature Review

The first notable work on the observer design for PHSs was conducted by Sira-
Ramírez and Cruz-Hernández [2001]. The authors propose a passivity-based
observer design for so-called generalized Hamiltonian systems, i.e., autonomous
PHSs. Since then, several methods addressing the observer design for PHSs have
been reported in the literature. These methods will be reviewed in the sequel. For
the review, the approaches are classified into observer designs for linear PHSs
and observer designs for nonlinear PHSs.

Linear PHSs are a special class of linear state-space systems. Hence, for the
state reconstruction of such systems it is natural to approach with a standard
Luenberger observer or Kalman filter, see, e.g., Khalil et al. [2012]. As argued
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in Section 1.2, the design of such an observer can be automated by applying
well-known methods. Cardoso Ribeiro [2016] show that the Luenberger observer
is also a viable option if the linear model arises from the structure-preserving
discretization of an infinite-dimensional PHS.1 Kotyczka and Wang [2015] design
a compensator for linear PHSs based on a dual observer. However, the dual
observer does not provide an explicit reconstruction of the system state (cf.
Luenberger [1971]). Atitallah et al. [2015] address the combined input and
state reconstruction for linear PHSs. The authors propose two observers: the first
observer determines a reconstruction of the state; the second observer reconstructs
the unknown input. As argued in Section 2.2, besides the state and input, the
output of a PHS is in general also not fully available for measurement. This
leads to an input-state-output reconstruction problem as was first tackled in a
preliminary work of this thesis authored by Pfeifer et al. [2019a]. The authors
propose an interval input-state-output estimator for linear PHSs. The approach
from Pfeifer et al. [2019a] can be automated but involves an observer existence
condition that is rather restrictive.

In the above, we considered linear observer methods. For nonlinear PHSs,
there exist also several observer methods. For the nonlinear observer methods,
one can distinguish between two kinds of nonlinearities, viz. (a) nonlinearities in
the interconnection structure and (b) nonlinearities in the storages. The former are
characterized by state-dependent matrices of the PHSs; the latter are characterized
by possibly non-quadratic Hamiltonians.

Wang et al. [2005] were the first to address the design of observers for non-
linear PHSs. The authors develop adaptive and non-adaptive state observers
for systems with nonlinear interconnection structures and nonlinear storages.
However, the observers are only asymptotic when the system reaches a steady
state. Venkatraman and van der Schaft [2010] present a passivity-based, globally
exponentially stable observer for PHSs with nonlinear interconnection structure
and nonlinear storages. The proposed observer design is delicate as it requires
the solution of a set of algebraic equations and partial differential equations
(PDEs). A closed-form solution for such a system of equations exists only in
special cases and is difficult to determine. Hence, the observer design from
Venkatraman and van der Schaft [2010] cannot be automated. Vincent et al.
[2016] present two nonlinear, passivity-based observers for PHSs with nonlinear
interconnection structure: a proportional observer and a proportional observer
with integral action. An interconnection and damping assignment (IDA) passivity-

1Kotyczka et al. [2019] follow an approach similar to Cardoso Ribeiro [2016].
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based control (PBC)-like observer design for PHSs with nonlinear storages has
been proposed by Yaghmaei and Yazdanpanah [2019b].2 As with the approach
from Venkatraman and van der Schaft [2010], the observer design of Yaghmaei
and Yazdanpanah [2019b] requires the solution of a set of PDEs which hinders
its automation.

Another two notable publications in this field stem from Biedermann et al.
[2018] and Biedermann and Meurer [2021]: the former present a passivity-
based observer design for a class of state-affine systems; the latter propose a
dissipativity- and IDA-PBC-based observer design for nonlinear systems that can
be decomposed into a time varying state affine part, a nonlinear feedback part,
and a perturbation term. Thereby, the observer designs from Biedermann et al.
[2018] and Biedermann and Meurer [2021] can be also applied to a class of PHSs
with nonlinear interconnection structure and linear storages.

Table 4.1 provides an overview of the existing observers for linear and non-
linear PHSs. In the first column, the publications are listed in the order they are
mention above. The second column of Table 4.1 differentiates between linear and
nonlinear interconnection structures in the underlying port-Hamiltonian model.
Similar, the third column distinguishes between linear and nonlinear storages.
The fourth column shows the variables to be reconstructed by the respective
observer.

From Table 4.1 it can be seen that the method from Pfeifer et al. [2019a] is
the only approach which enables a reconstruction of inputs, states, and outputs.
However, as mentioned above, this approach involves an existence condition
which is rather strict. Hence, the method from Pfeifer et al. [2019a] is applicable
to only a small class of linear PHSs.

The second and third columns in Table 4.1 show that the observers from
Wang et al. [2005] and Venkatraman and van der Schaft [2010] are the only
two approaches which are applicable to PHSs with nonlinearities in both, the
interconnection structure and storages. However, the observer of Wang et al.
[2005] is in general not asymptotic and the observer design from Venkatraman
and van der Schaft [2010] cannot be automated.

To summarize, there exist powerful observer methods for linear and nonlinear
PHSs in the literature However, there are two research gaps which hamper the
automated design of observers for interconnected systems. First, the only existing

2The observer from Yaghmaei and Yazdanpanah [2019b] allows for a separation principle as known
from linear systems theory, see Yaghmaei and Yazdanpanah [2019a].
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Table 4.1: Classification of existing observers for PHSs with respect to the interconnectionstructure, storages, and reconstructed variables
Publication Intercon. Storages Reconstructions
Khalil et al. [2012] linear linear states
Cardoso Ribeiro [2016] linear linear states
Kotyczka and Wang [2015] linear linear —
Atitallah et al. [2015] linear linear states, inputs
Pfeifer et al. [2019a] linear linear states, inputs, outputs
Wang et al. [2005] nonlinear nonlinear states
Venkatraman and van der Schaft [2010] nonlinear nonlinear states
Vincent et al. [2016] nonlinear linear states
Yaghmaei and Yazdanpanah [2019b] linear nonlinear states
Biedermann et al. [2018] nonlinear linear states
Biedermann and Meurer [2021] nonlinear linear states

observer for the reconstruction of inputs, states, and outputs of a linear PHS is the
estimator from Pfeifer et al. [2019a]. Unfortunately, this approach is applicable
to only a small class of systems. Second, as argued above, the available observer
design schemes for PHSs with nonlinearities in both, the interconnection structure
and storages, cannot be automated.

This chapter addresses these research gaps by developing automated observer
design methods for linear and nonlinear PHSs. Specifically, the objectives of this
chapter are

(i) to develop an automatable design for an observer that is able to reconstruct
the inputs, states, and outputs in a large class of linear PHSs, and

(ii) to derive an observer with an automatable design scheme for PHSs with
nonlinear interconnection structures and nonlinear storages.

The objectives (i) and (ii) focus on the design of centralized observers based
on global model knowledge. For interconnected systems, however, the design of
distributed observers based on local model information is also of high interest (cf.
Chapter 2). Hence, a secondary objective of this chapter is
(iii) to investigate how the methods from (i) and (ii) can be applied for an

automated design of distributed observers based on local models.



4.2. Main Results 97

4.2 Main Results

The previous section stated the aims of this chapter. To reach these aims we will
now derive observers and corresponding design schemes for different classes of
PHSs. First, in Subsection 4.2.1 we consider an automatable design scheme for
an observer that reconstructs the inputs, states, and outputs of a linear PHS. Next,
Subsection 4.2.2 outlines the design of a globally exponentially convergent state-
output observer for a class of nonlinear PHSs. The methods from subsections 4.2.1
and 4.2.2 are presented in the light of an automated design of centralized observers
based on global model knowledge. Subsection 4.2.3 shows that these methods can
also be used for an automated design of distributed observers based on local model
knowledge. To this end, we first reconsider the methods from Subsections 4.2.1
for the design of a distributed observer for linear interconnected systems with
unknown subsystem interactions. Afterwards, we particularize the methods
from Subsection 4.2.2 for the design of a distributed state observer for nonlinear
interconnected systems with known subsystem interactions. Figure 4.1 depicts
an overview of the observers from this section and illustrates their relations.

Input-state-output observer

Input-state-output observer
(unknown interactions)

State-output observer

State observer
(known interactions)

Linear systems Nonlinear systems

Cen
tral

ized
Dis

trib
ute

d

Subsection 4.2.1 Subsection 4.2.2

Subsection 4.2.3

Figure 4.1: Overview of the observers developed in Section 4.2
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4.2.1 Automated Design of an Input-State-Output
Observer for Linear PHSs

Consider an interconnected system with linear interconnection structure, linear
dissipation, and linear storages. In Chapter 3, it was shown that a large class
of such systems can be described by linear input-state-output port-Hamiltonian
models. For such models, we have seen that the entries of the inputs uuu and
outputs yyy are determined by physical constraints at the system boundary. The
corresponding variables may or may not be available for measurement. Thus,
the individual entries of uuu and yyy may or may not be known during runtime. This
is in contrast to classical observer theory, where the complete system input and
output are assumed to be known or measured (cf. Luenberger [1971]). As a
remedy, let us introduce a measurement vector mmm which contains the variables
that are available for measurement. The aim is then to determine an asymptotic
observer which provides reconstructions of uuu, xxx, and yyy based on knowledge of mmm.
Following the notion of a state observer, we denote such an observer as input-
state-output observer. In the following, we formalize the problem of designing
such an input-state-output observer in an automated manner.

Problem 4.1 (Automated input-state-output observer design)
Given a linear explicit PHS

ẋxx = (JJJ−RRR) QQQxxx+(GGG−PPP)uuu, xxx|t=0 = xxx0, (4.1a)
yyy = (GGG+PPP)⊤QQQxxx+(MMM+SSS)uuu, (4.1b)

with uuu,yyy ∈ Rp and xxx ∈ Rn. For the storage matrix QQQ ∈ Rn×n we have QQQ =

QQQ⊤ ≻ 0. The remaining matrices are constant matrices of appropriate sizeswhich satisfy the usual symmetry and definiteness properties of an explicitPHS (cf. Definition 2.23).We assume that uuu, xxx, and yyy are (in general) non-measurable. Instead, let usconsider measurements mmm ∈ Rq of the form

mmm =CCCuuuu+CCCxxxx+CCCyyyy, (4.2)
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whereCCCu,CCCx, andCCCy are constant matrices of proper sizes.The aim of this subsection is to give an answer to the following problem: Howcan we—in an automated manner—design an asymptotic observer that pro-duces reconstructions of uuu, xxx, and yyy based on the model (4.1) and the mea-surements (4.2)?
Problem 4.1 requires to develop an observer that is able to reconstruct the inputs,
states, and outputs of the system (4.1). The leading idea is to rewrite the system
step by step until we obtain a representation which allows to apply existing
methods from linear observer theory.

We now consider the first step of this procedure. The input-state-output
reconstruction from Problem 4.1 involves three equations, viz. a dynamics
equation (4.1a), an output equation (4.1b), and a measurement equation (4.2).
The following lemma shows that Problem 4.1 can be reduced to a reconstruction
problem which involves only two equations:

Lemma 4.2 (Output reconstruction based on ûuu and x̂xx)
Consider the situation in Problem 4.1. Let ûuu and x̂xx be reconstructions of uuuand xxx, respectively, with ûuu→ uuu and x̂xx→ xxx for t→ ∞. Then, we can calculatean output reconstruction

ŷyy = (GGG+PPP)⊤QQQx̂xx+(MMM+SSS) ûuu, (4.3)

with ŷyy→ yyy for t→ ∞.
Proof:
Let ûuu and x̂xx be reconstructions of uuu and xxx with ûuu→ uuu and x̂xx→ xxx for t→∞, respec-
tively. By substituting uuu, xxx, and yyy in (4.1b) with their respective reconstructions,
we obtain (4.3). In particular, we have ŷyy→ yyy for t→ ∞.

From Lemma 4.2 it follows that the input-state-output reconstruction problem
can be reduced to an input-state reconstruction problem. To solve the input-state
reconstruction problem, it is desirable to formulate the system only in terms of
inputs and states, i.e., without outputs. In the next step, we again use the output
equation (4.1b) to eliminate the outputs from the measurement equation (4.2).
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Lemma 4.3 (State-space system in standard form)
Equations (4.1a) and (4.2) can be written as a state-space system in standardform

ẋxx = AAAxxx+BBBuuu, xxx|t=0 = xxx0, (4.4a)
mmm =CCCxxx+DDDuuu, (4.4b)

where AAA = (JJJ−RRR)QQQ, BBB = (GGG−PPP), CCC = CCCx +CCCy (GGG+PPP)⊤QQQ, and DDD = CCCu +

CCCy (MMM+SSS).
Proof:
From (4.1a), we directly obtain the calculation rules for the matrices AAA and BBB.
Inserting (4.1b) into (4.2) yields the expressions for CCC and DDD.

Lemma 4.3 shows that a system with dynamics (4.1a) and measurements (4.2)
can be formulated by means of a state-space system in standard form. Note that
in (4.4) we have a clear differentiation in the description of the system’s physics
(i.e., (4.4a)) and the system’s measurements (i.e., (4.4b)). Thereby, the input uuu of
the system (4.4) is in general unknown. Instead, all measurements are specified
by mmm in (4.4b). Nevertheless, mmm may contain measurements of an input, that is,
a row of (4.4b) in which DDD contains exactly one “1” while the corresponding
row of CCC contains exclusively zeros. For the upcoming considerations, it will be
helpful (i) to split the input vector uuu into known inputs uuuk and unknown inputs
uuuu and (ii) to split the vector mmm accordingly into the measured inputs uuuk and the
remaining measurements m̃mm. By doing so, the system (4.4) reads

ẋxx = AAAxxx+BBBkuuuk +BBBuuuuu, xxx|t=0 = xxx0, (4.5a)
m̃mm = C̃CCxxx+ D̃DDkuuuk + D̃DDuuuuu, (4.5b)

where uuuk ∈Rpk , uuuu ∈Rpu , xxx ∈Rn, m̃mm ∈Rq̃ with pk+ pu = p and q̃ = q− pk. The
matrices C̃CC ∈Rq̃×n and

(
D̃DDk D̃DDu

)
∈Rq̃×p can be obtained by removing those rows

from the matrices CCC and DDD, respectively, that correspond to uuuk in mmm.
Equation (4.5) represents a linear system with known and unknown inputs. For

such a system, it would be natural to apply an unknown-input observer. However,
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such an approach is significantly hampered by the fact that the measurement
vector m̃mm directly depends on the unknown inputs uuuu. Hence, it is desirable to
find a formulation of (4.5) without a feedthrough of uuuu. The next step of our
procedure presents such a formulation.

Without loss of generality we may assume that rank(BBBu) = pu (≤ n) and
rank(C̃CC) = q̃(≤ n). If either the first or the second statement is violated, we
introduce new inputs or outputs, respectively, for which these conditions are ful-
filled [Singer, 2019, p. 19]. In order to eliminate the feedthrough from the system,
we make the assumption that in the system (4.5) the number of measurements is
greater than the number of unknown inputs:

Assumption 4.4 (Number of measurements and unknown inputs)
We have q̃ > pu.

In most practical systems, Assumption 4.4 can be satisfied by providing a suffi-
cient number of measurements. Based on Assumption 4.4, we can now eliminate
the feedthrough from the system.

Lemma 4.5 (Feedthrough elimination)
Consider the system with feedthrough (4.5). Let Assumption 4.4 hold. Then,a formulation of (4.5) without feedthrough is given by

ẋxx = AAAxxx+BBBkuuuk+BBBuuuuu, xxx|t=0 = xxx0, (4.6a)
m̄mm = C̄CCxxx. (4.6b)

The reduced measurement output m̄mm ∈ Rq̃−r is given by m̄mm =UUU⊤2
(
m̃mm− D̃DDkuuuk

)

where r = rank(D̃DDu). The matrix C̄CC ∈ Rq̃−r×n has full column rank and canbe calculated as C̄CC = UUU⊤2 C̃CC. The matrix UUU2 is obtained from a singular valuedecomposition of DDDu, i.e.,

DDDu = (UUU1 UUU2
)

ΣΣΣVVV⊤, (4.7)

with UUU1 ∈ Rq̃×r, UUU2 ∈ Rq̃×q̃−r, ΣΣΣ ∈ Rq̃×pu , and VVV ∈ Rpu×pu . The matrix ΣΣΣcontains the singular values of DDDu on its diagonal.
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Proof:
We first show that the construction law of the vector m̄mm indeed leads to an elimina-
tion of the feedthrough. Afterwards, we proof that the matrix C̄CC has full column
rank.

Let us first introduce a new measurement output without feedthrough of the
known inputs:

mmm∗ := m̃mm− D̃DDkuuuk = C̃CCxxx+ D̃DDuuuuu. (4.8)
Note that the vector mmm∗ can be easily computed online during runtime.

Now we eliminate the unknown inputs by applying the idea from Irle [2016,
p. 106]. Let Assumption 4.4 hold. Consider the singular value decomposi-
tion (4.7). For the case q̃ ̸= 0 and pu ̸= 0, Assumption 4.4 implies UUU2 to exist.
By multiplying mmm∗ from the left with UUU⊤2 and by the properties of orthogonal
matrices we obtain

UUU⊤2 mmm∗︸ ︷︷ ︸
=:m̄mm

=UUU⊤2 C̃CC︸ ︷︷ ︸
=:C̄CC

xxx+
(
000 UUU⊤2 UUU2

)(diag(σi) 000
000 000

)
VVV⊤

︸ ︷︷ ︸
=000

uuuu, (4.9)

where σi are the singular values of D̃DDu for i = 1, . . . ,r.
Now for the rank of C̄CC. From the Sylvester rank inequality we obtain

rank
(

UUU⊤2 C̃CC
)
≥ rank

(
UUU⊤2
)

︸ ︷︷ ︸
q̃−r

+ rank
(
C̃CC
)

︸ ︷︷ ︸
q̃

−q̃ = q̃− r. (4.10)

On the other hand, we have

rank
(

UUU⊤2 C̃CC
)
≤min{rank

(
UUU⊤2
)
, rank

(
C̃CC
)
}= q̃− r. (4.11)

Combining (4.10) and (4.11) then yields rank
(
C̄CC
)
= q̃− r.

Remark 4.6 (Case D̃DDu = 000). In (4.5), suppose D̃DDu = 000, i.e., there is no feed-through of the unknown-input to eliminate. This case obviates the singularvalue decomposition and therewith the need for Assumption 4.4.
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The previous lemmas constitute a stepwise procedure to formulate a PHS (4.1)
with measurements (4.2) as linear unknown-input system without feedthrough (4.6).
In the literature, there exists a number of state observers for such an unknown-
input system. The thesis of Singer [2019] provides a systematic comparison of
these observers with respect to the automatability of their designs. An approach
that is particularly easy to automate is the unknown-input observer design from
Darouach et al. [1994]. The following assumption represents a necessary and
sufficient condition for the existence of this observer (cf. Darouach et al. [1994,
Theorem 1] and Singer [2019, Remark 3.2]):

Assumption 4.7 (Strong∗ detectability)
The system (4.6) is strong∗ detectable, i.e., lim

t→∞
m̄mm→ 000 implies lim

t→∞
xxx→ 000.

For a brief introduction to the concept of strong∗ detectability, the reader is re-
ferred to Appendix C.1. The existence condition from Assumption 4.7 now allows
to state the main theorem of this subsection. In this theorem, the state observer
from Darouach et al. [1994] is extended by an input and an output reconstruction.

Theorem 4.8 (Input-state-output observer)
Consider a PHS (4.1) with measurements (4.2). Let Assumption 4.4 holdwhich permits to formulate an unknown-input system (4.6). For the system(4.6), let Assumption 4.7 hold. Then, there exist matrices NNN ∈ Rn×n, LLL ∈
Rn×(q̃−r), FFF ∈ Rn×pk , and EEE ∈ Rn×(q̃−r) such that the system

żzz = NNNzzz+LLLm̄mm+FFFuuuk, zzz|t=0 = zzz0, (4.12a)
x̂xx = zzz−EEEm̄mm, (4.12b)
ûuuu = (C̄CCBBBu)+ ( ˙̄mmm−C̄CCAAAx̂xx−C̄CCBBBkuuuk

)
, (4.12c)

ŷyy = (GGG+PPP)⊤QQQx̂xx+(MMM+SSS)(uuu⊤k ûuu⊤u )⊤, (4.12d)

is an asymptotic input-state-output observer for the PHS (4.1) based onmea-surements (4.2). In (4.12), the vector zzz∈Rn is the observer state and the term(
C̄CCBBBu)+ is the Moore-Penrose inverse of C̄CCBBBu.

Proof:
We first prove that (4.12a) and (4.12b) yield an asymptotic reconstruction of the
system state—independently of the unknown inputs. To this end, we follow the
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approach from Darouach et al. [1994]. Afterwards, we show that (4.12c) and(4.12d) yield an asymptotic reconstruction of the unknown inputs and outputs,
respectively.

Let Assumption 4.7 hold. Consider the reconstruction error εεε = x̂xx− xxx. With(4.6) and (4.12), the error dynamics read

ε̇εε = NNNεεε +
(
NNNKKK +LLLC̄CC−KKKAAA

)
xxx+(FFF−KKKBBBk)uuuk−KKKBBBuuuuu, (4.13)

where KKK = III +EEEC̄CC. Suppose we have

000 = NNNKKK +LLLC̄CC−KKKAAA, (4.14a)
000 = FFF−KKKBBBk, (4.14b)
000 = KKKBBBu. (4.14c)

If the conditions in (4.14) hold, the error dynamics read ε̇εε = NNNεεε . If, in addition,
NNN is a Hurwitz matrix, we have εεε → 000 for t→ ∞.

Next, we show that we can always find matrices NNN, LLL, FFF , and EEE such that(4.14) is fulfilled and NNN is a Hurwitz matrix.
Assumption 4.7 implies rank

(
C̄CCBBBu

)
= rank(BBBu) = pu [Hautus, 1983, Theo-

rem 1.6]. Hence, from (4.14c) we obtain the following solution set for EEE:

EEE =−BBBu
(
C̄CCBBBu

)+
+YYY

(
III−
(
C̄CCBBBu

)(
C̄CCBBBu

)+)
, (4.15)

where
(
C̄CCBBBu

)+
=
((

C̄CCBBBu
)⊤ (C̄CCBBBu

))−1 (
C̄CCBBBu

)⊤ (4.16)

and YYY ∈Rn×pu is an arbitrary matrix [Rao and Mitra, 1972]. Based on a particular
solution for EEE we can then calculate matrix FFF from (4.14b):

FFF =
(
III +EEEC̄CC

)
BBBk. (4.17)
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For the determination of the matrix NNN we write (4.14a) as

NNN = KKKAAA−ZZZC̄CC, (4.18)

where ZZZ = (LLL+NNNEEE). From Darouach et al. [1994, Theorem 2] and Hautus
[1983, Theorem 1.5] it follows that Assumption 4.7 implies the pair

(
KKKAAA,C̄CC

)

to be detectable. Thus, there always exists a matrix ZZZ such that NNN is Hurwitz.
Substituting (4.18) into ZZZ = (LLL+NNNEEE) yields the following expression for LLL:

LLL = ZZZ
(
III +C̄CCEEE

)
−KKKAAAEEE, (4.19)

which then satisfies (4.14a). Hence, we can always find matrices (NNN,LLL,FFF ,EEE)
such that the conditions in (4.14) are fulfilled and such that NNN is a Hurwitz matrix.

Now for the reconstruction of the unknown inputs. We apply the idea of Ding
[2008, p. 143]. Deriving (4.6b) with respect to time gives

˙̄mmm = C̄CCẋxx = C̄CCAAAxxx+C̄CCBBBkuuuk +C̄CCBBBuuuuu. (4.20)

With
(
C̄CCBBBu

)+ we may solve (4.20) for uuuu:

uuuu =
(
C̄CCBBBu

)+ ( ˙̄mmm−C̄CCAAAxxx−C̄CCBBBkuuuk
)
. (4.21)

In (4.21), we substitute uuuu with ûuuu and xxx with x̂xx and obtain (4.12c). By comparing(4.21) and (4.12c), we may deduce ûuuu→ uuuu from x̂xx→ xxx for t→ ∞.
Finally, Lemma 4.2 proves (4.12d) to yield an output reconstruction ŷyy with

ŷyy→ yyy for t→ ∞.

In order to automate the design of the observer from Theorem 4.8, a computa-
tionally evaluable formulation of Assumption 4.7 is required. The subsequent
proposition provides such a formulation.
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Proposition 4.9 (Evaluation of Assumption 4.7)
Assumption 4.7 is satisfied if and only if the following two conditions hold:

i. rank
(
C̄CCBBBu)= rank(BBBu) = pu, (4.22a)

ii. rank
(

sIII−AAA −BBBu
C̄CC 000

)
= n+ pu, ∀s ∈ Spec(AAA) : Re(s)≥ 0. (4.22b)

Proof:
The proof follows directly from Darouach et al. [1994, Theorem 2] and Hautus
[1983, Theorem 1.5] by noting that, in condition ii., “∀s ∈ C” is equivalent to
“∀s ∈ Spec(AAA)” (cf. Hautus [1969]).

Algorithm 4.10 now summarizes the above insights in an automatable design
scheme which determines the free observer parameters of the input-state-output
observer from Theorem 4.8, i.e., the matrices NNN,LLL,FFF , and EEE.

In line 20 of Algorithm 4.10, the choice of the eigenvalues of the matrix
NNN determines the dynamics of the state reconstruction error (cf. (4.13)). Ap-
pendix C.2 provides a straightforward method for the automated placement of the
eigenvalues of NNN. Based on the eigenvalues chosen for NNN, the determination of
the matrix ZZZ in code line 21 can be accomplished by the standard pole placement
techniques presented in Section 1.2.

The block diagram in Figure 4.2 depicts the structure of the input-state-output
observer. As can be seen, the observer consists of two stages, viz. a pre-processing
of the measurements and the actual observer (4.12).

The input-state-output observer in Figure 4.2 yields asymptotic reconstruc-
tions ûuu, x̂xx, and ŷyy of the inputs, states, and outputs of the PHS. Theorem 4.8 gives
a sufficient condition for the existence of such an input-state-output observer;
Algorithm 4.10 provides a corresponding design scheme which can be fully
automated. Hence, these methods solve Problem 4.1.
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Algorithm 4.10 Automated design of an input-state-output observer
Input: PHS (4.1) with measurements (4.2)1: Calculate matrices AAA, BBB, CCC, and DDD according to Lemma 4.32: Split uuu into (uuuk,uuuu) and mmm into (uuuk, m̃mm) (possibly after permutations)3: Calculate BBBk, BBBu, D̃DDk, and D̃DDu4: if D̃DDu = 000 then5: UUU2← III6: else7: if Assumption 4.4 is met then8: [(UUU1,UUU2),ΣΣΣ,VVV ]← svd(D̃DDu)9: else10: print "Feedthrough could not be eliminated. Algorithm terminates!"11: terminate12: end if13: end if14: C̄CC←UUU⊤2 CCC15: if (4.22a) or (4.22b) (i.e., Assumption 4.7) is violated then16: print "Observer existence condition is violated. Algorithm terminates!"17: terminate18: end if19: Calculate EEE and FFF from (4.15) and (4.17), respectively20: Specify the eigenvalues of NNN that correspond to the observable subsystem of (KKKAAA,C̄CC)21: Calculate ZZZ from (4.18) by pole placement techniques22: Calculate NNN and LLL from (4.18) and (4.19), respectively23: return (NNN,LLL,FFF ,EEE)

Input-state-output observer

System (4.1) with
measurements (4.2)

Splitting:
mmm =

(
uuu⊤k , m̃mm⊤

)⊤

Input-state-output
observer (4.12)

DDD1

UUU⊤2

uuu⊤k

m̄mm

−

m̃mm

mmmuuu

ûuu
x̂xx
ŷyy

xxx0

zzz0

Figure 4.2: Block diagram of the system with the input-state-output observer
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Example 4.11 illustrates the results from above.

Example 4.11:
Consider the following linear PHS:

(
ẋ1

ẋ2

)
=

(
0 −1
1 −d

)
∂H
∂xxx

+

(
1
d

)
u, (4.23a)

y =
(

1 −d
) ∂H

∂xxx
+du, (4.23b)

with d > 0 and Hamiltonian H(xxx) = xxx⊤xxx. In the system, u, xxx, and y areunknown. Instead, we consider q = 2 measurements

mmm =

(−d
0

)

︸ ︷︷ ︸
=CCCu

u+
(

0 2d
0 2

)

︸ ︷︷ ︸
=CCCx

xxx+
(

1
0

)

︸︷︷︸
=CCCy

y. (4.24)

With the formulas from Lemma 4.3, we can write (4.23a) and (4.24) as thefollowing state-space system:

ẋxx =
(

0 −2
2 −2d

)
xxx+
(

1
d

)
u, (4.25a)

mmm =

(
2 0
0 2

)
xxx, (4.25b)

where u is an unknown input. As can be seen, in (4.25) we have no feed-through which is why Assumption 4.4 is irrelevant in this example (cf. Re-mark 4.6). Moreover, the conditions in (4.22) are satisfied. Hence, Assump-tion 4.7 is met and we can design an input-state-output observer. From(4.15) and (4.17) we obtain

EEE =−1
2

(
d−1 0

1 0

)
(4.26)
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and FFF ∈ R2×0, respectively. The eigenvalues of the matrix NNN are placed at
λmin =−1 and λmin =−2where λmin = min{Re(λi)}with λi the eigenvaluesof the matrix AAA from (4.25) (i = 1,2). Via pole placement, we obtain

ZZZ =
1
2


 0 Re(√d2−4

)
+d− 2

d +2

Re(√d2−4
)
+d +1 0


 . (4.27)

Based on (4.27), we may now calculate NNN and LLL with (4.18) and (4.19) as

NNN =


 −Re

(√
d2−4

)
−d−2 0

0 −Re(√d2−4
)
−d−1


 (4.28a)

and

LLL =


 −

Re(√d2−4
)
+d+2

2d
1
2

(Re(√d2−4
)
+d− 2

d +2
)

0 0


 , (4.28b)

respectively. This concludes the observer design.
The obtained input-state-output observer are illustrated bymeans of theresults obtained from numerical simulations. The parameter d is chosen to

d = 1. The initial values of the system and the observer are xxx0 = (0 0)⊤and ẑzz0 = (1 1)⊤ (= x̂xx0), respectively. The unknown input is a unit sawtoothsignal with an angular frequency of 1 s−1.
Figure 4.3 depicts the inputs, states, and outputs of the system (4.23)(solid, blue) together with the corresponding reconstructions from the input-state-output observer (dashed, red).
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and
LLL =

(
−Re(√d2−4)+d+2

2d
1
2

(Re(√d2 −4
)
+d − 2

d +2
)

0 0

)
, (4.28b)

respectively. This concludes the observer design.
The obtained input-state-output observer are illustrated by means of the results

obtained from numerical simulations. The parameter d is chosen to d = 1. The initial
values of the system and the observer are xxx0 = (0 0)⊤ and ẑzz0 = (1 1)⊤ (= x̂xx0), respec-tively. The unknown input is a unit sawtooth signal with an angular frequency of 1 s−1.

Figure 4.3 depicts the inputs, states, and outputs of the system (4.23) (solid, blue)
together with the corresponding reconstructions from the input-state-output observer
(dashed, red).
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1
2
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)
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1
2
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d +2
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)
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Figure 4.3: Inputs, states, and outputs of the PHS (4.23) (solid, blue) and corresponding observerreconstructions (dashed, red)
As can be seen, after three seconds the reconstructions of the input and states lie on
top of the true system variables. Moreover, we obtain an output reconstruction which
is identical to the true output. Unfortunately, this identity is coincidence and cannot
be regarded as a general property of the observer.
The previous example illustrates the algorithmic design of a symbolic input-state-output

observer for a PHS (4.1). The obtained observer yields asymptotic reconstructions of the
unknown system variables which confirms the theoretical results from this subsection.

The present subsection was devoted to the development of an observer for linear PHSs.
In the next subsection, we turn our attention to the automated observer design for nonlinear
PHSs.

4.2.2 Automated Observer Design for a Class of
Nonlinear PHSs

Consider an interconnected system with nonlinearities in the interconnection structure
and storages. The former kind of nonlinearity appears, for example, in the transforma-
tions between different reference frames in electric and mechanic systems as, e.g., the
dq-transformation or generalized coordinate transformations, respectively (cf. Karnopp
[1969]); the latter kind is present, for instance, in systems involving the potential energy of a
mass3 (cf. van der Schaft [2009, p. 66]) or systems exhibiting effects from relativistic me-
chanics (cf. Wellstead [1979, p. 27]). Systems with nonlinear interconnection structure and
nonlinear storages lead to explicit port-Hamiltonian models with state-dependent matrices
and possibly non-quadratic Hamiltonians (cf. Section 3.3). For many of such PHSs, the state
and output of the system are unknown and have to be reconstructed. However, in contrast
to Subsection 4.2.1, we now consider the situation where at least the input of the system is
known. Besides the system input, we are given measurements that may be nonlinear in the

3Recall that the potential energy V (x) of a mass m is given by V (x) = mgx, where g is the gravitional
constant. This storage function is non-quadratic in the state and the corresponding storage element
therewith nonlinear.

Figure 4.3: Inputs, states, and outputs of the PHS (4.23) (solid, blue) and correspondingobserver reconstructions (dashed, red)
As can be seen, after three seconds the reconstructions of the input andstates lie on top of the true system variables. Moreover, we obtain an out-put reconstruction which is identical to the true output. Unfortunately, thisidentity is coincidence and cannot be regarded as a general property of theobserver.
The previous example illustrates the algorithmic design of a symbolic input-

state-output observer for a PHS (4.1). The obtained observer yields asymptotic
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reconstructions of the unknown system variables which confirms the theoretical
results from this subsection.

The present subsection was devoted to the development of an observer for
linear PHSs. In the next subsection, we turn our attention to the automated
observer design for nonlinear PHSs.

4.2.2 Automated Observer Design for a Class of
Nonlinear PHSs

Consider an interconnected system with nonlinearities in the interconnection
structure and storages. The former kind of nonlinearity appears, for example, in
the transformations between different reference frames in electric and mechanic
systems as, e.g., the dq-transformation or generalized coordinate transformations,
respectively (cf. Karnopp [1969]); the latter kind is present, for instance, in
systems involving the potential energy of a mass3 (cf. van der Schaft [2009,
p. 66]) or systems exhibiting effects from relativistic mechanics (cf. Wellstead
[1979, p. 27]). Systems with nonlinear interconnection structure and nonlinear
storages lead to explicit port-Hamiltonian models with state-dependent matrices
and possibly non-quadratic Hamiltonians (cf. Section 3.3). For many of such
PHSs, the state and output of the system are unknown and have to be reconstructed.
However, in contrast to Subsection 4.2.1, we now consider the situation where at
least the input of the system is known. Besides the system input, we are given
measurements that may be nonlinear in the states. The aim of this section is
then to find an automatable design scheme for an asymptotic observer which
reconstructs the states and outputs of the system. This is formalized in the
following problem:

3Recall that the potential energy V (x) of a mass m is given by V (x) = mgx, where g is the gravitional
constant. This storage function is non-quadratic in the state and the corresponding storage element
therewith nonlinear.
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Problem 4.12 (Automated observer design for nonlinear PHSs)
Consider an explicit PHS of the form

d
dt

(
xxx′

xxx′′

)
=
(
JJJ(xxx′)−RRR(xxx′)

) ∂H
∂xxx

(xxx)+GGG(xxx′)uuu, xxx|t=0 = xxx0, (4.29a)
yyy = GGG⊤(xxx′)

∂H
∂xxx

(xxx) , (4.29b)

with xxx′ ∈ X′ ⊂ Rn1 , xxx′′ ∈ X′′ ⊂ Rn−n1 , uuu ∈ U ⊂ Rp, and yyy ∈ Y ⊂ Rp, where
X′ and X′′ are closed and bounded and therewith compact. The overall statevector is defined as xxx := (xxx′⊤ xxx′′⊤)⊤ ∈X=X′×X′′, whereX is then also com-pact. The matrices in (4.29) are of proper sizes, continuously differentiablein xxx′, and have the usual symmetry and definiteness properties from Defini-tion 2.23. Let the Hamiltonian of (4.29) be of the form

H (xxx) =
1
2
(
xxx′⊤ xxx′′⊤

)(QQQ′ 000
000 QQQ′′

)(
xxx′

xxx′′

)
+NNN(xxx′), (4.30)

where QQQ := blkdiag
(
QQQ′,QQQ′′

)
= QQQ⊤ ≻ 0 and NNN : X′ → R, xxx′ 7→ NNN(xxx′). Thefunction NNN may be any function that is positive semi-definite and twice con-tinuously differentiable in xxx′.Suppose uuu is known but xxx and yyy are unknown. Moreover, assume measure-mentsmmm∈Rq with q≥ n1 of the formmmm=CCC(xxx′)QQQxxxwhereCCC(xxx′) is continuousin xxx′: (

mmm1

mmm2

)
=

(
QQQ′−1 000

CCC′(xxx′) CCC′′(xxx′)

)(
QQQ′ 000
000 QQQ′′

)(
xxx′

xxx′′

)
. (4.31)

Note that we have mmm1 = xxx′, i.e., xxx′ is the measured part of the state vector xxx.What is an asymptotic observer for (4.29) that produces reconstructionsof xxx and yyy based on knowledge on mmm? How can we design such an observerin an automated manner?

Remark 4.13 (Class of systems). At first glance, the class of systems ad-dressed in Problem 4.12 may seem rather restrictive. However, as Venka-traman and van der Schaft [2010] point out, this class covers a consider-
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able number of physical examples such as mechanical and electromechan-ical PHSs, see, e.g., Yaghmaei and Yazdanpanah [2019b, Eq. (23) and (27)].Moreover, note that the measurement equation can also be written as
(

mmm1

mmm2

)
=

(
III 000

C̃CC
′
(xxx′) C̃CC

′′
(xxx′)

)(
xxx′

xxx′′

)
.4 (4.32)

In (4.32), we have mmm1 = xxx′, mmm2 = C̃CC(xxx′)xxx which reveals the generality of thisformulation.
Remark 4.14 (System feedthrough). In Problem 4.12, we consider a PHSwithout feedthrough. This is in contrast to Problem 4.1 from Subsection4.2.1. However, due to the known inputs there is no loss of generalityin neglecting the feedthrough (cf. Ludyk [1995, p. 7]). Throughout thissection the omission of the feedthrough will allow for a compact notation.

Problem 4.12 contains a state-output reconstruction problem which involves
three equations, viz. a dynamics equation (4.29a), an output equation (4.29b),
and a measurement equation (4.31). Note that the measurement equation may be
nonlinear in the states. Similar to Lemma 4.2, the following lemma shows that
the state-output reconstruction problem from Problem 4.12 can be easily reduced
to a state reconstruction problem which involves only two equations. Thereby,
we consider an exponential convergence of the reconstructions.

Lemma 4.15 (Output reconstruction based on x̂xx)
Consider the situation in Problem 4.12. Let x̂xx be a reconstruction of xxx with
∥xxx− x̂xx∥ ≤ k1e−k2t for t ≥ 0 and some positive constants k1,k2 ∈ R>0. Then,we can calculate an output reconstruction

ŷyy = GGG⊤(x̂xx′)
∂H
∂xxx

(x̂xx), (4.33)

with ∥yyy− ŷyy∥ ≤ k3e−k2t for all t ≥ 0 and some positive constant k3 ∈ R>0.

4To bring (4.32) to the form (4.31), we write mmm = C̃CC(xxx′)QQQ−1QQQxxx =CCC(xxx′)QQQxxx with CCC(xxx′) = C̃CC(xxx′)QQQ−1.
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Proof:
Because X′ and X are compact, GGG⊤ and ∂H

∂xxx are bounded in xxx′ and xxx, respec-
tively, i.e., there exist constants kG,kH ∈ R>0 such that ∥GGG⊤(xxx′)∥ < kG and
∥∂H

∂xxx (xxx)∥ < kH for all xxx′ ∈ X′ and xxx ∈ X. Moreover, since GGG⊤ is continuously
differentiable and X′ is compact, GGG⊤ is Lipschitz continuous on X′ with con-
stant LG = supxxx′∈X′ ∥∂GGG

∂xxx′ (xxx
′)∥ that is ∥GGG⊤(xxx′1)−GGG⊤(xxx′2)∥ ≤ LG∥xxx′1− xxx′2∥ for all

xxx′1,xxx
′
2 ∈ X′. Likewise ∂H

∂xxx is Lipschitz continuous with a constant LH on X.
We now can conclude

∥yyy−ŷyy∥= ∥GGG⊤(xxx′)∂H
∂xxx

(xxx)−GGG⊤(x̂xx′)
∂H
∂xxx

(x̂xx)∥

≤ ∥GGG⊤(xxx′)∂H
∂xxx

(xxx)−GGG⊤(xxx′)
∂H
∂xxx

(x̂xx)∥+∥GGG⊤(xxx′)∂H
∂xxx

(x̂xx)−GGG⊤(x̂xx′)
∂H
∂xxx

(x̂xx)∥

≤ ∥GGG⊤(xxx′)∥∥∂H
∂xxx

(xxx)− ∂H
∂xxx

(x̂xx)∥+∥GGG⊤(xxx′)−GGG⊤(x̂xx′)∥∥∂H
∂xxx

(x̂xx)∥

≤ kGLH∥xxx− x̂xx∥+LG∥xxx′− x̂xx′∥kH

≤ (kGLH +LGkH)k1e−k2t ,

(4.34)

where in the last step we used ∥xxx′− x̂xx′∥ ≤ ∥xxx− x̂xx∥ and ∥xxx− x̂xx∥ ≤ k1e−k2t .

Lemma 4.15 shows that an exponentially convergent reconstruction of the
output can always be obtained from an exponentially convergent reconstruction
of the state. Hence, Problem 4.12 can be formulated as an ordinary state re-
construction problem that involves two equations, viz. (4.29a) and (4.31). This
motivates to approach with a Luenberger-like observer consisting of an internal
model of the system dynamics and a measurement error injection term. This is
the approach we follow in the subsequent lemma.

Lemma 4.16 (Asymptotic state observer)
Consider a systemwith dynamics (4.29a) andmeasurements (4.31). Supposethere exists a matrix LLL ∈ Rn×q depending continuously on xxx′ such that

RRR(xxx′)+
1
2

LLL(xxx′)CCC(xxx′)+
1
2

CCC⊤(xxx′)LLL⊤(xxx′)≻ 0, (4.35)
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for all xxx′ ∈ X′. Then, there exists a globally exponentially convergent stateobserver of the form

˙̂xxx =
(
JJJ(xxx′)−RRR(xxx′)

) ∂H
∂xxx

(x̂xx)+GGG(xxx′)uuu+LLL(xxx′)
(
mmm−CCC(xxx′)QQQx̂xx

)
, (4.36)

with initial value x̂xx|t=0 = x̂xx0. The vectors x̂xx′ ∈ X′ and x̂xx′′ ∈ X′′ of the splitting
x̂xx =

(
x̂xx′⊤ x̂xx′′⊤

)
⊤ are mimicking the splitting of xxx = (xxx′⊤ xxx′′⊤)⊤.

Proof:
Let us define the reconstruction error as εεε := xxx− x̂xx. With (4.29a), (4.30), (4.31),
and (4.36), the error dynamics can be expressed as

ε̇εε =
(
JJJ(xxx′)−RRR(xxx′)−LLL(xxx′)CCC(xxx′)

)
QQQεεε, (4.37)

with initial value εεε0 = xxx0− x̂xx0. Obviously, εεε ≡ 000 is an equilibrium of (4.37).
Next, we analyze the stability of this equilibrium by using Lyapunov’s direct
method. Consider the Lyapunov candidate

V (εεε) =
1
2

εεε⊤QQQεεε. (4.38)

As shown in Proposition C.4 from Appendix C.3, for a system and a Lyapunov
candidate of the form (4.37) and (4.38), respectively, we obtain

V̇ (εεε) =−εεε⊤QQQRRR(xxx′)+
1
2

LLL(xxx′)CCC(xxx′)+
1
2

CCC⊤(xxx′)LLL⊤(xxx′)
︸ ︷︷ ︸

=:ΓΓΓ

QQQεεε. (4.39)

It is noteworthy that (4.39) is independent of the matrix JJJ(xxx′). Now let (4.35)
hold. We then have ΓΓΓ = ΓΓΓ

⊤ ≻ 0 which is equivalent to QQQΓΓΓQQQ = (QQQΓΓΓQQQ)⊤ ≻ 0.
From this follows that V̇ (εεε) is negative-definite and thus εεε ≡ 000 an asymptoti-
cally stable equilibrium of (4.37). Moreover, as shown in Proposition C.5 from
Appendix C.3, the positive definiteness of QQQ and QQQΓΓΓQQQ implies the existence of
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positive constants k1,k2,k3 ∈ R>0 such that

k1∥εεε∥2 ≤V (εεε)≤ k2∥εεε∥2 (4.40a)
and

V̇ (εεε)≤−k3∥εεε∥2 (4.40b)

hold for all xxx ∈ X. Hence, εεε ≡ 000 is a globally exponentially stable equilibrium
of (4.37) [Khalil, 2002, Theorem 4.10]. This implies (4.36) to be a globally
exponentially convergent observer for the system consisting of (4.29) and (4.31).

Equation (4.35) is a sufficient condition for the existence of an asymptotic
observer of the form (4.36). Thus, the observer design problem is to find a
matrix LLL(xxx′) such that (4.35) is fulfilled. For the case where RRR(xxx′) = RRR = const.,
CCC(xxx′) =CCC = const., we can approach with a constant matrix LLL(xxx′) = LLL. In this
case, (4.35) represents a LMI. There exist powerful numerical methods to solve
such an LMI, see, e.g., Boyd et al. [1994]. On the other hand, such an LMI-based
design approach suffers from two shortcomings: (a) it is restricted to the case
RRR(xxx′) = RRR = const., CCC(xxx′) =CCC = const.; (b) in general it is limited to a numeric
observer design, i.e., it disallows for a symbolic observer design. Hence, in the
sequel, we consider an alternative approach for finding a matrix LLL(xxx′) such that(4.35) is satisfied.

Recall that RRR(xxx′) ⪰ 0 for all xxx′ ∈ X′. For (4.35) to hold, we need to find
a matrix LLL(xxx′) which moves the zero eigenvalues of −RRR(xxx′) to the left. The
following lemma proposes a choice of LLL(xxx′) which has the best chances to
accomplish this:
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Lemma 4.17 (Observer design)
Consider two matrices RRR(sss) ∈ Rn×n and CCC(sss) ∈ Rq×n depending on someparameter sss ∈ S. Let RRR(sss) = RRR⊤(sss) ⪰ 0 for all sss ∈ S. There exists a matrix
LLL(sss) ∈ Rn×q which satisfies

RRR(sss)+
1
2

LLL(sss)CCC(sss)+
1
2

CCC⊤(sss)LLL⊤(sss)≻ 0, ∀sss ∈ S, (4.41)

if and only if (4.41) is satisfied for LLL(sss) =CCC⊤(sss).
Proof:
We show that the following two statements are equivalent:

(i) ∀sss ∈ S : ∃LLL(sss) ∈ Rn×q s.t. RRR(sss)+
1
2

LLL(sss)CCC(sss)+
1
2

CCC⊤(sss)LLL⊤(sss)≻ 0,

(4.42a)
(ii) ∀sss ∈ S : RRR(sss)+CCC⊤(sss)CCC(sss)≻ 0. (4.42b)

By setting LLL(sss) =CCC⊤(sss) it is easy to see that that (ii) implies (i). We now show
that (i) also implies (ii). To this end, we show the contraposition, i.e., that if
RRR(sss)+CCC⊤(sss)CCC(sss) is not positive-definite, then the matrix in (i) is not positive-
definite for all LLL(sss).
Let (ii) be violated. The matrix RRR(sss)+CCC⊤(sss)CCC(sss) is positive semi-definite, i.e.,

RRR(sss)+CCC⊤(sss)CCC(sss)⪰ 0, ∀sss ∈ S, (4.43)

as RRR(sss)⪰ 0 and

vvv⊤CCC⊤(sss)CCC(sss)vvv = ∥CCC(sss)vvv∥ ≥ 0, ∀sss ∈ S,∀vvv ∈ Rn, (4.44)
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i.e., CCC⊤(sss)CCC(sss)⪰ 0 for all sss ∈ S. From (4.43) and the negation of (ii) follows,
that there exists a non-zero vector vvv ∈ Rn and a value sss0 ∈ S such that

vvv⊤
(

RRR(sss0)+CCC⊤(sss0)CCC(sss0)
)

vvv = 0. (4.45)

For this vvv and sss0 we have

vvv⊤RRR(sss0)vvv+ vvv⊤CCC⊤(sss0)CCC(sss0)vvv = 0,

⇔ vvv⊤RRR(sss0)vvv = 0 ∧ vvv⊤CCC⊤(sss0)CCC(sss0)vvv = 0,

⇔ vvv⊤RRR(sss0)vvv = 0 ∧ vvv ∈ ker(CCC(sss0)) . (4.46)

For the left hand side of (4.42a) we obtain

vvv⊤RRR(sss0)vvv︸ ︷︷ ︸
=0

+
1
2

vvv⊤LLL(sss0)CCC(sss0)vvv︸ ︷︷ ︸
=000

+
1
2

vvv⊤CCC⊤(sss0)︸ ︷︷ ︸
=000

LLL⊤(sss0)vvv = 0. (4.47)

Hence, for sss0 ∈ S and for all LLL(sss) the matrix

RRR(sss0)+
1
2

LLL(sss0)CCC(sss0)+
1
2

CCC⊤(sss0)LLL⊤(sss0) (4.48)

is not positive-definite. This is the contraposition of statement (i).

Remark 4.18 (Scaling of the observer gain). Lemma 4.17 holds also foran observer gain LLL(sss) = αCCC⊤(sss) where α ∈ R>0. The parameter α can beused to increase (α > 1) or decrease (α < 1) the convergence rate of thoseobserver states that are influenced by the error injection.
Lemma 4.16 presents a state observer for the PHS (4.29). Lemma 4.17

provides a simple design for such an observer. From Lemma 4.15 we know, that a
state observer can be easily extended to a state-output observer. In the following
theorem, we summarize these insights to formulate a globally exponentially
convergent state-output observer for the PHS (4.29):
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Theorem 4.19 (State-output observer)
Consider a nonlinear PHS (4.29)with Hamiltonian (4.30) and measurements(4.31). Let

RRR(xxx′)+CCC⊤(xxx′)CCC(xxx′)≻ 0, ∀xxx′ ∈ X′. (4.49)
hold. A globally exponentially convergent state-output observer for the sys-tem is given by

˙̂xxx =
(
JJJ(xxx′)−RRR(xxx′)

) ∂H
∂xxx

(x̂xx)+GGG(xxx′)uuu+CCC⊤(xxx′)
(
mmm−CCC(xxx′)QQQx̂xx

)
, (4.50a)

ŷyy = GGG⊤(xxx′)
∂H
∂xxx

(x̂xx), (4.50b)

with initial value x̂xx|t=0 = x̂xx0.
Proof:
The proof follows directly from Lemma 4.15, Lemma 4.16, and Lemma 4.17. In
the latter we substitute sss ∈ S with xxx′ ∈ X′.

It is important to note that the observer from Theorem 4.19 is directly obtained
from the system model. In particular, there are no free observer parameters
which is why its design is inherently automatable. Hence, Theorem 4.19 solves
Problem 4.12.

In the following, the nonlinear observer from Theorem 4.19 is illustrated. To
this end, we resume with the example that was used to demonstrate the methods
from Chapter 3. This illustrates the consistency between the methods from
chapters 3 and 4.
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Example 4.20:
Consider the PHS from Example 3.34 for K = 1:




ẋ1

ẋ2

ẋ3


= (




0 0 0
0 0 −1
0 1 0


−




d deκx1 0
deκx1 de2κx1 0

0 0 0


)

∂H
∂xxx

+




0 d
1 deκx1

0 0



(

u1

u2

)
, (4.51a)

(
y1

y2

)
=

(
0 1 0
−d −deκx1 0

)
∂H
∂xxx

+

(
0 0
0 d

)(
u1

u2

)
, (4.51b)

with d > 0 and the non-quadratic Hamiltonian

H(xxx) =
1
2

xxx⊤




q1 0 0
0 q2 0
0 0 q3


xxx+

1
4

x4
1, (4.52)

where q1,q2,q3 > 0. For the system, consider two measurements m1 = x1and m2 = eκx1x3. The corresponding measurement equation reads:

mmm =

(
q−1

1 0 0
0 0 q−1

3 eκx1

)

︸ ︷︷ ︸
=CCC(x1)




q1 0 0
0 q2 0
0 0 q3






x1

x2

x3


 . (4.53)

Following the notation from Problem 4.12, we have xxx′ = x1 and xxx′′ =
(x2 x3)

⊤.Now for the observer. We have

RRR(x1)+CCC⊤(x1)CCC(x1) =




d +q−2
1 deκx1 0

deκx1 de2κx1 0
0 0 q−2

3 e2κx1


≻ 0, (4.54)
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for all xxx ∈ X. Thus, the observer existence condition (4.49) is satisfied andan asymptotic state-output observer is given by (4.50).Now, the results obtained fromnumerical simulation of the system (4.51)and the observer (4.50) are illustrated. The systemparameters are chosen to
d = 1, q1 =

1
2 , q2 =

1
3 , q3 =

1
4 , andκ = 0.1. The initial values of the systemandthe observer are given by xxx0 = (0 0 0)⊤ and x̂xx0 = (1 1 1)⊤, respectively. Theinput signals are specified to u1 = σ(t− 10s) and u2 = sin(0.1s−1 t) where

σ(·) is the unit step function.Figure 4.4 depicts the states xi (solid, blue) and the reconstructions x̂i(dashed, red) for i = 1,2,3.
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where q1,q2,q3 > 0. For the system, consider two measurements m1 = x1 and m2 =

eκx1x3. The corresponding measurement equation reads:

mmm =

(
q−1

1 0 0
0 0 q−1

3 eκx1

)

︸ ︷︷ ︸
=CCC(x1)




q1 0 0
0 q2 0
0 0 q3







x1

x2

x3


 . (4.53)

Following the notation from Problem 4.12, we have xxx′ = x1 and xxx′′ = (x2 x3)
⊤.

Now for the observer. We have

RRR(x1)+CCC⊤(x1)CCC(x1) =




d +q−2
1 deκx1 0

deκx1 de2κx1 0
0 0 q−2

3 e2κx1


≻ 0, (4.54)

for all xxx∈X. Thus, the observer existence condition (4.49) is satisfied and an asymptotic
state-output observer is given by (4.50).

Now, the results obtained from numerical simulation of the system (4.51) and the
observer (4.50) are illustrated. The system parameters are chosen to d = 1, q1 = 1

2 ,
q2 =

1
3 , q3 =

1
4 , and κ = 0.1. The initial values of the system and the observer are given

by xxx0 = (0 0 0)⊤ and x̂xx0 = (1 1 1)⊤, respectively. The input signals are specified to
u1 = σ(t −10s) and u2 = sin(0.1s−1 t) where σ(·) is the unit step function.

Figure 4.4 depicts the states xi (solid, blue) and the reconstructions x̂i (dashed, red)for i = 1,2,3.
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where q1,q2,q3 > 0. For the system, consider two measurements m1 = x1 and m2 =

eκx1x3. The corresponding measurement equation reads:

mmm =

(
q−1

1 0 0
0 0 q−1

3 eκx1

)

︸ ︷︷ ︸
=CCC(x1)




q1 0 0
0 q2 0
0 0 q3







x1

x2

x3


 . (4.53)

Following the notation from Problem 4.12, we have xxx′ = x1 and xxx′′ = (x2 x3)
⊤.

Now for the observer. We have

RRR(x1)+CCC⊤(x1)CCC(x1) =




d +q−2
1 deκx1 0

deκx1 de2κx1 0
0 0 q−2

3 e2κx1


≻ 0, (4.54)

for all xxx∈X. Thus, the observer existence condition (4.49) is satisfied and an asymptotic
state-output observer is given by (4.50).

Now, the results obtained from numerical simulation of the system (4.51) and the
observer (4.50) are illustrated. The system parameters are chosen to d = 1, q1 = 1

2 ,
q2 =

1
3 , q3 =

1
4 , and κ = 0.1. The initial values of the system and the observer are given

by xxx0 = (0 0 0)⊤ and x̂xx0 = (1 1 1)⊤, respectively. The input signals are specified to
u1 = σ(t −10s) and u2 = sin(0.1s−1 t) where σ(·) is the unit step function.

Figure 4.4 depicts the states xi (solid, blue) and the reconstructions x̂i (dashed, red)for i = 1,2,3.

0 5 10 15 20 25 30 35 40 45 50

−1

0

1

t in s

x 1

System
Observer

0 5 10 15 20 25 30 35 40 45 50

−2

0

2

t in s

x 2

4.2. Main Results 97

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

t in s

x 3

Figure 4.4: States of the system (4.51) (solid, blue) and corresponding reconstructions from theobserver (4.50) (dashed, red)
As can be seen, the state reconstructions reach the true states in less than ten seconds.
The reconstructions of the system output are given in the following figure:
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Figure 4.5: Outputs of the system (4.51) (solid, blue) and corresponding reconstructions from theobserver (4.50) (dashed, red)
The figure shows that the reconstructed outputs also converge to the true outputs.
In the following two corollaries, we analyze the results obtained so far more in detail.

First, we consider the case of linear measurements, i.e., the case where in (4.31) we have
CCC(xxx′) =CCC = const.

Figure 4.4: States of the system (4.51) (solid, blue) and corresponding reconstructionsfrom the observer (4.50) (dashed, red)
As can be seen, the state reconstructions reach the true states in less thanten seconds. The reconstructions of the system output are given in the fol-lowing figure:
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Figure 4.5: Outputs of the system (4.51) (solid, blue) and corresponding reconstructionsfrom the observer (4.50) (dashed, red)
As can be seen, the reconstructed outputs also converge to the true outputs.
In the following two corollaries, we analyze the results obtained so far more

in detail. First, we consider the case of linear measurements, i.e., the case where
in (4.31) we have CCC(xxx′) =CCC = const.

Corollary 4.21 (Linear Measurements)
Given a system with dynamics (4.29a) and measurements (4.31) where themeasurement matrix is a constant matrix CCC(xxx′) = CCC. The existence condi-tion (4.35) for an observer of the form (4.36) is satisfied if and only if it issatisfied for the constant matrix LLL =CCC⊤.

Proof:
The claim follows from Lemma 4.16 and Lemma 4.17 under CCC(xxx′) =CCC.

The main point from Corollary 4.21 is as follows. Despite the fact that the
matrix RRR(xxx′) is parametrized over xxx′, a constant observer gain LLL is sufficient
to evaluate if the existence condition (4.35) is solvable or not. In other words,
for CCC(xxx′) =CCC = const., there is no benefit in approaching with a parametrized
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observer gain LLL(xxx′).5 In this context, Corollary 4.21 reflects the idea behind
Lemma 4.17. Loosely speaking, if the output error injection allows to access
those parts of −RRR(xxx′) which corresponds to zero eigenvalues, we can shift them
to the left. In the case of linear measurements, a constant observer gain which is
independent of xxx′ is sufficient towards this endeavor. On the other hand, if RRR(xxx′)
is already positive-definite, the observer (4.36) is asymptotic without any error
injection. This is addressed in the last corollary of this subsection.

Corollary 4.22 (Strictly passive systems)
Consider a strictly passive PHS (4.29)withmeasurements (4.31), i.e., the casewhere RRR(xxx′) ≻ 0 for all xxx′ ∈ X′. A globally exponentially convergent stateobserver for the system is given by (4.36) with LLL = 000.

Proof:
The statement follows from Lemma 4.16 under RRR(xxx′)≻ 0 for all xxx′ ∈ X′.

Corollaries 4.21 and 4.22 conclude the observer design methods from this
subsection. Thereby, like the previous Subsection 4.2.1, the subsection at hand
addressed the design of a centralized observer based on global model knowledge.
However, as argued in Chapter 2, the design of distributed observers based on
local model knowledge is also of interest in the context of interconnected systems.
This is the topic to be addressed in the next subsection.

4.2.3 Automated Design of Distributed Observers

In this subsection, we investigate how the methods from subsections 4.2.1
and 4.2.2 can be applied for an automated design of distributed observers based on
local model knowledge.6 First, the system setup is briefly outlined. Afterwards,
two approaches for an automated design of distributed observers are presented.
The first approach is based on the methods from Subsection 4.2.1; the second
approach is based on the methods from Subsection 4.2.2.

Consider an interconnected system Σ described by an open graph G = (V,B)
where V = VI∪VB, B = BI∪BB (cf. Term 2.3). Let the set of inner vertices

5This statement is limited to the property of an observer of being asymptotic.
6As outlined in Chapter 2, the here applied notion of a distributed observer follows that of Castanedo
[2013] and Kupper [2019].
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VI represent N = |VI| subsystems Σi (i ∈ VI). The N subsystems are coupled
through M = |BI| inner edges that represent power-conserving interconnections.
Moreover, the subsystems Σi may interact with the environment of Σ via P
boundary vertices and corresponding boundary edges (P = |VB|= |BB|). Each
edge j ∈ B carries an effort eee j ∈ RK j and a flow fff j ∈ RK j where K j ∈ N≥1 for
all j ∈ B.

Figure 4.6 depicts the situation for an example system Σ with VI = {1,2,3},
VB = {B1,B2}, BI = {(1,2),(2,3)}, BB = {(B1,1),(B2,2)}, i.e., N = 3, M = 2,
and P = 2.

B1

B2

1

2

3
eee(B1,1)

fff (B1,1)

eee(B2,2)

fff (B2,2)

eee
(1,2)fff

(1,2)

eee(2,3) fff (2,3)

Figure 4.6: Exemplary interconnected system

In the following, we consider the situation where both—the observers and
the model knowledge—are distributed according to the subsystems Σi of Σ. The
first approach for an automated design of a distributed observer is based on the
methods from Subsection 4.2.1.

Design of a Distributed Observer with the Methods from
Subsection 4.2.1

Given an interconnected system Σ consisting of N subsystems as described above.
Suppose that Σ is a linear system. Moreover, let us consider the case where the
interactions between the subsystems are completely unknown.

Assumption 4.23 (Unknown interaction)
For each j ∈ B, the effort-flow pair (eee j, fff j) is not available for measurement.
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From Assumption 4.23 we deduce that the input and output of each subsystem
model is completely unknown. Moreover, subsystem states may also be unknown.
Hence, for each subsystem the input, state, and output have to be reconstructed. To
this end, we consider measurements that are linear combinations of the respective
inputs, states, and outputs.

From a subsystem perspective, this setup is a special case of Problem 4.1 from
Subsection 4.2.1. Accordingly, the following corollary reconsiders the methods
from Subsection 4.2.1 in a subsystem-wise manner to design a distributed input-
state-output observer:

Corollary 4.24 (Distributed observer for systemwith unknown interac-tions)
Consider an interconnected system Σ described by a graph G = (V,B). Letthe subsystems Σi be described by linear explicit PHSs of the form

ẋxxi = (JJJi−RRRi) QQQixxxi +(GGGi−PPPi)uuui, xxxi|t=0 = xxxi,0, (4.55a)
yyyi = (GGGi +PPPi)

⊤QQQixxxi +(MMMi +SSSi)uuui, (4.55b)

with uuui,yyyi ∈ Rpi and xxxi ∈ Rni for i ∈ VI. In (4.55), we have QQQi = QQQ⊤i ≻ 0; theremaining matrices satisfy the usual symmetry and definiteness conditionsof such a PHS (cf. Definition 2.23). For each i ∈ VI, consider qi > pi linearindependent measurements mmmi ∈ Rqi of the form

mmmi =CCCi,uuuui +CCCi,xxxxi +CCCi,yyyyi. (4.56)

Then, for each i ∈ VI we can formulate an unknown-input system

ẋxxi = AAAixxxi +BBBiuuui, (4.57a)
m̄mmi = C̄CCixxxi, (4.57b)

where m̄mmi ∈ Rqi−ri with ri = rank(CCCi,u +CCCi,y (MMMi +SSSi)).Let (4.57) be strong∗ detectable for each i ∈VI. Then, for each i ∈VI we can
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find an asymptotic input-state-output observer of the form

żzzi = NNNizzzi +LLLim̄mmi, zzzi|t=0 = zzz0,i, (4.58a)
x̂xxi = zzzi−EEE im̄mmi, (4.58b)
ûuui =

(
C̄CCiBBBi

)+ ( ˙̄mmmi−C̄CCiAAAix̂xx
)
, (4.58c)

ŷyyi = (GGGi +PPPi)
⊤QQQix̂xxi +(MMMi +SSSi) ûuui. (4.58d)

Proof:
The proof is given for one subsystem i ∈ VI but translates to all other subsystems.
Let Assumption 4.23 hold. Consider the PHS (4.55) with measurements (4.56).
Assumption 4.23 implies that uuui is completely unknown. The rest follows from
Theorem 4.8 for the special case without known inputs.

The observers from Corollary 4.24 process only local measurement informa-
tion to calculate reconstructions of the subsystems’ inputs, states, and outputs.
By this, the observers are fully distributed.

The design of the individual observers requires to determine the matrices NNNi,
LLLi, and EEE i. These matrices can be automatically computed via a subsystem-wise
application of Algorithm 4.10. For each subsystem, the respective execution of
the algorithm requires only local model knowledge.

In the above, we considered a linear system where the exogenous variables of
the subsystems are completely unknown. Instead, there have been measurements
that are local with respect to the individual subsystems. In the following, we
switch to a contrary case, viz. a class of nonlinear systems where the interactions
between the subsystems are completely known without having additional mea-
surement information from inside the system. Here, we apply the methods from
Subsection 4.2.2 to propose an automated scheme for the design of distributed
observers.
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Design of a Distributed Observer with the Methods from
Subsection 4.2.2

Suppose an interconnected system Σ consisting of N nonlinear subsystems. Let us
consider the case in which the interactions amongst the subsystems and between
the subsystems and the environment of Σ are fully available for measurement.

Assumption 4.25 (Known interaction)
For each j ∈ B, the effort-flow pair (eee j, fff j) is known or measured.

A key implication of Assumption 4.25 is that the input and the output of each
subsystem model is known or measured. Thus, in this case all inputs are known
and the measurement vector equals the output vector. Hence, no input and output
reconstruction is required. As an example, we can think of a system consisting of
subsystems with collocated sensors and actuators.

The following corollary particularizes the methods from Subsection 4.2.2 for
an automated design of a distributed nonlinear observer:

Corollary 4.26 (Distributed observer under known interactions)
Given an interconnected system Σ described by a graph G = (V,B). For each
i ∈ VI, let the subsystem Σi be described by an explicit PHS of the form

ẋxxi = (JJJi(yyyi)−RRRi(yyyi))
∂Hi

∂xxxi
(xxxi)+GGGiuuui, xxxi|t=0 = xxxi,0, (4.59a)

yyyi = GGG⊤i
∂Hi

∂xxxi
(xxxi), (4.59b)

with uuui ∈ Ui ⊂ Rpi , xxxi ∈ Xi ⊂ Rni , and yyyi ∈ Yi ⊂ Rpi where Xi and Yi arecompact. The Hamiltonian of (4.59) is given by Hi(xxxi) =
1
2xxx⊤i QQQixxxi +NNNi(yyyi)where QQQi = QQQ⊤i ≻ 0 is a matrix and NNNi : Yi → R, yyyi 7→ NNNi(yyyi) is a positivesemi-definite and twice differentiable function that may be nonlinear.Let Assumption 4.25 hold. Moreover, let

RRRi(yyyi)+GGGiGGG⊤i ≻ 0, ∀yyyi ∈ Yi (4.60)
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be satisfied for all i ∈ VI. Then, for each i ∈ VI an exponentially convergentstate observer is given by

˙̂xxxi = (JJJi(yyyi)−RRRi(yyyi))
∂Hi

∂xxxi
(x̂xxi)+GGGi

(
uuui + yyyi−GGG⊤i

∂Hi

∂xxxi
(x̂xxi)

)
, (4.61)

with initial value x̂xxi|t=0 = x̂xxi,0.
Proof:
We particularize the results from Section 4.2.2 to the case where the measurement
output equals the passive output.

Let (4.60) hold. The proof is given for the subsystem i ∈ VI but translates to
all other subsystems. Consider the state reconstruction error εεε i = xxxi− x̂xxi. With(4.59a) and (4.61), the error dynamics read

ε̇εε i =
(

JJJi(yyyi)−RRRi(yyyi)−GGGiGGG⊤i
)

QQQiεεε i. (4.62)

Applying the Lyapunov function candidate Vi(εεε i) =
1
2εεε⊤i QQQiεεε i we obtain

V̇ (εεε i) =−εεε⊤i QQQi

(
RRRi(yyyi)+GGGiGGG⊤i

)

︸ ︷︷ ︸
≻0

QQQiεεε i. (4.63)

From this follows that εεε i ≡ 000 is exponentially stable (cf. proof of Lemma 4.16).
Thus, (4.61) is an exponentially convergent observer for (4.59).

Remark 4.27 (PHS with feedthrough). Corollary 4.26 can be easily ex-tended to a PHS with feedthrough (cf. Remark 4.14).
As can be seen, the observers from Corollary 4.26 require only knowledge of

the interactions between the subsystems and are therewith distributed. Moreover,
analogously to Subsection 4.2.2, the observers do not require a dedicated design.
Instead, the observer parameters can be determined from the subsystems models.
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This section showed that the centralized methods from subsections 4.2.1
and 4.2.2 can also be applied for an automated design of distributed observers
based on local model information. It is important to note that the presented idea
to distribute an observer design is not restricted to the two special cases from this
subsection. The proposed principle may also be applied to several intermediate
cases. For example, in Section 5.3 the methods from from Subsection 4.2.2 are
applied to a nonlinear interconnected systems with partially known subsystem
interaction. A theoretical examination of such intermediate cases, however, would
not give new insights which is why we refrain from this step at this point.

This concludes the presentation of automated design methods for centralized
and distributed observers for PHSs. In the next section, we discuss the presented
methods with respect to the overall objectives of this thesis and previous results
from the related literature.

4.3 Discussion

The first main results of this chapter is Theorem 4.8 in which an automatable
design scheme for an input-state-output observer for linear PHSs is proposed. A
sufficient existence condition for this observer requires (i) that there are more
(independent) measurements than unknown inputs (i.e., q̃ > pu) and (ii) that
the state-space system (4.6) is strong∗ detectable. In comparison, the existence
condition for the input-state-output estimator from the preliminary work authored
by Pfeifer et al. [2019a] demands the number of measurements to be greater or
equal to the number of unknown inputs plus the number of states, i.e., q̃≥ pu +n.
Hence, subcondition (i) is less restrictive than the existence condition from Pfeifer
et al. [2019a]. Hautus [1983, Theorem 1.12] showed that subcondition (ii) is
necessary and sufficient for the existence of an asymptotic state observer for a
system (4.6). Thus, for the presented approach, subcondition (ii) is inevitable.

An interesting special case of Theorem 4.8 appears for a PHS with known
inputs. In this case, subcondition (i) is always fufilled. Moreover, subcondition (ii)
reduces to the condition of the system being detectable. This indicates the
existence conditions of Theorem 4.8 to be reasonable. For the special case of
known inputs, the observer design from Theorem 4.8 yields a standard Luenberger
observer extended by an output reconstruction.

The subconditions (i) and (ii) can be evaluated by a computer algebra system
(cf. Remark 4.9). If both subconditions are fulfilled, we can automatically design
an input-state-output observer by using Algorithm 4.10. Thereby, as for the
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modeling, the system size for a purely symbolic observer design is limited (cf.
Section 3.3). The symbolic computation of the singular value decomposition,
the generalized inverse, and the pole placement may lead to expressions of
considerable size. Again, it is impossible to state an absolute limit for the system
size as the feasibility of the symbolic calculations strongly depend on the specific
structure of the matrices. For a numeric observer design with Algorithm 4.10
the computational complexity is determined by the complexity of the calculation
of the inverse matrices required for the pole placement. Here, the upper bound
is polynomial and given by O(n3) where n is the number of system states, see
Lyche [2020, p. 65].7

The observer obtained from Algorithm 4.10 requires the first time-derivative
of the measurement vector which, however, is unavoidable for an input recon-
struction with a continuous observer [Hou and Patton, 1998]. To circumvent this
problem, one can approach with a discontinuous sliding mode observer as from
Edwards and Spurgeon [1994]. The design of sliding mode observers, however,
involves more degrees of freedom which makes its automation delicate. The
interested reader may refer to the thesis of Singer [2019].

Let us summarize that for linear PHSs with unknown inputs, states, and out-
puts we can design asymptotic observer in an automated manner. The existence
conditions of the observer are reasonable.

The second main result of this chapter is Theorem 4.19. The theorem pro-
vides a sufficient condition for global exponential convergence of a state-output
observer applicable to a class of nonlinear PHS. This class is quite general as it
allows for state-dependent matrices and a possibly non-quadratic Hamiltonian.
Venkatraman and van der Schaft [2010] consider an almost identical class of
systems. A limitation of this class of PHSs is the assumption that those states
which are responsible for the state-dependence of the PHSs matrices and which
constitute the non-quadratic part of the Hamiltonian are measured. On the other
hand, in practical systems this assumption may be satisfied by an appropriate
sensor placement.

The observer from Theorem 4.19 obviates a dedicated “design” as it can be
derived directly from the system model. This is in contrast to the observer design
from Venkatraman and van der Schaft [2010] which requires the closed-form
solution of a set of PDEs and algebraic equations. According to the underlying
model, the observer resulting from Theorem 4.19 will be symbolic or numeric.

7The upper bound O(n3) is under the assumption that the number of states is greater than the number
of measurements and greater than the number of unknown inputs.
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The existence condition of the observer requires the error system to be suf-
ficiently damped. Thereby, the damping consists of two parts, viz. the natural
damping of the system and a virtual damping arising from the error injection. To
ensure a fast convergence of all observer states, the error injection must access
those states subject to no or weak natural dissipation. On the other hand, if the nat-
ural damping is sufficiently strong on all states (i.e., the system is strictly passive),
one can completely omit the error injection in the observer (cf. Corollary 4.22).

The damping interpretation is closely related to well-known insights for the
control of PHSs, see, e.g., Kugi [2001, Sec. 2.4] and van der Schaft [2017,
Sec. 7.1]. By this relation, the results from Subsection 4.2.2 may also be applied
for the design of controllers. As an example, in Appendix C.4 we use Lemma 4.17
for the automated design of an asymptotically stabilizing feedback controller for
PHSs without feedthrough.

As an interim conclusion, for a class of nonlinear PHSs we can derive globally
exponentially convergent observers directly from the system model.

A third considerable result from this chapter is given in corollaries 4.24
and 4.26. Corollary 4.24 shows that is is straightforward to reconsider the ap-
proach from Theorem 4.8 to design subsystem observers for linear interconnected
systems on the basis of local models. The obtained observers only require mea-
surement information which is local with respect to the subsystems. Even further,
the observers from Corollary 4.24 obviate any information on the interactions be-
tween the subsystems. Hence, the observers (and their design) are fully distributed
which is at the cost of a sufficiently large number of interior measurements in
each subsystem.

Analogously to Corollary 4.24, Corollary 4.26 shows that for nonlinear in-
terconnected systems with known interactions between subsystems, the design
of the centralized observers from Theorem 4.19 translates into the design of a
distributed observer. This claim is not restricted to the observer design from Theo-
rem 4.19 but applies to many observer designs from the literature, see Section 4.1.
Although this result is intuitive, it was not explicitly stated in the literature yet.
The key is that known interaction variables imply the inputs and outputs of the
local models to be known. Hence, based on the subsystem models, we can design
distributed independently. To this end, the observer existence condition has to
be fulfilled for each subsystem, e.g., by a suitable partitioning of the system into
subsystems and/or an appropriate sensor placement.
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It is noteworthy that, in general, the distributed observers resulting from corol-
laries 4.24 and 4.26 cannot be extracted from a centralized observer of the system.
This can be explained by the fact that a local model of a subsystem is in general
not equal to the corresponding submodel of a centralized model. For example,
in Section 5.3, we consider an interconnected system in which the local models
have feedthrough while the global model has not.

A natural limitation of the deterministic observer methods from this chapter
is that they do not explicitly consider uncertainties. An analysis of the influence
of measurement noise to the observers from this chapter will be provided in the
numerical simulations that follow in Chapter 5.

Let us conclude the discussion of this section. For linear PHSs with unknown
inputs, states, and outputs, we can design asymptotic observers in an automated
manner. Moreover, for an important class of nonlinear PHSs we developed an
approach to derive globally exponentially convergent observers directly from the
system model. The observer methods can be also applied for an automated design
of distributed observers based on local model knowledge.

4.4 Summary and Contributions

The extent of interconnected systems hampers a manual or partially computer-
aided observer design. Existing automatable observer design techniques are
purely numeric and disregard the physical background of a system. This chapter
addressed this research gap by presenting methods and algorithms for an auto-
mated design of observers for PHSs. The original contributions of this research
are:

(C2.1) an automatable design scheme for an asymptotic observer applicable to
linear PHSs with unknown inputs, states, and outputs (Theorem 4.8 and
Algorithm 4.10);

(C2.2) a globally exponentially convergent state-output observer for an important
class of nonlinear PHSs; the observer exploits the natural damping of the
system and obviates a dedicated “design” as it is directly obtained from
the system model (Theorem 4.19);
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(C2.3) two automated designs of distributed observers (corollaries 4.24 and 4.26)
based on local model knowledge which are obtained from a reconsidera-
tion of the methods from C2.1 and C2.2.

The presented techniques are the first to enable an automated design of ob-
servers for a considerable class of PHSs and therewith reach research objective O2
from Section 1.3. The automated observer design methods were demonstrated
for a linear and a nonlinear example system. Numerical simulations verified the
convergence of the obtained observers.





Chapter 5
Proof of Principle

The aim of this thesis is to show that for a large class of interconnected systems
the process of deriving explicit state-space models and the process of designing
observers can be automated. This chapter provides a proof of principle towards
this endeavor. To this end, in Section 5.1 the methods from the previous two chap-
ters are integrated in a software prototype. The prototype enables an automated
generation of models and observers for interconnected systems. In Section 5.2
and Section 5.3, the prototype is applied to two example systems, viz. an unbal-
anced power distribution system and a large-scale nonlinear system, respectively.
The validity of the obtained models and observers is analyzed through numerical
simulations. The proof of principle ends with a discussion and a summary of the
contributions in Section 5.4 and Section 5.5, respectively.

5.1 Software Prototype

The prototype is named AMOTO which is an acronym for automatic model
generation and observer design tool. AMOTO implements the methods from
Chapter 3 (viz. algorithms 3.36 and 3.48) and Chapter 4 (viz. Algorithm 4.10 and
Theorem 4.19). The development of AMOTO started in 2018. The first version
of the program has been presented in Pfeiffer et al. [2019]. The current version is
1.1.4. The core of the tool is implemented in the Wolfram language. Hence, the
main calculations are performed by the Mathematica kernel. A graphical user
interface (GUI) for AMOTO was developed in Java. The Wolfram J/Link inter-
face enables the communication between the Java GUI and the Mathematica core.
AMOTO requires Wolfram Mathematica version 11 and Java runtime version 8
or respective later versions.
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The workflow in AMOTO is as follows. First, the user enters a bond graph
representation of the interconnected system under consideration. The constitutive
relations of the bond graph elements are entered symbolically or numerically.
Moreover, we specify in the bond graph model which variables are available for
measurement. To this end, bond graph variables can be set to “measured”. This
step is optional and only required if we aim at an automated observer design.

Based on the bond graph model, the user can start the model generation in
which AMOTO derives an explicit port-Hamiltonian model. The calculation runs
fully automatic. After the calculation, the resulting PHS is displayed to the user.
Afterwards, we may run the automated observer design. The obtained observer
equations are also displayed to the user.

AMOTO features an export function in which the obtained models and ob-
servers can be written to external files in the formats of Mathematica, MATLAB,
and LATEX. This facilitates subsequent steps in the development of models and
observers as, e.g., their simulation, analysis, documentation and, finally, their
implementation in the system under consideration.

Figure 5.1 summarizes the workflow for the development of models and
observers with AMOTO.

Interconn.
system

Bond
graph

Model
generation

Observer
design

PHS Observer

Simulation, Analysis, DocumentationImplementation

AMOTO

Figure 5.1: Illustration of the workflow with the software prototpye AMOTO

Figure 5.2 depicts the AMOTO GUI. The GUI consists of a menu bar, a graph
panel, a type list, an element list, an element panel, a tool bar, and a log panel.

In the sequel, the different parts of the GUI are briefly described.
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graph paneltype list

element list
element panel

log panel

Figure 5.2: Screenshot of the AMOTO GUI with labeling of the panels, bars, and lists in red

◦ Menu bar: The menu bar consists of the three menu points “File”, “Edit”,
and “About”. By clicking on “File” we can open a new blank model, save
the current bond graph, or load a bond graph from an existing file. Under
“Edit” the user may change program options as, e.g., the directory of the
Mathematica kernel or the grid size in the graph panel. License information
and the current software version are provided under “About”.

◦ Graph panel: The graph panel is the central playground to create bond
graphs. With a right click on the graph panel, bond graph elements can be
added. Moreover, by right clicking on an existing element, one can connect
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this element to another element by inserting a bond. Within the graph panel,
elements and bonds can be moved with drag and drop. Elements and bonds
can be deleted by right clicking on the corresponding instance and choosing
“remove”. Measurements can be specified by right clicking on a bond. For
the selected bond, we then specify whether the flow, the effort or both
are measured. Measurements of states are specified by right clicking on a
C-type element and choosing the corresponding option.

◦ Type list: In the type list, the user can choose the type of element that is
supposed to be added to the bond graph.

◦ Element list: The element list displays all elements of the current bond
graph. By clicking on an entry from the element list, the respective element
is highlighted in the graph panel in bold font.

◦ Element panel: The element panel displays basic information about a se-
lected element of the bond graph. The information appears when clicking
on the respective element in the graph panel or element list. For a selected
element, the element panel first displays the name and type of the selected
element. By clicking on the name, the element name can be edited. For
elements of type TF and GY, the element panel provides an additional input
field for the transformer and gyrator ratio, respectively. For elements of
type R, an input field for the constitutive relation of the considered element
is displayed. Likewise, for C-type elements, the energy state and the storage
function can be specified. The ratios of TF- and GY-type elements as well
as the constitutive relations of R- and C-type elements can be specified in
the Mathematica language either symbolically or numerically.

◦ Tool bar: The tool bar provides access to the main functional features of
AMOTO. It consists of three parts, viz. “Dimension”, “AMOTO. . . ”, and
“Export. . . ”. In the field “Dimension” we can specify the dimension of the
bond graph. For the automated generation of the model and observer equa-
tions, we click on the button “AMOTO. . . ”. In the following user dialog,
we select if the model equations, the observer equations or both are to be
calculated. In the dialog, by clicking on “Run” we start the calculations,
which are performed by the Mathematica kernel. The resulting equations
are displayed in a new pop-up window. By clicking on “Export. . . ”, the
obtained model and/or observer equations may be written to an external file.
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For the export, one can choose between the file extensions ∗.wl, ∗.m, and
∗.tex, i.e., file formats for Mathematica, MATLAB, and LATEX, respectively.

◦ Log panel: The log panel is used to document the session. The most
important feature is that the log panel informs the user if any existence
conditions are violated. Moreover, the log panel reports if there are problems
with the program configuration.

This concludes the presentation of AMOTO. In the subsequent sections,
AMOTO will be applied for the model generation and observer design in two
interconnected systems.

5.2 Case Study 1: Unbalanced Distribution
System

5.2.1 Study Objectives

Distribution systems are the final stage in the delivery of electric power. The
distribution level plays a crucial role for the decarbonization of electric energy.
In the control-oriented power systems research, the distribution system is one of
the hot topics often addressed under the names “Smart grid” or “Microgrid”, see,
e.g., Schiffer et al. [2016]; Simpson-Porco et al. [2017]; Strehle et al. [2019].

A distribution system is a multi-phase power system that operates on a medium
to low voltage level. Compared to transmission systems, the treatment of distribu-
tion systems is more intricate as their voltages and currents are unbalanced [Ker-
sting, 2017]. In many cases, a distribution system comprises a high number of
buses and lines and therewith involves high dimensional variable spaces.

State estimation techniques are of key importance for the monitoring and
control of a distribution system. The state estimators currently used in distri-
bution system control centers rely on the assumption that the network is in
quasi-steady state [Zhao et al., 2019]. The quasi-steady state assumption simpli-
fies the design of a state estimator for the network to the derivation of a static
weighted least squares (WLS) estimator. However, as the IEEE Task Force on
Power System Dynamic State and Parameter Estimation recently pointed out, in
reality, power systems never operate in quasi-steady state as there are continu-
ous variations of generation and demand [Zhao et al., 2019]. The situation is
aggravated by the recent changes in the distribution system, viz. the extensive
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integration of distributed energy resources, complex loads, and demand-response
technologies. In the distribution system, these changes induce faster transients
and stronger harmonic distortions [IEEE Standards Association, 2014]. A WLS-
based state estimator is unable to capture these transients and harmonics which
motivates the development of new monitoring techniques.

Power system dynamic state estimation (PSDSE) is a promising approach to
account for the recent changes in the distribution system. The survey papers from
Primadianto and Lu [2017] and Zhao et al. [2019] outline the state of the art in
PSDSE. In contrast to a WLS-based state estimation, PSDSE methods are based
on a state-space dynamic model. Based on the dynamic model, an estimator
is derived by designing a Luenberger observer, a Kalman filter, or extensions
thereof. In existing PSDSE approaches, the system dynamics originate from a dy-
namic modeling of components that are connected to the network as for example
synchronous generators or storage systems, see, e.g., Zhao et al. [2017]; Singh
and Pal [2019]; Alhelou et al. [2019] and references therein. To our knowledge,
in all existing approaches, the network is still described in quasi-steady state.
In the literature, there are no previous reports on PSDSE approaches that reject
the quasi-steady state assumption for the network.1 In other words, the benefit
of considering the network dynamics for the state estimation has been largely
unexplored.

AMOTO is used to bridge this research gap. First, we derive a distribution sys-
tem model which explicitly considers the line dynamics. Based on the model, we
apply the automated observer design to generate a dynamic state estimator. The
performance of the obtained model and estimator is analyzed through numerical
simulations.

This study will demonstrate the capabilities of AMOTO. In particular, it will
be shown that
◦ AMOTO is able to automatically generate a model and an observer for an

unbalanced distribution system;
◦ the obtained model and observer produce plausible results;
◦ in distribution systems with fast transients, harmonic distortion, and mea-

surement noise the observer extends the functionalities of a WLS-based
state estimation.

1An exception is given by the class of transient state estimation methods, see, e.g., Watson and Yu
[2008]. This class of methods, however, focuses on fault detection and isolation and cannot be used
for a continuous system monitoring.
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5.2.2 System Description

Consider a three-phase unbalanced distribution system with N buses. The three
phases are denoted by A, B, and C. P of the N buses are connected to higher-level
systems. The remaining N −P buses are connected to N −P uncontrollable
loads. Thereby, each load is connected to exactly one bus. The N buses are
connected by M three-phase lines. As can be seen, such a distribution system
is clearly an interconnected system in the sense of Term 2.3: the set of inner
vertices VI contains the N buses; the set of boundary vertices VB contains the P
higher-level systems and N−P loads; the set of inner edges BI contains the M
lines; and the set of boundary vertices BB contains the N (lossless) connections to
the higher-level systems and loads. Let us assume that the open graph G = (V,B)
with V= VI∪VB and B= BI∪BB is connected.

Figure 5.3a shows an exemplary distribution system with N = 33, M = 32,
and P = 1. The depicted system is the well-known IEEE 33 Bus System from
Baran and Wu [1989]. The nominal voltage of this system is 12.66 kV; the system
frequency is 50 Hz. The open graph representation of the IEEE 33 Bus System is
illustrated in Figure 5.3b.

5.2.3 Bond Graph Model

This subsection presents a methodology for deriving a bond graph model of an
unbalanced distribution system. To this end, we first describe the components of
a distribution system separately. The overall distribution system model can then
be obtained by assembling the component models. The component models are
described in the following

A bus i∈VI is modeled as ideal Kirchhoff node, i.e., a 0-junction. An element
i∈VB is modeled as three-phase voltage source, i.e., an Se-type element.2 We de-
scribe an element j ∈ BB as an ideal (lossless) connection, i.e., an ordinary power
bond. Finally, a line j ∈BI is described by the π-section model in Figure 5.4. The
π-section model considers phase resistances Rk, j, phase self inductances Lk,k, j

and line-line mutual inductances Lk,l, j where k, l ∈ {A,B,C}, k ̸= l. The latter
are necessary as distribution lines are in general untransposed [Kersting, 2017,
p. 79]. The resistances and inductances are collected in the following resistance

2The parameters of loads are constantly changing during system operation and are unknown for the
state estimation [Kersting, 2017, p. 28]. Hence, we describe the loads by the voltages across them.
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Figure 5.3: IEEE 33 Bus System: schematic diagram (a) and open graph representation (b)
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Figure 5.4: π-section equivalent circuit of a three-phase distribution line

R: RRR j GY: III C: LLL j

1 I j,2I j,1

Figure 5.5: Bond graph representation of the π-section model from Figure 5.4

and inductance matrices:

RRR j =




RA, j 0 0
0 RB, j 0
0 0 RC, j


 , and LLL j =




LA,A, j LA,B, j LA,C, j

LA,B, j LB,B, j LB,C, j

LA,C, j LB,C, j LC,C, j


 , (5.1)

respectively, with j ∈ BI. Figure 5.5 depicts the bond graph representation of the
π-section model of line j ∈ BI from Figure 5.4. The ports I1, j and I2, j are open
ports for the interconnection to the incident buses.

By using the above component models, we may construct a bond graph model
of an unbalanced distribution system. Figure 5.6 depicts the obtained bond graph
model for the IEEE 33 Bus System from Figure 5.3. Note that each line model
L j consists of a bond graph as depicted in Figure 5.5 ( j ∈ BI).
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5.2.4 Automated Model Generation

To demonstrate the automated model generation for the IEEE 33 Bus System, the
bond graph from Figure 5.6 was entered into AMOTO. The system parameters
were taken from Baran and Wu [1989].3 Based on the entered bond graph, we
then run the automated model generation of AMOTO. After approximately 19
seconds4, AMOTO outputs a linear PHS of the form

ẋxx =−RRRQQQxxx+GGGuuu, (5.2a)
yyy = GGG⊤QQQxxx, (5.2b)

with xxx ∈ R96 and uuu,yyy ∈ R99.
The complete model is far too large to be displayed in the format of this thesis.

Hence, we focus on structural properties of the model.
The state vector consists of the magnetic flux linkages ψ of the M = 32 lines.

Each line is described by three states, viz. the magnetic flux linkages of the
phases A, B, and C. Hence, the overall number of states is 3 ·32 = 96 and the
state vector is given by xxx = ((ψ)k) j for all k ∈ {A,B,C} and j ∈ BI.

The input vector of (5.2) consists of the 3 · 33 = 99 bus voltages, i.e., uuu =

((V )k)i for all k ∈ {A,B,C} and i ∈ VI. The output vector contains the corre-
sponding 99 bus currents, i.e., yyy = ((I)k)i for all k ∈ {A,B,C} and i ∈ VI. These
are the currents that flow between the buses on the one hand and the loads and
higher level system on the other hand. As the bus voltages and currents are
uncontrollable, the input vector is a pure disturbance vector; the output vector is
the corresponding disturbance output vector.

The matrix RRR in (5.2) is given by RRR = blkdiag(RRR j) with j ∈ BI where RRR j is
from (5.1). Likewise, the matrix QQQ is a block diagonal matrix that contains the
inverse matrices of the inductance matrices from (5.1), i.e., QQQ = blkdiag(LLL−1

j ).
The matrix GGG is a sparse matrix. The non-zero entries in GGG appear in 3× 3
diagonal blocks which are either diag(1,1,1) or −diag(1,1,1). The arrangement
of the non-zero blocks reflects the incidence matrix of the connected subgraph
GI = (VI,BI). The remaining PHS matrices JJJ, PPP, MMM, and SSS are calculated to zero.

3Baran and Wu [1989] provide values only for the self-inductances of the lines. The ratio between
the line self-inductances and the line-line mutual inductances is assumed to be 0.8.

4Calculated on a computer with Intel(R) Core(TM) i7-6600U CPU @ 2.60 GHz and 12 GB RAM.
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5.2.5 Automated Observer Design

To demonstrate the automated observer design of AMOTO for the IEEE 33 Bus
System, we first define a set of measurement buses VM ⊆ VI . We assume the
following buses to be equipped with measurement units:

VM = {2,4,6,8,10,12,14,16,18,20,22,23,25,27,29,31,33}. (5.3)

In each measurement bus i ∈VM, sensors provide synchronized measurements of
the three-phase network currents, i.e., the currents flowing through the incident
lines. The load currents are assumed to be non-measured. For the entire system,
we assume only one three-phase voltage measurement which is located at bus
2. This voltage measurement acts as reference for the voltage reconstructions.
In Figure 5.6, the buses and quantities that are available for measurement are
highlighted in green.

In the graph panel of AMOTO we enter the measurements to the bond graph
by setting the appropriate efforts and flows to “measured”. From the extended
bond graph, AMOTO computes a measurement equation of the form m̄mm = C̄CCyyy
with m̄mm ∈ R96 and C̄CC ∈ {0,−1}96×99. Based on the measurement equation and
the model (5.2), AMOTO calculates an input-state-output observer of the form

żzz = NNNzzz, zzz|t=0 = zzz0, (5.4a)
x̂xx = zzz−EEEm̄mm, (5.4b)
ûuu2 =

(
C̄CCGGG2

)+ ( ˙̄mmm+C̄CCRRRx̂xx−C̄CCGGG1uuu1
)
, (5.4c)

ŷyy = GGG⊤QQQx̂xx, (5.4d)

with zzz∈R96. The vectors x̂xx∈R96 and ŷyy∈R99 are reconstructions of the magnetic
flux linkages of the lines and the bus currents, respectively. The vector uuu1 ∈ R3

contains the known inputs, i.e., the three-phase bus voltage at bus 2. The vector
ûuu2 ∈ R96 is a reconstruction of the unknown inputs, i.e., the three-phase bus
voltages at the remaining buses. The matrices GGG1 and GGG2 can be obtained from
splitting the matrix GGG from (5.2) according to the splitting of uuu.

The matrix NNN is calculated as a diagonal matrix. The diagonal values of NNN
are negative and lie in the complex plane left to the eigenvalues of the matrix
−RRRQQQ from (5.2). This is meaningful, as it ensures the error dynamics to be faster
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than the system dynamics. The matrix EEE is a sparse matrix. The arrangement of
the non-zero matrix blocks again reflects the incidence matrix of the connected
subgraph GI = (VI,BI).

This concludes the presentation of the results obtained from the automated
model generation and observer design of AMOTO for the IEEE 33 Bus Sys-
tem. Next, the obtained model and observer are validated through numerical
simulations.

5.2.6 Simulation Setup

The aim of the simulation study is (i) to evaluate the validity of the model (5.2)
and the observer (5.4) and (ii) to compare the performance of the observer with
the performance of a WLS-based estimation. It is interesting to note that we
can use AMOTO to calculate a WLS estimator for (ii). The detailed derivation
of a WLS estimator for the IEEE 33 Bus System with AMOTO is illustrated in
Appendix D.1.

As a ground truth we use the verified MATLAB/Simulink time-domain sim-
ulation model of the IEEE 33 Bus System from Wong [2020]. By default, this
simulation model describes a scenario in which the system is balanced and in
quasi-steady state. Hence, to account for the recent changes in distribution
systems, the model from Wong [2020] is modified in three points:
◦ On the buses {4,21,27,30,31}, {7,17,22,25,26}, and {3,12,24,28,32}, load

imbalances for the phases A, B, and C are introduced, respectively. For
these buses, the load at the concerning phase is 30 % higher than the load at
the other phases.
◦ At t1 = 1s, t2 = 2s, and t3 = 3s we consider load transients in which the

active and reactive power of the three-phase loads at the buses 14, 17, and
26, respectively, increase by the factor 2.
◦ The voltage at bus 1 is subject to harmonic distortion. We consider the 3rd,

5th, 7th and 11th harmonics of the fundamental frequency. The amplitudes
of the harmonics are set to 2.5 % of the amplitude of the fundamental
frequency.5

5This yields a total harmonic distortion of 5% which is within the range of an allowed total harmonic
distortion [IEEE Standards Association, 2014].
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From now on, we denote to the modified model from Wong [2020] as bench-
mark model. For the evaluation of the model and observer, first the benchmark
model has been simulated which gives us time series for all bus voltages, bus
currents, line currents, and line flux linkages. The bus voltages are the inputs of
the model (5.2). Hence, based on the time-series of the bus voltages one may
simulate (5.2). Likewise, the time-series of the variables from the vectors m̄mm and
uuu1 obtained from the simulation of the benchmark model are collected. With
these data one may simulate the observer (5.4).

All simulations were conducted in MATLAB/Simulink R2019a with a fixed-
step solver at a simulation step size of 0.01 ms. The model, the observer, and
the WLS estimator were written to MATLAB code by using the export function
from AMOTO. The resulting files comprise more than 18000 lines of MATLAB
code. The initial values of the models and the observer are chosen such that the
simulation starts in quasi-steady state. The simulation time was set to T = 4s.

5.2.7 Simulation Results

For the evaluation of the model (5.2) and observer (5.4) we use the relative error
signal power (RESP).6 For each signal obtained from the model and observer,
an error signal based on the corresponding signal from the benchmark model is
computed. The RESP is then the quotient of the signal power of the error signal
and the signal power of the benchmark signal. Therewith, the RESP is a relative
measure for the similarity of a signal to the corresponding benchmark signal. The
formal definition of the RESP can be found in Appendix D.2.

First, we analyze the RESP of the bus currents that have been computed
from the model (5.2) and the observer (5.4). Figure 5.7 shows the three-phase
average RESP over the bus number for the model and the observer in blue and
red, respectively. The underlying numerical data can be found in Table D.1 and
Table D.2 in Appendix D.3.

As can be seen, for each of the buses the RESP of the model takes values
equal or less than 0.25 %. Hence, we can say that the model (5.2) accurately
reproduces the behavior of the benchmark model.7 For the observer, we obtain

6Note that the deterministic, periodic nature of the signals obtained from the model (5.2) and
observer (5.4) make the well-known similarity measures from statistics inappropriate for this study.

7The remaining difference between the models can be further decreased by choosing a smaller
simulation step size.
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benchmark signal. The formal definition of the RESP can be found in Appendix D.2.

First, we analyze the RESP of the bus currents that have been computed from the
model (5.2) and the observer (5.4). Figure 5.7 shows the three-phase average RESP over the
bus number for the model and the observer in blue and red, respectively. The underlying
numerical data can be found in Table D.1 and Table D.2 in Appendix D.3.
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Figure 5.7: Three-phase average RESP of the bus currents for the model (5.2) (blue) and the ob-server (5.4) (red)

As can be seen, for each of the buses the RESP of the model takes values equal or less
than 0.25 %. Hence, we can say that the model (5.2) accurately reproduces the behavior of
the benchmark model.7 For the observer, we obtain even smaller RESP values of less than
0.025 %. This can be explained by the observer error injection, which induces a robustness
against model uncertainties.

Figure 5.8 depicts the time courses of the three-phase bus current at bus 17 for the
benchmark model (solid, green), the model (5.2) (dashed, blue) and the observer (5.4) (dot-
dashed, red) for the time between 1.95 s and 2.10 s. We can clearly identify the fundamental
frequency of 50 Hz. Due to the load imbalance at phase B of bus 17, the amplitude of the
current at phase B is slightly higher than the amplitudes for the currents at the phases A and
C. At t = 2s we can see the load jump in which the amplitude of the bus current increases
approximately by the factor of 2. As can be seen, the model (5.2) and the observer (5.4)
correctly reproduce the behavior of the benchmark model at this crucial point. Visually, we
cannot distinguish between the obtained currents.

As an interim result, let us summarize that the model (5.2) accurately reflects the behavior
of the benchmark model. Moreover, the observer (5.4) produces estimates that are very close
to the values from the benchmark model. Hence, we can say that the observer is asymptotic.

Next, we compare the simulation results of the observer (5.4) with the results obtained
for the WLS estimator (D.8). The RESPs for all bus voltage signals are given in Table D.3
and Table D.4 in Appendix D.3. For the observer, the mean RESP over all reconstructed bus

7The remaining difference between the models can be further decreased by choosing a smaller
simulation step size.

Figure 5.7: Three-phase average RESP of the bus currents for the model (5.2) (blue) and theobserver (5.4) (red)

even smaller RESP values of less than 0.025 %. This can be explained by the
observer error injection, which induces a robustness against model uncertainties.

Figure 5.8 depicts the time courses of the three-phase bus current at bus 17
for the benchmark model (solid, green), the model (5.2) (dashed, blue) and the
observer (5.4) (dotdashed, red) for the time between 1.95 s and 2.10 s. We can
clearly identify the fundamental frequency of 50 Hz. Due to the load imbalance at
phase B of bus 17, the amplitude of the current at phase B is slightly higher than
the amplitudes for the currents at the phases A and C. At t = 2s we can see the
load jump in which the amplitude of the bus current increases approximately by
the factor of 2. As can be seen, the model (5.2) and the observer (5.4) correctly
reproduce the behavior of the benchmark model at this crucial point. Visually,
we cannot distinguish between the obtained currents.

As an interim result, let us summarize that the model (5.2) accurately reflects
the behavior of the benchmark model. Moreover, the observer (5.4) produces
estimates that are very close to the values from the benchmark model. Hence, we
can say that the observer is asymptotic.

Next, we compare the simulation results of the observer (5.4) with the results
obtained for the WLS estimator (D.8). The RESPs for all bus voltage signals are
given in Table D.3 and Table D.4 in Appendix D.3. For the observer, the mean
RESP over all reconstructed bus voltages is 1.5× 10−3 % (standard deviation:
9.2×10−4 %). The respective value for the WLS estimator is 5.1 % (standard
deviation: 6.3×10−2 %). Hence, the observer significantly outperforms the WLS
estimator. This can be explained by two reasons.

First, the WLS estimator cannot capture the harmonic distortion. This is
illustrated in Figure 5.9 which shows one oscillation period of the voltage at
phase A of bus 17 starting from 2 s. In contrast to the WLS estimator (dotdashed,
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Figure 5.8: Bus current at bus 17 for the benchmark model (solid, green), the model (5.2) (dashed, blue)and the observer (5.4) (dotdashed, red) for the time between 1.95 s and 2.10 s

voltages is 1.5×10−3 % (standard deviation: 9.2×10−4 %). The respective value for the
WLS estimator is 5.1 % (standard deviation: 6.3×10−2 %). Hence, the observer significantly
outperforms the WLS estimator. This can be explained by two reasons.

First, the WLS estimator cannot capture the harmonic distortion. This is illustrated in
Figure 5.9 which shows one oscillation period of the voltage at phase A of bus 17 starting
from 2 s. In contrast to the WLS estimator (dotdashed, brown) the observer (dashed, red) is
able to reconstruct the harmonic distortion from the benchmark model (solid, green).

Second, the WLS estimator cannot deal with abrupt changes in the load. This is shown
in Figure 5.10 which depicts the estimated bus current for phase A of bus 17 between 1.95 s
and 2.1 s. As can be seen, the WLS estimator (dotdashed, brown) requires about four periods
to reach the amplitude of the current computed by the observer (dashed, red) and benchmark
model (solid, green). Naturally, such errors in the bus current lead to an increase of the
voltage RESP.

In the last part of this case study, we now analyze the validity of the reconstructions from
the observer and the WLS estimator under measurement noise. To this end, the measurement
equation is extended by noise, i.e., m̄mm = C̄CCyyy+ εεε where εεε is vector-valued Gaussian random
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brown) the observer (dashed, red) is able to reconstruct the harmonic distortion
from the benchmark model (solid, green).

Second, the WLS estimator cannot deal with abrupt changes in the load. This
is shown in Figure 5.10 which depicts the estimated bus current for phase A of
bus 17 between 1.95 s and 2.1 s. As can be seen, the WLS estimator (dotdashed,
brown) requires about four periods to reach the amplitude of the current computed
by the observer (dashed, red) and benchmark model (solid, green). Naturally,
such errors in the bus current lead to an increase of the voltage RESP.

In the last part of this case study, we now analyze the validity of the reconstruc-
tions from the observer and the WLS estimator under measurement noise. To this
end, the measurement equation is extended by noise, i.e., m̄mm = C̄CCyyy+ εεε where εεε is
vector-valued Gaussian random process with zero mean and covariance matrix
σ2IIIq̄, σ ∈ R≥0. The above simulations of the observer and the WLS estimator
are then repeated on the basis of the noisy measurements.
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Figure 5.9: Bus voltage at phase A of bus 17 for the benchmark model (solid, green), the observer (5.4)(dashed, red), and the WLS estimator (D.8) (dotdashed, brown) for the time between 2 s and 2.02 s
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Figure 5.10: Bus current at phase A of bus 17 for the benchmark model (solid, green), the observer (5.4)(dashed, red), and the WLS estimator (D.8) (dotdashed, brown) for the time between 1.95 s and 2.1 s

process with zero mean and covariance matrix σ2IIIq̄, σ ∈ R≥0. The above simulations of the
observer and the WLS estimator are then repeated on the basis of the noisy measurements.

The results are depicted in Figure 5.11. The figure shows the mean RESPs of the
reconstructed bus voltages for the observer (5.4) (red) and the WLS estimator (D.8) (brown)
for different noise variances σ2. For the six considered noise variances 10−5, 10−4, 10−3,
10−2, 10−1, and 100, the mean signal-to-noise ratios (SNRs) over all measurement signals
is given by 98.0 dB, 86.5 dB, 75.0 dB, 63.4 dB, 51.9 dB, and 40.4 dB, respectively. As seen,
starting on a low level, the mean RESP of the reconstructions from the observer increases
with increasing noise variance. In contrast, the RESPs of the WLS estimator are almost
constant over the different noise variances.

Figure 5.11 shows that for a variance smaller or equal to 10−2 (i.e., an SNR≥ 63.4dB),
the observer gives adequate reconstructions which have a significantly lower mean RESP
than the reconstructions obtained from the WLS estimator. However, an increasing noise
level leads to an increasing deterioration of the reconstructions from the observer. In con-
trast, the WLS estimator remains almost unaffected by the measurement noise. This can be
explained by the smoothing property of the phase-locked loops for the phasor computation
in the WLS estimator.

Figure 5.9: Bus voltage at phase A of bus 17 for the benchmark model (solid, green), theobserver (5.4) (dashed, red), and the WLS estimator (D.8) (dotdashed, brown) for the timebetween 2 s and 2.02 s
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The results are depicted in Figure 5.11. The figure shows the mean RESPs
of the reconstructed bus voltages for the observer (5.4) (red) and the WLS
estimator (D.8) (brown) for different noise variances σ2. For the six considered
noise variances 10−5, 10−4, 10−3, 10−2, 10−1, and 100, the mean signal-to-noise
ratios (SNRs) over all measurement signals is given by 98.0 dB, 86.5 dB, 75.0 dB,
63.4 dB, 51.9 dB, and 40.4 dB, respectively. As seen, starting on a low level, the
mean RESP of the reconstructions from the observer increases with increasing
noise variance. In contrast, the RESPs of the WLS estimator are almost constant
over the different noise variances.

Figure 5.11 shows that for a variance smaller or equal to 10−2 (i.e., an
SNR≥ 63.4dB), the observer gives adequate reconstructions which have a sig-
nificantly lower mean RESP than the reconstructions obtained from the WLS
estimator. However, an increasing noise level leads to an increasing deteriora-
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Figure 5.11: Mean RESPs over all voltages from the reconstructions of the observer (5.4) (red) and theWLS estimator (D.8) (brown) for different noise variances σ2

In conclusion, the observer (5.4) captures harmonic distortion and thus allows for a bus-
specific power quality assessment, e.g., to identify critical loads. Moreover, the algorithm
immediately detects fast transients which is an important prerequisite for the application of
new primary control schemes in low-inertia power systems (cf. Milano et al. [2018] and
Strehle et al. [2019]). Therewith, the proposed observer extends the functionalities of a
classical WLS-based power system state estimation. The basis for these functionalities are
measurements with a low to moderate SNR. Provided such measurements are available, the
proposed observer is a promising approach to deal with the challenges in the supervision of
future power systems.

5.3 Case Study 2: Large-Scale Nonlinear
System

5.3.1 Study Objectives

Compared to the previous subsection, we now turn our attention to a nonlinear system. We
consider an interconnected system of academic nature which features nonlinearities in both,
the interconnection structure and storages. Based on the system, it will be shown that

◦ AMOTO is able to automatically generate global and local models of a nonlinear
interconnected system;

◦ AMOTO can be used to derive a centralized and a distributed observer based on local
and global model knowledge, respectively;

◦ in numerical simulations, the centralized and the distributed observer obtained from
AMOTO yield asymptotic reconstructions of the unknown system variables.

Moreover, we will discuss the convergence of the observers in the presence of measurement
noise.

Figure 5.11: Mean RESPs over all voltages from the reconstructions of the observer (5.4)(red) and the WLS estimator (D.8) (brown) for different noise variances σ2

tion of the reconstructions from the observer. In contrast, the WLS estimator
remains almost unaffected by the measurement noise. This can be explained by
the smoothing property of the phase-locked loops for the phasor computation in
the WLS estimator.

In conclusion, the observer (5.4) captures harmonic distortion and thus allows
for a bus-specific power quality assessment, e.g., to identify critical loads. More-
over, the algorithm immediately detects fast transients which is an important
prerequisite for the application of new primary control schemes in low-inertia
power systems (cf. Milano et al. [2018] and Strehle et al. [2019]). Therewith, the
proposed observer extends the functionalities of a classical WLS-based power
system state estimation. The basis for these functionalities are measurements
with a low to moderate SNR. Provided such measurements are available, the
proposed observer is a promising approach to deal with the challenges in the
supervision of future power systems.

5.3 Case Study 2: Large-Scale Nonlinear
System

5.3.1 Study Objectives

Compared to the previous subsection, we now turn our attention to a nonlinear
system. We consider an interconnected system of academic nature which features
nonlinearities in both, the interconnection structure and storages. Based on the
system, it will be shown that
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Figure 5.12: Large-scale nonlinear interconnected system

◦ AMOTO is able to automatically generate global and local models of a
nonlinear interconnected system;
◦ AMOTO can be used to derive a centralized and a distributed observer

based on local and global model knowledge, respectively;
◦ in numerical simulations, the centralized and the distributed observer ob-

tained from AMOTO yield asymptotic reconstructions of the unknown
system variables.

Moreover, we will discuss the convergence of the observers in the presence of
measurement noise.

5.3.2 System Description

Let us consider the interconnected system from Figure 5.12. The system consists
of 15 subsystems Vs = {1, . . . ,15} and five zero junctions V0 = {01, . . . ,05}.
Following Definition 2.1, the set of inner vertices is given by VI = Vs∪V0. The
20 inner vertices are connected by 20 inner edges BI = {I1, . . . , I20}. The system
contains four boundary vertices VB = {Sf1, . . . ,Sf4} which determine the flow
variables at the system boundary. The boundary vertices are connected to the
subsystems j = 1,10,12,15 by four boundary edges BB = {B1,B2,B3,B4}.

Each subsystem j ∈ Vs consists of a four-dimensional bond graph as depicted
in Figure 5.13. The bond graph contains two energy-storing elements with the
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TF: UUU j(xxx1, j) 01R: DDD1, j

R: DDD2, j

C: V1, j(xxx1, j) C: V2, j(xxx2, j)

I j

B j

eeeI , j fff I , j

eeeB, j

fff B, j

Figure 5.13: Interior structure of the subsystems j ∈ Vs from Figure 5.12

following storage functions

V1, j(xxx1, j) =
1
2

xxx⊤1, jQQQ1, jxxx1, j +
∥xxx1, j∥4

∥xxx1, j∥2 + cos
(
∥xxx1, j∥2 +1

) , (5.5a)
V2, j(xxx2, j) =

1
2

xxx⊤2, jQQQ2, jxxx2, j, (5.5b)

where xxx1, j,xxx2, j ∈ R4 and QQQ1, j,QQQ2, j ∈ R4×4 symmetric, positive-definite matrices
( j ∈ Vs). The two energy-dissipating elements are specified by the symmetric,
positive-definite matrices DDD1, j,DDD2, j ∈ R4×4 ( j ∈ Vs). The junction structure
consists of a 1-junction, a 0-junction, and a state-modulated transformer with
transformation ratio

UUU j(xxx1, j) = exp
(
diag

(
xxx1, j
))
∈ R4×4, (5.6)

where exp(·) is the matrix exponential ( j ∈ Vs). The port I is an open port
for the connection to the inner edges. Likewise, the port B is an open port for
the connection to boundary edges and hence only relevant for the subsystems
j = 1,10,12,15.
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5.3.3 Automated Model Generation

This subsection initially presents a global model obtained from AMOTO for the
system depicted in Figure 5.12. Afterwards, a local model for the subsystems
j ∈ Vs is described.

Global Model

For the global model, we first set up a bond graph model of the overall system. To
this end, we substitute the subsystems j ∈ Vs in Figure 5.12 by their bond graph
representation from Figure 5.13. The resulting overall bond graph is entered into
AMOTO. The dissipation matrices DDD1, j,DDD2, j are specified with the numerical
values as given in Appendix D.4 ( j ∈ Vs).

AMOTO outputs a nonlinear PHS of the form

ẋxx =−RRR(xxx′)
∂H
∂xxx

+GGGuuu, (5.7)
yyy = GGG⊤

∂H
∂xxx

, (5.8)

with xxx ∈ R120 and uuu,yyy ∈ R16.
The vector xxx′ ∈ R60 is the subvector of xxx which contains the states of the

storage elements with the storage functions V1, j, i.e., xxx′ = (xxx1, j) for all j ∈ Vs.
The input vector consists of the flows that are determined by the boundary vertices,
i.e., uuu = ( fff B,i) for i ∈ BB. The output vector contains the conjugated variables,
i.e., the efforts, and is thus given by yyy = (eeeB,i) for i ∈ BB.

The Hamiltonian in (5.7) is the sum of the individual storage functions
from (5.5):

H (xxx) =
15

∑
j=1

(
V1, j(xxx1, j)+V2, j(xxx2, j)

)
. (5.9)

The matrix RRR(xxx′) consists of 30×30 non-zero blocks of the size 4×4. This
reveals the damping of the energy-dissipating elements to act across subsystem
boundaries. On the other hand, RRR(xxx′) neither reflects the incidence nor the
adjacency relations of the subsystems or alike. In contrast, the matrix GGG is
a sparse matrix in which the only non-zero blocks are four identity matrices
III4. These identity matrices are located in the lines corresponding to ẋxx2, j for
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j = 1,10,12,15. This makes the matrix GGG transparent with respect to the system
structure. The remaining matrices of the PHS are calculated to zero.

Local Model

Next we use AMOTO to derive a local model of the subsystems j ∈ Vs. To this
end, the bond graph from Figure 5.13 is entered into AMOTO and the automated
model generation is executed.8 From this, we obtain the following PHS for
subsystem j ∈ Vs:

d
dt

(
xxx1, j

xxx2, j

)

︸ ︷︷ ︸
=xxx j

=−
(

000 000
000 DDD2, j

)

︸ ︷︷ ︸
=RRR j

∂H j

∂xxx j
(xxx j)+

(
000 III
III UUU(xxx1, j)

)

︸ ︷︷ ︸
=GGG j(xxx1, j)

(
fff B, j
fff I , j

)

︸ ︷︷ ︸
=uuu j

, (5.10a)

(
eeeB, j

eeeI , j

)

︸ ︷︷ ︸
=yyy j

=

(
000 III
III UUU(xxx1, j)

)

︸ ︷︷ ︸
=GGG⊤j (xxx1, j)

∂H j

∂xxx j
(xxx j)+

(
000 000
000 DDD−1

1, j

)

︸ ︷︷ ︸
=SSS j

(
fff B, j
fff I , j

)

︸ ︷︷ ︸
=uuu j

, (5.10b)

where uuu,xxx,yyy ∈ R8 and H j(xxx j) =V1, j(xxx1, j)+V2, j(xxx2, j) with the storage functions
from (5.5). As can be seen, the PHS is passive but not strictly passive (cf.
Proposition 2.26). Moreover, in contrast to the global model, the local model has
feedthrough. Keep in mind that the input fff B, j is only relevant for the subsystems
j = 1,10,12,15. For the remaining subsystems, the input fff B, j can be neglected.

5.3.4 Automated Observer Design

First, we apply AMOTO to design a centralized observer based on the global
model. Subsequently, we use the local model to design a distributed observer.

Centralized Observer Based on the Global Model

Consider the global model (5.7). For the centralized observer design, suppose
that uuu and xxx′ are known. Hence, the measurement vector reads mmm = xxx′=

(
xxx1, j
)

for

8The open ports B and I of the bond graph in Figure 5.13 are terminated with two Sf-type elements
as AMOTO does not allow for open ports.
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j ∈Vs. In AMOTO, we set the variables from uuu and xxx′ to “measured” and execute
the automated observer design. The program first calculates a measurement
equation of the form (4.31):

mmm = xxx′ =




QQQ−1
1,1 000 000 000 000 000 . . .

000 000 QQQ−1
1,2 000 000 000 . . .

000 000 000 000 QQQ−1
1,3 000 . . .

...
...

...
...

... . . .




︸ ︷︷ ︸
=CCC∈R60×120

QQQxxx, (5.11)

where QQQ = blkdiag
(
QQQ1, j,QQQ2, j

)
for all j ∈ Vs. Moreover, AMOTO reports that

the observer existence condition RRR(xxx′)+CCC⊤CCC is met (cf. Theorem 4.19). The
obtained centralized nonlinear state-output observer reads

˙̂xxx =−RRR(xxx′)
∂H
∂xxx

(x̂xx)+GGGuuu+αCCC⊤ (mmm−CCCQQQx̂xx) , (5.12a)
ŷyy = GGG⊤

∂H
∂xxx

(x̂xx), (5.12b)

where x̂xx ∈ R120, ŷyy ∈ R16. The parameter α ∈ R>0 is a convergence parameter
(see Remark 4.18).

Distributed Observer Based on the Local Model

Now consider the local model (5.10). For the design of a distributed observer,
assume uuu j and xxx1, j to be known ( j ∈ Vs). Note that from a global point of view
we have now more known variables than for the centralized observer. In the local
bond graph model in AMOTO, the variables uuu j and xxx1, j are set to “measured”.
Afterwards, we run the automated observer design. AMOTO outputs the local
measurement equation

mmm j = xxx1, j =
(

QQQ−1
1, j 000

)

︸ ︷︷ ︸
=CCC j∈R4×8

QQQ jxxx j, (5.13)
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where QQQ j = blkdiag
(
QQQ1, j,QQQ2, j

)
( j ∈ Vs). The observer existence condition

RRR j +CCC⊤j CCC j ≻ 0 is fulfilled for all j ∈ Vs. The obtained state-output observer for
the subsystems j ∈ Vs read:

˙̂xxx j =−RRR j
∂H j

∂xxx j
(x̂xx j)+GGG j(xxx1, j)uuu j +αCCC⊤j

(
mmm j−CCC jQQQ jx̂xx j

)
, (5.14a)

ŷyy j = GGG⊤j (xxx1, j)
∂H j

∂xxx
(x̂xx j)+SSS juuu j, (5.14b)

where x̂xx j, ŷyy j ∈ R8 and α ∈ R>0. All subsystem observers (5.14) together form
the distributed observer.

5.3.5 Simulation Setup

The objective of the simulation study is to analyze the convergence of the re-
constructions produced by the centralized and distributed observer. To this end,
the global model (5.7), the centralized observer (5.12), and the distributed ob-
server (5.14) are exported to MATLAB/Simulink. It is noteworthy that the
MATLAB code only for the nonlinear expression RRR(xxx′) from (5.7) comprises
about 5000 lines of MATLAB code.

For the simulation, the matrices DDD1, j, DDD2, j, QQQ1, j, and QQQ2, j are chosen as
diagonal matrices. The diagonal entries were specified by random numbers
between 0.1 and 10. The obtained matrices can be found in Appendix D.4. For
the observers (5.12) and (5.14), the convergence parameter is set to α = 10.

For the specification of the input of the model (5.7), we split uuu ∈R16 into uuu =(
uuu⊤1 uuu⊤2 uuu⊤3 uuu⊤4

)⊤. The subvectors uuuk ∈ R4 are chosen as

uuuk = 100 ·
(
1 1 1 1

)⊤
pulse5%

0.2s(t− t0,k), (5.15)

for k = 1, . . . ,4. The function pulsew
T (t) is a periodic pulse excitation of period T

and pulse width w:

pulsew
T (t) =

{
1, (i−1)T ≤ t < (i−1+w)T, i ∈ N≥1

0, otherwise.
(5.16)
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The initial state of the system (5.7) is set to xxx0 = (2 . . .2)⊤ ∈ R120. The
centralized observer (5.12) is initialized with x̂xx0 = (1 . . .1)⊤ ∈R120. Accordingly,
the initial values of the distributed observer (5.14) are set to x̂xx0, j = (1 . . .1)⊤ ∈R8

for j ∈ Vs.
The simulation was carried out in MATLAB / Simulink R2019a by using the

automatic variable-step solver selection from Simulink. The simulation time was
set to 20 seconds.

5.3.6 Simulation Results

In order to analyze the convergence of the centralized and the distributed observer
let us introduce a variable tδ ,i. Consider a state xi and a corresponding recon-
struction x̂i. For a constant δ ∈ R>0, the time tδ ,i is defined as the smallest time
t ≥ 0 such that |xi− x̂i|< δ for all t > tδ ,i. The time tδ ,i is hence a measure for
the advance of the convergence of a reconstruction towards the true state. In the
sequel, we set δ = 0.01.

Figure 5.14 shows the values of t0.01,i for the i = 1, . . . ,120 states as obtained
from the centralized observer (5.12) (red) and the distributed observer (5.14)
(brown). The corresponding numerical data can be found in Appendix D.5. For
both observers, in the majority of states, the time t0.01,i is smaller than one second
(see lowest help line in Figure 5.14). For some states, t0.01,i is higher than 1 s but
still less than 5 s, e.g., for i = 32,64,78. An outlier is given for the 87th state
from the distributed observer by t0.01,87 ≈ 12.8s. This outlier can be explained
by two reasons: (i) the state x87 is subject to a weak natural damping (see the
third element in the matrix DDD2,11 in Appendix D.4); (ii) the error injection in
the observer has no access to this observer state. The centralized observer is
robust against (i) as it makes use of the damping of all subsystems and not only
of one single subsystem (cf. matrix RRR(xxx′) in (5.7)). From Figure 5.14 we can also
see that none of the observers outperforms the other over all states. This might
be unintuitive at a first glance as a centralized observer is usually expected to
produce better results as a distributed observer. However, this does not apply in
our case as the distributed observer has more known variables available than the
centralized observer.

Figure 5.15 depicts the time courses of the first, fifth, and 32nd state of the
model (5.7), the centralized observer (5.12), and the distributed observer (5.14),
respectively. The reconstructions of the first and fifth state quickly converge to
the true values. The convergence of the 32nd state is slower which confirms the
corresponding value from Figure 5.14.
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Figure 5.14: Time tδ ,i for δ = 0.01 over the state number i for the centralized and distributed observer

Figure 5.15 depicts the time courses of the first, fifth, and 32nd state of the model (5.7),
the centralized observer (5.12), and the distributed observer (5.14) in solid blue, dashed red,
and dashdotted brown, respectively, for the time between 0s and 1s. As can be seen, the
reconstructions of the first and fifth state quickly converge to the true values. The con-
vergence of the 32nd state is slower which confirms the corresponding value from Figure 5.14.

Finally, let us discuss the convergence of the observers under the influence of measure-
ment noise. To this end, a zero-mean Gaussian white noise is added to the measurements. Af-
terwards, the simulations of the centralized observer (5.12) and the distributed observer (5.14)
are rerun on the basis of the noisy measurements.

The simulation setup and the results are described in Appendix D.6. It turns out that those
observer states whose convergence is ascribed only to the natural damping of the system re-
main unaffected by the measurement noise. In contrast, observer states which are influenced
by the measurement error injection lose the property of asymptotic convergence.What can be
stated positively, however, is that these reconstructions reach with increasing time a tolerance
band around the value of the variable to be reconstructed. The width of this tolerance
band depends on the noise level. In practice, it has to be considered whether such a toler-

Figure 5.14: Time tδ ,i for δ = 0.01 over the state number i for the centralized and distributedobserver

Finally, let us discuss the convergence of the observers under the influence of
measurement noise. To this end, a zero-mean Gaussian white noise is added to the
measurements. Afterwards, the simulations of the centralized observer (5.12) and
the distributed observer (5.14) are rerun on the basis of the noisy measurements.

The simulation setup and the results are described in Appendix D.6. It turns
out that those observer states whose convergence is ascribed only to the natural
damping of the system remain unaffected by the measurement noise. In contrast,
observer states which are influenced by the measurement error injection lose the
property of asymptotic convergence.What can be stated positively, however, is
that these reconstructions reach with increasing time a tolerance band around
the value of the variable to be reconstructed. The width of this tolerance band
depends on the noise level. In practice, it has to be considered whether such a
tolerance band is acceptable or if additional measures for noise suppression are
to be implemented.

Let us conclude the insights from this subsection. AMOTO was shown to be
able to generate a model, a centralized observer, and a distributed observer for a
large-scale nonlinear system. The simulation results verify the theoretical result
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Figure 5.15: System state xi from the model (5.7) and reconstructions x̂i from the centralized ob-server (5.12) and the distributed observer (5.14) for i = 1,5,32 and the time between 0 s and 1 s

ance band is acceptable or if additional measures for noise suppression are to be implemented.

Let us conclude the insights from this subsection. AMOTO was shown to be able to
generate a model, a centralized observer, and a distributed observer for a large-scale nonlinear
system. The simulation results verify the theoretical result that the obtained observers are
asymptotic. In the case of noisy measurements, the property of asymptotic convergence
reduces to a convergence into a tolerance band around the value to be reconstructed.

5.4 Discussion

The previous two sections demonstrated the capabilities of the software prototype AMOTO.
It was shown that the program can be used for the automated model generation and observer

Figure 5.15: System state xi from the model (5.7) and reconstructions x̂i from the centralizedobserver (5.12) and the distributed observer (5.14) for i = 1,5,32 and the time between 0 sand 1 s

that the obtained observers are asymptotic. In the case of noisy measurements,
the property of asymptotic convergence reduces to a convergence into a tolerance
band around the value to be reconstructed.

5.4 Discussion

The previous two sections demonstrated the capabilities of the software prototype
AMOTO. It was shown that the program can be used for the automated model
generation and observer design in linear and nonlinear interconnected systems
with 100 states and more. The results from this chapter have been confirmed in
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many other studies as, e.g., by Muller [2018] in which AMOTO is applied to the
modeling of a wind turbine system with doubly fed induction generator.

In numerical simulations, the obtained models produced plausible results. Sec-
tion 5.2 showed that the model obtained from AMOTO yields simulation results
that are almost identical to the results produced by a verified benchmark model
from the literature. This is remarkable as the AMOTO model is a causal ODE
model while the benchmark model is an acausal, component-based Simscape
model. Numerical simulations verified the observers obtained from AMOTO to
be asymptotic. In the presence of measurement noise, the property of asymptotic
convergence reduces to a convergence into a tolerance band whose width depends
on the noise level. In this context, a pre-processing of the measurements may be
good choice to reduce the influence of the noise to the observer.

In AMOTO, the user exclusively operates on an intuitive graphical level. As
was shown, this prevents the engineer from dealing with hundreds of equations.
Therewith, AMOTO enables a transparent and comfortable modeling and observer
design for interconnected systems. The program fits seamlessly in the workflow
for developing control systems. The bond graph for AMOTO can be generated
with well-known computer tools that feature extensive component libraries, e.g.,
Modelica or 20-sim. Moreover, AMOTO’s export function allows to write the
obtained models and observers to the file formats of MATLAB, Mathematica,
and LATEXfor subsequent steps in the development of control systems as, e.g.,
their simulation, analysis, and documentation.

In both case studies, the time required to calculate the models and observers
is well under a minute. It is noteworthy, however, that the models and
observers obtained from AMOTO may exceed the simulation capabilities
of MATLAB/Simulink. The bottleneck is not the simulation itself but the
compilation of a model or observer. Large expressions that involve several
thousand lines of MATLAB code may lead to the situation where the compilation
cannot be finished in a reasonable time.

In conclusion, this proof of principle demonstrated that AMOTO allows for an
intuitive, time-efficient, and error-resistant model generation and observer design
for large-scale interconnected systems.

5.5 Summary and Contributions

This chapter presented a proof of principle for the automated model generation
and observer design. To this end, the software prototype AMOTO integrating
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the methods and algorithms from Chapter 3 and Chapter 4 was introduced. In a
first case study, AMOTO was applied to design a time-domain dynamic state
estimator for an unbalanced power distribution system. In a second case study,
we applied AMOTO to a large-scale nonlinear interconnected system. In both
case studies, numerical simulations illustrated the validity of the models and
observers that were generated by AMOTO. The main achievements of this
chapter, including contributions are:

(C3.1) a software prototype for an automated model generation and observer
design which fits seamlessly in the workflow for the development of
control systems;

(C3.2) a time-domain dynamic state estimator which extends the functionalities
of a static WLS-based state estimation and which is, to the best of our
knowledge, the first power system state estimator that explicitly considers
the line dynamics;

(C3.3) a demonstration that we can automatically generate a model, a centralized
observer, and a distributed observer for a nonlinear interconnected system.

These contributions verify that the process of deriving explicit state-space
models and the process of designing model-based observers for interconnected
systems can be indeed automated. Moreover, they emphasize the practical useful-
ness of such an approach.





Chapter 6
Conclusion

The model derivation in interconnected systems is time- and cost-intensive and
may require experts from different engineering fields. Moreover, for such systems,
the curse of dimensionality leads to extensive equations which makes a manual or
partially computer-aided model development prone to error. Besides the modeling,
the curse of dimensionality hampers many subsequent steps in a model-based
control system development as, e.g., the design of observers. Hence, to reduce
complexity, engineers may be forced to apply unjustified simplifications in the
description of the systems’ physics.

This thesis outlined a new approach to handle the complexity of interconnected
systems. The idea is to consistently automate the model derivation and observer
design in the physically unifying framework of port-Hamiltonian systems (PHSs).
Following this idea, this work has made innovative methodological contributions
in two areas: first, methods and algorithms for an automated generation of
explicit port-Hamiltonian models from bond graphs have been presented; second,
methods and algorithms for an automated PHS-based design of observers have
been developed. By these contributions, we reach the research objectives stated
in Chapter 1. The approach is intuitive, efficient, and error-resistant and allows
to treat a wide class of interconnected systems covering the electric, mechanic,
hydraulic, thermal, and chemical domain.

The methods and algorithms from this work are implemented in a software
prototype named AMOTO. AMOTO was successfully demonstrated for two
interconnected systems, viz. an unbalanced power distribution network and a
large-scale nonlinear system. For the former, one obtains a dynamic state estima-
tor which significantly extends the functionalities of the static WLS estimator that
is used in nowadays power system control centers. Various numerical simulations
verify the validity of the models and observers generated by AMOTO.
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A natural direction for future research is to consider the automated design of
controllers. Appendix C.4 provides a first result towards this direction. Moreover,
the thesis at hand follows an approach based on explicit models and observers.
Two well-known limitations of an explicit approach are (i) that it disallows to
consider systems with irreversible thermodynamic processes, and (ii) that it
imposes an input-state-output causality on the system which may reduce the
physical transparency in the obtained models and observers. This motivates to
reconsider the research questions from this thesis in the framework of implicit
PHSs—a class of systems that has been recently proposed, e.g., by van der Schaft
and Maschke [2018] and Beattie et al. [2018].

As a final conclusion, this thesis is the first to consistently automate the
processes of a physics-based state-space model derivation and a model-based
observer design for a wide class of interconnected systems.
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Appendices for Chapter 2

A.1 Proof of Proposition 2.26

Proposition 2.26 claims that explicit PHSs are passive or even strictly passive as
a consequence of their system formulation. The proof follows here.

Proof:
The proof is oriented on van der Schaft [2017, p. 114]. Consider the explicit PHS
from Definition 2.23. As the Hamiltonian H is bounded from below, we always
find a constant c ∈ R≥0 such that V (xxx) = H (xxx)+ c is a non-negative function.
The time derivative of V is calculated as

V̇ (xxx) =
(

∂V
∂xxx

(xxx)
)⊤

ẋxx =
(

∂H
∂xxx

(xxx)
)⊤

ẋxx

(2.12a)
=

(
∂H
∂xxx

(xxx)
)⊤(

(JJJ (xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+(GGG(xxx)−PPP(xxx))uuu
)

=−
(

∂H
∂xxx

(xxx)
)⊤

RRR(xxx)
∂H
∂xxx

(xxx)+
(

∂H
∂xxx

(xxx)
)⊤

(GGG(xxx)−PPP(xxx))uuu. (A.1)

With (2.12b), the last term in (A.1) can be written as

(
∂H
∂xxx

(xxx)
)⊤

(GGG(xxx)−PPP(xxx))uuu

= yyy⊤uuu−2
(

∂H
∂xxx

(xxx)
)⊤

PPP(xxx)uuu−uuu⊤ (MMM (xxx)+SSS (xxx))⊤ uuu. (A.2)
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Inserting (A.2) into (A.1) and recalling that MMM (xxx) is skew-symmetric yields

V̇ (xxx) =−
(

∂H
∂xxx

(xxx)
)⊤

RRR(xxx)
∂H
∂xxx

(xxx)+yyy⊤uuu−2
(

∂H
∂xxx

(xxx)
)⊤

PPP(xxx)uuu−uuu⊤SSS⊤(xxx)uuu.

(A.3)
Equation (A.3) can be rearranged as

V̇ (xxx)= uuu⊤yyy−
((

∂H
∂xxx (xxx)

)⊤
uuu⊤
)(

RRR(xxx) PPP(xxx)
PPP⊤(xxx) SSS (xxx)

)

︸ ︷︷ ︸
=ΘΘΘ(xxx)

(∂H
∂xxx (xxx)

uuu

) (2.13)
≤ uuu⊤yyy, ∀t ≥ 0.

(A.4)
Hence, the PHS is passive. If ΘΘΘ(xxx) is positive-definite for all xxx ∈ X, we have
V̇ < uuu⊤yyy for all non-equilibrium points and the system is strictly passive.
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Appendices for Chapter 3

B.1 Discussion on Assumption 3.22

In Subsection 3.2.5, it was argued that the source elements of a bond graph
are independent if and only if Assumption 3.22 is met. In the following, we
prove this statement formally. To this end, let us first introduce another matrix
representation of a Dirac structure, viz. the image representation.

Definition B.1 (Image representation)
An image representation of a Dirac structure D(xxx)⊂ Rn×Rn with xxx ∈ X is

D(xxx) = {( fff ,eee) ∈ Rn×Rn | ∃λ ∈ Rn s.t. fff = EEE⊤(xxx)λ ,eee = FFF⊤(xxx)λ}. (B.1)

As with the kernel representation from Definition 2.18, the matrices FFF (xxx)and EEE (xxx) in (B.1) satisfy (2.5); the power balance is given by (2.6).
Now for the dependent sources.

Proposition B.2 (Dependent sources)
Given a bond graph as in Definition 3.5 whose junction structure is describedby aDirac structure of the form (3.27). The source elements of the bond graphare independent for all xxx ∈ X if and only if Assumption 3.22 is satisfied.
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Proof:
We first show that a violation of Assumption 3.22 implies that the bond graph has
dependent source elements. To this end, we use the idea from Golo et al. [2003,
Remark 1].

Let Assumption 3.22 be violated, i.e.,

∃xxx ∈ X : rank
(
EEESf (xxx) FFFSe (xxx)

)
< K (NSf +NSe) . (B.2)

For such an xxx, the matrix (EEESf (xxx) FFFSe (xxx)) has not full rank and there exists a
non-zero matrix (UUU (xxx) VVV (xxx)) such that

(
UUU (xxx) VVV (xxx)

)(
EEESf (xxx) FFFSe (xxx)

)⊤
= 000. (B.3)

By post-multiplying (B.3) with a non-zero λ ∈ RK(NSf+NSe) we obtain

UUU (xxx)EEE⊤Sfλ︸ ︷︷ ︸
(B.1)
= fff Sf

+VVV (xxx)FFF⊤Seλ︸ ︷︷ ︸
(B.1)
= eeeSe

= 000. (B.4)

Equation (B.4) reveals the junction structure to imply an algebraic dependency
between fff Sf and eeeSe. This proves Assumption 3.22 to be a necessary condition
for the independence of sources. The proof for sufficiency is obtained from the
backwards calculation of the above formulas from (B.4) over (B.3) to (B.2).

B.2 Analysis of the Input-Output Matrix

At the end of the proof of Lemma 3.23, we apply the insights from the proof
of Theorem 4 from Bloch and Crouch [1999] for the construction of the skew-
symmetric matrix ZZZ (xxx). In their proof, Bloch and Crouch [1999] consider the
Dirac structure on abstract (finite-dimensional) vector spaces. This is in contrast
to most practical cases in which a Dirac structure is considered on Euclidean
vector spaces. In the following proposition, we elaborate the calculation law
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of the matrix ZZZ (xxx) from Lemma 3.23 for Dirac structures on Euclidean vector
spaces:

Proposition B.3 (Caculation law for ZZZ (xxx))
The calculation law (3.38) ensures the equation systems in (3.36) and (3.27)to describe the same relations. Moreover, (3.38) yields a matrix ZZZ (xxx) that isskew-symmetric.

Proof:
We neglect the argument xxx and the supplement “for all xxx ∈ X” in this proof.

Using the splitting of FFFC, FFFR, EEEC, EEER and likewise the splitting of fff C, fff R,
eeeC, eeeR, the condition in (3.27) reads

−FFFC,1 fff C,1−FFFC,2 fff C,2−FFFR,1 fff R,1−FFFR,2 fff R,2 +FFFSf fff Sf +FFFSe fff Se

+EEEC,1eeeC,1 +EEEC,2eeeC,2 +EEER,1eeeR,1 +EEER,2eeeR,2 +EEESfeeeSf +EEESeeeeSe = 000. (B.5)

Combining and gathering the different matrices we can write this as

(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)




− fff C,1
eeeC,2

− fff R,1
eeeR,2

eeeSf

fff Se



+

(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)




eeeC,1

− fff C,2
eeeR,1

− fff R,2
fff Sf
eeeSe




= 000, (B.6)
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which is equivalent to




− fff C,1
eeeC,2

− fff R,1
eeeR,2

eeeSf

fff Se




=−
(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)−1

·
(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)




eeeC,1

− fff C,2
eeeR,1

− fff R,2
fff Sf
eeeSe



, (B.7)

i.e., equivalent to the condition in (3.36). To prove the skew-symmetry of ZZZ we
again follow the idea of Bloch and Crouch [1999, Theorem 4]. Equation (2.5a)
can be written as

000 = EEEFFF⊤+FFFEEE⊤

=
EEEC,1FFF⊤C,1 +EEEC,2FFF⊤C,2 +EEER,1FFF⊤R,1 +EEER,2FFF⊤R,2 +EEESfFFF⊤Sf +EEESeFFF⊤Se +

FFFC,1EEE⊤C,1 +FFFC,2EEE⊤C,2 +FFFR,1EEE⊤R,1 +FFFR,2EEE⊤R,2 +FFFSfEEE⊤Sf +FFFSeEEE⊤Se.

(B.8)

Resorting and combining the matrices we can write this as

000 =
(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)

·
(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)⊤

+
(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)

·
(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)⊤
. (B.9)
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Inverting the first and last matrix we get the equation of the skew-symmetry of ZZZ:

−ZZZ⊤ =
(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)⊤

·
((

FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe
)−1
)⊤

=−
(
FFFC,1 EEEC,2 FFFR,1 EEER,2 EEESf FFFSe

)−1

·
(
EEEC,1 FFFC,2 EEER,1 FFFR,2 FFFSf EEESe

)

= ZZZ. (B.10)

B.3 Discussion on Assumption 3.30

In Subsection 3.3, it was argued that Assumption 3.30 is always fulfilled if all
resistive elements from the bond graph are truly dissipative. In the following
proposition, we elaborate this statement more in detail:

Proposition B.4 (Truly dissipative resistive elements)
Given a bond graph according to Definition 3.5. Let all resistive elements
i ∈ VR be truly dissipative, i.e., they obey the constitutive relation

fff j = DDDi(xxx)eee j, (B.11)

with j ∈ B(i), DDDi(xxx) ∈ RK×K , and DDDi(xxx) = DDDi(xxx)⊤ ≻ 0, for all xxx ∈ X. Notethat in contrast to the general case from Subsection 3.2.2, we now assume
DDDi(xxx) to be positive-definite. Let the junction structure of the bond graphbe described by a Dirac structure in kernel form (3.27) which satisfies As-sumption 3.22. Then, we always find an input-output representation (3.36)of (3.27) with a splitting of resistive variables that fulfills Assumption 3.30.
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Proof:
We neglect the argument xxx and the supplement “for all xxx ∈ X” in this proof.

Consider a Dirac structure in kernel form (3.27) which satisfies Assump-
tion 3.22. From Lemma 3.23 and the properties of a causal bond graph we
know that we always find an input-output representation of (3.27) in the form(3.36) where for each j ∈ B(i), i ∈ VR the pair

(
fff j,eee j

)
lies either completely in(

fff R,1,eeeR,1
)

or completely in
(

fff R,2,eeeR,2
)
. Possibly after permutations, we may

thus write the resistive relations (B.11) as

(
fff R,1
fff R,2

)
=

(
DDD11 000

000 DDD22

)

︸ ︷︷ ︸
=DDD

(
eeeR,1

eeeR,2

)
, (B.12)

where DDD11 = DDD⊤11 ≻ 0 and DDD22 = DDD⊤22 ≻ 0 are block diagonal matrices. Equa-
tion (B.12) may be rewritten as

(
eeeR,1

− fff R,2

)

︸ ︷︷ ︸
=uuuR

=−
(

DDD−1
11 000
000 DDD22

)

︸ ︷︷ ︸
=R̃RR

(− fff R,1
eeeR,2

)

︸ ︷︷ ︸
=yyyR

, (B.13)

where R̃RR = R̃RR⊤ ≻ 0. Equation (B.13) is of the form (3.66) which is why Assump-
tion 3.30 is fulfilled.

B.4 Port-Hamiltonian Systems with Nonlinear
Dissipation

In this section, it is shown that the modeling approach from Chapter 3 can be
generalized to systems with resistive relations which are nonlinear in the power
variables.
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Consider the Dirac structure obtained from Corollary 3.28:

D(xxx) = {(




fff C
fff R
fff Sf
fff Se


 ,




eeeC

eeeR

eeeSf

eeeSe


) ∈ RKNE×RKNE |




yyyC
yyyR
yyyP


=




ZZZCC (xxx) −ZZZCR (xxx) −ZZZCP (xxx)
ZZZ⊤CR (xxx) ZZZRR (xxx) −ZZZRP (xxx)
ZZZ⊤CP (xxx) ZZZ⊤RP (xxx) ZZZPP (xxx)




︸ ︷︷ ︸
ZZZ(xxx)




uuuC

uuuR

uuuP


}, (B.14)

where ZZZ (xxx) = −ZZZ⊤ (xxx) ∈ RKNE×KNE for all xxx ∈ X. The inputs and outputs in(B.14) are given by uuuC = eeeC, uuuR = (eee⊤R,1 fff⊤R,2)
⊤, uuuP = ( fff⊤Sf eee⊤Se)

⊤, yyyC = − fff C,
yyyR = (− fff⊤R,1 eee⊤R,2)

⊤, and yyyP = (eee⊤Sf fff⊤Se)
⊤. With the following assumption, we

exclude the presence of causal paths between resistive elements:

Assumption B.5 (Matrix block in (B.14))
In (B.14), we have ZZZRR (xxx) = 000 for all xxx ∈ X.

Recall the constitutive relations of storages from (3.65):

yyyC =− fff C =−ẋxx, uuuC = eeeC =
∂V
∂xxx

(xxx) , (B.15)

and define zzz := uuuC. For resistive elements, suppose nonlinear constitutive relations
which are expressed as the graph of an input-output map (cf. van der Schaft and
Jeltsema [2014, p. 24]):

uuuR = ΦΦΦ(yyyR,xxx,zzz,uuu), (B.16)
where yyy⊤R uuuR ≤ 0. Now we have everything prepared for a port-Hamiltonian
formulation of a system with nonlinear dissipation.

Proposition B.6 (PHS of a system with nonlinear dissipation)
Given an explicit Dirac structure (B.14) which satisfies Assumption B.5.Let the constitutive relations of storage elements and resistive elements begiven in the forms (B.15) and (B.16), respectively. Equations (B.14), (B.15),
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and (B.16) can be written as explicit input-state-output PHSs of the form

ẋxx = JJJ (xxx)zzz−R (xxx,zzz,uuu)+GGG(xxx)uuu, (B.17a)
yyy = GGG⊤(xxx)zzz+P (xxx,zzz,uuu)+MMM (xxx)uuu, (B.17b)

with mappings R (xxx, ·, ·) : Rn → Rn, P (xxx, ·, ·) : Rn → Rp and uuu = uuuP, yyy =

yyyP. In (B.17), the matrices and mappings satisfy JJJ (xxx) = −JJJ⊤(xxx), MMM (xxx) =
−MMM⊤(xxx), and

(
zzz
uuu

)⊤(
R (xxx,zzz,uuu) 000

0 P (xxx,zzz,uuu)

)
≥ 0, ∀xxx ∈ X,zzz ∈ Rn,uuu ∈ U. (B.18)

The matrices can be obtained from JJJ (xxx) = −ZZZCC (xxx), GGG(xxx) = ZZZCP (xxx), and
MMM (xxx) = ZZZPP (xxx); the mappings are calculated as

R (xxx,zzz,uuu) =−ZZZCR (xxx)ΦΦΦ

(
ZZZ⊤CR (xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)
, (B.19a)

P (xxx,zzz,uuu) = ZZZ⊤RP (xxx)ΦΦΦ

(
ZZZ⊤CR (xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)
. (B.19b)

Proof:
Inserting uuuC = zzz and (B.16) into the first line of the equation system from (B.14)
yields

yyyC = ZZZCC (xxx)uuuC−ZZZCR (xxx)ΦΦΦ(yyyR,xxx,zzz,uuu)−ZZZCP (xxx)uuuP. (B.20)
For the second term from the right side we write

−ZZZCR (xxx)ΦΦΦ(yyyR,xxx,zzz,uuu)
(B.16)
= −ZZZCR (xxx)ΦΦΦ

(
ZZZ⊤CR (xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)

︸ ︷︷ ︸
=R(xxx,zzz,uuu)

.

(B.21)
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By inserting (B.21) into (B.20) we obtain (B.17a):

yyyC = ZZZCC (xxx)zzz+R (xxx,zzz,uuu)−ZZZCP (xxx)uuuP

(B.15)⇔ −ẋxx = ZZZCC (xxx)zzz+R (xxx,zzz,uuu)−ZZZCP (xxx)uuuP

⇔ ẋxx =−ZZZCC (xxx)︸ ︷︷ ︸
=JJJ(xxx)

zzz−R (xxx,zzz,uuu)+ZZZCP (xxx)︸ ︷︷ ︸
=GGG(xxx)

uuuP︸︷︷︸
=uuu

. (B.22)

Now for the output equation. From the third line of the equation system in(B.14) and with uuu = uuuP, yyy = yyyP we obtain

yyy = ZZZ⊤CP (xxx)︸ ︷︷ ︸
=GGG⊤(xxx)

zzz+ZZZ⊤RP(xxx)uuuR +ZZZ⊤PP(xxx)︸ ︷︷ ︸
=MMM(xxx)

uuu. (B.23)

For the second term from the right side we write

ZZZ⊤RP(xxx)uuuR
(B.16)
= ZZZ⊤RP(xxx)ΦΦΦ(yyyR,xxx,zzz,uuu)

(B.14)
= ZZZ⊤RP(xxx)ΦΦΦ

(
ZZZ⊤CR (xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)

︸ ︷︷ ︸
=P(xxx,zzz,uuu)

. (B.24)

Inserting (B.24) into (B.23) yields (B.17b).
Next, we show that (B.18) holds. By multiplying (B.17a) from the right side

with zzz⊤ we obtain

zzz⊤ẋxx =−zzz⊤R (xxx,zzz,uuu)+ zzz⊤GGG(xxx)uuu. (B.25)

On the other hand, by the power balance of the Dirac structure (B.14) we have

zzz⊤ẋxx (B.15)
= −uuu⊤C yyyC

(2.9)
= uuu⊤R yyyR +uuu⊤P yyyP. (B.26)
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Equating (B.25) and (B.26) yields

−zzz⊤R (xxx,zzz,uuu)+ zzz⊤GGG(xxx)uuu = uuu⊤R yyyR +uuu⊤P yyyP. (B.27)

The last term reads

uuu⊤P yyyP
(B.14)
= uuu⊤P

(
ZZZ⊤CP(xxx)uuuC +ZZZ⊤RP(xxx)uuuR +ZZZPP (xxx)uuuP

)

= uuu⊤P ZZZ⊤CP(xxx)uuuC +uuu⊤P ZZZ⊤RP(xxx)uuuR

(B.16)
= uuu⊤P ZZZ⊤CP(xxx)uuuC +uuu⊤P ZZZ⊤RP(xxx)ΦΦΦ(yyyR,xxx,zzz,uuu)

(B.14)
= uuu⊤P ZZZ⊤CP(xxx)uuuC +uuu⊤P ZZZ⊤RP(xxx)ΦΦΦ

(
ZZZ⊤CR(xxx)zzz−ZZZCP (xxx)uuu,xxx,zzz,uuu

)
. (B.28)

With (B.19a) and uuu = uuuP, yyy = yyyP we write (B.28) as

uuu⊤P yyyP = uuu⊤ZZZ⊤CP(xxx)︸ ︷︷ ︸
=GGG⊤(xxx)

zzz+uuu⊤P (xxx,zzz,uuu) . (B.29)

By inserting (B.29) into (B.27) we prove (B.18):

−zzz⊤R (xxx,zzz,uuu)+������
zzz⊤GGG(xxx)uuu = uuu⊤R yyyR +������uuu⊤GGG⊤(xxx)zzz+uuu⊤P (xxx,zzz,uuu)

⇔ −zzz⊤R (xxx,zzz,uuu)−uuu⊤P (xxx,zzz,uuu) = uuu⊤R yyyR
(B.16)
≤ 0. (B.30)

To the best of our knowledge, the explicit PHS (B.17) has not been presented
in the literature so far. The next proposition shows that this PHS is passive.

Proposition B.7 (Passivity of a PHS with nonlinear dissipation)
The explicit port-Hamiltonian model from (B.17) is passive.
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Proof:
Recall that zzz = ∂V

∂xxx (xxx) where V (xxx) is a storage function that is bounded from
below. We always find a constant c ∈ R≥0 such that Ṽ (xxx) = V (xxx) + c is a
non-negative function. The derivative of Ṽ (xxx) with respect to time reads

˙̃V (xxx) =
(

∂Ṽ
∂xxx

(xxx)
)⊤

ẋxx =
(

∂V
∂xxx

(xxx)
)⊤

ẋxx

= zzz⊤ (JJJ (xxx)zzz−R (xxx,zzz,uuu)+GGG(xxx)uuu)

=−zzz⊤R (xxx,zzz,uuu)+ zzz⊤GGG(xxx)uuu. (B.31)

Transposing (B.17b) and multiplying with uuu from the right gives

yyy⊤uuu = zzz⊤GGG(xxx)uuu+P⊤ (xxx,zzz,uuu)uuu

⇔ zzz⊤GGG(xxx)uuu = yyy⊤uuu−uuu⊤P (xxx,zzz,uuu) . (B.32)

Inserting (B.32) into (B.31) then yields

˙̃V (xxx) =−zzz⊤R (xxx,zzz,uuu)+ yyy⊤uuu−uuu⊤P (xxx,zzz,uuu)

= yyy⊤uuu−
(

zzz
uuu

)⊤(
R (xxx,zzz,uuu) 000

0 P (xxx,zzz,uuu)

)

︸ ︷︷ ︸
≥0

≤ yyy⊤uuu. (B.33)

For the case of no feedthrough we obtain from Proposition B.6 the “input-
state-output PHS with nonlinear resistive structure” introduced by van der Schaft
[2017, Def. 6.1.4]. This special case is outlined in the subsequent corollary.

Corollary B.8 (PHS with nonlinear dissipation from van der Schaft[2017])
Given an explicit Dirac structure (B.14) which satisfies Assumption B.5. Let
ZZZRP (xxx) = 0 and ZZZPP (xxx) = 0 for all xxx ∈X. Equations (B.14), (B.15), and (B.16)
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can be written as explicit input-state-output PHS of the form

ẋxx = JJJ (xxx)zzz−R (xxx,zzz,uuu)+GGG(xxx)uuu, (B.34a)
yyy = GGG⊤(xxx)zzz, (B.34b)

where JJJ (xxx) =−JJJ⊤(xxx) and zzz⊤R (xxx,zzz,uuu)≥ 0 for all xxx ∈ X, zzz ∈ Rn, uuu ∈ U.
Proof:
The proof follows from Proposition B.6 under ZZZRP (xxx) = 0 and ZZZPP (xxx) = 0.

B.5 Notes to Section 3.3

The following notes provide some additional information to the discussion from
Section 3.3, especially with regard to the related literature:

Theorems 3.35 and 3.47 are the first to give rigorous existence conditions for
the complete transfer from a bond graph to an explicit PHS. In the literature,
there exist some existence conditions for intermediate steps of this transfer. Golo
et al. [2000] and Golo et al. [2003] show that the junction structure of a bond
graph can always be related to a Dirac structure in implicit form. This is in
line with our findings from Theorem 3.35.Donaire and Junco [2009] provide
sufficient conditions for the transfer from a Dirac structure in explicit form to a
non-feedthrough PHS. Theorems 3.35 and 3.47 put the conditions of Golo et al.
[2000], Golo et al. [2003], and Donaire and Junco [2009] into the perspective of
an explicit port-Hamiltonian formulation of bond graphs. It turns out, that the
most crucial step for such a formulation is the transfer of the Dirac structure from
an implicit to an explicit representation. Concerning this transfer, Theorem 3.35
is the first to provide necessary and sufficient conditions.

The sufficient existence condition from Theorem 3.35 makes the well-known
conditions for the derivation of an explicit PHS mathematically traceable. In the
literature, there exist three well-known prerequisites under which a system can
be formulated as an explicit PHS, see, e.g., van der Schaft [2009, p. 70] or van
der Schaft and Jeltsema [2014, p. 53]. The class of explicit input-state-output
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PHS occurs if “(1) the external port variables can be split into input and output
variables, (2) there are no algebraic constraints between the state variables, and
(3) the resistive structure is linear and of input-output form”1 [van der Schaft
and Jeltsema, 2014, p. 53]. These conditions are formulated only verbally which
makes them mathematically untraceable and hampers their practical evaluation.
For the particular case of bond graph systems, Theorem 3.35 provides remedy as
it gives mathematically traceable representations of the three conditions (1), (2),
and (3), viz. assumptions 3.22, 3.27, and 3.30, respectively. Based on these as-
sumptions, computer algebra systems can evaluate if an explicit PHS exists or not.

The existence conditions from Theorem 3.35 are related to the existence
condition for an implicit port-Hamiltonian formulation of a bond graph. Golo
et al. [2003] shows that each well-posed bond graph2 permits an implicit
port-Hamiltonian formulation. Assumption 3.22 (i.e., the independence of
sources) is a necessary condition for a bond graph to be well-posed. Moreover,
Assumption 3.27 (i.e., the independence of sources and the independence of
storages) is sufficient for the well-posedness. In consequence, each explicit PHS
obtained from Theorem 3.35 permits an implicit representation. This is intuitive
as the class of implicit PHSs is more general than the class of explicit PHSs.
Lopes [2016] gives conditions under which an implicit PHS can be transferred
into an explicit PHS [Lopes, 2016, Propriété 6]. However, the results from
Theorem 3.35 show that the conditions from Lopes [2016] are unnecessarily strict.

Assumptions 3.22 and 3.27 can be interpreted by means of bond graph
causality. The transfer of the Dirac structure from an implicit to an explicit form
can be interpreted as the causalization of the bond graph.3 A first indication of
this interpretation has already been given by Lopes [2016]. A causality-based
interpretation of assumptions 3.22 and 3.27 reads “in the causal bond graph, all
sources have proper causality” and “in the causal bond graph, all sources have
proper causality and all storages are in preferred (integral) causality”, respectively.

Theorem 3.47 generalizes the results from previous literature on state-space
models of systems with dependent storages. In bond graph theory, dependent
storages are well-known to lead in general to models in the form of DAEs
(cf. Borutzky [2010, pp. 142–143]). Nevertheless, Theorem 3.47 states that

1Compared to the original texts, the points (1) and (2) have been switched in the order.
2For the well-posedness of a bond graph the reader is asked to refer to Golo et al. [2003, Def. 2].
3For the concept of bond graph causality refer to Borutzky [2010, pp. 92ff.].
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(under the given conditions) we can obtain a PHS in the form of an ODE. This
insight is in line with some previous results from the literature. For linear
systems, Wellstead [1979] has shown that if Assumption 3.37 is satisfied we
can always obtain an explicit state-space model in spite of the presence of
dependent storages. Theorem 3.47 generalizes the results from Wellstead
[1979] to nonlinearities in the junction structure. Moreover, the insights
from Theorem 3.47 are in line with the findings of Donaire and Junco [2009].
Compared to Donaire and Junco [2009], however, Theorem 3.47 is more general
as it allows for systems that possibly contain feedthrough. Najnudel et al. [2018]
stated conditions under which the dependent storages can be expressed by
independent storages. However, the work of Najnudel et al. [2018] is restricted
to dependent storages that occur from the parallel or serial interconnection
of storage elements. Theorem 3.47 generalizes these results to more subtle
structures which lead to the dependence between storage elements.

Algorithms 3.36 and 3.48 are the first to enable a fully automated generation
of explicit port-Hamiltonian models. In the literature, there exists various
algorithms that are related to algorithms 3.36 and 3.48. Golo et al. [2000]
present an algorithm which determines a Dirac structure in explicit form based
on a bond graph [Golo et al., 2000, Algorithm 3]. The algorithm is based on
graphical manipulations. Dai [2016] provides an algorithm for the generation
of a Dirac structure in implicit form [Dai, 2016, Algorithm 1]. Moreover,
the author provides an algorithm for transferring a Dirac structure from an
implicit to an explicit form [Dai, 2016, Algorithm 4].Donaire and Junco [2009]
derive calculation rules for the matrices of a PHS based on a Dirac structure
in explicit form [Donaire and Junco, 2009, Theorem 1]. An algorithm for the
determination of an implicit PHS from an analog circuit was proposed by Falaize
and Hélie [2016]. The algorithm is implemented in a Python program package
named PyPHS, see Falaize and Hélie [2019]. As can be seen, different aspects
concerning an automated generation of explicit port-Hamiltonian models have
been addressed in the literature. However, algorithms 3.36 and 3.48 are the first
to fully automate the derivation of an explicit PHS.
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Appendices for Chapter 4

C.1 Detectability, Strong Detectability, and
Strong∗ Detectability

This section gives a brief introduction into the concepts of detectability, strong
detectability, and strong∗ detectability. The latter is of particular importance for
the observer design in Subsection 4.2.1.

Consider a linear state-space system in standard form:

ẋxx = AAAxxx+BBBuuu, xxx|t=0 = xxx0, (C.1a)
yyy =CCCxxx+DDDuuu. (C.1b)

The following definition is inspired by Sontag [1998, p. 329]:

Definition C.1 (Detectability)
The system (C.1) is detectable if in the autonomous system yyy ≡ 000 implies
lim
t→∞

xxx→ 000, for all xxx0.
In Definition C.1, we assume the input uuu of the system to be known. Hence,
the restriction to the autonomous system (i.e., the case where uuu≡ 000) is without
loss of generality (cf. Ludyk [1995, p. 7]). In the following, the concept of
detectability is extended to systems with unknown inputs. This leads us to the
definitions of strong detectability, and strong∗ detectability as introduced by
Hautus [1983].
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Definition C.2 (Strong detectability)
The system (C.1) is strong detectable if yyy≡ 000 implies lim

t→∞
xxx→ 000, for all xxx0 and

uuu.
Definition C.3 (Strong∗ detectability)
The system (C.1) is strong∗ detectable if lim

t→∞
yyy→ 000 implies lim

t→∞
xxx→ 000.

Note that strong∗ detectability implies strong detectability.

C.2 Specification of the Eigenvalues for the
Error Dynamics Matrix

The state reconstruction error dynamics of the observer proposed in Theorem 4.8
obey ε̇εε = NNNεεε (i.e., (4.13) under (4.14)). The design of the observer is conducted
with Algorithm 4.10. In code line 21 of Algorithm 4.10, we have to specify the
eigenvalues of the matrix NNN. Here, an automatable procedure for this is proposed.

Recall (4.18), i.e,
NNN = KKKAAA−ZZZC̄CC (C.2)

and define ĀAA := KKKAAA. Let Assumption 4.7 hold. Then the pair
(
ĀAA,C̄CC

)
is detectable

(cf. Darouach et al. [1994, Theorem 2] and Hautus [1983, Theorem 1.5]).
First, we apply a Kalman decomposition with respect to observability

to
(
ĀAA,C̄CC

)
. Let OOO ∈ Rq̄n×n denote the observability matrix of

(
ĀAA,C̄CC

)
with

r = rank(OOO)(≤ n). Collect r linear independent rows of OOO in a matrix TTT 1 ∈Rr×n.
The rows of TTT 1 span the observable subspace. Collect the vectors of a basis of
ker(OOO) in a matrix TTT 2 ∈ R(n−r)×n. The rows of TTT 2 span the orthogonal comple-
ment of the observable subspace.

Conjugating (C.2) with TTT :=
(
TTT⊤1 TTT⊤2

)⊤
gives

TTT NNNTTT−1
︸ ︷︷ ︸
=:NNN†

= TTT ĀAATTT−1
︸ ︷︷ ︸

=:ĀAA†

− TTT ZZZ︸︷︷︸
=:ZZZ†

C̄CCTTT−1
︸ ︷︷ ︸
=:C̄CC†

, (C.3)

where

ĀAA†
=

(
ĀAA†

11 000
ĀAA†

21 ĀAA†
22

)
, C̄CC†

=
(

C̄CC†
1 000

)
, (C.4)
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with ĀAA†
11 ∈ Rr×r, ĀAA†

21 ∈ R(n−r)×r, ĀAA†
22 ∈ R(n−r)×(n−r), and C̄CC†

1 ∈ Rq̄×r. Note that
the eigenvalues are invariant under conjugation, i.e., the eigenvalues of NNN† are
equal to the eigenvalues of NNN. Moreover, as

(
ĀAA,C̄CC

)
is detectable, ĀAA†

22 is a Hurwitz
matrix.

Now we have everything prepared to specify the eigenvalues of NNN. The first r
eigenvalues λi(NNN) are placed at

λi(NNN) = min
{

Re
(

λi(ĀAA
†
11)
)
−β ,γ

}
, (C.5)

where β ∈ R≥0, γ ∈ R<0, and λi(ĀAA
†
11) the i-th eigenvalue of the matrix ĀAA†

11
(i = 1, . . . ,r). The remaining n− r eigenvalues are set to

λi+r(NNN) = λi(ĀAA
†
22), (C.6)

where λi(ĀAA
†
22) is the i-th eigenvalue of the matrix ĀAA†

22 (i = 1, . . . ,n− r). This
choice is motivated by (C.3) and (C.4) which reveal the (stable) eigenvalues of
ĀAA†

22 are also eigenvalues of NNN† and therewith of NNN.
With the chosen eigenvalues for NNN† and (C.3) we can calculate the matrix ZZZ†

by using well-established pole placement techniques. Finally, by ZZZ = TTT−1ZZZ† we
obtain the matrix ZZZ in the original coordinates.

C.3 Additional Statements for the Proof of
Lemma 4.16

In the proof of Lemma 4.16, we applied Lyapunov’s direct method to prove 000 to
be a globally exponentially stable equilibrium point of an error system. In this
proof, we made use of the following two propositions:
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Proposition C.4 (V̇ for an autonomous system)
Consider the autonomous system

ẋxx = AAA(sss)QQQxxx, (C.7)

where xxx ∈Rn, AAA(sss) ∈Rn×n, and QQQ ∈Rn×n with QQQ = QQQ⊤ ≻ 0 for some param-eter sss ∈ S. In order to analyze the stability of the equilibrium xxx ≡ 000 supposethe Lyapunov function candidate

V (xxx) =
1
2

xxx⊤QQQxxx. (C.8)

The derivative of (C.8) with respect to time can be expressed as

V̇ (xxx) = xxx⊤QQQ
(

1
2

(
AAA(sss)+AAA⊤(sss)

))
QQQxxx. (C.9)

Equation (C.9) depends only on the symmetric part of the matrix AAA(sss), i.e.,
V̇ (xxx) it is independent of the skew-symmetric part of AAA(sss).
Proof:
The derivative of (C.8) reads

V̇ (xxx) =
1
2

ẋxx⊤QQQxxx+
1
2

xxx⊤QQQẋxx

(C.7)
=

1
2
(AAA(sss)QQQxxx)⊤QQQxxx+

1
2

xxx⊤QQQAAA(sss)QQQxxx

=
1
2

xxx⊤QQQAAA⊤(sss)QQQxxx+
1
2

xxx⊤QQQAAA(sss)QQQxxx

= xxx⊤QQQ
(

1
2

(
AAA(sss)+AAA⊤(sss)

))
QQQxxx. (C.10)
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Proposition C.5 (Lower and upper bound)
Given a vector xxx ∈ Rn and a family of symmetric, positive-definite matricies
DDD(sss) ∈ Rn×n depending continuously on some parameter sss ∈ S with S com-pact. Then, there exist positive constants k1,k2 ∈ R>0 such that

k1∥xxx∥2 ≤ xxx⊤DDD(sss)xxx≤ k2∥xxx∥2, ∀sss ∈ S,∀xxx ∈ Rn. (C.11)
Proof:
We first show that, without loss of generality, DDD(sss) can be assumed to be diagonal.

As DDD(sss) is symmetric there exists a continuous family of orthogonal matrices
TTT (sss) such that

xxx⊤DDD(sss)xxx = xxx⊤TTT⊤(sss)TTT (sss)DDD(sss)TTT⊤(sss)︸ ︷︷ ︸
=:D̃DD(sss)

TTT (sss)xxx, (C.12)

for all sss ∈ S and for all xxx ∈Rn where D̃DD(sss) is a diagonal matrix with the (positive)
eigenvalues of DDD(sss) on its diagonal. By defining yyy := TTT (sss)xxx we may rewrite(C.11) as

k1∥yyy∥2 ≤ yyy⊤D̃DD(sss)yyy≤ k2∥yyy∥2, ∀sss ∈ S,∀yyy ∈ Rn. (C.13)
In (C.13), we use that

∥yyy∥2 = ∥TTT (sss)xxx∥2 = ⟨TTT (sss)xxx,TTT (sss)xxx⟩ = ⟨xxx,TTT⊤(sss)TTT (sss)xxx⟩ = ∥xxx∥2, (C.14)

for all sss ∈ S, i.e., the invariance of the Euclidean norm under orthogonal transfor-
mations. Equation (C.13) shows that, without loss of generality, we may assume
DDD(sss) to be diagonal.

Now for the claim from the proposition. Let DDD(sss) be a positive-definite and
diagonal matrix for all sss ∈ S. Recall that DDD(sss) depends continuously on sss. Hence,
the eigenvalues λi(sss) of DDD(sss) are also continuous in sss for i = 1, . . . ,n. From
the positive definiteness of DDD(sss) and the compactness of S we conclude that all
eigenvalues λi(sss) are contained in a compact subset of R>0. Thus, there exist
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positive constants k1,k2 ∈ R>0 with k1 ≤ λi(sss)≤ k2 for all sss ∈ S and i = 1, . . . ,n.
Such constants then fulfill (C.11) as

k1xxx⊤IIIxxx≤ xxx⊤DDD(sss)xxx≤ k2xxx⊤IIIxxx, ∀sss ∈ S,∀xxx ∈ Rn. (C.15)

C.4 Automated Design of a Feedback
Controller

Subsection 4.2.2 aims at the design of observers. The resulting methods, however,
can also be used for the design of controllers. In the following proposition, we use
Lemma 4.17 for the automated design of an asymptotically stabilizing feedback
controller for nonlinear PHSs without feedthrough:

Proposition C.6 (Automated design of a feedback controller)
Consider the nonlinear PHS without feedthrough from Definition 2.24:

ẋxx = (JJJ(xxx)−RRR(xxx))
∂H
∂xxx

(xxx)+GGG(xxx)uuu, (C.16a)
yyy = GGG⊤ (xxx)

∂H
∂xxx

(xxx). (C.16b)

Suppose a feedback controller of the form

uuu =−KKK (xxx)
∂H
∂xxx

(xxx) . (C.17)

The condition
RRR(xxx)+GGG(xxx)KKK (xxx)≻ 0, ∀xxx ∈ X, (C.18)

is a sufficient condition for xxx ≡ 000 being an asymptotically stable equilibriumof the closed-loop system. Moreover, (C.18) can be fulfilled if and only if it is
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fulfilled for KKK (xxx) = GGG⊤(xxx), that is the output feedback:

uuu =−GGG⊤(xxx)
∂H
∂xxx

(xxx) =−yyy. (C.19)

Proof:
Inserting (C.17) into (C.16a) gives the closed-loop dynamics:

ẋxx = (JJJ (xxx)−RRR(xxx)−GGG(xxx)KKK (xxx))
∂H
∂xxx

(xxx) . (C.20)

As H (xxx) is bounded from below, we always find a constant c ∈ R≥0 such that
H̃ (xxx) = H (xxx)+ c is a positive definite function. Let us apply H̃ (xxx) as Lyapunov
function candidate to analyze the stability of the equilibrium xxx≡ 000. The derivative
of H̃ (xxx) with respect to time reads:

˙̃H (xxx) =
(

∂ H̃
∂xxx

(xxx)
)⊤

ẋxx =
(

∂H
∂xxx

(xxx)
)⊤

ẋxx

(C.20)
=

(
∂H
∂xxx

(xxx)
)⊤

(JJJ (xxx)−RRR(xxx)−GGG(xxx)KKK (xxx))
∂H
∂xxx

(xxx)

=−
(

∂H
∂xxx

(xxx)
)⊤

(RRR(xxx)+GGG(xxx)KKK (xxx))
∂H
∂xxx

(xxx) . (C.21)

Let (C.18) hold. Then, we have ˙̃H < 0 for all xxx ̸= 000 and ˙̃H = 0 for xxx = 000. Hence,(C.18) is a sufficient condition for xxx ≡ 000 being asymptotically stable. The rest
follows from Lemma 4.17.
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D.1 Design of a WLS Estimator for Section 5.2

Section 5.2 addresses the observation of the IEEE 33 Bus System. We compare
the performance of an observer generated with AMOTO with the performance
of a WLS estimator. Here, it is illustated that this WLS estimator can also be
generated with AMOTO.

Initially, we revise the bond graph model of the IEEE 33 Bus System from
Section 5.2 under the assumption that the system is in quasi-steady state. From
the resulting static bond graph model a static PHS is generated by using AMOTO.
Moreover, we apply AMOTO to calculate a measurement equation for the static
model. Based on the static PHS and the measurement equation we then derive a
WLS estimator.

D.1.1Static Bond Graph Model

In the bond graph model from Section 5.2, the elements i∈VI, i∈VB, and j ∈BB

are already described with static submodels. Hence, it suffices to reconsider the
submodel of the lines j ∈ BI.

Let the system be in quasi-steady state. For the lines j ∈ BI, the π-equivalent
circuit from Figure 5.4 then translates into the circuit in Figure D.1. The
impedances from Figure D.1 can be collected in an impedence matrix:

ZZZ j =




Z j,A,A Z j,A,B Z j,A,C

Z j,A,B Z j,B,B Z j,B,C

Z j,A,C Z j,B,C Z j,C,C


 , j ∈ BI. (D.1)
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ZA,A, j

ZB,B, j

ZC,C, j

ZA,B, j

ZB,C, j

ZA,C, j

+

+

+

+

+

+

− − − −−−

Figure D.1: Quasi-steady state π-section equivalent circuit of a three-phase distribution line

The impedance matrix for the line j ∈ BI is calculated from the resistance and
inductance matrices from (5.1):

ZZZ j =




R j,A 0 0
0 R j,B 0
0 0 R j,C


+ i2π f




L j,A,A L j,A,B L j,A,C

L j,A,B L j,B,B L j,B,C

L j,A,C L j,B,C L j,C,C


 , (D.2)

where i is the imaginary unit and f = 50Hz is the system frequency.
A bond graph representation of Figure D.1 is shown in Figure D.2. As can be

seen, from a bond graph point of view the impedance ZZZ j is a resistive element.
Hence, the line model from Figure D.2 is static. Therewith, all subsystem models
are static. For the IEEE 33 Bus System, a static bond graph model is given by
Figure 5.6 by replacing each line model L j with the bond graph from Figure D.2
( j ∈ BI).

R: ZZZ j

1 I j,2I j,1

Figure D.2: Bond graph representation of the π-section model from Figure D.1
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D.1.2Automated Model Generation

The static bond graph model of the IEEE 33 Bus System is entered into AMOTO
and the automated model generation is executed. AMOTO calculates a static
port-Hamiltonian model consisting only of an output equation:

yyy = SSSuuu, (D.3)

where uuu,yyy ∈ C99 and SSS ∈ C99×99 with SSS = SSS⊤. As for the dynamic model (5.2),
the input vector and the output vector from (D.3) contain the bus voltages and
currents, respectively. However, in the static model these quantities are not in the
time-domain but in the phasor domain. The matrix SSS reflects the system topology.
Moreover, we can identify the inverses of the impedance matrices (D.1) in the
non-zero matrix blocks of SSS.

D.1.3Estimator Design

For the estimator design, we assume the same measured variables as for the
observer design in Section 5.2. The measured variables are collected in a vector
mmm ∈ C99. With AMOTO we calculate a measurement equation which relates the
measurements to the inputs and outputs of (D.3):

mmm =CCCuuuu+CCCyyyy, (D.4)

where CCCu,CCCy ∈ {−1,0,1}99×99. Inserting the static model (D.3) into (D.4) yields

mmm = (CCCu +CCCySSS)︸ ︷︷ ︸
=CCC

uuu. (D.5)
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The matrix CCC ∈ C99×99 is quadratic and of full rank. Hence, a static input-output
estimator for the IEEE 33 Bus System can be easily calculated to

ûuu =CCC−1mmm, (D.6)
ŷyy = SSSûuu, (D.7)

where ûuu ∈ C99 and ŷyy ∈ C99 are reconstructions of uuu and yyy, respectively.

Remark D.1 (WLS estimator). In general, the matrix CCC is a rectangular ma-trix with more rows than columns. Hence, from (D.5) we in general obtain

ûuu =
(

CCC⊤CCC
)−1

CCC⊤mmm. (D.8)

This is the well known WLS estimator from the power systems literatureunder unit covariance.
D.2 Definition of the Relative Error Signal

Power

In Subsection 5.2.7, we use the relative error signal power (RESP) as a measure
for similarity of a signal to a benchmark signal. In this section, the RESP is
formally introduced.

Consider a benchmark time-signal sbm : [0,T ]→ R, t 7→ sbm(t). The mean
power of the signal sbm(t) is

pbm =
1
T

∫ T

0
s2

bm(t)dt. (D.9)

Furthermore, consider a second signal sap(t) : [0,T ]→R, t 7→ sap(t) which repre-
sents an approximation of the signal sbm(t). This approximation may stem, e.g.,
from a model or an observer. We define the error signal as ε(t) := sbm(t)− sap(t).
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The (mean) error signal power is defined as

pε :=
1
T

∫ T

0
ε(t)2dt =

1
T

∫ T

0

(
sbm(t)− sap(t)

)2 dt. (D.10)

The RESP is defined as the quotient of (D.9) and (D.10):

rε :=
pε

pbm
. (D.11)

D.3 Numeric Data for the Simulation Results
from Section 5.2

This section provides the numeric data from the simulation results in Subsec-
tion 5.2.7. Tables D.1 and D.2 display the numeric values for the RESP of the bus
currents for the model (5.2) and the observer (5.4), respectively. For the model
and the observer, the data underlying Figure 5.7 are given in the last column of
the respective table. Likewise, Table D.3 and Table D.4 show the RESP values of
the bus voltages for the observer (5.4) and the WLS estimator (D.8), respectively.
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Table D.1: RESP of the bus currents computed from the model (5.2) in %

Bus no. Phase A Phase B Phase C Mean
1 0.1587 0.1587 0.1587 0.1587
2 0.1644 0.1587 0.1591 0.1607
3 0.1641 0.1632 0.1579 0.1617
4 0.1567 0.1564 0.1605 0.1579
5 0.1827 0.1779 0.1720 0.1776
6 0.1178 0.1739 0.1949 0.1622
7 0.1625 0.1588 0.1462 0.1558
8 0.1595 0.1640 0.1661 0.1632
9 0.1512 0.1489 0.1605 0.1535
10 0.2112 0.1867 0.1776 0.1918
11 0.3662 0.1441 0.2361 0.2488
12 0.1354 0.1763 0.1451 0.1523
13 0.1615 0.1643 0.1814 0.1690
14 0.1519 0.1615 0.1588 0.1574
15 0.1700 0.1640 0.1180 0.1506
16 0.1696 0.1443 0.2321 0.1820
17 0.1461 0.1597 0.1448 0.1502
18 0.1649 0.1616 0.1615 0.1627
19 0.1575 0.1587 0.1590 0.1584
20 0.1587 0.1590 0.1587 0.1588
21 0.1583 0.1583 0.1583 0.1583
22 0.1584 0.1583 0.1583 0.1583
23 0.1575 0.1591 0.1613 0.1593
24 0.1583 0.1583 0.1582 0.1583
25 0.1587 0.1586 0.1586 0.1586
26 0.1698 0.1975 0.1451 0.1708
27 0.1837 0.1428 0.1768 0.1678
28 0.1478 0.1544 0.1603 0.1542
29 0.1605 0.1617 0.1553 0.1592
30 0.1583 0.1561 0.1577 0.1574
31 0.1601 0.1621 0.1599 0.1607
32 0.1545 0.1537 0.1580 0.1554
33 0.1674 0.1681 0.1571 0.1642

Mean 0.1668 0.1615 0.1641 0.1641
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Table D.2: RESP of the bus currents computed from the observer (5.4) in %

Bus no. Phase A Phase B Phase C Mean
1 0.0004 0.0004 0.0005 0.0004
2 0.0134 0.0107 0.0155 0.0132
3 0.0047 0.0058 0.0040 0.0048
4 0.0129 0.0162 0.0162 0.0151
5 0.0232 0.0229 0.0246 0.0236
6 0.0034 0.0101 0.0120 0.0085
7 0.0028 0.0025 0.0030 0.0028
8 0.0006 0.0007 0.0006 0.0006
9 0.0003 0.0003 0.0003 0.0003
10 0.0116 0.0114 0.0114 0.0114
11 0.0159 0.0161 0.0160 0.0160
12 0.0003 0.0004 0.0002 0.0003
13 0.0004 0.0001 0.0003 0.0003
14 0.0023 0.0023 0.0023 0.0023
15 0.0066 0.0076 0.0067 0.0070
16 0.0038 0.0047 0.0038 0.0041
17 0.0003 0.0004 0.0003 0.0004
18 0.0001 0.0001 0.0001 0.0001
19 0.0019 0.0019 0.0017 0.0018
20 0.0047 0.0047 0.0043 0.0046
21 0.0057 0.0077 0.0069 0.0068
22 0.0011 0.0010 0.0011 0.0010
23 0.0107 0.0115 0.0115 0.0112
24 0.0023 0.0025 0.0020 0.0023
25 0.0009 0.0006 0.0009 0.0008
26 0.0104 0.0043 0.0055 0.0067
27 0.0071 0.0101 0.0108 0.0093
28 0.0272 0.0243 0.0200 0.0239
29 0.0082 0.0079 0.0083 0.0081
30 0.0001 0.0003 0.0004 0.0003
31 0.0012 0.0013 0.0020 0.0015
32 0.0027 0.0027 0.0022 0.0025
33 0.0011 0.0011 0.0011 0.0011

Mean 0.0057 0.0059 0.0060 0.0059
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Table D.3: RESP of the bus voltages computed from the observer (5.4) in %

Bus no. Phase A Phase B Phase C Mean
1 0.0004 0.0004 0.0004 0.0004
2 0.0000 0.0000 0.0000 0.0000
3 0.0004 0.0004 0.0004 0.0004
4 0.0006 0.0006 0.0005 0.0006
5 0.0007 0.0008 0.0006 0.0007
6 0.0014 0.0014 0.0011 0.0013
7 0.0016 0.0017 0.0014 0.0016
8 0.0017 0.0018 0.0015 0.0017
9 0.0019 0.0020 0.0017 0.0019
10 0.0021 0.0023 0.0019 0.0021
11 0.0021 0.0023 0.0019 0.0021
12 0.0021 0.0023 0.0019 0.0021
13 0.0024 0.0026 0.0022 0.0024
14 0.0025 0.0028 0.0023 0.0025
15 0.0025 0.0029 0.0024 0.0026
16 0.0026 0.0030 0.0024 0.0026
17 0.0027 0.0032 0.0025 0.0028
18 0.0027 0.0032 0.0025 0.0028
19 0.0000 0.0000 0.0000 0.0000
20 0.0001 0.0001 0.0001 0.0001
21 0.0002 0.0002 0.0001 0.0001
22 0.0002 0.0002 0.0001 0.0002
23 0.0004 0.0005 0.0005 0.0005
24 0.0005 0.0008 0.0008 0.0007
25 0.0005 0.0010 0.0009 0.0008
26 0.0015 0.0014 0.0012 0.0013
27 0.0015 0.0015 0.0012 0.0014
28 0.0020 0.0017 0.0015 0.0017
29 0.0024 0.0019 0.0017 0.0020
30 0.0026 0.0019 0.0017 0.0021
31 0.0027 0.0020 0.0020 0.0022
32 0.0027 0.0020 0.0020 0.0023
33 0.0027 0.0020 0.0020 0.0023

Mean 0.0015 0.0015 0.0013 0.0015
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Table D.4: RESP of the bus voltages computed from the WLS estimator (D.8) in %

Bus no. Phase A Phase B Phase C Mean
1 4.9917 4.9873 4.9897 4.9896
2 4.9997 4.9956 4.9957 4.9970
3 5.0374 5.0351 5.0249 5.0325
4 5.0555 5.0554 5.0416 5.0508
5 5.0734 5.0755 5.0581 5.0690
6 5.1040 5.1130 5.0824 5.0998
7 5.1020 5.1090 5.0769 5.0960
8 5.1173 5.1256 5.0929 5.1119
9 5.1313 5.1407 5.1065 5.1262
10 5.1450 5.1553 5.1201 5.1401
11 5.1481 5.1586 5.1233 5.1433
12 5.1536 5.1644 5.1291 5.1490
13 5.1681 5.1786 5.1437 5.1635
14 5.1710 5.1806 5.1465 5.1660
15 5.1732 5.1819 5.1487 5.1679
16 5.1765 5.1843 5.1521 5.1710
17 5.1797 5.1834 5.1555 5.1729
18 5.1810 5.1848 5.1567 5.1742
19 5.0005 4.9963 4.9967 4.9978
20 5.0061 5.0019 5.0042 5.0041
21 5.0068 5.0025 5.0056 5.0050
22 5.0082 5.0021 5.0067 5.0057
23 5.0461 5.0433 5.0318 5.0404
24 5.0617 5.0570 5.0426 5.0538
25 5.0705 5.0616 5.0505 5.0609
26 5.1083 5.1178 5.0871 5.1044
27 5.1140 5.1241 5.0933 5.1105
28 5.1295 5.1448 5.1110 5.1284
29 5.1407 5.1595 5.1250 5.1417
30 5.1488 5.1680 5.1339 5.1502
31 5.1552 5.1783 5.1401 5.1579
32 5.1570 5.1804 5.1405 5.1593
33 5.1574 5.1808 5.1409 5.1597

Mean 5.1036 5.1099 5.0865 5.1000
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D.4 Numeric System Parameters for the
Simulation in Section 5.3

In Section 5.3, we consider a large-scale nonlinear interconnected system depend-
ing on some symmetric, positive-definite (4×4) matrices DDD1, j, DDD2, j, QQQ1, j, and
QQQ1, j ( j ∈ Vs = {1, . . . ,15}). For the simulation of the system, we have to specify
these matrices numerically. To this end, the matrices DDD1, j, DDD2, j, QQQ1, j, and QQQ1, j
were chosen as diagonal matrices. The diagonal entries were specified by random
numbers between 0.1 and 10. The obtained matrices are as follows:
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DDD1,1 = diag(7.58,6.22,2.18,6.67) DDD2,1 = diag(6.84,2.99,5.66,9.08)(D.12)
DDD1,2 = diag(6.10,7.05,5.50,4.40) DDD2,2 = diag(4.53,5.16,8.50,6.57)(D.13)
DDD1,3 = diag(6.23,3.57,5.72,3.58) DDD2,3 = diag(9.75,5.64,5.86,8.54)(D.14)
DDD1,4 = diag(2.41,3.34,7.82,1.85) DDD2,4 = diag(8.52,0.27,2.65,8.52)(D.15)
DDD1,5 = diag(8.02,7.25,0.71,5.62) DDD2,5 = diag(5.72,7.34,3.65,4.90)(D.16)
DDD1,6 = diag(8.26,6.99,5.52,8.56) DDD2,6 = diag(9.09,3.63,2.50,8.78)(D.17)
DDD1,7 = diag(6.40,5.70,0.36,4.75) DDD2,7 = diag(5.26,2.50,8.01,7.72)(D.18)
DDD1,8 = diag(0.76,1.56,0.35,1.96) DDD2,8 = diag(4.79,3.38,5.10,2.16)(D.19)
DDD1,9 = diag(1.89,1.73,4.63,2.89) DDD2,9 = diag(6.96,7.57,5.87,7.87)(D.20)
DDD1,10 = diag(3.04,6.66,6.26,2.69) DDD2,10 = diag(3.36,9.62,8.63,9.07)(D.21)
DDD1,11 = diag(7.77,9.32,3.21,2.90) DDD2,11 = diag(3.95,9.37,0.80,9.63)(D.22)
DDD1,12 = diag(0.44,5.33,9.04,9.08) DDD2,12 = diag(9.23,3.41,2.91,5.36)(D.23)
DDD1,13 = diag(1.44,2.76,6.12,3.21) DDD2,13 = diag(8.71,6.02,5.85,5.27)(D.24)
DDD1,14 = diag(6.38,9.15,8.65,2.26) DDD2,14 = diag(2.70,2.86,4.49,4.29)(D.25)
DDD1,15 = diag(8.66,7.43,8.19,7.80) DDD2,15 = diag(1.10,3.83,0.30,7.96)(D.26)
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QQQ1,1 = diag(8.40,9.47,1.29,4.71) QQQ2,1 = diag(6.03,4.90,8.19,0.48)(D.27)
QQQ1,2 = diag(4.56,8.81,4.65,3.66) QQQ2,2 = diag(7.51,2.04,2.90,7.59)(D.28)
QQQ1,3 = diag(5.09,8.76,2.71,1.96) QQQ2,3 = diag(7.41,6.37,4.99,2.71)(D.29)
QQQ1,4 = diag(5.12,6.05,0.77,8.14) QQQ2,4 = diag(8.27,7.79,7.36,0.17)(D.30)
QQQ1,5 = diag(5.58,8.58,3.80,3.32) QQQ2,5 = diag(2.11,8.80,9.62,2.54)(D.31)
QQQ1,6 = diag(1.32,9.49,5.95,5.71) QQQ2,6 = diag(7.11,1.95,5.09,8.45)(D.32)
QQQ1,7 = diag(1.57,6.96,6.55,3.16) QQQ2,7 = diag(3.16,6.88,5.65,0.67)(D.33)
QQQ1,8 = diag(4.61,7.88,0.98,5.70) QQQ2,8 = diag(2.88,8.12,0.96,0.49)(D.34)
QQQ1,9 = diag(6.74,5.13,8.26,8.24) QQQ2,9 = diag(7.34,2.84,3.05,8.56)(D.35)
QQQ1,10 = diag(7.00,9.44,5.36,9.15) QQQ2,10 = diag(4.83,0.24,8.11,6.61)(D.36)
QQQ1,11 = diag(9.58,7.78,5.43,7.21) QQQ2,11 = diag(1.40,1.80,0.45,4.35)(D.37)
QQQ1,12 = diag(3.07,4.88,2.45,0.32) QQQ2,12 = diag(0.97,1.61,6.02,5.80)(D.38)
QQQ1,13 = diag(8.85,6.92,5.37,1.14) QQQ2,13 = diag(5.18,9.53,0.91,9.05)(D.39)
QQQ1,14 = diag(1.13,6.20,2.94,4.21) QQQ2,14 = diag(1.48,3.29,4.65,9.90)(D.40)
QQQ1,15 = diag(3.11,6.26,5.56,1.13) QQQ2,15 = diag(8.03,8.87,8.83,1.09)(D.41)
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D.5 Numeric Data for the Simulation Results
from Section 5.3

In Section 5.3, we use the time tδ ,i as a measure for the convergence of a re-
construction towards the variable to reconstruct. Table D.5 depicts the values
of tδ ,i with δ = 0.01 for the reconstructions obtained from the centralized ob-
server (5.12) and the distributed observer (5.14) for the 120 states of the nonlinear
system (5.7).
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Table D.5: Time t0.01,i for the centralized observer (5.12) and the distributed observer (5.14)
State i (5.12): t0.01,i in s (5.14): t0.01,i in s State i (5.12): t0.01,i in s (5.14): t0.01,i in s1 0.34 0.46 61 0.35 0.342 0.41 0.46 62 0.15 0.173 0.35 0.46 63 0.89 0.954 0.40 0.46 64 3.25 4.345 0.11 0.11 65 0.48 0.466 0.29 0.32 66 0.43 0.467 0.08 0.10 67 0.40 0.468 1.19 1.07 68 0.37 0.469 0.63 0.46 69 0.10 0.0910 0.58 0.46 70 0.20 0.2211 0.70 0.46 71 0.21 0.2612 0.75 0.46 72 0.07 0.0713 0.31 0.14 73 0.58 0.4614 0.55 0.44 74 0.37 0.4615 0.32 0.19 75 1.26 0.4616 0.23 0.10 76 0.50 0.4617 0.53 0.46 77 0.42 0.2818 0.14 0.46 78 1.63 1.9819 0.48 0.46 79 0.25 0.0720 0.37 0.46 80 0.11 0.0821 0.07 0.06 81 0.30 0.4622 0.05 0.13 82 0.80 0.4623 0.13 0.16 83 0.28 0.4624 0.15 0.20 84 0.50 0.4625 0.53 0.46 85 0.68 0.8326 0.14 0.46 86 0.59 0.2727 0.48 0.46 87 3.41 12.8228 0.37 0.46 88 0.15 0.1129 0.07 0.07 89 0.50 0.4630 0.58 2.21 90 0.25 0.4631 0.22 0.24 91 0.90 0.4632 2.85 3.17 92 0.48 0.4633 0.53 0.46 93 0.55 0.5134 0.14 0.46 94 0.72 0.8435 0.48 0.46 95 0.54 0.2636 0.37 0.46 96 0.18 0.1537 0.46 0.39 97 0.60 0.4638 0.03 0.07 98 0.64 0.4639 0.10 0.13 99 0.32 0.4640 0.29 0.37 100 0.48 0.4641 0.48 0.46 101 0.23 0.1042 0.43 0.46 102 0.18 0.0843 0.40 0.46 103 1.55 0.8744 0.37 0.46 104 0.12 0.1045 0.07 0.07 105 0.23 0.4646 0.61 0.65 106 0.51 0.4647 0.30 0.36 107 1.10 0.4648 0.06 0.06 108 0.46 0.4649 0.28 0.46 109 0.70 1.1550 0.42 0.46 110 0.54 0.4951 0.44 0.46 111 0.60 0.2252 0.41 0.46 112 0.12 0.1153 0.15 0.28 113 0.36 0.4654 0.26 0.27 114 0.67 0.4655 0.10 0.10 115 0.07 0.4656 0.98 0.89 116 0.30 0.4657 0.48 0.46 117 0.41 0.5258 0.43 0.46 118 0.30 0.1459 0.40 0.46 119 0.47 1.7460 0.37 0.46 120 0.39 0.54
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D.6 Noise Study for the Observers from
Section 5.3

At the end of Section 5.3, it was commented on the behavior of the centralized
observer (5.12) and the distributed observer (5.14) in the presence of measure-
ment noise. The section at hand provides the simulation details that build the
basis for the comments from Section 5.3.

To analyze the behavior of the observers under measurement noise, the mea-
surement equations (5.11) and (5.13) are extended by Gaussian random processes.
The extended measurement equations for the centralized observer (5.12) and the
distributed observer (5.14) read

mmm =CCC QQQ xxx + εεε , (D.42a)
mmm j =CCC jQQQ jxxx j + εεε j, ∀ j ∈ Vs, (D.42b)

respectively. In (D.42), εεε and εεε j are vector-valued Gaussian random processes
with zero mean and covariance matrices σ III60 and σ III4, respectively, where
σ ∈ R≥0. The simulations of the centralized observer (5.12) and the distributed
observer (5.14) are then rerun on the basis of the noisy measurements (D.42).
Thereby, the noise variance is set to σ2 = 10−4 which leads to a mean SNR over
all measurement signals of 51.8 dB. To ensure comparability, the same realization
of the noise process is applied to the centralized and distributed observer. The
results of the simulations under noise are presented in the sequel.

The bar diagram in Figure D.3 depicts the number of states with tδ ,i ≤ 10s
for different values of the tolerance δ . The red and brown bars correspond the
centralized and the distributed observer, respectively.

For the centralized observer, there are no states with tδ ,i ≤ 10s if δ ≤ 10−3.
For δ = 10−2 and δ = 10−1, we have 24 and 108 states with tδ ,i ≤ 10s, respec-
tively. Only for δ = 100, all states achieve a tδ ,i ≤ 10s. For the distributed
observer, there are 59 states with tδ ,i ≤ 10s for δ ∈ [10−4,10−3]. For δ = 10−2,
119 states have a time tδ ,i ≤ 10s;1 for δ ≥ 10−1 all 120 states have a tδ ,i ≤ 10s.

Figure D.3 reveals the centralized observer to be negatively influenced by the
measurement noise. Thereby, the noise deteriorates the convergence behavior of

1Note that in the absence of noise there is also one state in the distributed observer which has a
tδ ,i > 10s for δ = 10−2, see Figure 5.14.
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D.6 Noise Study for the Observers from
Section 5.3

At the end of Section 5.3, it was commented on the behavior of the centralized observer (5.12)
and the distributed observer (5.14) in the presence of measurement noise. The section at hand
provides the simulation details that build the basis for the comments from Section 5.3.

To analyze the behavior of the observers under measurement noise, the measurement
equations (5.11) and (5.13) are extended by Gaussian random processes. The extended
measurement equations for the centralized observer (5.12) and the distributed observer (5.14)
read

mmm =CCC QQQ xxx + εεε , (D.42a)
mmm j =CCC jQQQ jxxx j + εεε j, ∀ j ∈ Vs, (D.42b)

respectively. In (D.42), εεε and εεε j are vector-valued Gaussian random processes with zero
mean and covariance matrices σ III60 and σ III4, respectively, where σ ∈ R≥0. The simulations
of the centralized observer (5.12) and the distributed observer (5.14) are then rerun on the basis
of the noisy measurements (D.42). Thereby, the noise variance is set to σ2 = 10−4 which
leads to a mean SNR over all measurement signals of 51.8 dB. To ensure comparability, the
same realization of the noise process is applied to the centralized and distributed observer.
The results of the simulations under noise are presented in the sequel.

The bar diagram in Figure D.3 depicts the number of states with tδ ,i ≤ 10s for different
values of the tolerance δ . The red and brown bars correspond the centralized and the
distributed observer, respectively.
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Figure D.3: Number of observer states with tδ ,i ≤ 10s for different values of δ for the centralizedobserver (5.12) and the distributed observer (5.14) in the presence of measurement noiseFigure D.3: Number of observer states with tδ ,i ≤ 10s for different values of δ for the cen-tralized observer (5.12) and the distributed observer (5.14) in the presence of noise

all reconstructions. In the noise-free case, each of the 120 states has a tδ ,i ≤ 10s
for δ = 10−2 (cf. Figure 5.14). In contrast, under noisy measurements this
number reduces to 24 states. On the other hand, the figure shows that for t ≥ 10s
all reconstructions remain in a tolerance band of width δ = 100 around the values
of the true states.

For the distributed observer, the situation is different. Half of all reconstruc-
tions remain unaffected by the measurement noise. The explanation of this can
be found in the subsystem observer dynamics (5.14a) and the structure of the
matrices RRR j in (5.10a). The error injection, and therewith the noise, acts on the
first four elements of the state vector of each subsystem state. The corresponding
reconstructions converge to and remain in a tolerance band of width δ = 10−1

around the value to be observed. In contrast, the last four elements of the
observer state converge due to a natural damping contained in the matrix RRR j.
Thereby, the matrix RRR j is a 4× 4 block diagonal matrix. Hence, there is no
coupling from the first four to the second four observer states (and vice versa)
and the latter remain unaffected by the noise.

In conclusion, the above results show that those observer states converging
only due to the natural damping of the system remain unaffected by the measure-
ment noise. In contrast, in observer states influenced by the error injection the
property of asymptotic convergence reduces to the convergence into a tolerance
band around the value to be observed. The width δ of this tolerance band depends
on the noise level.
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Interconnected systems are composed of multiple subsystems interacting over a physical 
network through an exchange of energy. Well-known examples are power systems, district 
heating networks, automotive power networks, and interconnected industrial systems. The 
complexity of such systems brings the conventional way of developing models and observers 
to its limits. In consequence, models and observers are developed under severe simplifica-
tions of the systems’ physics which leads to a poor applicability and underperformance. 

This work provides remedy. The idea is to automate the processes of a physics-based mod-
el derivation and a model-based observer design. To this end, automatable modeling and 
observation methods are developed in the framework of port-Hamiltonian systems (PHSs).

The first contribution of this work is a set of methods for an automated derivation of ODE 
models. Starting point of these methods is a bond graph representation of the system. The 
main results are (i) necessary and sufficient conditions on the systems' physics to formulate 
a state space model and (ii) algorithms which allow for an automated ODE formulation of a 
bond graph system. Based hereon, the second contribution of this work is a set of methods 
for an automated design of observers for different classes of linear and nonlinear PHSs.

The methods and algorithms are implemented in a software prototype. The prototype is 
demonstrated for two exemplary systems. Symbolic models and observers with hundred 
and more states, inputs, and outputs are automatically generated within seconds. Numerical 
simulations verify the validity of the obtained models and observers. Therewith, this work is 
the first to consistently automate the processes of a physics-based model derivation and a 
model-based observer design for a wide class of interconnected systems.
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